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Editorial

Welcome to the Book Series Structures and Infrastructures.
Our knowledge to model, analyze, design, maintain, manage and predict the life-

cycle performance of structures and infrastructures is continually growing. However,
the complexity of these systems continues to increase and an integrated approach
is necessary to understand the effect of technological, environmental, economical,
social and political interactions on the life-cycle performance of engineering structures
and infrastructures. In order to accomplish this, methods have to be developed to
systematically analyze structure and infrastructure systems, and models have to be
formulated for evaluating and comparing the risks and benefits associated with various
alternatives. We must maximize the life-cycle benefits of these systems to serve the needs
of our society by selecting the best balance of the safety, economy and sustainability
requirements despite imperfect information and knowledge.

In recognition of the need for such methods and models, the aim of this Book Series
is to present research, developments, and applications written by experts on the most
advanced technologies for analyzing, predicting and optimizing the performance of
structures and infrastructures such as buildings, bridges, dams, underground con-
struction, offshore platforms, pipelines, naval vessels, ocean structures, nuclear power
plants, and also airplanes, aerospace and automotive structures.

The scope of this Book Series covers the entire spectrum of structures and infrastruc-
tures. Thus it includes, but is not restricted to, mathematical modeling, computer and
experimental methods, practical applications in the areas of assessment and evalua-
tion, construction and design for durability, decision making, deterioration modeling
and aging, failure analysis, field testing, structural health monitoring, financial plan-
ning, inspection and diagnostics, life-cycle analysis and prediction, loads, maintenance
strategies, management systems, nondestructive testing, optimization of maintenance
and management, specifications and codes, structural safety and reliability, system
analysis, time-dependent performance, rehabilitation, repair, replacement, reliability
and risk management, service life prediction, strengthening and whole life costing.

This Book Series is intended for an audience of researchers, practitioners, and
students world-wide with a background in civil, aerospace, mechanical, marine and
automotive engineering, as well as people working in infrastructure maintenance,
monitoring, management and cost analysis of structures and infrastructures. Some vol-
umes are monographs defining the current state of the art and/or practice in the field,
and some are textbooks to be used in undergraduate (mostly seniors), graduate and
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postgraduate courses. This Book Series is affiliated to Structure and Infrastructure
Engineering (http://www.informaworld.com/sie), an international peer-reviewed jour-
nal which is included in the Science Citation Index.

It is now up to you, authors, editors, and readers, to make Structures and
Infrastructures a success.

Dan M. Frangopol
Book Series Editor

© 2009 Taylor & Francis Group, London, UK
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Preface

The economy of the world has undergone a significant leap in the last few decades.
Many major infrastructures were constructed to meet the growing demand of rapid
and heavy inter-city passages and freight transportation. These structures are impor-
tant to the economy, and significant losses will be incurred if they are out of service.
Some sort of health monitoring system has been included in some of these infrastruc-
tures as part of the management system to ensure the smooth operation of these civil
structures. Operational data has been collected over many years and yet there is no
analysis algorithm which can give the exact working state of the structure on-line. The
maintenance engineer would like to know the exact location and damage state of the
structural components involved in a damage scenario after an earthquake, a major
intentional attack or an unintentional accident to the structure. This knowledge is
required in a matter of hours for life saving or any necessary military action. Also, the
client would like to have a rapid diagnosis of the structure to make a decision on any
necessary remedial work.

Existing methods that use the modal parameters for a diagnosis of the structure are
not feasible, as they demand a large number of measurement stations and full or partial
closure of the structure. Also, measurement with operation loads on top would not
give an accurate estimate of the modal parameters. Other existing methods that use
time-response histories do not include the operating load in the analysis. This book is
devoted to the condition assessment problem with the structure under operating loads,
with many illustrations related to a bridge deck under a group of moving vehicular
loads. The loading environment under which the structure is exposed serves as the
excitation. It may be a group of vehicular loads, earthquake excitation or ambient
random excitation at the supports. It may be the wind loads acting at the deck level in
a flexible cable-supported bridge deck. Different algorithms based on these excitations
are discussed. These excitation forces are used directly in the equation of motion of the
structure for the estimation of local changes in the structure, and different time-domain
approaches, including those developed by the authors, are discussed in detail.

These algorithms enable real-time identification with deterministic results on the
state of the structure. This meets the needs of maintenance engineers, who would
like to know the damage state of the structural components, so that they can judge
the suitability of remedial measures and estimate the effect on the performance of
the structure. This also matches the current practice of deterministic design of the
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infrastructure, thus giving the maintenance engineer a good feeling about the safety of
the structure.

A description of the type of damage is an essential component of structural condition
assessment. However, damage models are scare and are mostly limited to crack(s) in a
beam. This book covers a group of Damage-Detection-Oriented Models, including a
new decomposition of the elemental matrices of the beam element and plate element
that automatically differentiates changes in the different load resisting stiffnesses of
the structural component. These models give a more precise description of the dam-
age component than ordinary models, which usually treat the damage as an average
reduction in the elastic modulus of the material, and hence they are more suitable for
detecting damage.

The owner of the infrastructure is also concerned with the safety and reliability of
the structure in the form of a statistical estimate of its remaining life. A method that
can extend the deterministic condition assessment to provide statistical information is
also included in this book.

The group of methods and algorithms described in this book can be implemented for
on-line condition assessment of a structure through model updating during the course
of an earthquake, when under normal ambient excitation or operation excitation from
passing vehicles. These capabilities are demonstrated with examples of the condition
assessment of different structures supplemented with major references.

Chapter 1 gives the background to structural condition assessment and its main com-
ponents. The requirements of an ideal and practical structural condition assessment
algorithm are discussed. Chapter 2 gives a summary of the mathematical techniques
that are needed to solve the inverse problem with the condition assessment algorithms
presented in this book. The Tikhonov regularization and other optimization methods
are noted to be frequently used with the algorithms.

Chapter 3 summarizes the more recently developed models on damage in frame
and plate elements. These include, the crack size and orientation in a thin and thick
plate; the delamination of Fibre Reinforced Plastic from a concrete plate; the super-
element model of the Tsing Ma Bridge deck; a general-purpose joint model with both
rotational and transverse flexibility; and the pre-stressing effect of a concrete member.
The stiffness matrix of a rectangular shell element can be decomposed analytically into
its macro-stiffnesses and the corresponding natural modes. This pair of parameters has
been shown to be associated with the axial, bending, shear and torsional capacities
of the element. The pattern of the decomposed parameters in a structure has been
shown to be capable of indicating the load path and possible failure associated with the
different load-carrying capabilities of the structural element. The modelling of damping
in the concrete–steel interface of a concrete beam is also included. It is known that the
accuracy of the condition assessment result depends on the correctness of the damage
model in the model-based approach. These models are different from existing models,
which were originally developed for the study of the static and dynamic behaviour
under load. These models are grouped under the name of Damage-Detection-Oriented
Models, with parameters representing the damage state of the structural element.

Chapter 4 summarizes the formulation of model reduction methods and mode-shape
expansion methods, which may be appropriate for the solution of the inverse problem
with small- and medium-size structures. Remarks are given on their limitations, and a
new direction is discussed whereby a large-scale structure is considered as an assembly
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of ‘sub-structures’ and the interface forces between sub-structures are treated as input
to the sub-structures in the condition assessment.

Examples of condition assessment using static measurement are given in Chapter
5. Although it is not a popular approach, the examples illustrate the essential fea-
tures of the inverse identification problem, including the fact that the identified local
damage is a function of the load level. Chapter 6 gives the more recently developed
high-order sensitive dynamic parameters in the frequency domain. The analytical rela-
tionship between the different modal parameters and the parameters of the structure
are presented. The modal flexibility and unit load surface curvatures are applied in the
assessment of cracks in thin and thick plates.

Chapter 7 deals with the more recent developments in the time-domain with the
structure under operation load. The measured response is used directly in a sensitivity
approach for both the localization and quantification of local damages. This time-
domain approach provides a virtually unlimited supply of measured information from
as few as one sensor. Features of these approaches are discussed, including the identi-
fication from output response only; the treatment with coupled structural parameters;
the problem with a wide range of sensitivity in the inverse analysis; and whether the
operation load and system parameters can be identified separately or simultaneously.
The temperature effect in the different measurements can also be accounted for with
these techniques. Chapter 8 further develops the time-domain sensitivity approach
with wavelet and wavelet packet representations, where the information from different
bandwidths of the measured responses for the condition assessment can be explored.
The unit-impulse response function sensitivity and covariance sensitivity are formu-
lated to remove the dependence of the problem on input excitation. The different types
of load environments, such as, earthquake excitation, vehicular excitation and random
white noise support excitation, are included in the condition assessment.

Chapter 9 summarizes the different uncertainties involved in the structural con-
dition assessment and the more common methods for the reliability analysis of a
structure. An example is given on how the system uncertainties in the inverse problem
are integrated into the condition assessment process, resulting in propagation of these
uncertainties from the system model into the final identified results. The statistics of
the basic variables of the system are altered, resulting in an updated set of reliability
indices for the structure. A box-section bridge deck is taken as an example to explain
the integration of these uncertainties in the condition assessment and the subsequent
reliability analysis.

Xin-Qun Zhu
Siu-Seong Law

July 2009
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Chapter 1

Introduction

1.1 Condition monitoring of civil infrastructures

1.1.1 Background to the book

The world economy has undergone a significant leap in the last few decades with the
construction of many large-scale infrastructures. The construction of many long span
bridges is usually accompanied by the installation of a structural health monitoring
system. Some of these structures have been monitored on their performances for over a
decade, and yet there is no condition assessment method that can use the collected data
to yield useful information for the bridge owner towards the maintenance scheduling
and on the evolution of the structural conditions of the bridge. Also, many of the
highways and bridges constructed in the fifties and sixties in the United States and
Europe are aging with the wear from usage and poor maintenance. The failure of
these highways and bridges would be disastrous for the economy of the area and for
the whole country. The collapse of two major bridges in JiuJiang, in China and in
Minneapolis in the United States in 2007, highlighted the urgent need for a simple
and realistic approach for condition assessment integrated with the reliability rating
of the bridge structure. However, the limited resources of short-term structural health
monitoring of the stock of infrastructures in any country is noted.

The existing practice of condition assessment of highway bridges is based on visual
inspections or theoretical/numerical models and is typically oriented towards the detec-
tion of local anomalies, localization and identification. Other technical approaches that
use low load level static and dynamic tests, underestimate the local anomalies which
are often functions of the load level.

1.1.2 What information should be obtained from the structural
health monitoring system?

The most important information required by the owner of the infrastructure is that
which helps the engineer to decide on the maintenance schedule and to prepare an
emergency plan in case of an accident. The basic requirements are: Is there any dam-
age to the structure? Where is the damage? How bad is the damage scenario? and,
how will the damage affect the remaining useful life of the structure? They are gener-
ally referred to as the Level 1, Level 2, Level 3 and Level 4 problems. Answers to the
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2 Damage mode ls and a lgor i thms

first three problems are usually provided by the Structural Health Monitoring (SHM)
system, which involves the observation of a structure over time using periodically
sampled response measurements from an array of sensors, the extraction of damage
features from these measurements and their analysis to determine the current state of
the structure. For long-term structural health monitoring, this process is periodically
repeated with updated information on the performance of the structure. This process
is usually referred to as Condition Monitoring. The answer to the Level 4 problem
is usually provided through the process of Damage Prognosis, which is the estima-
tion of the performance of the structure via predictive models, including the past and
present condition of the structure; the environmental influence; and the original design
assumptions regarding the loading and operational environments. This question is dif-
ficult to answer and the problem will not readily be solved in the next few years. While
there are many methods, particularly non-model-based methods, that can handle the
Level 1 problem, and, to a certain extent, the Level 2 problem, the answer to the Level
3 problem needs a correlation of the damage features with the load resisting model of
the structure, which in turn requires a damage model to represent the extent of dam-
age. However, only a few damage models can be found in the literature. This book
aims to provide the answer mainly to the Level 3 problem with information provided
by either short-term or long-term structural health monitoring.

Maintenance engineers would like to know the exact location and damage state of
the structural components involved with a damage scenario, so that they can judge
the suitability of remedial measures and estimate the effect on the performance of the
structure. These requirements are consistent with the existing practice of deterministic
design of the infrastructures.

The interpretation of the assessment results must be related to some basic parameters
of the structure to have physical meaning. In a discretized model of a structure, such
parameters are usually averaged over the entire element with no details on the state
of damage in the element and its relation to the state in adjacent elements. Damage
models are scarce and the types are limited. The identification of equivalent changes in
the stiffnesses of a large number of discretized finite elements of a structure to define
its performance in the limit and serviceability states would be meaningful only to the
structure of isotropic homogeneous materials and is constrained by the capability of
optimization algorithms with many unknowns. There is unfortunately no direct link
between the stiffness change and the load-carrying capacity of a structure.

Promising types of vibration-based methods (Doebling et al., 1998b) for structural
health monitoring include primarily model-based and non-model-based statistical pat-
tern recognition methods. The first group of methods updates the required structural
parameters of the damaged structure with respect to the model of the intact structure,
and the parameters can be interpreted to locate and evaluate the damage, as has been
done by Abdel Wahab et al. (1999) with their reinforced concrete beams. The key
is to find and use features that are sensitive to damage. Most commonly used fea-
tures in vibration-based damage identification are model-based linear features, such
as modal frequencies, mode shapes, mode shape derivatives, modal macro-strain vec-
tors, modal flexibility/stiffness and load-dependent Ritz vectors. These features can be
applied to either linear or nonlinear response data, but are based on linear concepts.
The parameters of linear (physics-based) finite element models of structures are also
used as features for damage identification purposes. The use of these parameters needs
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In troduct ion 3

‘data-mining’ through flexible software to manipulate the basic measured data, and it
is not discussed in this book.

1.2 General requirements of a structural condition
assessment algorithm

An effective structural condition assessment method should consist of the following
components: a strategy of measurement; a selection of parameters to be updated; the
updating algorithm; and a library of damage models plus on-line assessment from short
duration measurements. The set of measured information should be sensitive to the
physical parameters to be identified, and the measured locations should be determined
using different criteria (Kammer, 1997). The set of parameters to be updated should be
considered from an engineering perspective, and they, as a whole, should be able to give
a full description of the condition of the structure. These parameters, when linked with
the measured location, should enable an optimum selection of the parameters with suf-
ficient sensitivity. Existing damage models are not universal and therefore it is necessary
to repeat the identification for a best match with different damage models of the struc-
ture. Some of these models are discussed in Chapter 3. The updating algorithm should
be iterative to take account of nonlinearities in the anomaly. The uniqueness of the
solution is not guaranteed in all existing updating algorithms, but this is constrained
by the capability of the minimization algorithm not falling into local minima. The
ill-conditioned solution will need to be improved with regularization (Law et al.,
2001b). This is discussed further in Chapter 2. It is clear from the above discussions that
the assessment method depends on the target structure. Also, with the uncertainties
involved and the difficulty of fully eliminating these errors in the assessment process,
probabilistic estimation methods have also been developed (Farrar et al., 1999). The
assessment result usually contains some statistical characteristics.

While there are numerous problems associated with the condition assessment of a
structure, the following are the major problems that need to be solved for any practical
application:

• How to minimize the required measured information? Which are the best sensor
locations?

• How to incorporate the operational loading into the algorithm?
• How to assess a structure with many structural components?
• How to include or exclude the effect of environmental parameters?
• How to set up the threshold value that triggers an alarm?

1.3 Special requirements for concrete structures

The problem of condition assessment for a pre-stressed concrete bridge deck lies in the
fact that, the definition of the damage state of the structure in terms of the EI, GJ, etc.
with an isotropic homogeneous material, does not have the same physical interpreta-
tion as the non-homogeneous reinforced concrete member. The damage zone in a beam
has been assessed using a three-parameter model with dynamic loads (Maeck et al.,
2000; Law and Zhu, 2004). The load-carrying capacity of a pre-stressed concrete
structural component is largely determined by the pre-stressing force in the cables, and
in most cases, the cracks are closed under the pre-stress. Therefore, a damage model on
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4 Damage mode ls and a lgor i thms

the bonding effect (Limkatanyu and Spacone, 2002; Zhu and Law, 2007b) is required
with the pre-stress as an identifiable parameter. The damage model may be incorpo-
rated into a finite element model or a finite strip model of the structure. The finite strip
approach has been developed with fewer unknowns in the system identification than
the former, to take account of the continuous structure with a non-uniform profile
under the action of point loads. The pre-stress force is modelled as equivalent forces
at the strip nodal points (Choi et al., 2002), and at the nodal points (Figueiras and
Póvoas, 1994) in the case of modelling using the finite element.

1.4 Other considerations

1.4.1 Sensor requirements

Different types of sensors, ranging from strain gauges, linear displacement transduc-
ers and accelerometers to GPS and laser vibrometers, can be used to collect an array
of deformations and stresses of the structure under load. Their locations should be
optimized before the sensor installation, so that the effectiveness and sensitivity of
the measured information are maximized. Kammer (1991) proposed the sensor place-
ment to maximize the Fisher information and to provide linearly independent mode
shapes. Hemez and Farhat (1994) modified Kammer’s Effective Independence method
according to the strain energy distribution of the structure with the sensors placed
near the load paths, so that any structural change becomes more observable. Shi
et al. (2000c) developed the sensor placement method for structural damage detec-
tion, whereby sensors are placed at locations most sensitive to structural changes of
the structure. Chapters 7 and 8 also show that different types of measured information
have different sensitivities with respect to the local damages under study. While other
sensors are collecting information on the temperature, wind conditions, humidity, etc.,
they calibrate the health monitoring system with respect to the different variables of
the system. The data ‘fusion’ (Jiang et al., 2005; Guo, 2006; Smyth and Wu, 2007),
created by combining groups of sensor information into new virtual sensors to produce
hybrid information taking advantage of their spatial relationship, can also be achieved
through flexible, enabling software for dynamically establishing and managing the
sensor groups with commercially available software packages.

1.4.2 The problem of a structure with a large number
of degrees-of-freedom

Existing condition assessment techniques based on measurement make use of the global
response of the structure for the assessment of local anomalies, which are subject to
measurement error and errors in the analytical model in a model-based approach.
These errors distribute throughout the set of results masking those identified for the
local anomalies. As a result of this deficiency, the identification of a large structure with
many structural components does not give the correct estimation on the condition of
the structure.

Many attempts have made to reduce the structure into sub-structures with fewer
degrees-of-freedom (DOFs) or to expand the measured information into the full set
of DOFs of the structural system, and they are subject to the error distribution in
the final set of identified results. However, these methods are very useful for solving
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In troduct ion 5

medium- and small-size problems, and more details of the different formulations are
presented in Chapter 4.

1.4.3 Dynamic approach versus static approach

The static approach uses the responses from the operational, or close to the operational,
load for the assessment. This is important as most types of damages do not show up
under a small load level and they are difficult to detect. These damages affect the
gradient of the load-deformation curve when under operational load, and hence are
closely associated with the reserve load-carrying capacity of the structure. However,
the information obtained from static tests is limited and it is expensive to repeat the test
to get more sets of data for the condition assessment. The dynamic approach, however,
can provide a large amount of dynamic data in both the frequency and time domains
but with the limitation of measuring at a low load level, so some of the local damages
may not be detected with this approach. This book discusses one way to overcome this
limitation, by including the effect of the operational load in the condition assessment
of the structure as shown in Chapters 5, 7 and 8.

1.4.4 Time-domain approach versus frequency-domain approach

The dynamic approach in the frequency domain, though more flexible than the static
approach in terms of data collection, still has the disadvantage of a limitation of
the measured data in terms of the number of modal frequencies of the structure and
the number of measured points to define the mode shapes. The investment in the
number of sensors and the data collection system would be limited. Also, the Fourier
transformation that converts the measured time series into a spectrum, suffers from
a loss of information which is of the same order of the information from the local
damages, while the time-domain approach makes direct use of the measured time
series in the condition assessment. The time measurement can be collected continuously
with time and the experiment can be repeated easily with only a limited number of
sensors. When the measured time series is decomposed into wavelets, the damage
detection can further be performed with damage information contained in different
frequency bandwidths of the response. Also, the wavelet decomposition does not have
the data corruption as the Fourier transform. It retains all the information from the
local damages in the decomposition. These two groups of methods are discussed with
examples in Chapters 7 and 8.

1.4.5 The operation loading and the environmental effects

A structure is subjected to different types of loading during its life span. They may
be the operational load, seismic load, wind load and ground tremor. All these loads
generate sufficient vibrational response in the structure to reveal some of the hidden
damages which would otherwise be impossible to detect with the lack of sufficiently
large energy for the artificial excitation. The inclusion of all these loads would be an
advantage for a practical damage detection algorithm. Chapters 7 and 8 show some
of the works towards this end, including one algorithm using white noise random
excitation for the condition assessment. The environmental effects in terms of the
temperature, humidity and wind conditions should be treated as random variables of
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6 Damage mode ls and a lgor i thms

the measured system and they will be handled as random processes in the identification
in Chapter 9. A rudimentary treatment of the temperature effect on the identification
is also presented in Chapter 7.

1.4.6 The uncertainties

Each of the system parameters is treated as a random variable with a mean and a vari-
ance. When they go through the condition assessment process, their statistics change
and affect the statistics of the identified results. This fact has not been considered in
existing condition assessment procedures, leading to incorrect indices in the subsequent
reliability analysis. This is elaborated further in Chapter 9, with remarks on how these
random variables could be integrated into the structural condition assessment resulting
in an updated reliability index of the structure.

1.5 The ideal algorithm/strategy of condition assessment

This book includes analysis methods for evaluating, calibrating and applying deter-
ministic approaches for detecting structural changes or anomalies in a structure
and quantifying their effects in a form for the engineer to make a decision. Other
approaches, e.g. the non-parametric methods, such as neural networks; statistical pat-
tern recognition; integration of non-destructive damage identification method with
reliability and risk analysis (Stubbs et al., 1998); and the use of probabilistic networks
and computational decision theory (Pearl, 1988), to integrate system uncertainties and
derive rational decision policies are not discussed in this book.

A promising model-based condition assessment method consists of updating the
parameters of a physics-based nonlinear finite element model of the bridge deck using
response measurement (Lu and Law, 2007a) or its wavelet decomposition (Law et al.,
2005; Law et al., 2006) with possibly the input data. The solution is based on the
response or wavelet sensitivity with respect to the different system parameters. The
environmental temperature, the pre-stress force (Law and Lu, 2005; Lu and Law,
2006b) and load environment (Lu and Law, 2005; Zhu and Law, 2007) of the operating
structure can be considered, while the effect of the modelling error can be alleviated,
particularly with the wavelet approach (Law et al., 2005; Law et al., 2006) where
the parameter identification can be conducted in different bandwidths of the response
measurement. The response and wavelet sensitivity approaches are linear, but when
used iteratively with regularization of the solution, they give accurate estimates of
the nonlinear anomalies. A study of the distribution of the model error effect in the
bandwidth of the measured response is also required, so that the error can be avoided
by not using that particular bandwidth of wavelet coefficients (Law et al., 2006).
The best sensor location and the best wavelet coefficients/packets with respect to the
configuration of the structural system are studied with experiences gained in previous
studies (Law et al., 2005; Law et al., 2006). A research challenge in performing the
parameter updating is the propagation of uncertainties from the data and the model
into the identified parameters of a nonlinear finite element model. This is included,
taking advantage of the recent formulation of the uncertainty sensitivities (Xia et al.,
2002; Li and Law, 2008). The local anomalies in the bridge deck modelled explicitly
with an existing damage model can be identified in the structural condition assessment
using the moving vehicle technique (Law and Zhu, 2004).
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In troduct ion 7

A new sub-structuring method will be developed taking the local dynamic forces
at the interfacing DOFs between the sub-structure as the criteria of acceptance of the
accuracy of the reduced model. This is different from the existing practice of taking
the modal parameters of the structure as the criteria, which are global responses. The
adjacent sub-structures can be replaced by a substitute set of known forces (Devriendt
and Fontul, 2005; Law et al., 2008) at the same coupling coordinates. Thus, the
sub-structural analysis technique can be integrated with visual inspection where part
of the structure, which has been checked to contain minimal model errors and local
anomalies, can be represented by the set of interfacing forces of the sub-structure, while
other parts, which are prone to local anomalies and model errors or contain critical
components, are monitored closely.

The finite element model of the sub-structure consists of a fraction of the num-
ber of DOFs of the whole structure, and the system identification is more effective
and accurate compared with existing methods with measurement from a few selected
accelerometers on the structure (Kammer, 1991; Hemez and Farhat, 1994; Shi et al.,
2000).

© 2009 Taylor & Francis Group, London, UK

  



Chapter 2

Mathematical concepts for discrete
inverse problems

2.1 Introduction

Inverse problems can be found in many areas of engineering mechanics (Tanaka and
Bui, 1992; Bui, 1994; Zabaras et al., 1993; Friswell and Mottershead, 1996; Trujillo
and Busby, 1997; Tanaka and Dulikravich, 1998; Friswell et al., 1999; Tanaka and
Dulikravich, 2000). A successful solution of the inverse problems covers damage
detection (Ge and Soong, 1998), model updating (Fregolent et al., 1996; Ahmadian
et al., 1998), load identification (Lee and Park, 1995), image or signal reconstruction
(Mammone, 1992) and inverse heat conduction problems (Trujillo and Busby, 1997).
Generally, the inverse problem is concerned with the determination of the input and
the characteristics of a system given certain information on its output. Mathemati-
cally, such problems are ill-posed and have to be overcome through the development
of new computational schemes, regularization techniques, objective functions and
experimental procedures.

This chapter gives a brief description of the basic knowledge of ill-conditioned matri-
ces. Discussions on the Singular Value Decomposition (SVD) and the discrete Picard
condition give insight into the discrete ill-posed problem. Section 2.4 gives three opti-
mization algorithms for the solution of the inverse problem. Section 2.5 describes some
of the techniques to obtain a regularized solution. Finally, criteria for convergence of
the solution are discussed in Section 2.7.

Information in this chapter forms the basis for understanding the solution process
of system identification in the following chapters, apart from Chapter three that deals
with damage models of a structure.

2.2 Discrete inverse problems

2.2.1 Mathematical concepts

In general, the inverse problem centres on the equation

Ax = b (2.1)

where A ∈ �m×n, b ∈ �m×1, x ∈ �n×1, and x is the vector of required parameters or the
input. In the inverse problem, vector b is measured with the aim of estimating the

© 2009 Taylor & Francis Group, London, UK
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unknown vector, x. This is a linear least-squares problem, as

min
x

‖Ax − b‖2 (2.2)

It is well known that the least-squares solution is unique and unbiased when m> n
provided that rank (A) = n. Matrix A becomes unstable or ill-conditioned when A is
close to being rank deficient. The inverse problem is a discrete ill-posed problem if it
satisfies the following criteria (Hansen, 1994):

(1) the singular values of A decay gradually to zero;
(2) the ratio between the largest and the smallest nonzero singular values is large.

Criterion (1) implies that there is no nearby problem with a well-conditioned coefficient
matrix and with a well-determined numerical rank. Criterion (2) implies that the matrix
A is ill-conditioned, i.e. the solution is potentially very sensitive to perturbations.
Singular values are discussed in detail in Section 2.3.1.

2.2.2 The i l l -posedness of the inverse problem

There is an interesting and important feature of the discrete ill-posed problem. The
ill-conditioning of the problem does not mean that a meaningful approximate solution
cannot be computed. Rather, the ill-conditioning implies that standard methods in
numerical linear algebra for solving Equations (2.1) and (2.2), cannot be used directly
to compute such a solution. More sophisticated methods must be applied instead to
ensure the computation of a meaningful solution. The regularization methods have
been developed with the aim of achieving this goal.

The primary difficulty with the discrete ill-posed problem is that it is essentially
under-determined due to the existence of the group of small singular values of A.
Hence, it is necessary to incorporate further information about the desired solution in
order to stabilize the problem and to single out a useful and stable solution. This is
how the regularization works.

Among the various types of available methods, the more popular approach to reg-
ulate the ill-posed problem is to have the second-norm or an appropriate semi-norm
of the solution to be small. An estimate, x∗, of the solution may also be included in a
side constraint. The most common and well-known form of regularization is the one
known as Tikhonov Regularization (Tikhonov, 1963; Morozov, 1984). The idea is
to define the regularized solution, xλ, as the optimal solution of the following weight
combination of the residual norm and the smoothing norm

xλ = arg min{‖Ax − b‖2
2 + λ‖L(x − x∗)‖2

2} (2.3)

where the regularization parameter, λ, controls the weight given to minimize the side
constraint relative to the minimization of the residual norm. The matrix L ∈ �m×n

is typically either the identity matrix In or a (p × n) discrete approximation of the
(n − p)th derivative operator, in which case L is a banded matrix with full row rank. The
optimal solution is sought that provides a balance between minimizing the smoothing
norm and the residual norm. The basic idea behind Equation (2.3) is that a regularized
solution with a small semi-norm and a suitable small residual norm is not too far

© 2009 Taylor & Francis Group, London, UK
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from the desired and unknown solution of the unperturbed problem underlying the
given problem. Clearly, a large λ favours a small smoothed semi-norm at the cost of a
large residual norm, while a small λ has the opposite effect. If λ= 0, we return to the
least-squares problem and the unregularized solution is computed. The regularization
parameter, λ, controls the degree with which the sought regularized solution should
fit to the data in b.

The use of Equation (2.3) in regularizing an ill-posed problem has the assumption
that the errors on the right-hand-side of the equation are unbiased and that their
covariance matrix is proportional to the identity matrix. If the second condition is not
satisfied, then the problem should be scaled as suggested by Hansen (1994). Besides
Tikhonov regularization, there are many other regularization methods with properties
that make them better suited to specific types of problems (Hansen, 1994).

2.3 General inversion by singular value decomposition

2.3.1 Singular value decomposit ion

Let A ∈ �m×n be a rectangular matrix with m ≥ n. The singular value decomposition
(SVD) of A is a decomposition of the form (Golub, 1996)

A = U�VT =
n∑

i=1

uiσivT
i (2.4)

where U = (u1, u2, · · · , um) and V = (v1, v2, · · · , vn) are matrices with orthonormal
columns, with UTU = Im, V TV = In and � = diag(σ1, σ2, · · · , σn) has non-negative
diagonal elements appearing in descending order such that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 (2.5)

The terms σi are the singular values of A, while the vectors ui and vi are the left and
right singular vectors of A, respectively.

It is noted from the relationships ATA = V�2V T and AAT = U�2UT that the SVD
of A is strongly linked to the eigenvalue decompositions of the symmetric positive
semi-definite matrices ATA and AAT . This shows that the SVD is unique for a given
matrix A, except for singular vectors associated with multiple singular values.

Two characteristic features of the SVD of A are very often found in connection with
a discrete ill-posed problem.

• The singular values, σi, decay gradually to zero with no zero value and with no
particular gap in the spectrum. An increase in the dimensions of A increase the
number of small singular values.

• The left and right singular vectors, ui and vi, tend to have more sign changes in
their elements as the index i increases, i.e. the vectors become more oscillatory
when σi decreases.

Although these features are found in many discrete ill-posed problems arising in prac-
tical applications, they are unfortunately very difficult or perhaps impossible to prove
in general.
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12 Damage mode ls and a lgor i thms

To have more understanding on the ill-conditioning of matrix A, the following
relations, which follow directly from Equation (2.4), are studied:{

Avi = σiui i = 1, 2, · · · , n‖Avi‖2 = σi
(2.6)

It is noted that a small singular value, σi, compared to ‖Av1‖2 = σ1, means that there
exists a certain linear combination of the columns of A, characterized by the elements of
the right singular vector, vi, such that ‖Avi‖2 = σi is small. In other words, one or more
small σi implies that A is nearly rank deficient (with near zero singular values), and
the vector, vi, associated with the small σi are numerical null-vectors of A. From this
characteristic feature of A, it can be concluded that the matrix in a discrete ill-posed
problem is always highly ill-conditioned and its numerical null-space is spanned by
vectors with many sign changes. The null-space is the subset of matrix A corresponding
to the unknowns, x, that are mapped onto b = 0.

The SVD also gives an important insight into another aspect of the discrete ill-posed
problems, namely the smoothing effect typically associated with a square integrable
kernel. Notice that as σi decreases, the singular vectors ui and vi become increasingly
oscillatory. With the mapping Ax of an arbitrary vector x using the SVD,

x =
n∑

i=1

(vT
i x)vi and Ax =

n∑
i=1

σi(vT
i x)ui (2.7)

This clearly shows that, due to the multiplication with σi, the high-frequency compo-
nents of x are more damped in Ax than the low-frequency components. Moreover, the
inverse problem, namely that of computing x from Ax = b or min‖Ax − b‖2, must have
the opposite effect, i.e. it amplifies the high-frequency oscillations in the right-hand-side
of vector b.

2.3.2 The general ized singular value decomposit ion

The generalized singular value decomposition (GSVD) of the matrix pair (A, L) is a
generalization of the SVD of A in the sense that the generalized singular values of (A,
L) are the square roots of the generalized eigenvalues of the matrix pair (ATA, LTL).
The dimensions of A ∈ �m×n and L ∈ �p×n are assumed to satisfy m ≥ n ≥ p, which is
always the case with a discrete ill-posed problem. Then the GSVD is a decomposition
of A and L in the form (Hansen, 1994)

A = U
(

� 0
0 In−p

)
X−1, L = V (M, 0)X−1 (2.8)

where the columns of U ∈ �m×n and V ∈ �p×p are orthonormal; X ∈ �n×n is non-
singular; and � and M are (p × p) diagonal matrices, i.e. � = diag(σ1, · · · , σp),
M = diag(u1, · · · , up). Moreover, the diagonal entries of � and M are non-negative
and ordered such that

0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σp ≤ 1, 1 ≥ u1 ≥ · · · ≥ up > 0
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and they are normalized such that

σ2
i + u2

i = 1, i = 1, · · · , p

Then the generalized singular values γi of (A, L) are defined as the ratios

γi = σi/ui i = 1, · · · , p (2.9)

and they obviously appear in ascending order, which is opposite to the ordering of the
ordinary singular values of A.

For p< n the matrix L ∈ �p×n always has a non-trivial null-space N(L). For exam-
ple, if L is an approximation to the second derivative operator on a regular mesh,
i.e. L = tridiag(1, −2, 1), then N(L) is spanned by the two vectors (1, 1, · · · , 1)T and
(1, 2, · · · , n)T . In the GSVD, the last (n − p) columns, xi, of the non-singular matrix X
satisfy

Lxi = 0, i = p + 1, · · · , n. (2.10)

and they are therefore basis vectors for the null-space N(L).
There is a slight notational problem here because the matrices U , � and V in the

GSVD of (A, L) are different from the matrices with the same symbols in the SVD of A.
However, in this chapter it will always be clear from the context which decomposition
is used. When L is the identity matrix, In, then the U and V of the GSVD are identical
to the U and V of the SVD, and the generalized singular values of (A, In) are identical
to the singular values of A, except for the ordering of the singular values and vectors.

2.3.3 The discrete Picard condit ion and fi lter factors

There is, strictly speaking, no Picard condition for a discrete ill-posed problem because
the norm of the solution is always bounded. Nevertheless, a discrete Picard condition
could be implemented in a real-world application. The measurement vector b is usually
contaminated with various types of error, such as measurement error, approximation
error and rounding error. Hence, b can be written as

b = b + e (2.11)

where e is a vector of the errors and b is the unperturbed right-hand-side. Both b and
the corresponding unperturbed solution, x, represent the underlying unperturbed and
unknown problem. Now, to compute a regularized solution, xreg, from the given vector
b, such that xreg approximates the exact solution x, the corresponding right-hand-side
vector b must satisfy the following criterion.

The unperturbed vector b in a discrete ill-posed problem with regularization matrix L
satisfies the discrete Picard condition if the Fourier coefficients |uT

i b| on average decay
to zero faster than the generalized singular values, γi (Hansen, 1990). The fulfilment
of this condition implies that the exact, unknown solution can be approximated by a
regularized solution.
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14 Damage mode ls and a lgor i thms

Consider Equations (2.1) and (2.2), and assume for simplicity that A has no exact
zero singular values. It is easy to show with SVD that the solutions to both systems
are given by the same equation:

xLSQ =
n∑

i=1

uT
i b
σi

vi (2.12)

Since the Fourier coefficients, |uT
i b|, corresponding to the small singular values, σi, do

not decay as fast as the singular values, but rather tend to level off due to contamination.
The solution, xLSQ, is dominated by the terms in the sum corresponding to the small σi.
Consequently, the solution xLSQ has many sign changes and thus appears completely
random.

Figure 2.1 shows the Picard plot by Visser (2001) in near-field acoustic source iden-
tification. Figure 2.1(a) gives the discrete Picard condition for the unperturbed data
vector, b. The ‘average’ decay of the SVD coefficients (crosses) is clearly steeper than
that of the singular values. This ensures that a meaningful regularized solution can be
obtained. The circles in the figure show the participation of each mode to the solution.
The solution is noted to be determined by the first few modes with no dominance of
the higher modes.

Figure 2.1(b) gives the Picard plot when the data vector, b, is contaminated with
Gaussian noise at a signal to noise ratio of 20dB. The first few SVD coefficients fall off
more steeply than the singular values and it is still possible to reconstruct a meaningful
solution. But it is also noted that the coefficients (crosses) level off at the noise level.
The location of the circles for the higher modes clearly shows their dominating contri-
bution with respect to the first few lower modes, and this phenomenon is important
in the physically meaningful solution. This shows the disastrous influence of noise in
ill-conditioned problems.

The purpose of a regularization method is to dampen or filter out the contributions
to the solution corresponding to the small, generalized singular values. Hence the
regularized solution, xreg, which, for x∗ = 0, can be written as
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Figure 2.1 Picard plot
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xreg =
n∑

i=1

fi
uT

i b
σi

vi if L = In (2.13)

xreg =
p∑

i=1

fi
uT

i b
σi

xi +
n∑

i=p+1

(uT
i b)xi if L 	= In (2.14)

Here, the terms fi are the filter factors for the particular regularization method. The
filter factors have the important property that as σi decreases, the corresponding fi

tends to zero in such a way that the contributions (uT
i b/σi)xi to the solution from the

smaller σi are effectively filtered out. The difference between the various regulariza-
tion methods lies essentially in the way these filter factors, fi, are defined. Hence, the
filter factors play an important role in regularization theory, and it is worthwhile char-
acterizing the filter factors for the various regularization methods that are presented
below.

For Tikhonov regularization, which plays a central role in regularization theory, the
filter factors are either fi = σ2

i /(σ
2
i + λ2) (for L = In) or fi = γ2

i /(γ
2
i + λ2) (for L 	= In)

and the filtering effectively sets in for σi <λ and γi <λ, respectively. This shows that
the discrete ill-posed problems are essentially un-regularized by Tikhonov’s method
for λ<σn and λ<γp, respectively.

2.4 Solution by optimization

The detection and identification of structural damage is formulated as an optimiza-
tion problem. The mathematical model of a physical structural system is established
to fit the behaviour of a real system through minimizing the discrepancy between
the computed and measured responses. Many methods have been developed to solve
the optimization problem. Three of these methods are discussed here: gradient-based
approach, genetic algorithm (GA) and simulated annealing.

2.4.1 Gradient-based approach

Many excellent and comprehensive texts on mathematical optimization have been
written, particularly in gradient-based algorithms (Snyman, 2005). Gradient-based
optimization strategies iteratively search a minimum of an n-dimensional objective
function f (x). For the function f (x) ∈ C2, a vector of first-order partial derivatives, or
a gradient vector can be computed at any point x, such that

∇f (x) =



∂f (x)
∂x1

∂f (x)
∂x2
...

∂f (x)
∂xn


= g(x) (2.15)
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16 Damage mode ls and a lgor i thms

where x = [x1, x2, · · · , xn]T ∈ �n. The actual optimization can be performed iteratively,
and details of the iteration of the optimization problem by a gradient search technique
are given below (Snyman, 2005):

(1) Given starting points x0 and positive tolerances ε1, ε2 and ε3, set i = 1.
(2) Select a descent direction, pi.
(3) Perform a linear search in direction pi to give the step size, λi.
(4) Set xi = xi−1 + λi · pi and compute the objective function, f (xi).
(5) Check the convergence criterion of f (xi). The algorithm is terminated if a conver-

gence criterion is satisfied. Termination is usually enforced at iteration i if one,
or a combination, of the following criteria is met:

a) ‖xi − xi−1‖ < ε1; b) ‖∇f (xi)‖ < ε2; c) ‖f (xi) − f (xi−1)‖ < ε3.

(6) Set i = i + 1 and go back to Step 2.

To compute the step direction, pi, a linear (first-order) approximation of the objective
function can be used:

f (xi + λipi) ≈ f (xi) + (∇f (xi))Tpi (2.16)

which results in the step direction:

pi = −∇f (xi) (2.17)

This is called the steepest descent method. A second-order approach uses a quadratic
approximation:

∇f (xi) + ∇2f (xi)pi = 0 (2.18)

and this is referred to as the Newton’s direction method.
For an analytical objective function, the first and second derivatives can be directly

transferred to a computer program. However if no explicit formula can be defined, the
objective function is computed numerically by means of a simulation where approxi-
mations for the derivatives are necessary. The finite difference approximation can be
applied for each dimension for a multivariate objective function. The gradient vector
can be approximated by the forward finite differences as

∂f (x)
∂xj

∼= �f (x)
δj

= f (x + δj) − f (x)
δj

(2.19)

where δj = {0, 0, · · · , δj, 0, · · · , 0}T , δj > 0 at the j-th position. Better approximations
may be obtained using central finite differences.

The performance of a gradient-based method strongly depends on the available
initial values. Several optimization runs with different initial values might be necessary
if no a priori knowledge (e.g. the result of a process simulation) on the function to be
optimized is available.
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2.4.2 Genetic algorithm

Genetic Algorithm (GA) is based on the principles of evolutionary theory, which are
natural selection and evolution. The GA is a ‘non-traditional’ search or optimization
method that simulates the phenomenon of natural evolution according to Darwin’s
theory. This technique was developed originally to operate on an initial population
of randomly generated candidate solutions, encoded as chromosomes, and applied to
produce increasingly better approximations to a solution (Figure 2.2) with the prin-
ciple of survival of the fittest (Holland, 1975). A new set of approximations in each
generation is created by the process of selecting individuals according to their level of
fitness in the problem domain and breeding them together using operators adopted
from natural genetics. This process leads to the evolution of populations of individuals
that are better suited to their environment than the individuals that they were created
from, just as in natural adaptation. Within the chromosome are separate genes that
represent the independent variables of the problem under study. To obtain better-fit
chromosomes, three basic randomized operators, the selection, crossover and mutation
are used in the evolution.

Chromosomes are selected based on their fitness for the reproduction of future pop-
ulations. Selection is a very important step within a GA, as the quality of an individual
is measured by its fitness value. If selection involves only the fittest chromosomes, the
solution space may be very limited due to the lack of diversity. However, a random
selection does not guarantee that future generations will increase in fitness.

Random generation of
initial population

Fitness evaluation

Selection

Crossover

Mutation

Fitness evaluation

Check convergence

End

No
Maximum
generation

No

yes

Figure 2.2 Flow chart of genetic algorithm
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18 Damage mode ls and a lgor i thms

Crossover is the most important operator in a GA. This operator takes the
chromosomes of two parents which are randomly selected, and then exchanges part of
their genes resulting in two new chromosomes for the child generation. Therefore, the
crossover does not create new material within the population; it simply inter-mixes the
existing population. The usual schemes to generate new chromosomes are the single-
point crossover, the multipoint crossover and the uniform crossover. The probability
of crossover defines the ratio of the number of offspring produced in each generation
to the population size.

The mutation operator introduces a change in one or more of the chromosome’s
genes. New material is introduced in the population with this operator and its main
goal is to prevent the population from converging to a local minimum. The probability
of mutation is defined as the ratio of the number of mutated genes to the total number
of genes in the population and its value is usually low, typically in the range 0.01 and
0.001. However, in some cases it can take higher values with the purpose of increasing
the diversity of the population.

From the above discussion, it can be seen that GAs differ substantially from tradi-
tional gradient-based search techniques. In fact, they have several advantages that make
them suitable for dealing with complex problems where traditional search techniques
fail. The major advantages are:

• GAs work on a population of points in parallel in the search space, while tradi-
tional search techniques work only on a single point at a time. Because of this,
the guess of the initial point has a large effect in traditional methods, since there
is a possibility of converging to a local optimal point rather than the global opti-
mal point. Therefore, GAs are more advantageous in complex, nonlinear and
multimodal optimization problems.

• GAs, unlike traditional optimization techniques, do not require the evaluation
of gradients or higher-order derivatives. Only the objective function and the
corresponding fitness levels influence the directions of search. Therefore, GAs
are applicable in problems where the objective function is not differentiable.

• GAs use probabilistic search rules, not deterministic ones like gradient-based
optimization.

• GAs work on an encoding of the parameter set rather than the parameter itself
(except for where real-valued individuals are used).

Due to all these advantages, GAs, although slow in execution, are best applied to
problems where traditional optimization techniques do not work well, as in the case of
complex problems with many local optima and where the global optimum is required.
However, the main disadvantage of GAs, compared to traditional methods, is their high
computational cost. However, this drawback can be overcome with faster computers
or by using simple objective functions that can be quickly computed. In addition, GAs
are not suitable for problems with too many variables, since the search space becomes
much larger with an increase in the number of variables. In these cases, GAs appear
to be relatively imprecise in performance near to the global optimum when compared
with conventional optimization techniques.
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2.4.3 Simulated anneal ing

Another important computational intelligence approach, simulated annealing (SA), is a
popular stochastic method based on the physical process of annealing (Van Laarhoven
and Aarts, 1987). SA is the simulation of the annealing of a physical multi-particle
system for finding the global optimum solution of a large combinatorial optimization
problem. If a system is in a configuration q at time t, then a new configuration r of the
system at time t + 1 is generated randomly. The configuration r is accepted according
to the acceptance probability Pro(r).

Pr o(r) = e−
(

Er−Eq
KBT

)
(2.20)

where KB is the Boltzmann constant and T is referred to as control parameter (or
temperature in the original SA). The energy of the original configuration q and the
new configuration r is represented as Eq and Er, respectively. In addition, an annealing
process is needed to obtain a lower energy configuration. The well-known cooling
schedule that provides the necessary and sufficient conditions for convergence is

C(t) = C0

log t
∀t > 0 (2.21)

where C(t) is a sequence of control parameters, C0 is a constant and t is the time. It is
noted that C(t) approaches zero when t goes to infinity.

When the simulated annealing schedule is applied to an optimization problem, the
energy function becomes the objective function, and the configuration becomes the
solution configuration of the parameters. Also Equations (2.20) and (2.21) can be
further transformed as

Pr o(r) = e−
(

Er−Eq
T(l)

)
(2.22)

T(l) = T
log l

(2.23)

where l denotes an integer step sequence, T0 is the initial constant control parameter
and T(l) is a sequence of control parameter. Equations (2.22) and (2.23) then give

Pr o(l) = l−
(

Er−Eq
T0

)
(2.24)

It is noted that Pro(l) equals 1.0 when l = 1.0.

2.5 Tikhonov regularization

Regularization techniques include direct regularization methods and iterative regular-
ization methods. A brief review of the regularization methods for numerical treatment
of discrete ill-posed problems is found in Hansen (1994). Equation. (2.3) shows that
the zeroth-order regularization when L = I (the identify matrix). It becomes the first-
order regularization when L is a gradient operator and a second-order regularization
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20 Damage mode ls and a lgor i thms

when L is a surface Laplacian operator. Only one of the three orders of regularization
is employed under most circumstances. The zeroth-order regularization biases the
estimates towards zero but also greatly reduces large-magnitude oscillations in the
parameter values, whereas first-order regularization biases the estimates towards a
constant and reduces the tendency to fluctuate from one value to the next. Three
regularization methods (truncated SVD, generalized cross-validation and L-curve) are
discussed in the following sections.

2.5.1 Truncated singular value decomposit ion

The SVD allows the solution of singular systems by separating the components of
operators belonging to its range from those belonging to its null-space (corresponding
to the null singular values). If the whole set of n singular values in Equation (2.4) is
nonzero, the solution becomes:

x =
n∑

i=1

σ−1
i (uT

i b)vi (2.25)

The small singular values may cause solution instability as discussed in Section 2.3.1,
and the terms corresponding to the smallest singular values are affected. It would
be useful to consider these terms as belonging to the null-space and neglecting the
corresponding singular values. In this way, the solution is deprived of some information
content but becomes more regular without solution instability due to the small singular
values. This is one way to treat the ill-conditioning of A to generate a new problem
with a well-conditioned rank deficient coefficient matrix. The rank deficient matrix,
which is the closest rank-k approximation Ak to A, is measured in the 2-norm and is
obtained by truncating the SVD expansion in Equation (2.4) at k, to give

Ak =
k∑

i=1

uiσivT
i , k ≤ n (2.26)

and the solution is given by

xk =
k∑

i=1

uT
i b
σi

vi (2.27)

The number of neglected singular values should be neither too high to preserve the
information content, nor too low to obtain a more stable solution. If an estimate,
‖δb‖, of the amount of noise in the data is available, the summation in Equation (2.25)
can be truncated when the following condition is not satisfied:

σk ≥ ‖δb‖ σ1 (2.28)

This means that the first k singular values can be retained when error in the data can
be removed by filtering.

An alternative method to treat the problem is to use the discrete Picard condition
to determine the number of terms in the summation in Equation. (2.12). Since the
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error-free right-hand-side of Equation (2.1) is generally unknown, the Picard condition
can be expressed using the perturbed right-hand-side, b, i.e. a bounded solution of the
ill-posed problems exists if the terms |uT

i b| decay faster than the corresponding singular
values, σi. When |uT

i b| do not decay faster than the corresponding singular values, the
summation should be truncated because the remaining singular values are not able to
filter out the error contained in the data. This method does not require knowledge of
the error in the data. However, it can be used only when the operator A is noise-free
and the error is only on the right-hand-side. In fact, the error in operator A affects
both the singular values and the singular vectors. The trend of the terms |uT

i b| can
exhibit large oscillations and it is very difficult to decide when the Picard condition is
satisfied.

The third method is based on the minimization of the output residual. If bpred
is the reconstructed measurements from the solution by Equation (2.1), then the
non-dimensional output residual ς can be defined as

ς = ‖bpred − b‖
‖b‖ (2.29)

The output residual is computed for different numbers of retained singular values
varying from 1 to n. The truncation of the summation can be performed for a value
of k such that ς is a minimum.

2.5.2 General ized cross-val idation

The idea of cross-validation (Stone, 1974) is to maximize the predictability of the model
with a choice of the regularization parameter, λ. A predictability test can be arranged
by omitting one measured data point, bk (k = 1, 2, · · · , n), at a time and determining
an estimate, kx(λ), using the remaining data points. Then for each of the estimates, the
missing data is predicted and the value of λ that predicts the bk (k = 1, 2, · · · , n) best
is found. The procedure of this cross-validation is explained in the following steps.

(1) Find the estimate, kx, which minimizes

n∑
i=1
i 	=k

(bi −
m∑

j=1

aijxj)2 + λ‖L(x − x∗)‖2
2 (2.30)

(2) Predict the missing data point,

b̃k(λ) =
m∑

j=1

akjkxj(λ) (2.31)

(3) Choose the value of λ which minimizes the cross-validation function,

V0 = 1
n

n∑
k=1

(bk − b̃k(λ))2 (2.32)
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To simplify the cross-validation, consider the identity,

bk − b̃k(λ) =
bk −

m∑
i=1

akjkxj(λ)

1 − r̃ kk
(2.33)

where,

r̃ kk =

m∑
j=1

akjkxj(λ) − b̃k(λ)

bk − b̃k(λ)
(2.34)

and xj(λ) is the j-th term in x(λ). Since b̃k =
m∑

j=1
akj kxj(λ) it follows that

r̃kk =
m∑

j=1

ajk((xj(λ) − kx(λ))

bk − b̃k(λ)
(2.35)

Replacing the term on the right-hand-side by a derivative, gives

r̃kk = ∂

∂bk

 m∑
j=1

akjxj(λ)

 = rkk(λ) (2.36)

Combining Equations. (2.32), (2.33) and (2.36) gives

V0(λ) = 1
n

n∑
i=1


bk −

m∑
j=1

akjxj(λ)

1 − rkk


2

(2.37)

Equation (2.37) can be rewritten in the form

V0 = 1
n

‖Q(λ)(Ax(λ) − b)‖2
2 (2.38)

where

Q(λ) = diag
(

1
1 − rkk(λ)

)
, (i = 1, 2, · · · , n) (2.39)

and rkk is the kk-th element of the influence matrix, R(λ), where

R(λ) = A(ATA + λLTL)−1AT (2.40)
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V(λ)

λ

Figure 2.3 The normal GCV function

log�Lx�2

Less filtering

Over filtering

log�Ax � b�2

Figure 2.4 The generic form of L-curve

Golub et al. (1979) showed that the ‘ordinary’ cross-validation method led to solu-
tions that were rotationally dependent. They replaced rii(λ) in Equation (2.37) with
(1/n)trace(R(λ)) to give the generalized cross-validation (GCV) function,

V(λ) =
1
n‖Ax(λ) − b‖2

2( 1
n trace(I − R(λ))

)2 (2.41)

Figure 2.3 shows a normal GCV function. The GCV function usually has a flat
minimum and it works well in determining the optimal λ value. However, the minimum
may be difficult to locate numerically under some situations.

2.5.3 The L-curve

Perhaps the most convenient graphical tool for the analysis of discrete ill-posed prob-
lems is the L-curve (Hansen, 1992), which is a plot for all valid regularization
parameters of the norm, ‖Lxreg‖2, of the regularized solution versus the corresponding
residual norm, ‖Axreg − b‖2. The L-curve clearly displays the compromise between
the minimization of these two quantities, which is the essence of any regularization
method. Figure 2.4 shows the generic form of the L-curve.
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For a discrete ill-posed problem, the L-curve, when plotted in the log-log scale,
usually has a characteristic L-shape appearance with a distinct corner separating the
vertical and the horizontal parts of the curve. It is noted that if x∗ denotes the exact,
un-regularized solution corresponding to the exact right-hand-side, b, in Equation
(2.11), then the error, xreg − x∗, in the regularized solution consists of two components,
namely, a perturbation error from the error e in the given vector b, and a regularization
error due to the regularization of the error-free component, b, in the right-hand-side.
The vertical part of the L-curve corresponds to solutions where ‖Lxreg‖2 is very sensitive
to changes in the regularization parameter because the perturbation error e dominates
xreg and it does not satisfy the discrete Picard condition. The horizontal part of the L-
curve corresponds to solutions where it is the residual norm, ‖Axreg − b‖2, that is most
sensitive to the regularization parameter because xreg is dominated by the regularization
error, as long as b satisfies the discrete Picard condition.

This can be substantiated by means of the regularized solution, xreg, expressed in
terms of the filter factors. For the general form of regularization, Equation (2.14) yields
the following expression for the error in xreg:

xreg − x∗ =
 p∑

i=1

f i
uT

i e
σi

xi +
n∑

i=p+1

(uT
i e)xi

+
p∑

i=1

(f i − 1)
uT

i b
σi

xi (2.42)

Here, the term in parentheses is the perturbation error due to the perturbation, e; and
the last term is the regularization error caused by regularization of the unperturbed
component, b, on the right-hand-side. When only a little regularization is introduced,
most of the filter factors, fi, are approximately equal to unity and the error, xreg − x∗,
is dominated by the perturbation error. However, when most of the filter factors are
small, i.e. fi  1, xreg − x∗ is dominated by the regularization error.

The L-curve for the Tikhonov regularization plays a central role in the regularization
methods for discrete ill-posed problems because it divides the first quadrant into two
regions. It is impossible to construct any solution that corresponds to a point below
the Tikhonov L-curve; any regularized solution must lie on or above this curve. The
solution computed by Tikhonov regularization is therefore optimal in the sense that for
a given residual norm there does not exists a solution with a smaller semi-norm than
the Tikhonov solution and the same is true with the roles of the norms interchanged.
A consequence of this is that other regularization methods can be compared with the
Tikhonov regularization by inspecting how close the L-curve for the alternative method
is to the Tikhonov L-curve.

For the regularized solution in Equation (2.14), there is obviously an optimal regu-
larization parameter that balances the perturbation error and the regularization error
in solution, xreg. An essential feature of the L-curve is that this optimal regularization
parameter defined above, is not far from the regularization parameter that corre-
sponds to the L-curve’s corner. In other words, by locating the corner of the L-curve,
an approximation to the optimal regularization parameter can be computed and thus,
in turn, a regularized solution with a good balance between the two types of errors

© 2009 Taylor & Francis Group, London, UK

  



Mathemat ica l concepts for d i screte inverse prob lems 25

can be computed. For continuous L-curves, a computationally convenient definition
of the L-curve’s corner is the point with maximum curvature in the log-log scale.

max(log‖Axλ − b‖2, log‖Lxλ‖2) (2.43)

When the regularization parameter is discrete, the discrete L-curve in the log-log scale
can be approximated by a two-dimensional spline curve. The point on the spline curve
with maximum curvature was computed and the corner of the discrete L-curve at that
point, which is closest to the corner of the spline curve, was defined.

2.6 General optimization procedure for the
inverse problem

The procedure of a general iterative algorithm used to solve the nonlinear optimization
problem is as follows:

1) Initially assume x0.
2) Since the measurements of the baseline model are not available, they are calculated

using the theoretical model instead of the measured information.
3) Solve the inverse problem using one of the optimization procedures.
4) Reconstruct the responses using the identified results.
5) Calculate the criteria of convergence in Equation (2.44). Convergence is achieved

when the errors are less than the predefined tolerance values.
6) When the computed error does not converge, repeat Steps 3 to 5 until convergence

is reached.

2.7 The criteria of convergence

The usual criteria of convergence are


Error1 = ‖b − bPr edicted‖

‖U s‖ × 100%

Error2 = ‖xj+1 − xj‖
‖xj‖ × 100%

(2.44)

The first criterion is based on the output residual between the measurements and the
reconstructed responses. The second criterion is based on the difference between the
identified results of two adjacent steps.

2.8 Summary

This chapter gives a brief description of the basic knowledge of ill-posed inverse prob-
lems and three optimization algorithms for the solution of inverse problems. The
techniques to obtain the regularization solution are discussed and these techniques
are used in the following chapters for the condition assessment of structures.
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Chapter 3

Damage description and modelling

3.1 Introduction

3.1.1 Damage models

The following two questions are often asked: Where does the damage occur? And what
is its magnitude? In fact, there may be many types of damage due to various reasons
over the lifetime of the structure, and they affect the structural dynamic characteristics
differently. The error in modelling the damage itself plays a significant role in the
damage detection process. A more satisfactory set of question would be: Where does
the damage occur? What kind of damage it is? And what is its magnitude? Many
damage detection methods take the local damage as an overall reduction in the local
stiffness of an element. Efforts have been made to build damage models but most of
them are related to cracks in a beam. More comprehensive damage models with cracks
in a plate have also been formulated based on the constitutive relations. If the initial
model is not provided with the description of a particular type of damage, then the
subsequent model improvement cannot yield the correct description of the damage in
the finite element. A good example is the model error of a Timoshenko beam, where the
initial model is based on that of an Euler–Bernoulli beam. Condition assessment based
on an incorrect description of the damage yields system errors that spread throughout
the identified results, and they account for a significant portion of the total error in
the result.

3.1.2 Model on pre-stress

The load-carrying capacity of a pre-stressed structure depends mainly on the level
of pre-stress in the structure. A significant reduction in the pre-stress jeopardizes the
safety level of the structure. The modelling of pre-stress at the design stage is based
on an equilibrating force system from which the internal stresses are calculated. Such
a model is useful when static measured data are used for the system identification of the
structure. But when dynamic data are used, the restoring forces from the equilibrating
force system always tend to zero with no indication of the level of pre-stress. Two
models of the pre-stress in a structure are given in this chapter with the pre-stressing
effect modelled as physical parameters in the structural system, and they are specially
developed for structural damage detection.
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3.2 Damage-detection-oriented model

Many damage models can be found in the literature. However, most of them are
explicitly developed for studying the changes in static and dynamic responses of the
structure due to the damage, which is a forward problem mathematically. Thus, the use
of these models is inconvenient or even impossible for detecting damage in structures
from measurements, which is usually an inverse problem.

A type of model of the damages, the ‘damage-detection-oriented model’, specially
developed for the inverse problem is needed. The requirements that need to be fulfilled
with a damage-detection-oriented model are defined as:

• The analytical model can represent the real structure accurately, so that the modal
properties predicted by the model are well correlated with the measured data from
the undamaged structure, and modal uncertainty due to model errors is far less
than the modal parameter changes caused by structural damage.

• The size of the analytical model is adequate such that the number of degrees-
of-freedom (DOFs) is not much larger than that of the measured DOFs.

• The analytical model is detailed enough not to mask the damage occurring in an
individual structural member.

3.2.1 Beam element with end flexibi l i t ies

Conventional approaches to the design and analysis of steel frames commonly assume
the structural components to be connected either by rigid or pinned joints. In practice,
all joints are semi-rigid, in which the slope of the lateral deflected shape and rotation
are discontinuous between two connected members. The rotational properties of semi-
rigid connections have been studied based on the complementary energy principle by
Shi and Atluri (1989) with the weak formulation of the dynamic and large deflection
response of semi-rigid jointed steel frames. They have also modelled the hysteretic
damping at the joint (Shi and Atluri, 1992) with a bilinear Coulomb model to account
for the damping effect due to the slip at the joint. Gao and Haldar (1995) developed
a numerical procedure for the tangent stiffness formulation using a stress-based finite
element method; whilst Chan and Zhou (1998) proposed a robust displacement-based
finite element for a detailed and accurate analysis of semi-rigid jointed steel frames.
There are also many reported works on the seismic and dynamic analysis of semi-rigid
connected frames (Chan, 1994; Chen et al., 1998; Chui and Chan, 1997; Kukreti and
Abolmaali, 1999). A comprehensive review of the work on semi-rigid connections has
been given by Chan and Chui (2000).

Beam-column connection behaviour has also been experimentally investigated by
many researchers, such as Nethercot (1985) and Popov (1983). The experimental
studies demonstrated that the connections are semi-rigid and behave inelastically under
severe loading. Theoretical studies have been conducted to calculate the moment-
rotation stiffness of the semi-rigid connections using nonlinear or piecewise linear
mathematical models.

However, most of the research so far has only studied the rotational flexibility of
semi-rigid joints in steel frames. The dynamic behaviour of steel structures with ordi-
nary bolted frictional joints that have flexibility in the tangential direction has received
limited attention.
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3.2.1.1 Hybr id beam with shear f lex ib i l i t y

The slotted, bolted, connection element incorporated at intersections or joints of a
steel frame is allowed for in the design standard (BS5950, 1990). It is used to mitigate
the dynamic response by providing hysteretic damping and nonlinear stiffness to the
structure. A slotted, bolted, connection element (SBCE) is a semi-rigid bolted connec-
tion with a nonlinear relationship between the shear force and the relative slippage at
the interfaces. High-strength friction grip bolts are used in an SBCE to connect two
parts of the steel frame with slotted holes in the components, and the frictional inter-
face may consist of sandwiched plates as shown in Figure 3.1. A pre-stressed force is
applied to the interface in the normal direction to provide the SBCE with sufficient
initial stiffness before significant slip occurs. It behaves nearly rigidly when subject to
a small, in-plane shear force. Large slippage may occur between the surfaces of the
element when under severe excitation, and energy is dissipated with the accompany-
ing hysteretic damping. To protect the pre-stressed bolts from transverse shear, the
maximum relative displacement is limited by a stopper, as shown in Figure 3.1.

Behav iour under cyc l i c load ing
With the assumption of an exponential distribution of peak height of spherical con-
tact elements, Shoukry (1985) developed a micro-slip element to model the frictional
behaviour between two metallic interfaces, by using Mindlin’s spherical contact ele-
ment (Mindlin, 1949) as the basic element. The force–deformation relationship of the
frictional interface is given by:

Q = µN
[
1 − exp

(−γ
σ

v
)]

(3.1)

where µ and N are the friction coefficient and normal force acting on the interface,
respectively; ν is the lateral deformation; σ is the standard deviation of the peak height
distribution of the contact element; and γ is a constant equal to 2(1 − νp)/[µ(2 − νp)],
where νp is the Poisson ratio.

A model is presented in this section with the damping mechanism based on the
micro-slip at the interfaces only. The shear-slip model consists of three parameters
defining the shear-load deformation (Q − v) relation as

Q = Qs
K0v

(Qm
s + (K0v)m)

1
m

(3.2a)

Sandwich plates

Pre-stressed bolts in slotted holes

Hinges

Welded angle
stopper

Welded angle stopper

Figure 3.1 Configuration of SBCE
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Q

K0

kl

vl v

Figure 3.2 Loading curve of frictional joint

Force, Q

O

B(νb,Qb)

A(νa,Qa)
(νl,Ql)

(�νl,�Ql)

Deformation , ν

Figure 3.3 Connection under cyclic loading

where Qs is the ultimate friction capacity of connection which is equivalent to µN
in Shoukry’s expression; N is the axial pre-stress force; K0 is the initial connection
stiffness, i.e. K0 = dQ

dv

∣∣
v=0; and m is the shape parameter of the Q − v curve. The

connection becomes stiffer when the value of m increases. In addition, the model
possesses no shear resistance when the frictional force approaches Qs (Figure 3.2). It
can be seen that the stiffness of the joint changes nonlinearly with the magnitude of
the shear loading. The joint is very stiff under small shear loading, and it softens on
the application of severe loading.

Based on the experimental observations of a slotted, bolted, connection element
(Grigorian et al., 1992), this monotonic force–deformation relation can be extended
to cyclic and dynamic analysis based on the Masing rule (Herrera, 1965). Equation
(3.2a) is then used to represent the virgin loading curve of the frictional joint in the
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tangential direction. The corresponding instantaneous connection stiffness in the virgin
curve is given by

rv = dQ
dvc

= K0

[
1 − Qm

Qm
s

]m+1
m

= K0

[
1 − (K0v)m

(K0v)m + Qm
s

]m+1
m

(3.2b)

Equation (3.2a) can also be generalized for both the unloading and reloading curves,
based on the Masing rule as∣∣∣∣Q − Q∗

2

∣∣∣∣ = Qs
K0

∣∣ v − v∗
2

∣∣(
Qm

s + (
K0

∣∣ v − v∗
2

∣∣)m) 1
m

(3.3a)

where (v∗, Q∗) is the point at which the load reversal occurs at point A in Figure 3.3.
Therefore, the corresponding instantaneous connection stiffness of both the unloading
and reloading curves can be expressed as

rv = dQ
dv

= K0

1 −
∣∣∣Q − Q∗

2

∣∣∣m
Qm

s


m+1

m

= K0

[
1 −

(
K0

∣∣ v − v∗
2

∣∣)m(
K0

∣∣ v − v∗
2

∣∣)m + Qm
s

]m+1
m

(3.3b)

in which, v∗ = v∗
a when the slippage deformation happens at the reversal point A in

Figure 3.3. If point B is the next reversal point, the reloading stiffness is obtained by
replacing v∗

a with v∗
b in Equation (3.3b).

Equations (3.2a and 3.2b) are physically important because the joint parameters in
the loading curve, such as the initial stiffness and the frictional resistance force, are
related to other physical parameters, such as the normal pressure and friction coeffi-
cient. Accordingly, the joint properties can be predicted from other physical parame-
ters, and direct testing for the force–deformation characteristics may not be necessary.

In the following formulation, Equation (3.2b) is used to represent the virgin
loading curve of the frictional joint in the tangential direction. The corresponding
instantaneous connection stiffness in the virgin curve is given by

rv = dQ
dvc

= K0 exp
[
−K0

Qs
vc

]
, if |vc| ≤ vcl;

rv = dQ
dvc

= kl, if |vc| > vcl;

(3.4)

Equation (3.2a) can also be generalized for both the unloading and reloading curves,
based on the Masing rule as

∣∣∣∣Q − Q∗

2

∣∣∣∣ = Qs

[
1 − exp

(
−K0

Qs

∣∣∣∣vc − v∗
c

2

∣∣∣∣)] , if |vc| ≤ vcl;

Q = Q∗ + kl(vc − v∗
c ), if |vc| > vcl;

(3.5)
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where (v∗
c , Q∗) is the point at which load reversal occurs in the range of |vc| ≤ vcl. But,

when |vc|> vcl, the loading and reloading process is on a straight line with slope kl.
Therefore, the corresponding instantaneous connection stiffness of both the unloading
and reloading curves can be expressed as

rv = dQ
dvc

= K0 exp
(

−K0

Qs

∣∣∣∣vc − v∗
c

2

∣∣∣∣) , if |vc| ≤ vcl;

rv = dQ
dvc

= kl, if |vc| > vcl;

(3.6)

in which, v∗
c = v∗

ca when the slippage deformation happens after the reversal point A in
Figure 3.3. If point B is the next reversal point, the reloading stiffness is obtained by
replacing v∗

ca with v∗
cb in Equation (3.6).

Connect ion spr ing e lement
This semi-rigid joint can be modelled as a virtual connection spring element inserted
at the intersection point between a beam and a column. A typical connection spring
element in the tangential direction shown in Figure 3.4 is used. The virtual connection
spring in other directions can be described in a similar manner. The connection spring
elements are located at the member ends, and they are assumed infinitely small. The
complete hybrid element includes a member and the corresponding connections. Nodes
I and J are external nodes, and nodes i and j are internal nodes. The beam-column
element is between nodes i and j. The connection spring elements are between nodes
I and i and between nodes J and j, respectively, as shown in Figure 3.5.

In the derivation of the spring stiffness matrix, the three basic governing conditions,
i.e. the compatibility, the equilibrium and the constitutive relations for an element, are

Connection element 

Connecting node

Beam

Connecting node

C
ol

um
n

C
ol

um
n

x

y

IQ,Iυ iQ,iυ

Figure 3.4 Connection spring element

IQ,Iy iQ,iy jQ,jy J Q,Jy

Node I Node JNode i Node j

Figure 3.5 Beam-column element with end connection springs
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considered. Considering a spring with stiffness, rv; two end displacements, Iv and iv
on either side; and the corresponding lateral shear forces, IQ and iQ, the equilibrium
condition requires

IQ + iQ = 0 (3.7)

Assuming vc is the relative displacement between the joint interfaces, the compati-
bility condition requires

vc = Iv − iv (3.8)

The constitutive relationship on the shearing action is

rv = IQ
vc

= iQ
vc

(3.9)

Substituting Equation (3.7) into Equation (3.9), gives{
IQ
iQ

}
=
[

rv −rv

−rv rv

]{
Iv
iv

}
(3.10)

Therefore, the stiffness matrix of the connection element is given by
[

rv −rv

−rv rv

]
.

Disp lacement funct ion of the hybr id e lement
By using the cubic Hermitian function, the lateral deflection, v, in the y-direction at a
location x along the centre-line of a straight element can be written as

v = [(3 − 2ρ1)ρ2
1 (3 − 2ρ2)ρ2

2]
[
vi

vj

]
+ [ρ2

1ρ2L −ρ1ρ
2
2L]

[
θi
θj

]
(3.11)

in which

ρ1 = 1 − x
L

, ρ2 = x
L

(3.12)

The lateral deflection, v, in Equation (3.11) has not yet accounted for the effect of
connection flexibility at the ends of the beam-column element.

The elemental stiffness matrix for the complete hybrid element is assembled from
those of the end springs and the beam element. The loads QI, MI and QJ, MJ are
assumed to be applied only at the global nodes I and J, and hence the shear forces Qi

and Qj are equal to zero. Thus,{
vi

vj

}
=
[
rvi + K11 K13

K31 rvj + K33

]−1 [rvi 0
0 rvj

]{
vI

vJ

}
−
[
rvi + K11 K13

K31 rvj + K33

]−1 [K12 K14

K32 K34

]{
θi
θj

}
(3.13)

Using the conditions Mi = MI, Mj = MJ, θi = θI and θj = θJ, and eliminating the
internal DOFs, the relationship between the external nodal force and nodal displace-
ments/rotations of the element can be obtained.

© 2009 Taylor & Francis Group, London, UK

  



34 Damage mode ls and a lgor i thms

In assembling the elemental stiffness matrices of a structure, the element stiffness
matrix is rewritten in the global coordinate system for geometrical compatibility. Sub-
stituting Equation (3.13) into Equation (3.11) and transforming the external nodal
rotations, θI and θJ, about the local axis at the ends of the element to the global nodal
rotations θi and θj, the displacement function v can finally be written as

v = [(3 − 2ρ1)ρ2
1 (3 − 2ρ2)ρ2

2]
[
rvi + K11 K13

K31 rvj + K33

]−1 [rvi 0
0 rvj

]{
vI

vJ

}
− [(3 − 2ρ1)ρ2

1 (3 − 2ρ2)ρ2
2]
[
rvi + K11 K13

K31 rvj + K33

]−1 [K12 K14

K32 K34

]{
θI
θJ

}
+ [ρ2

1ρ2L −ρ1ρ
2
2L]

{
θI
θJ

}
= [(3 − 2ρ1)ρ2

1 (3 − 2ρ2)ρ2
2]
[
rvi + K11 K13

K31 rvj + K33

]−1 [rvi 0
0 rvj

]{
vi

vj

}

+
(

[ρ2
1ρ2L −ρ1ρ

2
2L] − [(3 − 2ρ1)ρ2

1 (3 − 2ρ2)ρ2
2]

×
[
rvi + K11 K13

K31 rvj + K33

]−1 [K12 K14

K32 K34

])[
1/L 1 −1/L 0
1/L 0 −1/L 1

]
vi

θi

vj

θj

 (3.14)

in which vi, vj, θi and θj are the nodal displacements and rotations of the element
referring to the global axis.

The displacement function, w, in the z-direction can also be expressed similar to
Equation (3.14) when under the shear load and bending moments at the global DOFs
at the ends of the member.

L inear e lementa l s t i f fness matr ix
The linear stiffness matrix, [KL], for a beam-column element in the x- and y-planes
can be obtained based on the variational principle and the energy theorem,

[KL] =
∫ L

0

(
∂2v
∂x2

)T

EI
(
∂2v
∂x2

)
dx (3.15)

The nonzero terms of the upper triangle of the linear stiffness matrix (in local
coordinates) of the three-dimensional element are

KL1,1 = EA/L, KL1,7 = −EA/L,

KL2,2 = 48EIzξ
−1
y (ry

vi)
2(ry

vj)
2, KL2,6 = 12EIzLξ−1

y (ry
vi)

2(ry
vj)

2,

KL2,8 = −48EIzξ
−1
y (ry

vi)
2(ry

vj)
2, KL2,12 = 12EIzLξ−1

y (ry
vi)

2(ry
vj)

2,

KL3,3 = 48EIyξ
−1
z (rz

vi)
2(rz

vj)
2, KL3,5 = 12EIyLξ−1

z (rz
vi)

2(rz
vj)

2,
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KL3,9 = −48EIyξ
−1
z (rz

vi)
2(rz

vj)
2, KL3,11 = 12EIyLξ−1

z (rz
vi)

2(rz
vj)

2,

KL4,4 = GJ/L, KL4,10 = −GJ/L,

KL5,5 = L2EIyξ
−1
z {(Kz

11)2(rz
vi)

2 + 2(Kz
11)2rz

vir
z
vj + 2Kz

11(rz
vi)

2rz
vj

+ (Kz
11)2(rz

vj)
2 + 2Kz

11rz
vi(r

z
vj)

2 + 4(rz
vi)

2(rz
vj)

2},

KL5,9 = −12EIyLξ−1
z (rz

vi)
2(rz

vj)
2,

KL5,11 = −L2EIyξ
−1
z {(Kz

11)2(rz
vi)

2 + 2(Kz
11)2rz

vir
z
vj + 2Kz

11(rz
vi)

2rz
vj

+ (Kz
11)2(rz

vj)
2 + 2Kz

11rz
vi(r

z
vj)

2 − 2(rz
vi)

2(rz
vj)

2},

KL6,6 = L2EIzξ
−1
y {(Ky

11)2(ry
vi)

2 + 2(Ky
11)2ry

vir
y
vj

+ 2Ky
11(ry

vi)
2ry

vj + (Ky
11)2(ry

vj)
2 + 2Ky

11ry
vi(r

y
vj)

2 + 4(ry
vi)

2(ry
vj)

2},

KL6,8 = −12EIzLξ−1
y (ry

vi)
2(ry

vj)
2,

KL6,12 = −L2EIzξ
−1
y {(Ky

11)2(ry
vi)

2 + 2(Ky
11)2ry

vir
y
vj

+ 2Ky
11(ry

vi)
2ry

vj + (Ky
11)2(ry

vj)
2 + 2Ky

11ry
vi(r

y
vj)

2 − 2(ry
vi)

2(ry
vj)

2},

KL7,7 = EA/L, KL8,8 = 48EIzξ
−1
y (ry

vi)
2(ry

vj)
2,

KL8,12 = −12EIzLξ−1
y (ry

vi)
2(ry

vj)
2, KL9,9 = 48EIyξ

−1
z (rz

vi)
2(rz

vj)
2,

KL9,11 = −12EIyLξ−1
z (rz

vi)
2(rz

vj)
2, KL10,10 = GJ/L

KL11,11 = L2EIyξ
−1
z {(Kz

11)2(rz
vi)

2 + 2(Kz
11)2rz

vir
z
vj

+ 2Kz
11(rz

vi)
2rz

vj + (Kz
11)2(rz

vj)
2 + 2Kz

11rz
vi(r

z
vj)

2 + 4(rz
vi)

2(rz
vj)

2},

KL12,12 = L2EIzξ
−1
y {(Ky

11)2(ry
vi)

2 + 2(Ky
11)2ry

vir
y
vj

+ 2Ky
11(ry

vi)
2ry

vj + (Ky
11)2(ry

vj)
2 + 2Ky

11ry
vi(r

y
vj)

2 + 4(ry
vi)

2(ry
vj)

2}
(3.16)

where

Kz
11 = 12EIy/L3, Ky

11 = 12EIz/L3,

ξz = L3(Kz
11rz

vi + Kz
11rz

vj + rz
vir

z
vj)

2, ξy = L3(Ky
11ry

vi + Ky
11ry

vj + ry
vir

y
vj)

2.

E lementa l geometr ic s t i f fness matr ix
To consider the instability effect due to axial load [P] in the element, the geometric stiff-
ness matrix, [KG], for a beam-column element in the x- and y-planes is obtained from

[KG] = P
2

∫ L

0

(
∂v
∂x

)T (
∂v
∂x

)
dx (3.17)
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The nonzero terms in the upper triangle of the matrix (in local coordinates) of the
three-dimensional element are

KG1,1 = 0,

KG2,2 = Pζ−1
y {30(Ky

11)2(ry
vi)

2 + 60(Ky
11)2ry

vir
y
vj

− 60Ky
11(ry

vi)
2ry

vj + 30(Ky
11)2(ry

vj)
2 − 60Ky

11ry
vi(r

y
vj)

2 + 54(ry
vi)

2(ry
vj)

2},
KG2,6 = PLζ−1

y {15(Ky
11)2(ry

vi)
2 + 30(Ky

11)2ry
vir

y
vj

− 15Ky
11(ry

vi)
2ry

vj + 15(Ky
11)2(ry

vj)
2 − 15Ky

11ry
vi(r

y
vj)

2 + 6(ry
vi)

2(ry
vj)

2},
KG2,8 = Pζ−1

y {−30(Ky
11)2(ry

vi)
2 − 60(Ky

11)2ry
vir

y
vj

+ 60Ky
11(ry

vi)
2ry

vj − 30(Ky
11)2(ry

vj)
2 + 60Ky

11ry
vi(r

y
vj)

2 − 54(ry
vi)

2(ry
vj)

2},
KG2,12 = PLζ−1

y {15(Ky
11)2(ry

vi)
2 + 30(Ky

11)2ry
vir

y
vj

− 15Ky
11(ry

vi)
2ry

vj + 15(Ky
11)2(ry

vj)
2 − 15Ky

11ry
vi(r

y
vj)

2 + 6(ry
vi)

2(ry
vj)

2},
KG3,3 = Pζ−1

z {30(Kz
11)2(rz

vi)
2 + 60(Kz

11)2rz
vir

z
vj

− 60Kz
11(rz

vi)
2rz

vj + 30(Kz
11)2(rz

vj)
2 − 60Kz

11rz
vi(r

z
vj)

2 + 54(rz
vi)

2(rz
vj)

2},
KG3,5 = PLζ−1

z {15(Kz
11)2(rz

vi)
2 + 30(Kz

11)2rz
vir

z
vj

− 15Kz
11(rz

vi)
2rz

vj + 15(Kz
11)2(rz

vj)
2 − 15Kz

11rz
vi(r

z
vj)

2 + 6(rz
vi)

2(rz
vj)

2},
KG3,9 = Pζ−1

z {−30(Kz
11)2(rz

vi)
2 − 60(Kz

11)2rz
vir

z
vj

+ 60Kz
11(rz

vi)
2rz

vj − 30(Kz
11)2(rz

vj)
2 + 60Kz

11rz
vi(r

z
vj)

2 − 54(rz
vi)

2(rz
vj)

2},
KG3,11 = PLζ−1

z {15(Kz
11)2(rz

vi)
2 + 30(Kz

11)2rz
vir

z
vj

− 15Kz
11(rz

vi)
2rz

vj + 15(Kz
11)2(rz

vj)
2 − 15Kz

11rz
vi(r

z
vj)

2 + 6(rz
vi)

2(rz
vj)

2},
KG4,4 = Pr2/L, KG4,10 = −Pr2/L,

KG5,5 = PL2ζ−1
z {10(Kz

11)2(rz
vi)

2 + 20(Kz
11)2rz

vir
z
vj

+ 5Kz
11(rz

vi)
2rz

vj + 10(Kz
11)2(rz

vj)
2 + 5Kz

11rz
vi(r

z
vj)

2 + 4(rz
vi)

2(rz
vj)

2},
KG5,9 = PLζ−1

z {−15(Kz
11)2(rz

vi)
2 − 30(Kz

11)2rz
vir

z
vj

+ 15Kz
11(rz

vi)
2rz

vj − 15(Kz
11)2(rz

vj)
2 + 15Kz

11rz
vi(r

z
vj)

2 − 6(rz
vi)

2(rz
vj)

2},
KG5,11 = PL2ζ−1

z {5(Kz
11)2(rz

vi)
2 + 10(Kz

11)2rz
vir

z
vj

− 5Kz
11(rz

vi)
2rz

vj + 5(Kz
11)2(rz

vj)
2 − 5Kz

11rz
vi(r

z
vj)

2 − (rz
vi)

2(rz
vj)

2},
KG6,6 = PL2ζ−1

y {10(Ky
11)2(ry

vi)
2 + 20(Ky

11)2ry
vir

y
vj

+ 5Ky
11(ry

vi)
2ry

vj + 10(Ky
11)2(ry

vj)
2 + 5Ky

11ry
vi(r

y
vj)

2 + 4(ry
vi)

2(ry
vj)

2},
KG6,8 = PLζ−1

y {−15(Ky
11)2(ry

vi)
2 − 30(Ky

11)2ry
vir

y
vj

+ 15Ky
11(ry

vi)
2ry

vj − 15(Ky
11)2(ry

vj)
2 + 15Ky

11ry
vi(r

y
vj)

2 − 6(ry
vi)

2(ry
vj)

2},
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KG6,12 = PL2ζ−1
y {5(Ky

11)2(ry
vi)

2 + 10(Ky
11)2ry

vir
y
vj

− 5Ky
11(ry

vi)
2ry

vj + 5(Ky
11)2(ry

vj)
2 − 5Ky

11ry
vi(r

y
vj)

2 − (ry
vi)

2(ry
vj)

2},
KG7,7 = 0,

KG8,8 = Pζ−1
y {30(Ky

11)2(ry
vi)

2 + 60(Ky
11)2ry

vir
y
vj

− 60Ky
11(ry

vi)
2ry

vj + 30(Ky
11)2(ry

vj)
2 − 60Ky

11ry
vi(r

y
vj)

2 + 54(ry
vi)

2(ry
vj)

2},
KG8,12 = PLζ−1

y {−15(Ky
11)2(ry

vi)
2 − 30(Ky

11)2ry
vir

y
vj

+ 15Ky
11(ry

vi)
2ry

vj − 15(Ky
11)2(ry

vj)
2 + 15Ky

11ry
vi(r

y
vj)

2 − 6(ry
vi)

2(ry
vj)

2},
KG9,9 = Pζ−1

z {30(Kz
11)2(rz

vi)
2 + 60(Kz

11)2rz
vir

z
vj

− 60Kz
11(rz

vi)
2rz

vj + 30(Kz
11)2(rz

vj)
2 − 60Kz

11rz
vi(r

z
vj)

2 + 54(rz
vi)

2(rz
vj)

2},
KG9,11 = PLζ−1

z {−15(Kz
11)2(rz

vi)
2 − 30(Kz

11)2rz
vir

z
vj

+ 15Kz
11(rz

vi)
2rz

vj − 15(Kz
11)2(rz

vj)
2 + 15Kz

11rz
vi(r

z
vj)

2 − 6(rz
vi)

2(rz
vj)

2},
KG10,10 = Pr2/L,

KG11,11 = PL2ζ−1
z {10(Kz

11)2(rz
vi)

2 + 20(Kz
11)2rz

vir
z
vj

+ 5Kz
11(rz

vi)
2rz

vj + 10(Kz
11)2(rz

vj)
2 + 5Kz

11rz
vi(r

z
vj)

2 + 4(rz
vi)

2(rz
vj)

2},
KG12,12 = PL2ζ−1

y {10(Ky
11)2(ry

vi)
2 + 20(Ky

11)2ry
vir

y
vj

+ 5Ky
11(ry

vi)
2ry

vj + 10(Ky
11)2(ry

vj)
2 + 5Ky

11ry
vi(r

y
vj)

2 + 4(ry
vi)

2(ry
vj)

2}
(3.18)

where

Kz
11 = 12EIy/L3, Ky

11 = 12EIz/L3,

ζz = 60L(Kz
11rz

vi + Kz
11rz

vj + rz
vir

z
vj)

2, ζy = 60L(Ky
11ry

vi + Ky
11ry

vj + ry
vir

y
vj)

2.

Therefore, using the updated Lagrangian approach, the tangent stiffness matrix of the
beam-column element accounting for the connection spring stiffness can be evaluated
directly from

[KT] = [KL] + [KG] (3.19)

The consistent mass and damping matrices of the hybrid element can be found in Law
et al., (2003).

Appl i ca t ion to the Mi l lenn ium Br idge
Dynamic forces generated by moving crowds of people while walking produce unex-
pected lateral movements with the London Millennium Footbridge on its opening day
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South span

Central span

North span

Edge cable

Figure 3.6 Elevation view of the bridge

Figure 3.7 Deck with 38 hybrid members

(Dallard et al., 2001). The movements took place mainly on the south and central
spans at frequencies corresponding to their first and second lateral modes, which are
very low and between 0.5 and 1.0 Hz. This section presents a vibration mitigation
study on the footbridge using a bracing member which includes two connecting rods
and a frictional damper, i.e. a slotted, bolted connection element (SBCE).

The bridge structure has three suspended spans. The finite element model is con-
structed from the published data of the Millennium Footbridge with a central span of
144 m, a south span of 100 m and a north span of 81 m (Dallard et al., 2001). The 4 m
wide deck is in segments that are each 16 m long and the steel box sections of the deck
are linked together via a tongue and groove movement joint. The segments span over
4 m between the edge steel tubes on each side of the bridge. Transverse arms extending
from the deck sections clamp onto a 200 mm diameter steel cable at each side of the
bridge at 8 m intervals. The cables provide the bridge with both vertical and lateral
stiffnesses with a horizontal dead load tension force of approximately 22.5 MN. There
is only a small sag of cable of 2.3 m over the central span in the tension cable. The
cables are in turn supported by two V-shape steel piers found on a reinforced concrete
pier foundation. The arrangement of the structure is shown in Figure 3.6.

The hybr id e lement
The finite element model of the structure is referred to by Law et al. (2004b). The
dynamic response of the structure is mitigated by a friction damper installed inside
a hybrid-bracing member between corresponding nodal points underneath the bridge
deck as shown in Figure 3.7. The SBCE is modelled as a virtual shear spring between
two rod members, and its physical size is assumed infinitely small. Nodes I and J are
external nodes, and nodes i and j are internal nodes. The SBCE is between nodes i
and j. Rods 1 and 2 are between nodes I and i, and between nodes J and j, respectively
as shown in Figure 3.8.
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x

Slotted bolted
connection element

Connection node i

Connection node j

Node J

QJ, vJQj, vj

Qi, vi
QI, vI

Node I
Rod 1

 Rod 2

Figure 3.8 Hybrid element with SBCE

Stat i c condensat ion
The Guyan static condensation technique (Guyan, 1965) is employed to eliminate the
internal DOFs i and j. The three basic governing conditions, i.e. the compatibility, the
equilibrium and the constitutive relations for a finite element are considered. The SBCE
has two end displacements, ui and uj, at each end with corresponding nodal forces, Qi

and Qj. The stiffness matrix of the SBCE is
[

rv −rv

−rv rv

]
from Equation (3.10).

Denoting the member end nodal axial displacements by vI and vJ, gives


QI

Qi

Qj

QJ

 =


r1 −r1 0 0

−r1 r1 + rv −rv 0
0 −rv r2 + rv −r2

0 0 −r2 r2




vI

vi

vj

vJ

 (3.20)

with r1 = A1E1/L1 and r2 = A2E2/L2. A1 and A2 are the cross-sectional areas of the
two rods; L1 and L2 are their lengths; and QI and QJ are the nodal forces at the ends
of these members. The loads are assumed to be applied only at the global nodes I and
J, and hence the shear forces Qi and Qj are equal to zero. Taking the conditions Qi = 0
and Qj = 0, Equation (3.20) gives

{
vi

vj

}
=
[
r1 + rv −rv

−rv r2 + rv

]−1 [r1 0
0 r2

]{
vI

vJ

}
= [T1]

{
vI

vJ

}
(3.21)

in which

[T1] =
[
r1 + rv −rv

−rv r2 + rv

]−1 [r1 0
0 r2

]
(3.22)

Matr ix trans format ion
If the lateral displacements at the end nodes I and J of the element are expressed as vyI,
vzI and vyJ, vzJ, respectively, and letting {Q̂} = {Qi Qj QI QJ QYI QZI QYJ QZJ}T

© 2009 Taylor & Francis Group, London, UK

  



40 Damage mode ls and a lgor i thms

be the vector and {V̂} = {vi vj vI vJ vYI vZI vYJ vZJ}T be the displacement
vector of the element, respectively, then there exists

{Q̂} = [K]{V̂} (3.23)

and

[K] =
[

[K1] [0]4×4

[0]4×4 [0]4×4

]
(3.24)

in which [K] is the 8×8 elemental stiffness matrix before condensation and [K1] is a
4 × 4 matrix defined as

[K1] =


r1 + rv −rv −r1 0
−rv r2 + rv 0 −r2

−r1 0 r1 0
0 −r2 0 r2

 (3.25)

The 8×8 displacement vector, {V̂}, is further transformed to the 6×6 displacement
vector, {V} = {vI vYI vZI vJ vYJ vZJ}T , of the hybrid element as

{V̂} = [T2][B]{V} (3.26)

with

[T2]8×6 =
[

[T1]2×2 [0]2×4

[I]6×6

]
, [B]6×6 =


1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (3.27)

The 8×8 elemental stiffness matrix, [K], is condensed to the 6×6 stiffness matrix of
the hybrid element, [K], using the same transformation matrices as

[K] = ([T2][B])T [K]([T2][B]) (3.28)

Similarly, the 8×8 elemental lump mass matrix corresponding to the displacement
vector {Û} is given by

[M] = dia
[

1
2

mL1 + Md
1
2

mL2 + Md
1
2

mL1
1
2

mL2
1
2

mL
1
2

mL
1
2

mL
1
2

mL
]

(3.29)

in which L = L1 + L2; m is the mass per unit length of the rod; and Md is the lumped
mass of the SBCE at the internal nodes. The 6×6 transformed element mass matrix of
the hybrid element is then given by

[M] = ([T2][B])T [M]([T2][B]) (3.30)
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Since matrices [K] and [M] are in the local coordinates system, they are further
transformed to the global coordinates system by

[K̃] = [T3]T [K][T3] [M̃] = [T3]T [M] [T3] (3.31)

in which [T3] is the coordinate transformation matrix. Matrices [K̃] and [M̃] are then
assembled to form the stiffness and mass matrices of the system.

Responses wi th dampers in s tructure
The loading case with 150 people distributed evenly along the south and central spans
of the bridge deck is studied. Details of the pedestrian loading model and the parameters
of the dampers are referred to in Law et al. (2004b). The responses at the mid-span of
the central span for two cases of (a) having 38 dampers in all spans and (b) only 28
dampers in the south and central spans, are shown in Figure 3.9. The time responses
show a significant reduction in the vibration amplitude to meet the requirement of
comfort serviceability for the pedestrian with an acceleration below 20 milli-g and a
lateral displacement at the mid-span of the central span of under 10 mm (Dallard et al.,
2001). There is also a large reserve damping capacity with a clear reducing trend in

(a) with 38 dampers in all spans
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(b) with 28 dampers longitudinally shifted by 8 meters
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Figure 3.9 Response at mid-span of central span for different damper layouts
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the vibration amplitude with time. Both time histories also maintain a close to balance
state in the latter part of the time history indicating that significant damping to the
vibration motion can be provided by the dampers.

3.2.1.2 Hybr id beam with both shear and f lexura l f lex ib i l i t i es

This section studies the dynamic properties of a bolted joint with flexibility in both
tangential and rotational directions. The slotted bolted connection shown in Figure
3.1 is referenced.

The Richard–Abbott mode l
There are many existing models to describe the rotational flexibility in a semi-rigid
joint. The Richard–Abbott model (Richard and Abbott, 1975) exhibits the virgin
loading path of the moment-rotation behaviour as

M = (k0 − kp)|φ|[
1 +

∣∣∣ (k0 − kp)|φ|
M0

∣∣∣n]1/n + kp|φ| (3.32a)

with the corresponding tangent connection stiffness Sc as

Sc = dM
dφ

= (k0 − kp)[
1 +

∣∣∣ (k0 − kp)|φ|
M0

∣∣∣n](n+1)/n + kp (3.32b)

in which k0 is the initial rotational stiffness; kp is the strain-hardening stiffness; M0

is a reference moment; and n is a parameter defining the curvature of the curve.
The Richard–Abbott model is shown in Figure 3.10(a) for different values of the
parameter, n. The slope of the curve decreases when the moment is close to the ultimate
moment for increasing values of the parameter, n.
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Figure 3.10 (a) Moment-rotation model (b) Shear-slip model
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The unloading and reloading part of the M −φ curve can be written similarly from
Equation (3.32a) as

∣∣∣∣M − M∗

2

∣∣∣∣ =
(k0 − kp)

∣∣∣φ∗ −φ
2

∣∣∣[
1 +

∣∣∣ (k0 − kp)|φ∗ −φ|
2M0

∣∣∣n]1/n + kp

∣∣∣∣φ∗ − φ
2

∣∣∣∣ (3.33a)

and the corresponding tangent rotational stiffness of the joint is

Sc = dM
dφ

= (k0 − kp)[
1 +

∣∣∣ (k0 − kp)(φ∗ −φ)
2M0

∣∣∣n](n+1)/n + kp (3.33b)

in which (φ∗, M∗) is the reversal point the loading path has just gone through, similar
to that for the shear-slip model. If point B is the next reversal point, the reloading
stiffness is obtained by replacing (φ∗, M∗) with (φ∗

b, M∗
b) in Equation (3.33).

The Richard–Abbott model requires only four parameters in its definition, and it
can represent a nonlinear and smooth M − φ curve accurately. It has been used widely
for the description of the rotational stiffness of a semi-rigid joint.

The shear-s l ip mode l
The same shear-slip model as described in Section 3.2.1.1 is adopted, and the shear–
slip relationship of such model is shown in Figure 3.10(b) for different values of the
parameter, m. A hybrid element with end springs representing both types of flexibility
is presented in the next section and its stiffness matrix is given.

Connect ion spr ing e lement
This semi-rigid joint incorporating both in-plane shear and moment flexibilities mod-
elled with a virtual connection spring element attached to the end of a beam-column
element to form the hybrid element is shown in Figure 3.11. These connection spring
elements are located at the member ends, and they are assumed infinitely small. The
complete hybrid element includes a uniform member and the corresponding connec-
tions. Nodes I and J are the external nodes, and nodes i and j are the internal nodes. The
beam-column element is between nodes i and j. The connections I and J are between
nodes I and i and between nodes J and j, respectively.

beam

Node I
Node i Node j

Node J

Connection element JConnection element I

IM, Iθ, IQ, Iv JM, Jθ, JQ, Jv
jM, jθ, jQ, jviM, iθ, iQ, iv

Figure 3.11 Hybrid beam-column element with end connection spring elements
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In the derivation of the spring stiffness matrix, the three basic governing conditions,
i.e. the compatibility, the equilibrium and the constitutive relations for an element, are
considered. Considering a spring with stiffnesses Sc and rv; two end displacements, Iv
and iv; and two rotations, Iθ and iθ, on either side of the spring, the corresponding lat-
eral shear forces, IQ and iQ, and corresponding moments IM and iM, the equilibrium
conditions require

IQ + iQ = 0, IM + iM = 0 (3.34)

Assuming that v is the relative shear displacement between the joint interfaces, and
θ is the connection rotation angle, the compatibility conditions require

v = Iv − iv, θ = Iθ − iθ (3.35)

The constitutive relationships of the shearing and rotational actions are

rv = IQ
v

= iQ
v

, Sc = IM
θ

= iM
θ

(3.36)

Substituting Equation (3.34) into Equation (3.36), gives{
IQ
iQ

}
=
[

rv −rv

−rv rv

]{
Iv
iv

}
,

{
IM
iM

}
=
[

Sc −Sc

−Sc Sc

]{
Iθ

iθ

}
(3.37)

Therefore, the in-plane stiffness matrix of the connection element is given by:
rv 0 −rv 0
0 Sc 0 −Sc

−rv 0 −rv 0
0 Sc 0 Sc

 (3.38)

The shape funct ion
By using the cubic Hermitian function, the lateral deflection, v, in the y-direction at a
location x along the centre-line of a straight element can be written as

v = a0 + a1x + a2x2 + a3x3 (3.39)

in which (aj, j = 0, 1, 2, 3) are coefficients. Denoting the beam end rotations by θi and
θj, and the beam end lateral deflections by vi and vj at the end nodes i and j of the
element respectively, gives the following boundary conditions

v = vi,
dv
dx

= θi, at x = 0,

v = vj,
dv
dx

= θj, at x = L, (3.40)

in which L is the length of the element.
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The four unknowns coefficients (aj, j = 0, 1, 2, 3) in Equation (3.39) can be solved
from these four boundary conditions as


a0

a1

a2

a3

 =


1 0 0 0

0 1 0 0

−3/L2 −2/L 3/L2 −1/L

2/L3 1/L2 −2/L3 1/L2




vi

θi

vj

θj

 (3.41)

Substituting the coefficients into Equation (3.39), the lateral deflection function, v,
becomes

v = [(3 − 2ρ1)ρ2
1 (3 − 2ρ2)ρ2

2]

[
vi

vj

]
+ [ρ2

1ρ2L −ρ1ρ
2
2L]

[
θi

θj

]
(3.42)

in which

ρ1 = 1 − x
L

, ρ2 = x
L
. (3.43)

The lateral deflection, v, in Equation (3.42) has not yet accounted for the effect of
connection flexibility at the ends of the beam-column element.

Considering the inner beam-column between the connection springs at the two
ends of the hybrid element, the elemental stiffness matrix links the forces and
deformations as


Qi

Mi

Qj

Mj

 =


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44




vi

θi

vj

θj

 (3.44)

in which Kij is the elemental stiffness of the beam-column element given by

K11 = K33 = −K13 = −K31 = 12EI
L3

K12 = K21 = K14 = K41 = −K23 = −K32 = −K34 = −K43 = 6EI
L2

(3.45)

K22 = K44 = 2K24 = 2K42 = 4EI
L
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The elemental stiffness matrix for the complete hybrid element, with the connection
springs at two ends of the beam-column element, can be written as

Qi

Mi

Qj

Mj

QI

MI

QJ

MJ


=



rvi + K11 K12 K13 K14 −rvi 0 0 0
K21 Sci + K22 K23 K24 0 −Sci 0 0
K31 K32 rvj + K33 K34 0 0 −rvj 0
K41 K42 K43 Scj + K44 0 0 0 −Scj

−rvi 0 0 0 rvi 0 0 0
0 −Sci 0 0 0 Sci 0 0
0 0 −rvj 0 0 0 rvj 0
0 0 0 −Scj 0 0 0 Scj





vi

θi
vj

θj
vI

θI
vJ

θJ


(3.46)

The loads are assumed to be applied only at the global nodes I and J, and hence the
shear forces, Qi and Qj, and moments, Mi and Mj, are equal to zero. Thus,

vi

θi
vj

θj

 =


rvi + K11 K12 K13 K14

K21 Sci + K22 K23 K24

K31 K32 rvj + K33 K34

K41 K42 K43 Scj + K44


−1 

rvi 0 0 0
0 Sci 0 0
0 0 rvj 0
0 0 0 Scj




vI

θI
vJ

θJ


(3.47)

The internal DOFs are eliminated by substituting Equation (3.47) into Equation
(3.46), thus the relationship between the external nodal force and nodal displace-
ments/rotations of the element can be obtained.

In the assembling of the elemental stiffness matrix of a structure, the above matrix
is rewritten in the global coordinate system for geometrical compatibility. Substituting
Equation (3.47) into Equation (3.42) and transforming the external nodal deforma-
tions, vI, θI and vJ, θJ, about the local axis at the ends of the element to the global nodal
deformations vi, θi and vj, θj, the displacement function v can finally be written as

v = [(3 − 2ρ1)ρ2
1 ρ2

1ρ2L (3 − 2ρ2)ρ2
2 −ρ1ρ

2
2L]

×


rvi + K11 K12 K13 K14

K21 Sci + K22 K23 K24

K31 K32 rvj + K33 K34

K41 K42 K43 Scj + K44


−1 

rvi 0 0 0
0 Sci 0 0
0 0 rvj 0
0 0 0 Scj

× [T]


vi

θi
vj

θj


(3.48)

in which [T] is the coordinate transformation matrix.

3.2.2 Decomposit ion of system matrices

A number of new finite element model updating methodologies have been proposed and
applied to structural engineering for solving the inverse problem of model updating
or damage assessment (Mottershead and Friswell, 1993). There are two important
issues in the use of the model updating methods: (a) the selection strategy for the
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updating parameters; and (b) the choice of dynamic characteristics of the structure from
measurement. While the dynamic characteristics that are sensitive to the parameters
should be chosen to correlate the finite element model predictions and the test results
with a small parameter adjustment, further reviews show that there are two types of
problems with the first issue:

• Type A. The initial analytical model includes all the potential physical effects. The
updating problem is merely the choosing of relevant physical parameters from
the analytical model and finding out the correct numerical values of them in the
updating process.

• Type B. The initial analytical model neglects some significant physical effects, and
the relevant effects must be re-introduced into the updated model.

If researchers effectively limit themselves to the type A problem, they will adopt
a physical parameter selection strategy for model updating such as Chen and Garba
(1980) and Hoff and Natke (1989). Li et al. (2006) have taken out the corresponding
terms for axial, transverse, rotational and transverse-rotational stiffness of a planar
beam element into sparse matrices in an attempt to identify the different load-carrying
stiffnesses with a damage index method. These methods always have clear physical
meanings, in that the updated models keep the same connective topology between
the structural members defined by the initial analytical model. In practice, however,
these methods are too restrictive by keeping the assumed element shape functions
unchanged. Given a complex structure, if the initial analytical model neglects some
significant effects that exist in the real structure, it would be very difficult to find the
‘real’ model by merely correcting parameters from the inadequate analytical model.

3.2.2.1 The gener ic e lement

Generic element theory (Gladwell and Ahmadian, 1995) may be a good solution for
the type B problem. This method displays a good balance between the direct matrix
method and the physical parameter method, such that the updated model correlates
the experimental data by automatically introducing relevant effects, while keeping the
correct connectivity topology specified by the finite element modelling.

The generic element method studies how an element stiffness matrix and mass matrix
can be updated by adjusting its eigenvalues and eigenvectors. There are three generic
parameters defining the elastic axial stiffness, symmetric bending stiffness and the anti-
symmetric bending stiffness of a planar frame element. Without loss of generality, the
model error is assumed to be related to the stiffness properties of the structure, and
therefore only the generic stiffness matrix of an element is studied.

The finite element model of the structure is constructed with the global stiffness
matrix of the structure from n global DOFs as {uG} and it is modelled using an assem-
blage of ne finite elements. Each of the ne elements itself connects the elemental DOF,
e.g. {uE

α } for the αth element which has size (nα× 1). The corresponding elemental
matrices in this coordinate system are [kE

α ] and [mE
α ] of (nα× nα) size. The free vibration

of an undamped element is itself governed by the equation

([kE
α ] − ω2

j [mE
α ]){φ}j = {0} j = 1, 2, . . . , nα (3.49)

© 2009 Taylor & Francis Group, London, UK

  



48 Damage mode ls and a lgor i thms

if the element has r(≤6) rigid body modes, the (nα× nα) mode shape matrix can be
written as [�α] = [φ1, . . . ,φr|φr+1, . . . ,φnα ] = [�R,�S], where the rigid body modes are
specified in �R, and the other strain modes in �S. With the mode shapes normalized
with respect to the mass and stiffness matrices,

[�α]T [mE
α ][�α] = I, [�α]T [kE

α ][�α] = [�α] (3.50)

where [�α] = diag(0, . . . , 0,ω2
1, . . . ,ω2

nα−r), and [kE
α ][�R] = 0. One way of constructing

a generic family of the element matrices can be found as

[mE
α ] = [�α]−T [�α]−1, [kE

α ] = [�α]−T [�α][�α]−1 (3.51)

Let [mE
α ]0 and [kE

α ]0, which are extracted from the system matrices of the initial
analytical model, be the initial pair of the mass and stiffness matrices for the element
with corresponding mode shape matrix [�α]0. Let [mE

α ] and [kE
α ] be any other member

of the generic family and its corresponding modes that form the columns of [�α]. Since
the columns of [�α]0 are independent of each other and they form the initial vectors
for the nα-dimension space, there is a unique matrix, [Sα], relating [�α] and [�α]0 by
the equation

[�α] = [�α]0[Sα]−1 or [�α]0 = [�α][Sα] (3.52)

Inserting Equation (3.52) into Equation (3.51), and noticing that [�α]−T
0 = [mE

α ]0[�α]0,
the formulation of the generic element family is given as

[mE
α ] = [mE

α ]0[�α]0[Uα][�α]T
0 [mE

α ]0, [kE
α ] = [mE

α ]0[�α]0[Vα][�α]T
0 [mE

α ]0 (3.53)

where

[Uα] = [Sα]T [Sα], [Vα] = [Sα]T [�α][Sα] (3.54)

Matrices [Uα] and [Vα] consist of the generic parameters of the generic family of
elements [mE

α ] and [kE
α ]. When the unknowns comprising [Sα] and [�α] are correlated

to the measured global modal data, the ‘real’ member can be identified from the generic
family.

Before going further, the following two points in the generic theory have to be noted:
(a) the modes making up [�α] are from the free vibration of an element and they have
nothing to do with the measured global modes; (b) the transform matrix, [Sα], has
(nα× nα) unknowns. For the system with ne elements, there would be a huge number
of unknowns to be solved. The first barrier can be resolved by assembling the generic
elements into a generic structure, while the second obstacle can be solved by restricting
the matrix, [Sα], on physical grounds.

Let us follow the assembling procedure of standard finite element modelling. Since
the elemental DOFs are related by a transformation matrix to the global DOF as

{uG} = [Tα]{uE
α } (3.55)
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in which [Tα] represents the transformation matrix for the αth element, then the global
system matrices can be formed by assembling all the elemental matrices according to

[K] =
ne∑
α=1

[Tα][kE
α ][Tα]T , [M] =

ne∑
α=1

[Tα][mE
α ][Tα]T (3.56)

The (n × nα) elemental-to-global DOF transformation matrices, [Tα], include the index
lookup corresponding between the elemental and global DOFs, the coordinate trans-
formation from the elemental frames to the global frame and the effect of applied
constraints.

The generic form of the element matrices in Equation (3.53) can then be substituted
into Equation (3.56) to get the generic form of the structure

[K] =
ne∑
α=1

[Tα][mE
α ]0[�α]0[Vα][�α]T

0 [mE
α ]T

0 [Tα]T , (3.57a)

[M] =
ne∑
α=1

[Tα][mE
α ]0[�α]0[Uα][�α]T

0 [mE
α ]T

0 [Tα]T (3.57b)

This expression can be further simplified into

[K] = [A][V][A]T , [M] = [A][U][A]T (3.58)

where the sparse topology matrix, [A], is defined by

[A] = [([T]1[mE
1 ]0[�1]0) ([T]2[mE

2 ]0[�2]0) . . . ([T]ne [m
E
ne

]0[�ne ]0)] (3.59)

and [U] and [V] are diagonal block matrices consisting of all the assembled elemental
generic parameters, where

[U] = diag([U1], [U2], . . . , [Une ]), [V] = diag([V1], [V2], . . . , [Vne ]) (3.60)

Assuming the structural connectivity of the analytical model is correct, and the model
errors only relate to the stiffness of the structural members, the topology matrix, [A],
can be regard as independent of the elemental generic parameters. The derivatives of
global stiffness matrix with respect to the elemental generic parameters, e.g. {P}1×np ,
can then be directly computed as

∂[K]
∂pi

= [A]
∂[V]
∂pi

[A]T ,
∂[M]
∂pi

= [A]
∂[U]
∂pi

[A]T i = 1, 2, . . . , np (3.61)

with np unknown generic parameters.

Case study
The European Space Agency Structure shown in Figure 3.12 is used to illustrate the
applicability and effectiveness of the generic elements. The structure is modelled by
48 frame elements with three DOFs at each node for the translation and rotational
deformations. Each frame element is constructed by integrating an Euler–Bernoulli
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Figure 3.12 Finite element model of the European Space Agency Structure

beam element with a rod element. The elastic modulus of material is assumed to be
E = 7.5 × 1010 N/m2 and the density is assumed to be ρ= 2800 kg/m3. The total num-
ber of DOFs specified in the analytical finite element model is 126. Another finite
element model is constructed to provide the ‘experimental’ modal data. The model has
the same finite element topology as the analytical one. However, the Euler–Bernoulli
beam elements are replaced by Timoshenko beam elements that incorporate the trans-
verse shear deformation. Local manufacturing faults are also introduced by reducing
the elastic modulus of the 2nd, 19th, 36th and 47th elements by 20%. Only stiff-
ness modelling errors are considered in this case study, although the method is equally
applicable to the case with mass modelling errors.

Model l ing wi th the e lement
The strain energy of the Timoshenko beam element can be expressed as

Uε =
∫

l

P2(x)
2EA

dx +
∫

l

M2(x)
2EI

dx +
∫

l

ksQ2(x)
2GA

dx (3.62)

where P, M and Q are internal axial force, bending moment and shear force, respec-
tively; G represents the elastic shear modulus of material; and ks is the transverse shear
coefficient determined from the shape of the beam cross-section, which, in this case,
equals 2.11 for an I/wide flange section. The first and second terms on the right-hand-
side of Equation (3.62) represent the axial and bending strain energy of the beam, while
the third term, which is the shear strain energy, does not exist with the Euler–Bernoulli
beam element. For a long-span beam with a cross-section with a small ks value, the
shear strain energy could be small and negligible. However, the frame structure as
shown in Figure 3.12 is composed of deep and thick frame elements and the transverse
shear effect could be significant and therefore should not be neglected. From the above
discussions, it can be concluded that:

(a) the modelling error between the initial analytical model and the ‘experimental’
data originates from two sources: systemic error due to the neglecting of the
transverse shear effects and local stiffness error; and
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(b) the error due to the shear effect cannot be corrected by a conventional physi-
cal parameter updating method since the analytical model does not include the
relevant variables, i.e. ks and G, at all.

The following paragraphs give detailed considerations on how to construct a generic
family for a plane frame element. Starting with an Euler–Bernoulli element in the initial
analytical model with its initial lump mass and stiffness matrices as

[mE]0 = Aρl



1
2

1
2

0
1
24

1
2

0
1
2

1
24


, [kE]0 = E



A
l

0 0
−A

l
0 0

12I
l3

6I
l2

0
−12I

l3

6I
l2

4I
l

0
−6I
l2

2I
l

A
l

0 0

sym
12I
l3

−6I
l2

4I
l


(3.63)

Its eigenvalues and mass-normalized mode shapes are

[�]0 =


0

0 0
0

4
0 48

192

, [�]0 =



k1 0 0 −k1 0 0
0 k2 −(

√
3/2)k2 0 0 0.5k2

0 0
√

3k3 0 2
√

3k3 3k3

k1 0 0 k1 0 0
0 k2 (

√
3/2)k2 0 0 −0.5k2

0 0
√

3k3 0 −2
√

3k3 3k3


(3.64)

where k1 =√
EA/l, k2 =√

EI/l and k3 =√
EI/l

3
. The first three modes are rigid body

modes, and the last three are strain modes, as shown in Equation (3.64). It is important
to note that the second, fourth and fifth modes are symmetric about the centre of the
element while the others are of anti-symmetry. If two assumptions on the family of
the generic element are included, namely: (a) the number of rigid modes remains the
same and the new rigid modes are linear combinations of the original ones; and (b)
the modal symmetry of the element is preserved, then the transformation matrix, [s],
can be partitioned into the following

[s] =
[
sR sRS

0 sS

]
=


s11 s14

s22 s25

s33 s36

s44

0 s55

s66

 (3.65)
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This then leads to a diagonal matrix, [V], in Equation (3.53), such that the stiffness
matrix of the generic element family can be expressed as (Law et al., 2001a)

[kE] = [mE]0



−k1 0 0
0 0 0.5k2

0 2
√

3k3 3k3

k1 0 0
0 0 −0.5k2

0 −2
√

3k3 3k3


v1 0

v2

0 v3



×
−k1 0 0 k1 0 0

0 0 2
√

3k3 0 0 −2
√

3k3

0 0.5k2 3k3 0 −0.5k2 3k3

 [mE]0 (3.66)

where v1 =ω2
1s2

44, v2 =ω2
2s2

55 and v3 =ω2
3s2

66; and ωi is the ith elastic circular frequency.
There are only three generic parameters to define the stiffness matrix for each element.

Since the transfer matrix, [s]0, corresponding to the initial finite element model
is a unity matrix, the generic parameters take the initial values of v1 = 4, v2 = 48
and v3 = 192. It is noted that v1, v2 and v3 correspond to the elastic axial mode,
symmetric bending mode and the anti-symmetric bending mode, respectively. When
these parameters take different values, the stiffness matrix represents elements with
different stiffness properties. For example, when only one generic parameter, s66, takes
the form as s66 =√

1/(1 + b),

v3 = 192/(1 + b) (3.67)

in which b = 12EIks/GAl2. Substituting v3 into Equation (3.66) gives the familiar
stiffness matrix of a Timoshenko beam element

[kE] = E
1 + b



A(1 + b)
l

0 0
−A(1 + b)

l
0 0

12I
l3

6I
l2

0
−12I

l3

6I
l2

(4 + b)I
l

0
−6I
l2

(2 − b)I
l

A(1 + b)
l

0 0

sym
12I
l3

−6I
l2

(4 + b)I
l



(3.68)

It is noted that taking all the three generic parameters as variables gives us a very
large family of generic elements that can include many types of modelling errors and
unknown effects.

3.2.2.2 The e igen-decompos i t ion

A uniform stiffness (or mass) reduction is widely adopted by researchers to model local
damage sites. In practice, however, the damage may be of different patterns, which
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affect the system dynamic properties differently and it cannot be modelled as a uniform
change in the stiffness or mass matrix without much error. To describe the damage of
all possible patterns with one set of indicators, a more generalized parameter set, called
the elemental eigen-parameters, is formulated.

The elemental matrices of a frame element are decomposed into their eigenvalue
and eigenvector matrices. The eigenvalues represent physically the stiffnesses of the
element corresponding to its different deformed shapes. The different eigenvalues give
a detailed description of the different load-carrying resistances of the structure.

The global stiffness matrix of a structure, consisting of n global DOFs, {uG}, can be
modelled using an assembly of ne finite elements. The elemental local DOFs are related
to the global DOFs by

{uG} =
ne∑
α=1

[T]α{uE}α (3.69)

in which [T]α is the transformation matrix for the αth element. The global system
matrices are assembled as

[K] =
ne∑
α=1

[T]α[kE]α[T]T
α , [M] =

ne∑
α=1

[T]α[mE]α[T]T
α (3.70)

It is important to note that Equation (3.70) is not a minimum-rank definition of
the structural disassembly problem, because the elemental matrices [kE]α and [mE]α
are always rank deficient. Although [kE]α is an (nα× nα) symmetric matrix with
(nα× (nα+ 1)/2) unknown entries, only a few of them are actually independent. Con-
sider as an example, a linear spring element connecting two nodes, each of which
includes three displacement {u, v, w} DOFs. There are potentially 21 unknown
entries in this (6×6) element stiffness matrix. However, the rank of the elemental
stiffness matrix is one, as there is only one axial stiffness of the spring in the matrix.

The rank deficient elemental matrices can be decomposed into their static eigenvalues
and eigenvectors (Doebling, 1995; Doebling et al., 1998a) such that

[kE]α = [η]α[pk]α[η]T
α , [mE]α = [µ]α[pm]α[µ]T

α (3.71)

where [pk]α and [pm]α are the corresponding diagonal matrices of nonzero static eigen-
values. If the ranks of the stiffness and mass matrices for the αth element are rα and
τα, respectively, then [η]α is an (nα× rα) eigenvector matrix of the elemental stiffness
matrix and [µ]α is an (nα× τα) eigenvector matrix of the mass matrix. Physically, the
columns of matrix [η]α are the distinct and statically equilibrated deformation shapes
of the element which have nonzero strain energy, while those of matrix [µ]α are rigid
displacements related to the kinetic energy. Both these matrices can be normalized as

[η]T
α [η]α = [I]rα , [µ]T

α [µ]α = [I]τα (3.72)
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Substituting the static decomposition of Equation (3.71) into Equation (3.70) gives

[K] =
ne∑
α=1

[T]α[η]α[pk]α[η]T
α [T]T

α , [M] =
ne∑
α=1

[T]α[µ]α[pm]α[µ]T
α [T]T

α (3.73)

or

[K] = [A][Pk][A]T , [M] = [B][Pm][B]T (3.74)

where the sparse matrices, [A] and [B], are called the ‘stiffness topology matrix’ and
the ‘mass topology matrix’, respectively. They are defined by

[A] = [([T]1[η]1) ([T]2[η]2) . . . ([T]ne [η]ne )]

[B] = [([T]1[µ]1) ([T]2[µ]2) . . . ([T]ne [µ]ne )] (3.75)

and [Pk] and [Pm] are diagonal matrices of size (npk × npk) and (npm × npm), respectively,
of the assembled elemental stiffness and mass eigenvalues, where

[Pk] = diag([pk]1, [pk]2, . . . , [pk]ne ), [Pm] = diag([pm]1, [pm]2, . . . , [pm]ne ) (3.76)

It should be noticed that Equation (3.74) does not imply that [Pk] contains the
eigenvalues of the global stiffness matrix, [K], because the columns of [A] do not in
general form an orthogonal basis mathematically. The columns of matrix [A] physically
embody the stiffness contribution to the global stiffness matrix in terms of the eigen-
parameters, pk

i . The same argument applies to matrix [Pm]. It is noted that methods
have also been developed to calculate the eigenvectors for a general type of finite
element by Doebling (1996) and Robertson et al. (1996).

Frame e lement
Consider a two-dimensional, six DOFs frame element with only three displacement
modes, the eigen-decomposition on [kE] yields the following stiffness eigenvectors and
eigenvalues as

[η] =



1√
2

0 0

0 0

√
2√

L2 + 4

0
−1√

2

L√
2
√

L2 + 4
−1√

2
0 0

0 0
−√

2√
L2 + 4

0
1√
2

L√
2
√

L2 + 4



, [pk] =


2EA

L
0

2EI
L

0
6EI(L2 + 4)

L3

 (3.77)
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The diagonal elements of the eigenvalues in Equation (3.77) consist of the sec-
tional properties of the element. They are renamed as an eigen-parameter set

{pk}α=
{

2EA
L , 2EI

L , 6EI(L2+4)
L3

}
α

and are indicators of the state of the local stiffness

of the element. These parameters exceed the conventional single design parameter, e.g.
the elastic modulus of the material, Eα, which lacks a correlation with the damage
pattern. The type of damage is represented by the pattern in the set of eigen-parameter
changes. Damage, and hence load resistance quantification, can then be assessed from
these changes.

For the European Space Agency structure in Figure 3.12, the stiffness matrix of each
member can be decomposed as Equation (3.71) with

[pk]α = diag
[

EA
L

EIz

L
EIy

L
GJ
L

3EIz(L2 + 4)
L3

3EIy(L2 + 4)
L3

]
= diag[G1 G2 G3 G4 G5 G6]

where [pk]α is the diagonal matrix containing the nonzero eigenvalues. The six
eigenvalues are related to the elemental stiffness parameters such as EA, EI and
GJ defining the corresponding axial, torsional, the two cross-sectional bending and
shear stiffnesses, respectively. They represent the stiffness moduli of the correspond-
ing deformed shapes, where G2 and G5 represent the moduli corresponding to the
symmetric and anti-symmetric bending shapes in the x–y plane, and G3 and G6 cor-
respond to the symmetric and anti-symmetric bending shapes in the x–z plane. If
taking the elemental length as constant, the proportional relations of G5 = σG2 and
G6 = σG3 can be found with σ= 3(L2 + 4)/L2, where L denotes the length of the
member.

Ten-bay cant i lever f rame structure
The ten-bay three-dimensional frame structure shown in Figure 3.13 was assembled
using the Meroform M12 construction system. The structure consists of 80, 22 mm-
diameter alloy steel tubes jointed together with 40 standard Meroform ball nodes.
Each tube is fitted with a screwed end connector which, when tightened into the node,
also clamps the tube by means of an internal compression fitting. The length of all
the horizontal and vertical tube members between the centres of two adjacent balls
is exactly 0.5 m after assembly. The structure orients horizontally and is fixed into a
rigid concrete support at four nodes at one end.

A Link Dynamic System model 450 shaker is used to apply a continuous ran-
dom force in the range of 0∼100 Hz through the concrete support to the fixed end
of the frame. The appropriate amplitude of the force input is selected to have a
satisfactory measured response spectrum. The fundamental frequency of the frame
is 3.78 Hz.

The artificial damage is a perforated slot cut in the central length of the beam. The
slot is 137 mm long, and the remaining depth of the tube in the cut cross-section is
14.375 mm. The slot in element 17 in the third bay opens horizontally, and that in
element 43 in the sixth bay opens vertically.
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Figure 3.13 Ten-bay cantilever frame structure

The four independent eigenvalues, G1, G2, G3 and G4, of an element are selected
as updating parameters for each element to correct for the local stiffness errors, and
the proportional constant σ is maintained. There are 4 × 80 = 320 unknown eigen-
parameters in the identification.

A regularization technique with a truncated SVD is applied for the identification
(Ren et al., 2000). Figure 3.14 shows the updated correction results of the stiffness
eigen-parameters, in which G1 represents the stiffness modulus for the axial elastic
deformation, G4 indicates the modulus of elastic twisting of the member, and G2

and G3 are proportional to the bending stiffness moduli in the horizontal and verti-
cal planes, respectively. It is seen that the twisting stiffness, G4, dramatically degrades
almost equally in the damaged members because of the open cut in the originally closed
circular cross-section of the member. Another interesting observation is that the direc-
tion of the open slot in the damage member can be seen through the different patterns
in G2 and G3. The damaged member, element 17, has the slot open horizontally, and
therefore the bending stiffness in the horizontal plane reduces much more than that in
the vertical plane, as indicated by the patterns of G2 and G3. A similar observation
can be made for element 43, where the slot opens vertically.

She l l e lement
The in-plane, shear and bending deformations in different directions of a shell element
are coupled. The formulations for such an element are more complex compara-
tively because of the higher-order partial differential equations in the finite element
formulation.

The Mindlin–Reissner plate including the effect of transverse shear deformation is
adopted for this study with the shear deformable plate element and the membrane
element combined. The transverse displacement, w, and slope, θ, are independent, as
are the shape functions required for the interpolation. As a result, the shear deformable
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Figure 3.14 Percentage correction of local faults

plate element requires C0 compatibility and isoparametric shape functions are used
for the finite element formulation. For an isotropic homogeneous plate with constant
thickness, t, the elemental stiffness matrix for the plate in bending can be expressed as

[Ke
b] = t3

12

∫
�e

[Bb]T [Db][Bb]d�+ κ t
∫
�e

[Bs]T [Ds][Bs]d� (3.78)

in which, �e is the two-dimensional element domain in the x − y plane as shown in
Figure 3.15; Db is the elasticity matrix for plate bending; Ds is the elasticity matrix
for shear deformation; κ is the shear correction factor; and Bb and Bs are the strain-
displacement transformation matrices for bending and shear, respectively.

Applying the small-deformation theory, the membrane stretching and bending effects
are decoupled in a shell element. A plate-bending element has a transverse deflection
and two rotations at a node while a plane-stress element has two in-plane displacements
at a node. All together, there are five DOFs for a node in a shell element, i.e. three
displacements and two rotations. Now, consider the assembled structure with the shell
elements at different orientations, a drilling DOF about the local z-axis is included at
a node leading to a total of six DOFs at a node. The shell element formulation is based
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on a superposition of the membrane and bending actions, the stiffness matrix of which
is given as

[Ke] =
[Ke

b] [0] [0]

[0] [Ke
m] [0]

[0] [0] [0]

 (3.79)

where subscripts b and m denote the bending and membrane deformations of the shell
element, respectively.

The rectangu lar e lement
A four-node bilinear isoparametric plate-shell element is shown in Figure 3.15. Consid-
ering the shear-locking phenomenon with thin plates, the selective reduced integration
(SRI) technique is adopted to generate the stiffness matrix of the element. The 2×2
Gauss–Legendre quadrature is used for the bending term while 1-point integration is
used for the shear term. The eigenvalues and eigenvectors of the stiffness matrix after
decomposition are

[p]b =



κG Ax

4 a
(4 + a2)

κG Ay

4 b
(4 + b2)

1
3

E
(1 − ν2)

(
Iy

a
+ 1

2
Ix

b
(1 − ν)

)
1
3

E
(1 − ν2)

(
Ix

b
+ 1

2
Iy

a
(1 − ν)

)
1
2

E
(1 − ν2)

((
Iy

a
+ Ix

b

)
− C1t3

)
1
2

E
(1 − ν2)

((
Iy

a
+ Ix

b

)
+ C1t3

)
1
2

E
(1 − ν2)

(
Iy

a
+ Ix

b

)
(1 − ν)



, [p]m =



G
3

(
2

Ax

a(1 − ν) + Ay

b

)
G
3

(
2

Ay

b(1 − ν) + Ax

a

)
G

(1 − ν)
(

Ax

a
+ Ay

b
− C1

2

(
Ax

b
+ Ay

a

))
G

(1 − ν)
(

Ax

a
+ Ay

b
+ C1

2

(
Ax

b
+ Ay

a

))
G
(

Ay

b
− Ax

a

)



(3.80)

in which, G is the shear elastic modulus; ν is the Poisson ratio; a and b are the length

and width of the element; t is the thickness; C1 =
∥∥∥√(a/b − b/a)2 + 4ν2

∥∥∥ is a constant;
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Ax = b × t and Ay = a × t are defined as the cross-sectional areas normal to the x- and
y-axes; and Ix = a × t3/12 and Iy = b × t3/12 are the second moment of inertia of the
cross-section about the x- and y-axes, respectively.

Each term in the resulting stiffness matrix through multiplication of the eigenvectors
and eigenvalues is compared with the corresponding term obtained from numeri-
cal integration. The error is very small and is believed to be due to the numerical
integration.

Each term in vectors [p]b and [p]m denotes the macro-stiffness of the corresponding
deformation mode shown later in this section. An inspection of the vector of eigenval-
ues shows that the first two eigenvalues in [p]b and all those in [p]m are related to the
parameters Ax and Ay. The remaining eigenvalues of [p]b are related to the parameters
Ix and Iy. This observation shows that some of the deformation modes are contributing
to the in-plane stiffness while others are contributing to the flexural stiffness of the
element. This uncoupling of the stiffness resistance contribution may be useful for the
study of the load path within a structure under external load and for the assessment
of the contribution of the load resistance from the different macro-stiffnesses.

The eigenvectors defining the corresponding deformation modes of the four-node
shell element are given as follows and they are plotted in Figures 3.16 and 3.17 for
further illustration with

[η]b =



0 1 0 1 −C2 −C3 −1
−a/2 0 1 0 1 1 a/b

0 1 0 −1 −C2 −C3 1
−a/2 0 −1 0 −1 −1 a/b

0 1 0 1 C2 C3 1
−a/2 0 1 0 −1 −1 −a/b

0 1 0 −1 C2 C3 −1
−a/2 0 −1 0 1 1 −a/b

1 2/b 0 0 0 0 0
−1 2/b 0 0 0 0 0
−1 −2/b 0 0 0 0 0
1 −2/b 0 0 0 0 0



= [�1 �2 · · · �7] (3.81)

[η]b = [η]b/diag[‖�1‖ ‖�2‖ · · · ‖�7‖]

[µ]m =



1 0 1 1 a/b
0 1 C2 C3 1

−1 0 −1 −1 a/b
0 −1 C2 C3 −1
1 0 −1 −1 −a/b
0 1 −C2 −C3 −1

−1 0 1 1 −a/b
0 −1 −C2 −C3 1


= [�1 �2 · · · �5] (3.82)

[µ]m = [µ]m/diag[‖�1‖ ‖�2‖ · · · ‖�5‖]

where ‖�i‖, ‖�j‖(i = 1, . . .7; j = 1, . . .5) are the norms of the column vectors in [η]b

and [µ]m, respectively; C2 = (a/b − b/a − C1)/(2v) and C3 = (a/b − b/a + C1)/(2v).
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Figure 3.16 Transverse bending deformation modes for rectangular elements

It should be noted that C2 is negative and C3 is positive for all values
of a and b. The elements in a column of [η]b correspond to the DOFs
(θx1, θy1, θx2, θy2, θx3, θy3, θx4, θy4, w1, w2, w3, w4), while those in a column of [η]m corre-
spond to the DOFs (u1, v1, u2, v2, u3, v3, u4, v4). Each column in [η]b and [µ]m describes
a distinct deformation mode with nonzero strain energy. It is noted that each defor-
mation mode corresponds to a set of nodal forces that cause such deformations, and
Figures 3.16 and 3.17 include these sets of nodal forces for illustration.

The deformed modes
The first two deformation modes in [η]b result from the transverse shear deformation.
Since their eigenvalues consist of physical parameters, κ, G, Ax and Ay, and the cor-
responding deformation mode bends about the y-axis and the x-axis, respectively. It
is noted that the associated two eigenvalues in [p]b are the same as the shear stiffness
terms in a Timoshenko beam arising from the transverse deformation and rotation
at a node. These eigenvalues are called the shear stiffness in the x- and y-directions,
respectively.
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Figure 3.17 In-plane deformation modes for rectangular elements

The last five deformation modes in [η]b correspond to pure transverse bending defor-
mations of the element. This also agrees with the observation that their corresponding
eigenvalues are related to parameters Ix and Iy. The third deformation mode in [η]b

consists of pure bending deformation in the x-direction. However, this pure bend-
ing mode varies linearly along the y-direction. The same observation is found in the
fourth deformation mode, but with references to the x- and y-directions interchanged.
The corresponding eigenvalues for these two modes are the two symmetric twisting
stiffnesses in the y- and x-directions, respectively.

The fifth mode has a sagging bending moment in the x-direction and a hogging bend-
ing moment in the y-direction with a saddle-shape deformation mode. The sixth mode
has sagging moments in both the x- and y-directions. The corresponding eigenvalues
are called the saddle and symmetric bending stiffnesses of the element about the two
centroidal axes.

The seventh mode consists of twisting deformation in all the four edges of the ele-
ment, while the deformation mode shape is symmetric about the catercorner lines. The
corresponding eigenvalue is called the anti-symmetric torsional stiffness of the element.
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The five deformation modes in [µ]m correspond to the pure in-plane stretching defor-
mation since their corresponding eigenvalues consist of the parameters Ax and Ay only.
The first two modes define the deformation of the element under the in-plane bending
moment Mxy and Myx, respectively. The corresponding eigenvalues are called the in-
plane bending stiffnesses in the x- and y-directions, respectively. The deformation of the
third mode is under in-plane x-direction compression and y-direction tension, while the
fourth mode is under both in-plane x- and y-direction compression. The corresponding
eigenvalues are called the in-plane tension–compression and compression–compression
stiffnesses, respectively. The fifth mode is a set of in-plane shear deformation, and the
corresponding eigenvalue is called the in-plane shear distortional stiffness.

The system matr ix and e lementa l forces
Assuming a plate structure is under the action of external force {F} subject to a set
of constraints at the boundary DOFs, the static equilibrium equation of the system is
expressed as

[K]{dG} = {F} (3.83)

where {dG} is the displacement vector at all the DOFs. Substituting Equation (3.74)
into Equation (3.83), gives

[A][Pk][A]T{dG} = {F} (3.84)

For the αth element in the system, the displacement vector and the equilibrated
applied force vector at the local DOFs arising from the applied external force {F} are
expressed as,

{de}α = [B]d
α {d}, {Fe}α = [B]F

α{F} (3.85)

where [B]d
α and [B]F

α are the transformation matrices from the global displacement and
the equilibrated force vectors to the local matrices of the αth element, respectively.
Here, {de}α is the set of combined displacement with nonzero strain energy and the
rigid displacement of the element with {de}α= {de

f }α+ {de
r }α, where the subscripts f and

r denote the strain and rigid displacements, respectively.
Being similar to the equilibrium equation of the system, the force–deformation

equation for the αth element is given as

[Ke]α{de
f }α = {Fe}α (3.86)

Substituting Equation (3.71) into Equation (3.86) and omitting the subscript α for
convenience, gives

[ηe
f ][p

e][ηe
f ]

T{de
f } = {Fe} (3.87)

and multiplying [Ue
f ]T to both sides of the equation, gives

[pe][ηe
f ]

T{de
f } = [ηe

f ]
T{Fe}

[pe]{df } = {F} (3.88)

© 2009 Taylor & Francis Group, London, UK

  



Damage descr ipt ion and mode l l ing 63

in which

{df } = [ηe
f ]

T{de
f }, {F} = [ηe

f ]
T{Fe} (3.89)

where, {df } is a (γ + τ) × 1 vector, and is defined as the vector of weights on the
corresponding deformation modes. Any one of these weights is defined as a multiplier
on each deformation mode that contributes to the elemental nodal deformation, {de

f }.
{F} is the set of weights associated with the distribution of the elemental nodal forces
in association with the different deformation modes, with each contributing a fraction
of the elemental nodal forces {Fe}.

Similarly, the rigid displacement component of an element, {de
r }, can also be

expressed in terms of the six rigid modes as

{dr} = [ηe
r]

T{de
r } (3.90)

Combining Equations (3.89) and (3.90) forms,

{de} = [η]{Y} (3.91)

where [η] = [[ηe
f ] [ηe

r]] is an ndof × (γ + τ+ 6) matrix, including all the nonzero strain

deformation modes and the rigid modes of the element. {Y} = {{df } {dr}}T with each
term denoting the contribution of the corresponding deformation mode to {de}.

The Scorde l i s–Lo roof
The geometry of the Scordelis–Lo roof (Andelfinger and Ramm, 1992), a deep cylindri-
cal shell, under self-weight is given in Figure 3.18. The structure, which is supported
through rigid end diaphragms, is 50 ft long with a thickness of 3in. The roof has a
radius of 25 ft with a subtended angle of 80 degrees. The structure has elastic modulus
of 30 × 106 psi, and a weight of 90 lb/ft2. A quarter of the structure is modelled due to
the symmetry. The original Poisson ratio is 0.0 and it has been changed to 0.15 for the
purpose of this study. The analytical solution of the vertical deflection at the centre of

X

Y

25 ft

Z

40�

25 ft

B

D 

C 
A

Figure 3.18 The Scordelis–Lo roof and mesh
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the free edge is 3.7033 in. When 12 × 14 elements are used, the vertical deflection is
3.4598 in, which is satisfactory. The roof is allowed to slide in the longitudinal direc-
tion under load while it is restrained in three directions at the four lower corners. The
quarter plate is divided into 14 × 14 elements for the following analysis.

Weights for the de formed modes
The weights on the eigen-modes in Equation (3.89) are shown in Figures 3.19 and 3.20.
The elemental x- and y-axes are in the direction of lines AC and AB in Figure 3.18.

The X-direction shear-bending mode in Figure 3.19 (mode 1) shows a larger defor-
mation in a wide conical zone at the middle portion of the structure around line BD,
while theY-direction shear-bending mode (mode 2) shows some large values in a zone
close to the mid-span of the free edge at D. These two plots show the path of the
shear transference onto the support at C. The Y-direction edge-twisting mode (mode
3) has some large weights in a zone along the free edge CD and along the catercorner
line AD. The weights are zero along line AC at the top of the roof. The X-direction
edge-twisting mode (mode 4) shows similar observations to mode 3, with the sign of
the weights reversed. The unsymmetrical bending mode 5 has some large weights in a
wide conical zone at the middle of the structure. The symmetrical bending mode 6 has
close to zero weights at the mid-span along line BD with diminishing weights towards
point A at the top of the structure at the support. The anti-symmetrical edge-twisting
mode 7 has mostly zero weights except in a zone at the mid-span close to the free edge
at point D.

All the in-plane modes show large deformations in the elements at and close to the
mid-span at point D. This matches the engineering prediction to have large in-plane
stresses along the bottom edge of the roof near point D when under self-weight. The
weights for mode 2 are larger than those for mode 1 with in-plane edge moments Myx

and much larger than Mxy along the two pairs of edges of an element. Mode 3 shows
some large weights in a zone at the mid-span along BD. The weights change sign from
a positive value at the top of the roof to a negative value close to the mid-span at
point D. This mode, with tension–compression in the element, dominates the in-plane
deformation. The compression–compression deformed mode 4 exhibits small weights,
except at the mid-span of the free edge at point D. The in-plane torsional mode 5 also
has small weights, except in some elements close to point D and along the catercorner
line AD. Both modes 2 and 3 dominate the in-plane deformation.

Work done in each e lement
The contribution of each deformation mode to the work done by the external applied
force, {F}, can be written in terms of the work done in each deformation mode. The
work done by the elemental forces, {Fe}, on the elemental deformation vector, {de

f },
can be expressed in terms of the different deformation modes with an associated set
of nodal forces as

W = 1
2

∑
{Fe}T{de

f }

= 1
2

∑
{df }T [Pe]{df } = 1

2

∑
{F}T{df } (3.92)

© 2009 Taylor & Francis Group, London, UK

  



Damage descr ipt ion and mode l l ing 65

Bending mode #1

2

0

�2

�10�5

A

C
2 4 6 8 10 12 14

14
12

10
8

6
4

2

D

B

Bending mode #2

5

0

�5

�10�5

A

C 2 4 6 8 10 12 14

14
12

10
8

6
4

2

D

B

Bending mode #3

5

0

�5

�10�4

A

C
2 4 6 8 10 12 14

14
12

10
8

6
4

2

D

B

Bending mode #4

5

0

�5

�10�4

A

C
2 4 6 8 10 12 14

14
12

10
8

6
4

2

D

B

Bending mode #5

5

0

�5

�10�3

A

C
2 4 6 8 10 12 14

14
12

10
8

6
4

2

D

B

Bending mode #7

2

0

�2

�10�4

A

C 2 4 6 8 10 12 14

14
12

10
8

6
4

2

D

B

Bending mode #6

5

0

�5

�10�3

A

C
2 4 6 8 10 12 14

14
12

10
8

6
4

2

D

B

Figure 3.19 Weights on the bending modes
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Figure 3.20 Weights on the in-plane modes

The work done in each element corresponding to the different deformed modes are
shown in Figures 3.21 and 3.22. The X-direction shear-bending mode 1 has some
large work done in a wide conical zone close to mid-span of the structure while the Y-
direction shear-bending mode 2 has large work done in some elements close to point D.
The Y-direction edge-twisting mode 3 has zero work done in the elements at the mid-
span and at the top of the structure with increasing work done towards the supporting
edge AC and the free edge. The elements close to the mid-span of the free edge have
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Figure 3.21 Work done in bending modes
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Figure 3.22 Work done in in-plane modes

some large weights. TheX-direction edge-twisting mode 4 has zero work done along
the supporting edge AC and part of the free edge CD, with large values at the mid-span
of the free edge at point D. The anti-symmetric bending mode 5 has zero work done
along the supporting edge AC and part of the free edge, with the largest value at corner
B. The symmetric bending mode 6 has close to zero work done along the mid-span
line BD and the free edge CD, with increasing large values towards corner A at the top
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Figure 3.23 Total work done in each type of deformed mode

of the roof. The effect of the anti-symmetric edge-twisting mode 7 is very small and it
is confined to elements close to the mid-span at point D.

All the in-plane modes show a distinct large peak in the elements close to the mid-
span at point D. The compression–compression mode 3 also shows large work done
in some of the elements at the mid-span along line BD. Both modes 2 and 3 dominate
the contribution of the in-plane modes in the load resistance of the roof.

The contribution of each deformed mode to the total work done is 0.006%, 0.004%,
0.05%, 0.03%, 4.21%, 34.54% and 0.001% for the bending deformed modes and
0.09%, 6.07%, 40.98%, 3.51% and 10.52% for the five in-plane deformed modes.

The distributions of the work done in each element corresponding to the two types
of deformed modes are shown in Figure 3.23 for further illustration. The work done
from the bending deformed modes in elements close to point A is larger with decreasing
values towards the other three corners of the quarter plate. The in-plane work done
is in general small in all the elements except in the element at the mid-span of the free
edge at point D.

3.2.3 Super-element

A super-element representing a segment of a large-scale structure is presented in this
section. Each individual structural component is represented by a sub-element in the
model. The large number of DOFs in the analytical model is reduced, while the
modal sensitivity relationship of the structural model to small physical changes can be
retained at the sub-element level. These properties are significant to structural damage
assessment.

All civil engineering structures consist of connections or joints between the structural
components. The joints are fixed with different types of fasteners, depending on the
materials used to build the structure. However, in practical analysis and design practice,
only three types of framing joints are considered: I) fully rigid joints; II) perfectly
pinned joints; III) semi-rigid joints. Experimental investigations (Jones et al., 1982;
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Lewitt et al., 1969) show that the true joint behaviour is somewhere between the
two simplified extremes of Type I and II joints and they are somewhat nonlinear.
Despite an analytical model being presented in Section 3.2.1, a joint is often difficult
to model accurately using a purely analytical method, and a range of joint identification
techniques have recently been proposed to derive the mathematical model of the joint
from experimental data (Ren, 1992).

In this section, a super-element model is constructed for a three-dimensional frame
member with semi-rigid joints at the two ends for the joint identification problem. It
is later extended to the formulation for the super-element of the Tsing Ma Bridge deck
structure.

3.2.3.1 Beam element wi th semi - r ig id jo in ts

The linear hybrid three-dimensional frame member with a semi-rigid joint at both ends
is modelled by a frame element with three rotational springs at each end, as shown
in Figure 3.24(a). The springs represent the bending or rotational stiffness about the
three local axes.

Considering the set of springs belonging to a massless connection element between
the beam and the joint as shown in Figure 3.24(b), the following equilibrium relations
can be obtained for moments at the member endsK1 0 0

0 K2 0
0 0 K3


θ1
θ2
θ3

 =


M1

M2

M3

 (3.93)

in which

Ki =


ri
m −ri

m 0 0

−ri
m ri

m + ki
11 ki

12

ki
21 ri

n + ki
22 −ri

n

−ri
n ri

n

 , θi =


eθ

i
m

iθ
i
m

iθ
i
n

eθ
i
n

 , Mi =


emi

m

imi
m

imi
n

emi
n

 (3.94)

where i = 1, 2, 3 denote the terms about the local x-, y- and z-axes, respectively; rm

and rn are the joint stiffnesses at the two ends, written as ri = p
1 − p

( 4EI
L

)
for i = 2, 3
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Figure 3.24 (a) 3D Semi-rigid joint model (b) Nomenclature at connection
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and r1 = p
1 − p

(
GJ
L

)
, in which p is the fixity factor, which is zero for perfectly pinned

joints and one for perfectly rigid joints; the second moment of inertia of the member
cross-section about the x- and y-axes are assumed to be the same; eθ

i
m, eθ

i
n, iθ

i
m and

iθ
i
n are the external and internal rotation about the ith axis, respectively, as shown in

Figure 3.24(b); and ki
pq are the corresponding components of the stiffness matrix of a

conventional beam element if the bowing effect is ignored, given by

k1
pq = GJ

L

[
1 −1

−1 1

]
, ki

pq = EI
L

[
4 2
2 4

]
, (i = 2, 3) (3.95)

Since the external forces and moments are applied at the external nodes of the jointed
member only, the applied moments about each axis at the internal nodes connecting
the beam element and the spring can be obtained by considering equilibrium of the
connection shown in Figure 3.24(b):[

ri
m + ki

11 ki
12

ki
21 ri

n + ki
22

]{
iθ

i
m

iθ
i
n

}
−
[

ri
m 0

0 ri
n

]{
eθ

i
m

eθ
i
n

}
=
{

0

0

}
, (i = 1, 2, 3) (3.96)

or {
iθ

i
m

iθ
i
n

}
=
[

ri
m + ki

11 ki
12

ki
21 ri

n + ki
22

]−1 [
ri
m 0

0 ri
n

]{
eθ

i
m

eθ
i
n

}
, (i = 1, 2, 3) (3.97)

Substituting Equation (3.97) into Equation (3.93), the stiffness terms related to the
internal nodes are eliminated, and the condensed stiffness matrix relating the moments
and rotations about the external nodes can be written as:

em1
m

em2
m

em3
m

em1
n

em2
n

em3
n


=
[
Kmn K21

K12 Knm

]


eθ
1
m

eθ
2
m

eθ
3
m

eθ
1
n

eθ
2
n

eθ
3
n


(3.98)

where Kij =
r1

i − (r1
i )2(r1

j + k1
22)/ρ1 0 0

0 r2
i − (r2

i )2(r2
j + k2

22)/ρ2 0

0 0 r3
i − (r3

i )2(r3
j + k3

22)/ρ3



for


i = m, n
j = m, n

i 	= j

,

and K12 = K21 =
k1

12r1
mr1

n/ρ1 0 0

0 k2
12r2

mr2
n/ρ2 0

0 0 k3
12r3

mr3
n/ρ3

,
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where

ρi = det

[
ki

11 + ri
m ki

12

ki
21 ki

22 + ri
n

]
(3.99)

Adding the terms for the axial force to Equation (3.98), and transforming the result-
ing 8×8 matrix to the nodal DOFs of the element, the stiffness matrix of the semi-rigid
jointed beam element can be written as:

Ke = T ·


EA/L 0 0 0

0 Kmn 0 K21

0 0 EA/L 0
0 K12 0 Knm


8×8

· TT (3.100)

in which T is the 12×8 transformation matrix mapping the six external moments and
two axial forces to the nodal forces and moments in the local coordinates, respectively,
given by

T =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 1/L 0 0 1 0 0 −1/L 0 0 0 0
0 0 1/L 0 0 1 0 0 −1/L 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 1/L 0 0 0 0 0 −1/L 0 0 1 0
0 0 1/L 0 0 0 0 0 −1/L 0 0 1


(3.101)

It can be easily verified that the semi-rigid jointed beam element expressed in Equation
(3.100) is equal to a pinned joint beam element if the spring stiffness is zero and to a
rigid joint beam element if the spring stiffness is infinite.

Model l ing o f a ten-bay cant i lever f rame structure
The ten-bay cantilever frame structure shown in Figure 3.13 is divided into five super-
elements in the longitudinal direction, each consists of four longitudinal-beam type
sub-elements and twelve cross-beam type sub-elements connected by semi-rigid joints.
The super-element model of the beam segment is shown in Figure 3.25. There are four
master nodes at the corners and one slave node at the centre of the end-section. Each
master node has three translational DOFs parallel to the local coordinate axes. Each
slave node has three rotational DOFs about the three global axes of the end-section.
There are 15 DOFs in each end-section, and there are 10 nodes (8 master and 2 slave)
and 30 DOFs for each super-element. Altogether, there are 30 nodes and 75 DOFs for
the whole structure. This model is much smaller than the conventional finite element
model which has 240 DOFs.

The super-element model has been used to achieve good updated results for the lower
frequency modes but not for the higher frequency modes (Law et al., 2001c). A perfectly
refined model that represents the real structure is not achieved, and the updated results
have errors which increase as the modal order increases. The first type of error is due to
the incorrect assumptions made while condensing the finite element DOFs to those of
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Figure 3.25 Super-element model of truss segment

the super-element. The second type of error is from the difference in the macro updating
parameter in different members resulting from different ways of assembling the test
structure. But the more significant error comes from the incomplete measurement,
particularly from the rotational DOFs which cannot be measured in this study.

Half of the DOFs in a conventional finite element model of the truss are rotational
DOFs. The super-element model has the advantage that the rotational DOFs are con-
densed and it has a smaller proportion of rotational DOFs than the conventional finite
element model. There are only 15 rotational DOFs within a total of 75 DOFs for the
whole test structure. It is therefore considered that the use of all the lower mode shapes
in the identification reduces the first type of error, while the other types of errors cannot
be avoided.

3.2.3.2 The Ts ing Ma br idge deck

The formulation of the bridge deck model (Lantau, 1998) of the Tsing Ma suspension
bridge in Hong Kong is presented for further illustration of the super-element mod-
elling. The bridge serves as the link between the new airport of Hong Kong and the
commercial centres. The bridge deck is a two-level enclosed structure, which carries
a dual three-lane highway at the upper level and two railway tracks and two traffic
lanes at the lower level. The whole deck structure can be divided into segments between
adjacent sets of suspenders 18m apart, the arrangement of which is shown in Figure
3.26(a). Each segment consists of 66 structural components of longitudinal beams,
cross-beams, bracings and stiffened plates.

All the nodes of the super-element are allocated on the two outermost sections along
the longitudinal axis. Each end section consists of a number of nodes and several sub-
elements as shown in Figure 3.26(b), depending on the specific deck configuration. In
the type of bridge deck under consideration, there are ten master nodes and one slave
node in the section. The primary longitudinal beams and auxiliary longitudinal beams
are connected to nodes 2, 5, 7 and 10 and 3, 4, 8 and 9, respectively. Nodes 6 and 11
are at the intersection of cross-beams at the edges, and there are 14 cross-beams in the
section, which are represented by line segments in the figure (the thicker lines indicate
that there is also a stiffened plate between two adjacent longitudinal beams). Bracing
members and stiffened plates are not shown in this figure, as they are not in the same
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Figure 3.26 The super-element model for deck segment of Tsing Ma Bridge

section. The 66 structural members are: 8 longitudinal beams, 38 cross-beams, 16
bracing members and 4 stiffened plates modelled as four groups of sub-elements in the
super-element. Nodes 3, 4, 8 and 9 each has three translational DOFs parallel to the
local coordinate axes. To take account of the rigidity of the triangular part enclosed by
nodes 5, 6 and 7, it is assumed that these three nodes have the same translational DOFs
in the X-Y plane, and each has one different translational DOF in the longitudinal
direction. A similar assumption is made for nodes 2, 10 and 11. In addition to the
master nodal DOFs, slave node 1 has three DOFs around the three global coordinate
axes of the cross-section. Consequently, the model has 25 DOFs in one cross-section
and 50 DOFs in the super-element. Whereas there would be more than 300 DOFs if a
standard three-dimension finite element model is adopted. It is evident that the number
of DOFs is significantly reduced by the use of this super-element.

The following paragraphs give the formulation of the contribution of one type of
sub-element, i.e. the longitudinal beams, to the stiffness matrix of the super-element
from the variational principle of minimum potential energy.

Figure 3.27 shows that the origin C of the longitudinal sub-element is seated at the
centre of gravity of the cross-section of the longitudinal beam. Let the three independent
translational displacements of C be {u, v, w}T , and the global rotations of the super-
element section around the X-,Y- and Z-axes be {φX,φY ,ϕ}T , the deflections of an
arbitrary point (x, y) in the beam section can be expressed as

u(x, y) = u − ϕ(YC + y)
v(x, y) = v + ϕ(XC + x)
w(x, y) = w + φX(YC + y) − φY (XC + x)

(3.102)

The strain in the z-direction can be obtained as

εz = ∂w(x, y)
∂z

= dw
dz

− (XC + x)
dφY

dz
+ (YC + y)

dφX

dz

γzx = ∂w(x, y)
∂x

+ ∂u(x, y)
∂z

= −φY + du
dz

− (YC + y)
dϕ
dz

γzy = ∂w(x, y)
∂y

+ ∂v(x, y)
∂z

= φX + dv
dz

+ (XC + x)
dϕ
dz

(3.103)

© 2009 Taylor & Francis Group, London, UK

  



Damage descr ipt ion and mode l l ing 75

x

y

C

1

x

y

z
{u2, v2, w2, fX2, fY2, w2}

h/2

h/2

fY

X

Y

fX
w

{u1, v1, w1, fX1, fY1, w1}

Figure 3.27 Longitudinal sub-element

Considering the longitudinal beam as a Timoshenko beam with two-way bending, its
strain energy can be written as

Hlb = 1
2

∫∫∫
(Eε2z + Gγ2

zx + Gγ2
zy) dz dx dy (3.104)

Substituting Equation (3.103) into Equation (3.104), and with some mathematical
simplification,

Hlb = 1
2

∫ {
EA

[(
dw
dz

)2

+ X2
C

(
dφY

dz

)2

+ Y2
C

(
dφX

dz

)2

− 2XC
dw
dz

dφY

dz
+ 2YC

dw
dz

dφX

dz
− 2XcYC

dφX

dz
dφY

dz

]

+ EIy

(
dφY

dz

)2

+ EIx

(
dφX

dz

)2

− 2EIxy
dφY

dz
dφX

dz

+ GA

[
φ2

Y + φ2
X +

(
du
dz

)2

+
(

dv
dz

)2

− 2φY
du
dz

+ 2φX
dv
dz

+ 2YCφY
dϕ
dz

+ 2XCφX
dϕ
dz

− 2YC
du
dz

dϕ
dz

+ 2XC
dv
dz

dϕ
dz

]

+ G[A(X2
C + Y2

c ) + Ix + Iy]
(

dϕ
dz

)2
}

dz (3.105)

where A is the cross-sectional area; Ix and Iy are the sectional moments of inertia of the
beam cross-section with respect to the x- and y-axes, respectively; and Ixy = ∫

xy dA.
The deflections, i.e. u and v, of an arbitrary section along the longitudinal beam can
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be assumed to be the form of a Hermite polynomial to include the contribution of
bending modes:

u = u1

(
1
2

− 3z
2h

+ 2z3

h3

)
+ u2

(
1
2

+ 3z
2h

− 2z3

h3

)
+ φY1h

(
1
8

− z
4h

− z2

2h2
+ z3

h3

)
+ φY2h

(
−1

8
− z

4h
+ z2

2h2
+ z3

h3

)
(3.106)

where h is length of the beam, and subscripts 1 and 2 denote the values in the end
sections of the super-element. The deflection, v, has a similar form to u. However, the
longitudinal deflection, w, may be assumed to be a linear form:

w = w1

(
1
2

− z
h

)
+ w2

(
1
2

+ z
h

)
(3.107)

The global rotations of an arbitrary section {φX,φY ,ϕ}T also take the same linear
form as w. Substituting these six shape functions in the forms of Equations (3.106)
and (3.107) into Equation (3.105), the strain energy of the beam can be expressed in
terms of the nodal displacements. After applying the second partial derivation of the
strain energy with respect to the nodal displacements, the equilibrium equations are
given as:

{F}lb = [K]lb{U}lb, {U}lb = {u1, v1, w1,ϕ1,φX1,φY1, u2, v2, w2,ϕ2,φX2,φY2}T (3.108)

in which {U}lb is the nodal displacement vector; {F}lb is the nodal force vector; and
the 12 × 12 matrix, [K]lb, is the stiffness matrix contribution of the longitudinal beam
sub-element to the super-element.

Super-e lement wi th semi -r i g id jo ints
To take into account the effects of the flexible joints at the two ends of the longitudinal
beam, the formulation in Equations (3.93) to (3.100) can be repeated at the sub-element
level. However, the components, ki

pq, in the conventional stiffness matrix of a beam
element should be replaced by the terms of the longitudinal beam sub-element, i.e.

k1
pq = G(AX2

C + AY2
C + Ix + Iy)/h

[
1 −1

−1 1

]
, (3.109)

k2
pq =

[
E(AY2

C + Ix)/h + GAh/3 GAh/6 − E(AY2
C + Ix)/h

GAh/6 − E(AY2
C + Ix)/h E(AY2

C + Ix)/h + GAh/3

]
, (3.110)

k3
pq =

[
E(AX2

C + Iy)/h + GAh/3 GAh/6 − E(AX2
C + Iy)/h

GAh/6 − E(AX2
C + Iy)/h E(AX2

C + Iy)/h + GAh/3

]
(3.111)
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In addition, the mapping matrix T in Equation (3.100) should be reconstructed as

T∗ = T ·



1 0 0 0 Yc −Xc 0 0 0 0 0 0
0 1 0 −Yc 0 0 0 0 0 0 0 0
0 0 1 Xc 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 Yc −XC

0 0 0 0 0 0 0 1 0 −Yc 0 0
0 0 0 0 0 0 0 0 1 Xc 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



(3.112)

Mass contr ibut ion of long i tud ina l beam
The displacement at an arbitrary point within the longitudinal beam has been expressed
in the form of field functions in Equation (3.102). Since the displacement vector is also
a function of time, the accelerations from the displacements can be obtained as

ü(x, y, z, t) = ü − ϕ̈(YC + y)
v̈(x, y, z, t) = v̈ + ϕ̈(XC + x)
ẅ(x, y, z, t) = ẅ + φ̈X(YC + y) − φ̈Y (XC + x)

(3.113)

Substituting Equations (3.106) and (3.107), the accelerations at an arbitrary section
of the longitudinal beam can be expressed in terms of the nodal accelerations:



ü

v̈

ẅ

ϕ̈

φ̈X

φ̈Y


=


a1 a2 a3 a4

a1 a2 a3 a4

a5 a6

a5 a6

a5 a5

a5 a6





ü1

v̈1

...

φ̈Y1

ü2

v̈2

...

φ̈Y2



= [H]{Ü}lb (3.114)

where ai(i = 1, 2, 3, 4) are the coefficients of the Hermite polynomial.

a1 = 1
2

− 3z
2h

+ 2z3

h3
, a2 = 1

8
− z

4h
− z2

2h2
+ z3

h3
, a3 = 1

2
+ 3z

2h
− 2z3

h3
,

a4 = −1
8

− z
4h

+ z2

2h2
+ z3

h3
, a5 = 1

2
− z

h
, a6 = 1

2
+ z

h
.
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The inertia force vector of an arbitrary point (with unit volume) within the longitudinal
beam can be written as:

{f (t)} = −ρ · {ü v̈ ẅ}T (3.115)

in which ρ is the mass density of the material. Substituting Equation (3.113) into
Equation (3.115), and rewriting it in matrix form, gives

{f (t)} = −ρ
1 −(YC + y)

1 (XC + x)
1 (YC + y) −(XC + x)




ü

v̈

ẅ

ϕ̈

φ̈X

φ̈Y


= [N]{q̈} (3.116)

Upon substitution of Equation (3.114), Equation (3.116) becomes

{f (t)} = −ρ[N][H]{Ü}lb (3.117)

Integrating Equation (3.117) over the volume, the inertia force of the longitudinal
beam is then obtained as

{Q(t)} = −
∫

[H]T [N]Tρ[N][H]dV · {Ü}lb

= −[M]lb{ü}lb (3.118)

where [M]lb is the contribution of the longitudinal beam to the mass matrix of the
super-element.

Structural members other than the longitudinal beams also make a significant con-
tribution to the super-element matrices. Their contribution matrices to the stiffness
and mass matrices of the super-element can be derived similarly to the longitudinal
beams but with different dimensions in the matrices.

3.2.4 Concrete beam with flexural crack and debonding at
the steel and concrete interface

This section is devoted to damage in reinforced concrete in the form of flexural cracks
and debonding between the steel reinforcement and concrete interface. This is the
most common type of damage with structural concrete, which leads to a reduction in
the local stiffness and overall damping of the structure. Soh et al. (1999) have pre-
sented a damage model, which included the normal and tangential damage factors,
to describe the concrete–steel interface mechanism. A reinforced concrete element is
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Figure 3.28 Cracked reinforced concrete beam

developed based on this damage model to simulate the bond deterioration in rein-
forced concrete structures (Soh et al., 2003). Spacone and Limkatanyu (2000) showed
the importance of including the bond slip in the response of reinforced concrete
members by displacement-based formulation. Later Limkatanyu and Spacone (2002)
presented the general theoretical framework of the displacement-based, force-based
and mixed formulations of reinforced concrete frame elements with bond slip in the
reinforcing bars.

The following section gives the formulation of a two-node reinforced concrete frame
element with damage parameters representing the flexural and debonding damages at
the steel concrete interface for parameter identification in the condition assessment.

Bond stress d i s tr ibut ion funct ion
To evaluate the bond forces in the steel bar, the bond stress is assumed to vary parabol-
ically along the steel bar as shown in Figure 3.28. The magnitude of the peak bond
stress is determined by relating its value to the slip at that point satisfying the equilib-
rium of forces acting on the steel bar. Figure 3.28 shows the bond stress distribution
and slip of the reinforced concrete between the two pairs of adjacent flexural cracks
in the reinforced concrete beam. The embedment length of the reinforcing bar in the
free body is 2lx. The transfer length, ltx(ltx ≤ lx), is defined as the embedment length
from the crack to the first point when the strains of the reinforcing bar and concrete
are equal to each other. The bond stress distribution function can be defined as (Chan
et al., 1992; Chan et al., 1993)

Db(x) = 2.502Db max

(
x
ltx

)2

sin
(
πx
ltx

)
when ltx < lx
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Figure 3.29 Reinforced concrete beam element with concrete-steel interface


Db(x) = 2.502Dbult

(
x
lx

)2

sin
(
πx
lx

)
, 0.729lx ≤ x ≤ lx

Db(x) = Dbult, ax ≤ x ≤ 0.729lx

Db(x) = 1.328Dbult

(
x
ax

)2

sin
(

πx
1.373ax

)
, 0 ≤ x ≤ ax

when ltx = lx

(3.119)

where Db max and Dbult are the peak and ultimate bond stress; ltx is the transfer length;
and ax is the distance from the starting point of the ultimate bond stress plateau to the
mid-point between two cracks.

Equ i l ibr ium and compat ib i l i t y
A reinforced concrete beam element with n bars and bonding interfaces is
shown in Figure 3.29. Only bond stresses tangential to the bars are considered.
uB(x) = {uB(x), vB(x)}T and uS(x) = {u1(x), . . . , un(x)}T are the section displacements,
where uB(x), vB(x), ui(x) are the concrete beam axial and transverse displacements and
the axial displacement of the ith bar. The section deformations are grouped in vectors
dB(x) = {εB(x), κB(x)}T and dS(x) = {ε1(x), . . . εn(x)}T , where εB(x) = duB(x)/dx is the
concrete beam axial strain, κB(x) = d2vB(x)/dx2 is the concrete beam curvature and
εi(x) = dui(x)/dx is the axial strain of the ith bar. They can be written in matrix form as{

dB(x) = ∂BuB(x)
dS(x) = ∂SuS(x)

(3.120)

where ∂B =
[
d/dx 0

0 d2/dx2

]
, ∂S =

d/dx · · · 0
... · · · ...

0 · · · d/dx

 .
The section forces corresponding to the section deformations dB(x) and dS(x) are

DB(x) = {NB(x), MB(x)}T and DS(x) = {N1(x), . . .Nn(x)}T , where NB(x), MB(x), Ni(x)
are the beam-sectional axial force and bending moment and the axial force of the
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ith bar, respectively. Based on the small-deformation assumption, the equilibrium
conditions can be obtained as

dNB(x)
dx

+
n∑

i=1
Dbi(x) = 0

dNi(x)
dx

− Dbi(x) = 0, (i = 1, 2, . . . , n)

d2MB(x)
dx2

− p(x) −
n∑

i=1
yiDbi(x) = 0

(3.121)

where p(x) is the transverse distribution load. Equation (3.121) represents the govern-
ing equilibrium equations of the reinforced concrete beam element with bond slip and
it can be written in the following matrix form:

{∂TB DB(x), ∂TS DS(x)}T − ∂Tb Db(x) − p(x) = 0 (3.122)

where ∂b =


−1 y1

d
dx

1 · · · 0
...

...
...
...
...

−1 yn
d
dx

0 · · · 1

 , p(x) = {0, py(x), 0, . . . , 0}T .

The bond slip is determined by the following compatibility relation between the
displacement of the beam and steel bar as

ubi(x) = ui(x) − uB(x) + dvB(x)
dx

yi, i = 1, 2, . . . , n (3.123)

where ubi(x) is the bond slip between the beam and the ith bar, and yi is the distance
of the ith bar from the centroidal axis of the beam. Equation (3.123) can be rewritten
in matrix form as

db(x) = ∂bu(x) (3.124)

with db(x) = {ubi(x), i = 1, 2, · · · , n}T and u(x) = {uB(x), uS(x)}T .

Force-de format ion re la t ions
With the assumption of linear elasticity, the force–deformation relationship is
written as

DB(x) = kBdB(x)
DS(x) = kSdS(x)
Db(x) = kbdb(x)

(3.125)

where Db(x) = {Dbi, i = 1, 2, . . . , n}T and db(x) = {ubi(x), i = 1, 2, . . . , n}T ·kB, kS, kb are
the concrete beam section stiffness, steel bar section stiffness and bond-interface
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stiffness matrices, respectively, which can be expressed as:

kB =



EBAB 0
... 0 · · · 0

0 EBIB
... 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0

... Es1As1 · · · 0
...

...
...

... · · · ...

0 0
... 0 · · · EsnAsn


, kS =

Es1As1 · · · 0
... · · · ...

0 · · · EsnAsn

 ,

kb =
Eb1Pb1 · · · 0

... · · · ...

0 · · · EbnPbn

 (3.126)

where EB and AB are the elastic modulus and the area of the concrete beam section;
Esi and Asi are the elastic modulus and area of the ith reinforced bar; and Ebi and Pbi

are the equivalent bond stiffness and the perimeter of the ith bar, respectively.

E lementa l damage ind icators
The bond-interface stress distributions in an element are denoted by {Dbi(x), i =
1, 2, . . .,n}, defined above, and the bond force for one reinforced bar in the element
can be written as

�Ni =
∫ l

0
Dbi(x)dx, (i = 1, 2, . . . , n) (3.127)

where l is the length of the element and �Ni is the bond force of the ith bar in the
element. The relationship between the bond force and slip of the concrete–steel bar
interface can be expressed as (Soh et al., 2003)

�Ni = Kbi�ubi = EbiPbil�ubi, (i = 1, 2, . . . , n) (3.128)

where Kbi is the equivalent bonding stiffness of the ith bar and �ubi is the slip along
the ith bar in the element. The equivalent bonding stiffness can be obtained from
Equations (3.127) and (3.128) as

Kbi = EbiPbil =
∫ l

0 Dbi(x) dx

�ubi
, (i = 1, 2, . . . , n) (3.129)

The bond damage index, αbei, of the ith bar of the element, which includes the effect
of the bond degradation, can be defined as

αbei = 1 − Kbi

Kbi

= 1 − Ebi

Ebi

, (i = 1, 2, . . . , n) (3.130)
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Figure 3.30 Two-node displacement-based reinforced concrete beam element

where Kbi is the equivalent bonding stiffness of the ith bar without damage or slippage
and Ebi is the equivalent elastic modulus of the bond-interface between the ith bar
and concrete without damage or slippage. When αbei = 0, there is no damage in this
element.

Similarly, the damage index of the concrete beam element αBe can be defined as

αBe = 1 − EB

EB
(3.131)

where EB is the equivalent elastic modulus of the concrete beam element without
damage. When αBe = 0, there is no damage in the concrete beam.

Damaged re in forced concrete e lement
The two-node reinforced concrete beam element model is shown in Figure 3.30. The
reinforced concrete beam element consists of the following components: a two-node
concrete beam and n two-node bars that can have slip with respect to the concrete
beam. U = {U1

1 , U1
2 , U1

3 , . . . , U1
3+n, U2

1 , U2
2 , U2

3 , . . . , U2
3+n}T is the vector of the elemental

nodal displacements. The element displacements are written as functions of the nodal
displacements, U, through the displacement shape functions, φ(x)

u(x) =
{

uB(x)
uS(x)

}
= φ(x)U =

{
φB(x)
φu(x)

}
U (3.132)

where

φB(x)

=
1 − x

l
0 0 0 · · · 0

x
l

0 0 0 · · · 0

0 1 − 3x2

l2
+ 2x3

l3
x − 2x2

l
+ x3

l2
0 · · · 0 0 1 − 3x2

l2
+ 2x3

l3
x − 2x2

l
+ x3

l2
0 · · · 0


For a linear slip distribution assumption, the shape function of a single bar with

bond slip can be written as

φui(x) = {1 − x/l x/l}, (i = 1, 2, . . . , n) (3.133)
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Then for all the bars,

φu(x) =
0 0 0 1 − x/l · · · 0 0 0 0 x/l · · · 0
... · · · ...

... · · · ...
... · · · ...

... · · · ...

0 0 0 0 · · · 1 − x/l 0 0 0 0 · · · x/l

 .
The displacement-based finite element formulation can be obtained by integrating over
the length of the element as∫

l
δuT (x)({∂TB DB(x), ∂TS DS(x)}T − ∂Tb Db(x) − p(x)) = 0 (3.134)

Substituting Equations (3.125) and (3.132) into (1.134), the element stiffness matrix
can be obtained as

K e = KBe + KSe + Kbe (3.135)

where

KBe =
∫ l

0
∂BφB(x)TkB∂BφB(x)dx, KSe =

∫ l

0
∂Sφu(x)TkS∂Sφu(x)dx

Kbe =
∫ l

0
∂bφ(x)Tkb∂bφ(x)dx.

∂BφB(x), ∂bφ(x) are calculated from φ(x) by the differential operator (Limkatanyu and
Spacone, 2002). Matrices KBe and Kbe can be written as

KBe = KCe + KSe, KCe =


KBe1 0 KBe2 0

0 0 0 0
KBe5 0 KBe6 0

0 0 0 0

 , KSe =


0 0 0 0
0 KBe3 0 −KBe3

0 0 0 0
0 −KBe3 0 KBe3



KBe1 =


EBAB

l
0 0

0
12EBIB

l3

6EBIB

l2

0
6EBIB

l2

4EBIB

l

 , KBe2 = KT
Be5 =


−EBAB

l
0 0

0 −12EBIB

l3

6EBIB

l2

0 −6EBIB

l2

2EBIB

l

,

KBe6 =


EBAB

l
0 0

0
12EBIB

l3
−6EBIB

l2

0 −6EBIB

l2

4EBIB

l

 , KBe3 = diag
{

EsiAsi

l
, i = 1, 2, . . . , n

}
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Kbe =


Kbe1 Kbe2 Kbe3 Kbe4

KT
be2 Kbe5 Kbe6 Kbe7

KT
be3 KT

be6 Kbe8 Kbe9

KT
be4 KT

be7 KT
be9 Kbe10

 ,

Kbe1 =



l
3

n∑
i=1

EbiPbi
1
2

n∑
i=1

EbiPbiyi − l
12

n∑
i=1

EbiPbiyi

1
2

n∑
i=1

EbiPbiyi
6
5l

n∑
i=1

EbiPbiy2
i −2

5

n∑
i=1

EbiPbiy2
i

− l
12

n∑
i=1

EbiPbiyi −2
5

n∑
i=1

EbiPbiy2
i

2l
15

n∑
i=1

EbiPbiy2
i



Kbe2 =
 −l/3 · · · −l/3 · · · −l/3

−y1/2 · · · −yi/2 · · · −yn/2
ly1/12 · · · lyi/12 · · · lyn/12

 kb,

Kbe4 =
 −l/6 · · · −l/6 · · · −l/6

−y1/2 · · · −yi/2 · · · −yn/2
−ly1/12 · · · −lyi/12 · · · −lyn/12

 kb

Kbe3 =



l
6

n∑
i=1

EbiPbi −1
2

n∑
i=1

EbiPbiyi
l

12

n∑
i=1

EbiPbiyi

1
2

n∑
i=1

EbiPbiyi − 6
5l

n∑
i=1

EbiPbiy2
i

1
10

n∑
i=1

EbiPbiy2
i

l
12

n∑
i=1

EbiPbiyi − 1
10

n∑
i=1

EbiPbiy2
i

17l
12

n∑
i=1

EbiPbiy2
i



KT
be6 =

 l/6 · · · l/6 · · · l/6
y1/2 · · · yi/2 · · · yn/2

−ly1/12 · · · −lyi/12 · · · −lyn/12

 kb,

Kbe9 =
 −l/3 · · · −l/3 · · · −l/3

y1/2 · · · yi/2 · · · yn/2
ly1/12 · · · lyi/12 · · · lyn/12

 kb

Kbe8 =



l
3

n∑
i=1

EbiPbi −1
2

n∑
i=1

EbiPbiyi − l
12

n∑
i=1

EbiPbiyi

−1
2

n∑
i=1

EbiPbiyi
6
5l

n∑
i=1

EbiPbiy2
i − 1

10

n∑
i=1

EbiPbiy2
i

− l
12

n∑
i=1

EbiPbiyi − 1
10

n∑
i=1

EbiPbiy2
i

2l
15

n∑
i=1

EbiPbiy2
i


Kbe5 = l/3kb, Kbe7 = l/6kb, Kbe10 = l/3kb

The steel bars are assumed undamaged but with bonding damage with the surround-
ing concrete. Substituting Equations (3.130) and (3.131) into (3.135), the stiffness
matrix of the damaged beam can be written as

K e = KBe + Kbe + KSe = (1 − αBe)KBe + (1 − αbe)Kbe + KSe (3.136)
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where αBe is the damage index of the concrete beam; αbe is the index for the bond
failure in the damage reinforced concrete beam element; αBe is taken as a scalar for
an equivalent damage in the concrete; αbe is taken as a scalar here, but it can be in
matrix form if the conditions are different in the steel bars; and KBe, Kbe and K se are
element stiffness matrices for the undamaged concrete beam, concrete–steel interface
and the steel bars, respectively. The stiffness matrix of the damaged beam structure is
the assemblage of all the elemental stiffness matrices K ei as

K =
N∑

i=1

TT
i (KBei + Kbei + KSei)Ti

=
N∑

i=1

(1 − αBei)TT
i KBeiTi +

N∑
i=1

(1 − αbei)TT
i KbeiTi +

N∑
i=1

TT
i KSeiTi (3.137)

where Ti is the transformation matrix of element nodal displacement that facilitates
automatic assembling of global stiffness matrix from the constituent element stiffness
matrix; and αbei and αBei are the ith elemental damage indices due to bonding loss and
damage in the concrete of the beam element, respectively.

3.2.5 Beam with unbonded pre-stress tendon

This section gives the model of the pre-stressing effect in a pre-stressed concrete bridge
deck modelled as a beam. The more realistic modelling of a pre-stressed concrete
box-section bridge deck is discussed in the next section.

Equat ion of mot ion
The bridge deck is modelled as a two-span, simply supported, pre-stressed, uniform
Timoshenko beam subjected to an external excitation force, P(t), acting at a distance
xp from the left support, as shown in Figure 3.31. The coupled equation for the total
deflection, y, and rotation, ψ, of the cross-section under a compressive axial force Tp

can be written as (note that the compression is positive and the tension is negative),

ρA
∂2y(x, t)
∂t2

+ c
∂y(x, t)
∂t

− kAG
(
∂2y
∂x2

− ∂ψ
∂x

)
+ Tp

∂2y(x, t)
∂x2

= P(t)δ(x − xp)

ρI
∂2ψ

∂x2
− kAG

(
∂y
∂x

− ψ
)

− EI
∂2ψ

∂x2
= 0 (3.138)

L

TpTp

Pre-stress tendon

P(t)

xp

k(t)

Figure 3.31 The two-span pre-stressed bridge
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where y is the total deflection due to bending and shear; ψ is the slope of deflection
due to bending; ρ is the mass density of the beam; A is the cross-sectional area; E is
the elastic modulus of the material; G is the shear modulus; k is the shear coefficient
of the cross-section; c is the viscous damping coefficient of the beam; I is the moment
of inertia of the beam cross-section; and δ(x) is the Dirac delta function.

Moda l responses
The kinetic energy, T; the strain energy, U; the work done due to the pre-stress force,
WTp; the work done due to the viscous damping in the beam, Wc; and the work done
due to the external force, can be expressed for the beam as

T = 1
2

∫ L

0

[
ρA

(
∂y(x, t)
∂t

)2

+ ρI
(
∂ψ(x, t)
∂t

)2
]

dx

U = 1
2

∫ L

0

[
EI(x)

(
∂2y(x, t)
∂x2

)2

+ kGA
(
∂y
∂x

− ψ
)2
]

dx

WTp = 1
2

∫ L

0
T
∂2y(x, t)
∂x2

dx (3.139)

Wc = −
∫ L

0
y(x, t)c

∂y(x, t)
∂t

dx

W =
∫ L

0
P(t)δ(x − xp)y(x, t)dx

Expressing the vibration responses of the beam, y(x, t), ψ(x, t), in modal coordinates
gives

y(x, t) =
n∑

i=1

Yi(x)qi(t) (3.140)

ψ(x, t) =
n∑

i=1

φi(x)qi(t) (3.141)

where Yi(x) and φi(x) are the assumed vibration modes that satisfy the boundary
conditions and qi(t) are the generalized coordinates.

Substituting Equations (3.140) and (3.141) into Equation (3.139), gives

T = 1
2

∫ L

0

ρA
 n∑

i=1

Yi(x)q̇i(t)
n∑

j=1

Yj(x)q̇j(t)

+ ρI
 n∑

i=1

φi(x)q̇i(t)
n∑

j=1

φj(x)q̇j(t)

 dx

= 1
2

n∑
i=1

n∑
j=1

q̇i(t)mijq̇j(t)
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U = 1
2

∫ L

0

EI

 n∑
i=1

qi(t)φ′
i(x)

n∑
j=1

qj(t)φ′
j(x) + kGA

(
n∑

i=1

qi(t)Y ′
i (x) −

n∑
i=1

qi(t)φi(x)

)

×
 n∑

j=1

qj(t)Y ′
j (x) −

n∑
j=1

qj(t)φj(x)

 dx

= 1
2

n∑
i=1

n∑
j=1

qi(t)kijqi(t) (3.142)

WTp = 1
2

∫ L

0
T

n∑
i=1

qi(t)Y ′
i (x)

n∑
j=1

qj(t)Y ′
j (x)dx =

n∑
i=1

n∑
j=1

qi(t)k′
ijqj(t)

Wc = −
∫ L

0
c

n∑
i=1

Yi(x)qi(t)
n∑

j=1

Yj(x)q̇j(t)dx = −
n∑

i=1

n∑
j=1

qi(t)cijq̇j(t)

W =
∫ L

0
P(t)δ(x − xp)

n∑
i=1

Yi(x)qi(t)dx =
n∑

i=1

P(t)Yi(xp)qi(t) =
n∑

i=1

fi(t)qi(t)

mij =
∫ L

0
[ρAYi(x)Yj(x) + ρIφi(x)φj(x)]dx

where

kij =
∫ L

0
[EIφ′

i(x)φ′
j(x) + kGA(Y ′

i (x) − φi(x))(Y ′
j (x) − φj(x))dx,

k′
ij =

∫ L

0
TpY ′

i (x)Y ′
j (x)dx,

cij =
∫ L

0
cYi(x)Yj(x)dx, fi(t) = P(t)Yi(xp).

where q̇i(t) and φ′
i(x) denote the first derivative of qi(t) and φi(x) with respect to time t

and x, respectively; mij is the generalized mass; kij is the generalized stiffness; and fi(t)
is the generalized force. The Lagrange equation can be written as

d
dt

(
∂T
∂q̇

)
− ∂T
∂q

+ ∂U
∂q

− ∂WTp

∂q
− ∂Wc

∂q
= ∂W
∂q

(3.143)

Substituting Equation (3.142) into Equation (3.143), gives

n∑
j=1

mijq̈j(t) +
n∑

j=1

cijq̇j(t) +
n∑

j=1

(kij − k′
ij)qj(t) = fi(t) i = 1, 2, . . . , n (3.144)

Writing Equation (3.144) in matrix form as

Mq̈(t) + Cq̇(t) + (K − K′)q(t) = F(t) (3.145)
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where

M = {mij, i = 1, 2, . . . , n; j = 1, 2, . . . , n}, C = {cij, i = 1, 2, . . . , n; j = 1, 2, . . . , n},
K = {kij, i = 1, 2, . . .n; j = 1, 2, . . . , n}, K′ = {k′

ij, i = 1, 2, . . . , n; j = 1, 2, . . . , n},
q(t) = {q1(t), q2(t), . . . , qn(t)}T , F(t) = {f1(t), f2(t), . . . , fn(t)}T

The assumed mode shapes
The general form of the vibration mode for a uniform Timoshenko beam can be
written as

Y(x) = A1 cos(αx) + A2 sin(αx) + A3 sinh(βx) + A4 cosh(βx) (3.146)

φ(x) = B1 cos(αx) + B2 sin(αx) + B3 sinh(βx) + B4 cosh(βx) (3.147)

where A1 to A4 and B1 to B4 are arbitrary constants, and α and β are frequency
parameters.

The vibration modes of a simply supported Timoshenko beam are obtained as
(Abramovich, 1992),

Yi(x) = Ai sin
(

iπ
L

x
)

, φi(x) = cos
(

iπ
L

x
)

(3.148)

where

Ai = iπL

[(iπ)2 − p2b2]
(
1 − Tp

a

) , a = kGA, b2 = EI
aL2

, p2 = (iπ)4 − (iπ)2k
2

1 + (iπ)2D
,

k
2 = TpL2

EI
(
1 − Tp

a

) , D = R2
(

1 − Tp

a

)
+ b2, R2 = I

AL2

Then Equation (3.145) can be expanded into the following form
m11 0 · · · 0
0 m22 · · · 0

. . .

0 0 · · · mnn




q̈1(t)
q̈2(t)
...

q̈n(t)

+


2m1ξ1ω1 0 · · · 0

0 2m2ξ2ω2 · · · 0
. . .

0 0 · · · 2mnξnωn




q̇1(t)
q̇2(t)
...

q̇n(t)


+


k11 − k′

11 0 · · · 0
0 k22 − k′

22 · · · 0
. . .

0 0 · · · knn − k′
nn




q1(t)
q2(t)
...

qn(t)

 =


f1(t)
f2(t)
...

fn(t)

 (3.149)

The modal response of the beam is computed in the time domain numerically using
Newmark’s integration method (Newmark, 1959).
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Al ternate f in i te e lement formula t ion
The pre-stress effect can also be formulated in terms of the general finite element
method and the state-space approach. The equation of motion of the pre-stressed
beam modelled as an Euler–Bernoulli beam with n DOFs can be written as

[M]{ẍ} + [C]{ẋ} + [K]{x} = [B]{F} (3.150)

where x is the displacement vector; ẋ and ẍ are the first and second derivatives of x
with respect to time t; M is the mass matrix; and C is the damping matrix. Rayleigh
damping is used, and the C matrix is represented by a linear combination of the system
mass and stiffness matrices, i.e.

C = a1[M] + a2[K]

where a1 and a2 are the two Rayleigh damping coefficients; {F} is a vector of the input
excitation forces and [B] maps these forces to the associated DOFs of the structure.
K = K − Kg is the global stiffness matrix of the pre-stressed beam, where K is the
global stiffness matrix without pre-stress force and Kg is the global geometrical stiffness
matrix expressed as [Kg] =∑N

i=1 [kg]i
e, where N is the total number of elements. The

geometrical stiffness matrix of each element can be written as:

[kg]i = Ti

30l


30 0 0 −30 0 0
0 36 3l 0 −36 3l
0 3l 4l2 0 −3l −l2

−30 0 0 30 0 0
0 −36 −3l 0 36 −3l
0 3l −l2 0 −3l 4l2

, (i = 1, 2, . . . , N)

where T is the axial pre-stress force and l is the length of the element. Writing Equation
(3.150) in the state-space formulation,

Ẋ = K∗X + F (3.151)

X =
[
x
ẋ

]
2n×1

, K∗ =
[

0 I
−M−1K −M−1C

]
2n×2n

, F =
[

0
M−1[B]F

]
2n×1
.

where X represents a vector of state variables with a length 2n containing the displace-
ments and velocities of the nodes. These differential equations are then converted to
discrete equations using exponential matrix representation,

Xk+1 = AXk +DFk (3.152)

A = eK∗h, D = K∗−1(A − I)

where A is the exponential matrix, (k + 1) denotes the value at the (k + 1)th time step
of computation. The time step, h, represents the time increment between the variable
states Xk and Xk+1 in the computation. I is a unit matrix. The dynamic response of
the system can be obtained from Equation (3.152) with zero initial conditions. Once
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the displacement and velocity responses are obtained, the acceleration response can be
obtained by directly differentiating the velocity response.

Exper imenta l ver i f i ca t ion
The above model is illustrated with a simply supported, pre-stressed concrete beam
in the laboratory. The experimental setup is shown diagrammatically in Figure 3.32.
The beam is 4 m long, with a 150 mm × 200 mm uniform cross-section and a 3.8 m
clear span. A seven-wire straight strand is placed in a 57 mm diameter duct located
at the centroid of the beam cross-section throughout the length of the beam. The
duct remains ungrouted. The elastic modulus of the concrete and the steel strand
are 31.5 × 109 N/m2 and 200 × 109N/m2, respectively, and the mass density of the
concrete and the steel are 2.398 × 103 kg/m3 and 7.0 × 103 kg/m3, respectively. The
yield strength of the strand is 192 kN. The beam is instrumented with seven equally
spaced accelerometers that measured the vertical acceleration responses of the beam.

One load cell is used to measure the true magnitude of the pre-stress force applied at
the anchorage of the concrete beam. The pre-stressing strand is tensioned up to 100 kN
and the tension force is transferred to the anchorage. A 66.7 kN force is checked to be
remaining in the strand at the anchorage after the pre-stress loss. The first three natural
frequencies of the intact beam and the pre-stressed beam are listed in Table 3.1, and
they are found to increase after pre-stressing. This seems to contradict the prediction
from the theoretical formula (Kim et al., 2004)

ω2
n =

(nπ
L

)4 EbIb

ρcAc
−
(nπ

L

)2 T
ρcAc

(3.153)

Load
cell

Prestress
tendon Duct

A

A

Accelerometer

L � 3.8 m

150

20
0

Figure 3.32 Test setup for the pre-stressed beam

Table 3.1 Modal frequencies (Hz) of the non-pre-stressed and pre-stressed beam

Non-pre-stressed Pre-stressed

FEM Experimental FEM Experimental

Mode 1 23.10 23.21 23.47 23.31
Mode 2 85.62 86.17 86.54 87.98
Mode 3 184.53 183.29 187.12 185.93
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where EbIb is equivalent to the flexural rigidity of the beam section; ρcAc is the
mass of the beam per unit length; and T is the magnitude of the pre-stress force.
Equation (3.153) shows that an increase in the axial compressive force reduces the
modal frequency and vice versa. But on further checking of the experimental system,
the equivalent flexural rigidity of the beam without pre-stress force is found to be
3.13 × 103 kN/m2, and it increases to 3.20 × 103 kN/m2 after pre-stressing. Also, the
equivalent mass per unit length of the beam is increased by 1.49% after pre-stressing.
This is due to the presence of the additional equivalent flexural rigidity and the mass
of the pre-stressing strand. Thus, the physical presence of the pre-stressing tendon has
a dual effect on the natural frequency of the beam. The pre-stressing tendon itself
increases the flexural rigidity and hence the natural frequency of the beam, but the
self-weight and the compressive axial force it carries reduce the frequency of the beam.
However, the stiffening effect from the increase in the equivalent flexural rigidity is
greater than the softening effect due to the compressive axial force and the additional
inertia effect due to its self-weight. And this results in a net increase in the natural
frequency. The other effects, such as an increase in the dynamic modulus of concrete,
are considered small and are therefore not discussed.

Ident i f i ca t ion of pre-s tress force
The initial finite element model of the beam before pre-stressing consists of 16
two-dimensional Euler–Bernoulli beam elements with three DOFs at each node. An
impulsive force is applied with the impact hammer at 1/4L from the left support of the
beam. The sampling rate is 2000 Hz. Time histories of both the excitation force and the
acceleration are recorded, and data obtained from the third and fourth accelerometers
are used in the model updating.

The support stiffnesses are updated using the response sensitivity approach (Lu and
Law, 2007a) with one second of measured data from the two accelerometers, and
the left and right support stiffnesses are updated to 8.9 × 107 N/m and 9.4 × 107 N/m,
respectively. Rayleigh damping is adopted in calculating the structural response.

After the beam is pre-stressed, the pre-stress force is identified using the response
sensitivity approach described in Section 7.2 with data from 0.2 second to 1.0 second
after the hammer impact. The first 0.2-second data is skipped because of the many
high frequency components in the response caused by the impulsive force created by
the hammer. An orthogonal polynomial function is used to remove the measurement
noise (Zhu and Law, 2001). The pre-stress force is identified using the penalty function
method (Mottershead and Friswell, 1993).

The identified pre-stress force and error are shown in Table 3.2, and they are very
close to the true force, with a maximum error of 10.9% close to one end of the
beam. For convergence of the results, 56 iterations are required, and the correspond-
ing optimal regularization parameter is 1.03 × 10−8. Figure 3.33 shows the curve of
convergence, which indicates a clear converging characteristic, and Figure 3.34 shows
the reconstructed acceleration responses and the corresponding measured ones. It is
noted that these two sets of time histories match each other very well.

3.2.6 Pre-stressed concrete box-girder with bonded tendon

The bridge deck may lose some of its pre-stress force due to creep resulting from a
long period of service, under design or overloaded vehicles. A large reduction of the
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Table 3.2 The identified pre-stress force in experiment

Element No. Pre-stress (kN)/Error (%) Element No. Pre-stress (kN)/Error (%)

1 66.6/0.1 9 63.3/5.1
2 69.4/−4.0 10 65.8/1.3
3 63.6/4.7 11 68.9/−3.3
4 65.8/1.3 12 63.0/5.5
5 72.3/−8.4 13 68.0/−2.0
6 61.1/8.4 14 68.6/−2.9
7 67.6/−1.3 15 59.4/10.9
8 70.1/−5.1 16 71.7/−7.5
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Figure 3.33 Curve of convergence

pre-stress force from the design value could lead to serviceability and safety problems.
Therefore, an assessment of the magnitude of the pre-stress force in the bridge deck
is important for its load-carrying capacity assessment and for its maintenance pro-
gramme. However, the existing pre-stress force cannot be estimated directly unless the
bridge deck was instrumented when it was constructed. Several researchers (Abraham
et al., 1995) tried to predict the loss of pre-stress force based on a damage index derived
from the derivatives of mode shapes without success. Others (Miyamoto et al., 2000)
studied the behaviour of a beam with unbonded tendons, and a formula was proposed
for the prediction of the modal frequency for a given pre-stress force with laboratory
and field test verifications. Saiidi et al. (1994) reported a study with modal frequency
due to the pre-stress force with laboratory test results. It was shown that the sensitivity
of the modal frequency decreases with higher vibration modes, and the pre-stress force
affects the first few lower modes more significantly than the higher ones. Consequently,
the pre-stress force is difficult to identify from the modal frequencies. Abraham et al.
(1995) also reported that the mode shapes remain almost identical with different pre-
stress forces in the beam, so it would also be difficult to identify the force from the
measured mode shapes.

St i f fness matr ix o f a she l l e lement
The box-girder bridge deck may be modelled as a combination of different types of shell
elements supported on bearings or on a solid foundation. The Mindlin–Reissner plate
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Figure 3.34 Time histories of measured and reconstructed acceleration response (a) from 3rd
accelerometer; (b) from 4th accelerometer

discussed in Section 3.2.2.2, including the effect of the transverse shear deformation, is
adopted with the shear deformable plate element and the membrane element combined.

Applying the small-deformation theory, the membrane stretching and bending effects
are decoupled in a shell element. A plate bending element has a transverse deflection
and two rotations at a node while a plane stress element has two in-plane displacements
at a node. All together, there are five DOFs for a node in a shell element, i.e. three
displacements and two rotations. Further, consider the assembled structure with the
shell elements at different orientation, a drilling DOF about the local z-axis is included
at a node leading to a total of six DOFs at a node. The shell element formulation is
based on a superposition of the membrane and bending actions, the stiffness matrix
of which is given as

[Ke] =
[Ke

b] [0] [0]
[0] [Ke

m] [0]
[0] [0] [0]

 (3.154)

where subscripts b and m denote the bending and membrane deformations of the shell
element, respectively.

In the case of a shell structure, which is actually flat, the shell stiffness matrix has
singular terms associated with the drilling DOFs. To avoid such a problem, a small
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Figure 3.35 Pre-stress tendon in a concrete element

number is added to the diagonal term of the matrix in Equation (3.154) associated
with the drilling DOFs.

The pre-s tress ing tendon
Figure 3.35 shows a segment of the pre-stressing tendon embedded into a flat shell
element. Noting that only the axial deformation of the tendon needs to be considered,
the three-dimensional truss element is used to model the pre-stressing tendon.

The elemental stiffness of the tendon in terms of local coordinates is expressed as

[ke] = EsAs

l


1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (3.155)

The transformation matrix between the local and global coordinates system is given as

T =


ξ1 ξ2 ξ3
η1 η2 η3 0
ς1 ς2 ς3

ξ1 ξ2 ξ3
0 η1 η2 η3

ς1 ς2 ς3

 (3.156)

where, {ξ1 η1 ς1} is the direction cosine of local x-axis with respect to the global
coordinate system. Similarly, {ξ2 η2 ς2} and {ξ3 η3 ς3} are the direction cosines
of the local y-axis and z-axis with respect to the global coordinate system.

After transformation into the global coordinate system, the elemental stiffness
matrix is expressed as

[ke] = [T]T [ke][T] (3.157)

Since [ke] is a 6 × 6 matrix and the elemental stiffness matrix of the shell element is
of dimension 24 × 24, a transformation matrix is needed to expand matrix [ke] into a
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24 × 24 dimension matrix. Such a matrix can be written as

TR =



a2

l1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a1

l1
0 0 0 0 0

0
a2

l1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a1

l1
0 0 0 0

0 0
a2

l1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a1

l1
0 0 0

0 0 0 0 0 0
b2

l2
0 0 0 0 0

b1

l2
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
b2

l2
0 0 0 0 0

b1

l2
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
b2

l2
0 0 0 0 0

b1

l2
0 0 0 0 0 0 0 0 0


(3.158)

Kes = [TR]T [ke][TR] (3.159)

The consistent mass matrix for the space truss element can also be written as

[me] = ρAl
6



2ξ21 2ξ1ξ2 2ξ1ξ3 ξ21 ξ1ξ2 ξ1ξ3
2ξ1ξ2 2ξ22 2ξ2ξ3 ξ1ξ2 ξ22 ξ2ξ3
2ξ1ξ3 2ξ2ξ3 2ξ23 ξ1ξ3 ξ2ξ3 ξ23
ξ21 ξ1ξ2 ξ1ξ3 2ξ21 2ξ1ξ2 2ξ1ξ3
ξ1ξ2 ξ22 ξ2ξ3 2ξ1ξ2 2ξ22 2ξ2ξ3
ξ1ξ3 ξ2ξ3 ξ23 2ξ1ξ3 2ξ2ξ3 2ξ23

 (3.160)

Similarly, the elemental mass matrix is expanded into a 24 × 24 dimension matrix

Mes = [TR]T [me][TR] (3.161)

The st i f fness matr ix o f a she l l e lement wi th pre-s tress
The stiffness matrix of a shell element with pre-stress can be given as

Ke =
∫

A
(Bp

i )TDpBp
j dA +

∫
A

(Bs
i )

TDsBs
j dA+

∫
A

(Bb
i )TDbBb

j dA

+
∫

A
GT

i

[
Tx Txy

Txy Ty

]
Gj dA + Kes (3.162)

The first term on the right-hand-side of Equation (3.162) is the stiffness corresponding
to the planar stress; the second term corresponds to the transverse shear; the third term
corresponds to the bending effect; and the fourth term is the geometric stiffness due to
the pre-stress force, where Tx and Ty are the two components of the pre-stress force in
the x- and y-axes, and Txy is zero. The fifth term is the stiffness due to the pre-stressing
tendon.

The elemental mass matrix is expressed as

Me = me + Mes (3.163)
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The elemental matrices can then be assembled into the equation of motion for free
vibration analysis and subsequent damage assessment.

3.2.7 Models with thin plate

Engineers have made many efforts to model crack-induced flexibility and investigate
its effect on the dynamic characteristics of the damaged structure. Dimarogonas (1996)
has summarized these works into three categories, namely: continuous model, discrete-
continuous model and discrete models, i.e. finite-element models.

Real structures are more complicated than the geometrically simple ones described
by the first two types of models. Discrete models are usually used to study the cracked
structures – the finite element method (FEM) is the most popular and most commonly
used. A literature review of the FEM-based model of a cracked plate shows that there
are mainly three groups of methods. The simplest model represents the crack as a
reduction in the elasticity modulus of the element at the crack position (Cawley and
Adams, 1979) or a reduction in the cross-sectional area of the element (Baschmid et al.,
1984). These models have been successfully used in damage localization of plate-like
structures (Cornwell et al., 1999; Li et al., 2002). However, as these methods study
the approximate crack size and location at the element level, a very fine finite element
mesh is required to avoid a large error.

Another method models a crack by separating the nodes of finite elements along
the crack line (Zastrau, 1985). To properly model the singular character of the stress
and strain fields around the crack tip, a very dense mesh of finite elements or singular-
shaped isoparametric elements (Shen and Pierre, 1990) are used to cover the crack
tip area. Obviously, this method can model the cracked structure very well, but is
not suitable or feasible for damage identification. This is due to the low computation
efficiency associated with the large number of finite element. Also, a finite element
mesh has to be constructed for each suspected location of damage in the plate at one
time.

In the third group of methods, a rectangular plate element with an open and depth-
through crack parallel to the plate boundary is modelled (Qian et al., 1991; Krawczuk,
1993; Krawczuk and Ostachowicz, 1994). The stiffness matrix of a cracked element
is written as K = TF−1TT , where F is the matrix representing the sum of the flexibility
of the non-cracked plate and the additional flexibility due to the crack; and T is a
transformation matrix. However, as the derived stiffness matrix cannot be explicitly
parameterized in terms of damage variable(s) to indicate the location, orientation and
the extend of the crack, it is still difficult to incorporate this model into the inverse
problem of structural damage identification.

3.2.7.1 Anisot rop ic mode l o f e l l ip t i ca l c rack wi th s t ra in energy equ iva lence

The earliest crack model oriented towards damage identification was probably pre-
sented by Lee et al. (1997). Although their work focuses on fracture mechanics and
aims to derive a damage evolution equation that is consistent with the continuum
damage mechanics. Prior to this effort, there were a number of theories developed on
continuum damage mechanics to derive the equivalent constitutive equation of a dam-
aged material and its crack growth law on the basis of the strain equivalence principle
introduced by Lemaitre (1985) or the stress equivalence principle introduced by Simo
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Figure 3.36 The effective stiffness model from the strain-energy equivalence principle

and Ju (1987). By introducing the strain energy equivalence principle as an alternative
to the above principles, an effective stiffness model of the damaged material can be
obtained in terms of the undamaged material properties and damage variable(s) as illus-
trated in Figure 3.36, where C denotes the elastic stiffness of the intact host element;
C is the effective continuum stiffness of the damaged host element; d is the selected
damage variable (or tensor); and ε denotes the uniform strain on the boundaries of the
intact and damaged host elements.

Restricting the strain-energy principle to a two-dimensional elastic solid under biax-
ial stress (σ1 and σ2) and in-plane shear (τ12) at infinity, Lee et al. (1997) introduced
a damage in the form of an elliptical through crack with the major axis (length 2a)
and the minor axis (length 2b), respectively, aligned with the Cartesian coordinates
1 and 2. For the intact state of the isotropic solid and the effective stiffness model of
the damaged solid, the strain energy contained in the circular host element of radius
R are expressed, respectively, as

V0 = 1
2
πR2h


ε1

ε2

γ12


TC11 C12 0

C12 C22 0
0 0 C66



ε1

ε2

γ12

,

Veq = 1
2
πR2h


ε1

ε2

γ12


TC11 C12 0

C12 C22 0

0 0 C66



ε1

ε2

γ12

 (3.164)

where h denotes the thickness of the plate-like solid. For the plane stress condition, the
intact stiffness coefficients are defined in terms of the usual engineering constants as

C11 = C22 = E
1 − ν2

, C12 = νE
1 − ν2

, and C66 = G,

in which E, ν and G denote the elastic modulus, the Poisson ratio and the shear
modulus, respectively.
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The strain energy released during the growth of the elliptical cavity has been derived
by Sih and Liebowitz (1968) as

V1 = 1
2
πa2h


ε1
ε2
γ12


TC11e11 C12e12 0

C12e12 C22e22 0
0 0 C66e66


ε1
ε2
γ12

 (3.165)

where the coefficients, eij, generally depend on the Poisson ratio and the
cavity geometry. For the plane stress condition, e11 = 2ν2

1 − ν2 + (1 − ν)s
1 + ν + 2s2

1 − ν2 ,

e22 = 2
1 − ν2 + (1 − ν)s

1 + ν + 2ν2s2

1 − ν2 , e12 = 2
1 − ν2 − (1 − ν)s

ν(1 + ν) + 2s2

1 − ν2 and e66 = (1 + s)2

1 + ν , with s = b/a
denoting the aspect ratio of the elliptical cavity.

According to the strain-energy equivalence principle, the strain energy contained in
the effective stiffness continuum model of the damaged circle region can be expressed as

Veq = Vd = V0 − V1 (3.166)

Substituting Equations (3.164) and (3.165) into (3.166), gives the effective stiffness
coefficients of the damaged plate cell as

Cij = Cij(1 − eijd) (3.167)

where the damage variable, d = (a/R)2, represents the ratio of the effective damaged
area to the total area of the considered solid host element and the coefficients, eij,
represent the anisotropic behaviour of the host element due to the crack.

By further restricting the aspect ratio of the elliptical hole, s = 0, Lee et al. (2003)
studied the effective stiffness model of a thin plate with line micro-cracks, and then
developed a model updating technique to identify the damage size and orientation by
using the frequency-response functions measured from the damaged plate. Numerical
examples were simulated for demonstration but there is no experimental evidence to
support the validity of the theory.

Lee’s theory has been checked with the following limitations:

1) The crack released strain energy calculated from Equation (3.165) is valid only
for an infinite plate containing a central crack subjected to uniform stress load.
Although the result can be approximately used for a micro-crack away from the
plate boundary, corrections must be made for the case of a macro-crack to take
into account the finite dimensions of the plate and different load patterns.

2) Equation (3.165) is derived based on the Griffith theory of ideal brittle fracture
mechanics. For ductile materials, a plastically deformed area induced by stress
concentration around the crack tip will consume a part of the released energy,
which is usually not negligible.

3) The model-updating-based damage identification technique requires an initial
FEM model to represent the undamaged structure. However, a good quality model
for a complex structure is difficult to achieve. Model reduction or simplification
could easily result in initial model errors spreading the damage-induced localized
changes in the updated model.
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Figure 3.37 Thin plate element hosting a through crack parallel to its edge

A new effective stiffness model for thin plate elements with a central line crack is
introduced in next section, in which the damage scalar in Lee et al.’s (1997) model is
expanded and replaced by a vector of damage variables. Since the crack released strain
energy is difficult to estimate accurately due to the complexity of fracture mechanics,
a principle of behaviour equivalence is used to determine the damage variables. The
damage model is then verified with experimental results.

3.2.7.2 Thin p lates wi th an isot rop ic crack f rom dynamic
character i s t i c equ iva lence

The problem of a thin plate with a non-propagating, open crack parallel to one side of
the plate is studied. It is assumed that the crack is depth-through but narrow so that it
does not change the plate mass. With a small rectangular plate element containing the
crack, as shown in Figure 3.37, the constitutive relations between the internal moments
and rotational displacement derivatives can be written as

M(x, y) =


Mx

My

Mxy

 = D



∂

∂x
0

0
∂

∂y

∂

∂y
∂

∂x


{
θx
θy

}
= DLθ (3.168)

where M(x, y) denotes the internal moments per unit length and {θx θy}T denotes
the rotation of the normal planes induced by the moments. The matrix, D, contains
the flexural and twisting stiffness components of the plate. For an intact plate with
isotropic elasticity and plane stress behaviour, the constitutive matrix, D, is defined as
D0 in the form of

D0 = h3

12
C (3.169)

where the matrix C represents the stress–strain constitutive stiffness of the isotropic
material.
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A crack will induce local flexibility in the plate. According to Lee et al.’s (1997)
continuum elastic stiffness theory, the cracked plate element will exhibit orthotropic
stiffness properties compatible with the orientation of the crack line. Furthermore,
based on the observation from the fracture mechanics point of view that the highest
stress intensity at the crack edge along the major axis direction will effectively reduce
the stiffness in the minor axis direction, a rational supposition can be made that the
crack will mainly affect the flexural stiffness normal to the crack line, while contribut-
ing relatively little to the plate stiffness parallel to the crack. (In Lee et al.’s model,
the stiffness reduction along the major axis is ν2 times that along the minor axis). In
order to verify this assumption, the cracked plate element is represented by an effective
element of continuum anisotropic material with the major axis of the material parallel
to the crack line and the minor axis normal to the crack. Thus, under the plane stress
condition, the constitutive matrix, D, of the cracked element can be written as

D = h3

12
C (3.170)

where the stiffness components are

C11 = E1

1 − ν12ν21
, C22 = E2

1 − ν12ν21
, C12 = ν12E1

1 − ν12ν21
= ν21E2

1 − ν12ν21
and C66 = G.

A vector of damage variable, {α β χ}, is selected to relate the effective continuum
stiffness model of the cracked plate element to the isotropic stiffness of the undamaged
material as

E1 = Eα, ν21 = ν, E2 = Eβ, G12 = Gχ (3.171)

where α, β and χ denote the stiffness reduction factors due to the crack. Considering
the relationship ν12/E2 = ν21/E1, gives

ν12 = ν21
E2

E1
= νβ
α

(3.172)

Substituting Equations (3.171) and (3.172) into (3.170), gives

D = h3

12



Eα2

α− βν2

νEαβ
α− βν2

0

νEαβ
α− βν2

Eαβ
α− βν2

0

0 0
Eχ

2(1 + ν)


(3.173)

According to Kirchhoff’s theory for thin plates, the shear deformations are neglected
to give

∇w − θ = 0 (3.174)
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Substituting Equation (3.171) into Equation (3.164), gives

M(x, y) = Dκ(x, y) (3.175)

where the vector κ(x, y) =
{
∂2w
∂x2

∂2w
∂y2 2 ∂

2w
∂x∂y

}
= {κx κy κxy} contains the flexural

curvatures and twisting curvature at the middle plane of the plate.
Now the transverse displacement function, w(x, y), can be defined as a biquadratic

polynomial

w(x, y) = pα (3.176)

where the vector p = {1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3}, and
the vector α= {α1 α2 · · · α12} denote the unknown coefficients. It is then conve-
nient to express the deflection in terms of displacements at the four nodes of the plate
element as

w(x, y) = H(x, y)w (3.177)

where H(x, y) is the vector of isoparametric shape functions of the element, and
w = {w1 w2 w3 w4 θx1 θx2 θx3 θx4 θy1 θy2 θy3 θy4} is the nodal dis-
placement vector. Substituting Equation (3.177) into the constitutive relation in
Equation (3.172) gives

M(x, y) = DB(x, y)w (3.178)

where B(x, y) =
[
∂2H
∂x2 ; ∂2H

∂y2 ; 2 ∂
2H
∂x∂y

]
. Equation (3.178) relates the internal moments

at any point of the element with the nodal displacements. The internal moments
at the four nodes are found by substituting the corresponding nodal coordinates,
(xi, yi) i = 1 . . .4, into Equation (3.178). Writing this in matrix form gives{

MB

MT

}
=
[
KBT KBR

KTT KTR

]{
wT

wR

}
= Kw (3.179)

where MB = {Mx1 My1 Mx2 My2 Mx3 My3 Mx4 My4}T denotes the bending
moments at the four nodes; MT = {Mxy1 Mxy2 Mxy3 Mxy4}T denotes the nodal
twisting moments; wT = {w1 w2 w3 w4} denotes the translational DOFs at the
four nodes; and wR denotes the nodal rotational DOFs. Matrix K represents the general
constitutive relations between the nodal loads and nodal displacements. Rewriting
Equation (3.179) in partitioned form, the rotational and translational displacements
can be expressed as

wR = K−1
BRMB − K−1

BRKBTwT (3.180a)

wT = K∗
TTMT − K∗

TTKTRwR (3.180b)

where the superscript * denotes the pseudo inverse of the matrix.
To determine the coupled damage variables, {α β χ}, the above-mentioned princi-

ples of strain equivalence and strain energy equivalence do not work. They are extended
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Figure 3.38 Four adjacent rectangular plate elements

to a more general principle that the effective continuum model of a damaged struc-
ture should have identical macro-behaviours with those exhibited by the real damaged
structure. The macro-behaviours here include the static and dynamic characteristics
of the structure, such as deformations under loads, natural frequencies, mode shapes
and frequency response functions. Based on this principle, the damage variables are
related to the nodal deformation as shown below.

Consider a group of four adjacent rectangular plate elements, as shown in Figure
3.38, in which all the elements are suspected of crack damage. For the element, (i, j),
the rotation about the y-axis, θx, at its second node can be evaluated using Equation
(3.180a)

θx2
∣∣(i,j) =

(
2a
αEh3

Mx1 − 2aν
αEh3

My1 + 4a
αEh3

Mx2 − 4aν
αEh3

My2 + w2 − w1

a

)
(i,j)

(3.181)

Similarly, the rotation about the y-axis at the first node of the element, (i + 1, j), can
be estimated by

θx1
∣∣(i+1,j) =

(
− 4a
αEh3

Mx1 + 4aν
αEh3

My1 − 2a
αEh3

Mx2 + 2aν
αEh3

My2 + w2 − w1

a

)
(i+1,j)

(3.182)

According to the continuity condition, the slope at node 2 of the element (i, j) equals
the slope at node 1 of the element (i + 1, j). Thus,

θ
(i,j)
x2 = θ(i+1,j)

x1 (3.183)

It is important to note that Equations (3.181) to (3.183) are derived for the damaged
plate.

The moment–curvature relationship for an intact plate can be obtained from
Equations (3.168) and (3.169) as

M̃x(x, y) = Eh3

12(1 − ν2)
[κ̃x(x, y) + νκ̃y(x, y)],

© 2009 Taylor & Francis Group, London, UK

  



104 Damage mode ls and a lgor i thms

M̃y(x, y) = Eh3

12(1 − ν2)
[κ̃y(x, y) + νκ̃x(x, y)] (3.184)

M̃xy(x, y) = Eh3

12(1 + ν) κ̃xy(x, y)

where the superscript ∼ denotes the terms for the intact plate. It is assumed that
the applied loads only produce a small displacement in the plate structure, and that
the additional displacement induced by the crack damage is also small, such that the
internal forces in the damaged structure can be approximately taken as those for the
intact structure, which means Mx ≈ M̃x, My ≈ M̃y and Mxy ≈ M̃xy. Therefore, Equation
(3.184) can be directly substituted into Equations (3.181) to (3.183) to give(

κ̃x1 + 2κ̃x2

α

)
(i,j)

+
(

2κ̃x1 + κ̃x2

α

)
(i+1,j)

= 6κ(i,j)
x2 (3.185a)

Similarly, considering the slope continuity condition at node 3 of element (i, j) and
node 1 of element (i + 1, j), gives θ(i,j)x3 = θ(i+1,j)

x4 , yielding(
κ̃x4 + 2κ̃x3

α

)
(i,j)

+
(

2κ̃x4 + κ̃x3

α

)
(i+1,j)

= 6κ(i,j)
x3 (3.185b)

Also, from the slope continuity condition of rotation, θy in the y-direction, θ(i,j)y4 = θ(i,j+1)
y1

and θ(i,j)y3 = θ(i,j+1)
y2 , leading to

(
κ̃y1 + 2κ̃y4 + ν(κ̃x1 + 2κ̃x4)

β

)
(i,j)

+
(
κ̃y4 + 2κ̃y1 + ν(κ̃x4 + 2κ̃x1)

β

)
(i,j+1)

= 6(1 − ν2)κ(i,j)
y4 + S14 (3.186a)

and (
κ̃y2 + 2κ̃y3 + ν(κ̃x2 + 2κ̃x3)

β

)
(i,j)

+
(
κ̃y3 + 2κ̃y2 + ν(κ̃x3 + 2κ̃x2)

β

)
(i,j+1)

= 6(1 − ν2)κ(i,j)
y3 + S23 (3.186b)

respectively, where

S14 =
(
ν(κ̃x1 + 2κ̃x4) + ν2(κ̃y1 + 2κ̃y4)

α

)
(i,j)

+
(
ν(κ̃x4 + 2κ̃x1) + ν2(κ̃y4 + 2κ̃y1)

α

)
(i,j+1)

,

S23 =
(
ν(κ̃x2 + 2κ̃x3) + ν2(κ̃y2 + 2κ̃y3)

α

)
(i,j)

+
(
ν(κ̃x3 + 2κ̃x2) + ν2(κ̃y3 + 2κ̃y2)

α

)
(i,j+1)
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Next, the transverse displacement at the nodes are estimated from Equation (3.180b)
and taking into account the continuity condition of deflection w in the x- and y-
directions separately, this gives w(i,j)

2 = w(i+1,j)
1 and w(i,j)

4 = w(i,j+1)
1 , leading to(

κ̃xy1 + κ̃xy2 + κ̃xy3 + κ̃xy4

χ

)
(i,j)

+
(
κ̃xy1 + κ̃xy2 + κ̃xy3 + κ̃xy4

χ

)
(i+1,j)

= 4(κxy2 + κxy3)(i,j) (3.187ba)(
κ̃xy1 + κ̃xy2 + κ̃xy3 + κ̃xy4

χ

)
(i,j)

+
(
κ̃xy1 + κ̃xy2 + κ̃xy3 + κ̃xy4

χ

)
(i,j+1)

= 4(κxy3 + κxy4)(i,j) (3.187bb)

It is noted from Equations (3.185) to (3.187) that

1) The coupled damage indices α,β and χ in the crack model can be decoupled by
the curvature expressions of the nodal transverse deflection.

2) The curvature-based formulations are valid for any load condition that satisfies
the small-deformation assumption.

3) Provided that the curvatures of the intact and cracked plates, κ̃ and κ, respec-
tively, can be measured on a regular mesh of the rectangular plate. Three sets of
equations containing the decoupled damage indices can be established separately
from Equations (3.185) to (3.187), by taking the reciprocal of the damage indices
as unknowns. The equations are linear and determinate.

Exper imenta l ver i f i ca t ion
An aluminium plate specimen having the dimensions 600 mm × 500 mm × 3 mm is
shown in Figure 3.39, together with the experimental set-up for testing. A rectangular

∼∼

Hammer

Crack 

Testing plate

Amplifier
Accelerometer

DASP2000 System

Amplifier

Figure 3.39 Diagram of the experimental system
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Figure 3.40 (a) Artificial crack in the plate (b) Finite element model

Table 3.3 Scheme of artificial crack and the corresponding natural frequencies

Crack information Natural frequencies (Hz) in order of modes

Centre (x, y) (200, 200) 1 2 3 4 5

Length (mm) Intact N/A 31.379 41.578 65.859 78.105 88.263
State I 80 31.372 41.228 65.571 78.040 88.245
State II 120 31.372 40.812 65.238 77.991 88.194
State III 160 31.361 40.133 64.843 77.870 88.028

mesh of 7 × 6 measuring points is outlined on each plate. The intact plate is suspended
from a rigid frame by two steel wires of 0.5 mm in diameter and 0.75 m long, to simulate
the free boundary condition. An impulsive signal was generated by hitting with a force
hammer at each measuring point, and the vibration response of the plate due to the
impulse was collected by an accelerometer model B&K 4370 as shown in the figure.
Both the force and response signals were amplified and fed into a modal testing and
analysis software package. The natural frequencies and corresponding mode shapes
of the plate at the rectangular mesh were then extracted through a MISO transfer
function analysis.

An artificial crack was cut in the specimen, as shown in Figure 3.40(a). To verify the
above crack model with cases of different crack lengths and orientations, a scheme of
crack cutting was devised and listed in Table 3.3. The crack in the first state is 0.5 mm
wide, and it is 0.25 mm wide for the other two states. After each crack cutting exercise,
the above hammer test was repeated to obtain the modal data of the plate for each
damage state. The Uniform Load Surface (ULS) Curvatures for the undamaged plate
and the cracked plate in different states were estimated from the measured modal data
of the first five modes. The damage parameters were identified from an algorithm based
on the uniform load surface curvature sensitivity (Wu and Law, 2005b) discussed in
Section 6.6.3. The identified damage parameters for each cracks state were plotted in
Figure 3.41, where the x-axis measures the relative crack length defined by 2c/a, with
a denoting the dimension of the crack containing element along the x-axis.

Besides testing the plate specimen with cracks of different lengths, a refined finite
element model was also constructed by OPENFEM to model the cracked aluminium
plate, as shown in Figure 3.40(b), to study the relationship between the values of the
damage variables and the crack length. The finite element model initially has a crack
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of 40 mm long, and then the crack is lengthened in steps of 20 mm each and the finite
element mesh was modified for each case. The Uniform Load Surface Curvatures are
estimated from the ‘measured’ modal data of the plate model for each case with a
definite crack length, and then they were used as references for crack identification.
The resulting damage variables are shown separately in Figure 3.41 by the symbol
‘∗’, and they are curve-fitted as shown. The other curves shown in Figure 3.41 by the
symbol ‘o’ are the results from Lee et al. (1997).

The test results are noted consistent with the numerical result using the present
model and identification method, with the damage variables exhibiting the same trend
of change with the crack propagation. Parameter α decays very slowly and changes lit-
tle, which means the stiffness reduction in the direction of the crack extension is limited.
Parameter β sharply drops with the extension of the crack, indicating a remarkable
reduction in the stiffness normal to the crack line. There are two phases for parameter
χ, which represents the in-plane twisting stiffness of the cracked plate element. Firstly,
the parameter drops uniformly when the relative crack length is less than 0.6 of the
element dimension, and then the twisting stiffness degrades abruptly as the crack prop-
agates towards the element edges. However, the results from Lee et al. (1997) are very
different. Parameter α remains unchanged with different crack length, which means
the line crack never affects the stiffness in its extension direction; while the stiffness
normal to the crack line and the twisting stiffness, shown as β and χ, respectively, may
take negative values when the crack is close to the element edge. The presence of these
illogical results can be explained by the infinite plate assumption in the model of Lee
et al. (1997) and that the model is only suitable for micro-cracks.

3.2.8 Model with thick plate

3.2.8.1 Thick p late wi th an isot rop ic crack mode l

The crack model described in last section can only be applied to thin plates in which
the shear deformations are neglected and the crack is parallel to the plate edge. If the
crack line is not parallel to the edge of the plate, as shown in Figure 3.42, where ξ
denotes the angle between the x-axis and the crack line (or the principal direction of
the equivalent anisotropic element), the flexural constitutive relation of the plate can
be rewritten as

σ = TCbTTε (3.188)

where σ = {σx σy τxy}T and ε = {εx εy γxy}T denote the stress and strain in the
mid-plane; and Cb = 12D/h3 is the constitutive matrix. The transformation matrix
can be defined as

T =
 cos2 ξ sin2 ξ −2 sin ξ cos ξ

sin2 ξ cos2 ξ 2 sin ξ cos ξ
sin ξ cos ξ −sin ξ cos ξ cos2 ξ − sin2 ξ

 (3.189)

The constitutive relations between the internal moments and the rotational displace-
ment derivatives of the cracked plate are referred to in Equations (3.168) to (3.173).
For a thick plate in which a plane normal to the mid-plane before deformation does not
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Figure 3.41 Damage variables from experiment and finite element model
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Figure 3.42 Plate element with a through crack and the effective stiffness model of anisotropic
material

remain normal to the mid-plane any more after deformation, the effect of the trans-
verse shear deformation should be taken into account. The corresponding constitutive
relation of the cracked plate relating to the transverse shear stress is modelled as{

τ13

τ23

}
=
[
Gδ13 0

0 Gδ23

]{
γ13

γ23

}
= Cs

{
γ13

γ23

}
(3.190)

where it is assumed that the crack affects the shear stiffness of the plate element in
1-3 plane represented by a fraction δ13 and the shear stiffness in 2-3 plane with a
fraction δ23.

Considering the included angle between the crack line and the plate boundary, the
shear constitutive relation can be written as

τ = SCsSTγ (3.191)

where τ = {τxz τyz}T and γ = {γxz γyz}T denote the transverse shear stress and

strain, respectively, and the transformation matrix S =
[
cos ξ − sin ξ
sin ξ cos ξ

]
.

Sens i t i v i ty o f e f fect i ve s t i f fness to crack damage var iab les
A vector of damage variables is needed to characterize a thick plate element with an
inclined through crack. To formulate the stiffness matrix of the new effective contin-
uum model of the cracked plate element, the internal strains need to be expressed in
terms of the nodal variables, which include the transverse displacement, w, and the
rotations of the mid-plane about the x- and y-axes, i.e. θx and θy, respectively. These
rotation variables are formed from the bending and transverse shear deformations as

θx = ∂w
∂x

− γxz, θy = ∂w
∂y

− γyz (3.192)

where γxz and γyz are the deformed angles arising from the transverse shear stress. The
in-plane displacements are given as

u = −zθx(x, y), v = −zθy(x, y) (3.193)
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Taking the three displacement variables of each node independently, the displacement
field of the plate element can be written in terms of the nodal displacements as

θx =
nn∑
i=1

Hi(x, y) (θx)i , θy =
nn∑
i=1

Hi(x, y)
(
θy
)

i , w =
nn∑
i=1

Hi(x, y)wi (3.194)

where Hi(x, y) is the isoparametric shape function for the ith node and nn denotes the
number of nodes of the plate element. Considering the relations in Equation (3.193),
the in-plane strains can be expressed in terms of the nodal variables as


εx

εy

γxy

 =



∂

∂x
0

0
∂

∂y
∂

∂y
∂

∂x


{

u

v

}
= −z



∂

∂x
0 0

0
∂

∂y
0

∂

∂y
∂

∂x
0



θx

θy

w

 = −zBbd (3.195)

where Bb =



∂H1

∂x
0 0 · · · ∂Hnn

∂x
0 0

0
∂H1

∂y
0 · · · 0

∂Hnn

∂y
0

∂H1

∂y
∂H1

∂x
0 · · · ∂Hnn

∂y
∂Hnn

∂x
0


and d = {θx,1 θy,1 w1 · · · θx,nn θy,nn wnn}T . From Equation (3.192) the trans-
verse shearing strains are expressed in terms of the nodal displacements as

{
γxz

γyz

}
=

−1 0
∂

∂x

0 −1
∂

∂y



θx
θy
w

 = Bsd (3.196)

where [Bs] =

−H1 0
∂H1

∂x
· · · −Hnn 0

∂Hnn

∂x

0 −H1
∂H1

∂y
· · · 0 −Hnn

∂Hnn

∂y


According to the Reissner–Mindlin theory, the stiffness matrix of the effective model

of the cracked plate element can be written as

ke = h3

12

∫∫
A

BT
b TCTTBbdA + κh

∫∫
A

BT
s SDSTBsdA (3.197)

where h denotes the thickness of the plate; A denotes the plane area of the plate
element; Bb and Bs are the strain–displacement relationship matrices for the bending
and transverse shear strains, respectively; and κ is the shear energy correction factor
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of 5/6. Thus, the sensitivity of the elemental stiffness matrix with respect to the crack
variables can be obtained as

∂ke

∂α
= h3

12

∫∫
A

BT
b T


Eα(α− 2βν2)

(α− βν2)2

−Eβ2ν3

(α− βν2)2
0

−Eβ2ν3

(α− βν2)2

−Eβ2ν2

(α− βν2)2
0

0 0 0

TTBbdA, (3.198a)

∂ke

∂β
= h3

12

∫∫
A

BT
b T


Eα2ν2

(α− βν2)2

Eα2ν

(α− βν2)2
0

Eα2ν

(α− βν2)2

Eα2

(α− βν2)2
0

0 0 0

TTBbdA, (3.198b)

∂ke

∂χ
= h3

12

∫∫
A

BT
b T


0 0 0
0 0 0

0 0
E

2(1 + ν)

TTBbdA, (3.198c)

∂ke

∂δ13
= µh

∫∫
A

BT
s S

 E
2(1 + ν) 0

0 0

 STBsdA, (3.198d)

∂ke

∂δ23
= µh

∫∫
A

Bs

T

S

0 0

0
E

2(1 + ν)

 STBsdA, (3.198e)

∂ke

∂ξ
= h3

12

∫∫
A

BT
b

∂C
∂ξ

BbdA + κt
∫∫

A
BT

s
∂D
∂ξ

BsdA (3.198f)

The vector of damage variables, �pi = {αi βi χi δ13,i δ23,i ξi}T (i = 1, · · · , ne),
of the ith plate element characterizing a thick plate element with an inclined through
crack can be solved with the penalty function method based on the sensitivity of the
Uniform Load Surface Curvature discussed in Section 6.6.3 (Wu and Law, 2004a).

Exper imenta l ver i f i ca t ion
Three aluminium plate specimens with the same dimensions of 600 mm ×
500 mm × 3 mm are named as Plates A, B and C. The experimental set-up for test-
ing is shown in Figure 3.39, with the perpendicular crack replaced by an inclined
crack. A rectangular mesh of 7 × 6 measuring points is outlined on each plate. The
experimental procedure is the same as that for the thin plate given in Section 3.2.7.

Artificial cracks are cut in each specimen as shown in Figure 3.43(a) for cases of
different crack lengths and orientations, and the scheme of crack cutting is listed in
Table 3.4. The crack in the first state is 0.5mm wide, and it is 0.3 mm wide for the
other two states.

As the thickness of the test plates is very small relative to the other dimensions
of the plates, the transverse shear deformations are neglected, so that the vector
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Figure 3.43(a) Artificial cracks (State I)

(a) Plate A (b) Plate B (c) Plate C

x

y

x

y

x

y

Figure 3.43(b) Finite element meshes to model the cracked plates A, B and C

Table 3.4 Scheme of artificial crack cutting for the three specimens

Crack information Plate A Plate B Plate C

Centre (x, y) (200,200) (200,200) (200,200)
Orientation (ξ) 45◦ 60◦ 90◦

Length (mm) State I 80 80 80
State II 140 120 120
State III 200 160 160

of damage variables consists of only four components for each plate element, i.e.
pi = {αi βi χi ξi}T (i = 1, · · · , ne). The initial finite element model of the intact plate
with one nine-node plate element and 26 four-node elements is shown in Figure 3.44,
with the parameter vectors for all the elements initialized to unity. The crack iden-
tification procedure adopted here is to solve an over-determined set of equations
characterized by a sensitivity matrix of Uniform Load Surface curvature (Wu and Law,
2007) with 3Q × 4ne dimensions, where Q = 7 × 6 and ne = 27. The ULS curvatures
for both the test plate and initial finite element model are estimated from the modal
data of the first five modes. The identified crack parameters for each specimen with
different crack states are plotted in Figure 3.45.
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y

x

Figure 3.44 Simplified finite element model of the plate with a inclined crack

Besides testing the three plate specimens with different crack states, three refined
finite element models were also constructed by OPENFEM to model the cracked alu-
minium plates, as shown in Figure 3.43(b) for a study similar to that for the thin plate
in Section 3.2.7. The resulting crack parameters are shown separately in Figure 3.45
with different symbols as denoted in the legends, and they are curve-fitted as shown.

The test results are consistent with the numerical results, and both sets of results
exhibit the same trend of changing with the crack propagation. Parameter α decays
very slowly and changes little, which means the stiffness reduction in the direction of
crack extension is limited. Parameter β drops sharply with the extension of the crack
indicating a remarkable reduction in the stiffness normal to the crack line. There are
two phases for χ, which represent the in-plane twisting stiffness of the cracked plate
element, in the cases when the crack angle ξ >45◦. Firstly, the parameter drops evenly
when the relative crack length is less than 0.43 of the element dimension, and then
the twisting stiffness degrades abruptly as the crack propagates towards the element
edges.

3.2.9 Model of thick plate reinforced with Fibre-Reinforced-Plast ic

Delamination is one of the most common types of damage in laminated FRP composites
due to their relatively weak inter-laminar strengths. For a concrete beam or plate
reinforced with the FRP bonding technique for enhancing the ultimate failure loads
and the desirable failure behaviours, the connecting layer between the FRP plate and
concrete host is more vulnerable to delamination damage due to the distinctly different
ductility of the FRP and concrete materials. Although the fracture mechanics of the
FRP-concrete debonding are different to that of the inter-laminar delamination, which
occurred inside the FRP composite, and many experimental studies show that the
FRP-concrete debonding failure scenarios may be very varied (Teng et al., 2002), their
effects on the static and dynamic behaviours of the structure are similar in the design
consideration. The presence of delamination may significantly affect the structural
integrity; and hence severely reduce the stiffness and strength of the structure statically,
which may, in some cases, lead to catastrophic failure.

Delamination mainly involves a separation of the two types of materials, and its
effects on the structural mass are usually small and thus are usually neglected. Diaz
Valdes and Soutis (1999a; 1999b) studied the effect of delamination on the modal
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Figure 3.45 Identified crack model parameters from experiment and finite element model

© 2009 Taylor & Francis Group, London, UK

  



Damage descr ipt ion and mode l l ing 115

frequencies of existing laminated composite beams. Modal frequencies were obtained
by a novel method known as resonant ultrasound spectroscopy. It was demonstrated
that changes of the modal frequencies after delamination, when compared with those
of an intact specimen, give a good indication on the presence and magnitude of dam-
age. With the help of the modal strain energy distribution in a beam, Griffin and
Sun (1991) presented a delamination identification method based on changes in the
damping ratio of a delaminated structure. Luo and Hanagud (1995) carried out a
comparative study on the sensitivity of four quantitative indices: frequencies, mode
shapes, damping ratios and delamination coefficients. It is clear from the above works
that the frequency information alone is insufficient to provide a reliable prediction
of delamination, and that the delamination coefficients give a better indication of the
presence of delamination among the four indices.

Finite element models of delaminated beams and plates were also developed for
an accurate prediction of the effects of delamination. They are based on Euler beam
theory (Majumdar and Suryanarayan, 1988), engineering beam theory (Tracy and Par-
doen, 1989) and Timoshenko beam theory and the Galerkin method (Shen and Grady,
1992). A finite element model using layer-wise theory was also developed for lami-
nated composite plates (Barbero and Reddy, 1991), which can be used to study the
multi-delamination problem in the thickness of the plate. When incorporated with arti-
ficial intelligence computation techniques of neural networks (Islam and Craig, 1994;
Chaudhry and Ganino, 1994; Okafor et al., 1996,) or genetic algorithms (Krawczuk
and Ostachowicz, 2002), these models enable real-time non-destructive delamination
detection based on vibration measurements.

In the consideration of the dynamic behaviour of the delaminated beams (or plates),
the delaminated members can be assumed to deform independently without taking
into account the mutual contact and friction effects. This kind of modelling is known
as ‘free mode’ analysis (Wang et al., 1982). In order to take into account the possible
dynamic contact between delaminated layers in an approximate way, a ‘constrained
mode’ has also been proposed, in which the delaminated layers are assumed to have
the same transverse displacement but are allowed to slide over each other (Majumdar
and Suryanarayan, 1988). More refined models may adopt contact elements or contact
conditions in the finite element modelling to avoid overlapping between the upper and
lower portions of a delaminated plate and the dynamic analysis must be performed by
time integration techniques (Kwon and Aygunes, 1996).

None of the above models is suitable for structural damage identification, which
is an inverse problem mathematically. A new finite element mesh is usually required
for each possible damage case to study the location and magnitude of a particular
delamination damage. Perel and Palazotto (2002) developed a finite element model
of a delaminated beam particularly for the damage identification procedure. Three
parameters characterizing the location and magnitude of delamination are selected
and estimated by minimizing the discrepancy between the computed and measured
responses.

A finite element formulation of the FRP-bonded concrete plate with this type of
delamination fault is presented in the next section for the non-destructive evaluation
from vibration measurement. An adhesive interface where possible debonding could
occur is introduced between the FRP and the concrete plates. A scalar damage parame-
ter characterizing the extent of delamination is incorporated into the formulation of the
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Figure 3.46 Propagation of delamination from the free end of FRP-bonded concrete beams

finite element model that is compatible with the vibration-based damage identification
procedure.

3.2.9.1 Damage-detect ion-or iented mode l o f de laminat ion of
f ibre - re in forced p las t i c and th ick p late

Assumpt ions and govern ing equat ions o f the inter face layer
An FRP-bonded concrete plate, as shown in Figure 3.46, can be modelled as a laminate
comprising two plies: the concrete host and the FRP plate, between which an interface
is introduced, where the delamination is likely to occur. The interface behaves as
an entity with large stiffness but negligible thickness. Its physical justification at a
microscopic level is the existence of the thin resin-rich layer between the plies. When
the loading level increases, or the fatigue durability of the structure decreases during
its service life, delamination damage starts and gradually develops at the interface.
From the viewpoint of micro-mechanics, there is an interim state between the intact
and the delaminated interface states. This damage zone containing micro-defects is
called the Weak Bonding Zone (WBZ) in this model. Macro delamination forms when
these micro-defects grow and coalesce. To represent these micro-defects in the context
of continuum damage mechanics, a damage parameter is required to describe the
macroscopic effects of these distributed micro-defects.

The parameter pb is therefore introduced to characterize the growth of the micro-
cracks or the macro-bonding condition of the interface

pb =


0 delaminated
> 0 and < 1 weak bonding
1 intact

(3.199)

The adhesive layer is assumed to carry only constant shear and peel strains over its
thickness in both perfect bonding and weak bonding conditions. For the plate segment
with delamination at the interface, it is assumed that there is no stress transferring
between the concrete host and the FRP layer. In addition, contact and friction between
the two debonded surfaces are not considered for simplicity. Based on the well-known
constant shear and peel strain assumption (Tong and Steven, 1999), the peel and shear
stress in the interface layer are given by Tong et al. (2001) in the form of

σb = pbEad(1 − vad)
(1 − 2vad)(1 + vad)had

(wf − wc) (3.200)
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Figure 3.47 Diagram of the FRP-bonded concrete beam (interface thickness = 0)

τb = pbEad

2(1 + vad)had
γ (3.201)

where h, E, v and w denote the thickness, the elastic modulus, the Poisson ratio and
the transverse displacement, respectively; and the subscripts f , ad and c represent the
lower surface of the FRP plate, the adhesive layer and the upper surface of the concrete
host, respectively. The shear strain, γxz, takes the form

γxz = 1
2

(
∂wc

∂x
+ ∂wf

∂x

)
+ 1

2had

[(
h
2

+ hD

)
∂wc

∂x
+
(

h
2

− hD

)
∂wf

∂x

]
+ uf − uc

had

(3.202)

where h denotes the thickness of the whole FRP-bonded concrete plate; hD denotes
the distance between the interface and the mid-plane of the plate, as shown in Figure
3.47; and u represents the longitudinal displacement along the x-axis. The transverse
shear strain γyz, can be similarly written as Equation (3.202).

Bas ic equat ions for the three-d imens iona l an i sotrop ic mater ia l
The FRP composite sheet is made of the typical anisotropic material. This section
presents the basic equations for the three-dimensional anisotropic material as the basis
of further formulations. These equations include:

The strain–displacement equations

εxx = ∂u
∂x

, εyy = ∂v
∂y

, εzz = ∂w
∂z

, εxy = 1
2

(
∂u
∂y

+ ∂v
∂x

)
,

εxz = 1
2

(
∂u
∂z

+ ∂w
∂x

)
, εyz = 1

2

(
∂v
∂z

+ ∂w
∂y

)
(3.203)

The equations of motion


σxx,x + σxy,y + σxz,z = ρü
σyx,x + σyy,y + σyz,z = ρv̈
σzx,x + σzy,y + σzz,z = ρẅ

(3.204)
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The constitutive relations in the principal coordinate system

σ1

σ2

σ3

σ4

σ5

σ6


=


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε1
ε2
ε3
ε4
ε5
ε6


(3.205)

where �= 1 − ν12ν21 − ν23ν32 − ν13ν31 − 2ν12ν23ν31

E1E2E3

C11 = 1 − ν23ν32

E2E3�
, C12 = ν21 + ν23ν31

E1E3�
, C13 = ν31 + ν21ν32

E1E2�
,

C23 = ν32 + ν12ν31

E1E2�
, C22 = 1 − ν13ν31

E1E3�
, C33 = 1 − ν12ν21

E1E2�
,

C44 = G23, C55 = G31, C66 = G12

The corresponding equations of the concrete host can be similarly written, except that
the coefficients in Equation (3.205) should be replaced by the constitutive relations of
isotropic material where

C11 = C22 = C33 = E
1 − ν2

, C12 = C13 = C23 = νE
1 − ν2

,

C44 = C55 = C66 = G (3.206)

Stra in–stress formula t ion of the de laminated p la te
Considering the FRP-bonded plate with no externally applied loads on the upper and
lower surfaces, the stress boundary conditions at the upper and lower surfaces are
given as

σzz = 0

σxz = 0 at z = ±h
2

σyz = 0

(3.207)

According to classical plate theory, it is assumed that the thickness of the plate does
not change during deformation such that

εzz = 0 (3.208)

In the case of a thin plate, the normal stress in the z-axis can be assumed equal to zero

σzz = 0 (3.209)

and the third row of the constitutive relations in Equation (3.205) can be discarded.
However, in this formulation, the peel stress at the interface layer has to be taken into
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account, and the strain εzz could be very small but not equal to zero. Furthermore, by
taking into account the boundary conditions in Equation (3.207), the strains along the
z-axis in the concrete host and the FRP sheet take the following forms

ε(1)
zz (x, y, z) = φ(1)(x, y)

(
1 + 2

h
z
)

, ε(2)
zz (x, y, z) = φ(2)(x, y)

(
1 − 2

h
z
)

(3.210)

where φ(x, y) is an unknown function that characterizes the strain distribution in the
mid-plane of the plate, and the superscripts (1) and (2) represent terms in the concrete
and FRP sheet, respectively.

On further inspection of the stiffness coefficients in Equation (3.205), the strain εzz

is found to be very small due to the small dimension of the plate in the z-direction
compared with the other two dimensions, the Poisson ratios, ν31 and ν32, are also
quite small compared with ν21. Therefore, it can be assumed that the coefficients C13

and C23 are negligible and the peel stress and strain in the z-axis are independently
related by a stiffness scalar. The resulting constitutive equations take the form



σ1

σ2

σ3

σ4

σ5

σ6


=


Q11 Q12 0 0 0 0
Q12 Q22 0 0 0 0

0 0 Q33 0 0 0
0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66





ε1
ε2
ε3
ε4
ε5
ε6


(3.211)

where Q11 = E2
1

E1 − ν2
12E2

, Q12 = ν12E1E2

E1 − ν2
12E2

, Q22 = E1E2

E1 − ν2
12E2

,

Q33 = E3, Q44 = G23, Q55 = G13, Q66 = G12

The constitutive relations are expressed in another coordinate system by rotating
about the z-axis counter-clockwise through an angle of θ with respect to the prin-
cipal coordinate system of the material. Thus, the stress–strain relationships can be
rewritten as



σxx

σyy

σzz

σyz

σxz

σxy


=



Q11 Q12 0 0 0 Q16
Q12 Q22 0 0 0 Q26

0 0 Q33 0 0 0
0 0 0 Q44 Q45 0
0 0 0 Q45 Q55 0

Q16 Q26 0 0 0 Q66





εxx

εyy

εzz

εyz

εxz

εxy


(3.212)
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where Q11 = Q11c4 + 2(Q12 + 2Q66)s2c2 + Q22s4,

Q12 = (Q11 + Q22 − 4Q66)s2c2 + Q12(s4 + c4),

Q16 = (Q11 − Q12 − 2Q66)sc3 + (Q12 − Q22 + 2Q66)s3c,

Q26 = (Q11 − Q12 − 2Q66)s3c + (Q12 − Q22 + 2Q66)sc3,

Q22 = Q11s4 + 2(Q12 + 2Q66)s2c2 + Q22c4,

Q33 = Q33, Q44 = Q44c2 + Q55s2, Q45 = (Q55 − Q44)cs,

Q55 = Q55c2 + Q44s2, Q66 = (Q11 + Q22 − 2Q12 − 2Q66)s2c2 + Q66(s4 + c4),

c = cos θ; s = sin θ.

Considering the strain–displacement relationship, εzz = ∂w/∂z, the transverse displace-
ment, w(x, y, z), can be obtained from Equation (3.210) as

w(1)(x, y, z) = φ(1)(x, y)
∫ z

−h/2

(
1 + 2

h
z
)

dz = φ(1)(x, y)
(

z2

h
+ z + h

4

)
,

w(2)(x, y, z) = φ(2)(x, y)
∫ h/2

z

(
1 − 2

h
z
)

dz = φ(2)(x, y)
(

z2

h
− z + h

4

)
(3.213)

Therefore, the transverse deflection at the upper surface of the concrete is given
by wc = w(1)(x, y, hd) and the deflection at the lower surface of the FRP is given by
wf = w(2)(x, y, hd). Substituting them into Equation (3.200) gives

φ(2)(x, y)
(

h2
D

h
− hD + h

4

)
− φ(1)(x, y)

(
h2

D

h
+ hD + h

4

)
= σb(1 − 2vad)(1 + vad)had

pbEad(1 − vad)

(3.214)

By writing the constant peel stress at the interface layer as σb = Q33ε
(1)
zz
∣∣
z=hD = Q33φ

(1)

(x, y)
(
1 + 2hD

h

)
and substituting it into Equation (3.214), φ(2) can be expressed as a

function of φ(1)

φ(2)(x, y) =
Q33(1 + 2hD

h )(1 − 2vad)(1 + vad)had

pbEad(1 − vad)
+

h2
D
h + hD + h

4
h2

D
h − hD + h

4

φ(1)(x, y)

(3.215)

Equation (3.215) links the strain distributions in the two plates enabling the subse-
quent mathematical derivation of delamination formulation. Taking the longitudinal
displacement along the x-axis at the mid-plane of concrete host as u(1)

0 (x, y) =
u(1)(x, y, z)

∣∣∣
z= hD

2 − h
4

, the longitudinal displacement of the concrete can be written as

u(1)(x, y, z) = u(1)
0 (x, y) +

∫ z

hD
2 − h

4

(
2ε(1)

xz − ∂w
(1)

∂x

)
dz (3.216)
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Similarly, the longitudinal displacement of the FRP sheet takes the form

u(2)(x, y, z) = u(2)
0 (x, y) +

∫ z

hD
2 + h

4

(
2ε(2)

xz − ∂w
(2)

∂x

)
dz (3.217)

where u(2)
0 (x, y) = u(2)(x, y, z)

∣∣∣
z= hD

2 + h
4

.

Inspecting the elements in rows 4 and 5 in the constitutive Equation (3.212) in
conjunction with the boundary conditions in Equation (3.207), it can be concluded
that{

εxz = 0
εyz = 0

at z = ±h
2

(3.218)

Therefore, the transverse shear strain ε(1)
xz (x, y, z) in the concrete host and ε(2)

xz (x, y, z)
in the FRP sheet can be assumed to take the form

ε(1)
xz (x, y, z) = ϕ(1)(x, y)

(
1 + 2

h
z
)

, ε(2)
xz (x, y, z) = ϕ(2)(x, y)

(
1 − 2

h
z
)

(3.219)

where ϕ(x, y) is an unknown function similar to φ(x, y) that characterizes the strain dis-
tribution at the mid-plane of the plate. Substituting Equations (3.213) and (3.219) into
Equations (3.216) and (3.217), the displacement along the x-axis can be expressed as

u(1)(x, y, z) = u(1)
0 (x, y) +

∫ z

hD
2 − h

4

[
2ϕ(1)

(
1 + 2

h
z
)

− ∂φ
(1)

∂x

(
z2

h
+ z + h

4

)]
dz

= u(1)
0 (x, y) + 2ϕ(1)

(
z2

h
+ z + 3h

16
− hD

4
− h2

Dh
4

)
+∂φ

(1)

∂x
(2hD − h − 4z)(16z2 + 20hz + 8hDz + 7h2 + 8hDh + 4h2

D)
192h

or in the matrix form

u(1)(x, y, z) =


1
z

z2

z3





1
∂

∂x
(8h3

D − 7h3 + 6h2hD + 12h2
Dh)

192h
3h
8

− hD

2
− h2

Dh
2

0 −h
4
∂

∂x
2

0 −h
2
∂

∂x
2
h

0 − 1
3h
∂

∂x
0




u(1)

0

φ(1)

ϕ(1)



(3.220)
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Similarly, for the FRP sheet

u(2)(x, y, z) = u(2)
0 (x, y) +

∫ z

hD
2 + h

4

[
2ϕ(2)

(
1 − 2

h
z
)

− ∂φ
(2)

∂x

(
z2

h
− z + h

4

)]
dz

= u(2)
0 (x, y) + 2ϕ(2)

(
−z2

h
+ z − 3h

16
− hD

4
+ h2

Dh
4

)
+∂φ

(2)

∂x
(4z − 2hD − h)(16z2 − 20hz + 8hDz + 7h2 − 8hDh + 4h2

D)
192h

or

u(2)(x, y, z) =


1
z

z2

z3





1
∂

∂x
(−8h3

D − 7h3 − 6h2hD + 12h2
Dh)

192h
h2

Dh
2

− 3h
8

− hD

2

0
h
4
∂

∂x
2

0 −h
2
∂

∂x
−2

h

0
1
3h
∂

∂x
0




u(2)

0

φ(2)

ϕ(2)



(3.221)

Further with the use of the strain–displacement relation, εxx = ∂u/∂x, the strains ε(1)
xx

and ε(2)
xx can be found in terms of the unknown characterizing functions u0, φ and ϕ as

ε(1)
xx =


1
z

z2

z3





∂

∂x
∂2

∂x2

(8h3
D − 7h3 + 6h2hD + 12h2

Dh)
192h

(
3h
8

− hD

2
− h2

Dh
2

)
∂

∂x

0 −h
4
∂2

∂x2
2
∂

∂x

0 −h
2
∂2

∂x2

2
h
∂

∂x

0 − 1
3h
∂2

∂x2
0




u(1)

0

φ(1)

ϕ(1)



(3.222)

and

ε(2)
xx =


1
z

z2

z3





∂

∂x
∂2

∂x2

(−8h3
D − 7h3 − 6h2hD + 12h2

Dh)
192h

(
h2

Dh
2

− 3h
8

− hD

2

)
∂

∂x

0
h
4
∂2

∂x2
2
∂

∂x

0 −h
2
∂2

∂x2
−2

h
∂

∂x

0
1

3h
∂2

∂x2
0




u(2)

0

φ(2)

ϕ(2)



(3.223)
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The displacements at the delamination surfaces of the FRP and concrete sheets, uf and
uc in Equation (3.202), respectively, are written as

uc = u(1)(x, y, hD) = u(1)
0 (x, y) +

∫ hD

hD
2 − h

4

(
2ε(1)

xz − ∂w
(1)

∂x

)
dz,

uf = u(2)(x, y, hD) = u(2)
0 (x, y) +

∫ hD

hD
2 + h

4

(
2ε(2)

xz − ∂w
(2)

∂x

)
dz (3.224)

Substituting Equations (3.213), (3.219) and (3.224) into Equation (3.201), and
expressing u(2)

0 (x, y) as a function of u(1)
0 (x, y)

u(2)
0 (x, y) = F(φ(1),ϕ(1),ϕ(2)) · u(1)

0 (x, y) (3.225)

where F(φ(1),ϕ(1),ϕ(2)) is a general function of the characterizing functions
φ(1)(x, y),ϕ(1)(x, y) and ϕ(2)(x, y). This gives the relationship between the displacements
along the x-axis of the two plates, which is similar to Equation (3.215) for the out-of-
plane displacements. Similar to Equations (3.216) to (3.225), the formulations of the
displacements along the y-axis can be obtained as

v(1)(x, y, z) = v(1)
0 (x, y) +

∫ z

hD
2 − h

4

(
2ε(1)

yz − ∂w
(1)

∂y

)
dz,

v(2)(x, y, z) = v(2)
0 (x, y) +

∫ z

hD
2 + h

4

(
2ε(2)

yz − ∂w
(2)

∂y

)
dz (3.226)

and the transverse strains

ε(1)
yz (x, y, z) = ψ(1)(x, y)

(
1 + 2

h
z
)

, ε(2)
yz (x, y, z) = ψ(2)(x, y)

(
1 − 2

h
z
)

(3.227)

It should be noted that the coefficients C13 and C23 in Equation (3.205) would not
be negligible in the case of a thick plate, and they need to be included in the above
formulation.

F in i te e lement formula t ion of the de laminated p la te
The virtual work principle of the delaminated plate element can be written in the form

∫∫∫
VCon

ρ(1)(ü(1)δu(1) + v̈(1)δv(1) + ẅ(1)δw(1))dV

+
∫∫∫

VFRP

ρ(2)(ü(2)δu(2) + v̈(2)δv(2) + ẅ(2)δw(2))dV
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+
∫∫∫

VCon

(σ(1)
xx δε

(1)
xx + σ(1)

xz 2δε(1)
xz + σ(1)

yy δε
(1)
yy + σ(1)

yz 2δε(1)
yz + σ(1)

zz δε
(1)
zz + σ(1)

xy 2δε(1)
xy )dV

+
∫∫∫

VFRP

(σ(2)
xx δε

(2)
xx + σ(2)

xz 2δε(2)
xz + σ(2)

yy δε
(2)
yy + σ(2)

yz 2δε(2)
yz + σ(2)

zz δε
(2)
zz + σ(2)

xy 2δε(2)
xy )dV = 0

(3.228)

in which the volume and mass of the interface layer are ignored. In order to derive
the finite element formulations, the equation of motion in Equation (3.204) and
the constitutive relations in Equation (3.212) are substituted into Equation (3.228)
with the unknown characterizing functions, φ(1)(x, y), u(1)

0 (x, y), v(1)
0 (x, y),ϕ(1)(x, y),

ϕ(2)(x, y),ψ(1)(x, y) and ψ(2)(x, y) represented by piecewise interpolation polynomials.
Table 3.5 gives the maximum order of derivatives of the unknown functions required

in this finite element model. If the virtual work principle contains spatial derivatives
of a characterizing function with a highest order of m, then the chosen interpolation
polynomial has to satisfy the following conditions: (a) it must be a complete polynomial
of degree m or higher; (b) the polynomial and all its derivatives up to order m − 1
must be continuous across the element boundaries. The Hermit polynomials of the
third degree satisfying the above requirements are therefore chosen to interpolate the
function φ(1)(x, y) as

φ(1)(x, y) = [N]1×16{φ(1)}16×1 (3.229)

where

N1 = H1(ξ)H1(η), N2 = H3(ξ)H1(η), N3 = H1(ξ)H3(η), N4 = H3(ξ)H3(η),

N5 = H2(ξ)H1(η), N6 = H4(ξ)H1(η), N7 = H2(ξ)H3(η), N8 = H4(ξ)H3(η),

N9 = H1(ξ)H2(η), N10 = H3(ξ)H2(η), N11 = H1(ξ)H4(η), N12 = H3(ξ)H4(η),

N13 = H2(ξ)H2(η), N14 = H4(ξ)H2(η), N15 = H2(ξ)H4(η), N16 = H4(ξ)H4(η),

H1(ξ) = 1 − 3ξ2 + 2ξ3, H2(ξ) = 3ξ2 − 2ξ3, H3(ξ) = ξ − 2ξ2 + ξ3, H4(ξ) = ξ3 − ξ2

and {φ(1)} = {{φ(1)
1 } {φ(1)

2 } {φ(1)
3 } {φ(1)

4 }}T

Table 3.5 The required maximum order of the characterizing functions in
the virtual work formulation

Characterizing functions Maximum order of derivative

φ(1) 2

u(1)
0 1

v(1)
0 1
ϕ(1) ,ϕ(2) 1
ψ(1) ,ψ(2) 1

© 2009 Taylor & Francis Group, London, UK

  



Damage descr ipt ion and mode l l ing 125

where {φ(1)
i } = {φ(1)

i ∂φ
(1)
i /∂x ∂φ

(1)
i /∂y ∂2φ

(1)
i /∂x∂y }T and i denotes the node

number.
Following the same rules, the two-dimensional Lagrange polynomials of the first

degree are chosen to interpolate the other six characterizing functions (take ϕ(1)(x, y)
for example):

ϕ(1)(x, y) = [M]1×4{ϕ(1)}4×1 (3.230)

where

M1 = 1
4

(1 − ξ)(1 − η), M2 = 1
4

(1 + ξ)(1 − η),

M3 = 1
4

(1 + ξ)(1 + η), M4 = 1
4

(1 − ξ)(1 + η),

and {ϕ(1)} = {ϕ(1)
1 ϕ

(1)
2 ϕ

(1)
3 ϕ

(1)
4 }T .

Further, a general nodal displacement vector, {w}10×1, is introduced, the components
of which are defined as

w1 = φ(1)
, w2 = ∂φ

(1)

∂x
, w3 = ∂φ

(1)

∂y
, w4 = ∂

2φ
(1)

∂x∂y
, w5 = u(1)

0 , w6 = v(1)
0 ,

w7 = ϕ(1), w8 = ϕ(2), w9 = ψ(1)
, w10 = ψ(2)

By substituting the polynomial approximations of the unknown functions in Equations
(3.229) and (3.230) into the virtual work principle expression in Equation (3.228), the
finite element formulation of the delaminated plate model can be obtained in terms of
the general nodal displacement vector

{δw}T ([m]
{
ẅ
}+ [

k
]{w}) = 0 (3.231)

where [m]40×40 and [k]40×40 are the elemental mass and stiffness matrices of the four-
node rectangular plate element, respectively.

Ver i f i ca t ion of the f in i te e lement mode l
An example of a cantilever FRP-bonded plate is considered. The plate consists of a
30 mm thick concrete host and a bonded 6mm thick T300/5208 carbon fibre reinforced
polymer layer, and it has the in-plane dimensions 1.6m × 0.8 m. The fibre orientation
of the FRP layer is parallel to the x-axis, which is normal to the support, as shown in
Figure 3.48. Table 3.6 summarizes the material properties of the components of the
structure. The cantilever plate is separately represented by two finite element models,
in which one is based on the above-derived formulations with the bonding parameters
pb = 1 for each element and the other finite element model consists of two layers
of eight-node solid elements, with one layer for the concrete host and the other for
the FRP. The two models have the same in-plane meshing of 20 × 10, as shown in
Figure 3.48. It is assumed that the delamination starts from the free end over the full
width of the plate. To simulate the delamination damage with the present model, the
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y

x

Figure 3.48 Finite element model of the plate with delamination at the free end

Table 3.6 Material properties of the cantilever plate

Properties Concrete T300/5208 (CFRP)

Mass density (kg/m3) 2402 1600
Elastic modulus E1(Pa) 2.482E10 1.81E11
Elastic modulus E2(Pa) – 1.03E10
Poisson ratio ν21 0.2 0.28
Torsional modulus G12 1.034E10 7.17E9

Table 3.7 Natural frequencies (Hz) of the plate with delamination at the free end

Mode order Natural frequency (Hz) Percentage reduction (%)
due to delamination

Solid element model Present model
Solid element model Present model

Intact Delaminated Intact Delaminated

1 15.087 15.078 15.135 14.833 0.06% 2.00%
2 37.135 36.074 37.576 36.668 2.86% 2.42%
3 94.397 93.264 93.318 92.563 1.20% 0.81%
4 135.71 126.89 136.18 124.96 6.50% 8.24%
5 – 163.88 – 156.76 – –
6 185.17 170.61 186.46 173.76 7.86% 6.81%
7 – 184.95 – 180.67 – –
8 264.33 252.39 262.31 245.05 4.52% 6.58%

bonding parameter could be set to a tiny but non-vanishing value (pb = 1 × 10−5 in
this example) for the delaminated elements. For the two-layer solid element model,
the delamination is simulated by un-joining the common joints at the concrete-FRP
interface. The un-joined nodes are shown as ⊗ in Figure 3.48.

Modal analysis is performed separately on the two finite element models for the
intact and delaminated plate. The first eight natural frequencies are listed in Table 3.7.
The results from the present model are consistent with those from the two-layer solid
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1st Mode 2nd Mode

3rd Mode 4th Mode

5th Mode 6th Mode

7th Mode 8th Mode

Figure 3.49 Identified mode shapes of the cantilevered delaminated plate (- - - - original plate;____
deformed plate)

element model for both the intact and delaminated states. Both models successfully
predict the ‘delamination modes’ without sliding and sticking (friction) between the
two component plates, which are caused by the delamination and shown as the 5th
and 7th modes in Figure 3.49.

Ver i f i ca t ion of the de laminat ion detect ion
A new damage scenario with the previously studied cantilever plate, as shown in
Figure 3.50, is considered. The dark-grey area represents the delaminated zone, and
the surrounding grey area denotes the weak-bonding zone. The two-layer solid element
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y 

x

Figure 3.50 Finite element model of the plate with delamination at mid-span

model is used to simulate the delaminated plate under studied, by un-joining the inter-
facial joints denoted by ⊗ in the figure. All the related interfacial joints are un-joined
in the delaminated zone to simulate the macro delamination damage, while in the
weak-bonding zone the interfacial nodes are un-joined at the interfacial joints with a
staggered pattern to simulate the weakening effect due to the growing micro-defects.
It is assumed that the free vibration response of the delaminated plate is ‘measured’ by
‘accelerators’ located at all nodal points along the z-direction on the FRP side to extract
the frequencies and mode shapes. The first eight modes from the ‘measurement’ are
used to approximately estimate the Uniform Load Surface curvature (ULSC) and its
sensitivity. The ULSC sensitivity-based updating method (Wu and Law, 2007) is then
applied to identify the bonding parameters for all potentially damaged elements in the
present model. Table 3.7 lists the natural frequencies of the updated finite element
model of the delaminated plate compared with those from the solid element model.
To denote the local delamination severity, a debonding index based on the identified
bonding parameters is defined as

DI = − log pb (3.232)

The index approaches to zero for perfectly bonded elements and tends to be a large
positive scalar when the interface is completely debonded. Figure 3.51 shows the
delamination index map of the updated plate model. It is seen that the completely
debonded zone and the weak-bonding zone can be distinctly localized separately with
different index values. The debonding index corresponding to the completely delami-
nated zone attains a value of 3.0 to 5.0, whereas the index for the weak-bonding zone
is mostly not larger than 1.0.

3.3 Conclusions

This chapter gives the formulation of a group of local damages in beam and plate
structures which have been specifically developed for the purpose of structural damage
detection. They are called the group of Damage-Detection-Oriented models, and are
different from the usual models for the direct analysis for the behaviour of structures
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Figure 3.51 Identified delamination index map of the plate with delamination at mid-span

under load. A damage index has been included in each of these models, which is suitable
to be included in any type of parametric identification algorithm for the condition
assessment of structure. The system identification technique which goes along with
these damage models is referred to in Chapters 6 to 8 of this book for further illustration
of the complete process of condition assessment of a structure.
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Chapter 4

Model reduction

4.1 Introduction

It is computationally expensive and sometimes difficult to determine the natural fre-
quencies and mode shapes for a structure with a large number of elements using the
full finite element model. For the inverse problems in structural analysis, the dynamic
responses of a structure required for the system identification are usually measured,
and it is difficult and impractical to obtain the responses at all the degrees-of-freedom
(DOFs) of the structure. It is desirable to reduce the size of the system matrices to have
a more manageable and economic solution for both the direct and inverse problems
from only the responses of the measured DOFs. Such a reduction is usually referred to
as the ‘model condensation method’. Another technique, called the ‘model expansion
method’, to solve the problem of limited measured DOFs of a structure and the large
number of DOFs of a structure is also presented in this chapter.

4.2 Static condensation

The oldest and perhaps the most popular model condensation method is the
Guyan/Irons method (Guyan, 1965; Irons, 1965), which is applicable to both the static
and dynamic problems. Since the dynamic effect is ignored in the condensation, this
method is usually referred to as the ‘static condensation’.

Considering a system with a static force, Fm, applied at some selected DOFs, its
stiffness matrix and response vector can be partitioned as[

Kmm Kms

Ksm Kss

]{
xm

xs

}
=
{

Fm

0

}
(4.1)

where m and s denote the master (selected) DOFs and slave (truncated) DOFs, respec-
tively. Combining the upper and lower parts of Equation (4.1), the relationship between
the selected response xm and the truncated response xs is

xs = −K−1
ss Ksmxm (4.2)

The response vector can be described using the selected response xm only as
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x =
{

xm

xs

}
=
[

I
−K−1

ss Ksm

]
xm = Tsxm (4.3)

where Ts =
[

I
−K−1

ss Ksm

]
is the static transformation matrix between the full state

vector x and the master coordinates xm. The condensed system matrix, MRs, KRs, can
then be expressed as

MRs = TT
s MTs, KRs = TT

s KTs (4.4)

where M and K are the system matrices before reduction. The eigen-solution for the
condensed system can be denoted as

(KRs − ω2MRs)φm = 0 (4.5)

where ω2 and φm are the eigenvalues and eigenvectors of the condensed system,
respectively.

It should be noted that the incorrect selection of the master DOFs may result in a
singularity in the eigenvalue problem. Different selection schemes (Shan and Raymund,
1982; Matta, 1987) have been developed to improve the accuracy of the eigenvalue
problem. These schemes are also applicable to other methods referred to in this chapter.

It is noted that any frequency-response function generated from the reduced matrices
in Equation (4.4) is exact only at zero frequency. In a dynamic system, the inertia effect
increases with increasing frequency, and the static condensation method may lead to
a significant error. Therefore, dynamic condensation methods have subsequently been
developed to avoid this deficiency.

4.3 Dynamic condensation

A reduction method including the dynamic effects, known as the ‘dynamic conden-
sation method’, is discussed in this section (Kuhar and Stahle, 1974; Miller, 1980).
Inertia terms that were omitted in Equation (4.1) are included to give[

Mmm Mms

Msm Mss

]{
ẍm

ẍs

}
+
[
Kmm Kms

Ksm Kss

]{
xm

xs

}
= 0 (4.6)

Thus, the eigenvalue problem becomes(
−ω2

[
Mmm Mms

Msm Mss

]
+
[
Kmm Kms

Ksm Kss

]){
xm

xs

}
= 0 (4.7)

The slave vector of responses, xs, may again be solved in terms of xm as

xs = −[Kss − ω2Mss]−1[Ksm − ω2Msm]xm

= Tdxm (4.8)
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where Td = − [Kss − ω2Mss]−1[Ksm − ω2Msm] is the dynamic transformation matrix
between the full state vector and the master coordinates. The eigenvalue problem of
the reduced system becomes

(−ω2(Mmm − MmsTd) + (Kmm − KmsTd))xm = 0 (4.9)

Note that the eigenvalue, ω, in Td is unknown. It can be found by using an iterative
process to find the transformation matrix with the set of initial eigenvalues equal to
zero. A new eigenvalue vector based on the updated transformation matrix is then
calculated from Equation (4.9) and the process is repeated until the eigenvalue no
longer changes.

After obtaining the dynamic transformation matrix, the reduced system matrix can
be calculated as

MRd = TT
d MTd, KRd = TT

d KTd (4.10)

To avoid the matrix inversion of Td in Equation (4.8), the first term on the right-
hand-side is expanded into a Taylor series (Gordis, 1992) with the higher order terms
larger than ω2 neglected, so Td becomes

Td = −[Kss − ω2Mss]−1[Ksm − ω2Msm] = −K−1
ss [I − ω2MssK−1

ss ]−1[Ksm − ω2Msm]

= −K−1
ss [I + ω2MssK−1

ss ][Ksm − ω2Msm]

= −K−1
ss [Ksm + ω2(MssK−1

ss Ksm − Msm)] (4.11)

Substituting Equations (4.8) and (4.11) into Equation (4.7) and neglecting the higher
order terms, gives

ω2(Mmm − MmsK−1
ss Ksm − KmsK−1

ss MssK−1
ss Ksm)xm = (Kmm − KmsK−1

ss Ksm)xm (4.12)

Thus, the eigenvalue can be determined directly from Equation (4.12) without a
requirement of iteration. Actually, this eigenvalue is the same as the one calculated
from the reduced model using the Guyan/Irons method, which can be expressed as

ω2MRsφm = KRsφm (4.13)

where MRs and KRs are already shown in Equation (4.4). Using the relationship in
Equation (4.13), the dynamic transformation matrix Td can be modified as

Tid = −K−1
ss [Ksm + (MssK−1

ss Ksm − Msm)M−1
R KR] (4.14)

where Tid is the transformation matrix referred to in Equation (4.10). This model
condensation method is called the Improved Reduction System (IRS) method.

This IRS method was originally proposed by O’Callahan (1989) with a differ-
ent formulation but giving the same transformation matrix. The following gives the
formulation developed by O’Callahan for further comparison.
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Considering a vector of static force, F, acting on all the DOFs of a structure and
with the same partitioning as in the Guyan/Irons method, Equation (4.1) becomes[

Kmm Kms

Ksm Kss

]{
xm

xs

}
=
{

Fm

Fs

}
(4.15)

where Fs is the applied force on the slave DOFs. The truncated set of equation becomes

Ksmxm + Kssxs = Fs (4.16)

Solving for xs in Equation (4.16), gives

xs = −K−1
ss Ksmxm + K−1

ss Fs (4.17)

Thus, the full state vector, x, can be expressed as

x = Tsxm + xFd (4.18)

where Ts is demonstrated in Equation (4.3) and xFd is the displacement adjustment
from the truncated distributed force defined as

xFd =
{

0
K−1

ss Fs

}
=
[
0 0
0 K−1

ss

]
F = K−1

s F (4.19)

According to Equations (4.13) and (4.15), the full space modal vector, φ, can be
expressed by φm using the same static reduction, that is φ= Tsφm, and xFd can be
obtain as

xFd = K−1
s MTsφmω

2 = K−1
ss MssTsM−1

R KRφm (4.20)

then

x = (Ts + K−1
ss MssTsM−1

R KR)φm = TIRSφm (4.21)

where

TIRS = −K−1
ss [Ksm + (MssK−1

ss Ksm − Msm)M−1
R KR] (4.22)

Note that TIRS in Equation (4.22) is identical to Tid in Equation (4.14).
The mass and stiffness matrices obtained from using the transformation matrix in

Equation (4.22) or Equation (4.14) exhibit improved system characteristics compared
to those obtained from static condensation with the inertia effects included. The mass
and stiffness matrices for the improved reduced system are thus

MRI = TT
IRSMTIRS, KRI = TT

IRSKTIRS (4.23)

The quality of the IRS results is relatively insensitive to the number and location of the
selected DOFs compared with the methods mentioned in previous sections.

Other dynamic condensation methods and iterative methods involving eigenvalue
analysis have also been developed. An accurate method of dynamic condensation with
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a simplified computation for sub-structures was developed by Leung (1978; 1979). An
improved dynamic condensation approach was developed by Suarez and Singh (1992)
for structural eigenvalue analysis, which can use the kept and reduced DOFs separately
or together to calculate the total eigen-solution of the system.

4.4 Iterative condensation

Improvements have been proposed by other researchers which modify the method into
an iterative process. Such a method is called the Iterative IRS method (IIRS). There
are two types of IIRS method. The first one was proposed by Blair (1991). Since the
transformation matrix for the IRS method makes use of the reduced mass and stiffness
matrices obtained from the Guyan/Irons method, an improved transformation matrix
can be constructed using the newly approximated matrices described in Equation (4.23)
via iterations with Equation (4.22) as

TIRS,i+1 = −K−1
ss [Ksm + (MssTs − Msm)M−1

RI,iKRI,i] (4.24)

where i is the number of iterations. Equation (4.23) becomes

MRI,i+1 = TT
IRS,i+1MTIRS,i+1, KRI,i+1 = TT

IRS,i+1KTIRS,i+1 (4.25)

The second type of IIRS method (Friswell et al., 1995) further incorporates the trans-
formation matrix from the last iteration in the computation by modifying Equation
(4.24) as

TIRS,i+1 = −K−1
ss [Ksm + (MssTIRS,i − Msm)M−1

RI,iKRI,i] (4.26)

The two types of iterative method are quite similar and both of them show good
accuracy for model reduction. Another iterative scheme for dynamic condensation
was also introduced by Qu and Fu (2000) and the full proof of its convergence was
given. Two criteria for the computation convergence were introduced with improved
computational efficiency.

4.5 Moving force identification using the improved
reduced system

4.5.1 Theory of moving force identif ication

The equation of motion for the vehicle-bridge system can be written as (Law et al.,
2004a)

MbR̈ + CbṘ + KbR = HcPint (4.27)

where Mb, Cb and Kb are the mass, damping and stiffness matrices of the bridge,
respectively; R̈, Ṙ and R are the nodal acceleration, velocity and displacement vectors
of the bridge, respectively; and HcPint is the equivalent nodal load vector of the bridge-
vehicle interaction force with

Hc =
{

0 · · · 0 · · · H1 · · · 0
0 · · · H2 · · · 0 · · · 0

}T
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Hc is an NN × Np matrix with zero entries, except at the DOFs corresponding to
the nodal displacements of the beam elements on which the load is acting; and NN
is the number of DOFs of the bridge after considering the boundary condition.

From Equation (4.27), the strain at a point x and at time t can be written as

ε(x, t) = −z
∂2H(x) R(t)
∂x2

(4.28)

where z represents the distance from the neutral axis of the beam to the bottom surface.
The Improved Reduced System reduction scheme (O’Callahan, 1989) is adopted to

condense the unmeasured DOFs to the measured DOFs of the bridge deck. All the mea-
sured DOFs are designated as the master DOFs and denoted by Rm(t). The remaining
structural DOFs are called the slave DOFs, and are denoted by Rs(t). The response
vector of the bridge is then partitioned as

R(t) =
{

Rm(t)
Rs(t)

}
(4.29)

Accordingly, the bridge mass, damping, stiffness and shape function matrices are also
partitioned as

Mb =
[
Mmm Mms

Msm Mss

]
, Cb =

[
Cmm Cms

Csm Css

]
, Kb =

[
Kmm Kms

Ksm Kss

]
,

H =
[
Hmm

Hss

]T

, Hc =
[
Hcmm

Hcss

]
(4.30)

The total response matrix of the system, R(t), can then be represented by a parti-
tioned matrix related to the master set of DOFs Rm(t) multiplied by the transformation
matrix as

R(t) = W Rm(t), (4.31)

where W = Ws + Wi, Ws =
[

I
−K−1

ss Ksm

]
and Wi =

[
I

K−1
ss (Msm − MssK−1

ss Ksm)(WT
s MbWs)−1(WT

s KbWs)

]
.

where I is the identity matrix. Substituting Equations (4.30) and (4.31) into Equation
(4.27) and pre-multiplying WT on both sides, gives

U = Hcr Pint (4.32)

and U = MrR̈m + CrṘm + KrRm

where Mr = WTMbW , Cr = WTCbW , Kr = WTKbW , and Hcr = WTHc.

Substituting Equation (4.31) and H =
[
Hmm

Hss

]T

into Equation (4.28), matrices

Rm, Ṙm and R̈m can be obtained by the generalized orthogonal function method.
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The moving forces obtained from Equation (4.32) using a straightforward least-
squares solution would be unbound. A regularization technique can be used to solve
the ill-posed problem in the form of minimizing the function.

J(P, λ) = ‖B Pint − U‖2 + λ‖Pint‖2 (4.33)

where λ is the non-negative regularization parameter.

4.5.2 Numerical example

The vehicle-bridge system is shown in Figure 4.1. The bridge deck is modelled as a
simply supported beam with the physical and material parameters as shown in Table
4.1. The vehicle is modelled as two-axle loads at 4.26 m spacing, moving at a constant
speed. The two axle loads are:

P1(t) = 6268(1.0 + 0.1 sin(10πt) + 0.05 sin(40πt)) kg;

P2(t) = 12332(1.0 − 0.1 sin(10πt) + 0.05 sin(50πt)) kg.

Ks2, Cs2 
Ks1, Cs1

Kt2, Ct2
Kt1, Ct1

m2 m1

a2S a1S

mv, yv

Iv, θv

y1y2

L

x̂1 (t )
x̂2 (t )

P1 (t )
P2 (t )

v

Figure 4.1 Vehicle-bridge system

Table 4.1 Parameters of vehicle-bridge system

Bridge Vehicle

L = 30 m Iv = 1.47 × 105 kgm2 m1 = 1500 kg m2 = 1000 kg
EI = 2.5 × 1010 Nm2 mv = 17735 kg ks1 = 2.47 × 106 N/m ks2 = 4.23 × 106 N/m
ρA = 5.0 × 103 kg/m S = 4.27 m kt1 = 3.74 × 106 N/m kt2 = 4.60 × 106 N/m
ξ= 0.02 for all modes a1 = 0.519 cs1 = 3.00 × 104 N/m/s cs2 = 4.00 × 104 N/m/s
z = 1.0 m a2 = 0.481 ct1 = 3.90 × 103 N/m/s ct2 = 4.30 × 103 N/m/s
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Table 4.2 The percentage error of the identified forces for different discretization schemes and sampling
rates

Sampling Number of elements
frequency (Hz)

4 8 12 16

Axle-1 Axle-2 Axle-1 Axle-2 Axle-1 Axle-2 Axle-1 Axle-2

100 20.93 18.36 21.11 17.49 20.41 17.64 21.46 17.66
200 15.02 13.12 11.42 9.19 11.50 9.20 11.50 9.12
300 14.31 12.57 11.09 8.99 10.99 8.92 10.98 8.90
400 14.64 12.92 10.92 9.03 10.94 9.04 10.95 8.94
500 14.68 12.92 10.95 9.03 10.97 9.04 10.97 8.94

The calculated responses are polluted with white noise to simulate the polluted
measurement as

ε = εcalculated(1 + Ep ∗ Noise)

where εj and εj calculated are the vectors of measured and calculated responses at the
jth measuring point; Ep is the noise level; and Noise is a standard normal distribution
vector with zero mean and unit standard deviation. The relative percentage error (RPE)
in the identified results is calculated from Equation (4.34), where ‖•‖ is the norm of
the matrix; and Pidentified and Ptrue are the identified and the true force time histories,
respectively.

RPE = ‖Pidentified − Ptrue‖
‖Ptrue‖ × 100% (4.34)

The loads move on top of the beam at a constant velocity of 15 m/s. The strain at
the bottom of the beam is measured at L/4, L/2 and 3L/4 with three sensors, and
the sampling frequencies are taken to be 100, 200, 300, 400 and 500 Hz for the
study. The simply supported beam is discretized into 4, 8, 12 and 16 beam elements.
No noise effect is included in this study. The relative percentage errors of the identified
forces from different numbers of finite elements and sampling frequencies are given in
Table 4.2. Figure 4.2 gives the identified results from the cases of 4 and 8 elements.

The identified force–time histories from both 4 and 8 finite elements match the true
forces very well in the middle half of the duration. The forces from the four-element case
have large fluctuations after the entry of the second load and before the exit of the first
load, while those from eight-element case have slight fluctuations at these moments.
Table 4.2 also shows that the relative percentage errors of the identified forces from
the four-element case are much larger than those from the other discretization cases.
These indicate that discretizing the beam into eight elements would be sufficient for
an accurate identification.

The sampling frequency is shown not to have any significant effect when it is larger
or equal to 200 Hz. It is noted that the first five modes are included in the measured
responses with this sampling frequency indicating that the higher modes do not make
a significant contribution to the identification accuracy.
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Figure 4.2 Identified results from 3 measured points and without noise (___ true force, — 8
elements, ……4 elements)

4.6 Structural damage detection using incomplete
modal data

4.6.1 Mode shape expansion

The measured modes are incomplete in practice because of the limited number of
sensors, and because the rotational DOFs are usually difficult to measure. Law et al.
(1998) have presented a mode shape expansion by which the mode shape of a limited
number of measured DOFs is expanded to the full dimension of the finite element
model. The mode shape expansion preserves the connectivity of the structure in the
final expanded mode shape.

If there is a small change in the stiffness of the structure, each perturbed mode shape
can be described as a linear combination of the original mode shapes as

Φd =
[
Φdc

Φdf

]
= ΦuZ =

[
Φuc

Φuf

]
Z (4.35)

where the subscript c denotes the master DOFs of the experimental model; the
subscript f denotes the number of additional DOFs to be expanded to form the com-
plete mode shape; matrix Z is the transformation matrix; and Φd and Φu are the
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mode shape matrices of the damaged and the undamaged structures, respectively.
The cross-orthogonality condition for two mode shapes �u and �d is written as

ΦT
uiMΦdj =

m∑
k=1

ΦT
uiMΦukZkj = Zij (4.36)

and in a matrix form as

ΦT
u MΦd = Z (4.37)

When there is local small damage in the structure, Φu is close to Φd; and Z should be
close to a diagonal unity matrix. Therefore, an error function, ∆1 = I − Z, is used to
describe the differences between Φu and Φd, where I is the diagonal unit matrix. This
error function includes both the transformation error and the measurement errors.

Another error function describes directly the differences between the measured and
the predicted damaged mode shapes from Equation (4.35) as

∆2 = Φdc − ΦucZ (4.38)

The two types of error are combined in the form of a weighted Frobenius norm error
function expressed as

Ψ = ‖Φdc − ΦucZ‖2
F + W‖I − Z‖2

F (4.39)

where W is the weight coefficient. By differentiating this error function with respect
to each element of the matrix Z and setting it equal to zero, the transformation matrix
Z is obtained as

Z = (ΦT
ucΦuc + WI)−1(ΦT

ucΦdc + WI) (4.40)

Note that Φuf is not measured and it is practical to use the analytical mode shapes
instead. When Φuc is not available, i.e. there is no measured information from the
undamaged model, the analytical values can also be used in the expansion.

Substituting Equation (4.40) into Equation (4.35) yields the additional DOFs
required to form the complete damaged mode shape,

Φdf = Φuf Z (4.41)

This method does not require an accurate analytical model but it should have the
correct connectivity assumptions for the structure with appropriate types of finite
elements.

The expansion result can be adjusted by weighing the accuracy of the analytical
model and the modal analysis model with the weight coefficient, W . If the modal anal-
ysis model is reliable and accurate, less weight is given to the analytical information by
making the weight W less than 1.0. Otherwise the value of W is made larger than 1.0.
Note that when W equals zero, the expansion method converges to the SEREP method

4.6.2 Application

The frame structure (2.82m high and 1.41m wide) is shown in Figure 4.3, with details of
the geometrical and physical information and the finite element model. The structure
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Figure 4.3 Finite element model of two-storey frame structure

is modelled by 18 two-dimensional beam elements of equal length. The beams are
connected to the column horizontally by top- and seat-angles and double web-angles
with nuts and bolts. Details of this type of semi-rigid beam-column connection are also
shown in Figure 4.3. The initial rotational stiffness of the beam-column connection
is approximately 3.0 × 106 Nm/rad from static tests. The bottoms of the columns are
fully welded to base plates which are welded to the rigid floor, and the same rotational
stiffness as for the beam-column connection is assumed for these supports in the finite
element modelling.
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Table 4.3 MAC of the frame structure
(a) Damage at node 7

————————————–

Analy. Freq. 1 2 3 4 5 6

Damaged Freq. 22.49 74.17 198.51 221.77 261.32 280.17

1 21.83 0.9979 0.0295 0.0019 0.0023 0.0325 0.0034
2 67.50 0.0053 0.9834 0.0047 0.0019 0.0340 0.0002
3 193.30 0.0004 0.0022 0.9535 0.0002 0.0377 0.0006
4 219.83 0.0001 0.0015 0.0689 0.9173 0.0221 0.0103
5 247.09 0.0145 0.0131 0.0116 0.0598 0.8359 0.1291
6 278.24 0.0000 0.0001 0.0006 0.0017 0.1021 0.7513

(b) Damage at nodes 4 and 7

————————————–

Analy. Freq. 1 2 3 4 5 6

Damaged Freq. 22.49 74.17 198.51 221.77 261.32 280.17

1 18.67 0.9946 0.0373 0.0006 0.0082 0.0206 0.0011
2 67.10 0.0024 0.9796 0.0030 0.0106 0.0032 0.0002
3 191.99 0.0007 0.0032 0.9788 0.0018 0.0115 0.0049
4 217.08 0.0001 0.0001 0.0513 0.7016 0.1336 0.0702
5 235.02 0.0203 0.0153 0.0001 0.2766 0.6690 0.0910
6 273.42 0.0050 0.0017 0.0126 0.0019 0.1182 0.5678

The damage is simulated by removing both the top- and seat-angles at the joint.
This release of restraints only changes the bending stiffness of the horizontal member
but retains the original connectivity of the structure. Six modal frequencies and mode
shapes of the frame before and after the ‘damage’ is introduced are measured and deter-
mined using the Structural Modal Analysis Package. Only the horizontal translational
DOFs at nodes 2 to 7 and 9 to 14, and the vertical translational DOFs at nodes 15
to 18 are measured with the intention of collecting information from all parts of the
structures. B&K 4370 accelerometers and a B&K 8202 force hammer are used to col-
lect the vibration information. The modal frequencies are shown in Table 4.3 and the
theoretical mode shapes are shown in Figure 4.4. The incomplete mode shapes are then
expanded to the full mode shapes with the modal expansion method described above.

The measured mode shapes are used in the identification, and the analytical mode
shapes are used in the mode shape expansion of the incomplete measurement. Any com-
parison of the modal data obtained in the two different states requires correct matching
of the modes. This is done by calculating the Modal Assurance Criteria (MAC) between
the analytical mode shapes and the measured mode shapes. A larger MAC value indi-
cates greater correlation in the modes of the two states. The MAC were calculated
between the analytical and experimental mode shapes of the frame, and it is larger than
or equal to 0.98 for the first two modes in the two damage cases as shown in Table 4.3.

Two damage cases were studied. Case 1 is with damage at node 7. Case 2 is with the
same damage at both nodes 7 and 11. The damage location was successfully identified
with the first two test mode shapes after the mode shape expansion with 15 analytical
modes were included, and the results are shown in Figures 4.5 and 4.6. The damage
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f1 � 22.65Hz f2 � 74.27Hz f3 � 22.65Hz

f6 � 328.54Hzf5 � 264.80Hzf4 � 251.03Hz

Figure 4.4 The theoretical mode shapes of the frame structure
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Figure 4.5 Identified results for case (a) from two modes

at node 7 was located as damage in element 16 in Figure 4.5, as this beam element
is connected to the column at node 7. Damages at nodes 7 and 11 were identified
in Figure 4.6 as damages in elements 15 and 16, which are the two beam elements
connected to the column at nodes 11 and 7, respectively.
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Figure 4.6 Identified results for case (b) from two modes

4.7 Remarks on more recent developments

This chapter discusses the different types of model condensation techniques and the
mode-shape expansion technique which are required for structural condition assess-
ment with a structure containing a large number of components. Their use without
constraints (Terrell et al., 2007) changes the connectivity of the model matrices leading
to a spread of the local damage information throughout the structure in the inverse
problem. As a result of this deficiency, the identification of a large structure with
many structural components does not yield the correct estimation of the conditions
of the structure. However, Guo et al. (2006) succeeded in developing the relationship
between a change in the global response and a change in an elemental parameter of
a sub-structure via the Guyan method which is, however, subject to error due to the
missing inertia and damping forces with the slave DOFs.

Some researchers treat the problem with a ‘sub-structure’ strategy, where the inter-
face responses are measured; as input acting on the sub-structures (Gontier and
Bensaibi, 1995; Yun and Lee, 1997; Yang and Huang, 2006). However, it is not
always possible to obtain all the interface measurements, particularly with rotational
responses. Some researchers reconstructed these forces based on the frequency response
function or the transmissibility formulation (Devriendt and Fontul, 2005; Sjövall and
Abrahamsson, 2007). Others proposed parameter identification of the sub-structures
(Koh and Shankar, 2003) based on the receptance theory and the genetic algorithm
approach without the need for interface measurements, and with modal parameters
(Yun and Bahng, 2000) as the input to neural networks to identify the stiffness of the
sub-structures. There are also limited studies in the time domain. Koh et al (2003) gave
a good report on the sub-structural identification based on his SSI approach. Yuen and
Katafygiotis (2006) proposed a probability-based method with the Bayes’ theorem to
identify local damages in sub-structures of a shear frame building. The authors have
also reconstructed the interaction forces between sub-structures directly from the mea-
sured responses (Law et al., 2008) and the local anomalies are then identified via a
sensitivity-based method. However, the required measured information is too much to
be acceptable for practical use.
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Chapter 5

Damage detection from static
measurement

5.1 Introduction

Damage detection methods can be classified into two major categories depending on
the nature of the experimental data: dynamic identification methods that use dynamic
test data and static identification methods that use static test data. Compared with the
static identification techniques, the dynamic methods have been more fully developed
(Doebling et al., 1998b). To obtain a good estimation of the damage parameters, many
difficulties inherent in the dynamic identification methods have to be overcome, such
as the damping and mass changes due to the damage and the accurate measurements
of higher vibration modes and frequencies. These may be very difficult with the exper-
imental data analysis. However, the static identification method is usually simpler,
since the static equilibrium equation only involves the stiffness properties of a struc-
ture. Also, static testing is comparatively cheaper and many advanced techniques have
been developed recently for the static measurement. Accurate deformation or strain
of the structure can be obtained rapidly and economically. Therefore, this group of
methods attracts much attention from the engineering industry.

This chapter gives a brief description of this group of methods. Basically, the static
parameter estimation is based on measured deformations induced by static loads, such
as a truck on a bridge deck, a mass on a building or an actuator-induced static load on a
structure. Section 5.2 gives the output error functions for system identification. Section
5.3 describes several techniques to detect the local damage based on static deflection
profiles. Finally, the limitations of these methods are discussed in Section 5.4.

5.2 Constrained minimization

Damage can be defined as a structural change affecting the performance of the struc-
ture. The damage results in a loss of functionality. For a structural system, the loss
of functionality means a reduction in the load-carrying capacity or a reduction in its
ability to control motion under imposed loads. With this definition of damage, changes
in certain properties of the structure between two time-separated inferences must be
considered. Static-based methods allow damage identification by measuring changes
in the static structural response. The measured quantities are typically displacements
or strains under environmental and applied loads.
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5.2.1 Output error function

The first method to describe the changes in the static response is the output error
function. This is the difference between the analytical and measured static responses.
The parameters are identified by minimizing an objective function formulated by the
output error function (Hjelmstad and Shin, 1997) defined as the difference between the
computed and measured displacements. A recursive quadratic programming algorithm
was used to solve the constrained nonlinear optimization problem. Sanayei et al. (1997)
presented the output error function based on the static displacements and strains.
Both static displacement and strain measurements are used to estimate the element
stiffness parameters. The method is extended to identify the element properties of a
truss structure using static strains from a series of concentrated forces (Liu and Chian,
1997), and the effect of measurement errors on the identified results was studied using
the perturbation technique. Shenton and Hu (2006) presented a static procedure based
on the idea that the dead load is redistributed when damage occurs in the structure. The
static strain measurements due to dead load only are used for the damage identification.

5.2.1.1 Disp lacement output error funct ion

Consider a discrete structural system with nd degrees-of-freedom (DOFs), having a
stiffness matrix, K, characterized by np constitutive parameters, p. Let the structure
be separately subject to nf static load cases. For a linear elastic structure, the force–
displacement relationship based on the finite element model is

fi = Kui (5.1)

where fi is the vector of applied forces for the ith load case and ui is the corresponding
displacement vector.

The output error function is defined as the difference between the analytical and
measured displacements for the ith load case as follows

ei(p) = K−1fi − ui (5.2)

where K−1 is the inverse of the stiffness matrix.
Since the displacements are taken only at a subset of DOFs, matrix ui may be par-

titioned into uai and ubi, which are the measured and unmeasured displacements,
respectively. Giving[

fai

fbi

]
=
[

Kaa Kab

Kba Kbb

] [
uai

ubi

]
(5.3)

Using the static condensation

fai = (Kaa − KabK−1
bb Kba)uai + KabK−1

bb fbi (5.4)

With the applied forces and measured responses, the output error function can be
defined as

ei(p) = (Kaa − KabK−1
bb Kba)−1(fm

ai − KabK−1
bb fm

bi) − um
ai (5.5)
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where um
ai , (fm

ai , fm
bi) are the displacements at the measured DOFs and the vector of

applied forces for the ith load case.
For all the load cases, the output error function can be written in matrix form as

e(p) = (Kaa − KabK−1
bb Kba)−1(Fm

a − KabK−1
bb Fm

b ) − Um
a (5.6)

where e(p) = {ei(p), i = 1, 2, . . .nf }T , Fm
a = {fm

ai , i = 1, 2, . . .nf }T , Fm
b = {fm

bi, i = 1,
2, . . .nf }T and Um

a = {um
ai , i = 1, 2, . . .nf }T are obtained from the test data.

If the stiffness parameters are unchanged, then e(p) will be zero. Otherwise, it will
not be zero. To adjust the parameter, p, with a small increment, a first-order Taylor
series expansion is used to linearize the vector, e(p), that is a nonlinear function of the
parameters

e(p +�p) = e(p) + S(p)�p (5.7)

where S(p) = ∂e(p)
∂p is the sensitivity matrix.

A constrained nonlinear optimization problem is solved for the optimal parameters
by minimizing the objective function of the output error as

Minimize
α∈Rnα

J(p) = e(p +�p)TWe(p +�p) (5.8)

where W is a weighting factor. The unknown parameters, p, are obtained from
Equation (5.8).

5.2.1.2 Stra in output error funct ion

Equation (5.1) shows the relationship between the forces and displacements based on
the finite element model. To utilize strain measurements, a mapping matrix between
the displacements and strains can be derived from the geometric relationship of nodal
displacements to elemental strains (Sanayei and Saletnik, 1996). The mapping matrix
is defined as

ε = BU (5.9)

where ε is the vector of strains and B is the corresponding mapping matrix. Substituting
Equation (5.1) into Equation (5.9), gives the static equation for a constrained structural
system as

εi = BK−1fi (5.10)

Similar to Equation (5.2), the strain output error function can be defined as

ei(p) = BK−1fi − εi (5.11)

Similar to Equation (5.3), the strains from multiple load tests can be grouped into[
εai

εbi

]
=
[

Ba

Bb

]
K−1fi (5.12)
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and the strain output error function is written as

ei(p) = BaK−1fm
i − εm

ai (5.13)

where εm
ai , fm

i are the strains at the measured DOFs and the vector of applied forces for
the ith load case, respectively. Combining all the load cases, Equation (5.13) can be
rewritten as

e(p) = BaK−1Fm − εm
a (5.14)

where Fm = {fm
i , i = 1, 2, . . . , nf }T , εm

a = {εm
ai , i = 1, 2, . . . , nf }T .

Similar to Equation (5.8), a constrained nonlinear optimization problem can be
constructed and solved for the optimal parameters.

5.2.2 Damage detection from the static response changes

The changes in the static response of a structure are characterized as a set of nonlinear
simultaneous equations that relates the changes in the static response to the location
and severity of damage. A structural component is considered to be damaged if any of
its stiffness parameters has been reduced. The static loads applied at a subset of DOFs
and the measured static response at another subset of DOFs are used to detect the
damage in structural elements. These subsets can be overlapped, partially overlapped
or independent. Though structural damage is usually associated with a non-linear type
of behaviour, this method uses small magnitude loads that cause structures to behave
only in their elastic range. Bakhtiari-Nejad et al. (2005) presented an algorithm for
damage identification based on the changes in the static displacements. Zhu et al.
(2007) studied the effect of the load carried by a reinforced concrete beam on the
assessment result of a crack damage, and they concluded that accurate assessment
can only be obtained when a load close to the one that creates the damage is used in
the identification. Zhu and Law (2007b) introduced the scalar damage parameters to
characterize the changes in the interface between concrete and steel. The damage is
identified using changes in the static responses of the beam.

The force–displacement relationship of a damaged structure can be expressed as

F = K̃Ũ = (K −�K)(U −�U) (5.15)

where F =�P is the force vector, in which P = {P1, P2, . . . , PNp}T is the vector of static
loads; �= {�1�2 . . . �l . . . . . �Np} is a 2(N + 1) × Np shape function matrix; Np is
the number of loads; U and Ũ are the vectors of nodal deformation without and
with damage, respectively; and �U = U − Ũ is the vector of deformation difference
due to the damage. When under the same applied load, Equation (5.15) indicates
qualitatively that a reduction in the stiffness matrix corresponds to an increase in the
vector of deformations.

Vector �U can be estimated from Equation (5.15) as

�U = −K−1�KK−1F + K−1�K�U ≈ −K−1�KK−1F (5.16)
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by neglecting the second-order terms. Substituting the force–displacement relationship
of the intact structure and the stiffness matrix of the damage structure into Equation
(5.16), the analytical vector of deformation due to damage is obtained as

�U ≈
N∑

i=1

αiK−1AT
i KiAiK−1�P =

N∑
i=1

αiÛi (5.17)

where Ûi = K−1AT
i KiAiK−1�P and Ai is the transformation matrix for the ith element

for assembling the global stiffness matrix from the constituting elemental stiffness
matrix.

For Ns measuring points at {xs, s = 1, 2, . . . , Ns}, Equation (5.17) can be written as

Us = �sU (5.18)

where Us = {
u1, u2, . . . , uNs

}T and �s = {
φ1, φ2, . . . , φNs

}T .

The error between the vectors of difference between the calculated and measured
deformations of the structure is obtained from Equations (5.16) and (5.18) as

e(α) = Φs�U −�U s (5.19)

where�U s is the vector of differences between the measured displacement of structures
with and without damage.

The algorithm to identify the damage is based on minimizing the least-squares error
function in Equation (5.19) as

Minimize J(α) = 1
2

‖e(α)‖2 = 1
2

∥∥∥∥∥
N∑

i=1

αiΦsÛi −�Us

∥∥∥∥∥
2

subject to 0 ≤ αi ≤ 1, (i = 1, 2, . . . , N) (5.20)

This model can be cast into the following quadratic programming problem (Banan and
Hjelmstad, 1994) for determining the damage indices

Minimize J(α) = 1
2
αTKT�T

s �sαK −�UT
s �sαK + 1

2
�UT

s �Us

subject to 0 ≤ αi ≤ 1, (i = 1, 2, . . . , N) (5.21)

where α = {αi}T . The algorithm presented by Goldfarb and Idnani (1983) is used to
solve this quadratic programming problem. Details of the iterative algorithm used to
solve the nonlinear optimization problem are as follows:

1) Calculate the matrix �s = {
φ1, φ2, . . . , φNs

}T , �= {�1�2 . . . �l . . . ..�Np}.
2) Initially assume that there is no damage in the beam, i.e. α0 = {0, 0, . . . , 0}T .
3) When the deformation of the intact structure under a given load is not available,

the baseline deformation vector of the structure without damage Us is calculated
and used instead of the measured deformation vector from the intact structure,
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and the initial vector of measured deformation difference from the intact and
damage structures is obtained as �Us0 = Us − Us.

4) Identify the damage index αj using Equation (5.15). j = 1 for the first cycle of
iteration.

5) Calculate �U using Equation (5.16) with the updated α = αj + α0 and
URe constructed = Us − �s�U.

6) Calculate the following criteria of convergence:
Error1 = ‖Us − URe constructed‖

‖Us‖ × 100%

Error2 = ‖αj+1 − αj‖
‖αj‖ × 100%

(5.22)

αj, αj+1 are the identified damage indices in two successive iterations. Con-
vergence is achieved when both errors are less than the pre-defined tolerance
values.

7) When the computed error does not converge, calculate �Us = URe constructed − Us

and α0 = α. Repeat Steps 4 to 6 until convergence is reached.

5.2.3 Damage detection from combined static and dynamic
measurements

In a finite element model, the characteristics of a structure are defined in terms of
the stiffness, damping and mass matrices. Any variations in these matrices affect the
dynamic response of the structure. Some researchers have studied algorithms using
both the static and dynamic test data. A modified error function for the statistical
parameter estimation was presented (Oh and Jung, 1998) to combine the curvature
or slope of the mode shapes and the static displacements. This combination gives rise
to a promising damage detection and assessment algorithm. Later Wang et al. (2001)
used both the static displacements and changes in natural frequencies in a structural
damage identification algorithm.

The ith eigenvalue, λi, and the corresponding eigenvector, ϕi, of an n-DOFs system
are obtained by solving the characteristic equation

Kϕi = λiMϕi (5.23)

where K is the structural stiffness matrix and M is the structural mass matrix. Combin-
ing Equations (5.1) and (5.23), the relationship between the modal parameters, static
responses and structural parameters is expressed in terms of a first-order of Taylor
series expansion as

	

�




 =


	

�





Pp

+ S(P − Pp) (5.24)

where P is the vector of structural parameters; vector Pp is the prior estimate of the
structural parameters; the vector with subscript Pp denotes the responses of the system
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when the parameters P = Pp; 	 is the vector of measured eigenvalues; and � and 
 are
vectors of dynamic and static error responses, respectively. Let nr be the total number
of responses for the target structure, and S be the partial derivative or sensitivity matrix
of the eigenvalues and dynamic and static error responses. It can be written as

S =
[
∂	

∂pj

∂�

∂pj

∂


∂pj

]T

(5.25)

The different types of responses in Equation (5.24) are combined to form the error
function. To prevent the case where the contribution of a special response type is
reduced due to a relatively small magnitude of the response, an adjusted dynamic
response should be defined. Therefore, when the combined data of static and modal
tests are used in the identification procedure, the measured mode shapes are weighted
so that the maximum values of each type of response are the same.

It is noted from Equation (5.24) that the number of structural parameters is not the
same as the number of measured responses, such that the inverse matrix of S does not
always exist. Therefore, an estimate T on such an inverse can be defined as

�p = T�R (5.26)

where �R =
	

�




−
	

�





pp

.

The objective of this procedure is to find the best unbiased estimator, �p, based on
measured values of 	, � and 
 and prior estimates of the structural parameters, pp.
A scalar performance error function in the Bayesian estimation theory is defined for
the derivation of the statistical system identification formula as

E = (R − Rk)TWr(R − Rk) + (P∗
k − Pk)TWp(P∗

k − Pk) (5.27)

where Wr and Wp are the weighting matrices for the measured responses and the struc-
tural parameters, respectively, which can be assumed as the inverse of the covariance
matrices of the errors on the measured responses and the initial structural parameters,
respectively; R is the measured responses; Rk, Pk are predicted vectors of responses and
structural parameters, respectively, at the k-th step; and P∗

k is the vector of objective
parameters.

Other error functions can also be used to estimate the structural parameters. The
changes in curvatures are local in nature and hence can be used to detect and locate
the damage in the structure. The differences in the curvatures of mode shapes can be
used to form the error response vector as well as for estimating the uncertainty of
the structural parameters. Certainly, the slope of mode shapes is also another possible
candidate for formulating the error response vectors.
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5.3 Variation of static deflection profile with damage

5.3.1 The static deflect ion profi le

In Section 5.2, an equivalent scalar parameter is used to describe the variation
in the stiffness parameter of a structural element. This approach can determine
changes in structural element stiffness, including failure in an element. The identi-
fied cross-sectional properties of the structural elements can be taken as parameters
for assessment and to determine the load-carrying capacity of the structure. In a real
case, the presence of damage in a continuous body is represented by a reduction in
some physical parameters of the material in an appropriate constitutive model. In the
case of damage caused by the presence of a crack, it is well known that, besides the
stress concentration occurring at the crack tip, there is a zone, adjacent to the crack,
denoted as ‘ineffective’ in view of its low stress level. If a straight beam is subjected
to concentrated damage, such as a crack or a saw cut at a certain cross-section, the
presence of the ineffective zone in the crack vicinity can be accounted for by a loss of
the flexural stiffness in the Euler–Bernoulli beam theory.

The variation in a stiffness parameter can also be modelled as a distribution function
in the structural element, such as modelling the concentrated damages as Dirac’s delta
distribution in the flexural stiffness (Di Paola and Bilello, 2004; Caddemi and Greco,
2006; Buda and Caddemi, 2007). Basically, the presence of damage can be represented
through a variation of its bending stiffness as

EI(x, xd, βd) = EI × [(1 − d(x, xd, βd))] (5.28)

where EI is the bending stiffness of the undamaged beam; d(x, xd, βd) is the damage dis-
tribution function; while xd, βd are q-dimensional vectors (q is the number of damage
events) of damage locations and extent, respectively. The upper bound of the damage
distribution function, d(x, xd, βd) = 0, corresponds to the undamaged case while the
lower bound, d(x, xd, βd) = 1, indicates a local failure due to damage. For a concen-
trated crack, d(x, xd,βd) =βdδ(x − xd), δ(x − xd) is a Dirac’s delta distribution centred
at xd.

The static equations of an Euler–Bernoulli beam subjected to the external load f (x)
are easily obtained in the form

Q′(x) = −f (x)

M′(x) = Q(x)

ϕ(x) = −u′(x) (5.29)

χ′(x) = ϕ′(x)

χ(x) = M(x)/EI(x, xd, βd)

where f (x) is the external vertical load; Q(x) and M(x) are the shear force and the
bending moment, respectively; u(x),ϕ(x),χ(x) are the deflection, slope and curvature
functions, respectively; and the prime denotes differentiation with respect to the spatial
coordinate x, spanning from 0 to the length L of the beam. The first four equations in
Equation (5.29) are the equilibrium and compatibility equations, and the final one is
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the constitutive equation relating curvature and bending moment through the spatial
variable flexural stiffness EI(x).

Combining the equilibrium, the compatibility and the constitutive equations yields
the following fourth-order differential governing equation in the beam deflection
theory as

[EI(x, xd, βd)u′′(x)]′′ = f (x) (5.30)

With the presence of a local damage, the fourth-order governing differential equation
is obtained as

{EI[1 − βdδ(x − xd)]u′′(x)}′′ = f (x) (5.31)

The deflection function, u(x), can be obtained by integrating the governing equation
of the Euler–Bernoulli beam as

u(x) = c4 + c3x + c1

2EI
[x2 + 2

βd

1 − βaA
(x − xd)U(x − xd)] + C2

6EI

× [x3 + 6
βd

1 − βdA
U(x − xd)] + f [4](x)

EI

+ βd

1 − βdA
f [2](xd)

EI
(x − xd)U(x − xd) (5.32)

where U(x − xd) is the unit step distribution, also called the Heaviside function.
It represents the formal primitive of the Dirac’s delta with discontinuity at xd,
U(x − xd) = 0 for x< xd and U(x − xd) = 1 for x ≥ xd. Constants c1, c2, c3 and c4

can be obtained by the enforcement of boundary conditions; f [k](x) denotes a prim-
itive of order of the external load function, f (x); and A is a constant defined as
Aδ(x − xd) = δ(x − xd)δ(x − xd) (Bagarello, 1995).

According to the explicit solutions of the response in terms of the crack position
and intensity, the damage parameters can be identified by means of the following
minimization problem

J(xd, βd) = 1
2

nlc∑
i=1

nm∑
j=1

wi[ui(xj, xd, βd) − ue
i (xj)]2 (5.33)

or

J(xd, βd) = 1
2

nlc∑
i=1

nm∑
j=1

wi[�ui(xj, xd, βd) −�ue
i (xj)]2 (5.34)

where wi is the weight associated with the ith load case; nlc is the number of load
cases; nm is the number of measurements; ui(xj, xd, βd), ue

i (xj) are the theoretical and
experimental measured deflection at nm different cross-sections for nlc load cases,
respectively; and�ui(xj, xd, βd),�ue

i (xj) are the theoretical and experimental measured
variations of a structural response due to damage, respectively.
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5.3.2 Spatial wavelet transform

From the above discussion, the closed form deflection can be written in terms of the
damage intensities and positions. The local damage is treated as an abnormal flexural
stiffness that induces some singularity in the deflection function.

An important feature of the wavelet transform is its ability to characterize the local
irregularity of a function and its sensitivity to small changes in the structure. A crack
in a structure introduces singularities to the dynamic displacement mode shapes and
the static deflection profile. These small changes cannot be identified directly from the
structural response, but they may be observed in the wavelet transforms since local
abnormalities in the signal would result in large wavelet coefficients in the proximity
of the damage. The applicability of the wavelet damage detection techniques depends
on the measurement precision and the sensor spacing.

With the development of modern sensor technology, the measurement of the beam
displacements at a large number of spatially distributed points can be obtained by
processing digital photographs of the beams (Rucka and Wilde, 2006). The high-
resolution camera equipped with a metric optic matrix that allows precise mapping of
3D objects into 2D digital photographs is also a means to obtain high quality data.
Recently, the operational deflection of a bridge deck under moving loads is used for
damage assessment (Zhu and Law, 2006). The study shows that the response at a single
point from the passage of a very slow moving load is equivalent to the displacement
of the whole bridge deck loaded at the measuring point. This method will be studied
in detail in Section 8.2.

5.4 Application

5.4.1 Damage assessment of concrete beams

5.4.1.1 Ef fec t o f measurement no i se

A numerical example with a four-metre long simply supported uniform rectangular
concrete beam is studied. It has a 300 mm high and 200 mm wide cross-section and
3.8 m clear span. There are three 20 mm diameter mild steel bars at the bottom of the
beam corresponding to a steel percentage of 1.57%, and two 6 mm diameter steel bars
at the top of the beam section. Mild steel links with a 6 mm diameter are provided at
195 mm spacing over the whole beam length. The density, tensile strength, elastic mod-
ulus and Poisson’s Ratio of concrete are 2351.4 kg/m3, 3.77 MPa, 30.2 GPa and 0.16,
respectively. The elastic modulus and yield stress of the mild steel bars are 181.53 GPa
and 300.07 MPa, respectively.

One per cent white noise is added to the calculated displacements of the beam to
simulate the polluted measurements with

U s = U calculated(1 + Ep · Nnoise) (5.35)

where Us and Ucalculated are the polluted and the original ‘measured’ displacements; Ep

is the noise level; and Nnoise is a standard normally distributed vector with zero mean
and unit standard deviation, and it is generated independently for each component of
the measured displacement.
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The beam is discretized into eight elements. A static load of 5000N is applied at 1/2L.
Seven displacement measurements evenly distributed along the beam are used for the
identification. The local damage in the beam is modelled with the damage distribution
function (Wahab et al., 1999) with damage index αi for the ith beam element with
0.0 ≥αi ≥ 1.0. The method described in Section 5.2.2 is adopted for the identification.
The Monte Carlo method is used in the simulations and one hundred sets of simulated
results are obtained.

Figures 5.1(a) and 5.1(c) show the relationship between the mean values of the iden-
tified results and the number of simulations when the damage index, α3, is 0.1 and
0.3, respectively. Figures 5.1(b) and 5.1(d) show their histograms for 100 simulations
compared with the corresponding normal distributions. The mean values of the iden-
tified damage indices on Figures 5.1(a) and 5.1(c) converge to a constant value when
the number of simulations is larger than 80. Figures 5.1(b) and 5.1(d) show that the
histograms of the identified results are close to the normal distribution. These results
indicate that the estimated damage indices have approximately normal distributions,
if the displacement measurement noise follows a normal distribution. More simulated
results would give a clearer indication of distribution with the damage indices.

Figure 5.2 shows the range of identified results from 1% noise polluted static
responses when the damage index, α3, is 0.1 and 0.3, respectively. In practice, static
measurements are more accurate than dynamic measurements, and 1% simulated noise
pollution is considered good enough to represent the random error with real static
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Figure 5.2 Identified results from 1% noise polluted static responses (� denotes the mean value),
(|——| denotes the range of standard deviation)

measurements. The damage location and extent can be determined accurately for the
large-damage case of α3 = 0.3 but not for the small-damage case. The identified results
for elements 2 and 3 overlap for the small-damage case of α3 = 0.1. The predicted mean
and standard deviation of the identified results show a large variation in the adjacent
elements close to the left support, and a smaller variation in all other elements. This
statistical approach adds more information to the identified damage of the structure
with polluted measurement.

5.4.1.2 Damage ident i f i cat ion

The beam described in the numerical study is test as shown in Figure 5.3. The beam
ends rest on top of a 50 mm diameter steel bar at each end, which in turn rests on
top of a solid steel support fixed to a large concrete block on the strong floor of the
laboratory. A piece of thin rubber pad is placed between the steel bar and the bottom
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Figure 5.3 Reinforced concrete beam and sensor locations

Table 5.1 Load level in different loading stages

Load Stage 1 2 3 4 5 6 7 8

Assessment load (kN) 10 17 25 35 45 50 55 60
Maximum load (kN) 15 25 35 45 50 55 60 67

of the concrete beam for level adjustment. The vertical stiffness of the rubber pad was
measured as 39.41 kN/mm and it is used to modify the measured displacements.

The initial flexural rigidity of the concrete beam is estimated by direct calculation
using the measured material property and the geometrical dimensions of the beam. The
beam carries no crack and therefore the steel bars inside are not considered contribut-
ing as a composite component of the beam. The beam was incrementally loaded at the
mid-span to create crack damage using three-point loading. Eight loading cycles start-
ing from 0.0 kN to a pre-specified load level as shown in Table 5.1 were conducted,
each with a subsequent unloading stage. The beam was subsequently loaded to yield at
75 kN after the eighth load stage. The crack locations and lengths were monitored in
addition to the displacement measurements and they are shown in Table 5.2. The beam
is divided into 8 and 16 finite elements separately for the study. The first crack appeared

© 2009 Taylor & Francis Group, London, UK

  



158 Damage mode l and a lgor i thms

Table 5.2 Cracks in each element at the end of the final loading stage

Element No. 4 5 6 7 8 9 10 11 12 13

front No. of cracks 1 1 1 1 2 2 1 2 1 1
view Length (mm) 162 162 150 177 163, 211 211, 192 181 141, 137 163 171
back No. of cracks – 1 1 1 2 2 – – – –
view Length (mm) – 161 170 145 180, 160 160, 202 – – – –
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Figure 5.4 Comparison of deflections at the mid-span at 60 kN

in elements 8 and 9 at 17 kN in the 16 finite element model. Nine displacement trans-
ducers were located at the bottom of the beam to measure the deflection under load,
as shown in Figure 5.3. The static responses at all the nine measurement points were
used in the damage identification. The INV300 data acquisition system was used to
record data from all 10 channels, including the applied load, with a sampling rate of
200.12 Hz.

Figure 5.4 compares the measured and reconstructed deflection at the mid-span of
the beam at 60 kN in the final load stage. The two curves are very close to each other
and nearly symmetrical about the mid-span of the beam. This is consistent with the
small error (results not shown) between the two curves calculated by the following
formula.

Error = ‖Us − URe constructed‖
‖Us‖ × 100% (5.36)

5.4.1.3 Damage evo lut ion under load

The displacement in a subsequent loading stage with an assessment load close to the
maximum load of the previous stage is used to identify the damage. For example, the
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Figure 5.5 Identified damage indices (a), (b) evolution with load and (c), (d) after the final loading
stage

displacement at an assessment load of 45 kN in the sixth loading stage is used to assess
the damage created by the same load at the fifth loading stage. This is to simulate the
real practice of assessment at a second loading cycle instead of the same load cycle.
The assessment load for each load stage is shown in Table 5.1.

Elements 4 and 5 are identified to have damage in the case of the model with 8
finite elements, while elements 8, 9 and 11 are identified to have damage in the model
with 16 finite elements. The identified damage indices are plotted in Figures 5.5(a)
and 5.5(b), indicating a nonlinear increase with an increase in the applied load. The
element numbers are marked as (•) beside the curves. The curve flattens at around
35 kN for element 5 and 45 kN for element 4. This is because part of the deformation
does not recover after unloading in the previous load cycle and the damage index
would be an underestimation of the true value. It is noted that the damage is more
or less symmetrical about the mid-span, and the crack damage in the right half of
the beam is slightly more severe than the left half, as seen in Table 5.2. It should be
noted that Figures 5.5(a) and 5.5(b) are damage evolution diagrams of the damaged
elements with load. Each data point on the curve corresponds to the damage created
by the associated load. After the beam was loaded up to 60 kN in the eighth loading
stage, the damage indices in elements 4 and 5 become 0.41 and 0.55, respectively.
Similar discussions apply to the damages in the 16-element model.

5.4.1.4 Damage ident i f i cat ion–S imulat ing pract i ca l assessment

The crack damage in the beam after the eighth loading stage was again assessed with
loads at different load levels. The beam was unloaded and then loaded again with the
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assessment loads of 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 kN in turn. This
is equivalent to the common practice of assessing a structure which has been badly
damaged under extreme loading with a smaller loading in the assessment. Figures 5.5(c)
and 5.5(d) show the identified damage indices using the different static loads. Part of
the flexural cracks in elements 4 and 5 was closed after the beam was unloaded. Similar
observations were found for the 16-element model. The identified damage indices are
therefore smaller at a smaller loading level when the crack damage is not mobilized
at this small load level. The identified damage value becomes relatively stable when a
load above and close to 25 kN is reached. This illustrates a basic problem encountered
with damage detection of a reinforced concrete structure with a low load level where
the flexural crack and damage in the steel–concrete interface do not show up under
a small load, and they will be fully mobilized only under the load that creates them.
Therefore, the inclusion of an appropriate proportion of the operation load in the
condition assessment would be essential.

5.4.2 Assessment of bonding condit ion in reinforced
concrete beams

A reinforced concrete beam similar to that described in Section 5.4.1.1 is studied
with the same material properties but with three 16 mm diameter mild steel bars at
the bottom of the beam instead of three 20 mm diameter bars. The first six natural
frequencies of the beam without damage are 30.5, 121.9, 274.4, 488.3, 764.8 and
1015.6 Hz. The three steel bars are at the same distance from the centroidal axis of
the section and are assumed to experience the same bond slippage under loading. The
bonding stiffness of 9.05 MPa/mm is used in the calculation. The steel bar and concrete
bonding model described in Section 3.2.4 is used in this study. The method described
in Section 5.2.2 is adopted for the identification.

The above simply supported beam with one static load, p(t) = 5000 N, at 2/3L
from the left support is studied. The static responses under static load are used in
the identification and the measuring points are distributed evenly along the beam. In
the simulation, white noise is added to the calculated strain and displacements of the
beam to simulate the polluted measurements with

{
u = ucalculated(1 + EP · Nnoise)
ε = εcalculated(1 + EP · Nnoise)

(5.37)

where u, ε and ucalculated, εcalculated are the polluted and the original strains and displace-
ments, respectively; Ep is the noise level; and Nnoise is a standard normally distributed
vector with zero mean and unit standard deviation.

5.4.2.1 Loca l beam damage ident i f i cat ion

The simply supported beam is divided into eight equal finite elements, and damage is
in the fourth element with αB = {0, 0, 0, 0.1, 0, 0, 0, 0}T . A different number of sensors,
distributed evenly along the beam, is used to measure the static displacement responses
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Table 5.3 Identified local beam damage indices (αidentified
Be ) from a different number of sensors

Measurements Displacements Strains

Noise level 1% 5% 10% 1% 5% 10%

N
um

be
r

of
Se

ns
or

s 1 0.039/60.93 0.040/60.42 0.040/59.77 0.068/31.66 0.069/30.76 0.070/29.64
2 0.003/97.27 0.003/97.33 0.003/94.40 0.067/33.17 0.068/32.24 0.069/31.07
3 0.100/0.05 0.100/0.14 0.100/0.27 0.085/15.40 0.086/14.32 0.087/12.96
4 0.100/0.15 0.099/0.77 0.099/1.54 0.100/0.19 0.101/0.97 0.102/1.94
5 0.100/0.22 0.099/1.08 0.098/2.16 0.100/0.14 0.101/1.15 0.103/2.61
6 0.100/0.12 0.099/0.58 0.099/1.16 0.100/0.10 0.100/0.19 0.100/0.36
7 0.100/0.09 0.100/0.45 0.099/0.90 0.100/0.03 0.100/0.17 0.100/0.34
8 0.100/0.17 0.099/0.83 0.098/1.67 0.100/0.11 0.101/0.55 0.101/1.10
9 0.099/0.68 0.097/3.38 0.093/6.76 0.100/0.11 0.101/0.56 0.101/1.12

Note: •/• denotes the identified damage index/percentage error of identification.

under the static load; 1, 5 and 10% noise are added to simulate the measured responses.
The errors in the identified damage indices are defined as

Error =

Nd∑
i=1

∣∣∣αtrue
Bei − αidentified

Bei

∣∣∣
Nd∑
i=1
αtrue

Bei

× 100% (5.38)

where αtrue
Bei ,αidentified

Bei are the true and identified damage indices of the ith damage
element and Nd is the number of damage elements.

Table 5.3 shows the identified damage indices from using a different number of
sensors. Figure 5.6(a) shows the identified damage indices from measurements of seven
sensors, and Figure 5.6(b) shows the results when the static load is applied at different
locations with seven sensors.

The identified damage indices shown in Figure 5.6 are very close to the true values,
and they are insensitive to the noise in the measurements. The results show that the
method based on static measurement is effective to determine the damage location,
and the damage extent can be estimated accurately. Acceptable results highlighted in
Table 5.3 are obtained when the number of displacement measurements is not less than
three or the number of strain measurements is not less than four. It should be noted
that the load position has no effect on the detection results as long as it is not close to
the supports which may lead to low signal-to-noise ratio in the measurement.

5.4.2.2 Ident i f i cat ion of loca l bond ing

The parameters are the same as those used above and the bonding damage is in the
third element with αb = {0, 0, 0.1, 0, 0, 0, 0, 0}T . Table 5.4 shows the identified damage
indices from using a different number of sensors, and Figure 5.7 shows the identified
damage indices from seven sensors with different measurement noise.

Figure 5.7 shows that the identified bonding damage indices are very close to the
true value. The identified bonding damage indices from displacement measurements
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Figure 5.6 Identified damage indices (a) from measurements with different noise levels; (b) with
different static load positions

Table 5.4 Identified local bonding damage indices αidentified
be from a different number of sensors

Measurements Displacements Strains

Noise level 1% 5% 10% 1% 5% 10%

N
um

be
r

of
Se

ns
or

s 1 0.000/100.00 0.000/100.00 0.000/100.00 0.001/99.05 0.003/97.47 0.002/98.07
2 0.092/7.70 0.093/6.75 0.094/5.57 0.087/12.80 0.088/11.69 0.090/10.31
3 0.102/2.10 0.104/3.71 0.106/5.73 0.102/1.87 0.103/2.85 0.105/4.47
4 0.102/1.85 0.104/2.57 0.106/5.69 0.097/2.63 0.099/1.24 0.100/0.42
5 0.102/1.82 0.105/5.08 0.106/5.87 0.095/5.06 0.097/3.04 0.099/1.15
6 0.104/3.46 0.111/11.36 0.119/18.49 0.103/3.16 0.105/5.06 0.107/6.47
7 0.102/2.10 0.108/7.48 0.115/15.06 0.100/0.29 0.102/1.45 0.103/2.91
8 0.104/4.29 0.117/16.70 0.127/26.64 0.103/2.46 0.105/5.41 0.108/8.14
9 0.102/1.48 0.103/2.80 0.106/5.47 0.101/0.81 0.104/3.92 0.108/7.82

Note: •/• denotes the identified damage index/percentage error of identification.
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Figure 5.7 Identified bonding damage indices from displacement and strain measurements

increased with the noise level. However, the identified bonding damage indices from
strain measurements are less sensitive to the noise level than the displacement mea-
surements. This shows that the present method is effective to determine the bonding
damage location and the bonding damage extent can be estimated accurately.

The highlighted acceptable results in Table 5.4 are obtained when the number of sen-
sors is not less than three for both displacement and strain measurements. However, an
increase in the number of sensors does not, in general, give a more accurate identified
result as observed in the cases of 5 to 8 sensors. The identified bonding damage indices
from strain measurements are much closer to the true value than those from displace-
ment measurements. A comparison between Tables 5.3 and 5.4 shows that errors for
the identification of bonding damage is larger than those in the identification of beam
damage for the same test and beam configurations.

5.4.2.3 S imul taneous ident i f i cat ion of loca l bond ing and beam damages

The effects of these two types of damage are assumed to be independent. However,
they may be coupled with real damage and they cannot be identified using existing
damage models or the models described in Section 3.2.4. The method of identification
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Table 5.5 Identified damage indices from strain measurements

Damage Index α
identified
Be α

identified
be

Noise level 1% 5% 10% 1% 5% 10%

1 0.004/95.62 0.004/95.56 0.005/95.49 0.000/100.00 0.000/100.00 0.000/100.00
2 0.103/2.94 0.104/3.75 0.105/4.77 0.095/36.57 0.096/35.77 0.098/34.77
3 0.018/81.93 0.018/82.08 0.018/82.27 0.098/34.80 0.099/33.88 0.101/32.74
4 0.023/77.03 0.023/76.96 0.023/76.92 0.011/92.94 0.011/92.82 0.011/92.66

N
um

be
r

of
Se

ns
or

s 5 0.098/2.22 0.098/1.94 0.098/1.68 0.111/25.84 0.112/25.31 0.113/24.76
6 0.100/0.66 0.100/0.37 0.099/0.66 0.177/17.73 0.196/30.67 0.199/32.96
7 0.097/3.02 0.096/4.18 0.095/4.79 0.179/19.51 0.179/19.38 0.180/19.75
8 0.098/2.20 0.099/0.64 0.102/1.45 0.193/28.92 0.192/28.29 0.194/28.97
9 0.103/2.70 0.103/3.44 0.105/4.48 0.205/36.33 0.207/38.18 0.212/41.37
10 0.100/0.06 0.100/0.29 0.099/0.59 0.152/1.10 0.158/5.47 0.166/10.95
11 0.101/0.50 0.103/2.54 0.105/5.08 0.151/0.49 0.151/0.51 0.152/1.01
12 0.104/3.69 0.105/5.09 0.105/4.81 0.184/22.75 0.198/31.90 0.189/25.96
13 0.100/0.20 0.101/1.02 0.102/2.03 0.152/1.35 0.159/6.25 0.168/12.45
14 0.101/0.86 0.104/4.28 0.109/8.56 0.153/2.15 0.166/10.73 0.182/21.46

Note: •/• denotes the identified damage index/percentage error of identification.

is referred to (Zhu and Law, 2004). The simulated damage is as follows. The bonding
damage is in the third element with αb = {0, 0, 0.15, 0, 0, 0, 0, 0}T and beam damage is
in the sixth element with αB = {0, 0, 0, 0, 0, 0.1, 0, 0}T . Table 5.5 shows the identified
damage indices from different number of strain gauges.

The identified beam damage indices shown in Figures 5.8 and 5.9 are very close to
the true values. But the bonding damage is identified as a spread zone in the beam.
This is because the stiffness contribution from bonding is very small compared with
the stiffness from the beam itself. The order of damage stiffness from the beam is
much larger than that of the bond damage, and this leads the identification algorithm
to identify the more significant parameter more accurately than the less significant
parameter. This phenomenon occurs with most damage detection algorithms.

The results in Table 5.5 show that the accuracies of both types of damage indices
are acceptable when at least ten sensors are used in the measurement, except for the
case with twelve sensors. More sensors do not, in general, give good identified results
on the bonding damage. This may be due to the noise that accompanies the additional
measured information. This again confirms the need to have an optimized selection of
sensors for an optimal identification of both types of damage.

5.5 Limitations with static measurements

The main problems with static identification methods are:

1) There is less information available for the static damage identification method
compared to the dynamic ones, which makes it more difficult to obtain accurate
results.

2) The effect of damage may be concealed due to the existence of alternate load
paths under the static load. Scenarios with different patterns of loadings have to
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Figure 5.8 Identified damage indices from strain measurements with 5% noise
(Ns = number of sensors)

be studied to cover all components of a structure with a major contribution to
the deformation.

3) The static-based techniques also face practical challenges when applied to large
civil structures. It is nearly impossible to apply a controlled lateral load to a large
civil structure. This would require a reaction structure of a size equal to that of
the structure with tremendous actuating capability.

4) Some of the techniques described in this chapter use static displacements in the
identification procedure. However, in most cases it is impractical to measure dis-
placements in a large structure, simply because there is no fixed/absolute reference
for the measurement.

5.6 Conclusions

The static approach for damage assessment has been shown in this chapter to be
feasible but subject to many constraints. The lack of measured data is the main reason
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Figure 5.9 Identified damage indices from displacement measurements with 5% noise
(Ns = number of sensors)

to prevent its application on a large-scale structure with a large number of components.
This may be overcome with the high quality data obtained from the high-resolution
camera. This group of methods, however, may be suitable to provide a reference set of
results for calibrating results obtained from dynamic measurements.
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Chapter 6

Damage detection in the
frequency domain

6.1 Introduction

Static methods have been discussed in Chapter 5 to identify local damage from static
structural responses. Similar to the static methods, the vibration-based technique is also
an attractive alternative for structural damage detection, and many researchers have
made great efforts to advance knowledge in this area. The basic idea of the vibration-
based technique is to measure the dynamic characteristics at some specific stages over
the life span of the structure, and use them as a database to assess the condition of the
structure.

This chapter discusses this group of vibration-based structural damage assessment
techniques. The basic concept of modal analysis is firstly introduced in Section 6.2
and the mathematical theory of the eigenvalue problem is presented in Section 6.3.
Based on the sensitivity of the eigenvalue and eigenvector, a non-destructive damage
detection algorithm is presented in Section 6.4. To further increase the sensitivity of
modal responses to the local change in stiffness or mass properties, the high-order
modal parameters, such as the element modal strain energy, modal flexibility and unit
load surface are introduced in Section 6.6, and their curvature in the spatial domain
are presented in Section 6.7.

6.2 Spatial distributed system

The dynamics of a structure are physically decomposed by frequency and position.
This is clearly evidenced by the analytical solution of partial differential equations of
continuous systems such as beams and strings. Modal analysis is based on the fact that
the vibration response of a linear time-invariant dynamic system can be expressed as
the linear combination of a set of simple harmonic motions called the natural modes
of vibration. The natural modes of vibration are inherent to a dynamic system and are
determined completely by its physical properties (mass, stiffness, damping) and their
spatial distributions. Each mode is described in terms of its modal parameters: natural
frequency, modal damping factor and the characteristic displacement pattern, called
the mode shape. The mode shape may be real or complex with each one corresponding
to a natural frequency. The degree of participation of each natural mode in the overall
vibration is determined both by the properties of the excitation sources and by the
mode shapes of the system.
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Modal analysis embraces both theoretical and experimental techniques. The theo-
retical modal analysis is based on the physical model of a dynamic system comprising
its mass, stiffness and damping properties. These properties may be in the form of
partial differential equations. An example is the wave equation of a uniform vibratory
string established from its mass distribution and elasticity properties. The solution of
the equation provides the natural frequencies and mode shapes of the string and its
forced vibration responses. However, a more realistic physical model will usually com-
prise the mass, stiffness and damping properties in terms of their spatial distributions,
namely the mass, stiffness and damping matrices. These matrices are incorporated into
a set of normal differential equations of motion. The superposition principle of a lin-
ear dynamic system enables us to transform these equations into a typical eigenvalue
problem, the solution of which provides the modal information of the system. Mod-
ern finite element analysis empowers the discretization of almost any linear dynamic
structure and hence has greatly enhanced the capacity and scope of theoretical modal
analysis. However, the rapid development over the last two decades of data acquisition
and processing capabilities has given rise to major advances in the experimental realm
of the analysis, which has become known as modal testing.

6.3 The eigenvalue problem

6.3.1 Sensit iv ity of eigenvalues and eigenvectors

The real symmetric eigenvalue problem associated with linear vibration is defined as

Kφj = λjMφj (6.1)

where K and M are the stiffness and mass matrices, and they are of order n symmetric
matrices. M is positive definite and K is positive definite or semi-positive definite.
Eigenvector, φj, is the jth mode shape and eigenvalue, λj, is the square of the jth
natural frequency. The eigenvector, φj, is typically normalized as

φjMφj = 1 (6.2)

To obtain the derivative of the eigenvalue, Equation (6.1) is differentiated with
respect to a system parameter, p, as

(K − λjM)
∂φj

∂p
= −

(
∂K
∂p

− λj
∂M
∂p

)
φj + ∂λj

∂p
Mφj (6.3)

Pre-multiplying both sides of Equation (6.3) with φT
j

, the eigenvalue derivative is
given by

∂λj

∂p
= φT

j

(
∂K
∂p

− λj
∂M
∂p

)
φj (6.4)

Since the matrix, (K − λjM), is singular, the eigenvector derivative, ∂φj/∂p, cannot be
found directly from Equation (6.3). Nelson (1976) proposed an algorithm expressing
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the eigenvector derivative in terms of a particular solution, v, and a homogeneous
solution, cφj, as

∂φj

∂p
= v + cφj (6.5)

where c is an undetermined coefficient. The particular solution is found by identifying
the component of the jth eigenvector with the largest absolute value and constraining
its derivative to zero. The undetermined coefficient can be obtained by substituting
Equation (6.5) into the derivative of Equation (6.2) to give

cj = −vTMφj − 0.5φT
j
∂M
∂p
φj (6.6)

Nelson’s method is powerful for computing the eigenvector derivatives of general real
matrices with distinct eigenvalues, because it only requires knowledge of the eigenpairs
that are to be differentiated. However, the algorithm of the method is lengthy and
complicated. For a large-scale system, there may be thousands of degrees-of-freedom
(DOFs). In this case, only a few of the first lower modes are calculated, while the other
higher modes are truncated. Assuming that the first k modes are available with the
other (n − k) modes truncated, an eigenvector derivative can be written as (Lee and
Jung, 1997a)

∂φj

∂p
=

k∑
i=1

cφi (6.7)

where ci =


1
λi − λj

φT
i fj, i 	= j

hj, i = j
, fj = −

(
∂K
∂p

− λj
∂M
∂p

)
φj + ∂λj

∂p
Mφj and

hj = −0.5φT
j Mφj.

A pseudostatic term is added to the expansion of Equation (6.7) to obtain the
eigenvector derivative as (Wang, 1985)

∂φj

∂p
= K−1

[
−
(
∂K
∂p

− λj
∂M
∂p

)
φj + ∂λj

∂p
Mφj

]
+
∑

i

diφi (6.8)

Rudisill (1974) proposed an exact solution method solving an unsymmetric linear
algebraic equation with an additional condition. Rewriting Equation (6.1) into

(K − λjM)φj = 0 (6.9)

rearranging Equation (6.3)

(K − λjM)
∂φj

∂p
− ∂λj

∂p
Mφj = −

(
∂K
∂p

− λj
∂M
∂p

)
φj (6.10)
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and imposing the constraint on the length of the eigenvectors,

φT
j φj = 1 (6.11)

Differentiating Equation (6.11) with respect to the parameter gives

ϕT
j

∂ϕj

∂p
= 0 (6.12)

Equations (6.9) and (6.12) can be written as a single matrix equation as follows

[
φT

j 0
K − λjM −Mφj

]
∂φj

∂p
∂λj

∂p

 =


0

−
(
∂K
∂p

− λj
∂M
∂p

)φj (6.13)

The derivatives ∂φj/∂p and ∂λj/∂p can be found by solving Equation (6.13). The
algorithm of this method is simple and compact. However, the demand on computer
storage and CPU time is high, since the method has to deal with the unsymmetric
coefficient matrix to find the eigenpair derivative. For the symmetric coefficient matrix,
an equation can be obtained similar to Equation (6.10) by differentiating the mass
normalized Equation (6.2) with respect to the parameter, and rearranging to give

φT
j M
∂φj

∂p
+ 0.5φT

j
∂M
∂p
φj = 0 (6.14)

Combining Equations (6.10) and (6.14) as a single matrix equation, the derivatives
∂φj/∂p and ∂λj/∂p can be found as

[
K − λjM −Mφj

−φT
j M 0

]
∂φj

∂p
∂λj

∂p

 =


−
(
∂K
∂p

− λj
∂M
∂p

)
φj

0.5φT
j
∂M
∂p
φj

 (6.15)

6.3.2 System with close or repeated eigenvalues

When there are multiple eigenvalues and a parameter is perturbed, the eigenvectors will
be split into as many as m (multiplicity of multiple eigenvalues) distinct eigenvectors.
Consider the following eigenvalue problem, in which ψ, of order (n × m), is a matrix
of eigenvectors with multiple eigenvalues:

Kψ = Mψ� (6.16)

Here �= λI and ψTMψ= I, and λ is the eigenvalue for the eigenspace spanned by
the column of ψ. λ is an eigenvalue of multiplicity m. Adjacent eigenvectors can be
expressed in terms of ψ by an orthogonal transformation such as

Z = ψ � (6.17)
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where � is an orthogonal transformation matrix of the order (m × m) with �T�= I.
The columns of Z are the adjacent eigenvectors for which a derivative can be defined.
The adjacent eigenvectors satisfy the mass-orthogonality condition as

ZTMZ = �TψTMψ � = �T� = I (6.18)

The next step is to find � such that the derivative of eigenvectors exists and then to
find Z, ∂�/∂p and ∂Z/∂p. ∂�/∂p is obtained as follows:

∂�

∂p
= diag

(
∂λ1

∂p
,
∂λ2

∂p
, · · · ,

∂λm

∂p

)
(6.19)

Consider the following eigenvalue problem to find Z, ∂�/∂p and ∂Z/∂p.

KZ = MZ� (6.20)

Differentiating Equation (6.20) with respect to a parameter and rearranging, gives,

(K − λM)
∂Z
∂p

= −
(
∂K
∂p

− λ∂M
∂p

)
Z + MZ

∂�

∂p
(6.21)

Pre-multiplying by ψT and substituting Equation (6.17) into Equation (6.21), gives[
ψT

(
∂K
∂p

− λ∂M
∂p

)
ψ

]
� ≡ D� = �∂�

∂p
(6.22)

The eigenvalue derivative, ∂�/∂p, and the orthogonal transformation matrix, �, can be
obtained by solving Equation (6.22), and the adjacent eigenvectors, Z, from Equation
(6.17).

If the adjacent eigenvectors are calculated, the following method can be used for
the case of repeated eigenvalues. Consider the following eigenvalue problem with the
normalization condition ZTMZ = I and

KZ = MZ� (6.23)

Here �= diag(λj, λj+1, · · · , λj+m−1) and λj = λj+1 = · · · = λj+m−1 = λ. Rewriting Equa-
tion (6.21), gives

(K − λM)
∂Z
∂p

= F (6.24)

where F =
(
λ
∂M
∂p

− ∂K
∂p

)
Z + MZ

∂�

∂p
,
∂Z
∂p

=
{
∂z1

∂p
,
∂z2

∂p
, · · · ,

∂zm

∂p

}T

and F = {
f1, f2, . . . ,

fm
}T . Consider a shift, �λ, in Equation (6.24) and let AR

∂Z
∂p

= [K − (λ−�λ)M], then

AR
∂Z
∂p

= F +�λM∂Z
∂p

(6.25)
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The iteration scheme for the repeated eigenvalue is then given as

∂Z̃(k+1)

∂p
= A−1

k

[
F +�λM∂Z̃

(k)

∂p

]
(6.26)

The iteration algorithm can be used to find ∂Z/∂p. The convergence properties of the
iteration procedure are discussed in detail by Lee et al. (1997).

6.4 Localization and quantification of damage

The perturbation of the eigenvalue and eigenvector can be expanded into a truncated
Taylor series to the first order to have the following linear expression

δZ = Sδp (6.27)

where δZ is the difference between the measured modal data and the analytical solution;
δp is the perturbation in the unknown parameters to be identified; and S is the sensitivity
matrix containing the first derivative of the modal parameters with respect to the
unknown parameter.
Equation (6.27) can be rewritten as

[Zm − Zj] = Sj[pj+1 − pj] (6.28)

where Zm is the measured modal parameters used in the updating algorithm; and the
subscript j indicates the iteration number at which the sensitivity matrix is computed.

pj+1 = Pj + S+
j [Zm − Zj] (6.29)

where S+
j is the pseudo-inverse of Sj.

6.5 Finite element model updating

Let the objective function, f, denote the deviation between the analytical prediction and
the real behaviour of a structure. The model updating can be posed as a minimization
problem to find a design set, x∗, such that

f (x∗) ≤ f (x), ∀x xi ≤ xi ≤ x̄i, i = 1, 2, 3, . . . . . .n (6.30)

where the upper (x̄i) and lower (xi) bounds on the design variables are required. The
objective function in an ordinary least-squares problem is defined as the sum of squared
differences

f (x) =
nr∑

j=1

[zj(x) − z̄j]2 =
nr∑

j=1

rj(x)2 (6.31)

where zj(x) represents an analytical modal quantity, which is a nonlinear function
of the optimization or design variables, x ∈ �n; and z̄ refers to the measured modal
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parameters. In order to obtain a unique solution, the number of residuals, nr, should
be greater than the number, n, of unknown parameters, x.

The updating parameters are the undetermined physical properties of the numerical
model. Instead of using the absolute value of each variable, x, its relative variation to
the initial value, x0, is chosen as the dimensionless updating parameter, a. By using
the normalized parameters, a, the problem of ill-conditioning due to large relative
differences in the parameter magnitudes can be avoided.

ai = −xi − xi
0

xi
0

(6.32)

xi = xi
0(1 − ai) (6.33)

The objective of the model updating is to find the value of vector, ai, in Equation
(6.32) such that the error between the measured and analytical modal parameters is
minimized. This gives

f (a) =
nr∑

j=1

rj(a)2 (6.34)

In general, the residual vector, r, contains the differences between the identified and
predicted modal data, such as the eigen-frequencies and the mode shapes.

6.6 Higher order modal parameters and their sensitivity

6.6.1 Elemental modal strain energy

The elemental Modal Strain Energy (MSE) is defined as the product of the elemental
stiffness matrix and the second power of its mode shape component. For the jth element
and ith mode, the elemental MSE before and after the occurrence of damage are given as

MSEij = ΦT
i K jΦi MSEd

ij = �dT

i K jΦ
d
i (6.35)

where MSEij and MSEd
ij are the jth elemental modal strain energy corresponding to

the ith mode shape for the undamaged and damaged states, respectively; K j is the jth
elemental stiffness matrix; and Φi is the ith mode shape. The superscript d denotes the
damaged state. Since the damage elements are not known, the undamaged elemental
stiffness matrix, K j, is used instead of the damaged one as an approximation in MSEd

ij.
The elemental Modal Strain Energy Change Ratio (MSECR) has been verified to be

a good indicator for damage localization and is defined as (Shi et al., 1998)

MSECRij = |MSEd
ij − MSEij|
MSEij

(6.36)
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6.6.1.1 Modal s t ra in energy change sens i t i v i t y

Structural damage often causes a loss of stiffness in one or more elements of a structure
but not a loss in the mass. In the theoretical development that follows, damage is
assumed to affect only the stiffness matrix of the system. When damage occurs in a
structure, it can be represented by a small perturbation in the original system. Thus,
the stiffness matrix, Kd; the ith modal eigenvalue, λd

i ; and the ith mode shapes, Φd
i , of

the damaged system can be expressed as

Kd = K +
L∑

j=1

�K j = K +
L∑

j=1

αjK j ( − 1 < αj ≤ 0) (6.37a)

λd
i = λi +�λi (6.37b)

Φd
i = Φi +�Φi (6.37c)

where αj is the coefficient defining a fractional reduction in the jth elemental stiffness
matrices; and L is the total number of elements in the system. The elemental Modal
Strain Energy Change (MSEC) for the jth element in the ith mode is expressed as

MSECij = ΦdT

i K jΦ
d
i − ΦT

i K jΦi (6.38)

Substituting Equation (6.37c) into Equation (6.38) and neglecting the second-order
terms, the MSECi

j becomes

MSECij = 2ΦT
i K j�Φi (6.39)

For a small perturbation in an undamped n-DOFs dynamic system, the equation of
motion becomes

[(K +�K) − (λi +�λi)M](Φi +�Φi) = 0 (6.40)

Neglecting second-order terms, Equation (6.40) leads to

(K − λiM) �Φi = �λiMΦi −�KΦi (6.41)

�Φi in Equation (6.41) can be expressed as a linear combination of mode shapes of
the original system (Fox and Kappor, 1968)

�Φi =
n∑

k=1

dikΦk (6.42)
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where dik are scalar factors and n is the total number of modes of the original system.
Substituting Equation (6.42) into Equation (6.41), and pre-multiplying ΦT

r on both
sides of Equation (6.41), gives

n∑
k=1

dikΦ
T
r (K − λiM)Φk = �λiΦ

T
r MΦi − ΦT

r �K�i (6.43)

With the orthogonal relationship, Equation (6.43) can be simplified into the following
when r is not equal to i.

dir = −ΦT
r �KΦi

λr − λi
where r 	= i (6.44)

For the case of r = i, drr equals 0.0 from the orthogonal relationship, ΦT
i MΦi = I .

Therefore (6.42) can be written as

�Φi =
n∑

r=1

−ΦT
r �K�i

λr − λi
Φr where r 	= i (6.45)

Substituting Equation (6.11) into Equation (6.39) the MSECij becomes

MSECij = 2ΦT
i Kj

(
n∑

r=1

−ΦT
r �KΦi

λr − λi
Φr

)
where r 	= i (6.46)

Substituting Equation (6.37a) into Equation (6.46), gives

MSECij =
L∑

p=1

−2αpΦ
T
i Kj

n∑
r=1

ΦT
r KpΦi

λr − λi
Φr where r 	= i (6.47)

The term on the left-hand-side of Equation (6.47) is the elemental Modal Strain Energy
Change of the jth element in the ith mode, which can be calculated from Equation
(6.38) by using the experimental mode shape of the undamaged and damaged states.
All the terms on the right-hand-side of Equation (6.47), except αp, are known infor-
mation of the undamaged system. Equation (6.47) can be used to quantify the damage
magnitude.

If it is assumed that the number of damaged elements to be identified is q, and the
number of measured elements for the computation of MSEC in Equation (6.38) is J,
Equation (6.47) can be expressed in the following form for the ith mode.


MSECi1

MSECi2

· · ·
MSECiJ

 =


β11 β12 · · · β1q

β21 β22 · · · β2q

· · · · · · · · · · · ·
βJ1 βJ2 · · · βJq



α1

α2
...

αq

 (6.48)
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in which the element, βst(s = 1, 2, . . ., J; t = 1, 2, . . ., q), is the sensitivity coefficient of
MSEC for the suspected damaged element, and it is given by

βst = −2
n∗∑

r=1

ΦT
i K s

ΦT
r K tΦi

λr − λi
Φr where r 	= i (6.49)

where n∗ used in the actual calculation is a finite number of modes of the system.
In practice, the group of suspected damaged elements can be determined from any

damage localization method in the frequency domain. The number of these elements,
q, would be much smaller than the total number of elements, L, in the system. And J is
the size of the group of selected elements for the MSEC computation, which can include
or exclude the suspected damaged elements with J ≥ q. When there are m modes to be
used to estimate the damage, the number of equations in Equation (6.48) will increase
to m × J to become an over-determined set of equations.

The sensitivity of MSE is more informative than the sensitivity of the mode shape
for damage identification, as it describes directly the vibration energy change of the
element while the mode shape sensitivity describes the change of the mode shape at
a DOF. The former is also less subjective to noise effect at a measured DOF than the
latter.

In Equation (6.42), n must be equal to the total number of modes of the n-DOFs
system in order to obtain an accurate estimation of �Φi. But in practice, the number
of DOFs of the structure is very large, and only the first few n∗ modes of the system
are used in the estimation. This introduces a truncation error in the value of �Φi in
Equation (6.42) and affects the sensitivity, βst, in Equation (6.49). The error in βst

becomes large when the selected modes n∗ in Equation (6.42) is small. An improved
formulation for the sensitivity has been developed to reduce this truncation error (Shi
et al., 2002). The application to the damage assessment of structure with this technique
is referred to in Shi et al. (1998; 2000b; 2002).

6.6.2 Modal f lexibi l i ty

For a structural system with n DOFs, the flexibility matrix can be expressed by
superposition of the mass normalized modes, {φi}, as (Berman and Flannely, 1971)

[F] =
n∑

i=1

{φi}{φi}T

ω2
i

(6.50)

where ωi is the ith natural frequency and {φT
i }M{φi} = 1(i = 1, · · · , n). It can be seen

from Equation (6.50) that the modal contribution to the flexibility matrix decreases
rapidly as the frequency, ωi, increases, so the flexibility matrix converges rapidly
as the number of contributing lower modes increases. This observation provides
a great possibility to approximate closely the flexibility matrix with several lower
modes.

In practice, there are only a few, in most cases, two to three, lower vibration
modes of a structure that can be obtained with confidence from modal testing. When
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r lower modes are available, the modal flexibility matrix of the structure can be
approximated as

[F] � [FT ] =
r∑

i=1

{φi}{φi}T

ω2
i

(6.51)

The modal flexibility component, fk,l, which represents the displacement at the kth
DOF under the unit load at DOF l, is the summation of the products of two related
modal coefficients for each available mode.

fkl =
r∑

j=1

φljφkj

ω2
j

(6.52)

If two sets of measurements, one for the intact and another for the damaged structure,
are taken and the modal parameters are estimated from the measurements, then the
flexibility matrix, F, for the two states can be approximately obtained from Equa-
tion (6.51). Considering each column of the flexibility matrix, F, represents a set of
nodal displacements due to a unit force at a corresponding DOF, Pandey and Biswas
(1994; 1995) simply subtract the flexibility matrix, FI, of the intact structure from
the damaged state flexibility matrix, FD, to obtain the flexibility changes due to the
damage

�F = FD − FI (6.53)

For each translational DOF j (since it is difficult to measure the rotational DOFs,
only the translational DOFs are used in the calculation of flexibility matrices), the
maximum absolute value of the elements in the jth column of �F is obtained as

δj = max
i

∣∣�fi,j
∣∣ (6.54)

The quantity δj is then used as the index to locate damage in structures. However, the
maximum absolute value based index is usually replaced with the absolute value of
the diagonal element in the corresponding column of the flexibility matrix as

δj = ∣∣�fj,j
∣∣ (6.55)

6.6.2.1 Modal f lex ib i l i t y sens i t i v i t y

When only r lower modes are available, the modal flexibility matrices in Equation
(6.50) can be truncated as

[FT ] =
r∑

i=1

{φi}{φi}T

ω2
i

, and [Fa
T ] =

r∑
i=1

{φa
i }{φa

i }T

(ωa
i )2

(6.56)
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where [FT ] and [Fa
T ], are the measured and analytical Truncated Modal Flexibility

(TMF) matrices (Hoyos and Aktan, 1987). They are different from the static flexibility
measured from a strain gauge test on a loaded structure. These matrices are symmetric
and each coefficient is typically expressed as

fkl =
r∑

j=1

φljφkj

ω2
j

, and f a
kl =

r∑
j=1

φa
ljφ

a
kj

(ωa
j )2

(6.57)

where φkj and φa
kj represent the measured and analytical mode shapes of the kth

coordinate for the jth mode of the structure, respectively.
The analytical TMF matrix is correlated to the measured TMF matrix by a

perturbation matrix, [δFT ], contributed by the model error vector {δθ}, such that

[Fa
T ] + [δFT ] = [FT ] (6.58)

Expanding the full TMF matrices and considering the symmetry of them, the
above equation can be rewritten in the form of the TMF vectors of dimensions
n × (n + 1)/2, as

{δFT} = {FT} − {Fa
T} (6.59)

Based on the Taylor series expansion to a first-order approximation, the perturbation
TMF vector can be expressed as

{δFT} = ∂{F
a
T}
∂θ1

δθ1 + ∂{F
a
T}
∂θ2

δθ2 + · · · + ∂{F
a
T}

∂θm
δθm =

[
∂Fa

T

∂θ

]
{δθ} (6.60)

where the subscript m denotes the number of the model error. Substituting Equation
(6.60) into Equation (6.59), the inverse problem of model error identification can be
formulated into a linear set of equation as

[
∂Fa

T

∂θ

]
{δθ} = {FT} − {Fa

T} (6.61)

The vectors on the right-hand-side of the equation can be obtained from modal mea-
surement and analysis. If the sensitivity matrix of the TMF with respect to the model
errors, [∂Fa

T/∂θ], is available, the vector, {δθ}, which represents the parameter changes
correlating the analytical model to the test structure, can be solved directly using
least-square techniques or the singular value decomposition method.
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Equation (6.61) can also be written as

∂f11

∂θ1

∂f11

∂θ2
· · · ∂f11

∂θm
∂f21

∂θ1

∂f21

∂θ2
· · · ∂f21

∂θm
∂f22

∂θ1

∂f22

∂θ2
· · · ∂f22

∂θm
...

...
...

...

∂fnn

∂θ1

∂fnn

∂θ2
· · · ∂fnn

∂θm




δθ1
δθ2
...

δθm

 =



f x
11 − f a

11

f x
21 − f a

21

f x
22 − f a

22

...

f x
nn − f a

nn


(6.62)

where f a
kl and f x

kl are the analytical and measured TMF coefficients, respectively, and
∂fkl/∂θi, (1 ≤ k ≤ n, 1 ≤ l ≤ k) is a TMF sensitivity coefficient with respect to a specific
model error. For a large-scale structure in which only the r lower modes, (r<< n),
were measured, the total number of linear equations in Equation (6.62) would be
n × (n + 1)/2. However, it should be mentioned that not all the equations are recip-
rocally independent. It can be found from Equation (6.56) that the rank of the TMF
matrix is r (the number of available modes). Without the lost of generality, let us take
the first r columns of the flexibility matrix as the basis of constructing the range space
�n of modal flexibility, while the remaining columns are linear combinations of them.
Thus, the truncated flexibility can be expressed in a matrix form as

[FT ] =



f1,1 ⊗ · · · ⊗ | × · · ·
f2,1 f2,2

... | × · · ·
...

...
. . . ⊗ | × · · ·

f(n−1),1 f(n−1),2 · · · f(n−1),r | × · · ·
fn,1 fn,2 · · · fn,r | × · · ·


n×n

(6.63)

Taking note of the symmetry of Equation (6.63), it can be concluded that there
exist n × r − r(r − 1)/2 independent terms in the truncated flexibility matrix, lead-
ing to the same number of independent equations in Equation (6.62). The condition,
n × r − r(r − 1)/2 ≥ m, is required to ensure an over-determined solution of Equation
(6.62).

Taking the derivative of Equation (6.57) with respect to a design parameter θi gives
the sensitivity coefficients of the modal flexibility as

∂fkl

∂θi
=

r∑
j=1

[
1

ω2
j

(
∂φlj

∂θi
φkj + ∂φkj

∂θi
φlj

)
− 2

ω3
j

∂ωj

∂θi
φljφkj

]
(6.64)

The terms ∂ωj/∂θi, ∂φlj/∂θi and ∂φkj/∂θi can be computed from Section 6.3. The sen-
sitivity matrix of TMF to a change in the design parameter can then be computed
analytically. The application of this technique to the damage assessment of a structure
is referred to in Wu and Law (2004b; 2004c).

© 2009 Taylor & Francis Group, London, UK

  



180 Damage mode ls and a lgor i thms

6.6.3 Unit load surface

The modal flexibility matrix of a linear structural system is given in Equation (6.51),
while the modal flexibility relating two modal coefficients is given in Equation (6.52).
The modal deflection at point k under uniform unit load all over the structure can be
approximated as

u(k) =
n∑

l=1

fk,l =
m∑

r=1

φr(k)
∑n

l=1 φr(l)
ω2

r
(6.65)

The Uniform Load Surface (ULS) is defined as the deflection vector of the structure
under uniform load (Zhang and Aktan, 1998)

UT = {u(k)} = FT · L (6.66)

where L = {1, · · · , 1}T
1×n is the unit vector representing the uniform load acting on

the structure. From Equations (6.52) and (6.65), Zhang and Aktan (1998) observed
two features of the ULS comparative to the modal flexibility. Firstly, the ULS is less
sensitive to measurement noise than the modal flexibility, because the summation of
all the modal coefficients of the corresponding mode,

∑n
l=1 φr(l) in Equation (6.65),

averages out the random error at each measuring point. The second feature is that the
ULS converges more rapidly with the lower modes than the modal flexibility. This is
also because of the summation of all the modal coefficients of each mode to the ULS
in Equation (6.65). Since the modal coefficients of higher modes tend to cancel each
other more than those of the lower modes, the lower modes tend to contribute more
than the higher modes to the ULS coefficients. This cancelling effect does not exist
with the modal flexibility formulation in Equation (6.52). These special properties
make the ULS a potentially stable and sensitive damage indicator for structural health
monitoring.

6.7 The curvatures

For a continuous structure without damage, the mode shape curvature has a smooth
curve shape along the span of the structure. When there is a fault, a change in the
curvature in the form of a peak or abrupt slope, appears near the fault position. This
local peak position in the curvature can be used as an index to locate local damage in
structures. The most practical advantage of the method is that the curvature computa-
tion does not refer to the parameters of the intact structure as a baseline. It is also more
sensitive to closely distributed damages than the method using mode shape changes. It
has been concluded (Pandey et al., 1991; Lu et al., 2002) that the curvature technique
is the most efficient to locate these changes in the smooth curves based on the study
of damage detection with mode shapes and flexibility for beam-like structures. The
following sections describe the finite difference approach, which is commonly adopted
for the computation of the curvature from the mode shape. The more sophisticated
approach of using polynomial approximation is also given. The gap-smoothing tech-
nique is also discussed for the case of incomplete measurement. These techniques are
applicable not only to the mode shape information but also to the flexibility and unit
load surface as described in last section.
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6.7.1 Mode shape curvature

An alternative to using mode shapes to obtain spatial information about vibration
changes is using mode shape derivatives, such as curvature. The curvature val-
ues are computed from the displacement mode shape using the central difference
approximation for mode i and DOF j as

φ′′
j,i = φj−1,i − 2φj,i + φj+1,i

�l2
(6.67)

where �l is the distance between the two DOFs considered.

6.7.2 Modal f lexibi l i ty curvature

Once the flexibility matrix of a structure is estimated from the measured modal param-
eters, the flexibility curvature can be approximated by a finite difference scheme. In
the damage localization of a simply supported reinforced concrete beam (Lu et al.,
2002), the flexibility curvature is obtained as

fci = fi−1,i−1 − 2fi,i + fi+1,i+1

�l2
(6.68)

where fi,i and �l are the ith diagonal element of the flexibility matrix and the distance
between the two DOFs considered, respectively; and fci is the ith item in the flexibility
curvature vector.

6.7.3 Unit load surface curvature

Starting from this section, the focus will be on damage detection with plate-like struc-
tures. It is assumed that the dynamic response of the plate is acquired by placing sensors
in a rectangular grid, such that the mode shapes and the ULS can further be estimated.

An existing curvature-based damage detection technique computes the curvatures
using a finite central differentiation procedure. When this technique is incorporated
with two-dimensional ULS, the curvatures of the ULS are calculated by a Laplacian
operator in each normal direction along the sensor grid as

uxx(xi, yj) = u(xi+1, yj) − 2u(xi, yj) + u(xi−1, yj)
h2

x
(6.69a)

uyy(xi, yj) = u(xi, yj+1) − 2u(xi, yj) + u(xi, yj−1)
h2

y
(6.69b)

in which the ULS is grouped from a vector into a matrix according to the coordinates
of measuring points in the grid, and the grid is assumed to be equally spaced in the x-
and y-directions, as shown in Figure 6.1. hx and hy are the uniform grid spacings in
the corresponding directions.

If two sets of measurements, one from the intact structure and another from the
damaged structure, are taken and the modal parameters are estimated from the mea-
surements, the ULS curvature at point (xi, yj) for the two states can be obtained using
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u(xi�1, yj�1)

u(xi�1, yj�1) u(xi�1, yj�1)

u(xi�1, yj�1)

u(xi, yj�1)

u(xi, yj�1)

u(xi�1, yj) u(xi�1, yj)

u(xi, yj)

 

Figure 6.1 Gapped grid for curve fitting at measuring point (xi,yj)

Equations (6.52) and (6.69). The presence of the irregularity in the damaged curvature
can be detected by subtracting the ULS curvature of the intact state from the curvature
of the damaged state. Thereby a map of the damage index can be formulated as

d(xi, yj) = [αxx| uD
xx(xi, yj) − uxx(xi, yj)| + αyy| uD

yy(xi, yj) − uyy(xi, yj)|]2
(6.70)

where |•| denotes the absolute value; uxx and uyy are the measured ULS curvature
values of the intact structure at the corresponding point in the x- and y-directions,
respectively, uD

xx and uD
yy are those of the suspected damaged structure; and αxx and

αyy are the weights that can be set from 0.0 to 1.0 to consider the importance of the
curvature in the corresponding directions.

If the structure is undamaged when the second set of measurement is carried out, the
difference between the two sets of measured ULS curvature would be due to measure-
ment noise only. Therefore values of the damage index map, d(xi, yj), slightly oscillate
around zero without any distinct peak. In contrast, if the structure is damaged, peaks
or slopes will clearly show up at the damaged zone of the plate, as shown later in the
numerical study in Section 6.7.6.

6.7.4 Chebyshev polynomial approximation

The accuracy of the central difference method is well known depending on the density
of the measurement grid. If the ULS values are estimated on a sparse grid, it will induce
a very large error in calculating the curvature from differentiation. The following
Chebyshev polynomial in two variables is adopted to model the ULS distribution to
avoid this error (Wu and Law, 2004a):

u(x, y) =
N∑

i=1

M∑
j=1

cijTi(x)Tj(y) (6.71)

where Ti(x) and Tj(y) are the first kind Chebyshev polynomials, and N and M are
their orders. To map the standard Chebyshev polynomials from the plane domain of
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{ξ,µ} = [−1, 1] × [−1, 1] to the physical plate domain of {x, y} = [0, Lx] × [0, Ly], two
linear transfer functions are defined

ξ = 2x/Lx − 1, µ = 2y/Ly − 1 (6.72)

Lx and Ly are the dimensions of the plate in the x- and y-directions, respectively. The
Chebyshev polynomials of variable x is then written as

T1(x) = 1√
π

, T2(x) =
√

2
π

(
2x
Lx

− 1
)

,

Ti+1(x) = 2
(

2x
Lx

− 1
)

Ti(x) − Ti−1(x), i = 2, 3, · · · , N − 1 (6.73)

The polynomials of variable y can be formulated similarly.
Without loss of generality, it is assumed that P = N × M measuring points are set on

the rectangular sensor grid so that the ULS can be estimated at these points. Equation
(6.71) will be satisfied at all the measuring points, and the Chebyshev polynomial
approximation can be written in a matrix form

{u(xi, yj)}P×1 = [T(xi)T(yj)]P×P{cij}P×1 (6.74)

The coefficient vector, {cij}, can then be solved as

{cij}P×1 = [T(xi)T(yj)]−1
P×P{u(xi, yj)}P×1 (6.75)

or obtained by the least-squares method if the number of measuring points Q>P.

{cij}P×1 = ([T(xi)T(yj)]T
Q×P[T(xi)T(yj)]Q×P)−1

[T(xi)T(yj)]T
Q×P{u(xi, yj)}Q×1 (6.76)

It is a better choice to have the measuring points at the Chebyshev zeros ( xi,
 yj), which

ensure the convergence for any continuous function that satisfies a Dini–Lipschitz
condition (Mason and Handscomb, 2003). The location of these N × M zeros is
given by

 xi =
(

cos
(i − 0.5)π

N
+ 1

)
Lx

2
, i = 1, · · · , N (6.77a)

 yj =
(

cos
(j − 0.5)π

M
+ 1

)
Ly

2
, j = 1, · · · , M (6.77b)
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The corresponding coefficients can be explicitly obtained as

cij = λ
P

N∑
r=1

M∑
s=1

u( xi,
 yj) cos

(
i(r − 0.5)π

N

)
cos

(
j(s − 0.5)π

M

)
,

{
i = 1, · · · , N; j = 1, · · · , M
r = 1, · · · , N; s = 1, · · · , M

}
(6.78)

where

λ =


1 for i = 1, j = 1
2 for i = 1, j 	= 1 or i 	= 1, j = 1
4 for i 	= 1, j 	= 1

By making use of the orthogonal property of the Chebyshev polynomial, the curvature
of the ULS can then be approximated by the second derivatives of the Chebyshev
polynomials in Equation (6.71) as

uxx(x, y) =
N∑

i=1

M∑
j=1

cij
∂T2

i (x)
∂x2

Tj(y), uyy(x, y) =
N∑

i=1

M∑
j=1

cijTi(x)
∂T2

j (y)

∂y2
(6.79a)

and

uxy(x, y) =
N∑

i=1

M∑
j=1

cij
∂Ti(x)
∂x

∂Tj(y)
∂y

(6.79b)

Therefore, the formulation of the damage index in Equation (6.70) can be rewritten as

d(xi, yj) = [αxx|uD
xx − uxx| + αyy| uD

yy − uyy| + αxy|uD
xy − uxy|]2

(6.80)

It should be noted that the discussions in Sections 6.7.4 and 6.7.5 for a two-dimensional
distribution of ULS curvature are applicable for the mode shape curvature and
flexibility curvature obtained from the same set of measured mode shape information.

6.7.5 The gap-smoothing technique

Most damage-index methods require the ‘footprint’, or baseline data set, of the intact
structure for comparison, to inspect the change in modal parameters due to dam-
age. Typically the ‘footprint’ is obtained either from measurements of the undamaged
structure, or from a finite element model of the intact structure. An inaccurate finite
element model can introduce large model errors, and degrade or even lead to incorrect
results in the damage detection. However, most suspected damaged civil structures
were constructed several decades ago, and the ‘footprint’ of the structures in the intact
state is not available. To avoid this difficulty, Ratcliffe and Bagaria (1998) proposed
the ‘gapped-smoothing’ technique with modal curvature, which allows for damage
detection in a beam structure without prior knowledge of the undamaged state. The
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‘gapped-smoothing’ technique has now been extended and applied to bi-dimensional
ULS curvature for the plate structures.

The basic idea of the method is that the ULS curvature of the plate, without any
damage, has a smooth surface, and it can be approximated by a cubic polynomial in
two variables:

ũ(x, y) = c0 + c1x + c2y + c3x2 + c4y2 + c5xy + c6x2y + c7xy2 (6.81)

where the coefficients, ci, can be evaluated by a curve-fitting process on the estimated
ULS curvature of the damaged structure on a gapped grid of measuring points as
shown in Figure 6.1. Particularly, to obtain the smoothed ULS curvature at point
(xi, yj), curvature data at all the adjacent points, but not the point (xi, yj) itself, are
used to evaluate the coefficients, ci. This process is repeated for each measuring point to
give a smooth ULS curvature to model the undamaged plate structure. The presence of
the peak in the ULS curvature due to local damage can then be detected by subtracting
the smoothed curvature from the estimated curvature of the damaged structure. The
damage index map is given similar to Equation (6.80) as

d(xi, yj) = [αxx|uD
xx − ũxx| + αyy|uD

yy − ũyy| + αxy|uD
xy − ũxy|]2

(6.82)

6.7.5.1 The un i form load sur face curvature sens i t i v i t y

Consider a damaged plate divided into ne rectangular elements. The characteristic
equation for this undamped structural dynamic system can be expressed as

K{φ}r − ω2
r M{φ}r = 0 (6.83)

It is assumed that any occurrence of structural damage only causes a reduction in local
stiffness, while the mass matrix remains unchanged. The stiffness and mass matrices
of the damaged plate are expressed as

K = K0 +�K =
ne∑

e=1

peke, M = M0 (6.84)

in which ke is the element stiffness matrix of the intact plate and pe indicates the health
status of the corresponding element, where pe = 1 stands for the intact and pe< 1 for
the damaged state. M0 and M are the mass matrices of the damaged and intact states.

Taking the derivative of Equation (6.83) with respect to the stiffness parameter, pe,
and noting the relations in Equation (6.84), gives

(
K − ω2

r M
) ∂{φ}r

∂pe
=
(

2ωr
∂ω

∂pi
M − ke

)
{φ}r (6.85)

The sensitivity of the natural frequency and mode shapes with respect to the parameter,
pe, can be calculated using Nelson’s method (Nelson, 1976).
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To find the sensitivity of the ULS curvature ∂uc(x, y)/∂pe, the sensitivity of the ULS
at the measuring points needs to be calculated first. Taking the derivative of Equation
(6.65) with respect to the parameter, pe, gives

∂u(xi, yj)
∂pe

= ∂uk

∂pe
=

m∑
r=1

n∑
l=1

[
1
ω2

r

(
∂φkr

∂pe
φlr + ∂φlr

∂pe
φkr

)
− 2
ω3

r

∂ωr

∂pk
φkrφlr

]
(6.86)

Substituting the sensitivities of the mode shape and the modal frequency in Equation
(6.15) into Equation (6.86), the ULS sensitivities on the sensor grids are obtained.
Further, taking the derivative of Equation (6.76) with respect to the parameter, pe, and
substituting Equation (6.86), the sensitivity of the Chebyshev coefficients is obtained as{

∂cij

∂pe

}
P×1

=
(
[T(xi)T(yj)]T

Q×P[T(xi)T(yj)]Q×P

)−1
[T(xi)T(yj)]T

Q×P

{
∂u(xi, yj)
∂pe

}
Q×1

(6.87)

If the measuring points are located at the Chebyshev zeros ( xi,
 yj), substituting Equation

(6.86) into Equation (6.78) also gives the sensitivity of Chebyshev coefficients as

∂cij

∂pk
= λ

P

N∑
r=1

M∑
s=1

∂u( xi,
 yj)

∂pk
cos

(
i(r − 0.5)π

N

)
cos

(
j(s − 0.5)π

M

)
,

{
i = 1, · · · , N
j = 1, · · · , M

(6.88)

Finally the sensitivity of the ULS curvature with respect to the stiffness parameter, pe,
can be derived from the Equation (6.79) and calculated as

∂ucxx(x, y)
∂pe

=
N∑

i=1

M∑
j=1

∂cij

∂pe

∂T2
i (x)
∂x2

Tj(y),
∂ucyy(x, y)
∂pe

=
N∑

i=1

M∑
j=1

∂cij

∂pe
Ti(x)

∂T2
j (y)

∂y2

(6.89a)

and

∂ucxy(x, y)
∂pe

=
N∑

i=1

M∑
j=1

∂cij

∂pe

∂Ti(x)
∂x

∂Tj(y)
∂y

(6.89b)

Since the structural damage is assumed as a reduction of local stiffness in Equa-
tion (6.84), the changes in the ULS curvature caused by damage can be expanded
with the first-order Taylor series approximation.

�ucxx(xi, yj) = ucD
xx − ucxx = ∂ucxx

∂p1
�p1 + ∂ucxx

∂p2
�p2 + · · · + ∂ucxx

∂pne
�pne (6.90)

in which ne indicates the number of suspected damaged elements. Similar relations can
be obtained for the curvature changes �ucyy(xi, yj) and �ucxy(xi, yj).
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Applying Equation (6.90) to all the measuring points and rearranging in matrix
form, gives



∂ucxx(x1, y1)
∂p1

∂ucxx(x1, y1)
∂p2

· · · ∂ucxx(x1, y1)
∂pne

...
...

...
...

∂ucxx(xN , yM)
∂p1

∂ucxx(xN , yM)
∂p2

· · · ∂ucxx(xN , yM)
∂pne

...
...

...
...

∂ucyy(xN , yM)
∂p1

∂ucyy(xN , yM)
∂p2

· · · ∂ucyy(xN , yM)
∂pne

...
...

...
...

∂ucxy(xN , yM)
∂p1

∂ucxy(xN , yM)
∂p2

· · · ∂ucxy(xN , yM)
∂pne




�p1

�p2
...

�pne



=



ucD
xx(x1, y1) − ucxx(x1, y1)

...

ucD
xx(xN , yM) − ucxx(xN , yM)

...

ucD
yy(xN , yM) − ucyy(xN , yM)

...

ucD
xy(xN , yM) − ucxy(xN , yM)


(6.91)

or

S · {�pe} = {�uc} (6.92)

It should be noted that Equation (6.91) comprises ne unknown variables and a total
of neq = 3 × Q linear equations. To ensure that a unique over-determined solution can
be found, the condition neq ≥ ne is required. The Singular Value Decomposition (SVD)
with error-truncation technique (Wu and Law, 2005a) is adopted to solve the linearized
equations. To reflect the nonlinear effects from large magnitude damage or interaction
between the variables, the equations are solved by an iterative algorithm as follows.

Step 1. Initialize the vector of stiffness parameter as {pe|ne
e=1}0 = 1.

Step 2. At the beginning of each iteration, construct the ULS curvature sensitivity
matrix, Si, for the ith iteration, and calculate the curvature change, {�uc}i,
due to damage.

Step 3. Solve the increment of parameter vector as, {�pe}i = S∗
i {�uc}i, where S∗

i is
the generalized inverse of Si from the SVD technique.

Step 4. Normalize the increment vector, {�pe}i = {�pe}i ×α, so that the condition
βmin ≤�pe|ne

e=1 ≤βpos is satisfied. α is a scale factor and βmin and βpos are the
convergence limits as shown below.
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Step 5. Evaluate the new stiffness parameter vector as
{

pe
∣∣ne

e=1

}
i
= {

pe
∣∣ne

e=1

}
i−1

·
(1 + {�pe}i). If ε1 = |{�pe}|< ε̄1 or ε2 = |{�uc}i+1|

|{�uc}i | < ε̄2, the solution is consid-

ered converged at
{

pe
∣∣ne

e=1

}
i
. Otherwise, go to Step 2 and repeat the process

until the condition is satisfied.

The scale factor, α, in Step 4 is calculated as α= min
(

βmin
min (�pe|ne

e=1)
, βpos

max (�pe|ne
e=1)

)
, in

which the range [βmin,βpos] is set to compromise the convergence speed and solution
stability. A wider range could speed up the solution convergence, but for some cases,
it may lead to a divergent solution, while a narrower range would have the opposite
effect. The application of this technique in the damage assessment of a plate structure
is referred to in Wu and Law (2005a).

6.7.6 Numerical examples of damage local ization

Two plates with different boundary conditions, namely a four-side simply supported
plate and a cantilever plate, are used as examples to demonstrate how the change
in the ULS curvature can be used as an index to locate damage in a plate. These
examples were chosen because each of them exhibits a different behaviour with the
load distribution. For example, in a uniformly loaded four-side simply supported plate,
both the maximum bending moment and flexural displacement occur at the geometrical
centre of the plate, where flexural damage would most likely occur. In the cantilever
plate, the maximum bending moment and shear force occur at the clamped edge where
the flexural displacement is a minimum, so that the damage is usually in the form of a
crack along the fixed edge.

The configuration of the cantilever plate is shown in Figure 6.2. The dimensions of
the plate are 600 mm × 480 mm with a thickness of 20 mm. The finite element model of
the plate consists of 15 × 12 = 180 equal size square Reissner–Mindlin plate elements.
Three DOFs, which are translational along the Z-axis and rotational along the X- and
Y-axes, are used at each node. The simply supported plate has the same dimensions
and finite element mesh as the cantilever plate, but with different boundary conditions.

It is assumed that damage will affect only the stiffness matrix of a structure. The
change in the stiffness matrix due to damage is modelled by a reduction in the elastic
modulus of the corresponding element. The extent of damage is then linearly related
to the degree of reduction in the elastic modulus, E.

For each damage case, the natural frequencies and corresponding mode shapes are
obtained from the finite element analysis. The ULS curvatures are calculated sepa-
rately using Equations (6.69) and (6.79). Since the three DOFs at each node in the
Reissner–Mindlin plate elements are uncoupled, one can choose whether to calculate
the translational DOF-based ULS curvature or rotational DOF-based ULS curvature.
Results from the simulation study show that the latter is more sensitive to local damage
and less sensitive to random noise than the former. However, since there it is difficult
to measure the rotational DOFs with current dynamic testing techniques, only the
translational DOFs along the Z-axis are used in the study. Equations (6.70), (6.80)
and (6.82) are then used separately in the calculation of the damage index based on
changes in the ULS curvature and the gapped-smoothing technique. The weights αxx,
αyy and αxy are all taken equal to unity. The effectiveness of the methods from the
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Figure 6.2 Finite element model of the cantilever plate (⊗ gapped grid of measuring points)

central difference and the Chebyshev polynomial are compared. The effects of mea-
surement noise, mode truncation, and sensor sparsity on the ULS curvature changes
are also studied with particular damage cases.

6.7.6.1 S imply supported p late

For the four-side simply supported plate, two different damage patterns are simulated
to study the capability of the ULS curvature method for sparsely distributed and closely
distributed damage, respectively. Case 1 has 75% damage in element 56, 50% damage
in element 131 and 25% damage in element 124. Case 2 has 50% damage in both
elements 84 and 97. A comparison of the first five natural frequencies for the intact
case and the two damaged cases are shown in Table 6.1.

6.7.6.2 Study on truncat ion ef fec t

As mentioned in Section 6.6.2, the ULS, as well as the modal flexibility, can be approx-
imately obtained from the few lower modes. However, if too few modes are identified
experimentally, the flexibility or ULS from modal parameters will generally appear
stiffer than it really is, and this affects the results of damage detection. The study of
how many modes and what frequency band is sufficient for the modal-based ULS from
Equation (6.52) leading to reliable damage detection is called truncation effect analy-
sis. Figure 6.3 compares the changes in the exact modal flexibility and the changes in
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Table 6.1 Natural frequencies of the simply supported plate

Mode Natural frequency (Rad/sec) Percentage reduction (%)

Intact Case 1 Case 2 Case 1 Case 2

1 21.324 21.165 21.121 0.751 0.961
2 31.631 31.307 31.572 1.035 0.187
3 36.298 35.858 36.266 1.227 0.088
4 43.094 42.499 42.936 1.400 0.368
5 44.011 43.875 43.670 0.310 0.781

1
6

11
16

1
4

7
10

13
0

2

4

6

8

�10�9

X axisY axis

M
od

al
 fl

ex
ib

ili
ty

 w
ith

 3
 m

od
es

1
6

11
16

1
4

7
10

13
0

1

2

3

�10�7

X axisY axis

U
LS

 w
ith

 3
 m

od
es

1
6

11
16

1
4

7
10

13
0

2

4

6

8

�10�9

X axisY axis

E
xa

ct
 m

od
al

 fl
ex

ib
ili

ty

1
6

11
16

1
4

7
10

13
0

1

2

3

�10�7

X axisY axis

E
xa

ct
 U

LS

1
6

11
16

1
4

7
10

13
0

5

10

15

20

25

X axisY axis

T
ru

nc
at

io
n 

er
ro

r 
(%

)

1
6

11
16

1
4

7
10

13
0

5

10

15

20

25

X axisY axis

T
ru

nc
at

io
n 

er
ro

r 
(%

)

Figure 6.3 Comparison of truncation effect on ULS with modal flexibility

the exact ULS due to damage Case 1 is with the modal parameters from the first three
modes. The exact ULS is calculated using all the modes available in the finite element
model. The percentage truncation errors were evaluated as

{eij}du = {duij}R − {duij}T

max {duij}R

× 100% (6.93)

where {duij}R, {duij}T are the changes of the exact ULS and the changes of modal
truncated ULS respectively. The truncation error on the modal flexibility was com-
puted similarly. It can be seen that the ULS converges more rapidly than the modal
flexibility with the first three lower modes. The truncation errors in ULS are less than
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Figure 6.4 Damage index map due to damage Case 1
(a) curvature from central difference; (b) curvature from Chebyshev polynomial;
(c) curvature from Chebyshev polynomial with gapped-smoothing technique

6%, whereas the maximum truncation error in modal flexibility approaches 25%. In
the following studies, all the ULS curvatures for the intact and damaged plates are
estimated from the first three modes.

6.7.6.3 Compar i son of curvature methods

The changes in the curvature of the uniform load surface for the plate with damage Case
1 are plotted in Figure 6.4. Figures 6.4(a), 6.4(b) and 6.4(c) show the results computed
from Equations (6.70), (6.70) and (6.82), respectively, when there is no information
on the intact state. It can be clearly seen that there is a peak located at each damage
element. The more severely the element is damaged, the more sharp and tall the peak
looks. According to Equations (6.70), (6.70) and (6.82), the absolute value of the dam-
age indices, or visually the height of the peak, increases exponentially with the change
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in ULS curvature, and the 25% damage in element 124 shows only a very tiny peak
compared with the 75% damage in element 56. Nevertheless, it does not mean the dam-
age with 25% stiffness reduction is the limit the methods can detect. For this case, both
the central difference method (Figure 6.4(a)) and the Chebyshev polynomial method
(Figure 6.4(b)) can successfully locate all three damaged elements, whereas, when prior
knowledge of the intact structure is not available, the Chebyshev polynomial method
with gapped-smoothing technique failed to locate the damage in element 124.

6.7.6.4 Reso lut ion of damage loca l izat ion

It is well known that most damage-index methods can localize the spatially distributed
damage quite accurately, but have difficulty detecting contiguous multiple damages.
Damage Case 2 is specially simulated to study the effectiveness of the ULS curvature
method for closely distributed damages. Figure 6.5 shows the results of damage detec-
tion for this case. It can be seen that the two damaged elements 84 and 97 are located
close together at the centre of the plate, and they can be separately detected by inspect-
ing the change in the ULS curvature, computed either from central difference or by the
Chebyshev polynomial. However, when given the modal data for the damaged state
only, although the damaged region can be localized from Figure 6.5(c), it is hard to
tell exactly which element is damaged.

6.7.6.5 Cant i lever p late

It is always a difficult problem for damage index methods to reliably identify dam-
age near the supported boundary. For a one-side clamped slab, it is intuitive that the
damage is more likely to develop near and along the fixed edge where the maximum
bending moment occurs. Two typical damage cases for the cantilevered slab are simu-
lated. Case 3 has 75% damage in element 15, 50% damage in elements 13 and 14 and
25% damage in element 12. Case 4 has 75% damage in element 8, 50% damage in
elements 7 and 9 and 25% damage in elements 6 and 10. The damage in Case 3 starts
from one end of the fixed edge and continues along the edge across four elements. The
damage in Case 4 models a band of damage symmetrically located in the middle and
along the fixed edge across five elements. The natural frequencies for the intact and
damaged structures are listed in Table 6.2.

The results of damage detection for damage Cases 3 and 4 are shown in Figures 6.6
and 6.7, respectively. It can be seen from Figure 6.6 that the damage band near the
boundary can be detected by inspecting the ULS change calculated by both methods,
even without the initial curvature of intact structure. The ULS curvature by Chebyshev
polynomial method gives relatively better localization of the damage than those from
central difference with a parabolic curve surface compared with a sharp change from
central difference method with more than one peak, while the damage location cannot
be exactly validated when the intact structure curvature is absent. A similar observation
can be obtained from Figure 6.7.

6.7.6.6 Ef fec t o f sensor spars i t y

In a real experiment, it is not practical to have a very fine sensor mesh to measure
the dynamic response of all the nodes in the finite element model. To study the effect
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Figure 6.5 Damage index map due to damage Case 2 (Legends as Figure 6.4)

Table 6.2 Natural frequencies of the cantilever plate

Mode Natural frequency (Rad/sec) Percentage reduction (%)

Intact Case 3 Case 4 Case 3 Case 4

1 8.051 7.932 7.879 1.478 2.183
2 11.305 10.987 11.296 2.813 0.080
3 16.561 16.32 16.541 1.455 0.121
4 22.109 21.667 22.105 1.999 0.018
5 24.765 24.442 24.310 1.304 1.872

of sensor sparsity on the ULS curvature method, the sensor mesh is reduced to 7 × 5
and the locations are shown in Figure 6.2, while the nodes grid of the finite element
model is 16 × 13. The damage Case 1 is studied again with this new sensor grid on the
four-side plate. First of all, the sensors are placed in an equal spatial grid as shown in
Figure 6.2, and the central difference method is applied to estimate the ULS curvature
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Figure 6.6 Damage index map due to damage Case 3 (Legends as Figure 6.4)

changes due to damage. Then the same number of sensors is placed on the grid points
corresponding to the Chebyshev zeros, and the Chebyshev polynomial approximation
method is used to calculate the ULS curvature changes in the finite element grid with
M = 7 and N = 5. The Chebyshev polynomial method is applied again when the modal
data of the intact structure is absent, and the ULS curvature for the intact structure
is approximated by a cubic smooth polynomial function with the gapped-smoothing
technique. Corresponding results of damage detection are plotted in Figure 6.8.

It can be seen from Figure 6.8(b) that the Chebyshev polynomial method can still
localize, with confidence, all three damaged elements with different extents of stiffness
reduction from 25% to 75%. The central difference method fails to detect the damage
with 25% stiffness reduction. The absolute values of curvature change in the damaged
region degrade dramatically when compared with Figure 6.4(b), and the detected area
of suspected damaged region is much larger than before. When information on the
intact structure is not available, it is fortuitous to find in Figure 6.8(c) that the damaged
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Figure 6.7 Damage index map due to damage Case 4 (Legends as Figure 6.4)

element 124, which is missing in Figure 6.4(c), can just be detected even with the
polynomial interpolation from the coarse sensor mesh. However, the reason for this
observation is unknown.

6.7.6.7 Ef fec t o f measurement no i se

According to Equation (6.52), the ULS is estimated from experimentally measured
natural frequencies and mode shapes, which, in practice, are liable to be contami-
nated by the measurement noise. Thus, to take account of the noise in experimentally
measured modal parameters, 1% random noise is added to the natural frequencies
and 5% noise is added to the mode shapes. It is assumed that the random noise is
uniformly distributed with zero mean and unit variance.

Damage Case 3 in the cantilever plate is studied. Firstly, the ULS curvature change
was estimated by the central difference method and plotted in Figure 6.9(a). It can
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Figure 6.8 Damage index map due to damage Case 1 with less dense sensor mesh (Legends as
Figure 6.4)

be seen that the damage index is highly influenced by the measurement noise, and
the damaged elements cannot be located from this noisy map of curvature change. To
remove the noise effect on the ULS curvature, especially the high peaks near the free
edge of the plate, a low order (M = 6, N = 6) Chebyshev polynomial function of two
variables is used to smooth the oscillatory ULS. The coefficients of this approximation
are obtained from Equation (6.76). Figures 6.9(b) and 6.9(c) show the estimated ULS
curvature changes as the damage index map, with and without the prior knowledge
of intact structure, respectively. It is clear that a low order Chebyshev polynomial
approximation on the noisy ULS could dramatically suppress the random noise effect
in comparison with Figure 6.9(a).

6.7.6.8 When the damage changes the boundary cond i t ion of the s t ructure

An alternative approach to model damages similar to Cases 3 and 4 is adopted by free-
ing all the boundary connections within the damage region of the plate. The resulting
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Figure 6.9 Damage index map due to damage Case 3 with random noise (Legends as Figure 6.4)

damage index map looks similar to what the one in the last study. This indicates that
the ULS curvature method is applicable even though the damage changes the boundary
condition of the structure.

6.8 Conclusions

This chapter presents the recent developments in the modal-based approach for damage
detection of structures. The modal information of mode shape and modal frequencies
has been integrated into modal flexibilities and uniform load surface for a higher
sensitivity to local changes. Their curvatures are subsequently used to model the spatial
information of the local damage. Further, the sensitivities of these parameters with
respect to local damage have been analytically presented for the quantification of the
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local changes. All the above have helped to answer the questions: Does any damage
occur? Where does it occur? and what is the amplitude? Other questions such as:
what type of damage it is? will need the inclusion of different types of damage models
described in Chapter 3 to provide the answer.

These modal-based methods have the disadvantage of limited measured information
and may not be applicable to large civil structures with thousands of DOFs. Other
types of approaches are sought to provide more measured information economically
and they are discussed in Chapters 7 and 8.
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Chapter 7

System identification based
on response sensitivity

7.1 Time-domain methods

System identification can also be conducted with information directly from the time
response. The time-domain approach has an advantage over the frequency-domain
method in that there is an unlimited supply of measured information. Moreover, the
damping properties of structures cannot be readily estimated in the frequency-domain
method. Another advantage is that there is no requirement for complete measurements
in space and state. However, the detrimental effect from measurement noise (Hjelm-
stad and Banan, 1995) remains significant with time-domain methods (Ge and Soong,
1998). This chapter addresses the system identification approach based on the sen-
sitivity of the measured response with respect to a system parameter. Features of the
approach with different applications are presented.

7.2 The response sensitivity

For a general finite element model of a linear elastic time-invariant structure, the
equation of motion is given by

[M]{ẍ} + [C]{ẋ} + [K]{x} = [B]{F} (7.1)

where [M], [C] and [K] are the system mass, damping and stiffness matrices, respec-
tively. Rayleigh damping is adopted, which is of the form [C] = a1[M] + a2[K], where
a1 and a2 are constants to be determined from two modal damping ratios; {ẍ}, {ẋ} and
{x} are the acceleration, velocity and displacement response vectors of the structure;
{F} is a vector of applied forces with matrix [B] mapping these forces to the associated
degrees-of-freedom (DOFs) of the structure. The dynamic responses of the structures
can be obtained by direct numerical integration using the Newmark method.

7.2.1 The computational approach

For the perturbation of a system parameter, �α, the perturbed equation of motion
is obtained by differentiating both sides of Equation (7.1) with respect to the system
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parameter. Assuming the parameter is related only to the stiffness of the dynamic
system, the following is obtained

[M]
{
∂ẍ
∂αi

}
+[C]

{
∂ẋ
∂αi

}
+[K]

{
∂x
∂αi

}
= −∂[K]

∂αi
{x}−a2

∂[K]
∂αi

{ẋ}(i = 1, 2, . . .N)(7.2a)

where {∂x/∂αi }, {∂ẋ/∂αi } and {∂ẍ/∂αi } are vectors of the displacement, velocity and
acceleration sensitivities with respect to the unknown parameter; and αi is the param-
eter in the ith element or other stiffness parameter of the system. A similar equation
can be written for the perturbation of parameters which are related to the system mass
and damping matrices.

Let Ÿ = ∂ẍ
∂αi

, Ẏ = ∂ẋ
∂αi

andY = ∂x
∂αi

,

thus,

[M]{Ÿ} + [C]{Ẏ} + [K]{Y} = −∂[K]
∂αi

{x} − a2
∂[K]
∂αi

{ẋ} (7.2b)

Since {x} and {ẋ} have been obtained from Equation (7.1), the right-hand-side of
Equation (7.2b) can be considered as an equivalent forcing function, and the equation
is of the same form as Equation (7.1). Therefore, the sensitivities Ÿ, Ẏ and Y can also
be obtained using the Newmark method.

7.2.2 The analyt ical formulation

Equation (7.1) may be rewritten in the state-space formulation as

Ẋ = K∗X + F (7.3)

where X =
[

x
ẋ

]
2n×1

, K∗ =
[

0 I
−M−1K −M−1C

]
2n×2n

, F =
[

0
M−1[B]F

]
2n×1

and X represents a vector of state variables with a length 2n containing the displace-
ments and velocities of the nodes. These differential equations are then converted to
discrete equations using exponential matrix representation

Xk+1 = AXk + DFk (7.4)

A = eK∗h, D = K∗−1(A − I)

where A is the exponential matrix and (k + 1) denotes the value at the (k + 1)th time
step of computation. The time step h represents the time increment between the variable
states Xk and Xk+1 in the computation. I is a unit matrix. The dynamic response of
the system can be obtained from Equation (7.4) with zero initial conditions. Once the
displacement and velocity responses are obtained, the acceleration response can be
obtained by directly differentiating the velocity response.

The first differential of the dynamic response with respect to a physical parameter
of the system, αi, can be obtained by differentiating both sides of Equation (7.3) with
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respect to parameter αi of an element as

∂Ẋ
∂αi

= K∗ ∂X
∂αi

+ ∂K
∗

∂αi
X

= K∗ ∂X
∂αi

+
 0

−M−1 ∂K
∂αi

x

+
 0

−a2M−1 ∂K
∂αi

ẋ

(i = 1, 2, . . .N) (7.5)

It is noted that the system mass matrix is not dependent on the physical parameter,
αi, and thus the partial derivative ∂M/∂αi in Equation (7.5) vanishes. Let Y = ∂X/∂αi,
where Y is the vector of displacement and velocity differentials with respect to
parameter αi in the time domain.

Put P =
 0

−M−1 ∂K
∂αi

x

 and G =
 0

−a2M−1 ∂K
∂αi

ẋ


Equation (7.5) can then be rewritten as

Ẏ = K∗Y +
[
P + G

]
(7.6)

It is noted that Equation (7.6) has the same form as Equation (7.3). The displacement
and velocity response sensitivities can then be obtained in a discretized form similar to
Equation (7.4) as,

Yk+1 = AYk + D[Pk + Gk] (7.7)

and the acceleration response sensitivity can be obtained by direct differentiating the
velocity sensitivity.

7.2.3 Main features of the response sensit iv ity

The main features of the response sensitivity have been studied (Lu and Law, 2007a)
with an example of a plane frame structure to study the sensitivities generated for dif-
ferent types of excitation. The frame structure consists of eleven Euler–Bernoulli beam
elements with twelve nodes each with three DOFs as shown in Figure 7.1. The frame is
fixed at nodes 1 and 12, modelled with large translational and rotational stiffnesses of
1.5 × 1010 kN/m and 1.5 × 109 kN-m/rad, respectively. The mass density of the mate-
rial is 2.7 × 103 kg/m3 and the elastic modulus of the material is 69 × 109 N/m2. The
height and width of the frame are 1.2 m and 0.6 m, respectively, and the cross-sectional
dimensions of the member are b = 0.01 m and h0 = 0.02 m with the second moment of
inertia in the plane of bending equal to 6.67 × 10−9 m4. The first five undamped natural
frequencies of the intact frame are 13.095, 57.308, 76.697, 152.410 and 196.485 Hz.
The Rayleigh damping model is adopted with the damping ratios of the first two modes
taken equal to 0.01. The equivalent Rayleigh coefficients a1 and a2 are 1.3395 and
4.52 × 10−5, respectively.

Sinusoidal, impulsive and random excitations are applied separately at node 2 in the
x-direction to generate the dynamic responses and their sensitivities with respect to a
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Figure 7.1 The plane frame structure

system parameter of the frame. The elastic modulus of material in element 1 is selected
as the perturbed parameter. The response is measured along the x-direction at node
9 with a sampling rate of 500 Hz including the first five modes of the structure. The
sinusoidal force is taken as F(t) = 10 sin (2πft)N, where f is the excitation frequency
taken equal to the fundamental modal frequency of the frame and at 25 Hz, which is
between the first and second modal frequencies. The impulsive force lasting for 0.1
second is expressed in the following form with a magnitude of 10 N.

F(t) =
{

200(t − 0.05) 0.05 ≤ t ≤ 0.1
200(0.15 − t) 0.1 ≤ t ≤ 0.15

The normally distributed random force is between 0 N and 10 N.
The time histories of these excitation forces, the displacement response and its sen-

sitivity, plus the acceleration response sensitivity with respect to the perturbed elastic
modulus of material are shown in the following figures. Since the magnitudes of all the
excitation forces are equal, a direct comparison of the responses and their sensitivities
is possible.

Figure 7.2 gives the sensitivities from sinusoidal excitation at the undamped fun-
damental frequency of the structure. The amplitude of the displacement response
increases gradually until the energy input is balanced by the energy dissipated from
damping where the amplitude becomes relatively stable. In the computation of the
sensitivities from Equation (7.2), the forcing function consists of both the displace-
ment response and the velocity response. The velocity is approximately one thousand
times larger than the displacement. However, the second term on the right-hand-side
of the equations is one hundred times smaller than the first term because of the small
damping coefficient, a2. Therefore, the forcing term in Equation (7.2) is dominated
by the displacement response, which increases in the first stage and becomes relatively
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Figure 7.2 Response and sensitivities from sinusoidal excitation at a modal frequency

constant later. Therefore, the amplitude of the sensitivities obtained also increases
with time and it becomes stable when the energy input and energy dissipation are
balanced.

Figure 7.3 gives the sensitivities from sinusoidal excitation at 25 Hz, which is
between the first and the second natural frequencies of the structure. The displace-
ment response consists of a combination of responses mainly at the first and second
natural frequencies of the structure. This can be explained by the modal superposi-
tion principle. This response becomes relatively stable with time under the damping
effect. The sensitivities obtained under the forcing function are dominated by the dis-
placement response and they consist of components at both frequencies, but with the
component at the first natural frequency dominating. The sensitivities diminish with
time but maintain a small amplitude of vibration because of the relatively stable input
contributed by the displacement response.

Figure 7.4 gives the response sensitivities from the impulsive excitation. The dis-
placement response is dominated by the first natural frequency of the structure with
the higher frequency components diminish rapidly with damping. The response reduces
to zero with time. The sensitivities obtained from Equation (7.2) increase when the
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Figure 7.3 Response and sensitivities from sinusoidal excitation at 25 Hz

input energy is larger than the dissipated energy and they reach a maximum at around
1.2 s. All the sensitivities diminish to zero with time under the damping effect.

Figure 7.5 gives the response sensitivities from normally distributed random excita-
tion. The first few modes of the structure are excited with a strong contribution to the
displacement response. The sensitivities obtained from Equation (7.2) are under the
force excitation dominated by the displacement response with vibration at the first five
natural frequencies of the structure. The sensitivities consist of a combination of com-
ponents at the first few natural frequencies of the structure with both increasing and
decreasing amplitude under the damping effect. The sensitivities will not diminish to
zero with time as the displacement responses always exist under the random excitation.

The shapes of the three types of response sensitivities in time are similar but they
are different for different excitation. A comparison of the sensitivities in Figures 7.2
to 7.5 shows that sinusoidal excitation gives higher sensitivities than random force
excitations, while those from impulsive excitation exhibit the smallest sensitivity. This
may be because there is only one impact acting on the structural frame in the duration
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Figure 7.4 Response and sensitivities from an impulsive excitation

studied, while the other excitations act on the structure continuously in the same period
giving a higher energy input. The sensitivities from excitation at a modal frequency of
the structure is large compared to those from excitation at a frequency which is not
a modal frequency. The sensitivities are dependent on the displacement response of
the structure as seen in Equation (7.2). These observations can further be explained
from the viewpoint of energy input: the largest energy input on the structure is from
the sinusoidal excitation at a natural frequency, such that the sensitivities are largest
under this excitation. The smallest energy input is from the impulsive force and the
sensitivities are the smallest. For further discussion on this, see Lu and Law (2007a).

7.3 Applications in system identification

7.3.1 Excitation force identif ication

An important type of inverse problem in structural dynamics is the force identification
or force reconstruction from measured dynamic responses. There are three main classes
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Figure 7.5 Response and sensitivities from normally distributed random excitation

of this problem. One major class is where the initiation site is known (Williams and
Jones, 1948). Another major class of the problem is where both the force history and its
location are unknown. Examples include using the modal response data to determine
the location of impact forces on the read/write head of computer disks (Briggs and Tse,
1992) and using wave propagation responses to determine the location of structural
impacts (Doyle, 1994). The third class of the problem is the identification of moving
forces on structures. Examples include vehicle–bridge interaction forces, which are
very important for bridge engineering. Since the forces are moving, it is difficult to
measure them directly, while direct measurement of the forces using instrumented
vehicles are expensive and are subjected to bias (Yang and Yau, 1997) and results from
computation simulations are subject to modelling errors (Peters, 1986).

In this section, the sensitivities of the dynamic response with respect to the param-
eters of the force (frequency and amplitude) are calculated in the time domain. The
force identification problem thus becomes a parameter identification problem.
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7.3.1.1 The response sens i t i v i t y

For a general finite element model of a linear elastic time-invariant structure, the
dynamic governing equation is given by Equation (7.1). The jth input force can be
modelled in the following generalized form of a sine series

F j(t) = F j
0 +

n∑
i=1

F j
i sinωj

i t (7.8)

where Fj
0, Fj

i and ωj
i are the parameters of the jth force. Substituting Equation (7.8)

into Equation (7.1), and performing differentiations on both sides of the equation with
respect to the parameters of each force, gives

[M]

{
∂ẍ

∂Fj
0

}
+ [C]

{
∂ẋ

∂Fj
0

}
+ [K]

{
∂x

∂Fj
0

}
= [B] (j = 1, 2, . . .Nf )

[M]

{
∂ẍ

∂Fj
i

}
+ [C]

{
∂ẋ

∂Fj
i

}
+ [K]

{
∂x

∂Fj
i

}
= [B] sinωj

i t (i = 1, 2, . . .n;

j = 1, 2, . . .Nf )

[M]

{
∂ẍ

∂ω
j
i

}
+ [C]

{
∂ẋ

∂ω
j
i

}
+ [K]

{
∂x

∂ω
j
i

}
= [B]F j

it cosω j
it (i = 1, 2, . . .n;

j = 1, 2, . . .Nf )

(7.9)

where {∂x/∂(•)}, {∂ẋ/∂(•)} and {∂ẍ/∂(•)} are the displacement, velocity and acceleration
sensitivities with respect to the unknown parameter, and Nf is the number of external
forces. The dynamic responses of the structure and its sensitivities can be obtained
from these equations by direct numerical integration using the Newmark method.

The inverse problem is solved using the penalty function method (Friswell and
Mottershead, 1995) with

{δz} = [S]{δP} (7.10)

where {δz} is the error in the measured output; {δP} is the perturbation in the
parameters; and [S] is the two-dimensional sensitivity matrix, which is the change
in acceleration response with respect to the force parameters in the time domain.
Equation (7.10) is an ill-conditioned problem. In order to provide bounds to the solu-
tion, the damped least-squares method (DLS) (Tikhonov, 1963) discussed in Chapter 2
is adopted and singular-value decomposition is used in the pseudo-inverse calculation.

7.3.1.2 Exper imenta l ver i f i cat ion

The above method is verified experimentally in the laboratory with a steel beam.
The length, width and height of the beam are 2.1 m, 0.025 m and 0.019 m, respec-
tively, and the elastic modulus and mass density of material are 2.07 × 1011 N/m2

and 7.832 × 103 kg/m3 respectively. The beam is suspended at its two ends as shown
in Figure 7.6. It is discretized into twenty Euler–Bernoulli beam elements with two
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Figure 7.7 Time histories of the true and identified force and acceleration
(___ experiment; ---- identified)

DOFs at each node. The first five measured natural frequencies of the beam are 22.87,
62.76, 123.05, 203.24 and 303.45 Hz, respectively, from hammer test and the first
five calculated natural frequencies of the beam are 22.83, 62.74, 123.05, 203.00 and
302.87 Hz, respectively. The sinusoidal force is applied at the nodal point of the first
vibration mode of the beam 480 mm from the left free end with an exciter model LDS
V450. A 10-second horizontal acceleration obtained from the mid-span of the beam
is used to identify the input excitation force. The sampling frequency is 2000 Hz.

A sinusoidal excitation with an amplitude of 2.5 N and a frequency equal to half
of the first natural frequency of the beam is applied. The force is modelled with five
sinusoidal terms plus a constant term. The identified force converges after 19 iterations
with the optimal regularization parameter equals to 0.15. Figure 7.7 shows the first
four seconds of the true and identified input forces and the measured and reconstructed
accelerations from the experiment, respectively. The identified input force is seen as
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matching the true input force very well except at the peaks, and the reconstructed
acceleration almost overlaps the measured acceleration.

The frequency spectrum of the true and the identified force time histories are shown
in Figure 7.8. There is a general reduction in the higher frequency components of the
identified force compared with the true force. This is because the initial model of the
force does not cover a wide spectrum with the high frequency components.

7.3.2 Condit ion assessment from output only

Recent development with system identification is more related to the identification of
structural parameters from output-only measurements (Chen and Li, 2004; Shi et al.,
2000a). The sensitivities of the dynamic response with respect to the structural physical
parameters and parameters of the input excitation force are calculated from Equations
(7.2) and (7.9). Perturbations in the structural parameters are identified together with
the input excitation forces using an iterative algorithm (Lu and Law, 2007b) as shown
below. The location of the input force is assumed known in the identification.

7.3.2.1 Algor i thm of i terat ion

Measurements from two states of the structure are required. The first set of measure-
ments from the undamaged structure serves to update the system parameters with a
known set of force inputs. While in the measurements on the second stage with damage,
both the excitation force and the damaged structure are unknown, and the following
iterative algorithm is used in the identification. The updated finite element model of
the structure serves as the reference model in the subsequent comparison.
(A) Iteration to update the excitation force parameters

Starting with an initial guess of the unknown force parameter vector {(PF)0} and the
set of physical parameter {PS}0 from the updated finite element model of the structure,
the procedure of iteration is given as:

Step 1: With the initial force vector and vector of the undamaged system, Equation
(7.1) is solved at the j = k + 1 iteration step for the displacement vector {x} using
the Newmark method and subsequently for the acceleration vector {ẍ}.
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Step 2: The sensitivity matrix [SF] of the response with respect to the different force
parameters is obtained from Equations (7.1) and (7.9) using again the Newmark
method at the j = k + 1 iteration step with the force vector {(PF)k} obtained from
the previous step.

Step 3: Find {(PF)k+1} from the damped least-squares solution of Equation (7.10).
Step 4: Repeat Steps 1 to 3 until the following convergence criteria is satisfied.∥∥∥∥ {(PF)k+1} − {(PF)k}

{(PF)k+1}
∥∥∥∥ ≤ TolF.

Step 5: The final vector {(PF)k+1} obtained is taken as the modified set of force
parameters {PF} for the second stage of iteration.

(B) Iteration to update for the physical parameters of the structure
With the modified excitation-force parameter vector{PF} obtained from (A) above,

the set of physical parameters is then obtained as below:

Step 6: The vector of the physical parameter {PS}0 from the updated finite element
model of the structure is taken as the set of initial values. Equation (7.1) is solved
at the j = k + 1 iteration step for the displacement vector {x} using the Newmark
method and subsequently for the acceleration vector, {ẍ}.

Step 7: The sensitivity matrix [SS] of the response with respect to the different phys-
ical parameters of the structure is obtained from Equations (7.1) and (7.2) again
using the Newmark method at the j = k + 1 iteration step with the initial physical
parameter vector {(PS)k} obtained from a previous step.

Step 8: Find {(PS)k+1} from the damped least-squares solution of Equation (7.10).
Step 9: Repeat Steps 6 to 8 until the following convergence criteria is reached.∥∥∥∥ {(PS)k+1} − {(PS)k}

{(PS)k+1}
∥∥∥∥ ≤ TolS.

Step 10: The final vector {(PS)k+1} obtained is taken as the modified set of physical
parameters {PS}for the next cycle of iteration on the force parameters.

The identified excitation force obtained in (A) can be further improved using the
updated physical parameters obtained in (B) and repeating Steps 1 to 5. The vector of
physical parameters can also be further improved using the modified excitation force
and repeating Steps 6 to 10.

The convergence of this computation strategy has been proved by Li and Chen (1999)
in the estimation of the wind load and system parameters at the same time. While the
uniqueness of the solution is not checked in this work. This and other algorithms for
solving both the unknown forces and system parameters, such as Ling and Haldar
(2004) and Shi et al. (2000a), do not guarantee a unique solution. They all depend on
the effectiveness of the minimization of the objective function not falling into the local
minimum. The uniqueness of the algorithms remains an unsolved problem for further
research.
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Figure 7.9 Experimental setup

7.3.2.2 Exper imenta l ver i f i cat ion

The algorithm is demonstrated with an experiment on a simply supported steel beam as
shown in Figure 7.9. The parameters of the beam are: length 2.0 m, width 25 mm and
height 19 mm, the elastic modulus and mass density of material are 2.065 × 1011 N/m2

and 7.832 × 103 kg/m3, respectively. It is discretized into sixteen Euler beam elements
with three DOFs at each node. A mass of 2.61kg is hanging by a fine nylon rope at
node 11 of the beam, and the excitation generated by cutting the rope will serve as the
input force. The true value of the force is 25.58 N and is a ‘step force’ acting at the
initial time t = 0. Mathematically, it is expressed as

f (t) =
{

Mg t = 0
0 t > 0

The flexural rigidities of all the elements and the assumed impulsive force are taken
as the unknowns in the inverse analysis. The initial values of the damage parameters
for all the finite elements are all zero. The initial vector of the force parameters is
{(PF)0} = [0, 0, 0, 0, 0, 0, 2π, 4π, 6π, 8π, 10π]T .

The sampling frequency is 2000 Hz. The acceleration responses collected by B&K
4370 accelerometers at nodes 7 and 9 within the duration 0.5 to 1.5 seconds were used
for the identification. The first 0.5-second data is skipped because of the many high
frequency components in the response caused by the impulsive force generated by the
falling weight. A commercial data logging system, INV303, and the associated signal
analysis package, DASP2003, are used in the data acquisition. Damage is introduced
by removing an equal thickness of 0.5 mm of material from both sides of the beam
over a length of 9 mm in element 13, with one edge of the damage zone starting at
node 13. The equivalent reduction in the second moment of inertia of element 13 is
found to be 11.3% after condensing the middle DOFs to the two end nodes 13 and
14 by Guyan reduction. The first five natural frequencies of the undamaged and the
damaged beam are found to be very close to the measured values, indicating a model
which is accurate enough for the subsequent damage identification.

The algorithm is applied for the system identification. Both the convergence limits
in the force and parameter identification are 1.0 × 10−6. The iteration stops after two
cycles. All the force parameters are identified simultaneously. The required number of
iterations for convergence in the second cycle of iteration is 19 and 154 for the force
and the damages, and the corresponding optimal regularization parameters are 6.02
and 13.74, respectively. Figure 7.10 shows the identified damage where element 13 is
noted to have 13.5% reduction, which is close to the true value. But there is a large
false identification in element 12. This observation can be explained since element 12 is
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Figure 7.11 Identified force time history

immediately adjacent to the damage and the vibration energy in the element would be
much more disturbed than those in other elements, as discussed by Shi et al. (2000b).
Figure 7.11 shows the identified time history of the force with a peak of 25.6 N at
t = 0, which is very close to the true value. Figure 7.12 shows the time histories of
the reconstructed acceleration using the identified input force and the corresponding
measured acceleration smoothed with a twenty terms orthogonal polynomial function
to remove the measurement noise (Zhu and Law, 2001). The time series match each
other very well except for the high frequency components at the beginning of the time
histories.

7.3.3 Removal of the temperature effect

A plane truss element is taken to illustrate this approach. The elemental stiffness matrix
of the element is

[ke]0 = EA
l0


1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

 (7.11)
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Figure 7.12 Reconstructed and experimental accelerations
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where l0 is the original element length. When taking into account a temperature
difference �T, the elemental stiffness matrix is given as

[ke]�T = EA
l


1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

 (7.12)

l = l0 + α�Tl0 = l0(1 + α�T) (7.13)

where α is the thermal expansion coefficient which equals 12.5 × 10−6/◦C for steel.
Since α�T  1,

1
l

= 1
l0(1 + α�T)

≈ 1
l0

(1 − α�T) (7.14)

Equation (7.12) can be rewritten as

[ke]�T = EA(1 − α�T)
l0


1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

 (7.15)
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with the temperature effect on the member cross-sectional dimensions ignored.
Performing differentiation on both sides of Equation (7.1) with respect to the
temperature difference �Tj for the jth member, gives

[M]
{
∂ẍ
∂�Tj

}
+ [C]

{
∂ẋ
∂�Tj

}
+ [K]

{
∂x
∂�Tj

}
= − ∂[K]

∂�Tj
{x} (7.16)

The sensitivity of the response with respect to the temperature difference can be
obtained from Equation (7.16) by direct integration. It is common in large-scale struc-
ture to find viscoelastic materials, the properties of which can drastically change with
temperature affecting not only the stiffness, but also the damping of the structure. It is
assumed that the materials used in the following studies are non-viscoelastic, and thus
the system mass and damping will not be affected by this temperature difference.

The difference of responses at time ti obtained from the analytical model and the
experimental damaged structures, �Rti , can be expressed as a first-order differential
equation with respect to the system coefficients of all the DOFs of the system. The
differential of the response with respect to the temperature difference can also be
calculated for each finite element. When writing in the form of Taylor’s first-order
approximation,

�Rti =
ne∑

k=1

6∑
i=1

6∑
j=1

∂Rti

∂mijk
�mijk +

ne∑
k=1

6∑
i=1

6∑
j=1

∂Rti

∂cijk
�cijk +

ne∑
k=1

6∑
i=1

6∑
j=1

∂Rti

∂kijk

×�kijk +
ne∑

j=1

∂Rti

∂�Tj
�Tj (7.17)

The pattern of temperature distribution in a structure can be obtained from temper-
ature sensors or from a theoretical model on the temperature distribution. However,
the temperature differences in all members are assumed equal for simplicity in this
study, i.e. �T1 =�T2 = . . . =�TN . The terms of the temperature difference can then
be moved to the left-hand-side of Equation (7.29) as

�Rti −
ne∑

j=1

∂Rti

∂�Tj
�Tj =

ne∑
k=1

6∑
i=1

6∑
j=1

∂Rti

∂mijk
�mijk +

ne∑
k=1

6∑
i=1

6∑
j=1

∂Rti

∂cijk

×�cijk +
ne∑

k=1

6∑
i=1

6∑
j=1

∂Rti

∂kijk
�kijk

or �R′
ti =

ne∑
k=1

6∑
i=1

6∑
j=1

∂Rti

∂mijk
�mijk +

ne∑
k=1

6∑
i=1

6∑
j=1

∂Rti

∂cijk
�cijk +

ne∑
k=1

6∑
i=1

6∑
j=1

∂Rti

∂kijk
�kijk

(7.18)
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When a lump mass matrix is adopted, Equation (7.18) becomes

�R′
ti =

n∑
k=1

∂Rti

∂mk
�mk +

ne∑
k=1

6∑
i=1

6∑
j=1

∂Rti

∂cijk
�cijk +

ne∑
k=1

6∑
i=1

6∑
j=1

∂Rti

∂kijk
�kijk

where �mk is the kth lump mass and �R′
ti is the difference of dynamic response from

the two states of the structure with the temperature effect removed. This response with
the temperature effect removed can then be used in Equation (7.18) for the system
identification of the structure.

7.3.4 Identif ication with coupled system parameters

For a structural component made of isotropic elastic material, the elemental stiffness
matrix is proportional to the elastic modulus of material and the geometric parameters
of the element. The stiffness matrix of the structure is expressed as the summation of
the elemental stiffness matrices as,

[K] =
N∑

i=1

[k]i
e (7.19)

where N is the number of elements in the finite element model and [k]i
e is the stiffness

matrix of the ith element.
Take a planar beam-column element as an example. Let Ei, Ii and Ai be the elastic

modulus of material, the second moment of inertia of cross-section and the sectional
area of the ith element, respectively. A physical damage affects all these parameters
differently, and they become

Ei
d = Ei

0(1 + αi
E) (−1 ≤ αi

E ≤ 0)
Ii

d = Ii
0(1 + αi

I) (−1 ≤ αi
I ≤ 0)

Ai
d = Ai

0(1 + αi
A) (−1 ≤ αi

A ≤ 0)
(7.20)

where Ei
0, Ii

0 and Ai
0 are the parameters of the intact structure; Ei

d, Ii
d and Ai

d are the
parameters of the damaged structure; and αi

E, αi
I and αi

A represent the damage indices
for the above parameters denoted by their subscripts. Equation (7.20) gives

Ei
dIi

d = Ei
0Ii

0(1 + αi
E + αi

I + αi
Eα

i
I); Ei

dAi
d = Ei

0Ai
0(1 + αi

E + αi
A + αi

Eα
i
A) (7.21)

Performing differentiations on both sides of Equation (7.1) with respect to the different
damage indices, e.g. αi

E of the ith element, gives,

[M]
{
∂ẍ

∂αi
E

}
+ [C]

{
∂ẋ

∂αi
E

}
+ [K]

{
∂x

∂αi
E

}
= −∂[k]e

i

∂αi
E

{x} − a2
∂[k]e

i

∂αi
E

{ẋ}(i = 1, 2, . . .N)

(7.22)

where {∂x/∂αi
E}, {∂ẋ/∂αi

E} and {∂ẍ/∂αi
E} are the displacement, velocity and acceleration

sensitivities with respect to the unknown index αi
E, and they can then be obtained

© 2009 Taylor & Francis Group, London, UK

  



216 Damage mode ls and a lgor i thms

by direct integration of Equation (7.22) using the Newmark method. The sensitivities
with respect to other parameters can similarly be obtained.

It should be noted that the indices αi
E, αi

I and αi
A are used for the system identification

instead of the original physical parameters Ei, Ii and Ai.

7.3.5 Condit ion assessment of structural parameters
having a wide range of sensit iv it ies

When two sets of parameters with distinctly different sensitivities with respect to local
damage exist, the model updating approach updates those parameters with the larger
sensitivity while those which are less sensitive remain relatively constant in the updating
process. This scenario often exists with system identification, and the following strategy
should be applied for a good updated result.

The set of parameters discussed in the last section is adopted in an example with
a frame structure. The initial set of damage indices {αE}, {αI} and {αA} is set equal
to zero. The sensitivity with respect to these three indices have been checked and it
is found that the one for {αA} is several orders smaller than those for the other two
indices (Lu, 2005). Therefore, the following two-stage iterative algorithm is adopted
here for the solution of Equation (7.10):

Stage 1: Fix αA and update the indices αE and αI.

Step 1: Solve the dynamic response vector {R} from Equation (7.1) at time step
j = k with known (αE,αI)T

k and compute the error vector {δRk}.
Step 2: Solve Equation (7.22) at time step j = k with known (αE,αI)T

k for the
sensitivities {∂R/∂αi

E
} and {∂R/∂αi

I
} to form the sensitivity matrix.

Step 3: Find (αE,αI)T
k+1 from Equation (7.10).

Step 4: Repeat Steps 1 to 3 until
∥∥(αE,αI)T

k+1 − (αE,αI)T
k

∥∥≤ toler1, where toler1 is
a small prescribed value.

Stage 2: Fix the updated values of αE and αI obtained from Stage 1 and update αA.

Step 1: Solve the response vector {R} from Equation (7.1) at time step j = k with
known (αA)T

k and compute the error vector {δRk}.
Step 2: Solve Equation (7.22) at time step j = k with known (αA)T

k for the sensitivity{
∂R/∂αi

A

}
to form the sensitivity matrix.

Step 3: Find (αA)T
k+1 from Equation (7.1).

Step 4: Repeat Steps 1 to 3 until
∥∥(αA)T

k+1 − (αA)T
k

∥∥≤ toler2, where toler2 is a small
prescribed value.

Repeat Stages 1 and 2 in the next iteration until
∥∥Rk+1 − Rk

∥∥≤ a small prescribed
value.

7.4 Condition assessment of load resistance of isotropic
structural components

The last few sections have presented algorithms and considerations in applying the
response-sensitivity based approach for system identification. The following gives an
experimental verification of this approach with a three-dimensional frame structure in
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(b) Finite element model 
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Figure 7.13 The truss structure and its finite element model

the laboratory. It is similar to the frame structure discussed in Chapter 3 but with a
triangular-shaped cross-section.

The frame was assembled using the Meroform M12 construction system as shown in
Figure 7.13(a). The structure consists of thirty-seven 22 mm diameter alloy steel tubes
jointed together with seventeen standard Meroform ball nodes. The main material and
geometric properties of a frame member are shown in Table 7.1. Each tube is fitted
with a screwed end connector which, when tightened into the node, also clamps the
tube by means of an internal compression fitting. All the connection bolts are tightened
with the same torsional moment to avoid asymmetry or nonlinear effects caused by
man-made assembly errors. The length of all the horizontal, vertical and diagonal tube
members between the centres of two adjacent balls is exactly 0.5m after assembly. The
structure orients horizontally and is fixed into a rigid concrete support at three nodes
at one end.

© 2009 Taylor & Francis Group, London, UK

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10991-8&iName=master.img-005.jpg&w=185&h=119
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10991-8&iName=master.img-006.jpg&w=128&h=170


218 Damage mode ls and a lgor i thms

Table 7.1 Material and geometrical properties of frame
member

Properties Member

Young modulus [N/m2] 2.10E−11
Area [m2] 6.597E−5
Density [kg/m3] 1.2126E−4
Mass [kg] 0.32
Poisson ratio 0.3
Moment of area Iy[m4] 3.645E−9
Moment of area Iz[m4] 3.645E−9
Torsional rigidity J[m4] 7.290E−9

The finite element model consists of thirty-seven Euler–Bernoulli beam elements and
seventeen nodes as shown in Figure 7.13(b) and the dimensions of the structure are
also shown in this figure. Each node has six DOFs, and altogether there are 102 DOFs
for the whole structure.

The total weight of the ball and half weight of the bolt, which connects the ball to
the beam elements, are placed on each node as the lumped mass. Another half of the
weight of the bolt is included as part of the beam element. Each ball node and bolt
weighs 230 grams and 90 grams respectively. An additional mass of 72 grams is added
to each joint to balance the mass of the moving accelerometers.

Model errors may come from two sources. The first one is the lumped mass at each
node of the structure. Half the weight of each bolt is assigned to the related node as a
lumped mass, and this may be incorrect. Another possible error is the elastic modulus
of the material. Therefore, the proportion of the weight of each bolt at the related node
and the elastic modulus of the material are taken as the design parameters for model
updating. It is noted that there may be other sources of modelling errors, for example,
the uncertainty of the boundary conditions and the flexibility at the ball joints. Since
the structure was fixed into a rigid concrete support at three ball joints at one end and
it was assembled using the Meroform M12 construction system with all the connection
bolts tightened using the same torsional moment, these possible errors are considered
very small and are not updated in the calculation.

7.4.1 Dynamic test for model updating

Excitation by impact hammer was applied at node N6 in the y and z directions using
a B&K model 8202 force hammer. There were only 14 free nodes with 28 measurable
DOFs in the vertical and horizontal directions, while those in the axial direction of
the truss were not measured. All the sensors were aligned in the same direction as the
impact excitation. A commercial data logging system, INV303e, and the associated
signal analysis package, DASP2003, were used in the data acquisition and modal
analysis. Four seconds of responses were recorded for each group of sensors with five
hammer impacts during this period. The sampling rate was 2020 Hz. A convergence
criteria of 1 × 10−6 was adopted.

The first two seconds of the vertical dynamic responses obtained at nodes 3 and
4 were used. Due to the limitation of the computer, these measured responses were
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re-sampled to have a sampling rate of 505 Hz. There are two unknown parameters
in the first stage of updating, which is much smaller than the 505 × 2 × 2 equations
formed from the measured responses. Results show that 62.5% of the weight of each
bolt should be placed at the related node as a lumped mass and the elastic modulus of
material is 99.3% of the original value. The first eleven updated natural frequencies
agree well with the measured natural frequencies with a maximum relative error of
1.86%. The calculated and the experimental mode shapes were also checked with the
Modal Assurance Criteria (Moller and Friberg, 1998) and the two sets of mode shapes
match each other very well. These show that the updated finite element model can
accurately represent the intact structure for the next stage of damage detection.

7.4.2 Damage scenarios

Local faults are introduced by replacing intact members with damaged ones. The
artificial damage is of two types. Type I is a perforated slot cut in the central length of
the member. The slot is 134.77 mm long, and the remaining depth of the tube in the
cut-cross-section is 14.75 mm. Type II is the removal of a layer of material from the
surface of the member. The external diameter of the tube is reduced from 22.02 mm
to 21.47 mm, and the weakened section is 202 mm long, located in the middle of the
beam leaving 99 mm and 75 mm length of original tube cross-section on both sides.
Figure 7.13(c) gives a close up view of the damaged frame members.

Damage scenario E1 has Type II damage in the fourth member. Damage scenario E2
includes an additional Type I damage in the second element. The slot opens vertically
(global z-direction). Damage scenario E3 is similar to the last scenario but with the
slot in element two opened horizontally (global y-direction). The equivalent damages
computed by the Guyon method are listed in Table 7.2. Each of the above scenarios
involves four types of damage in the beam element, i.e. a reduction in cross-sectional
area A, the polar moment of inertia J and the moment of inertia Iz and Iy.

7.4.3 Dynamic test for damage detection

A falling weight test was then conducted on the structure for each damage scenario.
A 5.15 kg mass was hung at node N17. Free vibration was introduced by a sudden
release of the mass. The time histories from selected accelerometers were recorded.
These responses were intentionally selected to be not in close proximity to the dam-
aged elements. The sampling rate was 2020 Hz and the time duration was 8 seconds
for each test covering the whole duration of vibration caused by the falling weight
excitation. The orthogonal polynomial function (Zhu and Law, 2001) was used to
remove the measurement noise in the acceleration data. The required iteration number
for convergence and the corresponding optimal regularization parameter are shown in
Table 7.3.

Damage scenario E1

Only data in the first two seconds of the response from two accelerometers (node 3,
z-direction and node 11, y-direction) were used for the damage identification. The
measured acceleration was re-sampled at 505 Hz.

Four sets of damage indices, namely, αJ ,αIy , αIz and αA were updated with a total
of 37 × 4 = 148 unknowns, which is smaller than 505 × 2 × 2 equations. Figure 7.14
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Figure 7.14 Identified results for scenario E1 (* denotes false positive)

Table 7.2 Equivalent and identified damage extent in the damaged elements.

Damage Scenario E1 Scenario E2 Scenario E3
parameter

Element 2 Element 4 Element 2 Element 4 Element 2 Element 4

αJ — 6.8%/4.5% 26.7%/24.5% 6.8%/4.4% 26.7%/24.6% 6.8%/4.2%
αIy — 3.4%/2.5% 6.7%/1.7% 3.4%/2.3% 23.3%/21.5% 3.4%/2.6%
αIz — 3.4%/2.7% 23.3%/22.0% 3.4%/2.8% 6.7%/1.4% 3.4%/2.9%
αA — 2.3%/1.8% 8.8%/8.0% 2.3%/1.6% 8.8%/7.5% 2.3%/1.5%

Note: •/• denotes the equivalent and identified damage extent respectively

shows the identified changes in the four sets of physical parameters. The damaged
elements are correctly identified, while there are alarms in elements 2, 13, 17, 20 and
27 with prominent identified values in the group of parameters. It is noted that both
the location and the pattern of damage are identified successfully. The identified values
at the damaged element in Table 7.2 are very close to the equivalent damage values
(Table 7.2).
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Table 7.3 Iteration number and regularization parameter required for convergence

Damage indices Scenario E1 Scenario E2 Scenario E3

Iteration number αE and αI 19 21 22
αA 15 18 18

λopt αE and αI 0.0031 0.0047 0.0053
αA 0.0024 0.0026 0.0026
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Figure 7.15 Identified results for scenario E2 (* denotes false positive)

Damage scenario E2

Data in the first two seconds of the response from accelerometers at node 9 (z-direction)
and node 11 (y-direction) were used for the damage identification. Results in Fig-
ure 7.15 show that the location of damage and the damage patterns can be identified
correctly, apart from some alarms in Iy, where elements 26, 29 and 37 are incorrectly
identified as having a change larger than 1%. The identified values at the damaged
element in Table 7.2 are also very close to the equivalent damage values (Table 7.2).

Damage scenario E3

Data in the first two seconds of the response from accelerometers at node 9
(z-direction) and node 11 (y-direction) were used for the damage identification. Results
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Figure 7.16 Identified results for scenario E3 (* denotes false positive)

in Figure 7.16 show that the location of the damage and the damage patterns are iden-
tified correctly, apart from some alarms in Iz, where elements 15, 16, 23, 30, 26 and
37 are incorrectly identified as having a change larger than 1.0%. The identified values
at the damaged element in Table 7.2 are very close to the equivalent damage values
(Table 7.2).

The false positives in the identified results

There are cases where an element is identified with a relatively large change in the
parameter as shown in the results for the damage scenarios studied. They are classified
as false positives at the first glance. But, after a more detailed inspection of the four
sets of parameter changes, all these alarms correspond to only a change in one of the
parameters, not all of them. It is known that local damage in a member will have
changes in all the physical properties of the member and the presence of all these
changes are found only in the damaged elements. But the elements with the alarm
correspond to only one occurrence among the four parameters. This does not meet
the required conditions for a true damage. Therefore, these occurrences with a large
change in one single parameter are indeed false positives and are errors arising from
the inverse computation.
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7.5 System identification under operational loads

7.5.1 Exist ing approaches

System identification from output only requires separate identification of the excitation
forces and the system parameters iteratively as shown in Section 7.3.2. The following
example of identification of the structural parameters under a group of moving loads
on top of a continuous beam is presented for illustration.

7.5.1.1 The equation of motion

A continuous uniform Euler–Bernoulli beam subject to a set of moving loads
Pl(t), (l = 1, 2, . . . , Np) is shown in Figure 7.17. The loads are assumed to be mov-
ing as a group at a prescribed velocity v along the axial direction of the beam from left
to right. The governing equation can be written as (Lin and Trethewey, 1990)

Mbü + Cbu̇ + Kbu = �P (7.23)

where Mb, Cb and Kb are the structural mass, damping and stiffness matri-
ces of the beam; u, u̇ and ü denote the nodal displacement, velocity and accel-
eration vectors, respectively; P = {

P1(t), P2(t), . . . , PNp(t)
}T are the moving loads;

�= {
�1�2 . . . �l . . . ..�Np

}
is a 2(N + 1) × Np matrix; and N is the number of finite

element in the beam. Figure 7.18 shows the equivalent nodal loads for the ith beam
element loaded by a moving force Pl(t). �l = {00 . . . ψi . . . ..0}T and ψi is the vector of
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the shape functions evaluated for the lth force written as:

ψi =



1 − 3
(

x̂l(t) − (i − 1)le
le

)2

+ 2
(

x̂l(t) − (i − 1)le
le

)3

(
x̂l(t) − (i − 1)le

) ( x̂l(t) − (i − 1)le
le

− 1
)2

3
(

x̂l(t) − (i − 1)le
le

)2

− 2
(

x̂l(t) − (i − 1)le
le

)3

(
x̂l(t) − (i − 1)le

) (( x̂l(t) − (i − 1)le
le

)2

−
(

x̂l(t) − (i − 1)le
le

))



T

,

((i − 1)∗le ≤ x̂l(t) < (i)∗le) (7.24)

where
{
x̂l(t), l = 1, 2, . . . , Np

}
are the locations of the moving loads at time t and le is

the length of the element.
The stiffness matrix of a finite element is assumed to decrease uniformly with

damage, and the flexural rigidity, EIi, of the ith finite element of the beam becomes
αiEIi when there is damage. The fractional change in stiffness of an element can be
expressed as

�Kbi = (Kbi − K̃bi) = (1 − αi)Kbi (7.25)

where Kbi and K̃bi are the ith element stiffness matrices of the undamaged and damaged
beam, respectively and �Kbi is the stiffness reduction of the element.

7.5.1.2 Damage detect ion f rom disp lacement measurement

The displacement w(x, t) at measurement location xs can be obtained from the shape
functions and nodal displacements of the beam as

w(xs, t) = ϕsu (j − 1)le ≤ xs < jle (7.26)

where

ϕs = {
0, 0, . . . , 0,ϕj, 0, . . . , 0

}
,

ϕj =
{

1 − 3
(

x
le

)2

+ 2
(

x
le

)3

, x
(

x
le

− 1
)2

, 3
(

x
le

)2

− 2
(

x
le

)3

, x
(

x
le

)2

− x2

le

}
,

x = xs − (j − 1)le.

and for Ns measuring points at {xs, s = 1, 2, . . . , Ns}, Equation (7.26) can be written as

w = ϕu (7.27)

where w = {w(x1, t), w(x2, t), . . . , w(xNs , t)}T and ϕ = {
ϕ1, ϕ2, . . . , ϕNs

}T .
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The nodal responses in Equation (7.27) can be written as

u = (ϕTϕ)−1ϕTw (7.28)

and the required ü and u̇ can be obtained using the orthogonal function expansion
(Zhu and Law, 2001). The strain at point xs and time t can be written as

ε(xs, t) = −z
∂2w(xs, t)
∂x2

(7.29)

where z represents the distance from the neutral axis of the beam to the bottom surface.
Similar to Equation (7.27), Equation (7.29) can be written in matrix form as

ε = ϕ′′u (7.30)

where ε = {ε(x1, t), ε(x2, t), . . . , ε(xNs , t)}T .

ϕ′′
s = {0, 0, . . . ,ϕ′′

j , 0, . . . , 0};

ϕ′′
j

=
{
− 6

l2
e

+ 12x
l3
e

,
6x
l2
e

− 4
le

,
6
l2
e

− 12x
l3
e

,
6x
l2
e

− 2
le

}
;

x = xs − (j − 1)le

Similar to Equation (7.25), the equation of motion of the damaged beam under moving
loads can be written as

Mbü + Cbu̇ + f(u) = �P(t) (7.31)

where f(u) is the elastic restoring force of the system, and

f(u) = K̃bu (7.32)

From Equation (7.31), the moving loads can be obtained as follow if the restoring
forces are known

P(t) = (ΦTΦ)−1ΦT [Mü + Cu̇ + f(u)] (7.33)

where I is the unity matrix. The moving loads in Equation (7.31) can be obtained from
Equation (7.10) using the damped least-squares method. And the element damage
index matrix is obtained from Equation (7.25) after the moving loads are identified
from minimizing the following function

J(α) = ∥∥F(u) − f (u)
∥∥2 (7.34)

where F(u) = ΦPidentify(t) − Mü − Cu̇; and Pidentify(t) is the set of identified moving loads
from the last iteration of the moving load identification.

Since the restoring forces and moving loads are all unknown, the iterative algorithm
shown below is adopted to solve the problem (Zhu and Law, 2007a).
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1. Calculate the nodal displacements or strains from measurements by Equation
(7.27) or (7.30).

2. Use the orthogonal function expansion to calculate the nodal velocity and acceler-
ations. Twenty terms in the expansion is recommended for modelling the moving
loads.

3. Initially assume there is no damage in the beam: α0 = {1, 1, . . . , 1}T .
4. Identify the moving loads Pidentify(t) from the measured responses using Equation

(7.10) with regularization (Zhu and Law, 2002).
5. Calculate the elastic restoring forces from F(u) = ΦPidentify(t) − Mü − Cu̇.
6. Identify the damage index using Equations (7.25) and (7.34).
7. Calculate the error for convergence:

Error1 = ‖Pi+1 − Pi‖
‖Pi‖ × 100%, Error2 = ‖αi+1 − αi‖

‖αi‖ × 100%

Convergence is achieved when the sum of these two errors is a minimum.
8. When the computed errors do not converge, repeat Steps 4 to 7.

7.5.2 The general ized orthogonal function expansion

The excitation was modelled in the generalized form of a sine series in Section 7.3.1,
and the identification was successful using five terms in the series. But in the case of
a moving force, which is a function of both space and time, the modelling with a sine
series would be cumbersome. A more general form of representation is presented in
this section, which is in the form of a generalized orthogonal function expansion.

The excitation force f (t) in the time period [0, T] can be expressed in terms of a

Chebyshev series, f (t) =
Nf∑
i=1

CiTi(t) t ∈ [0, T], where Ti(t) is the first kind of orthogonal

Chebyshev polynomial, and


T1(t) = 1√

π
, T2(t) =

√
2
π

(
2
T

t − 1
)

T3(t) =
√

2
π

[
2
(

2
T

t − 1
)2

− 1

]
, . . ., Ti+1 (t) = 2

(
2
T

t − 1
)

Ti (t)− Ti−1 (t)

(7.35)

where Nf is the degree of the polynomial and {Ci, i = 1, 2, . . .Nf } is the vector of coef-
ficients in the expansion. The frequency component of the forcing function can be
modified by adopting different numbers of terms in the orthogonal function. The sen-
sitivities of each of these coefficients, Ci, with respect to the different system parameters
can be found from equations similar to Equation (7.9) for the damage detection.
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Figure 7.19 Sensor arrangements on bridge deck.
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Figure 7.20 Section A-A of bridge deck.

7.5.3 Application to a bridge-vehicle system

7.5.3.1 The veh ic le and br idge sys tem

This section gives a numerical example of residual pre-stress force identification in a
three-span concrete bridge deck. A full-scale bridge deck, as shown in Figure 7.19, is
adopted for this example. The bridge is a three-span continuous structure with a total
length of 73 m and a skew angle of 27◦. It has two lanes in a single carriageway with a
total width of 10.58 m. This bridge has a longitudinal slope of 6.75% and a two cells
box-girder cross-section. The mesh of the finite element model and the typical cross-
section of the bridge deck are shown in Figures 7.19 and 7.20 respectively. The elastic
modulus and mass density of concrete are E = 2.6 × 1010 Pa and ρ= 2450 kg/m3,
respectively, and the damping ratio for the first two modes are assumed as ξ= 0.012.
The pre-stress force along each of the three vertical webs of the box-section has a
distribution calculated from the design drawing with P = 2.0648 × 107 N at the two
ends of the tendon.

The Mindlin–Reissner plate, including the effect of the transverse shear deformation,
is adopted for this study with the shear deformable plate element and the membrane
element combined. The finite element model of the bridge deck consists of 296 nodes
and 330 flat shell elements, and there are 3 × 36 = 108 elements with pre-stress in the
webs. The model of the pre-stress effect described in Section 3.2.6 is adopted. The
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Figure 7.21 The seven degrees-of-freedom vehicle.

natural frequencies from the finite element model are 4.60, 6.27, 7.60, 11.13 and
14.27 Hz.

A two-axle three-dimensional vehicle travels across the bridge deck. The vehicle is
simulated as a two-axle three-dimensional vehicle model with seven DOFs according to
the H20-44 vehicle design loading in AASHTO, as shown in Figure 7.21. The vehicular
body is assigned three DOFs, corresponding to the vertical displacement (yt1), rota-
tion about the transverse axis (pitch or θt1), and rotation about the longitudinal axis
(roll or φt1). The four wheels are provided with four DOFs in the vertical displacements
(y1, y2, y3, y4). Therefore, the total number of independent DOFs is seven. The coupled
vehicle-bridge system equations of motion are presented as follows:

Mb 0 HbMv1

0 Mv1 0
0 0 Mv2

{ ü
Z̈

}
+
 Cb HbCv21 HbCv22

0 Cv11 Cv12

−CtHT
b Cv21 Cv22 + Ct

{ u̇
Ż

}

+
 Kb HbKv21 HbKv22

0 Kv11 Kv12

−KtHT
b Kv21 Kv22 + Kt

{ u
Z

}
=


HbMs

0
f (t)


(7.36)

where Mb, Cb and Kb are the mass, damping and stiffness matrices of the bridge
model, respectively; Z = {yt1φt1θt1y1y2y3y4}T ; Mv1, Mv2, Cv11, Cv12, Cv21, Cv22, Kv11,
Kv12, Kv21 and Kv22 are the mass, damping and stiffness sub-matrices of the vehi-
cle, respectively; Ms is the static load vector of the vehicle; and ü, u̇ and u are the
nodal acceleration, velocity and displacement vectors, respectively; f (t) is the matrix
of moving interaction forces. The force vectors acting at an arbitrary location on a
shell element are transformed as nodal loads using the Hermite interpolation function
(Wu, 2007).
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Figure 7.22 Identified wheel-load time histories with Class D road roughness.

7.5.3.2 The res idua l pre-s t ress ident i f i cat ion

The three masses of the vehicle are: mc = 17000 kg, ma1 = 600 kg and ma2 = 1000 kg,
while other parameters are referred to in Zhu and Law (2002). The velocity of the
vehicle is 20 m/s and the travelling path is as shown in Figure 7.19. The sampling
rate is 100 Hz and road roughness (ISO, 1995) Classes C and D are considered. The
response generated by the passage of the vehicle is used for the identification.

The changes in local pre-stress are simulated as 5% pre-stress loss in the 9th element
of the left web, in the 18th element of the middle web and in the 18th, 19th, 27th
and 29th elements of the right web and 10% in the 28th element of the right web.
This simulates the pre-stress changes in a single element or a group of elements in the
structure.

The location of the vehicle is assumed to be known in the identification. The inter-
action forces are modelled with 600 terms in the orthogonal expansion of the forces as
shown in Equation (7.35). The initial set of coefficients of the orthogonal function is
set equal to unity. The initial set of pre-stress forces in the webs is taken equal to those
of the original structure. Nine vertical acceleration responses, as shown in Figure 7.19,
are used in the identification. The convergence criterion is 1.0 × 10−5.
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Table 7.4 Errors in the identified results.

Identified forces or Error (%)
residual pre-stress

Class C Class D

Left web 9th 1.20 × 10−7 9.95 × 10−7

Middle web 18th 3.86 × 10−8 2.49 × 10−7

18th 1.74 × 10−7 2.41 × 10−7

19th 4.42 × 10−7 5.50 × 10−7

27th 6.15 × 10−7 1.27 × 10−6

Right web 28th 1.26 × 10−7 2.07 × 10−6

29th 5.61 × 10−7 3.71 × 10−6

Left front wheel load 9.77 × 10−9 3.34 × 10−8

Right front wheel load 7.27 × 10−9 3.29 × 10−8

Left rear wheel load 9.43 × 10−9 1.99 × 10−8

Right rear wheel load 5.50 × 10−9 1.45 × 10−8

Table 7.5 Information at convergence of results.

Class C Class D

Required iterations 5 4
Error of convergence 8.48 × 10−8 3.39 × 10−6

Regularization parameter λ 1.9103 × 10−14 3.0366 × 10−15

There are 375 time instances with the vehicle on the bridge deck, and hence there
are 9 × 375 = 3375 simultaneous equations in Equation (7.36), which is larger than
4 × 600 + 108 = 2508 unknowns in the inverse problem.

Figure 7.22 gives the identified force time histories with Class D road roughness
compared with the true values. The identified forces are overlapping with the true
values with very small errors as shown in Table 7.4. The errors in the identified pre-
stress of the selected elements are also shown in Table 7.4 while those in the unselected
elements are close to zero. Table 7.5 gives the associated information for convergence.
The method is shown to be able to effectively identify the interaction forces and local
pre-stress change simultaneously in a large complex bridge structure.

7.6 Conclusions

The response sensitivity approach leads to analytical relationships between the dynamic
response and the system parameters, including the excitation force. Different features
of system identification using this approach could be performed with these analytical
relationships as illustrated in this chapter. Developments described in this chapter
lead to further development of another time response approach based on wavelets as
discussed in the next chapter.
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Chapter 8

System identification with wavelet

8.1 Introduction

In the last decade, wavelet theory has been one of the emerging and fast-evolving math-
ematical and signal processing tools for vibration analysis. Staszewski (1998) presented
a summary of recent advances and applications of wavelet analysis for damage detec-
tion. Kijewski and Kareem (2003) studied wavelet transforms for system identification
in civil engineering. The main advantage of the continuous wavelet transform is its abil-
ity to provide information simultaneously in time and scale with adaptive windows.
Wang and Deng (1999) proposed that the wavelet transform be directly applied to
spatially distributed structural response signals, such as surface profile, displacement,
strain and acceleration measurements. The continuous wavelet transform of the funda-
mental mode shape and its Lipschitz exponent was used to detect the damage location
and extent in a beam (Hong et al., 2002; Chang and Chen, 2003; Douka et al., 2003;
Gentile and Messina, 2003). The main purpose of this application is to check the
spatially distributed response signals that can pick up damage information.

8.1.1 The wavelets

Many existing vibration-based approaches for damage detection require the modal
properties with the aid of the traditional Fourier transform. There are a few inherent
characteristics of the Fourier transform that might affect the accuracy of the damage
identification. Firstly, the Fourier transform is a data reduction process and informa-
tion on the structural condition might be lost during the process (Sun and Chang,
2002a). Secondly, the Fourier transform is a global analysis technique, and its basis
functions are global functions. Any perturbation of the function at any point in the time
domain influences every point in the frequency domain. This means that the Fourier
transform does not exhibit the time dependency of signals and it cannot capture the
evolutionary characteristics that are commonly observed in the measured signals from
structures under random excitation (Gurley and Kareem, 1999). Damage is typically
a local phenomenon which tends to be captured in high frequency modes. These high
frequencies are normally closely spaced but poorly excited. All these factors add diffi-
culty to the implementation of Fourier-transform-based damage detection techniques
(Sun and Chang, 2002a).
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There has been increasing interest in the wavelet-based approach in recent years due
to its success in several applications. The wavelet transform decomposes a signal using
short duration waves, allowing a refined decomposition, rather than decomposition
with infinite duration sinusoids as with Fourier transforms. The short duration wave,
known as the wavelet basis, has a higher energy density than the sinusoid in Fourier
transforms in general. Therefore, in many cases, the wavelets require fewer coefficients
than Fourier transforms to describe a signal. The wavelet transform is a two-parameter
transform. For the time signal, the two domains of the wavelet transform are time, t,
and scale, a. The scale, a, can be approximately related to the frequency, ω. The main
advantage gained by using wavelets in signal analysis is the ability to perform local
analysis of a signal, i.e. to zoom in on any interval of time or space. Wavelet analysis
is thus capable of revealing some hidden aspects of the data that other signal analysis
techniques fail to detect. This property is particularly important for damage detection
applications. The wavelet transform is becoming a promising technique for the damage
identification of structures (Staszewski, 1998). A brief background to wavelet analysis
is given below.

The continuous wavelet transform of a signal f (t) is defined as

Wf (a, b) = 1√
a

∫ +∞

−∞
f (t)ψ∗

(
t − b

a

)
dt (8.1)

where a and b are the dilation and translation parameters, respectively, and ψ(t) is
the mother wavelet. Both a and b are real numbers and a must be positive; ψ∗(t)
indicates its complex conjugate. It should be noted that a wavelet family associated
with a mother wavelet, ψ(t), is generated by two operations: dilation and translation.
The translation parameter, b, indicates the location of the moving wavelet window
in the wavelet transform. Shifting the wavelet window along the time axis implies
examining the signal in the neighbourhood of the current window location. Therefore,
information in the time domain remains, in contrast with the Fourier transform where
the time domain information becomes invisible after the integration over the entire
time domain. The dilation parameter, a, indicates the width of the wavelet window.
A small value of a implies a higher-resolution filter, i.e. the signal is examined through
a narrow wavelet window in a smaller scale.

The signal f (t) may be recovered or reconstructed by an inverse wavelet transform
of Wf (a, b) defined as

f (t) = 1
Cψ

∫ +∞

−∞

∫ +∞

−∞
(Wf )(a, b)ψ

(
t − b

a

)
1
a2

da db (8.2)

where Cψ is defined as following with the mother wavelet satisfying the admissibility
condition to ensure the existence of the inverse wavelet transform.

Cψ =
∫ +∞

−∞
|ψ(ω)|2

|ω| dω < +∞ (8.3)
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The existence of the integral in Equation (8.3) requires that

�(0) = 0, i.e.
∫ +∞

−∞
ψ(x)dx = 0 (8.4)

In practical signal processing, a discrete version of the wavelet transform is often
employed by discretizing the dilation parameter a and the translation parameter b. In
general, the procedure becomes much more efficient if dyadic values of a and b are
used, i.e.

a = 2j b = 2jk j, k ∈ Z (8.5)

where Z is a set of positive integers. For a special choice of ψ(t), the corresponding
discretized wavelets {ψj,k} are defined as

ψj,k(t) = 2−j/2ψ(2−jt − k) j, k ∈ Z (8.6)

constitute an orthonormal basis for L2(R). Using the orthogonal basis, the wavelet
expansion of a function f (t) and the coefficients of the wavelet expansion are defined as

f (t) =
∑
j,k

dj,kψj,k(t) (8.7)

and

dj,k =
∫ +∞

−∞
f (t)ψ∗

j,k(t)dt (8.8)

In the discrete wavelet analysis, a signal can be represented by its approximations and
details. The detail Dj and the approximation Aj at level j are defined as

Dj =
∑
k∈Z

αj,kψj,k(t), AJ =
∑
j>J

Dj (8.9)

8.1.2 The wavelet packets

A possible drawback of the wavelet transform is that the frequency resolution is quite
poor in the high frequency region. Hence, there are difficulties when discriminating
signals containing high frequency components. The wavelet packet transform is an
extension of the wavelet transform that provides complete level-by-level decomposi-
tion. The wavelet packets are alternative bases formed by linear combinations of the
usual wavelet functions (Coifman and Wickerhauser, 1992). As a result, the wavelet
packet transform enables the extraction of features from signals containing stationary
and non-stationary components with arbitrary time-frequency resolution. See Sun and
Chang, 2002a, on the use of wavelet packet signature to detect damage.

Wavelet packets inherit properties such as orthonormality and time-frequency local-
ization from their corresponding wavelet functions. A wavelet packet ψi

j,k(t) is a
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function with three indices where integers i, j and k are the modulation, scale and
translation parameters, respectively,

ψi
j,k(t) = 2j/2ψi(2jt − k), i = 1, 2, 3, . . . (8.10)

The wavelet packet decomposition (WPD) of a time-domain signal f (t) can be cal-
culated using a recursive filter-decimation operation (Coifman and Wickerhauser,
1992).

The wavelet functions ψi
j,k(t) can be obtained from the following recursive relation-

ships:

ψ2j(t) = √
2

∞∑
k=−∞

h(k)ψi(2t − k) (8.11)

ψ2j+1(t) = √
2

∞∑
k=−∞

g(k)ψi(2t − k) (8.12)

The first two wavelets are the usual scaling function φ(t) and the mother wavelet
function ψ(t), where

ψ0(t) = φ(t), ψ1(t) = ψ(t) (8.13)

The discrete filters h(k) and g(k) are the quadrature mirror filters associated with the
scaling function and the mother wavelet function. Most of the existing mother wavelets
are developed to satisfy essential properties such as the invertibility and orthogonality.

The Wavelet Transform (WT) consists of one high frequency term from each level
and one low-frequency residual from the last level of decomposition. The Wavelet
Packet Transform (WPT), however, contains a complete decomposition at every level
and hence can achieve a higher resolution in the high frequency region. The recursive
relations between the jth and the (j + 1)th level components are

f i
j (t) = f 2i−1

j+1 (t) + f 2i
j+1(t), (8.14)

f 2i−1
j+1 (t) = Hf i

j (t), (8.15)

f 2i
j+1(t) = Gf i

j (t), (8.16)

where H and G are the filtering–decimation operators related to the discrete filters
h(k) and g(k) in such a way that

H{·} =
∞∑

k=−∞
h(k − 2t), (8.17)

G{·} =
∞∑

k=−∞
g(k − 2t), (8.18)
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After the j level of decomposition, the original signal f (t) can be expressed as

f (t) =
2j∑

i=1

f i
j (t) (8.19)

The wavelet packet component signal f i
j (t) can be represented by a linear combination

of wavelet packet functions, ψi
j,k(t), as

f i
j (t) =

∞∑
k=−∞

ci
j,k(t)ψi

j,k(t), (8.20)

where the wavelet packet coefficients ci
j,k(t) can be obtained from

ci
j,k(t) =

∫ ∞

−∞
f (t)ψi

j,k(t)dt (8.21)

provided that the wavelet packet functions are orthogonal, i.e.

ψm
j,k(t)ψn

j,k = 0 if m 	= n

Each component in the wavelet packet decomposition can be viewed as the output
of a filter tuned to a particular basis function. At the lower decomposition level, the
WPD yields a good resolution in the time domain but a poor resolution in the frequency
domain. While, at the higher decomposition level, the WPD results in a good resolution
in the frequency domain but a poor resolution in the time domain. For the purpose
of structural health monitoring, discrete information in the frequency domain is more
important and thus a high level of the WPD is often required to detect the minute
changes in the signals.

8.2 Identification of crack in beam under operating load

An early application of wavelet theory in the spatial domain crack identification of
structures was proposed by Liew and Wang (1998). The wavelet in the spatial domain
is calculated based on finite difference solutions of a mathematical representation of the
structure in question. The crack location is indicated by a peak in the variations of
the wavelets along the length of the beam. A classical measurement system such as the
impulse hammer technique, is only able to measure mode shapes at a few discrete points
of a transversely vibrating beam. Therefore, new sensors or measuring techniques are
needed to pick up the perturbations caused by the presence of a crack. Recently the
possibility of measuring displacements on denser grids (a few hundred of points) by
using a laser scanning vibrometer was reported (Pai and Young, 2001).

One of the questions that is attracting significant research attention is related to
the use of the structural response from operational dynamic loads in a damage detec-
tion procedure. The operational loads for bridges are moving vehicular loads, and the
operational deflection shapes are the deflections of the bridge deck subject to moving
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vehicular loads. Mazurek and Dewolf (1990) conducted the laboratory studies on
simple two-span girders under moving loads with structural deterioration by vibra-
tion analysis. Structural damages were artificially introduced by a release of supports
and insertion of cracks. Piombo et al. (2000) modelled the vehicle-bridge interaction
system as a three-span orthotropic plate subject to a seven degrees-of-freedom (DOF)
multi-body system with linear suspensions and tyre flexibility. The wavelet technique
was used to extract the modal parameters. Lee et al. (2002) studied the identification
of the operational modal properties of a bridge structure using vibration data caused
by the traffic loadings, with damage assessment based on the estimated modal param-
eters using the neural networks technique. Majumder and Manohar (2003) developed
a time-domain formulation to detect damages in a beam using data originating from
the linear beam-oscillator dynamic interaction and extended the capabilities of this
formulation to include the damaged beam structure that undergoes nonlinear vibra-
tions. The study combines finite element modelling for the vehicle-bridge system with
a time-domain formulation to detect changes in structural parameters. The structural
properties and motion characteristics of the moving vehicle are assumed to be available,
and the elemental stiffness loss is used to simulate the different damage scenarios.

In this section, the operational deflection time history of a bridge subject to a moving
vehicular load is analyzed using the continuous wavelet transform. The identification
of a crack in a beam is based on the spatial wavelet analysis of response measurements
at one point of the bridge deck. The damage index based on the wavelet coefficient is
used as an indicator of the damage extent. The effect of the parameters of the vehicle-
bridge interaction system and noise in the measurements on the damage detection is
illustrated with an experimental study on a reinforced concrete bridge deck modelled
with a Tee-section subject to vehicular loadings.

8.2.1 Dynamic behaviour of the cracked beam subject to
moving load

The bridge-vehicle system is modelled as a continuous beam subject to a moving load,
P(t), as shown in Figure 8.1. The load is assumed to be moving at a prescribed velocity,
v(t), along the axial direction of the beam from left to right. The beam is assumed to
be an Euler–Bernoulli beam. The equation of motion can be written as

ρA
∂2w(x, t)
∂t2

+ C
∂w(x, t)
∂t

+ ∂2

∂x2

(
EI(x)

∂2w(x, t)
∂x2

)
= P(t)δ(x − x̂(t)) (8.22)

x
∧
(t) P(t)

EI(x), ρA

y

L

x

Figure 8.1 A continuous beam subject to moving loads
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where ρA and C are the mass per unit length and the damping of the beam; EI(x) is the
flexural stiffness of the Euler–Bernoulli beam; w(x, t) is the displacement function of
the beam; x̂(t) is the location of moving load P(t) at time t; and δ(t) is the Dirac delta
function. Expressing the transverse displacement w(x, t) in modal coordinates, gives

w(x, t) =
∞∑

i=1

φi(x)qi(t) (8.23)

where φi(x) is the mode shape function of the ith mode and qi(t) is the ith modal
amplitude. Substituting Equation (8.23) into Equation (8.22), and multiplying by φi(x),
then integrating with respect to x between 0 and L, and applying the orthogonality
conditions, gives

d2qi(t)
dt2

+ 2ξiωi
dqi(t)

dt
+ ω2

i qi(t) = 1
Mi

P(t)φi(x̂(t)) (8.24)

where ωi, ξi and Mi are the modal frequency, damping ratio and the modal mass of the
ith mode, and

Mi =
∫ L

0
ρAφ2

i (x)dx (8.25)

The displacement of the beam at point x and time t can be found from Equations
(8.23) and (8.24) as

w(x, t) =
∞∑

i=1

φi(x)
Mi

∫ t

0
hi(t − τ)P(τ)φi(x̂(τ))dτ (8.26)

where

hi(t) = 1
ω′

i

e−ξiωi t sinω′
it; ω′

i = ωi

√
1 − ξ2i (8.27)

8.2.2 The crack model

Figure 8.2 shows a uniform bridge beam structure with N cracks. The damaged con-
tinuous beam is discretized into N + 1 segments of constant linear density, ρA; bending
stiffness, EI (undamaged beam stiffness); and length li, (i = 1, 2, . . . , N + 1). The
segments are connected together through rotational springs (damage section) whose
stiffnesses are denoted by ki, (i = 1, 2, . . . , N).

The eigenfunction of an Euler–Bernoulli beam segment can be written as

ri(xi) = Ai sin βxi + Bi cosβxi + Ci sinh βxi + Di cosh βxi, (i = 1, 2, . . . , N + 1)

(8.28)

where ri(xi) is the eigenfunction for the ith segment, and β is the eigenvalue of the
beam. There are N + 1 segments connected by rotational springs here. The boundary
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L

xN+1xi+1xi
x1

k1 ki-1 ki
kN

x2

li

x

Figure 8.2 Beam with rotational springs representing damaged section

conditions for the damaged beam are:

r1(x1)|x1=0 = rN+1(xN+1)|xN+1=lN+1
= 0

∂2r1(x1)

∂x2
1

∣∣∣∣
x1=0

= ∂2rN+1(xN+1)

∂x2
N+1

∣∣∣∣∣
xN+1=lN+1

= 0



ri(xi)|xi=li = ri+1(xi+1)|xi+1=0

∂ri(xi)
∂xi

∣∣∣∣
xi=li

+ EI
ki

∂2ri(xi)

∂x2
i

∣∣∣∣
xi=li

= ∂ri+1(xi+1)
∂xi+1

∣∣∣∣
xi+1=0

∂2ri(xi)

∂x2
i

∣∣∣∣
xi=li

= ∂2ri+1(xi+1)

∂x2
i+1

∣∣∣∣∣
xi+1=0

∂3ri(xi)

∂x3
i

∣∣∣∣
xi=li

= ∂3ri+1(xi+1)

∂x3
i+1

∣∣∣∣∣
xi+1=0

, (i = 1, 2, . . . , N) (8.29)

Substituting Equation (8.28) into the boundary conditions in Equation (8.29), the
mode shape of the continuous beam with N damage locations can be written as

φ(x) = r1(x)(1 − H(x − l1)) +
N+1∑
i=2

ri(x −
i−1∑
j=1

lj)(H(x −
i−1∑
j=1

lj) − H(x −
i∑

j=1

lj))

(8.30)

where H(x) is the unit step function.
r1(x) = A1 sin βx + C1 sinh βx, (0 ≤ x < l1)
ri(x) = Ai(x) sinβx + Bi cosβx

+ Ci sinh βx + Di cosh βx, (0 ≤ x < li, i = 2, 3, . . . , N + 1)
(8.31)

© 2009 Taylor & Francis Group, London, UK

  



System ident i f i ca t ion wi th wave let 239

and parameters {A} = {β, A1, C1, Ai, Bi, Ci, Di} (i = 2, 3, . . . , N + 1) are determined
from the following equation.

[S]{A} = 0 (8.32)

and the elements of matrix S are referred to (Zhu and Law, 2006).

8.2.3 Crack identif ication using continuous wavelet transform

Equation (8.30) shows that there are discontinuities at the damage points, particularly
the slope discontinuities at the cracks. Mode shape curvature is widely used to find these
discontinuous points (Pandey et al., 1991). However, the first problem for damage
detection using curvature directly is to calculate the curvature by derivation which
is very difficult in practice, and the differentiation of the mode shape will further
amplify the measurement error. The wavelet transform is used here to measure the
local regularity of a signal.

The continuous wavelet transform of a square-integrable signal, f (x) , where x is
time or space, is defined similar to Equation (8.1) (Mallat and Hwang, 1992)

Wf (u, s) = f (x) ⊗ ψs(x) = 1√
s

∫ +∞

−∞
f (x)ψ∗

(
x − u

s

)
dx (8.33)

where ⊗ denotes the convolution of two functions; ψs(x) is the dilation of ψ(x) by
the scale factor s; u is the translation indicating the locality; and ψ∗(x) is the complex
conjugate of ψ(x), which is a mother wavelet satisfying the following admissibility
condition in Equation (8.3). From Equation (8.26), the displacement at xm can be
written as

w(xm, t) =
∞∑

i=1

φi(xm)
Mi

∫ t

0
hi(t − τ)P(τ)φi(x̂(τ))dτ (8.34)

The second derivation of the displacement with respect to the position of the moving
load can be obtained as

∂2w(xm, t)
∂2x̂l(t)

=
∞∑

i=1

φi(xm)
Mi

∫ t

0
hi(t − τ)P(τ)

∂2φi(x̂(τ))
∂x̂(τ)2

dτ (8.35)

where ∂2φi(
 x)/∂ x2 is the second-order derivation of the ith mode, which is the curvature

of the displacement mode shape. The second derivative of the displacement with respect
to the load position is shown to include the curvature information of the mode.

Let us take the Gaussian function, θ(x), the wavelet of which can be defined as the
second derivative of the function

ψ(x) = d2θ(x)
dx2

(8.36)
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The wavelet, ψ(x), in Equation (8.36) is continuous differentiable and is usually
referred to as the Mexican Hat wavelet that has the following explicit expression:

ψ(x) = 2√
3σ
π−1/4

(
x2

σ2
− 1

)
exp

(−x2

2σ2

)
(8.37)

where σ is the standard deviation.
The wavelet transform for the displacement w(xm, t) is then expressed by the

following relation (Mallat and Hwang, 1992) when the Mexican Hat wavelet is
adopted, as

Ww( x(t), s) = w(xm, t) ⊗ ψs(x̂(t)) = s2 d2

dx̂(t)2
(w(xm, t) ⊗ θs)(x̂(t)) (8.38)

Equation (8.38) is the multi-scale differential operator of the second order, and the rela-
tion between the second differentiability of w(xm, t) and its wavelet transform decays
at fine scales. The wavelet transform Ww( x(t), s) is proportional to the second deriva-
tive of w(xm, t) smoothed by the Gaussian function θs(x). So the wavelet transform can
be used to replace the direct differentiation of the displacement to obtain the curvature
properties. The damage can be determined using the wavelet transform of the opera-
tional displacement time history at one point when the beam structure is subject to the
action of the moving load. A similar formulation can be obtained for accelerations.

8.2.4 Numerical study

A simply supported beam, 50 m long, 1.0 m high and 0.5 m wide (Mahmoud, 2001)
is used. The elastic modulus and density of the beam are E = 2.1 × 1011 Pa and
ρ= 7860 kg/m3, and the moving load is a constant F0 = 10 kN. The first six natural
frequencies are 0.94, 3.75, 8.44, 15.00, 23.44 and 33.75 Hz. The crack compliance,
CC, of a rectangular beam with the crack depth ratio δ is (Sun and Chang, 2002b)

CC = 1
k

= 2h
EI

(
δ

1 − δ
)2

[5.93 − 16.69δ+ 37.14δ2 − 35.84δ3 + 13.12δ4] (8.39)

The above beam is used in the simulation, and the damping ratio for all modes is taken
equal to 0.02. The crack is at 1/3L from the left-hand-side with a depth ratio of 0.5.
White noise is added to the calculated responses of the beam to simulate the polluted
measurements, and 1%, 3% and 5% noise levels are studied separately.

w = wcalculated + Ep · Nnoise · σ(wcalculated) (8.40)

where w is the polluted displacement; Ep is the noise level; Nnoise is a standard normal
distribution vector with zero mean value and unit standard deviation; and wcalculated

is the calculated displacement, and σ(wcalculated) are their standard deviations. The
continuous wavelet transform on the displacement time history at the mid-span are
calculated with dilation s equal to 1 to 512 in unit increments.

© 2009 Taylor & Francis Group, London, UK

  



System ident i f i ca t ion wi th wave let 241

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
�4

�3

�2

�1

0

1

2
x 10�4

W
av

el
et

 C
oe

ffi
ci

en
t

x(t)/L  

No noise
1% noise
3% noise
5% noise

Figure 8.3 Wavelet coefficients of the displacement at the mid-span when a moving load is moving
on the beam at 1 m/s.
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Figure 8.4 The dip peak position versus scale plot

Figure 8.3 shows the wavelet coefficients of the displacement at the mid-span with
scale 64 when the moving load is on top of the beam. There is a dip in the curve at
1/3L indicating the location of the damage.

Figure 8.4 shows the location of the peak from using different scales. The position
of the dip in the wavelet coefficient curve is close to 1/3L when the scale is not less
than 42 and they are close to the two ends when the scale is less than 42. The latter is
associated with the impacts on the entry and exit of the moving load. When the scale
is larger than 42, the position of the dip indicates the location of the damage.
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Figure 8.5 shows the dip value of the minimum wavelet coefficient versus the scale
in a log-log plot when different noise levels are included in the response. The results are
close to each other when the scale is larger than 28. This indicates that the identified
location of damage is least affected by measurement noise when the scale is larger
than 28.

The case of four cracks all with a crack depth ratio of 0.5 is studied further; 3%
noise is included in the simulation. A scale of 64 is adopted in this study. Figure 8.6
shows the wavelet coefficients of the responses at 1/4L, 1/2L and 3/4L with four cracks
located at 1/5L, 2/5L, 3/5L and 4/5L. There are four dips in the wavelet coefficient
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Figure 8.5 Wavelet coefficients of the response with different noise levels
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Figure 8.6 Wavelet coefficients of the responses with four damages (3% noise)
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curves which are close to the damage locations at 1/5L, 2/5L, 3/5L and 4/5L, and the
dip value varies with the measuring location. The multiple damage locations can be
determined accurately from the wavelet coefficient of the response obtained from a
single measuring point.

8.2.5 Experimental verif ication

The experimental set-up shown in Figure 8.7 includes three Tee-section concrete beams,
i.e. the leading beam, the main beam and the tailing beam. The length of the leading
and tailing beams are 4.5 m each, and the main beam is 5.0 m long. The gaps between
the beams are 10 mm. A vehicle is pulled along the beam by an electric motor at an
approximate speed of 0.5 m/s. The axle spacing of the vehicle is 0.8 m, and the wheel
spacing is 0.39 m. The vehicle weighs 10.60 kN, with the front axle load weighing
5.58 kN and the rear axle load weighing 5.02 kN. As the total mass of the concrete
beam is 1050 kg, the weight ratio between the vehicle and bridge is 1.01.

Seven displacement transducers (sensors 1 to 7) are evenly distributed at the bottom
and along the beam to measure the responses as marked. Thirteen photoelectric sensors
are installed on the leading beam and the main beam at 0.56 m spacing to monitor the
speed of the vehicle. The third and thirteenth photoelectric sensors are located at
the entry and exit points of the main beam separately. An INV300 data acquisition
system is used to collect the data from all eight channels. The sampling frequency is
2024.292 Hz, and the sampling period is 30 s for each test.

125

7# 6# 5#

Displacement transducer

(b) Experimental setup

4# 3# 2# 1#

(a) Cross-section layout of the reinforced concrete beam

62~170

650

33
5 41

5

Figure 8.7 Experimental setup
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Figure 8.8 Damage loading and the crack zone

Damage in the beam is created using a three-point load system applied at 1/3L
from the right support of the beam, as shown in Figure 8.8(a). The load is gradually
increased with 2 kN increments. When 36 kN is reached, several tensile cracks are
clearly seen on the beam rib. When the load increases to 50 kN, the crack width of the
largest crack at the bottom of the beam measured 0.10 mm. The location of this crack
is close to the loading position but on the inside of the span with a visual crack depth
of 213 mm and a crack zone 760 mm wide. When the load had been on the beam for
30 minutes, the beam was unloaded and the crack partly closed with the crack width
at the bottom of the beam reduced to 0.025 mm. These observations are referred to as
the small-damage case.

For the large-damage case, the beam is first loaded at 2/3L of the beam from the right
support up to 50 kN using the three-point load system. This creates a crack pattern
similar in magnitude and extent to the existing crack zone at 1/3L. Further loading is
made using a four-point load system as shown in Figure 8.8(b). The final total load is
105 kN without yielding of the main reinforcement. The largest crack is close to the
middle of the beam with a 281 mm depth. The width of this crack at the bottom of the
beam is 0.1 mm at 105 kN load, and it becomes 0.038 mm when the beam is unloaded,
once the 105 kN static load has been kept on top for 30 minutes. The crack zone is
measured as 2371 mm long.

Figure 8.9 shows the wavelet coefficients of the displacement at 3/8L (number 3
transducer) when the model car is moving on the concrete beam. There are six main
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Figure 8.9 Spatial wavelet coefficient at scale 64 (a) denotes entry of first axle, (b) denotes entry
of second axle, (c) denotes exit of first axle, (d) denotes exit of second axle.

peaks for the small-damage case. The first and second peaks are associated with impacts
on the entry of the front and rear axles. The fifth and sixth peaks are associated with
impacts on the exit of the front and rear axles. The third and fourth peaks are related
to the locations of the damage in Figure 8.9(a). The results show that the damage
location can be determined using the peaks in the wavelet coefficient of the response
from a single measuring point. For the large-damage case, there are many cracks
created in the reinforced concrete beam. There are also many peaks in the curve of the
wavelet coefficient besides those associated with the entry and exit of the vehicle. While
the damage zone can be clearly estimated, the crack location cannot be determined
separately. This can be explained by the fact that the large static load of 105kN causes
bond slippage between the steel bar and concrete, and the damage cannot be simply
modelled as an open crack.

The above studies show that the operating load can be used effectively to determine
the damage location accurately even though there are multiple damages in the bridge
beam. The location is determined as the position of the dip in the wavelet coefficient
curve and there is no baseline requirement in determining the damage location.

8.3 The sensitivity approach

The response sensitivity approach for damage detection has been discussed in detail
in Chapter 7. The response is expressed in terms of wavelets and the wavelet packets,
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and their sensitivities are expressed as functions of the response sensitivity for a finer
scale damage detection.

8.3.1 The wavelet packet component energy sensit iv ity and the
solution algorithm

The measured response is represented by the Haar wavelet basis function through the
dyadic wavelet transformation. The bandwidths of each level of the dyadic wavelet
transform are octaves, and this enables a direct comparison of the energy content of
the wavelet packets as shown below. The WPT component function of the measured
acceleration, s(t), and strain, ε(t), i.e. si

j(t) and εij(t), can be reconstructed from the
wavelet packet coefficients as,

si
j(t) =

+∞∑
k=−∞

ci
j,kψ

i
j,k(t) = Ri

jc
i
j = Ri

jD
i
js(t),

εij(t) =
+∞∑

k=−∞
di

j,kψ
i
j,k(t) = Ri

jd
i
j = Ri

jD
i
jε(t)

where

Ri
j = [ψi

j,0 ψi
j,2 · · · ψi

j,l ], (l = 0, 1, . . . , N/2j − 1)

and D2i
j+1 = Hj+1Di

j, D2i+1
j+1 = Gj+1Di

j , D0
1 = H1 and D1

1 = G1; Hj+1 and Gj+1 are matri-
ces formed by the low-pass filter function and high-pass filter function, respectively
(Sun and Chang, 2002b); and ci

j and di
j are the wavelet packet coefficients for the

acceleration and strain, respectively, with ci
j = Di

j s(t) and di
j = Di

j ε(t). The ith wavelet
packet transform component energy of the acceleration, s(t), and strain, ε(t), at the jth
level of decomposition, Ei

sj and Ei
εj, are energy terms defined as

Ei
sj = (si

j)
T (si

j) Ei
εj = (εij)

T (εij)
= sT (Ri

jD
i
j)

T (Ri
jD

i
j)s, = εT (Ri

jD
i
j)

T (Ri
jD

i
j)ε

= sTTi
j s = εTTi

j ε

(8.41)

The sensitivity of these energy terms with respect to the elemental damage is then
computed as

∂Ei
sj

∂αi
= ∂s

T

∂αi
Ti

j s + sTTi
j
∂s
∂αi

,
∂Ei
εj

∂αi
= ∂ε

T

∂αi
Ti

j ε+ εTTi
j
∂ε

∂αi
(8.42)

where αi is the damage index for the ith element as described in Equation (7.25); and
Ti

j = (Ri
jD

i
j)

T (Ri
jD

i
j), which is not a function of the signal, is determined only by the

wavelet type, and therefore ∂Ti
j /∂αi = 0. The strain and acceleration sensitivities are

referred to Law et al., 2005.
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The so lut ion a lgor i thm

The damage identification equation can be written as

Ea − Ee = ∂Ea

∂αi
·�α (8.43)

where vectors Ea and Ee are the wavelet packet transform component energies of
the analytical model and the experimental model, respectively; ∂Ea/∂αi and ∂Ee/∂αi

are their sensitivity with respect to a change in the system parameter; and �α is the
vector of parameter changes of the system. Equation (8.43) is ill conditioned, like many
inverse problems. To provide bounds to the solution, the damped least-squares method
(Tikhonov, 1963) discussed in Chapter 2 is adopted, and singular value decomposition
is used to find the pseudo-inverse.

The principle of the solution algorithm is to compare the structural behaviour in the
damaged and intact states. To determine the location and the extent of the damage,
the analyst requires a satisfactory model of the structure in its intact state. This reliable
model is often achieved by comparing experimentally obtained data of the structure
in its initial state with corresponding predictions from an initial mathematical model.

When measurement from the first state of the structure is obtained, the wavelet-
packet component energy and its sensitivity are first computed based on the analytical
model of the structure and the input force obtained in the experiment. The vector
of parameter increments is then obtained from Equation (8.43) using the experimen-
tally obtained WPT component energy. The analytical model is then updated and the
corresponding component energy and its sensitivity are again computed for the next
iteration. Convergence is considered achieved when both the following two criteria
are met:∥∥∥∥ {Ek+1} − {Ek}

{Ek+1}
∥∥∥∥ ≤ toler 1,

∥∥∥∥ {�αk+1} − {�αk}
{�αk+1}

∥∥∥∥ ≤ toler 2

where k denotes the kth time instance. The tolerance limits for both convergence
criteria have been set equal to 1.0 × 10−6 in the present study.

When measurement from the second state is obtained, the updated analytical model
is used in the iteration in the same way as that using the measurement from the first
state. The final vector of identified parameter increments corresponds to the changes
that occurred between the two states of the structure.

Equation (8.43) is usually solved only once for small deviations from the finite
element model (FEM). But with the present iterative approach to update the deviations
by small increments at a time, any large deviation from the initial model can be updated
with the improved finite element model closer to the real structure after each iteration
of model improvement.

8.3.2 The wavelet sensit iv ity and the solution algorithm

The formulation on the wavelet coefficient sensitivity can be derived for any physical
parameter of the structural system. In the following derivation, αh represents a physical
parameter of the hth finite element, e.g. the elastic modulus of material, a dimension
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or the second moment of inertia of a cross-section. Both analytical and computational
approaches to obtain the sensitivity of the wavelet coefficient are given below.

Analy t i ca l approach

Expressing the responses z,
•
z and

••
z in terms of the wavelet transforms and substituting

into the equation of motion of the structural system, gives

M



∑
j,k

d1
j,k

••
ψj,k(t)∑

j,k
d2

j,k

••
ψj,k(t)

· · ·∑
j,k

dN
j,k

••
ψj,k(t)


+ C



∑
j,k

d1
j,k

•
ψj,k(t)∑

j,k
d2

j,k

•
ψj,k(t)

· · ·∑
j,k

dN
j,k

•
ψj,k(t)


+ K



∑
j,k

d1
j,kψj,k(t)∑

j,k
d2

j,kψj,k(t)

· · ·∑
j,k

dN
j,kψj,k(t)


= D

∑
j,k

dF
j,kψj,k(t)

(8.44)

where M, C and K are the mass, damping, stiffness matrices, respectively; z,
•
z and

••
z are the displacement, velocity and acceleration vectors, respectively; D is the map-
ping matrix relating the force vector F(t) to the corresponding DOFs of the system;
and dF

j,k = ∫
R F(t)ψj,k(t)dt. Computing the inner product with ψj,k(t) on both sides of

Equation (8.44), and noting the orthogonal property of the wavelets, gives

(
M
∫ ••
ψj,k(t)ψj,k(t)dt + C

∫ •
ψj,k(t)ψj,k(t)dt + K

)
d1

j,k
d2

j,k
· · ·
dN

j,k

 = DdF
j,k (8.45)

Since
∫ ••
ψj,k(t)ψj,k(t)dt and

∫ •
ψj,k(t)ψj,k(t)dt are functions of the wavelets only, they can

be expressed as

aj,k =
∫ ••
ψj,k(t)ψj,k(t)dt, bj,k =

∫ •
ψj,k(t)ψj,k(t)dt

and Equation (8.45) becomes

(Maj,k + Cbj,k + K)
{

d1
j,k d2

j,k · · · dN
j,k

}T = DdF
j,k (8.46)

rewriting this gives

{
d1

j,k d2
j,k · · · dN

j,k

}T = (Maj,k + Cbj,k + K)−1DdF
j,k (8.47)
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Differentiating both sides of Equation (8.46) with respect to the damage index, αh, gives

(
∂M
∂αh

aj,k + ∂C
∂αh

bj,k + ∂K
∂αh

)
d1

j,k

d2
j,k

· · ·
dN

j,k

+ (Maj,k + Cbj,k + K)



∂d1
j,k

∂αh

∂d2
j,k

∂αh· · ·
∂dN

j,k

∂αh


= 0 (8.48)

Substituting Equation (8.47) into (8.48), finally gives the wavelet coefficient sensitivity
in terms of the system parameter as{

∂d1
j,k

∂αh

∂d2
j,k

∂αh
· · · ∂dN

j,k

∂αh

}T

= −(Maj,k + Cbj,k + K)−1

×
(
∂M
∂αh

aj,k + ∂C
∂αh

bj,k + ∂K
∂αh

)
(Maj,k + Cbj,k + K)−1DdF

j,k (8.49)

Computat iona l approach

Differentiating the formulation of the wavelet coefficient in Equation (8.8) with respect
to αh, gives

∂dj,k

∂αh
= ∂

∂αh

∫
R

f (t)ψj,k(t)dt

 (8.50a)

Since ψj,k(t) is not related to αh, we have

∂dj,k

∂αh
=
∫
R

∂f (t)
∂αh
ψj,k(t)dt (8.50b)

where ∂f (t)/∂αh is the sensitivity of response to a local change in αh.
Equation (8.50) can also be obtained in an alternative formulation. Express the

response sensitivity ∂f (t)/∂αh in terms of wavelets, and the wavelet coefficient, cj,k, is
obtained as

cj,k =
∫
R

∂f (t)
∂αh
ψj,k(t)dt (8.51)

Comparing Equations (8.50) and (8.51), gives

∂dj,k

∂αh
= cj,k (8.52)
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Therefore, the wavelet coefficient sensitivity of function f (t) can be computed from the
wavelet transform of the sensitivity of response f (t). Note that the response sensitivity
was discussed in Chapter 7.

The response sensitivity can also be obtained through the analytical state-space for-
mulation (Law et al., 2005) for a general structural system. In the measurement state,
since

f = L
••
z (8.53)

where f is the response vector at an arbitrary set of measured locations, and L is the
mapping vector relating the measured DOFs to the total DOFs of the system. Thus,

∂f (t)
∂αh

= L
∂

••
z

∂αh
(8.54)

Substituting Equation (8.54) into Equation (8.50), the wavelet coefficient sensitivity
from measurement can be given as

∂dj,k

∂αh
=
∫
R

L
∂

••
z

∂αh
ψj,k(t)dt (8.55)

The so lut ion a lgor i thm

The structure is assumed to behave linearly before and after the occurrence of damage.
D0 and Dd are vectors of the wavelet coefficient of the two states of the structure,
e.g. the intact and damaged states, respectively. ∂D0/∂α and ∂Dd/∂α are the sensitivity
matrices of the wavelet coefficient of the two corresponding states of the system. �α
is the vector of parameter changes of the system. Thus,

Dd − D0 = ∂D0

∂α
·�α

= S ·�α (8.56)

The solution algorithm is similar to that for using the wavelet-packet component energy
sensitivity in Section 8.3.1 with the following two convergence criteria.

∥∥∥∥ {dj,k}i+1 − {dj,k}i

{dj,k}i+1

∥∥∥∥ ≤ toler 1,
∥∥∥∥ {�αi+1} − {�αi}

{�αi+1}
∥∥∥∥ ≤ toler 2

where i refers to the ith iteration. The tolerance limits for both convergence criteria
have been set equal to 1.0 × 10−6.
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8.3.3 The wavelet packet transform sensit iv ity

The wavelet packet transform was discussed in Section 8.1.2. Assuming that f (t) is
the signal to be transformed, the discrete wavelet packet transform (WPT) coefficients
(Mallat and Hwang, 1992) of the signal can be obtained as

ci
j,k =

∫ +∞

−∞
f (t)ψi

j,k(t)dt (8.21)

where i, j and k are the wavelet packet number, the decomposition level and the
translation respectively (Daubechies, 1988; 1992), and ψi

j,k(t) satisfies the following
relation

ψi
j,k(t) = 2− j

2ψi(2−jt − k) (8.10)

where ψi(t) is the ith wavelet packet with the following properties

ψ2i(t) = √
2

+∞∑
k=−∞

h(k)ψi(2t − k) (8.11)

ψ2i+1(t) = √
2

+∞∑
k=−∞

g(k)ψi(2t − k), i = 0, 1, . . . , 2j − 1 (8.12)

where h(k) and g(k) are the low-pass and high-pass analysis filters. It is noted that ψ0
0,k

can be defined as

ψ0
0,k = ψ0(t − k) = ϕ(t − k) (8.57)

where ϕ(t) is the scale function of the wavelet.
The original signal can also be reconstructed from the WPT coefficients as

f (t) =
2j−1∑
i=0

f i
j (t), and f i

j (t) =
+∞∑

k=−∞
ci

j,kψ
i
j,k(t) (8.58)

where f i
j (t) denotes the signal component in the ith frequency band.

The WPT is applied to ∂
••
xl/∂αi and

••
xl separately, where ldenotes the lth DOF

of the structure. The relation between WPT(∂
••
xl/∂αi) and WPT(

••
xl) was given in

Section 8.3.2 as

WPT

(
∂

••
xl

∂αi

)
= ∂

∂αi
WPT(

••
xl) (8.59)
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where WPT(∂
••
xl/∂αi) and WPT(

••
xl) are the WPT coefficients of ∂

••
xl/∂αi and

••
xl,

respectively. We can then form the sensitivity matrix of the WPT coefficients as

S =
[
∂

∂α1
WPT(

••
xl)

∂

∂α2
WPT(

••
xl) · · · ∂

∂αm
WPT(

••
xl)

]
(8.60)

when the response sensitivity ∂
••
xl/∂αi is available.

8.3.4 Damage information from different wavelet bandwidths

Information from local damages may be carried in the signal within a particular band-
width of the response and it is usually masked in the conventional approach of damage
detection using modal or response data. The wavelet packet decomposition sepa-
rates the response signal into packets of different bandwidths, and thus, enables the
following study on the damage information from different wavelet packets.

A four-metre long simply supported concrete beam, 0.2 m wide and 0.3 m high, with
a uniform rectangular cross-section subject to different types of excitations is con-
sidered. The elastic modulus and Poisson ratio are respectively 35.8 GPa and 0.197,
and the density of the material is 2376.21 kg/m3. The beam is divided into twelve
equal Euler–Bernoulli beam elements as shown in Figure 8.10. The vertical stiffnesses
of the left and right supports are simulated with springs of 1.93 × 108 kN/m and
0.47 × 108 kN/m, respectively. The damping ratios for the first six modes are 3.1,
14.3, 7.6, 10.4, 1.6 and 1.4 %, respectively.

The intact beam is first excited with a triangular impulsive force applied at one-
third point of the beam from the left support with 2197N peak value and it lasts for
0.005 seconds. The sampling rate is 2000 Hz. The first five seconds of acceleration
response collected from node 4 of the beam is decomposed into four levels of wavelets
and the associated wavelet packets. The wavelet packets are Fourier transformed with
an FFT size of 8192 for an inspection of the frequency content, and the frequencies
of the spectral peaks observed are shown in Table 8.1. Mode 4 cannot be detected
from the spectrum because of the location of the sensor. Modes 5 and 6 are shifted
greatly relative to the analytical values under the effect of the excitation. The first two
thousand data points of the wavelet packets are used in the identification, and the first
0.25 second of acceleration response is shown in Figure 8.11.

Damage is then created in element 4 of the beam by reducing its bending rigidity by
20%, and the beam is subject again to the same excitation. The spectral frequencies
obtained from the wavelet packets are also shown in Table 8.1. A downward shift in

-------- 1 2 3 4 5 6  7  8 9   10 11   12  13

200mm

30
0m

m
 

E � 35.8 GPa, m � 0.197, 3r � 2376.21kg/m

4000mmF

Node 
no. 

Element 4

Figure 8.10 Simply supported concrete beam for the numerical study
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the natural frequency of the two different states occurs in all the modes. The largest
shift in the natural frequency between the two states of the beam is in the first mode,
which is 1.61%. The frequency bandwidth of the decomposed wavelet packets are
also shown in Table 8.1. All the packets have the same bandwidth of 62.5 Hz and it
is noted that each of the 1st, 2nd, 3rd, 7th and 13th wavelet packets encompass one
natural frequency of the structure.

The flexural rigidity in element 4 is varied with a 0% to 50% reduction in 2%
decrements, and the WPT component energy is computed from the response collected
at node 5 of the beam under the same impulsive excitation as for last study. The WPT

Table 8.1 Natural frequencies of the response from the two states of the structure

Natural Frequency (Hz) Wavelet packet Frequency
number Bandwidth (Hz)

Mode no. FEM FFT on theWPT

Intact Damaged

1 30.94−−−−−→ 31.01 30.52 1st 0∼62.5
2 100.78−−−−−→104.25 103.03 2nd 62.5∼125
3 184.14−−−−−→185.06 184.57 3rd 125∼187.5
— — — — 4th 187.5∼250
4 305.29 — — 5th 250∼312.5
— — — — 6th 312.5∼375
— — 404.30 400.39 7th 375∼437.5
5 468.48 — — 8th 437.5∼500
— — — — 9th 500∼562.5
— — — — 10th 562.5∼625
— — — — 11th 625∼687.5
6 706.31−−−−−→ — — 12th 687.5∼750
— — 767.09 766.11 13th 750∼812.5
— — — — 14th 812.5∼875
— — — — 15th 875∼937.5
— — — — 16th 937.5∼1000

Figure 8.11 Acceleration response from node 4
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Figure 8.12 Variation of the wavelet-packet transform component energy under impulsive
excitation

component energy is plotted against the damage extent in Figure 8.12 as a percentage
of the total energy in the response. The wavelet-packet transform component energy
can be categorized into two types: Type I energy varies monotonically with the damage
extent and Type II energy exhibits a maximum or minimum in the variation. It is known
that if the Type II packet energy alone is used in the identification, it gives non-unique
solution. Fortunately, the Type I energy packets contribute a large proportion of the
total energy of the response (packet numbers 1, 4, 2, 6, 3, 14, 8 and 7) and they
are much more sensitive to the local change in the physical parameter than the Type II
packet energy. It is recommended that those wavelet packets dominated by a structural
vibration mode are selected for the identification.

All 16 packet-energy sensitivities are used in the following simulation studies. The
accuracy and uniqueness of the solution are still dominated by the Type I WPT com-
ponent energy based on the above observations. There is also no need to select the
wavelet packets to be taken into account and their respective weightings in the anal-
ysis. Sun and Chang (2002b) have proposed two normalized packet-energy change
parameters for the identification, which enhances the sensitivity of Type I packets, and
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Table 8.2 Damage scenarios

Damage Damage Damage locations Response type Excitation type
Scenario extent

1 10% 11th element acceleration Impulsive excitation at node 5
2 10% 11th element strain
3 10% 11th element acceleration and

strain
4 5%,10% 6th, 7th element acceleration
5 5%,10% 6th, 7th element strain
6 5%,10% 6th, 7th element acceleration and

strain
7 5%,10%,15% 3rd, 4th, 8th element acceleration
8 5%,10%,15% 3rd, 4th, 8th element strain
9 5%,10%,15% 3rd, 4th, 8th element acceleration and

strain
10 5%,10% 6th, 7th element acceleration Sinusoidal excitation at node 5
11 5%,10% 6th, 7th element strain
12 5%,10% 6th, 7th element acceleration and

and strain
13 10% 2nd element acceleration with Impulsive excitation at node 4

5% noise
14 5%, 10% 6th, 7th element
15(a) 5%, 10% 6th, 7th element Impulsive excitation at node 4

with −3% model error in all
elements

15(b) 5%, 10% 6th, 7th element

this will improve the final identified results from the above discussions. Also, a scheme
for optimizing the best packets is needed.

Damage scenar ios and the i r detect ion

Twelve damage scenarios were studied with different damage extents and from different
types of response, as listed in Table 8.2. In fact, three patterns of damage (single
damage, two adjacent damages and three damages) were considered and each damage
pattern was identified from acceleration, strain and both types of response. The first
nine scenarios were studied using the vertical response from node 7 when the beam is
subject to the same impulsive excitation at one-third span as for last study. The results
shown in Figure 8.13 show that either acceleration along or both acceleration and
strain responses together can identify the damage accurately with a very small error.
The bad results in Scenario 8 were also noticed. This gives numerical evidence that the
strain response is less sensitive to local damage as observed in its formulation in Law
et al., 2005.

Damage scenarios 10 to 12 were studied using the vertical measured responses from
nodes 7 and 8 when the beam is subject to a sinusoidal excitation at one-third span at
the frequency of 30 Hz close to the fundamental frequency of the beam. The magnitude
of the force is 20N. Results in Figure 8.13 show that this arrangement could identify
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Figure 8.13 Identified results for scenarios 1 to 12

the damage very accurately with virtually no false alarms in other elements in the form
of a large error. And it was noticed that the acceleration and strain responses, when
used together, can give more accurate results than using either of the two separately as
shown in Scenario 12 in Figure 8.13.

Ef fec t o f measurement no i se and mode l er ror

Damage Scenarios 13 and 14, as listed in Table 8.2, were studied with 5% noise in
the measured responses. Acceleration measurements from nodes 5 and 6 were used
with impulsive excitation applied at node 4 as described previously, and the identified
results are shown in Figure 8.14. The presence of noise seems not to adversely affect the
identified result on the damaged elements. With the damage information distributed
to a large number of time-scale wavelet packets, the solution of the respective system
of equations implies an averaging of more samples, which is beneficial with respect to
noise-contaminated data.
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Figure 8.14 Identified results for scenarios 13 to 15
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Figure 8.15 The one-storey frame structure

Scenarios 15(a) and (b) include a model error of an under-estimation in the flexural
rigidity of the whole beam structure in the finite element model plus two adjacent
damages in the beam with and without 5% noise in the measured acceleration. The
excitation and measuring points are the same as for the last two scenarios. The identi-
fied results for the no noise case show a very accurate increase of approximately 3%
in elements 3 to 5 and 9 to 11 and a reduction of 2% and 7.3% for the damaged
elements 6 and 7. The identified 2% and 7.3% reductions are relative to the original
modelled flexural rigidity, which is 97% of the intact value. However the identified
results degenerate badly when 5% noise is included, but the damaged elements can
still be localized with no false alarm in other elements.

8.3.5 Damage information from different wavelet coeff ic ients

The one-storey plane frame structure as shown in Figure 8.15 and discussed in Section
7.2.3 serves for the numerical study. The structure is subject to a sinusoidal excitation
F(t) = 10 sin(12πt) N applied vertically at node 6. The columns are 1.2 m high and the
cross-beam is 0.6 m long, and each member is 10 mm deep and 20 mm wide, with a
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Table 8.3 The frequency content of the wavelet coefficients (Hz)

Response Wavelet

A4 A3 A2 A1 D4 D3 D2 D1

Bandwidth 0∼1000 0∼62.5 0∼125 0∼250 0∼500 62.5∼ 125∼ 250∼ 500∼
125 250 500 1000

Modes f0∼f12 f0∼f2 f0∼f3 f0∼f6 f0∼f8 f3 f4∼f6 f7, f8 f9∼f12

Note: f 0 denotes the excitation frequency, f 1∼f 12 denotes the first 12 natural frequencies of the frame structure.

uniform rectangular cross-section. The elastic modulus and mass density of material
are 69 × 109 N/m2 and 2700 kg/m3, respectively.

The finite element model of the structure consists of four and three equal beam-
column elements in each vertical and horizontal member, respectively. The translational
and rotational restraints at the supports are represented by large stiffnesses of
1.5 × 1010 kN/m and 1.5 × 109 kN-m/rad, respectively. Rayleigh damping is adopted
for the system with ξ= 0.01. The first 12 natural frequencies of the structure are 13.09,
57.31, 76.7, 152.4, 196.5, 227.3, 374.7, 382.5, 580.2, 699.3, 765.3 and 983.3 Hz.
The sampling frequency is 2000 Hz. The tolerance limits for both convergence criteria
have been set equal to 1.0 × 10−6.

8.3.6 Frequency and energy content of wavelet coeff ic ients

The horizontal acceleration response computed at node 9 for a duration of one second
after the application of the excitation is decomposed into four levels of Daubechies
Db4 wavelets. The wavelets are divided into groups A and D with different bandwidth
as shown in Table 8.3. Those in group A are the low-frequency wavelet coefficients,
and those in group D are the high-frequency wavelet coefficients. Wavelets A1 and D1
are the largest scale wavelets and A4 and D4 are the smallest scale wavelets. The large-
scale wavelets, D1 and A1, have better time resolution than the small-scale wavelets,
D4 and A4, because of their wider bandwidths. The low-frequency wavelet coefficients
were checked and were shown to be larger than those for the high-frequency wavelet
coefficients, indicating a larger vibration energy in the low-frequency responses. This
is because the low-frequency wavelets include the first few vibration modes of the
structure, but the high-frequency wavelets include only some of the higher vibration
modes of the structure.

Compar i son wi th response sens i t i v i t y

The relative sensitivity of the wavelet coefficient to the parameter, Swc, and the relative
response sensitivity, Sr, are defined as

Swc = ‖∂dj,k/∂αh‖
‖dj,k‖

, Sr = ‖∂f (t)/∂αh‖
‖f (t)‖

A comparison of the sensitivity of each set of wavelet coefficients and the response
is compared and the results are shown in Table 8.4 for a perturbation in the flexural
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Table 8.4 Comparison of response sensitivity to wavelet sensitivity

Perturbation in the following finite element

1 2 3 4 5 6 7 8 9 10 11

Sr Response 18.28 16.62 17.28 15.64 9.39 13.27 9.39 15.65 17.28 16.62 18.27
Swc A1 17.92 16.31 17.01 15.35 9.18 13.24 9.18 15.35 17.01 16.31 17.92

A2 13.16 12.94 13.51 11.25 7.24 12.5 7.24 11.25 13.5 12.94 13.15
A3 8.38 5.23 7.33 4.67 3.56 5.93 3.56 4.67 7.33 5.23 8.36
A4 7.08 3.29 5.92 2.76 2.70 3.53 2.70 2.76 5.92 3.29 7.06
D1 52.02 46.9 45.1 44.7 28.5 18.6 28.5 44.7 45.1 46.9 52.0
D2 49.14 40.7 42.48 42.18 23.24 21.27 23.24 42.18 42.48 40.70 49.14
D3 26.49 29.74 29.06 25.69 16.0 27.76 16.0 25.68 29.06 29.74 26.49
D4 14.28 11.75 13.22 11.04 6.91 13.84 6.91 11.04 13.22 11.75 14.26

rigidity of each of the finite element. The response sensitivity is comparatively low
compared with those from the wavelets. Large-scale wavelets are always more sensitive
than small-scale wavelets, and high-frequency wavelet coefficients are more sensitive
than low-frequency coefficients. The wavelet coefficient D1 has the highest sensitivity
because of the contribution from the damage information carried by vibration modes
9 to 12, as shown in Table 8.3. While wavelet coefficient D2 has the second highest
sensitivity, which is contributed to only by modes 7 and 8. This shows that modes 7
and 8 are the two more significant modes that carry much of the damage information.

The wavelet coefficient sensitivity is in general much higher than that of the response,
apart from coefficients A3 and A4, which are contributed to by the first few modes. This
shows that the lower vibration modes do not carry significant damage information.

Damage ident i f i cat ion

The same plane frame structure as for last study is used. The excitation force
F(t) = 10 sin(12πt)N is applied at node 6 in the vertical direction. The horizontal accel-
eration response is computed at node 9 for a duration of a quarter of a second after the
application of the excitation is used for the wavelet decomposition. The sampling rate is
2000 Hz and the following damage scenarios are with different percentage reductions
in the flexural rigidity in an element.

• Scenario 1 – 5% reduction in element 2.
• Scenario 2 – 15% reduction in element 4.
• Scenario 3 – 5% and 10% reduction in elements 3 and 4, respectively.
• Scenario 4 – 10% reduction in element 1.
• Scenario 5 – 15%, 5% and 10% reduction in elements 3, 6 and 8, respectively.

The identified results obtained from the response sensitivity, each of the eight wavelet
coefficients and a combination of wavelet coefficients A4, D1, D2, D3 and D4, which
cover the whole frequency range of the response, are very close to the true value with a
maximum error of identification in each scenario highlighted in Table 8.5. The number
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Table 8.5 Error of identification in percentage

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Response −2.03/7 0.00/20 0.00, 0.00/20 −0.54/11 0.00, 0.00, 0.00/24
D1 0.00/17 −0.35/12 −0.44, −0.68/12 −0.31/9 0.04, −0.09, −0.52/12
D2 −0.41/9 −1.00/14 0.01, −2.88/14 −1.79/11 −0.09, 0.08, 0.10/13
D3 −0.57/9 0.02/16 −0.61, −0.24/16 −0.36/16 −0.25, −0.03, 0.16/11
D4 −0.01/20 0.00/28 −0.03, −0.01/28 −21.51/8 Fail
A1 −1.82/8 −0.31/13 −1.20, −0.09/13 −0.60/12 −0.85, −0.05, 0.12/16
A2 −0.57/7 0.00/10 −1.29, 0.08/10 −3.53/10 −0.49, −0.11, 0.18/14
A3 −1.07/8 −0.11/11 −0.53, 0.44/11 −3.33/12 1.08, 0.19, 0.11/66
A4 −0.47/9 −0.10/14 −2.60, 1.24/14 −1.84/18 Fail
A4 + D1 + −2.12/7 −0.22/20 0.00, 0.00/20 −0.66/11 −0.65, 0.00, 0.03/16
D2 + D3 + D4

Note: •/• denotes the error of identification (%)/required iteration number.

of iterations required for convergence in the different damage scenarios are also given
in the table.

The performance of the combined group of wavelet coefficients is similar to the
response sensitivity. Wavelet coefficients D4 and A4 perform badly in the cases of
adjacent damages and with the damage adjacent to the support. More detailed inspec-
tion shows that component A4 consists of only the first two vibration modes of the
structure and D4 consists of the 3rd vibration mode only. This again confirms the
previous observation that the first few vibration modes do not carry significant infor-
mation on the changes in the stiffness properties of the structure. In general, small-scale
wavelet coefficients give less accurate results than the large-scale wavelet coefficients,
and this is consistent with the observations from the last study.

Figure 8.16 shows the identified stiffness change in all the elements for Scenarios
3 to 5 using wavelet coefficients A1, A2, D1 and D2 in the identification. Both the
damage location and severity are identified very accurately without any false alarm in
other elements.

Ef fec t o f mode l er ror

The finite element model would not fully represent the real life structures with assump-
tions on the linearity, damping models, dynamic behaviour, joint flexibilities and
constitutive laws of materials, etc. These assumptions are necessary to focus on the
problem under study and to reduce the number of unknowns in the solution, or
otherwise, including different models on the damping, damages, semi-rigid joints and
different forms of finite element for the structure. The latter approach complicates the
problem leading to computational errors in the identified results. However, the viola-
tion of the initial assumptions of the model would lead to bias errors which cannot be
differentiated with those from computation and measurement noise. In many existing
damage assessment techniques, engineering judgements were made on the structural
behaviour and the standard finite element model of the structure is used. Parameters of
the model are considered prone to model inaccuracy, and this effect is investigated in
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Figure 8.16 Identified results for scenarios 3 to 5

detail with the following list of model errors introduced into the finite element model
of the plane frame. The same excitation force and sampling rate of signal as for last
study is used. The horizontal response from node 9 is used for the decomposition. All
the following scenarios are with 10% reduction in the flexural rigidity of element 3.

• Scenario 6 – both the support rotational and translational stiffnesses have been
over-estimated ten times.

• Scenario 7 – 5% over-estimation in the flexural stiffness of all elements.
• Scenario 8 – 2% under-estimation in the density of material.
• Scenario 9 – the Rayleigh damping is over-estimated from 0.01 to 0.02.
• Scenario 10 – 10% under-estimation in the amplitude of excitation force.
• Scenario 11 – 5% over-estimation in the excitation frequency.
• Scenario 12 – includes all the model errors listed from scenarios 6 to 11.

The identified results for the stiffness changes in all the elements are shown in
Figure 8.17 for Scenarios 6 to 8, where sensitivity of the response, wavelet coefficients
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Figure 8.17 Identified results for scenarios 6 to 8

D1, A4 and a combination of A4, D1, D2, D3 and D4 are used in the identification.
The results from the response and the combination of wavelet coefficients are simi-
lar; while wavelet coefficient A4 gives many false alarms, indicating that the model
error of a mass density change cannot be detected using low frequency and low-scale
wavelet coefficients. Wavelet coefficient D1 gives consistently very good results in these
three damage scenarios. Results not shown indicate that wavelet D1 can also identify
the damage element with similar accuracy with 3% under-estimation in the mass den-
sity, but there are also many false alarms in other elements with up to 7% stiffness
reduction. All other wavelet coefficients fail in the identification of this damage sce-
nario. In the case of Scenario 7, all the wavelets except D3 and D4 could identify the
local damage in element 3 with similar results.

Figure 8.18 gives the results for Scenarios 9 to 12, using the response sensitivity and
wavelet coefficient D1 sensitivity. The latter gives consistently very good results even
in Scenario 12 when all the different types of model errors exist. It is noted that all the
wavelets except wavelet D1 fail to give meaningful identified results for all the above
scenarios.
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Figure 8.18 Identified results for scenarios 9 to 12

8.3.7 Noise effect

White noise is added to the calculated accelerations to simulate the polluted measure-
ment time history. The same excitation force and sampling rate of the signal as for
last study is used. The horizontal response from node 9 is used for the decomposition.
Three damage scenarios as listed below are studied:

• Scenario 13 – 10% reduction in the flexural rigidity of element 3 with 5% noise.
• Scenario 14 – ditto, but with 10% noise.
• Scenario 15 – 10% reduction in element 3 with 1%, 2% and 3% noise, respectively,

and with all the model errors as studied in Scenario 12.

The identified results from the response sensitivity, wavelet coefficient A1 and coef-
ficient D1, are shown in Figure 8.19 for the first two scenarios, and only results from
wavelet D1 are shown for Scenario 15. The 5% noise causes a smaller identified value
in the damaged element and with false alarm in other elements. This effect becomes
larger with noise, and high-frequency wavelet coefficient, D1, is found less resistant
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Figure 8.19 Identified results for scenarios 13 to 15

to the effect of random measurement noise than the response and the low-frequency
wavelet coefficient, A1.

The random noise is noted to give random errors in the elements while the model
errors lead to bias error in the finite elements as shown in Scenario 15. Acceptable
results can be obtained only with 1% noise level. A small percentage of noise level can
reduce the quality of identification greatly when model errors are included.

8.4 Approaches that are inde pendent of input excitation

8.4.1 The unit impulse response function sensit iv ity

To reduce the dependence of the model, impulse response functions (IRFs) are con-
sidered instead of the response in the damage detection process because vibration
responses are related to the excitation input. Impulse response functions are intrin-
sic functions of the system given the excitation location, and they can be extracted
from the measured response. Existing impulse-response extraction techniques
include Laplace transform-based extraction, conventional time-domain extraction and
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FFT-based extraction (Robertson et al., 1998). FFT-based extraction is most commonly
used to obtain the impulse response function. However, it has long been recognized
that FFT-based vibration signal analysis exhibits several weakness.

In contrast to the FFT-based extraction procedure, which must process the data
in both the time and frequency domains, the discrete wavelet transform (DWT)-based
extraction procedure (Robertson et al., 1998) handles the experimental data only in the
time domain. This involves the forward and inverse DWT plus an inversion operation,
and is indeed preferable.

8.4.1.1 Wavelet-based un i t impulse response

The equation of motion of a N DOFs damped structural system under the unit impulse
excitation is

M
••
x + C

•
x + Kx = Dδ(t) (8.61)

where M, C and K are the N × N mass, damping and stiffness matrices, respectively;
N is the number of DOFs of the system; D is the mapping matrix relating the force
excitation location to the corresponding DOFs of the system; x,

•
x and

••
x are the N × 1

displacement, velocity and acceleration vectors, respectively; and δ(t) is the Dirac
delta function. Assuming the system is in static equilibrium before the unit impulse
excitation, then the forced vibration system with the unit impulse excitation can be
converted to a free vibration system with the following initial conditions,

x(0) = 0,
•
x(0) = M−1D (8.62)

Rewriting Equations (8.61) and (8.62), the unit impulse response function can be
computed from the following:M

••
h + C

•
h + Kh = 0

h(0) = 0,
•
h(0) = M−1D

(8.63)

where h,
•
h and

••
h are the unit impulse displacement, velocity and acceleration vectors,

respectively. Using the Newmark method, the unit impulse response can easily be
computed.

Expressing the local damage in the structural system in the form of �K =∑ne
i=1αiKi,

where αi is the fractional change in the stiffness of an element, and ne is the number
of elements in the structure. Differentiating Equation (8.63) with respect to αi, gives


M
∂

••
h
∂αi

+ C
∂

•
h
∂αi

+ K
∂h
∂αi

= − ∂K
∂αi

h

∂h(0)
∂αi

= 0,
∂

•
h(0)
∂αi

= ∂M
−1D
∂αi

(8.64)
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The sensitivities ∂h/∂αi, ∂
•
h/∂αi and ∂

••
h/∂αi can then be obtained from Equation (8.64)

with Newmark Method.
A signal can be expressed by the Discrete Wavelet Transform (DWT) in terms of

the local basis functions (Daubechies, 1992). Daubechies wavelets are used in the
following studies as they satisfy the two crucial requirements: the orthogonality of
local basis functions and second-order accuracy or higher, depending on the dilation
expression adopted.

A function f (t) can therefore be approximated in terms of its DWT as

f (t) = f DWT
0 ϕ(t) + f DWT

1 ψ(t) + f DWT
2 ψ(2t) + · · · + f DWT

2j+k ψ(2jt − k) (8.65)

where ϕ(t) and ψ(t)are the scaling function and the mother wavelet function,
respectively, and they satisfy the following relations,

ϕ(t) = √
2

+∞∑
k=−∞

h(k)ϕ(2t − k); ψ(t) = √
2

+∞∑
k=−∞

g(k)ϕ(2t − k);

ψj,k(t) = 2− j
2ψ(2−jt − k) (8.66)

where h(k) and g(k) are the low-pass and high-pass analysis filters, respectively, which
are all constants; and f DWT

2j+k
is the wavelet transform coefficients. Because of the orthog-

onality on both the translation and scale of the Daubechies wavelets, the following is
obtained,∫

ψj,k(t)ψm,n(t)dt =δj,mδk,n (8.67)

Thus, for real wavelets from Equations (8.65) and (8.67),

f DWT
0 =

∫
f (t)ϕ(t)dt; f DWT

2j+k =
∫

f (t)ψj,k(t)dt (8.68)

The wavelet coefficient of the impulse-response function sensitivity has been shown
(Law et al., 2006) equal to the first derivative of the wavelet coefficients of the impulse-
response function with respect to the damage parameter, αi, i.e.

DWT

 ∂••
h
∂αi

 = ∂
••
h

DWT

∂αi
(8.69)

where DWT(∂
••
h/∂αi) is the discrete wavelet coefficient of ∂

••
h/∂αi. Therefore differen-

tiating the second part of Equation (8.68) with respect to the stiffness parameter of an
element gives ∂••

h
∂αi

DWT

2j+k

=
∫
∂

••
h
∂αi
ψj,k(t)dt (8.70)
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The sensitivity matrix can then be formed from Equation (8.70) as

S =
[
∂

••
h

DWT

l

∂α1

∂
••
h

DWT

l

∂α2
· · · ∂

••
h

DWT

l

∂αm

]
(8.71)

where
••
h

DWT

l is the DWT coefficient of
••
hl;

••
hl denotes the acceleration impulse response

function at location l; and m is the number of structural parameters.

8.4.1.2 Impulse response funct ion v ia d i screte wave le t t rans form

The equation of motion of an N DOFs damped structural system under general
excitation is written as

M
••
x + C

•
x + Kx = DF(t) (8.72)

where F(t) is the vector of excitation force. If the system has zero initial conditions,
the solution of Equation (8.72) can be expressed as,

x(t) =
∫ t

0
h(t − τ)F(τ)dτ (8.73)

The acceleration response,
••
xl(tn), from location l at time tn is,

••
xl(tn) =

∫ tn

0

••
hl(τ) · F(tn − τ)dτ (8.74)

Applying DWT to
••
hl(τ) and F(tn − τ) respectively, gives

••
hl(τ) = ••

h
DWT

l,0 ϕ(τ) + ••
h

DWT

l,1 ψ(τ) + · · · + ••
h

DWT

l,2j+kψ(2jτ − k) (8.75)

F(tn − τ) = FDWT
0 (tn)ϕ(τ) + FDWT

1 (tn)ψ(τ) + · · · + FDWT
2j+k (tn)ψ(2jτ − k) (8.76)

Substituting Equations (8.75) and (8.76) into Equation (8.74),

••
xl(tn) =

∫ tn

0
(
••
h

DWT

l,0 ϕ(τ) + ••
h

DWT

l,1 ψ(τ) + · · · + ••
h

DWT

l,2j+kψ(2jτ − k))

× (FDWT
0 (tn)ϕ(τ) + FDWT

1 (tn)ψ(τ) + · · · + FDWT
2j+k (tn)ψ(2jτ − k))dτ

(8.77)
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The orthogonal condition shown in Equation (8.67) leads to

∫ tn

0
ϕ(t)ϕ(t)dt = 1∫ tn

0
ϕ(t)ψ(2jt − k)dt = 0∫ tn

0
ψ(2jt − k)ψ(2mt − n)dt = δj,mδk,n/2j

(8.78)

Substituting Equation (8.78) into Equation (8.77), gives

••
xl(tn) = ••

h
DWT

l,0 FDWT
0 (tn) + ••

h
DWT

l,1 FDWT
1 (tn) + · · · + ••

h
DWT

l,2j+kFDWT
2j+k (tn)/2j (8.79)

Rewriting Equation (8.79) in matrix form,

••
xl(tn) = FDWT (tn)

••
h

DWT

l (8.80)

where

FDWT (tn) = [ FDWT
0 (tn) FDWT

1 (tn) · · · FDWT
2j+k

(tn)/2j ],

••
h

DWT

l =
[ ••

h
DWT

l,0

••
h

DWT

l,1 · · · ••
h

DWT

l,2j+k

]T

Equation (8.80) can be rewritten as follows for a time series

••
xl = FDWT

••
h

DWT

l (8.81)

where
••
xl =

[ ••
xl(t1)

••
xl(t2) · · · ••

xl(tn)
]T

, FDWT =


FDWT (t1)

FDWT (t2)
· · ·

FDWT (tn)


Finally,

••
h

DWT

l can be computed in the form of a pseudo-inverse as

••
h

DWT

l = (FDWTT
FDWT )−1FDWTT ••

xl (8.82)

8.4.1.3 So lut ion a lgor i thm

••
h

DWT

l0 and
••
h

DWT

ld are vectors of the DWT coefficient of the impulse response function
from the two states of the structure, i.e. the intact and damaged states, respectively.

∂
••
h

DWT

l0 /∂α is the sensitivity matrix of the DWT coefficient with respect to the local
damage with reference to the intact state. �α is the vector of parameter changes of the
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system. Thus the identification equation is

••
h

DWT

ld − ••
h

DWT

l0 = ∂
••
h

DWT

l0

∂α
�α

= S�α (8.83)

The solution algorithm is similar to that for the wavelet-packet energy sensitivity with
the following two criteria for convergence.∥∥∥∥∥∥ {••

h
DWT

l }i+1 − {••
h

DWT

l }i

{••
h

DWT

l }i+1

∥∥∥∥∥∥ ≤ toler 1,
∥∥∥∥ {�αi+1} − {�αi}

{�αi+1}
∥∥∥∥ ≤ toler 2

where i refers to the ith iteration. The tolerance limits for both convergence criteria
have been set equal to 1.0 × 10−6.

8.4.1.4 S imulat ion s tudy

The 31-bar truss, shown in Figure 8.20, is modelled using 31 finite elements with-
out internal nodes in the bars giving 28 DOFs. The cross-sectional area of the bar is
0.0025 m2. Damage in the structure is introduced as a reduction in the stiffness of indi-
vidual bars, but the inertial properties are unchanged. The translational restraints at
the supports are represented by large stiffnesses of 1.0 × 1010 kN/m. Rayleigh damping
is adopted for the system with ξ1 = 0.01 and ξ2 = 0.01. The first 12 natural frequencies
of the structure are 36.415, 75.839, 133.608, 222.904, 249.323, 358.011, 372.509,
441.722, 477.834, 507.943, 538.1246 and 547.393 Hz. The sampling frequency is
2000 Hz. The tolerance limits for both convergence criteria have been set equal to
1.0 × 10−6. The excitation is applied in the downward direction at node 5 while the
vertical acceleration measurement at node 4 is recorded as shown in Figure 8.20.

Damage ident i f i cat ion wi th mode l er ror and no ise ef fec t

Two different excitations are used in the different states of the structure. The excitation
for the intact state is a triangular impulsive force with 320.4N peak value and it lasts
for 0.005 seconds. The excitation for the damaged state is a sinusoidal excitation of
F = 20 sin(40πt)N. The sampling rate is 2000 Hz and the first 0.25 seconds of the

E � 70GPa
3r � 2770kg/m
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Figure 8.20 Thirty-one-bar truss structure
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response is used for the damage identification. The impulse-response function wavelet
coefficient sensitivity matrix is computed from the analytical model using Equations
(8.63) and (8.71).

Different types of model errors are introduced into the finite element model of the
truss structure as listed under Scenarios 1 to 4 in Table 8.6. Since the IRF is an intrinsic
function of the structure that is independent of the input excitation, the acceleration
response and excitation time histories are repeatedly ‘measured’ to obtain a set of IRFs
from Equation (8.80). One sample and twenty samples of IRFs are used, respectively
for scenarios without and with noise effect. The results in Figure 8.21 show that both
the damage location and extent can be identified but with false positives in several
other elements in the last scenario with the combined noise and model error effects.
The presence of random noise in the ‘measured’ data is noted to amplify the erroneous
effect due to the model errors.

8.4.1.5 Discuss ions

The method of damage detection using IRFs has been demonstrated with high accuracy
in scenarios with multiple damages when there is no noise. This performance surpasses

Table 8.6 Damage scenarios

Damage Damage Damage locations Noise Model error
scenario extent

1 5%,10% 22nd, 26th element no 2% reduction in the stiffness in all elements
2 5%,10% 22nd, 26th element no 50% increase in the support stiffness at two

supports
3 5%,10% 22nd, 26th element no 2% decrease in the Rayleigh damping

coefficients
4 5%,10% 22nd, 26th element 5% Include all the above model errors

Figure 8.21 Identified results for scenarios 1 to 4
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those from other existing damage detection methods. But the identified results suffer
from the accompanying noise effect and initial model errors when dealing with real
structures. The noise effect can be further reduced by averaging and taking a longer
duration of measurement from more and better-located sensors. However, the initial
model errors associated with a fixture in a joint, material nonlinearity, cracks and
fissures in a member, etc. cannot be addressed with the present approach of modelling
the damage with an averaged damage parameter. Separate damage models should
be included in the initial model for proper identification. However, the wavelet is
known to have a broad bandwidth of responses, and further benefit can be sought by
employing sensitivity for wavelets from different bandwidths in the inverse analysis,
as the noise effect and model error would have different contributions to the different
bandwidth of the responses (Law et al., 2006).

8.4.2 The covariance sensit iv ity

This section presents one approach which is different to that shown in Section 8.4.1 for
a general type of excitation. The excitation under consideration is ambient white noise
excitation, which usually exists in the environment with large-scale infrastructures. The
covariance of responses is expressed explicitly as a function of the impulse response
function of the system under single or multiple ambient excitations. The sensitivity of
the covariance of responses with respect to the physical parameters of the structure is
derived analytically.

8.4.2.1 Covar iance of measured responses

The equation of motion of the NDOFs damped structural system under general
excitation is

M
••
x + C

•
x + Kx = DkFk(t) (8.84)

where Fk(t) is the excitation force at the kth DOF. If the system has zero initial
conditions, the solution of Equation (8.84) can be expressed as,

xk(t) =
∫ t

−∞
hk(t − τ)Fk(τ)dτ (8.85)

where hk(t) is the vector of impulse response of the system under a unit impulse exci-
tation at the kth DOF. The measured acceleration responses

••
xpk(t) from location p at

time t and
••
xqk(t + τ) from location q at time t + τ are, respectively,

••
xpk(t) =

∫ t

−∞

••
hpk(t − σ)Fk(σ)dσ,

••
xqk(t + τ) =

∫ t+τ

−∞

••
hqk(t + τ − σ)Fk(σ)dσ

(8.86)

The cross-correlation function, Rpqk(τ), relating the two measured responses is given
by Bendat and Piersol (1980) as

Rpqk(τ) = E{••
xpk(t)

••
xqk(t + τ)} (8.87)
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where E{ } indicates the expectation operator. Equation (8.87) can further be written as

Rpqk(τ) = lim
T→∞

1
T

∫ T

0

••
xpk(t)

••
xqk(t + τ)dt

= lim
NN→∞

1
NN

NN∑
n=0

••
xpk(n�t)

••
xqk(n�t + τ) (8.88)

where NN is the number of data points within the duration T under studied. The
cross-correlation function Rpqk(τ) is then obtained from two measured responses of a
structure.

8.4.2.2 When under s ing le random exc i ta t ion

Alternatively, Rpqk(τ) can be formulated in terms of the physical structural parameters

of the system. The accelerations
••
xpk(t) and

••
xqk(t + τ) are calculated for the N DOFs

damped structural system defined by Equation (8.84) using the Newmark method and
direct differentiation. Substituting the calculated accelerations into Equation (8.87),
gives

Rpqk(τ) = E
{∫ t

−∞

••
hpk(t − σ1)Fk(σ1)dσ1

∫ t+τ

−∞

••
hqk(t + τ − σ2)Fk(σ2)dσ2

}
(8.89)

With random excitation, Fk( • ) is random in Equation (8.89), and the equation can
be rewritten as

Rpqk(τ) =
∫ t

−∞

∫ t+τ

−∞

••
hpk(t − σ1)

••
hqk(t + τ − σ2)E(Fk(σ1)Fk(σ2))dσ1dσ2 (8.90)

Fk is assumed to be of white noise distribution, and the autocorrelation function of Fk

is (Bendat and Piersol, 1980)

E(Fk(σ1)Fk(σ2)) = Skδ(σ1 − σ2) (8.91)

where Sk is a constant and δ(t) is the Dirac delta function. Substituting Equation (8.91)
into (8.90) with

∫ +∞
−∞ f (t)δ(t)dt = f (0), gives

Rpqk(τ) = Sk

∫ t

−∞

••
hpk(t − σ1)dσ1

∫ t+τ

−∞

••
hqk(t + τ − σ2)δ(σ1 − σ2)dσ2

= Sk

∫ t

−∞

••
hpk(t − σ1)

••
hqk(t + τ − σ1)dσ1 (8.92a)

or,

Rpqk(τ) = Sk

∫ +∞

0

••
hpk(t)

••
hqk(τ + t)dt (8.92b)
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It should be noted that
••
hpk(t) is an intrinsic function of the structure and is dependent

only on the excitation location. Equation (8.92b) also shows that Rpqk(τ) has the same

property as
••
hpk(t). The auto-correlation function can also be derived in the same way

by putting q = p in Equation (8.92). Equation (8.92b) can then be computed directly by
integration. This formulation relates the cross-correlation function with the physical
structural system via the impulse response function.

8.4.2.3 When under mul t ip le random exc i ta t ions

When the N DOFs damped structural system is under multiple excitations, Equation
(8.84) can be written as,

M
••
x + C

•
x + Kx = D1F1(t) + D2F2(t) + · · · DNFN(t) (8.93)

where Di = [0, 0, . . . , 1, . . . , 0]T , where the ith element in Di equals one and others
equal zero. If there is no excitation at the ith DOF of the structure, Fi(t) = 0. Based on
linear superposition theory and from zero initial conditions, Equation (8.86) gives

••
xp(t) =

∫ t

−∞

••
hp1(t − σ)F1(σ)dσ +

∫ t

−∞

••
hp2(t − σ)F2(σ)dσ + · · ·

+
∫ t

−∞

••
hpN(t − σ)FN(σ)dσ

••
xq(t) =

∫ t

−∞

••
hq1(t − σ)F1(σ)dσ +

∫ t

−∞

••
hq2(t − σ)F2(σ)dσ + · · ·

+
∫ t

−∞

••
hqN(t − σ)FN(σ)dσ (8.94)

where
••
xp(t) and

••
xq(t) are the acceleration responses from locations p and q, respec-

tively; and
••
hpi(t) and

••
hqi(t) are unit impulse acceleration responses at time t from

locations p and q, respectively. Then the cross-correlation functions of
••
xp(t) and

••
xq(t + τ) can be obtained similar to Equation (8.89) as

Rpqk(τ) = E


N∑

i=1

∫ t

−∞

••
hpi(t − σ1)Fi(σ1)dσ1

N∑
j=1

∫ t+τ

−∞

••
hqj(t + τ − σ2)Fj(σ2)dσ2


(8.95a)

Equation (8.95a) can be rewritten similar to Equation (8.90) as

Rpqk(τ) =
N∑

i=1

N∑
j=1

∫ t+τ

−∞

∫ t

−∞

••
hpi(t + τ − σ1)

••
hqj(t − σ2)E(Fi(σ1)Fj(σ2))dσ1dσ2 (8.95b)
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With random excitation, Fi(σ1) and Fj(σ2) are white noise functions, and

E(Fi(σ1)Fj(σ2)) = Siδ(i − j)δ(σ1 − σ2) (8.96)

where Si is a constant determined from the amplitude level of the random excitation.
Substituting Equation (8.96) into Equation (8.95b), gives

Rpq(τ) =
N∑

i=1

N∑
j=1

∫ t+τ

−∞

∫ t

−∞

••
hpi(t + τ − σ1)

••
hqj(t − σ2)Siδ(i − j)δ(σ1 − σ2)dσ1dσ2

(8.95c)

Considering the property of the Dirac delta function, Equation (8.95c) can be
written as

Rpq(τ) =
N∑

k=1

Sk

∫ +∞

0

••
hpk(t)

••
hqk(t + τ)dt (8.95d)

Comparing Equation (8.95d) with Equation (8.92b), the former reduces into Equa-
tion (8.95d) for (Sk = 0, (i 	= k)) for single excitation. Equation (8.95d) can further be
simplified as

Rpq =
N∑

k=1

Sk

••
h

DWT

qk

••
h

DWT

pk (8.97)

where

Rpq =


Rpq(τ0)

Rpq(τ1)

· · ·
Rpq(τn)

,
••
h

DWT

pk =



••
h

DWT

pk,0

••
h

DWT

pk,1

· · ·
••
h

DWT

pk,2j+l


,
••
h

DWT

qk =



••
h

DWT

qk (τ0)

••
h

DWT

qk (τ1)
· · ·

••
h

DWT

qk (τn)


,

••
h

DWT

qk (τi) =



••
h

DWT

qk,0 (τi)

••
h

DWT

qk,1 (τi)
· · ·

••
h

DWT

qk,2j+l(τi)/2
j



T
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8.4.2.4 Sens i t i v i t y o f the cross-corre la t ion funct ion

The sensitivity of the cross-correlation function Rpq(τ) can be obtained from Equation
(8.95d) as

∂Rpq(τ)
∂αi

=
N∑

k=1

Sk

∫ +∞

0

∂
••
hpk(t)
∂αi

••
hqk(t + τ)dt +

∫ +∞

0

••
hpk(t)

∂
••
hqk(t + τ)
∂αi

dt

 (8.98)

where ∂
••
hpk(t)/∂αi and ∂

••
hqk(t + τ)/∂αi are obtained numerically from Equation (8.64)

in Section 8.4.1.

8.5 Condition assessment including the load environment

8.5.1 Sources of external excitation

All structures are subject to ambient excitations like wind, rain, ground micro-tremor
and temperature effects as well as the operating loads. The environmental forces are
usually small, while the operating load is significant. Most existing methods of condi-
tion assessment of a structure require an input which may be the ambient environmental
forces or artificial forced excitation. The operation loads are usually treated as ran-
dom forces or just ignored. This practice may be appropriate for a large structure
such as a suspension bridge but not for the usual types of infrastructure such as a
box-section bridge deck. The provision of sufficiently large energy input for the identi-
fication of such a structure is formidable. Methods that include the moving operating
load in the system identification are scarce but the work by the authors on the moving
load identification should be referred to. The following sections present two methods
making use of ground excitation and ambient excitation as external excitation for the
condition assessment of a structure.

8.5.2 Under earthquake loading or ground-borne excitation

This section presents an approach where an earthquake loading or micro-tremor is
used as an excitation force for the condition assessment. The wavelet-packet transform
coefficient sensitivity given in Section 8.3.3 is studied particularly with a short duration
of data sampled at a low frequency. Although the simulation studies shown below are
discussed with reference to ground micro-tremor excitation, the approach can be used
for the case with ground-borne blast excitation or traffic-induced excitations, which
are easily available in practice.

8.5.2.1 S imulat ion s tud ies

The five-bay three-dimensional frame structure studied in Section 7.4 and shown in
Figure 8.22 serves for the numerical study. The finite element model consists of 37
three-dimensional Euler beam elements and 17 nodes. The length of all the horizon-
tal, vertical and diagonal tube members between the centres of two adjacent nodes
is exactly 0.5 m. The material and geometrical properties of the frame member are
referred to Table 7.1. The structure orients horizontally and is fixed into a rigid support
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Figure 8.22 A five-bay three-dimensional frame structure

at three nodes at one end. Each node has six DOFs, and there are 102 DOFs for the
whole structure. The elastic modulus of material of all the elements is taken as unknown
in the identification.

The translational and rotational restraints at the supports are represented by large
stiffnesses of 1.5 × 1011 kN/m and 1.5 × 1010 kN-m/rad, respectively, in six directions.
Rayleigh damping is adopted for the system with ξ1 = 0.01 and ξ2 = 0.005. The first
12 natural frequencies of the structure are 9.21, 28.26, 33.71, 49.01, 49.72, 71.02,
89.80, 153.93, 194.33, 209.80, 256.51 and 274.82 Hz from the eigenvalue analysis
of the structure. The sampling frequency is 200 Hz.

The structure is subject to the El-Centro ground motion in three directions with the
magnitude reduced 100 times as plotted in Figure 8.23 to simulate a micro-tremor. The
response of the structure is computed at all the DOFs and is subsequently re-sampled
in the ratio 1 in 4, corresponding to a sampling rate of 50 Hz to form a subset of
the response. The vertical acceleration response at node 5 of the structure is recorded
for a duration of ten seconds after the excitation begins. The response is decomposed
into four levels of Daubechies Db4 wavelet packets, which are 16 signal components
represented by their WPT coefficients, and each has the same frequency bandwidth of
1.5625 Hz.

8.5.2.2 The sens i t i v i t i es

The sensitivities of the calculated response with respect to the elastic modulus of mate-
rial are also computed from Equation (7.2) and re-sampled again in the ratio 1 in 4,
and the corresponding WPT coefficients with respect to the elastic modulus of material
of the 4th and 20th elements of the structure are shown in Figure 8.24. The WPT coeffi-
cient sensitivities are arranged in a vector in their order of frequency band. The number
of WPT coefficients is seen to be more than the number of original data because in
the extraction of the wavelets, zero padding is performed at the end of the data series
in case the number of original data cannot be equally divided. It can be seen from
Figure 8.24 that some of the WPT coefficients are more sensitive than the response (Lu
and Law, 2006a). Hence, the WPT coefficients from the 6th to 16th sets of wavelets
are used to detect damage in the following simulation study for a better performance
(Law et al., 2006). These coefficients correspond to a higher frequency range and are
more sensitive to a stiffness change.
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Figure 8.23 Excitation at the support of the structure.

8.5.2.3 Damage ident i f i cat ion f rom WPT sens i t i v i t y and response sens i t i v i t y

Damage Scenarios 1 to 5, as listed in Table 8.7, are studied encompassing the cases
with single and multiple damages, with and without noise and initial model error. Ten
seconds of the response are used, apart from Scenario 5 where the first 50 seconds
of response is used with the low sampling frequency of 10 Hz. The tolerance limits
for both convergence criteria have been set equal to 1.0 × 10−8, apart from Scenario
1 where 1.0 × 10−6 is adopted. The ‘measured’ acceleration responses are obtained
through computation using the Newmark method with a time step of 0.005 seconds
between two consecutive time instances. The same excitation force, sampling rate of
signal, convergence criteria, measured location and WPT coefficients are used for all
the studies, unless otherwise stated.

The identified results from WPT coefficients for Scenario 1 without noise and model
errors are shown in Figure 8.25, and they are very close to the true values. The results
obtained from the response sensitivity are also close to the true values at the damage
locations, but there are a number of false alarms in other elements, such as element
28. The response sensitivities are obtained from Equation (7.2) using the Newmark
method. It is noted that the convergence criteria is 1.0 × 10−6 for this scenario. If the
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Figure 8.24 Sensitivities of the response and the WPT coefficients

Table 8.7 Damage scenarios

Scenario Damage Noise Model error Sampling rate (Hz)

1 5% in element 16 – – 50
10% in element 26
10% in element 27

2 5% in element 16 – 1% increase in the elastic 50
10% in element 26 modulus of all elements
10% in element 27

3 10% in element 7 5% – 50
4 5% in element 26 5% 1% increase in the elastic 50

5% in element 27 modulus of all elements
5 5% in element 16 – – 10

10% in element 26
10% in element 27

6 5% in element 16 – – 100, 200
10% in element 26
10% in element 27
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Figure 8.25 Identified results for scenarios 1 to 6

iteration for the identification is allowed to continue with a convergence criteria of
1.0 × 10−8, the false alarms disappear and the results obtained are very similar to
those from the WPT coefficients. This indicates that the response sensitivity can also be
used to identify damage accurately but converge more slowly than the WPT coefficients
sensitivity. This can be explained by the fact that the selected WPT coefficients obtained
from the higher frequency response components are more sensitive to damage than the
response sensitivity (Law et al., 2006). This also demonstrates that by a proper selection
of the WPT coefficients, the non-sensitive components can be removed, resulting in a
higher accuracy and faster convergence of the results.

Ef fec t o f mode l er ror and no ise

In this study, only an error in the elastic modulus of material of an element is considered.
Scenario 2 has 1% over-estimation in the elastic modulus of material of each member
of the structure. The identified results in Figure 8.25 show that the method can tolerate
some model error with good accuracy.

© 2009 Taylor & Francis Group, London, UK

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10991-9&iName=master.img-011.jpg&w=356&h=298


280 Damage mode ls and a lgor i thms

Damage Scenario 3 has 5% noise in the ‘measured’ acceleration. The location and
extent of the damage can be identified with some accuracy as shown in Figure 8.25,
but there are also alarms in several adjacent elements. The random noise is noted to
give error in the identified damage of the damaged element, although a good indication
of the damage location is still achieved. This shows that the identified results are easily
corrupted by measurement noise, and noise reduction prior to identification is needed.

Scenario 4 is studied with damage in two adjacent elements to test the resolu-
tion capability of the approach with close proximity of two damages. The results
in Figure 8.25 indicate that WPT coefficients can identify the damage elements quite
accurately but with some error in the damage magnitude. It is believed that more
spatial information of the structure can be captured from using responses from more
locations of the structure to mitigate the noise effect.

Per formance from a subset of the measured response

In practice, most of the on-line health monitoring systems operate with a high sampling
frequency, sufficient to cover a wide range of the structural response. Scenario 5 is on
the use of a subset of the original response re-sampled in the ratio 1 in 20. All sixteen sets
of WPT coefficients are used in the identification. The identified results in Figure 8.25
show that this subset of the ‘measured’ response yields very accurate results.

It should be noted that for all the Scenarios in Table 8.7, the response obtained from
the equation of motion of the structure contains components from all the structural
vibration modes with frequencies below 100 Hz, and the re-sampling of the response
only results in a subset of the response measurement. The time-domain approach does
not depend mainly on the frequency information of the measured response as the
frequency-domain method does, and it also makes use of the vibration amplitude in
the solution process as in the following discussions.

The amplitude of the structural response, when expressed in the form of a Duhamel
integral of

∑n
i=1

∫ e−ξiωiτ

ωid
sin (ωidτ) · F(t − τ)dτ, includes the structural information

in the two terms of sin (ωidτ) and e−ξiωiτ/ωid. The Nyquist frequency has to be sat-
isfied if the structural vibration information (both the amplitude and frequency) is
sought from the term sin (ωidτ). However, the term e−ξnωnτ is an exponential function
and is independent of the sampling frequency. The time-domain method is therefore
less dependent on the Nyquist frequency and the damage detection can be performed
successfully with a low sampling rate.

Another comparison is made in Scenario 6 with two sets of responses. The first set
is computed from Equation (7.1) with a sampling rate of 200 Hz, and the other set is
obtained from re-sampling the first set of response in the ratio 1 in 2. The first eight sets
of WPT coefficients from the first set and all sixteen sets of WPT coefficients from the
second set of responses are used for the identification covering the same bandwidth
of 0 ∼ 50.0 Hz. Accurate identified results, shown in Figure 8.25, provide further
evidences to the above discussions.

8.5.3 Under normal randvom support excitation

The formulation of the condition assessment of a structure under ambient excitation
was given in Section 8.4.2. This section gives an experimental example of the use
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of such a technique in the assessment of a laboratory structure. The sensitivity of
wavelet-packet component energy described in Section 8.3.1 is adopted in the iden-
tification equation, while a damage localization stage is added before the damage
quantification stage to reduce the candidate set of unknowns for better convergence
of the computation.

8.5.3.1 Damage loca l izat ion based on mode shape changes

The structural mode shapes can be identified from the ambient vibration responses
using the Natural Excitation Technique (James et al., 1995) in conjunction with the
Eigensystem Realization Algorithm (ERA) (Juang and Pappa, 1985), or using the
conventional peak-picking technique. Since mode shapes of higher order are usually
obtained with difficulties in real measurement, only the first mode shape is employed
for the damage localization.

The modal strain energy of the ith element corresponding to the first mode shape
from the healthy structure is defined as

s1i = �T
1

Ki�1 (8.99)

where Ki is the ith elemental stiffness matrix and �1 is the first mode shape of the
system. Then the total modal strain energy of the structure corresponding to the first
mode is obtained as

s1 = �T
1

K�1 (8.100)

The fractional contribution to the modal strain energy from the ith member is
denoted as

F1i = s1i

s1
(8.101)

Similarly, for a damaged structure, the corresponding Fd
1i is defined as

Fd
1i = sd

1i

sd
1

(8.102)

sd
1i = (�d

1
)TKd

i �
d
1

(8.103)

sd
1 = (�d

1
)TKd�d

1
(8.104)

where Kd
i and Kd are the ith elemental stiffness matrix and the global stiffness matrix

of the damaged structure, respectively; and �d
1 is the first mode shape of the damaged

structure. Equation (8.103) can be expressed as

sd
1i = αi(�

d
1
)TKi�

d
1 (8.105)

For the case with relatively small damage in the structure, it can be assumed that

F1i ≈ Fd
1i (8.106)
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Based on the assumption of small damage in the structure, Kd ≈ K, thus

sd
1 = (�d

1
)TKd�d

1 ≈ (�d
1
)TK�d

1 (8.107)

Substituting Equations (8.99) to (8.104) into Equation (8.106) yields a damage
index as

�αi = 1 − (�T
1

Ki�1)((�d
1
)TK�d

1)

((�d
1
)TKi�

d
1)(�T

1 K�1)
(8.108)

It is noted that the above formulation of the damage index needs full measurement
to obtain the mode shape. In the case of incomplete measurement, the measured infor-
mation can be expanded to the full mode shape, or, only the measured information is
taken into account in Equation (8.108). Both of these practices would lead to errors of
different extents, which is a feature with the mode shape-based approach. However,
it is noted that this localization stage serves to reduce the candidate set of possible
damage elements for the next stage of damage quantification. Other frequency-based
or time-based methods can also be used for this purpose. The solution algorithm and
convergence criteria described in Section 8.3.1 are adopted in the identification.

8.5.3.2 Laboratory exper iment

A nine-bay three-dimensional frame structure shown in Figure 8.26 is fabricated in
the laboratory using the Meroform M12 construction system. It consists of 69, 22 mm
diameter alloy steel tubes jointed together with 29 standard Meroform ball nodes.
Each tube is fitted with a screwed end connector which, when tightened into the node,
also clamps the tube by means of an internal compression fitting. All the connection
bolts are tightened with the same torsional moment to avoid asymmetry or nonlinear
effects caused by man-made assembly errors. The experimental setup is also shown in
Figure 8.26(a) and the support is shown in Figure 8.26(b). The finite element model
of the structure is shown in Figure 8.27. The structure has the material and geometric
properties as shown in Table 7.1.

Model l ing of the s t ructure

This paper adopts the hybrid beam model including the semi-rigid end connections
(Law et al., 2001a) for the model improvement of the structure. The initial model
assumes a large fixity factor, p, for the rotational stiffness of the joints which is taken
equal to 0.999 with 1.0 equal to that for a rigid joint.

The total weight of the ball and half of the weight of the bolt connecting the ball with
the frame element are placed at each node as a lump mass. The other half of the weight
of the bolt is considered as part of the finite element. In additional, another lump mass
of 72g is added to each node to represent the weight of the moving accelerometers.
The natural frequencies calculated from the finite element model are found very close
to the measured values.
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Figure 8.26 Experimental set-up and the damaged elements of the frame structure
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Figure 8.27 A nine-bay three-dimensional frame structure (!- a damaged element)

Ambient v ibrat ion tes t for damage detect ion

The structure is excited with a random white noise signal through a LING PO 300
exciter approximately at the centroid of the support in the y-direction. The support is
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Figure 8.28 Auto-covariance of accelerations at support and structure

very rigid and heavy compared with the frame and it is held down to the strong floor
with four steel bolts. The acceleration responses of the support along the three principal
directions are measured. Only the response in the y-direction is significant and those
in the other two directions are small enough to be neglected. Nine accelerometers are
placed at nodes 2 to 10 in the y-direction for recording the acceleration response-time
histories. The sampling frequency is 2000 Hz with a low-pass filter at 1000 Hz, and the
responses for a duration of 800 seconds are used to calculate the auto-covariance. The
auto-covariance of the acceleration time history at the support in the y-direction has a
magnitude of 0.0031 m2/s4 at t = 0 and small values for other time instances as shown
in Figure 8.28(a), indicating a close to white noise excitation at the support (Equation
(8.96)). The auto-covariance of the acceleration time history from Node 8 before and
after the damage occurrence is shown in Figures 8.28(b) and 8.28(c), respectively. The
covariances are noted to be relatively smooth with a low noise level.

Damage scenar ios

Local faults are introduced by replacing three intact members with damaged ones. The
artificial damage is of two types. Type I is a perforated slot cut in the central length
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of the member. The slot is 13.7 cm long, and the remaining depth of the tube in the
cut cross-section is 14.375 mm. Type II is the removal of a layer of material from the
surface of the member. The external diameter of the tube is reduced from 22.02 mm to
21.47 mm, and the length of the weakened section is 202 mm, located in the middle of
the beam leaving 99 mm and 75 mm length of original tube cross-section on both sides.
Figure 8.26(c) gives a close up view of the damaged frame members. Type I damage
is located in element 10 and Type II damage is located in elements 27 and 68. The
equivalent damages computed by the Guyon method are 5% and 9.5% reduction in
the elastic modulus of material of element 10 and elements 27 and 68, respectively.

Model improvement for damage detect ion

The two-stage approach is adopted for the damage detection. The first stage updates
the rotational stiffness at the joints to obtain an improved analytical model for the
intact structure. Nine y-direction acceleration responses obtained from nodes 2 to
10 are measured and the corresponding auto-covariance WPT energy components are
computed for use in Equation (8.43) in Section 8.3.1. There are 69 × 6 = 414 unknown
rotational stiffnesses in the identification. The first two thousand data points of auto-
covariance of each acceleration response are decomposed into six levels of Daubechies
Db4 wavelet packets to have 64 covariance WPT energy components, and each packet
has the same frequency bandwidth of 15.625 Hz. All 64 WPT energy components are
used in the experimental identification procedure and there are 9 × 64 = 576 equations
in Equation (8.43). The measured modal damping ratios from the intact structure
have been used in the equation of motion for the computation of the analytical auto-
covariance. The updated rotational stiffness do not differ too much from the original
value with the largest change in member 20 at node 22 with the updated p = 0.86 for
the x-axis rotational stiffness.

The second stage updates the local faults in all the members of the structure in terms
of their elastic modulus. The damage localization is performed first. The measured first
mode shape with 52 translational DOFs from the intact and the damaged states of the
structure are expanded to the full DOFs by the dynamic condensation method with
Gauss–Jordan elimination (Mario, 1997). The obtained damage localization vector
is shown in Figure 8.29(a), indicating that the real damaged members can be identi-
fied but with false alarms in other undamaged members because of the error due to
measurement noise and the mode shape expansion.

The auto-covariance calculated from the y-direction response from nodes 2 and 10
are used in Equation (8.43) for the identification. There are 26 unknowns, which are
the suspected damaged elements shown in Figure 8.29(a) in the identification. The
first two thousand data points of the auto-covariance of each response are used and
all 64 × 9 = 576 WPT energy components are used in Equation (8.43). The identified
damage extent for all the elements are shown in Figure 8.29(b). The identified reduction
in the elastic modulus in the damaged members are 4.76%, 7.09% and 6.73% for
elements 10, 27 and 68, respectively, which are fairly close to the values of 5%, 9.5%
and 9.5%. There are false alarms in elements 9, 50 and 67 with a reduction of more
than 2% even though they are in fact undamaged.

It should be noted that the selection of damage elements at the end of the cantilever is
due to the consideration of experimental ease and assembly repeatability. It also carries
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Figure 8.29 Identified results for the experimental structure

an intention to identify a damage scenario with damage elements experiencing a small
change in the stress and strain, which is usually difficult to be identified with existing
techniques.

8.6 Conclusions

The wavelet-based approach provides further opportunity to use information from
different bandwidths for the condition assessment of a structure. The time-scale rep-
resentation of the dynamic response gives a more detailed description of the system
characteristic properties than the information from either a time series or its Fourier
transform. For an impulsive excitation, a low sampling rate has been shown to give
similar identified results compared to that obtain from data at a high sampling rate.
Different types of excitations have also been shown to be useful in identifying local
damages via the algorithms present in this chapter.
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Chapter 9

Uncertainty analysis

9.1 Introduction

Structural condition assessment involves many uncertainties, which come from the
modelling procedure, measurements and environmental variations (Ang and Tang,
1984; 2007). Ignoring the effects of these uncertainties could lead to an unsuccessful
assessment with damage undetected or intact elements identified as damaged. It is
important to locate the sources of these uncertainties and how they evolve throughout
the damage identification process.

Uncertainty in models and computer simulations generally arises from the measure-
ment, environmental variability, parameter variability and modelling with a lack of
knowledge. Measurement variability mainly comes from experimental procedures and
equipment. It includes measurement errors and data processing errors. Environmental
variability includes the uncertainty associated with environmental variables, such as
temperature, humidity, wind and traffic loads. Parameter variability is the uncertainty
associated with the input parameters of a particular model. Modelling uncertainty, or
lack of knowledge, refers to the uncertainty associated with the functional form of
the models implemented or simplified assumptions. In summary, the uncertainties in
structural condition assessment may be attributed to (Hao and Xia, 2005):

• Inaccuracy in finite element model discretization;
• Uncertainties in geometry and boundary conditions;
• Variations in materials properties;
• Errors associated with the measured signals;
• Environmental variability (such as temperature, humidity, wind and traffic).

These uncertainties can be further classified into three groups according to their
sources, namely as, the modelling, measurement and environmental uncertainties.
They propagate through the damage identification process, and an integrated pro-
cedure is required to estimate the probability that the failure criterion is met or not
with this effect.

Ang and Leon (2005) have tried to model and analyze these uncertainties for
risk-informed decisions, while Ellingwood (2005) reported on the state of practice
of risk-informed condition assessment of civil infrastructure for their maintenance,
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management (Frangopol and Liu, 2007) and safety evaluation (Liu et al., 2009a;
2009b). The effect on the maintenance of civil structures (Frangopol and Messer-
vey, 2009a) and the life-cycle cost estimation of deteriorating structures has also been
reported (Frangopol et al., 1997; Frangopol and Messervey, 2009b). However, the
integration of the reliability analysis with structural health monitoring has not been
attempted. The reliability analysis results of a structure are known to be a function of
the health monitoring or condition assessment results, and yet the inclusion of such
a relationship in the reliability analysis has not been performed due to the lack of
knowledge of the uncertainty propagation in the assessment process.

The three types of uncertainties and their influence to the structural condition assess-
ment are discussed in this chapter. Some of the existing approaches to formulate their
effect on the dynamic response and on the condition assessment results are also given.
Finally, a box-section bridge deck structure is taken to illustrate how these uncer-
tainties are considered in the integration of structural condition assessment with the
subsequent reliability analysis to yield an updated set of indices.

9.2 System uncertainties

The different stages of the computational modelling and simulation process relevant
to the damage identification are depicted in Figure 9.1 (Oberkampf et al., 2002).
Uncertainty is presented in all these stages, including the conceptual modelling of
the physical system, its symbolic representation as a mathematical model and the
subsequent numerical computation and solution. In this section, some of the general
considerations associated with uncertainty quantification and special issues related to
model uncertainty are discussed.

9.2.1 Modell ing uncertainty

Modelling uncertainty or uncertainty from the model can be introduced during either
the conceptual or the mathematical modelling processes. During the conceptual mod-
elling stage, no mathematical equations are written, but the fundamental assumptions
regarding possible events and physical processes are made. All possible factors that

Physical
System

Conceptual
Modelling

Mathematical
Modelling

Discretization and
algorithm selection

Computer
programming

Numerical
solution

Solution
Representation

Figure 9.1 Phases of computational modelling and simulation
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could affect the set of requirements for the modelling and simulation are considered.
Also, the possible physical couplings of these factors are identified. Since it is not
possible to model complex and realistic systems at the level of elementary particles,
most real-world mathematical models are comprised of a set of field equations and
associated boundary and initial conditions. These equations are approximations of
the complicated physics of the real world. Thus, modelling uncertainty can arise from
approximations or errors in the form of the model equations, the applied loads and
the boundary and initial conditions.

The discretization phase converts the continuum mathematics model into a dis-
crete mathematics problem suitable for numerical solution. In general, a finite element
model is a discrete numerical model of a continuous structural system. When a finite
element model is constructed to predict the dynamic properties of a structure, it usually
involves some simplifications, where complicated parts of the structure are represented
approximately by standard elements in the model. Discretization errors are introduced
when there is a difference between the actual dynamic properties of the system and
those predicted by the finite element model.

Methods are available for the systematic treatment of uncertainty in physical models.
If the uncertainty is due to physics that are known, but not modelled, either the model
can be revised to include these physics or an attempt can be made to characterize the
uncertainty included. However, if the physics are not known, little can be done to
characterize the accompanying uncertainty.

9.2.2 Parameter uncertainty

The parameter uncertainty refers simply to uncertainty in the input parameters of a
model. Once the form of a model has been specified by a complete set of mathematical
equations, all that remains for a complete mathematical statement of the problem is
numerical quantification of the various constants. These constants may be geometric
or material properties, or they may be those that characterize the applied loads, the
boundary conditions or the initial conditions. Parameter uncertainties are caused by the
differences between the actual parameters and the analytical ones estimated from the
drawing. It is common for it to be impossible to construct a real structure exactly the
same way as it is designed. Parameter uncertainty is perhaps the most widely studied
type of uncertainty. The characterization of the effect of this type of uncertainty on the
model prediction is analyzed by a wide variety of techniques, such as sensitivity anal-
ysis, Monte Carlo methods, reliability-based methods, fuzzy set, interval propagation
methods and stochastic finite elements.

The parameter uncertainty can be reduced by model updating if the vibration
properties of the real system are available. It has become an important topic in the
development of model updating algorithms and many procedures for model verifica-
tion or validation.

9.2.3 Measurement and environmental uncertainty

Measurement uncertainty refers to the uncertainties arising from the measurement
process itself. The inherent variability may come from noise in the measurement process
due to factors such as thermal instability, internal or external electromagnetic fields
and the quantization error. Error and potential uncertainty may arise from electrical
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bias and the gain errors of the signal processing tools. Measurement uncertainty forms
a significant part of the overall uncertainty. In many situations, measured data are
taken as the indisputable truth. This is obviously not correct because the accuracy
of measurements depends on the characteristics of the hardware, and on the physical
or empirical models underlying the design of the data collection system. An honest
quantification of measurement uncertainty is crucial to a meaningful characterization
of uncertainty as a whole.

The treatment of measurement uncertainties has a history almost as long as measure-
ment itself. The most common method of treating bias, gain and temporal or frequency
errors is by calibrating each piece of measurement equipment with respect to known
standards. Less common is the calibration of the entire measurement system.

Environmental variability includes the uncertainty associated with environmental
variables such as temperature and humidity. For the purpose of this discussion, it also
includes measurement errors, data processing errors and uncertainty with the descrip-
tion of loads and boundary conditions associated with environmental variables. Most
environmental variability can be dealt with as a parametric uncertainty. Uncertainty
that cannot be modelled easily is generally accounted for by perturbing the available
information with a random process as shown in the following sections.

9.3 System identification with parameter uncertainty

The sources of uncertainty were studied in Section 9.2., These mainly come from the
modelling procedure and measurement and environmental variations. Another task in
the uncertainty analysis is to study the effect of uncertainty on the condition assessment
and to estimate the statistical distribution or bounds of the identified results, which is
termed the uncertainty propagation in system identification.

While there are many studies on the effect of uncertainty in the modal analysis, relia-
bility analysis, model updating, etc., other researchers try to quantify the uncertainty in
identified modal parameters using the singular value decomposition technique (SVD)
(Ruotolo and Surace, 1999) or using the principal component analysis of a matrix of
estimated features (Kullaa, 2002). This is successful as the damage features are outliers.
However, it only works well when the SVD of the data matrix from intact observa-
tions can be computed. In another application of the SVD, the parameter variations are
decomposed into principal components that are weighted based on the sensitivity of the
performance matrix to the parameter variations (Vanlanduit et al., 2005). Parameter
bounds in the form of an interval model are generated and each interval corresponds to
one identified bounded uncertainty parameter with its associated principal direction.

Two commonly used numerical approaches to study the uncertainty propagation are
the Monte Carlo simulation and the perturbation method. In the Monte Carlo simu-
lation, a large number of samples with a given probability distribution are generated
(Kottegoda and Rosso, 1997). A specified process is then applied to these data samples
to estimate the statistics of the output. The Bootstrap method (Efron and Tibshirani,
1994) is somewhat similar to Monte Carlo simulation. It has the advantage of requir-
ing no assumptions about the distribution functions or covariance matrices. However,
this technique requires that every data sample be reused in the generation of the next
sample. An alterative approach is the perturbation method. This approach expands
a nonlinear function with a truncated Taylor series expansion at a known point and

© 2009 Taylor & Francis Group, London, UK

  



Uncerta in ty ana lys i s 291

then proceeds to the approximation of the moments of solutions from the expansion.
Certainly, the Monte Carlo simulation method can be combined with the perturbation
method for the uncertainty propagation study. The minimum variance method mak-
ing use of the above combined techniques was first studied by Collins et al. (1974)
to obtain the statistical properties of updating parameters. Beck and his co-workers
(Beck and Katafygiotis, 1998; Katafygiotis and Beck, 1998) have also reformulated this
method in a more general framework where the Bayesian method is used to minimize
the variance of the updated structural parameters.

9.3.1 Monte Carlo simulation

The Monte Carlo simulation has been widely used in statistical analysis. Different
sets of input data are obtained based on the statistics and an assumed probability
distribution of the input data. A specified process is then applied to the simulated
data to obtain the output for each set of inputs, from which, the distribution and
the interval bounds of the output can be estimated. It is particularly useful when a
closed-form solution is impossible or very difficult to obtain.

To perform a Monte Carlo simulation, one needs to specify the probability distri-
bution of the variables involved, which must be known or assumed. The generation
of outcomes from a prescribed probability distribution is a fundamental task in the
simulation process. In designing the Monte Carlo simulation, one must determine
how many simulations are required to assess the system behaviour with the error of
assessment decreasing as n−1/2, where n is the number of simulations. To estimate
the probability, p, of an event within 100 ε% (where ε is the acceptable tolerance,
0 ≤ ε≤ 1) of its true value with 100(1 −α)% confidence, n must satisfy (Kottegoda
and Rosso, 1997)

n ≥ z2
α/2(1 − p)/ε2p (9.1)

where zα/2 denotes a standard normal variate that is exceeded with the probability of
α/2. Since n is a function of p, which is unknown before the experiment is performed,
the value of p must be estimated before the experiment.

While increasing the sample size is one way to reduce the standard error of a Monte
Carlo analysis, the fact of doing so can be computationally expensive. A better solution
is to employ some technique of variance reduction based on the properties of corre-
lated samples. Standard techniques of variance reduction including antithetic variates,
control variates, importance sampling and stratified sampling (Kottegoda and Rosso,
1997) may be used for this purpose.

9.3.2 Integrated perturbed and Bayesian method

Before the integrated perturbed and Bayesian methods are introduced, the perturbation
method is first presented. The identified distribution of updated parameters is then
combined with the prior distributions of updated parameters via Bayesian updating to
achieve the posterior distributions of the updated parameters.

The perturbation method generally takes a small disturbance into the undisturbed
system. Here the uncertainty is taken as a perturbation from the noise-free data. It is
closely related to the Taylor series expansion and is useful when the uncertainty level
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is not high, such that the first few terms can approximate the important features of the
solution and the remaining ones can be truncated. In model updating, the relationship
between the measured vibration characteristics and the structural parameters can be
expressed as:

{e} = [S]{�α} (9.2)

where {e} is the modal data change vector containing the differences between the eigen-
values and mode shapes at the corresponding measured degrees-of-freedom (DOF) of
the structure before and after updating; {�α} = {̃α} − {α} is the vector of parameter
change, where {α} and {̃α} are structural elemental parameters of the initial and updated
finite element model; and [S] is the corresponding sensitivity matrix.

Different accuracies of approximation to the solution statistics can be achieved
depending on the order of truncation of the Taylor series expansion used in the per-
turbation method. In practical applications, either the first-order, second moment
approach or the second-order, second moment approach can be used to approximate
the solution moments. The first-order, second moment approach approximates the
nonlinear function with a linear expansion at a point of the space of the random vari-
ables, and the obtained mean and covariance are of first-order accuracy. The limitations
of the first-order perturbation method are that uncertainties must not be too large
and that the nonlinearity is not significant. Quadratic accuracy can be achieved by
approaching the nonlinear function with a second-order Taylor series expansion as
illustrated with the following example.

Applying the perturbation technique, Equation (9.2) can be expanded as a second-
order Taylor series in terms of the uncertainty, Xi, (Liu, 1995), which is taken as the
selected uncertainty here.

[S] = [S]0 +
N∑

i=1

∂[S]
∂Xi

Xi + 1
2

N∑
i=1

N∑
j=1

∂2[S]
∂Xi ∂Xj

XiXj (9.3)

{�α} = {�α}0 +
N∑

i=1

∂{�α}
∂Xi

Xi + 1
2

N∑
i=1

N∑
j=1

∂2{�α}
∂Xi ∂Xj

XiXj (9.4)

{e} = {e}0 +
N∑

i=1

∂{e}
∂Xi

Xi + 1
2

N∑
i=1

N∑
j=1

∂2{e}
∂Xi ∂Xj

XiXj (9.5)

It is noted that superscript ‘0’ represents the respective noise-free value. Substituting
the above equations into Equation (9.2) and comparing the terms of 1, Xi, Xi and Xj,
then {�α}0, ∂{�α}/∂Xi, ∂2{�α}/∂Xi ∂Xj (i, j = 1, 2, . . . , N) can be solved as follows

{�α}0 = ([S]0)+{e}0 (9.6)

∂{�α}
∂Xi

= ([S]0)+
(
∂{e}
∂Xi

− ∂[S]
∂Xi

{�α}0
)

(9.7)
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∂2{�α}
∂Xi ∂Xj

= ([S]0)+
(
∂2{e}
∂Xi ∂Xj

− ∂2[S]
∂Xi ∂Xj

{�α}0 − 2
∂[S]
∂Xi

∂{�α}
∂Xj

)
(9.8)

where + denotes the general inverse of a matrix. Noting that E(Xi) = 0 and the mean
values and covariance matrix of {�α} approximating the nonlinear function can be
obtained from Equation (9.4) as follows

E({�α}) = E({�α}0) + 1
2

N∑
i=1

∂2{�α}
∂2Xi

Cov(Xi, Xi) (9.9)

[Cov(�α,�α)] =
[
∂{�α}
∂{X}

]
[Cov(X, X)]

[
∂{�α}
∂{X}

]T

(9.10)

In practice, structural parameters are estimated from sources such as the design
drawing, which are subjected to uncertainties. Such an estimate of structural param-
eters is termed as prior information. The Bayesian approach is very useful when one
is faced with two sets of uncertain information and one needs to know which set to
believe. Both the prior information and the newly obtained information are used to
account for the relative uncertainty associated with each other. The newly obtained
information can be derived from the perturbation approach. The prior information
is given by the structural analysis prior to the testing of a structure. The Bayesian
approach is then applied to obtain a new (posterior) distribution with the above
information.

Assuming there is a random structural parameter, α, with a probability density
function, f1(α), the identified probability density function is obtained as f2(α) from the
above perturbation method. The posterior probability density function of the structural
parameter can be expressed as the following with the Bayesian probabilistic framework
(Sohn and Law, 1997; Vanik et al., 2000),

f (α) = kL(α)f2(α) (9.11)

where L(α) represents the likelihood function and k is the normalized constant.
For the case where the probability density functions of both f1(α) and f2(α) are

normally distributed, the posterior distribution function of the structural parameter,
f (α), also complies with a normal distribution, where the mean and standard deviation
are obtained as (Hua et al., 2007)

µ = µ1σ
2
2 + µ2σ

2
1

σ2
1 + σ2

2

(9.12)

σ =
√
σ2

1σ
2
2

σ2
1 + σ2

2

(9.13)

where µ1 and µ2 are the means of prior and the identified distribution function,
respectively; and σ1 and σ2 are the corresponding standard deviations, respectively.
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It is clear that both the mean and standard deviation of the posterior distribution
functions are weighted averages of the prior and the identified distribution functions
of the structural parameters. By using the Bayesian theory, knowledge of the analyst
and experience of the experimentalist can be rationally incorporated.

Examples of using the first-order perturbation with respect to parameter uncertain-
ties can be found using the measured modal data (Xia et al., 2002) and using directly
the measured acceleration of the structure (Li and Law, 2008). The propagation of
uncertainty within the structure in the iterative updating process has also been studied
(Li and Law, 2008).

9.4 Modelling the uncertainty

Since the uncertainties and their effects cannot be easily removed or quantified in the
structural condition assessment, some sort of mathematical tool can be used to model
them and include their effects in the assessment process. If the uncertainty u(x, θ) is
a normally distributed random process, it is a function of the position vector defined
over the domain D, with θ belonging to the space of random events �. It can be
very conveniently modelled by the Karhunen–Loéve expansion (Ghanem and Spanos,
1991) where proofs have been given on its equivalence to the Proper Orthogonal
Decomposition Methods (Wu et al., 2003) with,

u(x, θ) = u(x) +
m∑

n=1

ξn(θ)
√
λnϕn (x) (9.14)

where u(x) denotes the expected value of u(x, θ) over all possible realizations of the
process; and λn and ϕn(x) are the eigenvalue and the eigenvector of the covariance ker-
nel, respectively. This representation introduces just m independent standard normal
random variables ξn(θ) with the property of zero mean and unit standard deviation as

E(ξn(θ)) = 0, E(ξk(θ)ξl(θ)) = δkl (9.15)

where δnm is the Kronecker delta. An explicit expression for ξn(θ) can be written as

ξn(θ) = 1√
λn

∫
D

ũ(x, θ)ϕn(x) dx (9.16)

The Karhunen–Loéve expansion is related to the required specification of the covari-
ance, C(x1, x2) by the following relation:

C(x1, x2) =
∞∑

n=0

λnϕn(x1)ϕn(x2) (9.17)

which is bounded, symmetric and positive definite.
Lanata and Del Grosso (2006) give an example of modelling the uncertainties using

the Karhunen–Loéve expansion for the structural condition assessment; Wu and Law,
(2009) give an example of the modelling of the Gaussian uncertainties within the
bridge-vehicle interaction problem. The following gives an example of the study of
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propagation of uncertainties in a structural system during the condition assessment
process in which the uncertainties of the system parameters, excitation forces and
measured responses from the perturbed state of the structure are discussed (Li and
Law, 2008). A further application of the assessment results in updating the reliability
of a box-section bridge deck is also presented (Li and Law, 2008).

9.5 Propagation of uncertainties in the condition
assessment process

9.5.1 Theoretical formulation

An approximate model of the local damage is adopted in which the damaged structural
system is expressed as Kd =∑ne

i=1 αiKi, where αi is the fractional stiffness of an element
typically with 1.0 ≥αi ≥ 0.0; and ne is the number of finite elements. The damage iden-
tification equation is based on the acceleration response sensitivity method described
in Chapter 7 as

S ·�α = �ẍ = ẍd − ẍu (9.18)

where ẍd and ẍu are vectors of the acceleration response at the lth DOF of the dam-

aged and intact structures, respectively; S =
[
∂ẍl
∂α1

∂ẍl
∂α2

· · · ∂ẍl
∂αm

]
is the acceleration

sensitivity matrix; and �ẍ is the vector of changes in the acceleration response. An
iterative computation is adopted to get �α with the least-squares method from

�α = (STS)−1ST (ẍd − ẍu) (9.19)

with the specific tolerance of acceptance equal to 1.0 × 10−6.

9.5.1.1 Uncer ta in t ies of the sys tem

Random errors exist in the structural parameters of an initial analytical model. The
force excitation needs to be measured from the damaged structure with noise included
in the measurement. The measured acceleration response also contains measurement
noise. Since a model updating technique is used in the damage identification procedure,
all the above random errors will propagate in the computation system with iterations.
They are analyzed with an example below to check on how these errors erode the
identification results.

The different random variables above are all assumed to have zero mean and
normally distributed. They are also assumed independent with no coupling effect.
Assuming Xp denotes the random variables associated with the structural parameters
of the initial analytical model – these may be the mass density, geometric parameters
and the material elastic modulus of the initial analytical model. However, only the
parameters associated with the mass (the material density) and stiffness (the elastic
modulus of material) are studied for illustration of the analysis and they are denoted
by Xρi and XEi , respectively, for the ith element as

ρ̃i = ρi(1 + Xρi ), Ẽi = Ei(1 + XEi ) (9.20)
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where •̃ denotes the measured value including the uncertainty; ρi and Ei denote the
true values; and i denotes the ith element. Each finite element is assigned these ran-
dom variables representing the uncertainties in its mass and stiffness properties of the
element. The uncertainties with other structural parameters can be similarly defined.

The second type of uncertainty arising from the measured exciting force is denoted
by the random variable Xf , and the measured force excitation vector including the
uncertainty is related to the random variables as

f̃i = fi + Xfi (9.21)

where fi denotes the true excitation value at the ith time instance.
Similarly, the third type of uncertainty arising from the measured acceleration

response is denoted by the random variable, Xẍ, and it is related to the measured
acceleration response vector including the uncertainty as

˜̈xdi = ẍdi + Xẍdi (9.22)

where ẍdi denotes the true value of the measured response at the ith time instance from
the damaged structure.

9.5.1.2 Der ivat i ves of loca l damage wi th respect to the uncer ta in t ies

The first derivation of Equation (9.18) with respect to the general random variables,
X, is given as

∂S
∂X

·�α+ S · ∂�α
∂X

= ∂̃ẍd

∂X
− ∂ẍu

∂X
(9.23)

Substituting Equation (9.18) into Equation (9.23), ∂�α
∂X can be obtained as

∂�α

∂X
= (STS)−1ST

(
∂̃ẍd

∂X
− ∂ẍu

∂X
− ∂S
∂X

· (STS)−1ST (̃ẍd − ẍu)

)
(9.24)

Equation (9.24) gives the general relationship between an uncertainty and the identi-
fied local damage vector. Matrix S and response vector ẍu can be obtained from the
analytical model. Response vector ˜̈xd is obtained from measurement. The unknown
terms ∂̃ẍd

∂X , ∂ẍu
∂X and ∂S

∂X are obtained below for each type of uncertainty for the solution
of Equation (9.24).

9.5.1.3 Uncer ta in ty in the sys tem parameter

Considering the uncertainty in the system structural parameter, X = Xp, gives ∂̃ẍd
∂Xp

= 0,
since the measured response is independent of the system parameter. Equation (9.24)
can be rewritten as,

∂�α

∂Xp
= −(STS)−1ST

(
∂ẍu

∂Xp
+ ∂S
∂Xp

(STS)−1ST (̃ẍd − ẍu)
)

(9.25a)
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The sensitivity of the analytical response with respect to Xp, ∂ẍu
∂Xp

, can be obtained
by taking the first derivation of the equation of motion with respect to Xp as

M
∂ẍ
∂Xp

+ C
∂ẋ
∂Xp

+ K
∂x
∂Xp

= − ∂M
∂Xp

ẍ − ∂C
∂Xp

ẋ − ∂K
∂Xp

x (9.26)

The sensitivity, ∂ẍu
∂Xp

, can be computed using the Newmark method (Lu and Law,
2007a).

The derivation of the equation of motion with respect to the stiffness fractional
change, α, is

M
∂ẍ
∂α

+ C
∂ẋ
∂α

+ K
∂x
∂α

= −∂K
∂α

x (9.27)

from which the sensitivity matrix, S, can be obtained. Further differentiation of
Equation (9.27) with respect to the random variable, Xp, gives

M
∂2ẍ
∂α ∂Xp

+ C
∂2ẋ
∂α ∂Xp

+ K
∂2x
∂α ∂Xp

= − ∂M
∂Xp

∂ẍ
∂α

− ∂C
∂Xp

∂ẋ
∂α

− ∂K
∂Xp

∂x
∂α

−∂K
∂α

∂x
∂Xp

− ∂2K
∂α ∂Xp

x (9.28)

Since ∂x
∂Xp

, ∂ẋ
∂Xp

and ∂ẍ
∂Xp

have been obtained from Equation (9.26), and ∂x
∂α

, ∂ẋ
∂α

and
∂ẍ
∂α

have been obtained from Equation (9.27), ∂2ẍ
∂α ∂Xp

can finally be computed from

Equation (9.28) to form the sensitivity matrix, ∂S
∂Xp

,

∂S
∂Xp

=
[
∂2ẍl

∂α1 ∂Xp

∂2ẍl

∂α2 ∂Xp
· · · ∂2ẍl

∂αm∂Xp

]
(9.29)

and ∂�α
∂Xp

can finally be computed from Equation (9.25a).

9.5.1.4 Uncer ta in ty in the exc i t ing force

Considering the uncertainty in the exciting force, Xf , gives ∂̃ẍd
∂Xf

= 0, and Equation

(9.24) can be rewritten as

∂�α

∂Xf
= −(STS)−1ST

(
∂ẍu

∂Xf
+ ∂S
∂Xf

· (STS)−1ST (̃ẍd − ẍu)
)

(9.25b)

The derivation of the equation of motion with respect to Xf is given as

M
∂ẍ
∂Xf

+ C
∂ẋ
∂Xf

+ K
∂x
∂Xf

= D
∂̃f
∂Xf

− ∂K
∂Xf

x (9.30)
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Thus, from Equation (9.21)

∂̃f (t)
∂Xfi

= [0 · · · 0 1 0 · · · 0]T (9.31)

where only the ith component of the vector is one with zeros in all the other com-
ponents. For the initial analytical model, ∂K

∂Xf
= 0, but in the updated analytical

model, the effect of force uncertainty has propagated in the updated model with
α=α0 +�α1 +�α2 + . . . , where α is the updated vector of the fractional parame-
ter; α0 is the initial vector of the fractional parameter; and �αi is the vector of the
fractional parameter change identified after the ith iteration. Since the initial vector of
the fractional parameter is independent of the force uncertainty, ∂α

0

∂Xf
= 0, and

∂K
∂Xf

= ∂K
∂α

∂α

∂Xf
= ∂K
∂α

∂(α0 +�α1 +�α2 + · · · )
∂Xf

= ∂K
∂α

(
∂α0

∂Xf
+ ∂(�α

1)
∂Xf

+ ∂(�α
2)

∂Xf
+ · · ·

)
= ∂K
∂α

(
∂(�α1)
∂Xf

+ ∂(�α
2)

∂Xf
+ · · ·

)
(9.32)

Since ∂�αi

∂Xf
	= 0, then ∂K

∂Xf
	= 0. The sensitivity, ∂ẍu

∂Xf
, can be computed from Equations

(9.30) to (9.32) by the Newmark method.
Differentiating Equation (9.27) with respect to the random variable, Xf , gives

M
∂2ẍ
∂α ∂Xf

+ C
∂2ẋ
∂α ∂Xf

+ K
∂2x
∂α ∂Xf

= −∂K
∂α

∂x
∂Xf

− ∂K
∂Xf

∂x
∂α

− ∂2K
∂Xf ∂α

x (9.33)

which is similar to Equation (9.24). ∂S
∂Xf

can then be computed from Equations (9.30)

to (9.33) using the Newmark method and the sensitivity, ∂�α
∂Xf

, can then be obtained

from Equation (9.25b). The effect of the uncertainty is seen to be propagating with
iterations in the structural system through Equations (9.32), (9.33) and (9.25b).

9.5.1.5 Uncer ta in ty in the st ruct ura l response

The sensitivity of �α with respect to the random variable Xẍ can also be obtained
similar to that for the structural parameters. Since ẍu and S are not related to Xẍ in
the initial analytical model, ∂ẍu

∂Xẍ
= 0 and ∂S

∂Xẍ
= 0. Equation (9.24) then gives

∂�α

∂Xẍ
= (STS)−1ST ∂̃ẍd

∂Xẍ
(9.34a)
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However, in the updated analytical model, both ẍu and S are related to Xẍ with the
uncertainties propagated in the system. The derivation of the equation of motion with
respect to Xẍ gives

M
∂ẍ
∂Xẍ

+ C
∂ẋ
∂Xẍ

+ K
∂x
∂Xẍ

= − ∂K
∂Xẍ

x (9.35)

The sensitivities, ∂x
∂Xẍ

and ∂ẍ
∂Xẍ

, can be obtained from Equation (9.35) using the New-
mark method. ∂K

∂Xẍ
can be obtained in a manner similar to Equation (9.32). The

derivation of Equation (9.26) with respect to Xẍ gives

M
∂2ẍ
∂α ∂Xẍ

+ C
∂2ẋ
∂α ∂Xẍ

+ K
∂2x
∂α ∂Xẍ

= −∂K
∂α

∂x
∂Xẍ

− ∂2K
∂α ∂Xẍ

x − ∂K
∂Xẍ

∂x
∂α

(9.36)

and ∂�α
∂Xẍ

can be written as follows, incorporating Equations (9.35) and (9.36) as

∂�α

∂Xẍ
= (STS)−1ST

(
∂̃ẍd

∂Xẍ
− ∂ẍu

∂Xẍ
− ∂S
∂Xẍ

(STS)−1ST (̃ẍd − ẍu)

)
(9.34b)

Equation (9.32) is obtained from Equation (9.22) as

∂̃ẍd(t)
∂Xẍ

= [0 · · · 0 1 0 · · · 0]T (9.37)

and the sensitivity, ∂�α
∂Xẍ

, is obtained from Equations (9.34) and (9.37). The effect of the
uncertainty is seen to be propagating with iterations in the structural system through
a modified version of Equation (9.32) and Equations (9.35) and (9.34b).

In summary, the vector of sensitivity, ∂�α
∂X , can be obtained from Equations (9.25a),

(9.25b) and (9.24) as

∂�α

∂X
=
[
∂�α

∂Xp

∂�α

∂Xf

∂�α

∂Xẍ

]
(9.38)

9.5.1.6 Stat i s t i ca l character i s t i cs o f the damage vector

The mean value of the damage vector, �α, can be obtained directly from Equation
(9.19) as

E(�α) = (STS)−1ST (ẍd − ẍu) (9.39)

since the uncertainties considered in this paper are with zero means. The damage vector,
�α, can be regarded as a function of the random variables, and it can be expressed as
a truncated second-order Taylor series as

�α(X) = �α(0) +
mt∑
i=1

∂�α(0)
∂Xi

Xi + 1
2

mt∑
i=1

mt∑
j=1

∂2�α(0)
∂Xi ∂Xj

XiXj (9.40)
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where Xi and Xj denote the ith and jth variables, respectively; and mt is the number
of random variables in the statistical analysis. The covariance matrix of �α may be
obtained as (Papadopoulos and Garcia, 1998)

[cov(�α,�α)]m×m ≈
[
∂�α

∂X

]
m×mt

[cov(X, X)]mt×mt

[
∂�α

∂X

]T

m×mt

(9.41)

Since the random variables, Xi and Xj (i 	= j), are assumed independent,

[cov(X, X)]mt×mt =


cov(X1, X1) 0 · · · 0

0 cov(X2, X2) · · · 0
· · · · · · · · · · · ·
0 0 · · · cov(Xmt, Xmt)

 (9.42)

It is noted that the covariance matrix of the random variables, cov(X, X), can be
computed separately.

Random variables, Xp, are usually assumed to take the following form as

Xp = Ep · N (9.43)

where Ep is a constant defining the level of variation and N is a normally distributed
vector with zero mean and unit standard deviation. This gives

cov(Xp, Xp) =


(Ep)2 0 · · · 0

0 (Ep)2 · · · 0
· · · · · · · · · · · ·
0 0 · · · (Ep)2

 (9.44)

For the random variable, Xf , with the excitation force, is modelled as

Xf = Ep · N · σ f̃ (9.45)

where f̃ is the vector of polluted force excitation; and σ f̃ is the standard deviation of
the measured force time history. Thus,

cov(Xf , Xf ) =


(Ep)2 · var(̃f ) 0 · · · 0

0 (Ep)2 · var(̃f ) · · · 0
· · · · · · · · · · · ·
0 0 · · · (Ep)2 · var(̃f )

 (9.46)

where var(•) is the variance of the time history. For the random variables, Xẍ, which
are the measurement noise in the acceleration response

Xẍ = Ep · N · σ˜̈xd
(9.47)
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Then the covariance of Xẍ is

cov(Xẍ, Xẍ) =


(Ep)2 · var(̃ẍd) 0 · · · 0

0 (Ep)2 · var(̃ẍd) · · · 0
· · · · · · · · · · · ·
0 0 · · · (Ep)2 · var(̃ẍd)

 (9.48)

Hence, Equations (9.44), (9.46) and (9.48) give the covariance matrix of all the random
variables in the present study.

9.5.1.7 Stat i s t i ca l ana lys i s in damage ident i f i cat ion

Statistical analysis of the identified results can be performed using Equations (9.39)
and (9.41). Assuming that α0 corresponds to the set of initial parameter changes in the
analytical model, the updated set of parameter changes, α1, will be given as

α1 = α0 +�α1 (9.49)

with an expectation value of

E(α1) = E(α0) + E(�α1) (9.50)

and a covariance of

[cov(α1,α1)]m×m = cov(α0 +�α1,α0 +�α1)

= cov(α0,α0) + cov(α0,�α1) + cov(�α1,α0) + cov(�α1,�α1)

(9.51)

It is noted that Equations (9.50) and (9.51) will remain valid during the whole process
of convergence of the identified results.

9.5.2 Numerical example

9.5.2.1 The st ructure

The three-dimensional five-bay cantilever steel frame structure studied in Sections
7.4 and 8.5 is shown in Figure 9.2. The finite element model consists of 37 three-
dimensional Euler beam elements and 17 nodes. A summary of the main material and
geometrical properties of the members of the frame structure is given in Table 7.1. The
support conditions and dynamic characteristics of the structure are referred to Section
8.5.2.1.

A sinusoidal excitation is applied onto the structure at the 8th node in the z-direction
with an amplitude of 3 N and at a frequency of 30 Hz. The acceleration response
computed at the 5th node in the z-direction is taken as the ‘measured’ response and
the first 500 data points are used to identify the damage. The sampling frequency is
2000 Hz. A damage case with 5% and 10% reduction of the flexural stiffness in the
7th member and the 26th member, respectively, is studied. The effect of each type of
uncertainty on the damage identification is discussed below.
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Figure 9.2 A five-bay three-dimensional frame structure
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Figure 9.3 Mean value of identified results and its evolution with iterations due to uncertainty in
mass density

9.5.2.2 Uncer ta in ty wi th the mass dens i t y

The uncertainty of mass density of material is assumed to have a 1% amplitude with
Ep = 0.01 in Equation (9.43), and damage identification is performed on the structure
using the proposed approach. The mean stiffness change, µ�α, obtained from Equation
(9.19) for all the elements in the structure are shown in Figure 9.3(a) after the first and
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Figure 9.4 Standard deviation of identified results due to uncertainty in mass density

second iteration of the computation. The standard deviation of the stiffness change,
σ�α, for all the elements obtained from the proposed method after the first and second
iterations are shown in Figure 9.4. They are compared with those computed from the
Monte Carlo method (Robert and Casella, 1999) from 1000 samples of data. The two
sets of standard deviations are very close to each other, indicating that the statistical
method is correct. The standard deviation from the first iteration ranges from 0.96%
to 3.34% of the identified flexural stiffness of the member when there is only 1%
amplitude in the variation of the mass density of the analytical model. This indicates
that the uncertainty amplifies the error in the identified results. The standard deviation
in Figure 9.4(b) after the second iteration ranges from 1.01% to 3.77% and they are of
similar magnitude to those after the first iteration. This indicates that the amplifying
effect of the variation in the mass density is not significant in the second iteration,
since the bulk of the damage vector has been updated in the first iteration, as shown
in Figure 9.3(a).

To study the effect of the variation throughout the iterations, 10 iterations were
performed and the mean values of the damaged members are shown in Figures 9.3(b)
and 9.3(c). The standard deviations for the 7th, 18th and 26th members are shown in
Figure 9.5. The damage parameters converge quickly to the true values with only four
iterations. The standard deviation in Figure 9.5 also converges quickly to a constant
with increasing iterations in all the elements. Since the uncertainty with the mass
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density of the finite element model cannot be represented in the updated results, its
detrimental effect on the model updating is carried forward to the next iteration in
the form of variation in the identified result. It is only after four iterations that the
correct reductions in the 7th and 26th members are updated, and the variation of the
identified results becomes stabilized with a constant standard deviation.

Equation (9.41) shows that the standard deviation of the damage vector is linearly
related to the amplitude of the uncertainty, Ep. Only the computation for the case with
a unit variation is necessary, as it can easily be extended to other cases with different
variation amplitudes. It should be noted that all the statistical analysis in this study
is restricted to a small variation such that the linear approximation assumption in
Equation (9.18) is valid.

9.5.2.3 Uncer ta in ty wi th the e las t i c modu lus of mater ia l

When a 1% variation is included in the elastic modulus of material of the initial ana-
lytical model, the mean values of the identified flexural stiffness are the same as those
shown in Figure 9.3, as they are also computed from Equation (9.19). The standard
deviation of the identified results is shown in Figure 9.6 alongside those obtained from
the Monte Carlo technique. The standard deviation for all members has a maximum
value of 1.68% after the first iteration, and it drops to 0.26% after the second iteration.
This shows that (a) the effect of random variation in the elastic modulus is comparable
to that of the mass density after the first iteration; and (b) the significant reduction
after the second iteration shows that the flexural stiffness, which is closely related to
the elastic modulus, has been updated with the mitigation of the associated variation
effect in the subsequent iterations.
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Figure 9.6 Standard deviation of identified results due to uncertainty in the elastic modulus of
elasticity

To study the effect of variation with iterations, 10 iterations are performed and the
mean values of the identified results are shown in Figures 9.3(b) and 9.3(c), while the
standard deviations for the 7th, 18th and 26th members are shown in Figure 9.7. The
flexural stiffness converges quickly to the true values with only four iterations and the
standard deviations in Figure 9.7 also reduce quickly to zero with about four iterations.
The standard deviation for other undamaged members also exhibits this behaviour.
This indicates that the effect of variation in the stiffness parameter can be fully repre-
sented in the updated model after a few iterations with no residual uncertainties in the
updated finite element model.

9.5.2.4 Uncer ta in ty wi th the exc i ta t ion force and the measured
response

For the case of including the 1% variation as defined in Equation (9.45) for the exci-
tation force, the observations and the statistics of the identified results are similar to
those found for the case of the mass density variation and the details are not discussed
any further. The case with 1% random noise, as defined in Equation (9.47), added
into the ‘measured’ acceleration responses from the damaged structures to simulate
the measurement noise is not discussed for the same reason.
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9.5.3 Discussions

As a summary of the above discussions, the effect of variation in the flexural stiffness of
a member is least significant and can be mitigated with increasing iterations of model
updating. The effect of variation in the mass density of the finite element is more
significant, and those for the excitation force and the structural response are highly
significant.

Results show that the uncertainties in the system parameters remain in the updating
process in the form of a coefficient of variation in the identified results. The standard
deviation does not diverge when the bulk of the damage vector is obtained after a few
iterations. It should be noted that the assumptions of zero mean and normal distribu-
tion for the uncertainties are the basis of the present study. If the zero mean assumption
is not valid, Equation (9.39) is also not valid. If the normal random distribution is not
satisfied, the distribution of the identified parameter will not be normal distribution,
and this will add difficulties to the subsequent reliability analysis with the identified
results.

9.6 Integration of system uncertainties with the reliabil ity
analysis of a box-section bridge deck structure

The conventional capacity rating of a bridge structure has been largely based on the
Working Stress Rating criteria, which do not systematically take into account any infor-
mation on the variability of strength and loading, the extent of damage or deterioration
and the characteristics of actual response or redundancy specific to the structure. Thus,
the nominal rating load or reserve capacity evaluated by the conventional code-related
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formula, in general, fails to predict the realistic carrying capacity or reserve capacity
of deteriorated or damaged bridges. Reliability-based capacity rating has since been
suggested to predict a realistic relative reserve safety by incorporating actual bridge
conditions and uncertainties.

The structural reliability of several types of pre-stressed concrete beams has been
compared when designed to the code requirements of different countries (Nowak et al.,
2001; Du and Au, 2005). Different live load models and resistance models are used for
different countries. The ultimate limit state of flexural and shear capacities and service-
ability limit states (e.g. tension stress in concrete) are considered in similar studies. The
uncertainties in the analysis are expressed in terms of a bias factor and coefficient of
variation. Haukaas and Kiureghian (2005) have attempted to rank the relative signifi-
cance of different types of uncertainties using the reliability sensitivity measures derived
by Bjerager and Krenk (1989). However, this reliability sensitivity is not directly related
to the real conditions of the structure when under structural health monitoring. Such
a link is made possible by Xia et al. (2002), who related the uncertainty with the struc-
tural modal parameter in terms of a sensitivity matrix. However, this work remained
one step short of the integration of the reliability analysis with structural health mon-
itoring until Hosser et al. (2008) proposed a framework for such study. Frangopol
et al. (2008a; 2008b) and Catbas et al. (2008) later carried out the reliability analysis
of bridge structures using the long-term structural health monitoring data.

Section 9.5 discussed the system uncertainties that are related explicitly to the iden-
tified local anomalies, such that the latter has a variance distribution. This statistical
feature of the identified result thus carries the information of the system uncertainty of
the initial system. This characteristic of the statistics enables the integration of struc-
tural health monitoring with the subsequent reliability analysis of the structure. The
reliability index can then be updated from this improved set of statistics.

9.6.1 Numerical example

The bridge-vehicle system studied in Section 7.5.3 is again investigated for an updating
of the reliability of a bridge structure with additional information from the structural
condition assessment results, including the system uncertainties. Excitation generated
by the moving vehicle shown in Figure 7.21 serves as an input to the structure while
the acceleration responses recorded at the top of the bridge deck are used for the
assessment using the response sensitivity-based method described in Chapter 7. The
uncertainties in the elastic modulus of concrete and the measurement noise are included
in the condition assessment procedure to obtain the statistics for the identified results
with propagation in the condition assessment process, as discussed in Section 9.5.
These statistics are then included in the reliability analysis to give an updated set of
safety predictions on the bridge structure.

A damage zone involving a group of elements in the bridge deck is simulated with
20% reduction in the elastic modulus of material in the web elements of the central span
section – i.e. in the 18th and 19th elements in the left web, the 54th and 55th elements
in the middle web and the 90th and 91st elements in the right web, as indicated in
Figure 9.8. In the structural condition assessment process, the uncertainties included
are the elastic modulus of concrete with a coefficient of variation of 0.08 and 1%
random noise in the measured responses.
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Damage detection is performed with the two-axle three-dimensional vehicle crossing
the bridge deck along the travel path shown in Figure 9.8. It is noted that the vehicle
travels on top of the left web. The velocity of the vehicle is 20 m/s and the sampling
rate is 100 Hz. Road surface roughness Class C (ISO, 1995) is included in the analysis.
It is noted that Class C road roughness corresponds to the average road pavement
conditions, which is modelled as a noise distribution in the measured responses in
addition to the 1% measurement noise. The parameters of the vehicle are taken from
Marchesiello et al. (1999) with a mass of 17000 kg.

9.6.2 Condit ion assessment

Only the 108 web elements are included as candidates in the assessment. Each inter-
action force is modelled with 600 terms in its orthogonal expansions. Since the
interaction forces of the four wheels and local damages in the structural elements
are all unknowns, acceleration responses recorded at 27 locations on top of the deck
as shown in Figure 9.8 are used in the identification to ensure that the identifica-
tion equation is over-determined. The vehicle passes over the deck in 3.75 seconds,
and there are 375 time instances with the vehicle moving on top of the bridge deck.
There are 27 × 375 = 10125 equations for solving the 4 × 600 + 108 = 2508 number
of unknowns in the inverse problem.

The interaction forces calculated are kept as reference for comparison, while the
calculated responses of the deck are used for the inverse identification. Figures 9.9
and 9.10 give the identified interaction force-time histories and the identified local
damages in the bridge deck. The identified wheel-load-time histories from ‘unpol-
luted’ measured responses overlap with the true values, and the identified results from
measurement with 1% noise are very accurate with a small relative error less than
5%. Table 9.1 gives the associated information for convergence. There are some false
positives in elements adjacent to the damages in Figure 9.10.

Figure 9.11 shows the coefficient of variation (COV) of the elastic constant in all
the web elements obtained after three iterations using the true or identified interaction
forces with a COV of 0.08 in the elastic modulus and 1% noise in the measured
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Figure 9.9 Identified wheel-load-time histories

responses. The two sets of COV results are close to each other. Since the computation
of the standard deviations including uncertainties is very time consuming, only three
iterations are performed here. It is found that the results obtained after the second and
third iterations are converging and therefore the standard deviations after the third
iteration are adopted as the final result.
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Figure 9.10 Identified local damages in the web elements

Table 9.1 Information on convergence

No noise With 1% noise

Required iterations 5 3
Error of convergence 1.41 × 10−5 4.32 × 10−11

Regularization parameter λ 4.22 × 10−17 2.31 × 10−4

9.6.3 Reliabi l i ty analysis

The component and system reliability analyses are conducted based on the statistics in
Figures 9.10 and 9.11 to evaluate the safety condition of the damaged elements and
the bridge system. The former is assessed based on the most severe bending tensile
stress effect that occurs in the elements when the live load is on the central span.
According to the design code, the bridge carriageway was divided into three notional
lanes, and 25 units of HB loading are placed on one notional lane of the carriageway
with HA loading on the other two lanes, as shown in Figure 9.12. The working tensile
stress under the damaged state is calculated using the ‘equivalent strain’ assumption
(Voyiadjis and Kattan, 2005). For the system reliability analysis, the HB loading of
the above load combination is incrementally increased, such that the deflection of
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the bridge deck approaches the limiting value. The maximum deflection criterion is
defined in this study as 8/100 of the span length under a general live load according to
the AASHTO LRFD code. This criterion has been widely adopted for bridge structures.

The statistical parameters of the basic variables of the loading and structure are
shown in Table 9.2. Three types of reliability indices are calculated to study the effect
of uncertainties with different combinations of damage extent and COVs. They are:

Type I: intact structure with initial COV for all the elements;
Type II: structure with true damage in the damaged elements and initial COV for

all the elements;
Type III: structure with identified damage and identified COV, as shown in Figures

9.10 and 9.11.
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Table 9.2 Statistical parameters of basic variables in reliability analysis

Variable Bias factor Coefficient of variation Distribution type

Dead load, D1 1.03 0.08 Normal
Dead load, D2 1.05 0.10 Normal
Dead load, D3 1.0 0.25 Normal
Live load 1.15 0.18 Type I Extreme

value Distribution
Pre-stress – new structure 0.97 0.04 Normal

(age< 5 years)
Pre-stress – old structure 0.85 0.12 Normal

(age> 30 years)
Area of pre-stress strands 1.0 0.0125 Normal
Tensile strength of concrete (ft) 1.0 0.23 Normal
Modulus of elasticity 1.0 0.08 Normal
Dimensions (thickness) 1.0 0.05 Normal
Model coefficient 0.945 0.03 Normal

Table 9.3 Reliability index

Intact with True damage with Identified damage
initial COV initial COV with identified COV
(Type I) (Type II) (Type III)

Component reliability index 18th 1.268 0.876 1.050
19th 2.481 2.124 2.128
54th 2.069 1.747 1.881
55th 2.736 2.420 2.526
90th 2.814 2.367 2.397
91st 3.723 3.517 3.687

System reliability index 4.953 4.909 4.901

The Type I index gives the baseline before the damage occurrence and is the set of
indices corresponding to the design stage. The Type II index is associated with the
damage occurrence, but without the uncertainty effect from the condition assessment.
This is the conventional reliability index computed from an estimated damage pattern.
The Type III index is associated with the assessment results incorporating the prop-
agation of uncertainty in the structure. This is the set of updated reliability indices
incorporating the effect from the structural condition assessment.

The component and system reliability indices are computed and they are shown in
Table 9.3. The HB loading is placed approximately on top of the left web (Figure 9.8)
creating high tensile stresses in elements 18 and 19 compared to other elements and the
original component reliability indices (Type I) are smaller than the others. The effect
of local damage reduces the corresponding Type II and Type III indices. When the
statistics of the identified damages are further included in the analysis, the component
reliability indices (Type III) have a notable difference compared with those of Type
II. (It cannot, however, be concluded that the Type III component reliability indices
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will be larger than those of Type II, as it depends on the values of both the identified
mean and COVs of the variables). It is also noted that the system reliability does not
decrease dramatically since the damage in a few elements has a comparatively small
effect on the whole system. The Type III reliability analysis results listed in Table 9.3
give the updated safety predictions on the bridge deck including the effect of structural
condition assessment of the structure.

9.7 Conclusions

Uncertainty plays a significant role in structural damage identification and condition
assessment. Much effort has been made to quantify their effect in the health moni-
toring of a structure. However, their effect is always mixed with those from the local
damages under study. The Karhunen–Loéve expansion is a convenient approach to
model these uncertainties with an attempt to include their effect in the assessment, and
this approach is becoming more popular with the health monitoring community. The
modelling of the different random variables in the structural condition monitoring can
be further integrated with the reliability analysis of a structure, whereby the statistics
of the system parameters are altered resulting in an improved set of reliability indices.
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Spatial distribution system 167
State-space formulation 200
Static response changes 148–150
Stiffness

anti-symmetric torsional 61
saddle and symmetric bending 61
symmetric twisting 61
topology matrix 54

Strain energy equivalence 97–98
Super element 69

SVD (Singular value decomposition)
11–12, 187

generalized SVD 12–13
truncated SVD 20–21

T
Tangent stiffness matrix 37
Taylor series 133, 172
Temperature effect 212–215
Tendon

bonded 92
pre-stressing 95
unbonded 93

Tikhonov regularization 10, 15, 19–25
Time domain 199
Timoshenko beam element 50
TMF (truncated modal flexibility) 178
Translation parameter 232
Tsing Ma Bridge 70, 73

U
ULS (unit load surface) 180
Uniform load surface 106, 180
Uniform load surface curvature 185
Uncertainty

environment 289
measurement 289
modelling 288
parameter 289

Uncertainty analysis 287

V
Variance of static deflections 152
Vibration mitigation 38

W
Wavelet

bandwidth 252
coefficient 245, 248, 249, 250, 257, 258
continuous 232, 236
discrete 233, 265

WBZ (weak bonding zone) 116
Weights 64
WPD (wavelet packet decomposition) 234
WPT (wavelet packet transform) 234,

246, 251
WPT component energy 247
WPT component energy sensitivity 246
WPT sensitivity 277
WT (wavelet transform) 154, 232, 234,

239, 267
continuous 232, 236
discrete 233, 265, 266
spatial 154

White noise 160, 240, 263
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