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Preface

Many modelling and optimization problems require sophisticated algorithms to
solve. Contemporary optimization algorithms are often nature-inspired, based on
swarm intelligence. In the last two decades, there have been significant develop-
ments in the area of metaheuristic optimization and computational intelligence.
Optimization and computational intelligence have become ever-increasingly more
important. One of the core activities of the computational intelligence is that
‘‘intelligent’’ evolutionary algorithms play a vital role. Accompanying the progress
of computational intelligence is the emergence of metaheuristic algorithms.
Among such algorithms, swarm-intelligence-based algorithms form a large part of
contemporary algorithms, and these algorithms are becoming widely used in
classifications, optimization, image processing, business intelligence as well as in
machine learning and computational intelligence.

Most new nature-inspired optimization algorithms are swarm-intelligence-based,
with multiple interacting agents. They are flexible, efficient and easy to implement.
For example, firefly algorithm (FA) was developed in late 2007 and early 2008 by
Xin-She Yang, based on the flashing behaviour of tropical fireflies, and FA has been
proved to be very efficient in solving multimodal, nonlinear, global optimization
problems. It is also very efficient in dealing with classification problems and image
processing. As another example, cuckoo search (CS) was developed by Xin-She
Yang and Suash Deb in 2009, based on the brooding parasitism of some cuckoo
species, in combination with Lévy flights, and CS is very efficient as demonstrated in
many studies by many researchers with diverse applications. In fact, at the time of
the writing in July 2013, there have been more than 440 research papers on cuckoo
search and 600 pagers on firefly algorithm in the literature, which shows that these
algorithms are indeed an active, hot research area.

This book strives to provide a timely summary of the latest developments
concerning cuckoo search and firefly algorithm with many contributions from
leading experts in the field. Topics include cuckoo search, firefly algorithm,
classifications, scheduling, feature selection, travelling salesman problem, neural
network training, semantic web service, multi-objective manufacturing process
optimization, parameter-tuning, queuing, randomization, reliability problem, GPU
optimization, shape optimization and others. This unique book can thus serve as an
ideal reference for both graduates and researchers in computer science, evolu-
tionary computing, machine learning, computational intelligence and optimization,
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as well as engineers in business intelligence, knowledge management and infor-
mation technology.

I would like to thank our Editors, Drs. Thomas Ditzinger and Holger Schaepe,
and staff at Springer for their help and professionalism. Last but not least, I thank
my family for the help and support.

London, July 2013 Xin-She Yang
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Cuckoo Search and Firefly Algorithm:
Overview and Analysis

Xin-She Yang

Abstract Firefly algorithm (FA) was developed by Xin-She Yang in 2008, while
cuckoo search (CS) was developed by Xin-She Yang and Suash Deb in 2009. Both
algorithms have been found to be very efficient in solving global optimization prob-
lems. This chapter provides an overview of both cuckoo search and firefly algorithm
as well as their latest developments and applications. We analyze these algorithms
and gain insight into their search mechanisms and find out why they are efficient.
We also discuss the essence of algorithms and its link to self-organizing systems. In
addition, we also discuss important issues such as parameter tuning and parameter
control, and provide some topics for further research.

Keywords Algorithm · Cuckoo search · Firefly algorithm · Metaheuristic ·
Optimization · Self-organization

1 Introduction

Optimization and computational intelligence are active research areas with rapidly
expanding literature. For most applications, time, money and resources are always
limited, and thus their optimal use becomes increasingly important. In modern design
applications, it requires a paradigm shift in thinking and design to find energy-
saving and greener design solutions. However, to obtain optimal solutions to design
problems are non-trivial, and many real-world optimization problems can be really
hard to solve. For example, it is well-known that combinatorial optimization problems
such as the travelling salesman problem (TSP) are NP-hard, which means that there
are no efficient algorithms in general.
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2 X.-S. Yang

Even without efficient algorithms, we still have to solve these challenging prob-
lems in practice. This leads to the development of various exotic techniques and
problem-specific methods so that problem-specific knowledge (such as gradients) can
be used to guide better search procedures. In general, algorithms that use problem-
related knowledge should perform better than black-box-type methods that do not
use problem knowledge at all. But the incorporation of problem-specific knowl-
edge often limits the use of a method or an algorithm. In addition, it is not easy or
too computationally extensive to incorporate such knowledge. Sometimes, it may
be impossible to incorporate such knowledge, either because we may not have any
insight into the problem or because we do not know how to. In this case, the only
option is to use black-box-type algorithms that do not assume any knowledge of the
problem of interest.

In most cases, for NP-hard problems, the only alternative is to use heuristic or
metaheuristic methods by trial and error. Heuristic methods are to search for solu-
tions by trial and error, while metaheuristic methods can be considered as higher-
level heuristic methods that use information and selection of the solutions to guide
the search process. Optimization algorithms are the tools and techniques for solving
optimization problems with the aim to find its optimality, though such optimality is
not always reachable. This search for optimality is complicated further by the fact
that uncertainty is almost always present in the real-world systems. Therefore, we
seek not only the optimal design but also robust design in engineering and industry.
Optimal solutions, which are not robust enough, are not practical in reality. Subopti-
mal solutions or good robust solutions are often the choice in such cases. In the last
twenty years, nature-inspired metaheuristic algorithms have gained huge popularity
in optimization, artificial intelligence, machine learning, computational intelligence,
data mining and engineering applications [40, 65, 78].

The aim of this chapter is to review both cuckoo search and firefly algorithm and
their applications. Therefore, the chapter is organized as follows: Sect. 2 outlines
briefly the basic formulation of optimization problems, while Sect. 3 discusses the
essence of an optimization algorithm. Section 4 provides a detailed introduction to
cuckoo search, and Sect. 5 introduces the firefly algorithm in greater detail. Section 6
highlights the importance of the right amount of randomization, while Sect. 7 touches
the challenging issues of parameter tuning and parameter control. Finally, Sect. 8
draw conclusions briefly.

2 Optimization Problems

Optimization problems can be formulated in many ways. For example, the commonly
used method of least-squares is a special case of maximum-likelihood formulations.
By far the most widely used formulation is to write a nonlinear optimization problem
as

minimize fm(x), (m = 1, 2, ..., M), (1)
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subject to the constraints

h j (x) = 0, ( j = 1, 2, ..., J ), (2)

gk(x) ≤ 0, (k = 1, 2, ..., K ), (3)

where fm, h j and gk are in general nonlinear functions. Here the design vector
or design variables x = (x1, x2, ..., xd) can be continuous, discrete or mixed in
d-dimensional space. The functions fm are called objective or cost functions, and
when M > 1, the optimization problem is called multiobjective or multicriteria [65].

It is worth pointing out that here we write the problem as minimization, it can
also be written as maximization by simply replacing fm(x) by − fm(x). When all
functions are nonlinear, we are dealing with nonlinear constrained problems. In some
special cases when fm, h j and gk are linear, the problem becomes linear, and we can
use the widely linear programming techniques such as the simplex method. When
some design variables can only take discrete values (often integers), while other
variables are real continuous, the problem is of mixed type, which is often difficult
to solve, especially for large-scale optimization problems.

In general, multiobjective optimization requires multiobjective techniques to
obtain the Pareto fronts of a problem of interest. However, it is possible to com-
bine different objectives into a single objective by using weighted sum

f (x) =
M∑

m=1

αm fm, αm > 0,

M∑

m=1

αm = 1. (4)

This is a simple approach that allows us to use algorithms for single-objective opti-
mization without major modifications. However, this approach does have some disad-
vantages as it can only deal with convex Pareto fronts. In addition, true multiobjective
approaches to multiobjective optimization can give far more information and insight
into the problem.

3 The Essence of an Optimization Algorithm

Before we go any further to discuss nature-inspired algorithms such as cuckoo search
and firefly algorithm, let us analyze the essence of an optimization algorithm.

In essence, optimization is a process of searching for the optimal solutions to a par-
ticular problem of interest, and this search process can be carried out using multiple
agents which essentially form a system of evolving agents. This system can evolve
by iterations according to a set of rules or mathematical equations. Consequently,
such a system will show some emergent characteristics, leading to self-organizing
states which correspond to some optima of the objective landscape. Once the self-
organized states are reached, we say the system converges. Therefore, to design
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an efficient optimization algorithm is equivalent to mimicking the evolution of a
self-organizing system [4, 38].

3.1 The Essence of an Algorithm

Mathematically speaking, an algorithm is a procedure to generate outputs for a given
set of inputs. From the optimization point of view, an optimization algorithm gener-
ates a new solution xt+1 to a given problem from a know solution xt at iteration or
time t . That is

xt+1 = A(xt , p(t)), (5)

where A is a nonlinear mapping from a given solution (i.e., a d-dimensional vector) xt

to a new solution vector xt+1. The algorithm A has k algorithm-dependent parameters
p(t) = (p1, ..., pk) which can be time-dependent and can thus be tuned.

To find the optimal solution x∗ to a given optimization problem S with an often
infinitely number of states is to select some desired states φ from all states ψ, accord-
ing to some predefined criterion D. We have

S(ψ)
A(t)−⊕ S(φ(x∗)), (6)

where the final converged state φ corresponds to an optimal solution x∗ of the problem
of interest. However, the converged states can be multiple, and each corresponds to
a local optimum. Among all the optima, there should be the global optimality. This
self-organization process does not give an indication that it will converge to the global
optimal solution. The aim is to tune the algorithm and control its behaviour so that
true global optima (states) can be selected out of many possible states.

The selection of the system states in the design space is carried out by running
the optimization algorithm A. The behavior of the algorithm is controlled by the
parameters p, the initial solution xt=0 and the stopping criterion D. We can view the
combined S + A(t) as a complex system with a self-organizing capability.

The change of states or solutions of the problem of interest is through the
algorithm A. In many classical algorithms such as hill-climbing, gradient informa-
tion of the problem S is used so as to select states, say, the minimum value of the
landscape, and the stopping criterion can be a given tolerance or accuracy, or zero
gradient, etc.

An algorithm can act like a tool to tune a complex system. If an algorithm does
not use any state information of the problem, then the algorithm is more likely to be
versatile to deal with many types of problems. However, such black-box approaches
can also imply that the algorithm may not be efficient as it could be for a given
type of problem. For example, if the optimization problem is convex, algorithms
that use such convexity information will be more efficient than the ones that do not
use such information. In order to be efficient to select states/solutions efficiently, the
information from the search process should be used to enhance the search process.
In many case, such information is often fed into the selection mechanism of an
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algorithm. By far the most widely used selection mechanism to select or keep the
best solution found so far. That is, the simplest form of ‘survival of the fittest’.

From the schematic representation (6) of the optimization process, we can see
that the performance of an algorithm may also depend on the type of problem S it
solves. On the other hand, the final, global optimality is achievable or not (within
a given number of iterations) will also depend on the algorithm used. This may be
another way of stating the so-called no-free-lunch theorems.

Optimization algorithms can very diverse with several dozen widely used algo-
rithms. The main characteristics of different algorithms will only depend on the
actual, nonlinear, often implicit form of A(t) and its parameters p(t).

3.2 An Ideal Algorithm?

The number of iterations t needed to find an optimal solution for a given accu-
racy largely determines the overall computational efforts and the performance of an
algorithm. A better algorithm should use less computation and fewer iterations.

In an extreme case for an iterative algorithm or formula (5), an ideal algorithm
should only take one iteration t = 1. You may wonder if such an algorithm exists
in practice. The answer is “yes, it depends”. In fact, for a quadratic function such as
f (x) = ax2 where a > 0, the well-know Newton-Raphson method

xn+1 = xn − f ∼(xn)

f ∼∼(xn)
, (7)

is the ideal algorithm. If we start the iteration from any random guess x0 = b, we
have

x1 = x0 − f ∼(x0)

f ∼∼(x0)
= b − 2ab

2a
= 0, (8)

which gives the global optimal solution f∗(0) = 0 at x∗ = 0.
Obviously, we can extend this to all class of quadratic functions. Even it is possible

to extend to more generalized convex functions. However, many problems are not
convex, and certainly not quadratic. Therefore, the so-called ideal algorithm does
not exist in general. As we have mentioned earlier, there is no good algorithm for
solving NP-hard problems.

There are many optimization algorithms in the literature and no single algorithm
is suitable for all problems [64]. Even so, the search for efficient algorithm still forms
the major efforts among researchers, and this search for the ‘Holy Grail’ continues,
unless some proves analytically otherwise.
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3.3 Metaheuristic Algorithms

Algorithms can be classified as deterministic or stochastic. If an algorithm works in
a mechanically deterministic manner without any random nature, it is called deter-
ministic. For such an algorithm, it will reach the same final solution if we start
with the same initial point. Hill-climbing and downhill simplex are good examples
of deterministic algorithms. On the other hand, if there is some randomness in the
algorithm, the algorithm will usually reach a different point every time we run the
algorithm, even though we start with the same initial point. Genetic algorithms and
hill-climbing with a random restart are good examples of stochastic algorithms.

Analyzing current metaheuristic algorithms in more detail, we can single out
the type of randomness that a particular algorithm is employing. For example, the
simplest and yet often very efficient method is to introduce a random starting point
for a deterministic algorithm. The well-known hill-climbing with random restart
is a good example. This simple strategy is both efficient in most cases and easy to
implement in practice. A more elaborate way to introduce randomness to an algorithm
is to use randomness inside different components of an algorithm, and in this case,
we often call such algorithms heuristic or more often metaheuristic [65, 70].

Metaheuristic algorithms are often nature-inspired, and they are now among the
most widely used algorithms for optimization. They have many advantages over
conventional algorithms [28, 65]. Metaheuristic algorithms are very diverse, includ-
ing genetic algorithms, simulated annealing, differential evolution, ant and bee algo-
rithms, bat algorithm, particle swarm optimization, harmony search, firefly algorithm,
flower pollination algorithm, cuckoo search and others [29, 39, 70, 73–75, 82]. Here
we will introduce cuckoo search and firefly algorithm in great detail.

4 Cuckoo Search and Analysis

4.1 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,
developed in 2009 by Xin-She Yang and Suash Deb [76, 80, 81]. CS is based on the
brood parasitism of some cuckoo species. In addition, this algorithm is enhanced by
the so-called Lévy flights [48], rather than by simple isotropic random walks. Recent
studies show that CS is potentially far more efficient than PSO and genetic algorithms
[76]. Cuckoo are fascinating birds, not only because of the beautiful sound they can
make, but also because of their aggressive reproduction strategy. Some species such
as the ani and Guira cuckoos lay their eggs in communal nests, though they may
remove others’ eggs to increase the hatching probability of their own eggs. Quite a
number of species engage the obligate brood parasitism by laying their eggs in the
nests of other host birds (often other species).
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For simplicity in describing the standard Cuckoo Search, we now use the following
three idealized rules:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
• The best nests with high-quality eggs will be carried over to the next generations;
• The number of available host nests is fixed, and the egg laid by a cuckoo is dis-

covered by the host bird with a probability pa ≥ (0, 1). In this case, the host bird
can either get rid of the egg, or simply abandon the nest and build a completely
new nest.

As a further approximation, this last assumption can be approximated by replacing
a fraction pa of the n host nests with new nests (with new random solutions). For a
maximization problem, the quality or fitness of a solution can simply be proportional
to the value of the objective function. Other forms of fitness can be defined in a similar
way to the fitness function in genetic algorithms.

From the implementation point of view, we can use the following simple represen-
tations that each egg in a nest represents a solution, and each cuckoo can lay only one
egg (thus representing one solution), the aim is to use the new and potentially better
solutions (cuckoos) to replace a not-so-good solution in the nests. Obviously, this
algorithm can be extended to the more complicated case where each nest has multiple
eggs representing a set of solutions. Here, we will use the simplest approach where
each nest has only a single egg. In this case, there is no distinction between an egg,
a nest or a cuckoo, as each nest corresponds to one egg which also represents one
cuckoo.

This algorithm uses a balanced combination of a local random walk and the global
explorative random walk, controlled by a switching parameter pa . The local random
walk can be written as

xt+1
i = xt

i + αs ⊗ H(pa − ε) ⊗ (xt
j − xt

k), (9)

where xt
j and xt

k are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, ε is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights

xt+1
i = xt

i + αL(s,λ), (10)

where

L(s,λ) = λσ (λ)sin(πλ/2)

π

1

s1+λ
, (s ∝ s0 > 0). (11)

Here α > 0 is the step size scaling factor, which should be related to the scales of
the problem of interest. In most cases, we can use α = O(L/10), where L is the
characteristic scale of the problem of interest, while in some casesα = O(L/100) can
be more effective and avoid flying too far. Obviously, theα value in these two updating



8 X.-S. Yang

equations can be different, thus leading to two different parameters α1 and α2. Here,
we use α1 = α2 = α for simplicity.

The above equation is essentially the stochastic equation for a random walk. In
general, a random walk is a Markov chain whose next state/location only depends on
the current location (the first term in the above equation) and the transition probability
(the second term). However, a substantial fraction of the new solutions should be
generated by far field randomization and their locations should be far enough from
the current best solution; this will make sure that the system will not be trapped in a
local optimum [76, 80].

The literature on cuckoo search is expanding rapidly. It has received a lot of
attention and there are many recent studies using cuckoo search with a diverse range
of applications [14, 15, 19–21, 28, 37, 83]. For example, Walton et al. improved the
algorithm by formulating a modified cuckoo search algorithm [62], while Yang and
Deb extended it to multiobjective optimization [81].

4.2 Special Cases of Cuckoo Search

Cuckoo search as a metaheuristic algorithm has surprisingly rich characteristics. If
we look at the updating Eqs. (9) and (10) more close, we can discover such subtle rich-
ness. From (9), we can group some factors together by setting Q = αs ⊗ H(pa − ε),
then we have Q > 0. As a result, equation (9) becomes the major updating equation
of differential evolution (DE). Furthermore, we further replace xt

j by the current best
g∗ and set k = i , we have

xt+1
i = xt

i + Q(g∗ − xt
i ), (12)

which is essential a variant of the particle swarm optimization without individual
historical best. In this case, the above case is very similar to the accelerated particle
particle swarm optimization (APSO) developed by Yang et al. [78].

On the other hand, from (10), this random walk is in fact the simulated annealing
(SA) with a Lévy-flight transition probability. In this case, we have a simulated
annealing with a stochastic cooling scheduling controlled by pa .

Therefore, differential evolution, particle swarm optimization and simulated
annealing can be considered as special cases of cuckoo search. Conversely, we can
say that cuckoo search is a good and efficient combination of DE, PSO and SA in
one algorithm. Therefore, it is no surprise that cuckoo search is very efficient.

4.3 Why Cuckoo Search is so Efficient?

In addition to the analysis of the previous section showing that DE, PSO and SA are
specially cases of cuckoo search, recent theoretical studies also indicate that cuckoo
search has global convergence [63], which will be outlined in the next subsection.
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Theoretical studies of particle swarm optimization have suggested that PSO can
converge quickly to the current best solution, but not necessarily the global best
solutions [16, 36, 63]. In fact, some analyses suggest that PSO updating equations
do not satisfy the global convergence conditions, and thus there is no guarantee
for global convergence. On the other hand, it has proved that cuckoo search satisfy
the global convergence requirements and thus has guaranteed global convergence
properties [63]. This implies that for multimodal optimization, PSO may converge
prematurely to a local optimum, while cuckoo search can usually converge to the
global optimality.

Furthermore, cuckoo search has two search capabilities: local search and global
search, controlled by a switching/discovery probability. As mentioned in Sect. 3.1,
the local search is very intensive with about 1/4 of the search time (for pa = 0.25),
while global search takes about 3/4 of the total search time. This allows that the
search space can be explored more efficiently on the global scale, and consequently
the global optimality can be found with a higher probability.

A further advantage of cuckoo search is that its global search uses Lévy flights
or process, rather than standard random walks. As Lévy flights have infinite mean
and variance, CS can explore the search space more efficiently than algorithms using
standard Gaussian processes. This advantage, combined with both local and search
capabilities and guaranteed global convergence, makes cuckoo search very efficient.
Indeed, various studies and applications have demonstrated that cuckoo search is
very efficient [17, 28, 29, 56, 62, 80].

4.4 Global Convergence: Brief Mathematical Analysis

Wang et al. provided a mathematical proof of global convergence for the standard
cuckoo search, and their approach is based on the Markov chain theory [63]. Their
proof can be outlined as follows:

As there are two branches in the updating formulas, the local search step only
contributes mainly to local refinements, while the main mobility or exploration is
carried out by the global search step. In order to simplify the analysis and also to
emphasize the global search capability, we now use a simplified version of cuckoo
search. That is, we use only the global branch with a random number r ≥ [0, 1],
compared with a discovery/switching probability pa . Now we have

⎢
x(t+1)

i ← x (t)
i if r < pa,

x(t+1)
i ← x(t)

i + α ⊗ L(s,λ) if r > pa .
(13)

As our cuckoo search algorithm is a stochastic search algorithm, we can summa-
rize it as the following key steps:



10 X.-S. Yang

1. Randomly generate an initial population of n nests at the positions, X =
{x0

1, x0
2, ..., x0

n}, then evaluate their objective values so as to find the current global
best g0

t .
2. Update the new solutions/positions by

x(t+1)
i = x(t)

i + α ⊗ L(λ). (14)

3. Draw a random number r from a uniform distribution [0, 1]. Update x(t+1)
i if

r > pa . Then, evaluate the new solutions so as to find the new, global best g∗
t .

4. If the stopping criterion is met, then g∗
t is the best global solution found so far.

Otherwise, return to step (2).

The global convergence of an algorithm. If f is measurable and the feasible
solution space Ω is a measurable subset on ∅n , algorithm A satisfies the above two
conditions with the search sequence {xk}∞k=0, then

lim
k⊕∞ P(xk ≥ Rε,M ) = 1. (15)

That is, algorithm A can converge globally. Here P(xk ≥ Rε,M ) is the probability
measure of the kth solution on Rε,M at the kth iteration.

The state and state space. The positions of a cuckoo/nest and its global best
solution g in the search history forms the states of cuckoos: y = (x, g), where
x, g ≥ α and f (g) ≤ f (x). The set of all the possible states forms the state space,
denoted by

Y = {y = (x, g)|x, g ≥ α, f (g) ≤ f (x)}. (16)

The states and state space of the cuckoo group/population. The states of all n
cuckoos/nests form the states of the group, denoted by q = (y1, y2, ..., yn). All the
states of all the cuckoos form a state space for the group, denoted by

Q = {q = (y1, y2, ..., yn), yi ≥ Y, 1 ≤ i ≤ n}. (17)

Obviously, Q contains the historical global best solution g∗ for the whole population
and all individual best solutions gi (1 ≤ i ≤ n) in history. In addition, the global
best solution of the whole population is the best among all gi , so that f (g∗) =
min( f (gi )), 1 ≤ i ≤ n.

The transition probability from state y1 to y2 in cuckoo search is

P(Ty(y1) = y2) = P(x1 ⊕ x ∼
1)P(g1 ⊕ g∼

1)P(x ∼
1 ⊕ x2)P(g∼

1 ⊕ g2), (18)

where P(x1 ⊕ x ∼
1) is the transition probability at Step 2 in cuckoo search, and

P(g1 ⊕ g∼
1) is the transition probability for the historical global best at this step.

P(x ∼
1 ⊕ x2) is the transition probability at Step 3, while P(g∼

1 ⊕ g2) is the transition
probability of the historical global best.
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For globally optimal solution gb for an optimization problem < α, f >, the
optimal state set is defined as R = {y = (x, g)| f (g) = f (gb), y ≥ Y }.

For the globally optimal solution gb to an optimization problem < α, f >, the
optimal group state set can be defined as

H = {q = (y1, y2, ..., yn)|∀yi ≥ R, 1 ≤ i ≤ n}. (19)

Further detailed mathematical analysis proves that when the number of iteration
approaches sufficiently large, the group state sequence will converge to the optimal
state/solution set H . Therefore, the cuckoo search has guaranteed global conver-
gence.

4.5 Applications

Cuckoo search has been applied in many areas of optimization and computational
intelligence with promising efficiency. For example, in the engineering design appli-
cations, cuckoo search has superior performance over other algorithms for a range
of continuous optimization problems such as spring design and welded beam design
problems [28, 29, 80].

In addition, a modifed cuckoo search by Walton et al. [62] has demonstrated to
be very efficient for solving nonlinear problems such as mesh generation. Vazquez
[61] used cuckoo search to train spiking neural network models, while Chifu et al.
[14] optimized semantic web service composition processes using cuckoo search.
Furthermore, Kumar and Chakarverty [41] achieved optimal design for a reliable
embedded system using cuckoo search, and Kaveh and Bakhshpoori [37] used CS to
successfully design steel frames. Yildiz [83] has used CS to select optimal machine
parameters in milling operation with enhanced results, and while Zheng and Zhou
[86] provided a variant of cuckoo search using Gaussian process.

On the other hand, a discrete cuckoo search algorithm has been proposed by
Tein and Ramli [58] to solve nurse scheduling problems. Cuckoo search has also
been used to generate independent paths for software testing and test data generation
[15, 49, 56]. In the context of data fussion and wireless sensor network, cuckoo
search has been shown to be very efficient [19, 20]. Furthermore, a variant of cuckoo
search in combination with quantum-based approach has been developed to solve
Knapsack problems efficiently [42]. From the algorithm analysis point of view, a
conceptural comparison of cuckoo search with particle swarm optimization (PSO),
differential evolution (DE), artificial bee colony (ABC) by Civicioglu and Desdo
[17] suggested that cuckoo search and differential evoluton algorithms provide more
robust results than PSO and ABC. Gandomi et al. [28] provided a more extensive
comparison study for solving various sets of structural optimization problems and
concluded that cuckoo search obtained better results than other algorithms such
as PSO and gentic algorithms (GA). Speed [55] modified the Lévy cuckoo search
and shown that CS can deal with very large-scale problems. Among the diverse
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applications, an interesting performance enhancement has been obtained by using
cuckoo search to train neural networks as shown by Valian et al. [59] and reliability
optimization problems [60].

For complex phase equilibrium applications, Bhargava et al. [9] have shown that
cuckoo search offers a reliable method for solving thermodynamic calculations. At
the same time, Bulatović et al. [11] have solved a six-bar double dwell linkage
problem using cuckoo search, and Moravej and Akhlaghi [43] have solved the DG
allocation problem in distribution networks with good convergence rate and perfor-
mance. Taweewat and Wutiwiwatchi have combined cuckoo search and supervised
neural network to estimate musical pitch with reduced size and higher accuracy [57].

As a further extension, Yang and Deb [81] produced the multiobjective cuckoo
search (MOCS) for design engineering appplications. For multiobjective scheduling
problems, very progress was made by Chandrasekaran and Simon [12] using cuckoo
search algorithm, which demonstrated the superiority of their proposed methodology.
Recent studies have demonstrated that cuckoo search can performance significantly
better than other algorithms in many applications [28, 45, 83, 86].

5 Firefly Algorithm and Analysis

5.1 Firefly Algorithm

Firefly Algorithm (FA) was first developed by Xin-She Yang in late 2007 and 2008
at Cambridge University [65, 70], which was based on the flashing patterns and
behaviour of fireflies. The FA literature has expanded significantly in the last 5 years
with several hundred papers published about the firefly algorithms, and Fister et
al. provided a comprehensive review [27]. In essence, FA uses the following three
idealized rules:

• Fireflies are unisex so that one firefly will be attracted to other fireflies regardless
of their sex.

• The attractiveness is proportional to the brightness, and they both decrease as their
distance increases. Thus for any two flashing fireflies, the less brighter one will
move towards the brighter one. If there is no brighter one than a particular firefly,
it will move randomly.

• The brightness of a firefly is determined by the landscape of the objective function.

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent
fireflies, we can now define the variation of attractiveness β with the distance r by

β = β0e−γr2
, (20)

where β0 is the attractiveness at r = 0.
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The movement of a firefly i is attracted to another more attractive (brighter) firefly
j is determined by

xt+1
i = xt

i + β0e−γr2
i j (xt

j − xt
i ) + αt εt

i , (21)

where the second term is due to the attraction. The third term is randomization with
αt being the randomization parameter, and εt

i is a vector of random numbers drawn
from a Gaussian distribution or uniform distribution at time t . If β0 = 0, it becomes a
simple random walk. On the other hand, if γ = 0, FA reduces to a variant of particle
swarm optimisation [65]. Furthermore, the randomization εt

i can easily be extended
to other distributions such as Lévy flights [65]. A demo version of firefly algorithm
implementation by Xin-She Yang, without Lévy flights for simplicity, can be found
at Mathworks file exchange web site.1

5.2 Parameter Settings

As αt essentially controls the randomness (or, to some extent, the diversity of solu-
tions), we can tune this parameter during iterations so that it can vary with the iteration
counter t . So a good way to express αt is to use

αt = α0δ
t , 0 < δ < 1, (22)

where α0 is the initial randomness scaling factor, and δ is essentially a cooling factor.
For most applications, we can use δ = 0.95 to 0.97 [65].

Regarding the initial α0, simulations show that FA will be more efficient if α0 is
associated with the scalings of design variables. Let L be the average scale of the
problem of interest, we can set α0 = 0.01L initially. The factor 0.01 comes from the
fact that random walks requires a number of steps to reach the target while balancing
the local exploitation without jumping too far in a few steps [67, 70]. The parameter
β controls the attractiveness, and parametric studies suggest that β0 = 1 can be used
for most applications. However, γ should be also related to the scaling L . In general,
we can set γ = 1/

√
L . If the scaling variations are not significant, then we can set

γ = O(1).
For most applications, we can use the population size n = 15 to 100, though the

best range is n = 25 to 40 [65, 70].

1 http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm

http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm
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5.3 Algorithm Complexity

Almost all metaheuristic algorithms are simple in terms of complexity, and thus they
are easy to implement. Firefly algorithm has two inner loops when going through
the population n, and one outer loop for iteration t . So the complexity at the extreme
case is O(n2t). As n is small (typically, n = 40), and t is large (say, t = 5000), the
computation cost is relatively inexpensive because the algorithm complexity is linear
in terms of t . The main computational cost will be in the evaluations of objective
functions, especially for external black-box type objectives. This latter case is also
true for all metaheuristic algorithms. After all, for all optimisation problems, the
most computationally extensive part is objective evaluations.

If n is relatively large, it is possible to use one inner loop by ranking the attractive-
ness or brightness of all fireflies using sorting algorithms. In this case, the algorithm
complexity of firefly algorithm will be O(nt log(n)).

5.4 Special Cases of FA

Firefly algorithm is indeed rich in many ways. First, it uses attraction to influence
the behavior of the population. As local attraction tends to be stronger than long-
distance attraction, the population in FA can automatically subdivide into subgroups,
depending on the modality of the problem, which enables FA to deal with multimodal,
nonlinear optimization problems naturally.

Furthermore, we look at the updating equation (21) more closely, this nonlinear
equation provides much richer characteristics. Firstly, if γ is very large, then attrac-
tiveness or light intensity decreases too quickly, this means that the second term in
(21) becomes negligible, leading to the standard simulated annealing (SA). Secondly,
if γ is very small (i.e., γ ⊕ 0), then the exponential factor exp[−γr2

i j ] ⊕ 1. We
have

xt+1
i = xt

i + β0(xt
j − xt

i ) + αtε
t
i . (23)

Here, if we further set αt = 0, then the above equation (23) becomes a variant of
differential evolution. On the other hand, if we replace xt

i by the current global best
solution g∗, we have

xt+1
i = xt

i + β0(g
∗ − xt

i ) + αtε
t
i , (24)

which is essentially the accelerated particle swarm optimization (APSO) [78].
Thirdly, we set β0 = 0, and let εt

i is related to xi , then (23) becomes a pitch
adjustment variant of harmony search (HS).

Therefore, we can essentially say that DE, APSO, SA and HS are special cases
of firefly algorithm. Conversely, FA can be considered as a good combination of
all the four algorithms (DE, APSO, SA and HS), to a certain extent. Furthermore,
FA uses nonlinear updating equation, which can produce rich behaviour and higher
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convergence than the linear updating equations used in standard PSO and DE. Con-
sequently, it is again no surprise that FA can outperform other algorithms in many
applications such as multimodal optimization, classifications, image processing and
feature selection as we will see later in the applications.

5.5 Variants of Firefly Algorithm

For discrete problems and combinatorial optimisation, discrete versions of firefly
algorithm have been developed with superior performance [22, 26, 31, 35, 53], which
can be used for travelling-salesman problems, graph colouring and other applications.

In addition, extension of firefly algorithm to multiobjective optimisation has also
been investigated [3, 79].

A few studies show that chaos can enhance the performance of firefly algorithm
[18, 77], while other studies have attempted to hybridize FA with other algorithms
to enhance their performance [30, 33, 34, 51].

5.6 Attraction and Diffusion

The novel idea of attraction via light intensity as an exploitation mechanism was first
used by Yang in the firefly algorithm (FA) in 2007 and 2008. In FA, the attractive-
ness (and light intensity) is intrinsically linked with the inverse-square law of light
intensity variations and the absorption coefficient. As a result, there is a novel but
nonlinear term of β0 exp[−γr2] where β0 is the attractiveness at the distance r = 0,
and γ > 0 is the absorption coefficient for light [65].

Other algorithms also used inverse-square laws, derived from nature. For example,
the charged system search (CSS) used Coulomb’s law, while the gravitational search
algorithm (GSA) used Newton’s law of gravitation.

The main function of such attraction is to enable an algorithm to converge quickly
because these multi-agent systems evolve, interact and attract, leading to some self-
organized behaviour and attractors. As the swarming agents evolve, it is possible that
their attractor states will move towards to the true global optimality.

This novel attraction mechanism is the first of its kind in the literature of
nature-inspired computation and computational intelligence. This also motivated
and inspired others to design similar or other kinds of attraction mechanisms. What-
ever the attraction mechanism may be, from the metaheuristic point of view, the
fundamental principles are the same: that is, they allow the swarming agents to inter-
act with one another and provide a forcing term to guide the convergence of the
population.

Attraction mainly provides the mechanisms only for exploitation, but, with proper
randomization, it is also possible to carry out some degree of exploration. However,
the exploration is better analyzed in the framework of random walks and diffusive
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randomization. From the Markov chain point of view, random walks and diffusion
are both Markov chains. In fact, Brownian diffusion such as the dispersion of an ink
drop in water is a random walk. For example, the most fundamental random walks
for an agent or solution xi can be written as the following form:

x(t+1)
i = x(t)

i + ε, (25)

where t is a counter of steps. Here, ε is a random number drawn from a Gaussian
normal distribution with a zero mean. This gives an average diffusion distance of
a particle or agent that is a square root of the finite number of steps t . That is, the
distance is the order of

√
Dt where D is the diffusion coefficient. To be more specific,

the variance of the random walks in a d-dimensional case can be written as

σ2(t) = |v0|2t2 + (2d D)t, (26)

where v0 is the drift velocity.
This means it is possible to cover the whole search domain if t is sufficiently

large. Therefore, the steps in the Brownian motion B(t) essentially obeys a Gaussian
distribution with zero mean and time-dependent variance. A diffusion process can be
viewed as a series of Brownian motion, which obeys a Gaussian distribution. For this
reason, standard diffusion is often referred to as the Gaussian diffusion. If the motion
at each step is not Gaussian, then the diffusion is called non-Gaussian diffusion. On
the other hand, random walks can take many forms. If the step lengths obey other
distributions, we have to deal with more generalized random walks. A very special
case is when step lengths obey the Lévy distribution, such a random walk is called
Lévy flights or Lévy walks.

5.7 Why SA is Efficient

As the literature about firefly algorithm expands and new variants have emerged, all
pointed out the firefly algorithm can outperform many other algorithms. Now we
may ask naturally “Why is it so efficient?” To answer this question, let us briefly
analyze the firefly algorithm itself.

FA is swarm-intelligence-based, so it has the similar advantages that other swarm-
intelligence-based algorithms have. In fact, a simple analysis of parameters suggests
that some PSO variants such as Accelerated PSO [78] are a special case of firefly
algorithm when γ = 0 [65].

However, FA has two major advantages over other algorithms: automatical subdi-
vision and the ability of dealing with multimodality. First, FA is based on attraction
and attractiveness decreases with distance. This leads to the fact that the whole popu-
lation can automatically subdivide into subgroups, and each group can swarm around
each mode or local optimum. Among all these modes, the best global solution can
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be found. Second, this subdivision allows the fireflies to be able to find all optima
simultaneously if the population size is sufficiently higher than the number of modes.
Mathematically, 1/

√
γ controls the average distance of a group of fireflies that can be

seen by adjacent groups. Therefore, a whole population can subdivide into subgroups
with a given, average distance. In the extreme case when γ = 0, the whole population
will not subdivide. This automatic subdivision ability makes it particularly suitable
for highly nonlinear, multimodal optimisation problems.

In addition, the parameters in FA can be tuned to control the randomness as
iterations proceed, so that convergence can also be sped up by tuning these para-
meters. These above advantages makes it flexible to deal with continuous problems,
clustering and classifications, and combinatorial optimisation as well.

As an example, let us use two functions to demonstrate the computational cost
saved by FA. For details, please see the more extensive studies by Yang [70]. For De
Jong’s function with d = 256 dimensions

f (x) =
256∑

i=1

x2
i . (27)

Genetic algorithms required 25412 ± 1237 evaluations to get an accuracy of 10−5

of the optimal solution, while PSO needed 17040 ± 1123 evaluations. For FA, we
achieved the same accuracy by 5657 ± 730. This save about 78 and 67 % computa-
tional cost, compared to GA and PSO, respectively.

For Yang’s forest function

f (x) =
⎧ d∑

i=1

|xi |
⎨

exp
⎩

−
d∑

i=1

sin(x2
i )
]
, −2π ≤ xi ≤ 2π, (28)

GA required 37079 ± 8920 with a success rate of 88 % for d = 16, and PSO
required 19725 ± 3204 with a success rate of 98 %. FA obtained a 100 % success
rate with just 5152 ± 2493. Compared with GA and PSO, FA saved about 86 and
74 %, respectively, of overall computational efforts.

In short, FA has three distinct advantages:

• Automatic subdivision of the whole population into subgroups.
• The natural capability of dealing with multi-modal optimization.
• High ergodicity and diversity in the solutions.

All these advantages make FA very unique and very efficient.
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5.8 Applications

Firefly algorithm has attracted much attention and has been applied to many applica-
tions [3, 13, 31–33, 53, 71]. Horng et al. demonstrated that firefly-based algorithm
used the least computation time for digital image compression [32, 33], while Banati
and Bajaj used firefly algorithm for feature selection and showed that firefly algo-
rithm produced consistent and better performance in terms of time and optimality
than other algorithms [5].

In the engineering design problems, Gandomi et al. [28] and Azad and Azad [2]
confirmed that firefly algorithm can efficiently solve highly nonlinear, multimodal
design problems. Basu and Mahanti [7] as well as Chatterjee et al. have applied FA in
antenna design optimisation and showed that FA can outperform artificial bee colony
(ABC) algorithm [13]. In addition, Zaman and Matin have also found that FA can
outperform PSO and obtained global best results [85].

Sayadi et al. developed a discrete version of FA which can efficiently solve
NP-hard scheduling problems [53], while a detailed analysis has demonstrated the
efficiency of FA over a wide range of test problems, including multobjective load
dispatch problems [3, 70]. Furthermore, FA can also solve scheduling and travelling
salesman problem in a promising way [35, 46, 84].

Classifications and clustering are another important area of applications of FA with
excellent performance [50, 54]. For example, Senthilnath el al. provided an extensive
performance study by compared FA with 11 different algorithms and concluded that
firefly algorithm can be efficiently used for clustering [54]. In most cases, firefly
algorithm can outperform all other 11 algorithms. In addition, firefly algorithm has
also been applied to train neural networks [44].

For optimisation in dynamic environments, FA can also be very efficient as shown
by Farahani et al. [24, 25] and Abshouri et al. [1].

6 Right Amount of Randomization

As we mentioned earlier, all metaheuristic algorithms have to use stochastic compo-
nents (i.e., randomization) to a certain degree. Randomness increases the diversity
of the solutions and thus enables an algorithm to have the ability to jump out of any
local optimum. However, too much randomness may slow down the convergence of
the algorithm and thus can waste a lot of computational efforts. Therefore, there is
some tradeoff between deterministic and stochastic components, though it is difficult
to gauge what is the right amount of randomness in an algorithm? In essence, this
question is related to the optimal balance of exploration and exploitation, which still
remains an open problem.
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6.1 How to do Random Walks

As random walks are widely used for randomization and local search in metaheuristic
algorithms [65, 68], a proper step size is very important. Typically, we use the
following generic equation

xt+1 = xt + sεt , (29)

where εt is drawn from a standard normal distribution with a zero mean and unity
standard deviation. Here, the step size s determines how far a random walker (e.g.,
an agent or a particle in metaheursitics) can go for a fixed number of iterations.
Obviously, if s is too large, then the new solution xt+1 generated will be too far
away from the old solution (or more often the current best). Then, such a move is
unlikely to be accepted. If s is too small, the change is too small to be significant,
and consequently such search is not efficient. So a proper step size is important to
maintain the search as efficient as possible.

From the theory of simple isotropic random walks [48, 66, 67], we know that the
average distance r traveled in the d-dimension space is

r2 = 2d Dt, (30)

where D = s2/2τ is the effective diffusion coefficient. Here, s is the step size or
distance traveled at each jump, and τ is the time taken for each jump. The above
equation implies that

s2 = τ r2

t d
. (31)

For a typical scale L of dimensions of interest, the local search is typically limited
in a region of L/10. That is, r = L/10. As the iterations are discrete, we can take
τ = 1. Typically in metaheuristics, we can expect that the number of generations is
usually t = 100 to 1000, which means that

s ≈ r√
td

= L/10√
t d

. (32)

For d = 1 and t = 100, we have s = 0.01L , while s = 0.001L for d = 10 and
t = 1000. As step sizes could differ from variable to variable, a step size ratio s/L
is more generic. Therefore, we can use s/L = 0.001 to 0.01 for most problems.

6.2 Accuracy and Number of Iterations

Let us suppose that we wish to achieve an accuracy of δ = 10−5, then we can estimate
that the number of steps or iterations Nmax needed by pure random walks. This is
essentially the upper bound for Nmax
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Nmax ≈ L2

δ2d
. (33)

For example, for L = 10 and d = 10, we have

Nmax ≈ 1

(10−5)2 × 10
≈ 1010, (34)

which is a huge number that is not easily achievable in practice. However, this number
is still far smaller than that needed by a uniform or brute force search method. It is
worth pointing out the above estimate is the upper limit for the worst-case scenarios.
In reality, most metaheuristic algorithms require far fewer numbers of iterations.

On the other hand, the above formula implies another interesting fact that the num-
ber of iterations will not affect much by dimensionality. In fact, higher-dimensional
problems do not necessarily increase the number of iterations significantly. This
may lead to a rather surprising possibility that random walks may be efficient in
higher dimensions if the optimization lanscape is highly multimodal. This provides
some hints for designing better algorithms by cleverly using random walks and other
randomization techniques.

If we use Lévy flights instead of Gaussian random walks. Then, we have an
estimate [67]

Nmax ≈
⎧ L2

δ2d

⎨1/(3−λ)

. (35)

If we use λ = 1.5, we have
Nmax ≈ 2 × 107. (36)

We can see that Lévy flights can reduce the number of iterations by about 4 orders
[O(104)].

7 Parameter Tuning and Parameter Control

The most challenging issue for metaheuristic algorithms is probably to control explo-
ration and exploitation properly, which is still an open question. It is possible to
control attraction and diffusion in algorithms that use such features so that the per-
formance of an algorithm can be influenced in the right way. Ideally we should
have some mathematical relationship that can explicitly show how parameters can
be affect the performance of an algorithm, but this is an un-resolved problem. In fact,
unless for very simple cases under very strict, sometimes, unrealistic assumptions,
there is no theoretical results at all.
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7.1 Parameter Tuning

As an algorithm is a set of interacting Markov chains, we can in general write an
algorithm as

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠

t+1

= A[x1, ..., xn, ε1, ..., εm, p1(t), ..., pk(t)]
⎛

⎜⎝
x1
...

xn

⎞

⎟⎠

t

, (37)

which generates a set of new solutions (x1, ..., xn)t+1 from the current population of
n solutions. This behaviour of an algorithm is largely determined by the eigenvalues
of the matrix A that are in turn controlled by the parameters pk(t) and the randomness
vector ε = (ε1, ..., εm). From the Markovian theory, we know that the first eigenvalue
is typically 1, and therefore the convergence rate of an algorithm is mainly controlled
by the second eigenvalue λ2 of A. However, it is extremely difficult to find this
eigenvalue in general. Therefore, the tuning of parameters become a very challenging
task.

In fact, parameter-tuning is an important topic under active research [23]. The
aim of parameter-tuning is to find the best parameter setting so that an algorithm can
perform most well for a wider range of problems. At the moment, parameter-tuning is
mainly carried out by detailed, extensive parametric studies, and there is no efficient
method in general. In essence, parameter-tuning itself is an optimization problem
which requires higher-level optimization methods to tackle.

7.2 Parameter Control

Related to parameter-tuning, there is another issue of parameter control. Parameter
values after parameter-tuning are often fixed during iterations, while parameters
should vary for parameter control. The idea of parameter control is to vary the
parameters so that the algorithm of interest can provide the best convergence rate
and thus may achieve the best performance. Again, parameter control is another
tough optimization problem to be yet resolved. In the bat algorithm, some basic
form of parameter control has been attempted and found to be very efficient [68]. By
controlling the loudness and pulse emission rate, BA can automatically switch from
explorative moves to local exploitation that focuses on the promising regions when
the global optimality may be nearby. Similarly, the cooling schedule in simulated
annealing can be considered as a form of basic parameter control.

On the other hand, eagle strategy (ES) is a two-stage iterative strategy with iterative
switches [69]. ES starts with a population of agents in the explorative mode, and then
switch to the exploitation stage for local intensive search. Then, it starts again with
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another set of explorative moves and subsequently turns into a new exploitation stage.
This iterative, restart strategy has been found to be very efficient. Both parameter-
tuning and parameter control are under active research. More efficient methods are
highly need for this purpose.

8 Discussions and Concluding Remarks

Swarm intelligence based algorithms such as cuckoo search and firefly algorithm
are very efficient in solving a wide range of nonlinear optimization problems,
and thus have diverse applications in sciences and engineering. Some algorithms
(e.g., cuckoo search) can have very good global convergence. However, there are
still some challenging issues that need to be resolved in future studies.

One key issue is that there is a significant gap between theory and practice. Most
metaheuristic algorithms have good applications in practice, but mathematical analy-
sis of these algorithms lacks far behind. In fact, apart from a few limited results about
the convergence and stability about algorithms such as particle swarm, genetic algo-
rithms and cuckoo search, many algorithms do not have theoretical analysis. There-
fore, we may know they can work well in practice, we hardly understand why it works
and how to improve them with a good understanding of their working mechanisms.

Another important issue is that all metaheuristic algorithms have algorithm-
dependent parameters, and the actual values/setting of these parameters will largely
influence the performance of an algorithm. Therefore, the proper parameter-tuning
itself becomes an optimization problem. In fact, parameter-tuning is an important
area of research [23], which deserves more research attention.

In addition, even with very good applications of many algorithms, most of these
applications concern the cases with the number of design variables less than a few
hundreds. It would be more beneficial to real-world applications if the number of
variables can increase to several thousands or even to the order of millions.

It is worth pointing out that new research efforts should focus on the important
questions such as those outlined above, it should not focus on developing various
new algorithms for distractions. Nature has evolved over billions of years, providing
a vast source of inspiration; this does not mean that we should develop all new kind
of algorithms, such as grass algorithm, tiger algorithm, tree algorithm, sky algo-
rithm, wind algorithm, ocean algorithm or universe algorithm. These could lead to
misunderstanding and confusion of the true nature of metaheuristic algorithms and
optimization. In fact, studies should try to answer truly important questions, includ-
ing optimal balance of exploration and exploitation, global convergence, optimal
parameter control and tuning, and large-scale real-world applications.

All these challenging issues may motivate more further research. There is no
doubt that more applications of cuckoo search and firefly algorithm will be seen in
the expanding literature in the near future. It is highly expected that more theoretical
results about metaheuristic optimization will appear in the coming years.



Cuckoo Search and Firefly Algorithm: Overview and Analysis 23

References

1. Abshouri, A.A., Meybodi, M.R., Bakhtiary, A.: New firefly algorithm based on multiswarm
and learning automata in dynamic environments. Third international conference on signal
processing systems (ICSPS 2011), pp. 73–77. Yantai, China, 27–28 Aug 2011

2. Azad, S.K., Azad, S.K.: Optimum design of structures using an improved firefly algorithm. Int.
J. Optim. Civ. Eng. 1(2), 327–340 (2011)

3. Apostolopoulos, T., Vlachos, A.: Application of the firefly algorithm for solving the economic
emissions load dispatch problem. Int. J. Comb. 2011, (2011). Article ID 523806. http://www.
hindawi.com/journals/ijct/2011/523806.html

4. Ashby, W.R.: Princinples of the self-organizing sysem. In: Von Foerster, H., Zopf Jr, G.W.
(eds.) Pricinples of Self-Organization: Transactions of the University of Illinois Symposium,
pp. 255–278. Pergamon Press, London, UK (1962)

5. Banati, H., Bajaj, M.: Firefly based feature selection approach. Int. J. Comput. Sci. Issues 8(2),
473–480 (2011)

6. Bansal, J.C., Deep, K.: Optimisation of directional overcurrent relay times by particle swarm
optimisation. In: Swarm intelligence symposium (SIS 2008), pp. 1–7. IEEE Publication (2008)

7. Basu, B., Mahanti, G.K.: Firefly and artificial bees colony algorithm for synthesis of scanned
and broadside linear array antenna. Prog. Electromagn. Res. B 32, 169–190 (2011)

8. Bénichou, O., Loverdo, C., Moreau, M., Voituriez, R.: Two-dimensional intermittent search
processes: An alternative to Lévy flight strategies. Phys. Rev. E74, 020102(R) (2006)

9. Bhargava, V., Fateen, S.E.K., Bonilla-Petriciolet, A.: Cuckoo search: a new nature-inspired
optimization method for phase equilibrium calculations. Fluid Phase Equilib. 337, 191–200
(2013)

10. Blum, C., Roli, A.: Metaheuristics in combinatorial optimisation: overview and conceptural
comparision. ACM Comput. Surv. 35, 268–308 (2003)
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On the Randomized Firefly Algorithm
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Abstract The firefly algorithm is a stochastic meta-heuristic that incorporates ran-
domness into a search process. Essentially, the randomness is useful when deter-
mining the next point in the search space and therefore has a crucial impact when
exploring the new solution. In this chapter, an extensive comparison is made between
various probability distributions that can be used for randomizing the firefly algo-
rithm, e.g., Uniform, Gaussian, Lévi flights, Chaotic maps, and the Random sampling
in turbulent fractal cloud. In line with this, variously randomized firefly algorithms
were developed and extensive experiments conducted on a well-known suite of func-
tions. The results of these experiments show that the efficiency of a distributions
largely depends on the type of a problem to be solved.
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1 Introduction

Automatic problem solving with a digital computer has been the eternal quest of
researchers in mathematics, computer science and engineering. The majority of
complex problems (also NP-hard problems [1]) cannot be solved using exact meth-
ods by enumerating all the possible solutions and searching for the best solution
(minimum or maximum value of objective function). Therefore, several algorithms
have been emerged that solve problems in some smarter (also heuristic) ways. Nowa-
days, designers of the more successful algorithms draw their inspirations from
Nature. For instance, the collective behavior of social insects like ants, termites,
bees and wasps, or some animal societies like flocks of bird or schools of fish have
inspired computer scientists to design intelligent multi-agent systems [2].

For millions of years many biological systems have solved complex problems by
sharing information with group members [3]. These biological systems are usually
very complex. They consists of particles (agents) that are definitely more complex
than molecules and atoms, and are capable of performing autonomous actions within
an environment. On the other hand, a group of particles is capable of intelligent
behavior which is appropriate for solving complex problems in Nature. Therefore, it
is no coincidence that these biological systems have also inspired computer scientists
to imitate their intelligent behavior for solving complex problems in mathematics,
physics, engineering, etc. Moreover, interest in researching various biological sys-
tems has increased recently. These various biological systems have been influenced
by swarm intelligence (SI) that can be viewed as an artificial intelligence (AI) disci-
pline concerned with the designing of intelligent systems.

It seems that the first use of the term ‘swarm intelligence’ was probably by Beni
and Wang [4] in 1989 in the context of a cellular robotic system. Nowadays, this
term also extends to the field of optimization, where techniques based on swarm
intelligence have been applied successfully. Examples of notable swarm intelligence
optimization techniques are ant colony optimization [5], particle swarm optimiza-
tion [6], and artificial bees colony (ABC) [7, 8]. Today, the more promising swarm
intelligence optimization techniques include the firefly algorithm (FA) [9–14], the
cuckoo search [15], and the bat algorithm [16, 17].

Stochastic optimization searches for optimal solutions by involving randomness
in some constructive way [18]. In contrast, if optimization methods provide the same
results when doing the same things, these methods are said to be deterministic [19].
If the deterministic system behaves unpredictably, it arrives at a phenomenon of
chaos [19]. As a result, randomness in SI algorithms plays a huge role because this
phenomenon affects the exploration and exploitation in search process [20]. These
companions of stochastic global search represent the two cornerstones of problem
solving, i.e., exploration refers to moves for discovering entirely new regions of a
search space, while exploitation refers to moves that focus searching the vicinity of
promising, known solutions to be found during the search process. Both components
are also referred to as intensification and diversification in another terminology [21].
However, these refer to medium- to long- term strategies based on the usage of mem-
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ory (Tabu search), while exploration and exploitation refer to short-term strategies
tied to randomness [20].

Essentially, randomness is used in SI algorithms in order to explore new points
by moving the particles towards the search space. In line with this, several random
distributions can be helpful. For example, uniform distribution generates each point of
the search space using the same probability. On the other hand, Gaussian distribution
is biased towards the observed solution, that is that the smaller modifications occur
more often than larger ones [22]. On the other hand, the appropriate distribution
depends on the problem to be solved, more precisely, on a fitness landscape that
maps each position in the search space into fitness value. When the fitness landscape
is flat, uniform distribution is more preferable for the stochastic search process, whilst
in rougher fitness landscapes Gaussian distribution should be more appropriate.

This chapter deals with an FA algorithm that uses different randomization meth-
ods, like Uniform, Gaussian, Lévy flights, Chaotic maps, and the Random sampling
in turbulent fractal cloud. Whilst the observed randomization methods are well-
known and widely used (e.g., uniform, Gaussian, Lévi flights, and chaotic maps),
the random sampling in turbulent fractal cloud is taken from astronomy and, as we
know, it is the first time used for the optimization purposes. Here, two well-known
chaotic maps are also taken into account, i.e., Kent and Logistic.

The goal of our experimental work is to show how the different randomized
methods influence the results of the modified FA. In line with this, a function opti-
mization problem was solved by this algorithm. A suite of ten well-known functions
were defined, as defined in the literature.

The structure of the rest of the chapter is as follows: Sect. 2 describes a back-
ground information of various randomization methods. In Sect. 3, the randomized
firefly algorithms are presented. Experiments and results are illustrated in Sect. 4. The
chapter is finished summarizing our work and the directions for further development
are outlined.

2 Background Information

This section describes the background information about generating random variates
and computing their probability distributions, as follows:

• Uniform,
• Normal or Gaussian,
• Lévy flights,
• Chaotic maps,
• Random sampling in turbulent fractal cloud.

Continuous random number distributions [23] are defined by a probability density
function p(x), such that the probability of x occurring within the infinitesimal range
x to x + dx is p · dx . The cumulative distribution function for the lower tail P(x) is
defined as the integral
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P(x) =
∫ x

−≤
p(x) · dx, (1)

which gives the probability of a variate taking a value of less than x . The cumulative
distribution function for the upper tail Q(x) is defined as the integral

Q(x) =
∫ +≤

x
p(x) · dx, (2)

which provides the probability of a value greater than x .
The upper and lower cumulative distribution functions are related by P(x) +

Q(x) = 1 and satisfy the following limitations 0 ∗ P(x) ∗ 1 and 0 ∗ Q(x) ∗ 1.
In the remainder of this section, these randomized methods are presented in more
detail.

2.1 Uniform Distribution

Uniform continuous distribution has the density function, as follows:

p(x) =
⎢ 1

b−a a ∗ x ∗ b,

0 otherwise.
(3)

Note that each possible value of the uniform distributed random variable is within
optional interval [a, b], on which the probability of each sub-interval is proportional
to its length. If a ∗ u < v ∗ b then the following relation holds:

P(u < x < v) = v − u

b − a
. (4)

Normally, the uniform distribution is obtained by a call to the random number
generator [23]. Note that the discrete variate functions always return a value of
type unsigned which on most platforms means a random value from the interval
[0, 232− 1]. In order to obtain the random generated value within the interval [0, 1],
the following mapping is used:

r = ((double)rand()/((double)(RAND_MAX)+ (double)(1))), (5)

where r is the generated random number, the function rand() is a call of the random
number generator, and the RAND_MAX is the maximal number of the random value
(232 − 1).
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2.2 Normal or Gaussian Distribution

Normal or Gaussian distribution is defined with the following density function:

p(x) = 1

σ
⊕

2Ω
e−

1
2 ( x−a

σ
)2

. (6)

The distribution depends on parameters a ∼ R and σ > 0. This distribution is denoted
as N(a, σ ). The standardized normal distribution is obtained, when the distribution
has an average value of zero with standard deviation of one, i.e., N(0, 1). In this case,
the density function is simply defined as:

p(x) = 1⊕
2Ω

e−
1
2 x2

. (7)

The Gaussian distribution has the property that approximately 2/3 of the samples
drawn lie within one standard deviation [22]. That is, the most of the modifications
made on the virtual particle will be small, whilst there is a non-zero probability of
generating very large modifications, because the tail of distribution never reaches
zero [22].

2.3 Lévy Flights

In reality, resources are distributed non-uniformly in Nature. This means, that the
behavior of a typical forager needing to find these resources as fast as possible
does not obey Gaussian distribution. In order to simulate foragers search strategies,
Lévy flights is closer to their behavior [24]. It belongs to a special class of α-stable
distributions defined by a Fourier transform [23]:

p(x) = 1⊕
2Ω

∫ +≤

−≤
e−i t x−|ct |α . (8)

The α-stable means that it exhibits the same probability density distributions for each
randomly generated variable. This density function has two parameters: scale c ∼ R

and exponent α ∼ [0, 2]. A main characteristic of this distribution is that it has an
infinite variance.

Interestingly, for α = 1 the density function reduces to the Cauchy distribution,
whilst for α = 2 it is a Gaussian distribution with σ = ⊕2c. For α < 1 the tails of
the distribution become extremely wide [24]. The more appropriate setting of this
parameter for optimization is therefore α ∼ (1.0, 2.0), where the distribution is non-
Gaussian with no variance (as in the case of Lévy flights) or with no mean, variance
or higher moments defined (as in the case of Cauchy distribution). Essentially, the
difference between non-Gaussian and Gaussian distributions is that the tail of the
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distribution by the former is wider than by the latter. This means, the probability of
generating very large modifications is much higher by Lévy flights than by Gaussian
distribution.

2.4 Chaotic Maps

Chaos is a phenomenon encountered in science and mathematics wherein a deter-
ministic (rule-based) system behaves unpredictably [19]. Let us assume a Logistic
equation defined as a map:

xn+1 = r xn(1− xn), (9)

where xn ∼ (0, 1) and parameter r is a parameter. A generated sequence of numbers
by iterating a Logistic map (also orbit) with r = 4 are chaotic. That is, it posses the
following propositions [19]:

• the dynamic rule of generating the sequence of numbers is deterministic,
• the orbits are aperiodic (they never repeat),
• the orbits are bounded (they stay between upper and lower limits, normally, within

the interval [0, 1]),
• the sequence has sensitive dependence on the initial condition (also SDIC).

Similar behavior can also be observed by the Kent map [25]. The Kent map is
one of the more studied chaotic maps that has been used to generate pseudo-random
numbers in many applications, like secure encryption. It is defined as follows:

x(n + 1) =
⎧
⎨

⎩

x(n)
m , 0 < x(n) ∗ m,

(1−x(n))
1−m , m < x(n) < 1,

(10)

where 0 < m < 1. Hence, if x(0) ∼ (0, 1), for all n ≥ 1, x(n) ∼ [0, 1]. In accordance
with the propositions in [25], m = 0.7 was used in our experiments.

2.5 Random Sampling in Turbulent Fractal Cloud

Stars formation begins with a random sampling of mass in a fractal cloud [26]. This
random sampling is performed by the initial mass function (IMF) and represents a
basis for a new sampling method named as random sampling in turbulent fractal
cloud (RSiTFC).

The method can be described as follows. Let us consider a fractal cloud that is
divided into a hierarchical structure consisting of several levels with a certain number
of cloud pieces containing a certain number of sub-pieces. Then, a sampling method
randomly samples a cloud piece from any level. The sampled pieces at the top of this
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hierarchical structure are denser than the pieces at the bottom. When the cloud piece
is chosen the initial mass of that piece is identified and the piece representing the
formed star is removed from the hierarchy. This process is repeated until all of the
cloud is chosen [26]. This mentioned method is formally illustrated in Algorithm 1.

The algorithm RSiTFC consists of six parameters: scaling factor L , number of
levels H , number of sub-pieces for each piece N , fractal cloud pieces x , level h, and
piece number i . The scaling factor is determined as S = L−h when calculated from
the fractal dimension expressed as D = log N

log L . The number of levels H determines
the depth of the hierarchical structure. The number of pieces increases with level h
according to Poisson distribution PN (h) = N he−N /h!. The length of fractal cloud
pieces x is limited by N H and consists of elements representing the initial mass of the
star to be formed. Level h denotes the current hierarchical level, whilst i determines
the star to be formed.

Algorithm 1 RSiTFC(L , H, N , x, h, i)
Input: L scaling factor, H number of levels, N number of sub-pieces
Input: ⊗x fractal cloud, h current level, ⊗i piece number
1: if(i == 0)
2: x = new double [N H ];
3: for( j = 0; j < N h; j ++)
4: x[⊗i] = 2 ⊗ (U (0, 1)− 0.5)/Lh + 0.5;
5: ⊗i = ⊗i + 1;
6: end for
7: else
8: for( j = 0; j < N h; j ++)
9: x[⊗i] = x[⊗i] + 2 ⊗ (U (0, 1)− 0.5)/Lh;
10: ⊗i = ⊗i + 1;
11: end for
12: end if
13: if(h < H )
14: return RSiTFC(L , H, N , x, h + 1, i);
15: end if
16: return x ;

For example, let N = 2 be a constant number of sub-pieces for each piece. Then,
there is one cloud at the top level h = 0, with two pieces inside this cloud at h = 1, etc.
For H = 4, the total number of pieces is expressed as 1+ 2 + 4+ 8+ 16 = 31 [26].

3 Randomized Firefly Algorithms

Fireflies (Coleoptera: Lampyridae) are well known for bioluminescent signaling,
which is used for species recognition and mate choosing [27]. Bioluminiscence that
comprises a complicated set of chemical reactions is not always a sexual signal only
but also warns off potential predators. In the remainder of the chapter, an original FA
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algorithm is described that captures the bioluminiscent behavior of fireflies within
the fitness function. Further, this algorithm is then modified with various randomized
methods.

3.1 Original Firefly Algorithm

The light-intensity I of the flashing firefly decreases as the distance from source
r decreases in terms of I ∝ 1/r2. Additionally, air absorption causes the light to
become weaker and weaker as the distance from the source increases. This flashing
light represented the inspiration for developing the FA algorithm by Yang [9] in 2008.
Here, the light-intensity is proportional to the objective function of the problem being
optimized (i.e., I (s) ∝ f (s), where s = S(x) represent a candidate solution).

In order to formulate the FA, some flashing characteristics of fireflies were ideal-
ized, as follows:

• All fireflies are unisex.
• Their attractiveness is proportional to their light intensity.
• The light intensity of a firefly is affected or determined by the landscape of the

objective function.

Note that light-intensity I and attractiveness are in some way synonymous. While
the intensity I is referred to as an absolute measurement of emitted light by firefly,
the attractiveness is a relative measurement of the light that should be seen in the
eyes of beholders and judged by the other fireflies [9]. The light intensity I varies
with distance r is expressed by the following equation

I (r) = I0e−γ r2
, (11)

where I0 denotes the intensity of the light at the source, and γ is a fixed light
absorption coefficient. Similarly, the attractivenessβ that also depends on the distance
r is calculated according to the following generalized equation

β(r) = β0e−γ r2
. (12)

The distance between two fireflies i and j is represented as the Euclidian distance

rij = ←si − s j← =
√⎛⎛⎜

D⎝

k=1

sik − sjk, (13)

where sik is the k-th element of the i-th firefly position within the search-space, and
D denotes the dimensionality of a problem. Each firefly i moves to another more
attractive firefly j , as follows
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si = si + β0e−γ r2
ij (s j − si )+ α · Ni (0, 1). (14)

Equation (14) consists of three terms. The first term determines the position of
the i-th firefly. The second term refers to the attractiveness, while the third term
is connected with the randomized move of the i-th firefly within the search-space.
This term consists of the randomized parameter α, and the random numbers Ni (0, 1)

drawn from a Gaussian distribution. The scheme of FA is sketched in Algorithm 1.
The FA algorithm (Algorithm 2) runs on the population of fireflies P(t) that are

Algorithm 2 Original FA algorithm
1: t = 0; s⊗ = ∅; γ = 1.0; // initialize: gen.counter, best solution, attractiveness
2: P(t)=InitFA(); // initialize the firefly population s(0)

i ∼ P(0)

3: while t ∗ MAX_GEN do
4: α(t) = AlphaNew(); // determine a new value of α

5: EvaluateFA(P(t), f (s)); // evaluate s(t)
i according to f (si )

6: OrderFA(P(t), f (s)); // sort P(t)
i according to f (si )

7: s⊗ = FindTheBestFA(P(t), f (s)); // determine the best solution s⊗
8: P(t+1)=MoveFA(P(t)); // vary attractiveness according Eq. (14)
9: t = t + 1;
10: end while
11: return s⊗, f (s); // post process

represented as real-valued vectors s(t)
i = s(t)

i0 , . . . s(t)
in , where i = 1 . . . NP and NP

denotes the number of fireflies in population P(t) at generation t . Note that each firefly
s(t)

i is of dimension D. The population of fireflies is initialized randomly (function
InitFA) according to equation

s(0)
ij = (ubi − lbi ) · rand(0, 1)+ lbi , (15)

where ubi and lbi denote the upper and lower bounds, respectively. The main loop of
the firefly search process that is controlled by the maximum number of generations
MAX_GEN consists of the following functions. Firstly, the new values for the ran-
domization parameter α is calculated according to the following equation (function
AlphaNew):

ρ = 1− 10−4/0.91/MAX_GEN ,

α(t+1) = 1−ρ · α(t), (16)

where ρ determines the step size of changing the parameter α(t+1). Note that this
parameter monotony descends with the increasing of generation counter t . Secondly,
the new solution s(t)

i is evaluated according to a fitness function f (s(t)), where s(t)
i =

S(x(t)
i ) (function EvaluateFA). Thirdly, solutions s(t)

i for i = 1 . . . N P were ordered

with respect to the fitness function f (s(t)
i ) ascending, where s(t)

i = S(x(t)
i ) (function
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OrderFA). Fourthly, the best solution the best solution s⊗ = s(t)
0 is determined in the

population P(t) (function FindTheBestFA). Finally, the virtual fireflies are moved
(function MoveFA) towards the search space according to the attractiveness of their
neighbors’ solution (Eq. 14).

In the remainder of this paper, the randomized FA is discussed in more detail.

3.2 Variants of the Randomized Firefly Algorithm

Randomized FA (RFA) is based on the original FA that is upgraded using the men-
tioned randomized methods. In place of the original Eq. (14), the modified equation
is used by RFA, as follows:

si = si + β0e−γ r2
ij (s j − si )+ α · Ri , (17)

where Ri denotes one of the randomized methods presented in Table 1.
As can be seen from Table 1, six randomized methods are used in the RFA algorithm
that also differ according to the interval of generated random values. The former
returns the random values in an interval [0, 1], like Uniform distribution, and both
chaotic maps, whilst the latter within an interval (−≤,+≤), like Gaussian, Lévy
flights, and RSiTFC. When the random value is generated within the interval [0, 1],
this value is extended to the interval [−1, 1] using a formula ri = 2(ri − 0.5).
However, the generated solution value sij is verified to lie within the valid interval sij ∼
[lb j , ub j ], in both cases. Interestingly, some implementations of random generators
can be found in Standard C-library (as a standard random generator for generating
uniformly distributed random values), another in the GNU Scientific Library [23] (as
random generators for generating the Gaussian and Lévy flights distributed random
values), and the rest were developed from scratch (as chaotic maps and RSiTFC).
According to the used randomized method, six different variants of the RFA algorithm
are developed (as UFA, NFA, LFA, CFA1, CFA2, and FFA).

Table 1 Variants of the RFA algorithm

Randomization method Random generator Implementation RFA variant

Uniform distributed Ui (0, 1) Standard C-library UFA
Gaussian distributed Ni (−≤,+≤) GSL-library NFA
Lévy flights Li (−≤,+≤) GSL-library LFA
Kent chaotic map C K

i (0, 1) From scratch CFA1
Logistic chaotic map C L

i (0, 1) From scratch CFA2
RSiTFC Fi (−≤,+≤) From scratch FFA
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4 Experiments and Results

An aim of our experimental work was to show that the developed randomized methods
has a substantial (if not significant) impact on the results of the RFA algorithm. In
line with this, six variants of the RFA algorithm (UFA, NGA, LFA, CFA1, CFA2, and
FFA) were compared on a suite of ten well-known functions taken from publications.
In the remainder of this chapter, the test suite is presented, then an experiment setup
is defined that is followed by a description of a PC configuration, on which the
experiments were performed. Finally, the results of the experiments are presented,
in detail.

4.1 Test Suite

The test suite consisted of ten functions which were selected from two references.
The first five functions were taken from Karaboga’s paper [7], in which the ABC
algorithm was introduced, while the last five were from the paper of Yang [28] that
proposed a set of optimization functions suitable for testing the newly-developed
algorithms.

The functions within the test suite can be divided into unimodal and multimodal.
The multimodal functions have two or more local optima. The function is separable,
when the set of variables can be rewritten as a sum of the function of just one
variable. The separable and multimodal functions are more difficult to solve. The
more complex functions are those that have an exponential number of local optima
randomly distributed within the search space. The definitions and characteristics of
functions constituting the test suite, can be summarized as follows:

• Griewangk’s function:

f1(s) = −
D⎞

i=1

cos

⎟
si⊕

i

⎠
+

D⎝

i=1

s2
i

4000
+ 1, (18)

where si ∼ [−600, 600]. The function has the global minimum f ⊗ = 0 at s⊗ =
(0, 0, . . . , 0). It is highly multimodal, when the number of variables is higher
than 30.
• Rastrigin’s function:

f2(s) = D ⊗ 10+
D⎝

i=1

(s2
i − 10 cos(2Ωsi )), (19)

where si ∼ [−15, 15]. The function has the global minimum f ⊗ = 0 at s⊗ =
(0, 0, . . . , 0) and is also highly multimodal.
• Rosenbrock’s function:
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f3(s) =
D−1⎝

i=1

100 (si+1 − s2
i )2 + (si − 1)2, (20)

where si ∼ [−15, 15] and whose global minimum f ⊗ = 0 is at s⊗ = (1, 1, . . . , 1).
This function, also known as the ‘banana function’ has several local optima.
Gradient-based algorithms are especially difficult to converge to the global optima
by optimizing this function.
• Ackley’s function:

f4(s) =
D−1⎝

i=1

(20+ e − 20e
−0.2

√
0.5(s2

i+1+ s2
i )

− e0.5(cos(2Ωsi+1)+ cos(2Ωsi ))), (21)

where si ∼ [−32.768, 32.768]. The function has the global minimum f ⊗ = 0 at
s⊗ = (0, 0, . . . , 0) and it is highly multimodal.
• Schwefel’s function:

f5(s) = 418.9829 ⊗ D −
D⎝

i=1

si sin(
√|si |), (22)

where si ∼ [−500, 500]. The Schwefel’s function has the global minimum f ⊗ = 0
at s⊗ = (1, 1, . . . , 1) and is highly multimodal.
• De Jong’s sphere function:

f6(s) =
D⎝

i=1

s2
i , (23)

where si ∼ [−600, 600] and whose global minimum f ⊗ = 0 is at s⊗ =
(0, 0, . . . , 0). The function is unimodal and convex.
• Easom’s function:

f7(s) = −(−1)D

(
D⎞

i=1

cos2(si )

)
exp

[
−

D⎝

i=1

(si − Ω)2

]
, (24)

where si = [−2Ω, 2Ω ]. The function has several local minimum and the global
minimum f ⊗ = −1 at s⊗ = (Ω, Ω, . . . , Ω).
• Michalewicz’s function:

f8(s) = −
D⎝

i=1

sin(si )

[
sin

(
is2

i

Ω

)]2·10

, (25)
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where si = [0, Ω ]. The function has the global minimum f ⊗ = −1.8013 at
s⊗ = (2.20319, 1.57049) within two-dimensional parameter space. In general, it
has several local optima.
• Xin-She Yang’s function:

f9(s) =
(

D⎝

i=1

|si |
)

exp

[
−

D⎝

i=1

sin(s2
i )

]
, (26)

where si = [−2Ω, 2Ω ]. The function is not smooth because it has several local
optima and the global minimum f ⊗ = 0 at s⊗ = (0, 0, . . . , 0).
• Zakharov’s function:

f10(s) =
D⎝

i=1

s2
i +

(
1

2

D⎝

i=1

isi

)2

+
(

1

2

D⎝

i=1

isi

)4

, (27)

where si = [−5, 10]. The function has the global minimum f ⊗ = 0 at s⊗ =
(0, 0, . . . , 0) with no local optima.

The lower and upper bounds of the design variables determine intervals that limit
the size of the search space. The wider this interval, the wider the search space. Note
that the intervals were selected so that the search space was wider than those proposed
in the standard literature. Another difficulty was represented by the dimensions of
the functions. Typically, the higher the dimensional function, the more difficult to
optimize. Note that functions with dimensions D = 10, D = 30 and D = 50 were
employed in our experiments.

4.2 Experimental Setup

The characteristics of RFA algorithms are illustrated in Table 2, from which it can
be seen that the specific FA parameters were set according to the propositions in [9],
i.e., α = 0.1, β = 0.2, and γ = 0.9. The population size was set as NP = 100,
because extensive experiments have shown that this value represents the good balance
between exploration and exploitation within the FA search process.

The number of fitness function evaluations depends on a dimension of problem
D and was limited to MAX_FEs = 1, 000 · D. However, the number of generations
used as termination condition in RFA can simply be expressed as MAX_GEN =
MAX_FES/NP. Because all the algorithms have stochastic natures they were run
25 times. The results from these algorithms were accomplished according to five
standard measures, as follows: the Best, the Worst, the Mean, the StDev, and the
Median values.
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Table 2 Characteristics of the RFA algorithms

Parameter Designation Setting

Randomized parameter α 0.1
Attractiveness β 0.2
Light absorption γ 0.9
Population size N P 100
Maximum number of evaluations MAX_FEs 1, 000 · D
Maximum number of generations MAX_GEN MAX_FEs/NP
Maximum number of runs MAX_RUN 25

4.3 PC Configuration

All runs were made on a HP Compaq using the following configurations:

1. Processor—Intel Core i7-2600 3.4 (3.8) GHz
2. RAM—4GB DDR3
3. Operating system—Linux Mint 12

All versions of the tested algorithms were implemented within the Eclipse Indigo
CDT framework.

4.4 Results

The following experiments were conducted, in order to show how the various ran-
domized methods influenced the results of the RFA algorithms:

• analyzing the characteristics of the various randomization methods,
• verifying the impact of these randomizing methods on the results of the RFA

algorithms,
• comparing the results of the RFA algorithms with other well-known meta-

heuristics, like BA, DE, and ABC.

The results of the mentioned experiments are observed in the remainder of this
chapter.

4.4.1 Characteristics of the Various Randomized Methods

In this experiment, characteristics of the randomized methods, such as:

• Uniform distributed,
• Gaussian distributed,
• Lévy flights,
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Fig. 1 Results of the various randomized methods

• Kent chaotic maps,
• Logistic chaotic map, and
• Random sampling in turbulent fractal cloud

are taken into account. The results are illustrated in Fig. 1 that is divided into six
diagrams. Each of these presents a specific randomized method.
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The results diagrams were obtained as follows. A million random numbers were
generated for each method. Then, these were represented in a histogram plot that is a
natural graphical representation of the distribution of random values. Each histogram
consists of intervals coated on the x-axis denoting the value of the statistic variable,
and their frequencies coated on the y-axis. Indeed, the range of real values [−9.9, 9.9]
is divided into 101 intervals each of width 0.2. The interval zero comprises the range
[−0.1, 0.1], whilst intervals−50 and 50 capture values<−9.9 and>9.9, respectively.
However, the total sum of the frequencies is one million.

The following characteristics can be summarized from the presented plots:

1. At first glance, a Kent chaotic map is similar to the uniform distribution, but the
frequencies of the intervals slightly differ between each other by the former. On
the other hand, Logistic chaotic map is inversion of both previously mentioned,
because the border intervals 0 and 5 exhibit higher frequencies than the inner.

2. Gaussian distribution is more compact than Lévy flights, because the latter enables
the generating the random numbers that are outside the intervals−50 and 50. This
phenomenon can be seen in Fig. 1c as peeks in the first and last intervals.

3. The RSiTFC plot exhibits more peaks. This behavior might be useful by the
optimization of multi-modal problems.

In summary, three randomized methods generates random numbers into interval
[0, 1], whilst the other three into an interval that is much wider than mentioned. This
finding complies with Table 1.

4.4.2 Impact of Randomized Methods on the Results of the RFA Algorithms

In this experiment, an impact of various randomized methods on the results of the
RFA algorithms was verified. Therefore, the six variants of the RFA algorithms, i.e.,
UFA, NFA, LFA, CFA1, CFA2, and FFA were applied to the test suite as defined
in Sect. 4.1. Indeed, the experimental setup was employed as presented in Sect. 4.2.
Although the functions with dimensions D = 10, D = 30, and D = 50 were
optimized, only those results optimizing the functions with dimension D = 30 are
presented in Table 3, because of the limitation of the chapter’s length. The best results
are bold in this table.

As can be seen from Table 3, the FFA variant of RFA achieved the best results by
optimizing functions f1, f2, f4, f6, and f7, the LFA by functions f5, f9, and f10,
whilst the UFA outperformed the other algorithms by optimizing the function f3 and
the CFA1 by f8. Indeed, the functions f1, f2, and f4 are highly multi-modal.

The Friedman test was conducted in order to estimate the quality of the results.
The Friedman test [29, 30] compares the average ranks of the algorithms. A null-
hypothesis states that two algorithms are equivalent and, therefore, their ranks should
be equal. If the null-hypothesis is rejected, i.e., the performance of the algorithms
is statistically different, the Bonferroni-Dunn test [31] is performed that calcu-
lates the critical difference between the average ranks of those two algorithms.
When the statistical difference is higher than the critical difference, the algorithms
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Fig. 2 Results of the Friedman non-parametric test on different variants of RFA algorithms

are significantly different. The equation for the calculation of critical difference can
be found in [31].

Friedman tests were performed using a significance level 0.05. The results of
the Friedman non-parametric test are presented in Fig. 2 being divided into three
diagrams that show the ranks and confidence intervals (critical differences) for the
algorithms under consideration. The diagrams are organized according to the dimen-
sions of functions. Two algorithms are significantly different if their intervals in Fig. 2
do not overlap.

The first diagram in Fig. 1 shows that the FFA and KFA variants of RFA signif-
icantly outperform the results of all other variants of RFA (i.e., NFA, LFA, CFA2),
except UFA, according to dimension D = 10. However, the results became insignif-
icant when these were compared in regard to the dimensions D = 30 and D = 50. In
fact, the results of FFA and KFA variants of RFA still remained substantially better,
but this difference was not significant.

In summary, we can conclude that the selection of the randomized method has
a great impact on the results of RFA. Moreover, in some cases the selection
of the more appropriate randomized method can even significantly improve
the results of the original FA (Gaussian NFA). Indeed, the best results were
observed by the RSiTFC and Kent chaotic map.

4.4.3 Comparative Study

In this experiment, the original FA algorithm (NFA) was compared with other well-
known algorithms as bat algorithm (BA), differential evolution (DE), and artificial
bees colony (ABC) as well as the FFA algorithm that was exhibited as the most
promising variant of the developed RFA algorithms.

The specific BA parameters were set as follows: the loudness A0 = 0.5, the
pulse rate r0 = 0.5, minimum frequency Qmax = 0.0, and maximum frequency
Qmax = 0.1. The DE parameters were configured as follows: the amplification factor
of the difference vector F = 0.9, and the crossover control parameter CR = 0.5.
The percentage of onlooker bees for the ABC algorithm was 50 % of the colony,
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Table 4 Comparing algorithms (D = 10)

Function Measure NFA FFA BA DE ABC

f1 Mean 7.19E−001 6.03E−002 8.99E+000 2.62E+000 6.26E−001
Stdev 7.00E−001 6.25E−002 6.44E+000 4.32E−001 1.99E−001

f2 Mean 6.59E+001 4.29E+001 1.46E+002 9.01E+001 1.24E+001
Stdev 6.99E+001 4.46E+001 7.44E+001 9.10E+000 4.36E+000

f3 Mean 5.51E+005 4.08E+001 8.91E+004 1.53E+004 2.05E+002
Stdev 9.62E+004 3.36E+001 1.45E+005 8.94E+003 2.62E+002

f4 Mean 2.02E+001 9.73E+000 1.02E+001 8.55E+000 4.08E+000
Stdev 2.02E+001 9.72E+000 3.23E+000 9.78E−001 9.03E−001

f5 Mean 1.37E+003 4.00E+003 2.19E+003 1.08E+003 5.99E+002
Stdev 1.38E+004 4.01E+003 2.58E+002 1.26E+002 1.25E+002

f6 Mean 8.02E+001 5.88E−002 2.38E+004 6.90E+003 1.23E+001
Stdev 8.03E+001 5.66E−002 1.75E+004 2.05E+003 1.68E+001

f7 Mean −3.89E−018 −5.15E−034 −6.46E−002 −3.96E−001 −1.13E−002
Stdev −3.88E−018 −4.11E−034 2.18E−001 1.40E−001 5.67E−002

f8 Mean −4.79E+000 −6.37E−001 −5.99E+000 −6.69E+000 −8.60E+000
Stdev −5.63E+000 −6.38E−001 1.04E+000 3.24E−001 2.89E−001

f9 Mean 3.49E−002 1.32E−001 1.39E−003 1.92E−003 6.10E−004
Stdev 2.15E−002 1.30E−001 6.95E−004 1.31E−004 5.96E−005

f10 Mean 6.98E+001 4.99E+003 2.05E+001 2.93E+001 2.38E+001
Stdev 6.96E+001 4.99E+003 2.03E+001 8.29E+000 7.80E+000

the employed bees represented another 50 % of the colony, whilst one scout bee
was generated in each generation (i.e., limits = 100, when the population size is
NP = 100).

The results of comparing the mentioned algorithms by optimizing the functions
with dimension D = 10, are presented in Table 4. Again, only one instance of data is
illustrated in the table, although the experiments were conducted on all three observed
dimensions. The best results of the algorithms are written in bold.

As can be seen from Table 4, the FFA algorithm outperformed the results of
the other algorithms when solving the functions f1, f3, f6, f7, and f8. Again the
majority of these functions are highly multi-modal. The ABC algorithm was the
best by solving the functions f2, f4, f5, and f9, whilst the BA algorithm excellently
solved the function f10.

Also here, the Friedman tests using the significance level 0.05 were conducted
according to all the observed dimensions of the functions. The results of these tests
are presented in Fig. 3, which is divided into three diagrams.

The first diagram illustrates the results of the Friedman test that observes the results
obtained by optimizing the functions with dimensions D = 10. It can be shown from
this diagram that ABC and FFA outperformed the results of all other algorithms in
test (i.e., NFA, BA, and DE) significantly. Furthermore, the ABC outperformed the
results of the same algorithms when also optimizing the functions with dimension
D = 30, whilst the FFA algorithm was substantially better than those on the same
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Fig. 3 Results of the Friedman non-parametric test on suite of test algorithms

instances. Finally, on the functions with dimension D = 50, the ABC achieved
significantly better results than BA and DE. Here, both firefly algorithms exhibited
good results.

In summary, the FFA variant of RFA outperforms the results of the original FA
algorithm significantly by optimizing the test functions with dimension D =
10, and substantially by optimizing the test functions with dimensions D = 30
and D = 50. Indeed, the ABC algorithm outperforms significantly all the other
experiments in tests except FFA. In general, the results of experiments have
been shown that the Gaussian distribution method is appropriately selected by
the original FA algorithm.

5 Conclusion

In this chapter, an extensive comparison of various probability distributions is per-
formed that can be used to randomize the firefly algorithm, e.g., uniform, Gaussian,
Lévi flights, chaos maps and the random sampling in turbulent fractal cloud. In line
with this, various firefly algorithms with various randomized methods were devel-
oped and extensive experiments were conducted on well-known suite of functions.

The goal of the experiments were threefold. Firstly, the mentioned randomized
methods were analyzed. Secondly, an impact of randomized methods on the results
of the RFA algorithms were verified. Finally, the results of the original FA algorithm
and FFA variant of RFA were compared with the other well-known algorithms like
ABC, BA, and DE.

In summary, the selection of an appropriate randomized method has a great impact
on the results of RFA. Moreover, this selection depends on the nature of the problem
to be solved. On the other hand, selecting the appropriate randomized method can
improve the results of the original FA significantly.

In the future, further experiments should be performed with the random sampling
in turbulent fractal cloud that exhibits the excellent results especially by optimizing
the multi-modal functions.
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Cuckoo Search: A Brief Literature Review

Iztok Fister Jr., Xin-She Yang, Dušan Fister and Iztok Fister

Abstract Cuckoo search (CS) was introduced by Xin-She Yang and Suash Deb in
2009, and it has attracted great attention due to its promising efficiency in solving
many optimization problems and real-world applications. In the last few years, many
papers have been published regarding cuckoo search, and the relevant literature has
expanded significantly. This chapter summarizes briefly the majority of the literature
about cuckoo search in peer-reviewed journals and conferences found so far. These
references can be systematically classified into appropriate categories, which can be
used as a basis for further research.

Keywords Cuckoo search · Engineering optimization · Metaheuristic ·
Nature-inspired algorithm · Scheduling

1 Introduction

Since the first introduction of Cuckoo Search (CS) by Xin-She Yang and Suash Deb in
2009 [109], the literature of this algorithm has exploded. Cuckoo search, which drew
its inspiration from the brooding parasitism of cuckoo species in Nature, were firstly
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proposed as a tool for numerical function optimization and continuous problems.
Researchers tested this algorithm on some well-known benchmark functions and
compared with PSO and GA, and it was found that cuckoo search achieved better
results than the results by PSO and GA. Since then, the original developers of this
algorithm and many researchers have also applied this algorithm to engineering
optimization, where Cuckoo search also showed promising results.

Nowadays cuckoo search has been applied in almost every area and domain of
function optimization, engineering optimization, image processing, scheduling, plan-
ning, feature selection, forecasting, and real-world applications. A quick search using
Google scholar returned 440 papers, while the original paper by Yang and Deb [109]
has been cited 223 times at the time of writing of this chapter. A search using Scirus
returned 616 hits with 126 journal papers recorded up to July 2013. While many
papers may be still in press, it is not possible to get hold of all these papers. Conse-
quently, we will focus on the full papers we can get and thus 114 papers are included
in this chapter, which may be one fraction of the true extent of the literature, but they
should be representative and useful.

The aim of this chapter is to provide readers with a brief and yet relatively com-
prehensive list of literature in the last few years. This helps to gain insight into all the
major studies concerning this hot and active optimization algorithm. The structure
of this chapter is divided in four different parts. Section 2 presents all the main vari-
ants of the cuckoo search variants, including those studies that have been carried out
in numerical and multi-objective optimization. Hybrid algorithms are also included
in this part. Section 3 focuses on engineering optimization, while Sect. 4 summa-
rizes all the major applications and their relevant literature. Then, Sect. 5 discusses
implementation and some theoretical studies. Finally, Sect. 6 concludes with some
suggestions for further research topics.

2 Cuckoo Search: Variants and Hybrids

2.1 Variants

The original cuckoo search was first tested using numerical function optimization
benchmarks. Usually, this kind of problems represents a test bed for new developed
algorithms. In line with this, standard benchmark function suites [33, 110] have been
developed in order to make comparison between algorithms as fair as possible. For
example, some original studies in this area are:

• Cuckoo search via Lévy flights [109].
• An efficient cuckoo search algorithm for numerical function optimization [61].
• Multimodal function optimisation [34].

Cuckoo search can deal with multimodal problems naturally and efficiently. How-
ever, researchers have also attempted to improve its efficiency further so as to obtained
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Fig. 1 Variant of cuckoo search

better solutions than those in the literature [20], and one such study that is worth
mentioning is by Jamil and Zepernick [34].

Since the first appearance of cuckoo search in 2009, many variants of the cuckoo
search algorithm have been developed by many researchers. The major variants are
summarized in Fig. 1 and Table 1.

Table 1 Variants of cuckoo search

Name Author Reference

Discrete binary CS Gherboudj et al. [26]
Discrete CS Jati and Manurung [35]
Discrete CS for TSP Ouaarab et al. [62]
Neural-based CS Khan and Sahai [42]
Quantum inspired CS Layeb [46]
Emotional chaotic cuckoo Lin et al. [50]
Cuckoo search based LM Nawi et al. [60]
Parallelized CS Subotic et al. [83]
Modified CS Tuba et al. [87]
Modified CS Walton et al. [95]
Modified adaptive CS Zhang et al. [115]
Multiobjective CS Yang and Deb [112]
A novel complex valued Zhou and Zheng [117]
CS based on Gauss distribution Zheng and Zhou [116]
CS based on Gaussian disturbance Wang et al. [99]



52 I. Fister Jr. et al.

Table 2 Hybrid cuckoo
search

Name Author Reference

Hybrid CS/GA Ghodrati and Lotfi [27, 28]
Hybrid CS Li and Yin [48]

2.2 Hybrid Algorithms

For many continuous optimization problems, cuckoo search can find the desired
solutions very efficiently. However, sometimes, some difficulty may arise, which is
true for all nature-inspired algorithms when the appropriate solutions could not be
found for some other optimization problems. This is consistent with the so-called
No-Free-Lunch theorem [104]. To circumvent this theorem, hybridization has been
applied to optimization algorithms for solving a given set of problems. In line with
this, cuckoo search has been hybridized with other optimization algorithms, machine
learning techniques, heuristics, etc. Hybridization can take place in almost every
component of the cuckoo search. For example, initialization procedure, evaluation
function, moving function and others have all been tried. Some of the hybrid variants
are summarized in Table 2.

2.3 Multi-objective Optimization

Multi-objective optimization consists of more than one objective, and these objec-
tives may be conflicting one another. Many real-world optimization problems require
design solutions according to many criteria. Single objective optimization searches
for a single optimal solution, whilst multi-objective optimization requires a set of
many (potentially infinite), optimal solutions, namely the Pareto front [72, 91]. Obvi-
ously, there are many issues and approaches for multi-objective optimization; how-
ever, two goals in multi-objective optimization are worth noting:

• to obtain solutions as close to the true Pareto front as possible;
• to generate solutions as diversely as possible on the non-dominated front.

Various variants have been developed to extend the standard cuckoo search into
multi-objective cuckoo search. The following list presents some main variants on
multi-objective optimization using CS.

• Multi-objective CS [112].
• Multi-objective scheduling problem [9].
• Multi-objective cuckoo search algorithm for Jiles-Atherton vector hysteresis para-

meters estimation [14].
• Pareto archived cuckoo search [32].
• Hybrid multiobjective optimization using modified cuckoo search algorithm in

linear array synthesis [68].
• Multi-objective cuckoo search for water distribution systems [103].
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3 Engineering Optimization

Among the diverse applications of cuckoo search, by far the largest fraction of litera-
ture may have focused on the engineering design applications. In fact, cuckoo search
and its variants have become a crucial technology for solving problems in engineer-
ing practice as shown in Fig. 2. Nowadays, there are applications from almost every
engineering domain. Some of these research papers are summarized in Table 3.

4 Applications

Obviously, engineering optimization is just part of the diverse applications. In fact,
cuckoo search and its variants have been applied into almost every area of sciences,
engineering and industry. Some of the application studies are summarized in Fig. 3
and also in Table 4.

5 Theoretical Analysis and Implementation

As we have seen, the applications of cuckoo search are very diverse. In contrast, the
theoretical studies are very limited. This brief summary may highlight the need for
further research in theoretical aspects of cuckoo search.

CS in ENGINEERING
OPTIMIZATION

Antenna arrays

Design space
exploration

Optimization
of sequence

Capacitor placement

Planar EBG
Structures

Steel structures

Stability analysis

Linear antenna
array

Optimal capacitor
placement

Allocation and
sizing of DGSynthesis of

six-bar

Structural optimi-
zation problems

Design optimization
of truss structures

Wind turbine bladesSteel frames

Electrostatic
deflection

Reliability
problems

Non-linear state
estimation

Phase equilibrium
calculations

Structural design
optimization

Fig. 2 Engineering optimization
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Table 3 Cuckoo search in engineering optimization

Problem Author Reference

Engineering optimization Yang and Deb [110]
Capacitor placement Arcanjo et al. [3]
Synthesis of six-bar Bulatovič et al. [8]
Wind turbine blades Ernst et al. [22]
Design of truss structures Gandomi et al. [24]
Structural optimization problems Gandomi et al. [25]
Electrostatic deflection Goghrehabadi et al. [30]
Steel frames Kaveh and Bakhspoori [39]
Steel structures Kaveh et al. [40]
Antenna arrays Khodier [43]
Design space exploration Kumar and Chakarverty [44, 45]
Optimization of Sequence Lim et al. [49]
Planar EBG Structures Pain et al. [63]
Stability analysis Rangasamy and Manickam [66]
Linear antenna array Rani and Malek [67, 69]
Optimal Capacitor Placement Reddy and Manohar [70]
Allocation and sizing of DG Tan et al. [85]
Reliability problems Valian et al. [88, 89]
Non-linear state estimation Walia and Kapoor [93]
Phase equilibrium calculations Bhargava et al. [6]
Phase equilibrium (comments) Walton et al. [96]
Structural design optimization Durgun and Yildiz [19]
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Fig. 3 Cuckoo search in applications
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Table 4 Cuckoo search in applications

Application Author Reference

Multilevel image thresholding Brajevic et al. [7]
Flood forecasting Chaowanawatee and Heednacram [10]
Wireless sensor networks Dhivya and Sundarambal [16]
Data fusion Dhivya et al. [17]
Cluster in wireless networks Dhivya et al. [18]
Clustering Goel et al. [29]
Groundwater expedition Gupta et al. [31]
Supplier selection Kanagaraj et al. [38]
Load forecasting Kavousi-Fard and Kavousi-Fard [41]
Surface roughness Madic et al. [51]
Flow shop scheduling Marichelvam [52]
Optimal replacement Mellal et al. [53]
DG allocation in network Moravej and Akhlaghi [54]
Optimization of bloom filter Natarajan et al. [56–58]
BPNN neural network Nawi et al. [59]
Travelling salesman problem Ouaarab et al. [62]
Web service composition Pop et al. [64]
Web service composition Chifu et al. [11, 12]
Ontology matching Ritze and Paulheim [71]
Speaker recognition Sood and Kaur [77]
Automated software testing Srivastava et al. [80–82]
Manufacturing optimization Syberfeldt and Lidberg [84]
Face recognition Tiwari [86]
Training neural models Vázquez [90]
Non-convex economic dispatch Vo et al. [92]
UCAV path planning Wang et al. [101, 102]
Business optimization Yang et al. [113]
Machining parameter selection Yildiz [114]
Job scheduling in grid Prakash et al. [65]
Quadratic assignment Dejam et al. [15]
Sheet nesting problem Elkeran [21]
Query optimization Joshi and Srivastava [36]
n-Queens puzzle Sharma and Keswani [74]
Computer games Speed [78, 79]

5.1 Theory and Algorithm Analysis

It may be difficult to decide if a study should be classified into a theoretical category or
not because the contents may sometime include both simulations and some analysis
of the algorithm. So the following categorization may not be rigorous. Even so, some
theoretical studies about cuckoo search in the current literature can be summarized,
as follows:
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• A conceptual comparison of the cuckoo-search, particle swarm optimization, dif-
ferential evolution and artificial bee colony algorithms [13].

• Enhancing the performance of cuckoo search algorithm using orthogonal learning
method [47].

• Starting configuration of cuckoo search algorithm using centroidal Voronoi tes-
sellations [75].

• Reduced order mesh optimisation using proper orthogonal decomposition and a
modified cuckoo search [94, 97].

• Bat algorithm and cuckoo search: a tutorial [106, 107].
• Metaheuristic algorithms for inverse problems [105, 108, 111].
• Markov model and convergence analysis of cuckoo search [100].
• Towards the improvement of cuckoo search algorithm [76].

5.2 Improvements and Other Studies

As mentioned earlier, it is not always clear how to classify certain papers. Many
research studies concern the improvements of the standard cuckoo search algorithm.
So we loosely put some papers here and thus summarized them as follows:

• Tsallis entropy [1].
• Improved scatter search using cuckoo search [2].
• Cuckoo search via Lévy flights for optimization of a physically-based runoff-

erosion model [23].
• Improved differential evolution via cuckoo search operator [55].
• Cuckoo search with the conjugate gradient method [73].
• Cuckoo search with PSO [98].

5.3 Implementations

Whatever the algorithms may be, proper implementations are very important. Yang
provided a standard demo implementation of cuckoo search.1 Important implemen-
tations such as object-oriented approach and parallelization have been carried out,
which can be summarized as follows:

• Object oriented implementation of CS [4, 5].
• Parallelization of CS [37].

1 http://www.mathworks.co.uk/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm

http://www.mathworks.co.uk/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
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6 Conclusion

In this brief review, a relatively comprehensive bibliography regarding cuckoo search
algorithm has been presented. References have been systematically sorted into proper
categories. The rapidly expanding literature implies that cuckoo search is a very
active, hot research area. There is no doubt that more studies on cuckoo search will
appear in the near future.

From the above review, it is worth pointing out that there are some important issues
that need more studies. One thing is that theoretical analysis should be carried out
so that insight can be gained into various variants of the cuckoo search algorithm. In
addition, it may be very useful to carry out parameter tuning in some efficient variants
and see how parameters can affect the behaviour of an algorithm. Furthermore,
applications should focus on large-scale real-world applications.
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Improved and Discrete Cuckoo Search for
Solving the Travelling Salesman Problem

Aziz Ouaarab, Belaïd Ahiod and Xin-She Yang

Abstract Improved and Discrete Cuckoo Search (DCS) algorithm for solving the
famous travelling salesman problem (TSP), an NP-hard combinatorial optimization
problem, is recently developed by Ouaarab, Ahiod, and Yang in 2013, based on the
cuckoo search (CS), developed by Yang and Deb in 2009. DCS first reconstructs
the population of CS by introducing a new category of cuckoos in order to improve
its search efficiency, and adapts it to TSP based on the terminology used either in
inspiration source of CS or in its continuous search space. The performance of the
proposed DCS is tested against a set of benchmarks of symmetric TSP from the
well-known TSPLIB library. The results of the tests show that DCS is superior to
some other metaheuristics.

Keywords Nature-inspired metaheuristic · Cuckoo search · Lévy flights · Tour
improvement algorithm ·Combinatorial optimization ·Travelling salesman problem

1 Introduction

Combinatorial optimization problems are to find one (or more) best feasible solu-
tions (which can be combinations, sequences, choice of objects, subsets, sub-
graphs, etc.), in a finite or countable infinite set. The criterion of best solution is
defined by an objective function. As cited by Hochbaum [17], the most difficult
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combinatorial optimization problems to solve are said to be NP-hard and cannot be
solved efficiently by any known algorithm in a practically acceptable time scale. In
fact, many seemingly simple problems are very difficult to solve because the number
of combinations increases exponentially with the size of the problem of interest. The
most famous example is probably the travelling salesman problem (TSP) in which
a salesperson intends to visit a number of cities exactly once, and returning to the
starting point, while minimizing the total distance travelled or the overall cost of
the trip.

NP-hard problems such as TSP do not have an efficient algorithm to solve all their
instances. It is practically very difficult to get at the same time a solution of optimal
quality and in a reduced runtime. In fact, most classical algorithms make the choice
between a highest quality solution and an exponential runtime, or a moderate quality
solution and a polynomial runtime. This leads to the third choice which offers good
(not necessarily optimal) solutions in a reasonable runtime. This choice is presented
by approximate algorithms such as metaheuristics, which studied and discussed by
Blum et al. and Glover et al. in [2, 15].

Metaheuristic algorithms use search strategies to explore the search space more
effectively, often focusing on some promising regions of the search space. These
methods begin with a set of initial solutions or an initial population, and then, they
examine step by step a sequence of solutions to reach, or hope to approach, the
optimal solution to the problem of the interest. Metaheuristic algorithms have many
advantages over traditional algorithms. Two of the advantages are simplicity and
flexibility. Metaheuristics are usually simple to implement, but they often can solve
complex problems and can thus be adapted to solve many real-world optimization
problems, from the fields of operations research, engineering to artificial intelligence,
as given by Yang and Yang et al. in [47, 49], Gandomi et al. in [10–12], and Yang
and Gandomi in [48]. In addition, these algorithms are very flexible, and they can
deal with problems with diverse objective function properties, either continuous, or
discrete, or mixed.

Among the most popular metaheuristics performed to solve TSP, we can name
genetic algorithms (GA), referring to Grefenstette et al. and Potvin in [16, 32], Tabu
search (TS), simulated annealing (SA) which are presented by Kochenberger in [22],
ant colonies optimization (ACO) by Dorigo and Di caro in [9], and particle swarm
optimization (PSO) by Kennedy and Eberhart in [19], bee colonies optimization
(BCO) by Teodorovic et al. [39], harmony search algorithm (HS) by Geem et al. in
[13], firefly algorithm (FA) by Jati in [18], and cuckoo search (CS) recently developed
by Ouaarab et al. [29].

In solving travelling salesman problem, these metaheuristics are characterized by
their relative ease of implementation, a proper consideration of its constraints using
control parameters, and the most important is producing high quality solutions in
a relatively reduced runtime. However, the development of new metaheuristics by
strengthen their robustness, remains a great challenge, especially for tough NP-hard
problems.

This chapter discusses an improved variant of cuckoo search algorithm (CS) that
solves efficiently the symmetric TSP. CS is a metaheuristic search algorithm which is
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recently developed by Yang and Deb in 2009 [45]. Inspired by the obligate brood par-
asitic behaviour of some cuckoo species, combined with Lévy flights which describe
the foraging patterns adopted by many animals and insects, it has been shown to be
effective in solving continuous optimization problems. It provided effective results
for multimodal functions in comparison with both genetic algorithms (GA) and parti-
cle swarm optimization (PSO). In this context, the Discrete improved Cuckoo Search
algorithm (DCS) is compared with discrete particle swarm optimization (DPSO) pro-
posed by Shi et al. in [36], and genetic simulated annealing ant colony system with
particle swarm optimization techniques (GSA-ACS-PSOT) proposed by Chen in [4].

The remainder of this chapter is organized as follows: Sect. 2 introduces the TSP
with some solution approaches. Section 3 first briefly describes the standard CS,
then discusses the improvement carried out on the source of inspiration of CS, and
proposes the discrete CS to solve symmetric TSP. Section 4 presents in detail the
results of numerical experiments on a set of benchmarks of the so called Euclidean
symmetric TSP from the TSPLIB library [33]. Finally, Sect. 5 concludes with some
discussions.

2 Travelling Salesman Problem

2.1 Description of TSP

We assume that a salesperson has to visit a list of cities and return to his departure
city. In order to find a way to calculate the best tour in term of distance, and before
starting the trip, he will first fix some rules. Each city on the list must be visited exactly
once, for each pair of cities, he knows the distance between both cities. These rules
form a problem that will take as name “The travelling salesman problem”. Lawler
et al. mentioned in [24] that the first citation of this term dates back to 1832 in a
book entitled “Der Handlungsreisende, wie er sein soll und was er zu thun hat, um
Aufträge zu erhalten und eines glücklichen Erfolgs in seinen Geshäften gewiss zu
sein. Von einem alten Commis-Voyageur” (“The travelling Salesman, how he should
be and what he should do to get Commissions and to be Successful in his Business.
By a veteran Travelling Salesman”). But, Tucker in 1983 [41] said that the first use
of the term in mathematical circles may have been in 1931–1932: “I cannot confirm
or deny the story that I heard of the TSP from Hassler Whitney. If I did (as Flood
says), it would have occurred in 1931–1932…”

Given n as the number of cities to visit in the list, the total number of possible
tours covering all cities can be seen as a set of feasible solutions of the TSP and is
given as n!. Formally, a statement of TSP according to Davendra in [7] is as follows:

Let C = {c1, . . . , cn}be the set of distinct cities, E = {(ci , c j ) : i, j ≤ {1, . . . , n}}
be the edge set, and dci c j be a cost measure associated with edge (ci , c j ) ≤ E . TSP is
to find the minimal length of closed tour that visits each city once. Cities ci ≤ C are

presented by their coordinates (cix , ciy) and dci c j =
√

(cix − c j x )2 + (ciy − c jy)2
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is the Euclidean distance between ci and c j . A tour can be represented as a cyclic
permutation π = (π(1),π(2), . . . ,π(N )) of cities from 1 to N if π(i) is interpreted
to be the city visited in step i , i = 1, . . . , N . The cost of a permutation (tour) is
defined as :

f (π) =
N−1∑

i=1

dπ(i) π(i+1) + dπ(N ) π(1) (1)

If dci c j = dc j ci we talk about a Symmetric Euclidean TSP and if dci c j ∗= dc j ci

for at least one (ci , c j ) then the TSP becomes an Asymmetric Euclidean TSP. In this
chapter, TSP refers to the symmetric TSP.

During all these years, Travelling Salesman Problem (TSP) still attracts math-
ematicians in order to design an algorithm that detects the best solution for the
majority of its instances in a reasonable time. It is characterized by its simple appear-
ance and its statement that requires no mathematical background to understand it,
and no thinking skills to find a solution. It can be seen as a theoretical problem of
a travelling salesman seeking the shortest tour to winning some energy and time in
order to make more money. But reality shows that TSP has a great importance, either
in the academic or practical fields. Lenstra et al. and Reinelt [25, 34] gave some
direct or indirect applications of TSP in several industrial and technological areas,
such as drilling problem of printed circuit boards (PCBs), overhauling gas turbine
engines, x-ray crystallography, computer wiring, order-picking problem in ware-
houses, vehicle routing, and mask plotting in PCB production. On the other hand,
Arora [1] has shown, based on the demonstration of Papadimitriou [30] that Euclidian
TSP belongs to the class of NP-hard optimization problems, whose computational
complexity increases exponentially with the number of cities.

2.2 Approximate Approaches to Solve TSP

All NP-hard problems are attacked by exact or approximate methods. In the case of
exact methods, find computationally an exact solution in a reasonable time, histor-
ically, is the first challenge facing the travelling salesman problem. This challenge
is won in the case where inputs have a restricted size. Current exact methods work
practically fast for small size problems. This efficiency is an aim that seems will
never be achieved for large NP-hard problems. The running time of exact algorithms
for large TSP instances depends on the computing power which is doubled every
year. However, these algorithms complexity still remains exponential. So, solving
NP-hard problems with only exact methods becomes less practical. To read more
about exact methods, Laporte and Davendra provide an extensive discussion and
references in [7, 23].

On the other side, approximate methods jump over the time and complexity con-
straints by the negligence of the optimality notion. They look intelligently for a good
solution which could not be proved to be optimal, but its runtime remains accept-
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able. Approximate algorithms are divided into three categories: tour construction
algorithms, tour improvement algorithms, and metaheuristics.

2.2.1 Tour Construction Algorithms

Tour construction algorithms are less demanding, regarding the quality of the con-
structed solution in a relatively reduced time. They stop when a solution is found
and never try to improve it. The idea is building a tour by iteratively adding cities to
the sub-tour.

Nearest Neighbour algorithm is the simplest TSP tour construction heuristic. In
this algorithm a salesman looks iteratively for the nearest city. He finds the last city
(which is the departure city) with a polynomial complexity O(n2). In the case of
greedy algorithm, the salesman grow the tour by repeatedly selecting the shortest
edge and adding it to the tour without creating a cycle, as he has not reached edges
or augmenting the degree of a node to 3 (to have one closed path, each node must
be connected in the same time to less than 3 nodes). Computational time of greedy
heuristic is O(n2 log2(n)). Another example is insertion heuristics which starts with
an initial edge or a closed sub-tour (often a triangle), and then inserting the rest by
some heuristics. It complexity is given as O(n2). We gave these examples (others
tour construction methods are provided by Davendra [7]) to show that this class of
heuristics is not interested to find a good solution, but just a solution with moderate
quality in a short time. Despite this low performance, tour construction heuristics
are still widely used, but as an auxiliary of several heuristics. They are introduced to
generate initial solutions before starting the process of other heuristics.

2.2.2 Tour Improvement Algorithms

Tour improvement algorithms start with a solution previously performed using tour
construction algorithms. They minimize the length of the tour by improvement oper-
ators until reaching a tour that cannot be improved. Generally, they are based on
simple tour modifications. Considering that, each modification or improvement, on
a tour leads to another neighbour tour in the solution space. So, they search for
locally improved tours by moving to a neighbour until no better neighbours exist.
The most famous tour modification is 2-opt. It removes two edges from the current
tour, and reconnects the new two paths created, in another possible way. In a mini-
mization case, this is done only if the new tour is shorter than the current one. So,
the process is repeated till no further improvement is possible or in a given number
of steps. 2-opt can be generalized by replacing 2 edges by 3 or 4. In more com-
plex improvement algorithms, such as Lin Kernighan, 2-opt, 3-opt and 4-opt are all
intelligently introduced. It decides by a parameter k (k-opt where k = 2, 3 and 4),
the value of the suitable move in each iteration. A detailed discussion is provided
by Lin and Kernighan in [20]. Lin Kernighan is therefore relatively able to avoid
local minima (the local minimum is the smallest solution in the neighbourhood). To
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overcome this problem Tabu search (TS) algorithm describing by Glover and Laguna
[14] had implemented in several ways a tabu list. It moves from the current solution
to its best neighbour solution even if it comes from a bad 2-opt move (uphill move).
To avoid cycling TS uses tabu list to store the recently performed moves which are
prohibited during some iterations. In the other hand, uphill moves are introduced by
Kirkpatrick in simulated annealing [21] not only when we have a local optimum, but
at all the time. It chooses a solution randomly in the neighbourhood. Acceptance of
this solution depends on its quality and on a control parameter called the temperature.
This parameter decreases, and consequently the probability of accepting the solution
decreases during iterations of the algorithm.

Local improvement algorithms are typically incomplete algorithms. The search
may stop even if the best solution found by the algorithm is not optimal, while the
optimal solution can lie far from the neighbourhood of the current solutions. Tabu
search and simulated annealing, outlined by Malek et al. in [26] are considered as
metaheuristics. But, they are single solution metaheuristics which modify or improve
one candidate solution. However, metaheuristics discussed in the next sub-section
adopt population-based approach.

2.2.3 Metaheuristics

No efficient algorithm exists for the TSP and all its relevant variants or problems of
the same class. The need to quickly find good (not necessarily optimal) solutions to
these problems has led to the development of various approximation algorithms such
as metaheuristics [2, 15, 38]. In fact, metaheuristic algorithms have demonstrated
their potential and effectiveness in solving a wide variety of optimization problems
and have many advantages over tour construction/improvement algorithms. Meta-
heuristics are usually simple to implement, in order to solve complex problems and
can be adapted to solve many real-world optimization problems. In addition, these
algorithms are very flexible, and they can deal with problems with diverse objective
function properties, either continuous, or discrete, or mixed. Such flexibility also
enables them to be applied to deal a large number of parameters simultaneously.

Due to its high ability to solve complex problems by the simplest ways, nature is the
main source of inspiration for designing metaheuristics. Most of these metaheuristics,
which are generally based on populations, are inspired by the collective behaviour of
groups, colonies and swarms of several species in nature. These collective behaviours
are adopted by swarms with the aim of finding a partner, a food source or to avoid
a predator in a relatively large space using relatively simple tools for sharing useful
information and experiences.

Inspired from nature, metaheuristic algorithms use search strategies to explore
the search space and then effectively exploit some promising regions of the search
space. The following two discussed metaheuristic examples, entitled “Particle
swarm optimization-based algorithms for TSP and generalized TSP” (DPSO) and
“Solving the traveling salesman problem based on the genetic simulated annealing
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ant colony system with particle swarm optimization techniques” (GSA-ACS-PSOT)
are developed respectively by Shi et al. in [36], and Chen and Chien in [4].

Genetic Algorithm (GA)

Genetic Algorithm (GA) for TSP which detailed by Grefenstette et al. in [16], starts
with a randomly generated population of candidate solutions (tours). Best (or all)
candidates or parents are then mated to produce offspring or children. A percentage of
the child tours are selected for mutation, and the new child tours are inserted into the
population replacing the longer tours. These steps are repeated until a stop criterion.
We notice that during reproduction phase, GA is mainly based on two operators
to generate solutions: crossover and mutation. There are various types of crossover
(Cycle crossover (CX), Partially-mapped crossover (PMX), Order crossover (OX),
etc.) and mutation (swap and scramble, etc.) operators in the literature according to
the addressed problem and the encoding used in different versions of GA such as
those proposed to solve TSP by Potvin in [32] and Grefenstette in [16].

An example of applying crossover (CX) and mutation (swap) operators is shown
respectively in Figs. 1 and 2. To produce an offspring, CX search a cycle of cities
between parents. Then, cities in the found cycle (2, 3, 5) are fixed for both parents,
and each parent copies the other cities from the second one. Swap mutation operator
exchanges two cities chosen randomly.

Particle Swarm Optimization (PSO)

Particle swarm optimization considers solutions in the search space as particles mov-
ing with a variable velocity towards their own best solution pBest in the past and the
global best solution gbest showing as follows :

Xi
(k+1) = Xi

k + Vi
(k+1), (2)

Fig. 1 The cycle crossover
operator 1 2 3 4 5 6 7 8

1 3 5 7 2 8 4 6

parent X

parent Y

o spring
1 2 3 7 5 8 4 6

1 3 5 4 2 6 7 8

Fig. 2 The swap mutation
operator

1 3 5 7 2 8 4 6parent

o spring 1 3 8 7 2 5 4 6
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Vi
(k+1) = wVi

(k) + c1r1(Pi − X (k)
i )+ c2r2(Pg − X (k)

i ), (3)

where, in (k+ 1) iteration, Xi (i = 1, 2, . . . , m) is the i th among m particles, which
moves with the velocity Vi . Pi and Pg are respectively pBest and gBest . w, c1 and
c2 present parameters that selected, in the interval [0, 1], to control the behaviour of
PSO. r1 and r2 are randomly generated in [0, 1].

The velocity decreased while the particle is approaching to pbest or gbest . PSO
has proved its efficiency to face several problems, but it is not very effective in the
case of the travelling salesman problem. The biggest constraint is how to introduce
the concept of velocity in a combinatorial space. Several attempts have succeeded in
making adaptation of PSO to solve TSP. But during the transition from continuous
space to the combinatorial space, these adaptations are unable to keep the same prop-
erties between the two spaces. This constraint is always found in all adaptations of
distance, speed or movement in a continuous space to a combinational one. In order
to expand the scale of the solved problems, according to Shi et al. in [36], inspired
by the “Swap operator” developed by Wang et al. in [42], they introduced the per-
mutation concept and an uncertainty searching strategy (to speed up the convergence
speed) into a proposed discrete PSO algorithm for TSP. The main idea of this adap-
tation is interpreting velocity by some permutation operators. So, they are focused
on the redefinition of the substraction of two particle positions. The test results of
this approach are compared with the Discrete Cuckoo Search (DCS) developed by
Ouaarab et al. in [29] in the rest of this chapter in “Cuckoo search and Discrete
cuckoo search” section.

Ant Colony Optimization (ACO)

It is considered as a solution construction metaheuristic which is inspired by the
behaviour of ants in optimizing their paths length between the colony and a food
source. According to Dorigo and Di caro [9], its basic version is designed to solve
TSP. An ant starts the process by a random displacement, from city ci to city ci+1,
passing through the arc that connects the two cities, it leaves pheromone trail. Other
ants that will pass on this arc had the choice to consider the pheromone deposited
on the arc or take another arc randomly. To promote arcs of good solutions, ACO
by a centralized control, adds a small amount of pheromone. To forget bad previous
decisions, it uses a parameter that controls pheromone evaporation on the arcs.

Chen and Chien proposed a method in [4] for solving TSP by a combination of
ACO, GA, PSO, and simulated annealing, called “the genetic simulated annealing
ant colony system with particle swarm optimization techniques”. They first, gener-
ate the initial population of the genetic algorithm by ant colony system, a variant of
ACO proposed by Dorigo et al. in [8]. Then, to gain better solutions, genetic algo-
rithms are performed with simulated annealing mutation techniques. Particle swarm
optimization is introduced after every C cycles (generations), where c is a prede-
fined number. It is used to exchange the pheromone information between groups.
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A cycle presents one execution of the ant colony system and some executions of the
genetic algorithms with simulated annealing mutation techniques. More details and
descriptions are provided by Chen and Chien in [4]. This method is compared with
the discrete cuckoo search in the next section.

3 Cuckoo Search and Discrete Cuckoo Search

3.1 Basic CS

Among many interesting features of cuckoos, a so-called brood parasitism feature
adopted by some species is the most studied and discussed. Female cuckoos lay eggs
in the previously observed nests of another bird species to let host birds hatching and
brooding young cuckoo chicks. To increase the probability of having a new cuckoo
and reduce the probability of abandoning eggs by the host birds, cuckoos use several
strategies that are described by Payne [31].

The behaviour of cuckoos is combined in cuckoo search algorithm with Lévy
flights in order to effectively search a new nest. Lévy flights, named by the French
mathematician Paul Lévy, represent a model of random walks characterized by their
step lengths which obey a power-law distribution. Several scientific studies have
shown that the search for preys by hunters follows typically the same model of Lévy
flights. This model is commonly represented by small random steps followed in the
long term by large jumps [3, 37, 45].

CS is a metaheuristic search algorithm which was recently developed by Xin-She
Yang and Suash Deb in 2009, initially designed for solving multimodal functions. It
is summarized around the following ideal rules: (1) Each cuckoo lays one egg at a
time and selects a nest randomly; (2) The best nest with the highest quality egg can
pass onto the new generations; (3) The number of host nests is fixed, and the egg laid
by a cuckoo can be discovered by the host bird with a probability pα ≤ [0, 1].

A cuckoo i generates a new solution x (t+1)
i via Lévy flights, according to Eq. (4)

xi
(t+1) = xi

(t) + α ⊕ Levy(s, λ) (4)

where α is the step size that follows the Lévy distribution that is shown in Eq. (5):

Levy(s, λ) ∼ s−λ, (1 < λ ≥ 3) (5)

which has an infinite variance with an infinite mean [45]. Here s is step size drawn
from a Lévy distribution.
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3.2 Improved CS

The strength of CS is the way how to exploit and explore the solution space by a
cuckoo. This cuckoo can have some “intelligence” so as to find much better solutions.
Ouaarab et al. [29] consider in their improvement a cuckoo as the first level in
controlling intensification and diversification, and since such a cuckoo is an individual
of a population, so this population can be qualified as a second level of control, which
can be restructured by adding a new category of cuckoos smarter and more efficient
in their search.

Studies show that cuckoos can also engage a kind of surveillance on nests likely
to be a host. This behaviour can serve as an inspiration to create a new category
of cuckoos that have the ability to change the host nest during incubation to avoid
abandonment of eggs (Payne) [31]. These cuckoos use mechanisms before and after
brooding such as the observation of the host nest to decide if the nest is the best
choice or not (so, it looks for a new nest much better for the egg). In this case, we can
talk about a kind of local search performed by a fraction of cuckoos around current
solutions.

Inspired from this observed behaviour, the mechanism adopted by this new frac-
tion of cuckoos, can be divided into two main steps: (1) a cuckoo, initially moves
by Lévy flights towards a new solution (which represents a new area); (2) from the
current solution, the cuckoo in the same area seeks a new, better solution (in this
step it can perform a local search). According to these two steps, the population of
improved CS algorithm can be structured by three types of cuckoos:

1. A cuckoo, seeking (from the best position) areas which may contain new solutions
that are much better than the solution of an individual can be randomly selected
in the population;

2. A fraction pa of cuckoos seeks new solutions far from the best solution;
3. A fraction pc of cuckoos search for solutions from the current position and try to

improve them. They move from one region to another via Lévy flights to locate
the best solution in each region without being trapped in a local optimum.

We can note that the population, in its search process, is guided by: the best
solution, the solutions found locally, and the solutions found far from its best solution.
That improves intensive search around various best solutions, and at the same time,
randomization is properly performed to explore new areas using Lévy flights. Thus,
an extension to the standard CS is, as shown in bold in Algorithm 1 the addition of a
method that handles the fraction pc of smart cuckoos. It allowing CS to perform more
efficiently with fewer iterations, and giving better resistance against any potential
traps and stagnation in local optima in the case of TSP.

The new process added to the CS algorithm can be illustrated by its steps as
follows. Assume that the value of the fraction pc is set to 0.5, where this fraction is a
set of good solutions of the population without the best solution. From each solution,
a cuckoo performs a search starting by a random step via Lévy flights around the
current solution, and then he tries to find the best solution in this region using local
search.
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Algorithm 1 Improved Cuckoo Search

1: Objective function f (x), x = (x1, . . . , xd )T

2: Generate initial population of n host nests xi (i = 1, . . . , n)

3: while (t <MaxGeneration) or (stop criterion) do
4: Start searching with a fraction (pc) of smart cuckoos
5: Get a cuckoo randomly by Lévy flights
6: Evaluate its quality/fitness Fi
7: Choose a nest among n (say, j) randomly
8: if (Fi > Fj ) then
9: replace j by the new solution;
10: end if
11: A fraction (pa) of worse nests are abandoned and new ones are built;
12: Keep the best solutions (or nests with quality solutions);
13: Rank the solutions and find the current best
14: end while
15: Postprocess results and visualization

3.3 Discrete Cuckoo Search for Travelling Salesman Problem

In CS adaptation to TSP, Ouaarab et al. [29] are focused mainly on the reinterpretation
of terminology used in the CS and its inspiration sources. This terminology is the
key to any passage from a continuous space to a combinatorial one. If we take TSP
as an example of a combinatorial optimization problem, before solving this problem
by metaheuristics designed in continuous space, we need to discuss the following
concepts: position, displacement, distance, and objective function. These notions
should be clearly defined and well explained by TSP (combinatorial space), and well
captured by the metaheuristic (designed for a continuous space) after interpretation
(adaptation). To adapt CS to TSP these notions will appear in the discussion of
the following five main elements: egg, nest, objective function, search space, and
Lévy flights.

3.3.1 The Egg

If we assume that a cuckoo lays a single egg in one nest, we can say that one egg in a
nest is a solution represented by one individual (nest) in the population. An egg can
also be one new candidate solution for a place/location reserved by an individual in
the population.

We can say that, in TSP an egg is the equivalent of a Hamiltonian cycle as shown
in Fig. 3, (for more details about Hamiltonian cycle, works of Sahni and Gonzalez
can be consulted [35]). Here, we neglect the need to take a departure city for all
circuits and also the direction of the tour taken by the salesman.
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Fig. 3 In TSP, an egg appears
as a Hamiltonian cycle
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3.3.2 The Nest

In CS, the number of nests is fixed, and it is the size of the population. A nest is
an individual of the population and its abandonment involves its replacement in the
population by a new one.

By the projection of these features on TSP, we can say that a nest is shown as an
individual in the population with its own Hamiltonian cycle. Obviously, a nest can
have multiple eggs for future extensions. In the present chapter, each nest contains
only one egg.

3.3.3 Objective Function

Each solution in the search space is associated with a numeric objective value. So
the quality of a solution is proportional to the value of the objective function. In CS,
a nest egg of better quality will lead to new generations. This means that the quality
of a cuckoo’s egg is directly related to its ability to give a new cuckoo.

In the case of the travelling salesman problem, the quality of a solution is related
to the length of the Hamiltonian cycle. The best solution is the one with the shortest
Hamiltonian cycle.

3.3.4 Search Space

In the case of two dimensions, the search space represents the positions of potential
nests. These positions are (x, y) ≤ R × R. To change the position of a nest, we
only have to modify the actual values of its coordinates. It is obvious that moving
nests or locations of the nests do not impose real constraints. This is the case in most
continuous optimization problems, which can be considered as an advantage that
avoids many technical obstacles such as the representation of the coordinates in the
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Fig. 4 Solutions in the search
space by 2-opt move. An
instance of five cities
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solution space of TSP, especially in the mechanism of moving a solution from one
neighbourhood to another. In TSP we have fixed coordinates of the visited cities;
however, the visiting order between the cities can be changed.

The search space in TSP, as shown in the 2-opt perturbation case in Fig. 4 is a set
of points. Each point is representative of a tour which appears as a potential solution
with n = 5 cities (city “0” does not appear in the graph because it is considered as
the departure city). These solutions are positioned in space according to the orders
of their cities. For this example, we have 12 distinct solutions in the all search space
(structured by 2-opt move) and each solution is directly connected with n(n − 3)/2
neighbours.

Moving in the search space

Since the coordinates of cities are fixed, the movements are based on the order of
visited cities. There are several methods, operators, or perturbations that generate a
new solution from another existing solution by changing the order of visited cities.

In the adaptation of CS to TSP, there is a discrete CS, where perturbations used to
change the order of visited cities are 2-opt moves (which detailed with more details
by Croes in [6]), and double-bridge moves, described by Martin in [27]. 2-opt move
is used for small steps, and large jumps are made by double-bridge move. A 2-opt
move, as shown in Fig. 5, removes two edges from a tour (solution or Hamiltonian

Fig. 5 2-opt move. a Initial
tour. b The tour created by
2-opt move [the edges (a, b)

and (c, d) are removed, while
the edges (a, c) and (b, d) are
added]
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(b)
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Fig. 6 Double-bridge move. a Initial tour. b The tour created by double-bridge move [the edges
(a,b), (c,d), (e, f ) and (g,h) are replaced by the edges (a, f ), (c,h), (e,b) and (g,d), respectively]

cycle) and reconnects the two paths created. A double-bridge move cuts four edges
and introduces four new ones as shown in Fig. 6.

Moving a solution to another, in the search space (combinatorial space) is made
by small steps in a small area around the current solution. Therefore, carrying several
steps leads to farther solutions. But, if we want to change the area of search and point
to another far area, we perturb the solution by double-bridge move.

The neighbourhood

In continuous problems, the meaning of neighbourhood is obvious. However, for
combinatorial problems, the notion of neighbourhood requires that the neighbour of
a given solution must be generated by the smallest perturbation. This perturbation
must make the minimum changes on the solution. This leads to the 2-opt move,
because, for a new solution, and the minimum number of non-contiguous edges that
we can delete is two. So, 2-opt move is a good candidate for this type of perturbation.

The step

The step of a movement is the distance between two solutions. It is based on the
space topology and the concept of neighbourhood. The step length is proportional
to the number of successive 2-opt moves on a solution. A big one step is represented
by a double-bridge move.

3.3.5 Lévy flights

Lévy flights have as a characteristic of an intensive search around a solution, followed
by occasional big steps in the long run. According to Yang and Deb [45], in some
optimization problems, the search for a new best solution is more efficient via Lévy
flights. In order to improve the quality of search, the step length will be associated
to the value generated by Lévy flights as outlined in the standard CS.

The search space (solution space) must contain a notion of steps, well-defined
and stable. The step unit, selected for moving from a solution to another is 2-opt
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move. To move in the search space we have a choice between a small step, a number
k of steps, and a big step. To facilitate the control of these steps via Lévy flights, we
associate them with an interval between 0 and 1. Therefore, according to the value
given by the Lévy flights in this interval we can choose the appropriate step length.
If the value of Lévy is in:

1. [0, i[ so we have one step (2-opt move),
2. [(k − 1)× i, k × i[ we move by k steps,
3. [k × i, 1[ we perform a big step by double bridge-move.

The value of i in this process is: i = (1/(n + 1)) where n is the max number of
steps; and k in {2, . . . , n} .

Assume that n = 4, so i = 0.2, so our interval is divided into five parts.

Lévy in [0, i[−⊗ [ 0, 0.2[−⊗ one step by 2opt move
Lévy in [i, i × 2[−⊗ [0.2, 0.4[−⊗ two steps by 2opt move
Lévy in [i × 2, i × 3[−⊗ [0.4, 0.6[−⊗ three steps by 2opt move
Lévy in [i × 3, i × 4[−⊗ [0.6, 0.8[−⊗ four steps by 2opt move
Lévy in [i × 4, 1 [−⊗ [ 0.8, 1[ −⊗ one step by double-bridge move

4 Experimental Results

This version of discrete cuckoo search (DCS) is tested, first without and then with
the improvement, on some instances (benchmarks) of TSP taken from the publicly
available electronic library TSPLIB of TSP problems by Reinelt in [33]. Forty-
one instances are considered with sizes ranging from 51 to 1379 cities. As shown
by Reinelt, all these TSP instances belong to the Euclidean distance type. Based
on the test results, we have made some comparisons between the basic and the
improved DCS. Then, the improved DCS algorithm is compared with some other
recent methods (genetic simulated annealing ant colony system with particle swarm
optimization techniques (GSA-ACS-PSOT) [4] and discrete particle swarm opti-
mization (DPSO) [36]).

We have implemented basic/standard and improved DCS algorithms using Java
language under 32 bit Vista operating system. Experiments are conducted on a laptop
with Intel(R) CoreTM 2 Duo 2.00 GHz CPU, and 3 GB of RAM.

After some preliminary trials, the selected parameter settings used in the exper-
iments in both algorithms (basic and improved DCS) are shown in Table 1. In each
case study, 30 independent runs of the algorithms with these parameters are carried
out. Figure 7 shows that the maximum number of iterations (MaxGeneration) can be
set to 500 for both algorithms.

It can be seen from Fig. 8 that the improved DCS is superior to basic DCS regarding
to PDav(%).The high performance of the improved DCS in relation to the basic DCS
may be due to the improvement applied on the basic DCS by the new category of
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Table 1 Parameter settings for both algorithms, basic and improved DCS

Parameter Value Meaning

n 20 Population size
pa 0.2 Portion of bad solutions
pc 0.6 Portion of intelligent cuckoos

(only for the improved DCS)
MaxGeneration 500 Maximum number of iterations

Generations

L
en
gt
h

426
466
506
546
586
626
666
706
746
786
826
866
906

40 120 200 280 360 440 520 600 680 760 840 920 1000

eil51 (improvedDCS)

eil51 (basicDCS)

Generations

L
en
gt
h

42400
49400
46400
43400
50400
57400
64400
71400
78400
85400
92400
99400

40 120 200 280 360 440 520 600 680 760 840 920 1000

lin318 (improvedDCS)

lin318 (basicDCS)

Fig. 7 Average length of the best solutions of 10 runs for eil51(opt = 426) and lin318(opt = 42029)

cuckoos which have an efficient method of generating new solutions by moving from
one area to another to find best solutions for each area.

Table 2 summarizes the experiments results, where the first column shows the
name of the instance, the column ‘opt’ shows the optimal solution length taken
from the TSPLIB, the column ‘best’ shows the length of the best solution found by
each algorithm, the column ‘worst’ shows the length of the worst solution found
by each algorithm, the column ‘average’ gives the average solution length of the 30
independent runs of each algorithm, the column ‘SD’ denotes the standard deviation
which takes the value 0.00 shown in bold when all solutions found have the same
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Fig. 8 PDAv(%)(over 30 runs) for 14 TSPLIB instances

length over the 30 runs, while the column ‘C1%/Copt ’ gives the number of solutions
that are within 1 % optimality (over 30 runs)/the number of the optimal solutions,
the column ‘PDav(%)’ denotes the percentage deviation of the average solution
length over the optimal solution length of 30 runs, the column ‘PDbest(%)’ gives the
percentage deviation of the best solution length over the optimal solution length of 30
runs, and the column ‘time’ shows the average time in seconds for the 30 runs. The
percentage deviation of a solution to the best known solution (or optimal solution if
known) is given by Eq. (6):

PDsolution(%) = solution length − best known solution length

best known solution length
× 100 (6)

Table 2 shows the computational results of improved DCS algorithm on 41
TSPLIB instances. Based on PDbest(%) column, we can say that 90.24 % of the
values of PDbest(%) are less than 0.5 %, which means that the best solution found,
of the 30 trials, approximates less than 0.5 % of the best known solution, while the
value of 0.00 shown in bold in column PDav(%) indicates that all solutions found
on the 30 trials have the same length of the best known solution. All these numerical
values presented in Table 2 show that the improved DCS can indeed provide good
solutions in reasonable time.

In Fig. 9 and Table 3, the experimental results of the improved DCS algorithm are
compared with the both methods GSA-ACS-PSOT/DPSO. The results of these two
methods are directly summarized from original papers [4, 36]. It can be seen clearly
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Table 2 Computational results of improved DCS algorithm for 41 TSP benchmark instances for
TSPLIB

Instance Opt Best Worst Average SD PDav(%) PDbest(%) C1%/Copt Time

eil51 426 426 426 426 0.00 0.00 0.00 30/30 1.16
berlin52 7542 7542 7542 7542 0.00 0.00 0.00 30/30 0.09
st70 675 675 675 675 0.00 0.00 0.00 30/30 1.56
pr76 108159 108159 108159 108159 0.00 0.00 0.00 30/30 4.73
eil76 538 538 539 538.03 0.17 0.00 0.00 30/29 6.54
kroA100 21282 21282 21282 21282 0.00 0.00 0.00 30/30 2.70
kroB100 22141 22141 22157 22141.53 2.87 0.00 0.00 30/29 8.74
kroC100 20749 20749 20749 20749 0.00 0.00 0.00 30/30 3.36
kroD100 21294 21294 21389 21304.33 21.79 0.04 0.00 30/19 8.35
kroE100 22068 22068 22121 2281.26 18.50 0.06 0.00 30/18 14.18
eil101 629 629 633 630.43 1.14 0.22 0.00 30/6 18.74
lin105 14379 14379 14379 14379 0.00 0.00 0.00 30/30 5.01
pr107 44303 44303 44358 44307.06 12.90 0.00 0.00 30/27 12.89
pr124 59030 59030 59030 59030 0.00 0.00 0.00 30/30 3.36
bier127 118282 118282 118730 118359.63 12.73 0.06 0.00 30/18 25.50
ch130 6110 6110 6174 6135.96 21.24 0.42 0.00 28/7 23.12
pr136 96772 96790 97318 97009.26 134.43 0.24 0.01 30/0 35.82
pr144 58537 58537 58537 58537 0.00 0.00 0.00 30/30 2.96
ch150 6528 6528 6611 6549.9 20.51 0.33 0.00 29/10 27.74
kroA150 26524 26524 26767 26569.26 56.26 0.17 0.00 30/7 31.23
kroB150 26130 26130 26229 26159.3 34.72 0.11 0.00 30/5 33.01
pr152 73682 73682 73682 73682 0.00 0.00 0.00 30/30 14.86
rat195 2323 2324 2357 2341.86 8.49 0.81 0.04 20/0 57.25
d198 15780 15781 15852 15807.66 17.02 0.17 0.00 30/0 59.95
kroA200 29368 29382 29886 29446.66 95.68 0.26 0.04 29/0 62.08
kroB200 29437 29448 29819 29542.49 92.17 0.29 0.03 28/0 64.06
ts225 126643 126643 126810 126659.23 44.59 0.01 0.00 30/26 47.51
tsp225 3916 3916 3997 3958.76 20.73 1.09 0.00 9/1 76.16
pr226 80369 80369 80620 80386.66 60.31 0.02 0.00 30/19 50.00
gil262 2378 2382 2418 2394.5 9.56 0.68 0.16 22/0 102.39
pr264 49135 49135 49692 49257.5 159.98 0.24 0.00 28/13 82.93
a280 2579 2579 2623 2592.33 11.86 0.51 0.00 25/4 115.57
pr299 48191 48207 48753 48470.53 131.79 0.58 0.03 27/0 138.20
lin318 42029 42125 42890 42434.73 185.43 0.96 0.22 15/0 156.17
rd400 15281 15447 15704 15533.73 60.56 1.65 1.08 0/0 264.94
fl417 11861 11873 11975 11910.53 20.45 0.41 0.10 30/0 274.59
pr439 107217 107447 109013 107960.5 438.15 0.69 0.21 22/0 308.75
rat575 6773 6896 7039 6956.73 35.74 2.71 1.81 0/0 506.67
rat783 8806 9043 9171 9109.26 38.09 3.44 2.69 0/0 968.66
pr1002 259045 266508 271660 268630.03 1126.86 3.70 2.88 0/0 1662.61
nrw1379 56638 58951 59837 59349.53 213.89 4.78 4.08 0/0 3160.47
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Fig. 9 PDAv(%)(over 30 runs) for 18 TSPLIB instances

Table 3 Comparison of experimental results of the improved DCS with DPSO [36]

Instance DPSO Improved DCS
Opt Best Worst PDAv(%) Best Worst PDAv(%)

eil51 426 427 452 2.57 426 426 0.00
berlin52 7542 7542 8362 3.84 7542 7542.0 0.00
st70 675 675 742 3.34 675 675 0.00
pr76 108159 108280 124365 3.81 108159 108159 0.00
eil76 538 546 579 4.16 538 539 0.00

from Fig. 9 and Table 3 that improved DCS outperforms the other two algorithms
(GSA-ACS-PSOT and DPSO) in solving all the eighteen/five tested TSP instances.
From Fig. 9, the lower curve which is associated with the improved DCS algorithm
is better, in terms of solution quality. This can be explained basically by the strengths
of CS: a good balance between exploitation and exploration, which appears on the
population structure and the new category of cuckoo distinguished by its technical of
research that is relatively intelligent compared to other ordinary cuckoos. An intel-
ligent use of Lévy flights and the reduced number of parameters are also considered
as an advantage.

5 Conclusion

In this chapter, we have studied and discussed an improved and discrete version of
cuckoo search (CS) via Lévy flights by reconstructing its population and introducing
a new cuckoo category which is more intelligent, and adapting its key points to
solve the symmetric travelling salesman problem (TSP). This adaptation is based
on a study of terminology interpretation used in CS and in its inspiration sources.
Discrete CS (improved CS adapted to TSP) has been implemented and tested on
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forty-one benchmark TSP instances, in order to be compared with GSA-ACS-PSOT
and DPSO.

According to the comparison results, it is clear that Discrete CS outperforms all
two other methods for solving TSP. It comes from the proper preservation of the
advantages of CS during adaptation process to TSP problem and the improvement
carried by the new population structure. This can be seen from the adoption of Lévy
flights to move in the search space, and of a variety of cuckoos that use multiple
research methods. Thus, the independence of our cuckoo new category, relatively
to the best solution, in its search for a new solution may provide better strategies
in generating new solutions than the simple use of one current best solution, thus
leading to a more efficient algorithm. Another advantage, which the use of local
perturbations introduced in the proposed Discrete CS, can provide more flexibility
to solve other combinatorial optimization problems. Further references studies can
be fruitful if we can focus on the parametric studies and applications of DCS into
other combinatorial problems such as scheduling and routing.

In this chapter, we discussed the first discrete version of CS for solving TSP with
the aim of challenging the constraint of passing from a continuous search space, and
keeping some properties to the combinatorial one. We also focused on the develop-
ment of a more controllable algorithm and less complex by the proposition of a new
category of cuckoos and a few number of parameters, even in the case of a combi-
natorial optimization problem. In fact, based on this work we can contribute some
extensions either on CS through its improvement or on DCS through the adaptation
performed to TSP.
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Comparative Analysis of the Cuckoo Search
Algorithm

Pinar Civicioglu and Erkan Besdok

Abstract Cuckoo Search Algorithm (CS) is a population based, elitist evolutionary
search algorithm proposed for the solution of numerical optimization problems.
Despite its wide use, the algorithmic process of CS has been scarcely studied in
detail. In this chapter, the algorithmic structure of CS and its effective problem solv-
ing success have been studied. Fifty benchmark problems were used in the numerical
tests performed in order to study the algorithmic behavior of CS. The success of CS
in solving benchmark problems was compared with three widely used optimization
algorithms (i.e., PSO, DE, and ABC) by means of Kruskal–Wallis statistical test.
The search strategy of CS, which utilizes the Lèvy distribution, enables it to analyze
the search space in a very successful manner. The statistical results have verified that
CS has the superior problem-solving ability as a search strategy.

Keywords Cuckoo search · Stable distributions · Lèvy-walk · Kruskal–Wallis test

1 Introduction

The requirement for the development of new global optimization algorithms which
can solve complex numerical optimization problems is in progress. In this chapter,
the structural features of the relatively newly generated Cuckoo Search Algorithm
(CS) [1–14] and its problem solving ability have been studied. The basic concepts
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regarding optimization and optimization terminology have been briefly explained
below prior to the commencement of the detailed examination on CS.

Optimization is a considerably important area of research in engineering
[1, 2, 15–20]. The purpose of an optimization algorithm is to find out the best val-
ues of the parameters of a system under various conditions. The process of finding
the global optimum is called global optimization. The first step to solve the global
optimization problems is to design an objective function suitable for structure of
the problem. The objective function establishes the mathematical relation between
the object and the parameters of the problem. The optimization problems target,
generally, the minimization of an objective-function.

Optimization encompasses both maximization and minimization problems. Any
maximization problem can be converted into a minimization problem by taking the
negative of the objective function, and vice versa. It is desired that an optimization
algorithm is robust, can reach the global minimum value of the problem rapidly,
has very limited number of control parameters, a smaller computational-cost and
easy to apply to different problem models. Generally, since the size of search space
increases as the dimension of problem increases, it becomes difficult to find out the
global optimums of such problems though the classical techniques. If the objective
function in an optimization problem is nonlinear, and if it is not possible to calculate
the differential of the objective function, the heuristic search techniques are used to
find the global optimum of the problem [1, 2, 20–23].

The most commonly used population-based heuristic search techniques are the
swarm-intelligence based optimization algorithms [1, 20, 22–25] and the genetic-
evolution based optimization algorithms [16, 17, 26–28]. Among the population-
based heuristic optimization techniques, there are the Particle Swarm Optimization
(PSO) [2, 20, 22, 23, 29, 30], Differential Evolution (DE) [16, 17, 27, 28], Artificial
Bee Colony Optimization (ABC) [24, 25] and Ant Colony Optimization [31] algo-
rithms. The swarm-intelligence based optimization algorithms are generally based
on the simplified mathematical models of various rather complex social behaviors
of the living creatures. The optimization problem solution abilities of the swarm-
based optimization algorithms have developed considerably for the reason that each
solution shares information with the other solutions one way or another.

The genetic-evolution based optimization algorithms [32–35] use various mathe-
matical models developed with inspiration from the basic hypotheses of the genetic
science (such as reproduction, mutation/morphogenesis, recombination, and selec-
tion). Among the genetic-evolution based optimization algorithms, the most studied
algorithms in the literature are Genetic Algorithm, Genetic Programming, Evolution-
ary Programming, Evolution Strategy, and Neuro-Evolution [22, 23]. Contrary to the
classical optimization techniques, the population-based optimization algorithms do
not guarantee finding the optimum parameter values of the problem. But, unlike the
classical optimization algorithms, the population-based optimization algorithms are
sufficiently flexible to solve different types of problems.

Generally, while trying to transform the parameters vectors into parameters vec-
tors that can generate better objective-function value, the heuristic search algorithms
use a greedy selection criterion. The greedy selection criterion is based on preferring
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the one that provides better objective function value between two solutions; in the
genetic algorithms, generally, the greedy selection criterion is used while selecting
the next population elements. Therefore, solution of an optimization problem with
genetic algorithms always has the risk of being trapped in any local solution and
not being able to reach the global solution of the problem. The DE that is a deter-
ministic genetic algorithm has strategy enabling to avoid the local minimums while
searching for the global optimum; in the DE, the selection probabilities of the parent
chromosomes selected randomly from the current population to be used to generate a
new solution are equal. The PSO manages to avoid the local minimums considerably
using numerous particles moving in the search-space. The ABC applies a method
resembling the strategy of DE to avoid the local solutions of the problem. The size
of population value is rather effective in robustness of the evolutionary optimiza-
tion algorithm. When the small population dimensions are selected, the algorithms
can reach only the local solutions in general. When the initial populations that are
larger than necessary are selected, on the other hand, it becomes difficult for the
optimization algorithm to reach the global optimum of the problem, or such algo-
rithms remain rather slow in reaching the global optimum. Therefore, the optimum
population dimension selection is considerably important for the population-based
algorithms.

The population-based heuristic optimization algorithms can be trapped in any
local solution of the problem as the diversity of population decreases in the advancing
iteration steps. In literature, various approaches are introduced, which are based
on the use of dynamic population to prevent the rapid decrease of the diversity
of population value in the advancing iteration steps. If the randomly created new
elements are added to the current population at the beginning of each iteration, the
fast decrease in the population diversity can be prevented partially, but in such a
case, it becomes difficult for the population-based optimization algorithms to reach
the global optimum. Therefore, the operators used during the calculations to shift
the values of the population members exceeding the search space limits due to any
reason whatsoever among the search space limits have direct effects on the success
of the optimization algorithm.

A population-based heuristic optimization algorithm must have the global explo-
ration and local exploitation abilities. The exploration is the ability of an optimization
algorithm to use the whole search-space effectively. The exploitation, on the other
hand, is the ability of the optimization algorithm to search for the best solution around
a new solution it has acquired. The heuristic optimization techniques acquire the new
solutions they need to avoid the local minimums in the first iterations generally with
their exploration ability. As the iterations advance, the effect of the exploitation
process on the solutions generated by the algorithm increases. The success of an
optimization algorithm is significantly dependent on its exploration and exploitation
abilities and the natural balance between these abilities.

The population-based optimization algorithms use a three-stage process while
improving the current population elements to solve an optimization problem: self-
adaptation, cooperation, and competition. In the self-adaptation stage, each element
of the population is improved one by one. In the cooperation stage, information
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exchange is made between the newly developed solutions. In the competition stage,
the population elements to be used in the next iteration are determined. The self-
adaptation, cooperation, and competition strategies of the heuristic optimization
algorithms are based on mathematical methods inspired by simplified models of
various complex behaviors of the social creatures.

Although the heuristic optimization methods are rather successful is solution of
the optimization problems, there is no single heuristic optimization method that
can solve all the different types of optimization problems. Therefore, the need for
development of heuristic optimization algorithms that can solve the different types
of problems is still continuing.

The PSO is inspired by the simplified mathematical models of the collective
behaviors of the living creatures. The DE shows similarity with the genetic algorithms
that follow the basic evolutional rules. The ABC, on the other hand, is based on a
simplified mathematical model of rather complex social behaviors of the honeybees
during the search for nectar. The PSO and DE have been used in solution of numerous
different problems in the scientific literature. The studies conducted using ABC that
is a relatively new global optimization technique are also rather diversified. The PSO,
DE, and ABC have been used commonly in optimization of many different types
of problems. Therefore, in order to compare the success of the CS in solving the
test functions with the methods in the literature, the PSO, DE, and ABC have been
selected. Generally, the success of the PSO, DE, and ABC in solving the global
optimization problems varies depending on the structure of the problem, size of the
problem, initial values of the control parameters of algorithms, the structure and size
of the initial population, and the total number of cycles.

CS is inspired by the offsprings generation strategy of the cuckoo birds. CS is
a population based, elitist evolutionary search algorithm. The offsprings generation
strategy of CS effectively improves its problem solving ability. This is a result of
CS’ not excessively requiring specific programming routines which radically effect
the calculating period (i.e., CS code includes very limited number of if-statement
codes). Consequently, its simple, but very efficient structure enables CS to be easily
coded in many programming languages.

This chapter is organized as follows. In Sect. 2, Comparison Algorithms have been
explained. In Sect. 3, Structured Analysis of Cuckoo Search Algorithm is given. In
Sects. 4 and 5, Experiments and Conclusions have been given, respectively.

2 Comparison Algorithms

In this section, the general structures of the DE, PSO and ABC have been explained.
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2.1 Differential Evolution (DE)

The DE is a random-search algorithm with a parallel structure [16, 27, 28]. DE is a
non-gradient-based, evolutionary computation algorithm. Its mathematical structure
is very simple. It can be adapted to many problem types rather easily. For such reasons,
DE is one of the most frequently optimization techniques in the literature. The basic
difference of DE from the genetic algorithm is the structure of the mutation operator.
Numerous different mutation strategies can be used in DE. The most frequently used
mutation strategy in the literature is the mutation strategy called ‘DE/rand/1/bin’ [16].

In this chapter, the ‘DE/rand/1/bin’ mutation strategy has been used in the exper-
iments made with the DE. In the DE, while ND, D, and xi indicates the population
size, the problem size, and the chromosomes of the population, respectively. The
mutant vector is calculated with the Eq. 1;

mi = xr1 + F(xr2 − xr3) | i ≤= r1 ≤= r2 ≤= r3 (1)

The scale factor F is a real number in the range of [0 1]. The scale factor F controls
the evolution rate of the population. After acquiring the mutant vector mi in the DE,
the following crossover operator is applied;

ui =
{

mi,j rand[0 1] ∗ CR
xi,j else

(2)

where 0 ∗ j ∗ (D − 1). CR ⊕ [0 1] is the crossover probability value. Using the
ui values and xi chromosome generated by the crossover operator in the DE, the
chromosomes to be in the next population are calculated according to the following
equation:

xi+1 =
{

ui if f (ui) < f (xi)

xi else
(3)

where f (x) indicates the objective function value. After acquiring the chromosomes
of the next population, the calculations are continued until the predefined stopping
criteria are met. The success in searching the global minimum with the DE is rather
sensitive to values of the DE control parameters (i.e., ND, F, and CR), the size of
population value, and the maximum cycle value.

For more detailed information on DE, please refer to the studies given in [16, 22,
23, 27, 28].

2.2 Particle Swarm Optimization (PSO)

The PSO is a stochastic, multi-agent parallel search algorithm [2, 20]. The PSO that
is a population-based, heuristic, evolutionary optimization technique is based on the
mathematical modeling of various collective behaviors of the living creatures that
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display complex social behaviors. In the PSO, each population element is called
a particle, and the particles correspond to random solutions in the search-space.
In the PSO, the movements of a particle in the search-space are modeled as linear
combination of the best global solutions discovered by all particles until that moment
and the best local solution discovered by the related particle itself. As the ith particle
in a D-dimensional search-space, Xi is shown as follows:

Xi = [xi,1, . . . , xi,D] (4)

Each particle has a memory in which it can store the best position and speed it
has previously had. Let the best position vector the ith particle has previously had be
shown with Pi = [pi,1, . . . , pi,D] and the best speed vector with Vi = [vi,1, . . . , vi,D].

In this case, the PSO is defined with the following Eqs. 5 and 6;

vi,d = ωvi,d + c1r1(pi,d − xi,d)+ c2r2(pg,d − xi,d) (5)

xi,d = xi,d + vi,d (6)

where acceleration constants c1, c2 and inertia weight ω are predefined by the user
and r1, r2 are the uniformly generated random numbers in the range of [0 1]. The
PSO’s success in finding the global optimum depends extremely on the initial values
of the control parameters (c1, c2, ω) of PSO, the size of population value, and the
iteration number.

For more detailed information on PSO, please refer to the study given
in [20, 22, 23].

2.3 Artificial Bee Colony (ABC)

The ABC is a population-based numeric optimization algorithm [24, 25]. The ABC
is based on the simplified mathematical models of the food searching behaviors of
the bee-swarms. The ABC gives successful results in training of the artificial neural
networks, IIR filter design, and data-clustering applications. In the ABC, any random
solution of the problem corresponds to a source of nectar. There is one employed
bee assigned to each nectar source. The number of employed bees equals to the total
number of food sources (i.e. the size of population value). The employed bee of a
nectar source that has run out of nectar turns into a scout bee again. The amount of
nectar in a nectar source is expressed with the objective function value of the related
nectar source. Therefore, the ABC targets to locate the nectar source that has the
maximum amount of nectar. In the first step of the ABC, random nectar sources are
generated. The search space must be considered as the environs of the hive containing
the nectar sources. The random generation of nectar sources is made in compliance
with Eq. 7;

xi,j = xmin
j + rand(0, 1) (xmax

j − xmin
j ) (7)
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where i = 1, 2, 3, ..., SN, j = 1, 2, 3, ..., D and SN is the number of nectar sources. D
indicates the number of parameters to be optimized. xmin

j and xmax
j are the lower and

upper limits respectively, which are allowed for the search space of the jth parameter.
While starting the calculations, value of the failure variable in which the number of
failures to develop a nectar source is hidden made failurei = 0.

Following the generation of initial nectar resources, the ABC starts to search for
solution of the numeric optimization problem using the employed bee, outlooker bee,
and scout-bee tools. The employed bee tries to develop the nectar source to which it
is assigned using the other nectar sources as well. If the employed bee finds a better
nectar source, it memorizes the new nectar source to use it instead of the old one. In
the ABC, this process is modeled in Eq. 8;

vi,j = xi,j + ϕi,j(xi,j − xk,j) (8)

where ϕi,j is a random number generated in the range of [−1 1]. xi,j and xk,j indicate
the jth parameters of the ith and kth nectar sources respectively. If the vi value
has a better objective function value than the xi value, the xi value is updated as
xi := vi and the failure variable becomes failurei = 0. If the vi value does not have
a better objective function value than xi, the employed bee continues to go to the xi

source, and since the xi solution cannot be developed, the failurei value that is the
development meter related to the nectar source xi increases by one unit. Using the
objective function value of all nectar sources, the probability values, pi, to be used
by the outlooker bees are obtained;

pi = fitnessi∑SN
i=1 fitnessi

(9)

and

fitnessi =
{ 1

1+fi
fi ∼ 0

1+ |fi| fi < 0
(10)

As the fitnessi value given in the equation Eq. 10 increases, the number of employed
bees that will select this region of nectar source will increase. The ABC selects the
nectar sources to be visited by the bees using the roulette selection technique used in
the genetic algorithms; a random number within the range of [0 1] is generated for
each nectar source, if the pi value is higher than the generated random number, the
outlooker bees search for new nectar sources to develop the nectar source xi using
the Eqs. 8–10. If an xi source has a failurei value higher than a certain threshold
value, that xi source is left, and the employed bee assigned hereto goes to a random
nectar source generated newly.

The success of the ABC in finding the global optimum is sensitive to the con-
trol parameters of the algorithm (employed-bee or onlooker-bee number and the
limit value), the population size, and the maximum cycle value. For more detailed
information on ABC, please refer to the study given in [24, 25].
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3 Structural Analysis of Cuckoo Search Algorithm (CS)

The structure of CS is analogically based on the simplified mathematical model of
the offspring generation behavior of the Cuckoo-Birds [1]. The Cuckoo-Birds do not
incubate in order to generate offsprings. Alternatively, they lay their eggs in the nests
of other incubating birds. In this way, the cuckoos push the care and feeding of their
offsprings off on a different type of bird. This is a brood parasitic type of behavior.
The brood parasitic behavior enables the cuckoo to lay more eggs which relatively
facilitates the feeding and reproducing of the Cuckoo. However, the Cuckoo has to
search on which nest it may lay its eggs.

It is possible to model the motion model of a living thing in nature which changes
its location in order to search for a nest or food by using analytic random-walk
strategies. The random-walk strategies that are generally the most frequently used
are the Brownian-walk and Lèvy-walk strategies [36–38]. In fact, the Brownian-walk
is a special case of Lèvy-walk. In Brownian-walk motion, the step lengths (i.e., s) can
be scaled by the first and second moment of the probability density distribution of
the step lengths (i.e., P(s)). Conceptually, the step lengths in Lèvy-walk motion do
not have a characteristic scale. In other words, the probability density distribution of
the step lengths and its second moment possess the self-affine characteristic (Eq.11);

P(λs) ≥ λ−μP(s) | 1 < μ ∗ 3 (11)

Figure 1 shows certain paths with equal number of segments which are randomly
generated in 2D space by using different random-walk strategies.

In practical applications, the probability density distribution P(s) defined in
Eq. (11) is calculated by the observed s values. If it is assumed that the s values
have a statistical second-moment, the motion models where the Gaussian, Poisson
and other distributions are used can be utilized in order to explain the related random-
walk strategy. In this case, the random-walk is named as a Brownian-motion model.
Some experimental random-walk observations have shown that the s values did not
always require a statistical second-moment. This can be expressed by using the Lèvy
distribution given in Eq. (12);

P(s) ≥ s−μ
j | 1 < μ ∗ 3 (12)

Here, P(s) defines the gaussan Brownian-motion for μ ∼ 3. Due to the difficulties
in obtaining a mathematical model, a standardizable probability distribution has not
been defined for μ ∗ 1. Therefore, the Lèvy distribution given in Eq. (12), which is a
stable-distribution model is widely used in the solution of many different problems.

A special case of of inverse-gamma distribution, the Lèvy distribution, is a
continuous probability distribution generated for non-negative random variables.
The Lèvy distribution is a type of stable distribution which can be expressed by
analytic probability density functions such as the standard distribution and cauchy
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Fig. 1 Examination of the effect of the scale-factor value achieved by different methods (i.e., F)
on random-walk in 2D space; a F ≥ N(0, 1), b F ≥ U(0, 1), c F ≥ Γ (α, 1)|α : shape factor, d
F ≥ (0.01 · Lèvy(λ))

distribution. Stable distributions are not generally expressed by an analytic proba-
bility density function.

α-stable distributions (i.e., S(·)) are generally expressed by using four parameters;
S(α, β, γ, δ). The first parameter, α ⊕ (0 2] is named as the characteristic exponent
and defines the tail of the distribution. β ⊕ [−1 1] shows the skewness value. β > 0
is named as the right-skewed distribution and β < 0 is named as the left-skewed
distribution. γ > 0 and δ ⊕ R show the scale and location parameters, respectively.
In this case, the Gaussian distribution is defined as N(μ, σ 2) = S(2, β, σ⊗

2
, μ). If

it is a Cauchy distribution with γ scale and δ location parameters, it can be defined
with S(1, 0, γ, δ). In a Lèvy distribution with γ scale and δ location parameters, it
is defined with S(0.5, 1, γ, δ).

The Lèvy-walk strategy allows more for instant jumpings with big amplitude in
search space than Brownian-walk. This is a considerably significant feature to avoid
the local minimums. Provided that it is in accordance with the selected μ value, the
probability of the returning of a living thing in search of nest or food to a location it
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has previously visited is less in Lèvy-walk than the Brownian-walk. In other words, a
living thing using the Lèvy-walk strategy discovers more new locations than a living
thing using the Brownian-walk strategy and can find more resources.

CS uses the McCulloch’s algorithm in order to generate a random number in
α-stable distribution. In this way, a hypothetic cuckoo in search of the most convenient
nest to lay its eggs successfully simulates the random-walk based search strategically
in an analogical way.

The general structure of CS is considerably similar to the general algorithmic
structure used for Evolutionary Algorithms and consists of two basic seach stages.
The generalized structure of CS is given in Algorithm 1.

The pseudo-code of CS given in Algorithm 2 provides more detailed information
on its functioning. When Algorithm 2 is examined, it can be seen that CS consists of
two basic search strategies. Both search strategies are based on improved random-
walk models. The general model of random walk is given in Eq. (13);

Xt+1 = Xt + F · δx | X = [x1, x2, x3, ..., xD] (13)

where F and δx denote the scale factor and direction-matrix, respectively. The first
search-strategy of CS predicates on evolving all nests towards the nest that provides
the best solution; i.e., the first search-strategy of CS is elitist. This strategy provides
rapid access to a better solution that may be situated between a nest and the nest
that provides the best solution. In this strategy, the scale factor (i.e., F) that controls
the amplitude of δx is a random number generated by the Lèvy distribution. In this
strategy, the algorithm suggested by Mantegna (Eq.(14)) has been used in order to
generate F values;

F = s · κ | κ ≥ N(0, 1), s = 0.01 · u

|v| 1β
(14)

where u ≥ N(0, σ 2
u ), v ≥ N(0, σ 2

v ), σv = 1 and σu =
[

Γ (1+β)·sin
(
π · β2

)

Γ
[

1+β
2

]
·β·2 β−1

2

] 1
β

.
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The second search strategy of CS forces every nest to evolve towards a differ-
ent nest; i.e., the second search-strategy of CS is an analytically non-elitist random
search. This strategy explores whether a nest that provides a better solution exists
between two nests in a considerably fast manner. In this strategy, the F values control-
ling the amplitude of δx are random numbers generated by using uniform distribu-
tion. It is also decided which eggs within the nest shall evolve at the end of a random
self-crossover process. The adaptation of CS according to the solution of various
engineering problems is considerably easy as its structure can be easily analyzed.
The search strategies of CS enable it to establish an effective balance between its
global and local search abilities.

The relatively more compact structure of CS is shown in Algorithm 3.
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4 Experiments

This section presents in detail the tests and benchmark problems, statistical analysis,
arithmetic precision and control parameters and stopping conditions used for the
optimization algorithms in the tests, along with the statistical results.

4.1 Control Parameters of the Comparison Algorithms

Control parameters of the DE (i.e., DE/rnd/1/bin [1]), PSO and ABC used as the
comparison algorithms are given in Table 1.

4.2 Statistical Tests

In order to determine which of the related algorithms were statistically better in the
solution of a benchmark problem, pair-wise statistical tests have been performed [39].
Prior to the statistical tests, it was examined whether the related global minimum
values complied with the standard distribution or not by means of the Anderson-
Darling normality tests and it has been determined that the related values generally

Table 1 Control parameters of the comparison algorithms

Algorithm Control Parameters.

DE Finital = 0.5 CRinitial = 0.90 τ1 = 0.1 τ2 = 0.1
PSO C1 = 1.80 C2 = 1.80 ω = 0.5+ (1− rand)

ABC limit = N · D Size of Employed-Bee = (Size of Colony)/2
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did not comply with the standard distribution. Therefore, Kruskal-Wallis (K-W)
test has been chosen as the test tool for the pair-wise statistical test. The statistical
significance value for the statistical tests has been specified as α = 0.05 and the
bonferroni correction method has been used in order to correct the p-values obtained
by the the statistical tests. The statistical tests performed show that the pair-wise
compared data H0 have equal median distributions.

4.3 Test Functions

The test functions set to be used in the tests must include different types of test
functions in order to find out the success of an optimization algorithm in searching
the global optimum [1, 21–25]. The literature does not include any optimization
algorithm that can solve all test functions of different types. In assessment of the
success of an optimization algorithm, it is rather important to find out which types
of test functions the optimization algorithm solves more successfully. While inter-
preting the test results, it is necessary to have knowledge about the general features
and structures of the test functions used in the tests. Therefore, this section gives
information on several structural features of various test functions. A multimodal
test function has more than one local optimum solution. In order to test the ability of
algorithms to avoid the local minimums, the multimodal test functions are preferred.

In order not to be trapped in the local minimums, an algorithm must have quite
developed global exploration ability. Generally, as the size of a test function increases,
it becomes more difficult to reach the global optimum value of the test function. In
several test functions such as the Perm, Kowalik, and Schaffer functions, the global
minimum value is rather close to the local minimum value. In order to reach the
global optimum values of these kinds of test functions, the optimization algorithm
must have strong local exploitation operators. The global minimum values of several
test functions are positioned in a very narrow region of the search space (like Easom,
Michalewicz (Dim = 10), Powell functions). Therefore, solution of these kinds of
functions is very difficult.

Since the Foxholes function has numerous local minimums, it is highly possible
to be trapped in one of the local solutions while searching for the global optimum of
this function. A κ-dimensional function is categorized as the separable function if it
can be expressed with the κ units of single variable functions, or otherwise, as the
non-separable function. It is much more difficult to find the global optimums of the
non-separable functions than the separable functions. Since the local optimums of
the Fletcher-Powell and Langerman functions that are non-symmetric functions are
uniformly distributed in the search space, it is difficult to reach the global optimums
of these functions. For n ∼ 30, the Griewank function transforms from a multimodal
function type to a monomodal function and finding its solutions becomes more
difficult. The functions that have planar surfaces do not provide information on
the search direction. Therefore, it is very difficult to find the global optimums of the
functions (such as Stepint, Matyas, and Powersum functions) as well.
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Table 2 The benchmark problems used in tests (Type: M: Multimodal, N: Non-Separable,
U: Unimodal, S: Seperable, Dim: Dimension, Low, Up: Limits of search space)

Fnc# Names Type Dim Low Up Fnc# Names Type Dim Low Up

1 Foxholes MS 2 −65.536 65.536 26 Michalewics MS 2 0 π

2 Goldstein-price MN 2 −2 2 27 Michalewics MS 5 0 π

3 Penalized MN 30 −50 50 28 Michalewics MS 10 0 π

4 Penalized2 MN 30 −50 50 29 Perm MN 4 −4 4
5 Ackley MN 30 −32 32 30 Powell UN 24 −4 5
6 Beale UN 5 −4.5 4.5 31 Powersum MN 4 0 4
7 Bohachecsky1 MS 2 −100 100 32 Quartic US 30 −1.28 1.28
8 Bohachecsky2 MN 2 −100 100 33 Rastrigin MS 30 −5.12 5.12
9 Bohachecsky3 MN 2 −100 100 34 Rosenbrock UN 30 −30 30
10 Booth MS 2 −10 10 35 Schaffer MN 2 −100 100
11 Branin MS 2 −5 10 36 Schwefel MS 30 −500 500
12 Colville UN 4 −10 10 37 Schwefel_1_2 UN 30 −100 100
13 Dixon-Price UN 30 −10 10 38 Schwefel_2_22 UN 30 −10 10
14 Easom UN 2 −100 100 39 Shekel10 MN 4 0 10
15 Fletcher MN 2 −π π 40 Shekel5 MN 4 0 10
16 Fletcher MN 5 −π π 41 Shekel7 MN 4 0 10
17 Fletcher MN 10 −π π 42 Shubert MN 2 −10 10
18 Griewank MN 30 −600 600 43 Camelback MN 2 −5 5
19 Hartman3 MN 3 0 1 44 Sphere2 US 30 −100 100
20 Hartman6 MN 6 0 1 45 Step2 US 30 −100 100
21 Kowalik MN 4 −5 5 46 Stepint US 5 −5.12 5.12
22 Langermann MN 2 0 10 47 Sumsquares US 30 −10 10
23 Langermann MN 5 0 10 48 Trid UN 6 −36 36
24 Langermann MN 10 0 10 49 Trid UN 10 −100 100
25 Matyas UN 2 −10 10 50 Zakharov UN 10 −5 10

In this chapter, the Quartic test function has been used to examine the success of
the optimization algorithms in solving the noisy test functions. It is also very difficult
to solve the Penalized test function composed of the combination of different periods
of the sinus-based functions. If an optimization algorithm is unable to monitor the
direction changes in the functions that have narrow and sinuous valleys, as is the
case in the Beale, Colville, and Rosenbrock test functions, it will have difficulty
in solving the other test problems of the same type. Generally, if the polynomial
degree of the test function increases, it becomes more difficult for them to reach the
global optimum (Goldstein-Price, Trid). In the Tests, the widely used 50 benchmark
problems have been used [22–24].

Several features of the benchmark problems used in the Tests are given in
Table 2.
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4.4 Algorithmic Precision

It is sufficient for the arithmetic precision level to be 10−16 for the solution of many
practical numerical problems. Therefore, the arithmetic precision level has been taken
as 10−16 regarding the tests performed in this chapter.

4.5 Statistical Results of Tests

In this chapter, the related benchmark problems have been solved by 30 trials by
using DE, PSO, ABC and CS. A different initial population has been used in each
trial. The mean (i.e., Mean), standard deviation of Mean (i.e., Std), best-solution (i.e.,
Best), and runtime in seconds (i.e., Runtime) values of the solutions achieved for any
and every benchmark problem are given in Tables 3, 4, 5 and 6.

Since the solutions obtained did not generally comply with the standard distribu-
tion, the K–W test has been used in order to find the algorithm that statistically better
solved any and every benchmark problem. The algorithms that statistically better
solve the related benchmark problem according to the K–W test are given in Table 7.

The number of benchmark problems for which CS provides statistically better
solutions (i.e, ‘+’), the number of benchmark problems where the solutions achieved
by CS are statistically identical with the related comparison algorithm (i.e, ‘ =’)
and the number of benchmark problems where the related comparison algorithms
provides statistically better solutions than CS (i.e, ‘−’) are given in the last row of
Table 7 in the following format: ‘ + / = /−’. When the ‘ + / = /−’ values are
examined, it can be seen that CS is generally more successful when compared with
DE, PSO and ABC. DE’s problem solving ability is close to CS; however, CS is
generally much faster than DE, as it is seen in Tables 3, 4, 5 and 6. The problem
solving success of PSO and ABC substantially resembles one another.

5 Conclusions

In this chapter, the algorithmic process and problem solving ability of CS has been
studied. CS has two search strategies; the first strategy is equipped with the elitist
search ability whereas the second strategy is equipped with the random search ability.
Since the first search strategy controls the amplitude of the direction-matrix by using
Lèvy distribution based random numbers, it is able to analyze the search space
between a nest and the best-nest in a very fast and effective manner. The second
search strategy is based on an improved random search strategy and forces the nests
to evolve towards one another. When the results obtained from the tests performed
were statistically studied, it’s been seen that the search strategies could analyze the
search space very efficiently when used together. It has been seen that the structure



100 P. Civicioglu and E. Besdok

Ta
bl

e
3

T
he

si
m

pl
e

st
at

is
tic

al
va

lu
es

of
th

e
re

su
lts

ac
qu

ir
ed

in
th

e
Te

st
s

Fn
c

#
St

at
is

tic
s

P
SO

D
E

A
B

C
C

S

1
M

ea
n

0.
99

80
03

83
77

94
44

96
1.

33
16

02
92

64
87

62
99

0.
99

80
03

83
77

94
44

96
0.

99
80

03
83

77
94

44
96

St
d

0.
00

00
00

00
00

00
00

00
0.

94
55

23
79

94
69

06
97

0.
00

00
00

00
00

00
00

01
0.

00
00

00
00

00
00

00
00

B
es

t
0.

99
80

03
83

77
94

44
96

0.
99

80
03

83
77

94
44

96
0.

99
80

03
83

77
94

44
96

0.
99

80
03

83
77

94
44

96
R

un
tim

e
66

.5
36

72
.5

27
64

.9
76

51
.1

41
2

M
ea

n
2.

99
99

99
99

99
99

91
96

2.
99

99
99

99
99

99
92

05
3.

00
00

00
04

65
42

30
20

2.
99

99
99

99
99

99
91

96
St

d
0.

00
00

00
00

00
00

00
20

0.
00

00
00

00
00

00
00

13
0.

00
00

00
23

50
44

21
61

0.
00

00
00

00
00

00
00

09
B

es
t

2.
99

99
99

99
99

99
91

92
2.

99
99

99
99

99
99

92
05

2.
99

99
99

99
99

99
92

05
2.

99
99

99
99

99
99

91
92

R
un

tim
e

13
.2

57
17

.8
92

16
.6

24
19

.2
69

3
M

ea
n

0.
05

00
38

68
42

57
83

76
0.

12
78

72
80

62
39

16
30

0.
00

00
00

00
00

00
00

04
0.

00
00

00
00

00
00

00
00

St
d

0.
09

46
84

06
01

19
47

95
0.

27
72

79
23

46
02

84
02

0.
00

00
00

00
00

00
00

01
0.

00
00

00
00

00
00

00
00

B
es

t
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
03

0.
00

00
00

00
00

00
00

00
R

un
tim

e
15

9.
14

7
13

9.
55

5
84

.4
16

65
.6

30
4

M
ea

n
0.

11
02

00
75

25
17

71
03

0.
00

43
94

94
63

34
35

35
0.

00
00

00
00

00
00

00
04

0.
00

00
00

00
00

00
00

00
St

d
0.

31
58

35
19

92
94

95
86

0.
00

54
74

70
64

09
01

73
0.

00
00

00
00

00
00

00
01

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

03
0.

00
00

00
00

00
00

00
00

R
un

tim
e

22
3.

90
5

12
6.

50
6

11
3.

93
7

79
.3

32
5

M
ea

n
0.

41
52

00
40

39
64

02
45

1.
52

14
32

29
73

72
50

12
0.

00
00

00
00

00
00

03
40

0.
00

00
00

00
00

00
00

44
St

d
0.

61
24

95
82

51
04

92
20

0.
66

17
57

03
84

66
26

01
0.

00
00

00
00

00
00

00
35

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

44
0.

00
00

00
00

00
00

00
80

0.
00

00
00

00
00

00
02

93
0.

00
00

00
00

00
00

00
44

R
un

tim
e

82
.5

20
63

.0
39

23
.2

93
41

.7
91

(c
on

tin
ue

d)



Comparative Analysis of the Cuckoo Search Algorithm 101

Ta
bl

e
3

(c
on

tin
ue

d)

Fn
c

#
St

at
is

tic
s

P
SO

D
E

A
B

C
C

S

6
M

ea
n

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

41
92

29
68

0.
00

00
00

00
00

00
00

28
0.

00
00

00
00

00
00

00
00

St
d

0.
00

00
00

00
00

00
00

00
0.

00
00

00
01

39
61

55
52

0.
00

00
00

00
00

00
00

30
0.

00
00

00
00

00
00

00
00

B
es

t
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
05

0.
00

00
00

00
00

00
00

00
R

un
tim

e
15

.3
91

32
.4

09
22

.3
67

4.
25

4
7

M
ea

n
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
St

d
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

R
un

tim
e

13
.9

03
16

.9
56

1.
83

2
3.

82
8

8
M

ea
n

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

St
d

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

B
es

t
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
R

un
tim

e
13

. 8
46

17
.0

39
1.

80
4

3.
85

3
9

M
ea

n
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
06

0.
00

00
00

00
00

00
00

00
St

d
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
03

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

01
0.

00
00

00
00

00
00

00
00

R
un

tim
e

13
.7

81
17

.1
36

21
.7

13
3.

86
4

10
M

ea
n

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

St
d

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

B
es

t
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
R

un
tim

e
13

.8
22

17
.0

72
22

.3
95

3.
75

8

(c
on

tin
ue

d)



102 P. Civicioglu and E. Besdok

Ta
bl

e
3

(c
on

tin
ue

d)

Fn
c

#
St

at
is

tic
s

P
SO

D
E

A
B

C
C

S

11
M

ea
n

0.
39

78
87

35
77

29
73

82
0.

39
78

87
35

77
29

73
82

0.
39

78
87

35
77

29
73

82
0.

39
78

87
35

77
29

73
82

St
d

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

B
es

t
0.

39
78

87
35

77
29

73
82

0.
39

78
87

35
77

29
73

82
0.

39
78

87
35

77
29

73
82

0.
39

78
87

35
77

29
73

82
R

un
tim

e
12

.9
82

17
.0

49
10

.9
41

13
.5

38
12

M
ea

n
0.

66
50

61
18

77
01

45
33

0.
00

00
00

00
00

00
00

00
0.

07
15

67
50

60
72

59
70

0.
00

00
00

00
00

00
00

00
St

d
1.

42
00

61
37

58
85

11
44

0.
00

00
00

00
00

00
00

00
0.

05
79

42
50

13
41

71
03

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

13
42

52
53

99
47

45
0.

00
00

00
00

00
00

00
00

R
un

tim
e

56
.8

49
44

.0
65

21
.4

87
8.

19
7

13
M

ea
n

6.
29

61
67

17
26

81
77

78
0.

66
66

66
66

66
66

67
52

0.
00

00
00

00
00

00
00

38
0.

23
08

77
17

78
82

82
54

St
d

28
.3

48
31

10
24

70
09

58
0

0.
00

00
00

00
00

00
00

22
0.

00
00

00
00

00
00

00
12

0.
31

44
39

38
14

22
56

66
B

es
t

0.
00

00
05

44
23

62
71

61
0.

66
66

66
66

66
66

67
22

0.
00

00
00

00
00

00
00

21
0.

00
00

00
00

02
54

86
62

R
un

tim
e

12
1.

81
7

16
7.

09
4

37
.6

04
14

4.
84

9
14

M
ea

n
−1

.0
00

00
00

00
00

00
00

0
−1

.0
00

00
00

00
00

00
00

0
−1

.0
00

00
00

00
00

00
00

0
−1

.0
00

00
00

00
00

00
00

0
St

d
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
B

es
t

−1
.0

00
00

00
00

00
00

00
0

−1
.0

00
00

00
00

00
00

00
0

−1
.0

00
00

00
00

00
00

00
0

−1
.0

00
00

00
00

00
00

00
0

R
un

tim
e

13
.0

78
16

.6
33

13
.6

29
14

.0
40

15
M

ea
n

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

St
d

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

B
es

t
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
R

un
tim

e
27

.2
73

27
.8

59
40

.0
30

7.
36

8



Comparative Analysis of the Cuckoo Search Algorithm 103

Ta
bl

e
4

Ta
bl

e
3

(c
on

tin
ue

d)

Fn
c

#
St

at
is

tic
s

P
SO

D
E

A
B

C
C

S

16
M

ea
n

0.
00

00
00

00
00

00
00

00
48

.7
46

51
64

44
69

27
30

0
0.

02
18

68
84

98
33

18
72

0.
00

00
00

00
00

00
00

00
St

d
0.

00
00

00
00

00
00

00
00

88
.8

65
85

10
97

29
90

57
0

0.
04

18
40

95
68

79
28

31
0.

00
00

00
00

00
00

00
00

B
es

t
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
16

0.
00

00
00

00
00

00
00

00
R

un
tim

e
29

.0
50

95
.3

52
44

.5
72

45
.0

46
17

M
ea

n
31

8.
89

55
23

95
65

63
35

00
91

8.
95

18
49

27
82

85
18

00
11

.0
68

14
96

25
35

47
97

0
0.

03
18

10
44

64
72

50
31

St
d

12
16

.2
40

93
10

68
76

58
00

0
16

52
.4

81
08

58
41

14
31

00
0

9.
88

10
95

01
46

55
70

62
0.

16
23

75
94

02
35

36
26

B
es

t
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

32
74

65
47

77
05

68
63

0.
00

00
00

00
00

00
00

00
R

un
tim

e
24

5.
29

4
27

1.
22

2
43

.3
29

21
5.

14
3

18
M

ea
n

0.
03

41
09

86
10

04
53

16
0.

00
68

94
36

94
81

97
13

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

St
d

0.
05

99
46

19
00

32
02

41
0.

00
80

56
52

01
64

95
87

0.
00

00
00

00
00

00
00

01
0.

00
00

00
00

00
00

00
00

B
es

t
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
R

un
tim

e
93

. 9
05

73
.8

95
19

.0
73

26
.0

68
19

M
ea

n
−3

.8
62

78
21

47
82

07
53

1
−3

.8
62

78
21

47
82

07
53

1
−3

.8
62

78
21

47
82

07
53

1
−3

.8
62

78
21

47
82

07
53

1
St

d
0.

00
00

00
00

00
00

00
27

0.
00

00
00

00
00

00
00

27
0.

00
00

00
00

00
00

00
24

0.
00

00
00

00
00

00
00

27
B

es
t

−3
.8

62
78

21
47

82
07

55
8

−3
.8

62
78

21
47

82
07

55
8

−3
.8

62
78

21
47

82
07

55
8

−3
.8

62
78

21
47

82
07

55
8

R
un

tim
e

13
.6

84
19

.2
80

12
.6

13
14

.6
86

20
M

ea
n

−3
.2

98
21

65
47

32
02

61
1

−3
.3

18
03

20
67

54
02

46
8

−3
.3

21
99

51
71

58
42

44
0

−3
.3

21
99

51
71

58
42

44
0

St
d

0.
04

83
70

25
18

39
15

73
0.

02
17

06
81

48
26

37
21

0.
00

00
00

00
00

00
00

14
0.

00
00

00
00

00
00

00
13

B
es

t
−3

.3
21

99
51

71
58

42
43

1
−3

.3
21

99
51

71
58

42
43

1
−3

.3
21

99
51

71
58

42
42

6
−3

. 3
21

99
51

71
58

42
43

1
R

un
tim

e
16

.8
36

26
.2

09
13

.5
62

16
.6

24

(c
on

tin
ue

d)



104 P. Civicioglu and E. Besdok

Ta
bl

e
4

(c
on

tin
ue

d)

Fn
c

#
St

at
is

tic
s

P
SO

D
E

A
B

C
C

S

21
M

ea
n

0.
00

03
57

85
68

11
63

77
0.

00
03

07
48

59
87

80
56

0.
00

04
41

48
66

35
96

26
0.

00
03

07
48

59
87

80
56

St
d

0.
00

00
99

47
60

02
62

21
0.

00
00

00
00

00
00

00
00

0.
00

00
56

83
92

28
97

25
0.

00
00

00
00

00
00

00
00

B
es

t
0.

00
03

07
48

59
87

80
56

0.
00

03
07

48
59

87
80

56
0.

00
03

23
09

56
00

70
45

0.
00

03
07

48
59

87
80

56
R

un
tim

e
64

.1
82

84
.4

71
20

.2
55

31
.6

81
22

M
ea

n
−1

.0
80

93
84

42
13

44
38

1
−1

.0
80

93
84

42
13

44
38

1
−1

.0
80

93
84

42
13

44
38

1
−1

.0
80

93
84

42
13

44
38

1
St

d
0.

00
00

00
00

00
00

00
05

0.
00

00
00

00
00

00
00

06
0.

00
00

00
00

00
00

00
08

0.
00

00
00

00
00

00
00

05
B

es
t

−1
.0

80
93

84
42

13
44

37
7

−1
.0

80
93

84
42

13
44

37
7

−1
.0

80
93

84
42

13
44

37
5

−1
.0

80
93

84
42

13
44

37
7

R
un

tim
e

29
.4

40
27

.3
72

27
.5

46
40

.4
45

23
M

ea
n

−1
.4

80
26

59
15

90
74

11
9

−1
.3

89
19

92
20

07
44

64
7

−1
.4

99
99

90
07

08
00

76
2

−1
.4

99
99

92
23

35
24

95
7

St
d

0.
10

80
83

77
62

18
57

12
0.

22
57

19
44

03
15

86
33

0.
00

00
00

84
40

50
20

79
0.

00
00

00
00

00
00

00
09

B
es

t
−1

.4
99

99
92

23
35

24
94

8
−1

.4
99

99
92

23
35

24
94

8
−1

.4
99

99
92

23
35

24
94

6
−1

.4
99

99
92

23
35

24
94

8
R

un
tim

e
29

.0
55

33
.8

09
37

.9
86

40
.7

21
24

M
ea

n
−1

.0
80

34
38

40
11

24
40

3
−0

.9
16

62
06

78
86

80
23

0
−0

.8
40

63
48

09
65

00
68

2
−1

.2
51

18
50

18
64

14
16

6
St

d
0.

41
82

19
70

82
97

52
04

0.
39

17
75

23
67

44
05

02
0.

20
00

96
63

65
98

43
15

0.
33

34
74

95
87

97
69

15
B

es
t

−1
.5

00
00

00
00

00
03

77
5

−1
.5

00
00

00
00

00
03

77
5

−1
.4

99
99

26
80

06
31

38
7

−1
.5

00
00

00
00

00
03

77
5

R
un

tim
e

33
.2

37
11

0.
79

8
38

.4
70

93
.5

91
25

M
ea

n
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
04

0.
00

00
00

00
00

00
00

00
St

d
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
03

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

01
0.

00
00

00
00

00
00

00
00

R
un

tim
e

17
.2

67
25

.3
58

19
.6

89
3.

82
6

(c
on

tin
ue

d)



Comparative Analysis of the Cuckoo Search Algorithm 105

Ta
bl

e
4

(c
on

tin
ue

d)

Fn
c

#
St

at
is

tic
s

P
SO

D
E

A
B

C
C

S

26
M

ea
n

−1
.8

21
04

36
83

67
76

81
3

−1
.8

21
04

36
83

67
76

81
3

−1
.8

21
04

36
83

67
76

81
3

−1
.8

21
04

36
83

67
76

81
3

St
d

0.
00

00
00

00
00

00
00

09
0.

00
00

00
00

00
00

00
09

0.
00

00
00

00
00

00
00

09
0.

00
00

00
00

00
00

00
09

B
es

t
−1

.8
21

04
36

83
67

76
82

2
−1

.8
21

04
36

83
67

76
82

2
−1

.8
21

04
36

83
67

76
82

2
−1

.8
21

04
36

83
67

76
82

2
R

un
tim

e
16

.9
77

19
.1

54
17

.2
28

17
.0

30
27

M
ea

n
−4

.6
80

25
10

12
60

75
61

4
−4

.6
56

56
46

39
70

53
93

9
−4

.6
93

46
84

51
95

71
12

8
−4

.6
93

46
84

51
95

71
12

8
St

d
0.

03
06

28
62

62
51

15
56

0.
05

57
02

15
30

06
32

38
0.

00
00

00
00

00
00

00
09

0.
00

00
00

00
00

00
00

09
B

es
t

−4
.6

93
46

84
51

95
71

12
8

−4
.6

93
46

84
51

95
71

12
8

−4
.6

93
46

84
51

95
71

12
8

−4
.6

93
46

84
51

95
71

12
8

R
un

tim
e

24
.3

98
38

.6
51

17
.6

63
25

.9
27

28
M

ea
n

−9
.5

57
08

15
08

34
81

19
3

−8
.9

71
73

30
30

75
49

31
4

−9
.6

60
15

17
15

64
13

47
9

−9
.6

60
15

17
15

64
13

47
9

St
d

0.
08

46
39

57
63

79
28

92
0.

49
27

01
31

65
00

92
23

0.
00

00
00

00
00

00
00

08
0.

00
00

00
00

00
00

00
00

B
es

t
−9

.6
60

15
17

15
64

13
49

7
−9

.5
77

78
18

09
72

08
23

6
−9

.6
60

15
17

15
64

13
49

7
−9

.6
60

15
17

15
64

13
47

9
R

un
tim

e
36

. 4
66

14
4.

09
3

27
.0

51
81

.3
94

29
M

ea
n

0.
07

75
70

97
24

36
11

73
0.

01
19

68
72

24
56

04
41

0.
08

38
44

00
14

03
80

32
0.

00
00

79
78

98
44

02
65

St
d

0.
13

95
94

86
17

59
92

93
0.

03
85

62
85

98
04

00
34

0.
07

78
32

73
03

96
51

92
0.

00
01

65
04

96
28

62
14

B
es

t
0.

00
47

96
81

53
18

19
06

0.
00

00
04

46
08

37
02

13
0.

01
29

83
44

51
73

05
89

0.
00

00
00

00
00

00
00

00
R

un
tim

e
35

5.
89

8
35

9.
03

9
60

.2
16

35
1.

33
9

30
M

ea
n

0.
00

00
14

21
70

35
79

27
0.

00
00

13
07

18
91

20
08

0.
00

02
60

43
30

01
34

62
0.

00
00

00
01

60
43

79
24

St
d

0.
00

00
09

08
08

42
39

76
0.

00
00

01
42

88
34

89
29

0.
00

00
39

49
21

91
92

94
0.

00
00

00
01

05
89

91
01

B
es

t
0.

00
00

00
55

17
62

79
66

0.
00

00
09

50
67

50
40

97
0.

00
01

68
24

11
28

60
88

0.
00

00
00

00
44

31
49

19
R

un
tim

e
28

1.
43

7
56

7.
70

4
21

5.
72

2
25

5.
70

2



106 P. Civicioglu and E. Besdok

Ta
bl

e
5

Ta
bl

e
4

(c
on

tin
ue

d)

Fn
c

#
St

at
is

tic
s

P
SO

D
E

A
B

C
C

S

31
M

ea
n

0.
00

06
37

23
43

01
84

24
0.

00
01

25
48

82
83

42
38

0.
00

77
90

53
11

09
49

58
0.

00
00

03
16

91
17

11
81

St
d

0.
00

17
03

50
52

28
07

04
0.

00
01

50
35

56
28

00
87

0.
00

62
42

58
41

08
64

48
0.

00
00

08
52

80
64

41
95

B
es

t
0.

00
00

00
09

25
03

30
22

0.
00

00
00

01
56

46
01

98
0.

00
03

95
87

66
02

37
52

0.
00

00
00

00
00

03
98

97
R

un
tim

e
27

8.
41

7
25

0.
24

8
34

.6
65

16
1.

74
4

32
M

ea
n

0.
00

13
73

16
16

01
62

40
0.

00
03

54
83

45
51

31
79

0.
02

50
16

32
52

52
70

30
0.

00
13

58
57

82
13

16
98

St
d

0.
00

08
82

80
72

20
80

19
0.

00
01

41
08

17
50

09
14

0.
00

77
20

93
14

80
68

73
0.

00
09

41
87

99
36

76
12

B
es

t
0.

00
04

93
72

36
46

30
60

0.
00

01
01

43
32

60
53

64
0.

00
94

64
75

80
73

26
54

0.
00

00
38

41
78

68
79

65
R

un
tim

e
12

0.
57

8
29

0.
66

9
34

.9
82

52
.3

67
33

M
ea

n
18

.5
88

13
60

08
19

50
72

0
25

.6
36

76
02

25
86

75
55

0
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
St

d
4.

44
11

80
25

94
30

56
96

8.
29

43
51

26
84

21
66

60
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
B

es
t

8.
95

46
31

77
87

74
05

77
12

.9
34

46
77

42
21

28
60

0
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
R

un
tim

e
10

0.
90

9
76

.0
83

4.
09

0
32

.4
31

34
M

ea
n

43
. 7

70
54

66
08

37
93

91
0

2.
67

57
04

31
14

26
96

96
0.

28
56

83
34

65
90

41
32

0.
00

00
00

00
00

00
00

00
St

d
74

.8
80

84
25

37
68

13
46

0
12

.3
49

00
58

21
00

03
68

0
0.

62
47

37
09

87
46

51
66

0.
00

00
00

00
00

00
00

00
B

es
t

0.
02

59
39

10
54

88
69

82
0.

00
42

53
53

68
98

45
01

0.
00

04
26

60
49

92
98

80
0.

00
00

00
00

00
00

00
00

R
un

tim
e

12
7.

72
9

55
9.

96
6

35
.8

65
83

.3
62

35
M

ea
n

0.
00

06
47

72
73

25
16

76
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

St
d

0.
00

24
65

00
53

42
81

37
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

B
es

t
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
R

un
tim

e
13

.8
43

18
.1

63
7.

86
1

9.
97

8

(c
on

tin
ue

d)



Comparative Analysis of the Cuckoo Search Algorithm 107

Ta
bl

e
5

(c
on

tin
ue

d)

Fn
c

#
St

at
is

tic
s

P
SO

D
E

A
B

C
C

S

36
M

ea
n

−1
14

23
.6

87
01

13
83

26
80

00
0

−7
68

4.
61

04
75

77
83

76
90

00
−1

25
69

.4
86

61
81

73
01

60
00

0
−1

25
69

.4
86

61
81

73
01

60
00

0
St

d
35

7.
60

86
31

02
37

06
95

00
74

5.
39

54
00

50
14

17
73

00
0.

00
00

00
00

00
02

26
59

0.
00

00
00

00
00

01
85

01
B

es
t

−1
19

77
.2

94
94

51
00

82
30

00
0

−8
91

2.
88

55
85

49
78

19
20

00
−1

25
69

.4
86

61
81

73
01

40
00

0
−1

25
69

.4
86

61
81

73
01

40
00

0
R

un
tim

e
78

.7
89

30
7.

42
7

19
.2

25
37

.7
87

37
M

ea
n

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

14
.5

66
87

34
12

69
48

15
0

0.
00

00
00

00
00

00
00

00
St

d
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
8.

71
28

44
30

12
95

03
38

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

4.
04

27
69

93
23

67
33

69
0.

00
00

00
00

00
00

00
00

R
un

tim
e

13
7.

88
3

54
3.

18
0

11
1.

84
1

88
.1

86
38

M
ea

n
0.

01
79

42
80

67
55

21
74

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
05

0.
00

00
00

00
00

00
00

00
St

d
0.

08
59

23
63

79
04

21
53

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
01

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

03
0.

00
00

00
00

00
00

00
00

R
un

tim
e

35
. 4

87
16

3.
18

8
20

.5
88

15
.8

65
39

M
ea

n
−1

0.
31

30
43

71
62

42
61

20
−1

0.
10

61
87

36
21

65
30

40
−1

0.
53

64
09

81
66

92
04

80
−1

0.
53

64
09

81
66

92
05

00
St

d
1.

22
34

26
51

79
81

21
54

1.
66

79
11

36
61

23
64

13
0.

00
00

00
00

00
00

00
23

0.
00

00
00

00
00

00
00

18
B

es
t

−1
0.

53
64

09
81

66
92

04
80

−1
0.

53
64

09
81

66
92

05
00

−1
0.

53
64

09
81

66
92

04
80

−1
0.

53
64

09
81

66
92

04
80

R
un

tim
e

14
.1

49
31

.0
18

16
.0

15
17

.7
04

40
M

ea
n

−1
0.

15
31

99
67

90
58

22
40

−9
.5

37
39

38
08

20
45

46
6

−1
0.

15
31

99
67

90
58

22
40

−1
0.

15
31

99
67

90
58

22
40

St
d

0.
00

00
00

00
00

00
00

72
1.

90
62

12
70

67
99

42
37

0.
00

00
00

00
00

00
00

55
0.

00
00

00
00

00
00

00
72

B
es

t
−1

0.
15

31
99

67
90

58
23

10
−1

0.
15

31
99

67
90

58
23

10
−1

0.
15

31
99

67
90

58
23

10
−1

0.
15

31
99

67
90

58
23

10
R

un
tim

e
13

.7
40

25
.2

37
11

.9
58

17
.5

42

(c
on

tin
ue

d)



108 P. Civicioglu and E. Besdok

Ta
bl

e
5

(c
on

tin
ue

d)

Fn
c

#
St

at
is

tic
s

P
SO

D
E

A
B

C
C

S

41
M

ea
n

−1
0.

22
57

64
94

20
93

38
40

−1
0.

40
29

40
56

68
18

66
40

−1
0.

40
29

40
56

68
18

66
40

−1
0.

40
29

40
56

68
18

66
40

St
d

0.
97

04
30

86
30

21
05

45
0.

00
00

00
00

00
00

00
18

0.
00

00
00

00
00

00
00

06
0.

00
00

00
00

00
00

00
17

B
es

t
−1

0.
40

29
40

56
68

18
66

60
−1

0.
40

29
40

56
68

18
66

60
−1

0.
40

29
40

56
68

18
66

40
−1

0.
40

29
40

56
68

18
66

60
R

un
tim

e
14

.4
35

21
.2

37
14

.9
11

20
.6

30
42

M
ea

n
−1

86
.7

30
90

88
31

02
39

50
0

−1
86

.7
30

90
73

56
98

84
40

0
−1

86
.7

30
90

88
31

02
39

50
0

−1
86

.7
30

90
88

31
02

39
50

0
St

d
0.

00
00

00
00

00
00

03
66

0.
00

00
04

64
01

47
26

60
0.

00
00

00
00

00
00

02
36

0.
00

00
00

00
00

00
01

67
B

es
t

−1
86

.7
30

90
88

31
02

39
80

0
−1

86
.7

30
90

88
31

02
39

20
0

−1
86

.7
30

90
88

31
02

39
50

0
−1

86
.7

30
90

88
31

02
39

80
0

R
un

tim
e

13
.9

33
19

.7
70

13
. 3

42
26

.6
81

43
M

ea
n

−1
.0

31
62

84
53

48
98

77
0

−1
.0

31
62

84
53

48
98

77
0

−1
.0

31
62

84
53

48
98

77
0

−1
.0

31
62

84
53

48
98

77
0

St
d

0.
00

00
00

00
00

00
00

05
0.

00
00

00
00

00
00

00
05

0.
00

00
00

00
00

00
00

05
0.

00
00

00
00

00
00

00
05

B
es

t
−1

.0
31

62
84

53
48

98
77

4
−1

.0
31

62
84

53
48

98
77

4
−1

.0
31

62
84

53
48

98
77

4
−1

.0
31

62
84

53
48

98
77

4
R

un
tim

e
13

.3
72

16
.7

54
11

.3
09

13
.8

33
44

M
ea

n
0.

02
18

46
96

74
39

89
09

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
04

0.
00

00
00

00
00

00
00

00
St

d
0.

08
08

56
81

41
60

64
62

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
01

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

03
0.

00
00

00
00

00
00

00
00

R
un

tim
e

35
.5

19
15

9.
90

4
21

.9
24

16
.3

34
45

M
ea

n
0.

00
00

00
00

00
00

00
00

2.
29

99
99

99
99

99
99

98
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
St

d
0 .

00
00

00
00

00
00

00
00

1.
85

97
36

72
58

98
36

57
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

R
un

tim
e

15
.0

28
57

.2
76

1.
78

2
13

.8
21



Comparative Analysis of the Cuckoo Search Algorithm 109

Ta
bl

e
6

Ta
bl

e
5

(c
on

tin
ue

d)

Fn
c

#
St

at
is

tic
s

P
SO

D
E

A
B

C
C

S

46
M

ea
n

0.
00

00
00

00
00

00
00

00
0.

13
33

33
33

33
33

33
33

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

St
d

0.
00

00
00

00
00

00
00

00
0.

34
57

45
90

36
41

76
04

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

B
es

t
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
R

un
tim

e
13

.1
78

20
.3

81
1.

70
0

25
.3

06
47

M
ea

n
0.

13
95

09
45

48
76

93
03

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
05

0.
00

00
00

00
00

00
00

00
St

d
0.

57
04

84
92

11
67

23
92

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
00

03
0.

00
00

00
00

00
00

00
00

R
un

tim
e

44
.0

36
56

4.
17

8
24

.1
72

19
.0

30
48

M
ea

n
−5

0.
00

00
00

00
00

00
21

30
−5

0.
00

00
00

00
00

00
20

60
−4

9.
99

99
99

99
99

99
65

90
−5

0.
00

00
00

00
00

00
20

60
St

d
0.

00
00

00
00

00
00

04
07

0.
00

00
00

00
00

00
03

61
0.

00
00

00
00

00
00

14
08

0.
00

00
00

00
00

00
03

61
B

es
t

−5
0.

00
00

00
00

00
00

22
70

−5
0.

00
00

00
00

00
00

17
10

−5
0.

00
00

00
00

00
00

05
70

−5
0.

00
00

00
00

00
00

17
10

R
un

tim
e

15
. 3

08
24

.6
26

22
.4

80
17

.8
29

49
M

ea
n

−2
09

.9
98

67
20

39
52

07
80

0
−2

10
.0

00
00

00
00

00
14

50
0

−2
09

.9
99

99
99

99
94

70
50

0
−2

10
.0

00
00

00
00

00
26

70
0

St
d

0.
00

43
62

65
06

91
72

65
0.

00
00

00
00

00
00

94
34

0.
00

00
00

00
00

13
85

03
0.

00
00

00
00

00
00

23
08

B
es

t
−2

10
.0

00
00

00
00

00
36

40
0

−2
10

.0
00

00
00

00
00

27
30

0
−2

09
.9

99
99

99
99

96
90

80
0

−2
10

.0
00

00
00

00
00

27
30

0
R

un
tim

e
83

.6
17

48
.5

80
36

.6
39

23
.7

51
50

M
ea

n
0.

00
00

00
44

65
29

93
15

0.
00

00
00

00
00

00
00

00
0.

00
00

00
04

02
38

04
24

0.
00

00
00

00
00

00
00

00
St

d
0.

00
00

02
20

16
80

65
83

0.
00

00
00

00
00

00
00

00
0.

00
00

00
22

03
52

03
34

0.
00

00
00

00
00

00
00

00
B

es
t

0.
00

00
00

00
00

00
00

00
0.

00
00

00
00

00
00

00
00

0.
00

00
00

00
00

00
02

10
0.

00
00

00
00

00
00

00
00

R
un

tim
e

48
.6

68
86

.3
69

86
.4

49
9.

69
3



110 P. Civicioglu and E. Besdok

Table 7 Determining the algorithm that statistically provides the best solution for each benchmark
problem used in Tests by utilizing Kruskal–Wallis Test (α = 0.05)

Fnc # CS vs. DE CS vs. PSO CS vs. ABC

1 CS & DE CS CS
2 CS CS CS
3 CS CS CS
4 CS CS CS
5 CS CS CS
6 CS & DE CS CS
7 CS & DE CS & PSO CS & ABC
8 CS & DE CS & PSO CS & ABC
9 CS & DE CS & PSO CS
10 CS & DE CS & PSO CS & ABC
11 CS & DE CS & PSO CS & ABC
12 CS CS & PSO CS
13 CS CS ABC
14 CS & DE CS & PSO CS & ABC
15 CS & DE CS & PSO CS & ABC
16 CS & DE CS CS
17 CS CS CS
18 CS CS CS
19 CS & DE CS & PSO CS
20 DE CS & PSO CS & ABC
21 CS CS & PSO CS
22 CS & DE CS CS
23 CS & DE CS CS
24 CS & DE CS CS
25 CS & DE CS & PSO CS
26 CS & DE CS & PSO CS & ABC
27 CS & DE CS CS & ABC
28 CS CS ABC
29 CS CS CS
30 CS CS CS
31 CS CS CS
32 CS & DE PSO CS
33 CS CS CS & ABC
34 CS CS CS
35 CS & DE CS & PSO CS & ABC
36 CS CS CS
37 CS & DE CS & PSO CS
38 CS CS & PSO CS
39 CS & DE PSO CS
40 CS & DE CS & PSO CS
41 CS & DE PSO CS
42 CS CS CS
43 CS & DE CS & PSO CS & ABC
44 CS CS & PSO CS

(continued)
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Table 7 (continued)

Fnc # CS vs. DE CS vs. PSO CS vs. ABC

45 CS & DE CS CS & ABC
46 CS & DE CS CS & ABC
47 CS CS & PSO CS
48 DE CS & PSO CS
49 CS & DE CS CS
50 CS & DE CS & PSO CS
+/ = /− 20/28/2 25/22/3 34/14/2

of CS which included a very few numbers of if-statements in terms of software
development technique had enabled it to process so quickly. However, particularly
the Lèvy flight (i.e., Lèvy walk) used in the first strategy prominently reduces the
search time of CS. CS is statistically more successful than DE, PSO and ABC in
terms of problem solving ability in accordance with the results obtained from the
tests.
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Cuckoo Search and Firefly Algorithm Applied
to Multilevel Image Thresholding

Ivona Brajevic and Milan Tuba

Abstract Multilevel image thresholding is a technique widely used in image
processing, most often for segmentation. Exhaustive search is computationally pro-
hibitively expensive since the number of possible thresholds to be examined grows
exponentially with the number of desirable thresholds. Swarm intelligence meta-
heuristics have been used successfully for such hard optimization problems. In this
chapter we investigate performance of two relatively new swarm intelligence algo-
rithms, cuckoo search and firefly algorithm, applied to multilevel image threshold-
ing. Particle swarm optimization and differential evolution algorithms have also been
implemented for comparison. Two different objective functions, Kapur’s maximum
entropy thresholding function and multi Otsu between-class variance, were used on
standard benchmark images with known optima from exhaustive search (up to five
threshold points). Results show that both, cuckoo search and firefly algorithm, exhibit
superior performance and robustness.

Keywords Swarm intelligence · Nature inspired algorithms · Optimization meta-
heuristics ·Cuckoo search · Firefly algorithm · Image processing ·Multilevel image
thresholding

1 Introduction

Image segmentation is a process of dividing an image into its constituent regions or
objects, which are visually distinct and uniform with respect to some property, such as
gray level, color or texture. The aim of segmentation is to simplify the representation
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of an image into the set of segments that are more appropriate for further analysis.
Some of the practical applications include computer vision [14], industrial quality
control [25], medical imaging [1, 6, 13], etc. Since the problem of digital image
segmentation is an important research field, many segmentation algorithms have
been proposed in the literature.

Thresholding is one of the most widely used approaches to image segmentation
because of its intuitive properties and simplicity of implementation. It tries to identify
and extract a target from its background on the basis of the distribution of gray levels
or texture in image objects. If the image is divided into two classes, such as the
background and the object of interest, it is called bi-level thresholding. To split an
image into more than two classes, bi-level thresholding is extended to multilevel
thresholding.

Computing the thresholds can be performed by parametric or nonparametric
methods [50]. Parametric methods assume that gray level distribution of each class
obeys a given distribution and finds the optimal threshold by estimating the parame-
ters of the distribution using the given histogram. This leads to a nonlinear estimation
problem which is computationally expensive. The nonparametric methods are based
on a search for the thresholds by optimizing some criteria. They have been proven
to be more robust and accurate compared to the parametric ones.

Among various thresholding criteria which have been proposed in the literature
[32], maximum entropy and maximum between-class variance are the most used
ones since entropy is widely used optimization criterion [18, 37]. The entropy-based
criterion aims to maximize the sum of entropies for each class [21]. Using maxi-
mum entropy as an optimality criterion for image thresholding was first proposed by
Pun. Later, Kapur found some flaws in Puns derivations and presented corrected and
improved version. There are variations of these criteria, such as information-theoretic
criterion based on Renyi’s entropy [28] or a unified method proposed in [38]. In addi-
tion, besides Kapur’s entropy, some other entropy measures exist in the literature,
such as minimum cross entropy or a measure of fuzzy entropy. Sezgin and Sankur
concluded that Kapur’s entropy method is better performing thresholding algorithm
compared to the other entropy-based methods in the case of nondestructive testing
images [32]. Another important criterion is between-class variance defined by Otsu,
which aims at maximizing the separability of the classes measured by the sum of
between-class variances [26]. Otsu’s method gives satisfactory results when the num-
bers of pixels in each class are close to each other. For bi-level thresholding, these
criteria facilitated efficient algorithms, while for optimal multilevel thresholding,
computational complexity of the existing conventional algorithms grows exponen-
tially with the number of thresholds.

Considering the computational inefficiency of the traditional exhaustive methods,
employing metaheuristics to search for the optimal thresholds have attracted a lot of
researchers. A metaheuristic is a general algorithmic framework which can be used
for different optimization problems with relatively few modifications to adapt it to
a particular problem. These algorithms are able to find very high-quality subopti-
mal solutions for hard optimization problems in a reasonable amount of time [46,
47]. Therefore, some metaheuristic algorithms have been adopted to search for the
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multilevel thresholds. The most successful approaches include nature inspired algo-
rithms [43] with its subclass of swarm intelligence metaheuristics. There is no univer-
sally best algorithm [42], so many different metaheuristics have been developed for
different classes of problems, combinatorial and continuous, with additions for con-
strained optimization [9]. These metaheuristics include differential evolution (DE),
particle swarm optimization (PSO), honey bee mating optimization (HBMO), bacter-
ial foraging (BF) etc. Usually, initial version introduces algorithm that mimics certain
natural phenomenon, while later versions include modifications and hybridizations
to improve performance for some classes of problems. Examples are ant colony
optimization (ACO) [7] with numerous improvements and applications [19, 20, 35],
artificial bee colony (ABC) algorithm [22] with modifications [3, 4], human seeker
optimization (HSO) [5, 36], etc.

DE based approach to multilevel thresholding using minimum cross-entropy cri-
terion is proposed in [29]. Yin adopted PSO algorithm to search for the thresholds
using the minimum cross-entropy criterion [51]. Horng applied the honey bee mat-
ing optimization (HBMO) and ABC to search for the thresholds using the maximum
entropy criterion [15, 16]. Akay provided the comparative study of the PSO and ABC
for multilevel thresholding using Kapur’s and Otsu’s criteria [2]. Sathya and Kay-
alvizhi employed bacterial foraging (BF) and its modified version to select multilevel
thresholds using maximum entropy and between-class variance criteria [30, 31]. The
adaptation and comparison of six metaheuristic algorithms to multilevel threshold-
ing using between-class variance criterion were presented in [12]. The experimental
results have shown that the PSO and DE outperformed the ant colony optimiza-
tion (ACO), simulated annealing (SA), tabu search (TS) and genetic algorithm (GA)
based approaches.

This paper aims to adopt two recently proposed swarm intelligence algorithms,
cuckoo search (CS) and firefly algorithm (FA) to search for the optimal multilevel
thresholds using Kapur and Otsu criteria. The DE and PSO algorithms were also
implemented for purpose of comparison with CS and FA. The exhaustive search
method was conducted for deriving the optimal solutions for comparison with the
results generated by these four algorithms. The rest of the paper is organized as fol-
lows. Section 2 formulates the thresholding problem and presents Kapur and Otsu
objective functions. Sections 3 and 4 present CS and FA adopted to search for the opti-
mal multilevel thresholds respectively. Comparative results of the implemented CS,
FA, DE and PSO algorithms are presented in Sect. 5. Our conclusions are provided
in Sect. 6.

2 Multilevel Thresholding Problem Formulation

Image thresholding technique includes bi-level thresholding and multilevel thresh-
olding. The main objective of bi-level thresholding is to determine one threshold
which separates pixels into two groups. One group, G0, includes those pixels with
gray levels below t, i.e. object points, while the other group, G1, includes the rest,
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i.e. background points. Bi-level thresholding can be defined by:

G0 = {(x, y) ∈ I | 0 ≤ f (x, y) ≤ t − 1}
G1 = {(x, y) ∈ I | t ≤ f (x, y) ≤ L − 1} (1)

The main objective of multilevel thresholding is to determine more than one threshold
value which divide pixels into several groups. Let there be L gray levels in a given
image I and these gray levels are in the range 0, 1, . . . , L − 1. Multilevel thresholding
can be defined by:

G0 = {(x, y) ∈ I | 0 ≤ f (x, y) ≤ t1 − 1}
G1 = {(x, y) ∈ I | t1 ≤ f (x, y) ≤ t2 − 1}
G2 = {(x, y) ∈ I | t2 ≤ f (x, y) ≤ t3 − 1}, . . .
Gk = {(x, y) ∈ I | tk ≤ f (x, y) ≤ L − 1} (2)

where f (x, y) is the gray level of the point (x, y), ti (i = 1, . . . , k) is the i th
threshold value, and k is the number of thresholds.

Selecting optimal threshold for bi-level thresholding is not computationally
expensive. On the other hand, selecting more than few optimal threshold values
requires high computational cost, since computational complexity of the determin-
istic algorithms grows exponentially with the number of thresholds. The optimal
thresholding methods usually search for the thresholds by optimizing some crite-
rion functions. These criterion functions are defined from images and they use the
selected thresholds as parameters. In this study two popular thresholding methods are
used namely entropy criterion (Kapur’s) method and between-class variance (Otsu’s)
method.

2.1 Entropy Criterion Method

Entropy criterion method been proposed by Kapur in order to perform bi-level thresh-
olding [21]. It considers the image foreground and background as two different signal
sources, and when the sum of the two class entropies reaches its maximum, the image
is said to be optimally thresholded. Hence, the aim is to find the optimal threshold
yielding the maximum entropy.

The entropy of a discrete source is obtained from the probability distribution,
where pi is the probability of the system being in possible state i [27]. Kapur’s
objective function is determined from the histogram of the image, denoted by hi ,
i = 0, 1, . . . , L−1, where hi represents the number of pixels having the gray level i.
The normalized histogram at level i is:
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Pi = hi∑L−1
j=0 h j

(3)

The aim is to maximize the objective function:

f (t) = H0 + H1 (4)

where
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Kapur’s method can be extended to multilevel thresholding. In this case, it can be con-
figured as a k-dimensional optimization problem for selection of k optimal thresholds
[t1, t2, . . . , tk]. The goal is to maximize the objective function:

f (t1, t2, . . . , tk) = H0 + H1 + H2 + · · · + Hk (6)

where
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2.2 Between-class Variance Method

Between-class variance was introduced by Otsu and it is one of the most referenced
thresholding methods proposed for bi-level thresholding [26]. The algorithm assumes
that the image to be thresholded contains two classes of pixels or bi-modal histogram
(e.g. foreground and background), then calculates the optimum threshold separat-
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ing those two classes so that their combined between-class variance is maximal.
Between-class variance is defined as the sum of sigma functions of each class. The
aim is to maximize the objective function:

f (t) = σ0 + σ1 (8)

where

σ0 = w0(μ0 − μt )
2, μ0 =

t−1∑

i=0

iPi

w0

σ1 = w1(μ1 − μt )
2, μ1 =

L−1∑

i=t

iPi

w1

where μt =∑L−1
i=0 iPi is the total mean intensity of the original image.

Otsu function can be easily extended to multimodal cases. For instance, for k
classes, the aim is to maximize the objective function:

f (t1, t2, . . . , tk) = σ0 + σ1 + · · · + σk (9)

where

σ0 = w0(μ0 − μt )
2, μ0 =
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3 Proposed CS Approach to Multilevel Thresholding

The cuckoo search (CS), swarm intelligence algorithm introduced by Yang and Deb
[39], is based on the brood parasitism of some cuckoo species that lay their eggs in
the nests of other host birds. Furthermore, CS algorithm is enhanced by the so-called
Lévy flight used instead of simple isotropic random walk. It was successfully applied
to a number of very different problems like structural engineering optimization
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[10, 44], test effort estimation for testing the software [33], planar graph coloring
problem [52], permutation flow shop scheduling [24], modified version for bound-
constrained continuous optimization [34], etc.

In the CS algorithm, a nest represents a solution, while a cuckoo egg represents
a new solution. The goal is to use the new and potentially better solutions to replace
worse solutions in the population. In order to implement the CS algorithm, the fol-
lowing three idealized rules are used:

1. Each cuckoo can lay only one egg at a time and chose random nest for laying
their eggs.

2. Greedy selection process is applied, so only the eggs with highest quality are
passed to the next generation.

3. Available host nests number is fixed. Host bird discovers cuckoo egg with prob-
ability pa from [0, 1]. If cuckoo egg is discovered by the host, the host bird can
either throw the egg away or abandon the nest, and build a completely new nest.
This last assumption can be approximated by the fraction pa of the n nests that
are replaced with new random solutions.

In the basic form of the CS algorithm each nest contains one egg. This algorithm can
be extended to more complicated cases in which each nest contains multiple eggs, i.e.
set of solutions. The CS algorithm employs fewer control parameters compared to
the other population-based metaheuristic algorithms in the literature. In fact, there is
essentially only a single parameter in the CS (the probability of discovering cuckoo
eggs), apart from the population size and maximum iteration number which are com-
mon control parameters for all nature inspired algorithms. Since tuning the control
parameters of an algorithm might be very difficult, this is an important advantage [2].

The proposed CS algorithm tries to obtain k-dimensional vector [t1, t2, . . . , tk]
which maximizes the objective function which is described by Eq. (6) in the case of
Kapur’s criterion or by Eq. (9) in the case of Otsu’s criterion. The objective function
is also used as the fitness function for the proposed algorithm. The details of the
developed CS approach to multilevel threshlding are introduced as follows.

Step 1. (Generate the initial population of solutions)
The CS algorithm generates a randomly distributed initial population of N solutions
(nests) (i = 1, 2, . . . , N ) with k dimensions denoted by matrix T:

T = [t1, t2, . . . , tN ], ti = [ti1, ti2, . . . , tik] (11)

where ti j is the j th component value that is restricted into [0, . . . , L − 1] and the
ti j < ti, j+1 for all j . The objective function values for all solutions ti are evaluated
and variable cycle is set to 1.

Step 2. (Calculate the new population)
Before starting iterative search process, the CS algorithm detects the most successful
solution as tbest solution. Also, at this point, step scale factor is being calculated by:



122 I. Brajevic and M. Tuba

ϕ =
(
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(
π · β

2

)

Γ
(
1+ β

2

) · β · 2 β−1
2

) 1
β
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where β denotes Lévy distribution parameter and Γ denotes gamma function. For the
step size according to Lévy distribution, the recommended parameter value β = 1.5
is used. Then, each solution (nest) ti from the search population T produces a new
solution vi and tests the objective function value of the new solution. A new solution
vi is calculated by:

vi j = ti j + 0.01 ·
(

r1 · ϕ
r2

) 1
β · (ti j − tbest, j ) · r3 (13)

where r1, r2 and r3 are three normally distributed random numbers and ( j =
1, 2, . . . , k). At each computation step, the CS algorithm controls the boundary con-
ditions of the created new solution. Hence, when the value of a variable overflows
the allowed search space limits, then the value of the related variable is updated with
the value of the closer limit value to the related variable. If the objective function
value of the new one (vi ) is higher than that of the previous one (ti ), memorize the
new solution and forget the old one. Otherwise, keep the old solution.

Step 3. (Record the best solution)
Memorize the best solution so far (tbest ), i.e. the solution vector with the highest
objective function value.

Step 4. (Fraction pa of worse nests are abandoned and new nests are being built)
For each solution ti apply the crossover operator in the search population by:

vi j =
{

ti j + rand1 · (tpermute1, j − tpermute2, j ), if rand2 < pa

ti j , otherwise
(14)

where rand1 and rand2 are uniform random numbers in range [0, 2] and [0, 1] respec-
tively, permute1 and permute2 are different rows permutation functions applied to
nests matrix. As mentioned above, rand1 is a uniform random number between 0
and 2, which is different from the basic version of the CS, where this number is in the
range [0, 1]. By increasing the range in which the variable rand1 can take the value,
the exploration of the CS is increased. In our proposed CS it was found that this
small modification can improve the solution quality and speed convergence. Also at
this point, the CS controls the boundary conditions at each computation step.

Step 5. (Record the best solution)
Memorize the best solution so far (tbest ), and increase the variable cycle by one.

Step 6. (Check the termination criterion)
If the cycle is equal to the maximum number of iterations then finish the algorithm,
else go to Step 2.
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4 Proposed FA Approach to Multilevel Threshlding

The FA proposed by Yang [41] is a swarm intelligence algorithm inspired by the
flashing behavior of fireflies. The fundamental function of such flashes is the com-
munication between fireflies, more precisely attracting mating partners or potential
preys. According to this, in the FA brighter firefly attracts its partners regardless of
their sex, which makes the search space being explored more efficiently. Hence, the
major components of the FA are the attractiveness of the firefly and the movement
towards the attractive firefly. For simplicity, it can be assumed the attractiveness of a
firefly is determined by its brightness. It is also assumed that for any couple of flashing
fireflies, the less bright one will move towards the brighter one. Also, the brightness
of a firefly can be formulated in such a way that it is associated with the objective
function to be optimized, which makes it possible to formulate new optimization
techniques. For a maximization problem, brightness is usually proportional to the
value of the objective function. FA has been tested on standard benchmark problems
but also was adjusted for multiobjective continuous optimization [49], enhanced with
recently popular chaotic maps [11], or used for many specific hard optimization prob-
lems: economic dispatch [48], non-linear engineering design problems [45], stock
market price forecasting [23], the vector quantization for digital image compression
[17], etc.

In the proposed FA, fireflies form a population of threshold values. The threshold
values produced by the firefly i is noted ti = [ti1, ti2, . . . , tik], i = 1, 2, . . . , N . All
fireflies of the population are handled in the solution search space with the goal that
knowledge is collectively shared among fireflies to guide the search to the location in
the search space which can maximize the objective function. The objective function
is used as the fitness function for the proposed algorithm, and it is described by
Eq. (6) in the case of Kapur’s criterion or by Eq. (9) in the case of Otsu’s criterion.
The main steps of the developed FA approach to multilevel threshlding are introduced
as follows.

Step 1. (Generate the initial population of solutions)
The FA starts by randomly generating population of N solutions with k dimensions
denoted by matrix T , like for the CS algorithm. Also, in the matrix T each threshold
value ti j , j = 1, 2, . . . , k produced by the firefly i is restricted into [0, 1, . . . , L−1]
and the ti j < ti, j+1 for all j . After the generation of initial population, the objective
function values for all solutions ti are calculated and variable cycle is set to 1.

Step 2. (Calculate the new population)
Before starting iterative search process, the FA algorithm ranks the solutions by their
objective function values. Then, each solution of the new population is created from
the appropriate solution ti in the following way:

For each solution ti , algorithm checks every solution t j , j = 1, 2, . . . , i , itera-
tively, starting from j = 1. If solution t j has higher objective function value than ti
(t j is brighter than ti ), the threshold values tik , k = 1, 2, . . . , k, are changed by:
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tik = tik + β0 · e−γ ·r2
i j · (tik − t jk)+ α · Sk ·

(
randik − 1

2

)
(15)

where the second term is due to the attraction and the third term is randomization
term.

In the second term of Eq. (15), ri j is the distance between firefly i and firefly j, while
β0 and γ are predetermined algorithm parameters: maximum attractiveness value and
absorption coefficient, respectively. Any monotonically decreasing function of the
distance ri j to the chosen firefly j can be selected as firefly attractiveness, since the
attractiveness can decrease when the distance between fireflies is increased. As we
can see from the Eq. (15), in the FA the selected function which describes firefly
attractiveness is the exponential function:

β = β0 · e−γ ·r2
i j (16)

Distance ri j between fireflies i and j is obtained by Cartesian distance by:

ri j =
√√√√

K∑

m=1

(ti,m − t j,m)2 (17)

Control parameter β0 describes attractiveness when two fireflies are found at the
same point of search space and in general, β0 ∈ [0, 1] should be used. Control
parameter γ determines the variation of attractiveness with increasing distance from
communicated firefly. Its value is crucially important in determining the speed of the
convergence and how the FA algorithm behaves. In most applications, it typically
varies from 0.01 to 100. In our proposed FA, β0 = 1 and γ = 1 are used for all
simulations.

In the third term of Eq. (15), α ∈ [0, 1] is randomization parameter, S j are the
scaling parameters and randi j is random number uniformly distributed between 0
and 1. In our proposed approach, as well as in [40], we found that it is beneficial
to replace α by α · S j , where the scaling parameters S j in the k dimensions are
determined by the actual scales of the problem of interest. Hence, they are calculated
by:

S j = u j − l j (18)

where j = 1, 2, . . . , k, u j and l j are the lower and upper bound of the parameter ti j .
From the implementation point of view, it is important to mention that whenever

the values of the solution ti are changed, the FA controls the boundary conditions of
the created solution and memorizes the new objective function value instead of the
old one. Last solution provided by Eq. (15) is the final solution of the new population
which will be transfered in the next cycle of the FA.
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Step 3. (Reduce the randomization parameter)
In our proposed firefly algorithm, as in the version of FA proposed to solve structural
optimization problems [8], it was found that the solution quality can be enhanced
by reducing the randomization parameter α with a geometric progression reduction
scheme which can be described by:

α = α0 · γ t (19)

where 0 < γ < 1 is the reduction factor of randomization and t is current iteration
number. In our proposed approach we used γ = 0.9 and the initial value of random-
ization parameter α0 = 0.5. In addition, in the proposed FA it was found that the
value of parameter α less than 0.01 do not affect the optimization results. Hence, we
reduce the value of parameter from 0.5 to 0.01 in the first few iterations of the FA
by Eq. (19), while the fixed value α = 0.01 is utilized in the remaining iterations.

Step 4. (Record the best solution)
Memorize the best solution so far tbest , and increase the variable cycle by one.

Step 5. (Check the termination criterion)
If the cycle is equal to the maximum number of iterations then finish the algorithm,
else go to Step 2.

5 Experimental Study

In this study the CS and FA were compared against two other standard population-
based metaheuristic techniques, PSO and DE. The tests were done on six standard
images where the optimal multilevel threshold values were searched for. Two dif-
ferent fitness criteria were used, Kapur’s entropy and between-class variance. For
the both thresholding criteria, the exhaustive search method was conducted first to
derive the optimal solutions for comparison with the results generated by the PSO,
DE, CS and FA based methods.

We have implemented all of the algorithms in Java programming language on a
PC with Intel(R) Core(TM) i7-3770K 4.2 GHz processor with 16 GB of RAM and
Windows 8× 64 Pro operating system. The PSO and DE algorithms have been used
in their basic versions, while the CS and FA have been implemented with the small
modifications which are described in previous two sections respectively. Experiments
were carried out on the six standard test images namely Barbara, Living room, Boats,
Goldhill, Lake and Aerial with 256 gray levels. All the images are size (512× 512),
except the Aerial image which is size (256× 256). These original images are shown
in Fig. 1. Each image has a unique gray level histogram which is shown in Fig. 2.

The number of thresholds k explored in the experiments were 2–5. Since meta-
heuristic algorithms have stochastic characteristics, each experiment was repeated 50
times for each image and for each k value. The run of each algorithm was terminated
when the fitness value of the best solution f (t∗) reached the optimal value of the
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Fig. 1 Test images: a Barbara, b Living room, c Boats, d Goldhill, e Lake, f Aerial
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Gray-level histograms of test images: a Barbara, b Living room, c Boats, d Goldhill, e Lake,
f Aerial

known objective function fopt from exhaustive search, i.e. | f (t∗) − fopt | ≤ ε =
10−9, where ε is a threshold value which fixes the accuracy of the measurement.
Hence, the stopping condition for all algorithms is based on the value of the fitness
and not of the maximum iteration number. The optimal thresholds, the corresponding
optimal objective function values and the processing time provided by the exhaustive
search for Kapur’s and Otsu’s criterion are presented in Tables 1 and 2 respectively.

5.1 Parameter Settings

For fair comparison, the same size of the population of 40 and the maximum iter-
ation number of 2000 are used for all algorithms. Besides these common control
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Table 1 Thresholds, objective function values and time processing provided by the exhaustive
search for Kapur’s method

k Kapur
Threshold values Objective function Time (ms)

Barbara 2 96, 168 12.668336540 28
3 76, 127, 178 15.747087798 1812
4 60, 99, 141, 185 18.556786861 122087
5 58, 95, 133, 172, 210 21.245645311 5647294

Living room 2 94, 175 12.405985592 40
3 47, 103, 175 15.552622213 1949
4 47, 98, 149, 197 18.471055578 135259
5 42, 85, 124, 162, 197 21.150302316 5875781

Boats 2 107, 176 12.574798244 32
3 64, 119, 176 15.820902860 2063
4 48, 88, 128, 181 18.655733570 126690
5 48, 88, 128, 174, 202 21.401608305 5840989

Goldhill 2 90, 157 12.546393623 23
3 78, 131, 177 15.607747002 2097
4 65, 105, 147, 189 18.414213765 110650
5 59, 95, 131, 165, 199 21.099138996 5064697

Lake 2 91, 163 12.520359742 31
3 72, 119, 169 15.566286745 2094
4 70, 111, 155, 194 18.365636309 119944
5 64, 99, 133, 167, 199 21.024982760 5506378

Aerial 2 68, 159 12.538208248 30
3 68, 130, 186 15.751881495 1880
4 68, 117, 159, 200 18.615899102 118809
5 68, 108, 141, 174, 207 21.210455499 5338382

parameters, each of tested algorithms has few other control parameters that greatly
influence their performance. We have done preliminary testing on these algorithms
in order to get good combinations of parameter values.

In the case of the PSO the values of additional control parameters are: inertia
weight w is 0.5, minimum velocity vmin is−5, maximum velocity vmax is 5, cognitive
learning factor c1 and social learning factor c2 are 2.

For the DE, the following parametric setup is used for all the test images: differ-
ential amplification factor F = 0.9 and crossover probability constant Cr = 0.9.
These control parameter values for the PSO and DE algorithms are also commonly
used in most of their applications.

In the proposed CS algorithm the probability of discovering a cuckoo egg pa is
set to 0.9. Although the value 0.25 of parameter pa was suitable for the most of
the CS applications, we have found that the performance of the CS for multilevel
thresholding is sensitive to this parameter value and that higher values are more
suitable.
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Table 2 Thresholds, objective function values and time processing provided by the exhaustive
search for Otsu’s method

k Otsu
Threshold values Objective function Time (ms)

Barbara 2 82, 147 2608.610778507 12
3 75, 127, 176 2785.163280467 786
4 66, 106, 142, 182 2856.262131671 50854
5 57, 88, 118, 148, 184 2890.976609405 2543860

Living room 2 87, 145 1627.909172752 13
3 76, 123,163 1760.103018395 850
4 56, 97, 132, 168 1828.864376614 59790
5 49, 88, 120, 146, 178 1871.990616316 2731950

Boats 2 93, 155 1863.346730649 18
3 73, 126, 167 1994.536306242 845
4 65, 114, 147, 179 2059.866280428 54656
5 51, 90, 126, 152, 183 2092.775965336 2654269

Goldhill 2 94, 161 2069.510202452 12
3 83, 126, 179 2220.372641501 809
4 69, 102, 138, 186 2295.380469158 51381
5 63, 91, 117, 147, 191 2331.156597921 2573412

Lake 2 85, 154 3974.738214185 13
3 78,140,194 4112.631097687 877
4 67, 110, 158, 198 4180.886161109 60693
5 57, 88, 127, 166, 200 4216.943583790 2740200

Aerial 2 125, 178 1808.171050536 11
3 109, 147, 190 1905.410606582 801
4 104, 134, 167, 202 1957.017965982 55015
5 99, 123, 148, 175, 205 1980.656737348 2463969

The parameter values utilized by the FA are the following: the value of parameter
γ is 1, the initial value of attractiveness β0 is 1, the initial value of parameter α is
0.5, i.e. the reduction scheme described by Eq. (19) was followed by reducing the
value of parameter α from 0.5 to 0.01.

5.2 Solution Quality Analysis

To analyze the solution quality of the tested four metaheuristic algorithms, the mean
and standard deviations for 50 runs have been calculated and are presented in Table 3
for the experiments based on Kapur’s entropy, and in Table 4 for the experiments
based on the between class variance. These mean values can be compared to the
optimal values of the corresponding objective functions found by an exhaustive
search (from Tables 1 and 2).
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Table 3 Comparison of the mean values and standard deviations obtained from the PSO, DE, CS
and FA based on Kapur’s entropy criterion for six test images over 50 runs

Algorithm k Barbara Living room Boats
Mean SD Mean SD Mean SD

PSO 2 12.668336540 5.33E−15 12.405792709 1.64E−04 12.574798244 1.42E−14
3 15.747087798 1.42E−14 15.552015642 2.82E−03 15.820679619 8.84E−04
4 18.549612938 1.94E−02 18.467328310 6.64E−03 18.640100415 3.00E−02
5 21.241857967 6.71E−03 21.131564234 2.18E−02 21.392020144 4.12E−02

DE 2 12.668336540 5.33E−15 12.405965639 7.89E−05 12.574798244 1.42E−14
3 15.747087798 1.42E−14 15.552578874 3.03E−04 15.820899807 1.42E−05
4 18.556749938 1.51E−04 18.470970822 3.16E−04 18.655660844 1.64E−04
5 21.245566656 2.34E−04 21.149062508 1.79E−03 21.401458219 3.21E−04

CS 2 12.668336540 5.33E−15 12.405985592 5.33E−15 12.574798244 1.42E−14
3 15.747087798 1.42E−14 15.552622213 1.07E−14 15.820902860 8.88E−15
4 18.556786861 2.49E−14 18.471055578 2.49E−14 18.655733570 1.07E−14
5 21.245645311 1.42E−14 21.149400604 1.64E−03 21.401608305 7.11E−15

FA 2 12.668336540 5.33E−15 12.405985592 5.33E−15 12.574798244 1.42E−14
3 15.747087798 1.42E−14 15.552622213 1.07E−14 15.820902860 8.88E−15
4 18.556786861 2.49E−14 18.471014902 2.85E−04 18.655723798 4.79E−05
5 21.245645311 1.42E−14 21.149483979 1.46E−03 21.401583877 7.33E−05

Algorithm k Goldhill Lake Aerial
Mean SD Mean SD Mean SD

PSO 2 12.546393623 7.11E−15 12.520359742 5.33E−15 12.538208248 1.78E−15
3 15.607747002 1.42E−14 15.566286745 1.24E−14 15.751881495 5.33E−15
4 18.414173744 2.07E−04 18.357505953 2.02E−02 18.615899102 1.78E−14
5 21.099092699 1.28E−04 21.015922726 4.40E−02 21.192396874 5.44E−02

DE 2 12.546393623 7.11E−15 12.520359742 5.33E−15 12.538208248 1.78E−15
3 15.607743578 2.40E−05 15.566286745 1.24E−14 15.751881495 5.33E−15
4 18.414194980 1.01E−04 18.365579671 2.79E−04 18.615769177 6.36E−04
5 21.098959164 3.76E−04 21.024780111 4.59E−04 21.210084581 1.12E−03

CS 2 12.546393623 7.11E−15 12.520359742 5.33E−15 12.538208248 1.78E−15
3 15.607747002 1.42E−14 15.566286745 1.24E−14 15.751881495 5.33E−15
4 18.414197322 6.53E−05 18.365636309 1.78E−14 18.615899102 1.78E−14
5 21.099125539 6.59E−05 21.024962923 5.95E−05 21.210455499 1.78E−15

FA 2 12.546393623 7.11E−15 12.520359742 5.33E−15 12.538208248 1.78E−15
3 15.607747002 1.42E−14 15.566286745 1.24E−14 15.751881495 5.33E−15
4 18.414213765 2.13E−14 18.365636309 1.78E−14 18.615899102 1.78E−14
5 21.099138996 0.00E−00 21.024982760 0.00E−00 21.210455499 1.78E−15

We can see from Table 3 that for Kapur’s criterion, the CS and FA give better
results for both, precision (mean fitness) and robustness (small standard deviations)
compared to the PSO and DE for almost all cases considering different test images and
different numbers of thresholds. Only for some cases when the number of thresholds
is small, 2 or 3, their results are equal. When we compare the performance of the CS
and FA for Kapur’s criterion, we can see from Table 3 that their results are similar with
respect to the accuracy and robustness. Their mean values and standard deviations
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are the same for each image when the number of thresholds is less than 4, and for
the images Barbara and Aerial with k = 4 and k = 5. For the rest of test cases, there
are small differences in their performances. More precisely, in some cases the CS
has slightly better results (for example for images Boats when k = 4 and k = 5,
or Living room when k = 4, while in some cases the FA is slightly superior (for
example for images Goldhill when k = 4 and k = 5, Living room and Lake when
k = 5).

From the results given in Table 4, for between class variance criterion, all algo-
rithms perform equally in terms of accuracy and robustness for each image when
k = 2. For these test cases, all algorithms achieve the mean value equal to the
optimum and consequently zero variance. When the number of thresholds is 3, the
Otsu-based PSO, CS and FA reach optimum value in each run for each tested image.
Further, for these test cases, the Otsu-based DE algorithm performs worse for images
Barbara, Boats and Aerial. When the number of thresholds is higher than 3, from the
results given in Table 4, we can see that the Otsu-based CS and FA have better mean
values and lower standard deviations compared to the Otsu-based PSO and DE for
each test image. The only exception is the test image Goldhill when k = 5, where the
Otsu-based PSO performs slightly better than the Otsu-based CS. In particular, when
comparing the Otsu-based FA with respect to the Otsu-based CS, we can see that the
FA performs the equally for each image when k = 4 and better in the majority of the
test images when k = 5. Only for the image Boats when k = 5, the CS has slightly
better results than the FA, while for the image Lake when k = 5 both algorithms
have the same mean values and standard deviations.

According to the mean and standard deviation values reported in Tables 3 and 4,
we can conclude that the proposed CS and FA metaheuristics based on the Kapur’s
and Otsu’s objective function exhibit superior performance compared to the PSO
and DE methods. The mean values for the CS and FA are very close to optimal
values provided by the exhaustive search in all cases. Also, for most of the cases
their standard deviations are very low. That means that proposed algorithms are
stable, which is an important characteristic in real-time applications. If we compare
the performance of the FA with the performance of the CS, it can be concluded
that the FA provides slightly better results considering both thresholding criteria.
More precisely, for both thresholding criteria, for each image and each thresholding
number, there are 48 test cases. Both algorithms have equal results in 35 out of these
48 cases. For the remaining 13 cases, the FA produces better results in 9 cases (4 cases
for Kapur’s entropy and 5 cases for between class variance).

5.3 Computational Time Analysis

Since the running time is critical in real-time applications, computational times for the
algorithms have been analyzed. Tables 5 and 6 report the mean number of iterations
and the average of the CPU time taken by each algorithm to satisfy the stopping
condition for Kapur’s and Otsu’s criteria respectively.
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Table 5 Mean of the CPU times (in milliseconds) and mean of the iteration numbers obtained from
the PSO, DE, CS and FA based on Kapur’s entropy criterion for six test images over 50 runs

Algorithm k Barbara Living room Boats
Time (ms) Iteration Time (ms) Iteration Time (ms) Iteration

PSO 2 2.18 9.22 102.82 1165.14 3.08 11.84
3 3.30 14.28 21.96 218.56 16.23 136.58
4 49.00 495.36 77.23 853.62 123.62 1367.86
5 88.16 1050.8 153.53 1725.22 74.46 814.22

DE 2 3.55 14.52 14.24 134.26 3.37 16.9
3 6.23 29.30 8.09 70.64 17.66 152.28
4 24.65 240.68 33.50 322.98 46.99 478.76
5 47.99 527.96 77.09 801.22 65.43 683.26

CS 2 71.04 194.54 53.30 129.84 53.84 135.58
3 150.71 420.42 125.48 322.42 128.92 330.22
4 189.31 518.58 222.48 570.6 170.28 436.02
5 301.65 786.64 499.42 1303.8 247.15 631.36

FA 2 15.01 11.96 17.02 11.9 16.39 12.32
3 34.07 29.82 37.24 29.7 36.24 29.24
4 43.30 38.6 50.25 77.9 54.68 117.8
5 50.15 44.04 104.74 515.06 76.22 241.94

Algorithm k Goldhill Lake Aerial
Time (ms) Iteration Time (ms) Iteration Time (ms) Iteration

PSO 2 2.54 8.84 2.41 8.86 2.62 10.7
3 3.18 13.54 3.65 14.58 3.24 13.9
4 10.22 97.86 26.99 295.76 4.03 19.76
5 23.56 258.5 77.64 893.98 58.54 695.92

DE 2 2.13 16.44 5.03 15.76 3.88 16.96
3 7.92 69.28 6.26 29.82 6.48 30.94
4 17.06 163.98 22.16 165.04 14.08 124.46
5 43.38 486.12 55.10 603.12 56.82 644.22

CS 2 82.29 209.48 70.48 183.36 56.32 150.88
3 149.68 441.64 138.23 375.66 104.75 292.22
4 278.51 828.32 220.44 604.58 174.84 482.26
5 285.32 835.42 336.29 915.92 193.21 532.76

FA 2 13.66 10.08 15.92 12.32 13.86 11.0
3 32.08 28.66 34.56 29.42 32.83 29.18
4 42.24 38.6 43.84 37.66 43.18 38.96
5 47.12 43.54 50.31 43.6 50.46 45.46

The computational times for the exhaustive search method for Kapur’s and
Otsu’s criteria grow exponentially with the number of required thresholds (Tables 1
and 2). Although the computational time needed to derive the optimal thresholds by
the exhaustive search for Otsu’s criterion is approximately two times shorter than
the same for Kapur’s criterion, for both criteria it is not acceptable for k ≥ 4. On the
other side, the results from Tables 5 and 6 show that the run times for the CS and FA
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Table 6 Mean of the CPU times (in milliseconds) and mean of the iteration numbers obtained from
the PSO, DE, CS and FA based on Otsu’s criterion for six test images over 50 runs

Algorithm k Barbara Living room Boats
Time (ms) Iteration Time (ms) Iteration Time (ms) Iteration

PSO 2 0.84 9.4 0.90 9.6 0.94 8.8
3 1.22 13.26 1.24 14.68 1.28 14.1
4 4.84 138.52 1.60 19.18 3.12 56.56
5 10.02 261.06 8.14 221.64 32.96 1012.3

DE 2 0.77 14.16 1.03 15.84 0.99 16.54
3 3.08 68.4 2.26 30.4 2.79 69.46
4 8.26 200.84 11.10 281.02 4.73 121.68
5 27.36 798.72 24.28 682.8 32.93 953.74

CS 2 35.80 179.0 30.03 223.34 32.74 204.04
3 51.66 370.88 56.67 371.50 53.74 378.40
4 100.78 723.22 83.43 578.94 76.98 595.66
5 114.63 802.80 122.78 836.32 102.84 677.04

FA 2 8.16 12.02 8.72 12.54 7.17 10.64
3 15.73 28.62 12.67 28.54 16.10 28.7
4 17.84 37.7 19.16 38.78 18.43 38.2
5 21.27 43.9 20.15 43.78 43.51 669.52

Algorithm k Goldhill Lake Aerial
Time (ms) Iteration Time (ms) Iteration Time (ms) Iteration

PSO 2 0.94 8.98 0.91 10.12 0.81 9.04
3 2.86 14.3 1.17 13.48 1.29 15.16
4 5.16 136.32 6.55 175.58 5.18 138.44
5 7.52 222.92 7.01 179.38 20.21 622.38

DE 2 0.82 15.24 0.75 14.72 0.82 15.8
3 1.52 28.88 1.90 29.18 3.18 70.02
4 7.80 200.44 7.43 201.24 6.99 162.28
5 23.80 684.12 21.55 603.88 18.63 527.08

CS 2 27.88 195.30 38.04 267.66 32.45 254.10
3 59.98 424.62 49.68 381.36 52.78 395.44
4 70.92 531.74 85.30 646.44 83.84 593.52
5 159.69 1115.44 109.90 746.36 209.36 1487.06

FA 2 8.61 12.68 7.28 11.66 7.94 12.18
3 15.61 27.78 13.38 30.04 15.56 27.7
4 17.12 37.66 18.49 38.86 18.05 38.58
5 20.93 44.54 21.27 43.12 20.58 44.68

increase with the number of thresholds, but these run times are much shorter than
those for the exhaustive search, and they tend to grow at a linear rate as the problem
dimension increases.

By comparing the computational times for the CS with respect to the other three
algorithms, we can see that for almost all tested cases, the PSO, DE and FA are more
efficient than the CS for both thresholding criteria. In addition, the computation times
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of the PSO, DE and FA are not significantly different. It is also evident that, for all
images, the computational times for the CS and FA based on the Otsu’s function are
better than the CS and FA based on the Kapur’s function respectively.

From Tables 5 and 6 we can also observe that the proposed FA converges in
considerably less iterations compared to the PSO, DE and CS methods. The exception
are some cases where the number of thresholds are small (k ≤ 3) where the FA, PSO
and DE algorithms converge in the similar number of iterations.

Generally, it can be concluded that although the computational time requirements
for the CS algorithm are greater compared to the FA, both algorithms are scalable,
which means that they are suitably efficient and practical in terms of time complexity
for high-dimensional problems.

6 Conclusion

The Cuckoo Search (CS) and the Firefly Algorithm (FA) are relatively new swarm
intelligence metauristics and they have been proven to be effective methods for solv-
ing some hard optimization problems. In this article, their application to the multi-
level thresholding problem is investigated. Therefore, the CS and FA are employed to
maximize the Kapur’s entropy and between-class variance separately to determine
multilevel thresholds. Furthermore, we have implemented two other well known
metaheuristic algorithms for solving the multilevel thresholding problem, particle
swarm optimization (PSO) and differential evolution (DE), for the purpose of com-
parison with the CS and FA. Tests were done on six standard test images with known
optima derived by the exhaustive search method.

The experimental results show that when the number of desired thresholds is two
or three, the quality of the segmentation results for all these algorithms is similar.
However, for both thresholding criteria, as the number of desired thresholds increases,
the superiority of the CS and FA over the PSO and DE becomes more pronounced,
both in terms of precision and robustness, with a small advantage of the FA.

The computational time analysis shows that the FA converges in the lowest number
of iterations compared to the other three algorithms. Although in the majority of cases
the CS algorithm requires somewhat higher computational cost than the FA, PSO
and DE, the CPU times for all these algorithms are reasonable and grow at linear
rate as the problem dimension increases, as opposed to the exhaustive search where
the grow is exponential.

Additional advantage of the FA and CS compared to many other search heuristics
is that they are easy to implement, and that both algorithms, especially the CS, have
very few control parameters that have to be set.

From this research it can be concluded that the CS and FA can both be efficiently
used for solving multilevel thresholding problem due to their simplicity, reliabil-
ity and robustness. Their segmentation results are promising and encourage further
research for applying them to some other complex and real-time image analysis
problems.
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A Binary Cuckoo Search and Its Application
for Feature Selection

L. A. M. Pereira, D. Rodrigues, T. N. S. Almeida, C. C. O. Ramos,
A. N. Souza, X.-S. Yang and J. P. Papa

Abstract In classification problems, it is common to find datasets with a large
amount of features, some of theses features may be considered as noisy. In this con-
text, one of the most used strategies to deal with this problem is to perform a feature
selection process in order to build a subset of features that can better represents the
dataset. As feature selection can be modeled as an optimization problem, several
studies have to attempted to use nature-inspired optimization techniques due to their
large generalization capabilities. In this chapter, we use the Cuckoo Search (CS)
algorithm in the context of feature selection tasks. For this purpose, we present a
binary version of the Cuckoo Search, namely BCS, as well as we evaluate it with
different transfer functions that map continuous solutions to binary ones. Addition-
ally, the Optimum-Path Forest classifier accuracy is used as the fitness function. We
conducted simulations comparing BCS with binary versions of the Bat Algorithm,
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Firefly Algorithm and Particle Swarm Optimization. BCS has obtained reasonable
results when we consider the compared techniques for feature selection purposes.

Keywords Feature selection · Pattern classification · Meta-heuristic algorithms ·
Optimum-path forest · Cuckoo search algorithm

1 Introduction

In pattern recognition tasks, many problems are characterized for instances composed
of hundreds, thousands or millions of features, as face recognition for instance.
As such, working with high dimensional space may demand much computational
power and requires long processing time. Therefore, it is often desirable to find
a subset that can represent the whole set without losing of information. However,
finding this subset is known to be NP-hard and the computational load may become
intractable [8].

Support by this previous scenario, several works attempt to model the feature
selection as a combinatorial optimization problem, in which the set of features that
leads to the best feature space separability is then employed to map the original
dataset to a new one. The objective function can be the accuracy of a given classifier
or some other criterion that may consider the best trade-off between feature extraction
computational burden and effectiveness.

In this fashion, natural inspired optimization techniques have been used to model
the feature selection as an optimization problem. The idea is to lead with the search
space as a n-cube, where n stands for the number of features. In such case, the optimal
(near-optimal) solution is chosen among the 2n possibilities, and it corresponds to one
hypercube’s corner. For this purpose, we can employ binary versions of optimization
heuristic techniques.

Kennedy and Eberhart [11] proposed a binary version of the well-known Particle
Swarm Optimization (PSO) [10] called BPSO, in which the standard PSO algorithm
was modified in order to handle binary optimization problems. Further, Firpi and
Goodman [5] extended BPSO to the context of feature selection. Rashedi et al. [19]
proposed a binary version of the Gravitational Search Algorithm (GSA) [18] called
BGSA, which was applied for feature selection by Papa et al. [14]. Ramos et al. [17]
presented their version of the Harmony Search (HS) [7] for purpose in the context of
theft detection in power distribution system. In addition, Nakamura et al. [13] pro-
posed a binary version of Bat algorithm (BBA) and Banati and Monika [1] introduced
Firefly algorithm for feature selection.

Recently, Yang and Deb [24] proposed a new meta-heuristic method for contin-
uous optimization namely Cuckoo Search (CS), which is based on the fascinating
reproduction strategy of cuckoo birds. Several species engage the brood parasitism
laying their eggs in the nests of others host birds. Such approach has demonstrated to
outperform some well-known nature-inspired optimization techniques, such as PSO
and Genetic Algorithms. Furthermore, CS has been applied with success in several
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distinct engineer applications [6, 9, 25], and several studies have proposed variants
of standard CS to handle particular problems, such as discrete optimizations [12, 22].

In artificial intelligence, CS has also aroused interests specially for machine learn-
ing applications. Vazquez [23], for instance, employed CS to train spiking neural
models. In addition, Valian [3] proposed a improved Cuckoo Search for feedforward
neural network training. For this purpose, the authors investigated the CS behavior
by setting its parameters dynamically. Bansal et al. [21] use CS to optimize the local
minimal convergence of k-means method for clustering tasks.

In this chapter, we present a binary version of the Cuckoo Search (BCS) for feature
selection purposes. The main idea is to associate a set of binary coordinates for each
solution that denote whether a feature will belong to the final set of features or not.
The function to be maximized is the one given by a supervised classifier’s accuracy.
As the quality of the solution is related with the number of nests, we need to evaluate
each one of them by training a classifier with the selected features encoded by the
eggs’ quality and also to classify an evaluating set. Thus, we need a fast and robust
classifier, since we have one instance of it for each nest. As such, we opted to use
the Optimum-Path Forest (OPF) classifier [15, 16], which has been demonstrated to
be so effective as Support Vector Machines, but faster for training. The experiments
have been performed in five public datasets against Bat Algorithm, Firefly Algorithm
and Particle Swarm Optimization in order to evaluate the robustness of CS.

The remainder of the chapter is organized as follows. In Sect. 2 we revisit the
Optimum-Path Forest theory. Section 3 presents the Cuckoo Search algorithm and its
binary version. Section 4 discuss a framework to evaluate feature selection algorithms
based on nature-inspired. Some simulations and its results are shown in Sect. 5.
Finally, conclusions are stated in Sect. 6.

2 Supervised Classification Through Optimum-Path Forest

The OPF classifier works by modeling the problem of pattern recognition as a graph
partition in a given feature space. The nodes are represented by the feature vectors and
the edges connect all pairs of them, defining a full connectedness graph. This kind of
representation is straightforward, given that the graph does not need to be explicitly
represented, allowing us to save memory. The partition of the graph is carried out by
a competition process between some key samples (prototypes), which offer optimum
paths to the remaining nodes of the graph. Each prototype sample defines its optimum-
path tree (OPT), and the collection of all OPTs defines an optimum-path forest, which
gives the name to the classifier [15, 16].

The OPF can be seen as a generalization of the well known Dijkstra’s algorithm
to compute optimum paths from a source node to the remaining ones [2]. The main
difference relies on the fact that OPF uses a set of source nodes (prototypes) with
any smooth path-cost function [4]. In case of Dijkstra’s algorithm, a function that
summed the arc-weights along a path was applied. In regard to the supervised OPF
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version addressed here, we have used a function that gives the maximum arc-weight
along a path, as explained below.

Let Z = Z1 ≤ Z2 ≤ Z3 be a dataset labeled, in which Z1, Z2 and Z3 are,
respectively, a training, evaluating and test sets. Let S ∗ Z1 a set of prototype
samples. Essentially, the OPF classifier creates a discrete optimal partition of the
feature space such that any sample s ⊕ Z2 ≤ Z3 can be classified according to this
partition. This partition is an optimum path forest (OPF) computed in ∼n by the
Image Foresting Transform (IFT) algorithm [4].

The OPF algorithm may be used with any smooth path-cost function which can
group samples with similar properties [4]. Particularly, we used the path-cost function
fmax, which is computed as follows:

fmax(≥s⊗) =
{

0 if s ⊕ S,
+∝ otherwise

fmax(π · ≥s, t⊗) = max{ fmax(π), d(s, t)}, (1)

in which d(s, t) means the distance between samples s and t , and a path π is defined
as a sequence of adjacent samples. In such a way, we have that fmax(π) computes
the maximum distance between adjacent samples in π , when π is not a trivial path.

The OPF algorithm works with a training and a testing phase. In the former step,
the competition process begins with the prototypes computation. We are interested
into finding the elements that fall on the boundary of the classes with different
labels. For that purpose, we can compute a Minimum Spanning Tree (MST) over the
original graph and then mark as prototypes the connected elements with different
labels. Figure 1b displays the MST with the prototypes at the boundary. After that, we
can begin the competition process between prototypes in order to build the optimum-
path forest, as displayed in Fig. 1c. The classification phase is conducted by taking
a sample from the test set (black triangle in Fig. 1d) and connecting it to all training
samples. The distance to all training nodes are computed and used to weight the
edges. Finally, each training node offers to the test sample a cost given by a path-cost
function [maximum arc-weight along a path—Eq. (1)], and the training node that
has offered the minimum path-cost will conquer the test sample. This procedure is
shown in Fig. 1e.

3 Cuckoo Search

3.1 Standard Cuckoo Search

The parasite behavior of some cuckoo species is extremely intriguing. These birds
can lay down their eggs in a host nests, and mimic external characteristics of host
eggs such as color and spots. In case of this strategy is unsuccessful, the host can
throw the cuckoo’s egg away, or simply abandon its nest, making a new one in another
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Fig. 1 OPF pipeline: a complete graph, b MST and prototypes bounded, c optimum-path forest
generated at the final of training step, d classification process and e the triangle sample is associated
to the white circle class. The values above the nodes are their costs after training, and the values
above the edges stand for the distance between their corresponding nodes

place. Based on this context, Yang and Deb [24] have developed a novel evolutionary
optimization algorithm named as Cuckoo Search (CS), and they have summarized
CS using three rules, as follows:

1. Each cuckoo choose a nest randomly to lays eggs.
2. The number of available host nests is fixed, and nests with high quality of eggs

will carry over to the next generations.
3. In case of a host bird discovered the cuckoo egg, it can throw the egg away or

abandon the nest, and build a completely new nest. There is a fixed number of
host nests, and the probability that an egg laid by a cuckoo is discovered by the
host bird is pa ⊕ [0, 1].
CS performs a balanced combination of a local random walk and the global

explorative random walk, controlled by a switching parameter pa ⊕ [0, 1]. The local
random walk can be written as
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x j
i (t) = x j

i (t − 1) + α · s ← H(pa − ε) ← (x j
k∅(t − 1) − x j

k∅∅(t − 1)), (2)

where x j
k∅ and x j

k∅∅ are two different solutions selected by random permutation, and

and x j
i stands for the j th egg at nest i , i = 1, 2, . . . , m and j = 1, 2, . . . , d. H(·) is

a Heaviside function, ε is a random number drawn from a uniform distribution, and
s is the step size.

The global random walk is carried out using Lévy flights as follows:

x j
i (t) = x j

i (t − 1) + α · L(s, λ), (3)

where

L(s, λ) = λ · Γ (λ) · sin(λ)

π
· 1

s1+λ
, s ∞ s0 > 0 (4)

The Lévy flights employ a random step length which is drawn from a Lévy distri-
bution. Therefore, the CS algorithm is more efficient in exploring the search space
as its step length is much longer in the long run. The parameter α > 0 is the step size
scaling factor, which should be related to the scales of the problem of interest. Yang
and Deb [26] claim that α = O(S/10) can be used in most cases, where S denotes
the scale of the problem of interest, while α = O(S/100) can be more effective and
avoid flying too far.

3.2 Binary Cuckoo Search for Feature Selection

In standard CS, the solutions are updated in the search space towards continuous-
valued positions. Unlike, in the BCS for feature selection [20], the search space
is modelled as a n-dimensional boolean lattice, in which the solutions are updated
across the corners of a hypercube. In addition, as the problem is to select or not a
given feature, a solution binary vector is employed, where 1 corresponds whether a
feature will be selected to compose the new dataset and 0 otherwise. In order to build
this binary vector, we have employ the Eq. 6, which can provide only binary values
in the boolean lattice restricting the new solutions to only binary values:

S(x j
i (t)) = 1

1 + e−x j
i (t)

(5)

x j
i (t + 1) =

{
1 if S(x j

i (t)) > σ ,
0 otherwise

(6)
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Algorithm 1: BCS-Feature Selection Algorithm

input : Labeled training set Z1 and evaluating set Z2, loss parameter p, α value, number of
nests n, dimension d , number of iterations T , c1 and c2 values.

output : Global best position ĝ.
auxiliaries: Fitness vector f with size m and variables acc, max f i t , global f i t and maxindex .

for each nest ni (∀i = 1, . . . , m) do1
for each dimension j (∀ j = 1, . . . , d) do2

x j
i (0) √ Random{0, 1};3

end4
fi √ −∝;5

end6
global f i t √ −∝;7
for each iteration t (t = 1, . . . , T ) do8

for each nest ni (∀i = 1, . . . , m) do9
Create Z ∅

1 and Z ∅
2 from Z1 and Z2, respectively, such that both contains only features in ni in10

which x j
i (t) ≈= 0, ∀ j = 1, . . . , d;

Train OPF over Z ∅
1, evaluate its over Z ∅

2 and stores the accuracy in acc;11
if (acc > fi ) then12

fi √ acc;13
for each dimension j (∀ j = 1, . . . , d) do14

x̂ j
i √ x j

i (t);15

end16

end17

end18
[max f i t, maxindex] √ max( f );19
if (max f i t > global f i t) then20

global f i t √ max f i t ;21
for each dimension j (∀ j = 1, . . . , d) do22

ĝ j √ x j
maxindex (t);23

end24

end25
for each nest ni (∀i = 1, . . . , m) do26

for each dimension j (∀ j = 1, . . . , d) do27
Select the worst nests with pa ⊕ [0, 1] and replace them for new solutions;28

end29

end30
for each nest ni (∀i = 1, . . . , m) do31

for each dimension j (∀ j = 1, . . . , d) do32

x j
i (t) √ x j

i (t − 1) + α ← Lévy(λ);33

if (σ < 1

1+ex
j
i (t)

) then
34

x j
i (t) √ 1;35

else36

x j
i (t) √ 0;37

end38

end39

end40

end41

end42
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in which σ ∼ U (0, 1) and x j
i (t) denotes the new egg’s value at time step t . Algo-

rithm 1 presents the proposed BCS algorithm for feature selection using the OPF
classifier as the objective function.

The algorithm starts with the first loop in Lines 1−4, which initialize each nest with
a vector of binary values (Line 3), and Lines 8−42 stand to the main algorithm loop.
To evaluate each solution, is necessary to build new training Z ∅

1 and and evaluating
Z ∅

2 sets. To fulfill this purpose, each sample si ⊕ Z1 and ti ⊕ Z2 is multiplied by a
binary solution vector, i.e., si ×ni → Z ∅

1 and ti ×ni → Z ∅
2. Then, Z ∅

1 can be used to
generate an OPF training model, which is evaluated using Z ∅

2. The the classification
rate fi is associated with the nest ni , and then each nest is evaluated in order to update
its fitness value (Lines 12−13).

Lines 14−15 find out and store in ĝ j the best nest with the best so far vector
solutions. The loop in the Lines 26−30 is responsible to replace the nests with the
worst solutions using the probability p, generating new nests randomly as described
in [25]. Finally, Lines 31−41 update the binary vector for each nest restricting the
generated solutions via Lévy flights [See Eqs. (2–4)] and the sigmoid function (Eq. 6).

4 Methodology

We now describe the proposed methodology to evaluate the performance of feature
selection techniques discussed in previous sections (Figure 2 depicts a pipeline to
clarify this procedure). Firstly, we randomly partitioned the dataset into N folds, i.e.,
Z = F1 ≤ F2 ≤ · · · ≤ FN . Note that each fold should be large enough to contain
representative samples of the problem. Further, for each fold, we train a given instance
of the OPF classifier over a subset of this fold, Z1

i ⊕ Fi , and an evaluation set

Fig. 2 Flowchart of the proposed methodology
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Z2
i √ Fi\Z1

i is then classified in order to compute a fitness function which will guide
a stochastic optimization algorithm to select the most representative set of features.
Each member of the population in the meta-heuristic algorithm is associated with a
string of bits denoting the presence or absence of a feature. Thus, for each member,
we construct a classifier from the training set with only the selected features and
compute a fitness function by means of classifying Z2

i . As long as the procedure
converges, i.e, all generations of a population were computed, the agent (bat, firefly,
mass, harmony, particle) with the highest fitness value encodes a solution with the
best compacted set of features.

Furthermore, we build a classification model using the training set and the selected
features, and we also evaluate the quality of the solution computing an effectiveness
over the remaining folds, Fj ⊕ Z\Fi . Algorithm 2 details the methodology for
comparing feature selection techniques.

Algorithm 2: Feature Selection Evaluation

input : A dataset Z , number of folds N , number of agents A, number of iterations I ,
and a percentage for the training set Z1

i .
output : A predictive performance for each methods defined by a λ function.
auxiliaries: A bitmap vector V of selected features, and a final training and test sets, Ẑ1, Ẑ2.

for each fold F ⊕ Z do1

Z1 √ random set of |Z1| × |F | samples from F ;2

Z2 √ F\Z1;3
for each technique T do4

V √ find a minimal subset of features using T, Z1, Z2, and the parameters A, I ;5

Ẑ1 √ Z1\V ;6

Create a classifier instance from Ẑ1;7
for each fold F ∅ ⊕ Z\F do8

Ẑ2 √ F ∅\V ;9

Classify Ẑ2;10

Compute the predictive performance on Ẑ2;11

end12

end13

end14

Figure 2 displays the above procedure. As aforementioned, the feature selection
is carried on over the fold i , which is partitioned in a training Z1

i and an evaluating
set Z2

i . The idea is to represent a possible subset of features as a string of bits, which
encodes each agent’s position in the search space. Thus, for each agent, we model the
dataset using its string of bits, and an OPF classifier is trained over the new Z1

i and
its effectiveness using this subset of features is assessed over Z2

i . This recognition
rate is then used as the fitness function to guide each agent to new positions until
we reach the convergence criterion. The agent with the best fitness function is then
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employed to build Ẑ1
i , which is used for OPF training. The final accuracy using the

selected subset of features is computed over the remaining folds (red rectangle in
Fig. 2). This procedure is repeated over all folds for mean accuracy computation.

5 Simulation, Results and Discussion

In this section, we evaluate the robustness of BCS to accomplish the feature selection
task, comparing it with the binary versions of Bat Algorithm (BA), Firefly Algo-
rithm (FA) and Particle Swarm Optimization (PSO). We applied the methodology
presented in Sect. 4 to obtain a better quality estimation of each solution. More pre-
cisely, we defined k = 10 for a cross-validation scheme which implied in ten rounds
of feature selection for each method, being the quality of solution evaluated from
the remaining nine folds. The performance of those techniques were evaluate over
the four public datasets,1 which the main characteristics are presented in Table 1. In
addition, regarding the fitness function and the final classification rates, we used an
accuracy measure proposed by Papa et al. [16], which considers the fact that classes
may have different concentrations in the dataset. This information can avoid a strong
estimation bias towards the majority class in high class imbalance datasets.

We also evaluate how the techniques work with continuous optimization for fea-
ture selection purposes, using a sigmoid (Eq. 7) and hyperbolic tangent (Eq. 7) func-
tion to map the continuous values to binary ones, respectively:

f (x) = 1

1 + exp (−x)
(7)

and
g(x) = |tanh(x)| . (8)

Table 2 presents the parameters used for each evolutionary-based techniques. It is
important to clarify that, for all techniques, we assumed a model with a population
size of 10 agents and 100 generations to reach a solution.

Table 1 Description of the datasets used for feature selection

Dataset # samples # features # classes

Diabetes 768 8 2
DNA 2,000 180 3
Heart 270 13 2
Mushrooms 8,124 112 2

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 2 Parameters setting
of optimization techniques

Technique Parameters

BA α = 0.9, γ = 0.9
CS α = 1, pa = 0.35, λ = 1.5
FA α = 0.8, β = 1, γ = 0.1
PSO c1 = 2.0, c2 = 2.0, w = 0.7

Figure 3 displays the accuracy performance of all techniques, as well as the number
of selected feature over the four datasets. We can see the optimization techniques
presented quite similar performances in both case: binary and continuous optimiza-
tions. If we observe only the graph of accuracy rates (Fig. 3a, c, e and g), we can infer
that feature selection did not improve the classification rates significantly, excepting
for the Heart dataset. However, there were considerable feature reductions, specially
employing the binary and the continuous optimizations with the sigmoid function.

For Diabetes and Heart datasets, BCS selected the best subset of feature that
maximized the OPF accuracy rates (selecting in average six out twelve and five out
eight features respectively). The binary PSO was the best on DNA in which it selects
the lowest number of feature, around 47 %, and maximized the accuracy rate. For the
Mushrooms dataset, BA, FA and PSO performed similarly and two percent better
than BCS, even if it has the lowest number of selected features.

In regard to continuous optimization, we can observe the hyperbolic tangent did
not work well to transfer the continuous values to binary ones. With this function, the
techniques had some difficult to reduced the number of features. This behave may
due to the threshold value that those function provide. Unlike, the sigmoid function
worked well, providing good feature reductions. However, we can infer that binary
and continuous optimization with sigmoid function did not present difference indeed.

6 Conclusions

In this chapter, we discuss the feature selection task as an optimization problem. The
main purpose is to evaluate the robustness of Cuckoo Search algorithm to accomplish
this task. A binary version of Cuckoo Search was presented and compared against
with three other nature-inspired optimization techniques. We provided simulations
and analysis over four public datasets, employing a cross-validation strategy to verify
how the techniques work for feature selection purposes. The results demonstrated
that Cuckoo Search has good capabilities to lead with this kind of problem, being
the best one on two out of four datasets, and also similarly to other techniques on the
remaining datasets.

As the reader may observe, the binary cuckoo version keeps the parameters α and
pa fixed during all iterations. However, these parameters have an important whole
regarding to fine-tunning and convergence rates of the standard Cuckoo Search,
as stated by Valian [3]. For the future works, it might be interesting to investigate
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Fig. 3 Experimental results using different transfer functions for each swarm-based optimization
technique. (a)-(b) Diabetes dataset, (c)-(d) DNA dataset, (e)-(f) Heart dataset and (g)-(h) Mush-
rooms dataset
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how much the binary Cuckoo Search is sensitive to the aforementioned parame-
ters. Further, we should consider to set the parameters dynamically to improve the
performance of Binary Cuckoo Search.
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How to Generate the Input Current
for Exciting a Spiking Neural Model
Using the Cuckoo Search Algorithm

Roberto A. Vazquez, Guillermo Sandoval and Jose Ambrosio

Abstract Spiking neurons are neural models that try to simulate the behavior of
biological neurons. This model generates a response (spikes or spike train) only when
the model reaches a specific threshold. This response could be coded into a firing rate
and perform a pattern classification task according to the firing rate generated with
the input current. However, the input current must be carefully computed to obtain
the desired behavior. In this paper, we describe how the Cuckoo Search algorithm
can be used to train a spiking neuron and determine the best way to compute the input
current for solving a pattern classification task. The accuracy of the methodology is
tested using several pattern recognition problems.

Keywords Cuckoo Search Algorithm · Spiking Neural Networks · Pattern recog-
nition

1 Introduction

Artificial neural networks have been broadly applied in pattern recognition, forecast-
ing and control tasks. Despite their power, they still have some drawbacks that limit
their applicability in complex pattern recognition problems. In most of the real cases,
in order to solve a pattern recognition problem with an acceptable performance, the
expert could spend a lot of time on the design and training of the neural networks.
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Although some meta-heuristics have been applied to eradicate this disadvantage, the
necessity of new powerful neural models is imminent.

Spiking neural networks have shown to be a suitable type of artificial neural
networks for solving pattern recognition problems. In the last years, they have been
applied in a wide range of problems, including brain region modeling [20], auditory
processing [2, 21], visual processing [1, 38], robotics [12, 13] and so on. Although
they have been widely used by the neuroscientist comunity, their application in pattern
recognition is gaining popularity within the computational intelligence comunity.

Several spiking neural models have been proposed in the last years [24] and
have been called the 3rd generation of artificial neural networks [30]. However,
its application in the field of artificial intelligence is practically new. These models
increase the level of realism in a neural simulation and incorporate the concept of time.
Taking into account new mechanisms based on the behavior of biological neurons
or neurological and cognitive aspects of human brain, artificial neurons could reach
their maximum power and up-perform their accuracy in pattern recognition problems
[43, 46]. This suggests that spiking neural models are natural candidates to be applied
in the field of artificial intelligence, including the solution of pattern classification
tasks.

Spiking neural models have been applied in some pattern recognition tasks. During
the training phase, they adjust their synaptic weights using several techniques such as
the back-propagation algorithm [7, 9]. In [15], the authors described how a genetic
algorithm can be used during the learning process of a spiking neural network;
however, the model was not applied to perform a pattern recognition problem. In [3],
the authors show how a spiking neural network can be trained by a quantum PSO
and then applied to a string pattern recognition problem. In [16] the authors trained
a spiking neural network using a PSO algorithm, and then it was applied in three
pattern recognition problems; however, in each problem, the authors had to design
the topology of the network. Although these models have been successfully applied
in some pattern recognition problems, some of the major drawbacks occur during
the training and design phase.

In [39, 41, 42, 44, 45], the authors show how only one spiking neuron such as
Leaky-Integrate-and-Fire and Izhikevich models [23, 25] can be applied to solve
different linear and non-linear pattern recognition problems. In general, the method-
ology described in those algorithms goes as follows: Given a set of input patterns
belonging to K classes, (1) each input pattern is transformed into an input current,
(2) then the spiking neuron is stimulated during T ms (3) and finally, the firing rate
is computed. After adjusting the synaptic weights of the neuron model by means of
a bio-inspired algorithm, input patterns belonging to the same class must generate
similar firing rate. On the contrary, patterns belonging to other classes must generate
firing rates different enough to discriminate among the classes.

In those papers, the authors use bio-inspired algorithms as a learning strategies
to adjust the synaptic weights of two different neural models. The obtained results
suggest that using only one spiking neuron a pattern recognition task can be solved
with an acceptable accuracy. Furthermore, after comparing the accuracy obtained
using several bio-inspired algorithms, we observed that the accuracy of these models
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slightly varies during a pattern recognition task. This fact means that the accuracy
of these models is not related to the learining algorithm. Although the accuracy
obtained is highly acceptable, it could be possible to increase their acuracy exploring
the behavior of different neural models and the way to compute the input current.

However, the development of new spiking models or new ways to compute the
input current to stimulate the model is not a trivial task. Nonetheless, bio-inspired
algorithms could be a mechanism of exploration and exploitation to implement new
ways to compute the input current or design new spiking neural models.

Several meta-heuristics have been proposed in the recent years. Although they
have common features, they also have some features that make them different from
each other. Among the most popular, we could mention the particle swarm optimiza-
tion (PSO), differential evolution (DE) and artificial bee colony (ABC) algorithms
[28, 29, 35]. These algorithms have been applied in a wide range of optimization
problems and the field of artificial neural networks has been beneficed with these
kinds of methods. These methods have been applied not only to the problem of
adjusting the synaptic weight of an artificial neural network, but also to design the
topology and select the transfer function of the neurons that compose the network
[15, 16, 27].

Cuckoo Search algorithm (CS) is a novel meta-heuristic based on the obligate
brood parasitic behavior of some cuckoo species in combination with the Lévy flight
behavior of some birds and fruit flies. This algorithm has been applied in several
optimization problems, outperforming the results achieved by the well-known PSO
algorithm [49]. Therefore, these promising results suggest the CS algorithm could
be a powerful method to adjust the synaptic weights of an spiking neuron and find
the best way to compute its input current.

In this paper, we analyze the advantage of automatically design the way to compute
the input current that stimulates a spiking neuron model. It is presented a combination
of the methodology described in [39, 41] with the one we propose to automatically
design the equation to compute the input current by means of CS. In order to test
the accuracy of the proposed methodology, we applied the spiking neuron model to
solve some non-linear and two real pattern recognition problems: odor recognition
and crop classification.

2 Cuckoo Search Algorithm

Based on the description presented in [41], Cuckoo Search (CS) algorithm is a novel
meta-heuristic proposed by Xin-She Yang [49]. This algorithm was inspired by the
obligate brood parasitism of some cuckoo species by laying their eggs in the nests of
other host birds. Some host nest can engage in direct conflict. If a host bird discovers
the eggs are not their owns, they will either throw these alien eggs away or simply
abandon its nest and build a new nest elsewhere. Some other species have evolved in
such a way that female parasitic cuckoos are often very specialized in the mimicry
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in colour and pattern of the eggs of a few chosen host species. This reduces the
probability of their eggs being abandoned and thus increases their reproductivity.

On the other hand, several studies have shown that flight behaviour of many
animals and insects have the typical characteristics of the Lévy flights. Taking into
account these breeding and flight behaviors, the authors in [49] proposed the CS
algorithm.

The CS algorithm follows the next three idealized rules: (1) Each cuckoo lays
one egg at a time, and dumps its egg in randomly chosen nest; (2) The best nests
with high quality of eggs will carry over to the next generations; (3) The number of
available host nests is fixed, and the egg laid by a cuckoo is discovered by the host
bird with a probability pa ∈ [0, 1]. In this case, the host bird can either throw the
egg away or abandon the nest, and build a completely new nest.

Based on these three rules, the basic steps of the Cuckoo Search (CS) can be
summarized as the next pseudo code:

1: Generate initial population of N host nest xi ∀i , i = 1, ..., n
2: while t < MaxGeneration or (stop criterion) do
3: Get a cuckoo randomly by Lévy flights and evaluate its fitness Fi .
4: Choose randomly a nest j among N .
5: if Fi > Fj then
6: Replace j by the new solution.
7: end if
8: A fraction (pa) of worse nest are abandoned and new ones are built.
9: Keep the best solutions (or nest with quality solutions).

10: Rank the solutions and find the current best.
11: end while

This algorithm uses a balanced combination of a local random walk and the
global explorative random walk, controlled by a switching parameter pa [19]. The
local random walk can be written as

xt+1
i = xt

i + αs ⊗ H(pa − ε) ⊗ (xt
j − xt

k) (1)

where xt
j and xt

k are two different solutions selected by random permutation, H(u)

is a Heaviside function, ε is a random number drawn from a uniform distribution,
and s is the step size. On the other hand, the global random walk is carried out using
Lévy flights:

xt+1
i = xt

i + αL(s, λ) (2)

where

L(s, λ) = λΓ (λ) sin(πλ/2)

π

1

s1+λ
, s >> s0 > 0 (3)

Here, α > 0 is the step size scaling factor, which should be related to the scales
of the problem of interest. In most cases, we can use α = O(L/10), where L is the
characteristic scale of the problem of interest, while in some cases, α = O(L/100)
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can be more effective and avoid the need to fly too far. Equation (3) is essentially the
stochastic equation for a random walk. In general, a random walk is a Markov chain
whose next status/location only depends on the current location (the first term in
Eq. (3)) and the transition probability (the second term).

The Lévy flight has been applied to a diverse range of fields, describing animal for-
aging patterns, the distribution of human travel and even some aspects of earthquake
behaviour [6].

A Lévy distribution is advantageous when target sites (solutions) are sparsely and
randomly distributed because the probability of returning to a previously visited site
is smaller than for a gaussian distribution [47]. Due to this walk is more efficient
in exploring the search space, it could be used to adjust the synaptic weights of a
spiking neuron.

Here the steps essentially construct a random walk process with a power-law step-
length distribution with a heavy tail. Some of the new solutions should be generated
by Lévy walk around the best solution obtained so far, this will speed up the local
search. However, a substantial fraction of the new solutions should be generated by
far field randomization whose locations should be far enough from the current best
solution. This will make sure the system will not be trapped in a local optimum.

3 Spiking Neural Models

Following the section described in [41], A typical spiking neuron can be divided into
three functionally distinct parts, called dendrites, soma, and axon. The dendrites play
the role of the input device that collects signals from other neurons and transmits them
to the soma. The soma is the central processing unit that performs an important non-
linear processing step: if the total input exceeds a certain threshold, then an output
signal is generated. The output signal is transmmited by the output device, the axon,
which delivers the signal to other neurons. The neuronal signals consist of short
electrical pulses. The pulses, so-called action potentials or spikes, have an amplitude
of about 100 mV and typically a duration of 1–2 ms.

A chain of action potentials emitted by a single neuron is called a spike train
(a sequence of stereotyped events, which occur at regular or irregular intervals).
Since all spikes of a given neuron look alike, the form of the action potential does
not carry any information. Rather, it is the number and the timing of spikes which
matter. The action potential is the elementary unit of signal transmission. Action
potentials in a spike train are usually well separated. Even with a very strong input,
it is impossible to excite a second spike during or immediately after a first one. The
minimal distance between two spikes defines the absolute refractory period of the
neuron. The absolute refractory period is followed by a phase of relative refractoriness
where it is difficult, but not impossible to excite an action potential [17].

Several spiking models have been proposed in the recent years. Models such
as the well-know Integrate-and-Fire model, Resonate-and-Fire, Izhikevich model,
FitzHugh-Nagumo model, Hodgkin-Huxley model, present different neuro-dynamic
properties [24].
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Due to its simplicity, we adopted the Izhikevich model which is described with
the next equation

Cv̇ = k (v − vr ) (v − vt ) − u + I if v ≥ vpeak then

u̇ = a {b (v − vr ) − u} v ← c, u ← u + d
(4)

As the reader can observe, this model has only nine dimensionless parameters.
Depending on the values of a and b, it can be an integrator or a resonator. The para-
meters c and d take into account the action of high-threshold voltage-gated currents
activated during the spike, and affect only the after-spike transient behavior. v is the
membrane potential, u is the recovery current, C is the membrane capacitance, vr is
the resting membrane potential, and vt is the instantaneous threshold potential [25].

The parameters k and b can be found when one knows the neuron’s rheobase
and input resistance. The sign of b determines whether u is an amplifying (b < 0)
or a resonant (b > 0) variable. The recovery time constant is a. The spike cutoff
value is vpeak , and the voltage reset value is c. The parameter d describes the total
amount of outward minus inward currents activated during the spike and affecting
the after-spike behavior. A detailed description of the model can be found in [25].

Different choices of the parameters result in various intrinsic firing patterns: RS
(regular spiking) neurons are the most typical neurons in the cortex; IB (intrinsically
bursting) neurons fire a stereotypical burst of spikes followed by repetitive single
spikes; CH (chattering) neurons can fire stereotypical bursts of closely spaced spikes;
FS (fast spiking) neurons can fire periodic trains of action potentials with extremely
high frequency practically without any adaptation (slowing down); and LTS (low-
threshold spiking) neurons can also fire high-frequency trains of action potentials,
but with a noticeable spike frequency adaptation [23].

This kind of models can, in principle, be applied to the same problems as a classic
perceptron is. However, as was reported in other papers [39, 41, 42, 44, 45], this
model can improve the accuracy of the classic perceptron even in non-linear pattern
recognition problems.

It is important to notice that the response of the Izhikevich neuron changes, when
the input current signal changes. This current provokes that the neuron generates
different firing rates. In terms of the firing rate, the spiking models are able to perform
a pattern recognition task.

The firing rate is computed as the number of spikes generated in an interval of
duration T divided by T . The neuron is stimulated during T ms with an input signal
and fires when its membrane potential reaches a specific value generating an action
potential (spike) or a train of spikes.

4 Proposed Methodology

As we described in [41], the authors in [39, 42, 44] proposed a methodology which
describes how a spiking neuron can be applied to solve different pattern recognition
problems. That methodology is based on the hypothesis that patterns belonging to
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the same class generate similar firing rates in the output of the spiking neuron. On the
contrary, patterns belonging to other classes generate firing rates different enough to
discriminate among the classes.

Following the same approach and according to [41], let D = {
xi , k

⎢p
i=1 be a set of

p input patterns where k = 1, . . . , K is the class to which xi ∈ IRn belongs. First of
all, each input pattern must be transformed into an input current I . It is important to
notice that the spiking neuron model is not directly stimulated with the input pattern
xi ∈ IRn , but with an injection current I computed from the input pattern. Since
synaptic weights of the model are directly connected to the input pattern xi ∈ IRn ,
the injection current, generated with this input pattern, can be computed as:

I = γ · x · w (5)

where wi ∈ IRn is the set of synaptic weights of the neuron model and γ = 100 is
a gaining factor that helps the neuron fire. This transformation could provoke that
more than one input pattern (from the same class) be transformed into the same or
similar current, helping the neuron to produce similar firing rates.

After that, the spiking neuron is stimulated with the input current I during T ms
and the firing rate is computed.

These three steps are applied to each input pattern. Once the firing rate of each
input has been obtained, the average firing rate AFR ∈ IRK of each class must be
computed.

The synaptic weights of the model must be adjusted in order to generate the
desired behavior in the output of the spiking neuron. This stage corresponds to the
learning (training) phase of the spiking neuron. To achieve this goal, the cuckoo
search algorithm is used as a learning strategy to train the spiking neural model.

Once the spiking neuron is trained, the firing rates produced by each input pattern
are used to determine the class to which an unknown input pattern x̃ belongs. This
is done by the next equation

cl = arg
K

min
k=1

(|AFRk − f r |) (6)

where f r is the firing rate generated by the neuron model stimulated with the input
pattern x̃.

The synapses of the neuron model w are adjusted by means of the cuckcoo search
algorithm. In order maximize the accuracy of the spiking neuron, the best set of
synaptic weights must be found. The following fitness function could be used to find
the set of synaptic weights that aids the model to generate the desired behavior:

f (w, D) = 1 − performance(w, D) (7)

where performance(w, D) is a function which follows the steps described in above
section and computes the classification rate given by the number of patterns correctly



162 R. A. Vazquez et al.

classified divided by the number of tested patterns, w are the synapses of the model
and D is the set of input patterns.

The above function makes it possible to apply the spiking neuron in different
pattern classification tasks.

4.1 Approach for Designing the Input Current Equation

We already described how input current stimulates the spiking neuron to get the
firing rate. Equation (5) is a linear combination that computes the input current on the
dendritic branches (I b) in terms of the input pattern features and the synaptic weights.

I = I b1 + I b2 + · · · + I bn−1 + I bn (8)

where I bi = xi · wi .
However, each brach could have several dendrites. One way to compute the input

current in the dendritic branch composed of several dendrites is defined as:

I b = ⎧
x p1

1 · x p2
2 · · · · · x pn−1

n−1 · x pn
n
⎨ · w (9)

where xi represents the voltage in dendrite i , pi representes the synaptic value that
interacts with dendrite i and w is the synaptic value of the branch. This equation
could be reduced to

I b =
n⎩

j=1

x
pi j
j · wi (10)

where i represents a brach of the neuron, x j represents the voltage in dendrite j , pi j

representes the synaptic value that interacts with dendrite j of brach i and wi is the
synaptic value of the branch i .

Finally, if we consider that input current in the brach could be an inhibitory or
exhitatory signal, we could introduce an operator O that forces the current to be
inhibitory or exhitatory, resulting in the following equation:

I b = Oi

n⎩

j=1

x
pi j
j · wi (11)

where O ∈ {+,−}.
Based on this equation, we can compute the input current I that stimulates the

spiking neuron model. However, it is necesary to determine the number of branches
in the neuron, if the branch emits an exhitatory or inhibitory signal as well as the
dendrites of each brach in terms of the input features. This fact leads us to the problem
of designing automatically the equation used to compute the input current.
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Instead of finding only the values of synaptic weights w as was described in
[41], the proposed methodology must also find if the branch emits an exhitatory or
inhibitory signal, the dendrites of each brach in term of the input features as well as
synaptic weights of dendrites and branches.

In order to design the equation to compute the input current we use the following
equation:

I =
m∑

i=1

Oi

n⎩

j=1

⎛
x j · si j

⎜pi j · wi (12)

where m represents the number of branches, n the number of features, i represents
a brach of the neuron, x j represents the voltage in dendrite j , pi j representes the
synaptic value that interacts with dendrite j of brach i , wi is the synaptic value of
the branch i , O ∈ {+,−} indicates if the signal is exhitatory (+) or inhibitory (−)
and si j ∈ {0, 1} indicates if feature j is associate with a dendrite in the branch i .

Based on this equation, we have to find the best values of matrix p ∈ R
m×n ,

s ∈ {0, 1}m×n , w ∈ R
m and O ∈ {+,−}m using the Cuckoo Search algorithm

that maximize the accuracy of the spiking model in terms of Eq. (7). According to
this, each nest of the Cuckoo Search algorithm will have a size of 2 (m × n) + 2m
elements.

Suppose that based on a pattern recognition problem we define m = 3 and n = 4.
Then suppose that after applying the Cuckoo Search algorithm to find the equation
to compute the input current that maximizes the accuracy of the spiking model, we
have the following matrix values:

s =
⎝

⎞
0 1 1 0
1 0 1 0
0 1 0 1

⎟

⎠ , p =
⎝

⎞
2 1 −1 2
1 3 2 1

0.1 2 −1.5 2

⎟

⎠ , O =
⎝

⎞
+
−
+

⎟

⎠

Finally, by subtituting the corresponding values obtained with the Cuckoo Search
Algorithm in Eq. (12), the equation that computes the input current is defined as:

I =
(

x1
2 x−1

3

)
· w1 − ⎛

x1
1 x2

3

⎜ · w2 + ⎛
x2

2 x2
4

⎜ · w3.

5 Experimental Results

In this section, we present the experimental results obtained with the proposed
methodology. The section is divided into three subsection. The first section presents
a comparison of the proposed methodology evolving the input current and synaptic
weights against evolving only synaptic weights using different bio-inspired algo-
rithms. In the last two subsections, we present preliminar results applying spiking
neural models using the proposed methodology for solving a crop classification
problem and an odor recognition problem.
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5.1 Analysis and Comparisson of Experimental Results

Six groups of experiments were performed in order to evaluate the accuracy of the
proposed method when the equation to compute the input current that stimulates
the spiking neuron is designed using the cuckoo search algorithm. Each group of
experiments describes a pattern recognition problem took from different datasets.
Five of them were taken from the UCI machine learning benchmark repository [31]:
iris plant, glass, diabetes, liver-bupa and wine datasets. The other one was generated
from a real object recognition problem.

The iris plant dataset describes a pattern recognition problem that classifies three
different types of iris plant in terms of four features. The wine dataset is composed
of three classes, and each input pattern is composed of 13 features. The glass iden-
tification problem tries to classify six types of glass in terms of nine features related
to their oxide content. In our case, we classified only two types of glasses. The dia-
betes dataset is composed of two classes, and each input pattern is composed of
eight features. The liver dataset is composed of two classes, and each input pattern
is composed of six features.

For the case of the real object recognition problem, a dataset was generated from
a set of 100 images which contains five different objects whose images are shown in
Fig. 1 [46]. Objects were not recognized directly from their images, but by an invari-
ant description of each object. Several images of each object in different positions,
rotations and scale changes were used. To each image of each object, a standard
thresholder [34] was applied to get its binary version. Small spurious regions were
eliminated from each image by means of a size filter [26]. Finally, the seven well-
known Hu invariant moments, to translations, rotations and scale changes [22], were
computed to build the object recognition dataset.

The parameters for the Izhikevich neuron were set as C = 100, vr = −60, vt =
−40, vpeak = 35, k = 0.7, a = 0.03, b = −2, c = −50, and d = 100. The Euler
method was used to solve the differential equation of the model with dt = 1. The
number of terms used to compute input current I from the input pattern was set to 5
with a duration of T = 1000. For the case of the cuckoo search algorithm, N = 40,
MAXGEN = 1000, pa = 0.25.

The classification rate of the model was computed as the number of input patterns
correctly classified divided by the total number of tested input patterns. To validate

Fig. 1 a, b Some of the images used to train the spiking neuron using the proposed method.
c, d Some of the images used to test the trained spiking neuron
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the accuracy of the proposed method when the spiking neuron is trained with the
cuckcoo search algorithm, 10 experiments over each dataset were performed. It is
important to notice that, for every experiment two subsets were randomly generated
from each dataset. The 80 % of the samples compose the training subset, and the
remain the testing subset.

From these experiments, we observed that when the equation for computing the
input current was included during the learning process, the learning error rapidly
decreases at the beginning of the evolutionary learning process. On the contrary,
the learning error changes at a slowly rate when a certain number of generations is
reached. Furthermore, we observed that, whereas for some problems the achieved
learning error was small, for some other problems the learning error was not good
enough. In general, the behavior of the learning error using this approach was the
same compared against the behavior when input current equation was not included
during learning process, see [41]. In Fig. 2 is shown how the learning error evolves
through each generation of the cuckoo search algorithm. Particularly, for the case of
glass, diabetes and liver problems, the error did not converge to an acceptable value.

Once the equation for computing the input current was designed and the spik-
ing neuron was trained, we proceed to evaluate the accuracy of the neuron using the
testing subset. In Table 1, we show the equations designed with the proposed method-
ology which provide the best results for each dataset. As the reader can observe, each
equation is composed of five terms and each term is composed by a combination of
some features of the dataset problem. According to the number of times the features
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Fig. 2 Evolution of training error achieved by the spiking model during the learning phase using
the cuckoo search algorithm. Ten experiments over each dataset are shown a Wine dataset. b Iris
dataset. c Glass dataset. d Diabetes dataset. e Liver dataset. f Object recognition dataset
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Table 1 Equations generated with the proposed methodology for computing input currernt

Dataset Equation generated with the proposed methodology

Wine I = −[(x−4.25
1 x1.18

3 x3.95
10 x4.70

11 )]w1 + [(x−2.65
1 x−0.10

5 x−4.00
6 x−1.11

9 x1.69
11 x−3.81

13 )]w2

+ [(x−5.00
2 x0.72

3 x−0.28
6 x−0.39

7 x1.59
11 )]w3 + [(x0.15

1 x−4.27
7 x0.89

10 x−4.18
12 )]w4

+ [(x−1.72
2 x4.14

3 x0.75
4 x−5.00

7 x4.73
8 )]w5

Iris plant I = −[(x23.54
2 x46.00

4 )]w1 − [(x−0.61
3 x−0.87

4 )]w2 − w3

−[(x17.14
2 x6.56

3 x−27.35
4 )]w4 + [(x35.60

2 )]w5

Glass I = +[(x−1.20
1 x2.28

6 x0.66
7 )]w1 − [(x−4.52

3 x4.62
4 x−5.00

5 x−3.88
7 )]w2

+[(x−1.65
1 x2.55

3 x4.73
4 x−0.54

7 )]w3 + [(x−4.44
1 x−4.14

3 x2.52
4 )]w4 + [(x−4.57

1 x−5.00
5 x4.95

8 )]w5

Diabetes I = −[(x11.59
1 )]w1 − [(x6.55

4 x2.10
5 x4.89

7 x13.99
8 )]w2 + [(x−10.17

2 x−5.36
6 x−0.56

8 )]w3

+ [(x−0.62
2 )]w4 + [(x2.98

1 x−2.67
2 )]w5

Liver I = +[(x4.24
5 )]w1 − [(x−0.44

2 x22.40
4 )]w2 − [(x−25.07

1 x−4.07
2 x−27.22

3 x4.90
4 x10.78

5 )]w3

− [(x−3.83
1 x2.39

2 x−22.43
4 x2.44

6 )]w4 + [(x6.93
1 x−4.43

2 x1.40
5 x4.98

6 )]w5

Object rec. I = −[(x1.55
2 x4.50

4 x−2.05
6 )]w1 + [(x0.80

1 x1.59
2 )]w2 + [(x1.66

3 x0.89
4 x3.60

6 x−0.36
7 )]w3

− [(x−0.74
1 x−0.24

3 x−2.13
7 )]w4 − [(x3.19

2 x4.91
5 x−2.49

7 )]w5

contribute to the equation we could figured out how relevant they are for solving the
problem. Furthermore, the exponent associated to each feature could indicate how
much contributes for solving the problem. This information could help us to perform
a reduction of the dimentionality in the dataset.

In general, the accuracy of the neuron was highly acceptable for the six datasets,
see Fig. 3. For the case of the wine, iris and object recognition, we observed that the
best percentage of classification achieved with the cuckoo search algorithm, using
the training subset was of 99.3, 99.1 and 100 %, respectively. Furthermore, the best
classification performance achieved with the testing subset was 100 % for the three
datasets, better than that achieved with the training subset.

On the contrary, for the case of the glass, diabetes and liver dataset we observed
that the best percentage of classification achieved, using the training subset was of
85.4, 79.4 and 79.7 %, respectively. This fact was provoked due to during training the
proposed method did not achieve an acceptable error. As with the previous datasets,
the accuracy of the spiking neuron increased when it is stimulated with patterns took
from the testing subset, 82.7, 82.3 and 82.1 %, respectively. The results achieved
with the spiking neuron stimulated with the input current designed with the cuckoo
search algorithm were acceptable.

In terms of the percentage of classification, we observe that the spiking neuron is
able to solve these pattern recognition problems with an acceptable accuracy. This
means that using the firing rates generated with each input pattern is possible to
perform a discrimination task, in other words, patterns from the same class generate
similar firing rates. Besides, patterns belonging to other classes generates different
firing rates. This phenomenon can be observed in Figs. 4, 5. Each Figure presents
the experimental results of two of the ten experiments done with each dataset; each



How to Generate the Input Current for Exciting a Spiking Neural Model 167

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

# of experiment

%
 o

f r
ec

og
ni

tio
n

Accuracy of the spiking neuron

Training dataset
Testing dataset

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

# of experiment

%
 o

f r
ec

og
ni

tio
n

Accuracy of the spiking neuron

Training dataset
Testing dataset

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

# of experiment

%
 o

f r
ec

og
ni

tio
n

Accuracy of the spiking neuron

Training dataset
Testing dataset

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

# of experiment

%
 o

f r
ec

og
ni

tio
n

Accuracy of the spiking neuron

Training dataset
Testing dataset

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

# of experiment

%
 o

f r
ec

og
ni

tio
n

Accuracy of the spiking neuron

Training dataset
Testing dataset

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

# of experiment

%
 o

f r
ec

og
ni

tio
n

Accuracy of the spiking neuron

Training dataset
Testing dataset

(a) (b) (c)

(d) (e) (f)

Fig. 3 Percentage of recognition obtained with the spiking neuron using the cuckoo search algo-
rithm. a Wine dataset. b Iris plant dataset. c Glasss dataset. d Diabetes dataset. e Liver dataset.
f Object recognition problem
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Fig. 4 a Spiking time obtained with the iris plant dataset. Three different firing rates which cor-
respond to three different classes can be observed. Notice that different firing rates for the same
problem were found in each experiment. b Spiking time obtained with the object recognition dataset.
Five different firing rates which correspond to five different classes can be observed. Notice that
different firing rates for the same problem were found in each experiment

spot in the plot represents a spike generated by the neuron in a time t with a pattern
p. The X axis indicates the time that the spiking neuron was stimulated by an input
pattern. With the intention of appreciating the firing rates generated by the neuron,
we decide to plot the spiking time using different periods of stimulation depending
of the dataset. The Y axis represents a label that indicates the number of patterns
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Fig. 5 a Spiking time obtained with the glass dataset. Two different firing rates which correspond
to two different classes can be observed. Notice that different firing rates for the same problem were
found in each experiment. b Spiking time obtained with the liver dataset. Two different firing rates
which correspond to two different classes can be observed. Notice that different firing rates for the
same problem were found in each experiment

used to stimulate the trained spiking neuron. These patterns are ordered by class, in
other words, the first set of p patterns belongs to the same class and the second set
of p patterns belongs to another class, and so on.

Figure 4 show the spiking time when the neuron is stimulated with patterns from
the iris and object recognition datasets. Notice that the spiking time generated with
patterns from the same class is almost the same. Therefore, the set of synaptic weights
found with the cuckoo search algorithm provokes that the Izhikevich neuron gen-
erates similar firing rates when it is stimulated with patterns from the same class.
Furthermore, we also observe that different firing rates were generated with patterns
that belong to other classes. These different firing rates make possible to apply this
methodology in a pattern classification task.

On the other hand, Fig. 5 show the experimental results obtained with the glass
and liver datasets, respectively. In this case, the set of synaptic weights found with
the cuckoo search algorithm provokes that the Izhikevich neuron does not generate
similar firing rates when it is stimulated with patterns from the same class; this fact
could cause that some patterns from the same class to be classified in a different class.
Furthermore, the Izhikevich neuron does not generate firing rates different enough
to discriminate among patterns from different classes. Do not forget that during
training phases, the methodology did not converge to a good solution. Nonetheless,
the percentage of recognition achieved with the proposed method was in general
acceptable.

The average classification rate computed from all experimental results is shown
in Table 2. The results obtained with the spiking neuron model using the proposed
methodology were compared against the results obtained with the method described
in [39, 41, 42, 44, 45]. Although with some datasets the proposed methodology
provides better results than when only synaptic weights are evolved and vice verse,
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Table 2 Average accuracy provided by the methods using different databases

Dataset Method Method Method Proposed method
using DE [39] using PSO [45] using CS [41] using CS
Tr. cr. Te. cr. Tr. cr. Te. cr. Tr. cr. Te. cr. Tr. cr. Te. cr.

Wine 0.9796 0.8744 0.9782 0.8879 0.9831 0.9078 0.9796 0.9074
Iris plant 0.9933 0.9833 0.9933 0.9700 0.9942 0.9467 0.9775 0.8967
Glass 0.8158 0.7411 0.8178 0.7457 0.8080 0.7646 0.8362 0.7251
Diabetes 0.8038 0.7371 0.7990 0.7619 0.8051 0.7477 0.7777 0.7397
Liver 0.7620 0.6870 0.7591 0.6754 0.7609 0.6536 0.7761 0.6957
Object rec. 1.0000 0.9850 1.0000 0.9950 1.0000 1.0000 1.0000 0.8750

Tr. cr.=Training classification rate, Te. cr.=Testing classification rate

we could not say that one approach is better than the other. However, the input
current equation could provide information about the importance of each feature of
the dataset problem, which could help to reduce the dimensionality of the dataset.

As was shown in previous works, one spiking neuron can be considered as an
alternative way to perform different pattern recognition tasks. Compared against
the results obtained with a network of perceptrons, the proposed method provides
better results [39]. These preliminary results suggest that evolving the equation for
computing the input current does not really help to improve the accuracy of a spiking
model; however, the information that the equation provides could help to understand
how relevant is each feature for solving the pattern recognition problem, even to
reduce the dimensionality of the pattern. We can also conjecture that if we design a
neuron model for an specific pattern recognition problem, perhaps we could improve
the experimental results obtained in this research. However, that is something that
should be proven.

Related to the meta-heuristics, the cuckoo search algorithm can be considered
as a learning strategy to adjust the synaptic weights of a third generation neural
model. Furthermore, its exploration and explotation capabilities make it possible to
automatically design the equation to compute the input current. As the experimental
results shown, the spiking neuron trained with this algorithm and using the designed
input current equation could perform a pattern classification task with an acceptable
accuracy.

5.2 Application of the Proposed Methodology in a Crop
Classification Problem

In this subsection, a remote sensing approach to crop classification is presented,
which uses information within the visible part of the electromagnetic spectrum. This
specific problem has been around approximately since 1972, with studies such as
[32] and government initiatives in the United States. It is of high importance for
those administrating food necessities, resources required in agricultural activities,
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land owners interested in yield estimation and crop rotation, etc., and method for
crop classification using remote sensing that could be completely relied on would
allow it to be cheaper, to be carried on more frequently and to be more comprehensive.

Images used in remote sensing are very different depending on the sensor used to
acquire the information. One of these sensors is the Synthetic Aperture Radar (SAR),
which captures dielectric characteristics of objects such as their structure (size, shape
and orientation). Other types of images are the ones known as multiespectral and
hiperespectral. The first ones normally refer to information captured in the visible
electromagnetic spectrum which also include near infrared or infrared bands. Hipere-
spectral images are similar to multispectral images in the sense of spatial resolution
and type of information, with the main difference being the higher band resolution
hiperespectral images have, with numbers between 128 and 256 bands, making them
a very detailed source of information. Studies working with this kind of images more
often try to reduce the number of bands as shown in [18, 37].

One of the biggest disadvantages, of using radar or multiespectral and hipere-
spectral images is the fact that they are not accessible to everyone, at least not in the
sense of one being able to go online in the internet locating a region and appling a
classification technique to that region.

In this subsection, an approach which focuses on satellite obtained images of data
within the visible electromagnetic spectrum is presented. With the main objective of
reducing the requirements imposed on the characteristics of the information used for
the classification process. A comparison of the performance of two feature extraction
and three classification algorithms is performed. For feature extraction Gray Level
Co-Occurrence Matrix (GLCM) [19] and Color Average Features (CAF) are used.
While the classifying process is done with a Radial Basis Function Neural Network
(RBFNN) [36], a Bayesian classifier [11] and a spiking neuron trained with the
proposed methodology.

The images used to test the accuracy of the proposed methodology were obtained
from the National Institute of Statistics and Geography (INEGI, according to its
acronym in Spanish). This type of image has only three bands, one for the red part
of the spectrum, one for the blue and another one for the green. Its quantification is
of 8 bits per pixel on each band and the spatial resolution of 1 meter per pixel, with
a total size of 5946 pixels width and 7071 pixels height.

The information was captured on December of 2008, over the region on the
coordinates with a northwest corner in 222755.0, 2331410.0 and a southeast corner
in 228701.0, 2324339.0. It has a scale of 1:40,000 and has been orthorectified with
the help of geodetic control points and Digital Elevation Model.

Once obtained the image, we defined a crop classification problem for recognizing
two diffent types of crops. To apply the proposed methodology, a computer program
was developed to help manually segment the data; a screen capture of this program is
shown on Fig. 6. Segmentation was done by visually defining polygons that covered
single types of crops.

With this software a total of 72 polygons were defined over the image; each of
them belonging to one and only one crop class. Polygon counts for each class were
roughly the same, although each polygon had different areas. The classes of these
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Fig. 6 Image used for crop classification problem

polygons are identified by crop 1 and crop 2. This can be done because given the
resolution of the image it is considerable easy to visually identify which fields belong
to the same crop. And this helps to generalize the results for any crop besides the
ones that are being tested.

With all the polygons identified the next step was to obtain their characteristics
using GLCM and CAF over each color band. For the co-occurrence matrix a window
sizes of 50 × 50 pixels were selected in combination with a neighborhood relationship
of (1, 1). The reasons for setting the window size was because via experimentation
it was found that windows smaller than 5 squared pixels did not offer enough data to
characterize a sample, and windows bigger than 50 × 50 pixels made the number
of patterns recovered from the polygons to be very small. After applying the feature
extraction technique over the polygons using a window of 50 × 50 pixels, we built
a dataset composed of 620 patterns with 24 features per pattern.

The same window size was used for the CAF. But before obtaining this descriptor
three image preprocessing steps were performed. The first was a histogram correc-
tion, making it wider so theres a little bit more of contrast; the second one was to
apply a sigmoid function to the histogram, which made bright colors brighter and
dark colors darker; and finally a Gaussian blur filter was applied with a kernel of
25 pixels, which results in an effect similar to that obtained when applied a Wavelet
transformation and keeping the approximation coefficients. After applying the fea-
ture extraction technique over the polygons using a window of 50×50 pixels, we
built a dataset composed of 620 patterns with 4 features per pattern.
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The parameters for the Izhikevich neuron were set as C = 100, vr = −60,
vt = −40, vpeak = 35, k = 0.7, a = 0.03, b = −2, c = −50, and d = 100.
The Euler method was used to solve the differential equation of the model with
dt = 1. The number of terms used to compute input current I from the input pattern
was set to 5 with a duration of T = 1000. For the case of the cuckoo search algorithm,
N = 40, MAXGEN = 1000, pa = 0.25.

For the case of the RBFNN, we used an hybrid topology composed of three layers.
The first layer performs a mean centering and is composed of the same amount of
neurons as the size input pattern, second layer is composed of two RBF neurons
and finally the output layer is composed of one logarithmic tangential neuron. The
centers were initialized using k-means and the standard deviation was set to 0.5.
The learning rate parameters for adjusting synaptic weights, centers and standard
deviations were set to 0.1, 0.001 and 0.0001, respectively. The RBFNN was trained
during 5000 iterations.

The classification rate of the spiking model as well as the bayes classifier and
RBFNN was computed as the number of input patterns correctly classified divided
by the total number of tested input patterns. Thirty experiments over each dataset
were performed to validate the accuracy of the proposed method when the equation
for computing the input current that stimulates the spiking neuron is generated with
the cuckcoo search algorithm. It is important to notice that, for every experiment
two subsets were randomly generated from each dataset. The 50 % of the samples
compose the training subset, and the remain the testing subset.

Table 3 present a comparisson of the different classification methods used to per-
form a crop classification.

After these experiment, it is observed that Co-Occurrence Matrix on windows of
50 pixels, combined with any classifier gives us the best classification percentages.
This leads us to believe that although there is important color information contained in
the crop windows, it is even more discriminatory the textural information. Concerning
to the results obtained with the proposed methodology, we observed that one spiking
neuron provides similar results compared with the results obtained with the bayes
classifier and better results compared with the results obtained with a RBF neuron.

In this case the equation, designed with the proposed methodology to compute
the input current, that best result provides was defined as:

I = − [(x67.40
1 )]w2 − [(x−55.38

1 x15.20
2 x8.02

3 )]w3

+ [(x32.63
2 x−2.59

3 )]w4 + [(x−10.47
2 )]w5
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Table 3 Average accuracy obtained with the classification method for the crop classification prob-
lem

Dataset Bayes RBFNN Proposed method
Classifier classifier using CS
Tr. cr. Te. cr. Tr. cr. Te. cr. Tr. cr. Te. cr.

CAF 1 1 0.8522 0.8341 1 0.9984
GLCM 1 0.9986 1 1 0.9980 0.9974

Tr. cr.=Training classification rate, Te. cr.=Testing classification rate

when the CAF feature extraction method was used, and

I = + [(x−4.9
6 x3.8

7 x2.6
8 x2.6

10 x−0.4
12 x1.1

13 x3.9
14 x−3.6

15 x−3.8
16 x4.1

17 x−2
18 x2.3

20 x−2.7
22 x4.3

24 )]w1

− [(x1.4
9 x0.9

11 x1.4
15 x−5

16 x3.2
19 x−3.4

20 x0.9
21 x5

23)]w2

− [(x−5
3 x0.3

4 x4.7
5 x1.7

6 x1.09
7 x1.1

8 x5
9 x1.09

12 x4.2
13 x2.1

14 x−0.6
15 x0.7

16 x−4.1
24 )]w3

+ [(x0.8
2 x−1.4

4 x−4.6
7 x4.9

10 x1.2
11 x4.9

12 x4.7
14 x−3.2

15 x−1.1
16 x3.7

17 x2.1
18 x3.2

21 x−4.8
22 x3.6

23 x1.1
24 )]w4

+ [(x−1.4
1 x1.3

2 x−0.3
3 x4.7

4 x4.9
5 x−3.8

13 x0.1
15 x−0.8

16 x−4.8
17 x0.2

19 x−3.5
20 x1.3

21 x−3
23 )]w5

when the GLCM feature extraction method was used.
These results support that the proposed approach can be consider as a pattern

recognition method useful in a wide range of applications.

5.3 Application of the Proposed Methodology in a Odor
Recognition Problem

In this subsection, we present some preliminar results obtained with the proposed
methodology in a problem related to odor recognition. Several works have been
developed in the line of biological odor system emulation in different applications
such as: edible oil classification, industrial process control, fragrances and cosmet-
ics development, narcotics detection, explosives detection, biometrical identification
systems, environment care, medical diagnosis, etc. [5, 33].

The sensors role is crucial for the proper system performance, sensitivity relays on
sensors characteristics, various ideas have been proposed to improve sensing capa-
bility, like sensor precise functionality analysis, test conditions, and the combination
of different sensor types [4, 50].

Another key factor for proper odor detection and classification is the pattern
recognition algorithm, in this area several research projects have been developed
using neural networks, bionic networks and biological inspired models among others
[8, 10, 14, 40].
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Although, the embedded systems group at our university has started to design and
built an electronic noise prototype, considering sensors capable to obtain relevant
data from odor samples, data adjustment and interpretation performed by a micro-
controller firmware, and simple and efficient recognition system, we prefered to use
a standard dataset to test the accuracy of the proposed methodology.

The dataset used was building in [8] where the authors developed an automated
gas delivery experimental setup for extracting volatile compounds at given concen-
trations from liquids, composed of two pumps, two mass flow controllers (MFCs),
one bubbler, a gas chamber and a data acquisition system. This dataset contains pat-
terns obtained from Ethanol or butanol vapors injected into the gas chamber at a flow
rate determined by the mass flow controllers. The authors also used sensor arrays
composed of five commercial TGS Figaro gas sensors (TGS 2600, 2602, 2610, 2611
and 2620). The potential differences across the sensor resistances were measured
using a voltage divider with 2.2 k load resistors while keeping the heating voltage
constant to 5 V. Finally, the sensors output voltages were sampled at a rate of 10 Hz
and quantized with an 11 bit analog to digital converter to buildt a dataset composed
of 124 patterns with 5 features each pattern.

As equal as in previous subsection, the parameters for the Izhikevich neuron were
set as C = 100, vr = −60, vt = −40, vpeak = 35, k = 0.7, a = 0.03, b = −2,
c = −50, and d = 100. The Euler method was used to solve the differential equation
of the model with dt = 1. The number of terms used to compute input current I
from the input pattern was set to 5 with a duration of T = 1000. For the case of the
cuckoo search algorithm, N = 40, MAXGEN = 1000, pa = 0.25.

For the case of the RBFNN, we used an hybrid topology composed of three layers.
The first layer performs a mean centering an is composed of five neurons, seconf
layer is composed of two RBF neurons and finally the output layer is composed
of one logarithmic tangential neuron. The centers were initialized using k-means
and the standard deviation was set to 0.5. The learning rate parameters for adjust-
ing synaptic weights, centers and standard deviations were set to 0.01, 0.0001 and
0.00001, respectively. The RBFNN was trained during 10000 iterations.

The classification rate of the spiking model as well as the RBFNN was computed as
the number of input patterns correctly classified divided by the total number of tested
input patterns. Ten experiments over each dataset were performed to validate the
accuracy of the proposed method when the equation for computing the input current
that stimulates the spiking neuron is generated with the cuckcoo search algorithm. It is
important to notice that, for every experiment two subsets were randomly generated
from each dataset. The 80 % of the samples compose the training subset, and the
remain the testing subset.

Table 4 present a comparisson of the proposed methodology against a RBFNN
applied to an odor recognition problem. According to the results presented in Table 4,
the reader can observe that the accuracy of the spiking neuron is slighly better than
the accuracy obtained with the RBFNN. Furthermore, we had to perform several
experiments to determine the best values for the RBFNN parameters. It is important
to remark that, for the case of the spiking neuron and the proposed methodology, all
experiments presented in this chapter were done using the same set of parameters.
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Table 4 Average accuracy obtained with the proposed methodology and a RBFNN applied to an
odor recognition problem

Dataset RBFNN Proposed method
classifier using CS
Tr. cr. Te. cr. Tr. cr. Te. cr.

Odor dataset 0.9647 0.9309 0.9627 0.9472

Tr. cr.=Training classification rate, Te. cr.=Testing classification rate

In this case the equation, designed with the proposed methodology to compute
the input current, that best result provides was defined as:

I = + [(x15.15
1 x15.53

4 x−59.83
5 )]w1 − [(x−10.08

1 x−24.31
4 )]w2 − [(x23.56

1 x−78.41
2 x−16.66

4 )]w3

+ [(x7.46
2 x30.91

3 x34.35
4 x28.13

5 )]w4 + [(x−23.37
2 x33.97

3 x−105.69
5 )]w5

These results obtained with the proposed methodology confirm that spiking neu-
rons can be consider as a pattern recognition technique useful in a wide range of
applications, including odor recognition.

6 Conclusions

In this paper, we described how the cuckcoo search algorithm can be applied to design
an equation to compute the input current that stimulates a spiking neural network.
The experimental results obtained with the spiking neuron model suggest that cuckoo
search algorithm is a good alternative to adjust the synaptic weights of the neuron
and design the equation to compute the input current. Through the experimental
resuls we observed that the spiking neuron combined with this approach, provides
acceptable results during the solution of pattern recognition problems.

In general, the behavior achieved with the spiking neuron satisficed that patterns
belonging to the same class generate almost the same firing rate in the output of
the spiking neuron, and patterns belonging to different classes generate firing rates
different enough to discriminate among the different classes. Thank to the cuckoo
search algorithm used during the evolutionary learning process, the spiking model
behaves like that.

We also observed that the spiking neuron did not behave as good as we desired
with the liver dataset and crop classification problem. Nonetheless, the percentage
of recognition with the iris, wine, object recognition, diabetes, glass datasets and the
ordor recognition problem was highly acceptable.

In addition, a comparison between the proposed methodology and three bio-
inspire algoritmhs (cuckoo search, particle swarm optimization and differential
evolution) was performed. From all set of experimets we observe that the results
obtained with the proposed methodology, evolving the equation to compute the
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input current, were slighly better than those obtained with the method described in
[39, 41, 42, 44, 45]. Although with some datasets the proposed methodology pro-
vides better results than other algorithms, we could not say that one learning strategy
is better than the other.

Concerning to the design of the equation to compute the input current, we could
remark some advantages: according to the number of times that the features contribute
to the equation we could figured out how relevant they are for solving the problem;
furthermore, the exponent associated to each feature could indicate how much it
contributes for solving the problem. This information could help us to perform a
reduction of the dimentionality of the dataset. However, designing the equation to
compute the input current do not really help to improve the accuracy of a spiking
model applied in a pattern recognition task.

Nowadays, we are exploring the way to develop automatically new spiking neuron
models using bio-inspired algorithms. Despite the good results achieved with this
methodology, we are developing a new methodology to design netwoks of spiking
neurons, evolving at the same time the synaptic weights, topology, and the spiking
neuron model.

Acknowledgments The authors would like to thank CONACYT-INEGI and Universidad La Salle
for the economical support under grant number 187637 and I-061/12, respectively.

References

1. A chaos synchronization-based dynamic vision model for image segmentation. 5, (2005)
2. Exploration of rank order coding with spiking neural networks for speech recognition. 4, (2005)
3. Abdull Hamed, H.N., Kasabov, N., Michlovský, Z., and Shamsuddin, S.M.: String pattern

recognition using evolving spiking neural networks and quantum inspired particle swarm opti-
mization. In: Proceedings of the 16th International Conference on Neural Information Process-
ing. Part II, ICONIP ’09, LNCS, pp. 611–619. Springer-Verlag, Heidelberg (2009)

4. Balasubramanian, S., Panigrahi, S., Logue, C., Gu, H., Marchello, M.: Neural networks-
integrated metal oxide-based artificial olfactory system for meat spoilage identification.
J. Food Eng. 91(1), 91–98 (2009)

5. Baldwin, E.A., Bai, J., Plotto, A., Dea, S.: Electronic noses and tongues. Applications for the
food and pharmaceutical industries. Sensors 11(5), 4744–4766 (2011)

6. Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A levy flight for light. Nature 453, 495–498
(2008)

7. Belatreche, A., Maguire, L.P., and McGinnity, T.M.: Pattern recognition with spiking neural
networks and dynamic synapse. In: International FLINS Conference on Applied Computational
Intelligence, pp. 205–210 (2004)

8. Bermak, A., Martinez, D.: A compact 3d vlsi classifier using bagging threshold network ensem-
bles. IEEE Trans. Neural Netw., 14(5), 1097–1109 (2003)

9. Bohte, S.M., Kok, J.N., Poutre, H.L.: Error-backpropagation in temporally encoded networks
of spiking neurons. Neurocomputing 48(1–4), 17–37 (2002)

10. Chen, H.T., Ng, K.T., Bermak, A., Law, M., Martinez, D.: Spike latency coding in biologically
inspired microelectronic nose. IEEE Trans. Biomed. Circ. Syst., 5(2), 160–168 (2011)

11. Devroye, L., Györfi, L., Lugosi, G.: A probabilistic theory of pattern recognition. Springer,
Heidelberg (1996)



How to Generate the Input Current for Exciting a Spiking Neural Model 177

12. Di Paolo, E.: Spike-timing dependent plasticity for evolved robots. Adapt. Behav., 10, 243–263
(2002)

13. Floreano, D., Zufferey, J.-C., Nicoud, J.-D.: From wheels to wings with evolutionary spiking
neurons. Artif. Life, 11(1–2), 121–138 (2005)

14. Fu, J., Li, G., Qin, Y., Freeman, W.J.: A pattern recognition method for electronic noses based
on an olfactory neural network. Sens. Actuators B: Chemical, 125(2), 489–497 (2007)

15. Garro, B., Sossa, H., and Vazquez, R.: Design of artificial neural networks using a modified
particle swarm optimization algorithm. In: International Joint Conference on Neural Networks.
IJCNN, pp. 938–945 (2009)

16. Garro, B.A., Sossa, H., and Vázquez, R.A.: Design of artificial neural networks using dif-
ferential evolution algorithm. In: Proceedings of the 17th International Conference on Neural
Information Processing: models and applications, Vol. Part II, pp. 201–208, ICONIP’10, LNCS,
Springer-Verlag, Heidelberg (2010)

17. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Single Neurons, Populations. Cambridge
University Press, Plasticity (2002)

18. Gomez-Chova, L., Calpe, J., Camps-Valls, G., Martin, J., Soria, E., Vila, J., Alonso-Chorda, L.,
Moreno, J.: Feature selection of hyperspectral data through local correlation and sffs for crop
classification. In: Geoscience and Remote Sensing Symposium. IGARSS ’03. Proceedings.
IEEE, International, vol. 1, pp. 555–557 (2003)

19. Haralick, R., Shanmugam, K., and Dinstein, I.: Textural features for image classification. IEEE
Trans. Syst. Man Cybern., SMC, 3(6): 610–621 (1973)

20. Hasselmo, M.E., Bodelón, C., Wyble, B.P.: A proposed function for hippocampal theta rhythm:
separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput.
14, 793–817, April 2002

21. Hopfield, J.J., Brody, C.D.: What is a moment Cortical sensory integration over a brief interval.
Proc. Natl. Acad. Sci., vol. 97 (25), 13919–13924, Dec 2000

22. Hu, M.-K.: Visual pattern recognition by moment invariants. IEEE Trans. Inform. Theory, 8(2),
179–187, Feb 1962

23. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw., 14(6), 1569–
1572, Nov 2003

24. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw.,
15(5), 1063–1070, Sept 2004

25. Izhikevich, E.M.: Dynamical systems in neuroscience: the geometry of excitability and burst-
ing. MIT Press, Computational Neurosci. (2007)

26. Jain, R., and Schunck, R.K.B.G.: Machine Vision. McGraw-Hill, New York (1995)
27. Karaboga, D., Akay, B., and Ozturk, C.: Artificial bee colony (abc) optimization algorithm

for training feed-forward neural networks. In: Proceedings of the 4th International Conference
on Modeling Decisions for Artificial Intelligence, MDAI ’07, LNCS, pp. 318–329, Springer-
Verlag, Heidelberg (2007)

28. Karaboga, D., and Basturk, B.: Artificial bee colony (abc) optimization algorithm for solving
constrained optimization problems. In: IFSA (1)’07, LNCS, pp. 789–798 (2007)

29. Kennedy, J., and Eberhart, R.: Particle swarm optimization. In: Proceedings. IEEE Int. Conf.
Neural Netw. (1995) vol. 4, pp. 1942–1948, Aug 2002

30. Maass, W., Graz, T.U.: Networks of spiking neurons: the third generation of neural network
models. Neural Netw. 10, 1659–1671 (1997)

31. Murphy, P., Aha, D.: UCI Repository of machine learning databases. Technical report, Uni-
versity of California, Department of Information and Computer Science, Irvine, CA, USA
(1994)

32. Nagy, G., Tolaba, J.: Nonsupervised crop classification through airborne multispectral obser-
vations. IBM J. Res. Dev. 16(2), 138–153 (1972)

33. Oh, E.H., Song, H.S., Park, T.H.: Recent advances in electronic and bioelectronic noses and
their biomedical applications. Enzym. Microb. Tech. 48(67), 427–437 (2011)

34. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man
Cybern. 9(1), 62–66, Jan 1979



178 R. A. Vazquez et al.

35. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution a practical approach to global
optimization. Nat. Comput. Ser. Springer-Verlag, Berlin (2005)

36. Schwenker, F., Kestler, H.A., Palm, G.: Three learning phases for radial-basis-function net-
works. Neural Netw. 14(45), 439–458 (2001)

37. Senthilnath, J., Omkar, S.N., Mani, V., and Karnwal, N.: Hierarchical artificial immune system
for crop stage classification. In: Annuals IEEE India Conference (INDICON), pp. 1–4 (2011)

38. Thorpe, S.J., Guyonneau, R., Guilbaud, N., Allegraud, J.-M., and VanRullen R.: Spikenet: real-
time visual processing with one spike per neuron. Neurocomputing, 58–60:857–864 (2004).
(Comput. Neurosci.: Trends Res. 2004)

39. Vazquez, R.: Izhikevich neuron model and its application in pattern recognition. Aust. J. Intell.
Inf. Process. Syst. 11(1), 35–40 (2010)

40. Vazquez, R.: A computational approach for modeling the biological olfactory system during
an odor discrimination task using spiking neuron. BMC Neurosci. 12(Suppl 1), p. 360 (2011)

41. Vazquez, R.: Training spiking neural models using cuckoo search algorithm. In: IEEE Congress
on Evolutionary Computation (CEC), pp. 679–686 (2011)

42. Vazquez, R., and Cacho andn, A.: Integrate and fire neurons and their application in pattern
recognition. In: 7th International Conference on Electrical Engineering Computing Science
Automatic Control (CCE), pp. 424–428 (2010)

43. Vazquez, R., Sossa, H., Garro, B.: 3d object recognition based on some aspects of the infant
vision system and associative memory. Cognitive Comput. 2, 86–96 (2010)

44. Vázquez R.A.: Pattern recognition using spiking neurons and firing rates. In: Proceedings of the
12th Ibero-American Conference on Advances Artificial Intelligence, IBERAMIA’10, LNAI,
pp. 423–432, Springer-Verlag, Heidelberg (2010)

45. Vázquez, R.A., and Garro, B.A.: Training spiking neurons by means of particle swarm opti-
mization. In: Proceedings of the Second International Conference on Advances in Swarm
Intelligence, vol. Part I, ICSI’11, pp. 242–249. Springer-Verlag, Heidelberg (2011)

46. Vazquez Espinoza De Los Monteros, R.A., and Sossa Azuela, J.H.: A new associative model
with dynamical synapses. Neural Process. Lett., 28:189–207, Dec 2008

47. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., Raposo, E.P., Stanley, H.E.:
Optimizing the success of random searches. Nature 401, 911–914 (1999)

48. Yang, X.-S.: 1-optimization and metaheuristic algorithms in engineering. Metaheuristics in
water, geotechnical and transport engineering, pp. 1–23. Elsevier, Oxford (2013)

49. Yang, X.-S., and Deb, S.: Cuckoo search via levy flights. In: World Congress on Nature Bio-
logically Inspired Computing, NaBIC, pp. 210–214 (2009)

50. Yin, Y., Yu, H., Zhang, H.: A feature extraction method based on wavelet packet analysis for
discrimination of chinese vinegars using a gas sensors array. Sens. Actuators B: Chemical
134(2), 1005–1009 (2008)



Multi-Objective Optimization of a Real-World
Manufacturing Process Using Cuckoo Search

Anna Syberfeldt

Abstract This chapter describes the application of Cuckoo Search in simulation-
based optimization of a real-world manufacturing process. The optimization problem
is a combinatorial problem of setting 56 unique decision variables in a way that
maximizes utilization of machines and at the same time minimizes tied-up capital.
As in most real-world problems, the two optimization objectives are conflicting and
improving performance on one of them deteriorates performance of the other. To
handle the conflicting objectives, the original Cuckoo Search algorithm is extended
based on the concepts of multi-objective Pareto-optimization.

Keywords Cuckoo search ·Simulation-based optimization ·Multi-objective problem

1 Introduction

Discrete-event simulation combined with optimization, so called simulation-based
optimization, is a powerful method to improve real-world systems [1]. While tradi-
tional, analytical optimization methods have been unable to cope with the challenges
imposed by many simulation-based optimization problems in an efficient way, such
as multimodality, non-separability and high dimensionality, so called metaheuristic
algorithms have been shown to be applicable to this type of problem [2][3]. Meta-
heuristic algorithms are powerful stochastic search algorithms with mechanisms
inspired from natural science. A metaheuristic algorithm optimizes a problem by
iteratively improving one or several candidate solution(s) with regard to a given
objective function. The algorithms are not guaranteed to find the optimal solution
for the given problem, but are instead computationally fast and make no explicit
assumptions about the underlying structure of the function to be optimized. These
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properties make them well suited for simulation-based optimization as the simulation
is often time consuming and can be seen as a black-box [4].

There exist plenty of metaheuristic algorithms, among the most well-known
including simulated annealing, tabu search, and genetic algorithms. One of the most
recently proposed is called Cuckoo Search, which is inspired by the parasitic breeding
behavior of cuckoos [5, 6]. Several studies indicate that Cuckoo Search is a powerful
algorithm and successful results have been achieved in various applications such as
welded beam design, nurse scheduling and wireless sensor networks [7–9]. A review
of the literature, however, reveals no applications in manufacturing optimization and
the aim of this study is therefore to investigate the algorithm’s performance in this
domain.

A real-world problem of engine manufacturing at a Volvo factory in Sweden is
focus of the study. In short, the problem is about finding the best prioritization of
the different engine components being simultaneously processed in a manufacturing
line. Basically, this is a combinatorial problem involving the setting of 56 unique
decision variables. The prioritization is used to determine which specific component
has precedence when two or more components are available at a machine or station.
Based on the priorities, it is possible to create a schedule showing which component
should be processed in which machine at each point in time. However, finding an effi-
cient processing schedule is not trivial, due to the considerable complexity of the cell
in combination with a fluctuating inflow and resource constraints. This fact has raised
a need to perform automatic simulation-optimizations and has motivated an evalua-
tion of different algorithms for this purpose. To perform simulation-optimizations, a
discrete-event simulation of the model is constructed by simulation experts at Volvo
using the SIMUL8 software. The next section of this chapter presents the optimiza-
tion in further detail.

2 Real-World Manufacturing Optimization

In Volvo’s manufacturing line under study, engine components of eleven different
types are being processed. The line includes ten different processing stations that
can perform single or multiple operations (including for example burring, welding,
and assembly). The operations performed at a specific station and the tools used
vary depending on the type of component. The high degree of variety in process-
ing of different components, in combination with a fluctuating inflow and several
resource constraints, make it virtually impossible to plan the production manually in
an efficient way. Automatic optimizations are instead needed, and for this purpose a
discrete-event simulation model of the line has been developed by simulation experts
at the company using the SIMUL8 software package.1 The simulation model has a
front-end interface developed in Excel, which facilitates the user in entering input
parameters to the model without the need to learn the simulation language. Valid-

1 www.simul8.com

www.simul8.com
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ity tests indicate that the simulation model represents reality well, and the model is
generally accepted among operators working in the line.

The optimization problem to be solved using the simulation model consists of
constructing a processing schedule for the manufacturing line by setting 56 unique
decision variables. These variables basically represent the order of operations for
different components and also which component has precedence in case of queues in
front of machines. According to the company, a processing schedule should prefer-
ably be configured so that a high utilization of all machines is achieved, as these
involve expensive investments. The company has also stated that it is important
to reduce tied-up capital by minimizing each component’s lead time (that is, the
time between a component entering and exiting the line). Altogether there are two
objectives that must be considered simultaneously in the optimization process: (a)
utilization, and (b) tied-up capital.

For high utilization, a large number of components within the line is needed in
order to avoid machine starvation. However, a large number of components imply
occasional queues in front of some machines, which results in longer lead-times for
components and thereby tied-up capital. In relation to each other, the two objectives
of maximal utilization and minimal tied-up capital are therefore conflicting. No single
optimal solution with respect to both objectives exists, as improving performance on
one objective deteriorates performance of the other objective.

One way to handle conflicting objectives is to derive a set of alternative trade-offs,
so called Pareto-optimal solutions [10]. Figure 1 illustrates the Pareto concept for a
minimisation problem with two objectives f1 and f2. In this example, solution A-D
are non-dominated, i.e. Pareto optimal, since for each of these solutions there exist
no other solution that is superior in one objective without being worse in another
objective. Solution E is dominated by B and C (but not by A or D, since E is better
than these two in f1 and f2, respectively).

Although it is important to find as many (trade-off) optimal solutions as possible
in multi-objective optimisation, the user needs only one solution regardless of the
number of objectives [10]. Which of the optimal solutions to choose is up to the user
to decide based on previous experiences and qualitative information (for example,
ergonomic conditions or set-up of factory workers for the day).

Fig. 1 Illustration of
dominance

f1

A

B
E

f2

C

D
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3 Cuckoo Search

This section presents the optimization of the manufacturing line using the Cuckoo
Search algorithm.

3.1 Algorithm Description

In nature, cuckoos lay eggs in other birds’ nests and rely on those other birds to rear
the cuckoo’s offspring. According to the so called “selfish gene theory” proposed by
Dawkins in 1989 [11], this parasitic behavior increases the chance of survival of the
cuckoo’s genes since the cuckoo needs not expend any energy rearing its offspring.
Instead, the cuckoos can spend more time on breeding and thereby increasing the
population. However, the birds whose nests are invaded have developed counter
strategies and increasingly sophisticated ways of detecting the invading eggs.

These behaviors found in nature are utilized in the Cuckoo Search algorithm in
order to traverse the search space and find optimal solutions. A set of nests with one
“egg” (candidate solution) inside are placed at random locations in the search space.
A number of “cuckoos” traverse the search space and records the highest objective
values for different encountered candidate solutions. The cuckoos utilize a search
pattern called Lévy flight which is encountered in real birds, insects, grazing animals
and fish according to Viswanathan et al. [12]. The Lévy flight is characterized by
a variable step size punctuated by 90-degree turns, as can be seen in Fig. 2. The
large steps occasionally taken make the algorithm suitable for global search. Lévy
flights, according to Yang [6] and Gutowski [13], are more efficient for searching
than regular random walks or Brownian motions.

Lévy flights are used in the Cuckoo Search algorithm to globally explore the search
space, while local random walks are used for exploitation. A switching parameter
pa is used to balance between exploration and exploitation. Eq. 1 describes how the

Fig. 2 Example of Lévy flight
starting at [0,0]
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local walks are performed.

x(t+1)
i = x(t)

i + σs⊕ H(pa − Ω)⊕
(

x(t)
j − x(t)

k

)
(1)

In the equation, xj and xk are two different solutions randomly selected, is H a
Heaviside function, is a random uniform number, and is the step size. The global
random search using the concept of Lévy flights are described in Eq. 2.

x(t+1)
i = x(t)

i + σLévy(s, α) (2)

In the equation, σ > 0 represents the step size scaling factor, and this must be
fine-tuned for the specific problem at hand. Yang [6] advocates the use of σ as
σ = O(L/100), where L represents the difference between the maximum and min-
imum valid value of the given problem. In order to implement the Lévy flight, a
fast algorithm needed to be used to approximate the Lévy distribution. Leccardi [14]
compared three different approaches to generating Lévy distributed values and found
that the algorithm published in [14] proved to be the most efficient. Mantegna’s algo-
rithm is divided into three steps in order to generate the step length, in Eq. 3 needed
for the Lévy flight.

s = u

|γ| 1β
(3)

The parameters u and γ are given by the normal distributions in Eq. 4.

u = N(0, ρ 2
u ), γ = N(0, ρ 2

γ ) (4)

The variance, ρ , is calculated as Eq. 5 with 1 ≤ β ≤ 2 and where �(z) is the
gamma function.

ρu =
{

�(1+ β) sin(Πβ/2)

�[(1+ β)/2]β2(β−1)/2

} 1
β

, ργ = 1 (5)

Cuckoo Search is a population based, elitist, single-objective optimization algo-
rithm. The pseudo code for the algorithm is presented in Fig. 3 [5]. Note that only
two parameters need to be supplied to the algorithm; the discovery rate pa Δ [0, 1]
and the size of the population, n. When n is fixed, pa controls the elitism and the
balance of randomization and local search [6]. The fact that the algorithm comes
with just two parameters does not only increase the ease of implementation, but also
potentially makes it a more general optimization solution to be applied to a wide
range of problems.

The real-world problem to be optimized by Cuckoo Search in this study involves
the optimization of two objectives. The next section of this chapter describes how
the algorithm is adjusted to consider more than one objective.



184 A. Syberfeldt

Generate initial population of n host nests 
while (t < MaxGeneration or stopCriterionFulfilled) 
 Generate a solution by Lévy flights and then evaluate its quality/fitness Fi

 Choose a nest among n (say, j) randomly 
if (Fi > Fj ),

  Replace j by the new solution 
end 

 Abandon the pa nests with worst quality and build new ones 
 Keep best solutions/nests 
 Rank the solutions/nest and find the current best 
 Pass the current best to the next generation. 
end while 

Fig. 3 Pseudo code for Cuckoo Search with Lévy flight

3.2 Multi-Objective Extension

In order to convert Cuckoo Search from a single-objective optimization algorithm
into multi-objective optimization algorithm, concepts from an existing Pareto-based
algorithm is used, namely elitist non-dominated sorting genetic algorithm (NSGA-
II). NSGA-II is a widely used multi-objective algorithm that has been recognized
for its great performance and is often used for benchmarking [16]. The pseudo-code
for NSGA-II can be seen in Fig. 4 and for details about the algorithm the reader is
referred to [17].

In the NSGA-II algorithm, the selection of solutions is done from a set R, which
is the union of a parent population and an offspring population (both of size N) [18].
Non-dominated sorting is applied to R and the next generation of the population
is formed by selecting solutions from one of the fronts at a time. The selection
starts with solutions in the best Pareto front, then continues with solutions in the
second best front, and so on, until N solutions have been selected. If there are more
solutions in the last front than there are remaining to be selected, niching is applied
to determine which solutions should be chosen. In other words, the highest ranked
solutions located in the least crowded areas are the ones chosen. All the remaining
solutions are discarded. The selection procedure is illustrated in Fig. 5 (adopted from
[10]).

The concept of non-dominated sorting utilized in the NSGA-II algorithm has been
used to create a multi-objective extension of Cuckoo Search (a similar approach is
presented in [19]). Besides the non-dominated sorting procedure, other differences
between NSGA-II and the new version of the Cuckoo Search algorithm include the
use Lévy flights instead of mutation and the abandonment and movement of nests
instead of crossover. The pseudo code for the multi-objective version of Cuckoo
Search is presented in Fig. 6.

The next section of this chapter presents results from applying the multi-objective
version of Cuckoo Search on the real-world manufacturing problem.
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Initialize Population 
Generate N random solutions and insert into Population 
for (i = 1 to MaxGenerations) do
 Generate ChildPopulation of size N 
 Select Parents from Population 
 Create Children from Parents 
 Mutate Children 
 Combine Population and ChildPopulations into CurrentPopulation with size  

2N
for each individual in CurrentPopulation do

Assign rank based on Pareto – Fast non-dominated sort 
 end for 
 Generate sets of non-dominated vectors along PF known

 Loop (inside) by adding solutions to next generation of Population starting  
       from the best front 
   until N solutions found and determine crowding distance between  
              points on each front 
end for 
Present results 

Fig. 4 Pseudo code for NSGA-II

Population

Offspring

Front 1

Front 2

Front 3

Rejected

Population

Non-dominated 
sorting

Niching
R

Fig. 5 Non-dominated sorting
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Initialize Population 
Generate N random solutions and insert into Population 
for (i = 1 to MaxGenerations) do
 Generate ChildPopulation using Cuckoo Search (pseudo code in Fig. 3)
 Non-dominated-sort 

for each individual in CurrentPopulation do
  Generate sets of non-dominated vectors along PFknown

  Loop (inside) by adding solutions to next generation starting from the   
best front 

       until N solutions found and determine crowding distance between  
                  points on each front 

end for 
end for 
Present results 

Fig. 6 Pseudo code for the proposed multi-objective Cuckoo Search

4 Evaluation

4.1 Configuration

As previously mentioned in Sect. 2 of this chapter, the real-world manufacturing
problem is basically a combinatorial problem with 56 unique decision variables rep-
resenting a processing schedule. The proposed multi-objective extension of Cuckoo
Search is applied on the problem with the maximum number of simulation evaluations
set to 1000 (according to the time budget stated by the company). The population
size is set to 20, and the percentage of abandoned nests to 40% (the values have
been found by trial-and-error tests). The algorithm uses a swap operator utilizing the
Lévy flights to determine the indices to swap. The step size for the Lévy flight is set
to upperbound

100 , where upperbound is the maximum permitted value of each parameter.
For comparison, the NSGA-II algorithm is also applied on the problem. NSGA-

II is run with the same number of simulation evaluations as Cuckoo Search and
implemented with the same population size. NSGA-II uses swap range mutation
with a mutation probability of 10%. Furthermore, the algorithm is implemented with
a partially mapped crossover operator and a crossover probability of 90%.

As baseline for the comparison between Cuckoo Search and NSGA-II, a basic
scheduling function defined by the company is being used. In this function, a Critical
Ratio (CR) value of each component is calculated to determine how well it is on
schedule. The CR value is derived by dividing the time to due date (i.e. scheduled
completion) by the time expected to finish the component, according to Eq. 6.

CR =
{

due ≥ now : 1+due−now
1+TRPT

due < now : 1
(1+now−due)∗(1+TRPT)

(6)
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In this equation, due is the due date of the component (i.e. deadline), now is the
current time, and TRPT is the theoretical total remaining processing time (the active
operation time including set-up times and movements between machines/stations).
A component with a CR value of 1.0 is “according to schedule”, while it is behind
if the value is less than 1.0 and ahead if the value is larger than 1.0. In case of a race
condition, the component with the lowest CR value has precedence.

4.2 Integrating the Optimization Algorithm and the Simulation

To run the algorithms along with the SIMUL8 simulation model, a component called
“simulation controller” is implemented. The simulation controller, whose purpose
is to start the simulation and collect results, is implemented using the application
programming interface (API) provided by SIMUL8. This API enables the simulation
model to be controlled programmatically. When the simulation controller receives a
request (i.e., a set of priority values to be evaluated) from the optimization algorithm,
the simulation controller invokes the simulation model with a “Run” command and
provides the priority values. When the simulation has been completed (after about
two seconds), the simulation controller collects the results and sends them back to
the optimization algorithm.

4.3 User Interface

The user interacts with the simulation-optimization through a web page displayed
in a web browser. Using a web page as user interface enables access to the platform
from any hardware (e.g., PC, mobile phone, tablet, etc.) at any site, as long as a web
browser and an internet connection are available. This is especially advantageous in
industrial environments, since employees often have limited (or no) possibilities of
installing, running, and maintaining software at their work stations.

The content of the web page was developed during an iterative process undertaken
in close cooperation between the company and the University’s software developers.
A screenshot of one part of the resulting web page is presented in Fig. 7 (for integrity
reasons, company specific information was deleted before the screenshot was taken).
The panel to the left in the screenshot constitutes the menu from which the user
accesses various functions in the platform. In the screenshot, the menu alternative
“RESULTS” have been chosen. This alternative shows the output from a simulation-
optimization run, namely, a production schedule derived from a prioritization of all
components to be processed during a specific time period. The aim of the production
schedule is to support the operators of the manufacturing cell by specifying which
component should be processed in which machine at each point in time.
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Fig. 7 Screenshot of user interface

4.4 Results

The optimization results achieved by Cuckoo Search and NSGA-II are presented in
Table 1 and stated in relation to the CR function. More specifically, the percentage
numbers given in the table represent the relative improvement achieved by each
algorithm when compared to the result of the CR function. No real numbers can be
presented due to company restrictions.

As shown in Table 1, the results clearly indicate that NSGA-II outperforms Cuckoo
Search considering both optimization objectives. An analysis of this result is given
in the next section of this chapter.

5 Analysis

This section presents an analysis of the results, both from a technical point of view
and from a user perspective.

Table 1 Results with CR function as baseline

Utilization (improvement) Tied-up capital (improvement)

Cuckoo Search (%) 10 15
NSGA-II (%) 19 23

Average of 20 replications
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5.1 Technical Analysis

As mentioned in the introduction, Cuckoo Search has proven to be able to efficiently
solve different optimization problems in various domains. Nevertheless the algorithm
shows a weak performance on the real-world manufacturing problem of focus for
this paper. When going through previous studies on Cuckoo Search and analyzing the
nature of the optimization problems solved in these papers, it is clear that continuous
problems have been the main target for Cuckoo Search so far. In this study, the
problem to be solved is combinatorial and a hypothesis is this fact is the reason
behind the results. To investigate the hypothesis, five continuous problems from
the well-known ZDT test suit are implemented. A detailed description of the ZDT
problems is provided in [20].

Results from applying the multi-objective version of Cuckoo Search on the contin-
uous ZDT problems are presented in Table 3. For comparison, the NSGA-II algorithm
has also been applied on the same problems. Two performance measures are being
used: convergence and spread (both are to be minimized). These two are commonly
used for the ZDT problems and a detailed explanation of their implementation can
be found in [10].

As can be seen in Table 2 Cuckoo Search achieves the best results on the ZDT1,
ZDT2 and ZDT4 problems. On the ZDT3 problem, it achieves a better convergence
than the NSGA-II algorithm, but a worse spread. On the ZDT6 problem, NSGA-II
performs the best on both objectives.

The results from the test suit show that Cuckoo Search outperforms NSGA-II on
the majority of the ZDT problems, which is probably due to use of the efficient Lévy
flight method. These results are in line with results from previous studies found in
the literature on applying Cuckoo Search on continuous optimization problems.

To investigate further if Cuckoo Search is better suited for continuous optimiza-
tion problems, the algorithm is also evaluated on a combinatorial test problem. The
problem implemented is the symmetrical traveling salesman problem named berlin52

Table 2 Results from ZDT problems

Convergence (minimize) Spread (minimize)

ZDT1 NSGA-II 0.037582 0.613663
Cuckoo Search 0.002561 0.613206

ZDT2 NSGA-II 0.030753 0.684501
Cuckoo Search 0.003855 0.649924

ZDT3 NSGA-II 0.001460 0.615773
Cuckoo Search 0.001149 0.616611

ZDT4 NSGA-II 0.075159 0.700399
Cuckoo Search 0.000437 0.623540

ZDT6 NSGA-II 0.002848 0.616384
Cuckoo Search 0.085899 0.675200

Average of 1000 replications
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Table 3 Results from combinatorial TSP problem

Distance (minimize)

Cuckoo Search 21716
NSGA-II 10961

Average of 1000 replications

[21], which was chosen due to the similar number of parameters to the real-world
problem. The objective of the problem is to find the shortest route between a number
of points, while only going through each point once, and then returning to the start-
ing point. The distance between the points is measured through Euclidean distance.
Results from applying Cuckoo Search and NSGA-II on the problem are presented
in Table 3. As shown in the table, NSGA-II clearly outperforms the Cuckoo Search
algorithm on the combinatorial TSP problem. It should be noted that there exist a
specialized Cuckoo Search tailor-made for the travelling salesman problem that has
been proven to perform very well [22], but as this version is single-objective it has
not been considered in the study.

Although a more extensive evaluation including a larger number of optimiza-
tion problems are needed for a general statement, the results obtained in this study
indicates that Cuckoo Search in the form implemented in this study is suited for
continuous problems rather than combinatorial ones. A probable reason for the weak
performance on combinatorial problems is that the Lévy flight pattern is not suited
to be used as a basis for swap mutation. As previously described, the algorithm uses
a swap operator utilizing the Lévy flights to determine the indices to swap.

5.2 User Perspective

The simulation-optimization has also been analyzed by a test group at Volvo Aero.
This test group included eight employees who represented all three user groups
supported by the platform (operator, shift leader, and manager), as well as logis-
tics engineers at the company. University representatives first demonstrated the
simulation-optimization on site at the company, after which it was made available to
the test group. They tried the system out for a couple of weeks, during which their
feedback was collected and compiled.

After the test period, the evaluation feedback was discussed and analyzed. The
feedback highlighted the great potential the simulation-optimization demonstrated
with regard to improving processing schedules, especially during periods of heavy
workloads. Besides improving the processing schedules, using the platform was also
considered a way of significantly reducing the human effort currently associated
with creating the schedules. A further advantage raised by the test group was the
possibility of easily sharing optimized production schedules in real-time among
stakeholders. Since the platform is web-based, it allows all users to easily view
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results simultaneously, which stands in contrast to traditional desktop applications
where results must be printed or e-mailed.

A negative aspect of the platform raised, more or less, by everyone in the test
group was the need to manually specify the current status and configuration of the
manufacturing cell before each simulation-optimization. The required data includes
shift period, status of components currently under process, list of components enter-
ing, availability of fixtures, availability of operators, and scheduled maintenance.
The simulation model needs all this data to be able to mimic the operations of the
cell as close to reality as possible. Collecting and specifying the data can be time-
consuming and should preferably be eliminated so that the optimization can be fully
automatic and run frequently, or even constantly. To realize this, the platform can
be integrated with the computerized control system of the manufacturing cell. It is
essential to strive for such integration, which would probably not be too difficult
considering the manufacturing cell has modern, built-in control systems that process
the data needed.

6 Conclusions

This paper describes a case study of applying Cuckoo Search, a recently proposed
metaheuristic algorithm, in simulation-based optimization of a real-world manufac-
turing line. The manufacturing line is highly automated and produces engine compo-
nents of eleven different types. The Cuckoo Search algorithm has previously shown
promising results in various problem domains, which motives to evaluate it also on
the optimization problem under study in this paper. The optimization problem is a
combinatorial problem of setting 56 unique decision variables in a way that maxi-
mizes utilization of machines and at the same time minimizes tied-up capital. As in
most real-world problems, these two objectives are conflicting and improving perfor-
mance on one of them deteriorates performance of the other. To handle the conflicting
objectives, the original Cuckoo Search algorithm is extended based on the concepts
of multi-objective Pareto-optimization. We argue that a multi-objective version of
Cuckoo Search is needed not only for this specific study, but for Cuckoo Search to
be truly useful in general as most real-world problems involve the optimization of
more than one objective.

Optimization of the manufacturing line is performed based on a discrete-event
simulation model constructed using the SIMUL8 software. Results from the
simulation-based optimization show that the extended Cuckoo Search algorithm is
inefficient in comparison with the multi-objective benchmark algorithm NSGA-II.
A possible reason might be that the Cuckoo Search algorithm is not suited for com-
binatorial optimization problems due to that the Lévy flight pattern is not suited to
be used as a basis for swap mutation. To investigate this further, the algorithm is
applied on five continuous test problems and also one combinatorial test problem.
Results from these test problems shows that the Cuckoo Search algorithm outper-
forms NSGA-II on a majority of the continuous test problems. However, the Cuckoo
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Search algorithm performs considerable worse than the NSGA-II algorithm on the
combinatorial test problem. An explanation for the weak results on this problem, as
well as the real-world problem, might be that the Lévy flight pattern is not suited to
be used as a basis for swap mutation. Further evaluations are needed, however, to
investigate this circumstance further. It is also recommended to study other possi-
ble ways to adapt Cuckoo Search to combinatorial optimization problems possibly
suggest an improved version that is able to handle this type of problem effectively.

Another interesting improvement of the Cuckoo Search algorithm would be to
consider simulation randomness. To capture the stochastic behavior of most real-
world complex systems, simulations contain randomness. Instead of modeling only
a deterministic path of how the system evolves in the process of time, a stochas-
tic simulation deals with several possible paths based on random variables in the
model. To tackle the problem of randomness of output samples is crucial because the
normal path of the algorithm would be severely disturbed if estimates of the objec-
tive function come from only one simulation replication. The common technique to
handle randomness is to send the algorithm with the average values of output sam-
ples obtained from a large number of replications. Although this technique is easy
to implement, the large number of replications needed to obtain statistically confi-
dent estimates from simulation of a complex system that requires long computation
time can easily render the approach to be totally impractical. There are methods
that guarantee to choose the “best” among a set of solutions with a certain statisti-
cally significance level, which require fewer replications in comparison to the others
(e.g. Kim-Nelson ranking and selection method found in [23]). However, combin-
ing statistically-meaningful procedures that require relatively light computational
burden with metheuristics is still an important topic for further research [24].

Besides technical issues, it is also important to carefully considering user aspects
for a successful realization of the optimization. During the Volvo case study, it was
clear that the graphical design and layout of the user interface was an important
factor in gaining user acceptance of the simulation-optimization. In general, software
development more easily focuses on algorithms and technical details, but putting at
least as great an effort into the graphical design is recommended. It is especially
important to keep usability in mind when developing systems for industrial adoption,
since the success of a system is dependent on its acceptance by its users [25].
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Solving Reliability Optimization Problems
by Cuckoo Search

Ehsan Valian

Abstract A powerful approach to solve engineering optimization problems is the
cuckoo search algorithm. It is a developed by Yang and Deb [1, 2]. In this chapter uses
CS algorithm, to solve the reliability optimization problem. The reliability optimiza-
tion problem involves setting reliability objectives for components or subsystems in
order to meet the resource consumption constraint, e.g. the total cost. The difficul-
ties facing reliability optimization problem are to maintain feasibility with respect
to three nonlinear constraints, namely, cost, weight and volume related constraints.
The reliability optimization problems have been studied in the literature for decades,
usually using mathematical programming or metaheuristic optimization algorithms.
The performance of CS algorithm is tested on five well-known reliability problems
and two complex systems. Finally, the results are compared with those given by sev-
eral well-known methods. Simulation results demonstrate that the optimal solutions
obtained by CS, are better than the best solutions obtained by other methods.

Keywords Cuckoo search algorithm · Lévy flight · Reliability optimization
problem

1 Introduction

System reliability optimization plays a vital role in real-world applications and
has been studied for decades [3–14]. In order to be more competitive in the
market, many designers have worked on improving the reliability of manufactur-
ing systems or product components. To attain higher system reliability, two main
ways are usually used. The first approach is to increase the reliability of system
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components. It may improve the system reliability to some degrees; however the
required reliability enhancement may be never achievable even though the most cur-
rently reliable elements are used. The second approach is to use redundant compo-
nents in different subsystems. Using this method increased cost, weight and volume.
This approach is named reliability redundancy allocation problem (RAP) [15].

Various complex systems come out with the development of industrial engineer-
ing. A design engineer often tries to attain the highest reliability for such systems.
The reliability problem is subject to several resource constraints such as cost, weight,
and volume and can usually be formulated as a nonlinear programming problem.

In order to cope with optimization problems arising in system reliability, impor-
tant contributions have been made since 1970 [15]. To solve a category of reliability
optimization problems with multiple-choice constraints, Chern and Jan [16] devel-
oped a 2-phase solution method. They presented a general model that can be stated as
the problem of finding the optimum number of redundancies maximizing the system
reliability. Prasad and Kuo [15] offered a search method (P and K-Algorithm) based
on lexicographic order, and an upper bound on the objective function for solving
redundancy allocation problems in coherent systems. The main advantages of the
P and K-Algorithm are its simplicity and applicability to a wide range of complex
optimization problems arising in system reliability design. A penalty guided artificial
immune algorithm to solve mixed-integer reliability design problems was proposed
in (Chen [6]). To efficiently find the feasible optimal/near optimal solution, it can
search over promising feasible and infeasible regions. Gen and Yun [17] employed a
soft computing approach for solving a variety of reliability optimization problems. To
prevent the early convergence situation of its solution, this method combined rough
search and local search techniques. Moreover, several optimization algorithms based
on swarm intelligence, such as particle swarm optimization algorithm [8, 10, 11, 18],
genetic algorithm [5, 19–21], evolutionary algorithm [7, 9, 22], ant colony algorithm
[23] and harmony search algorithms [12, 13] have been employed to solve reliabil-
ity problems. Kuo [24] reviewed recent advances in optimal RAP and summarized
several techniques.

The cuckoo search algorithm is a new meta-heuristic approach, was developed
recently by Yang and Deb [1, 2]. The optimal solutions obtained by Cuckoo Search
(CS) are far better than the best solutions obtained by an efficient particle swarm
optimiser [2]. The meta-heuristic optimization approach employing penalty guided
based CS for the reliability optimization problems are proposed in this chapter. The
CS algorithm is described in Sect. 3.

The chapter is organized as follows. In Sect. 2, the procedure of CS algorithm is
briefly presented. In Sect. 3, four reliability optimization problems and a large-scale
reliability optimization problem as well as two complex systems are introduced. In
Sect. 4, a large number of numerical experiments are carried out to test the perfor-
mance and effectiveness of the CS algorithm in solving complex reliability optimiza-
tion problems. In addition, the chapter ends with some conclusions in Sect. 5.
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2 Cuckoo Search Algorithm

In order to describe the Cuckoo Search more clearly, let us briefly review the inter-
esting breed behavior of certain cuckoo species. Then, the basic ideas and steps of
the CS algorithm will be outlined.

2.1 Cuckoo Breeding Behavior

Cuckoo search is an optimization algorithm developed by Xin-She Yang and Suash
Deb in 2009 [1]. It was inspired by the obligate brood parasitism of some cuckoo
species by laying their eggs in the nests of other host birds (of other species). Some
host birds can engage direct conflict with the intruding cuckoos. For example, if a host
bird discovers the eggs are not their own, it will either throw these alien eggs away or
simply abandon its nest and build a new nest elsewhere. Some cuckoo species such
as the New World brood-parasitic Tapera have evolved in such a way that female
parasitic cuckoos are often very specialized in the mimicry in colors and pattern of
the eggs of a few chosen host species .This reduces the probability of their eggs being
abandoned and thus increases their reproductively [25].

Furthermore, the timing of egg-laying of some species is also amazing. Parasitic
cuckoos often choose a nest where the host bird just laid its own eggs. In general, the
cuckoo eggs hatch slightly earlier than their host eggs. Once the first cuckoo chick
is hatched, the first instinct action it will take is to evict the host eggs by blindly
propelling the eggs out of the nest, which increases the cuckoo chick’s share of food
provided by its host bird [25]. Studies also show that a cuckoo chick can also mimic
the call of host chicks to gain access to more feeding opportunity.

Cuckoo search idealized such breeding behavior, and thus can be applied for
various optimization problems. In addition, Yang and Deb [1, 2] discovered that the
random-walk style search is better performed by Lévy Flights rather than simple
random walk.

2.2 Cuckoo Search

Each egg in a nest represents a solution, and a cuckoo egg represents a new solution.
The aim is to use the new and potentially better solutions (cuckoos) to replace a
not-so-good solution in the nests. In the simplest form, each nest has one egg. The
algorithm can be extended to more complicated cases in which each nest has multiple
eggs representing a set of solutions. CS is based on three idealized rules:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
• The best nests with high quality of eggs (solutions) will carry over to the next

generations;
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• The number of available host nests is fixed, and a host can discover an alien egg
with probability

pa ∈ [0, 1]. In this case, the host bird can either throw the egg away or abandon
the nest so as to build a completely new nest in a new location [1].

For simplicity, this last assumption can be approximated by a fraction (Pa) of the n
nests being replaced by new nests (with new random solutions at new locations). For a
maximization problem, the quality or fitness of a solution can simply be proportional
to the objective function. Other forms of fitness can be defined in a similar way to
the fitness function in genetic algorithms [1].

Based on these three rules, the basic steps of the CS can be summarized as the
pseudo code, as follows [1]:

begin
Objective function f (x) , x = (x1, ....., xd)T

Generate initial population of n host nests xi (i = 1, 2, ..., n)

While (t<MaxGeneration) or (stop criterion)
Get a cuckoo randomly by Lévy flights evaluate its quality /fitness Fi

Choose a nest among n (say.j) randomly
if (Fi > Fj ),

replace j by the new solution;
end if
A fraction (pa) of worse nests are abandoned and new ones are built;
Keep the best solutions (or nests with quality solutions);
Rank the solutions and find the current best
end while
Postprocess results and visualization

end

When generating new solutions x(t+1) for, say cuckoo i, a Lévy flight is performed

xi (t + 1) = xi (t)+ α ⊕ Lévy (λ) (1)

where α > 0 is the step size, which should be related to the scale of the problem
of interest. In most cases, α = O(1) could be used. The above equation is essen-
tially the stochastic equation for random walk. The product ⊕ means entry-wise
multiplications. This entry-wise product is similar to those used in PSO, but here the
random walk via Lévy flight is more efficient in exploring the search space as its step
length is much longer in the long run [1]. A Lévy flight is a random walk in which
the step-lengths are distributed according to a heavy-tailed probability distribution.
Specifically, the distribution used is a power law of the form:

Lévy u = t−λ, 1 < λ ≤ 3 (2)

which has an infinite variance. Here the consecutive jumps/steps of a cuckoo essen-
tially form a random walk process which obeys a power-law step- length distribution
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Fig. 1 The schematic dia-
gram of complex (bridge)
system

1 2

3 4

5

with a heavy tail. It is worth pointing out that, in the real world, if a cuckoo’s egg is
very similar to a host’s eggs, then this cuckoo’s egg is less likely to be discovered,
thus the fitness should be related to the difference in solutions. Therefore, it is a good
idea to do a random walk in a biased way with some random step sizes [1].

3 Case Studies: Reliability Optimization Problems

To evaluate the performance of the CS algorithm on reliability optimization problems,
five case studies are considered. They are a complex (bridge) system, a series system,
a series–parallel system, an overspeed protection system and large-scale systems as
well as two complex systems (10-unit and 15-unit systems).

3.1 Case Study 1: A Complex (Bridge) System

This case study [3, 4, 6], and [10–14] is a nonlinear mixed-integer programming
problem for a complex (bridge) system with five subsystems, as shown in Fig. 1.

The problem is formulated as follows:

Max f (r, n) = R1 R2 + R3 R4 + R1 R4 R5 + R2 R3 R5

− R1 R2 R3 R4 − R1 R2 R3 R5 − R1 R2 R4 R5

− R1 R3 R4 R5 − R2 R3 R4 R5 + 2R1 R2 R3 R4 R5

s.t.

g1(r, n) =
m∑

i=1

wi v
2
i n2

i − V ≤ 0

g2(r, n) =
m∑

i=1

αi

(
− 1000

ln (ri )

)βi [
ni + exp(0.25ni )

]− C ≤ 0
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Table 1 Data used in complex (bridge) and series systems

i 105αi βi wi v2
i wi V C W

1 2.330 1.5 1 7
2 1.450 1.5 2 8
3 0.541 1.5 3 8 110 175 200
4 8.050 1.5 4 6
5 1.950 1.5 2 9

Fig. 2 The schematic dia-
gram of a series system 2 3 4 51

g3(r, n) =
m∑

i=1

wi ni exp(0.25ni )−W ≤ 0

0 ≤ ri ≤ 1, ni ∈ Z+, 1 ≤ i ≤ m

where m is the number of subsystems in the system. ni , ri, and qi = 1 − ri are the
number of components, the reliability of each component, and the failure probability
of each component in subsystem i , respectively. Ri (ni ) = (1− qi )

ni is the reliabil-
ity of subsystemi , whilst f (r, n) is the system reliability. For each component in
subsystem i , wi , vi , and ci are the weight, volume, and cost, respectively. V , C , and
W refer to the upper limit on the sum of the subsystems’ products of volume and
weight, the upper limit on the cost of the system, and the upper limit on the weight
of the system, respectively. The parameters αi and βi are physical features of system
components. Constraint g1(r, n) is a combination of weight, redundancy allocation,
and volume. g2(r, n) and g3(r, n) are constraints on the cost and weight. The input
parameters of the complex (bridge) system are given in Table 1.

3.2 Case study 2: A Series System

This case study [3, 4, 6, 11] and [14] is a nonlinear mixed-integer programming
problem for a series system with five subsystems, as shown in Fig. 2.

The problem formulation is as follows:
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Fig. 3 The schematic dia-
gram of a series–parallel
system

1 2

3

4

5

Max f (r, n) =
m∏

i=1

Ri (ni )

s.t.

g1(r, n) =
m∑

i=1

wi v
2
i n2

i − V ≤ 0

g2(r, n) =
m∑

i=1

αi

(
− 1000

ln (ri )

)βi [
ni + exp(0.25ni )

]− C ≤ 0

g3(r, n) =
m∑

i=1

wi ni exp(0.25ni )−W ≤ 0

0 ≤ ri ≤ 1, ni ∈ Z+, 1 ≤ i ≤ m

This case study has three nonlinear constraints, which are the same as those of the
1st case study. Also, the input parameters of the series system are the same as those
of the complex (bridge) system.

3.3 Case study 3: A Series-parallel System

This case study [3, 4, 6, 11], and [14] is a nonlinear mixed-integer programming
problem for a series–parallel system with five subsystems, as shown in Fig. 3.

The reliability function reported by (Chen 2006, Hsieh 1998) was f (r, n) =
1− (1− R1 R2)(1− (1− R3)(1− R4)R5), in fact it is wrong (Wu et al. [11]), and
the right problem formulation is as follows:
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Table 2 Data used in series–parallel system

i 105αi βi wi v2
i wi V C W

1 2.500 1.5 2 3.5
2 1.450 1.5 4 4
3 0.541 1.5 5 4 180 175 100
4 0.541 1.5 8 3
5 2.100 1.5 4 4.5

Max f (r, n) = 1− (1− R1 R2)(1− (R3 + R4 − R3 R4)R5)

s.t.

g1(r, n) =
m∑

i=1

wi v
2
i n2

i − V ≤ 0

g2(r, n) =
m∑

i=1

αi

(
− 1000

ln (ri )

)βi [
ni + exp(0.25ni )

]− C ≤ 0

g3(r, n) =
m∑

i=1

wi ni exp(0.25ni )−W ≤ 0

0 ≤ ri ≤ 1, ni ∈ Z+, 1 ≤ i ≤ m

This case study has the same nonlinear constraints as those of the 1st case study, but
it has different input parameters, given in Table 2.

3.4 Case study 4: An Overspeed System for a Gas Turbine

Overspeed detection is continuously provided by the electrical and mechanical
systems. When an overspeed occurs, it is necessary to cut off the fuel supply. For this
purpose, 4 control valves (V 1− V 4) must be closed. The control system is modeled
as a 4-stage series system, as shown in Fig. 4. The objective is to determine an optimal
level of ri & ni at each stage i so that the system reliability is maximized.

This case study [6, 10–14], and [19] is formulated as follows:
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V2V1 V4V3

Gas Turbine

Air Fuel Mixture

Mechanical
and

electrical
overspeed
detection

Fig. 4 The schematic diagram of an overspeed system for a gas turbine

Max f (r, n) =
m∏

i=1

[1− (1− ri )
ni ]

s.t.

g1(r, n) =
m∑

i=1

vi n
2
i − V ≤ 0

g2(r, n) =
m∑

i=1

C(ri )
[
ni + exp(0.25ni )

]− C ≤ 0

g3(r, n) =
m∑

i=1

wi ni exp(0.25ni )−W ≤ 0

0.5 ≤ ri ≤ 1− 10−6, ri ∈ R+, 1 ≤ ni ≤ 10, ni ∈ Z+

where ri , ni , vi , and wi refer to the reliability of each component, the number of
redundant components, the product of weight and volume per element, and the weight
of each component, all in stage i . The term exp(0.25ni ) accounts for the intercon-
necting hardware. The cost of each component with reliability ri at subsystem i is
given by C(ri) = αi(− T

ln(ri)
)βi . Parameters αi and βi are constants representing the

physical characteristics of each component at stage i . T is the operating time during
which the component must not fail. The input parameters defining the overspeed
protection system are given in Table 3.

Table 3 Data used in overspeed protection system

i 105αi βi vi wi V C W T

1 1.0 1.5 1 6
2 2.3 1.5 2 6 250 400 500 1000 h
3 0.3 1.5 3 8
4 2.3 1.5 2 7
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3.5 Case study 5: Large-Scale System Reliability Problem

Recently, Prasad and Kuo [15] developed P and K-Algorithm for solving large-
scale system reliability optimization design problem. Gen and Yun [17] developed a
soft computing approach to solve the same problem. The considered mathematical
formulations are as follows:

Max f (r, n) =
n∏

j=1

[1− (1− r j )
x j ]

s.t.

g1(r, n) =
n∑

j=1

α j x2
j −

(
1+ θ

100

) n∑

j=1

α j l
2
j ≤ 0

g2(r, n) =
n∑

j=1

β j exp
( x j

2

)
−

(
1+ θ

100

) n∑

j=1

β j exp(
l j

2
) ≤ 0

g3(r, n) =
n∑

j=1

γ j x j −
(

1+ θ

100

) n∑

j=1

γ j l j ≤ 0

g4(r, n) =
n∑

j=1

√
δ j x j −

(
1+ θ

100

) n∑

j=1

√
δ j l j ≤ 0

1 ≤ x j ≤ 10, j = 1, 2, . . . , n.

Table 4 shows the design data of reliability systems for case study 5. The
component reliabilities are generated from the uniform distribution in [0.95, 1.0].
The coefficients α j , β j , γ j and δ j are generated from uniform distributions in
[6, 10] , [1, 5] , [11, 20] and [21, 40], respectively. Here, l j represents the lower
bound of x j .The tolerance error θ , which implies 33% of the minimum requirement of
each resource (l j ), is available for optimization. For the reliability system with n sub-
systems, the average minimum resource requirements

∑n
j=1 gi j (l j ), (i = 1, ..., 4)

and the average values of which is represented by bi = (1 + θ
100 )

∑n
j=1 gi j (l j ),

(i = 1, ..., 4). In this way, we set the available system resources for reliability sys-
tem with 36, 38, 40, 42 and 50 subsystems, respectively as shown in Table 5.

The best solutions obtained by the above two approaches [15, 17] are reported in
Table 6. Here, VTV represents the variables which get value 2 in optimum conditions
and the other variables are equal to 1.
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Table 4 Data used in Large-scale system reliability problem

j 1− r j α j β j γ j δ j j 1− r j α j β j γ j δ j

1 0.005 8 4 13 26 26 0.029 8 1 18 35
2 0.026 10 4 16 32 27 0.022 8 3 16 32
3 0.035 10 4 12 23 28 0.017 9 3 15 29
4 0.029 6 3 12 24 29 0.002 10 1 18 35
5 0.032 7 1 13 26 30 0.031 9 2 19 37
6 0.003 10 4 16 31 31 0.021 7 5 15 28
7 0.020 9 2 19 38 32 0.023 9 5 11 22
8 0.018 9 3 15 29 33 0.030 6 3 15 29
9 0.004 7 4 12 23 34 0.026 7 3 14 27
10 0.038 6 4 16 31 35 0.009 6 5 15 29
11 0.028 6 5 14 28 36 0.019 10 5 17 33
12 0.021 10 3 15 30 37 0.005 9 5 19 37
13 0.039 9 1 17 34 38 0.019 10 5 11 22
14 0.013 10 4 20 39 39 0.002 6 2 17 34
15 0.038 7 4 14 28 40 0.015 8 3 17 33
16 0.037 10 2 13 25 41 0.023 10 5 17 33
17 0.021 10 1 15 29 42 0.040 8 3 18 35
18 0.023 8 3 19 38 43 0.012 8 1 18 35
19 0.027 10 5 18 36 44 0.026 6 4 19 38
20 0.028 7 4 13 26 45 0.038 6 4 13 26
21 0.030 6 2 15 30 46 0.015 8 1 19 37
22 0.027 6 2 12 24 47 0.036 7 4 14 28
23 0.018 7 2 20 40 48 0.032 10 2 19 37
24 0.013 8 5 19 38 49 0.038 8 3 15 30
25 0.006 9 5 15 39 50 0.013 10 2 11 22

Table 5 Available system resources for each system in case study 5

n i 1 2 3 4

36 bi 391 257 738 1454
38 bi 416 278 778 1532
40 bi 435 289 823 1621
42 bi 458 306 870 1712
50 bi 543 352 1040 2048

3.6 Case study 6: 10-Unit System Reliability Problem with
Different Combinations of Parameters

For a 10-Unit structure (Fig. 5) the problem is defined as (Agarwal and Vikas [30]):
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Table 6 The optimization results of case study 5 with different dimensions

n VTV in optimum f (x)

36 {5,10,15,21,33} 0.519976
38 {10,13,15,21,33} 0.510989
40 {5,10,13,15,33} 0.503292
42 {4,10,11,15,21,33} 0.479664
50 {4,10,15,21,33,45,47} 0.405390

Fig. 5 The schematic dia-
gram of 10-unit system 1 2

7 8

5

3 4

9 10

6

Max f (x) = R1 R2 R3 R4 + R1 R2 R6 R10(Q3 + R3 Q4)

+ R1 R5 R9 R10(Q2 + R2 R3 Q6 + R2 R3 Q4 Q6)

+ R7 R8 R9 R10(Q1 + R1 Q2 Q5 + R1 R2 Q3 Q5 Q6 + R1 R2 Q4 Q5 Q6)

+ R2 R3 R4 R5 R7 R8 Q1(Q9 + R9 Q10)

+ Q1 R3 R4 R6 R7 R8 R9 Q10(Q2 + R2 Q5)

+ R1 Q2 R3 R4 R6 R7 R8 R9 Q10+R1 Q2 R3 R4 R5 R6 R9 Q10(Q7+R7 Q8)

+ Q1 R2 R5 R6 R7 R8 Q9 R10(Q3 + R3 Q4)

s.t.

gy(r, n) =
10∑

i=1

cyi xi ≤ by y = 1, 2, . . . , m

xi ∈ Z+, i = 1, 2, . . . , 10.

Where Ri (xi ) = 1− (1−ri )
xi and Qi = 1− Ri are the reliability, unreliability of

subsystem i , respectively. The coefficients cyi and ri are generated from uniform dis-
tributions in [0, 100] and [0.6, 0.85], respectively. The m refer to number of constrain.
The case study 6 is varied by taking m = 1, 5 and by = rand(1.5, 3.5) ∗∑10

i=1 cyi .
This results in 2 sets of problems. The expressions for f (x)in this case study was
obtained using the recursive disjoint product method given by Abraham [31].
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Fig. 6 The schematic diagram of 15-unit system

3.7 Case study 7: 15-Unit System Reliability Problem
with Different Combinations of Parameters

For a 15-Unit structure (Fig. 6) the problem is defined as (Agarwal and Vikas [30]):

Max f (x) = R1 R2 R3 R4 + R9 R10 R11 R12 R13 R14 R15

× (Q1 + R1 Q2 + R1 R2 Q3 + R1 R2 R3 Q4 + R1 R2 R3 R4 Q5

+ R1 R2 R3 R4 R5 Q6)

+ R3 R4 R5 R6 R7 R9 R10(Q11 + R11 Q12 + R11 R12 Q13

+ R11 R12 R13 Q14 + R11 R12 R13 R14 Q15)

× (Q1 + R1 Q2)+ ((Q1 + R1 Q2)(Q3 + R3 Q4 + R3 R4 Q7)

+ R1 R2 Q7(Q3 + R3 Q4))

× (Q13 + R13 Q14 + R13 R14 Q15)R5 R6 R8 R9 R10 R11 R12

+ R1 R2 R5 R6 R7 R8 R11 R12

× (R9 R10 + Q9 + R9 Q10)(Q3 + R3 Q4)

× (Q13 + R13 Q14 + R13 R14 Q15)+ (Q5 + R5 Q6)

× ((Q7 + R7 Q11 + R7 R11 Q12)(Q9 + R9 Q10)

+ R9 R10(Q11 + R11 Q12))

× R1 R2 R3 R4 R8 R13 R14 R15

+ R1 R2 R7 R11 R12 R13 R14 R15(Q9 + R9 Q10)

× (Q3 + R3 Q4 + R3 R4 Q5 + R3 R4 R5 Q6)

+ R3 R4 R7 R8 R9 R10 R13 R14 R15(Q1 + R1 Q2)

× (Q11 + R11 Q12)(Q5 + R5 Q6)

s.t.

gy(r, n) =
15∑

i=1

cyi xi ≤ by y = 1, 2, . . . , m

xi ∈ Z+, i = 1, 2, . . . , 15.
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Table 7 Data used in 10 unit and 15-unit system reliability problem

i r c1 c2 c3 c4 c5

1 0.6796 33.2468 35.6054 13.7848 44.1345 10.9891
2 0.7329 27.5668 44.9520 96.7365 25.9855 68.0713
3 0.6688 13.3800 28.6889 85.8783 19.2621 1.0164
4 0.6102 0.4710 0.4922 63.0815 12.1687 29.4809
5 0.7911 51.2555 39.6833 78.5364 23.9668 59.5441
6 0.8140 82.9415 59.2294 11.8123 28.9889 46.5904
7 0.8088 51.8804 78.4996 97.1872 47.8387 49.6226
8 0.7142 77.9446 86.6633 45.0850 25.0545 59.2594
9 0.8487 26.8835 7.8195 3.6722 76.9923 87.4070
10 0.7901 85.8722 27.7460 55.3950 53.3007 55.3175
11 0.6972 41.8733 90.4377 75.7999 95.0057 54.1269
12 0.6262 61.6181 58.0131 98.5166 97.9127 59.1341
13 0.6314 90.0418 77.8206 60.6308 37.2226 40.9427
14 0.6941 75.5947 36.4524 70.4654 96.9179 40.2141
15 0.6010 88.5974 61.0591 18.8802 42.1222 80.0045
b – 3.2150 3.4710 3.3247 2.6236 3.4288

Where Ri (xi ), Qi , cyi and ri are similar to those used in 10-unit system. The
m refer to number of constrain. The problem is varied by taking m = 1, 5 and
by = rand(1.5, 3.5) ∗∑15

i=1 cyi . This results in 2 sets of problems. The expressions
for f (x) in case study 7 was obtained using the recursive disjoint product method
given by Abraham [31]. The random data used in case study 6 and 7 for m = 1, 5 as
shown in Table 7.

4 Experimental Results, Analysis and Discussion

The parameters of the CS algorithm used for reliability optimization problems are
shown in Table 8.

Table 9 includes the numerical experiments results of fifty independent runs of
the CS algorithm and all experiments are performed in MATLAB. The PC used is
an INTEL32, X2, 3.0GHz having 4GB of memory. Moreover, execution times for
all case-studies have been mentioned in Table 9 for 50 iterations.

Here, ‘SD’ represents the standard deviation based on fifty converged objective
function values whilst ‘Median’ represents the average value of the objective func-
tion. ‘NFOS’ represents the number of feasible optimal solutions found in fifty runs.

Tables 10, 11, 12, 13 compare the best results obtained in this chapter for four case
studies with those provided by other methods reported in the literatures [3, 4, 6, 10–
13, 19] and [27–29]. Clearly, the solutions obtained by the CS algorithm are better
than those given by the other methods. An improvement index is required to measure
the improvement of the best solutions found by the CS algorithm in comparison with
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Table 8 Parameter for CS

Example Population size Number of iterations Probability pa α

Case study1 10 1000 0.25 1
Case study 2 10 1000 0.25 1
Case study 3 10 1000 0.25 1
Case study 4 10 1000 0.25 1
Case study 5-(36 DIM) 10 2000 0.25 1
Case study 5-(38 DIM) 10 2000 0.25 1
Case study 5-(40 DIM) 10 2500 0.25 1
Case study 5-(42 DIM) 10 2500 0.25 1
Case study 5-(50 DIM) 10 3000 0.25 1
Case study 6-(10×1) 10 750 0.25 1
Case study 6-(10×5) 10 750 0.25 1
Case study 7-(15×1) 10 750 0.25 1
Case study 7-(15×5) 10 750 0.25 1

Table 9 Simulation results after fifty runs

Example Best Worst Median SD NFOS Execution
time for
50-iteration
(s)

Case study1 0.99988964 0.99968396 0.99986946 3.2703e-05 50 71
Case study 2 0.93168239 0.89905558 0.92903027 4.5025e-03 50 38
Case study 3 0.99997665 0.99984484 0.99996550 1.5389e-05 50 40
Case study 4 0.99995468 0.99991922 0.99995336 4.5576e-06 50 40
Case study 5-(36 DIM) 0.51997597 0.49949243 0.51718476 4.2094e-03 50 115
Case study 5-(38 DIM) 0.51098860 0.49467807 0.50801105 2.9530e-03 50 132
Case study 5-(40 DIM) 0.50599242 0.49604469 0.50184162 2.0457e-03 50 162
Case study 5-(42 DIM) 0.47966355 0.46659835 0.47421700 2.7735e-03 50 167
Case study 5-(50 DIM) 0.40695474 0.39205805 0.40347689 3.2395e-03 50 233
Case study 6-(10×1) 0.98335697 0.98218267 0.98279202 5.5595e-04 50 31
Case study 6-(10×5) 0.67189992 0.67181316 0.67189992 3.3645e-16 50 36
Case study 7-(15×1) 0.97276197 0.97024537 0.97223452 3.6879e-04 50 43
Case study 7-(15×5) 0.95825279 0.95594309 0.95797782 2.2199e-04 50 45

those given by the other methods. This index, which has been called maximum
possible improvement [15], is as follows:

MPI(% ) =
(

fC S − fother

1− fother

)
(3)

where fC S represents the best system reliability obtained by the CS algorithm, while
fother denotes the best system reliability obtained by any other method. It should
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Table 10 Case Study 1: Bridge (complex) system

Parameter Hikita [3] Hsieh [4] Chen [6] Coelho [10] Zou [12] Wu [11] CS

f(r,n) 0.9997894 0.99987916 0.99988921 0.99988957 0.99988962 0.99988963 0.99988964
n1 3 3 3 3 3 3 3
n2 3 3 3 3 3 3 3
n3 2 3 3 2 2 2 2
n4 3 3 3 4 4 4 4
n5 2 1 1 1 1 1 1
r1 0.814483 0.814090 0.812485 0.826678 0.82883148 0.82868361 0.82809404
r2 0.821383 0.864614 0.867661 0.857172 0.85836789 0.85802567 0.85800449
r3 0.896151 0.890291 0.861221 0.914629 0.91334996 0.91364616 0.91416292
r4 0.713091 0.701190 0.713852 0.648918 0.64779451 0.64803407 0.64790779
r5 0.814091 0.734731 0.756699 0.715290 0.70178737 0.70227595 0.70456598
MPI 47.5973 8.672625 0.388122 0.063389 0.018120 0.009060 –
(%) 41

be noted that in high reliability applications, it is often difficult to obtain even very
small improvements in reliability.

For the complex (bridge) system, as mentioned in Table 10, the best results
reported by Hikita [3], Hsieh [4], Chen [6], Coelho [10], Zou [12] and Wu [11],
are 0.9997894, 0.99987916, 0.99988921, 0.99988957, 0.99988962 and 0.99988963,
respectively. The CS result is 47.597341 %, 8.672625 %, 0.388122 %, 0.063389 %,
0.018120 %, and 0.009060 %, better than aforementioned algorithms in terms of
improvement indices, respectively.

For the series system, Table 11 shows that the best results reported by Kuo [27], Xu
[28], Hikita [3], Hsieh [4], Chen [6] and Wu [11], are 0.92975, 0.931677, 0.931363,
0.931578, 0.931678, and 0.931680 respectively. The result given by the CS is better

Table 11 Case study 2: Series system

Parameter Kuo [27] Xu [28] Hikita [3] Hsieh [4] Chen [6] Wu [11] CS

f(r,n) 0.92975 0.931677 0.931363 0.931578 0.931678 0.931680 0.931682
n1 3 3 3 3 3 3 3
n2 2 2 2 2 2 2 2
n3 2 2 2 2 2 2 2
n4 3 3 3 3 3 3 3
n5 2 3 3 3 3 3 3
r1 0.77960 0.77939 0.777143 0.779427 0.779266 0.78037307 0.77941694
r2 0.80065 0.87183 0.867514 0.869482 0.872513 0.87178343 0.87183328
r3 0.90227 0.90288 0.896696 0.902674 0.902634 0.90240890 0.90288508
r4 0.71044 0.71139 0.717739 0.714038 0.710648 0.71147356 0.71139387
r5 0.85947 0.78779 0.793889 0.786896 0.788406 0.78738760 0.78780371
MPI (%) 2.750748 0.007904 0.465347 0.152583 0.006440 0.003513 –
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Table 12 Case study 3: Series-parallel system

Parameter Hikita [3] Hsieh [4] Chen [6] Wu [11] CS

f(r,n) 0.99996875 0.99997418 0.99997658 0.99997664 0.99997665
n1 3 2 2 2 2
n2 3 2 2 2 2
n3 1 2 2 2 2
n4 2 2 2 2 2
n5 3 4 4 4 4
r1 0.838193 0.785452 0.812485 0.81918526 0.81992709
r2 0.855065 0.842998 0.843155 0.84366421 0.84526766
r3 0.878859 0.885333 0.897385 0.89472992 0.89549155
r4 0.911402 0.917958 0.894516 0.89537628 0.89544069
r5 0.850355 0.870318 0.870590 0.86912724 0.86831878
MPI (%) 25.280000 9.566228 0.298890 0.042808 –

Table 13 Case study 4: Over-speed system

Parameter Dhingra [29] Yokota [19] Chen [6] Coelho [9] Zou [12] Wu [11] CS

f(r,n) 0.99961 0.999468 0.999942 0.999953 0.99995467 0.99995467 0.99995468
n1 6 3 5 5 5 5 5
n2 6 6 5 6 6 6 5
n3 3 3 5 4 4 4 4
n4 5 5 5 5 5 5 6
r1 0.81604 0.965593 0.903800 0.902231 0.90186194 0.90163164 0.90161460
r2 0.80309 0.760592 0.874992 0.856325 0.84968407 0.84997020 0.88822337
r3 0.98364 0.972646 0.919898 0.948145 0.94842696 0.94821828 0.94814103
r4 0.80373 0.804660 0.890609 0.883156 0.88800590 0.88812885 0.84992090
MPI (%) 88.461523 91.541402 22.413812 4.255389 0.012186 0.000910 –

than six mentioned results. The improvement indices are 2.750748 %, 0.007904 %,
0.465347 %, 0.152583 %, 0.006440 %, and 0.003513 %, respectively.

A same investigation has been done for series-parallel system. The CS algorithm
results in 25.280000 %, 9.566228 %, 0.298890 %, and 0.042808 % improvement
compare with the best results reported by Hikita [3], Hsieh [4], Chen [6] and Wu
[11] (Table 12).

Considering an overspeed system for a gas turbine, Table 13 shows that the best
results reported by Dhingra [29], Yokota [19], Chen [6], Coelho [10], Zou [12] and
Wu [11], are 0.99961, 0.999468, 0.999942, 0.999953, 0.99995467, and 0.99995467
respectively. The result provided by the CS is better than the above five results. The
improvement indices are 88.461538 %, 91.541353 %, 22.413793 %, 4.255319 %,
0.012186 %, and 0.000910 % respectively.

For case study 5 the results of CS algorithm are shown in Table 14.In addition,
Table 15 indicates the comparison between CS and Wu algorithms [11] for case
study 5. It can be seen in Table 15 that the best results of CS algorithm and Wu [11]
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Table 14 The best results of case study 5 with different dimensions by CS algorithm

n VTV in optimum f(x)

36 {5,10,15,21,33} 0.51997597
38 {10,13,15,21,33} 0.51098860
40 {4,10,11,21,22,33} 0.50599242
42 {4,10,11,15,21,33} 0.47966355
50 {4,10,15,21,33,42,45} 0.40695474

Table 15 Comparison results for the Large-scale system reliability problem

Example Algorithm Best Worst Median SD

Case Stydy5-(36 DIM) IPSO(Wu 2010) [11] 0.51997597 0.49705368 0.50874873 5.8624e-03
CS 0.51997597 0.49949243 0.51718476 4.2094e-03

Case Stydy5-(38 DIM) IPSO(Wu 2010) [11] 0.51098860 0.48707780 0.50557752 5.3420e-03
CS 0.51098860 0.49467807 0.50801105 2.9530e-03

Case Stydy5-(40 DIM) IPSO(Wu 2010) [11] 0.50599242 0.48016779 0.49772492 5.4393e-03
CS 0.50599242 0.49604469 0.50184162 2.0457e-03

Case Stydy5-(42 DIM) IPSO(Wu 2010) [11] 0.47966355 0.45788422 0.47090324 4.6902e-03
CS 0.47966355 0.46659835 0.47421700 2.7735e-03

Case Stydy5-(50 DIM) IPSO(Wu 2010) [11] 0.40657143 0.36682410 0.39338827 6.5878e-03
CS 0.40695474 0.39205805 0.40347689 3.2395e-03

Table 16 Comparison results for the 10-nuit and 15-nuit system reliability problem

Example Algorithm Best Worst Median SD

Case Stydy6-(10×1) GA 0.57473724 0.48518883 0.52702874 1.1723e-01
ABC 0.95403857 0.52635359 0.80094474 9.9360e-02
HS 0.88752850 0.88752850 0.60847752 1.9472e-01
NGHS 0.98201395 0.94484918 0.97011678 9.4964e-03
CS 0.98335697 0.98218267 0.98279202 5.5595e-04

Case Stydy6-(10×5) GA 0.40859193 0.24604448 0.34072963 9.9898e-02
ABC 0.63631535 0.27879103 0.42419274 8.8019e-02
HS 0.50157124 0.12456904 0.26027637 9.3011e-02
NGHS 0.64820235 0.44171963 0.57267935 4.4999e-02
CS 0.67189992 0.67181316 0.67189992 3.3645e-16

Case Stydy7-(15×1) GA 0.82700343 0.31578718 0.58041963 1.1514e-01
ABC 0.95260704 0.93872370 0.94819588 3.4596e-03
HS 0.97235030 0.96904606 0.97141480 7.0892e-04
NGHS 0.97235030 0.96718809 0.97089223 9.9082e-04
CS 0.97276197 0.97024537 0.97223452 3.6879e-04

Case Stydy7-(15×5) GA 0.82381093 0.36520795 0.61764965 1.3423e-01
ABC 0.95141221 0.93911154 0.94695160 2.9954e-03
HS 0.95825279 0.95364976 0.95685535 1.0764e-03
NGHS 0.95810719 0.95055900 0.95594432 1.8335e-03
CS 0.95825279 0.95594309 0.95797782 2.2199e-04
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for n = 36, 38, 40, 42 are same but for n = 50 the CS provides better results. Also
the worst, median and SD results given by the CS are better than those given by Wu
for n = 36, 38, 40, 42 and 50 in case study 5.

For case study 6 and 7, 10-unit and 15-Unit system reliability problem, Table 16
shows the results given by Genetic Algorithm (GA) (Holland [32]), Artificial Bee
Colony (ABC) [33], Harmony Search (HS) [34], Novel Global Harmony Search
(NGHS) [12] and CS. The parameters of GA, ABC, HS and NGHS algorithms are
as follows:

• GA: Chromosome= 50, Crossover= 0.9, Mutation= 0.3,Generations= 2000
• ABC: Colony = 20, Limit = 100,Iterations = 1000
• HS: HMS = 5, HMCR = 0.9,PAR = 0.3, BW = 0.01, Number Of Har-

mony = 5000
• NGHS: HMS = 5,pm = 0.05, Number Of Harmony = 5000

The result provided by the CS in this two case study 6 and 7 for m = 1, 5 is better
than the all above algorithm results.

According to the above comparisons, it can be concluded that the CS algorithm
outperforms the other methods in literature to find best solutions for the given relia-
bility optimization problems.

5 Conclusion

In this chapter, the Cuckoo Search by Lévy flights has been used to solve five well-
known reliability optimization problems and two complex systems. In these opti-
mization problems, both the redundancy (number of redundant components) and the
corresponding reliability of each component in each subsystem under multiple con-
straints are considered to be decided simultaneously. Simulation results showed that
the CS algorithm led to best solutions in comparison with other methods The studies
show that CS algorithm can be powerful and robust for problems with large search
space and difficult-to-satisfy constraints.

References

1. Yang, X. S., Deb, S.: Cuckoo search via Lévy flights. In: Proc. World Congr. Nat. Biol. Ins.
Comput. (NaBIC 2009, India), 210–214.(2009)

2. Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Mathe. Mod. Num.
Optim. 1(4), 330–343 (2010)

3. Hikita, M., Nakagawa, H., Harihisa, H.: Reliability optimization of systems by a surrogate
constraints algorithm. IEEE Trans. Reliab. 41(3), 473–480 (1992)

4. Hsieh, Y.C., Chen, T.C., Bricker, D.L.: Genetic algorithm for reliability design problems.
Microelectron. Reliab. 38(10), 1599–1605 (1998)



214 E. Valian

5. Gen, M., Kim, J.R.: GA-based reliability design: State-of-the-art survey. Comput. Indust. Eng.
37(1–2), 151–155 (1999)

6. Chen, T.C.: IAs based approach for reliability redundancy allocation problems. Appl. Math.
and Comput. 182(2), 1556–1567 (2006)

7. Salazar, D., Rocco, C.M., Galvn, B.J.: Optimization of constrained multipleobjective reliability
problems using evolutionary algorithms. Reliab. Eng. and Sys. Saf. 91(9), 1057–1070 (2006)

8. Yin, P.Y., Yu, S.S., Wang, P.P., Wang, Y.T.: Task allocation for maximizing reliability of a
distributed system using hybrid particle swarm optimization. J. Sys. Soft. 80(5), 724–735
(2007)

9. Ramirez-Marquez, J.E.: Port-of-entry safety via the reliability optimization of container inspec-
tion strategy through an evolutionary approach. Reliab. Eng. Sys. Saf. 93(11), 1698–1709
(2008)

10. Coelho, L.S.: An efficient particle swarm approach for mixed-integer programming in
reliability-redundancy optimization applications. Reliab. Eng. Sys. Saf. 94(4), 830–837 (2009)

11. Wu, P., Gao, L., Zou, D., Li, S.: An improved particle swarm optimization algorithm for
reliability problems. ISA Trans. 50(1), 71–81 (2010)

12. Zou, D., Gao, L., Wu, J., Li, S., Li, Y.: A novel global harmony search algorithm for reliability
problems. Comput. Ind. Eng. 58(2), 307–316 (2010)

13. Zou, D., Gao, L., Li, S., Wu, J.: An effective global harmony search algorithm for reliability
problems. Expert Sys. Appl. 38(4), 4642–4648 (2011)

14. Kanagaraj, G., Jawahar, N.: Simultaneous allocation of reliability & redundancy using mini-
mum total cost of ownership approach. J. comput. Appl. Res. Mech. Eng. 1(1), 1–16 (2011)

15. Prasad, V.R., Kuo, W.: An annotated overview of system-reliability optimization. IEEE Trans.
Reliab. 49(2), 176–187 (2000)

16. Chern, M.S., Jan, R.H.: Reliability optimization problems with multiple constraints. IEEE
Trans. Reliab. 35(4), 431–436 (1986)

17. Gen, M., Yun, Y.S.: Soft computing approach for reliability optimization: State-of-the-art sur-
vey. Reliab. Eng. Sys. Saf. 91(9), 1008–1026 (2006)

18. Elegbede, C.: Structural reliability assessment based on particles swarm optimization. Struct.
Saf. 27(2), 171–186 (2005)

19. Yokota, T., Gen, M., Li, H.H.: Genetic algorithm for nonlinear mixed-integer programming
problems and its application. Comput. Ind. Eng. 30(4), 905–917 (1996)

20. Marseguerra, M., Zio, E., Podofillini, L.: Optimal reliability/availability of uncertain systems
via multi-objective genetic algorithms. IEEE Trans. Reliab. 53(3), 424–434 (2004)

21. Painton, L., Campbell, J.: Genetic algorithms in optimization of system reliability. IEEE Trans.
Reliab. 44(2), 172–178 (1995)

22. Aponte, D.E.S., Sanseverino, C.M.R.: Solving advanced multi-objective robust designs by
means of multiple objective evolutionary algorithms (MOEA): A reliability application. Reliab.
Eng. Sys. Saf. 92(6), 697–706 (2007)

23. Meziane, R., Massim, Y., Zeblah, A., Ghoraf, A., Rahli, R.: Reliability optimization using ant
colony algorithm under performance and cost constraints. Electr. Power Sys. Res. 76(1–3), 1–8
(2005)

24. Kuo, W.: Recent advances in optimal reliability allocation. IEEE Trans. Sys., Man, and Cyber.-
Part A: Sys. Hum. 37(2), 143–156 (2007)

25. Payne, R. B. et al.: The Cuckoos. Oxford University (2005)
26. Prasad, V.R., Kuo, W.: Reliability optimization of coherent systems. IEEE Trans. Reliab. 49(3),

323–330 (2000)
27. Kuo, W., Hwang, C.L., Tillman, F.A.: A note on heuristic methods in optimal system reliability.

IEEE Trans. Reliab. 27(5), 320–324 (1978)
28. Xu, Z., Kuo, W., Lin, H.H.: Optimization limits in improving system reliability. IEEE Trans.

Reliab. 39(1), 51–60 (1990)
29. Dhingra, A.K.: Optimal apportionment of reliability & redundancy in series systems under

multiple objectives. IEEE Trans. Reliab. 41(4), 576–582 (1992)



Solving Reliability Optimization Problems by Cuckoo Search 215

30. Agrwal, M., Vikas, K.S.: Ant colony approach to constrained redundancy optimization in binary
systems. Appl. Math. Model. 34, 992–1003 (2010)

31. Abraham, J.A.: An improved algorithm for network reliability. IEEE Trans. Reliab. 28, 58–61
(1979)

32. Holland, J.H.: Adaption in natural and artificial systems. University of Michigan Press, Ann
Arbor, MI (1975)

33. Karaboga, D.: An idea based on honeybee swarm for numerical optimization. Erciyes Univer-
sity, Turkey (2005)

34. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimiza-
tion, harmony search theory and practice. Comp. Meth. Appl. Mech. Eng. 194, 3902–3933
(2005)



Hybridization of Cuckoo Search and Firefly
Algorithms for Selecting the Optimal Solution
in Semantic Web Service Composition

Ioan Salomie, Viorica Rozina Chifu and Cristina Bianca Pop

Abstract This chapter investigates how the Cuckoo Search and Firefly Algorithm
can be hybridized for performance improvement in the context of selecting the opti-
mal or near-optimal solution in semantic Web service composition. Cuckoo Search
and Firefly Algorithm are hybridized with genetic, reinforcement learning and tabu
principles to achieve a proper exploration and exploitation of the search process.
The hybrid algorithms are applied on an enhanced planning graph which models the
service composition search space for a given user request. The problem of finding
the optimal solution encoded in the enhanced planning graph can be reduced to iden-
tifying a configuration of semantic Web services, out of a very large set of possible
configurations, which maximizes a fitness function which considers semantics and
QoS attributes as selection criteria. To analyze the benefits of hybridization we have
comparatively evaluated the classical Cuckoo Search and Firefly Algorithms versus
the proposed hybridized algorithms.
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1 Introduction

Service Oriented Computing is a software paradigm that has emerged due to the
necessity of ensuring Business-to-Business Collaboration over the Internet. Web ser-
vices represent the building blocks of Service Oriented Computing as they provide
a self-describing and platform-independent solution for exposing on the Internet
the functionalities offered by different business entities. Web services are involved
in composition processes when complex user requests need to be satisfied. An
important step in automatic Web service composition is the selection of the opti-
mal composition solution that best satisfies all the non-functional constraints speci-
fied in the business requests. The selection of the optimal composition solution can
be viewed as a combinatorial optimization problem because it implies the search
for the optimal configuration of Web services out of a large number of allowed
combinations which best satisfies multiple objectives that can be even conflict-
ing. Such optimization problems can be solved using heuristic methods that are
capable of providing high quality solutions in a short time and without process-
ing the entire search space. Nature-inspired metaheuristics represent a class of
heuristic methods inspired by natural phenomenas or behaviours that have ensured
the survivability of animals, birds, insects over thousands of years by enabling
them to find perfect solutions to almost all their problems (e.g. food search, mat-
ing, breeding, etc.) [29]. A new trend in developing nature-inspired metaheuristics
is to combine the algorithmic components from various metaheuristics aiming to
improve the performance of the original metaheuristics in solving hard optimization
problems.

This chapter addresses the problem of hybridizing two nature-inspired meta-
heuristics, Cuckoo Search [28] and Firefly Algorithm [27], in the context of
selecting the optimal solution in semantic Web service composition. To hybridize
the nature-inspired metaheuristics we have followed the next steps: (1) formally
define the problem to be solved as an optimization problem, (2) develop a hybrid
nature-inspired model which defines the core and hybrid components represent-
ing the main building blocks of the hybrid nature-inspired selection algorithms, (3)
develop the hybrid nature-inspired algorithms, and (4) evaluate the hybrid nature-
inspired selection algorithms by identifying the optimal values of their adjustable
parameters.

The chapter is structured as follows. Section 2 introduces the theoretical
background. Section 3 reviews the state of the art, Sect. 4 presents the steps for
developing hybrid nature-inspired techniques for selecting the optimal solution in
Web service composition. Sections 5–8 present the Hybrid Cuckoo Search-based and
Hybrid Firefly-based techniques for selecting the optimal solution in semantic Web
service composition. Section 9 presents the paper’s conclusions.
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2 Background

This section presents the theoretical background required for developing the Hybrid
Cuckoo Search-based and Hybrid Firefly-based techniques.

2.1 Nature-Inspired Metaheuristics

Nature-inspired metaheuristics, relying on concepts and search strategies inspired
from nature, have emerged as a promising type of stochastic algorithms used for
efficiently solving optimization problems. By the number of solutions processed
within an algorithm iteration, nature-inspired metaheuristics can be classified into
population-based and trajectory-based. Population-based metaheuristics (e.g. genetic
algorithms, ant algorithms, particle swarm optimization) process simultaneously a
population of solutions thus following the evolution of a set of solutions in the
search space, while trajectory-based algorithms (e.g. tabu search, simulated anneal-
ing) process only a single solution thus following a trajectory in the search space
[3]. By the usage of a search history during the search process, nature-inspired meta-
heuristics can be classified as: (1) memory usage-based metaheuristics—rely on the
information about past moves and decisions stored in a short or long term memory
which is used to take future decisions in the search process, and (2) memory-less-
based metaheuristics—rely on the information of the current state which is used to
take future decisions in the search process [3].

In what follows, we present the nature-inspired metaheuristics proposed in the
research literature that are relevant for this chapter.

The Cuckoo Search Algorithm. The Cuckoo Search algorithm [28] is inspired
by the cuckoo’s reproduction behavior which consists of laying eggs in the nests of
other birds. In the Cuckoo Search algorithm, cuckoos are abstracted as agents having
associated a solution (i.e. the egg) of the optimization problem that they try to place
in a solution container (i.e. the host bird’s nest). The Cuckoo Search algorithm has
an initialization stage and an iterative stage. In the initialization stage, each container
is initialized with a solution of the optimization problem. In the iterative stage, the
following steps are performed until a stopping condition is satisfied [28]:

Step 1. An agent is randomly selected and a new solution xt+1 is generated for the
agent at the moment t in time by performing a random walk:

xt+1 = xt + αL(s, λ) (1)

where α is a step-size-scaling factor, s is the step size, and L refers to a random
walk defined as [30]:

L(s, λ) = λΓ (λ)sin(πλ/2)

π
≤ 1

s1+λ
(2)
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Step 2. A container where the agent may lay its solution is randomly chosen.
Step 3. The agent’s solution will replace the container’s solution, if the solution

associated to the container has a lower (in case of maximization problems) or
higher (in case of minimization problems) fitness than the fitness of the agent’s
solution.

Step 4. Some of the containers containing the worst candidate solutions are
destroyed (similar to the abandon of the nest by the host bird) and replaced with
new ones containing randomly generated solutions.

Step 5. The containers with the best solutions are kept.
Step 6. The solutions are ranked and the current best solution is found.

The Firefly Algorithm. The Firefly algorithm [27] is inspired by the behavior of
fireflies which search for a mating partner by emitting a flashing light. The algorithm
relies on a set of agents, each agent having an associated solution, which are attracted
to one another based on their brightness (the solution fitness). The Firefly Algorithm
consists of an initialization stage followed by an iterative stage. In the initialization
stage, each agent, part of the population of agents, is initialized with a solution of the
optimization problem. Then, in the iterative stage, the following steps are performed
until a stopping condition is fullfilled [27]:

Step 1. The light intensity of each agent i located in position xi is compared with
the light intensity of the other agents in the population: if the light intensity of the
agent i is lower than the light intensity of another agent j located in position xj,
then the agent i will be attracted by the agent j towards it will move as follows:

xi = xi + β0 ≤ e−γ ≤r2
ij ≤ (xj − xi)+ α ≤ εi (3)

where rij is the distance between the two agents computed based on their positions,
β0 is attractiveness between two agents for which the distance rij = 0, α is a
randomization parameter, and εi is a vector of random numbers.

Step 2. All agents are ranked based on their solution’s fitness value.
Step 3. The current global best is updated (if it is the case).

2.2 Hybridization of Nature-Inspired Metaheuristics

Hybrid metaheuristics combine algorithmic components from various optimization
algorithms aiming to improve the performance of the original metaheuristics in solv-
ing optimization problems [4]. Hybridizing a metaheuristic does not guarantee that it
will work well for all optimization problems [4]. Hybridization by combining com-
ponents from other metaheuristics, and hybridization by cooperative search are con-
sidered as two main hybridization techniques [3]. The hybridization of metaheuristics
with components from other metaheuristics combines trajectory-based metaheuris-
tics with population-based metaheuristics. This approach is motivated by the fact
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that population-based metaheuristics can explore the promissing search space areas
which can be then exploited to quickly find the best solutions using trajectory-based
metaheuristics [4]. The hybridization of metaheuristics by cooperative search relies
on the cooperation between multiple search algorithms that are executed in parallel.

2.3 Semantic Web Service Composition Flow

The Service Oriented Architecture has emerged as a Service Oriented Computing-
based architecture for developing distributed applications using Web services [19].
A Web service is a software component exposing various functionalities which can
be published, located and invoked on the Internet. The Semantic Web technologies
led to the definition of semantic Web services which facilitate the automation of the
services’ lifecycle phases (e.g. discovery, selection, composition, execution). There
are situations in which semantic Web services need to be composed in order to fulfill a
complex business request which can not be addressed by a single atomic service. The
semantic Web service composition flow is shown in Fig. 1. A prerequisite of automatic
composition is the existence of a set of Web services semantically annotated and
published in a Universal Description Discovery and Integration (UDDI) registry.
Thus, a domain ontology describing the functional and non-functional features of
Web services must be used to semantically annotate the WSDL syntactic descriptions
of the Web services. Having annotated the set of Web services, the next step is
to publish them in a UDDI registry. The existence of a large number of semantic
Web services in the UDDI registry makes the discovery process inefficient, unless
services are grouped according to specific criteria. Incorporating service clustering
capabilities in UDDI registries is a solution to this problem as it aims to gather into
clusters the services sharing common semantic features.

Fig. 1 Semantic web service composition flow (the arrow numbers indicate the processing flow)
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The chaining of Web services in a composition can be identified based on the
semantic matching between the output and the input parameters of the discovered
services. Most of the composition methods focus on the functional aspects, without
considering the non-functional ones such as Quality of Service (QoS) attributes.
The non-functional aspects are considered in the selection process which aims to
identify the optimal or a near-optimal composition solution. The existence of a large
number of services with similar functionalities can lead to compositions containing
multiple alternative solutions. In this case appropriate methods for selecting the
optimal solution that best satisfies the composition requirements need to be used.
After the optimal composition is identified, the underlying semantic Web services
are executed.

3 Literature Review

This section presents the state of the art in non-hybrid and hybrid nature-inspired
approaches for selecting the optimal solution in Web service composition.

3.1 Non-hybrid Nature-Inspired Techniques

A non-hybrid nature-inspired technique for selecting the optimal Web service com-
position is based on adapting a general purpose-nature-inspired metaheuristic. In
the context of selecting the optimal Web service composition, the following nature-
inspired metaheuristics have been mostly applied: Genetic Algorithms, Ant Colony
Optimization, Clonal Selection. In what follows, we present a survey of non-hybrid
nature-inspired techniques used for identifying the optimal Web service composi-
tion. Most of these approaches apply the non-hybrid nature-inspired technique on an
abstract workflow in which each task has a set of concrete services associated.

Genetic-based techniques for selecting the optimal Web service composition have
been proposed in [2, 5, 10, 11, 14, 20–22] (see Table 1). In the approaches presented
in Table 1, a genetic individual is mapped on a composition solution encoded using
discrete representations (e.g. integer, binary). These genetic-based techniques start
from an initial population that is randomly generated. The main differences between
these approaches are related to how the individuals’ evolution is achieved (i.e. what
selection, crossover and mutation operators are applied) and to how the fitness func-
tion is defined. Most of the approaches use roulette-based selection operators, one
point/two points crossover operators, and random mutation operators.

In [15, 23, 31], Ant Colony Optimization-inspired techniques for selecting
the optimal Web service composition have been presented (see Table 2). In these
approaches, each ant builds a composition solution in each algorithm iteration by
starting from the graph origin and by probabilistically choosing candidate services
to be added to its partial solution. The probability of choosing a candidate service
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Table 1 Comparative analysis of the state of art genetic-inspired approaches for selecting the
optimal solution in Web service composition

Reference Concepts encoding Fitness function Update strategies

[5] Solution: integer array QoS, penalty,
constraint-based

Roulette-based and elitism
selection operator, two
point crossover, random
mutation

[10] Solution: n-tuple QoS, penalty-based Roulette-based selection,
uniform and hybrid
crossover, random
mutation

[21] Solution: binary QoS-based Roulette-based selection, one
point crossover, random
mutation

[22] Solution: binary QoS-based Elitism, two-point crossover,
random mutation

[14] Solution: integer array QoS, semantic, penalty,
constraint-based

Elitism, multipoint crossover,
random mutation

[20] Solution: hybrid encoding QoS-based Roulette-based selection, one
point crossover, random
mutation

[2] Solution: hybrid encoding QoS, penalty, customer
satisfaction-based

Not specified

[11] Solution: hybrid encoding QoS-based One point crossover, random
mutation

depends on the pheromone level associated to the edge in the abstract workflow con-
necting the current service to the candidate service and on heuristic information. In
[23, 31], the pheromone reflects the QoS attributes of the candidate service, while in
[15] the pheromone is a numerical value equal for each edge connecting two services
in the graph of services. One main difference between these approaches consists in
the way the pheromone update is performed. In [23, 31], the update is a two-step
process which consists of decreasing the pheromone level associated to each edge by
means of an evaporation strategy and of increasing the pheromone level associated
to each edge part of promissing solutions. In [15], the update is performed in a single
step and depends on a pheromone evaporation rate, the current pheromone level and
a chaos operator which aims to improve the convergence speed of the algorithm
towards the optimal solution.

Immune-inspired techniques for selecting the optimal Web service composition
have been proposed in [25, 26] (see Table 3). In these approaches, the immune con-
cepts (antigen, antibody, affinity, cloning, somatic hypermutation) are mapped on
the concepts from the problem of selecting the optimal service composition solution
as follows: the antigen is represented as a fitness function, the antibody is repre-
sented as a candidate composition solution encoded using discrete representations,
the affinity between an antigen and an antibody is represented by the value of the
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Table 2 Comparative analysis of the state of art ant colony optimization-inspired approaches for
selecting the optimal solution in Web service composition

Reference Concepts encoding Fitness function Update strategies

[31] Solution: graph path QoS-based Pheromone evaporation and pheromone
Pheromone: k-tuple increase based on QoS attribute values

Probabilistic choice
[23] Solution: graph path QoS-based Pheromone evaporation and pheromone

Pheromone: numerical value increase based on QoS attribute values
Probabilistic choice

[15] Solution: graph path QoS-based Pheromone evaporation and pheromone
Pheromone: numerical value increase based on QoS attribute values

Probabilistic choice

fitness function for the associated composition solution, cloning consists of repli-
cating a composition solution, and somatic hypermutation consists of applying a
set of updating strategies (e.g. mutation, crossover) on a composition solution to
improve its affinity. Besides the affinity between the antigen and an antibody, [25,
26] also model the affinity between two antibodies as a Hamming distance between
the associated composition solutions. In [26], the composition solutions having a
low concentration in the population have the highest chances to be updated using the
genetic crossover and mutation operators. In [25], the proposed algorithm applies
two immune operations, one aiming to generate a diverse population of antibodies
(i.e. compositin solutions) based on the affinity between antibodies and the antibod-
ies concentration, and one aiming to update the antibodies population using a clonal
selection-inspired approach. This approach also relies on a mutation operator which
modifies the solution elements that alter its fitness.

3.2 Hybrid Nature-Inspired Techniques

A hybrid method combining Particle Swarm Optimization (PSO) [12] with Simmu-
lated Annealing is proposed in [8] for selecting the optimal or a near-optimal service
composition solution based on QoS attributes. Authors model service composition
using an abstract workflow on which concrete services are mapped. A composi-
tion solution is considered as the position of a particle in PSO, while velocity is
used to modify a composition solution. To avoid the problem of premature stagna-
tion in a local optimal solution, a Simmulated Annealing-based strategy is intro-
duced which produces new composition solutions by randomly perturbing an initial
solution.

Another hybrid method based on PSO is presented in [24] which introduces a non-
uniform mutation strategy that aims to modify the global best optimal composition
solution for ensuring the exploration of new areas of the search space. In addition,
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Table 3 Comparative analysis of the state of art immune-inspired approaches for selecting the
optimal solution in web service composition

Reference Concepts encoding Fitness function Update strategies

[26] Solution: binary string QoS and
penalty-
based

One point crossover, mutation,
affinity between antibodies,
antibodies concentration

[25] Solution: binary string QoS-based Mutation, affinity between
antibodies, antibodies
concentration

to improve the convergence speed the authors use an adaptive weight strategy for
adjusting the particle velocity. A local best first strategy is used to replace the services
having a low QoS score from a composition solution with others having a higher QoS
score.

In [13], authors model the selection of the optimal semantic Web service com-
position solution as a QoS constraint satisfaction problem which they solve using a
hybrid algorithm that combines tabu seach with simulated annealing. The Web ser-
vice composition model is obtained by mapping concrete services on the tasks of an
abstract composition. Tabu search is used to generate a neighbour composition plan
by replacing some of the services from a given plan. The service replacement strategy
implies performing the following steps for each unsatisfied constraint: (1) sort the
services that violate a constraint in descending order, (2) replace some of the top ser-
vices with other services that have the highest evaluation scores, (3) record the service
replacements in a tabu list to avoid stagnation in a local optimum [13]. To establish
whether a neighbour plan should be accepted or not, a simulated annealing-based
strategy is applied which takes into account the plan’s degree of constraint violation.

In [16], authors combine genetic algorithms with Ant Colony Optimization to
select the optimal composition. In this approach, a Web service composition solution
is encoded as a set of binary strings, where a string represents the identification
number of a concrete service selected to implement the associated abstract task.
Initially, the Ant Colony Optimization is used to generate the initial population of
individuals that will be submitted to the genetic algorithm. The genetic algorithm
iteratively modifies the population of individuals by applying crossover and mutation
operators until a stopping condition is fullfilled.

In [1], a genetic algorithm is hybridized with Tabu Search for performance
improvements in the context of selecting the optimal composition solution. In this
approach, a composition solution is encoded as an array of integer values, each value
indicating the index of the concrete service selected for implementing the associated
abstract task. The two-point crossover and the random mutation operators are used
to evolve composition solutions from one generation to another. A penalty-based
fitness function is used to evaluate a composition solution in terms of QoS attributes
and constraint satisfaction. The concept of tabu list is used from Tabu Search to
store the composition solution from each iteration having the best fitness after the
crossover and mutation operators are applied upon a set of solutions. Each solution
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stored in the tabu list has an aspiration time associated which decreases with each
iteration until it becomes 0. When this happens, the associated solution is deleted
from the tabu list and may replace similar solutions from the current population of
solutions.

4 The Steps for Developing Hybrid Nature-Inspired Techniques
for Selecting the Optimal Web Service Composition Solution

This section presents the steps for developing hybrid nature-inspired techniques for
selecting the optimal or a near-optimal solution in Web service composition.

Step 1—Problem Definition. A first step in designing a hybrid nature-inspired
selection technique is to choose a proper problem formalization to eliminate the
processing overhead. The problem of selecting the optimal solution in Web service
composition can be formulated as an optimization problem, as its main objective
is to find the appropriate configuration of services such that the optimal or a near-
optimal solution with respect to a given fitness function is identified in short time
while fullfilling a set of constraints. Formally, the problem of selecting the optimal
solution in Web service composition can be defined as:

Π = (S, F, C) (4)

where S is the service compositions search space, F is the set of fitness functions
that evaluate the quality of a composition solution sol, and C is a set of constraints.

The set of fitness functions, F, is formally defined as:

F = {F1(sol), F2(sol), . . . , Fn(sol)} (5)

where Fi(sol) : S∗ ⊕ is an objective function that must be minimized/maximized,
subject to the set of constraints C. An objective function may consider the mini-
mization/maximization of a QoS attribute in the case of QoS-aware Web service
composition, or the maximization of the semantic matching between the services
involved in a composition solution in the case of semantic Web service composi-
tion. If the objectives are normalized in the same interval, then the set of objective
functions can be aggregated into a single objective function.

The set of constraints, C, is formally defined as follows:

C = [C1, C2, . . . , Cm] (6)

Constraints may be related to an atomic service or to the entire composition
[2]. The constraints related to an atomic service can be classified as: (i) conflicting
constraints (e.g. if one service is selected then other subsequent services can not be
selected for composition [20]), (ii) dependency constraints (e.g. if one service owned
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by a service provider is chosen in the composition solution then in the next steps
other services belonging to the same provider must be used [6, 20]), or (iii) data
constraints (e.g. constraints related to the data used by a service [2]). The constraints
related to the composition include composition QoS constraints (e.g. the global QoS
value of the composition should be in a specified range) or semantic constraints (e.g.
the semantic matching score of a composition should be in a specified range).

The goal of an optimization problem is to find either the global optimal service
composition solution or a near optimal service composition solution.

Step 2—Developing a Hybridization Model. This step for developing a
hybridization model for selecting the optimal service composition can be decom-
posed into the following four sub-steps: (1) identify the nature-inspired metaheuris-
tics suitable for solving the selection problem, (2) analyze the chosen metaheuristics
to identify how they can be improved in terms of execution time and solution quality
through hybridization with concepts/strategies from other metaheuristics, and (3)
map the metaheuristics’ concepts to the concepts of the selection problem domain.

Step 3—Developing a Hybrid Selection Algorithm. This step implies adapting
and enhancing an existing nature-inspired metaheuristic to the problem of selecting
the optimal Web service composition solution by injecting the components of the
hybrid nature-inspired model in the existing nature-inspired metaheuristic.

Step 4—Performance Evaluation. The convergence of a metaheuristic algorithm
towards the optimal solution is influenced by the values of its adjustable parameters.
The proper choice of the values for the adjustable parameters ensures a good balance
between exploration and exploitation. To identify the optimal values of the adjustable
parameters the following two steps are addressed: (1) an exhaustive search of the
composition model is performed to identify the optimal composition solution’s score
which will be further used to fine tune the values of the adjustable parameters, and
(2) different strategies for controlling the values of the adjustable parameters are
applied (e.g. trial-and-error, algorithmic parameter tuning) [7].

The following sections present how these steps are applied to develop the Hybrid
Cuckoo Search-based and Hybrid Firefly-based techniques.

5 Formal Definition

This section presents how we have instantiated the elements of the formal definition
(see Eq. (4)) of the Web service composition selection problem presented in the first
step of the method introduced in Sect. 4 of this chapter. In our case, the service
composition search space is modeled as an enhanced planning graph defined as a set
of layers:

EPG = {(SC0, PC0), . . . , (SCn, PCn)} (7)

where SCi is a set of service clusters and PCi is a set of parameters clusters from
layer i of the EPG. A service cluster groups services with similar functionalities,
while a parameter cluster groups similar input and output service parameters. In our
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approach, two services/parameters are similar if the degree of match between their
semantic descriptions is higher than a user-defined threshold. The EPG construction
is triggered by a composition request issued by a user, specified as a set of ontology
concepts semantically describing the provided inputs and requested outputs. The
concepts annotating the provided inputs are organized in clusters in the set PC0 of
the first EPG layer. The set SC0 of service clusters of the first layer is empty. At
each step, the EPG is extended with a new layer which contains: (1) a set of service
clusters having their inputs provided by the services from the previous layers, and (2)
a set of parameters clusters obtained by extending the previous parameters clusters
with the output parameters of the services from the current layer. The construction
of the EPG ends when the user provided outputs are found in the set of parameters
clusters from the current layer, or when the EPG can not be extended with new layers.
A feasible solution encoded in the EPG is composed of a set of services providing
one service from each cluster of each EPG layer.

To evaluate a composition solution, we define a fitness function QF which aggre-
gates a set of objectives, normalized in the same interval of values: the QoS attributes
of the services involved in a composition solution as well as the semantic quality of
the connections between these services. The QF equation is defined as:

QF(sol) = wQoS ≤ QoS(sol)+ wSem ≤ Sem(sol)

(wQoS + wSem) ≤ |sol| (8)

where: (i) QoS(sol) [18] is the QoS score of the composition solution sol, (ii) Sem(sol)
[18] is the semantic quality score of the composition solution sol, and (iii) wQoS and
wSem are the weights corresponding to user preferences related to the relevance of
QoS and semantic quality.

In our approach, the only constraint for the problem of selecting the optimal Web
service composition is to build feasible composition solutions.

6 Hybridization Model

This section addresses the second step of the method presented in Sect. 3 of this
chapter by describing the components used to hybridize the Cuckoo Search and the
Firefly algorithms (see Fig. 2). The two metaheuristics are hybridized with the same
components to better evaluate the hybridization impact on each of them.

6.1 Core Components

The core components of the hybridization model are the Cuckoo Search-based com-
ponent and the Firefly-based component. Each of these core components will be
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Fig. 2 Hybridization Model
Components

hybridized with the components presented in the next sub-section resulting in two
hybrid nature-inspired selection algorithms.

The Cuckoo Search-based component is defined by mapping the concepts from
the Cuckoo Search Algorithm to the concepts of selecting the optimal Web service
composition solution as: (i) a cuckoo becomes an agent, (ii) the egg becomes a Web
service composition solution, (iii) the nest becomes a container of Web service com-
position solutions, (iv) the forrest in which cuckoos live becomes an EPG structure.

The Firefly-based component is defined by mapping the concepts from the Firefly
Algorithm to the concepts of selecting the optimal Web service composition solution
as: (i) a firefly becomes an agent, (ii) the position of a firefly becomes a Web service
composition solution, (iii) the brightness of a firefly becomes the quality of a solution
evaluated with a fitness function, (iv) the attractiveness between two fireflies becomes
the similarity between two composition solutions, (v) the movement of a firefly
is mapped to a modification of the firefly’s current composition solution, (vi) the
environment in which fireflies fly is mapped to an EPG structure.

6.2 Hybridization Components

This section presents the components that will be used to hybridize the core compo-
nents introduced in the previous sub-section.

Tabu Search and Reinforcement Learning Component. The tabu search and
reinforcement learning component improves the search capabilities of the agents,
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used by the core components, by means of long-term and short-term memory struc-
tures borrowed from tabu search [9]. The long-term memory (see Eq. (9)) contains
the history of service replacements and the associated rewards and penalties and is
consulted each time a new Web service composition solution is improved:

ML = {ml | , ml = (si, sj, rlScore)} (9)

where si is the service that has been replaced by sj and rlScore is the reinforcement
learning score used for recording rewards and penalties for the tuple (si, sj). The
concepts of rewards and penalties are borrowed from the reinforcement learning
technique. The rlScore value of a service replacement is updated each time the
specified replacement is used to modify a solution. If the replacement improves the
quality of a solution then the rlScore is increased (a reward is granted), otherwise
the rlScore is decreased (a penalty is granted). The short-term memory structure
contains the set of solutions that are set as tabu and can not be used in the process of
generating new composition solutions in the current iteration. In the Hybrid Cuckoo
Search-based Model, the short-term memory stores containers in which the agents
can not lay any solution, while in the Hybrid Firefly-based Model the short-term
memory stores the agents that can not participate in the mating process.

Fig. 3 The processing steps executed when applying the memory-based mutation operator
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Evolutionary Component. The evolutionary component introduces a memory-
based mutation operator which is applied upon the current optimal solution solopt ,
and upon another solution solcurrent which is submitted to an update process. By
applying the memory-based mutation operator, the following steps are executed for
each service si belonging to solcurrent and which is not part of solopt (see Fig. 3):

• The long-term memory is searched for a triple (si, sj, rlScore) having the highest
rlScore. If such a triple is found then si is replaced by service sj in solcurrent ,
otherwise si is replaced with a service sk randomly chosen from the same cluster.
• The updated solcurrent is evaluated using the fitness function in Eq. (8) and if its

quality is improved (compared to the initial solution) then rewards are granted to
the pair (si, sj)/(si, sk), otherwise penalties are granted to this pair.

7 Hybrid Selection Algorithms

This section presents the algorithms obtained by hybridizing the Cuckoo Search and
Firefly algorithms with the components of the Hybridization Model discussed in
Sect. 6 of this chapter. The algorithms take as inputs an EPG structure resulted from
the Web service composition process and the weights wQoS and wSem showing the
relevance of a solution’s QoS compared to its semantic quality. Additionally, each
algorithm takes as inputs some specific parameters which will be further discussed.
The algorithms return the optimal or a near-optimal composition solution. Each
selection algorithm consists of an initialization stage followed by an iterative stages.

7.1 The Hybrid Cuckoo Search-Based Algorithm

For the Hybrid Cuckoo Search-based Algorithm (see Algorithm 1) we have con-
sidered four specific parameters: the number nmbConts of containers, the number
nmbAgs of agents, the number nmbRep of containers that will be destroyed, and the
maximum number of iterations maxIt. In the initialization stage, each container is
populated with a randomly generated composition solution (line 4), and the current
optimal solution is identified (line 5). The initial solutions generated in this stage are
further improved in the iterative stage which is executed until the maximum number
of iterations is reached. Each algorithm iteration executes the following sequence of
actions: (1) Generate and lay solutions, (2) Replace worst solutions, and (3) Reset
memories. Each of these actions is further discussed below.

Generate and Lay Solutions. Each agent in the set of agents randomly selects
a container cont that is not tabu. Consequently, the selected container is set as tabu.
Then, by applying the memory-based mutation operator upon the current optimal
solution and cont’s solution, a new solution is generated. The new solution will
replace the solution of a randomly selected container if its QF score is better and the
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Fig. 4 Example of tracing step 1 for two agents in an algorithm iteration

pairs of services that improve the quality of the new solution will be rewarded. If
the new solution is not better than the container’s solution, then the pairs of services
that negatively affect the quality of the new solution will be penalized. Additionally,
the current optimal solution is updated if it is the case. The process of applying
the memory-based mutation operator is repeated until all containers are processed.
Figure 4 presents the tracing of this step for two agents during an algorithm iteration.
In this figure, a population of five agents and eight solution containers are consid-
ered. The first cuckoo performs the following operations: (1) Randomly selects the
C3 container out of containers {C1, C2, C3, C4, C5, C6, C7, C8}; (2) Sets C3 as
tabu; (3) Generates a new composition solution S∼ by applying the memory-based
mutation upon C3’s solution and the current optimal solution (corresponding to C1);
(4) Randomly selects C5 out of containers {C4, C5, C6, C7, C8}; (5) Replaces C5’s
solution with S∼ since the fitness of S∼ is higher than the fitness of the C5’s solu-
tion; (6) Generates a new composition solution S∼ by applying the memory-based
mutation upon C5’s solution and the current optimal solution (corresponding to C1);
(7) Randomly selects C8 out of containers {C6, C7, C8}; (8) Replaces C8’s solution
with S∼ since the fitness of S∼ is higher than the fitness of the C8’s solution.
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After the first cuckoo finishes the containers’ processing, all containers are sorted
in descending order based on their solutions’ fitness. Then, the second cuckoo per-
forms the following operations: (1) Randomly selects container C1 out of containers
{C1, C2, C3, C4, C6, C7, C8} that are not tabu (C5 is tabu); (2) Sets C1 as tabu; (3)
Generates a new composition solution S∼ by applying the memory-based mutation
upon C1’s solution and the current optimal solution (corresponding to C1); (4) Ran-
domly selects C3 out of containers {C2, C3, C4, C6, C7, C8}; (5) Does not replace
C3’s solution with S∼ since the fitness of S∼ is lower than the fitness of the C3’s solu-
tion; (6) Generates a new composition solution S∼ by applying the memory-based
mutation upon C3’s solution and the current optimal solution (corresponding to C1);
(7) Randomly selects C6 out of containers {C4, C6, C7, C8}; (8) Replaces C6’s
solution with S∼ since the fitness of S∼ is higher than the fitness of the C6’s solution;
(9) Randomly selects C8 out of containers {C7, C8}; (10) Replaces C8’s solution
with S∼ since the fitness of S∼ is higher than the fitness of the C8’s solution.

Replace worst solutions. A number nmbRep of the containers having the worst
solutions are initialized with new randomly generated solutions.

Reset memories. The short-term and long-term memories are emptied.

7.2 The Hybrid Firefly Search-Based Algorithm

For the Hybrid Firefly Search-based Algorithm (see Algorithm 2) we have considered
three specific parameters: (i) the number nmbAgs of agents used to search for the
best composition, (ii) the threshold Δc used in crossover-based operations, and (iii)
the maximum number of iterations maxIt. In the initialization stage, each agent is
associated to a randomly generated composition solution (lines 5–7), and the current
optimal solution is identified (line 8). The initial solutions generated in this stage are
further improved in the iterative stage which is executed until the maximum number
of iterations is reached.

In an algorithm iteration, each agent i compares its solution soli with the solutions
of the other agents that are not tabu. If the score of soli is lower than the score of a
solution solj associated to an agent j, then:

• The distance r between soli and solj is computed as the difference between the
scores of the two solutions (line 15).
• The crossover operator is applied upon soli and solj in a number of points estab-

lished based on the value of the distance r (line 16). If r ≥ Δc, then a lower
number of modifications are required as the attractiveness decreases once the dis-
tance between agents increases. If r < Δc, then a higher number of modifications
are required. As a result of applying the crossover operator, two new solutions
will be obtained, the one having the highest score (according to the QF function)
replacing the agent’s i solution having the smallest score.
• The memory-based mutation operator presented in Sect. 6 of this chapter is applied

to agent’s i solution, soli, resulted after applying the crossover operator (line 18).
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Algorithm 1 Cuckoo_Web_Service_Selection
1 Input: EPG, wQoS , wSem, nmbConts, nmbCucks, nmbRep, maxIt
2 Output: solopt
3 Comments: Conts - the set of containers
4 begin
5 Conts = Initialize_Containers(EPG, nmbConts)
6 solopt = Get_Best_Solution(Conts)
7 nmbIt = 0
8 MS = ML = ⊗
9 while (nmbIt < maxIt) do

10 foreach cuckoo in Cuckoos do
11 cont = Select_Container(Conts, MS)

12 MS = Update_Short_Term_Memory(MS, cont)
13 while (More_Containers_to__be_Processed()) do
14 solc = Cuck_Generate_Sol(cont, solopt, ML)

15 cont = Cuck_Select_Cont(Conts)
16 solold = Get_Cont_Solution(cont)
17 solnew = Cuckoo_Lay_Sol(solc, cont)
18 if (solnew! = solold) then
19 ML = Reward(solnew, solold , ML)

20 if (QF(solnew) > QF(solopt)) then
21 solopt = solnew
22 end if
23 else ML = Penalize(solc, solold , ML)

24 end if
25 end while
26 Conts = Sort_Descending(Conts)
27 end foreach
28 Conts = Replace(Conts, nmbRep)

29 Conts = Sort_Descending(Conts)
30 MS = Reset_Short_Term_Memory(MS)

31 ML = Reset_Long_Term_Memory(ML)

32 nmbIt = nmbIt + 1
33 end while
34 return solopt
35 end

• If the new solution obtained by applying the memory-based mutation operator
improves the score of the initial solution (the solution before the memory-based
mutation operator is applied), then rewards are granted, otherwise penalties are
granted. In addition, the current optimal solution is updated.
• The agent j is set as tabu if a randomly generated number is greater or equal to the

threshold τ .

8 Performance Evaluation

This section addresses the fourth step of the method introduced in Sect. 4 of this
chapter refering to the performance evaluation of the proposed hybrid nature-inspired
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Algorithm 2 Firefly_Web_Service_Selection
1 Input: EPG, wQoS , wSem, nmbAgs, Δt , maxIt, τ

2 Output: fSolbest
3 begin
4 FSOL = ⊗
5 for i = 1 to nmbAgs do
6 FSOL = FSOL ∝Gen_Random_Solution(EPG)

7 end for
8 solopt = Get_Best_Firefly(FSOL)

9 ML = ⊗
10 nmbIt = 0
11 while(nmbIt < maxIt) do
12 for i = 1 to nmbAgs do
13 for j = 1 to nmbAgs do
14 if (QF(FSOL[i]) < QF(FSOL[j])) then
15 Δ = Compute_Distance(FSOL[i], FSOL[j])
16 FSOL[i] = Crossover(FSOL[i], FSOL[j],Δ,Δc)

17 solaux = FSOL[i]
18 FSOL[i] =Memory_based_Mutation(FSOL[i], solopt, ML)

19 if (QF(solaux) < QF(FSOL[i])) then
20 ML = Reward(FSOL[i], solaux, ML)

21 if (QF(FSOL[i]) > QF(solopt)) then solopt = FSOL[i]
22 else ML = Penalize(FSOL[i], solaux, ML)

23 end if
24 end if
25 FSOL = Set_Tabu_Probabilistically(FSOL[j], τ )

26 end for
27 end for
28 nmbIt = nmbIt + 1
29 end while
30 return solopt
31 end

algorithms. To evaluate the performance of the Hybrid Cuckoo Search-based and
Hybrid Firefly-based algorithms we have performed experiments on a set of scenarios
from the trip planning domain involving EPG structures of different complexities (see
Table 4).

In Table 4, for each scenario are specified: (i) the scenario code, (ii) the EPG
configuration with its layers, the clusters of each layer (the number of clusters is
given by the cardinality of each set associated to a layer) and the services per cluster
(the number of services is given by the value of each element in a set associated
to a layer), (iii) the search space complexity in terms of total number of possible
solutions encoded in the EPG structure (the number has been obtained by counting
the number of solutions generated in an exhaustive search procedure), (iv) the global
optimal fitness value identified by performing an exhaustive search, (v) the execution
time in which the optimal solution has been found when performing the exhaustive
search.
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8.1 Setting the Optimal Values of the Adjustable Parameters

To set the optimal values of the adjustable parameters of the proposed algorithms, a
trial-and-error strategy was adopted. In what follows, we present fragments of the best
experimental results obtained while tuning the values of the adjustable parameters
of both algorithms for scenarios S, M and L. The experiments have been performed
on a computer having an Intel Core i5 processor with two processor cores and a
frequency of 2.66 GHz.

8.1.1 Setting the Optimal Values of the Adjustable Parameters
for the Hybrid Cuckoo Search-Based Algorithm

The adjustable parameters of the Hybrid Cuckoo Search-based Algorithm are the
following: nmbConts—the number of containers, nmbAgs—the number of agents,

Table 4 EPG configurations and other additional information

Scenario EPG configuration Search space Global optimal Execution time
code complexity fitness (min:s)

S Layer 1: {4 5 6} 2073600 6.456 3:8
Layer 2: {6 4 6}
Layer 3: {4 6 5}

M Layer 1: {3 5 4 6} 6220800 7.482 15:47
Layer 2: {6 4 6 5}
Layer 3: {4 6}

L Layer 1: {6 5 3 3} 13996800 8.024 56:18
Layer 2: {4 6 4 3}
Layer 3: {6 5 6}

Table 5 Experimental results for scenario S (ordered descendingly by the fitness value)

nmbConts nmbAgs (%) nmbRep Fitness Time (s) Deviation

10 5 25 6.456 0.42 0
15 5 25 6.456 0.58 0
20 9 25 6.456 1.06 0
20 15 25 6.456 1.54 0
15 10 25 6.45 0.72 0.06
20 6 25 6.45 0.74 0.06
15 7 25 6.45 0.97 0.06
10 3 20 6.444 0.32 0.012
10 3 25 6.434 0.32 0.013
10 5 20 6.429 0.42 0.027
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Table 6 Experimental results for scenario M (ordered descendingly by the fitness value)

nmbConts nmbAgs nmbRep (%) Fitness Time (s) Deviation

20 6 25 7.48 1.08 0.002
20 15 25 7.48 1.33 0.002
15 7 25 7.478 1.13 0.004
15 5 25 7.47 0.828 0.012
20 9 25 7.47 1.52 0.012
10 5 25 7.46 0.69 0.022
15 10 25 7.46 1.44 0.022
10 3 25 7.45 0.44 0.032
10 3 20 7.44 0.44 0.033
10 5 20 7.44 0.69 0.033

Table 7 Experimental results for scenario L (ordered descendingly by the fitness value)

nmbConts nmbAgs nmbRep (%) Fitness Time (s) Deviation

15 7 25 8.02 1.5 0.004
20 6 25 8.02 1.51 0.004
20 9 25 8.02 1.92 0.004
15 10 25 8.02 2.01 0.004
20 15 25 8.02 3.3 0.004
15 5 25 8.01 1.18 0.005
10 3 25 8 0.63 0.024
10 3 20 8 0.63 0.024
10 5 25 8 0.9 0.024
10 5 20 7.99 0.95 0.025

and nmbRep—the percentage of containers that will be destroyed. We have var-
ied the values of nmbConts and nmbRep as suggested in [28]: nmbConts ←
{5, 10, 15, 20, 50, 100, 150, 250, 500}, nmbRep ← {0, 0.01, 0.05, 0.1, 0.15, 0.2,

0.25, 0.4, 0.5}. Tables 5, 6, 7 present a fragment of the best experimental results
obtained while varying the values of the algorithm’s adjustable parameters for sce-
narios S, M, and L (each table row represents an average value of the results obtained
while running the algorithm for 100 times). In these tables, deviation refers to the fit-
ness difference between the global optimum obtained through exhaustive search and
the optimum solution provided by the hybrid algorithm. By analyzing the experimen-
tal results it can be observed that the values of nmbConts and nmbRep recommended
in [28] (nmbConts = 15, and nmbRep = 25 %) can be considered as good values for
the considered scenarios. Regarding the number of agents, a value of 7 provides good
results in all the considered scenarios. The table rows showing the results obtained
for the configuration nmbConts = 15, nmbRep = 25 %, and nmbAgs = 7 of the
adjustable parameters are highlighted in bold in Tables 5, 6, 7.
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8.1.2 Setting the Optimal Values of the Adjustable Parameters
for the Hybrid Firefly-Based Algorithm

The adjustable parameters of the Hybrid Firefly-based Algorithm are the following:
nmbAgs—the number of agents, Δc—the threshold used to compute the number of
crossover points, and τ—the threshold used to set an agent as tabu. We have varied
the values of the adjustable parameters as follows: nmbAgs value from 15 to 300,
Δc value in the range [0, 1], and τ value in the range [0, 1]. For seting the range
of values for nmbAgs we were guided by the values proposed in [27]. Tables 8, 9,
10 illustrate a fragment of the best experimental results obtained while varying the
values of the algorithm’s adjustable parameters for scenarios S, M, and L (each table
row represents an average value of the results obtained while running the algorithm
for 100 times). By analyzing the experimental results it can be observed that for
nmbAgs = 65, Δc = 0.4, and τ = 0.9, the algorithm provides good results for all
scenarios. The results obtained for this configuration are highlighted as a bold row
in Tables 8, 9, 10.

Table 8 Experimental results for scenario S (ordered descendingly by the fitness value)

nmbAgs Δc τ Fitness Time (s) Deviation

80 0.4 0.9 6.302 0.319 0.154
65 0.4 0.9 6.264 0.256 0.192
300 0.5 0.5 6.254 0.382 0.202
200 0.5 0.5 6.245 0.272 0.211
100 0.5 0.6 6.242 0.171 0.214
80 0.4 0.9 6.239 0.332 0.217
300 0.5 0.5 6.228 0.372 0.228
130 0.5 0.6 6.226 0.208 0.23
160 0.5 0.6 6.196 0.249 0.26
60 0.3 0.9 6.212 0.27 0.244

Table 9 Experimental results for scenario M (ordered descendingly by the fitness value)

nmbAgs Δc τ Fitness Time (s) Deviation

60 0.3 0.9 7.367 0.389 0.115
100 0.5 0.6 7.323 0.268 0.159
80 0.4 0.9 7.309 0.518 0.173
65 0.4 0.9 7.302 0.440 0.18
200 0.5 0.5 7.302 0.413 0.18
300 0.5 0.5 7.289 0.561 0.193
300 0.5 0.5 7.282 0.566 0.2
80 0.4 0.9 7.277 0.516 0.205
160 0.5 0.6 7.275 0. 377 0.207
130 0.5 0.6 7.236 0.318 0.246
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Table 10 Experimental results for scenario L (ordered descendingly by the fitness value)

nmbAgs Δc τ Fitness Time (s) Deviation

65 0.4 0.9 7.93 0.66 0.094
300 0.5 0.5 7.896 0.879 0.128
60 0.3 0.9 7.895 0.638 0.129
200 0.5 0.5 7.894 0.632 0.13
80 0.4 0.9 7.88 0.808 0.144
130 0.5 0.6 7.879 0.494 0.145
160 0.5 0.6 7.879 0.583 0.145
300 0.5 0.5 7.878 0.870 0.146
100 0.5 0.6 7.875 0.395 0.149
80 0.4 0.9 7.871 0.8 0.153

8.2 Evaluations of Hybridization

This section presents the individual contribution of each hybridization component,
part of the hybridization model presented in Sect. 6 of this chapter, to uncover the
strength of the proposed Hybrid Cuckoo Search-based and Hybrid Firefly-based
algorithms.

Evaluation of Cuckoo Search Hybridization. We have implemented, evaluated
and compared the following algorithm versions:

• CS—the classical Cuckoo Search algorithm proposed in [29].
• CSU—a version of the CS algorithm where more agents lay solutions in more than

one container in each iteration.
• CSUG—a version of the CSU algorithm where only the evolutionary component is

used (without considering the tabu search and reinforcement learning component).
Thus, each candidate solution is compared with the optimal one and the services
that are different in the candidate solution are randomly changed with other services
from the same cluster without consulting the memory structures.
• CSUGTR—a version of the CSU algorithm where the evolutionary component is

used together with the tabu search and reinforcement learning component.

In Tables 11, 12, 13 we illustrate the experimental results obtained by the algo-
rithm versions for S, M, and L scenarios (the optimal configurations of adjustable
parameters have been considered for all algorithm versions).

Table 11 Hybrid Cuckoo search-based algorithm—results (scenario S)

Algorithm Fitness Time (s) Deviation

CS 5.46 0.06 0.996
CSU 5.87 0.17 0.586
CSUG 6.13 0.2 0.326
CSUGTR 6.45 0.97 0.06
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Table 12 Hybrid Cuckoo search-based algorithm—results (scenario M)

Algorithm Fitness Time (s) Deviation

CS 6.47 0.07 1.012
CSU 6.9 0.28 0.582
CSUG 7.1 0.3 0.382
CSUGTR 7.478 1.13 0.004

Table 13 Hybrid Cuckoo search-based algorithm—results (scenario L)

Algorithm Fitness Time (s) Deviation

CS 7.248 0.08 0.776
CSU 7.578 0.44 0.446
CSUG 7.817 0.46 0.207
CSUGTR 8.02 1.5 0.004

Each row in Tables 11, 12, 13 represents an average obtained for 100 runs of an
algorithm. By analyzing the experimental results it can be noticed that the hybridiza-
tion of Cuckoo Search has brought a significant improvement in the fitness of the
identified optimal solution with a time penalty resulted from the increased number
of operations introduced through hybridization.

Evaluation of Firefly Algorithm Hybridization. We have implemented, evalu-
ated and compared the following algorithm versions:

• FS—the classical Firefly algorithm proposed in [27].
• FSG—a version of the FS algorithm where only the evolutionary component is

used (without considering the tabu search and reinforcement learning component).
• FSGTR—a version of the FSG algorithm where the evolutionary component is

used together with the tabu search and reinforcement learning component.

In Tables 14, 15, 16 we illustrate the experimental results obtained by the FS,
FSG, and FSGTR algorithms for S, M, and L scenarios (the optimal configurations

Table 14 Hybrid firefly-based algorithm—results (scenario S)

Algorithm Fitness Time (s) Deviation

FS 6.243 3.924 0.213
FSG 5.946 3.765 0.51
FSGTR 6.264 0.256 0.192

Table 15 Hybrid firefly-based algorithm—results (scenario M)

Algorithm Fitness Time (s) Deviation

FS 7.032 1.181 0.45
FSG 7.037 5.809 0.391
FSGTR 7.302 0.44 0.18
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Table 16 Hybrid firefly-based algorithm—results (scenario L)

Algorithm Fitness Time (s) Deviation

FS 7.593 1.843 0.431
FSG 7.702 9.309 0.322
FSGTR 7.93 0.66 0.094

of adjustable parameters have been considered for all algorithm versions). Each table
row represents an average obtained for 100 runs of an algorithm.

By analyzing the experimental results it can be noticed that the hybridization of
the Firefly Algorithm has brought an improvement in the fitness of the identified
optimal solution with a significant reduction of the execution time.

9 Conclusions

In this chapter we have presented the Hybrid Cuckoo Search-based and the Hybrid
Firefly-based algorithms for selecting the optimal solution in semantic Web service
composition. The proposed algorithms combine principles from population-based
meta-heuristics with principles from trajectory-based meta-heuristics and reinforce-
ment learning to optimize the search process in terms of execution time and fitness
value reflecting the QoS and semantic quality of a solution. The selection algorithms
are applied on a service composition search space encoded as an enhanced planning
graph which is dynamically generated for each user request. To justify the need for
hybridization we have comparatively analyzed the experimental results provided by
the proposed selection algorithms with the ones provided by the Cuckoo Search and
Firefly algorithms. Experimental results prove that: (1) by hybridizing the Cuckoo
Search algorithm, a significant improvement in the fitness of the identified optimal
solution is obtained with an execution time penalty, and (2) by hybridizing the Fire-
fly Algorithm, an improvement in the fitness of the identified optimal solution is
obtained with a significant reduction of the execution time.
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Geometric Firefly Algorithms on Graphical
Processing Units

A. V. Husselmann and K. A. Hawick

Abstract Geometric unification of Evolutionary Algorithms (EAs) has resulted in
an expanding set of algorithms which are search space invariant. This is important
since search spaces are not always parametric. Of particular interest are combinato-
rial spaces such as those of programs that are searchable by parametric optimisers,
providing they have been specially adapted in this way. This typically involves re-
defining concepts of distance, crossover and mutation operators. We present an infor-
mally modified Geometric Firefly Algorithm for searching expression tree space, and
accelerate the computation using Graphical Processing Units. We also evaluate algo-
rithm efficiency against a geometric version of the Genetic Programming algorithm
with tournament selection. We present some rendering techniques for visualising the
program problem space and therefore to aid in characterising algorithm behaviour.

Keywords CUDA · Visualisation · Combinatorial optimisation · GPU · Geometric

1 Introduction

Evolutionary algorithms continue to provide an important means of tackling optimi-
sation problems. A group of such algorithms related to the Firefly approach [1] are
particularly powerful, especially when accelerated using modern parallel processing
hardware such as graphical processing units (GPUs).

Geometric Evolutionary Algorithms are recent additions to the global optimiser
family introduced by Moraglio in 2007 [2]. The methodology introduced by Moraglio
has already been used to derive the geometric counterparts of Differential Evolution
for Hamming space [3], and program space [4], as well as a Geometric Particle Swarm
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Optimiser (GPSO) [5]. This unification among EAs has resulted from a rigorous
mathematical generalisation by Moraglio, who created a framework providing a
method by which an EA can be generalised to arbitrary search spaces, provided that
a space-specific algorithm is derived from the generalisation to the desired search
space [2].

Unlike the formal derivations of Moraglio and colleagues in these papers, we
follow an informal path to obtain an effective combinatorial Firefly Algorithm for
k-expression program space. This algorithm could then be a very suitable candidate
for generalisation to other search spaces, particularly Hamming space, as this is the
metric space we use to denote distances between candidates. The formal derivation
of a Geometric Firefly Algorithm to Hamming space is out scope in this chapter.
Our analysis of the algorithm covers parallelisation over Graphical Processing Units
(GPUs) of the new algorithm, and also an analysis of how the exponential decay
affects convergence rates.

Among the Geometric Evolutionary Algorithms already proposed, Togelius et al.
in 2008 introduced Particle Swarm Programming (PSP) [6] as the amalgamation of
the Geometric Particle Swarm Optimiser (GPSO) and program space in the spirit
of Genetic Programming. The authors in that paper [6] note that an initial proposal
of this nature is unlikely to outperform the majority of algorithms already highly
specialised within parametric and combinatorial optimisation; Poli et al. [7] also note
that it is too early to be certain whether Geometric unification is a good approach. We
further the work within this area by examining combinatorial optimisers as opposed
to parametric ones.

We use several pieces of apparatus to accomplish the goal of a suitable Firefly
Algorithm (FA) for use in conjunction with GPU hardware and expression trees. Be-
fore discussing these, we provide a brief overview of population-based combinatorial
optimisation in Sect. 2. We omit an extensive overview of the Firefly Algorithm, and
instead refer the reader to Yang’s original work on the Firefly Algorithm [1]. As for the
apparatus we use: firstly, we require an appropriate representation for the candidate
expression trees in Hamming space, which we discuss in Sect. 3. We also require par-
allel considerations for the canonical Firefly Algorithm, which we discuss in Sect. 4
along with relevant background information on scientific GPU programming.

The original Firefly Algorithm combines contributions from the entire population
for one candidate, therefore, in order to facilitate a fair fitness-based contribution
from all candidates in crossover (hence an n-parent “global crossover”), we also
require additional apparatus which we discuss in Sect. 5. Finally, we draw together
Sects. 3 and 4 and present our parallel, expression-tree Firefly Algorithm in Sect. 5.
In Sect. 6 we discuss how we evaluate the efficacy of this new algorithm and we
consider some areas for further work in Sect. 9 prior to offering some conclusions
in Sect. 10.
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2 Evolutionary Population-Based Combinatorial Optimisation

The biological metaphor of evolution has been used extensively throughout the
Evolutionary Algorithms (EAs) literature. John Holland’s initial work towards the
Genetic Algorithm [8] has resulted in a distillation of the core process in natural
adaptation: selection, crossover and mutation. These three phases are often known
as genetic “operators”, and collectively drive a population of individuals, known
as “candidates” (sometimes “chromosomes”) towards better solutions. These candi-
dates are composed of binary numbers or real numbers. Koza specialised this algo-
rithm to one which operates on the search space of programs, and invented Genetic
Programming (GP) [9]. These candidates would be composed of a series of terminal
symbols and function symbols, traditionally in a tree structure. The genetic operators
as used in the literature by Holland and Koza are described below. Candidates are
usually trees or linear sets of instructions made up of abstract symbols sometimes
known as codons.

The typical lifecycle of GP is to first initialise a random set of individuals and
compute their fitness using some objective function. This function could be as simple
as a polynomial (Symbolic Regression [10]) or program-space search with a stochas-
tic evaluation function (Santa Fe Ant Trail [11]). Then, the genetic operators are run
on the population, generating a new set of individuals which are evaluated, and then
again passed to the genetic operators. This process then repeats.

The Genetic Algorithm [8] and Genetic Programming [9] algorithms are essen-
tially sophisticated search algorithms. They are complex in the sense that stochastic
influences among candidates compound continuously and bias each other toward the
global optimum.

Augusto and Barbosa state that there are only two criteria to use GP, which also
make them highly applicable in many circumstances [12]. The first is that the solution
to the problem can be represented in the form of a program, and the second is there
exists a metric which can evaluate two arbitrary candidates, and indicate which is the
better candidate solution. Keeping these two criteria in mind, it is easy to see why
GP has gained such great research interest.

Crossover

The crossover operator deals with the genetic recombination of two candidates.
In the traditional representation of abstract syntax trees (ASTs), this is done by
performing a subtree swap on the two candidate trees on a random point, named the
“crossover site”. This attempts to construct two new candidates which can then be
used in the subsequent computations. This is analogous to the biological process of
genetic crossover.

Usually the actual methodology of this operator is dependent on the representation
of the candidates. For example, the representation of Linear Genetic Programming
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(LGP) [13] is a finite sequence of instructions which can be executed serially. Per-
forming crossover between two of these candidates usually involves selecting a point,
and then exchanging the two sequences of instructions about that point with the cor-
responding sequences of the other candidate. The result is a set of two candidates
from the input set of two candidates, which are different.

Selection

The selection operator is used to select two candidates to be given to the crossover
operator as inputs. There are several ways of accomplishing this, the traditional
method being Roulette wheel selection, where the probability of selecting a candidate
is based on its fitness. Tournament selection is another method, where n tournaments
are held, where two (or more) candidates are chosen in a uniform random fashion,
and then the candidate with the lowest fitness is discarded.

Mutation

The mutation operator is the simplest, in which candidates are perturbed in solution
space, effectively introducing diversity. This serves as a method for exploring solution
space thoroughly. Without this operator, the algorithm is only able to cause a drift,
and it is unlikely the global optimum will ever be discovered.

These operators can only be usefully applied however, if the problem in general
and the program solution in particular can be cast into an appropriate genetic form.

3 Candidate Representation Using Karva

One of the central pragmatic problems in using genetic programming is finding
an appropriate form of representation of the problem so that GP operators can be
applied. Karva is a language introduced by Ferreira in her work proposing the Gene
Expression Programming (GEP) algorithm [14, 15]. Karva provides a solution to the
problematic issue with Genetic Programming algorithms and other combinatorial
optimisers of representing the candidate solutions in genetic operable form. This
often dictates which genetic operators can actually be applied across the population,
or at least, their efficacy in producing a steady flow of diversity and fitness increase.
The original Genetic Programming algorithm by John Koza [9] operated on the space
of LISP-style S-expressions, where these expressions denote abstract syntactic trees
which are often decision trees or mathematical expressions.

Alternative representations have been proposed in the past, such as Linear Genetic
Programming (LGP) [13], where candidates are stored as linear sequences of
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instructions which are executed sequentially. Research into better representations
are on-going, since LGP also suffers from the Halting Problem [16].

The advantage behind the representation language of GEP is its ability to effort-
lessly handle any-arity functions, variable length, and introns. Expressions based on
Karva in GEP are known as k-expressions, and are constituted by a set of codons in
a specific order.

These can be visualised as follows:

012345678901234567
Q-+/-abaa+a-bbacda

The symbols Q, +, - and / are known as functions (where Q is the square root
function), and the symbolsa,b,c and d (arbitrary constants) are known as terminals.
The line of digits above the chromosome is simply an indexing convenience. The
sequence of symbols shown is a genotype, meaning that is must first be interpreted
before being executed. The interpretation of this (or “phenotype”) is shown in Fig. 1.
It is worth noting that neither of the symbols c or d appear in the phenotype. The
interpretation is constructed simply by placing the first symbol at the root of the tree,
and then filling arguments of the tree level by level, left to right advancing through
the sequence, symbol by symbol.

Though these candidates would be kept at a constant length in the population,
the size of the trees depend on the interpretation and the head length, position and
number of function symbols. The chromosome must be divided into head and tail
sections, which have their length governed by the equation of Ferreira [15] shown in
Eq. (1).

t = h(nmax − 1) + 1 (1)

Here, t is the length of the tail section of the expression tree, and h is the length
of the head section, and nmax is the largest arity possible. Essentially this equation
prevents the expression tree not having enough terminals to satisfy the phenotype.
Only terminal symbols are allowed in the tail section.

While there are several crossover operators proposed in Ferreira’s work of 2006
[15], we provide an example of the simplest for clarity. Consider the following
k-expression:

01234567890123456
*-+*-abaa/abbacda

When this expression is recombined with the following, with a crossover site at
index 5:

01234567890123456
*-++baa/bbabbacda

Then the two candidates generated are shown below:
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01234567890123456
*-++babaa/abbacda
*-+*-aa/bbabbacda

Interpretations of these candidates are shown in Figs. 2 and 3. It is noteworthy
that the structures in these figures differ greatly.

The other types of operators that Ferreira propose [14] are: replication, mutation,
insertion sequence transposition, root insertion sequence transposition, gene trans-
position, 1-point recombination, 2-point recombination, and gene recombination.
We focus on 1-point recombination, in the spirit of the GA and GP algorithms. We
do however use 1-point mutation, which simply exchanges one symbol for another.
Depending on whether this symbol is in the tail or head section, appropriate ex-
changes are done so that the head and tail sections are still legal.

The term “Memetic Algorithms” (MAs) was introduced in 1989 by Moscato
[17] who noted that MAs are not new but have actually been in use for some time.

Fig. 1 The abstract
syntax tree represent-
ing the karva-expression
Q-+/-abaa+a-bbacda
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Fig. 2 The abstract syntax
tree generated from the geno-
type given by the k-expression
*-++babaa/abbacda

Fig. 3 The abstract syntax
tree generated from the geno-
type given by the k-expression
*-+*-aa/bbabbacda

The name is used in recent research as a term alluding to hybridisation of heuristic
algorithms, especially Evolutionary Algorithms [18]. In some ways, the work we
present here can be classified as a Memetic Algorithm due to our use of several
apparatus introduced by several authors on the subject of metaheuristics.

All the techniques discussed above are potentially demanding of computational
time and resources.
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4 GPU-Parallel Evolutionary Algorithms

Many optimisation problems have combinatorially large spaces. Parallel processing
cannot control the size of these spaces and we still require good, clever algorithms
to manage the combinatorial explosion. However, if a good algorithm can also make
use of parallelism it can lead to significantly reduced search times. The data paral-
lelism offered by Graphical Processing Units (GPUs) is particularly attractive, both
economically and in terms of pragmatic programming reasons.

GPUs have gained increasing interest in the scientific community over the last
few years [19]. Before the recent advances of CUDA, researchers were resigned to
use shader languages such as Cg for harnessing the power of the GPU [20]. Much
of this interest in GPUs is economical, since the peak computing power of a well-
engineered implementation on a modern GPU is competitive with some parallel
grid computers of far greater cost. Commodity-priced hardware such as these are
therefore very attractive as a solution for accelerating scientific applications as they
are readily available.

The search for high performance algorithms with regards to Evolutionary Algo-
rithms such as popular metaheuristics and so-called “swarm-intelligence” [1, 21–23]
has resulted in excessive use of GPUs, sometimes ignoring more elegant and faster
solutions on CPUs [24]. Chitty showed that using loop unrolling, 2D stacks, SSE
instructions and cache optimisations that a proper multi-core GP implementation can
also achieve a much greater performance improvement over the canonical GP [24].

Representation of GP candidates on GPUs has been a prominent issue. Early
attempts used texture memory to store data for GP [20], while others resorted to
techniques such as Reverse Polish notation for symbolic regression problems [25].
In this article, we exploit the natural storage characteristics of Karva to improve
execution efficiency.

Some impressive results have been obtained in the past from specialised Evolu-
tionary Algorithms (EAs) [26–29]. Cano et al. report an impressive 834X speedup
against the CPU, and a 212X speedup to a 4-threaded implementation on CPU.
There is convincing rationale for pressing forward in the search of high performance
algorithms in EA. Schulz et al. [30] assert that combinatorial optimisation on GPUs
are still very much an art and under studied. They advocate for a focus on efficiency
of implementation and also more complex optimisers as opposed to the relatively
simple discrete optimisers on GPU that have been published.

In this article we use Nvidia’s Compute Unified Device Architecture (CUDA)
software [31] for accelerating our algorithms. Using CUDA is not a new approach
for scientific computing and particularly EA, as there have been several EAs proposed
in the literature exploiting the nature of GPUs and CUDA specifically [26, 32–34],
including even CUDA distributed across several machines in a cluster [35] as well as
Genetic Algorithms [36] using a very elegant STL-like library known as Thrust [37].
Our algorithm involves combining multiple GPU parallelisation techniques together
however and we describe it below.
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The typical lifecycle of a GPU-based algorithm involves copying some data onto
the device, executing a sequence of GPU-specific code named a “kernel” and copying
the resulting data back to the host. These memory copies across the PCI bus incur
an excessive time penalty. However, the benefits gained from using the GPU often
outweighs these penalties. CUDA-based algorithms follow this form and exposes
these features to developers with syntax extensions to the C language.

Parallelisation of EAs depend on the extent to which they are delegated to multi-
threaded hardware. Fitness evaluation phases are particularly well-suited to paral-
lelisation, as all the computations can be done independently. Although difficult and
not always effective, it is possible to parallelise the rest of the algorithm in question.
However, having mitigated the greatest computational expense of fitness evaluation,
it often does not improve performance as greatly. Moreover, the evaluation phase
varies extensively in cycles necessary, and may also involve noise, local minima or
simply be stochastic.

Algorithm 1 Characteristic CUDA-based genetic algorithm.
allocate & initialise space for n candidates

while termination criteria not met do
copy candidates to device
execute CUDA kernel
copy back to host

if end-of-generation then then
apply genetic operators to candidates
replace old candidates with new ones

end if
visualise the result

end while

The algorithm shown in Algorithm 1 is the typical process that a parallel genetic
algorithm would follow. Simple variations of this process involves steady-state EAs
[38], Memetic Algorithms [17, 18], and Evolutionary Strategies [39].

In order to prepare for implementing a parallel Firefly Algorithm (FA) to operate
on the space of syntax trees in the form of karva-expressions, we must consider two
additional changes to the process in Algorithm 1. FA operates by having all candidates
be aware of one another. Implementing a crossover operator in these circumstances
with Karva involves multi-parent recombination. As a result, and which will be
made clearer later, we must also consider the use of Roulette selection, which does
not parallelise extremely well in general.

Eiben et al. in their work of 1994 [40] and Eiben’s work of 1997 [41] introduce a
method known as Gene Scanning for multi-parent recombination. Moscato and col-
leagues also mention multi-parent recombination as a promising area of future study
[18]. Eiben introduced several multi-parent crossover operators for binary chromo-
some Genetic Algorithms. These include uniform scanning, occurrence-based scan-
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ning and fitness-based scanning among others. We make a trivial modification to
Eiben’s fitness-based scanning operator to operate on k-expressions and the symbols
they use. The reason we use fitness-based scanning is to ensure that crossover is
biased according to fitness values of each candidate. This allows us to steer clear of
adding additional operators1 in order to ensure the algorithm converges.

The fitness-based scanning operator simply selects genes to copy into the candi-
date under examination from the set of corresponding genes from all the other can-
didates. Selecting the gene for a particular index of the candidate involves choosing
a gene with a probability based on the fitness of the candidate from which the gene is
taken. More detail on this can be sought from the work of Eiben et al. in 1994 [40].
In order to accomplish a fitness-based scanning crossover operator, we are forced
to use Roulette selection. This involves keeping track of a running total of scaled
probabilities, to which a uniform random deviate can be applied to properly select a
certain gene. Since this involves ultimately performing O(N 2) operations per frame,
we must attempt to mitigate this, as the memory access pattern and memory bank that
would need to be used for this would cause a dramatic drop in performance, just as it
would in a sequential implementation; however, it is important to effectively accept
and circumvent the restrictions the GPU architecture imposes on the developer in
order to take full advantage of the computing power available on these devices. One
method which is popular in the literature for improving performance in this case is
named tiling, where global memory is essentially paged into CUDA blocks and these
pages or “tiles” are shared amongst threads at high speed.

Algorithm 2 Parallel Genetic Programming algorithm operating on k-expressions
with fitness-based roulette gene scanning.

allocate & initialise space for n candidates on host and GPU

while termination criteria not met do
copy candidates to device
CUDA: compute k-expression execution map
CUDA: evaluate fitness of k-expressions with 50 input sets
copy back to host

Report averages

CUDA: apply gene scanning recombination to candidates with P(crossover)
CUDA: apply mutation to candidates with P(mutation)
CUDA: replace old candidates with new ones

end while

Further to the issue above, another problem which we must mitigate is that of
executing the candidate syntax trees in order to evaluate their efficacy in solving the
problem at hand. Typically, these trees would be executed recursively in a sequential
CPU implementation. On GPUs and CUDA-enabled devices, recursion is possible,

1 Effectively turning our algorithm into a Memetic Algorithm [18].
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and while stack frames are similar sizes, threads do not have local storage big enough,
and stack overflows are almost inevitable. This can be solved by allocating global
memory and managing thread stacks explicitly. This, however, introduces an exces-
sive memory overhead, as global memory is extremely slow to access. Therefore,
we have implemented a non-recursive tree evaluator which maintains a very small
local stack. Since we operate on algebraic expression trees, we aggressively reduce
this stack at every opportunity. This ensures that we never run out of memory.

Since k-expressions are the genotypes of their respective phenotypes, we must first
interpret the expressions to obtain an executable tree. Since these trees are constructed
level by level, we must interpret the expressions by computing the indexes of the
arguments of each node or symbol in the tree. This simple process returns an array
which gives the index of the first (and second) arguments for each symbol. For
brevity, we omit a thorough discussion of this. More detail on this can be found in
the authors’ work of [11].

At this point, we have essentially implemented a Genetic Programming algorithm
operating on karva-expressions using Roulette selection with a fitness-based gene
scanning crossover operator; this is shown in Algorithm 2. We now present the
modifications to the algorithm above to enable the GPU-parallel expression tree
Firefly Algorithm.

5 GPU-Parallel Expression-Tree FA

Having presented an algorithm in Sect. 4 suitable for extension by the Firefly Algo-
rithm, we must alleviate another two issues. First, we must decide on a metric space
for computing distances between candidates. For simplicity, we use Hamming dis-
tances between candidates to represent the structural differences between candidate
genotypes.

For convenience, the original update formula for two fireflies i and j in Eq. 2.

xi ≤ xi + β0e−γ r2
i j (x j − xi ) + α(d) (2)

Having introduced the all-to-all selection mechanism in Sect. 4, we have therefore
already incorporated the ability to update each candidate with information available
from every other candidate. This now works in our favour, as each candidate must be
compared against each other candidate in the original FA. We further incorporate the
observed fitness values by exponential decay as follows. Before the recombination
by roulette selection occurs, we “observe” the fitness values of all candidates in the
context of the candidate the current thread is concerned with. Since we use tiling for
paging expression trees from global memory, we use the same technique for paging
fitness scores from global memory. Therefore, when a score tile or “page” is loaded
from memory, we immediately modify it by the following formula:
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sb∗ = sbe−γ H(a,b)2
(3)

In this equation, sb∗ is the updated score of candidate b, sb is the previous score of
candidate b; H(a, b) is the Hamming distance between candidate a and b. Finally,
γ defines the shape of the decay curve, which we refer to as the decay parameter.

With these modifications in place, we have now have a fully operational GPU-
parallel Firefly Algorithm for expression trees using k-expressions and fitness-based
gene scanning for recombination. Pseudocode at the centre of the recombination
kernel is shown as,

Listing 12.1 Parallel Firefly update Kernel

update_fireflies (scores ,programs,newprograms,params) {
const uint index = <global thread index>
extern __shared__ unsigned char progtile [ ] ;
__shared__ float scoretile [32];
load_my_program(myprog) ;
float newscoresum = 0.0f ;

/ / sum all observed scores for each thread
for ( int i=0; i < agent_count / ti le_size ; ++i ) {

scoretile [ threadIdx .x] = observe_fitness (myprog,
programs + ( i⊕t i le_size + threadIdx .x)⊕maxlen,
scores[ i⊕t i le_size + threadIdx .x] ,params) ;

__syncthreads ( ) ;
for ( int i=0; i < tile_size ; ++i )

newscoresum += scoretile [ i ] ;
__syncthreads ( ) ;

}

float symbolrand[progsize ] ;
for ( int i=0; i < progsize ; ++i )

symbolrand[ i]=<rand between 0 and 1> ⊕ newscoresum;

for ( int i=0; i < agent_count / ti le_size ; ++i ) {
globalindex = ( i ⊕ t i le_size + threadIdx .x)⊕maxlen;
for ( int j=0; j < maxlen; ++j )

progtile [ threadIdx .x⊕maxlen+j]=programs[globalindex+j ] ;

scoretile [ threadIdx .x] = observe_fitness (myprog,
programs + ( i⊕t i le_size + threadIdx .x)⊕maxlen,
scores[ i⊕t i le_size + threadIdx .x] , params) ;

__syncthreads ( ) ;
i f (<rand between 0 and 1> < pcrossover)

for ( int j=0; j < tile_size ; ++j ) {
running_score += observe_fitness (myprog,

programs + ( i⊕t i le_size + j )⊕maxlen,
scoretile [ j ] , params) ;

for ( int k=0; k < maxlen; ++k) {
i f (symbolrand[k] < running_score) {

i f ( scoretile [ j ] > myscore)
myprog[k] = progtile [ j⊕maxlen + k] ;
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symbolrand[k] = scoresum+1.0f ;
}

}
}

__syncthreads ( ) ;
}

i f (<rand between 0 and 1> < pmutate) {
int pt = <rand int between 0 and maxlen>;
i f (pt < program_head_length)

myprog[pt ] = <rand int between 0 and 4 inc>;
else

myprog[pt ] = 0; / / the only terminal (x)
}
for ( int i = 0; i < maxlen; ++i )

newprograms[index ⊕ maxlen + i ] = myprog[ i ] ;
}

6 Experimental Methodology

Symbolic Regression is a long standing test base for Genetic Programming algo-
rithms, and serves as a good indication of algorithm effectiveness [9]. Expression
tree induction for a polynomial function such as the sextic function is deceptively
difficult:

f (x) = x6 − 2x4 + x2 (4)

In our experiments, we aim to obtain a suitable expression tree for computing
f (x), given x , and a candidate expression tree.

We evaluate the effectiveness of one candidate by evaluating the expression tree
given 50 separate input/output pairs. The output value is compared to the expected,
and if the absolute difference is less than 0.01 then this is counted as 1.0 and added
to the fitness of the candidate. Essentially this arrangement allows for some noise in
the fitness function, since a particular expression tree may be completely incorrect,
and still obtain a non-zero fitness. Therefore, the maximum fitness value is 50 for
one test.

We allow chromosome sizes to extend to 64, but head lengths to extend only to
24. The function symbols allowed are +,−, ⊕, % and the only terminal symbol is
x . The search space size is therefore comprised of 424 unique chromosomes, since
in this case there is only one terminal symbol. At this point we could only speculate
about the shape of the fitness landscape, but we anticipate that the entire spectrum
of fitness is reachable within this space.

We compare the algorithm against a CUDA-based Genetic Programming imple-
mentation with tournament selection, but still implemented over k-expressions.
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The algorithms were configured with 1024 agents, mutation probability of 0.08
and crossover probability of 0.99. For the Tournament-selection GP, however, we
selected a crossover probability of 0.8 and mutation probability of 0.1.

7 Selected Results

There are a number of outcomes that can be used to evaluate the efficacy of the
approach. In this section we present some generated programs as well as plots of fit-
ness convergence and some visual representations of solutions and associated spaces.

Figure 4 shows a program generated by the algorithm. It resulted in a full score
of 50, and when interpreted and reduced, results in x6 + 2x4 − x2. This differs in a
subtle way from the objective function, in that the + and − operators are swapped.
This may well have resulted due to the relatively large error allowed for a successful
“hit” of 0.01 in absolute error. Reducing this to a smaller margin of 0.001 may yield
a more correct result overall (Fig. 5).

Figure 6 presents 100-run averages of standard deviations, lowest and highest
population fitness mean, and average population fitness mean. The data plotted in
this graph was generated by setting γ = 0.0 in Eq. 3, effectively allowing a candidate
to perceive the full undegraded fitness values of all other candidates during selection
and crossover. For this value of γ , the success rate yielded was an unimpressive 11%.

The plot contains some interesting anomalies at generations 420, 530, 680, 760,
800, and 950. The standard deviations appear to climb instantly at these points, and
so do the mean, while the lowest and highest remain the same. We believe this is
caused by the algorithm escaping local minima by pure chance, since the lowest

Fig. 4 A sample program generated by the algorithm which yielded a full score of 50
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Fig. 5 Comparison plot of different settings of the decay parameter in the algorithm

fitness mean is not affected. Essentially, as in parametric optimisers, this appears to
be some kind of premature convergence, where the search would stagnate.

Figure 7 shows 100-run averages of the highest, lowest and mean population
fitness by generation, in the same format as Fig. 6. Here, the difference is clear, as the
average mean increases steadily. For this value of γ , the success rate was 98 %, as
98 runs succeeded in producing an expression which produced 50 outputs all within
0.01 of the true sextic function.

Figure 5 shows a comparison for different decay values of the algorithm proposed,
and also the tournament-selection GP. This graph is somewhat misleading, as the
means do not necessarily convey the success of the algorithm and the range of
diversity within them by generation. For example, γ = 0.003 gains a success rate of
75 %, yet γ = 0.02 which is a similar curve gains a success rate of 98 %. Therefore,
we have also provided a 3D plot of success rates, mean fitness and Generation number
in Fig. 8. Here, it is more obvious that similar means obtained do not necessarily
correspond to a higher success rate.

Decay curves are shown in Fig. 9 for various values of γ . The curve with the
highest success rate has been highlighted (γ = 0.008). It is interesting to note, that
the Hamming distance between two candidates can reach to a maximum of 64 in
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Fig. 6 Fitness plot of the algorithm when observed fitness values from the point of view of one
candidate are not decayed at all

this experiment. Even slight changes to the value of γ for this curve makes dramatic
changes to the success rate of the algorithm. The effective interaction radius in Ham-
ming space of the algorithm with γ = 0.008 is reminiscent of appropriate settings of
γ in the canonical Firefly Algorithm, where a γ too large would result in stagnation,
and a γ too small would suffer from premature convergence. This particular expo-
nential decay appears to maintain an optimal local search neighbourhood around a
candidate.

We also present success rates by γ (Decay) value in Fig. 10. At this stage we
can only speculate as to the characteristics of this curve, and why it contains certain
features. These points are subject to turbulence however, but empirical observation
suggests that there is little variability in practice. We believe that this may be related
to the head length that we have chosen for candidates.

Figure 11 contains average performance data across the 100 runs of the algorithm.
As is expected, initial complexity of the candidates would be high, since the head
sections of candidates would be randomly initialised. The result is a decrease in
complexity towards generation 500, where average generation evaluation time tends
to 12 ms. The average generation compute time is at a near constant 31.8 ms. Our
efforts in parallelising this algorithm was worth the effort, as it would generally
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Fig. 7 Fitness plot of the algorithm when the decay parameter is set to 0.01

Fig. 8 3D plot of success rates by decay values for each generation over 100 independent runs for
different decay values
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Fig. 9 Sample decay curves produced by various γ values for Hamming distances to candidates
observed by the current candidate

Fig. 10 Success rates over the 100 runs of each decay parameter used
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Fig. 11 Average performance data by generation for both generation evaluation time and the time
taken to compute a new generation for evaluation

be far more expensive than the objective function to compute, therefore reducing
overall compute time greatly. The outliers in the generation evaluation time is likely
due to mutation introducing extra complexity and possibly activating dormant intron
function symbols.

8 Visualisation

Visualising the results of an algorithm such as this not only assists in validation,
but also for fine tuning and often provides valuable insights. We have previously
introduced a method by which one may visualise a generation of expression trees by
a recursive space division mechanism [42]. This method works well for shallow trees,
but as space is divided in a binary fashion, the cells become too small to observe the
effects clearly. A visualisation of the final generation from the best run we executed
is shown in Fig. 15.

We have also experimented with better methods of visualising an entire generation
of expression trees, and the general instantaneous exploration characteristics of one
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Fig. 12 2D visualisation of the first generation from the run with the best decay value of 0.008

generation. We have computed a tree-based graph of generations 1, 500, and 1000
of the best run. These images are shown in Figs. 12, 13 and 14.

In Fig. 12 a two dimensional visual representation is given for the first generation
of a run with best decay value of 0.008. The tree based graph shows a complex
graphical structure and we have used artificial colouring to show the space with red
at the root and a normal rainbow spectral progression through to blue at the leaves.
The flattened rendering shows a tendril-like structure and gives some insights into
the space.

Figures 13 and 14 show simpler structures as the algorithm has progressed. They
show the 500th and last generation run respectively.

An alternative way to visually render a tree space is shown in Fig. 15. This
approach is described more fully in [42]. In summary, for a new expression to be
added to the program space visualisation, the space is first divided into n sections
vertically, where n is the number of terminal and non-terminal symbols. Each section
represents a symbol. The first symbol in the expression determines the section next
divided. Suppose this is the third section from the top. This section is then divided
into n sections in a horizontal fashion. The next symbol in the expression determines
which section will then be divided further, and so forth. Finally, when no symbols
remain in the expression, a dot is drawn to indicate the location of the expressions.

It is particularly noteworthy that Fig. 15 is quite sparse, giving an indication of
the tree depth steepness and some insights into how the algorithm has homed in on
particular expressions.
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Fig. 13 2D visualisation of
the 500th generation from the
run with the best decay value
of 0.008

Fig. 14 2D visualisation of the last generation from the run with the best decay value of 0.008

9 Discussion

We have managed to construct a parallel Firefly Algorithm for expression trees using
k-expressions and fitness-based gene scanning for recombination that can perform
well on graphical processing units. The Karva representation of program solution
space proved a good choice for our implementation and supported the operators we
needed.

We have found that the Firefly Algorithm’s exponential decay of observed fitness
values property is particularly good for combinatorial optimisers and this approach
appears to warrant further study.
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Fig. 15 2D visualisation using recursive space division [42] of the final generation from the best
decay value of 0.008

It was necessary to approach the problem of attaining a parallel Firefly algorithm
in two stages. Our work emphasises the need for both good algorithms that search
the right part of problem space, and in addition those that are parallelisable and
which can be readily speeded up to make use of available computational resources.
We have focused on the parallelism available from GPU accelerators in this chapter.
Furthermore we have largely focused on use of NVidia GPUs that can be programmed
using Compute Unified Device Architecture (CUDA) software.

New devices with many processing cores such as multi-cored CPUs or multi-cored
conventional processing accelerators from vendors such as Intel or AMD are also
potential candidates to help speed up combinatorial search space algorithms. Hybrid
hardware solutions that make use of both CPU cores and Accelerator cores [43]
will be increasingly relevant in the future. Such combinations offer better memory
bandwidth and therefore the ability to mix and interleave both CPU and accelera-
tor computations. This is likely to be useful for the mix of genetic operators and
approaches we have described.

A range of application problems that make use of multi-agents to explore problem
spaces can make use of the ideas we have discussed in this chapter. One promising
area is automatic algorithm discovery [44, 45] and this also suggests some uses
for program-space optimisers. Gaining an understanding on the structure of program
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spaces is also an open challenge with scope for visualisation [42] and other techniques
to guide automated solutions.

10 Conclusions

In conclusion, we have presented a two-part GPU-based algorithm for combinatorial
optimisation. The first part concerned the effective representation of individuals in the
system, as well as a selection mechanism suitable for extension, crossover operators,
mutation, and parallelising this combination to maximise performance. The second
part concerned the extension of the algorithm to incorporate the algorithmic structure
of the canonical Firefly Algorithm.

A particular problem solved included the type of metric used for judging difference
between candidates. Although simple, we chose to use the Hamming distance for this.
This allowed us to quantify the search space and more easily introduce exponentially
degraded fitness values. There may be scope for other less simple metrics to be
employed in this sort of algorithm. We also made use of roulette selection in order
to use fitness values to bias the search further.

The results are promising, however, warrant further research, especially in order
to characterise the behaviour of the algorithm when optimising different objective
functions, as well as different system sizes and parameter combinations. We have
also presented several examples of visualising the results, and experimented with a
different method as well using graphs. Visualisation of these algorithms offer very
valuable insights into system dynamics, especially in light of the stochastic nature
of Evolutionary Algorithms. The visualisations in this case are useful for judging
convergence and spatial behaviour.

There is also scope for future work to investigate the behaviour of this algorithm in
the context of other application problems. It may be feasible to build up an experiential
library of typical visualisation snapshots that will help guide investigations of new
algorithms.

In summary, we have shown that geometric algorithms based on the Firefly family
of algorithms can be implemented using GPU parallelism and that there is great
promise in this general approach to evolutionary algorithm design, visualisation and
computational performance.
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Abstract Computational grid emerged as a large scale distributed system to offer
dynamic coordinated resources sharing and high performance computing. Due to the
heterogeneity of grid resources scheduling jobs on computational grids is identified
as NP-hard problem. This chapter introduces a job scheduling mechanism based
on Discrete Firefly Algorithm (DFA) to map the grid jobs to available resources in
order to finish the submitted jobs within a minimum makespan time. The proposed
scheduling mechanism uses population based candidate solutions rather than single
path solution as in traditional scheduling mechanism such as tabu search and hill
climbing, which help avoids trapping in local optimum. We used simulation and
real workload traces to evaluate the proposed scheduling mechanism. The simula-
tion results of the proposed DFA scheduling mechanism are compared with Genetic
Algorithm and Tabu Search scheduling mechanisms. The obtained results demon-
strated that, the proposed DFA can avoid trapping in local optimal solutions and it
could be efficiently utilized for scheduling jobs on computational grids. Furthermore,
the results have shown that DFA outperforms the other scheduling mechanisms in
the case of typical and heavy loads.
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1 Introduction

Computational grid is a large scale distributed system consisting of a huge number
of heterogeneous resources that belong to different virtual organizations. Schedul-
ing jobs on such environments represents a great challenge and can be identified as
NP-hard problem [1, 2]. Therefore, heuristics and metaheuristics mechanisms have
been applied to handle the job scheduling problem on computational grid. How-
ever, metaheuristics are commonly able to find good but not necessarily efficient
and optimal solutions for the job scheduling problem. Nonetheless, nature-inspired
metaheuristics has demonstrated an excellent degree of effectiveness and efficiency
for handling combinatorial optimization problems [3]. The remarkable rise in the
size of the solution search space motivated researchers to employ nature-inspired
metaheuristics mechanisms to solve computational grid scheduling problems.

Firefly Algorithm (FA) is a nature inspired metaheuristic algorithm, inspired by
the flashing behavior of fireflies to search for food and to connect to each other [4].
The FA is a population-based technique with efficient and effective global search for
combinatorial problems [5, 6]. FA is simple, distributed and does not have central
control or data source, which enables the system to become more effective and
scalable. Many researchers use FA to solve NP-hard problems such as clustering
problem [6], flow shop scheduling problem [7] and traveling salesman problem [8],
and so on.

This chapter applies a discrete version of FA algorithm to job schedule problems on
computational grid. The proposed mechanism aims to create an optimal schedule that
is able to finish the submitted jobs within a minimum makespan time. Each firefly is
assumed to act as a scheduling candidate solution and it interacts with others fireflies
in order to explore the search space for optimal solution. We compared the proposed
discrete firefly scheduling with other metaheuristics scheduling mechanism such as
tabu search and genetic algorithm. According to the simulation results, we can report
that the proposed DFA outperforms the other job scheduling mechanisms in most
cases.

The rest of the chapter is organized as follows. Section 2 reviews the related
works on the literature; this is followed, in Sect. 3, by the formulation of the grid
scheduling problem. Section 4 demonstrates the grid broker and management archi-
tecture. Section 5 describes the proposed DFA. Section 6 shows the implementation
and experimental results. And finally, the conclusion and future works are presented
in Sect. 7.

2 Related Work

This section reviews a number of job schedulers that use different metaheuristics tech-
niques to map the clients’ jobs to the available grid resources such as Hill Climbing,
Tabu Search and Genetic Algorithm.
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A metaheuristics is a set of algorithmic notions that can be employed to describe
heuristics mechanisms appropriate to a broad set of different problems. Metaheuris-
tics can be defined as a general-purpose heuristic mechanism intended to direct an
underlying problem-specific heuristic toward promising area of good solutions in the
solution search space. In other words metaheuristics can be defined as a heuristic for
the heuristics [9]. The main challenge for optimization mechanisms is to increase
the possibility of finding global optimal solutions. Greedy optimization mechanism
such as Hill Climbing (HC) and Tabu Search (TS) strive to improve each single
step. Greedy methods can find the solution quickly. However, greedy optimization
mechanisms are often trapped in local optimal solutions [10]. HC is a local search
optimization mechanism. It is an iterative technique that begins with a random solu-
tion in the search space, and then tries to discover optimized solutions by continuously
modifying a single element of the current solution. If the modification generates a
better candidate solution, the modification is considered, otherwise the modification
is discarded [11]. HC is a local search mechanism which is suitable for finding local
optimal solutions and so it is not appropriate in searching for global optimization.
Besides, HC optimization mechanism suffers from the plateau problem when the
solution search space is flat; in that situation, HC is not capable of finding out which
way it should go, or it may choose directions that never lead to the optimal solution.
Similar to the HC mechanism is TS which is a metaheuristic local search mechanism
that can be used for handling optimization problems [12]. TS has been applied to
handle job scheduling on computational grid [10]. TS has superiority over HC as it
has a memory. This memory helps in keeping on with the exploration even if the
improving movement is absent. Moreover, the memory prevents the TS scheduling
mechanism from getting trapped in a local optimum that has been visited previously.
However, TS uses a single search path of solutions and not population search or tree
search. In the single search path technique, a set of moves throughout the solution
search space are assessed to choose the best candidate solution.

Evolutionary Algorithm (EA) mechanisms, such as Differential Evolution (DE)
generate a random initial population of feasible candidate solutions, that is a set of
integer random numbers, and each solution represents a chromosome. Each chromo-
some is a vector indexed with a number from 1 to NP, where NP is the population
size. After the initial population is generated, the population chromosomes are refined
using crossover and mutation operations.

EAs have a limited range of movements, which reduces the likelihood of trap-
ping in local or sub optimal solutions. However, they are slower in finding optimal
solutions as a result of the complexity in managing the population movements [13].
GA and DE are used to schedule the jobs on the computational grid [14–16]. Evolu-
tionary metaheuristics scheduling mechanisms outperform the grid basic scheduling
mechanisms in most cases [17, 18]. Evolutionary algorithms such GA and DE in
some cases trap in local optimal and cannot evolve any more. This is because the
population diversity is becoming low after some number of iterations so diversity of
individuals is lost and the crossover and mutation operations are no longer generates
a better individual. To tackle this problem, GA applies a limited range of movements,
which decreases the possibility of trapping in sub optimal. However, this makes GA



274 A. Yousif et al.

to be slower in finding optimal solutions. Furthermore, evolutionary algorithms may
have a memory to store previous status. This memory may help in minimizing the
number of individuals close to positions in candidate solutions that have been visited
before. However, this may also decreases the search space converges since successive
generations may die out.

GA and DE areused to schedule jobs on the computational grid [14–16]. Evolu-
tionary metaheuristics scheduling mechanisms outperform the grid basic scheduling
mechanisms in most cases in Ref. [17, 18]. De Falco et al. in Ref. [15] developed
a multi objective Differential Evolution mechanism to schedule jobs on computa-
tional grid. The objective of the scheduling mechanism is to minimize the resources
usage as well as to maximize the grid quality of service requirements. Another multi-
objective differential evolution (MODE) for scheduling jobs on computational grid
was introduced in the work by Talukder et al. in Ref. [19]. The aim of MODE is
to minimize the job completion time and minimize the cost for executing the jobs.
Selvi et al. introduced a new job scheduling mechanism based on DE to minimize
the job completion time. The representation of the scheduling algorithm is based on
array representation as they represent each valid solution as an array with a length
equal to number of submitted jobs. Swarm Intelligence (SI) is a new class of nature-
inspired metaheuristics based on population optimizations. The population elements
are particles that aim to find the global optimal candidate solution by communicat-
ing with other particles and with the environment. In SI such as PSO, ACO and FA
particles do not die; rather, they move throughout the search space themselves. PSO
and ACO have been used as scheduling mechanisms to map the jobs to resources on
computational grid in several research [1, 9, 20].

ACO has been applied as an optimization mechanism for scheduling jobs on
computational grid [21–23]. The ACO is an optimization method inspired by the
real ants in discovering the shortest path from source to destination. Real ants move
randomly searching for food and go back to the nest while dropping pheromone on
the path to identify their chosen path to encourage other ants to use [3]. If other ants
use the same path, they will deposit more pheromone and if the path is no longer
used, the pheromone will start to evaporate. The ants always choose the path that has
higher pheromone concentration, and then they give feedback by depositing their
own pheromone to make other ants use the path.

Particle Swarm Optimization (PSO) is one of the SI optimization methods,
inspired by social behavior of swarms such as bird flocking or fish schooling [24].
Several works have been done to optimize job scheduling on computational grid
using PSO [1, 2, 25, 26]. In PSO, particles never die. Particles are considered as
simple agents that move and interact throughout the search space and record the best
solution that they have visited. PSO technique is an adaptive optimization method
[1, 24]. In particle swarm optimization, each particle represents a feasible solution
in the search space which is a valid schedule of the client’s submitted jobs to the
available resources. Each particle in PSO has a position vector and velocity. After
comparing the fitness of each schedule, the particles move based on their local knowl-
edge which is represented by the particle knowledge and global knowledge which is
the knowledge that the particles gain from the swarm.
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A representation of grid job scheduling problem as a task resource assigning
graph (T-RAG) is presented by Chen et al. in Ref. [25]. This representation handles
the job scheduling problem as graph optimization problem. In the work presented
in Ref. [25] PSO was employed as an optimization mechanism to find the optimal
schedule for the job scheduling problem. The proposed mechanism represented each
particle as an integer vector with values between 1 and m where m is the number of
resources. The algorithm converts each real value to an integer value by upwarding
the decimals places. Zhang et al. proposed an optimized job scheduling mechanism in
Ref. [24, 27]. In their method, Zhang et al. used smallest position value technique to
adapt the continuous PSO mechanism to be used for discrete permutation problems
such as the process of scheduling jobs on computational grid. Their results showed
that the discrete PSO based on the smallest position value outperformed genetic
algorithm for scheduling jobs in term of average execution time. The PSO algorithm
described previously are single objective optimization. In Ref. [28] a parallelized
multi-objective particle swarms was introduced. This optimization method divided
the swarm population into smaller sub swarm populations.

A discrete particle swarm optimization method (DPSO) mechanism for job
scheduling on computational grid was introduced in Ref. [26]. In DPSO, particles are
represented as a vector of natural numbers. The experimental evaluation for DPSO
demonstrated that DPSO has a better performance than genetic algorithm for the job
scheduling problem. A matrix representation called the position matrix of the job
scheduling problem on computational grid was presented in Ref. [29] and enhanced
in Ref. [2] by using different method for velocity updating. A fuzzy PSO method
for scheduling jobs on computational grid was introduced in Ref. [1, 20]. The aim
of the proposed fuzzy PSO is to minimize the scheduling time and to utilize the
grid resources effectively. The empirical results demonstrated that the fuzzy PSO
has performed better than genetic algorithm and tabu search optimization methods.
Meihong et al. in Ref. [30] introduced a new PSO without velocity mechanism for
grid job scheduling problem. In their mechanism they used sub swarms to update the
particles positions. in Ref. [17] a PSO with two representations was introduced. In
the first representation which called direct representation the particles are encoded
as vectors of size 1 × n where n is the number of jobs submitted to the broker. In
the indirect representation the swarm is encoded as a matrix of size m × n where m
is the number of resources and n is the number of jobs. The matrix is represented as
binary numbers to show to which resource the job is allocated.

PSO has a number of disadvantages, for example, PSO slow its convergence
speed when it is near the optimal solution. This is because PSO applies the linearly
decreasing of inertia weights. Applying the linearly decreasing inertia weights affects
the search capabilities at the end of run even if the global search capacity is needed
to escape from local optimum in some cases [31]. Furthermore, PSO suffer suffers
from the partial optimism. This problem affects the PSO speeds and directions [32].
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3 Scheduling Problem Formulation

Let R = {r1, r2...rm} be m grid resources and J = {j1, j2...jn} be n independent client
jobs. Job scheduling problem on computational grid can be defined as the process of
mapping each client job to one or more time intervals on one or more grid resources.

Each job ji consists of a set niof tasks ti1, ti2, ..., tini. The tij task has a number
of processing requirements pij. In the exceptional case when the job ji consists of
only one task we recognize withand the processing requirements with. Each task
tij is associated with a number of resources rij ⊆ {r1, r2, ..., rm} and tij possibly be
processed on any of the resources of rij. To generalize the scheduling problem this
chapter assumes that the task can be scheduled on any resource able to process it,
which according to Brucker [11] is defined as multi-purpose resource. In this model
all values of (pi , pi j , ri ) are assumed to be integer values.

Define Cij as the time that resource ri needs to finish job ji; σCi is the total time
that resource ri completes all the jobs submitted to it. The function described in Eq.
(1) is makespan time.

fmax(c) := max{σCi} (1)

The makespan time is the maximum completion time or the time when the grid
system completes the latest job. The objective of the proposed DFA is to minimize
the makespan time.

4 The Grid Brokering and Management Architecture

The architecture of the proposed scheduling mechanism is described in Fig. 1, which
illustrates the interaction between grid clients, broker components, grid information
service and grid resources. In this architecture, all resources joining the grid register
their information in the Grid Information Service (GIS), an entity that provides grid
resource registration, indexing and discovery services. This information includes the
architecture of the resources, the operating system used, the number of processing
elements the allocation policy, the speed of the resource and other information related
to the resource characteristics. The grid resource broker is responsible for receiving
jobs from grid clients, discovering the available resources, managing scheduling
mechanisms and controlling the physical allocation of resources to the grid client’s
jobs.

The process of resource scheduling and allocation starts when grid clients submit
the jobs to the broker through a portal. The broker starts the process of discovering the
available resources by communicating with the GIS. After discovering the available
resources that fulfill the lowest permitted level of the requirements, the broker starts
the scheduling process using scheduling mechanisms to map the submitted jobs to
available resources.

The scheduling mechanism consists of three main components i.e. the scheduling
policies, the fitness functions and the scheduling algorithm. Generally, the scheduling
policy is a set of rules that manage the process of resource allocation for the received
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Fig. 1 DFA scheduling architecture

jobs. The fitness function is used to evaluate, rank and find out the quality of schedule.
In the proposed scheduling mechanism, the attractiveness of the schedule is used to
determine the quality of a given candidate solution within the population.

The goal of the job scheduling process is to allocate the submitted jobs to the
available resources in order to complete the grid jobs within a minimum makespan.
Thus, the attractiveness and fitness of the firefly correspond to the makespan func-
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tion. The scheduling algorithm is responsible for generating valid schedules for the
submitted jobs on the available resources. The scheduling algorithm is considered a
good algorithm if it generates good or optimal schedule regarding the fitness function
along with consuming few resources and spending not too much time to produce the
schedule. The broker finally maintains the physical allocation of the jobs and man-
ages the available resources constantly.

5 Job Scheduling Based on DFA

Combinatorial optimization problems are essential in various research fields, and
recently the success of nature-inspired metaheuristics motivated researchers to apply
those metaheuristics for solving combinatorial problems. For job scheduling on com-
putational grid problems, the remarkable rise in the size of the solution search space
motivated the researchers to use nature-inspired metaheuristics to handle the job
scheduling problems. In this section, we introduce a discrete scheme based on firefly
algorithm to optimize the process of scheduling jobs on computational grid.

5.1 Firefly Algorithm

Firefly algorithm (FA) is a nature inspired metaheuristic algorithm, inspired by the
flashing behavior of fireflies to search for food and to connect to each other [4].
The FA is a population-based technique with efficient and effective global search
for combinatorial problems [5, 6]. FA is simple, distributed and does not have cen-
tral control or data source, which allows the system to become more effective and
scalable.

Firefly optimization mechanism as described by [5, 6] can be summarized on the
following steps:

• All fireflies are unisex, where every firefly can be attracted to every other firefly.
• The attractiveness of a firefly is relative to its light intensity.
• The attractiveness of a firefly is determined by its position within the search space.
• The less attractive fireflies are attracted by the brighter fireflies.
• The better value of the fitness function at certain position produces more attractive

firefly.
• The brightest firefly moves randomly.

The initial population of fireflies is generated randomly and by using the fitness
function of the optimization problem under study, the attractiveness β0 is determined
for each firefly in the population. All the fireflies move throughout the solution search
space for a certain number of iterations. For every iteration, the attractiveness of each
two fireflies fi and fj is compared; if firefly fi is more attractive than firefly fj then
firefly fj will move toward firefly fi.
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Generate initial firefly population with random position (X), 
each firefly represents a schedule

Calculate the distance between fireflies 

Calculate the light intensity 

Return the best firefly 

Move the firefly towards the brighter firefly

Yes

Yes

No

No

Firefly 1

Firefly n

….

Calculate the attractiveness for each firefly 

Move firefly 
randomly

firefly is the 
brightest one ?

Termination crite-
rion is met?

Update the position 

Fig. 2 The flowchart of proposed DFA scheduling mechanism

However, the light intensity or attractiveness value Ω depends on the distance r
between the fireflies and the media light absorption coefficient α . The attractiveness
of each firefly is determined using the equation:

Ω (r) = Ω0e−α r2
(2)

Where Ω0 represents the attractiveness of the firefly at r= 0.
The movement of a firefly fj at position xj, attracted to a brighter firefly fi at

position is established by the equation:

x j = x j + Ω0e−α r2i j (x j − xi )+ γβi (3)

The main steps of the firefly algorithm are illustrated in Fig. 2 in the form of a
flowchart.
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5.2 Discrete Firefly Algorithm

The firefly algorithm has proven to be a good metaheuristic search mechanism on
continuous optimization problems [33, 34]. Clearly, the standard firefly algorithm
cannot be applied directly to tackle discrete problems as its positions are real numbers.
Many researchers solved discrete optimization problems by applying adapted nature
inspired metaheuristics optimization methods [35]. In our proposed scheduling mech-
anism, we used the Smallest Position Value (SPV) technique for firefly algorithm
discretization [36].

SPV introduced by Tasgetiren, M.F., et al. [36] enables the continuous optimiza-
tion mechanisms to be applied for all types of combinatorial optimization problems,
which are NP-hard. SPV techniques find the permutation of the firefly through the
firefly position values. The pseudo code for the SPV technique is illustrated in algo-
rithm 1.

5.3 Scheduling Jobs using DFA

In FA, fireflies are considered as simple agents that move and interact throughout the
search space and record the best solution that they have visited. Hence, FA can be used
to produce schedule candidate solutions in order to efficiently support the scheduling
process on computational grid to map the received jobs to the available resources in
order to finish job’s execution within a minimum makespan time. The main steps of
the DFA are finding the fireflies positions using the firefly algorithm movements and
then using the smallest position value to find the permutation from the position values.
The final step is calculating the fitness function using the permutation generated by
SPV and determining the new movements. In DFA, we used the makespan time,
which is the time when the grid finishes the latest job, as the attractiveness of the
fireflies. The representation of the optimization methods is a crucial issue in designing
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a successful solution. The proposed DFA considers each firefly as a vector of natural
numbers. The element number i in the firefly vector represents the resource ID to
which job number i is mapped.

Suppose J = {j1, j2, . . . , jn} represents the jobs submitted to the grid broker and
R = {r1, r2, . . . , rm} are available resources. Let T be the execution time matrix as:

T =



⎢⎢⎢⎧

t11 t12 . . . t1n

t21 t22 . . . t2n
...

...
. . .

...

tm1 tm2 . . . tmn

⎨

⎩⎩⎩ . (4)

Here tij represents the execution time of job number i on the resource j.
Suppose Xk = (Xk

1, Xk
2, . . . , Xk

N) represents the firefly population where Xi
k

indicates the i-th firefly in the k-th iteration. If the search space is n-dimensional space,
then the i-th firefly can be defined as Xk

i = (Xk
i,1, Xk

i,2, . . . , Xk
i,n) where represents

the dimension number j of the i-th firefly on the iteration number k. Each firefly
position is a feasible schedule for the underlying job scheduling problem. Fireflies
position are continuous values, to convert these values into discrete permutations we
use the SPV. Consider Si

k = (sk
i,1, sk

i,2, . . . , sk
i,n) as the sequence of jobs implied by

the firefly. Define the permutation vector Ri
k = (Rk

i,1, Rk
i,2, . . . , Rk

i,n) according to
Eq. (5):

Rk
i =

⎛
Sk

i mod m
⎜
+ 1 (5)
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The pseudo-code of the DFA scheduling mechanism is illustrated in algorithm 2.

6 Implementation and Experimental Results

6.1 Simulation Framework

For DFA evaluation simulation methods have been employed. We used GridSim,
which is a discrete-event grid simulation tool based on java [37]. GridSim is stan-
dard grid and distributed systems simulator that model heterogeneous resources and
supports the allocation of resources in any time zone, and it allows advance reserva-
tion. Furthermore, the number of jobs that can be submitted to a resource is not limited
and can occur simultaneously. Moreover, GridSim offers capabilities to specify the
network speeds between grid resources and describe the resource characteristics [37].

The simulation entities are modeled and simulated based on the real DAS-2 system
in terms of the number of resources, architecture, operating system and other resource
characteristics. The main characteristics of the simulation model are as follows:

• Number of sites within the system: 5
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• Number of CPUs in the trace: 400
• Number of users in the trace: 333
• Number of groups in the trace: 12
• Speed of CPUs ranges uniformly between 20 and 200 Million Instructions Per

Second (MIPS).
• Resource operating systems: redhat, ubuntu, Centos, Solaris.
• Scheduling policy: Space shared.

To ensure that the simulation agrees with its requirements specifications, the cor-
rectness of the simulation has been verified using several verification techniques such
as clean code functional program verification, checking of intermediate simulation
outputs and comparing the final simulation outputs with analytical results.

6.2 The Workloads

In our simulation, we have used traces of the DAS-2 system from the Grid Workloads
Archive (GWA) [38], which is a grid benchmarked workloads made available to help
the grid researchers. The GWA trace contains real time workload of a huge number
of resources obtained from various grid projects such as NorduGrid, which consists
of more than 75 different clusters and Grid’ 5000, an experimental grid environment
contains 9 sites physically distributed in France; each site consists of a number of
clusters.

In our experiments, we considered only a fraction of jobs submitted to the DAS-2
system compared to the total number of jobs submitted to the system which is
1124772 jobs submitted over a period of 2 years. Moreover, in our experiments
we have not captured the warm-up period of DAS-2 workload trace, to avoid the
unrepresentative trace fragments.

6.3 Parameter Selection

A suitable setting for the DFA parameters values are needed for the proposed mech-
anism in order to work effectively. Before comparing the proposed mechanism with
other scheduling mechanisms, we have conducted experiments to find out the most
suitable parameter values for the proposed mechanism. In the following subsections,
we discuss some observations we have collected while setting the parameter values
for the proposed DFA. To summarize the observations of the parameter settings, we
will use the final selected parameter values as default values and change one value
each time; the final parameter values are described in Table 3.
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Table 1 Makespan time for different population sizes

2 4 6 8 10 12 16 20

735900 669000 669000 594480 432000 545222 543444 432000

6.4 The Population Size

To analyze the effect of the population size on the proposed mechanism, we con-
ducted several experiments with different population sizes, and we calculated the
makespan for each experiment. The results from those experiments are reported in
Fig. 3 and Table 1. It can be seen that the population of size 20 has a less makespan
time; indicating that the population size affects the searching quality of the proposed
firefly scheduling mechanism. Generally, increasing the population size or number of
fireflies enhance the search converge, because more fireflies are distributed through-
out the solution search space. However, increasing the number of fireflies will result
in longer scheduling time and hence affect the effectiveness of the scheduling algo-
rithm. So from the observations on experiments done we noted that the population of
size 10 is more suitable than other sizes of the population in which we get an optimal
schedule in acceptable scheduling time.

6.4.1 Gamma Values:

The media light absorption coefficient α measures the attractiveness absorption of a
certain transmission media. As shown in Fig. 4, the makespan time increase when we
increase the α value more than 0.4 or decrease it less than 0.00006 and the suitable
α value is 0.02 (Table 2).

Fig. 3 Makespan time for
different population sizes
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6.4.2 Experimental Results

In our experiments, Genetic Algorithm (GA), and Tabu Search (TS) were used to
compare the performance of the proposed DFA. The parameter values for GA, TS
and DFA are described in Table 3

In our simulations, we have considered different sizes of workload trace ranging
from a lightweight load contains only 500 jobs to heavy load contains 10,000 jobs.
Each experiment was repeated several times with different random seeds, and the
averages makespan times were calculated until the results are saturated.

Table 4 describes the results for makespan time for considered scheduling algo-
rithms regarding different workload sizes. Furthermore, the results are visualized in
Fig. 5.

It is observed from Table 4 and Fig. 5 that, the proposed DFA mechanism achieves
the best results in terms of makespan time among all scheduling instances mostly.
TS has longer makespan time compared with other scheduling mechanisms.

More specifically, in typical workload trace with 5000 jobs the makespan times
as shown in Table 4 and Fig. 6 were {291878, 255182, 195350} for TS, GA and
DFA, respectively. These results demonstrate that DFA requires significantly less
makespan time than other scheduling mechanisms. Figure 7 shows the makespan
time of the proposed mechanism and the other scheduling mechanisms when the
heavy workload is considered, in which 10,000 jobs are submitted to the broker by
the grid clients. The results obtained from this experiment mentioned the DFA has
shown lower makespan time than the other scheduling mechanisms. TS scheduling
mechanism obtained the worst makespan time.

Computational results for the makespan times for lightweight workload are shown
in Table 4 and visualized in Fig. 8. The makespan time of GA was 2800 and for DFA
was 1737 while the makespan time for TS was 1223 which is the minimum makespan
time. This indicates TS performs better than DFA in case of lightweight workloads.

Fig. 4 Makespan time for
different gamma values
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Table 2 Makespan time for different gamma values

Gamma 1 0.4 0.2 0.0002 0.00002 0.000002 0.00000002

Makespan 543444 320580 320580 349623 288524 297393 383532
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Table 3 Parameter values of
DFA, GA, TS and HC

Algorithm Parameter name Parameter value

DFA Size of the Population 10
γ 0.9
α 0.02
Ω0 1.0

GA Size of the Population 30
Crossover rate 0.8
Mutation Rate 0.02

TS Tabu list size 10
Number of Iterations 300

Table 4 Makespan time of the scheduling process for different workload sizes

No. of Jobs 500 1000 1500 2000 3000 4000 5000 6000 7000 8000 9000 10000

TS 1500 1223 1800 164206 164605 262071 291878 379800 526560 601320 607080 731040
GA 2800 2800 4227 8303 164359 251084 255182 343129 387120 389298 390701 576000
DFA 1103 1737 2753 7762 195040 197064 195350 246090 251750 258417 257582 284519

Fig. 5 The scheduling
algorithms makespan time
for different workload size
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From the results we can note that, TS is suitable for scheduling problem with a
lightweight workload trace in which the search space is not so huge and TS may
find the optimal solution easily. However, in heavy workload, it is difficult for the
single path mechanism such as TS to find the optimal solution. Moreover, TS suffers
in handling the solution search space diversity as some neighborhood candidate
solution is not necessarily to be generated. To tackle this problem, TS needs to
be extended with other heuristics technique that can help avoid the unnecessarily
neighborhood. However, the main drawback of this TS extended technique is the
extra computational cost generated by the employed heuristic.
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Fig. 6 Makespan time of
the considered scheduling
mechanism (Typical Load)
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Fig. 7 Makespan time of
the considered scheduling
mechanism (Heavy Load)
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7 Conclusion and Future Work

This chapter presented a new job scheduling mechanism for computational grid
based on a discrete firefly algorithm. The objective of the proposed job scheduling
mechanism is to allocate the grid jobs to the available resources in order to complete
the jobs within a minimum makespan time. In the proposed DFA, we applied SPV
to convert the continuous values of FA to discrete values. The proposed mechanism
is evaluated based on simulation model using GridSim simulator and real workload
data obtained from GWA. Empirical results revealed that the proposed scheduling
mechanism outperforms other scheduling mechanisms in case of typical and heavy
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Fig. 8 Makespan time of
the considered scheduling
mechanism (Lightweight
Load)
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workloads. However, in the case of lightweight workload trace TS achieves less
makespan time than DFA. The future works is directed towards handling distribution
of data on the grid and the dependencies among grid resources.
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A Parallelised Firefly Algorithm for Structural
Size and Shape Optimisation with Multimodal
Constraints

Herbert Martins Gomes and Adelano Esposito

Abstract In structural mechanics, mass reduction conflicts with frequency con-
straints when they are lower bounded since vibration mode shapes may easily switch
due to shape modifications. This may impose severe restrictions to gradient-based
optimisation methods. Here, in this chapter, it is investigated the use of the Firefly
Algorithm (FA) as an optimization engine of such problems. It is suggested some
new implementations in the basic algorithm, such as the parallelisation of the code,
based on literature reports in order to improve its performance. It is presented sev-
eral optimization examples of simple and complex trusses that are widely reported in
the literature as benchmark examples solved with several non-heuristic and heuris-
tic algorithms. The results show that the algorithm outperforms the deterministic
algorithms in accuracy, particularly using the Parallel Synchronous FA version.

Keywords Firefly algorithm · Size and shape optimisation · Algorithm
parallelisation

1 Introduction

During the last decades, the development of theories that aims at optimizing problems
was based on mathematical programming. Methods like gradient descent, SIMPLEX,
BFGS, Linear and Quadratic Sequential Programming are broadly used to solve a
variety of engineering problems. The basic idea shared by these methods is that the
gradient of the function to be optimized has important information to quickly find an
optimum solution for a specific problem. However, when dealing with highly non-
linear, non-convex, non-differentiable, non-smooth and implicit problems (that are
the opposite of the necessary conditions to the use of gradient based methods), these
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methods may present some convergence difficulties. Some of the today’s engineering
complex problems are challenging and may present such behaviour. Often, these
methods get stuck in local optima.

Truss optimization is a parametric mechanical optimization problem. This type of
mechanical structure is desirable when covering large areas with a minimum number
of columns. This is a recurrent problem found in the literature since there are no the-
orems that define the theoretical optimum solution under stress/displacements and
especially natural frequency constraints. This problem was unsuccessfully addressed
by deterministic/gradient-based methods which presented convergence problems
dealing with repeated natural frequencies and quick changes in mode shape in sym-
metrical structures when performing a parametric optimization. It is a very important
real world problem since they can reduce drastically the amount of resources to build
such structures. In this type of problem, mass reduction conflicts with frequency con-
straints when they are lower bounded since vibration shape modes may easily switch
due to shape modifications. In addition, symmetrical structures present some repeated
eigenvalues, which imposes extra difficulties to gradient methods. Thus, it is investi-
gated the use of a Firefly Algorithm (FA) as an optimization engine. One important
feature of the algorithm is based on the fact that it is non-gradient based, but based on
single objective function evaluations. This is of major importance when dealing with
non-linear optimization problems with several constraints, avoiding bad numerical
behaviour due to gradient evaluations. The algorithm is revised, highlighting its most
important features.

One of the reported disadvantages for the basic FA is its moderate performance
related to processing time, which is more critical when exposed to complex optimi-
sation problems where each function evaluation spent some considerable time. So,
any improvement in the algorithm performance is welcome.

1.1 Literature Review

The use of Fireflies as an optimization tool was proposed by Yang [1] in 2008, when
he conceived the algorithm. New researchers have been used the basic algorithm.
However, some improvements in the basic algorithm have been proposed recently in
order to enhance the method and compare with other metaheuristic algorithms. Few
books related to this theme are available, such as Yang [1] and Yang [2].

The papers by Yang [3] in 2009 and [4] in 2010 conclude that the FA could carry
out a nonlinear design optimization using stochastic test functions with singularities
and this is potentially more powerful than other existing algorithms such as PSO. He
warns that the convergence analysis still requires a theoretical framework.

Sayadia et al. [5] in 2010 successfully applied the FA as a minimisation engine
in permutation flow shop scheduling problems (NP-Hard problem). Therefore, a
direct solution is not available and Metaheuristic approaches need to be used to find
the near-optimal solutions. The results of implementation of the proposed method
were compared with other existing ant colony optimization technique. The results
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indicated that the new proposed method performed better than the ant colony for
some well-known benchmark problems.

More recently, Chai-ead et al. [6] in 2011, applied Bee Colony algorithm and Fire-
fly algorithm to noisy non-linear optimization problems. They conducted numerical
experimental tests that were analysed in terms of the best solution found so far,
mean and standard deviation on both actual optimum and convergence times to the
optimum. The Firefly algorithm seems to perform better when the noise levels are
higher. The Bees algorithm provided the better levels of computation time and the
speed of convergence. They concluded that the Firefly algorithm was more suitable to
exploit a search space by improving the individuals’ experience and simultaneously
obtaining a population of local optimal solutions.

Finally, an enhanced variant of the algorithm was proposed by Yang [7], called
Lévy-flight Firefly Algorithm. In the paper, it is claimed that the Lévy-flight firefly
algorithm converges more quickly and deals with global optimization more naturally.

According to Yang [2], there is no universal method that provides a guaranteed
optimum solution for any optimisation problem. In average, all the algorithms will
present a similar performance over a broader number of problems.

In this way, in order to improve the performance of heuristic algorithms, several
researchers have been successfully developed parallel versions for the basic serial
versions. Basically, according to Subotic et al. [8, 9] there are two main group
methods that define the goals of the parallelisation of bio-inspired parallelisation:
(a) methods that aims at reducing running time and (b) methods that aims improving
accuracy. Subotic et al. [8] presents one of the earlier parallelised versions of a
FA which were applied to unconstrained continuum optimisation problems. Two
approaches are implemented aiming the two previous goals. The idea of using more
than one swarm in the same search space may give flexibility to the search and
avoid getting stuck in local minima. They report that better results are obtained when
the main firefly swarm is divided into two sub-swarms. New swarms are created
by interchanging half of the best fireflies from each swarm. This allows sharing
important information between swarms. It is reported that the algorithm improves
accuracy and performance of the basic FA serial version.

Husselmann and Hawick [10, 11] in 2012 used a parallelised FA grid-boxing
method in the CUDA (Compute Unified Device Architecture, a parallel computer
platform created by NVIDIA for use of several Graphics Processing Units). The
developed method could be used to find interactions between fireflies and improve
performance by using a grid instead of just one list of “animats”. The implementation
of such algorithm allowed the parallel search of swarms keeping their interactions.
Multimodal optimisation tests show good improvements.

In addition to what was mentioned, there are several other heuristic algorithms
that are frequently explored and applied in parallel computation such as Parallel
PSO (Belal and El-Ghazawi [12], Venter [13], Koh et al. [14], Mostaghim et al. [15],
Esposito et al. [16], Parallel ABC (Narasimhan [17]), Parallel Ant Colony (Pede-
monte et al. [18]), Parallel Cuckoo Search (Subotic et al. [9]), just to name a few.
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In this chapter it is developed, described and compared four versions of a paral-
lelised FA with serial algorithms applied to the structural size and shape optimisation
with multimodal constraints.

2 The Firefly Algorithm

FA tries to mimic the flashing behaviour of swarms of fireflies. The bioluminescence
serve as element of courtship rituals, methods of prey attraction, social orientation
or as a warning signal to predators The rhythmic flash, the rate of flashing and the
amount of time it remains on, form part of the system that brings both sexes together.
Females respond to male’s unique pattern of flashing in the same species.

Since the light intensity decays with the square of the distance, the fireflies have
limited visibility to other fireflies. This plays an important role in the communication
of the fireflies and the attractiveness, which may be impaired by the distance. The
flashing light can be formulated in such a way that it is associated with the cost
function to be optimized. In a maximization problem, the brightness is proportional
to the objective function. In the development of the algorithm, some simplifications
are assumed such as (Yang [1]): (a) it is assumed that all fireflies are unisex so
they will be attracted to each other regardless of their sex; (b) the attractiveness is
proportional do their brightness and they both decrease as the distance increases and
(c) in the case of no existence of no brighter firefly on then, the fireflies will move
randomly and (d) the brightness of a firefly is affected by its fitness (landscape of the
objective function).

According to Yang [2], in the firefly algorithm, there are two important issues:
(a) the variation of light intensity and (b) formulation of the attractiveness. For
simplicity, one can always assume that the attractiveness of a firefly is determined
by its brightness, which in turn is associated with the encoded objective function
f (ix). In the simplest case of maximization problems, the brightness I of a firefly i at
a particular position ix = (x1, x2,...,xd)

T (vector of design variables) can be chosen
as I(ix) ∝ f (ix). However, the attractiveness σ is relative. Thus, it will vary with
the distance rij between firefly i and firefly j. In addition, light intensity decreases
with the distance from its source, and light is also absorbed by the media (air), so
we should allow the attractiveness to vary with the degree of absorption (Ω ). In the
simplest form, the light intensity I(rij) varies according to the inverse square law:

I(rij) = Is/r2
ij (1)

where Is is the intensity at the source. For a given medium with a fixed light absorption
coefficient Ω , the light intensity I vary with the distance rij in the following form:

I(rij) = I0 exp(−Ω r2
ij) (2)
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where I0 is the original light intensity.
As the firefly’s attractiveness is proportional to the light intensity seen by adjacent

fireflies, one can define the attractiveness σ of a firefly by:

σ(rij) = σ0 exp(−Ω r2
ij) (3)

where σ0 is the attractiveness at rij = 0. Equation (3) defines a characteristic distance
α = Ω−1/2 over which the attractiveness changes significantly from it σ0 to σ0e−1. In
fact, according to Yang [2] the attractiveness functionσ (rij) can be any monotonically
decreasing functions such as σ (rij)=σ0exp(−Ω rm

ij ). For a fixed Ω , the characteristic

length becomes α = Ω−1 →1 when m→∞. Conversely, for a given characteristic
length scale α in an optimization problem, the parameter Ω is used as a typical
initial value Ω = 1/αm. This was the way the heuristic parameters are tuned for the
numerical examples.

The movement of a firefly i attracted to a brighter one j is simply determined by:

ix = ix + σ0 exp(−Ω r2
ij)(

ix − jx)+ γiβ (4)

where the second term is due to the attraction and the third term γiε is a randomization
term composed by a vector of random numbers (iε ) drawn from a uniform distribution
[−1, 1] or a Gaussian distribution and a randomisation parameter γ that can decrease
along iterations in order to decrease the perturbation effect in the following firefly
moves.

For most implementations, one can take σ0 = 1 and ε= rand[−1, 1] and γ = 1.
At this point, it is worth noting that Eq. (4) is a random walk biased towards brighter
fireflies. If σ0 = 0, it becomes a simple random walk. The parameter Ω characterizes
the variation of the attractiveness, and its value is crucially important in determining
the speed of the convergence and how the FA algorithm behaves. As indicated by
Yang [1], Ω ∈ [0,∞) but for most applications, due to α values of the system to be
optimized, it typically varies from 0.1 to 10. Figure 1 shows the pseudo-code of the
firefly algorithm adapted to minimize functions.

Another important implementation that can improve the basic FA is the use of a
decreasing alpha value along iterations. This implies random walks that are smaller
along the iteration. This technique is borrowed from the Simulated Annealing Algo-
rithm and improves the convergence behaviour. The alpha value is exponentially
updated along iterations i (for all examples) as iγ = i−1γ (0.99).

In order to compare (when possible) algorithm’s speed and efficiency, the same
set of random numbers was used by fixing the seed of the random number generator.
For statistical purposes, when comparing accuracy, the random number generator
was set free for random independent runs.
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2.1 The Proposed Parallelised Versions of FA

In the last decade there were great advances in computer cluster systems composed
by several computer unities each with multiple cores. This made affordable the use
of parallel solvers for large scale problems. This favoured parallelised algorithms,
particularly those bio-inspired. In this context, the implementation of algorithms that
benefits the parallel way of work could make feasible the use of such algorithms in
complex and time consuming problems.

The previously introduced FA is now presented using multiple cores by an imple-
mentation in the Matlab� environment assuming minimisation of cost function,
which is the case of structural mass minimisation that will be treated in this paper.
As indicated by the pseudo code of Fig. 1, the basic FA algorithm calls the objec-
tive function for each firefly at the beginning of the process. This obviously is an
independent task that can be performed completely in parallel. In the other hand,
once started the main loop, when comparing brightness of fireflies, each time a fire-
fly moves towards a brighter one, the objective function should be evaluated again,
since the movement means that the design variables had been changed as the fitness
functions too. In this case, each firefly is evaluated once in a sequential (serial) way
being not possible a parallel evaluation.

This can be reduced if the fitness function evaluation is delayed and take place
outside the “i” main loop. One can say that this means performing attractiveness

Fig. 1 Pseudocode for sequential asynchronous firefly algorithm (SAFA) to minimise functions.
Adapted from Yang [2]
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comparisons that are not precise, since there were movements of the fireflies during
the comparisons. In fact, since the swarm of fireflies are ranked in ascending order,
for a given firefly i from the main outer loop, this firefly i will move (will be updated)
towards any other firefly j (j < i) provided it (j) is more attractive. So, updating the
attractiveness at the end of “j” inner loop means assuming a movement of firefly i that
is weighted by all the other more attractive fireflies. In other words, the movement
of the firefly i is a weighted sum (in a vector sense of Eq. (4)) towards just the other
more attractive fireflies.

When the evaluation of the attractiveness of the fireflies are performed at the end of
the comparisons, it is said that this is a Synchronous algorithm, since all evaluations
are performed without exchange of information between fireflies (no matter whether
evaluated sequentially one by one, or in parallel, all at the same time).

If during comparisons of attractiveness, re-assed values of attractiveness for those
fireflies that had moved are made available for the remaining comparisons, this is
said to be an Asynchronous versions of the algorithm. With this in mind, there are
four possible versions for the algorithm: (a) a Sequential Synchronous (SSFA), (b)
a Sequential Asynchronous (SAFA), (c) a Parallel Synchronous (PSFA) and (d) a
Parallel Asynchronous (PAFA). In the author’s point of view, a Parallel Asynchronous
(PAFA) version of the algorithm is partially possible. In other words, this can be
achieved by performing the evaluation of the updated position of the fireflies that
had been moved at the end of the “j” loop and not at the end of “i” loop. Moreover,
the comparisons should be initialized from the most attractive firefly to the less ones
(loop i=1 to n) and then compared to the rest of the fireflies (j= i+1 to n). So, for
those fireflies in the “j” loop that had been compared to firefly “i” and moved, its
attractiveness can be updated at the end of the “j” loop in order to be available to the
other fireflies in the next step of the “i” loop. This makes sense only if the fireflies
are ranked in ascending order in the minimisation problem.

These assumptions allow the algorithm to be stated as indicated by the pseudocodes
in Figs. 2 and 3 and can be readily parallelised. The pseudocode for the version SSFA
is the same for the PSFA, except for the final evaluation that is performed sequentially.

3 Performance Metrics

It is important to define metrics in order to compare the proposed versions of algo-
rithms. In a broad sense, metrics related to accuracy and performance can be defined
in many ways. The “execution time”, i.e., the time from the start of the problem till
the end of the problem is a very popular one (wall-clock time). Although there is
a dependency of this metric on the machine used, it can be useful when working
with the same machine and running several versions of a code. One way to avoid
this problem is to assume the number of objective function calls as a measure of
execution time or speed that is independent of machine characteristics.

Another metric is the “speed-up”. The speed-up refers to how much a parallel
algorithm is faster than a corresponding sequential algorithm. The robustness of an
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Fig. 2 Pseudocode for PSFA to minimise functions

Fig. 3 Pseudocode for PAFA to minimise functions
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optimisation algorithm is related to the scatter of obtained results (for instance, mea-
suring the standard deviation or the coefficient of variation) for several independent
runs of the algorithm.

The algorithm’s “accuracy” is related to how accurate is the mean value of several
independent runs when comparing to a benchmark value (mathematically obtained
for closed-form solutions, or the best result obtained by some author so far) And
finally, the algorithm’s “efficiency”, that is the ratio of speed-up and the number
of processors used to solve a given problem, which measures how efficiently the
algorithm uses the parallel resources. These simple metrics will be used in this
chapter to evaluate the performance of the proposed algorithms.

4 Structural Size and Shape Optimization with Multimodal
Constraints

The problem of truss structural size and shape optimization with multimodal con-
straints can be mathematically stated as:

Minimise Mass =∑n
i=1 LiρiAi i = 1, . . . , n for all bars

Subjected to ωj ≥ ω∗j for some Circular frequencies j
ωk ≤ ω∗k for some Circular frequencies k

and
Al min ≤ Al for some bar cross sectional areas l
xq min ≤ xq ≤ xq max for some nodal coordinates q

(5)

where L is the bar length, ρ is the material density, A is the bar cross-sectional
area, ω is the circular frequency, x is the coordinate vector of truss nodes and PF
is the Penalization Factor defined as the sum of all active constraint violations. The
constraint violations are treated with the penalty function technique so the objective
function to be minimised is modified to:

Mass =
(

n∑

i= 1

LiρiAi

)
(1+ PF) for all bars (6)

This penalization is applied to the frequency constraints, as indicated by Eq. (7),
but is also valid to stress and displacement constraints when necessary.

PF =
nc∑

i= 1

∣∣∣∣
ωi

ω∗i
± 1

∣∣∣∣ for all active constraints (7)

where nc is the number of equality or inequality constraints.
This formulation allows, for solutions with active constraints, objective function

values that are always greater than the non-violated ones.
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5 Numerical Examples

The synchronous and asynchronous implementations as well as their respective par-
allel extensions were used to solve some of the several structural problems often
explored in literature. The objective of the present study basically relies on: to mea-
sure the quality of the proposed implementations in terms of the accuracy and robust-
ness. For the values of the accuracy and robustness, it was executed ten independent
realisation for each implementation, whereas for the accuracy it was considered as
reference value, the small mass found amongst all four implemented algorithms.

The mean number of function calls (Callmean) was considered as convergence
criteria for stopping iterations. This mean value considers the number of iterations
to achieve a tolerance value of 10−3 for the best objective function value between
iterations. The parallel approaches were implemented in an 8-core processor, AMD
FX-8110, 2.81 GHz, 8.0 GB of RAM, in a Windows 7 64 bits platform, using the
software Matlab�, which allows performing the computations in a parallel form
using the resources available in the Parallel Computing Toolbox.

5.1 Ten Bar Truss Problem

The optimization of a 10-bar truss problem using the previously described FA algo-
rithms is addressed here. It has fixed shape and variable continuous cross sectional
area. At each free node it is attached a non-structural mass of 454.0 kg as depicted
in Fig. 4. The material properties and design variable ranges are listed in Table 1.
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m1m1
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Fig. 4 10-bar truss structure with added masses
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Table 1 Material properties and frequency constraints for the 10-bar truss structure

Property Value Unit

E (Young modulus) 6.89 × 1010 N/m2

ρ (Material density) 2770.0 kg/m3

Added mass 454.0 kg
Design’s variable lower bound 0.645 × 10−4 m2

Main bar’s dimension 9.144 m
Constraints f1 = 7, f2 ≥ 15, f3 ≥ 20 Hz

This example was first solved by Grandhi and Venkayya [19] using the Optimality
Criterion Algorithm (OCA). Sedeghati et al. [20] used a Sequential Quadratic Pro-
gramming (SQP) with the finite element force method alongside to solve the problem.
Wang et al. [21] used an Evolutionary Node Shift Method (ENSM) and Lingyum
et al. [22] used Niche Hybrid Genetic Algorithm (NH-GA). Gomes [23, 24] used a
PSO algorithm to solve the same problem. Table 2 shows the design variable results
and the final mass for the optimized truss. It should be highlighted the good results
obtained with the FA algorithm. In general, the FA algorithm implemented in this
work reached the lowest mass among those found in the literature, as can be seen
in Table 2. Particularly, it was obtained the lowest mass using serial asynchronous
version of firefly (ASFA), i.e., 524.511 kg, 11.7 % lower than the other presented
results (Grandhi [25]).

Table 5 shows a comparison between proposed algorithms by the optimum value
of mass, accuracy, robustness and number of objective function calls. The comparison
is performed in terms of mean values. For the accuracy, it is assumed with best mass
value found by the SAFA, which is the lowest mass found between the algorithms
so far, as can be seen in Table 2.

A common aspect for the four implementations consists in the quality of the
solution of algorithm. It can be noticed in Table 5 good values for accuracy (low values
for the difference between for mean mass for independent runs and the optimum
value) and robustness (low standard deviation) indicating repeatability of the method
in finding optimum solution reinforcing thus the reliability in the implementations.
This feature is more expressive in the asynchronous version, presenting lower values
for mean mass than synchronous versions, as less number of objective function
calls than synchronous version. Table 4 shows the used heuristic parameters in the
simulations with the four versions of the firefly algorithm.

Table 3 shows the first seven natural frequencies constraints obtained by each of
the proposed methods showing that none of them is violated.

Figures 5 and 6 shows the performance of the algorithms using the following
metrics: execution time, speed-up and efficiency. Observing Fig. 5 it is possible to
say that the parallel extensions needed longer execution times. This computation
cost becomes noticeable in the parallel asynchronous version of the FA. This fact is
confirmed in terms of speedup, which has registered values lower than one, making
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Table 3 Optimized frequencies (Hz) with several methods for the 10-bar truss structure

f (Hz) Wang Grandhi Sedaghati Lingyum Gomes Present work
[21] [26] [20] [22] [25]
ENSM OCA SQP NH-GA FA SSFA SAFA PSFA PAFA

1 7.011 7.059 6.992 7.008 7.000 7.000 7.000 7.000 7.000
2 17.302 15.895 17.599 18.148 16.136 16.209 16.185 16.187 16.215
3 20.001 20.425 19.973 20.000 20.000 20.003 20.000 19.999 19.999
4 20.100 21.528 19.977 20.508 20.152 20.005 20.016 20.010 20.003
5 30.869 28.978 28. 173 27.797 28.645 28.492 28.588 28.371 28.448
6 32.666 30.189 31.029 31.281 29.443 29.004 28.957 29.003 28.880
7 48.282 54.286 47.628 48.304 48.779 48.712 48.516 48.492 48.623

Table 4 Heuristic parameters used in the simulations (10-bar truss problem)

No. of fireflies Alpha coefficient Absorption coefficient Minimum attractiveness
n γ Ω σ0

30 0.6 50 0.4

Table 5 Statistical results for the 10-bar truss structure problem (10 independent runs)

Method Massmean Accuracy Robustness Callmean

(kg) (kg) (kg)

SSFA 526.072 1.560 2.604 17181
SAFA 524.579 0.067 0.052 15000
PSFA 526.107 1.595 2.514 17181
PAFA 524.604 0.092 0.032 14400

Fig. 5 Execution time of the (a) synchronous and (b) asynchronous algorithms (10-bar truss prob-
lem)
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Fig. 6 (a) Speed-up and (b) Efficiency of the parallel algorithms (10-bar truss problem)

the application of both parallel extensions not so worth in the case of the simple
10-bar truss problem (the size of the problem is not worth for parallelisation).

5.2 Shape and Size Optimisation of 37-bar Truss Problem

It is a simple supported Pratt Type 37-bar truss as indicated in Fig. 7. There are non-
structural masses of m = 10 kg attached to each of the bottom nodes of the lower
chord, which are modelled as bar elements with rectangular cross sectional areas
of 4 × 10−3m2. The other bars are modelled as simple bar elements with initial
sectional areas of 1× 10−4m2. The material property for the bar elements are set as
E=2.1 × 1011N/m2 and ρ = 7800 kg/m3. This example has been investigated by
Wang et al. [21] using the Evolutionary Node Shift Method (ENSM), by Lingyum
et al. [22] using the NH-GA algorithm and by Gomes [26] using a simple FA
algorithm.

3

2 4 6 8 10 12 13 16 18

x1

5 7 9

11

13 15 17 19

1m

10m

1
2

3

4

5 6

7 10 13 16 19 22 25

272624
23

21201817
15

14121198

y

Aditional masses

Fig. 7 37-bar truss structure with added masses
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Table 6 Heuristic parameters used in the simulations of the algorithms (37-bar truss problem)

No. of fireflies Alpha coefficient Absorption coefficient Minimum attractiveness
n γ Ω σ0

40 0.6 50 0.4

This is considered a truss optimization on size and shape since all nodes of the
upper chord are allowed to vary in the y-axis in a symmetrical way and all the
diagonal and upper chord bars are allowed to vary its cross sectional areas starting
from A=1×10−4 m2. There are three constraints in the first three natural frequencies
so that f1 ≥ 20 Hz, f2 ≥ 40 Hz, f3 ≥ 60 Hz. Therefore, it is considered a truss
optimization problem with three frequency constraints and 19 design variables (five
shape variables plus 14 sizing variables). Figure 7 shows a sketch of the 37-bar truss
initial shape design.

Table 6 shows the used heuristic parameters for 10 independent runs of FA in the
37-bar truss problem. Table 7 shows the optimal design cross sections for several

Table 7 Optimal cross sections for several methods in the 37-bar truss problem (total mass does
not consider added masses)

Variable no. Initial
design

Wang
[21]

Lingyum
[22]

Gomes
[25]

Present work

(Const.
violated)

ENSM NH-GA FA SSFA SAFA PSFA PAFA

Y3, Y19(m) 01.0 01.2086 01.1998 00.9311 00.9363 00.9563 00.9493 00.9491
Y5, Y17(m) 01.0 01.5788 01.6553 01.2978 01.3405 01.3725 01.3579 01.3618
Y7, Y15(m) 01.0 01.6719 01.9652 01.4694 01.5138 01.5507 01.5356 01.5382
Y9, Y13(m) 01.0 01.7703 02.0737 01.5948 01.6509 01.6844 01.6709 01.6741
Y11(m) 01.0 01.8502 02.3050 01.7069 01.7015 01.7330 01.7244 01.7214
A1, A27(cm2) 01.0 03.2508 02.8932 02.5706 02.9790 02.9304 02.6890 02.9981
A2, A26(cm2) 01.0 01.2364 01.1201 00.8136 01.0788 00.9969 00.9698 00.9679
A3 , A24(cm2) 01.0 01.0000 01.0000 00.9543 00.7208 00.7377 00.7352 00.7090
A4, A25(cm2) 01.0 02.5386 01.8655 02.3675 02.5407 02.5752 02.7749 02.5372
A5, A23(cm2) 01.0 01.3714 01.5962 01.4265 01.2676 01.2482 01.4303 01.2188
A6, A21(cm2) 01.0 01.3681 01.2642 01.4254 01.2121 01.2570 01.2192 01.2605
A7, A22(cm2) 01.0 02.4290 01.8254 02.3638 02.6366 02.4628 02.4073 02.5734
A8, A20(cm2) 01.0 01.6522 02.0009 04.3521 01.3225 01.3786 01.3722 01.4084
A9, A18(cm2) 01.0 01.8257 01.9526 01.4801 01.4906 01.5377 01.4872 01.5193
A10, A19(cm2) 01.0 02.3022 01.9705 03.4074 02.9578 02.4524 02.8217 02.5358
A11, A17(cm2) 01.0 01.3103 01.8294 01.7063 01.3072 01.2233 01.2477 01.2174
A12, A15(cm2) 01.0 01.4067 01.2358 01.2123 01.2572 01.3177 01.3355 01.3115
A13, A16(cm2) 01.0 02.1896 01.4049 02.4078 02.3027 02.4001 02.3755 02.3752
A14(cm2) 01.0 01.0000 01.0000 01.0199 00.5005 00.5000 00.5000 00.5000
Total mass(kg) 336.3 366.50 368.84 361.75 359.16 358.96 359.20 358.95
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Table 8 Optimised frequencies (Hz) with several methods for the 37-bar truss problem

f (Hz) Initial
design

Wang
[21]

Lingyum
[22]

Gomes
[25]

Present work

ENSM NH-GA FA SSFA SAFA PSFA PAFA

1 8.89 20.0850 8.89 20.0005 20.0009 20.0002 20.0018 20.0001
2 28.82 42.0743 28.82 40.0168 39.9994 40.0006 40.0024 40.0029
3 46.92 62.9383 46.92 60.0561 60.0011 60.0044 59.9981 60.0058
4 63.62 74.4539 63.62 76.6520 75.6486 75.2654 75.5710 74.8859
5 76.87 90.0576 76.87 92.4318 93.6842 93.2407 92.9383 92.5635

Table 9 Statistical results for the 37-bar truss problem (10 independent runs)

Method Massmean Accuracy Robustness Callmean

(kg) (kg) (kg)

SSFA 360.188 1.242 0.962 18432
SAFA 359.350 0.403 0.401 15004
PSFA 360.150 1.204 1.182 19576
PAFA 359.117 0.171 0.232 18411

methods. In this case, again the implementations of the FA algorithm designed in
the present work found the best solution amongst all found in literature. Particularly,
for this problem, the asynchronous parallel version outperformed in accuracy the
remaining versions, finding a mass of 358.95 kg.

Table 8 shows the optimized frequencies for several methods and those obtained
by the present work. It can be noticed that none of the frequency constraints is
violated. Table 9 shows the statistical results for 10 independent runs for each FA
approach in the 37-bar truss problem. Again, it can be seen the good accuracy of
the implemented versions by the low values for accuracy and robustness. It is worth
mentioning the good performance of the asynchronous versions that showed the best
accuracy and robustness amongst algorithms, and the versions that used the lowest
number of cost function calls.

It is possible to evaluate the performance of the proposed algorithms in the solution
of the 37-bar truss problem. Regarding the execution time (see Fig. 8), it was noticed
a different behaviour from the previous example (10-bar truss). It was verified that
the parallel version of the synchronous algorithm achieved better processing speeds
when compared with its serial version. This speed gain is measured in terms of
speed-up and efficiency as indicated by Fig. 9, which shown the maximum speed-up
of 2.72 obtained by the PSFA using four parallel processors. The PAFA continued
to present the worst performance when compared to its serial version counterpart.
Related to PAFA efficiency, despite being low, it shows a less accentuated trend than
that presented by the PSFA.
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Fig. 8 Execution time of the (a) synchronous algorithms and (b) asynchronous algorithms

Fig. 9 (a) Speed-up and (b) efficiency of the parallel algorithms (37-bar truss problem)

5.3 Shape and Size Optimisation of a 52-Bar Dome Problem

In this example, a hemispherical space truss (like a dome) is optimized in shape
and size with constraints in the first two natural frequencies. The space truss has
52 bars and non-structural masses of m=50 kg are added to the free nodes. The
cross-sectional areas are permitted to vary between 0.0001 and 0.001 m2. The shape
optimization is performed taking into account that the symmetry should be kept in
the design process. Each movable node is allowed to vary ±2 m. For the frequency
constraint it is set that f1≤15.916 Hz and f2 ≥28.649 Hz. A sketch of the initial design
is depicted in Figs. 10 and 11. This example is considered to be a truss optimization
problem with two frequency constraints and 13 design variables (five shape variables
plus eight sizing variables). Table 10 summarizes the heuristic parameters used in
the simulations.
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6 m

4.2426 m

4 m

2.8284 m

2 m

Fig. 10 Initial design of the 52-bar dome truss structure

4.5 m

6 m

5.7 m

Fig. 11 Initial design of the 52-bar dome truss structure (lateral view)
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Table 10 Heuristic parameters used in the simulations (52-bar dome problem)

No. of fireflies Alpha coefficient Absorption coefficient Minimum attractiveness
n γ Ω σ0

40 0.3 0.1 0.5

Table 11 Optimal cross section designs for several methods in the 52-bar truss problem (total mass
does not consider added masses)

Variable
no.

Initial
design

Lin
[27]

Lingyum
[22]

Gomes
[25]

Present work

OCA NH-GA FA SSFA SAFA PSFA PAFA

ZA (m) 06.000 04.3201 05.8851 04.1700 05.9423 05.9385 06.0510 05.8213
XB(m) 02.000 01.3153 01.7623 02.7575 02.6275 02.6169 02.6019 02.6025
ZB (m) 05.700 04.1740 04.4091 03.8028 03.7000 03.7000 03.7000 03.7000
XF (m) 02.828 02.9169 03.4406 04.2988 04.1967 04.1906 04.1829 04.1835
ZF (m) 04.500 03.2676 03.1874 02.6011 02.5000 02.5000 02.5000 02.5000
A1(cm2) 02.000 01.00 01.0000 01.0000 01.0000 01.0000 01.0000 01.0000
A2(cm2) 02.000 01.33 02.1417 01.6905 01.5573 01.5311 01.5152 01.4780
A3(cm2) 02.000 01.58 01.4858 01.4776 01.0539 01.0573 01.0486 01.0727
A4(cm2) 02.000 01.00 01.4018 01.2130 01.2492 01.2595 01.2581 01.2945
A5(cm2) 02.000 01.71 01.9110 01.3697 01.2609 01.2709 01.2885 01.2782
A6(cm2) 02.000 01.54 01.0109 01.0070 01.0000 01.0000 01.0000 01.0000
A7(cm2) 02.000 02.65 01.4693 01.3383 01.2445 01.2472 01.2633 01.2455
A8(cm2) 02.000 02.87 2.1411 01.6682 01.6648 01.6570 01.6344 01.6558
Total

mass
(kg)

338.69 298.0 236.046 202.842 189.617 190.108 188.933 201.290

Table 11 shows the initial and final optimised coordinates, areas and mass. FA
optimum mass is about 12 kg heavier than Gomes [24] optimum using PSO. It can
be noticed that the PSO performed better than the other methods. FA performed
better than Lin [27] that used Optimality Criterion Algorithm (OCA) and Lingyum
[22] which used the NH-GA.

Table 11 shows the optimal design cross sections for several methods. Again in
this case, the current implementation of the FA algorithm found the best solutions
amongst all the other methods reported in the literature. For the current problem, the
synchronous algorithm outperformed the three other versions, finding a minimum
mass of 189.617 kg, 36.4 % lower than the worst of the reported results from the
literature (Lin et al. [27]).

Table 12 shows the final optimized frequencies (Hz) for the methods. It can be
noticed that none of constraints is violated.

Table 13 shows the statistical results for 10 independent runs for each version of
FA in the 52-bar truss problem. It is also shown in the same Table 13 the respective
values for accuracy, robustness and mean number of objective function calls. In this
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Table 12 Optimized frequencies (Hz) with several methods for the 52-bar truss problem

f (Hz) Initial
design

Lin [27] Lingyum
[22]

Gomes
[25]

Present work

OCA NH-GA FA SSFA SAFA PSFA PAFA

1 8.89 15.22 12.81 13.242 14.603 14.333 15.441 15.497
2 28.82 29.28 28.65 28.671 28.649 28.649 28.649 28.649
3 46.92 29.28 28.65 28.671 28.649 28.649 28.650 28.657
4 63.62 31.68 29.54 29.245 28.653 28.650 28.650 28.657
5 76.87 33.15 30.24 29.342 28.653 28.812 28.984 28.889

Table 13 Statistical results for the 52-bar truss problem (10 independent runs)

Method Massmean Accuracy Robustness Callmean

(kg) (kg) (kg)

SSFA 189.617 0.739 1.025 26660
SAFA 190.108 1.231 1.132 23408
PSFA 188.933 0.056 0.047 27400
PAFA 201.290 12.413 14.402 21143

Fig. 12 Execution time for the (a) synchronous algorithms and (b) asynchronous algorithms

example, it was noticed that the PAFA algorithm did not present good result when
compared to its serial counterpart (SSFA) as well as others versions (SAFA and
PAFA). The other versions showed again a good behaviour with good accuracy and
robustness. It can be noticed that the asynchronous versions were able to find good
solutions within a small number of objective function calls when compared to their
synchronous counterparts, despite the slightly higher mass value.

Figures 12 and 13 show the behaviour of the algorithms. As in the previous prob-
lem, the parallel extension of synchronous algorithm presented lower processing
times.
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Fig. 13 (a) Speed-up and (b) efficiency of the parallel algorithms (52-bar truss problem)

Considering the asynchronous version, its parallel counterpart (PAFA) showed an
improved behaviour so that with six processors, the processing times of the PAFA
become less that its serial extension (SAFA) resulting in a small gain of the speed-up.
This behaviour was not verified in the previous examples. Related to the efficiency in
parallel processing, the proposed algorithms keep the previous behaviour shown in
previous problems, exception for the efficiency of the PAFA, which showed a slight
increase, approaching the PSFA efficiency.

6 Final Remarks

In this chapter, the problem of truss design optimization in shape and size with mul-
timodal constraints was addressed. The constraints were treated as usual with the
penalisation method. It is well known that this kind of optimization problem has
high-nonlinear behaviour related to the frequency constraints especially for shape
optimization, since eigenvalues are very sensitive to shape modifications. In the liter-
ature it is reported several methods that address this problem. In all the investigated
problems one has to deal with eigenvalue-eigenvector symmetrical problem, a con-
dition that may happen during the shape optimisation which represents a severe
difficulty using gradient based optimisation algorithms.

An optimisation methodology was proposed based on the Firefly Algorithm (FA).
The fact that the algorithm works with a population of probable solutions and heuristic
parameters allows exploration/exploitation capabilities and this makes it likely to
escape from local minima in the search process. It is well known that FA requires
just a few heuristic parameters to be tuned and those are generally easy to link with
the cost function magnitude of the analysed problem.

Four modified versions of the FA algorithm were proposed. Two of them take
into account the possible parallelisation of the code and the other two take into
account the possible synchronization of the cost function evaluation, namely: (a)
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SSFA (Sequential Synchronous FA), (b) SAFA (Sequential Asynchronous FA), (c)
PSFA (Parallel Synchronous FA) and (d) PAFA (Parallel Asynchronous FA). The
first version (a) is the archetypal basic FA algorithm.

It was presented three examples of increasing difficulty that were compared with
results in the literature. The well-known execution time(wall-clock time), speed-
up and efficiency metrics were used in order to trace comparisons allowing the
enhancements and issues related to the quality of solutions obtained with each one
of the proposed versions.

Regarding the quality of the results, it can be noticed that in the three presented
examples the Synchronous and Asynchronous versions presented the best optimum
results amongst all other reported values in the literature. It is worth mentioning
that the Asynchronous version presented in most of the cases (except for the third
example) the best mass solution, accuracy and robustness.

The numerical results show that the Asynchronous version, particularly the Par-
allelised version, can found more easily found a better solution. In the other hand
the Synchronous version presented a computational cost significantly higher than the
Asynchronous version in all the examples. This behaviour may be easily explained
by the fact that allowing the attractiveness to be updated along comparisons between
fireflies and making the new values available for the following comparisons; this
shortens the path toward the optimum, reducing the function calls. In fact, look-
ing for a nature counterpart, the comparisons may occur in a random way and the
attractiveness is updated instantaneously. This will be subject for future research.

What can be said is that the parallel extension of the FA allowed enhancing
performance as the computation time of the structural analysis increased. This can
be seen by the efficiency obtained with the PAFA in the optimization of the 52-bar
dome example with an increasing speed-up for an increasing number of processors.
Such feature can be attributed to the behaviour presented by the PSFA, which showed
superior performance gains against PAFA, even for the simple 37-bar example, which
presents the smallest computational time.

In fact, the addressed problems showed the overall behaviour of the proposed
versions of the FA. Large scale problems are being envisioned in order to highlight
some of the presented trends.
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Intelligent Firefly Algorithm for Global
Optimization

Seif-Eddeen K. Fateen and Adrián Bonilla-Petriciolet

Abstract Intelligent firefly algorithm (IFA) is a novel global optimization algorithm
that aims to improve the performance of the firefly algorithm (FA), which was inspired
by the flashing communication signals among firefly swarms. This chapter introduces
the IFA modification and evaluates its performance in comparison with the original
algorithm in twenty multi-dimensional benchmark problems. The results of those
numerical experiments show that IFA outperformed FA in terms of reliability and
effectiveness in all tested benchmark problems. In some cases, the global minimum
could not have been successfully identified via the firefly algorithm, except with the
proposed modification for FA.

Keywords Global optimization · Nature-inspired methods · Intelligent firefly
algorithm.

1 Introduction

To date, a significant work has performed on global optimization and there have
been significant algorithmic and computational developments including their appli-
cations to a wide variety of real-life and engineering problems. For illustration, recent
advances in global optimization have been discussed by Floudas and Gounaris [1].
In particular, global optimization has and continues to play a major role in a number
of engineering and science applications. As expected, finding the global optimum
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is more challenging than finding a local optimum and, in some real-life applica-
tions, the location of this global optimum is crucial because it corresponds to the
correct and desirable solution. Basically, global optimization methods can be clas-
sified into two broad categories: deterministic and stochastic methods. The former
methods can provide a guaranteed global optimum but they require certain proper-
ties of objective function and constraints such as continuity and convexity. On the
other hand, stochastic global optimization methods aim at finding the global mini-
mum of a given function reliably and effectively. These methods are attractive for
solving challenging global optimization problems arising from real-life applications
because they are applicable to any problem without the assumptions of continuity
and differentiability of the objective function. Until now, several stochastic methods
have been proposed and tested in challenging optimization problems using continu-
ous variables and they include simulated annealing, genetic algorithms, differential
evolution, particle swarm optimization, harmony search, and ant colony optimiza-
tion. Recent nature-inspired optimization algorithms include cuckoo optimization
[2], artificial bee colony optimization [3–5], honey bee mating optimization [6],
and multi-colony bacteria foraging optimization [7]. In general, these methods may
show different numerical performances and, consequently, the search for more effec-
tive and reliable stochastic global optimization methods has been an active area of
research.

In particular, the Firefly algorithm (FA) [8] is a novel nature-inspired stochastic
optimization method. It was inspired by the flashing behavior of fireflies. A few
variants of this algorithm were recently developed, e.g.: discrete FA [9], multiob-
jective FA [10], Lagranian FA [11], Chaotic FA [12] and a hybrid between FA and
ant colony optimization [13]. This relatively new method has gained popularity in
finding the global minimum of diverse science and engineering application prob-
lems. For example, it was rigorously evaluated by Gandomi et al. [14] for solving
global optimization problems related to structural optimization problems, and has
been recently used to solve the flow shop scheduling problem [9], financial portfolio
optimization [13], economic dispatch problems with valve loading effects [15] and
phase and chemical equilibrium problems. Even FA is usually robust for continuous
global optimization; the performance of available FA algorithms may fail to solve
challenging application problems. Therefore, it is convenient to study new algorithm
modifications and improvements to enhance its reliability and efficiency especially
for large-scale problems. The aim of this chapter is to present a modification to the
existing FA algorithm and to evaluate its performance in comparison with the origi-
nal algorithm. The remainder of this chapter is divided as follows: Sect. 2 introduces
the Firefly algorithm. Section 3 introduces the proposed modification and our new
FA algorithm, namely the Intelligent Firefly Algorithm. The numerical experiments
performed to evaluate the modification are presented in Sect. 4. The results of the
numerical experiments are presented and discussed in Sect. 5. Section 6 summarizes
the conclusions of this chapter.
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2 Firefly Algorithm (FA)

As stated in this book, FA is a nature-inspired stochastic global optimization method
that was developed by Yang [8]. The FA algorithm imitates the mechanism of firefly
communications via luminescent flashes. In the FA algorithm, the two important
issues are the variation of light intensity and the formulation of attractiveness. The
brightness of a firefly is determined by the landscape of the objective function.
Attractiveness is proportional to brightness and, thus, for any two flashing fireflies,
the less bright one moves towards the brighter one.

In FA, the attractiveness of a firefly is determined by its brightness, which is equal
to the objective function. The brightness of a firefly at a particular location x was
chosen as I(x) = f(x). The attractiveness is judged by the other fireflies. Thus, it
was made to vary with the distance between firefly i and firefly j. The attractiveness
was made to vary with the degree of absorption of light in the medium between the
two fireflies. Thus, the attractiveness is given by

σ = σmin + (σo − σmin) e−Ω r2
(1)

The distance between any two fireflies i and j at xi and x j is the Cartesian distance:

ri j = xi − x j =
√⎢⎢⎧

d⎨

k=1

⎩
xi,k − x j,k

)2 (2)

The movement of a firefly attracted to another more attractive (brighter) firefly j
is determined by

xi = xi + σ
⎩
x j − xi

)+ αγi (3)

The second term is due to the attraction, while γi in the third term is a vector
of random numbers usually drawn from a uniform distribution in the range [−0.5,
0.5]. α is a parameter that controls the step. It can also vary with time, gradually
reducing to zero, as used in many studies [8, 14, 16] which can help to improve the
convergence rate of the optimization method.

3 Intelligent Firefly Algorithm (IFA)

In the original FA, the move, i.e., Eq. (3), is determined mainly by the attractiveness of
the other fireflies; the attractiveness is a strong function of the inter distance between
the fireflies. Thus, a firefly can be attracted to another firefly merely because it is
close, which may take it away from the global minimum. The fireflies are ranked
according to their brightness, i.e. according to the values of the objective function
at their respective locations. However, this ranking, which is a valuable piece of
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information per se, is not utilized in the move equation. A firefly is pulled towards
each other firefly as each of them contributes to the move by its attractiveness. This
behavior may lead to a delay in the collective move towards the global minimum. The
idea behind of our Intelligent Firefly Algorithm (IFA) is to make use of the ranking
information such that every firefly is moved by the attractiveness of a fraction of
fireflies only and not by all of them. This fraction represents a top portion of the
fireflies based on their rank. Thus, a firefly is acting intelligently by basing its move
on the top ranking fireflies only and not merely on attractiveness.

A simplified algorithm for the IFA technique is presented in Fig. 1. The new
parameter β is the fraction of the fireflies utilized in the determination of the move.
The original firefly algorithm is retained by setting β to 1. This parameter is used as
the upper limit for the index j in the inner loop. Thus, each firefly is moved by the
top β fraction of the fireflies only.

The strength of FA is that the location of the best firefly does not influence the
direction of the search. Thus, the fireflies are not trapped in a local minimum. How-
ever, the search for the global minimum requires additional computational effort as
many fireflies wander around uninteresting areas. With the intelligent firefly modifi-
cations, the right value of the parameter β can maintain the advantage of not being
trapped in a local minimum while speeding up the search for the global minimum.
The right value of β gives a balance between the ability of the algorithm not to
be trapped in a local minimum and its ability to exploit the best solutions found.
An iterative procedure can be used to reach a good value of β that is suitable for

Fig. 1 Simplified algorithm of intelligent firefly algorithm (IFA)
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the problem to be solved. This iterative procedure is demonstrated in the numerical
experiments below. We will show that this straightforward modification can improve
significantly the performance of FA for continuous global optimization.

4 Numerical Experiments

Twenty classical benchmark functions were used to evaluate the performance of IFA
as compared to the original FA. Tables 1 and 2 show the benchmark functions used
along with their names, number of variables, variable limits and the value of the
global minimum. The value of the new FA parameter β was made to vary at four
different values: 0.05, 0.1, 0.25 and 0.5. The effect of this parameter was studied
for the twenty benchmark problems. The parameters for the original FA were kept
constant in all experiments, i.e.: we used the value of 1 for σo, 0.2 for σmin , 1 for Ω ,
and α was made to decrease with the increase in the iteration number, k, in order to
reduce the randomness according to the following formula:

αk =
⎛

1.11× 10−4
⎜b/itermax

αk−1 (4)

Thus, the randomness is decreased gradually as the optima are approached. This
formula was adapted from Yang [16]. The value of the parameter b was taken equal to
5 except for the Himmelblau, Powell, Wood, Rastrigin, Rosenbrock, Sine envelope
sine wave, and Zacharov functions. This change in value was necessary to obtain
solutions closer to the global optimum for those functions.

The 20 problems constitute a comprehensive testing for the reliability and effec-
tiveness of the suggestion modification to the original FA. Eight functions have two
variables only, yet some of them are very difficult to optimize. Surface plots of these
functions are shown in Fig. 2.

To complete the evaluation of the IFE in comparison with the original FA algo-
rithm, we have employed performance profile (PP) reported by Dolan and Moré
[17], who introduced PP as a tool for evaluating and comparing the performance of
optimization software. In particular, PP has been proposed to represent compactly
and comprehensively the data collected from a set of solvers for a specified per-
formance metric. For instance, number of function evaluations or computing time
can be considered performance metrics for solver comparison. The PP plot allows
visualization of the expected performance differences among several solvers and to
compare the quality of their solutions by eliminating the bias of failures obtained in
a small number of problems.

To introduce PP, consider ns solvers (i.e. optimization methods) to be tested over a
set of n p problems. For each problem p and solver s, the performance metric tps must
be defined. In our study, reliability of the stochastic method in accurately finding the
global minimum of the objective function is considered as the principal goal, and
hence the performance metric is defined as
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Table 1 Benchmark functions used for testing the performance of FA and IFA

Name Objective function

Ackley f1 = 20

⎝
1− e

−0.2
⎞

0.5
⎩
x2

1+x2
2

)⎟
− e0.5(cos 2ρx1+cos 2ρx2) + e1

Beale f2 = (1.5− x1 + x1x2)
2 + ⎩

2.25− x1 + x1x2
2

)2 + ⎩
2.625− x1 + x1x3

2

)2
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⎠

cos x1 cos x2e

∣∣∣∣1−
⎞

x2
1+x2

2 /ρ

∣∣∣∣




2

/30

Cross-leg table f5 = −
⎠



∣∣∣∣∣∣
sin (x1) sin (x2) e

∣∣∣∣100−
⎞

x2
1+x2

2 /ρ

∣∣∣∣

∣∣∣∣∣∣
+ 1




−0.1

Himmelblau f6 =
⎩
x2

1 + x2 − 11
)2 + ⎩

x2
2 + x1 − 7

)2
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Table 2 Decision variables and global optimum of benchmark functions used for testing the
performance of FA and IFA

Objective function nvar Search domain Global minimum

Ackley 2 [−35, 35] 0
Beale 2 [−4.5, 4.5] 0
Booth 2 [−10, 10] 0
Carrom table 2 [−10, 10] −24.157
Cross-leg table 2 [−10, 10] −1
Himmelblau 2 [−5, 5] 0
Levy 13 2 [−10, 10] 0
Schaffer 2 [−100, 100] 0
Helical valley 3 [−1000,1000] 0
Powell 4 [−1000, 1000] 0
Wood 4 [−1000, 1000] 0
Cube 5 [−100, 100] 0
Sphere 5 [−100, 100] 0
Egg holder 50 [−512, 512] 959.64
Griewank 50 [−600, 600] 0
Rastrigin 50 [−5.12, 5.12] 0
Rosenbrock 50 [−50, 50] 0
Sine envelope sine wave 50 [−100, 100] 0
Trigonometric 50 [−1000, 1000] 0
Zacharov 50 [−5, 10] 0

tps = fcalc − f ∗ (5)

where f ∗ is the known global optimum of the objective function and fcalc is the mean
value of that objective function calculated by the stochastic method over several
runs. In our study, fcalc is calculated from 30 runs to solve each test problem by
each solver; note that each run is different because of random number seed used and
the stochastic nature of the method. So, the focus is on the average performance of
stochastic methods, which is desirable [18].

For the performance metric of interest, the performance ratio rps is used to com-
pare the performance on problem p by solver s with the best performance by any
solver on this problem. This performance ratio is given by

rps = tps

min{tps : 1 ≤ s ≤ ns} . (6)

The value of rps is 1 for the solver that performs the best on a specific problem p.
To obtain an overall assessment of the performance of solvers on n p problems, the
following cumulative function for rps is used:
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Fig. 2 Surface plots of the two-variable benchmark functions used in this study: a Ackley, b Beale,
c Booth, d Carrom table, e Cross-leg table, f Himmelblau, g Levy 13, and h Schaffer
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Πs(Δ) = 1

n p
size{p : rps ≤ ζ } (7)

where Π(Δ ) is the fraction of the total number of problems, for which solver s has
a performance ratio rps within a factor of Δ of the best possible ratio. The PP of a
solver is a plot of Πs(Δ ) versus Δ ; it is a non-decreasing, piece-wise constant function,
continuous from the right at each of the breakpoints [17]. To identify the best solver,
it is only necessary to compare the values of Πs(Δ ) for all solvers and to select the
highest one, which is the probability that a specific solver will “win” over the rest
of solvers used. In our case, the PP plot compares how accurately the stochastic
methods can find the global optimum value relative to one another, and so the term
“win” refers to the stochastic method that provides the most accurate value of the
global minimum in the benchmark problems used.

5 Results and Discussion

As stated, each of the numerical experiments was repeated 30 times with different
random seeds for IFA with four different-parameter values (β = 0.05, 0.1, 0.25, 0.5)
and for the original FA algorithm (β = 1). The objective function value at each
iteration for each trial was recorded. The mean and the standard deviation of the
function values were calculated at each iteration. The global optimum was considered
to be obtained by the method if it finds a solution within a tolerance value of 10−10.
The progress of the mean values is presented in Figs. 3, 4 and 5 for each benchmark
function and a brief discussion of those results follows.

The Ackley function has one minimum only. The global optimum was obtained
using all methods, as shown in Fig. 3a. However, the effectiveness of IFA is better than
FA for all parameter values. No difference in the impact of the parameter value was
observed. The improvement in performance was also clear with the Beale function
Fig. 3b for β values of 0.05 and 0.1. Beale has one minimum only, which was obtained
satisfactory by all methods. Further iterations will improve their accuracies. The
most effective method was the IFA with β = 0.05. The pattern of behavior for
the five methods was also observed for the Booth function; IFA was significantly
more effective than the FA as shown in Fig. 3c. The best performance was with the
parameter value of 0.05, 0.1 and 0.25. The first three functions are relatively easy to
optimize; the global optima were easily obtained.

For the Carrom table function, FA was unable to obtain the global minimum within
the used tolerance, as shown in Fig. 3d. The global minimum was obtained by IFA
with parameter value of 0.05, 0.1 and 0.25. On the other hand, the cross-leg table
function is a difficult one to minimize. Its value at the global minimum is −1. IFA
performed significantly better than FA with no apparent differences in performance
between the four values of β, as shown in Fig. 3e.

FA and IFA were both able to identify the global minimum of the Himmelblau
function. Figure 3f shows the evolution of the mean best values. IFA performed more
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Fig. 3 Evolution of mean best values for IFA (with β = 0.05, 0.1, 0.25, 0.5) and the original FA
algorithm (β = 1) for: a Ackley, b Beale, c Booth, d Carrom table, e Cross-leg table, f Himmelblau,
g Levy 13 and h Schaffer functions
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Fig. 4 Evolution of mean best values for IFA (with β = 0.05, 0.1, 0.25, 0.5) and the original
FA algorithm (β = 1) for: a Helical valley, b Powell, c Wood, d Cube, e Sphere, f Egg holder,
g Griewank and h Rastrigin functions
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Fig. 5 Evolution of mean best values for IFA (with β = 0.05, 0.1, 0.25, 0.5) and the original FA
algorithm ( β = 1) for: a Rosenbrock, b Sine envelope sine wave, c Trigonometric and d Zacharov
functions

effectively than FA. The effect of the value of β was minor. Both algorithms were
also able to identify the minimum of the Levy 13 function Fig. 3g. However, IFA was
significantly more effective when the β parameter values of 0.1 and 0.05 were used.

The Schaffer function is multimodal. Both FA and IFA failed to converge to the
global minimum within the used tolerance. However, IFA was able to arrive at a
better solution when the β parameter values of 0.1 and 0.05 were used, as shown in
Fig. 3h. IFA with β = 2.5 and 0.5 failed to improve the solution in comparison with
that obtained by FA. Schaffer function concludes the 2-variable functions. IFA, with
β = 0.05 and 0.1, performed better than FA in all of them.

The helical valley function has three variables. The evolution of the mean best
values of FA, shown in Fig. 4a, showed that performance of IFA with β = 0.05 was
considerably better than the performance of FA. No improvement were observed,
when β = 0.5, 0.25 or 0.1. In addition, all methods failed to obtain the global
minimum for the used tolerance. For the Powell function, which has four variables,
IFA with β = 0.05 obtained ten orders of magnitude improvement in the solution,
as shown in Fig. 4b. Although the solution was not obtained within the acceptable
tolerance but it was very close. IFA with high values of the β parameter were also
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unable to identify the global minimum and converged to a higher solution. Those
three algorithms seem to have been trapped in a local minimum.

A similar pattern was observed with the Wood function, which has four variables
as well. The global minimum was not obtained within the acceptable tolerance used
in this study. However, IFA with β = 0.05 obtained a six orders of magnitude
improvement in the solution, as shown in Fig. 4c. Higher values of the β-parameter
failed to improve the performance of the FA algorithm. In fact, IFA with β = 0.5 and
0.25 obtained worse results. For the cube function, which has five variables, Fig. 4d
shows that IFA with β = 0.05 improved the solution slightly. However, none of the
methods was able to identify successfully the global minimum for this function. The
sphere function also has five variables but it is easier to solve for its global optimum
than the cube function. All methods successfully identified the global optimum with
slight improvement in performance when IFA was used as shown in Fig. 4e.

The egg holder function was used with 50 variables and the stochastic methods
were run up to 5,000 iterations. IFA obtained solutions lower than that of FA, regard-
less of the value of the parameter β, as shown in Fig. 4f. IFA with β = 0.1 and
0.05 obtained the best result. Griewank function has 50 variables also. IFA with

Table 3 Values of the mean minima ( fcalc) and standard deviations (σ ) obtained by the FA and
IFA algorithms with different values of the β—parameter for the benchmark problems used in this
study

Objective function Numerical performance of
FA IFA (β = 0.5 ) IFA (β = 0.05 )
fcalc σ fcalc σ fcalc σ

Ackley 0 0 0 0 0 0
Beale 0 0 0 0 0 0
Booth 0 0 0 0 0 0
Carrom table −23.43 1.75 −23.31 2.52 −24.16 0
Cross-leg table −6.6E−3 1.0E−2 −0.0857 8.0E− 2 −7.46E−2 2.6E−2
Himmelblau 0 0 0 0 0 0
Levy 13 0 0 0 0 0 0
Schaffer 8.5E−3 3.4E−3 0.0427 2.6E−2 0.0035 3.4E− 3
Helical valley 2.6E−2 5.4E−2 0.0389 8.5E−2 9.8E− 6 2.5E− 5
Powell 1.84E4 2.7E4 1.54E5 2.5E5 1.7E− 6 2.9E− 6
Wood 1.78E5 2.9E5 1.06E6 1.9E6 2.9E− 2 0.13
Cube 88.69 77.05 90.03 92.97 41.39 65.09
Sphere 0 0 0 0 0 0
Egg holder −1.52E4 1.6E3 −1.64E4 1.2E3 −2.5E4 2.1E3
Griewank 1.62E−4 6.1E−5 8.54E−5 5.1E−5 0 0
Rastrigin 45.47 12.7 38.14 7.92 66.63 16.44
Rosenbrock 296.8 652.3 213.1 572.9 70.57 109.6
Sine envelope sine wave 17.56 1.13 19.61 71.85 17.25 1.21
Trigonometric 1.05E−4 6.1E−5 1.19E−4 9.1E−5 2.9E− 6 2.9E− 6
Zacharov 36.68 13.2 106.9 30.42 0 0
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β = 0.1 and 0.05 successfully identified the global minimum, whereas the other
methods failed, as shown in Fig. 4g. Improvement of performance with the IFA algo-
rithm is shown clearly with this benchmark problem.

The results of the optimization of Rastrigin function were peculiar. The global
optimum was not obtained by FA or IFA and the performance was improved with the
use of high values of β (0.5 and 0.25) as shown in Fig. 4h. This is the only function
for which the use of IFA with β = 0.05 did not improve the result.

The global minimum of the Rosenbrock function was also not successfully iden-
tified by all methods, as shown in Fig. 5a. IFA, in general, gave better results than FA.
The global minimum of the sine-envelope-sine function was also not successfully
identified by all methods. This is a multimodal function and it is easy for any opti-
mization method to be trapped in one of the local minima. IFA with β = 0.1 gave
the best solution followed by IFA with β = 0.05. The results of IFA with higher
values of β were worse than the FA result, as shown in Fig. 5b.

The familiar improvement pattern with the use of IFA was obtained with the
trigonometric function, as shown in Fig. 5c. The lowest value of β gave the best
solution but failed to find the global minimum within the acceptable tolerance used
in this study. This was not the case with the Zacharov function (Fig. 5d) since IFA
with β = 0.05 successfully identified the global minimum within the required
tolerance with twelve orders of magnitude improvement in the solution. All other
methods were trapped in some local minima and no improvement in performance
was obtained with IFA with other values of the parameter β.

Table 3 shows a summary of the evaluation results for the twenty benchmark
problems. IFA was able to provide better solutions to all challenging problems.

Fig. 6 Performance profiles
of the FA and IFA methods for
the global optimization of the
benchmark problems used in
this study
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For example, IFA with β = 0.05, found the global optimum of the helical valley
function within 10−4 tolerance, Powell and Trigonometric functions within 10−5,
and Zacharov function, while the FA obtained a solution several orders of magnitude
higher as shown in Table 3. The performance profiles, shown in Fig. 6, summarize
the results of the IFA evaluation with the four different values of the β-parameter
in comparison with FA. Figure 6 clearly shows IFA with β = 0.05 was the best
performing algorithm in 18 out of the 20 cases considered. FA has not outperformed
IFA in any of the benchmark problems tested. Further, PP indicates that β is an
important parameter to improve the performance of IFA. The value of β = 0.05
appears to be the best value among those tested for reliability as indicated by the
cumulative highest performance ratio in Fig. 6.

6 Conclusions

In this chapter, we propose a modification to FA through limiting the number of
fireflies affecting the moves to a fraction of top performing fireflies. This modifica-
tion was evaluated by attempting to find the global optimum of twenty benchmark
functions. The newly developed IFA led to improved reliability and effectiveness of
the algorithm in all tested benchmark problems. In some cases, the global minimum
could not have been obtained via the firefly algorithm, except with this modification.
IFA was found to perform best, when the new parameter β was set to 0.05, which
was the lowest value evaluated.
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Optimization of Queueing Structures
by Firefly Algorithm

Joanna Kwiecień and Bogusław Filipowicz

Abstract In the chapter we describe the application of firefly algorithm in discrete
optimization of simple queueing structures such as queueing systems. The optimiza-
tion of these systems is complicated and there is not any universal method to solve
such problem. We briefly cover basic queueing systems. Hence, Markovian systems
with exponential service times and a Poisson arrival process with losses, with finite
capacity and impatient customers and closed queueing system with finite number of
jobs are presented. We consider structural optimization, for example maximization
of overall profits and minimizing costs controlled by the number of servers. We show
the results of performed experiments.

Keywords Queueing systems · Queueing structures · Structural optimization ·
Cost optimization · Optimization algorithm · Firefly algorithm

1 Introduction

Many practical problems are so complex therefore to study them it is necessary to
use models. Conducting experiments on the model gives us many benefits, as:

• simplified reality, models are easier and less complex,
• less risk—with the help of the model, we can compare different variants of solu-

tions and we can introduce the best solution in practice,
• developed mathematical models.

Queueing theory is one of the branches of operational research, which enables the
modeling of many real situations. Originally it was closely associated with the tech-
nique, but due to its efficiency and flexibility, it has been used in modeling and
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performance analysis of computer science, telecommunication systems, industry, call
centers or service systems. Currently, queueing theory which includes the queueing
systems and networks arouses interest among mathematicians, engineers and econo-
mists. To develop such methods, which allow for complete characterization of the
service process, the estimation of the quality of systems’ work and allow to optimize
the structure, and thereby allow for the efficient organization of service is the main
task of queueing theory [2–4]. Many standard books describe the basic queueing
model and a variety of applications [1–3, 5, 6]. Kleinrock in [7, 8] gives the key
foundations of queueing theory. Gautam in [5] shows a broad range of applications
including e.g. healthare systems, information systems, transportation or restaurants.

When we consider the optimization problem of queuing structures, we usually
mean the selection of appropriate values in the service and selection of the appropriate
stream of arriving requests so that the total cost of the system and the waiting time
of requests in the queue were minimal. So-called congestion level is often defined
as the average waiting time in the queue or the average number of requests in the
queue. There are several ways to reduce the “congestion”. We can improve system
performance by increasing the number of service channels or by increasing the speed
of service. Sometimes, the procedure of increasing the number of service channels
is hard to perform and requires major investment.

Many optimization problems of queueing theory require efficient algorithms,
which can easily be adapted to existing restrictions. Researchers are searching for
techniques which give a solution within a reasonable time. One group consists of
metaheuristics inspired by nature, which are increasingly used to solve many opti-
mization problems. Firefly Algorithm (FA) belongs to this type of methods. Recently,
in [9] we presented the application of firefly algorithm in optimization problem of
two queueing systems.

Cost analysis is an important issue in queueing system. Mishra and Yadaw in
[12] discussed profit analysis of a loss queueing system and its optimization problem
with respect to service rate. We should mention that the geometric programming
plays an important role in optimization of several queuing systems [14]. Lin and
Ke in [10] describe the use of the genetic algorithms to optimization problem of
sample queuing system. Stidham in [13] presents how to set selected parameters of
queueing systems and networks, and how control flow of arriving entities to achieve
the required purpose.

To present the review of the most popular queueing systems and their optimization
problems solved by firefly algorithm is the main aim of the chapter. The chapter is or-
ganized as follows. In Sects. 2 and 3 of this chapter, discussions on selected queueing
systems (system with losses, system with finite capacity and impatient customers,
closed queueing system with finite number of jobs) and related optimization issues of
these models are presented. Section 4 describes how firefly algorithm can be applied
to optimization problems. Finally, Sect. 5 is devoted to present the selected results
for different types of queueing systems.
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2 Queueing Systems

A queuing system consists of input, queue and service centres what often means the
output of entities. The service centres consist of one or more channels (servers) for
serving entities arriving in a certain manner and having some service requirements.
If a service channel is available, new entity will seize it for some period. If a service
channel is busy, the arriving entity takes specific action: waiting or leaving. The
entities represent something that requires maintenance, for example users, customers,
jobs or transactions. They can wait for service if there is a waiting room and leave
the system after being served. In many cases entities are lost. The performance
characteristics of queueing systems include the mean number of entities in a system/a
queue, their mean waiting time or the mean response time [2–4, 6].

To describe queueing systems, we use Kendall’s notation. Thus, the service system
is described by shorthand notation X/Y/m/D/L. Systems are described by distribution
of inter-arrival times (X), distribution of service times (Y), the number of servers (m),
the service discipline (D) and the maximum total numbers of entities called capacity
(L). Here, we consider only Markovian systems with exponential service times,
in which the arrival process is a Poisson. Commonly used symbol for the first two
positions (for X and Y) in the notation is M that denotes exponential distribution of the
service time required by each entity and Poisson arrival process. The fourth position
in this notation is used for the order in which the entities are served in the queue. Here,
we analyze the models with m parallel identical servers and FIFO queueing discipline
(first in-first out). In all equations traffic intensity ρ is the ratio of arrival λ to service
rate μ. If the stationary probabilities are known, all performance characteristics can
be derived, for example the mean number of jobs in a system and in a queue. All
probabilities can be derived according to the Chapman-Kolmogorov equations that
are very important in the queueing theory. On example of M/M/m/−/m system we
present the rule of obtaining these equations and the stationary probabilities. The
method of parameters obtaining is precisely described in [3].

2.1 M/M/m/−/m System with Losses

In the system we consider that arriving customer is served if at least one service
channel is available. If all servers are busy, the newly arriving customer departs the
queueing systems without service and it is lost [2–4, 9]. Let pi means the probability
of the number of entities in the system and it denotes that the system is in state Ei .
Note that the system can be in one of the following characteristc states:

• E0—all service channels are available,
• Ei—i channels are occupied,
• Em—m channels are busy, the next entity is not accepted—the locking system.

The set of equations obtained from the so-called mnemonic rule represents the
dynamics of the system. Using the rule, we can write the differential equation for
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Fig. 1 The state-transition-
rate diagram of M/M/m/−/m
queueing system

the state probabilities based on state-transition-rate diagram. In such diagram, each
state is represented by an oval and each nonzero density rate is represented by a
directed branch pointing from one state to another. The branches represent the per-
mitted transitions. We assume that the system begins with zero entities at time 0.
The state-transition-rate diagram is shown in Fig. 1 [3, 7]. Characteristic states are
marked on the graph as shaded ovals.

On the left side of each equation, we write the derivative of the state probability.
On the right side there are so many factors as the graph edges are associated with a
particular state. If the edge comes out the state, its corresponding factor has a minus
sign, otherwise—a plus sign. Each factor is equal to the probability density function,
which identifies a particular edge, multiplied by the probability of the state from
which the edge comes out [3].

Consequently, we have the resulting set of equations:

p≤0(t) = −λp0(t)+ μp1(t)
...

p≤i (t) = λpi−1(t)− (λ+ iμ)pi (t)+ (i + 1)μpi+1(t)
f or 1 ∗ i ∗ m − 1

...

p≤m(t) = λpm−1(t)− mμpm(t)

. (1)

In order to solve the set of equations for the time-dependent behavior pk(t), we
require initial conditions. In most applications, knowledge of the service character-
istics in the steady state is sufficient. Here, we assume that all probabilities tend to
constant value and their derivatives tend to zero. Carrying out this assumption our
equations convert to [3, 7]:

0 = −λp0 + μp1
...

0 = λpi−1 − (λ+ iμ)pi + (i + 1)μpi+1
f or 1 ∗ i ∗ m − 1

...

0 = λpm−1 − mμpm

. (2)

The sum of the steady-state probabilities must be equal to one, so these probabilities
also satisfy so-called normalization equation:
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m∑

i = 0

pi = 1. (3)

Note that from Eqs. (2) and (3), we obtain the stationary probabilities of the system.
The steady-state probability of no jobs in the system is given by:

p0 = 1
⎢m

k=0
ρk

k!
, ρ = λ

μ
. (4)

The stationary probability of k jobs in the system can be expressed by the following
equation:

pk = ρk

k! · p0. (5)

The most important quantity out of the values obtained by Eqs. (2) and (3) is the
probability that the newly arriving customers are lost, because all servers are busy:

plost = ρm

m! · p0 = pm . (6)

The average number of jobs in the system is one of the parameters characterizing the
queuing system, which is defined as:

K =
m∑

k= 0

kpk = ρ(1− plost ), (7)

with plost from Eq. (6).

2.2 M/M/m/FIFO/m+N System with Finite Capacity and
Impatient Customers

In this system we have situations that the customers should be served before their
respective deadlines. We assume the maximum number of customers is m+N and
waiting room is limited to N. Each customer arriving to the system has a maximum
waiting time in queue, which is distributed exponentially with parameter δ. If the
waiting time for access to the server exceeds this maximum waiting time, the cus-
tomer leaves the system without receiving service. An arriving entity is forced to
join the queue if there are less than m+N customers in the system. Otherwise, it is
lost [9]. The state-transition-rate diagram is shown in Fig. 2.

In the stationary case, we obtain all interested parameters from the following set
of equations:
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Fig. 2 The state-
transition-rate diagram of
M/M/m/FIFO/m+N system
with impatient jobs

0 = −λp0 + μp1
...

0 = λpi−1 − (λ+ iμ)pi + (i + 1)μpi+1, f or 1 ∗ i ∗ m − 1
...

0 = λpm−1 − (λ+ mμ)pm + (mμ+ δ)pm+1
...

0 = λpm+k−1 − (λ+ mμ+ kδ)pm+k + [mμ+ (k + 1)δ]pm+k+1,

f or 1 ∗ k ∗ N − 1
...

0 = λpm+N−1 − (mμ+ Nδ)pm+N⎢m+N
j=0 p j = 1

. (8)

The stationary probability in which there are no entries can be derived from:

p0 =
⎧

⎨
m∑

k=0

ρk

k! +
ρm

m!
m+N∑

r=1

ρr

⎩r
n=1

(
m + n δ

μ

⎛

⎜

⎝
−1

. (9)

Using Eq. (9), we solve the steady-state probability that jobs are lost because of
exceeding the time limit as follows:

pw =
⎧

⎨ δ

λ
· ρ

m

m!
m+N∑

r=1

rρr

⎩r
n=1

(
m + n δ

μ

⎛

⎜

⎝ · p0. (10)

The stationary probability that the arriving jobs are lost due to occupy all service
channels and places in queue is given by:

pm+N = ρm+N

m!⎩N
n=1

(
m + n δ

μ

⎛ · p0. (11)

We may easily calculate the probability that jobs will be lost in this queueing system
from:

plost = pw · pm+N . (12)
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In practice we find these systems, where the entities are waiting in a queue for certain
time and the capacity of a system is limited. For example such systems can be used
to model the existing structures in the health service when the patient waiting time
for a visit is limited. In the case of call centers, customer hangs up when he has to
wait too long because an operator is busy.

2.3 The M/M/m/FIFO/N/F Closed Queueing System with Finite
Population of N Jobs

In the system we assume a finite number of identical machines that generate pop-
ulation of N customers. Therefore, the total number of jobs in the whole system is
no more than N. The system has m identical service channels. If the total number of
customers does not exceed the number of servers, all jobs are served immediately,
without waiting in a queue [3, 4, 7]. Figure 3 shows its state-transition-rate diagram.

The steady-state probabilities we can calculate from the following set of equations:

0 = −Nλp0 + μp1
...

0 = (N − i + 1)λpi−1 − [(N − i)λ+ iμ]pi + (i + 1)μpi+1
f or 1 ∗ i ∗ m − 1

...

0 = (N − m + 1)λpm−1 − [(N − m)λ+ mμ]pm + mμpm+1
...

0 = (N − j + 1)λp j−1 − [(N − j)λ+ mμ]p j + mμp j+1
f or m ∗ j ∗ N − 1

...

0 = λpN−1 − mμpN⎢N
k=0 pk = 1

. (13)

The steady-state probability in which there are no jobs in system is an important
quantity. It follows from Eq. (13), yielding:

p0 =
⎧

⎨
m∑

i = 0

N !
i !(N − i)!ρ

i +
N∑

j =m+1

N !
m!(N − j)!m j−m

ρ j

⎜

⎝
−1

. (14)

Fig. 3 Diagram of transition
for closed queueing system
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The steady-state probability of k jobs in the system is given by:

pk = N !
k!(N − k)!ρ

k · p0, 1 ∗ k ∗ m

pk = N !
m!(N − k)!mk−m

ρk · p0, m < k ∗ N
. (15)

Using Eq. (14), we calculate the mean number of jobs in the whole system as follows:

K = p0 N !
⎧

⎨
m∑

i = 0

i

i !(N − i)!ρ
i +

N∑

j =m+1

j

m!m j−m(N − j)!ρ
j

⎜

⎝ . (16)

Obviously for any real case, depending on the modeled situation, various machines,
operators can be modeled as a source that requests a service (e.g. a fault). The
rapid development of technology and the automation of many processes caused the
machine/computer is increasingly carrying out the works that were reserved for a
man not so long ago. Thus, the number of different devices that require maintenance
or repair increases. The main task of the people who are responsible for technical
service among others is to optimize the life of equipment, and in case of failures its
rapid identification and removal. To choose an appropriate service technicians able
to ensure the reliability and quality of the equipment is one of the important problems
of managers.

3 Optimization Problems

Queueing models provide a powerful tool, which allows us to make the optimal
decisions about the structure of the system, in order to improve the organization of
the service. Funding for the maintenance of an adequate number of employees is an
important component of the costs incurred by the company. Therefore, they have to
be optimized, which will ensure the proper handling of equipment operated.

Optimization of queuing systems described above is a difficult problem. There are
no universal methods of solving it. In order to formulate the optimization problem
we need to specify the parameters that will be the decision variables. There are three
basic types of optimization [2]:

• minimization of costs for a given stream of incoming requests by changing the
parameters of the service time,
• maximization of stream of incoming requests with limited cost by seeking service

ratio,
• finding the optimal topology (we are looking for the number of service channels,

for which labor costs are lowest).
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Here, we consider the structural problem of optimization, which is to find the correct
number of servers, what optimizes costs [3, 9].

In the case of M/M/m/−/m queueing system with losses we wish to maximize
the overall profits. The number of channels that maximizes the objective function is
to be calculated. Let us assume that r denotes the cost associated with the entity in
the system and c denotes the cost of channel depreciation. Therefore, the objective
function has the following form:

f (m) = rρ

⎞
1− ρm

m!⎢m
k= 0

ρk

k!

⎟
− cm, ρ = λ

μ
. (17)

For considered M/M/m/FIFO/m+N system with impatient customers we have to
maximize all profits subject to the number of channels m and the number of waiting
places N. Let us denote the profit on customer service by r1 and the cost of server
depreciation by r2 . Thus, the objective function is calculated with the help of Eq. (12)
from the formula:

f (m, N ) = r1λ(1− plost )− r2(m + N ). (18)

In the closed queueing systems M/M/m/FIFO/N/F we seek the number of servers that
minimize the overall costs of its operation. Taking into account the cost of server
maintenance (c1) and the cost of existing jobs in the systems (c2), the objective
function can be determined with the help of Eq. (16):

f (m) = c1m + c2 K . (19)

It is clear that the optimization of these objective functions is complicated. Therefore,
we have to use one of the optimization algorithms.

4 Firefly Algorithm

The firefly algorithm is a metaheuristic algorithm developed by Yang [15, 16]. Its
idea is based on the behavior of fireflies. In the algorithm we use the difference in light
intensity, that is proportional to the value of the objective function. Each individual
has a certain attractiveness, which determines the direction of movement. All fireflies
are characterized by light intensity associated with the objective function. Yang in
[15] describes the idea and three rules of firefly algorithm. One rule is that a firefly
follows the brighter one. If there is no brighter firefly, firefly will move randomly.
In problems described in this chapter, the firefly algorithm is executed as follows
[11, 15, 16]:

• Step 1: Initialize algorithm’s parameters and generate population of fireflies: n—
number of fireflies, the maximum attractiveness β0, the light absorption coefficient
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γ , randomization parameter α, maximum number of generations MaxGen; the
objective function f(x) is given by one of Eqs. (17)–(19). Assuming the defined
maximum and minimum value of xi , the initial populations of individuals are
initialized randomly over the entire search space as follows:

xi = xmin
i + rand · (xmax

i − xmin
i ). (20)

• Step 2: Compute light intensity for each firefly, which is determined by the value of
objective function f(xi ). For a maximization problem, the brightness is proportional
to the value of the objective function.
• Step 3: For each generation (1,..., MaxGen):

– Find attractive individual. If it exists then move firefly i towards a brighter firefly
j according to:

xi = xi + β0e−γ r2
i j (x j − xi )+ α · (rand − 0.5), (21)

where distance ri j between two fireflies is calculated using the Euclidian distance.
Otherwise, randomly movement.
– Obtain attractiveness, which varies with distance r according to:

β(r) = β0e−γ r2
. (22)

– Select the brightest firefly as the potential optimum.
• Step 4: Terminate if a predefined stopping criterion is met, otherwise go back to

Step 3.

Detailed descriptions of the firefly algorithm can be found in [11, 15, 16]. The
optimization problems presented above are discrete. Therefore, in all experiments, the
positions of fireflies have been rounded to the nearest integer value using round(xi ).
The best firefly gives the value of decision variable that is optimal in considered case.
We have implemented all calculations in Matlab, with help of files presented in [17].

5 Results of Experiments

We conducted a number of computational experiments on prepared test instances.
For each queueing system presented in this chapter, we performed several exper-
iments, depending on the size of fireflies population and number of iterations. In
most problems, the population of 20 individuals was sufficient, except for the queue-
ing system with impatient customers. Firefly algorithm has found the optimal value
of the objective function within 20 iterations. For each case, we have performed
10 calculations. In all presented examples the values of algorithm parameters are:
α = 0, 1, β0 = 0, 1, γ = 1. We have tried to check the influence of these parameters
on solution. For example, reducing α to 0,01 gives worse results. For increased ab-
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Table 1 The results of FA
optimization for m ⊕ [1, 50]

M/M/m/—/m, r = 4, c = 1, decision variable: m
Case λ μ m =? value of f (m)

A 1 1 2 1.20
B 10 5 3 3.316
C 10 10 2 1.20
D 10 15 1 0.60
E 25 5 8 10.599
F 50 5 14 23.727

sorption coefficient (γ = 10) we have the solution a few iterations later. For higher
value of attractiveness (β0 = 0, 5) the results are comparable.

Table 1 shows the best results for M/M/m/−/m system in six cases of several
settings of system parameters and values of the objective function obtained by the
the firefly algorithm. For example, in first case (A) the optimum value of the objective
function given by Eq. (17) is 1,20 and the number of service channels is equal to 2.
Figures 4, 5 and 6 present the change of the objective function during optimization
process.

For the optimization of queueing system with impatient customers, in which the
decision variables are the number of servers (m) and the number of waiting places
(N), we use 50 fireflies. Using 20 fireflies was not sufficient to obtain optimal value
of sought-after parameters. Table 2 shows the best results for four cases of different
settings of the service rate μ and the ratio of arrival λ. Last column presents the
maximal value of the objective function obtained by FA. Figures 7 and 8 show the
relationship of the objective function with iterations in considered cases.

For closed queueing system we use 20 fireflies. In Table 3 and Figs. 9, 10, 11 and
12 we present the best results. Note that for this system we minimize the objective
function.

Fig. 4 The change of the objective function during optimization process; a case A, b case B
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Fig. 5 The change of the objective function during optimization process; a case C, b case D

Fig. 6 The change of the objective function during optimization process; a case E, b case F

Fig. 7 The change of the objective function during optimization process; a case A, b case B
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Fig. 8 The change of the objective function during optimization process; a case C, b case D

Fig. 9 The change of the objective function during optimization process; a case A, b case B

Fig. 10 The change of the objective function during optimization process; a case C, b case D
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Fig. 11 The change of the objective function during optimization process; a case E, b case F

Fig. 12 The change of the objective function during optimization process; a case G, b case H

Table 2 The results of FA
optimization, for m ⊕ [1, 50]
and N ⊕ [1, 50]

M/M/m/FIFO/m+N, r1 = r2 = δ = 5, decision variable: m, N
Case λ μ m = ? N = ? value of f (m, N )

A 10 5 1 1 34.18
B 100 5 1 1 484.07
C 100 50 1 1 481.11
D 100 500 1 1 489.96
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Table 3 The results of FA
optimization for m ⊕ [1, 50]

M/M/m/FIFO/N/F , c1 = 4, c2 = 12, decision variable: m
Case λ μ N m =? value of f (m)

A 19 1 15 1 183.37
B 19 10 15 9 161
C 19 100 15 4 46.76
D 19 10 1 1 11.86
E 19 10 100 50 1084.21
F 1 1 15 8 126.93
G 10 1 15 1 182.80
H 100 1 15 1 183.88

6 Conclusion

The computational results show that the firefly algorithm is a very powerful tool,
allowing to solve the optimization of queueing systems. The algorithm is simple to
implement, but its parameters may depend on the type and size of the optimized
problems. In our experiments the decision variable was the number of servers or
the number of servers and the queue capacity. The other values were assumed to be
fixed parameters. It should be noted that this algorithm can be used to determine
other characteristics, including the determination of the optimal policy of queue
liquidation. In some real situations there may be more than one objective function,
especially in the use of more complex structures such as tandem model or queueing
networks. The analysis and application of queueing systems, tandem models and
queueuing networks with losses is the topic of many research in computer science,
traffic or industrial engineering.
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346 J. Kwiecień and B. Filipowicz

10. Lin, ChH, Ke, J.Ch.: Optimization analysis for an infinite capacity queueing system with
multiple queue-dependent servers: genetic algorithms. Int. J. Comp. Math. 88(7), 1430–1442
(2011)
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Firefly Algorithm: A Brief Review
of the Expanding Literature

Iztok Fister, Xin-She Yang, Dušan Fister and Iztok Fister Jr.

Abstract Firefly algorithm (FA) was developed by Xin-She Yang in 2008 and it has
become an important tool for solving the hardest optimization problems in almost
all areas of optimization as well as engineering practice. The literature has expanded
significantly in the last few years. Various FA variants have been developed to suit
different applications. This chapter provides a brief review of this expanding and
state-of-the-art literature on this dynamic and rapidly evolving domain of swarm
intelligence.

Keywords Firefly algorithm ·Discrete firefly algorithm ·Nature-inspired algorithm ·
Scheduling · Combinatorial optimization · Engineering optimization

1 Introduction

Among swarm-intelligence-based algorithms, firefly algorithm (FA) is now one of
the most widely used. Firefly algorithm was developed by Xin-She Yang in 2008 [1],
based on inspiration from the natural behavior of tropical fireflies. FA tries to mimic
the flashing pattern and attraction behaviour of fireflies. The purpose of these flash-
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ing lights are twofold: to attract mating partners and to warn potential predators.
Obviously, these flashing light and its intensity can obey some rules, including phys-
ical laws. In essence, FA uses the following three idealized rules [1]:

• Fireflies are unisex so that one firefly will be attracted to other fireflies regardless
of their sex.
• The attractiveness is proportional to the brightness and they both decrease as their

distance increases. Thus for any two flashing fireflies, the less brighter one will
move towards the brighter one. If there is no brighter one than a particular firefly,
it will move randomly.
• The brightness of a firefly is determined by the landscape of the objective function.

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent
fireflies, we can now define the variation of attractiveness β with the distance r by

β = β0e−γ r2
, (1)

where β0 is the attractiveness at r = 0. The movement of a firefly i is attracted to
another more attractive (brighter) firefly j is determined by

xt+1
i = xt

i + β0e−γ r2
i j (xt

j − xt
i )+ α εt

i , (2)

where the second term is due to the attraction. The third term is randomization with
α being the randomization parameter, and εt

i is a vector of random numbers drawn
from a Gaussian distribution at time t . Other studies also use the randomization εt

i
can easily be extended to other distributions such as Lévy flights. It is worth pointing
out that γ controls the scaling, while α controls the randomness. For the algorithm
to convergence properly, randomness should be gradually reduced, and one way to
achieve this is to use

α = α0θ
t , θ ∈ (0, 1), (3)

where t is the index of iterations/generations. Here α0 is the initial randomness factor,
and we can set α0 = O(1) without losing generality.

Studies have shown that FA is very efficient [2–5]. Fister et al. provided a com-
prehensive review of the current literature of the firefly algorithm and its variants [6].
Since then, about 30 more journal papers published in the last a few months alone. In
fact, a quick Google scholar search using firefly algorithm as the keyword returned
625 hits at the time of writing this chapter in July 2013. A similar search using Scirus
gave 658 hits with 158 peer-reviewed journal papers. Therefore, it seems impossible
to review every single piece of research work concerning firefly algorithms, however,
it would be useful to summarize the key works/papers that we can get hold of and
highlight the main and representative results.

Therefore, the main aim of this chapter is to briefly introduce the readers the
state-of-the-art developments so as to provide classifications of variants, research
works, and provide a good snapshot of the current literature. The rest of chapter
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Fig. 1 Variants of the firefly
algorithm

is organized as follows. In Sect. 2, a brief review of the modified and hybridized
firefly algorithms is presented. Section 3 deals with the application domains where
the firefly algorithms were successfully used, while Sect. 4 focuses on the application
of the firefly algorithm in engineering optimization. Finally, conclusions are drawn
briefly and the directions for future work are discussed in Sect. 5.

2 Classifications of Firefly Algorithms

The standard firefly algorithm has been proved very efficient and it has three key
advantages

• Automatic subdivision of the whole population into subgroups so that each sub-
group can swarm around a local mode. Among all the local modes, there exists the
global optimality. Therefore, FA can deal with multimodal optimization naturally.
• FA has the novel attraction mechanism among its multiple agents, and this attrac-

tion can speed up the convergence. The attractiveness term is nonlinear, and thus
may be richer in terms of dynamical characteristics.
• FA can include PSO, DE and SA as its special cases as shown in Chap. 1. Therefore,

it is no surprise that FA can efficiently deal with a diverse range of optimization
problems.

Many researchers use FA to solve a diverse range of problems, and they have
also tried to develop various variants to suit for specific types of applications with
improved efficiency. Using similar classification as proposed in [6], the variants of
the firefly algorithm can be divided into modified and hybridized algorithms (Fig. 1).
In total, there are more than 20 different FA variants.

The short review of research papers concerning the classical firefly algorithms
can be summarized in Table 1.

http://dx.doi.org/10.1007/978-3-319-02141-6_1
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Table 1 Classification of the
firefly algorithms

Topic References

The original firefly algorithm [1]
Multi-modal test functions [3]
Continuous and combinatorial optimization [7]
Review of nature-inspired meta-heuristics [8–10]

2.1 Modified FA

The modified firefly algorithms can be analyzed according to the setting of their
algorithm-dependent parameters. In line with this, the firefly algorithms are classified
according to the following criteria:

• representation of fireflies (binary, real-valued);
• population scheme (swarm, multi-swarm);
• evaluation of fitness function;
• determination of the best solution (non-elitism, elitism);
• randomization of moving the fireflies (uniform, Gaussian, Lévy flights, chaos

distributions).

As a results, the existing studies concerning the modified algorithms can be pre-
sented in Table 2.

2.2 Hybrid Firefly Algorithms

The firefly algorithm has been designed as a global problem solver that should obtain
the good results on the all classes of optimization problems. However, the No-Free-
Launch theorem usually poses some limitations [42]. In order to overcome the lim-
itations imposed by this theorem, hybrid methods tend to be used to develop new
variants of nature-inspired algorithms including the variants of firefly algorithms.
Various hybridizations have been applied on the firefly algorithm to seek improve-
ments. Hybridization incorporates some problem-specific knowledge to the firefly
algorithm. Normally, it was hybridized with other optimization algorithms, machine
learning techniques, heuristics, etc. The short review of the major hybrid firefly
algorithms is illustrated in Table 3.

3 Applications

Since its first appearance in 2008, in the last few years, the firefly algorithm has
been used in almost every area of sciences and engineering, including optimiza-
tion, classifications, travelling salesman problem, scheduling, image processing, and
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Table 2 Modified firefly
algorithms

Topic References

Elitist firefly algorithm [11]
Binary represented firefly algorithm [12–16]
Gaussian randomized firefly algorithm [17, 18]
Lévy flights randomized firefly algorithm [4, 18, 19]
Chaos randomized firefly algorithm [20–22]
Parallel firefly algorithm [23, 24]
Multi-population [25]
Harmonic clustering [26, 27]
Quaternion firefly algorithm [28]

Table 3 Hybrid firefly
algorithms

Topic (with which the firefly algorithm References
hybridizes)

Eagle strategy using Lévy walk [29]
Genetic algorithms [15, 30]
Differential evolution [31, 32]
Memetic algorithm [33, 34]
Neural network [35–37]
Cellular learning automata [15, 38]
Ant colony [39]
Simulated annealing [40]
Evolutionary strategies [41]

engineering designs. Some application domains are more theoretical, whilst others
have focused on solving the real-world problems. The taxonomy of firefly algorithm
applications can be seen in Fig. 2 where we have focused on three major areas of
applications: optimization, classification and engineering designs.

3.1 Optimization

The firefly algorithm has been applied into the following classes of problems:

• continuous,
• combinatorial,
• constraint,
• multi-objective,
• multi-modal,
• dynamic and noisy.

Continuous optimization problems often concern a set of real numbers or func-
tions, whilst in the combinatorial optimization problems, solutions are sought from a
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Fig. 2 Taxonomy of firefly
algorithm applications

Table 4 Optimization
applications

Topic References

Continuous optimization [2, 4, 7, 9, 18, 19, 46]
Combinatorial optimization [47–55]
Constrained optimization [56, 57]
Multi-objective optimization [5, 58–63]
Multi-modal optimization [64]
Dynamic and noisy environment [65–69]

finite or infinite set, typically, of integers, sets, permutations, or graphs [43]. The lat-
ter class of optimization problems can also be called discrete optimization. Solutions
of constrained problems must obey some limitations (also known as constraints). In
the multi-objective problems, the quality of a solution is defined by its performance
in relation to several, possibly conflicting, objectives. On the other hand, for multi-
modal problems, there are a (large) number of local modes that are better than all
their neighboring solutions, but do not have as good a fitness as the globally optimal
solution [44]. The dynamic and noisy problems are non-stationary. That is, they
change over time [45].

Various studies of the firefly algorithm in this application domain can be summa-
rized in Table 4.

3.2 Classifications

Classification algorithms are procedures for selecting a hypothesis from a set of
alternatives that best fits a set of observations or data. Usually, these algorithms are
more relevant in machine learning, data mining, and neural networks. A review of
existing studies from this area can be summarized as follows:

• The firefly algorithm was hybridized with the Rough Set Theory (RST) for finding
a subset of features [70].
• The firefly algorithm was used for training the radial basis function (RBF) net-

work [71].
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Table 5 Engineering
applications

Engineering area References Total

Industrial optimization [73–94] 22
Image processing [95–103] 9
Antenna design [104–108] 5
Business optimization [109–112] 4
Robotics [113–115] 3
Civil engineering [116, 117] 2
Chemistry [118, 119] 2
Semantic web [120] 1
Meteorology [121] 1
Wireless sensor networks [122] 1

• The firefly algorithm was used for clustering data objects into groups according
to the values of their attributes [72].

4 Engineering Optimization

The firefly algorithm has become one of the most important tools for solving the
design optimization problems in routine engineering practice. As can be seen from
Table 5, almost every engineering domain has been covered by the applications of
this algorithm. The majority of studies come from engineering and industries.

In summary, the rapid expansion of the research literature on the firefly algorithms
in engineering optimization proves that the firefly algorithms enter in its matured
phase. That is, after initial theoretical studies, more and more applications from real-
world case studies have been emerged, which means that this algorithm has become
a serious tool for solving various challenging real-world problems.

5 Conclusion

Though with a relative short history up to now, the firefly algorithm has become a
matured optimization tool for solving a diverse of range of optimization problems
such as engineering designs, scheduling, feature selection, travelling salesman prob-
lems, image processing, classifications and industrial applications. Over 20 new FA
variants have been developed and new applications and studies are emerging almost
daily.

The popularity of the firefly algorithm and its variants may be due to their simplic-
ity, flexibility, versatility and superior efficiency. It is no surprise that FA has been
used in almost every area of sciences, engineering and industry.
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However, there is still room for improvements. Firstly, theoretical analysis is
still very limited, and this is also true for many other nature-inspired algorithms.
Mathematical analysis is challenging, but it is possible to use theories such as dynam-
ical systems, Markov chains and statistics to gain insights into the working mecha-
nisms of various variants. Secondly, more applications should focus on large-scale
real-world applications. Thirdly, parameter tuning and parameter control can be a
very useful area for further research. Finally, the current research communities strive
to find better and smarter algorithms. It can be expected that the firefly algorithm and
its variants may be extended and further developed into some sort of self-evolving
and truly intelligent algorithms.
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358 I. Fister et al.

81. Dutta, R., Ganguli, R., Mani, V.: Exploring isospectral spring-mass systems with firefly algo-
rithm. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ence, vol. 467, pp. 3222–3240. The Royal Society (2011)

82. Hu, H.: Fa-based optimal strategy of trains energy saving with energy materials. Adv. Mater.
Res. 485, 93–96 (2012)

83. Kazemzadeh, A.S.: Optimum design of structures using an improved firefly algorithm. Int. J.
Optim. Civ. Eng. 2(1), 327–340 (2011)

84. Mauder, T., Sandera, C., Stetina, J., Seda, M.: Optimization of the quality of continuously
cast steel slabs using the firefly algorithm. Materiali in tehnologije 45(4), 347–350 (2011)

85. Mohammadi, s., Mozafari, B., Solimani, S., Niknam, T.: An adaptive modified firefly optimi-
sation algorithm based on hong’s point estimate method to optimal operation management in
a microgrid with consideration of uncertainties. Energy (2013)

86. Bharathi Raja, S., Srinivas Pramod, C.V., Vamshee Krishna, K., Ragunathan, A., Vinesh, S.,
Optimization of electrical discharge machining parameters on hardened die steel using firefly
algorithm. Engineering with Computers 36, 1–9 (2013)

87. Rampriya, B., Mahadevan, K., Kannan, S.: Unit commitment in deregulated power system
using Lagrangian firefly algorithm. In: Communication Control and Computing Technologies
(ICCCCT), 2010 IEEE International Conference on, pp. 389–393. IEEE (2010)

88. Roeva, O.: Optimization of e. coli cultivation model parameters using firefly algorithm. Int.
J. Bioautomation 16, 23–32 (2012)

89. Roeva, O., Slavov, T.: Firefly algorithm tuning of pid controller for glucose concentration con-
trol during e. coli fed-batch cultivation process. In: Proceedings of the Federated Conference
on Computer Science and Information Systems, pp. 455–462. IEEE (2012)

90. Rubio-Largo, Á., Vega-Rodríguez, M. A.: Routing low-speed traffic requests onto high-speed
lightpaths by using a multiobjective firefly algorithm. In Applications of Evolutionary Com-
putation, p. 12–21. Springer (2013)

91. Chandra Saikia, L., Kant Sahu, S.: Automatic generation control of a combined cycle gas
turbine plant with classical controllers using firefly algorithm. Int. J. Electr. Power Energy
Syst, 53, 27–33 (2013)

92. Sanaei, P., Akbari, R., Zeighami, V., Shams, S.: Using firefly algorithm to solve resource con-
strained project scheduling problem. In: Proceedings of Seventh International Conference on
Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), pp. 417–428. Springer
(2013)

93. Yang, X.S., Hosseini, S.S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex eco-
nomic dispatch problems with valve loading effect. Appl. Soft Comput. 12(3), 1180–1186
(2011)

94. Yazdani, A., Jayabarathi, T., Ramesh, V., Raghunathan, T.: Combined heat and power eco-
nomic dispatch problem using firefly algorithm. Front. Energy 7, 1–7 (2013)

95. Hassanzadeh, T., Vojodi, H., Mahmoudi, F.: Non-linear grayscale image enhancement based
on firefly algorithm. In: Swarm, Evolutionary, and Memetic Computing, pp. 174–181.
Springer (2011)

96. Hassanzadeh, T., Vojodi, H., Moghadam, A.M.E.: An image segmentation approach based
on maximum variance intra-cluster method and firefly algorithm. In: Natural Computation
(ICNC), 2011 Seventh International Conference on, vol. 3, pp. 1817–1821. IEEE (2011)

97. Horng, M.H.: Vector quantization using the firefly algorithm for image compression. Expert
Syst. Appl. 39(1), 1078–1091 (2012)

98. Horng, M.H., Jiang, T.W.: The codebook design of image vector quantization based on the
firefly algorithm. In: Computational Collective Intelligence. Technologies and Applications,
pp. 438–447 (2010)

99. Horng, M.H., Jiang, T.W.: Multilevel image thresholding selection based on the firefly algo-
rithm. In: Ubiquitous Intelligence and Computing and 7th International Conference on Auto-
nomic and Trusted Computing (UIC/ATC), 2010 7th International Conference on, pp. 58–63.
IEEE (2010)



Firefly Algorithm: A Brief Review of the Expanding Literature 359

100. Horng, M.H., Liou, R.J.: Multilevel minimum cross entropy threshold selection based on the
firefly algorithm. Expert Syst. Appl. 38(12), 14805–14811. Elsevier (2011)

101. Mohd Noor, M.H., Ahmad, A.R., Hussain, Z., Ahmad, K.A., Ainihayati, A.R.: Multilevel
thresholding of gel electrophoresis images using firefly algorithm. In: Control System, Com-
puting and Engineering (ICCSCE), 2011 IEEE International Conference on, pp. 18–21. IEEE
(2011)

102. Xiaogang, D., Jianwu, D., Yangping, W., Xinguo, L., Sha, L.: An algorithm multi-resolution
medical image registration based on firefly algorithm and powell. In: Intelligent System Design
and Engineering Applications (ISDEA), 2013 Third International Conference, pp. 274–277.
IEEE (2013)

103. Zhang, Y., Wu, L.: A novel method for rigid image registration based on firefly algorithm.
Int. J. Res. Rev. Soft Intell. Comput. (IJRRSIC) 2(2), 141–146 (2012)

104. Basu, B., Mahanti, G.K.: Firefly and artificial bees colony algorithm for synthesis of scanned
and broadside linear array antenna. Prog. Electromagnet Res. B 32, 169–190 (2011)

105. Basu, B., Mahanti, G.K.: Thinning of concentric two-ring circular array antenna using fire fly
algorithm. Scientia Iranica, 19(6), 1802–1809 (2012)

106. Chatterjee, A., Mahanti, G.K.: Minimization in variations of different parameters in different ϕ
planes of a small-size concentric ring array antenna using firefly algorithm. Ann. Telecommun.
68, 1–8 (2012)

107. Sharaqa, A., Dib, N.: Circular antenna array synthesis using firefly algorithm. Int. J. RF
Microwave Comput. Aided Eng. Article in press, Wiley Online Library (2013)

108. Zaman, M.A., Matin, A., et al.: Nonuniformly spaced linear antenna array design using firefly
algorithm. Int. J. Microwave Sci. Technol. 2012, 8 (2012)

109. Banati, H., Bajaj, M.: Promoting products online using firefly algorithm. In: Intelligent Sys-
tems Design and Applications (ISDA), 2012 12th International Conference on, pp. 580–585,
IEEE (2012)

110. Giannakouris, G., Vassiliadis, V., Dounias, G.: Experimental study on a hybrid nature-inspired
algorithm for financial portfolio optimization. In: Artificial Intelligence: Theories, Models and
Applications, pp. 101–111 (2010)

111. Salomie, I., Chifu, V.R., Pop, C.B., Suciu, R.: Firefly-based business process optimization.
pp. 49–56 (2012), cited By (since 1996)

112. Yang, X. S., Deb, S., Fong, S.: Accelerated particle swarm optimization and support vector
machine for business optimization and applications. In: Networked Digital Technologies, pp.
53–66 (2011)

113. Jakimovski, B., Meyer, B., Maehle, E.: Firefly flashing synchronization as inspiration for self-
synchronization of walking robot gait patterns using a decentralized robot control architecture.
Archit. Comput. Sys. ARCS 2010, 61–72 (2010)

114. Mardlijah, A.J., Widodo, B., Santoso, A.: A new combination method of firefly algorithm
and t2fsmc for mobile inverted pendulum robot. J. Theor. Appl. Inf. Technol. 47(2):824–831
(2013)

115. Severin, S., Rossmann, J.: A comparison of different metaheuristic algorithms for optimizing
blended ptp movements for industrial robots. In: Intelligent Robotics and Applications, pp.
321–330 (2012)

116. Gholizadeh, S., Barati, H.: A comparative study of three metaheuristics for optimum design
of trusses. Int. J. Optim. Civ. Eng. 3, 423–441 (2012)

117. Talatahari, S., Gandomi, A.H., Yun, G.J.: Optimum design of tower structures using firefly
algorithm. The Structural Design of Tall and Special Buildings (2012)

118. Fateen, S.E., Bonilla-Petriciolet, A., Rangaiah, G.P.: Evaluation of covariance matrix adapta-
tion evolution strategy, shuffled complex evolution and firefly algorithms for phase stability,
phase equilibrium and chemical equilibrium problems. Chem. Eng. Res. Des. 90(12), 2051–
2071 (2012)

119. Zhang, Y., Wang, S.: Solving two-dimensional hp model by firefly algorithm and simplified
energy function. Mathematical Problems in Engineering. vol. 2013, 398141, 9 p (2013).
doi:10.1155/2013/398141

http://dx.doi.org/10.1155/2013/398141


360 I. Fister et al.

120. Pop, C.B., Chifu, V.R., Salomie, I., Baico, R.B., Dinsoreanu, M., Copil, G.: A hybrid firefly-
inspired approach for optimal semantic web service composition. Scal. Comput. Pract. Exp.
vol. 12(3), pp. 363–369 (2011)

121. dos Santos, A.F., de Campos Velho, H.F., Luz, E.F.P., Freitas, S.R., Grell, G., Gan, M.A.: A
Firefly optimization to determine the precipitation field on South, America. Inverse Prob. Sci.
Eng. 21, 417–428 (2013)

122. Breza, M., McCann, J.A.: Lessons in implementing bio-inspired algorithms on wireless sensor
networks. In Adaptive Hardware and Systems, 2008. AHS’08. NASA/ESA Conference on,
pp. 271–276. IEEE (2008)


	Preface
	Contents
	Contributors
	1 Cuckoo Search and Firefly Algorithm:  Overview and Analysis
	1 Introduction
	2 Optimization Problems
	3 The Essence of an Optimization Algorithm
	3.1 The Essence of an Algorithm
	3.2 An Ideal Algorithm?
	3.3 Metaheuristic Algorithms

	4 Cuckoo Search and Analysis
	4.1 Cuckoo Search
	4.2 Special Cases of Cuckoo Search
	4.3 Why Cuckoo Search is so Efficient?
	4.4 Global Convergence: Brief Mathematical Analysis
	4.5 Applications

	5 Firefly Algorithm and Analysis
	5.1 Firefly Algorithm
	5.2 Parameter Settings
	5.3 Algorithm Complexity
	5.4 Special Cases of FA
	5.5 Variants of Firefly Algorithm
	5.6 Attraction and Diffusion
	5.7 Why SA is Efficient
	5.8 Applications

	6 Right Amount of Randomization
	6.1 How to do Random Walks
	6.2 Accuracy and Number of Iterations

	7 Parameter Tuning and Parameter Control
	7.1 Parameter Tuning
	7.2 Parameter Control

	8 Discussions and Concluding Remarks
	References

	2 On the Randomized Firefly Algorithm
	1 Introduction
	2 Background Information
	2.1 Uniform Distribution
	2.2 Normal or Gaussian Distribution
	2.3 Lévy Flights
	2.4 Chaotic Maps
	2.5 Random Sampling in Turbulent Fractal Cloud

	3 Randomized Firefly Algorithms
	3.1 Original Firefly Algorithm
	3.2 Variants of the Randomized Firefly Algorithm

	4 Experiments and Results
	4.1 Test Suite
	4.2 Experimental Setup
	4.3 PC Configuration
	4.4 Results

	5 Conclusion
	References

	3 Cuckoo Search: A Brief Literature Review
	1 Introduction
	2 Cuckoo Search: Variants and Hybrids
	2.1 Variants
	2.2 Hybrid Algorithms
	2.3 Multi-objective Optimization

	3 Engineering Optimization
	4 Applications
	5 Theoretical Analysis and Implementation
	5.1 Theory and Algorithm Analysis
	5.2 Improvements and Other Studies
	5.3 Implementations

	6 Conclusion
	References

	4 Improved and Discrete Cuckoo Search for Solving the Travelling Salesman Problem
	1 Introduction
	2 Travelling Salesman Problem
	2.1 Description of TSP
	2.2 Approximate Approaches to Solve TSP

	3 Cuckoo Search and Discrete Cuckoo Search
	3.1 Basic CS
	3.2 Improved CS
	3.3 Discrete Cuckoo Search for Travelling Salesman Problem

	4 Experimental Results
	5 Conclusion
	References

	5 Comparative Analysis of the Cuckoo Search Algorithm
	1 Introduction
	2 Comparison Algorithms
	2.1 Differential Evolution (DE)
	2.2 Particle Swarm Optimization (PSO)
	2.3 Artificial Bee Colony (ABC)

	3 Structural Analysis of Cuckoo Search Algorithm (CS)
	4 Experiments
	4.1 Control Parameters of the Comparison Algorithms
	4.2 Statistical Tests
	4.3 Test Functions
	4.4 Algorithmic Precision
	4.5 Statistical Results of Tests

	5 Conclusions
	References

	6 Cuckoo Search and Firefly Algorithm Applied  to Multilevel Image Thresholding
	1 Introduction
	2 Multilevel Thresholding Problem Formulation
	2.1 Entropy Criterion Method
	2.2 Between-class Variance Method

	3 Proposed CS Approach to Multilevel Thresholding
	4 Proposed FA Approach to Multilevel Threshlding
	5 Experimental Study
	5.1 Parameter Settings
	5.2 Solution Quality Analysis
	5.3 Computational Time Analysis

	6 Conclusion
	References

	7 A Binary Cuckoo Search and Its Application  for Feature Selection
	1 Introduction
	2 Supervised Classification Through Optimum-Path Forest
	3 Cuckoo Search
	3.1 Standard Cuckoo Search
	3.2 Binary Cuckoo Search for Feature Selection

	4 Methodology
	5 Simulation, Results and Discussion
	6 Conclusions
	References

	8 How to Generate the Input Current  for Exciting a Spiking Neural Model  Using the Cuckoo Search Algorithm
	1 Introduction
	2 Cuckoo Search Algorithm
	3 Spiking Neural Models
	4 Proposed Methodology
	4.1 Approach for Designing the Input Current Equation

	5 Experimental Results
	5.1 Analysis and Comparisson of Experimental Results
	5.2 Application of the Proposed Methodology in a Crop Classification Problem
	5.3 Application of the Proposed Methodology in a Odor Recognition Problem

	6 Conclusions
	References

	9 Multi-Objective Optimization of a Real-World Manufacturing Process Using Cuckoo Search
	1 Introduction
	2 Real-World Manufacturing Optimization
	3 Cuckoo Search
	3.1 Algorithm Description
	3.2 Multi-Objective Extension

	4 Evaluation
	4.1 Configuration
	4.2 Integrating the Optimization Algorithm and the Simulation
	4.3 User Interface
	4.4 Results

	5 Analysis
	5.1 Technical Analysis
	5.2 User Perspective

	6 Conclusions
	References

	10 Solving Reliability Optimization Problems by Cuckoo Search
	1 Introduction
	2 Cuckoo Search Algorithm
	2.1 Cuckoo Breeding Behavior
	2.2 Cuckoo Search

	3 Case Studies: Reliability Optimization Problems
	3.1 Case Study 1: A Complex (Bridge) System 
	3.2 Case study 2: A Series System
	3.3 Case study 3: A Series-parallel System
	3.4 Case study 4: An Overspeed System for a Gas Turbine
	3.5 Case study 5: Large-Scale System Reliability Problem
	3.6 Case study 6: 10-Unit System Reliability Problem with Different Combinations of Parameters
	3.7 Case study 7: 15-Unit System Reliability Problem  with Different Combinations of Parameters

	4 Experimental Results, Analysis and Discussion
	5 Conclusion
	References

	11 Hybridization of Cuckoo Search and Firefly Algorithms for Selecting the Optimal Solution  in Semantic Web Service Composition
	1 Introduction
	2 Background
	2.1 Nature-Inspired Metaheuristics
	2.2 Hybridization of Nature-Inspired Metaheuristics
	2.3 Semantic Web Service Composition Flow

	3 Literature Review
	3.1 Non-hybrid Nature-Inspired Techniques
	3.2 Hybrid Nature-Inspired Techniques

	4 The Steps for Developing Hybrid Nature-Inspired Techniques for Selecting the Optimal Web Service Composition Solution
	5 Formal Definition
	6 Hybridization Model
	6.1 Core Components
	6.2 Hybridization Components

	7 Hybrid Selection Algorithms
	7.1 The Hybrid Cuckoo Search-Based Algorithm
	7.2 The Hybrid Firefly Search-Based Algorithm

	8 Performance Evaluation
	8.1 Setting the Optimal Values of the Adjustable Parameters
	8.2 Evaluations of Hybridization

	9 Conclusions
	References

	12 Geometric Firefly Algorithms on Graphical Processing Units
	1 Introduction
	2 Evolutionary Population-Based Combinatorial Optimisation
	3 Candidate Representation Using Karva
	4 GPU-Parallel Evolutionary Algorithms
	5 GPU-Parallel Expression-Tree FA
	6 Experimental Methodology
	7 Selected Results
	8 Visualisation
	9 Discussion
	10 Conclusions
	References

	13 A Discrete Firefly Algorithm for Scheduling  Jobs on Computational Grid
	1 Introduction
	2 Related Work
	3 Scheduling Problem Formulation
	4 The Grid Brokering and Management Architecture
	5 Job Scheduling Based on DFA
	5.1 Firefly Algorithm
	5.2 Discrete Firefly Algorithm
	5.3 Scheduling Jobs using DFA 

	6 Implementation and Experimental Results
	6.1 Simulation Framework
	6.2 The Workloads
	6.3 Parameter Selection
	6.4 The Population Size

	7 Conclusion and Future Work
	References

	14 A Parallelised Firefly Algorithm for Structural Size and Shape Optimisation with Multimodal Constraints
	1 Introduction
	1.1 Literature Review

	2 The Firefly Algorithm
	2.1 The Proposed Parallelised Versions of FA

	3 Performance Metrics
	4 Structural Size and Shape Optimization with Multimodal Constraints
	5 Numerical Examples
	5.1 Ten Bar Truss Problem
	5.2 Shape and Size Optimisation of 37-bar Truss Problem
	5.3 Shape and Size Optimisation of a 52-Bar Dome Problem

	6 Final Remarks
	References

	15 Intelligent Firefly Algorithm for Global Optimization
	1 Introduction
	2 Firefly Algorithm (FA)
	3 Intelligent Firefly Algorithm (IFA)
	4 Numerical Experiments
	5 Results and Discussion
	6 Conclusions
	References

	16 Optimization of Queueing Structures  by Firefly Algorithm
	1 Introduction
	2 Queueing Systems
	2.1 M/M/m/-/m System with Losses
	2.2 M/M/m/FIFO/m+N System with Finite Capacity and Impatient Customers
	2.3 The M/M/m/FIFO/N/F Closed Queueing System with Finite Population of N Jobs

	3 Optimization Problems
	4 Firefly Algorithm
	5 Results of Experiments
	6 Conclusion
	References

	17 Firefly Algorithm: A Brief Review  of the Expanding Literature
	1 Introduction
	2 Classifications of Firefly Algorithms
	2.1 Modified FA
	2.2 Hybrid Firefly Algorithms

	3 Applications
	3.1 Optimization
	3.2 Classifications

	4 Engineering Optimization
	5 Conclusion
	References




