his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Lore fechnigues
and Rlgorithms

hit)

. able of Contentg

. ndex

Core Techniques and Algorithms in Game Programming

By baniel Sanchez-Crespo DalmalJ

Stat Reading »

Publisher: New Riders Publishing
Pub Date: September 08, 2003
ISBN: 0-1310-2009-9

Pages: 888

To even try to keep pace with the rapid evolution of game development, you need a strong foundation in core programming
techniques-not a hefty volume on one narrow topic or one that devotes itself to API-specific implementations. Finally, there's a guide that
delivers! As a professor at the Spanish university that offered that country's first master's degree in video game creation, author Daniel
Sanchez-Crespo recognizes that there's a core programming curriculum every game designer should be well versed in-and he's outlined
it in these pages! By focusing on time-tested coding techniques-and providing code samples that use C++, and the OpenGL and DirectX
APIs-Daniel has produced a guide whose shelf life will extend long beyond the latest industry trend. Code design, data structures, design
patterns, Al, scripting engines, 3D pipelines, texture mapping, and more: They're all covered here-in clear, coherent fashion and with a
focus on the essentials that will have you referring back to this volume for years to come.

Team LiB |

http://www.informit.com/safari/author_bio.asp@ISBN=0131020099

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB I

Core Technigues
and Rlgorithms

Core Techniques and Algorithms in Game Programming

Bylganiel Sanchez-Crespo Dalmad

Publisher: New Riders Publishing
Pub Date: September 08, 2003
ISBN: 0-1310-2009-9
Pages: 888

About the Authol

P\bout the Technical Reviewe
Acknowledémenté

Tell Us What You Thinu

ntroduction

What You Will Leard
What You Need to Knoﬂ

How This Book Is Organize
:onvenﬂon;
bhagter 1. A Chronology of Game Programmingl
IZhase Ill: Game Consoles and Personal Comguterg
Ehase IV: Shakedown and Consolidatioa
hase V: The Advent of the Game Engin
Ifhase VI: The Handheld Revolutior]
hase VII: The Cellular Phenomeno;l
Ehase VIII: Multiplayer Gamesl
In Closing
bhagter 2. Game Archw
Real-Time Softwarg
[The Game Lo?ic Sectioil
The Presentation Sectio

The Programming Procesg

Start Feading »

http://www.informit.com/safari/author_bio.asp@ISBN=0131020099

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In Closina
bhagter 3. Data Structures and Algorithmg

Tiées Structures, and Classe;
Data Structure

[Che Standard Template Librard

n Closing

bhagter 4. Design Patterng

esign Patterns Define

gramming Patterng

ome Useful Pro

sability Pattern

In Closingd
I;;hagter 5. User nguﬂ
The KP;boara

Mousd

boysticks
Hardware Abstractioa

FForce Feedbac

bha?ter 6. Fundamental Al Technoloqiesl

ontexl

Etructure of an Al Syster_r{

Bpecific Technologieg

bhagter 7. _Action-Oriented Al

Eb'ect ‘I'rackina
hasing
vasiorn

Patcolind

Eiding and Taking CoveJ
hootin

Eutting It AII Togethegl

In Closing

bhagter 8. Tactical AI

Tactical Thinking Explaine:

Representing Tacticg
n Closing

I;;hagter 9. Scrigtind

mbedded Languages

Eocket—Based Scriétina
In Closind

bhagter 10. Network Programmind

How the Internet Really Workd

The Programmer's Perspective: Socket
Client

a Siméle TCP Serve]
Multiclient Servera

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

hapter 11. 2D Game Programming
Iiata Structures for 2D Game;

ing Matriceg

ecial Effect

In Closind

bhagter 12. 3D Pipeline OvervieV\I
E First LooK
lfundamental Data Tygeg

A Generic Graphics Pipelin

t;hagter 13. Indoors Renderingl

ccluder-Based Algorithm

Binary Space Partition Algorithms

Portal Renderin

Hierarchical Occlusion MaQJ

Hybrid Approaches

Hardware-Assisted Occlusion Testé

n Closin

bha?ter 14. Outdoors Algorithmé
vervie

Iiata Structures for Outdoors Renderingl

eomipmapping

hunked LODS

A GPU-Centric Approac

Dutdoors Scene Graphg

hapter 15. Character Animatio;'

nalysis
Exglicit Versus Implicit MethodJ
xplicit Animation Technigqu

mplicit Animation Overview

Proé Handlina

Facial Animatioa
nverse Kinematic;

Blending Forward and Inverse Kinematicsl

n Closing

bhagter 16. Cinematogragh}]
First-Person Shooterg

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

H_andlinq Inerti;

Flight Simulators and Quaternioné
[Chird-Person Camera;

inematic Cameras: Camera Styleg

inematic Cameras: Placement Algorithmg
Agent-Based Approaches
In Closina

I;;hagter 17. Shading‘
Real-World Illuminatio

The BRDH

onphotorealistic Renderin(J

n Closin

hapter 18. Texture Mappin

Types of Texture

Tilin; and Decalg

Texture Oétimizatioa

Multipass Technigue

Multitextur

Texture Arithmetic and Combinatiod
Detail Textureg

Environment Mappin,

Eumé Maé;inc

t;hagter 19. Particle Systemg

Anatomy of a Particle Syste
he Particle Data Structurd

Some Notes on Architecturg

Speed-Up Techniqued

hapter 20. Organic Renderin

ature and Complexit:

| reeg

ASY

=

loudg

In Closin;]
t;hagter 21. Procedural Technigueé
Procedural anifesta
Rendermaa
Real-Time Shadin; Lan;uaée;
‘T;Ees of Shader;
Texture Maééin%
Particle System

Animatio

pecial Effect;
n Closind

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

t;hagter 22. Geometrical Alqorithmsl
‘Point Inclusion Testé

Rag Intersection Test;

Vloviné Test;

Point Versus Triangle Set Collision (BSP-Based

Mesh Versus Mesh ;Sweeé and Prune Aééroach]

In Closingd

Igggendix A. Performance Tunind
Enalysis Technigues

nalysis Tool

eneral Optimization Techniquesl

E;élicatior

fficient Data Transfe

uning the Geometry Pipelin

| uning the Rasterizer Sta;;

ther Optimization Tools

Iggpendix B. OpenG
Philosophy

asic Synta

mmediate Mode Rendering
ransformationg
amera Mode

orking in RGBA Mods

ertex Arrayg

DpenGL Extensiong
fficiency Considerationg

n Closind

Iggpendix C. Direct3d
Histor

ooting Direct3

andling Geometry
ndexed Primitives

Dser Pointer PrimitiveJ

fficient Geometry Delivery

lexible Vertex Formatg
atrices, Cameras, and Transformg
orking with Texture Mapd

Render State;

The Extension Librar

Animation Helper.

n Closing

IAppendix D. Some Math Involved

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Matriced

Pppendix E. Further Readingl

nde

Team LiB I

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Copyright

Copyright © 2004 by New Riders Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means—electronic,
mechanical, photocopying, recording, or otherwise—without written permission from the publisher, except for the inclusion of brief
guotations in a review.

Library of Congress Catalog Card Number: 2003107185
Printed in the United States of America

First printing: September, 2003
0807060504037654321

Interpretation of the printing code: The rightmost double-digit number is the year of the book's printing; the rightmost single-digit number
is the number of the book's printing. For example, the printing code 03-1 shows that the first printing of the book occurred in 2003.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. New Riders
Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty of fithess is implied. The
information is provided on an as-is basis. The authors and New Riders Publishing shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the CD or
programs that may accompany it.

Publisher

Stephanie Wall

Production Manager

Gina Kanouse

Development Editors
Chris Zahn

Anne Marie Walker

Project Editor

Michael Thurston

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Senior Indexer

Cheryl Lenser

Proofreader

Debbie Williams

Composition

Gloria Schurick

Manufacturing Coordinator

Dan Uhrig

Interior Designer

Kim Scott

Cover Designer

Aren Howell

Marketing
Scott Cowlin
Tammy Detrich

Hannah Onstad Latham

Publicity Manager

Susan Nixon

Dedication

Higher, Faster, Stronger

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_16061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

BTy rrevious [t o]

About the Author

Daniel Sanchez-Crespo Dalmau is a professor at Pompeu Fabra University in Barcelona, Spain where he co-organized and serves as
the current director of Spain's first Master's Degree in Video Game Creation. He also founded Novarama, an independent game studio in
Barcelona that focuses on creating innovative games for the PC/Xbox platform. As a columnist he has been a frequent contributor to

Byte Magazine Spai azine, and the Gamasutra web site, publishing more than 40 articles. Send comments about
the book to him at gsanchez@novarama.conj.

mailto:dsanchez@novarama.com
file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

About the Technical Reviewer

This reviewer contributed his considerable hands-on expertise to the entire development process for Core Techniques and Algorithms in
Game Programming. As the book was being written, this dedicated professional reviewed all the material for technical content,
organization, and flow. His feedback was critical to ensuring that Core Techniques and Algorithms in Game Programming fits our
readers' needs for the highest-quality technical information.

Wolfgang Engel is a programmer and author, having writterBeginning Direct3D Game Programming (Premier Press) and written and
edited Direct3D ShaderX: Vertex and Pixel Shader Programming Tips and Tricks (Wordware Publishing). He has also published articles
on game programming in German journals and a number of online tutorials on sites like . During his career in the game
industry he has built two game development units from scratch that published online games for the biggest European television show,
"Wetten das...?," and has served as either a member of the board or as CEO of several different companies. He is an advisor and a
member of the faculty of the Academy of Game Entertainment Technology.

Team LiB |

http://www.gamedev.net/default.htm

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Acknowledgments

Writing a book like this is definitely not a journey on which you want to embark alone. Thus, before we begin I'd like to thank everyone
who has, in one way or another, contributed to this book.

First of all, I'd like to thank both Stephanie Wall and Chris Zahn at New Riders, who have been with me all through the process, and also
John Neidhart at Prentice Hall, who had the initial idea for this book. We've been through a pretty wild ride together, and their effort and
dedication have been indispensable.

I'd also like to thank Josep Blat at Universitat Pompeu Fabra for his vision in developing a game-specific curricula, supporting the
creation of this book, and creating Europe's first Master's Degree in Video Game Creation.

Then there are lots of people who shared ideas, contributed source code, and generally helped shape the book you are now holding. In
no special order, here are the luminaries that lit the way for me:

Dave Pottinger, Ensemble Studios

Don Hopkins, Maxis

Ismael Noche, PyroStudios

Andrew Worsey, Codeplay

Cass Everitt, NVIDIA Corp.

Juan Guardado, NVIDIA Corp.

Alex Dunne, Game Developer/Gamasutra
Aleks Jakulin, University of Ljubljana, Al Lab
Ken Perlin, NYU

Toni Susin, UPC

Anna Puig, UPC

Carla Brossa, La Salle School of Multimedia Engineering
Adam Valdez, WETA Digital

Ernest Adams

Guillaume Werle

Martijn van Welie

Pere Fort, UPF

Hector Geffner, ICREA/ICREA

Finally, I'd like to thank everyone at Universitat Pompeu Fabra, especially my students, my work colleagues, and so on. A complete set
of thank-yous must go to the Novarama people, who provided tons of information for this project. I'd also like to thank CIDEM/Generalitat
de Catalunya for supporting Novarama's activities as a game studio. Finally, I'd like to thank all my friends and among those, my family,
who have supported me through each and every one of these pages, and through my sometimes long absences. Last, I'd like to thank
the beautiful Cecilia, whose unconditional support makes all this happen.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Barcelona, March 2002—June 2003

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Tell Us What You Think

As the reader of this book, you are the most important critic and commentator. We value your opinion and want to know what we're
doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our
way.

As an editor for New Riders Publishing, | welcome your comments. You can fax, email, or write me directly to let me know what you did
or didn't like about this book—as well as what we can do to make our books stronger. When you write, please be sure to include this
book's title, ISBN, and author, as well as your name and phone or fax number. | will carefully review your comments and share them with
the author and editors who worked on the book.

Please note that | cannot help you with technical problems related to the topic of this book, and that due to the high volume of email |
receive, | might not be able to reply to every message.

Fax: 317-581-4663
Email: Lhris.zahn@newriders.con{
Mail: Chris Zahn

Editor

New Riders Publishing

800 E. 96" Street
Indianapolis, IN 46240 USA

Team LiB |

mailto:chris.zahn@newriders.com

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Introduction

For many years, the best ideas about game programming were handwritten on the back of a napkin. Knowledge was shared informally,
with developers sketching ideas at meetings or industry gatherings, or talking with other fellow developers. Our craft was highly
unorganized. Years have gone by, and today coding games is more complex than it ever was. The pursuit of realism and immersion
have increased team sizes, budgets, and schedules. These are exciting times in which to be a game developer.

But we can no longer be unorganized in an industry of our size and importance. Today, professional game development must be
efficient, and developers must be reliable. We simply cannot risk the failure of a project because one feature does not turn out as
expected or because we don't know how to code a certain effect.

Our industry needs structured ways to train new professionals. Our attitude is changing. Events like the Game Developer's Conference,
magazines like Game Developer, organizations like the International Game Developers Association (IGDA), and schools all over the
world have begun creating this new consciousness of game development as a viable career alternative with its own training and
disciplines. But we need more. The amount of games-related documentation generated per year is simply appalling, and it is very difficult
for anyone wanting to learn about games to find reliable reference materials. Lots of books focus on API programming, which too often is
not what game programming is all about. Other books come from different disciplines, like artificial intelligence or graphics. These books
are often very good in their academic value and depth, but lack game-specific material. As a result, we end up gathering information
from lots of different sources, with no central source of information.

This book is born from this unique context. After six years of teaching game programming and as the founder and director of one of
Europe's first master's programs in video game development, | have evolved an extensive curriculum for aspiring game developers. |
have tried to teach students the core subjects and techniques any serious game developer should take for granted, so they can enter
and succeed in game studios quickly with a very short adaptation time. This is exactly the goal of this book—to present the fundamental
subjects involved in video game programming in a structured, coherent way. My goal is to provide a good reference work for anyone
wanting to learn about how games are currently coded and designed.

Thus, the focus of the book is not case-by-case tricks. Many good books contain that information. It is not a book about a specific game
genre because techniques often cross genre boundaries. It is also not a book about theories. Instead, it is about established,
well-understood methods that are at the core of many of today's blockbusters. This book is meant to help you build a foundation layer, so
you can understand all the base algorithms that, with minimal differences, are found in most game projects.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

What You Will Learn

This is a book about game programming. Its purpose is to teach you the fundamental techniques and algorithms that drive most
computer and video games on the market. You will learn the theory and study the implementation details behind many AAA titles for the
PC and console. The focus will not be on a specific area such as graphics or networks. The goal is to show you the core algorithms in
each area, so this book can effectively become an introductory course on game programming.

It is not my intention to make this book a simple collection of algorithms or a long review of technical papers. My objective is to make the
techniques easy to understand and code, so you can apply them yourself. Thus, for the most relevant methods, | will provide full
explanations, diagrams, and code samples as required, so you can discover what's going on under the hood, how things work, and why.
The measure of my success will be your ability to implement the ideas contained in this book, and thus create future generations of
games.

Quite likely, you will end the reading of this book with more questions than answers. Game programming is a huge subject, and it is
continually evolving. A book covering a
a bibliography at the end of the book (| "Further Reading") so you can read further and focus on the specific subject you are
interested in. | have classified the bibliography entries by chapter, so it can be scanned quickly for relevant information.

hniques from the past and present would be thousands of pages long. Thus, | have provided

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

What You Need to Know

Game programming is a huge interdisciplinary field. It is derived from fields such as mathematics, general-purpose programming, and
artificial intelligence. Although you will learn much about these subjects during your journey, there are some materials with which you
should already be comfortable.

To begin with, this book assumes you can code fluently in the C or C++ programming languages. You should be able to comfortably
code using includes, pointers, classes, data structures, inheritance, and so on. This is not a pook about programming, but a book about a
specific use of programs. You will find a review of some popular data structures in ‘, "Data Structures and Algorithms," but that
is all you should expect. On the other hand, you don't need to know how to program a game at all: That's exactly what this book is all
about.

Another prerequisite is some mathematical background that is equivalent to linear algebra and calculus as taught in many universities.
You should be familiar with subjects such as vector math, derivatives and integrals, matrices, trigonometry, and so on. For those who
have long forgotten this information, | have provided information on these subjects in Appendix O, "Some Math Involved." It includes
most formulae and mathematical techniques used in this book. Be sure to give it a quick read.

Additionally, you will need time, and this is more important than you can imagine. Many people think that programming games is
extremely difficult, and that the code is written in some arcane syntax understandable only by experts. Although some parts of the
process are indeed complex, most of the source code for a game can be easily understood—complexity lies in very specific and easy to
spot areas. So, what makes games so hard to code? It's not the difficulty: It's the time required to achieve any decent result. Many
games can be created with dedication and discipline. For the most part, it won't be incredibly difficult. But it does take time, so make sure
you have plenty of it.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

How This Book Is Organized

From a purely technical standpoint, game code can be divided into two large portions. A sizable part of the code deals with
gameplay-related issues: controlling the interaction, artificial intelligence, scripts, and so on. This is the game logic section, and | will
devote the first half of the book to it. We will then move on to presentation techniques: graphics, audio, and generally speaking, all that
makes games a rich multimedia experience. For the first part of the book, we will be mainly working in plain C/C++ code. Then, for the
second part, we will use a variety of tools and libraries such as OpenGL or DirectX. What follows is a rundown of the book's contents.

Part I: Gameplay Programming

, "Chronology of Game Programming," provides a bit of historical perspective. It presents a brief overview of how game
development technology has evolved since the dawn of the industry and includes platform examples.

through H "Game Architecture,” "Data Structures and Algorithms," and "Design Patterns," are all concerned with macro-level
code analysis. They cover such topics as the structure of game code, popular data structures, and design patterns.

, "User Input,” covers just that—the handling of interaction from the player.

through E "Fundamental Al Technologies," "Action-Oriented Al," "Tactical Al," and "Scripting," deal with artificial intelligence
topics. Fundamental algorithms, action and strategic Al, artificial life, and scripting techniques are explained in these chapters.

, "Network Programming," delves into the issues involved with networked games. It addresses multiplayer programming from
the client and server perspective, and massively multiplayer games.

Part Il: Engine Programming

to E "2D Programming," "3D Pipeline Overview," "Indoors Rendering," "Outdoors Algorithms," and "Character Animation,"
cover graphics engine topics such as rendering pipelines, starting with generic designs and then later moving on to indoors and outdoors
rendering algorithms.

through E "Cinematography," "Shading," and "Texture Mapping," are concerned with look and feel. This includes setting
cameras and lighting, and applying different texture techniques to the geometry.

to EI "Particle Systems," "Organic Rendering," and "Procedural Techniques," have to do with complex rendering scenarios.
These chapters deal with three popular subjects: particle systems, organic rendering techniques for nature simulation, and
procedural/shader-based approaches.

, "Geometrical Algorithms," covers geometric tests, tests for collision detection, geometry simplification, and so on.

Part Ill: Appendices

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

, "Performance Tuning," covers optimization. Performance tuning techniques are discussed in order to ensure maximum

performance of your games.

App B "OpenGL," and, "Direct3D," address APIs. Here we will explore OpenGL 1.4 and DirectX 9.

S

pp O, "Some Math Involved," provides an overview and review of some of the math that is used in game programming.

Dp B "Further Reading," supplies sources of further information should you want to pursue certain topics in more depth.

S

]

Team LiB

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Conventions

This book follows a few typographical conventions:

® A new term is set initalics the first time it is introduced.

o Program text, functions, variables, and other "computer language" are set in a fixed-pitch font—for examplent state;.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 1. A Chronology of Game Programming

"In the beginning the Universe was created. This has made a lot of people very angry and been widely regarded
as a bad move."

—Douglas Adams
KEY TOPICS

® phase I: Before Spacewar

® phase II: Spacewar to Atari

® phase IIl: Game Consoles and Personal Computers
® phase IV: Shakedown and Consolidation

® phase V: The Advent of the Game Engine

® phase VI: The Handheld Revolution

® phase ViI: The Cellular Phenomenon

® phase VI Multiplayer Games

® Closing

The art and science of game development have experienced a huge progression since the early days. Hardware has improved by orders
of magnitude, whereas game complexity and richness have simply exploded. To better understand how games are coded today, and
why, it is essential to look back and review the history of game programming. | have divided that lengthy narration into what | consider
the eight most defining moments that shaped the current industry. Let's time warp ourselves to those moments and take a look at how
things were done back then. This way the reasons behind today's practices will become obvious. | will avoid the trivial and focus on
programming practices. Because raw data is useless without perspective, it's also important to provide some context in which to interpret
the data and to understand how today's programming practices were developed.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Phase |: Before Spacewar

The video game industry didn't begin as part of any established master plan. Rather, it emerged when independent groups of people,
working in different countries, came up with the same ideas at approximately the same time. These were traditional game creators looking
for a way to diversify their business, technology companies taking advantage of newly discovered solid-state technology, and some
isolated visionaries who imagined a new form of entertainment, which would grow with the passing of years into the industry we know
today.

As you will soon see, the dawn of the video game age came in the early 1970s. But most of the companies that played a key role in that
defining period of time were born much earlier. These companies started in different business sectors, but somehow ended up realizing
that games played on electronic devices could effectively make money and become a new business sector.

An illustrative example would be the industry giant Nintendo, which was established as a traditional gaming company in 1889 by Fusajiro
Yamauchi. Initially incorporatif_j :ffff fne name Marufuku Company, its core business was to manufacture and sell Hanafuda, a type of
Japanese playing cards (see fEigure 1.1)). In the year 1951, Marufuku was renamed The Nintendo Playing Card Company—Nintendo
meaning "leave luck to Heaven." Later, as the first electronic games and devices appeared, Nintendo diversified its business by starting an
electronic gaming division. As time went by, the traditional gaming business faded away, and Nintendo became the company we all know
today. So Nintendo would be the perfect example of an already existing corporation that changed its sector of activity to embrace emerging
technologies.

Figure 1.1. Hanafuda card.

Companies such as Sony followed a completely different approach. Created to focus on consumer electronics, the company known as
Sony today was founded by Akio Morita and Masaru Ibuka as the Tokyo Telecommunications Engineering Corporation in 1946. The core
business of the company was making tape recorders, which were miniaturized with the advent of solid-state transistors. As soon as the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

company's products began reaching the European and American markets, the founding team decided to change its name to make it easier
to remember by non-Japanese customers.

The company was thus renamed Sony (from the Latin word "sonus," which means sound) in an effort to make its brand easily
recognizable. Sony quickly became one of the leading vendors in the consumer electronics arena, especially in the audio and visual areas.
Brands like Walkman, Trinitron, and many others are a testament to the impressive product line it assembled. But Sony stood away from
the gaming business until the late 1980s when work on the first Sony PlayStation began. The rest is history. Today Sony builds consoles
and creates games in many studios worldwide. The PlayStation gaming platform is central to its overall business strategy, which has been
successfully expanded outside the consumer electronics division.

A third, minor group of companies provided some middle ground between technology and gaming companies. Sega is a classic example
of this group. Its story started in 1940 when Martin Bromely, Irving Bromberg, and James Humpert founded Standard Games, a
coin-operated machine manufacturer in Honolulu. In 1951, the company moved to Tokyo and was later registered as Service Games (or,
simply put, Sega) of Japan in 1952. The move made it easier for the company to supply coin-operated machines to U.S. military units
stationed in Japan. Some years later, in 1965, Service Games merged with Rosen Enterprises, another company that dealt with
everything from instant photo booths to mechanical arcade games. Rosen Enterprises had been founded in 1954 by Korean War veteran
David Rosen. Rosen experienced firsthand the popularity of mechanical coin-operated machines (like the world-popular pinball machine)
in U.S. bases stationed in Japan. Rosen began exporting them to Japanese territory under the name Service Games, or Sega. As the
business took off, Rosen started producing his own games by purchasing a Tokyo-based slot machine and jukebox company.

The rest is history. Sega began producing arcade machines first and later expanded its operations to home consoles and game
development.

However, it wasn't Nintendo, Sony, nor even Sega that led the way to electronic entertainment. These companies entered the emerging
game industry following the footsteps of the true pioneers who came up with the initial designs and business model proposals. Clearly,
someone with the vision of how games would be played on electronic devices was required to spark the process. That vision came from
researchers working for universities and the military because they were the ones with access to cutting-edge hardware (according to the
1950s standards, that is).

The first of these early-day pioneers worked as a nuclear physicist at Brookhaven National Labs in New York. His name was William
Higinbotham and he was a self-confessed pinball player. In the 1950s, Brookhaven was a government-supported research facility that
focused on nuclear energy. Visitors toured the facilities, where peaceful uses of atomic energy were showcased. These included pictures
and equipment displays, illustrating everything from power plants to radiation-based medicine.

Higinbotham, who thought those visits were boring, designed a strange device by using spare parts from the |ab: an gscilloscope, some
capacitors, two potentiometers, and a small analog computer. He dubbed the invention "Tennis for two" (see fFigure 1.9). It was a simple
two-player table-tennis game where the court and ball were displayed on the oscilloscope. The player could change the angle by which the
ball was hit by turning the potentiometer. The game was mostly hard-wired, so it wasn't game programming just yet.

Figure 1.2. Tennis for two.

Oscilloscope

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

As with most geniuses, Higinbotham did not realize what he had achieved, not even when people started waiting in line to play the game
at Brookhaven. The year was 1958, and by then other people had reached similar results worldwide. As early as 1952, A.S. Douglas
presented his Ph.D. thesis on human-computer interaction at Cambridge, UK. As an example, he coded a tic-tac-toe game on an EDSAC
computer to illustrate his principles.

Dozens of stories like these have been found relating to the 1950s decade, but Higinbotham's example is one of the best documented
complete works from these early days.

Another visionary worth remembering is Ralph Baer, who came up with the home console concept as early as 1951. While working for
Loral (an airborne electronics company), Baer got the assignment to create a cutting-edge TV set, which he proposed to enrich by using
some kind of playable game. The company management ignored the idea, but 15 years later, while working for a different contractor, Baer
gave his idea a second try. He succeeded this second time, and work began on what would become the world's first home console, the
Magnavox Odyssey.

As a summary of this early age of development, by the late 1950s/early 1960s, some companies had developed solid positions in classic
games (Nintendo, Sega, and so on). Other key players such as Sony and Matsushita were exploiting the benefits of solid-state technology.
Additionally, some early pioneers were already aware of the potential of technology as a tool for play. Some test games surfaced—all
implemented in specific hardware: Machines that effectively were the game. Game programming hadn't really appeared yet because
programmable devices were rare. By 1960, a catalyst between traditional games, technology providers, and researchers was needed—a
single successful game that would show where the three trends would merge to create meaningful business opportunities.

ETY K

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Phase Il: Spacewar to Atari

The turning point for the games industry came in 1961 when Steve Russell, an MIT student, coded a simple two-player game on a Digital
PDP-1 minicomputer. The game was called Spacewar, and it displayed two spaceships on a computer screen (segcigure 1.3). Each ship
could move laterally while shooting at the other player.

Figure 1.3. Spacewar.

The game did not reach consumers but certainly served as an influence on many people. It was a game in the classic sense of the word. It
used the new technology, and it defined the path for many others. The game had

o Competition between two peers
® Rules of action

® A clear victory condition

In fact, this structure is not very different from traditional games such as chess. The main difference is the technology layer that supports
the gameplay. Through the years, this technology layer has skyrocketed in its complexity, and games have established themselves as a
rich, unique media. The overall three-rule structure, however, has remained basically the same.

Many people were deeply influenced by Spacewar, but we will focus on two industry pioneers who were illuminated by the elegance of the
concept. Nolan Bushnell was exposed to the game while studying engineering at the University of Utah. He envisioned computer games
like Spacewar filling arcades, where people would pay to play game after game. Some years later, his vision would materialize when he
founded Atari and created the first coin-operated (coin-op) machines.

The story of Atari is well known. After seeing Spacewar, Bushnell began working on reasonable-cost, dedicated machines where games
could be played. His first game, years before the dawn of Atari, was called Computer Space, which was a version ofSpacewar that he
hard-wired and plugged into a TV set in his daughter's bedroom. Nutting Associates, a manufacturer of arcade games, bought the

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Computer Space idea, hiring Bushnell to oversee production. In 1971, 1,500Computer Space machines were manufactured and installed
in the United States. But players found it too hard to play, so the game received a cold reception. Bushnell tried to create new game ideas,
but after some discussions, he left Nutting. As a result, he founded Atari in 1972 with Ted Dabney, taking the name from the Japanese
game of Go. Atari is the equivalent to a check move in chess.

On the other end of the spectrum stood Ralph Baer, the games-on-TV pioneer from the 1950s. By 1966 he had already left Loral and was
working for Sanders Associates, an army contractor. He was given the green light to research his TV set idea, which he patented in 1968.
He saw electronic games as secondary uses for TV sets, which already enjoyed a large installed base. At that time, he had succeeded in
creating two TV-based games (a chase and a tennis game) as well as a very early light gun design. By 1970, TV manufacturer Magnavox
had licensed Baer's technologies. Under Baer's guidance, work on the first game console began. The system, dubbed the Magnavox
Odyssey, was introduced in 1972, the same year Atari was born.

By the end of 1972, the electronic games business took the world (starting with the West Coast of the United States) by storm. The first
Atari game, Pong, hit locales, becoming the first successful example of a coin-op machine. Within two weeksPong machines in California
began to break down due to quarters flooding the coin drop mechanism, something Bushnell had never even dreamt of. At the same time,
Magnavox sold 100,000 units of the Odyssey, a remarkable feat considering distribution was made only through official Magnavox

stores.

During this period, two distinct business models appeared: arcade games, paid per play; and home systems, where games could be
purchased and played repeatedly. Both have evolved and still subsist today, with the latter being the dominant option. A third trend had yet
to appear; one in which games needn't be played on dedicated hardware.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Phase lll: Game Consoles and Personal Computers

Electronic games, either for home systems or arcade machines, were an instant success. Different manufacturers such as Coleco (short
for Connecticut Leather Company, a clear example of extreme diversification), Fairchild, and many others introduced their own home
gaming systems, and competition fostered innovation. Game cartridges were introduced in 1976, trackballs in 1978, and so on.

Game Consoles and Game Developers

It was during this fast growth period, sometime in the 1970s, that the distinction between console manufacturers and game developers
was established. Console manufacturers would invest large sums of money in creating the hardware platform and selling it at an
attractive price to consumers. Sometimes, the price would hardly cover (or even be below) the real cost of the hardware. Manufacturers
would also build tools (very primitive at this stage) that allowed outside companies to create games for the console. The reason why
other companies were given access to the business was obvious. As game consoles began to compete against each other for market
share, being able to offer many games became the main competitive advantage, and hence the importance of the developer. No
manufacturer could ever have the bandwidth to deliver the amount of games required to make its console platform attractive.

Thus, outside companies began coding games for console systems. At this stage, little or no quality control was performed by the
console manufacturer; quantity was valued over quality. For each game sold, the developer agreed to pay a royalty fee to the console
manufacturer to cover the console development costs and thus generate revenue. Some console manufacturers focused on the
hardware business only, whereas others chose to act as developers as well, sometimes causing conflicts of interests. Did the outside
developer have the same information as the internal team at the manufacturer? Sometimes first-party teams had access to better
information than third parties, which caused complaints. With some variations, this production model still applies today. The main
difference with today's model is that consoles are sold way below their manufacturing price, especially when they debut. This is a risky
decision, because the hardware manufacturer has to sustain significant losses for some time. Then, as the console manufacturer begins
receiving royalties from developers, it is able to recover from the initial losses and finally make money.

The king of programmable consoles at the time became the Atari VCS, also known as the Atari 2600, which was introduced in 1977 with
a price tag of $249. Because it became the de facto standard, | will use it to exemplify what coding for a console meant in the 1970s. The
console featured a 6507 CPU equipped with 128 bytes of RAM, which were used to store state variables such as the life and ammunition
levels. The program was stored in an external, interchangeable cartridge, which was inserted into the console. One side of the cartridge
was full of electrical connections. Thus, inserting it into the console integrated the data chips in the cartridge as part of the console's
hardware, usually as memory banks where the program code and data were stored.

The memory cartridge method was used with minimal variations until the Nintendo 64 and the Gameboy Advance, whereas more
modern systems employ different kinds of disks as storage media. Storing games on CD-ROMs and DVDs makes them much cheaper
to manufacture, at the cost of increasing the risk of piracy and having to enhance the memory capabilities of the console to store the
program. But for the Atari 2600, 6KB of ROM were usually built into the cartridge and held the game code and data together in a memory
chip. The 6507 CPU ran at an incredible 1.19 MHz and had an address space of 8KB.

Assisting the CPU were the television adapter, known as TIA or Stella, and the 1/O chip, called RIOT. Stella was accessed through
registers and had the extreme limitation of not having a frame buffer or physical memory to hold the screen's contents. Modern adapters
(from CGA onward) have a memory region that holds the screen data pixel by pixel, so copying data to that region effectively paints the
screen. The Atari 2600 did not have such a buffer. So, the screen was drawn by reading some Stella registers serially, synchronized to
the electron beam from the TV set. The CPU had to synchronize itself with the electron beam and write those registers at exactly the
right speed, so it looked correct and produced no flicker. As an example of the limitations imposed by the hardware, here is the
sequence of a game loop for the Atari 2600:

Start the vertical blanking interval
Start the vertical sync interval
Here is space for 80 micro instructions

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

End vertical sync
Perform game computations here
End vertical blank
Now the screen rendering starts...
Send each line to the register
6 instructions can be fit here
Loop lines until the screen is rendered
Go to first step

The 2600, as all consoles were at that stage, was coded in machine-specific assembler. Program data and source code were part of a
single memory block. Data was just bytes of information trailing after the code, which program code never jumped to. An untested
program that began to execute data addresses would simply go mad. Here is an excerpt of a combat game for the 2600, showing how
code and data were part of a whole:

B15A7 STX D2
LDX #03

B15AB LDA L1765,Y
EOR D1
AND D2
STA COLUPO,X
STA D6,X
STA D8, X
INY
DEX
BPL B15AB
RTS

J15BD LDA #00

B15BF INX
STA A2,X
BNE B15BF
RTS

L15C5 .BYTE $0E ,$0A ,$0A ,$0A $0E ; 0
BYTE $22 ,$22 ,$22 ,$22 ,$22 ; 11
.BYTE $EE ,$22 $EE ,$88 $EE ; 22
.BYTE $EE ,$22 ,$66 ,$22 ,$EE ; 33
.BYTE $AA $AA $EE ,$22 $22 ;44
.BYTE $EE ,$88 ,$EE ,$22 ,$EE ;55
.BYTE $EE ,$88 ,$EE ,$AA ,$EE ; 66
.BYTE $EE ,$22 ,$22 ,$22 ,$22 ;77
.BYTE $EE ,$AA $EE ,$AA $EE ; 88
.BYTE $EE ,$AA $EE ,$22 $EE ; 99

L15F7 .BYTE $F8 ,$F7 ,$F6 ,$06 ,$06
.BYTE $06 ,$16 ,$17 ,$18,; $15FC
.BYTE $19 ,$1A ,$0A ,$0A; $1600
.BYTE $0A $FA $F9 $F8; $1604
.BYTE $F7 ,$F6 ,$F6 ,$06; $1608
.BYTE $16,$16 ,$17 ,$18; $160C
BYTE $19 ,$1A $1A $0A; $1610
.BYTE $FA $FA $F9 $E8; $1614
.BYTE $E6 ,$E4 $F4,$04; $1618
.BYTE $14 ,$24 ,$26 ,$28; $161C
BYTE $2A $2C ,$1C ,$0C; $1620
.BYTE $FC $EC $EA; $1624

Most of the time, games were built by a single person who laid down the memory map, wrote the program code, designed the graphics,
and even provided the sound. Sometimes an artist helped out, but doing graphics is a relatively straightforward task on such limited
hardware. Code reuse, so popular today, was virtually nonexistent. At most, programmers would borrow sequences of microinstructions
from a previous title so a new game could be coded faster. But generally speaking, coding for such a machine involved lots of craft and
skill, as anyone who has coded assembly programs for a living knows.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Personal Computers

While consumers were busy playing with game consoles, the personal computer revolution was about to begin. Computers appeared as
a by-product of the discovery of the integrated circuit by Texas Instruments in 1959. The first computer, the Digital PDP-1, appeared in
1960 and featured a keyboard and a monitor. It debuted at $120,000, clearly positioning computers in the corporate market: Accounting,
engineering, and databases were their main uses. By 1964, the BASIC language appeared, allowing intuitive programming.

Douglas Engelbart invented a two-dimensional pointing device called the "mouse," which is now widely used. By 1968 (one year before
humanity reached the moon), the first home computer, the Honeywell H316, was introduced at $10,600. The Apollo Guidance Computer,
developed specifically for the Apollo 11 spaceship, was an impressive feat. It ran at 2MHz, had 64KB of ROM and 4KB of RAM, and was
capable of performing 50,000 additions per second.

In 1972, when Atari and Magnavox became successful, computers were gaining ground. The C programming language was introduced,
the first ideas about laptop computers appeared at Xerox's Palo Alto Research Center (PARC), and Intel introduced the 8008, a 16KB,
200kHz, 60,000 instructions-per-second, low cost chip. From this moment on, computers advanced at blazing fast speed. In 1974, Intel
unveiled the 8080, a 2MHz, 16KB, 640,000 instructions-per-second chip. That same year, the MITS Altair 8800 was announced in
Popular Electronics for about $400.

One year later, Microsoft was founded. Its flagship product was a BASIC interpreter for the Altair. It was the first programmable language
for a personal computer. Years later, Microsoft would create the operating system for the IBM PC, and the rest is history.

Then, in 1976, one of the most popular garage startups surfaced, and the personal computer industry was born. Apple was founded by
Steven Jobs and Steve Wozniak. Jobs, with an eye on product design and business, had been at Atari since 1974. Wozniak, the
hardware genius, worked for Hewlett-Packard. Their first product, the Apple I, sold in kit form for $666, and was introduced at the
Homebrew Computer Club. Some simple games began to appear for the Apple I, but they were mainly clones of those existing on game
consoles.

But it was with the advent of the Apple][in 1977 when games began to pour in quickly. A decisive factor in this direction was the Apple
I['s CPU: a 6502, extremely similar to the one running Atari's own 2600. The computer featured new 16KB RAM modules to reach a
theoretical 48KB of total RAM, which was larger than anything on the market at the time. The bundle also included a BASIC interpreter to
code your own programs, a QUERTY keyboard, a cassette interface, and a dedicated game 1/O connector for paddles, joysticks, and so
on. It could display up to 280x192 pixels in 16 colors, making it an ideal delivery platform for games.

The Apple][was state-of-the-art technology, clearly surpassing the products of the competition, including game consoles. It could be
programmed, used for games and office applications, had a large memory area, and offered "full" color support (the full 16 colors in the
palette, that is). The downside was, obviously, the cost. The base kit cost $600, whereas a full-featured, 48KB "supercomputer" was
$2275, which was mainly due to high memory costs of those early days. But Apple][s were sold by the truckload, and hundreds of
games were coded for it—a notorious example being the first installments of the popular Ultima series.

Five years later, IBM unveiled the IBM PC, which ran on an Intel 8086 CPU and Microsoft's Disk Operating System (MS-DOS). The main
advantage of the PC was that the architecture was soon to become open. This enabled other companies to design and sell their own
PCs, which were all compatible with the original IBM model. Competition fosters innovation, and an open platform is the best way to
enable evolution. The personal computer era had begun.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Phase IV: Shakedown and Consolidation

With the Atari 2600 and Apple][on the market, there was a clear sense of direction in the games business. Thus, the period comprising
the late 1970s and early 1980s is sometimes dubbed "The Golden Age." All that was needed was to keep improving these initial
products, to create better platforms and games at each iteration. On the console side, Atari reigned supreme for many years, even when
Nolan Bushnell left the company in 1978.

Following the departure of its founder, the company enjoyed prosperity due to the huge number of games being published. This period is
also characterized by the entrance of Japanese developers into the equation. Taito (a pachinko manufacturer) introduced Space
Invaders; Nintendo (remember the Hanafuda card company?) began by selling arDthello arcade game only to later introduce Donkey
Kong (the first game by now-celebrity designer Shigeru Miyamoto) in 1981; and Namco (known as the Nakamura Manufacturing
Company, maker of merry-go-rounds) introduced such classics as Galaxian, Pac-man, Galaga, and Pole Position.

Pac-man, whose initial character concept comes from a pizza with a slice missing, is based on a Japanese folk hero called Paku, known
for his appetite. The game was to be called Puckman, but the potential risk of American graffiti artists changing the P to an F made
Namco go for Pac-man as the final name.

Atari's golden days were about to end. The company did not keep a careful watch on the quality of games for the 2600, and some highly
anticipated games for the platform were a flop. Pac-man and E.T. games were released with great hype, only to see consumers reject
them due to their low quality. The legend says that thousands of copies of these games ended up in a massive landfill in New Mexico. By
December 7, 1982, Atari announced that 2600 sales had, for the first time, failed to meet predictions, making its parent company,
Warner Communications, suffer a 32 percent stock price drop in a day. In early 1983, with Atari still struggling to recover fromE.T., a
crash occurred in the video game market. Retailers had tons of unsold games on store shelves, and many of them offered very low
quality. Game prices dropped sharply. Titles that previously sold for $40 were selling for 99 cents, which resulted in many companies
going out of business. Others would survive, but would never quite recover from the hit.

It took a while for the industry to recover from such a bad experience. Luckily, by 1985, some companies introduced a new wave of
products and a revised quality policy. Nintendo introduced the Nintendo Entertainment System (NES) (Famicom in Japan), backed by a
roster of internally developed, high-quality games. Shortly thereafter, some of the Atari developers such as Namco became Nintendo
licensees. By 1988, classics such as Super Mario Bros and Legend of Zelda had been introduced, making Nintendo the top seller. Sega
did not stand still either, introducing the Master System in 1986. Internally, both the NES and Master System were equipped with 8-bit
processors (a 6502 and a Zilog Z80, respectively). Spec by spec, the Master System was a slightly better platform: More sprites were
supported, and RAM size was increased. But Nintendo had the advantage of being the first mover with an impressive game catalog and
reputation.

During these years, the consolidated console business model finally became clear. The console manufacturer created the hardware and
produced (internally or through contractors) a first batch of titles, which showcased the hardware's capabilities and helped sell the first
units. Then, developers wanting to jump on the bandwagon needed to apply to become licensees, and each game they built had to be
tested for quality by the manufacturer. Only by enforcing this policy could consoles offer a consistent-quality game catalog, which made
consumers happy with their purchases. Developers still received documentation and sometimes technical support from the console
maker. They also had to pay a royalty fee to cover the console's development cost. In the case of Nintendo, there has always been a
very strong presence of Nintendo-built games for its game systems, which ensures that a core of high-quality games is always available.
By 1988, Nintendo was an established market leader with a well laid out licensing policy.

Let's press the pause button and explore the internals of the flagship product for this era, the NES. To begin with, Nintendo's console
was built on top of a customized 6502 MOS CPU, which was enhanced to perform audio waveform computation directly on the CPU. As
with all 6502s, the NES could only address 64KB of memory, but some techniques were devised to overcome that limit. Cartridges could
implement a paged approach using a memory mapper to increase the addressable memory.

Graphics chores were carried out by the picture processing unit (PPU), whose main feature was support for tile-based backgrounds,
sprites, and scrolling on hardware. Contents of the screen were described using four main data structures: the pattern table, the name
table, the attribute table, and the sprite table. The pattern table was a list holding the definition of each &8 tile or pattern. Each tile was
defined by a sequence of eight 16-bit values, each one representing one row of the tile. The idea is pretty straightforward. Each pixel in
the tile can have one of four possible color values, and thus two bits per pixel are required (hence the 16 bits per row). So one tile in the
pattern table could represent four different color values.

The name table assigned tiles to screen coordinates. The name table was a two dimensional, 30 row by 32 column matrix, with each
position exactly one byte in length (thus selecting from 256 possible tiles). Multiplying the name table dimensions by the tile size would
produce the total size of the background: 256 by 240 pixels. This was more than the available screen resolution, so only a portion of the

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

background was visible at any given time. This background could be scrolled by simply changing the value of two offset registers.

An attribute table was used to modify how tiles were to be mapped to the screen. Attributes were specified for each 322-pixel screen
block (which means one block every 4x4 tiles), so all tiles in that area shared the same attributes. Attributes were used to further refine
the color scheme to be used. The attribute table provided two high-order bits for the color, whose two low-order bits were taken from the
pattern table. This way a maximum of 16 colors could be used.

The sprite table was used to overlay sprites—characters, potions, and so on—on top of the background. The PPU could store up to 64
sprites (8x8 or 816 pixels each), which could be quickly mapped to the screen. Sprites were prioritized; whichever sequence you
decided to paint, lower-number sprites were painted after higher-order ones were processed, thus providing an easy way of layering
information onscreen. The main difference between sprites and tiles was that sprites could be blended with the background in a realistic
manner; a key value was provided to specify which portions of the sprite were actually transparent and should expose the background.

As these special structures illustrate, the NES was a dedicated game platform. Its structure was clearly limited to what it was supposed
to do. This is a common characteristic of all game consoles: They excel at what they were designed to do, but aren't useful for much else
due to the system's design decisions.

The evolution of personal computers did not stand still for a decade. The Apple][had marked the course for the industry. Computers that
sold at a reasonable cost were useful as working tools, but also kept the door open for home computer gaming. Each new iteration
offered more powerful hardware, easier to use programming environments, and a more compelling game experience. The introduction of
the IBM PC in 1981, with its open hardware design, fostered innovations by specific peripheral manufacturers. Graphics cards and hard
drives began to be manufactured by different companies; each one competing for a piece of the market share. The evolution was
enormous: From the crude, 4-color CGA adapter to the 256-color, 320x200 VGA adapter, only five years passed. VGA was the graphics
mode that made computer games so popular in the late 1980s. It offered full-screen titles with a resolution similar to game consoles and
color depth to display rich game worlds. Masterworks such as Day of the Tentacle by LucasArts or theAlone in the Dark saga are classic
representatives of the VGA days.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Phase V: The Advent of the Game Engine

As soon as file systems appeared on the first home computers, it became obvious that they would be a powerful tool to better organize
content in games. Gone were the days of a single file mixing code and data, making projects virtually impossible to maintain. With a
decent file system, one file would contain the game code (the executable file), and several files would contain the associated data. This
way chaos would be minimized, and work could be divided between different people who would only care about their specific files. A
musician need only access the music data, the sprite artists need only work with bitmaps, and so on. Keep in mind that hardware was
evolving quickly, and larger games were difficult to create without some proper organization. However, a side effect of this organization
soon surfaced: What would happen if you had a single executable file that used data files laid out in a documented format, so you could
easily replace the game's data files? Effectively, this enabled the creation of many games that were identical in their gameplay formula,
but different in their content. You could do a scroller set in World War Il and another one in outer space without touching a single line of
the source code. This may seem naive by today's standards, but try to imagine the revolution it meant for an industry where each game
was an indivisible atom with code and data all mixed up. Being able to create different games by modifying the relevant data files was a
transformation. Clearly, this was the way to go for the industry; and soon reusable data-driven game engines became ubiquitous because
of their obvious economic advantage over hard-coded games.

In these early games, data files were nothing but memory dumps of the data structures, with little or no structure at all. Soon, developers
began creating their own file formats, so no one could steal their artwork by looking into the files. Competition fosters innovation, so better
systems were devised. At the same time, developers began thinking about more intelligent ways to organize their work using file systems.
One of the best ideas they came up with was to use files not only for data, but also for some behavior information. Choreographed
trajectories for a scrolling game's Al system could be stored this way. The choreographed Al that made most scrollers famous could be
thought of not only as pure data in the form of waypoints, but also as behaviors. Behaviors can be programmed as patterns of movement
that actually define the gameplay. Thus, the leap from data files to behavior systems was made. By redefining graphics, sound, and
behaviors, game developers and players could quickly derive new games from old ones. Not only did this add flexibility to the
development process, but it also enabled the player community to create vast collections of content. Users creating high-quality content
were frequently offered jobs at the companies developing their favorite games.

Defining behaviors in the data files brought some changes to the internal game code. What was initially a totally hard-coded gaming
system became a bit like an application loader and operating system, providing some internal functionality and interpreting the remainder
from the data files. The internal functionality was publicized in an interface that content developers had to learn, and they then used it to
implement subsequent games. Thus, game developers began to think not so much in terms of a specific game, but about generic game
systems that played different games depending on the data files. The more flexible the engine was the better. Most companies kept their
file formats well hidden, partly because of concerns over intellectual property and piracy.

A prototypical example of this first generation would be the Script Creation Utility for Maniac Mansion (SCUMM) system devised by
LucasArts. It was a complete authoring system that helped define the game structure, dialogs, locations, and other data needed to
implement many popular adventure games. It was first used in games such as Maniac Mansion and Loom, and was employed (under
different versions) in most LucasArts adventures up to Curse of Monkey Island.

By the late 1980s/early 1990s, some engine standards began to surface, and their specs were made public, so users could create new
missions and content, and thus lengthen the life of the game. The best-known example of this era is the incredibly popular Doom engine,
introduced by id Software in 1993. After enjoying a first hit with Wolfenstein, Doom can be considered the game that defined the
first-person shooter genre. Its maps and weapons are still venerated by today's standards, and many games have paid tribute to Doom in
some form or another. Internally, Doom was a radical follower of the engine philosophy | have exposed. Both data and behaviors were
implemented via external files, so the binary game file was really a level loader. In the case of Doom, all engine data was encapsulated in
large files using the .wad extension, and were thus called WAD files.

A WAD file was just a collection of data for the game. Data was organized in large blocks; each containing a sequence of one type of
information: the level geometry, monster placement, and so on. Each of these blocks was called a lump. Then, the complete WAD file was
composed of three main parts:

® A 12-byte file header

® A directory containing the names, offsets, and sizes of all lumps in the WAD file

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks
® One or more lumps with the actual data

The header consisted of a four-byte initialization string, which could be Internal WADs (IWADs) or Patch WADs (PWADs). An IWAD
contained all data necessary to play the game, so all entries of the file were full. A PWAD, on the other hand, was just a patch to the core
IWAD, so only some of the lumps were present. Logically, all user-created WADs were PWADs, which provided only the lumps required to
define a level. Right after the header, four bytes were used to store the number of lumps in the WAD file, and the last four bytes stored a
long integer that was the file offset to the beginning of the directory to make file traversal faster.

Then, the directory was just a list of entries; each taking 16 bytes. Here, the first four bytes stored the file offset to the start of the lump.
Then, the middle four values stored the lump size in bytes. The last eight bytes were available to store the name of the lump, padded with
zeros. To give you an estimate, there are about 2,000 entries in the directory of the main Doom WAD file. But only 10 types of lumps are
needed to create a new level in a PWAD.

Now we are reaching the interesting part: the lump definition. We will focus on level creation because there are many other lumps that hold
information such as menu texts and character sets. A Doom level needs several types of lumps. The most interesting are

® | inedefs. A list of two-dimensional line segments that have a meaning for the game engine. These lines are mainly used as
walls to block characters, although they can also block sound propagation. Part of the geometry of the level is stored this way
(remember that Doom was a 2D game internally!).

® Sidedef. A definition of which texture(s) to use with each linedef. This describes how the walls look.

® vertices. Core vertices use linedefs. The linedefs indirectly refer to the two-dimensional vertices in this list instead of explicitly
containing their own coordinates. This way, two adjacent linedefs can share the same vertex, saving memory and making
editing easier.

® Nodes. A subdivision of the space according to a two-dimensional Binary Space Partition (BSP). A BSP is a data structure that
can efficiently classify geometrical information, such as triangles on a game level.

® Things. A lump that contains positions for relevant items: weapons, poisons, keys, player starting positions, and so on. Thus, it
greatly affects the gameplay.

Lumps can define both the contents of the level and gameplay elements as well (for example, the Things lump). This effectively meant that
new games could be derived from the base Doom product quickly. In fact, Hexen is nothing but the Doom engine with a new set of data
files and some minor additions to the WAD format (such as the capability of some potions to appear only for characters of some special
class). Doom had a great influence on developers, who followed the trend and began providing complete documentation and even editing
tools to encourage user-created modifications. In fact, the popular game Half-Life began as a modification to the gameQuake II, which
grew so much that a new, completely different game was born.

Today, the concept of a game engine has evolved a great deal since Doom. The core game code is kept to a minimum, providing only the
reusable algorithms and functionality that is essential to the game. This includes all time-critical tasks such as the rendering pipeline,
networking and audio APIs, and Al interfaces where external modules can be docked. Usually, part of the higher level Al is implemented
through structures and scripts in external data files. Lower level, more time critical, and less variable parts of the Al are often implemented
in the engine itself. Many games use a mixture of both approaches.

In addition, extensive toolsets are provided to create content for the game. Some products use their own content creation systems (CCS),
whereas others have relied on heavily modified versions of off-the-shelf products.

Gmax (see), for example, is a content creation system built on top of 3d max's core. It can be bundled with your game, so
enthusiastic users will be able to create new game content. Coming from max's lineage, Gmax is fundamentally a modeling and texturing
package, so it focuses on level creation, characters, and so on. Games such as Microsoft's Flight Simulator have included Gmax with their
release. The end user gets the software for free (or included in the cost of the game), whereas the developer must have a licensing
agreement with the tool manufacturer—discreet in the case of Gmax.

Figure 1.4. Gmax.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Maya hasn't stood still, either.

Maya Personal Edition has been successfully bundled with popular games such as Unreal Tournament 2003. In this case, the game
developers created a set of plug-ins for Maya PE, so users can export their data sets made with Maya to Unreal's own formats. Again, the
software comes at no cost for the end user.

But there is more to game engine content creation tools than modelers. All commercial engines must come with full documentation
because the level of complexity and flexibility has skyrocketed with each new iteration. Keep in mind that these engines are not only sold
on an "as is" basis: Some developers will choose the advanced track and hard code new features into the core toolset. A typical example
is Half-Life. Valve, the developers of the game, needed a skeletal animation system that was (at the time) significantly more involved than
the key frame-based animation system provided by Quake. Thus, after purchasing the engine license, they had to rewrite the animation
system from scratch to support the new feature.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Phase VI: The Handheld Revolution

The NES wasn't Nintendo's first electronic device. In the late 1970s, the company became well known for a family of low-cost, simple
electronic games called Game & Watch. These were handheld devices about the size of a cassette tape, costing between $10 and $25,
which came with a single game to play. Donkey Kong was introduced on such a platform in split-screen format. Games were just simple
combinatorial systems displayed on low-cost LCD screens. But Game & Watch machines were sold by the millions and became
extremely popular, especially among young audiences who could take them anywhere and share them with friends.

Interest in Game & Watch faded away as the domestic console market exploded. Such a handheld system could not compete with the
color and sound found in the titles that appeared both on the NES and the Sega Master System. But in 1989, when everyone had long
forgotten about the Game & Watch, Nintendo released a game console that would become its most profitable product ever: the Nintendo
Gameboy. It was a handheld, black-and-white console that could play literally hundreds of games by replacing a cartridge, just like a
regular home-based console.

The Gameboy was an instant hit, which can partly be explained by the inclusion of the Tetris game with the purchase of the console. The
product was targeted at younger audiences, using the same strategy that made Game & Watch so popular in the past. Some Gameboy
classics were Pokemon and a special version of Super Mario Bros. Internally, a Gameboy was inspired by the design of the original NES.
It used an 8-bit CPU similar to the Intel 8080 or Zilog Z80 and was armed with 8KB of code RAM and an additional 8KB of video RAM.
The CPU ran at approximately 4MHz. Screen resolution was 160x144 pixels (20«18 tiles) but, as with the NES, this was a window of an
internal memory representation, which was 256x256 pixels (3%32 tiles) across. This allowed fast scrolling by only changing two
registers, SCROLLX and SCROLLY, which defined the offset of the said background to the screen. The background was painted with
tiles, which were taken from a tile data table. Thus, the screen (called the Background Tile Map) consisted of only 32 rows of 32 bytes
each for a total selection of 256 tiles. Each position held the identifier of the tile to be drawn there.

The Gameboy supported one overlay level, so a menu or scoreboard could easily be drawn on top of the scrolling background. This was
achieved with a window that was not scrollable but painted at a fixed onscreen position. Window contents were taken from the tile data
table as well, so you could position the window onscreen easily with two registers, WNDPOSX and WNDPOSY.

As with the NES, a Gameboy could paint keyed sprites on top of the background for characters, enemies, and so on. It could use both
8x8 and 816 sprites, and up to 40 were available. As with the NES, only 10 sprites could be displayed per scanline due to a hardware
limitation. Sprite patterns were taken from the sprite pattern table and layered on the screen according to some very unintuitive priority
rules: Sprites closer to the left end of the screen would have priority, and thus be laid on top of others; if two sprites happened to share
the same X coordinate, the one located in lower positions in the sprite table would have priority.

A Gameboy was a pretty powerful piece of hardware by 1989's standards. It was a mini-version of an NES in black and white, which
made it cheaper to manufacture. But what set the Gameboy apart from the competition was its lengthy battery life and the vast array of
guality games available for the platform. After all, creating titles for the Gameboy was a very profitable business. It was orders of
magnitude cheaper than coding for home-based game consoles (especially since the PlayStation and N64 hit the market). But, on the
other hand, the price of the games was not that different. In other words, there was a great margin both for the console manufacturer and
the software developer.

Among all gaming platforms, the Gameboy has definitely been the console with the longest life cycle (11 years), and some games are
still being sold today. The release of the Gameboy Color in 1998, along with new iterations of classic Nintendo titles, breathed new life
into the product, making it break all established records. But even great products like the Gameboy grow old, and thus by the year 2000,
Nintendo had already decided to release a newer, more powerful machine. The Gameboy Advance (GBA) was designed with the
mission of becoming the substitute for the original Gameboy. The GBA specs are living proof of this philosophy. Powered by a 32-bit
ARM CPU working at 16.7MHz, the GBA comes with 32KB of RAM, 96KB of VRAM for graphics, and 16KB of sound RAM. The RAM is
built directly into the CPU for faster access. This memory can be further expanded with up to 256KB of RAM external to the CPU.

Graphically speaking, the console uses a 244x160 resolution, which is close to half of the resolution of a SuperNES and not very
different from the resolution of an Apple][. It can perform tile-based backgrounds, including 4096 maximum sprites (256 of which can be
layered on a single scanline). This huge number of sprites is especially useful for special effects such as particle systems, because the
GBA supports (to an extent) alpha blending. Sprites can also be hardware scaled and rotated. Color depth is 32,768 colors and is
selected from a palette of 16M.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In addition, cartridges can hold as much as 64MB of data, putting this console light years ahead of the initial Gameboy design. The result
of this design is that many old-school classics such as Mario and The Legend of Zelda can easily be ported to the GBA, ensuring
Nintendo a great lineup of games people already love to play. In the end, GBA's horsepower is not that different from a reduced-size
SuperNES.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Phase VII: The Cellular Phenomenon

Surprisingly, competition for the GBA comes from an unexpected challenger. Which device is sold by the millions, has a low cost, and is
also handheld? The cell phone, of course: There are just millions of them, and they keep getting better all the time. When looking for
interesting trends, always keep an eye on those devices that have large installed bases. They have a clear potential of becoming "the
next big thing." As an example, the ratio between the leading game console and the cell phone is, in most countries, around six to one:
There are six cell phones for each game console.

First generation cell phones were big and heavy, and had nothing to do with handheld gaming. They were just pretty simple
communications platforms, offering only limited messaging capabilities via Short Message Service (SMS) in some countries. But each
new standard brought new features to the market in the typical fast evolution pattern that arises from fierce competition. With so many
phone manufacturers and carriers, it is not surprising that cellular telephony and phone-based services have evolved at such speed. For
some years, Nintendo could have benefited from the lack of open, worldwide standards in the phone gaming arena. European and
American phones had traditionally worked with different systems, which prevented any gaming initiative from reaching the broad
consumer base otherwise captured by handheld consoles.

But phones equipped with Java began to surface by the year 2000, and their hardware specs grew accordingly. Today, phones
equipped with 64MB of RAM and the processing power of a 486 or Pentium CPU are not uncommon. And what can you do with such a
device? You can play Quake, Age of Empires, and many other games. In fact, playing on a phone has a competitive advantage over the
classic PC or console experience. The phone is at the core a communications device, so the path to connected, handheld games is
clearly marked.

The first success story on mobile gaming platforms has to be NTT DoCoMo's I-Mode service, launched in Japan in 1999. ltis a
subscriber service where users pay monthly fees to access different types of mobile content, from small applications like a map service
to downloadable games. Fees are small so the use is compulsive, and colorful handsets with large screens offer a relatively
sophisticated delivery platform for mobile games. I-Mode was an immediate success, and by April 2002, the service had more than 32M
subscribers (with more than 28,000 new users per day). The key to its success is great content, a meaningful business model where
content is paid per download (as opposed to connected, per-minute charges), and very low barriers of entry for content developers.
I-Mode is based on standards such as HTML and Java, so many companies jumped on the bandwagon from the beginning.

As an example of typical I-Mode content, take Samurai Romanesque, a medieval role-playing game (RPG) played on I-mode terminals.
Using information from the Japanese weather service, the game is able to sense the current weather right where the user is standing. If
it's raining, the gunpowder used by your character in the virtual world will get wet, and you won't be able to use any firearms. Cell phones
have access to any online information and also know about the user's location. This is unigue to the cell phone medium: No other
gaming platform can offer such a rich gaming experience.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Phase VIII: Multiplayer Games

Multiplayer games have been around for longer than you might think. The first examples can be traced back to the early 1980s, with
massive adoption starting with the arrival of the Internet and the World Wide Web by the mid 1990s. Multiplayer games can offer the
same multimedia values of single-player games while introducing other human players into the mix. That makes them a greater
challenge and, in many peoples' opinion, more rewarding to play. Several formulas have evolved through the years, from the
squad-based gameplay that was already present in the Essex Multi-User Dungeon (MUD)—one of the first documented massively
multiplayer games—to human opponents that can be traced back to games like EA's Multiple User Labor Element (M.U.L.E.) from
1983.

The reason why multiplayer games have been so successful is that playing with or against an artificial intelligence cannot be compared
to a human opponent. Additionally, the social component of a single-player game is virtually nonexistent.

One of the first viable examples of a multiplayer game was the Essex MUD, which was developed by Richard Bartle and Roy Trubshaw
of Essex University in 1979. The original game consisted of about 20 rooms described in prose. Up to 250 players could coexist in this
game world, so they could "see" each other in the room. Descriptive texts would state facts like "Peter is here," for example. Players
connected to the MUD server using the EPSS network, which connected six British universities; and from 1980, players connected to the
MUD server using the ARPA network from the United States. Compared with a modern game, Planetside (by Sony) supports more than
3,500 players per server.

The Essex MUD was a great inspiration for many developers. In fact, a very active MUD scene existed during the 1980s and part of the
1990s. MUDs faded away as graphical multiplayer games such as Everquest appeared. But for more than 10 years, they ruled the
multiplayer arena.

However, MUDs were not the only way to go. Simple competitive games with human opponents created bigger challenges for the player,
thus becoming a viable playing experience. A good and early example is M.U.L.E. In M.U.L.E., up to four players competed to conquer a
new planet in a way not very distant from today's real-time strategy games. But the success of the game was limited, mainly because
network infrastructure circa 1983 was not very well suited for real-time play.

The turning point came around 1993, when the Internet and more specifically the World Wide Web phenomenon exploded. In less than
six months, the World Wide Web evolved from zero to infinity, taking the whole planet by storm. As a side effect, connection speeds
were greatly improved, from the very early 9600bps modems to somewhere around 56kbps, and from there to ISDN, DSL, and cable.
This speed increase was extremely relevant because it allowed developers to transfer all state information from one computer to another
while keeping the gameplay fluid. Age of Empires, for example, could be played on a 56kbps modem, and that included dozens of units
fighting against each other.

Today, multiplayer games have stabilized around two "orbits," which are direct descendants of MUDs and games like M.U.L.E. On one
hand, MUDs gave way to graphical RPGs like Ultima Online and from there to Everquest, Asheron's Call, and many others. These
games are all about immersion and socially interacting with a rich game world. Thousands of people actually live their lives inside each
one of these games in a 24-hour alternate reality. In fact, these games are probably the most addictive of them all, with extreme cases
counting for more than 1,600 hours of gameplay per year (that's more than four hours a day, even on Sundays). As a very intriguing side
effect of the Ultima/Everquest phenomenon, real virtual economies have been created. Some fans have sold their properties or
characters on auction web sites, often for respectable sums of money. This type of behavior should definitely make us think about the
influence of the gaming scene on people's lives.

On the other end of the spectrum, reduced-scale multiplayer games have been successful as well. Here, a distinction has to be made
between competitive and cooperative multiplayer titles. The difference is in the role of other players: Will they be enemies you must
defeat, or will they be your teammates on a global mission? A title that clearly shows these two categories is the incredibly popular
Counterstrike, which is actually a modification to the originalHalf-Life game. In Counterstrike, two teams fight each other, so there's
competitive gameplay on opposite sides, and cooperative gameplay between members of the same side.

The future looks bright for multiplayer games. Network infrastructure keeps growing, and today most users already have broadband
support that allows better interaction. Several middleware companies have emerged in recent years, enabling bigger and better games.
Additionally, gameplay innovations are constantly introduced. Some people predict that multiplayer games will eventually engulf all other
gaming experiences, so single-player games will just disappear. Although that's probably an overstatement, it clearly shows the level of

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

expectations the industry has put in multiplayer gaming. But remember solo and team sports peacefully coexist in the real world, so
there's really no need for single-player games to disappear in favor of multiplayer experiences.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

In Closing

The games industry is undergoing a huge transformation. The advent of the PlayStation 2 and Microsoft's Xbox has opened new areas
that were unavailable on less powerful devices. A truly cinematic gaming experience seems only years, not decades, away. The
evolution is so fast that future consoles will no longer be limited to playing games but will incorporate other features as well. They will
offer video-on-demand, online capabilities, and e-commerce integrated into a simple, cost-effective, and easy-to-use solution. The game
console will evolve into a completely integrated, general-purpose home entertainment device.

On the other hand, the handheld business is still exploding. There are three contenders (cell phones, palm computers, and handheld
consoles), and it now seems clear that they will have to merge and integrate to offer a unified, personal electronics device. After all,
consumers don't want to carry three devices in their pockets when their functionality is really not that different. Will one of the three
dominate and win the battle, or will new devices surface and take the market by storm? Although the latter seems unlikely, the
unexpected awaits where no one is watching.

The ultimate decision will be in the hands of the consumers as to which gaming platforms will succeed. In the last 30 years, we have
seen many products flop simply because people didn't embrace them. Other products that did not look very promising became serious
hits when consumers accepted and supported them.

To get a glimpse of what the future might bring for the game industry, we need to extract valuable lessons from our past, understanding
what made some gaming platforms successful in the first place. The ability to convey a rich, engaging game world is fundamental. Thus,
presentation values and the multimedia experience will likely continue to grow for years to come. Excellent gameplay is even more
important than sharp graphics and sound. Many games (such as Tetris) have triumphed with little presentation values but good
gameplay. But no game has ever become a big success if it simply wasn't fun or engaging.

In addition, the ability to break boundaries between the real and the virtual, and between users and developers, is becoming increasingly
relevant. From user-created content to games that stream data from the real world, integrating the user more tightly into the game
experience is certainly a trend to keep an eye on.

But wait, did we need 20 years to learn this? Wasn't this what the movi€l'ron was all about?

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 2. Game Architecture

"It is a mistake to think you can solve any major problems just with potatoes."”

—Douglas Adams
KEY TOPICS

® Real-Time Software

® The Game Logic Section
® The Presentation Section
® The Programming Process

® Closing

In the previous chapter, we explored the evolution of game programming techniques. It is now time to move on and focus on how games
are built today. We will begin our journey with a study of games as real-time software applications, and then analyze the internals of a
general-purpose game, so the main building blocks of the source code can be identified. These blocks will then be refined in subsequent
chapters of the book. Additionally, we will focus on some project management concepts that are specific to game development. We will
study the different phases in developing a game, from code planning and scheduling to testing and maintenance. Put together, all these
points should help you understand how games are built.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Real-Time Software

Video games are software applications. Specifically, they belong to a class called real-time software applications. This is an important
classification because it will help us understand how they behave and why many coding decisions are made. For those unfamiliar with
these concepts, | will stop and briefly explain their characteristics.

In a formal definition, real-time software means computer applications that have a time-critical nature or, more generally, applications in
which data acquisition and response must be performed under time-constrained conditions. Consider, for example, a computer program
that displays information about arrivals on a large screen in an airport terminal; several lines of text display information about flight
numbers, status, time of landing, and so on. Clearly, the software responds to timely events—an airplane lands, delays are announced,
and so on. The arrival of these bits of information is highly unpredictable, and the application must process and respond to them
accordingly. Moreover, this time-dependent information must then be displayed on a screen to provide a visual presentation of the
time-dependent data. This is what real-time software is all about.

Now, consider a slightly more involved example—a software application designed to aid in air traffic control (see. The
application senses space with a radar, displays information about planes and their trajectories on a screen, and enables ground

personnel to assist pilots in reaching their destination in a timely and safe manner by sending messages to them. Looking at the internals
of the system, you will see that it consists of:

® Adata acquisition module—in this case, coupled with physical radar
® A display/computation module, which helps ground personnel visualize data

® An interaction module to send signals to planes so they know what to do

Figure 2.1. Air traffic controller.

G X

Operator Radar Screen Radar Antenna

Here we are moving one step further from our previous example. We are watching a real-time, interactive application, an application that
responds to events that arrive at any point in time, displays information related to those events, and allows the operator to interact with
them. Games are not very different from this architecture. Imagine that we eliminate the radar, generate "virtual" air traffic using a
software simulator, and tell the user he must make planes land safely. Add a scoreboard to that and a game over screen, and it begins to
sound familiar.

All games are indeed interactive, real-time applications. The operator (henceforth called the player) can communicate with the game
world, which itself simulates real-time activity using software components. An enemy chasing us, elevators going up and down, and
returning fire are all examples of the kind of "virtual" real time found in games. But there is more time to games than you might think.
Games are also time constrained; they must display information at a set pace (usually above 25 frames per second) to allow interaction
to become seamless. This certainly limits the scope of both the real-time simulators and the presentation layer found in games. We

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

cannot do more than what the hardware allows in the given time slice. However, games are a bit like magic. The trick is to make the
impossible seem possible, crafting worlds that seem larger than what the hardware allows through multimedia presentations well beyond
the player's expectations.

As a summary, games are time-dependent interactive applications, consisting of a virtual world simulator that feeds real-time data, a
presentation module that displays it, and control mechanisms that allow the player to interact with that world.

Because the interaction rate is fast, there is a limit to what can be simulated. But game programming is about trying to defy that limit and
creating something beyond the platform's capabilities both in terms of presentation and simulation. This is the key to game programming
and is the subject of this book.

Part I, "Gameplay Programming," deals with the coding of the real-time simulator that implements the game world. Part Il, "Engine
Programming," covers the presentation layer.

Real-Time Loops

As mentioned earlier, all real-time interactive applications consist of three tasks running concurrently. First, the state of the world must be
constantly recomputed (the radar senses space in the airplane example or the virtual world simulator is updated in a game). Second, the
operator must be allowed to interact with it. Third, the resulting state must be presented to the player, using onscreen data, audio, and
any other output device available. In a game, both the world simulation and the player input can be considered tasks belonging to the
same global behavior, which is "updating" the world. In the end, the player is nothing but a special-case game world entity. For the sake
of simplicity, | will follow this rule and will thus refer to games as applications consisting of two portions: an update and a render

routine.

As soon as we try to lay down these two routines in actual game code, problems begin to appear. How can we ensure that both run
simultaneously, giving the actual illusion of peeking into the real world through a window? In an ideal world, both the update and render
routines would run in an infinitely powerful device consisting of many parallel processors, so both routines would have unlimited access
to the hardware's resources. But real-world technology imposes many limitations: Most computers generally consist of only one
processor with limited memory and speed. Clearly, the processor can only be running one of the two tasks at any given time, so some
clever planning is needed.

A first approach would be to implement both routines in a loop (as shown in). so each update is followed by a render call, and
so forth. This ensures that both routines are given equal importance. Logic and presentation are considered to be fully coupled with this
approach. But what happens if the frames-per-second rate varies due to any subtle change in the level of complexity? Imagine a 10
percent variation in the scene complexity that causes the engine to slow down a bit. Obviously, the number of logic cycles would also
vary accordingly. Even worse, what happens in a PC game where faster machines can outperform older machines by a factor of five?
Will the Al run slower on these less powerful machines? Clearly, using a coupled approach raises some interesting questions about how
the game will be affected by performance variations.

Figure 2.2. Coupled approach.

Update

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Render

To solve these problems, we must analyze the nature of each of the two code components. Generally speaking, the render part must be
executed as often as the hardware platform allows; a newer, faster computer should provide smoother animation, better frame rates, and
so on. But the pacing of the world should not be affected by this speed boost. Characters must still walk at the speed the game was
designed for or the gameplay will be destroyed. Imagine that you purchase a football game, and the action is either too fast or too slow
due to the hardware speed. Clearly, having the render and update sections in sync makes coding complex, because one of them
(update) has an inherent fixed frequency and the other does not.

One solution to this problem would be to still keep update and render in sync but vary the granularity of the update routine according to
the elapsed time between successive calls. We would compute the elapsed time (in real-time units), so the update portion uses that
information to scale the pacing of events, and thus ensure they take place at the right speed regardless of the hardware. Clearly, update
and render would be in a loop, but the granularity of the update portion would depend on the hardware speed—the faster the hardware,
the finer the computation within each update call. Although this can be a valid solution in some specific cases, it is generally worthless.
As speed and frames-per-second increase, it makes no sense to increase the rate at which the world is updated. Does the character Al
really need to think 50 times per second? Decision making is a complex process, and executing it more than is strictly needed is throwing
away precious clock cycles.

A different solution to the synchronization problem would be to use a twin-threaded approach (depicted in) so one thread
executes the rendering portion while the other takes care of the world updating. By controlling the frequency at which each routine is
called, we can ensure that the rendering portion gets as many calls as possible while keeping a constant, hardware-independent
resolution in the world update. Executing the Al between 10 and 25 times per second is more than enough for most games.

Figure 2.3. Twin-threaded approach.

Loader

R v

Update Render

Imagine an action game running at 60 fps, with the Al running in a secondary thread at 15 fps. Clearly, only one of every four frames will
carry out an Al update. Although this is good practice to ensure fixed-speed logic, it has some downsides that must be carefully
addressed. For example, how do we ensure that the four frames that share the same Al cycle are effectively different, showing smoother
animation and graphics?

More frames means nothing if all the frames in an Al cycle look exactly the same; animation will effectively run at 15 fps. To solve this

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

problem, Als are broken down into two sections. The real Al code is executed using a fixed time step, whereas simpler routines such as
animation interpolators and trajectory update routines are handled on a per-frame basis. This way those extra frames per second will
really make a difference in the player's experience.

But the threaded approach has some more serious issues to deal with. Basically, the idea is very good but does not implement well on
some hardware platforms. Some single-CPU machines are not really that good at handling threads, especially when very precise timing
functions are in place. Variations in frequency occur, and the player experience is degraded. The problem lies not so much in the
function call overhead incurred when creating the threads, but in the operating system's timing functions, which are not very precise.
Thus, we must find a workaround that allows us to simulate threads on single-CPU machines.

The most popular alternative for those platforms that do not support a solid concurrency mechanism is to implement threads using
regular software loops and timers in a single-threaded program. The key idea is to execute update and render calls sequentially, skipping
update calls to keep a fixed call rate. We decouple the render from the update routine. Render is called as often as possible, whereas
update is synchronized with time.

To achieve this result, we must begin by storing a time stamp for each call performed in the update call. Then, in subsequent loop
iterations, we must compute the elapsed time since the last call (using the time stamp) and compare it with the inverse of the desired
frequency. By doing so, we are testing whether we need to make an update call to keep the right call frequency. For example, if you want
to run the Al 20 times per second, you must call the update routine every 50 milliseconds. Then, all you have to do is store the time at
which you perform each call to update, and only execute it if 50 milliseconds have elapsed since then. This is a very popular mechanism
because many times it offers better control than threads and simpler programming. You don't have to worry about shared memory,
synchronization, and so on. In practical terms, it's a poor man's thread approach, as shown in

Figure 2.4. Single-thread fully decoupled.

Update

Render

Here is the source code in C for such an approach:

long timelastcall=timeGetTime();
while (lend)
{
if ((timeGetTime()-timelastcall)>1000/frequency)

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

{

game_logic();
timelastcall=timeGetTime();
}

presentation();

}

Notice how we are using the timeGetTime() call from the Win32 API as our timer. This call returns the time (in milliseconds) elapsed
since Windows was last booted. Thus, subtracting the result of two timeGetTime() calls we can measure the period of time between
them down to one millisecond of accuracy.

Now, the above code partially addresses our concerns and is a good starting point. Still, it is a bit far away from a professional game
loop: We are assuming the logic tick takes O time to complete, we are not handling Alt-Tab scenarios, and so on. For completeness, | will
now supply a professional-grade game loop. The ideas are basically the same, taken one step further to offer better, finer control. Here is
the source code:

time0 = getTickCount();
while (lbGameDone)

{
timel = getTickCount();

frameTime = 0;
int numLoops = 0;

while ((timel - time0) > TICK_TIME && numLoops < MAX_LOOPS)
{
GameTickRun();
time0 += TICK_TIME;
frameTime += TICK_TIME;
numLoops++;

}

IndependentTickRun(frameTime);

II'If playing solo and game logic takes way too long, discard
/I pending time.
if (IbNetworkGame && (timel - time0) > TICK_TIME)
time0 = timel - TICK_TIME;
if (canRender)

{

/I Account for numLoops overflow causing percent > 1.
float percentWithinTick = Min(1.f, float(timel - time0)/TICK_TIME);
GameDrawWithInterpolation(percentWithinTick);

}
}

Now, let's go step by step. The loop has two components: The first (the while controlling the access to GameTickRun) takes care of
game logic, while the second (the if controlling access to GameDrawWithInterpolation) is the render portion.

In the game logic portion, we control if the elapsed time since the last logic call has surpassed a TICK_TIME (in milliseconds). If you
want your Al code to be computed 20 times per second, the TICK_TIME is 50. Then, we put this inside avhile clause because we might
want to run several game logic ticks at once, especially if there was a pause, disk swapping slowed the application down, and so on.
Notice we incorporate the TICK_TIME into the new timing oftime0O. Then, IndependentTickRun is called to handle player input, perform
general housekeeping, and so on. These routines are rarely time-critical, so they don't need to use precise timing functions.

Finally, we reach the render stage. Notice we begin by computing the percentage of the current tick we have covered. That's stored in
percentWithinTick. That's interesting, as it allows us to trigger the render call with this factor, which will perform fine interpolation so not
all the frames in a given tick look alike.

Let's now move one layer below our initial macro level analysis and explore the components of both the game logic and presentation
sections. By doing so, | will present a global game framework that will help you understand which software pieces must be used to make
a game, along with their internal relationships.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

The Game Logic Section

This first macro block takes care of keeping the world simulator running. For the purpose of our global framework, we will divide it into
three main blocks: updating the player, updating the world, and updating the nonplaying characters (NPCs).

Player Update

A game must execute a routine that keeps an updated snapshot of the player state. As a first step in the routine, interaction requests by
the player must be checked for. This is achieved differently for many control mechanisms such as joysticks, keyboards, and mice. But
the end result is the same—a series of numbers that can be understood by the game code that indicate the state of the player control. It
is a good idea to use abstract device controllers so the game code does not actually interact with the physical controller. An abstract
device controller handles joysticks and keyboardt Euj “ff a common interface so the calling application does not need to. We will talk
about input processing and device abstraction in Chapter §, "User Input.”

We will not directly map control decisions to the player's actions because there are some items that can restrict the player's range of
actions. He might indicate that he wants to move forward, but a wall may be blocking his path. Thus, a second routine must be designed
that implements restrictions to player interaction. These restrictions can be geometric in nature, as in the previous example, or more
complex, logic-based combinations. For example, the player can be pressing the "open door" control but because he is not holding the
right key, the door won't open. Remember that we are talking about general principles here, which will be applicable to any game you
need to code. Thus, we will dub this routine the "player restrictions" handler. A significant part of this routine will be devoted to collision
detection, which is discussed in Chapter 21, "Procedural Techniques."

Once we have sensed the player's controller and checked for restrictions, a small update routine must be implemented so players see
the result of their interaction; and game state is recomputed. Let's look at two examples to better understand the internals of these three
components.

Imagine a game such as Nintendo's classic The Legend of Zelda. The three routines mentioned earlier would have the following
responsibilities:

1. The "player input" module would effectively read the game controller using specific calls, and then convert the raw data to
game world data that makes sense. For example, data such as "left was pushed and button A was active as well" should
translate into "request to move the character left while using the currently active weapon."

2. The "player restrictions" routine would access the game world structure because we need to know which level the player is in
and what surrounds him or her. This way we can compute both geometrical restrictions, also known as collision detection,
and logical restrictions, which basically deal with states the player must be in to be able to perform certain interactions. This
second routine is usually the hardest of the three, especially as game complexity increases.

3. The "player update" routine would map the restrictions to the interactions and generate the right world-level responses. If the
player was pressing left and there is no obstacle in that direction, we must trigger the moving animation and update his
position, and so on.

Some games, such as Tetris, do not have a clear onscreen avatar, but still these rules apply. As a rule of thumb, consider your onscreen
character as anything you can interact with by pressing the controls. In Tetris, clearly, that refers to the bricks falling from the top of the
screen. They are not a character in the strict sense of the word, but the principle is the same. We would check for player input in the first
stage; in the second stage, we would test brick restrictions; and then we would execute player update to game state current. Restrictions
are very easy to determine: Bricks cannot move outside the screen area, cannot fall below ground level, and cannot keep falling if the
current brick is directly above any other previously fallen brick. In the player update segment, we simply move or rotate the brick
according to the player's input and add a default behavior to the equation, which is that the bricks keep falling regardless of what the
player does. This kind of idle, noninteractive behavior is very common in games in which you want to implement a sense of urgency and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

speed. Some arcades limit the time of your game (except if you find special "extended play" tokens), which is essentially the same
formula in a different context.

World Update

The notion of a living game world that displays an active behavior has been present ever since the first games, such as Pong and Space
Invaders. In addition to the player's action, the world keeps its own agenda, showing activity that is generally what the user responds to.
For example, the user tries to avoid an incoming rock in Asteroids, attempts to return the ball inArkanoid, and so on. Game world
updates effectively implement gameplay and make games fun. It is not surprising then that this portion of the game code is especially
important and, in modern-day games, complex.

To begin with, a distinction must be made into two broad game world entities. On the one hand, we have passive entities, such as walls
and most scenario items. To provide a more formal definition, these are items that belong to the game world but do not have an attached
behavior. These items play a key role in the player restriction section, but are not very important for the sake of world updating. In some
games with large game worlds, the world update routines preselect a subsection of the game world, so the player restriction portion can
focus on those elements, and thus become more efficient. Think of something like a graphics adventure. Somehow, we must store a
pointer to the room the player is in, so we check the colliders in that room only.

But the majority of time in the world update section is spent checking the other type of entities, those that have an embedded behavior.
From decorative elements such as flying birds to enemies or doors that open and close, these are the items that must be checked to
keep a consistent, meaningful playing experience. Some games will divide active elements into simple logical items—such as doors,
elevators, or moving platforms— and real enemies with a distinctive behavior. Here the differentiation comes from the complexity of the
coding. The logical elements can be solved in a few lines of code, whereas real enemies require artificial intelligence with a higher
complexity and computational cost.

In our generic game framework, we will assume there is a large number of these active elements, both logic and Al. So, the process of
updating them will consist of four steps. First, a filter will select those elements that are relevant to the gameplay. An enemy 10 miles
away from the player does not seem like a very important item from the player's standpoint, nor is a gate placed in a different game level
altogether. This filter must not rule out anything. Some games (like real-time strategy titles, for example) will still need to compute the
behavior of all entities. But many times level-of-detail (LOD) techniques will be used for distant items, so having them sorted by
relevance is always desirable.

Second, the state of the active element must be updated. Here the distinction between logical and intelligent entities will be made
obvious. The latter will require a more involved process to update their state.

Generally, within the overall game framework, Al systems will follow a four-step process too. First, goals and current state must be
analyzed. For a flight simulator, this means obtaining the position and heading, state of the weapons systems, and sustained damage for
both the Al-controlled and the player-controlled planes. The goal in this case is pretty straightforward: Shoot down the player. Second,
restrictions must be sensed. This involves both the logical and geometrical restrictions we already sensed for the player. For our flight
simulator example, the main restriction is avoiding a collision with the player and keeping an eye on the ground, so we do not crash into a
nearby hill. After these two steps, we know everything about our state as Al entities, the player's state, the goal to achieve, and the
overall restrictions that apply.

Returning to the overall framework, the third step requires that a decision/plan making engine must be implemented that effectively
generates behavior rules. The plane will make a turn, then try to shoot, and so on. Some games implement instantaneous plans, which
are recomputed each frame. Take the case of a very simple moving mine that chases the player around. For each frame, it must
generate the optimal trajectory to finally blow the player up. But most plan-making routines generate tactics that persist for many clock
cycles. A flight simulator might make decisions that span several seconds or even minutes of gameplay, and subsequent Al cycles focus
only on refining the plan to adapt to changing conditions.

Fourth, we need to update the world state accordingly. We must store data, such as if the enemy moved, or eliminate it from the data
structure if it was shot down by the player. As you will see when we study Al in detalil, this four-step process blends extraordinarily well
with most game Als.

That completes the game logic framework. As a summary of the structure that was just exposed, here is the pseudocode for the
approach:

Player update
Sense Player input

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Compute restrictions
Update player state
World update
Passive elements
Pre-select active zone for engine use
Logic-based elements
Sort according to relevance
Execute control mechanism
Update state
Al based elements
Sort according to relevance
Sense internal state and goals
Sense restrictions
Decision engine
Update world
End

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

The Presentation Section

Games would be dull and boring without multimedia programming. As human beings, we are very sensitive to animation, sound, and all
the technical features that make a game attractive. Thus, coding a good game certainly involves being very careful with its presentation.
You could argue that some really good games can be crafted with little or no presentation values, and you would be right. A game such
as Tetris does not need much in terms of the audio-visual experience. But it is dangerous to generalize this as a rule. The vast majority
of games require a carefully designed multimedia wrapper for the gameplay to become engaging and immersing. We need to see
starships and asteroids to get the feeling of space flight, and we need carefully designed ambient sounds to really believe we are in a
scary scenario.

The presentation layer helps convey one of the key features of good games—the capability to provoke the willing suspension of disbelief.
This happens when good movies, books, and games mentally immerse us in the scenario in which they take place. Take a good movie,
for example. In the first 10 minutes, the viewer forgets about the real world. The viewer's job, problems, duties, and so on are simply
gone, as he or she gives in to the magic of the narrative. The viewer spends the next hour or two immersed in the story. In fact, the
viewer does not feel like he or she is in a movie theatre at all. It feels like he or she is chasing the bad guy, solving the mystery, and so
on. That is what willing suspension of disbelief is all about.

Some movies try to tell compelling stories with minimum presentation values. The Dogma movement serves as a good example.
Although this trend will undoubtedly emerge in video games as well, and many good games will be created, presentation will still be
important for both Dogma and non-Dogma games. Dogma games do not trust the competence of human actors but instead need to
resort to synthetic storytelling, which is rooted in technology. Because games are far more technology driven than movies, presentation
is still necessary, even for a simple game.

On the other hand, let's not forget that the vast majority of games are produced for the masses, and in this context, presentation is
essential. In addition to better gameplay, consumers request better graphics, more and better sound, and production values in a constant
progression. It's a catch-22 situation that arises from the constant improvement of computer hardware. So, even in those games where
game logic is top priority, you had better keep an eye on the presentation values to ensure that you reach a broad customer base.

Let's now explore the constituent parts of any multimedia pipeline. The focus will be given to graphics and sound as the two main factors
in providing a top multimedia experience. Our generic pipeline will be similar to the one used for game logic and be divided into rendering
the game world, rendering nonplayable characters, and rendering the player. Keep in mind that this is just a framework to illustrate the
constituent parts and does not imply any order of execution. For implementation purposes, elements can be rendered in a different
order.

World Rendering

The first step is to render, visually and sonically, the game world. Here we will focus on the passive elements of the world, such as walls
and grounds, as well as the simple, logic-based devices such as opening doors. The line will be drawn between objects requiring little or
no animation, which will be handled here, and fully animated objects, which will need a different processing scheme altogether.

Rendering complete game worlds in real-time is almost impossible except for simple games like Tetris. For any involved title, some
filtering must be applied prior to the main render call to decide what should be taken into consideration and what shouldn't. For example,
very distant or invisible zones of the world can probably be culled away because they provide little or no information to the player and
would just decrease the frame rate due to the added complexity. So, any world-rendering pipeline will more or less consist of two parts:
selecting the relevant subset and taking care of the actual rendering.

For the graphics pipeline, the selection routine is implemented via clipping, culling, and computing occlusions, so the resulting

representation is just the visible part of the game world from the player's viewpoint. This way we can focus on drawing what actyally
matters to the player,_These routines are the core of any n - graphics pipeline and will be analyzed in full inChapter 13, "3D
Pipeline Overview," Chapter 13, "Indoors Rendering," andChapter 14, "Outdoors Algorithms." An optional, auxiliary process is sometimes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

applied to the visible data, which computes the relevance of the data and chooses a suitable level of detail to render it. A tree that is seen
500 meters away probably doesn't need 10,000 triangles because each triangle would occupy a tiny fraction of a single pixel. Thus, a low
resolution, more efficient representation can be used instead without the detrimental effect on performance.

Now that world geometry has been reduced to the visible part and assigned a suitable level of detall, it is time to actually paint it
onscreen. This is achieved in a two-step process. First, geometry is stored in an efficient format in a step usually called geometry
packing. Second, this packed geometry is sent to the hardware, where it is processed. Graphics hardware is extremely sensitive to
packing methods: performance increases tenfold just by selecting the optimal delivery mechanisi %f f explore packing and
rendering in [Chapter 14, "3D Pipeline Overview." If you need API-specific rendering information Appendix B, "OpenGL," andApp d,
"Direct3D," should provide you with the information you need.

Audio rendering works in a slightly different way than graphics. We can't just filter what is visible and what is not. An enemy behind you
might not be visible, but his footsteps are still audible. However, filtering is also applied, generally by using some distance versus volume
metric. Attenuation can be computed in order to know which sound sources are effectively audible to the player. Once these sources are
identified, we can focus on sending the audio files to the sound card.

NPC Rendering

Rendering NPCs is quite different from rendering inanimate geometry. They need a specific pipeline due to their animation properties.
However, we can still begin by filtering the character lists, so only characters close to the player and affecting him are processed. Again,
a visibility step is pretty common. Only characters that survive a clipping and occlusion test will be moved on to the pipeline. This is
especially important for fully animated characters. Working with dynamic, animated geometry is more expensive than static, passive
elements, and thus must be applied only when needed. Optionally, some games will use an LOD pass to create a simplified
representation of characters located in view but far away from the viewer.

Then, the main animation routine must be computed. There are a host of variations, from keyframed to skeletal animations and so on. All
of them will be covered in , "Character Animation." But the end result for all of them is the same: static geometry data that
represents the current snapshot of how the character must look for a given frame.

At this point, a character has been simplified by a static geometry representation, which can be processed as if it were regular world
geometry. It must be packed using an efficient representation and sent to the hardware for display. Notice that, for their internals, some
animation methods will require specific rendering algorithms, so characters will need to be rendered separately from passive world
geometry.

The Player

The main player is nothing but a very special-case NPC. But its rendering pipeline is simpler than those of secondary characters for two
very simple reasons. First, the player is generally visible, so there is no need to allocate time to check him for visibility. After all, he's
supposed to be the hero, so it makes no sense for him to remain hidden. Second, there is no need for LOD processing as well. Most
games display players in a central role, so they will always use high-resolution meshes.

Thus, the main player will only undergo an animation step, packing, and a render step. The animation will sometimes be of higher quality
than that of enemies because the player is in a central role and more details are needed. But there isn't much difference between a
player and an NPC.

Our framework for presentation has thus been introduced. It is a very involved process that you should review until it is fully understood,
so let's recap for a second, using the following pseudocode:

World presentation
Select visible subset (graphics)
Clip
Cull
Occlude
Select resolution

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Pack geometry
Render world geometry
Select audible sound sources (sound)
Pack audio data
Send to audio hardware
NPC presentation
Select visible subset
Animate
Pack
Render NPC data
Player presentation
Animate
Pack
Render

As a global reminder, use the pseudocode listing at the end of the section to review the complete framework. It is a long
sequence of operations, but should cover most games on the market. In fact, | recommend that you take some time and decompose one
or two commercial games into their constituent parts using the framework. Time spent doing this will be priceless when we start
analyzing each of the individual segments. Notice how the following pseudocode can also act as an index to the contents in this book.
Pointers to relevant chapters are given for each section, so you know where to look for additional information.

Game logic
Player update
Sense Player input (chapter 5)
Compute restrictions (chapter 22)
Update player state
World update (chapters 6 to 9)
Passive elements (chapter 4, spatial index)
Pre-select active zone for engine use
Logic-based elements
Sort according to relevance
Execute control mechanism
Update state
Al based elements
Sort according to relevance
Sense internal state and goals
Sense restrictions
Decision engine
Update world
End

Presentation
World presentation (chapters 11 to 14, 17 to 21)
Select visible subset (graphics)
Clip
Cull
Occlude
Select resolution
Pack geometry
Render world geometry
Select audible sound sources (sound)
Pack audio data
Send to audio hardware
NPC presentation (chapter 15)
Select visible subset
Animate
Pack
Render NPC data
Player presentation (chapter 15)
Animate
Pack
Render

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

End

Caveat: Networked Games

The previous models do a really good job at depicting most single-player games. But networked titles need to impose some minor
changes to the model so they can fit into it. These changes fundamentally affect the game logic section and, specifically, the player
control and NPC sections. Just remember that, from another player's standpoint, your character is really just an NPC whose position is
updated by another machine through a network connection. Generally, two changes are all that is needed to edit the model.

The player update section must change to make sure every player update is followed by a broadcast message that sends the newly
computed position to other gamers through the network. The players receiving the information from the network will then use it to update
a special breed of NPCs that actually do represent other game players. Thus, the second change affects the core of the Al system.
Networked games can still have Als for automatic monsters and so on, but a special type of Al must be reserved to represent these other
players. This special-case Al module receives data from the communications channel and reflects it to the local gaming environment.

With these two changes in mind, a networked game is not that different from a regular, single-player title. All it takes is a bit of practice to

understand that we _are the player on a computer screen, but other users just see us as a very particular kind of NPC. We will cover
NPCs in depth in , "Network Programming."

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

 Team Lie |

The Programming Process

We have examined the building blocks of any game project in some detail, including their potential risks and pitfalls. To complete this
overview, we will now focus on today's production techniques and how programming must be planned to ensure timely and complete
delivery. Any modern game requires hundreds or thousands of source files, totalling several hundred thousand lines of code. Such a huge
data set, coupled with today's budgets and production cycles, makes game programming a very complex task that must be addressed
methodically.

Stages

All game projects consist of three basic stages, although some studios consider more by subdividing the base three: preproduction,
production, and maintenance (see .)- In the first stage, the concept of the game is agreed upon, and different technologies and
solutions are tested until a final configuration is reached. It is a highly experimental phase. Gameplay formulae are tested, technologies are

evaluated, and some early concept art for the game environments is created. Ideally, preproduction is the only phase where a game
company should be allowed to experiment, because subsequent phases must focus on the industrial process of making the game. The
result of this first phase is a working prototype of the game—the more similar to the end product, the better. This prototype must be built in
order to help establish workflows, test the content and technology production pipelines, and so on. It must also allow the developer to build
an accurate picture of the road ahead: budget, milestones, team structure, and so on. In some cases, this demo will also be used to
showcase the potential of the game to customers and publishers. The role of preproduction is, then, to analyze alternatives and finally
create a detailed plan. Once preproduction is complete, most questions should have been answered because production is really a
labor-intensive process. The game design should be final, a gameplay prototype must be working, and some test art should be in place.
The trend today is to emphasize the importance of good preproduction as a way to minimize risks in subsequent phases of the
development process. With multimillion-dollar budgets, games have become large productions, and the failure of one project due to bad
management can cause serious trouble to both the developer and, more importantly, the publisher.

Figure 2.5. Stages of development.

Preproduction Production Maintenance

Not surprisingly, one of the key items to study during preproduction is the technology that will be used in creating the game. If the game is
created on top of a licensable engine, it should be chosen during preproduction. If, on the other hand, the team is going to create new
technology from scratch, a working prototype must be crafted during this phase. From a publisher's/investor's standpoint, technology is
always seen as a potential risk. Many games have sold badly (or have never even reached store shelves) due to inappropriate technology
choices, so it's a good idea to take care of it as soon as possible to ensure that the game is, to an extent, free of technology risks.

Once preproduction is complete, and funding is secured for the game (either internally or by selling the prototype to a publisher),
production begins. This is the longest part of the process and usually takes between one and three years to complete. Itis a
labor-intensive period in which the game takes shape following the planning that has been laid out during preproduction. Art assets are
created in a factory-like fashion, game levels are crafted, and so on. The technology prototype built during preproduction will also mutate
to implement all the final features the game needs. Technology prototypes usually focus more on showcasing the key elements of the
gameplay, whereas the presentation layer is kept in a very early and crude form. Thus, production is usually where all the eye candy is put
in place, and games show their full technological complexity.

Because it is a long process, production is often divided into milestones (both monthly and trimonthly), which mark key moments in the
development. These milestones are used to make sure the game development advances at the desired speed and also to show the
publisher the rate of progress. The latest build of the game is shown, small corrections on the initial design are made, and so forth. At the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

end of this iterative process, a final version of the game must be delivered to the publisher for testing and quality assurance. This process
ensures that the game is virtually bug-free and also reaches the desired quality standard. In the case of console games, this process is a
bit more complex than for a PC title because we need approval not only from the publisher, but also from the console manufacturer who
must make sure the game is suitable (both in terms of content and quality) for the target platform. Remember the good old Atari days
when lots of poor-quality games remained unsold, causing the console market to crash? Console manufacturers have learned their lesson,
and they try to make sure they keep a consistent rate of good games to keep their platform value high.

After this testing process, which usually takes between one and three months, the final version of the game is created. This version, often
called the Gold Master, is then sent for replication, put in nice boxes, and sent to stores. Because all the physical materials (that is, boxes,
manuals, cover art, and so on) are created by a separate team during the testing phase, this final step takes a remarkably short time.
Once the Gold Master is agreed upon, it takes about two weeks before games are available in stores.

The final step is the maintenance of the game. Games have a relatively short shelf life except for massively networked games on
persistent game worlds. But support must be provided: patches, editing tools for the fan community, and additional missions. Games that
encourage this sense of community and post-release enhancements have longer shelf lives because fans see continuous support for the
title. As stated earlier, networked games are a whole different world. Lots of content is created after the release, so gamers can visit new
game zones, engage in new missions, and so on. For some other games, game servers must be controlled and taken care of, so the
player community can enjoy good playing conditions. Clearly, networked games have a long, sometimes almost indefinite, maintenance
time. Ultima Online by Origin/Electronic Arts, has been around for more than five years now in its different incarnations; it is a testament to
good product support from both the developer and publisher sides.

Let's now explore these three phases in more detail.

For the preproduction phase, we will study how games are born, how feature sets and code macro structures are designed, and which
prototypes can be built along the way. Next, we will talk about production, which really boils down to calendars and milestones. This is the
longest part of the process, so we will explore it thoroughly. In addition, we will analyze the maintenance phase to better understand which
tasks must be carried out in order to guarantee long-term player commitment to our title.

Preproduction: Where Do Ideas Come From?

Most promising game projects start with a raw game design—a central idea of what the gameplay will be like. This is usually expressed in
a single sentence that defines the genre and gameplay as well as your role in the story. A good example would be, "The game is a
first-person shooter, with some outdoors areas and large monsters, where you are a warrior trying to save the princess." This is the best
way to start working because you have an initial idea of how the game will be played and which features should make it fun and
entertaining. For this method to work, your initial sentence must answer:

® \Whois the player?
® \What are his goals?
® \What's the genre?

® iow does the game play?

However, there are alternative paths. Sometimes, games start with a strong narrative description, such as, "You are a scientist in a military
complex full of soldiers who are trying to conquer the world." Clearly, we are not saying much about the gameplay. It can be a slow-paced
graphics adventure, a shooting game, a platform game, and so on. Games created around a narrative tend to be harder to code because
you must understand the gameplay elements and formulas, which are what drive the coding process.

Another and even more dangerous game type is started because of some unique and impressive technology, like "let's build a game with
this brand new outdoors renderer." Although many good games have been coded this way, you must remember one revealing fact: Only
very hard-core gamers are interested in technology. The vast majority of your audience isn't. And technology does not sell games or make
them fun.

So starting with the gameplay is a much safer bet. You can make a fun prototype with little or no presentation value and add the
technology later. On the other hand, fixing a bad game design buried in a pile of great technology is much harder, and most times ends up
in mediocre, formulaic gameplay. As Shigeru Miyamoto puts it:

"A lot of people ask me if | start designing games with a story in mind, or a particular scenario, or a particular
character, but actually | start on a much more basic level. And really what | do is, | start with some basic core

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

experiments, testing out the action on the screen or a specific gameplay style. When we started with Mario, all we had
were some blocks onscreen, and we would try to make those blocks bounce around and jump as we intended them to
do using the controller. So it's really at that core element that our game design begins."

I\ttp://www.techtv.com/extendedplay/videofeatures/storylo,24330,3375049,00.htm|

Thus, the safest bet is working from a core gameplay idea and maybe some narrative elements, and discussing with your designers and
team the best technological choices to convey the game world you all want to create. By putting technology at the service of gameplay
and narrative, a well-balanced, entertaining game is within reach.

As a personal suggestion, | would recommend that teams start working with the "central sentence idea" outlined earlier, so that this
sentence becomes the central design idea for the game. For a game such as the classic Donkey Kong, the sentence could be, "You are
Mario, a plumber who must rescue his girlfriend Pauline, who has been kidnapped by a large ape that has taken her to the top of a
skyscraper."

Luckily, you will have a lead game designer who feeds the technology team with great ideas such as this one. Hopefully, he will also
create some early gameplay mechanics and sometimes even some keyboard or controller mappings, and so on. Some history elements
must also be in place, so you know who you are and what you are supposed to do in the game world. That's the best way to get the
project started. Going further than that at this stage often means getting lost in an ocean full of details.

Discussing Feature Sets

The first task any lead programmer should undertake during preproduction is defining a list of features to be implemented into the game
both in terms of gameplay and presentation. How many characters should be displayed? Will the user be able to pick objects? This list
should be crafted as a team effort between the design and the coding team, so tasks are both meaningful in terms of design and
technologically feasible. A good way of getting a reasonable feature set laid out on paper is to use an expansion-contraction process.

In the first step, an exhaustive list must be created. Every feature to be added to the game should be written down. At this stage, it does
not matter how realistic expectations are. It is a blue-sky research phase, which should be a group effort involving all people in charge of
the project. Put all your crazy ideas on a blank sheet of paper. If it takes more than one sheet, that's a good sign. If you end up using a
word processor because of the amount of features, that's even better. Whatever the case, number each feature so you can keep track of
them in further steps. This completes the first, expansive phase.

Once the list is complete, it is then time for the contraction process. Review the list, merging those features that are similar in terms of
coding. For example, the features "poisons" and "power-ups" can be generalized into a single feature called "items that affect the life level,"
which can be programmed in a single coding effort. As you contract, clusters of features will appear, some larger, some smaller. On the
other hand, some highly specific features will remain ungrouped.

Then, review the results of the session. Large clusters will represent groups of many features that are coded similarly. These will generally
be the main subsystems for your title: weapons, characters, and so on. As such, they will make it to the final list because they are a very
significant part of your design. On the opposite end of the spectrum, single features are somehow risky. These are very specific pieces of
code that won't be recycled for any other use. Thus, many of them will simply not make it to the final release.

A good, objective way to choose which clusters to implement is to use the classic minimax method. As you know, minimax tries to

imize disadvantages and maximize advantages. This is usually depicted in a 2D matrix of cost versus benefit, which is shown in
ﬁ For our feature set, advantages will be

® User-perceived value

® Generality

Figure 2.6. Minimax matrix, showing benefit on the horizontal axis and cost in the vertical. It can be suited for any
problem, not just game development.

Benefit

http://www.techtv.com/extendedplay/videofeatures/story/0,24330,3375049,00.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Min Max

A

Best

Min Solution

Cost

Worst
Solution

Max

Clearly, we want to code features that will make a difference for the user and also provide general code tools that can be recycled for
many uses. As for the drawbacks, here are two that easily come to mind:

L4 Coding size

® Coding difficulty

You should worry about the first one if your team is small, whereas the second one should be watched for especially in novice teams.
Next, you must qualify each feature cluster according to the different criteria, and then place it in one of the following categories:

® \inimin. These are features that are not important for the player but are easy to code. They are mainly decorative elements that
should be coded at the very end of the project if time allows because they are just icing on the cake. A good example is birds
flying by in a 3D adventure. They don't add much to the game but are usually simple to code.

® \Maximin. These are features that offer little or no benefit in terms of the experience but are hard to code. Obviously, they should
be dropped immediately. As an example, imagine a car racing game where you can see the driver inside the car. Implementing
a skeletal animation system for the character is a significant commitment. But given the specific game you are working on, it is
not clear that the effort will pay off in the long run.

® \inimax. These features are what dreams are made of: simple to code features that add a lot to the player's experience.
Obviously, these should all be built into the game, assuming time allows for them. Being able to configure your character's look
in a role-playing game (RPG) can sometimes be implemented easily, and it provides a great enhancement for RPG fans—a
classic minimax example. Another minimax feature is usually Al communication. In an action game, seeing the Als cooperate
and synchronize themselves greatly enhances the player's experience, and the coding difficulty is moderate.

® \aximax. These features are generally the cornerstones of the game system. They are hard to code features that define the
gameplay experience. An outdoors renderer for a flight simulator can be a huge burden to code, but it really makes the game
stand out. For these kinds of features, a twofold analysis must be made. First, is there an easier implementation that converts a
maximax feature into a minimax feature? Sometimes a different coding strategy can simplify the algorithm greatly, making the
feature a sure hit. Second, is your team capable (considering complexity and size) of handling the feature? And, if so, how many
of these features can be built into the game? It is better to realize early what your limitations are than to have to cut features
well into the production of the title. So, maybe you will only be able to select some maximax features and forget about the rest
for feasibility reasons.

All'in all, the end result of this process should be a feature list that makes sense from both a design standpoint and from an efficiency
standpoint. The features need to work, and they must be more or less reasonable for the programming team. They must be features that
define a great game and can be built by the available personnel in a reasonable time.

Production: Milestones Are King

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

If your preproduction phase is completed efficiently, chances are you will start the production phase with all the core gameplay in place for
your game prototype. During production, you will convert your prototype into a full-blown game. Here rules are much more diffuse, but
some advice can still be given. The following list of do's and don'ts have been taken from real-world examples:

® \oreis not better. Many times you will feel your team is not capable of pushing the project forward at the right speed. This
usually happens in the final stages when pressure starts to build, and you wish you had twice the personnel. In these situations,
you might be tempted to hire new personnel so they can assist you in the final months. Think twice. In his classic "The Mythical
Man-Month," Frederick P. Brooks states how adding more people in the middle of the battle does not actually improve things,
but instead makes them worse. Part of your existing team will be slowed down because developers will need to train the new
members, who will need some time to get up to speed. The result? Missed deadlines. Plan your team size conservatively during
the preproduction phase, and if you think you might need "emergency personnel" to help out, make sure you choose people
who have all the information on the project beforehand, so they can get up to speed and work from day one.

® "Ontime" is better than "more ambitious." Game development is driven by ambitious teams that want to create brave new
products. But Christmas is in December, no matter how fast or slow you code. And about 50-60 percent of the total number of
games sold per year sell at Christmas. Most times, it is better to complete a product "as is" (and then move on to another one
that will in turn be better) than to enter a deadly spiral of always trying to improve the current installment. It's a bit like people
who do not buy a new computer because next month a new device will appear. Then, next month goes by and they say, "Hey,
next month this other piece of equipment is coming out," and the purchase is delayed for months. Coding games is about having
products on the market, not about endless tech demos and missed milestones. Work with a closed feature set and, to an extent,
try not to add new ideas to it in the middle of the project.

L Surgical teams and key members are arisk. Let's face it, not all game developers are equally important to a project. In fact,
there's always a subset of people who make up the surgical team—the team that the project cannot live without. It can include
artists, programmers, or other important personnel. But if one member leaves the team, you're in serious trouble. Some studios
pride themselves on these employees, but from a risk assessment standpoint, having such a configuration is not recommended.
If you have a key team member, say, the lead programmer, make sure he works closely with at least one other person, so if he
leaves the company, you will have a backup plan. Many games have been killed or delayed because a key member left in the
middle of production, and no one knew what to do. It is sad, but true. People on your team should be valued, but if the time
comes, they should be able to be replaced as quickly as possible.

® Order of execution. Not all game features are born equal: Some are essential for the game, and others just improve upon a
base formula. In a game such as Quake or Unreal, the indoors renderer is a key component, as is the path finding routine for the
Al. On the other hand, rag doll physics for the death animations is great to have but can be disposed of if required. Try to do this
kind of exercise with your feature set: Think about which features must be included and whichshould be included. Do not forget
that coding often takes longer than initially planned. Thus, having a clear distinction between the core features and the
accessories is a healthy practice. In the same way, try to think in terms of the order of coding. Some features must be coded
early on because they are the pillars of the game, and further advancement cannot be made without them. In Age of Empires,
for example, path finding is more urgent than most of the graphics engine; without path finding the game simply does not exist.
Sometimes it's useful to display the components to code and their order of execution in a graph. Each node represents a
component, and each branch represents nodes that need other nodes to be complete before them.. shows a sample
graph for a real-time strategy (RTS) like project.

Figure 2.7. Production graph.

B e L e T e e I+
[drvrn Elcdn Yo Jrsts Fowals Heramenin Boais Yagea]
- = | Baf'ihf-ﬂﬂiﬂ&ﬁllﬂ-\,ﬂhwu# -.E.E,i!_ll'_‘?.:

.g-q.-.-m..) - o "_.r‘ E" Tl it it [m T | W
| ript
T | Mees B8 les Triviemrs 20t | Scmnre 2001 [irre 3003 s &
07104 07 90 [0 399 [19 52325 T2m o T 10 (93 18 00 R e 00 IO S T [P a0 R |
LE | Contant production pipsline L]
2
| B T —— —
o | Viertrabs crests o be's smras! drar i-lpﬂltﬂHJme
| [fas el A B
[} PR e e daT
T D tigr Crocusrant Blaborsiion
[Frirrblit by COA Conl olsci | Ml B Legedd
=
in | e . |
1| Mirptr = create B bres's sierad demgn 3

L L b o L T maruraed Boribwd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

- S ———— | ——— JR— o

13| e, S R 5 Taeam 1L & maad Garsn Demsprier:Costerd Cons oller

" | T Y = CLaiTes B e { TR By | ey i kg 2

15| T L T e —" T Corment Cortral

w |

aE | = Ll g, i 1

| Vb crmste frm b s mbems et pheogn T ||_ImLﬁ-du:.-ﬂ:mhwl-H

LL] Leptays gt slamsorEion 5 (i) Qe el vid (e Dwrsiagevey’ 1 /G Tvir i Trlonr

m | PR e s diedaeni i 5 I:Tml.l il il G Drnigrien=Cervierd Coirroles

| Do g ks wilion 31 b_lmtmhﬂummimﬁ

| Rarviacn by corien costrolier, e acogned T Do e vt

a| | | r.-

b ' S T e r————— Tr——————

5 [Ceowm] w : v

F.3 e [T it e o 4

| Ptk et ot T Soript cpsen. team 1

b VL PO RN L EE B i Sariph codier, Rears 4

T Flegpaton of chascten |} Bt qoder, vean § =

1L — i ;FJ

= — i P TN T T

Maintenance

Unfortunately, the maintenance phase is too often used as the time when errors from production are fixed, especially if schedules are too
tight. It is poor business strategy to have developers release games that are unfinished and have them use patches to solve the remaining
bugs. On the other hand, the maintenance phase offers great potential to game developers because it's the moment when relationships
with consumers are at their highest point. Thus, the first step to ensure a healthy maintenance relationship is to plan the production phase
well, so this last phase does not become a "fix everything you can" scenario.

The goal of maintenance must then be to maximize the enjoyment of the product by the consumer and to make the life cycle as long as
possible. It is a time for strong product support so sales increase. Here | will outline some ideas taken from successful projects.

One idea is to release new content for the game, so the user's enjoyment is lengthened. Extra missions or characters are easy to do, and
the user-perceived value is very good. These missions can be placed on web sites for easy deployment. Remember that a good
data-driven design is the key to success. Being able to plug new missions into your game will require some careful planning in the
production or even preproduction phases. Many games have successfully followed this approach in recent years. One strikingly good
example is Black and White by Lionhead Entertainment (developer) and Electronic Arts (publisher). It is a god-game where the user
controls a population through a Creature, which is the representation of God on Earth. Creatures built into the game were animals, such as
a cow and a tiger. But the development team created extra creatures so they could be bundled with different products, including
magazines, web sites, and so on. Then, by purchasing the magazine, you received the extra creature for the game on a CD-ROM. This
was a very interesting move because the new content could be used for public relations, benefiting not only the players, but also the sites
or magazines that had such an agreement with Electronic Arts.

Another idea is to provide users with content creation tools, so a mod community can be started. Content sharing should not be seen as a
potential problem but as an opportunity to increase your user base. Fans will get their friends involved in the game, create new artwork,
and so on. A good example of this strategy was clearly shown by The Sims. When the development team at Maxis/EA began releasing
tools to allow user-created content, the number of sites devoted to the game simply skyrocketed. Being able to create your own character
skin, as simple as it might look, was a great feature for many users. In fact, many users that had lost interest in the game got back into it
due to the expressive potential that editing tools gave them. The result? The Sims stands as a title with one of the longest shelf lives in
history. The word-of-mouth mechanism spawned a huge fan base, and today The Sims is the biggest selling PC game in history.

Mod-making can also become an interesting business. Many teams have hired personnel directly from the mod community because they
were the most talented users of the editing toolset. Others have published compilations of this user-created content in the form of
expansion packs, so the game's shelf life is increased, and so on.

Whatever path you choose to follow, make sure your content creation tools are styled and tailored to the end user. Too often, the internal
editors used by the development team are released without any adaptation, and users get frustrated by their unintuitiveness and clumsy
interfaces. If you plan on releasing content-creation tools, make sure they are suitable for end users. Developers often employ simple
editors that are sufficient to get things done if you are familiar with the internal technology the game is running in. Don't forget that by
releasing the tool you are creating a new consumer product, and that users are not game developers. Using the editor must be an
enjoyable experience, not an uphill battle. Thus, these tools should be designed carefully. Interfaces must be kept simple, a user manual
should be almost mandatory, and so on.

Massively multiplayer games are a completely different business when it comes to maintenance (or should | say product development?).
These games are actually created in the maintenance phase because we need to keep a living community with ongoing activities, and so

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

on. Because they are pay-per-play titles, keeping new content pouring in is the best (and only) way to make the game profitable.

Finally, the maintenance phase is a great time to organize, archive, and document. Let's face it, many developers forget good coding
practices during lengthy crunch times. Too often, code is just forgotten after the game is released. Some maintenance time should go into
revising your code, and storing and documenting the reusable modules, so subsequent games can take advantage of those modules and
be crafted in less time by a smaller team. After all, there's no deadline pressure on the maintenance phase. You can devote some team
members to this task to ensure that the project is closed in the most structured way, that an error-free product is on the market, and that
there is a well-documented knowledge base, which can be used in subsequent titles.

Team LiB I

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

In Closing

In , "Chronology of Game Programming," we explored the historical foundations of game programming in order to understand
the industry's present state and analyze how games are built today. In this chapter, we explored the foundations of game programming.
We analyzed the structure of a game's source code, providing a global taxonomy by which most games can be decomposed. By
understanding that taxonomy, you can see the pieces of the puzzle and the dependencies between them. The goal of the rest of the
book is to explore each of these pieces in detail, from artificial intelligence to networks. We will delve into the internals of each subsystem
so you can use all the techniques that have been discovered for each one of them through the years.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 3. Data Structures and Algorithms

"The loftier the building, the deeper must the foundation be laid."

—Thomas Kempis
KEY TOPICS

® Types, Structures, and Classes
® Data Structures
® The Standard Template Library

® | Closing

Our journey into game programming is going to be long and deep. Before we begin, we must make sure some key concepts are well laid
out. We need to take a second to review the game programmer's basic tool set. This chapter is a survey of popular data structures and
their access algorithms. We will be basing all our work on these cornerstones throughout the rest of the book. Therefore, it is essential
that they be well understood, so we can move on to the game-specific content of the book.

So, consider this chapter a reminder. Read it, and then take a second to review the concepts and parts you feel less familiar with.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Types, Structures, and Classes

The first programming languages only supported operations on a closed set of data types. You could operate integers and floating-point
numbers, but that was basically it. The reason for this simplicity was that at the assembly language level, these data types were the only
ones available. Even today, anything beyond fundamental data types need to be defined, taken care of, and so on in a software layer.
So it is not surprising that in the days when computer speed was a fraction of a megahertz, developers didn't feel the need to operate on
anything but ints and floats. In fact, many hardware platforms of yesteryear didn't even support floating-point values, which were
implemented in a software layer.

Some developers felt the expressive potential of programming languages was too limited and that creating large software applications
was often impossible with such primitive tools. Thus, years went by, and the family of structured programming languages (C, Pascal, and
so on) surfaced. In these languages, the concept of user-defined data types was introduced as an abstraction to allow developers to
encode real-world data easily. If you needed to have a point in space built into your program, you could decide whether to store it in three
variables, such as:

float x,y,z;
Or, by using this new paradigm, you could decide to store it in a user-defined type, which we will call point3D:

typedef struct
{
float x,y,z;
} point3D;

This new way of working allowed developers to write more compact, easy to follow code. For example, you could access the attributes
(each individual element in the type) as follows:

point3D p;
p.x=1;

Even better, types could be built incrementally, so more complex types use other, less complex types, similar to the layers of an onion.
The result was type hierarchies, which were useful for encoding real-world data with complex relationships. Clearly, user-defined types
increased the expressive potential of programming languages, and the era of modern software development began.

However, some new problems appeared. Once you had a large type hierarchy, it was very likely that you would have a similarly large
block of code full of operations on that data structure. In the previous point3D example, you would need operations to add, subtract,
perform both dot and cross product, and so on. If you only had user-defined types, you were condemned to the following:

point pointadd(point,point);

point pointsubtract(point,point);
float pointdotproduct(point,point);
point pointcrossproduct(point,point);

As your data structure grew, the accompanying code would also grow. Moreover, you would run into some naming problems, and your
code would become a spider web full of #include statements. The size and complexity of your program was again compromised by the
language's lack of features.

At this point in time, the second "revolution" in programming language technology took place. Again, the idea was to allow bigger
programs with less internal chaos. Because user-defined types were generally considered a good idea, this concept was extended to
allow each type to include the source code for its own access operations, so the type became a self-sufficient code and data module.
These modules were called classes. Additionally, rules governing how classes could relate were established to mimic the real world.
Classes could have descendants (inheritance), class members could be renamed so they used standard operators (operator overload),
and so on. So, our point data would now become:

class point3D

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

{
private:
float x,y,z;

public:

point(float , float, float);
~point();

point operator+(point);
point operator-(point);

k

The advent of object-oriented programming (OOP) really pushed the maximum program size to unknown boundaries. Programs several
million lines of code in size are not uncommon these days. Classes have basically become "black boxes," which you can share, recycle,
and use with no real knowledge about their internals. By looking at the (hopefully well-documented) class definition, a programmer can
effectively use a class much like a driver can use a car with no knowledge of how the engine works. Clearly, OOP benefited developers
in two ways: It allowed them to build more structured programs that are easier to maintain, and it improved team-based coding where
classes could be exchanged and shared between team members.

A number of improvements have been introduced in recent years, from visual languages to design patterns and the Standard Template
Library (STL). Although none of the improvements has had the impact that OOP or user-defined types had, they have provided
developers with constant advances that make work easier. For the sake of game development, design patterns and the STL are very
useful. At the end of this chapter you will find a section on the STL, whereas the next chapter is completely dedicated to design patterns.

For now, we will focus on reviewing those data structures that are frequently used in game development, so we can reference them in
chapters to come. Some of them will seem very simple, but quite likely some of them will also be new to you.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Data Structures

In the following sections, we will cover some of the standard data structures.

Static Arrays

Games rarely need to work with single instances of data. More frequently, you will need to store lists of similar type elements: triangles in a
mesh, enemies in a game level, and so forth. Many different structures can be employed to fulfil this task. The simplest of them is thestatic
array, which basically allows the developer to store a list of elements that will not change during the program's life cycle. If you need data
to vary (for example, add or remove enemies from a dynamic enemy pool), a more involved solution (such as a linked list) might be better
suited. But in many situations (such as the vertices in a static mesh mentioned earlier), you just need to store a linear array of data.

This structure has the following general definition:

class arrayoftype
{
type *data;
int size;

arrayoftype(int);
~arrayoftype();
h

The constructor would require an initialization such as:

arrayoftype::arrayoftype(int psize)

{

size=psize;

data=new typel[size];

/I subsequent code can be used to access and initialize each element

}

The destructor would be as simple as:

arrayoftype::~arrayoftype()

{

if (data!l=NULL) delete[] data;
}

An added benefit of static types comes in search speed. If the element's position in the array can be considered a primary search key (in
database programming terms), you get O(1) access time. And there's more: Imagine that you don't have a primary key as the element
position. If you can at least guarantee that elements can be ordered by the value of the primary key (for example, alphabetically or in
ascending numeric value), you can still get O(log2 # of elements) searches, which is better than the linear cost you are used to.
Remember that we need to incur the lowest possible cost in our routines. Linear cost means cost that is linear to the number of processed
elements, whereas logarithmic cost means cost is log(number of elements). Because the logarithm function grows more slowly, we will
prefer this type of cost over linear cost.

To achieve this, you need to use a simple but effective algorithm, which is called a binary or dychotomic search depending on the book
you read. Here is the core algorithm. For simplicity, | will assume you want to search in a fully ordered passport number list.

typedef struct

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

{

int passportid
char *name;
} person;

class people
{
person *data;
int size;
person *seek(int);

k
The seek method returns a pointer to the person if found, oNULL if the person does not exist. Here is the code:

person *people::seek(int passid)
{
int top=size-1;
int bottom=0;
/I this loop stops when we have narrowed the search to just one element
while (top-bottom>1)
{
/I compute the midpoint
int mid=(top+bottom)/2;
/I check which sub-range we want to scan further
if (passid>=data[mid].passportid) bottom=mid;
else top=mid;
}
if (data[bottom].passportid==passid) return (&data[bottom]);
else return NULL;

}

Clearly, using static arrays makes sense in many scenarios. Their maintenance is really straightforward, and access functions are efficient.
However, sometimes we will need dynamic structures that can insert and delete elements at runtime. Then we will need to revert to some
more powerful tools.

Linked Lists

Alinked list is an extension of the static array. Like the static array, it is designed to store sequences of equal-typed elements. But linked
lists have an added benefit: The sequence can grow or shrink dynamically, accommodating a variable number of elements during the
structure's life cycle. This is achieved by using dynamic memory for each individual element and chaining each element to the next with
pointers. The basic implementation of a linked list follows:

typedef struct
{
/I here the data for the element
elem *next;
} elem;

class linkedlist
elem *first;
elem *current;

k

Notice how we keep two pointers, one to the first element in the list (which we will not move) and another to the current element, which we
will use for searches and scans in the list. Clearly, there is no way of performing a random access to a given position unless you loop
through the list until you reach the target element. Thus, the linked list is especially well suited for sequential traversals, but not so much
for random access.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Linked lists are superior to arrays because they allow us to resize the data structure as needed. On the other hand, there are two potential
issues with this structure. First, it requires some care with memory allocation to make sure leaks do not occur. Second, some access
routines (searches and random reads) can be slower than with arrays. In an array we can use direct access to any position. From this
direct access, some clever algorithms (such as dychotomic searches) can be implemented on arrays. But in a linked list, we must use
pointers to access elements sequentially. Thus, searches are linear and not logarithmic in cost.

Deletions are also a bit more complicated. We would need a pointer to the previous element in order to fix the pointers in the fashion that
is depicted in . This can be solved in search and delete routines by always storing the required pointer to the previous element.
This works fine with elements in-between, but requires a specific routine to delete the first element in the list, which does not have a
"previous." A different, more popular approach is to use doubly-linked lists.

Figure 3.1. Linked list.

Doubly-Linked Lists

A doubly-linked list is a variant of the regular linked ljst that allows bidirectional scanning by providing, for each element, both a pointer to
the next and a pointer to the previous element (see . This way some routines, such as the deletion routine, are easier to code
at a higher memory footprint due to the added pointers. The new data structure could be defined as:

typedef struct
{

I here the data for the element
elem *next;

elem *prev;

} elem;

class linkedlist

elem *first;
elem *current;

k

Figure 3.2. Doubly-linked list.

> e
<« = |

Doubly-linked lists offer easier insertion and deletion because we can always access both the previous and next elements to perform
pointer reassigning. On the other hand, insertion or deletion at either endpoint is a special case because we can't access the next element
(in the last case) or the previous one (in the first case).

But what if we want to store a sense of order so we know when each element was inserted?

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Queues

A queue is a variant of the linked list. The main difference is that insertions to the queue are always performed at the end of the list, and
access to the elements is limited to the element at the beginning (see. This way a software queue resembles a real-world
gueue, such as a supermarket waiting line. Customers join the line (hopefully) at the end, and only the customer at the beginning is
effectively paying the cashier.

typedef struct
{
/I here the data for the element
elem *next;
} elem;

class queue
{
elem *first;
elem *last;
void insertback(elem *);
elem *getfirst(elem *);

h

Figure 3.3. Queues.

> - -
Insertion Extraction
point point

Queues are extremely useful for a variety of applications. Generally speaking, queues are used to store lists in chronological order:
messages received in a network connection, commands given to a unit in a real time strategy game, and so on. We will insert elements at
the end, and extract them in the beginning, thus preserving the order of arrival. This list can be either variable or fixed in size. Fixed-size
gueues are usually implemented via circular queues and are used to store the N most recent elements. New elements overwrite the oldest
ones.

A popular use of circular queues can be found in many 3D games. Imagine that you want to paint the footsteps of your character or bullet
marks on the walls. You can't afford to paint lots of these elements because it would clog your rendering engine. So, you decide to paint
the last N. Clearly, this is a perfect scenario for circular queues. As the queue gets filled, older elements will be deleted, so only the last
footsteps will be painted.

Stacks

A stack is another variant of the linked list scheme. This time, though, elements are inserted and popped out at the same end of the
structure (see This way, a last in, first out (LIFO) behavior is implemented. Stacks thus mimic a pile of paper. The last piece of
paper put on top of the list will be the first to be taken out. Here is the code structure for a generic stack:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

typedef struct

{

/I here the data for the element
elem *next;

} elem;

class stack

{

elem *first;

void push(elem *);
elem *pop();

}

Figure 3.4. Stack.

Extraction
point

Insertion
point

Stacks are useful in situations where you want to access elements in a geometrically meaningful way: inventories, items dropped to the
ground, and so on. Stacks are also used in those cases where newer information makes old information less relevant, as in a cache. The
LIFO behavior gives priority to newer elements.

Deques

When using both a stack and a queue, data structure is sometimes a waste of code, especially considering that both structures are
extremely similar (with the exception of the points of insertion and deletion). A popular alternative to having two separate structures is to
have a single object that encapsulates both the queue and the stack. This is called a deque (double-ended queue), and it allows bothpush

and pop operations to be performed at both endpoints (se. Queues and stacks are so similar internally, that it makes sense to
have a single structure that can handle both behaviors.

Figure 3.5. Deque.

Extraction Extraction
point point

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

—» @ > @

Insertion Insertion
point point

The profile for this new data structure is as follows:

typedef struct
{
I here the data for the element
elem *next;
elem *prev;
} elem;

class deque
{
elem *first;
elem *last;
void push_front(elem *);
elem *pop_front();
void push_back(elem *);
elem *pop_back();

k

Notice how we have chosen to implement the deque as a doubly-linked list. Although this is the most popular alternative (remember that
we need to delete elements from both sides), some clever coding techniques allow deques to be implemented as simple linked lists, with a
significant saving in pointers. It is also interesting to remember that being both a first in, first out (FIFO) and LIFO structure, we do not
provide any member operation to scan the list or access elements other than the extreme ones. We will never perform random accesses.
On the other hand, it is useful to have an extra integer attribute that holds the number of elements currently being held by the deque so we
have a size estimate. This is a popular query, which can be implemented easily by initializing the counter to zero at creation time and
incrementing its value in each push and decrementing it on eachpop.

Tables

Tables are sequential structures that associate data elements with an identifying key. For example, you could have a table where you
store people's names, identified by their passport number.

Tables can have many registers (sometimes referred to as rows) and also many fields per register (also referred to as columns). Their
main use is in databases, although data-rich games frequently use tables to store anything from weapon types and their characteristics to
enemies.

Tables exist in many forms. In the simplest case, a static array can be considered a table where the position of the element acts as the
key. In this case, the table is single key (there is only one field that can act as the key), and the key is nonrepetitive (a position can only
appear once) and exhaustive (all key values are assigned). This is the optimal case because access time is O(1), and it can be used in
some situations. For example, imagine that you are building a role-playing game and need to store weapons and their stats. You could
create a table with several columns (for the weight, damage, size, and so on) and use the first one (which will end up as the weapon
position in the array) as an identifier. Thus, the long sword could be weapon number 0, the bow number 1, and so forth. Programmers
must try to implement tables in such a primitive way when possible to maintain optimal performance.

Unfortunately, most tables are more complex. To begin with, it is hard to find exhaustive keys. For example, you can have a list of
customers with their passport numbers, but it is unlikely that all passport identifiers will be occupied. We must divide this problem into two
separate contexts, each with a different solution. Will the data be mainly static, and thus insertions and deletions will be nonexistent (or

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

very seldom), or is the table going to involve frequent structural changes?

In static cases, sorting by key and storing data in ascending order in a static array can be a good choice. You can still access data at
O(log2 number of elements) by using binary searches. If you need to perform an insertion, you will definitely need to resize the array and
make sure the new element keeps the array sorted. Deletions also need array resizing, but overall, both operations can be performed in
0O(n) cost. Although these operations are rare, the structure is still quite efficient.

Hash Tables

A more involved structure can handle both static and dynamic data as well as nonexhaustive keys. Its downside is more memory overhead
and slightly more complex coding. The structure is called a hash table, and its main feature offers nearly constant access time for element
search, insertion, and deletion.

A hash table (depicted in) consists of a data repository that effectively holds the table data, coupled with a function that
transforms input keys into pointers to data in the repository. The hashing function "scatters" keys uniformly in the repository space (hence
the name), making sure available space is occupied in a homogeneous way. Hashing functions are not magic, however. They provide us
with a shortcut to data, but sometimes we will need a bit of processing to reach the element we are looking for. Let's take a look at an
example based again on a list of people identified by passport number. We will begin by allocating the following structure:

class hash_table

{
dlinkedlist data[100];

void create();

elem *seek(int key);

void insert(elem *el);

void delete(int key);

dlinkedlist *hash_function(int key);

k

Figure 3.6. Hash table.

Key '

valua Hash : |
= ' _—
function | |

w

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In this example, our hash table will be implemented as an array of doubly-linked lists. The hash function then converts any input key into a
pointer at the beginning of one of the lists, where elements are really stored. Here is the source code for the hash function:

dlinkedlist *hash_table::hash_function(int key)
{

int pos=(key%?2100)

return &data[pos]

}

Notice how the hash function simply selects the last two digits of the password and uses them to select the linked list where data will be
stored. This choice is not, however, trivial. Programmers must select hash functions that scatter data as uniformly as possible, or access
time will degrade in those table positions holding more data than others. | have thus assumed that the last two digits in a passport are
basically randomly distributed, so using them as a hash function makes sense, whereas selecting the first two digits would probably yield a
poorer distribution pattern.

Notice also how hash functions do not really provide direct shortcuts to the element we are looking for. They only point us in the right
direction because there might be more than one element in the list. We need to perform a linear search in this (hopefully small) list to find
the element we are looking for. Selecting the right array size and hash function is essential to guarantee nearly O(1) access time. If we fail
to do so, the table will become saturated, and performance will drop rapidly.

Hash tables are quite popular in mainstream applications that need to perform searches in large data banks. Although memory hungry,
they can cut down access times dramatically. For example, imagine that you need to hold about 10 million registers of people by their
passport number for a government application. By extending the previous ideas, we could use a larger array (say, 10,000 entries long) and
hash with passport modulo 10,000. The average list length would end up being approximately 1,000 units. Now, compare scanning a list
of 1,000 units with lists of 10 million. Additionally, you can increase or decrease search speed at will just by scaling up the data structure.
Obviously, there is a downside to all this. You must be ready to purchase lots of memory because a larger array of doubly-linked lists
clearly needs lots of pointers. Assuming you use 32-bit pointers, a 10,000-unit long array with each entry storing a 1,000 element
doubly-linked list occupies for each list:

1,000 elements consisting of two pointers each, plus a variable amount of data (say, 100 bytes): totals 108,000
bytes per list

Then, the whole structure needs 10,000 lists and 10,000 pointers to the first element. The grand total is

10,000 * (108,000 + 4) = 1,080,040,000 = aprox. 1 GB.

Now, a static array holding the entire database, but without the hash table overhead, would occupy 10 millionx100 bytes, for a grand total
of 1 billion bytes. If you compare both quantities, you can get an approximation of the hash table overhead:

1,080,040,000 / 1,000,000,000 = the hash table needs an extra 8,004 % storing
space.

Clearly, data structures holding large records will have less overhead because the size of the pointers will slowly become negligible. On
the other hand, lightweight structures are not very suitable for hash tables (in terms of memory footprint, not in terms of speed) because
the list pointers can significantly add to the memory use.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Multi-Key Tables

Let's imagine for a second that we need to create a table that we will access by either of two different values efficiently. For example, we
might have a table of people that we want to access by passport number or by name (I will assume no two people have the same
name).

We could decide which of the two keys is more important, and then prioritize that key, making it a hash table or an ordered list. But what if
we really need to access the table using both keys? The best option here is to use two hash tables (one per key) connected to
doubly-linked lists that can be traversed horizontally (for the first key) or vertically (for the second). Take a look atfigure 3.7 to better
understand the notion of vertical and horizontal in the preceding example.

Figure 3.7. Multi-key table.

o> » >
& A
Hash :
function 1)
Key > —)—|
value
1

Key Hash
Value 2 function 2

This way both keys can benefit from the speed gain found in hashing techniques. Note, however, that this choice is not for the faint of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

heart. Coding the double hash table can be a complex task because each element is part of two lists, and insertions and deletions get a bit
more complex. Also, remember that you will be incurring additional memory overhead for the second table because you will need extra
pointers and an extra array to handle the new key.

Trees

Atree is a data structure consisting of a series of nodes. Each node holds some relevant information as well as pointers to other nodes in
the tree. What makes trees different is the way these node pointers are laid out. Starting from a root node, each node has pointers to
nodes that are "descendants" of it. The only restriction is that a given node must only have one direct father (except for the root node,
which has none). Thus, a treelike structure appears.

Trees are often approached using a nature-like metaphor: root, branches, leaves, and so on. But this is seldom useful when trying to
explain what trees can be used for. It is better to think of a tree as a road that divides itself all the time, where each final destination can
only be reached through a single path (due to the single parent condition)—no loops, no confusing crossings. Just think of it as an
ever-branching road. Clearly, you will discover that trees are great tools to classify large amounts of information. If you are able to find a
classification key, it's all a matter of using the road "divisions" (each node) to ensure that you reach your destination quickly—the faster the
road branches (thus, the more descendants for each node), the faster the access. Let's now examine different types of trees and their
uses.

Tree Types and Uses

Tree types begin with simple binary trees and run the gamut from N-ary trees to tries.

Binary Trees

Abinary tree is a data structure where each node has exactly two descendants. This is usually achieved with two pointers called the left
and right descendant. Leaf nodes (nodes that do not have descendants) still have two pointers, but they are initialized to NULL values to
indicate that no further descendants exist. Data in trees is stored in each node, although some types of trees restrict this in some
ways—data is held only at leaves, only at nonleaves, and so on.

The general data structure is

typedef struct
{
tree *left;
tree *right;
I/l here goes the real data from the node
()

} tree;

Binary trees are widely used in a variety of contexts. Their branching nature makes them ideal as classification devices with logarithmic
search time. Each branching divides the search space by a factor of two, granting speedy searches. All we need to do is classify
information stored in the tree according to whichever criteria we might need: numeric, spatial, and so on.

As an example, we can implement a Binary Search Tree (BST), which is a tree data structure that is used to speed up element searches.
A BST is just a regular binary tree with the following added rule:

For each node in the tree, the key value of all elements in the left subnode must be smaller than the key value of all
elements in the right subnode.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This way we can scan the tree quickly, as in a binary search. The added benefit is that the tree is dynamic in nature, so we get O(log2n)
access time with dynamic size.

But BSTs can degrade when the tree is unbalanced. Some leaves are much farther from the root than others, so not all branches have the
same height.

As shown in , an unbalanced tree can spoil the access time to make it linear, even if it complies with the BST definition.

Figure 3.8. AVL tree.

So, a new type of binary tree must be introduced. This tree is called an AVL-tree (AVL are the initials of the discoverers of the data
structure). An AVL tree is a BST with the additional restriction that for every node in the tree, the depth (in levels) of the left subtree must
differ at most by one unit from the depth of the right subtree. Take a look at . for an example. AVL trees keep the tree balanced,
ensuring optimal access time. But efficiency comes at a price. Insertions and deletions into the tree must be done carefully, rebalancing
the tree in the process to ensure that the new tree is still an AVL. This rebalancing is achieved by a recursive series of branch shuffles.

We have seen how a binary tree can be a very good structure to use for classifying items. But that classification does not necessarily need
to be based on a scalar or alphanumeric value. A binary tree can be best described as a spatial sorter. Once fed with spatially relevant
data such as level geometry, it can effectively classify it, sort it, and so on, according to different criteria: which triangles are closest to the
player, which convex cells are there, and so on.

We will call this specific tree a Binary Space Partition (BSP) tree. BSPs are very popular in game development. For example, theQuake
engine is built using them, as are all of id Software's titles since Doom.

But many other games use them frequently because they provide a very good spatial sorting behavior. Here the idea is to use each node
to recursively split the level geometry in half by using a splitting plane. If the planes are chosen properly, the resulting data structure will
help us ask questions such as which triangle is closest/farthest, how many convex areas are there in this geometry, and so on. BSP trees
will be covered in detail in, "Indoors Rendering."

N-ary Trees

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Binary trees are used to classify data. But sometimes more branches will lead to better classification power. Here is where N-ary trees can
be useful. Complex problems are hard to model, even with a binary tree. N-ary trees can use fixed or variable branching factors. In a fixed
branching tree, every node in the tree has the same number of descendants. Quadtrees and octrees have branching factors of 4 and 8 as
you will soon see. These trees are easier to code at the cost of reduced flexibility. In a variable branching tree, such as a trie, each node
can have a different number of descendants. This is harder to code because we need descendant lists instead of fixed pointers, but it
provides an additional degree of flexibility in some cases. A trie used as a dictionary can have a branching factor between 1 and 26
depending on the node.

Quadtrees and Octrees

Quadtrees and octrees are the natural extension of BSP trees. They are fixed-branching, four- and eight-connected trees, respectively. A
guadtree is useful in 2D scenarios, whereas an octree is designed to work on 3D data sets. Quadtrees are_used in many areas of game
programming. In the next chapter, we will see how they can help us perform fast spatial queries, Whereas., "Outdoors
Algorithms," deals with uses of quadtrees for terrain rendering.

The construction scheme for both is identical, but | will focus on a quadtree now for the sake of simplicity.

A quadtree is built by dividing the incoming 2D data set into four quadrants by using two centered, axis-aligned cutting planes. All four
guadrants are thus identical in size. Geometry that crosses quadrant boundaries can either be divided or stored in the quadrant where its
major part exists, thus creating different quadtree variants. What should be noted, though, is that not all four quadrants will contain the
same amount of data—only in a perfectly homogeneous scenario would this be the case. Thus, quadtrees apply the subdivision method
recursively, building tree nodes in the process until a threshold is met. Thresholds are usually expressed in the form "each leaf node can
contain N elements at mo;f " TL ff',n take alternative approaches. You can see a graphic representation of a quadtree along with its
resulting tree structure in figure 3.9

Figure 3.9. Quadtree, octree.

-
—
o

Octrees are the 3D counterpart to quadtrees. Instead of dividing each node into four subnodes (usually dubbed front-left, front-right,
back-left, back-right), octrees use three axis-aligned and centered planes to create eight octants.

Quadtrees and octrees are powerful tools for visibility computation. They can be used both in | outdgors scenarios to quickly
determine visible regions of the game world. So, we will leave more in-depth explanations for Chapters 13 and [L4, where we will explore
some of their properties and implementation details.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Tries

Atrie is an N-ary tree where each node can have a variable number of descendants. Each node represents a character or digitin a

sequence, so each unique path from the tree root to one leaf node represents a unique key value. It is a very specific data structure whose
main use is the fast classification and validation of data, which can be represented as character sequences, ranging from VISA numbers to
mrd dictionary. For example, a trie that stores the words "cat," " coalition,

cow, chamber," and "chameleon” can be seen in

Figure 3.10. Trie.

990000@@

©—>0—>W
B—>O—>E—>0—>N
H—>O—>M—>C)—>E—>F®

Tries offer very fast access time, which is sustained as the structure gets larger and larger. Because the branching factor is very high, we
can ensure rapid convergence. For a word N characters long, only N levels are visited; each one branching to between 1 and 26
descendants. Thus, cost ranges from an extremely degenerate case of O(number of letters) for a trie storing only one word to O(log26
number of letters) for a trie that stores all possible letter combinations. For numeric tries, O(log10 number of digits) is the cost of a full trie.

As for insertions and deletions, they are just variants of the core search routine. To delete a sequence, we must search for it; if we reach
its end node (meaning the word is effectively in the trie), we must backtrack, deleting all the ascendant nodes until one of them has a
descendant other than the one we are deleting. This way we ensure that we do not delete any other sequence as a side effect. You can
see this in action in. Insertions are similar. We begin by searching the sequence. In the process, we will reach a node where
no possible advance can be made. We have identified part of our word, but the rest is simply not there. All we have to do is create a
descendant subtree that contains the required characters to complete the new sequence. All in all, it seems obvious that both methods
come at a worst-case cost of O(number of characters) after the initial search has been completed.

Figure 3.11. Deletion in a trie.

®B—>D
©O—>0—W
B—>O—=>O—>O—>0O—>0—>W

Deleted sub-trie

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Tree Traversal Operations

Given the branching nature of trees, traversal cannot be performed in a sequential manner as in a list or table. We need some specific
traversal routines that help us access data held by the tree in an intuitive and efficient way. These operations are the addition and
subtraction equivalents for trees.

The most usual operation we will perform is the ordered traversal, which is a recursive scan of the whole tree using classification criteria.
There are three classical traversal algorithms: pre-order, in-order, and post-order. They differ in the order in which they visit a node and its
left and its right descendants.

In pre-order traversals, we first visit the node itself, and afterward we recursively scan the left and right subtrees using pre-order traversal.
Graphically speaking, it involves scanning the tree visiting left subtrees prior to right ones and outputting the nodes as we "see" them in the
first place.

In-order traversal visits the left subtree, then the node itself, and then the right subtree. It is equivalent to scanning a tree in the usual
fashion (first left subtrees, then right) and outputting the nodes only after all the left subtree has been outputted.

The last traversal is the post-order, which is simply visiting the Ieft and right subtrees, and only when these traversals—each one recursive
in nature—have been performed, output the node itself. In_practical terms it means visit in the usual way and output the node only if both
subtrees have been fully outputted before. Take a look at 4 to better understand each traversal method in a real example.

Figure 3.12. Pre-order, in-order, and post-order.

Prearder: 10, 3,1, 7,5, 9 15,18, 16, 21
In order: 1,3,5 7,9 10,15, 16, 18, 21
Postorder: 1,5,9,7, 3,16, 21, 18, 15, 10

Priority Queues

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

A priority queue is an extension of the queue model that incorporates a sense of priority. When newer elements are inserted, they can
"pass"” in front of those with lesser priority. Thus, if a top priority element is inserted in a very long queue, all the other elements will be
displaced by it.

Priority queues are great for representing commands. You can use them to give orders to troops so they prioritize them, and so on.

They are also very useful in sorting algorithms. In fact, one of the fastest algorithms uses a priority queue implementation called aheap to
achieve near-optimal O(n*log n) results. The algorithm, dubbed heapsort, basically introduces the elements in the queue one by one, and
then extracts them. As each insertion reshuffles the queue using the priority, the elements are extracted in order.

Priority queues can be implemented in a variety of ways. As a first but not very efficient solution, you could choose to implement them as a
standard queue (enriching each element with priority information). Then, the insert() routine should be rewritten, so the elements inserted
at the back are effectively pushed forward to the position their priority assigns them to. This approach would yield a not so stellar O(n)
performance for each insertion.

A better alternative is to use a heap (see), which is a priority queue implemented as a static array with some clever access
routines. To understand heap structures, we must first learn a bit about ordered binary trees. These data structures are defined so that the
descendants of each node have inferior value (or priority) than the node itself. The tree is complete, meaning there are no leaves with only
one descendant (except for the ones at the end of the tree). Then, the tree is used to sort elements, so high value elements lie closer to
the top and, within a specific level, leftmost nodes have higher priority than rightmost nodes. Thus, if a high-priority element is inserted into
the tree, a series of level swaps will be performed so the new element is "promoted," and previously inserted elements are pushed to
lower levels of the tree. The new element will reach its destination level in a O(log2 number of elements) time, because the logarithm is the
measure of the number of levels in the tree. Then, some minor rehashing inside the level may be needed to ensure intralevel ordering is
kept as well.

Figure 3.13. Heap.

albj|c d e

A heap is nothing but a binary ordered tree implemented in an array.

The first position of the array is the root, and subsequent positions represent the levels of the tree from root to leaves, and from leftmost to
rightmost node. This representation has an advantage: Given an array location (and hence a tree node), we can compute the position of
the ascendants and the descendants with a simple formula. If you think about it for a second (and maybe do a couple drawings), you will
discover that given a node at position nin the array:

® The ascendant is at position n/2, truncating if needed.
® The left descendant lies at the position 2*n.

® The right descendant lies at the position (2*n)+1.

These equations make access more efficient and ensure that a heap can insert and remove elements quickly. The only downside is that
the priority queue that results from the heap structure will always have a fixed length for the static nature of the array. This is rarely a
problem, because most situations requiring a priority queue can actually restrict the maximum number of elements to be queued at any
given time.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Graphs

Agraph is a data structure composed of a series of nodes and a series of connections between them. We can navigate through the node
list not by using a sequence, but simply by advancing through the connections of each subsequent node. These connections are formally
called transitions because they allow us to move from one state to another.

Graphs are a very extensive subject on their own, defining a whole area of knowledge called Discrete Mathematics or Graph Theory. They
provide very intuitive ways of representing relational data, such as those in the following list:

® | ocations on a map with roads and traveling distances
® State machines with conditions to change from one state to another
® People with relationships between them (friendship, and so on)

® Board game configurations with possible moves

Anything that involves a group of entities and relationships between them can effectively be represented as a graph. But there is more to
graphs than representing data: Powerful analysis algorithms have been developed, which scan graphs to calculate valuable results, such
as:

® \What is the shortest route (and how long will it take) from city A to B?
® \What is the chance of a state machine reaching a given state?
® Given two people in a group, do they have any friends in common?

® |nachess game, what is the best move to achieve victory?

Graphs are so broad that many different classification criteria exist. To begin with, graphs can be directed or nondirected. In a directed
graph, a transition between two nodes specifies which is the target and which is the destination, so each transition can only be traversed in
one of two ways. A transition in a nondirected graph can be traversed in both ways equally. A road map, for example, would generally be
nondirected, whereas a street map is often directed because some streets are one-way only. Another classification that is sometimes
handy distinguishes between cyclic and acyclic graphs. A cyclic graph allows you to visit the same node twice by using the available
transitions and their directionality. In an acyclic graph, you can only visit the same node once. Because a nondirected graph is always
cyclic, this adjective is usually reserved for directed graphs. All street maps are cyclic (it might take some time, but you can return to your

starting point in any journey). As an example of noncyclic_graphs. think of a river with transitions emanating at the top of different
mountains until the river reaches the sea. Take a look at for graph examples.

Figure 3.14. Graph examples.

H20A¢

Durecled Directed Nondirected
cwelic acvcdic

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

— —— -

The river will also exemplify the last classification. Some graphs allow you to reach a given node through different paths, others don't. For
example, a river can have an island that water must surround. Obviously, we can traverse the island by both sides. Thus, this graph,
although directed and acyclic, would allow us to reach a node through different paths. On the contrary, many other graphs (all trees, some
road maps, and so on) are purely branching in nature, so each node can be reached through exactly one path.

By using all the preceding classifications, we can see that most of the structures we have seen so far are in fact instances of graphs. For
example, an acyclic graph consisting of a single chain of nodes with no repetitions is a linked list. If we make it directed, we can easily
identify a stack or queue. Moreover, a directed, acyclic graph with no repetitions is a N-ary tree, and so on.

Interest in graphs is spread across many science disciplines, and it s i)ssible to cover them all here. Thus, we will concentrate on their
application to game development and provide some reading in endix H, "Further Reading," for those interested in the subject.

Graphs are great to use to model spatial information. Each node can represent a location on a map, and transitions represent available
paths between locations. This simple model can be used in many types of games. In a graphics adventure such as the old LucasArts
classics, this is the main data structure holding the map of the world. You can even overload each location with diverse information such as
enemies, music to be played, items to pick up, and so on. You would also implement transitions, not by using logical conditions, but as
hotspots on the screen the user must click in order to advance.

Another use of graphs also has to do with spatial information, but in a way related to Al programming. In a game such as Unreal, graphs
can be used to model the level and thus guide the Al. Unreal levels consist of a series of rooms connected by portals. Clearly, we have our
nodes and transitions well defined once again. This time, we will overload the transition with information about the distance between the
two nodes or rooms. Then, an Al routine can easily use this information as a navigational map to chase the player. All it has to do is
implement a shortest route algorithm between its current position and the player's position. The most popular algorithm for this problem is
called A* and basically builds the graph at runtime, searching for the shortest path (using the transition information) from an initial state to
the end state. The result is a sequence of moves (in our case, of rooms we must visit) in order to reach our destination optimally. The
same algorithm can be used to perform pathfinding in a real-strategy game, with soldiefs avoiding obstacles to reach their destination.
Because A* is one of the cornerstones of Al programming, we will explore it in detail in , "Tactical AL"

In addition, graphs are also useful to represent behavior in artificial intelligence. One of the main technigues to represent what characters
do and think, which is called state machines, is nothing but a graph with nodes representing actions the characters can be engaged in and
transitions as changes in activity for the player. This is a very simple formalism used by countless action games. State machines can then
exploit the power of graph analysis algorithms.

Team LiB |

(o)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

The Standard Template Library

Having a deep knowledge of all the fundamental data structures and algorithms is key to becoming a successful game programmer.
However, coding these structures each time you need them is prone to introduce errors, and thus is a risky process. Let's face it, most
game programmers could not write a linked list from scratch and get the code right on the first attempt.

Two solutions have been proposed. Some companies have developed in-house code bases that encapsulate many fundamental and
sophisticated classes. These classes are built through the years, and thus are stable, well-tested frameworks from which a game can be
derived. An alternative is to use a ready, standard set of classes that provide good performance and are rock solid. This is precisely what
the Standard Template Library (STL) is all about.

The STL was introduced in the 1990s as a collection of classes that made OOP easier. It includes lists, queues, hash tables, and many
other exotic structures and their access methods. You can trust the STL's code to be error-free because it is used daily by thousands of
programmers worldwide. Any error gets fixed quickly, so you can trust the code base to be stable. Moreover, the STL is very efficient.
The fastest access algorithms are built into the system, so you can trust the library. In addition, the STL provides flexibility. All classes
are built using templates, so you get all the benefits of generic programming. You get generic lists that you can adapt to any element, so
the code size also diminishes.

For those not familiar with generic programming, it is a C++ mechanism that allows a class to be parameterized. You can define a
generic list, which accepts as a parameter its base type, so the same list can hold a series of integers or a series of complex structures.
Another advantage of the STL is coherence. Most data structures are accessed in a similar way, which makes programming more
abstract because you don't need to know all the implementation details of the different classes. The access method is usually
implemented via iterators, which provide a convenient way to scan the structures.

Use of the STL spread rapidly in the mainstream application development segment. Databases, word processors, and so on take
advantage of it frequently. In game development, however, it suffered the "Not Coded Here" syndrome. Developers are rarely
enthusiastic about using anyone's code but their own, so the loss of fine-grained control that the STL implies was not very welcome in the
beginning. But this reminds us of the old days when C++ was rejected because it was slow, or even earlier, when anything not-assembly
was considered a sin. Game developers naturally care a lot about performance and control, and thus introducing any technology takes
some time. Luckily, more and more game developers today are embracing the STL as a core technology, and we see less and less
developer time being devoted to coding the ever-present linked list or binary tree.

To make life even easier, today the STL is built into many standard compilers such as Microsoft's Visual C++ or Borland's C. Besides,
many free implementations of the STL exist (made by companies like Hewlett-Packard or Silicon Graphics).

Now | will provide an overview of the STL structures and philosophy. For the rest of the book, | will combine the STL with non-STL code,
S0 you can gain complete understanding of the different alternatives available.

Containers

The STL includes many container classes, which are where user data is generally stored. These containers are all templates, so you can
adapt them to any type of data. The containers provided by the STL are vector, list, deque, set, multiset, map, multimap, hash_set,
hash_multiset, hash_map, and hash_multimap.

Vector

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

A vector is a sequence that allows random access to elements: O(1) insertion and deletion of elements at the end of the vector and
O(number of elements) insertion and removal of any other element. Vectors can be dynamically resized, and memory management is
automatic, so you don't have to call malloc. Here is a simple integer vector example:

vector<int> v(3);
v[0]=0;

V[1]=1;

v[2]=2;
v.insert(v.begin(), 5);

This code produces a vector such as:

v[0]=5;
v[1]=0;
v[2]=1;
V[3]=2;

Note how the insert routine effectively resizes the vector, hiding all memory management details from the user. Vectors have dozens of
access functions, which perform tasks such as sorting, reversing order, searching data, and so on.

List
An STL list is a doubly-linked list, so it supports bidirectional traversal and constant-time insertion and removal (that is, once we are at

the insertion point). Here is a simple list in action:

list<int> I;
l.push_back(31);
l.push_front(47);
linsert(l.begin(),35);

In , you can see a diagram of the list and its contents after this sequence is executed.

Figure 3.15. STL list example.

Step 1: —— Null

Step 2: ——» (31— Null

Step 3: ——|47+—>|31|—— Null

Step 4: —»|35—>»{ 47— 31— Null

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Deque

A deque is useful for implementing both queues and stacks. It provides constant-time insertion and removal from both the beginning and
end as well as linear time insertion and removal for elements in-between. A deque used as a stack will insert and remove elements from
the same end of the structure (be it the beginning or the end), whereas a deque used as a queue will perform both operations on
opposite ends of the sequence.

Here are two code samples. The first uses a deque to implement a stack, the second a queue:

deque<int> s;
s.push_back(1);
s.push_back(2);
s.push_back(3);
s.push_back(4);
s.push_back(5);
while (!s.empty())
{
printf("%d\n",s.back());
s.pop_back();
}

This code sequence produces the following output:

P N W b~ O

The following code is a queue example. Notice how we only need to make minimal changes to the preceding code:

deque<int> q;
g.push_back(1);
g.push_back(2);
g.push_back(3);
g.push_back(4);
g.push_back(5);
while (Ig.empty())
{
printf("%d\n",q.front());
g-pop_front();
}

The output will reflect the FIFO behavior we expect from a queue:

g b~ W N B

Sets and Multisets

Sets and multisets are sorted, associative containers. These data structures are basically sequential in nature, so they hold a series of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

similarly typed data. We can have an associative container of integers, character strings, and so on. The main difference between
sequential structures (lists, vectors, deques) and sets is that sequences are optimized for access (insertion, removal, and so on),
whereas sets are optimized for logical operations. In a set, you can perform a query like, "Which names on set A are also on set B?"
efficiently. This query is usually performed by keeping the elements ordered, so inserting elements in the set cannot be performed in a
random way.

Both sets and multisets are simple in nature. This means that the element they contain is also the key value for a search or logical
comparison. You can have a set of strings, but you cannot have a set of structures each with a string as key. More complex containers
are required for that.

The difference between a set and a multiset is simply that sets only allow an element to appear once in the set, whereas multisets allow
different elements in the same set to be identical.

Sets and multisets are usually accessed with the functions set_union, set_intersection, set_difference, and set_includes. The first three
functions are really straightforward:

® union Returns a set with the elements that are in any of the incoming sets
® intersection Returns a set with the elements that are in both incoming sets

® (ifierence Returns a set with the elements that are in set A but not in set B

The function includes is a search method that scans the incoming set to try to find a specific element.

Map and Multimap

A map/multimap is a generalization of sets especially designed to model relationships between pairs. A map contains a set of key values
and a set of generic data values, which the key values are coupled with in a one-to-one relationship. As an example, here is an STL
map:

struct Itstr

{
bool operator()(const char *s1, const char *s2) const
{
return stremp(s1,s2)<0;
}
h

map <const char *,int, Itstr> ages;

ages[Daniel]=45;
ages[Alex]=12;
ages[Cecilia]=32;

Here we are storing a group of people along with their associated ages. As with regular sets, we can perform logic operations and
searches on maps, which are optimized for this purpose. We can also traverse the structure using iterators to list the elements it
contains.

Hash_set, Hash_multiset, Hash_map, and Hash_multimap

Sets and maps are implemented in a way optimal for logical operations and ordered traversal. Elements in the structure are permanently
kept in ascending order so most access operations are logarithmic in cost. But for random access to data (by key value), using hash
tables can provide a speed boost. In many cases a hash table provides quasi-constant access time to data held within. Thus, a hashed

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

variant of all associative containers is provided by the STL.

Although different implementations of the STL might offer slightly different behaviors, hashed versions of sets and maps are generally
more efficient if you plan to access the data in a random way, directly by seeking by key value. Under this access mode, a hash table
provides faster access than a linear structure. But if you plan to list the elements and thus traverse the ordered structure, the regular sets
and maps are recommended because they provide sequential access. This consideration is especially important for larger structures,
where a small speed improvement might in the end provide a significant time savings.

Again, the difference between a map and a multimap is simply that maps need each element to be unique (in key value). Multimaps are
less restrictive and allow multiple identical keys to coexist.

Iterators

An STL iterator is a generalization of a pointer. Iterators provide a clean, memory-safe method of traversing STL data structures. For
example, if you need to print all the elements in a vector, you can do it by using an iterator:

vector<int> v(3);
v[0]=0;
V[1]=1;
v[2]=2;
vector<int>::iterator pos=v.begin();
while (pos!=v.end())
{
printf("%s",(*pos));
pos.next();

}

Iterators have the added advantage over pointers of being type generic. An STL iterator can be used on most of the STL's data
structures, and most STL algorithms (sorting, searching, and so on) are designed to work with iterators. Also, memory access using
iterators is protected, so you can't move past the end of a list and so on, further helping to reduce errors in code.

A Note on Efficiency

Many programmers do not trust the STL because they think it is slow or inefficient. The reason they think this way is that
the STL's feature set is quite impressive, and it is hard to believe that those features have been coded as efficiently as a
game programmer would code them. Most programmers tend to think that a specific, well-tailored piece of code should
perform better than any standard library call. But this is not true, or at least not totally. The STL is a community effort such
as Linux, and thus the code is constantly in a process of improvement. As new, faster ways to code appear, they are
quickly implemented into the library. It is true, however, that for specific purposes, a dedicated game programmer could
effectively come up with a more efficient implementation. But forget about coding for a second, and think in terms of
product development cycles. A programmer constructing an extremely efficient list manager might outperform the STL's
lists by 10 percent, but a programmer using the STL will have a list up and running in 10 minutes, even before the other
programmer has typed a single line of code. The evolution of game programming tools is a progression toward higher
abstraction tools (at the cost of minimal speed decreases). We could still code in pure assembly, and quite likely our code
would be faster and tighter, but it would take ages for anything decent to surface, be debugged, and so on. It simply does
not make sense to try to code the fastest code in the world anymore. It is better to try to come up with the fastest
implementation given a fixed time frame, and the STL can definitely help you out with that task.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In Closing

Data structures and algorithms most likely constitute the largest field in computer science. As such, there are many places you can go to
look for information. A few of those places are listed in Appendix H. But there are some web-based information sources that have proven
priceless through the years. At the National Institute of Standards and Technology (NIST), you can access an online data structures and

algorithms database that provides information concerning not only the ires mentioned in this chapter but thousands more. It is your
one-stop-shop for knowledge in this area. The NIST web site is at .nist.gov/dadg.

http://www.nist.gov/dads

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 4. Design Patterns

"Always design a thing by considering it in its next larger context — a chair in a room, a room in a house, a house
in an environment, an environment in a city plan."

—Eliel Saarinen, "Time," July 2, 1956

KEY TOPICS

Design Patterns Defined

® Some Useful Programming Patterns

Usability Patterns

® | Closing

Object-oriented programming (OOP) was a significant advance over classic structured coding. Bigger programs could be handled
because code organization was greatly improved. But programs kept growing, becoming too complex and hard to manage. Like
structured programming before it, OOP was quickly surpassed.

A series of new techniques have been proposed to increase project complexity once again and keep programs organized. Tools like the
Standard Template Library (STL) have been a huge leap forward, because the programmer can now trust a series of components to do
part of the job for him. These components are context insensitive and can be used on anything from a spreadsheet to a 3D game. Thus,
the coding team can concentrate on the part of the code that actually defines the application functionality by using STL as building
blocks.

In recent years, a new technique has surfaced, which is somewhat similar to STL in the sense that it allows you to use predefined
components. But its scope and ambition is much broader. Complete sections of your program, not only the base classes, can be
substituted with prebuilt components, thus saving lots of man-hours and headaches.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Design Patterns Defined

Design patterns (DPs) are proven solutions to well-established software engineering problems. As computer science has evolved, some
problems have become classic and tend to appear frequently in many different contexts. As the years have gone by, different solutions
have been proposed, and some of them have finally been accepted as optimal for their efficiency, elegance, and robustness.

A DP is one of these solutions. Specifically, a DP is a complete description of the problem and its respective solution both in terms of
macro level design and implementation, so a programmer can read the pattern and solve the problem by using the optimal solution.
Obviously, many man-hours can be saved this way. But there is more to a DP than coding faster. By using a well-known DP, a complete
section of the application's code (often comprising many classes) is substituted with the recommended implementation of the pattern,
thus becoming a black box that we can trust, and to a certain extent, forget about.

So, DPs are an entity of higher abstraction than simple classes or even the STL. They are complete subsystems, sometimes composed
of several classes ready and tuned for a specific use. It all boils down to having an eye for detecting these classic problems in your code
and being able to solve them accordingly.

DPs are often presented in listings, so the application analyst can browse and search for a pattern for whichever problem he or she might
be facing. Some patterns are of very general use, whereas others are more restrictive. Some of them are even designed for common
problems regarding computer game coding, and these are the ones we will be emphasizing for the rest of this chapter. However, let's not
forget that games are just software applications, and sometimes they are not that different from other applications like spreadsheets or
drawing programs.

There are many types of DPs. The two that are most useful to game developers are programming patterns, which describe specific
coding problems and their standard solutions, and usability patterns, which deal with interface design, human-computer interaction, and
related concepts. Now we will review some of the most popular patterns in both classes, so you can take advantage of them when
coding games.

Team LiB |

Lhis document was created by an unreqgistered ChmMaagic, please go to http://www.bisenter.com to reqgister it. T

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. T

Some Useful Programming Patterns

Programming patterns include a number of immediately useful solutions, which we will now review one by one. What follows is a listing of
popular patterns, with examples taken from typical game development scenarios.

Singleton

A singleton is a global object for which only one instance exists in the whole application. Most applications, and definitely all games, need
global objects that must be visible from many different classes and scopes. A texture manager, the joystick controller object, and even the
player class are all singletons. We need to have them visible at all times, and we only want to store one of these in memory. Traditionally,
this has been solved in two ways, neither of which is especially elegant. The first one involves passing the said object as a parameter to all
calls requiring access to it. This is inefficient, because an extra parameter must be pushed to the stack every time and makes code harder
to read and follow. The second alternative is to define these objects in a source file and reference them using the extern mechanism. This
way the compiler simply accepts that symbol, and the linker takes care of establishing the binding with the real object that resides in a
different source file. This is a somewhat better technique, but as code size grows, our source files get cluttered with lots of extern
definitions, degrading readability and elegance. Moreover, this solution is dangerous from a functional standpoint. As anyone familiar with
OOP knows, code components need to have maximum cohesion and minimum bindings to other components. Cohesion means a class
should encapsulate all functionality regarding a specific problem or data structure. Binding implies that a class should have little or no
dependencies on other classes, so it becomes an independent and self-sufficient reusable component. This is rarely possible; many
classes use other classes and so on. But externs generate lots of bindings, and in the end, your class diagram will begin to look like a
spider web. Code will be impossible to separate from the rest of the application.

Thus, the solution to the singleton problem is different from those explained earlier. It starts by declaring a class that has only one public
method, which will be used to request an instance of the singleton. All instances actually point at the same structure, so this request call
must create the singleton for the first call and just return pointers to it in subsequent calls. Thus, the constructor is a protected member,
and all outside accesses to the class are done by the instance request call.

Here is the code for a sample singleton:

class Singleton {
public:
static Singleton* Instance();
protected:
Singleton();
private:
static Singleton* _instance;

h
Singleton* Singleton::_instance = 0;

Singleton* Singleton::Instance () {
if (_instance == 0)

{
instance = new Singleton;
}

return _instance;

}

Any class requiring access to the singleton will just create one singleton variable (which will be different in each_case), But all these
variables will end up pointing at the same, unique object in memory. Check out the singleton class hierarchy infigure 4.1

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 4.1. Class hierarchy for the singleton design pattern.

Singleton

singletoninstance

singleton()
~singleton()
getinstance()

Strategy

Sometimes you will need to create objects whose behavior can be changed dynamically. Take a soldier, for example. He might have an
update routine that recalculates all his Al. Imagine that his Al can be one of four types: an Al routine to fight, one to escape, one to stay
idle, and one to follow a trajectory with his squad mates. Now, it would be great from a simplicity and elegance standpoint to have a single
recalc_Al function that could handle any of these strategies internally. A quick and dirty solution would be to store a state variable and use
it to drive a switch construct that selects the proper routine according to the desired behavior. The code would be something like this:

void recalc_Al()

{

switch (state)
{
case FIGHT: recalc_fight(); break;
case ESCAPE: recalc_escape(); break;
case IDLE: recalc_idle(); break;
case PATROL: recalc_patrol(); break;
}

}

But this is not very elegant, especially if there are a number of strategies to implement. Another solution is to subclass the object, so each
one of the derived objects implements one of the algorithms. This solution is simply too complex in practical terms. Here is where the
strategy pattern kicks in. Its goal is to separate the class definition from one (or several) of its member algorithms, so these algorithms can
be interchanged at runtime. As a result, our soldier would have a single global algorithm (the recalc_Al call), which could be swapped
dynamically in an elegant way.

The implementation of the strategy pattern involves two classes. First, there is the strategy class, which provides the strategic algorithm.
This is a pure abstract class, from which specific strategies are derived as subclasses. Second, there is the context class, which defines
where the strategy should be applied and has a member that executes the selected strategy and swaps strategies when needed. Here is
the source code for such a system. The soldier class dynamically changes strategies:

class soldier

{

public:
soldier(strategy *);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

void recalc_Al();

void change_strategy(strategy *);
private:

point pos;

float yaw;

strategy* _thestrategy;
h

soldier::soldier(strategy *stra)

{

thestrategy=stra;

}

void soldier::recalc_Al()

{

thestrategy->recalcstrategy(pos,yaw);

}

void soldier::changestrategy(strategy *stra)

{

thestrategy=stra;

}

And here is the strategy class along with two derived classes:

class strategy

{
public:
virtual int recalc_strategy(point,float) = 0;
protected:
strategy();

I3

class fightstrategy : public strategy

{
public:
strategy();
virtual int recalcstrategy(point, float);

k

class idlestrategy: public strategy

{
public:
strategy();
virtual int recalcstrategy(point, float);

Here is a usage example:

soldier* soldierl= new soldier(new idlestrategy);
soldierl.recalc_Al();
soldierl.changestrategy(new fightstrategy);
soldierl.recalc_Al();

Notice how we have increased both the readability and performance of the system by following this DP. Interfaces are much simpler, and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

the switch/subclassing has been avoided. details what a class structure for this pattern might look like.

Figure 4.2. Class hierarchy for a strategy design pattern.

Client = AbstractStrategy

ConcreteStrategy1 v ConcreteStrategyN

Factory

Modern applications need to create and dispose of objects continually. Whether objects are text blocks in a word processor or enemies in
a hack-and-slash game, a significant portion of your program is surely devoted to creating them on demand and destroying them at the
end of their life cycle. As many programmers work on the same code and applications grow, this creation-destruction code spreads
through many files, often causing problems due to inconsistencies in the protocol. The factory pattern centralizes the object creation and
destruction, thus providing a universal, rock-solid method for handling objects.

Factories usually come in two flavors: abstract and regular factories. Abstract factories are used whenever we need the product to be an
abstract class, and hence we must derive specific products by means of inheritance. This is useful, because we only have a single call,
which returns the abstract product. By creating product derivatives, our class can accommodate a variety of situations. Regular factories,
on the other hand, need one method per type of product they want to build, because there is no inheritance.

For the abstract factory type, the best example would be a central object creator for a game engine—one object that centralizes the
creation of texture maps, meshes, and so on. Here is the source code for such an example:

class Product {};

class Texture : public Product {};
class Mesh : public Product {};
class Item : public Product {};

typedef int Productld;

#define TEXTURE 0
#define MESH 1
#define ITEM 2

class AbstractFactory {
public:
Product*Create(Productld);

3

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Product* AbstractFactory::Create (Productld id)
{
switch (id)
{
case TEXTURE return new Texture; break;
case MESH return new Mesh; break;
case ITEM return new Item; break;
}
}

And a simple calling example would be

AbstractFactory AF;
Texture *t=AF.Create(TEXTURE);

Now, here is a variant without using the abstract class. We somehow lose the elegance of the single create method but avoid using virtual
classes:

class Texture {};
class Mesh {};
class Item {};

class Factory

{

public:

Texture *CreateTexture();
Mesh *CreateMesh();
Item *Createltem();

3

Texture* Factory::CreateTexture ()

{

return new texture;

}

Mesh* Factory::CreateMesh()
{

return new Mesh;

}

Iltem* Factory::Createltem()

{

return new item;

}

In this case, an example using the factory would look something like this:

Factory F;
Texture *t=F.CreateTexture();

illustrates abstract and concrete factories and their products.

Figure 4.3. Abstract and concrete factories and their products.

AbstractFactory
L}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

I

ConcreteFactory1

AbstractProductA

H— i

I |
ConcreteFactory2 ProductAl ProductA2

ProductB1 ProductB2

T
T

AbstractProductB

Spatial Index

As games grow in complexity, the need for fast 3D tests increases as well. Gone are the days of simple objects with few triangles. Today
we are processing several million triangles per second, and too often even the simplest test can become a bottleneck if applied to the
complete data set.

Thus, a spatial index is defined as a DP that allows the application programmer to perform queries on large 3D environments, such as
game levels, efficiently.

Some of the queries handled by a spatial index are

® s there any primitive closer than X units?

® How many primitives are closer than Y units?

Using a naive approach, we can easily derive algorithms with O (number of primitives) cost to solve the preceding problems. The spatial
index, however, offers almost constant cost, meaning that tests like the previous ones require an amount of computation that is
independent of the input data set. That is the main characteristic of a spatial index: It indexes space so that we can perform queries without
examining the whole set.

Spatial indexes can be implemented using different data structures, from the very simple to the very complex. Some solutions will be
faster, often taking a higher memory toll in return. Depending on the specifics of your program, you will need to choose the implementation
that best suits your needs. But from an API standpoint, a spatial index can be seen as a black box that speeds up geometric tests
regardless of how it is implemented internally.

Spatial Index as a List

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The simplest (and slowest) spatial index is a regular linked list. In order to compute any of the queries, we must scan the complete list,
thus having 0 (number of elements) access time. But lists are a decent option in some circumstances. For example, a list could be an
option in those applications that work with small (less than 20, for example) data sets. A classic example would be to store enemies in one
game level (as long as there are not many enemies). In this case, more involved solutions simply do not pay off, because the performance
will be more or less similar (see Eigure 4.4).

Figure 4.4. Traversal cost makes list-based spatial indexes suited only for small data sets.

—= jtem0 item1 = jtem3 itemN

Spatial Index as a Regular Grid

The second implementation of the spatial index pattern involves using a regular grid (explained in the previous chapter) that divides the
space into buckets of the same size.

Then, each bucket holds a linked list of the elements located there. Bucket size can be determined at load time to ensure a good balance
betweep performance (the smaller the bucket, the better) and memory (the smaller the bucket, the higher the memory footprint). Take a
look at Figure 4.9 for a visual representation of such a grid.

Figure 4.5. A diagram showing the grid spatial index with lists of items in each cell.

——= jtem == jtem

&———— item

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

¥

item

item

Spatial indexing with regular grids really makes a difference in all geometric tests: We only need to find out the position we will be
scanning from (the location of the player, for example). Then, we transform that 3D position into cell coordinates and scan the associated
list (and maybe those of the neighboring buckets). All in all, in dense scenarios, this can be orders of magnitude faster than using just a
list.

Imagine for example a spatial index that holds 1000 primitives (for example, trees), which are evenly spaced in a map that is 1x1 Km. We
can store them in a regular grid 100 meters in size. We will thus create a 10x10 grid. To test for a collision with one of the primitives, we
will just convert the player position into cell position (this can be easily done using integer divides). Then, once the cell is located, we
simply scan the list of that cell and the nine neighboring cells to make sure we haven't hit anyone. Because there are 1000 primitives and
100 buckets, we can assume each bucket holds a 10-element list on average. Thus, scanning 10 buckets (the one we are standing in and
the nine neighbors) involves 100 tests in a worst-case scenario. Now compare that to the 1000 tests we would need if we weren't using the
spatial index.

Even better, the index can be adjusted. Now imagine that we have refined our scale, and each bucket is now 50 meters across. We would
have a 20x20 grid, for a grand total of 400 buckets. In this case, each bucket would hold 2.5 primitives on average, and the collision test
would just need 25 tests in total. Obviously, there is a downside to all this magic. This new version takes up four times more memory than
the previous version.

The more important downside to all this is that many cells will be useless. The structure is regular, and thus it does not adapt well to the
irregularities in the distribution.

Spatial Index as a Quadtree/Octree

Spatial indexes can also be implemented using quadtrees (or octrees if you need to handle real 3D data). In this case, we would split the
guadtree until the current node is not holding data beyond a fixed threshold. We can say, for example, that no leaf node should have more
than 10 items, and propagate the subdivision of the tree until we reach that goal. The construction of the data structure is adaptive at the
core, adjusting to the layout of the data.

Then, for the specific tests, we would traverse the tree using the distance criteria to prune as we advance. For example, here is the
pseudocode for a collision detection test with a threshold distance of five meters. | assume the node data structure has four pointers to the
four descendant nodes, labeled respectively topleft, topright, bottomleft, and bottomright:

checkcollision (point p)

if (topleft node is not empty)
if (closest point from topleft node is closer than 5 meters to p)
checkcollision in that node
if (topright node is not empty)
if (closest point from topright node is closer than 5 meters to p)
checkcollision in that node
if (bottomleft node is not empty)
if (closest point from bottomleft node is closer than 5 meters to p)
checkcollision in that node
if (bottomright node is not empty)
if (closest point from bottomright node is closer than 5 meters to p)
checkcollision in that node
if (all child nodes are empty)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. T

/I we are in a leaf
scan the list of objects corresponding to this leaf

Quadtrees (depicted in) will usually be slower than grids, because they need to traverse the data structure more thoroughly. On
the other hand, memory use is much lower, making them an interesting choice under some circumstances. Keep in mind, however, that
guadtrees built this way are not very suitable for dynamic geometry. If we are storing moving objects, they might change the quadtree cell
they are stored in, and rebuilding a quadtree on the fly to accommodate this kind of change is not trivial. We need to remove the object that
has left the node, or maybe collapse that node completely, and finally insert it in its new location (maybe resplitting as we do so).

Figure 4.6. Quadtrees/octrees provide better memory management than grids at higher coding
complexity.

—— jtem ——> item

item item

item

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Composite

Many types of applications, and games in particular, need to hold heterogeneous collections of data together for different reasons. A game
level can have sublevels (which in turn can have sublevels), potions, enemies (which can be composed, for example, as in a horse and
rider approach), objects, and so on. The overall data structure can be best described as a part-whole hierarchy with each element being
either a primitive or a composite, quite likely of different types. Having all data in a single structure makes traversal more intuitive,
especially when we couple the composite with a spatial index that allows local queries such as "Which potions are in this room?" Thus, it
would be great if programming languages offered some constructs that made the implementation of these complex collections easier. But
most programming languages only support homogeneous arrays, so a higher-abstraction solution is needed. This is what the composite
DP is all about: creating part-whole heterogeneous hierarchies where we can access primitives and composite objects using a standard
interface. This way a single interface will make traversal easier, and each object will retain its specific features and internal structure.

In terms of implementation, the best way to represent a composite is to write a list of elements. The element class will be defined as pure
virtual, which means we cannot create objects of this class directly, but need to derive other classes through inheritance. These derived
classes will inherit all the attributes and methods of the pure virtual class but will also use extra attributes to encode class-specific
information.

As an example, let's take a look at the source code required to implement the level-wide data structure we mentioned earlier: a structure
that can hold sublevels, each one with potions and objects. The class Level represents the whole level, and then we use the class
Levelltem to describe primitive entities inside that level: potions, objects the user can grab, and so on.

class Level {
public:
virtual ~Level();

const char* Name() { return _name; }

virtual float LifePoints();
virtual int NumEnemies();

virtual void Add(Levelltem®*);

virtual void Remove(Levelltem*);

virtual Iterator<Levelltem*>* Createlterator();
protected:

Levelltem(const char*);
private:

const char* _name;

h

class Potion: public Levelltem {
public:

Potion(const char*);

virtual ~Potion ();

virtual float LifePoints();

h

class Compositeltem : public Levelltem {
public:
virtual ~Compositeltem();

virtual float LifePoints();
virtual int NumEnemies();

virtual void Add(Levelltem*);
virtual void Remove(Levelltem*);

virtual Iterator<Levelltem*>* Createlterator();

protected:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Compositeltem(const char*);
private:
List<Levelltem*> _items;

k

float Compositeltem::LifePoints() {
Iterator<Levelltem*>* i = Createlterator();
float total = 0;

for (i->First(); li->IsDone(); i->Next()) {
total += i->Currentltem()->LifePoints();

}

delete i;

return total;

int Compositeltem::NumEnemies() {
Iterator<Levelltem*>* i = Createlterator();
int total = 0;

for (i->First(); li->IsDone(); i->Next()) {
total += i->Currentltem()->NumEnemies();
}
delete i;
return total;

class Enemy : public Compositeltem{
public:

Enemy(const char*);

virtual ~Enemy();

virtual float LifePoints();
virtual int NumEnemies();

k

class SubLevel: public Compositeltem{
public:

SubLevel(const char*);

virtual ~SubLevel();

virtual float LifePoints();
virtual int NumEnemies();

k

void LordOfTheRings ()

{

Level* MiddleEarth=new Level("Middle Earth");
SubLevel* TheShire= new SubLevel("TheShire");
SubLevel* Moria= new SubLevel("Mines of Moria");
MiddleEarth->Add(TheShire);
MiddleEarth->Add(Moria);

Enemy *Nazgul=new Enemy("Nazgul");

Enemy *NazgulRider=new Enemy("NazgulRider");
Enemy *NazgulSteed=new Enemy("NazgulSteed");
Nazgul->Add(NazgulRider);
Nazgul->Add(NazgulSteed);
TheShire->Add(Nazgul);

Enemy *Balrog=new Enemy("Balrog");
Moria->Add(Balrog);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Potion *Lembas=new Potion("Lembas");

TheShire->Add(Lembas);

cout << "The number of monsters in Middle Earth is " << MiddleEarth->NumEnemies() << endl;
cout << "The life points for the monsters are " << MiddleEarth-

>LifePoints() << endl;

}

The preceding code creates a hierarchy based on The Lord of the Rings. As a result, we create two sublevels (Moria and The _Shire) and
then a host of creatures and potions in each zone, showing how composites can handle nonhomogeneous data structures. fFigure 4.7
complements this code with a drawing of the composite pattern data structure.

Figure 4.7. The composite design pattern.

Component

operationi()
operation2()
addcomponent()

Leaf Composite

operation1() operation1() ~
operation2() operation2()

addcomponent()

Flyweight

The last pattern we will review is the flyweight, which is extremely useful when we need to have large collections of objects that are
fundamentally the same except for a few parameters. In this case, we do not want to overpopulate our memory with lots of objects that are
mostly identical, but instead we want to use system resources efficiently while keeping a uniform access interface. A simple and very
game-oriented example is the units in a real-time strategy game. All infantry soldiers are virtually the same except for two parameters: the
position and the life level. But the Al routines, graphics handling code, texture and geometry data, and most other parameters like
movement speed and weapons are the same regardless of the instance you examine.

Then, the flyweight pattern suggests dividing the object into two separate classes. First, we need to create the actual flyweight, which is
the core object and is shared among all instances. Flyweights are managed through a FlyweightFactory that creates and stores them in a
memory pool. The flyweight contains all the intrinsic elements of the object; that is, all information that is independent of the object's
context and is thus sharable. Second, we will need external objects that will use the flyweights, passing the extrinsic (thus, state
dependent) information as a parameter. These concrete objects contain state information, such as the position and life level of our strategy
game soldiers.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. T

Let's take a look at how we would code such an example using the flyweight DP:

class InfantrySoldier: public AbstractFlyweight
{
float speed;
float turnspeed;
()
public:
void Paint(ExtrinsicSoldierInfo *);
void RecalcAl(ExtrinsicSoldierInfo *);

k

class InfantrySoldierInstance
{
ExtrinsicSoldierInfo info;
public:

void Paint();

void RecalcAl();

h

void InfantrySoldierlnstance::Paint()

{

FlyweightFactory *FF=new FlyweightFactory;

InfantrySoldier *IS=FF->GetFlyweight(INFANTRY_SOLDIER);
I1S->Paint(info);

}

void InfantrySoldierlinstance::RecalcAl()

{

FlyweightFactory *FF=new FlyweightFactory;

InfantrySoldier *IS=FF->GetFlyweight(INFANTRY_SOLDIER);
IS->Recalc(info);

}

Notice how the InfantrySoldierlnstance class is lightened as all the stateless soldier data structures and algorithms are moved to the
InfantrySoldier class. All we would need to add would be aFlyweightFactory object, which would be an object factory and a singleton. The
FlyweightFactory class has a method that retrieves a flyweight, passing the name of the flyweight (a symbolic constant) as a parameter.

Notice how the returned flyweight will not be created on a case-by-case basis, but reused over many calls by using the following source
code:

class FlyweightFactory
{
AbstractFlyweight *flyweight;
int NumFlyweights;
public:
AbstractFlyweight * GetFlyWeight(int);
h

AbstractFlyweight *FlyweightFactory::GetFlyWeight(int key)
{

if (flyweight[key] exists) return flyweight[key];
flyweight[key]=new flyweight;

return flyweight[key];

}

Thus, we can keep all our infantry soldiers in memory by translating most of their behavior | eight and externalizing all
state-dependent functionality to a higher class abstraction level. Flyweights are pictured in Eigure 4.4.

Lhis document was created by an unreqgistered ChmMaagic, please go to http://www.bisenter.com to reqgister it. T

Figure 4.8. Class hierarchy for the flyweight design pattern.

Client «| Flyweight
ConcreteFlyweightA
ConcreteFlyweightB

A A

: instance : instance
FlyweightFactory
vectorFlyweightPosd — pe :
makeFlyweight{objeciparam)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Usability Patterns

In recent years, the concept of DPs has surpassed the boundaries of software architecture and is being used in many other areas of
application design and development. Web sites, GUIs, and so on can all be described in terms of DPs that are used frequently and have
been researched (and hopefully solved satisfactorily). In this section, | will provide some hints on usability DPs that for some reason or
another can be useful for game developers.

Shield

A shield is a protective layer that prevents the user from accidentally activating a feature or function that causes undesirable side effects.
For example, a button that causes the game to shut down would constitute an undesirable side effect. When designing these kinds of
situations, the shield forces the user to confirm his decision, so two mistakes are required in order to activate the said option by error. A
classic example of shields is the confirmation messages to leave the game. But some shields also involve clever screen trickery. Think of
a real-time strategy game where the user can choose to disband one unit, thus losing it forever. This is a sensitive option, because
choosing it by mistake will have a deep impact on the player. Thus, sometimes games require the player to perform two clicks of a

button to choose an option. This way if the player wants to disband the unit, he must select a more complex click sequence, ensuring he
is not activating the option by mistake.

State

States are visual cues of the user's current configuration. An example would be the changing mouse cursor in old Sierra adventures. The
left mouse button performed an action (moving, talking, and so on), whereas the right button was used to cycle through the available
actions. The mouse cursor depicted the current state—a walking character for the move option, an open mouth to engage in dialogue,
and so on.

States are incredibly popular. From "lock on" indicators in a combat flight simulator to robes worn by a role-playing game character,
states are a handy and elegant way to inform the player of the current configuration.

A potential issue with states is preventing ambiguities. The number of states for a specific option must be small, and their symbolic
representations must be clearly distinguishable. Also, state representations must be simple to identify, especially for those states that
change often.

Automatic Mode Cancellation

The automatic mode cancellation (AMC) pattern can be used in games that have modes/automata, like a real-time strategy game, for
example. To move one unit, a player must first click the unit, then click the Move button on the GUI, and then click the destination. But
what happens if the user clicks somewhere in the game's scenario before clicking the Move button on the GUI? Logically, we will cancel
the current mode and start over. This is what AMC is all about—detecting actions that do not fit the current mode and using them to
cancel the current sequence of operations.

Other known uses of AMC are found in many games where an action requires two key presses/mouse button presses. Imagine a soccer

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

game where you can control the force of each pass and shoot by pressing the Shoot key twice. The first time you press the Shoot key, a
progress bar begins to increase on the GUI. By pressing the key again at the right moment, the shoot is performed using that force. The
same principle is found in many golf games and some space shooters. But what if the player does not press the required key the second
time? Quite likely, that means the first attempt was a mistake, or he simply has changed his mind and does not want to shoot. From a
usability standpoint, we will cancel the shoot so the game is more playable.

Magnetism

Magnetism is a very powerful paradigm to use when we need the user to be precise. For example, consider a first-person shooter where
the player needs to aim at enemies from far away in combat. At least in "easy" mode, it makes sense to code an auto-aim, so that if the
enemy is located more or less in front of the player, it takes care of the precise aiming. This is what magnetism is about: making some
positions dominate, so the user can have more fun with less effort. But sometimes magnetism can get in the way of realism. An
advanced player will want to aim manually, so magnetism should always be an option, not a must.

Another interesting use of magnetism is found in strategy games or, generally speaking, games where we must be able to pick units or
positions on a map. In a strategy game, we need our mouse cursor to gravitate around units so it is easier to select them. Imagine that
you have one unit selected and are in “combat" mode, so you must click on the position of the map where the unit should move in order
to engage in a fight. Because it doesn't make sense to fight against a rock or a piece of land, you can code the GUI so when the user
clicks, it automatically detects the closest unit to the cursor and sends the player unit there. This way we can prevent the inexactitudes in
user control that make the game less fun.

Focus

The focus pattern is useful when we need the user to concentrate on a specific piece of information so the rest becomes momentarily
irrelevant. It has been used extensively in games in many visual reincarnations. One of the most popular focus examples is the
deactivation of some menu options by graying them out. This is found in many Windows applications. The programmer does not want us
to get lost in a sea of possibilities, many of which are actually not useful. Thus, the ones that make no sense are deactivated.

This pattern is used extensively in games, especially in strategy and RPG titles. For example, many sports titles involving teams allow us
to specify tactics for each player. While we are working on a specific player, the rest of the team is blurred, thereby reducing the amount
of information we must be aware of.

Focusing can be depicted visually in a variety of ways, from graying out to effectively blurring the irrelevant information.

Progress

Progress is one of the most widely used usability patterns. Its main application is displaying quantitative information about a process with
a beginning and an end, so the user knows how long the process is and exactly where he is currently.

The obvious example is progress bars such as the ones used to depict level loading. Not providing such a cue makes the player
nervous, because he does not know if the game is actually doing something or is simply malfunctioning. But there are other uses of the
progress pattern. A good example is life meters. The player character in Diablo had two meters, one for health and one for mana, which
was useful to perform spells. Diablo is a good example of how to integrate the progress inside the game aesthetics. The progress bar
was depicted as two flasks, one red and one blue. Other games propose more extreme approaches. A good example is Wolfenstein,
which depicted the life level using the face of our character with increasing damage levels. There is a potential risk with these artistic
representations: Too often they will not convey the distance from our current state to the end of the process as accurately as a
numeric/graphic bar would. We play Wolfenstein and see our character with a scar and a nosebleed. But do we know how many hits he
can sustain, or how far he is from full health? It is hard to tell. Therefore, progress bars should be carefully designed so aesthetics do not
destroy the usability pattern.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In Closing

The DP philosophy can greatly improve your coding practices. Reusing proven software comp is the best way to create stable and
elegant code. However, this chapter has only scratched the surface. Make sure you check out endix H, "Further Reading," to learn
more about DPs.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 5. User Input

"If it keeps up, man will atrophy all his limbs but the push-button finger."

—Frank Lloyd Wright
KEY TOPICS

® The Keyboard

® Mouse

o Joysticks

® Hardware Abstraction
® rorce Feedback

® Closing

A smooth user interaction model is key to any good game. Without adequate user input mechanisms, gameplay becomes obstructed and
frustration occurs. In this chapter, we will explore the basics of user input control. Sadly, there will be few general rules. User interaction
takes place at a relatively low abstraction level, and implementations tend to be quite hardware dependent. Where possible, general
techniques will be exposed. But most of this chapter is devoted to the specific input methods available for popular platforms on the PC,
such as the Win32 API and Microsoft's Directinput.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

The Keyboard

Keyboards are the main input device for PC-based games, but are also available for mobile phones, some consoles, and palm devices.
That makes them, in all probability, the most widely available input device. Unfortunately, such a popular input device is not very well
suited for games. Keyboard mappings take time to learn, and the general idea of a keyboard is altogether impractical for small children.

Being a multifunction peripheral that can be used to type documents and to play games, it is not surprising that keyboards can be read
using a variety of methods, depending on the specific requirements of the application. Some methods retrieve full strings, others work on
a key-by-key basis, and so on. But for gaming purposes, two types of routines are relevant. First, there are the synchronous routines,
which wait until a key is pressed and then report it to the application. Second, there are asynchronous routines, which return immediately
after being called, and give the application information about which keys were pressed, if any.

Synchronous read modes are used to type information, such as the character name in a role-playing game (RPG). They work by polling
the controller until new key input messages arrive. But they are not very well suited for real gameplay. The game code must continually
check to see whether keys were pressed, and whatever the response, keep drawing, executing the Al, and so on. So, asynchronous
controllers are the way to go. They provide fast tests to check the keyboard state efficiently.

Asynchronous routines can also belong to two different families. Some of them are designed to test the state of individual keys, so the
programmer passes the key code as a parameter and gets the state as a result. Others, like the ones exposed by Directinput, retrieve
the whole keyboard state in a single call, so the programmer can then access the data structure and check for the state of each key
without further hardware checks. The second type of routine is generally more efficient because there is less overhead involved.

As an example, we will focus on a single-key asynchronous call for the PC platform. The call is Windows specific and is part of the Win32
API. The syntax is

short GetAsyncKeyState(int keycode);

This call receives a key code and returns a short value, which encodes different state information. The key code we pass as a parameter
can either be a capitalized character, such as "K", or an extended key code, which is used 1o read special characters. By using extended
key codes, we can read specific keys, such as Delete, the function keys, Tabs, and so on. provides a list of the main special
key codes for this call.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 5.1. Keycodes for the GetAsyncKeyState call

Keycode

Description

VK_SHIFT VK_RSHIFT, VK, LSHIFT

VK_MENU

VK_CTRL VK_RCTRL, VK_LCTRL

VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT

VK_F1..VK_F12

VK_ESCAPE

VK_SPACE

VK_RETURN

VK_HOME, VK_END, VK_PRIOR, VK_NEXT

VK_BACK

VK_TAB

VK_INSERT, VK_DELETE

Either of the two Shift keys
Either of the Alt keys

Any of the Ctrl keys

The cursor keys

The function keys

The Esc key

The Spacebar

The Enter/Return key
The numeric keypad keys
The Backspace key

The Tab key

The Insert and Delete keys

The return value encodes the state of the key passed as a parameter. The most significant bit is activated if the key is currently pressed,
whereas the least significant bit is activated if this key was activated the last time GetAsyncKeyState was called. Here is an example of
how to check whether the left Shift key is pressed:

If (GetAsyncKeyState(VK_LSHIFT))
{

/I whatever

}

Notice that, due to the nature of the call, we can check multiple keys. The next example shows how to test for the left Shift AND Return
combination:

If ((GetAsyncKeyState(VK_LSHIFT)) && (GetAsyncKeyState(VK_RETURN)))
{

Il whatever

}

As you can see, each key test requires a system call, which can be troublesome for those systems checking a lot of different keys. Now,
let's compare this call with a whole keyboard check, which can be performed by using the call:

bool GetKeyboardState(PBYTE *IpKeyState);

Here the result only encodes if the function succeeded, and the real meat is returned as an array passed as a reference. Then,
successive checks such as the following perform the individual test, which is nothing but a simple array lookup:

if (keystate[VK_RSHIFT])

{
/I right shift was pressed

}

Again, for games that check many keys (such as a flight simulator), this option can be better than repeated calls to GetAsyncKeyState.
The programmer only needs to be aware that an initial call to GetKeyboardState is required to load the array.

Another possible pitfall to watch out for is that this second mode does not immediately check the keys when you perform the test. Keys
are checked at the call to GetKeyboardState. If there is a significant delay between this test and the array lookup, undesirable side

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

effects might occur because the array will contain "old" key values.

Keyboard with Directinput

Directlnput provides fast asynchronous access to key states. A single call can retrieve the state of the whole keyboard, so subsequent
tests are just table lookups. The operation is thus very similar to the GetKeyboardState Win32 call. But before we delve into keyboard
reading code, we need to discuss how Directinput works.

Directlnput encapsulates keyboards, joysticks, mice, and any other exotic input peripheral under a common interface called a device.
The operation is really straightforward. We first need to boot Directinput. This implies creating a Directinput object, from which all other
objects dealing with input processing can be derived. The Directlnput object can thus be used to create devices, which are the logical
interfaces to peripherals. Once a device has been created, we need to specify several parameters, such as the format of the data we
want to interchange with the device, and the cooperative level, which tells Directinput if the device is to be shared among different
applications or if we need it exclusively.

Directinput devices can then be polled asynchronously. We query the state of the device, not waiting for a specific event like a key or
button press. This means Directlnput will take a snapshot of the current state of the device and return it to the application so it can be
processed. As a summary, here is a list of the steps involved in setting up a keyboard Directinput:

1. Create the Directlnput object.

2. Create the keyboard device.

3. Set the data format for reading it.

4. Set the cooperative level you will use with the operating system.
5. Read data as needed.

Let's now move on to a specific example, beginning with the Directinput code needed to boot the API. The code in this section has been
tested in both DirectX8 and DirectX9. Directlnput is almost identical in both versions.

LPDIRECTINPUT8 g_pDI=NULL;
HRESULT hr=Directinput8Create(GetModuleHandle(NULL),DIRECTINPUT_VERSION,
11D_IDirectlnput8,(VOID**)&g_pDI,NULL)))

In the preceding code, the first parameter is used to send the instance handle to the application that is creating the Directinput object.
Then, we need to pass the Directlnput version we are requesting. The macro DIRECTINPUT_VERSION is a handy way to pass the
current version number. Next, we need to pass the unique interface identifier for the object we are requesting. We use IID_IDirectinput8
to request a Directlnput object, but we can use other parameters to define ANSI or Unicode versions of the interface. We then pass the
pointer so we can receive the already initialized object, and the last parameter is used to perform Component Object Model (COM)
aggregation. You probably won't want to aggregate your Directlnput object to anything else, so leave this as NULL.

Now we have a Directinput object ready for use. It is now time for the real keyboard code. We will first request the device and set some
parameters that define how we will communicate with it. Then, we will examine the source code used to read data from a keyboard.

The first step is to actually request a device from the Directinput object. This is achieved with the line:

HRESULT hr =g_pDI->CreateDevice(GUID_SysKeyboard, &g_pKeyboard, NULL);

The call must receive the Global Unique Identifier (GUID) for the desired device. Directlnput is built on top of the COM, an
object-oriented programming model. In COM, GUIDs are used to identify specific objects or interfaces. Internally, GUIDs are just 128-bit
structures, but they are used to represent functions, objects, and generally any DirectX construct. In this case, classic GUIDs for the
different devices are

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

® GUID_SysKeyboard: The default system keyboard.

® GUID_SysMouse: The default system mouse.

Additional GUIDs can be assigned to joysticks. However, these GUIDs should not be written directly, but as the result of a call to
Directlnput8::EnumDevices. We will be covering joysticks in the next section. For our keyboardGUID_SysKeyboard will do the job. The
second parameter is just the pointer to the newly created device, and the last parameter is again reserved for aggregation and must thus
be set to NULL.

Now, we must tell the keyboard how we want to exchange data. This is achieved with the call to SetDataFormat, as shown here:
HRESULT hr = g_pKeyboard->SetDataFormat(&c_dfDIKeyboard);
The call must receive a parameter of type LPCDIDATAFORMAT, which is a structure defined as:

typedef struct DIDATAFORMAT {
DWORD dwsSize;
DWORD dwObjSize;
DWORD dwFlags;
DWORD dwDataSize;
DWORD dwNumObjs;
LPDIOBJECTDATAFORMAT rgodf;

} DIDATAFORMAT, *LPDIDATAFORMAT;

typedef const DIDATAFORMAT *LPCDIDATAFORMAT;

This structure controls the number of objects we will be requesting, the format of each one, and so on. Because it is a complex structure
to fill, Directlnput already comes with several predefined data formats that we can use directly. For a keyboard, the format
c_dfDiKeyboard tells Directinput we will be requesting the full keyboard, stored in an array of 256 bytes.

In addition, we need to tell Directinput about the cooperative level we will be using with this device. This is achieved by using the line:

HRESULT hr=g_pKeyboard->SetCooperativeLevel(hwWnd, DISCL_FOREGROUND| DISCL_EXCLUSIVE);

Here we pass the window handle as the first parameter, and the second parameter is the OR of a series of flags that control the
cooperative level. In this case, we are telling Directinput that we want exclusive access and that this access should only be valid if the
application is in the foreground. As our application moves to the background, the device is automatically unacquired.

Additionally, we need to acquire the keyboard, so we can begin querying its state. The following line will do that for us:

g_pKeyboard->Acquire();

And now we are ready to begin using the keyboard. Here is the code snippet that declares both Directinput and the keyboard, and
makes sure the device is ready. Error checking has been omitted for clarity:

HRESULT hr;
hr = Directinput8Create(GetModuleHandle(NULL), DIRECTINPUT_VERSION,
IID_IDirectInput8, (VOID**)&g_pDI, NULL);

hr = g_pDI->CreateDevice(GUID_SysKeyboard, &g_pKeyboard, NULL);
hr = g_pKeyboard->SetDataFormat(&c_dfDIKeyboard);

hr = g_pKeyboard->SetCooperativeLevel(hDlg, dwCoopFlags);

hr = g_pKeyboard->Acquire();

Reading the keyboard is even easier than preparing it. All we have to do is prepare a 256-byte array and pass it to Directinput with the
keyboard acquired to query its state:

BYTE diks[256]; // Directinput keyboard state buffer
ZeroMemory(diks, sizeof(diks));
hr = g_pKeyboard->GetDeviceState(sizeof(diks), diks);

Notice how we clear the buffer and then pass it to Directinput. As with GetAsyncKeyState, specific key codes must be used after the

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

read to query for each key. In this case, all keys are represented by symbolic constants, such as:

DIK_RETURN The return key
DIK_SPACE The space key
DIK_A ...DIK_Z The alphabetic keys
DIK_F1 ... DIK_F10 The function keys

Now, to query a specific key, we must test for the most significant bit of the corresponding array position. If that position is set to one, the
key is currently being pressed. Thus, to check whether the Return key is activated, the following code can be used:

bool return_pressed=(buffer[DIK_RETURN] & 0x80)!=0);

As usual, we can read combinations, so we can check whether several keys are pressed simultaneously. Because there is only one
Directinput read at the very beginning, these are just array lookups.

Reading the keyboard is really straightforward. But we must be careful with acquiring and unacquiring the device, which can make our
input controller malfunction. Sometimes, especially in some cooperative level modes, we can lose contact with the keyboard
momentarily. This is called unacquiring the device. The most popular reason for this is that our application moved to the background,
thus losing the keyboard access in favor of another application, which is now in the foreground. Some other events might make us lose
track of our device as well. If this happens, we will discover it in the next GetDeviceState call, which will fail. We must then reacquire the
keyboard so we can continue querying its state. This is achieved as follows:

BYTE diks[256]; // Directinput keyboard state buffer
ZeroMemory(diks, sizeof(diks));
hr = g_pKeyboard->GetDeviceState(sizeof(diks), diks);
if(FAILED(hr))
{
hr = g_pKeyboard->Acquire();
while(hr == DIERR_INPUTLOST || hr== DIERR_OTHERAPPHASPRIO)
hr = g_pKeyboard->Acquire();
}

Notice how we detect the error and keep callingAcquire until we regain access to the device.

Once we have finished with our application, it is time to release all Directinput objects peacefully. Releasing the keyboard is a two-step
process. First, we unacquire the device, and then release its data structures. Second, we must delete the main Directinput object.
Overall, the destruction sequence is achieved by using the following code:

if(g_pKeyboard) g_pKeyboard->Unacquire();
SAFE_RELEASE(g_pKeyboard);
SAFE_RELEASE(g_pDl);

Notice that we are using the SAFE_RELEASE macros provided with DirectX to ensure that all data structures and allocated memory are
deleted.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Mouse

Since their inception in the late 1960s as a CAD input device, mice have been adapted for many uses including computer games. They
are especially popular in PC games, but game consoles do not usually support them. Unlike a keyboard or joystick, the mouse not only
generates button or key presses, but 2D positions as well. This provides a wider range of input choices at the cost of a higher learning
curve for the player.

Mice can be used in a variety of scenarios, from unit picking in a real-time strategy title to the popular mouselook found in most
first-person shooters. In all cases, the operation of the mouse can be divided into transmitting positional information (thanks to the
internal mouse sensors) and sending button press and release messages.

Let's examine how a mouse operates under Directinput. The source code is very similar to the keyboard request because Directinput
treats all devices the same. This is beneficial for the programmer because most inner details are hidden. Let's assume we have the main
Directinput object up and running, and start with the device creation pass:

LPDIRECTINPUTDEVICE g_pMouse;
HRESULT hr;

hr = g_pDI->CreateDevice(GUID_SysMouse, &g_pMouse, NULL);

As you can see, it is extremely similar to requesting a keyboard; the only difference being the GUID we pass to request the desired
device. Then, the data format is set as follows:

hr = g_pMouse->SetDataFormat(&c_dfDIMouse);

In this case, the ¢_dfDIMouse parameter tells Directinput we will be passing aDIMOUSESTATE structure to
IDirectinputDevice::GetDeviceState. This structure has the following signature:

typedef struct DIMOUSESTATE {
LONG IX;
LONG IY;
LONG 1Z;
BYTE rgbButtons[4];
} DIMOUSESTATE, *LPDIMOUSESTATE;

This structure returns the X and Y positions, and an optional Z axis, which is usually assigned to a wheel. Then, the button array works
like the keyboard array. Buttons are pressed if the high-order bit is set. A variant of this structure is the DIMOUSESTATE?2, set by the
parameter ¢_dfDIMouse2. The only difference is that the latter supports eight buttons instead of the four supported byDIMOUSESTATE.
These are especially useful in specific mice used for CAD systems, for example.

After the data format has been set, we need to set the cooperative level. No surprises here, as the code is exactly identical to the
keyboard version:

hr = g_pMouse->SetCooperativeLevel(hWnd,
DISCL_EXCLUSIVE | DISCL_FOREGROUND);

In addition, we need to acquire the ready-to-use device with the line:

g_pMouse->Acquire();
Here is the full source code in review:

LPDIRECTINPUTDEVICE g_pMouse;

HRESULT hr = g_pDI->CreateDevice(GUID_SysMouse, &g_pMouse, NULL);
hr = g_pMouse->SetDataFormat(&c_dfDIMouse);

hr = g_pMouse->SetCooperativeLevel(hWnd,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

DISCL_EXCLUSIVE | DISCL_FOREGROUND);
g_pMouse->Acquire();

Reading from this mouse is achieved with the GetDeviceState call, which will return aLPDIMOUSESTATE structure. The source code
would be:

DIMOUSESTATE dims; // Directinput mouse state structure

ZeroMemory(&dims, sizeof(dims));
hr = g_pMouse->GetDeviceState(sizeof(DIMOUSESTATE), &dims);
if(FAILED(hr))
{
hr = g_pMouse->Acquire();

while(hr == DIERR_INPUTLOST || hr == DIERR_OTHERAPPHASPRIO ||
hr == DIERR_NOTACQUIRED)
hr = g_pMouse->Acquire();

}

Notice how | have added the unacquiring prevention code to avoid losing track of our mouse due to unexpected events. Other than that,
the code is very similar to reading a keyboard. To access the mouse attributes, all we have to do is this:

int MouseX = dims.IX;
int MouseY = dims.lY;
bool Ibutton = (dims.rgbButtons[0] & 0x80)!=0);

Usually, button 0 is assigned to the left mouse button, button 1 is assigned to the right one, and button 2 is assigned to the middle button
(if available). Regarding positions, remember that a mouse is a relative pointing device. When first acquired, the mouse's position is reset
to (0,0). Then, each new read will return the displacement from the last one. Thus, if we move the mouse vertically, we will see
displacements in the Y direction. But when we stop the movement, the read mouse value will go back to (0,0). Remember, the mouse
does not work with positions but instead works with displacements. Last, but not least, the mouse is usually configured so negative X
points to the left, and positive Y points away from our body as we are sitting at a table.

Additionally, remember to release the mouse as soon as you have finished using it. The code is again very similar to the keyboard
release code:

if(g_pMouse) g_pMouse->Unacquire();
SAFE_RELEASE(g_pMouse);
SAFE_RELEASE(g_pDlI);

Mouselook

A popular use of the mouse is to implement the classic mouselook used in many first-person shooters. The mouselook is easy to code
once you understand how a mouse operates. All we have to do is use the keys to change our position, and use the mouse to reorient our
viewpoint. | will explain the effect fully, so we can combine what we have learned about keyboards and mice.

The game must have at least four degrees of freedom. We must have a position consisting of an X and Z value, and then a yaw and
pitch angle. Y values are often added to the mix so we can climb different heights, but roll is generally not needed. We will use the
following mapping:

® \Mouse: Mouselook

® | cft arrow: Strafe left

L4 Right arrow: Strafe right
® Up arrow: Move forward

® Down arrow: Move back

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Let's first focus on the keyboard and forget about the orientation for a second. Assuming a standard Directinput keyboard, we would
need the following code to implement the desired behavior:

int strafe= (buffer[DIK_RIGHT] & 0x80)!=0) - (buffer[DIK_LEFT] & 0x80)!=0);
int fwd= (buffer[DIK_UP] & 0x80)!=0) - (buffer[DIK_DOWN] & 0x80)!=0);

Notice how we have elegantly encapsulated the cursor control. By subtracting opposite directions, we get two numbers, strafe and fwd, in
the range —1..1. These numbers are then used to drive our position update routine:

pos.x += fwd*FWDSPEED*elapsed*cos(yaw) +
strafe*STRAFESPEED*elapsed*cos(yaw+3.1416/2);
pos.z += fwd*FWDSPEED*elapsed*sin(yaw) +
strafe*STRAFESPEED*elapsed*sin(yaw+3.1416/2);

The fwd and strafe variables control how each member is multiplied—by -1, 0, or 1—to perform the desired effect. Now, let's take care of
pitch and yaw through the mouse:

yaw+= YAWSPEED*elapsed*dims.IX;
pitch+= PITCHSPEED* elapsed*dims.lY;

So now we have our new pos.x, pos.z, yaw, and pitch player structure updated. Obviously, we need to keep two devices alive, and we
need to define all constants in caps to set the desired speed. Notice how each constant is multiplied by an elapsed time factor, which
stores the time it took to render the last frame. This way we ensure device-independent performance. For completeness, here is the
source code required to compute all specific camera parameters ready to be plugged into an OpenGL or DirectX pipeline:

point campos(pos.x,pos.y,pos.z);
point camlookat(pos.x+cos(yaw)*cos(pitch),pos.y+sin(pitch),
pos.z+sin(yaw)*cos(pitch));

The lookat coordinate computation is just a spherical mapping using the pitch and yaw. Depending on how your axes are laid out, a sign
might change or you might need to add a constant angle like Pi to the pitch values.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Joysticks

The joystick was introduced in the 1970s as a way to represent positional data easily. The first models were restricted to binary tests: The
joystick returned a 0 or 1 to represent whether it was being activated or not. Thus, most joysticks allowed nine positional values: one for
the joystick being centered and eight for N, S, E, W, SW, SE, NW, and NE. Usually, the joystick position was mapped to an integer value,
with an extra bit used to represent the button press. Most joysticks from eight-bit computers were like this.

As software development houses created better simulations, joysticks began to improve as well. Continuous-output joysticks appeared to
satisfy the flight simulation community, but because they offered better control, they became mainstream. Today, all joysticks map the
sticks' inclination to a continuous range of values, so we can control our characters precisely.

Controlling a joystick is slightly more complex than working with a keyboard or a mouse. Joysticks come in a variety of shapes and
configurations, so the detection and data retrieval process is a bit more involved. Some gamepads have two controllers, whereas others
have a stick and a point-of-view (POV). In addition, the number of buttons varies from model to model, making the process of detecting a
joystick nontrivial.

In Directlnput, we must ask the API to enumerate the device so it autodetects the joystick so we can use it. For this example, | will assume
we already have the Directlnput object ready. The first step is to ask Directlnput to enumerate any joystick it is detecting. This is achieved
by using the call:

HRESULT hr = g_pDI->EnumDevices(DISDEVCLASS_GAMECTRL,
EnumJoysticksCallback,
NULL, DIEDFL_ATTACHEDONLY)))

The first parameter tells Directinput which kind of device we want to detect. It can be a mouse (DISDEVCLASS_POINTER) or a keyboard
(DISBDEVCLASS_KEYBOARD). In this case, we request a game controller, which is valid for both gamepads and joysticks of all kinds.
Now comes the tricky part: Directinput detects all candidate devices. Imagine that we have two joysticks (for example, in a two-player
game). Directinput would need to return two devices. Thus, instead of doing some parameter magic to allow this, Directinput works with
callbacks. A callback is a user-defined function that gets called from inside the execution of a system call. In this case, we provide the
EnumJoysticksCallback, a function we write that will get triggered once for each detected joystick. The internals of that function will have to
retrieve GUIDs, allocate the device objects, and so on. This is a bit more complicated than returning a list of pointers, but on the other
hand, it allows greater flexibility. We will examine our callback in a second. Let's first complete the call profile by stating that the third
parameter is a user-defined parameter to be passed to the callback (usually NULL), whereas the last parameter is the enumeration flags.
DIEDFL_ATTACHEDONLY is used to state that we only want to detect those devices that are properly attached and installed, the same
way DIEDFL_FORCEFEEDBACK is used to restrict the enumeration to force feedback joysticks. Here is the source code for the
EnumJoysticksCallback function:

BOOL CALLBACK EnumJoysticksCallback(const DIDEVICEINSTANCE* pdidinstance, VOID* pContext)
{

HRESULT hr;

hr = g_pDI->CreateDevice(pdidinstance->guidinstance, &g_pJoystick, NULL);

if(FAILED(hr)) return DIENUM_CONTINUE;

return DIENUM_STOP;

}

Notice how the callback is receiving the device instance, so we only have to create the device using that instance. This is a relatively
simple example, where we return to the application as soon as we have found one joystick. If the user had two joysticks attached to the
computer, this code would only enumerate the first one. A variant could be used to store each and every joystick in a linked list, so the
user can then select the joystick he actually wants to use from a drop-down list.

After the joystick has been enumerated, we can set the data format and cooperative level. No news here—just a rehash of the code
required for keyboards and mice:

HRESULT hr = g_pJoystick->SetDataFormat(&c_dfDIJoystick);
HRESULT hr = g_pJoystick->SetCooperativeLevel(hwnd, DISCL_EXCLUSIVE |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

DISCL_FOREGROUND);

An extra piece of code must be used to set the output range for the joystick. Because it is a device with analog axes, what will be the range
of output values? Will it be —1..1 or —1000..1000? We need to make sure the behavior of the joystick is initialized properly. In our case, we
will make the joystick respond with a value from —100..100, much like a percentage. To do so, we need to use a second callback. But first
we need the following call, which requests the objects associated with the joystick:

g_pJoystick->EnumObjects(EnumObjectsCallback, (VOID*)hwnd, DIDFT_ALL);

Objects can be axes, buttons, POVs, and so on. Then, the call will respond via the provided callback. Here is the source code for that
callback, which performs the axis initialization:

BOOL CALLBACK EnumObjectsCallback(const DIDEVICEOBJECTINSTANCE* pdidoi,
VOID* pContext)

{
HWND hDlg = (HWND)pContext;

if(pdidoi->dwType & DIDFT_AXIS)
{
DIPROPRANGE diprg;
diprg.diph.dwSize = sizeof(DIPROPRANGE);
diprg.diph.dwHeaderSize = sizeof(DIPROPHEADER);

diprg.diph.dwHow =DIPH_BYID;

diprg.diph.dwObj = pdidoi->dwType; // Specify the enumerated axis
diprg.IMin =-100;

diprg.IMax = +100;

if(FAILED(g_pJoystick->SetProperty(DIPROP_RANGE, &diprg.diph)))
return DIENUM_STOP;

As with the earlier callback, this routine is called once for each object. Then, the if sentence checks whether the returned object is actually
an axis, and if so, uses the SetProperty call to specify its response range. The SetProperty call can be used for more exotic functions, such
as calibrating the joystick. The first parameter supports many other symbolic constants that can be used for this purpose.

Fortunately, reading from the joystick is not as complex as initializing it. Here the source code is not much different from keyboards or
mice. The only difference is that we need to call Poll() before actually reading from the joystick. Joysticks are polled devices, meaning they
do not generate interrupts, and thus need to be polled prior to retrieving their state. Other than that, the code is straightforward:

hr = g_pJoystick->Poll();
if(FAILED(hr))
{
hr = g_pJoystick->Acquire();
while(hr == DIERR_INPUTLOST || hr== DIERR_OTHERAPPHASPRIO)
hr = g_pJoystick->Acquire();
return S_OK;
}
DIJOYSTATE js;
hr = g_pJoystick->GetDeviceState(sizeof(DIJOYSTATE), &js));

This code returns a DIJOYSTATE structure with all the joystick state information. The profile of the call is as follows:

typedef struct DIJOYSTATE {
LONG IX;
LONG IY;
LONG 1Z;
LONG IRx;
LONG IRy;
LONG IRz;
LONG rglSlider[2];
DWORD rgdwPOVI[4];
BYTE rgbButtons[32];

} DIJOYSTATE, *LPDIJOYSTATE;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This structure should suffice for most uses. However, there is a more involved structure with lots of extra parameters available under the
DIJOYSTATEZ2 name. All you have to do is change theSetDataFormat call accordingly:

HRESULT hr = g_pJoystick->SetDataFormat(&c_dfDIJoystick?2);

Response Curves

We have seen how analog joysticks map the controller position to a continuous range of values so we can detect subtle variations. This
behavior can become our best ally or a nightmare depending on how we handle it.

For example, imagine a game like Mario, where there is no speed control: Mario is simply running left, running right, or standing still. So
how do we implement that using an analog controller? We must discretize the output range so we only get three possible values:

-1 for running left
0 for standing still
1 for running right

Assuming that the analog output is in the range -100..100, we need to define a transfer function that maps a number in the range
-100..100 to a number in the range -1..1. Choosing that transfer function—often called response curve—accurately is key to keeping good
communication with the player. Imagine that we do something like this:

-1 for values [-100..-1]
0 for value 0
1 for values [1..100]

This means the slightest variation or decentering from the controller will trigger a movement, making the game unplayable. For these kinds
of response curves (which convert the analog range to a discrete one), we must supply enough dynamic range so that each value will be
mapped correctly. For example, a much better solution would be

-1 for values [-100..-25]
0 for values [-24..24]

1 for values [25..100]

This way minimal decalibrations will not trigger the joystick by mistake. This response curve can be seen in .

Figure 5.1. Response curve without (left) and with (right) dead zone.

Dhurtpeut Dulput

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

| i
100 1o Pt —100 25 25 10p TP

Most games use analog control these days. The analog controller returns a value in a continuous range, and we use that value to
implement various degrees of influence (be it speed, turning, etc.) in our game world. An airplane will dive faster if we pull the controller
completely, the car will accelerate more aggressively, and so on. However, analog control also needs a response curve. Without a
response curve, a car will keep turning if the controller is just minimally decalibrated. Although this is most likely a controller problem, our
code must deal with it so the player enjoys a seamless playing experience.

As you might have guessed, we begin by neutralizing the zone around the center of the c;fii[f f[j prevent movements due to bad
calibration. But will Iif ?fffalization speed map linearly to the controller's position (as in Eigure 5.4, left), or will it use a curve (such as the
one on the right in Figure 5.4)? Using curves such as parabolas will be useful to implement inertia effects, where the player needs to
control the amount of inclination carefully. It makes games a bit harder to master because small errors in the control yield large variations
in the effect.

Figure 5.2. Types of response curves.

Linaar Linear with
Dead Zone

Lhis document was created by an unreqgistered ChmMaagic, please go to http://www.bisenter.com to reqgister it. T

100 100

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Hardware Abstraction

Games that run on platforms that support a variety of input controllers offer the richest gaming experience. This is the case not only with
the PC (which uses a keyboard, a mouse, and joysticks), but also with most game consoles via exotic peripherals. In recent years, we
have used standard controllers, aircraft-style joysticks, snowboards, dance pads of all sorts, and even a fishing rod!

There are two paths a developer might follow when coding for such a platform. Some games will choose to use one (and only one) of the
existing controllers. This is the case in most strategy games, which for gameplay reasons are usually coded with a PC mouse in mind.
On the other hand, some other games will let the user choose the input method he or she wants to employ. Action games for the PC can
often be played with a keyboard, joystick, gamepad, and sometimes even a mouse. Although good for the player, it comes at the cost of
complicating the input handling code significantly; and this is exactly where hardware abstraction becomes an issue.

By hardware abstraction, | mean coding your game with a "virtual" controller in mind, so any controller that conforms to that abstract
profile can be fitted into the code with zero impact on the game engine. All you need to do is write a generic controller handler (usually, a
pure abstract class) from which specific controllers are derived via inheritance. Then, at runtime,_only the kind of controller selected by
the player is created, providing a seamless and elegant way of integrating different controllers. shows how this class structure
would work out.

Figure 5.3. A possible class structure to implement device abstraction.

controller

controller1
Client controller2
buttons(4]

create()
read()

joystick keyboard

/finternals from joystick /finternals from keyboard

create() create()
read() read

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Notice how, for the sake of clarity, | have created a global controller that closely resembles that of a game console. It has two directional
controllers and four buttons. These inputs can then be mapped to a keyboard (using keys for the different options), an analog joystick, or
a digital joystick. The only item we need to watch out for is the different sensitivity found in keys and sticks. A key can either be pressed
or released, thus requiring only a binary value, whereas a joystick will probably map to a continuous set. Thus, some discretization code
will be required to offer a standard output.

An even better alternative if you are using Directlnput is to take advantage of action mapping, which allows your device to return not
specific state values but game-oriented values. We can assign device events to game events, so the input controller will receive values
that are somehow device independent. For example, we can have a joystick and assign a movement on the X axis to the "advance left"
action. We can then assign a specific key to the same event, so the input control code becomes independent of the device. We can
change the device, and as the control is receiving abstract messages, everything will still work.

Action mapping is not hard to get working under Directlnput, although the code is too lengthy to be detailed here. The first step is
defining the actions in our game:

enum GAME_ACTIONS {
WALK,

WALK_LEFT,
WALK_RIGHT,

JUMP

QUIT

h

Then, we must provide an action map that relates axis and buttons or keys to the different actions:

DIACTION g_adiaActionMap[] =

{

/I Joystick input mappings

{ WALK, DIAXIS_FIGHTINGH_LATERAL, 0, ACTION_NAMES[WALK], },
{ JUMP, DIBUTTON_FIGHTINGH_JUMP, 0, ACTION_NAMES[JUMP], },

/I Keyboard input mappings

{ WALK_LEFT, DIKEYBOARD_LEFT, 0, ACTION_NAMES[WALK_LEFT], },

{ WALK_RIGHT, DIKEYBOARD_RIGHT, 0, ACTION_NAMES[WALK_RIGHT], },
{ JUMP, DIKEYBOARD_J, 0, ACTION_NAMES[JUMP], },

{ QUIT, DIKEYBOARD_Q, DIA_APPFIXED, ACTION_NAMES[QUIT], },

/I Mouse input mappings

{ WALK, DIMOUSE_XAXIS, 0, ACTION_NAMES[WALK], },

{ JUMP, DIMOUSE_BUTTONO, 0, ACTION_NAMES[JUMP], },
h

The initialization of the input system would be quite similar to the previous example. All we would need to do is enumerate all input
devices supported by the action map. This would be achieved with a call to EnumerateDevicesBySemantics, which would receive the
action map and require a callback where all possible devices would be returned. The callback would then have to build the action map
for that specific device. Once that is cleared, subsequent read calls would return device-specific data, as in the following example:

hr = pdidDevice->Poll();
hr = pdidDevice->GetDeviceData(sizeof(DIDEVICEOBJECTDATA),
rgdod, &dwltems, 0);
for(DWORD j=0; j<dwltems; j++)
{
UINT_PTR dwAction = rgdod[j].uAppData;
switch(dwAction)
{
case WALK:

()

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Notice that GetDeviceData returns a list of actions, so we can process several buttons or keys in the same loop.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ETY K

Force Feedback

Many input controllers come with some sort of force feedback these days, from rumble gamepads on game consoles to full force feedback
joysticks. This technique is just another layer in our pursuit of immersion and realism.

Force feedback hardware simulates vibration and other force-based effects by incorporating one or more motors that can be configured via
programming. These motors vary the position or resistance of the game controller, and by programming fast movement sequences, the
illusion of vibration and force are achieved. The number of motors and kind of controller determine the quality of the effect. On the lower
end of the spectrum, all gamepads—since the original PlayStation controller—support some kind of force feedback, usually different kinds
of vibration much like a cell phone. Joysticks can perform much more sophisticated routines. For example, it is possible to program the
joystick to draw a circle with the stick, as well as many other interesting effects.

Programming force feedback devices involves three steps. First, we need a way to create or describe the desired effect in terms of how it
affects the controller's position, strength, and so on. Some tools are available for this purpose. Second, the effect must be loaded to the
input API. Third, we need a way to reproduce the effect at runtime, either by manually triggering it or by assigning it to a specific event like
a timer or specific button press. Sadly, these three steps are largely platform dependent, because developing applications that support
force feedback depends greatly on the API. For the remainder of this section, we will focus on Microsoft's Directinput solution to provide a
complete example of how these devices work.

Directlnput allows the creation of force feedback effects both from an external content-creation tool or by using a specific set of commands
from within our application. The easiest way is to use the creation tool, called the Force Editor (see ,. The editor has a look and
feel similar to an audio application, but it works with force curves instead of sound. We can select different kinds of waveforms (square,
sawtooth, sine, and so on) and modulate them, so the resulting effect is believable. We can even prototype the effect from the editor,
getting a preview of how the end product will feel. When we are happy with the results, we can save them to .ffe files, which will then be
read by Directinput.

Figure 5.4. Microsoft's Force Editor, built into the DirectX SDK.

Die [& Efed Yen Wi

Dl(] 5] o 8] k] ~l=frie] Wil 9

Bimeddy A A AN N A A
v AV AVAVAVAVAVAVAV.VES

kY

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Fur Hedp, press Fi]

From the application's point of view, differences start at the device enumeration phase. We need to query for force feedback compatible
devices only, as follows:

HRESULT hr = g_pDI->EnumDevices(0, EnumFFDevicesCallback, 0,
DIEDFL_ATTACHEDONLY | DIEDFL_FORCEFEEDBACK);

No changes to the EnumDevicesCallback function are required. A force feedback joystick is, as far as devices go, just a plain joystick that
can be read as usual. The next relevant step is reading the effects from a .ffe file. One such file can contain several effects, so we will use
an Enum call with aCallback function to retrieve those effects. Here is theEnum call:

HRESULT hr = g_pFFDevice->EnumEffectsinFile(strFileName,
EnumAndCreateEffectsCallback,
NULL, DIFEF_MODIFYIFNEEDED);

Let's now examine the code for the callback. For simplicity, | will assume the .ffe file only contains one effect; so after retrieving it, no
further calls will be pursued. Here is a suggested implementation of the routine, which stores the effect in persistent structure for later
access. As usual, error checking is deleted for clarity:

LPDIRECTINPUTEFFECT pDIEffect;

BOOL CALLBACK EnumAndCreateEffectsCallback(LPCDIFILEEFFECT pDIFileEffect, VOID* pvRef)

{
HRESULT hr = g_pFFDevice->CreateEffect(pDIFileEffect->GuidEffect,

pDIFileEffect->IpDiEffect,
&pDIEffect, NULL);
return DIENUM_STOP;

}

Then, all we have to do is trigger the effect as needed. This is a two-step process. First, we need to stop any previous forces, so both
effects do not conflict. Second, we trigger the new effect. Here is a simple example—first, the stop for any other effects:

HRESULT hr = g_pFFDevice->SendForceFeedbackCommand(DISFFC_STOPALL);

second, the execution of the effect:

HRESULT hr = pDIEffect->Start(1, 0);

The first parameter is the number of repetitions we want for the effect, and the second parameter is a flags parameter. Passing INFINITE
as the first parameter causes the effect to loop forever, such as the engine vibration for a helicopter. These kinds of effects must be
manually stopped with a call to:

pDIEffect->Stop();

The force feedback API from Directinput is very comprehensive. But we have only scratched the surface. For example, we can mix effects
dynamically or even create them procedurally without using the Force Editor. With time and lots of experimentation, many interesting uses
can be devised.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In Closing

Input is a vast subject, requiring many techniques. But unfortunately, no broad standards are available. Although we have focused on
specific techniques for the PC, most ideas are valid for other platforms as well. Ideas like device abstraction, mouselooks, or response
curves are universal and are also used on other platforms.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 6. Fundamental Al Technologies

"I not only use all the brains that | have, but all that | can borrow."

—Woodrow Wilson
KEY TOPICS

® Context
® Strycture of an Al System
o Specific Technologies

® | Closing

An interesting artificial intelligence is a major component of any successful game. Al makes games challenging and addictive, and thus
generates a large portion of the gameplay value. Al is a deeply evolved science with more than 50 years of history. This means very
well-known methods exist to cover a broad range of scenarios and goals, whether it's commanding an army in Age of Empires or piloting
a tie fighter in a Star Wars game.

In this chapter, we will study how game Al is just a specific application of general concepts from classic Al. This means most traditional
Al techniques will be perfectly valid for in-game use. On the other hand, our craft will require some specific tricks and twists, such as
added attention to performance and a focus on aesthetically pleasing results. In the next two chapters, we will survey game Al
techniques in some detail. We will use this first chapter as an ?Icfgufjm to general-purpose Al techniques, so we can devote the next
two chapters to action and strategic game Al, respectively. In [Chapter g, "Scripting,” we will do a survey of techniques for one of the
most powerful paradigms for coding any Al system. These four chapters, taken as a whole, should provide a clear and thorough
understanding of the state of the industry.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Context

So, what is Al anyway? What are the goals and conditions that differentiate a good Al system from a bad one? Essentially, bad Al design
often starts by setting the wrong goals.

One definition of Al might be something like "Al is the computer simulation of intelligent behavior." This would be valid except for the fact
that we really don't know for sure what intelligence is. Does "intelligence" mean "behavior that exhibits great ability to adapt and solve
complex problems," or is it "behavior that is close to that of humans"? History shows us again and again that humans are not always
brilliant, yet there is a quality to their behavior that makes them intelligent. As you will learn in this chapter, some games make the mistake
of trying to follow the first definition, and by doing so, produce results that are completely unrealistic. Take, for example, one of the classic
Al problems—finding a route from point A to point B that avoids obstacles.

Many algorithms exist to solve this problem with varying degrees of success. They analyze the map and trace a path connecting the two
endpoints and avoid any obstacles in-between. Some of them, however, go too far, ensuring that the path between A and B is
optimal—that is, the shortest possible path. This is the case in the popular A* algorithm, which we will cover in., "Tactical AlL"
According to the first definition, A* is clearly a very intelligent algorithm. In fact, it is so intelligent that it can algorithmically build optimal

paths between two endpoints, even if we have to cross many miles and obstacles in the process. But it's completely unrealistic when
compared to the behavior of a human being. Humans do not trace optimal paths, and they often make mistakes traversing very complex
labyrinths (see figure 6.1)).

Figure 6.1. Comparison between A" and a human path finder. Left: initial problem. Middle:
human. Notice how we try to approach the target, and if there's no path available, often bail out.

Right: A" knows the solution beforehand so it traces a highly unrealistic but correct path
through the top-right area.

A human going from A to B would follow the solid trajectory (assuming he didn't know the path beforehand), and A* would find the optimal,
dotted solution. So, a game using this method might be quite smart, but not very realistic. And this is of extreme importance because
concentrating on having a "smart" Al but not a "human" Al can sometimes yield poor gameplay, and that's a capital sin in game Al
development. In other words, many times we will be able to create perfect Als that will be frustrating for the human player. Thus, we will
need to keep a reasonable degree of imperfection built into the Al design.

On the other hand, we do not want to create dumb Als just for the sake of realism. Games are about challenges, and these require smart
enemies, which, to an extent, are hard to beat. A good example is a real-time strategy game. The computer creates a strategy for the
CPU-controlled army using a variety of techniques. But soldiers on the Al-controlled side are very shallow in terms of the spontaneity and
improvisational value of their performance. They are more like robots designed to carry out a master plan. This must be so or the game
would be too easy and become boring.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

So clearly, game Al is a balance between generating behavior that is both highly evolved and sophisticated, and behavior that is more or
less human (in the nonoptimal sense of the word). Several techniques can be used to ensure that our Als are not just "problem solving
robots" but lifelike entities that provide just the right amount of complexity to be challenging and engaging, but not more than that.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Structure of an Al System

Let's begin our journey by taking a virtual microscope and looking inside a single Al entity. It can be a Quake enemy, an Age of Empires
army, or the creature from Black & White. Understanding the major building blocks will later help you structure and code your systems
efficiently.

Fundamentally, Al systems come in two flavors. The first and most common is the agent, which is a virtual character in the game world.
These are usually enemies, but can also be nonplaying characters, sidekicks, or even an animated cow in a field. For these kinds of
entities, a biological structure must be followed, so we can somehow model their behavior realistically. Thus, these Al systems are
structured in a way similar to our brain. It is easy to identify four elements or rules:

® A sensor or input system
e A working memory
® A reasoning/analysis core

® An action/output system

Some Als are simpler than that and override some components. But this global framework covers most of the entities that exist. By
changing the nature of each component, different approaches can be implemented.

The second type of Al entity is abstract controllers. Take a strategy game, for example. Who provides the tactical reasoning? Each unit
might very well be modeled using the preceding rules, but clearly, a strategy game needs an additional entity that acts like the master
controller of the CPU side of the battle. This is not an embodied character but a collection of routines that provide the necessary group
dynamics to the overall system. Abstract controllers have a structure quite similar to the one explained earlier, but each subsystem works
on a higher level than an individual.

Let's briefly discuss each element of the structure.

Sensing the World

All Als need to be aware of their surroundings so they can use that information in the reasoning/analysis phase. What is sensed and how
largely depends on the type of game you are creating. To understand this, let's compare the individual-level Al for a game like Quake to
the abstract controller from Age of Empires.

In Quake, an individual enemy needs to know:

® \Where is the player and where is he looking?
® \Whatis the geometry of the surroundings?

® Sometimes, which weapons am | using and which is he using?

So the model of the world is relatively straightforward. In such a game, the visual system is a gross simplification of the human one. We
assume we are seeing the player if he's within a certain range, and we use simple algorithms to test for collisions with the game world.
The sensory phase is essential to gathering information that will drive all subsequent analysis.

Now let's take a look at the sensory data used by the master controller in a strategy game, such as Age of Empires:

® \What is the balance of power in each subarea of the map?

® ow much of each type of resource do | have?

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

® \What is the breakdown of unit types: infantry, cavalry, and so on?
® \Whatis my status in terms of the technology tree?

® \Whatis the geometry of the game world?

Notice that these are not simple tests. For example, we need to know the geometry of the whole game world to ensure that the path
finding works as expected for all units. In fact, the vast majority of the Al time in such a game is spent in resolving path-finding
computations. The rest of the tests are not much easier. Computing the balance of power so we know where the enemy is and his
spatial distribution is a complex problem. It is so complex that we will only recompute the solution once everyN frames to maintain
decent performance.

In many scenarios, sensing the game world is the slowest part of the Al. Analyzing maps and extracting valuable information from raw
data is a time-consuming process.

Memory

Storing Al data is often complex because the concepts being stored are not straightforward. In an individual level Al, this will be less of a
problem. We can store points and orientations and use numeric values to depict the "state" the Al is in. If the character is walking, the
state equals one; if he's running, the state equals two; and so on. Now, how do we store more abstract information, such as the balance
of power from the previous paragraph? And how about a path? How do we store a path so the character has a mini-map in memory and
remembers how to go from A to B? Some of these data structures are nontrivial, and we will often end up with case-by-case solutions,
especially when coding a master controller.

Analysis/Reasoning Core

The analysis/reasoning core is what people often think about when they talk about Al. It is the part that actually uses the sensory data
and the memory to analyze the current configuration and make a decision. Popular methods for such tasks are finite state machines and
rule systems, both of which are dealt with in this chapter. Making a decision can be slow or fast depending on the number of alternatives
and the sensory data to evaluate. Chess playing is a slow process, whereas moving a character in Quake is really straightforward.
Obviously, a character in Quake has a limited range of options (usually, moving in four directions, jumping and shooting), whereas 20 to
50 moves can be made on a chessboard, given an initial configuration.

Luckily, many games require only simple decision-making processes involving a few choices, and great results often come at a relatively
low price. As you will soon see, a lot of games praised for their great Al have been built with relatively simple algorithms.

Action/Output System

Intelligence, no matter how sophisticated, must permeate actions and responses, so we realize something's going on inside the
creature's virtual brain. Thus, it is essential to couple our Al routines with clever action subroutines, so we get the feeling of real
intelligence. In fact, many games exaggerate this action system much like in a theater play, so the character's intentions are obvious and
personality is conveyed. By doing so, the degree of intelligence sensed by the player can be much higher than the actual complexity of
the core Al routines. As an example, recall the Super Mario Bros game. All types of crazy creatures filled the game world, from turtles to
lizards and many other creatures. If you separate logic from the actual actions, you'll discover that these Als were all very similar. They
were either simple enemy chasing Als or choreographed Als. But by creating "signature" movements for each one of them, personality
and perceived intelligence was enhanced.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Specific Technologies

In the rest of this chapter, we will explore the four main Al constructs most commonly used in game programming: state machines, rule
systems, state-space searches, and genetic algorithms.

Finite State Machines

The first Al technology we are going to explore is that of finite state machines (FSMs). Depending on which books you read, the same
technology is also called deterministic finite automata (DFA) or simply state machines or automata.

So let's get formal for a second so as to provide a good definition of FSMs. An FSM is a formalism consisting of two sets:

® A set of states that represent the scenarios or configurations the Al can be immersed in.

® A set of transitions that are conditions that connect two states in a directed way.

Essentially, an FSM depicts the entity's brain as a group of possible actions (the states) and ways to change from one action to the other. If
you say something like the following, you will have created a state machine:

1. Adogis HUNGRY.

2. If you give him a bone, he will not be hungry anymore.
3. He'llbe QUIET after eating the bone.

4. And he'll become hungry after four hours of being quiet.

Sentences 1 and 3 represent states, and sentences 2 and 4 represent transitions. However, written descriptions are not very well suited for
FSMs. When the number of states and transitions grows, we need a better way to represent information. So, state machine graphs are
drawn, using circles for the states and lines for the transitions between states. The initial state is represented with an incoming transition
from nowhere, so it can be easily identified.

FSMs are the most popular technique used to create game Als. The state machine can become the brain of your virtual entity, describing
different actions using states and linking those with transitions in a meaningful way. Lots of action games have been using FSMs since the
dawn of time (which by the way happened in the late 1970s, more or less). They are intuitive to understand, easy to code, perform well,
and can represent a broad range of behaviors.

An Example

Because FSMs are such an important tool, let's look at a complete example, starting with the Al idea, creating the FSM needed to model i,
and putting it down in code. This way we will see how each part fits together in an intuitive workflow.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Al Specification

The first task you need to undertake is to specify the behavior of your Al. It is very important to be thorough in this phase because fixing an
Al halfway through the process is sometimes problematic.

Thus, it is a good idea to write down the primitive behaviors you need your Al to perform. We will then represent these graphically to lay
them down into actual running code. As an interesting example, | have chosen the Al of a patrolling guard that carries a contact weapon,
like a medieval soldier. Here is the specs list for our Al, in no specific order:

® The enemy is in an outdoors area with no obstacles.

® Hehasa predefined set of waypoints he patrols in a cyclical way.
® The enemy activates when you get inside his viewing cone.

® |f he sees you, he chases you around.

® e carries a sword.

® fin close contact, he will remain stopped, hitting you with the sword.

Graphical Layout

One of the greatest mistakes in FSM creation is to actually begin by writing code. As the state machine grows, it will become impossible to
keep in mind a complete picture of all states and transitions, and most likely, we will end up with clumsy Al that does not actually do what it
was intended to. Whatever you are designing, the time required to draw a simple diagram will always pay off in the long run. You can save
the diagram along with the rest of the project documentation for later use, thus making it easier to recycle Als. It will also help you visualize
the behavior in an intuitive way. FSMs are really easy to code when using a diagram as a starting point, but hard to get right without

one.

Thus, presents the diagram | have chosen for the Al | have just described. The first two states are used to implement the
patrolling behavior. The first state follows the current waypoint, and the second is a very simple state that keeps rotating once we have
reached a waypoint until we are aligned with the next one. This way our guard will stand still while turning corners, which is a very natural
thing to do. Humans do not actually walk in curves like a car would do.

Figure 6.2. Graphical representation of the soldier state machine.

Realign

Waypoint

Waypoint

Aligned || o ached?

I Saa Plavar? e iat = 2 T

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

o - v twmgy w = e, s W

Seek
Waypoint

Player Dead
or
Lost Sight

Player Dead or Lost Sight

Notice how we have a second subsystem that is triggered from the SEEK_WAYPOINT state and allows us to chase the player once he
enters our view cone. The chase and attack subsystem is composed of two states: one chases the player around, and the second is used
when we contact him to perform our combat routine. Both states can be abandoned if we lose sight of the player, thus returning to our
regular patrol.

Laying Down Some Code

When you reach the coding point, your creativity will have done all the work for you. Coding FSMs is almost an automatic process. If the
specs and graph are done right, writing the FSM is very simple.

Essentially, you need to enumerate your states, reserving O for the initial state and positive integers for the others. So, if your FSM hasN
states, your last state will take the number N-1 as its identifier. In C or C++, | recommend usingtdefine statements to create meaningful
state names, which make code much more readable. You can do something like this:

#define SEEK_WAYPOINT 0
#define ROTATE_WAYPOINT 1

()
Then, an integer variable will be used to represent the state the Al is at, and thus drive a switch construct:

int state;

switch (state)
{
case 0:
{
/I code for this specific state
break;
}
()
case N-1:
{
/I code for this specific state
break;

}

This way each of the cases in the switch controls a specific state and evaluates the possibility of changing states due to a specific

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

transition in the automata being selected. Now we need to work out the code inside each of those cases. Here we can use another trick to
make life easier. Each state's activities should be divided into three thematic areas:

® The name of the state
® The default actions to be carried out in that state

® The calculations to perform in order to evaluate outgoing transitions

We can then lay out the code into each of the cases easily regardless of the specifics of each state. Let's look at an example:

case [NAME OF STATE]:
[DEFAULT ACTIONS]
[CONDITION EVALUATION]
if (TRANSITION)
state=destination state;
()

break;

| recommend that all your cases share this same layout because it will help you code faster and find potential bugs efficiently. With these
guidelines in mind, and provided you can code your basic tests (distances, angles, and so on), coding FSMs becomes pretty much a
mechanical task. All the creativity was completed in the Al design and formalization phase.

Now, let's look at the code of our chaser enemy. | have implemented him using a class called patrol:

#include "point.h"

#define SEEK_WAYPOINT 0
#define ROTATE_WAYPOINT 1
#define CHASE_ENEMY 2
#define FIGHT_ENEMY 3

class patrol

{

int state;

int nextwaypoint;
point *waypoints;
point position;
float yaw;

public:
void create(point, point *,int);
void recalc();

}

The create method would create a patrolling enemy at the position passed as first parameter, load thevaypoint vector with the incoming

data from parameters two and three, and reset the nextwaypoint controller to the first point in the list. Then, it would put the automata in
the state of SEEK_WAYPOINT. The real meat comes in therecalc function, which can be browsed in the following listing. Some routines
have been simplified for the sake of brevity and clarity:

void patrol::recalc()

{
switch (state)
{
case SEEK_WAYPOINT:
{
break;
}
case ROTATE_WAYPOINT:
{
break;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

For completeness, here is the very useful compute_rotation() routine, which is used by the preceding code. The routine receives a position
and yaw (from the patrol), and a position (the waypoint or enemy we are following), and returns the yaw increment we should be applying
in order to chase the target. It detects which side it stands in, and so on:

float compute_rotation(point pos, float yaw, point target)
{

point forward=pos+point(cos(yaw),0,sin(yaw));

point up=pos+point(0,1,0);

plane pl(pos,forward,up);

bool left=(pl.evalpoint(target)>0);

if left return —0.1;

else return 0.1;

}

| have provided this as an example of where the CPU cycles are actually spent in an FSM—in these small tests that often require
floating-point and trigonometric operations. Always double-check your tests for performance. It is essential that you guarantee that the
state machine is as efficient as can be. The next chapter provides a great deal of information on computing these tests.

Parallel Automata

Sometimes, especially when modeling complex behaviors, a classic FSM will begin to grow quickly, becoming cluttered and
unmanageable. Even worse, we will sometimes need to add some additional behavior and will discover how our FSM's size almost
doubles in each step. FSMs are a great tool, but scaling them up is not always a trivial task. Thus, some extensions to this model exist that
allow greater control over complex Al systems. Using parallel automata is one of the most popular approaches because it allows us to
increase the complexity while limiting the size of the automata.

The core idea of parallel automata is to divide our complex behavior into different subsystems or layers, pretending that the entity being
modeled has several brains. By doing so, each sub-brain is assigned a simpler automata, and thus the overall structure is easier to design
and understand. | will now provide a complete example of what a parallel automata can look like. As a starting point, | will use a variation
of our patrolling enemy from the previous section, adding a gun to his behavior. | will also add simple collision detection. Thus, his
behavior consists of patrolling an area and, as he senses you, chasing you around the level, trying to shoot you down. Clearly, he's a
pretty complete case study.

Now, let's try to model this character by assuming he has several brains; each one assigned to a type of action. In our case, we will need
only two: one will manage locomotion, and the other will take care of the gun. Let's forget the gun for a second and fo on character
movement. Essentially, this enemy can be modeled with a relatively straightforward FSM, which you can see in. It is very similar
to the preceding example except for the collision detection and additional logic required—not to seek contact, but to shoot from the right
distance.

Figure 6.3. Automata for locomotion.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Aligned | [Vaypoint

Reached?
See Player? dist = shooting
Chase distance Stand
Player Dead Player . | Still
or /dist! = shooting
Lost Sight distance -
Player Dead or Lost Sight

The resulting automata has four states. Now, let's add the gun handling control (see . If you think about it, we only need to keep
shooting if the player is directly in front of our virtual creature, which seems simple enough. An FSM that only performs this task would
require just two states—an initial state that would detect the condition and a second state where the enemy is effectively shooting.

Although we will add a third state to reload the gun, the automata is still quite simple.

Figure 6.4. Automata controlling the gun.

ldle

Out of Within
Shooting shooting
Angle Angle

Shoot

Done Bullets =0

Reload

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

But what would happen if, instead of using the parallel automata paradigm, we chose to merge the automatas into a large-size, unique
automata? We would discover that whenever we merge the two automata, the size of the overall FSM triples. Why? Because from each
state of the first automata we need to be able to shoot or not, depending on the player's positio early, we need the combination of all
the states of the first automata with the states of the second. The resulting automata (shown in) is overly complex and
significantly harder to understand.

Figure 6.5. Combined automata. Notice how we need to split some states in two so we can
return to the calling state when we are done.

Realign Reload
Waypoint 7
» Reload
3
Shoot
from Fta-lEnad
Chase
: Waypoint
Aligned Reached 0 Shoot
. Standing
MNo Shooting
Angle Angle
Mo Shooting
Angle Angle
See Player? dist = shooting .
dist | = shooting
Player Dead
or Lost Sight

Player Dead or Lost Sight

So, let's try a different approach. Think of this enemy as if it were a warplane with two crew members: a pilot who controls the direction,
speed, and so on, and a gunner who is in charge of shooting down targets. It's not one brain and one FSM, it's two brains acting in
parallel. Using this approach, we would depict the behavior of the overall system by drawing both automata side by side and would code
them in the following manner:

int statel;
int state2:

switch (statel)

{

case 0:

break;
(--)

case N-1:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks
break;

switch (state2)

{

case 0:

break;
(...)

case M-1:

break;

N and M are the number of states of each automata, respectively. Our design will be more elegant, our code will be shorter, and the
performance penalty will be virtually zero.

Parallel automata are great to use to model those systems where we have simultaneous but largely independent behaviors going
on—Ilocomotion and attack in this case.

Independent is the key term here. Be careful with parallel automata where the state of one state machine affects the state of the other. For
example, imagine that our soldier stops when shooting, so if the second automata's state equals "shooting," we need to change the state
of the first one as well. These interconnections are tricky because they can yield deadlock situations and often break the elegance of a
parallel automata's design. Keep automata independent as much as you can, and you will be safe.

However, some great Als and interesting behaviors are directly based in interconnected parallel automata, where state machines share
information, and the overall behavior is greater than the sum of its parts. Let's take a look at that technique next.

Synchronized FSMs

Another addition to our FSM bag of tricks is implementing inter-automata communications, so several of our Als can work together and, to
a certain extent, cooperate. By doing so we can have enemies that attack in squads. While one of them advances, the other provides
coverage, and the third one calls for help. Such an approach became very popular with the game Half-Life, which was considered a
guantum leap in action Al, basically because of the team-based Al.

Notice, however, that synchronizing Als is no silver bullet. The method we will use is not well suited for a full-blown strategic game with
complete faction-based Als involving dozens of entities. Rule systems (explained in the next section) are much better suited for that
purpose. Synchronizing Als via FSMs is just a way to increase the expressive potential of our Al, so we can have small teams working in
parallel.

At the core, synchronizing Als involves a shared memory area where all automata can write to and read data from. I'll use a bulletin board
metaphor. Whenever an Al wants to say something to the rest, it posts it in the shared memory area, so others can browse the
information; and if it is relevant to them, they take it into consideration in their decision-making process. There are two common
approaches to this task. One is to use a message passing architecture, which involves sending messages to those Als we want to
synchronize to. If an Al needs to keep in sync with several others, many messages will need to be sent. The alternative and preferred
method is to use a bulletin board architecture, where we don't send dedicated messages, but instead post our sync messages on a shared
space that is checked frequently by all Als. This space is the bulletin board. By using it, we can avoid having to send many messages back
and forth. Thus, we chose bulletin boards instead of a message passing architecture because message passing would slow performance
down in systems involving many agents in parallel. With a bulletin board, all we have to do is post the information to the board. Then, it's
up to the other Als (and their internal state) to read that information or simply ignore it. Message passing would need queues, loops to
ensure we send the message to everyone, and so on, which is really a big pain for such a simple system.

Let's make a synchronized Al for a squad of three soldiers, designed to attack an enemy in a coordinated manner. | will override their
navigation behavior and focus on the actual combat operation. As one of the three establishes contact with the player, he will designate
himself as the attacker. The role of the attacker Al is to wait until a second Al, called the cover, begins providing cover fire. Then, the
attacker will take advantage of the cover fire to advance toward the player and try to shoot him down. A third Al, dubbed the grenade, will
remain in the back behind some protection, throwing grenades. If any soldier gets killed, the remaining soldiers will shift in the chain of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

he attacker, and the grenade will become the

command to cover the position. Thus, if the attacker is shot down, the cover will become
shows the three state machines, not

cover. This Al does not look very different from those found in many Half-Life situations.
taking communications and sync into consideration for a second.

Figure 6.6. The three automata with no synchronization.

Attacker Cover Grenade

Idle Idle Idle

A A A

ver ren
Cove Done Grenade

i'?
Done Attack Done Needed? Needed?

Y Y Y

Throw

Attack Cover Bombs

Now, we will implement the synchronization mechanism using a shared memory that will store the following data:

bool fighting; // set by the first automata that contacts the enemy
bool attacker_alive; // true if attacker is alive

bool cover_alive; // true if cover is alive

bool grenade_alive; // true if grenade is alive

Our state machine code will need two operations: a shared memory read, which will always be part of the transition test, and a shared
memory write, which will be performed from a state's own code. For example, the code used to detect the enemy would look something
like this:

if (enemy sighted)
if (fighting=false)

fighting=true
attacker_alive=true;

The role played by shared memory writes and reads is obvious. presents the full automata for the Al system.

Figure 6.7. Fully synchronized automata using a shared memory zone.

Attacker

—~. Reqcover? ~ \

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

*/ Request
Cover
reqcover=1

| (e ron
: Grenades
Dead? reqcover=1

Cover=77

Attacking
attacking=7

Notice how we have merged all three automata into one large state machine. This is a wise move because this way we can instantiate it
three times (making sure the shared memory zone is common between them) and have the three soldiers actually be interchangeable.
There is no longer one specific attacker, cover, or grenade, but three soldiers that can play different roles depending on which one spots
the enemy first.

Nondeterministic Automata

Classic FSMs are deterministic in a mathematical sense of the word. This means that given a state and the values of all the boundary
conditions, we can predict which of the outgoing transitions will be executed (if any). In practical terms, this means that the behavior of our
Al entity will be totally predictable, which is generally not a good thing. A corollary of this same principle is that given a state, one transition
at most can be valid. It is unacceptable by the mathematical model that two transitions might be available at a given time.

This predictability gives the developer tight control, but is not always desirable. Take, for example, an enemy Al. By playing the game
repeatedly, the human opponent would discover the underlying strategy, and thus the gameplay would be destroyed. In these
circumstances, a limited degree of randomness can be added to the mix to ensure that the Al will never become predictable, so it will
remain challenging even after hours of play. A traditional FSM is not well suited for this.

We can model these situations by relaxing our mathematical model to allow several transitions to be simultaneously valid. This kind of
automata is usually called Nondeterministic Finite Automata (NDFA).

Here, a state might have several outgoing transitions, which we can activate or not in a controlled random manner. Take, for example, our
classic soldier. We can modify his automata by introducing limited randomness, as shown in . For example, whenever he
reaches a waypoint and feels like it, he can stop for a cigarette. Also, if he is patrolling and sees the player, he can choose between
chasing him or shooting him down. This degree of limited randomness is very useful in games where many Als are using the same state
machine. If we do not add a certain jitter degree, the overall impression can become too robotic and repetitive.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Reached
50%

Figure 6.8. Nondeterministic automata for the soldier.

Smoke Realign

A
Finished

See Player, 50%

Seek
Waypoint

r

See Player, 50%

Not
Aligned

Aligned
d <50

Dead

The soldier has a certain degree of "virtual freedom," so he can choose different action courses randomly. This will make his Al less
predictable and more engaging. Nondeterminism is especially important for those Al entities that appear in groups, so we can reduce the
homogeneous, boring look of the different automata performing the same task.

Rule Systems

Finite state machines are a very convenient tool for designing Als. They can model different behaviors elegantly. But some phenomena
are not easy to describe in terms of states and transitions. For example, imagine the following specs for a virtual dog:

If there's a bone nearby and I'm hungry, I'll eat it.
If I'm hungry (but there is no bone around), | will wander.

If I'm not hungry, but I'm sleepy, | will sleep.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks
® ifI'mnot hungry and not sleepy, I'll bark and walk.

We have four statements that we might feel inclined to model using an FSM. But if we did so, we would get something like what is shown
inEigure 6.9.

Figure 6.9. Simplified automata for a dog, showcasing how we need all possible transitions.

Eat -« Wander

\ Y

» [Bark &
Sleep < Walk

Clearly, each statement implies one state of the machine, and each state can transition to any of the others. Something is not quite right
here, but we can't tell what it is.

The key idea is that FSMs are well suited for behaviors that are

® | ocal in nature (while we are in a certain state, only a few outcomes are possible).

® Sequential in nature (we carry out tasks after other tasks depending on certain conditions).

The virtual dog just described is not local. If you analyze it, all states can yield any other state, so the model is not local at all. Also, there
are no visible sequences. All the dog actually does is act according to some priorities or rules. Luckily, there is one way to model this kind
of prioritized, global behavior. It is called a rule system (RS), and it allows us to model many behaviors that are tricky to model using
FSMs.

At the core of an RS, there is a set of rules that drive our Al's behavior. Each rule has the form:
Condition '_} Action

The condition is also known as the left-hand side (LHS) of the rule, whereas the action is the right-hand side (RHS) of the rule. Thus, we
specify the circumstances that activate the rule as well as which actions to carry out if the rule is active. In the previous dog example, a
more formal specification of the system would be

(Hungry) && (Bone nearby) — Eat it

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks
(Hungry) & (No bone nearby) ; Wander
If (not hungry) & (Sleepy) ; Sleep

If (not hungry) & (Not sleepy) ; Bark and walk

Notice how we enumerated the rules and separated the condition from the actions in a more or less formal way.
The execution of an RS is really straightforward. We test the LHS of each expression (the conditions) in order, and then execute the RHS
(the action) of the first rule that is activated. This way, RSs imply a sense of priority. A rule closer to the top will have precedence over a

rule closer to the bottom of the rule list.

RSs, as opposed to FSMs, provide a global model of behavior. At each execution cycle, all rules are tested, so there are no implied
sequences. This makes them better suited for some Als. Specifically, RSs provide a better tool when we need to model behavior that is
based on guidelines. We model directions as rules, placing the more important ones closer to the top of the list, so they are priority
executed. Let's look at a more involved example, so | can provide more advice on RSs. Imagine that we need to create the Al for a soldier
in a large squadron. The rule system could be

If in contact with an enemy '_} combat

If an enemy is closer than 10 meters and I'm stronger than him '_} chase him

If an enemy is closer than 10 meters '_} escape him

If we have a command from our leader pending '_} execute it

If a friendly soldier is fighting and | have a ranged weapon '_} shoot at the enemy

Stay still

Again, just six rules are sufficient to model a relatively complex system. Now, notice how the clever placement of the rules has allowed

some elegant design. If the soldier is in the middle of combat with an enemy but is given an order by the leader, he will ignore the order
until he kills the enemy. Why? Because the combat rule is higher on the priority list than the “follow order" rule. Hence lies the beauty of
RSs. Not only can we model behaviors, but we can also model behavior layering or how we process the concept of relevance.

Notice the condition in rule 3. It should really say:

If an enemy is closer than 10 meters and I'm not stronger than him

But we have skipped the second condition. If we have reached the third rule, it is because the second rule was computed as false, so we
know for sure we can just evaluate the first member only, saving some execution cycles along the way.

In addition, notice how the last rule does not have a condition but is more a "default action.” It is relatively normal to have a last rule that is
always true. This can be written in a variety of ways, such as:

Stay still

1 ; stay still
TRUE — stay still

Whichever option you choose, the goal is always the same—express the default action to be carried out if no rule can be applied.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Implementation

Once designed, RSs are very easy to actually code. There are different strategies that make coding rules almost as automatic as writing
FSMs. | will now evaluate two different alternatives. One is very well suited for hard-coded RSs, which control actions. The other is a
tactical RS, which would be useful in the context of a scripting language in a strategy game, for example.

Decision Trees

Let's start by coding an RS for action games. One of the easiest methods is to code your system using a decision tree. We will use the
example from the previous section and lay out the code for the soldier's RS.

The decision tree associated with this system would be

if (contact with an enemy) combat
else
{
if (closer than 10 meters)
{
if (stronger than him) chase him
else
escape him

else
{
if (command from our leader pending) execute it
else
{
if (friendly soldier is fighting and
| have a ranged weapon)
shoot at the enemy
else
stay still

Decision trees are a direct mapping of our rule set, in priority order, to an "if" tree. They are very easy to construct and, for simple systems
such as this one, provide an excellent elegance versus cost ratio. Basically, we nest If-then-else sentences, using the rules as the
conditions of each if. The first rule is the condition in the outer levelif clause. Then, theif following the else contains the second rule, and so
on. Actions are assigned to the corresponding if, so the action from the firstif is whatever action we must carry out if the first rule proves to
be valid.

Symbolic Rule Systems

Another implementation of the RS is by means of a scripting language, which symbolically represents the rules. The rules are written
according to some specs, parsed from external files, and executed in real time. The best example of such behavior in action is the RSs
present in most real-time strategy games, which control the tactical level of the gameplay. Here is an example taken from the Age of
Empires rule language:

(defrule

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

(resource-found wood)
(building-type-count-total lumber-camp < 5)
(dropsite-min-distance wood > 5)
(can-build lumber-camp)

(build lumber-camp)
This rule states that if we found wood, the number of lumber camps in our army is less than five, the newfound wood source is farther than

five units, and if we have resources to build an additional lumber camp, then we should build one. Both tests and actions are highly
symbolic and will require converting them to actual code. You will learn how to parse such an RS in Chapter 4.

However, it's not parsing the rules that should worry us: A simple parser will do the job. The real issue with symbolic RSs is that instead of
having to test five rules, we might need to check 50. Tactical reasoning needs lots of rules, and thus the rule evaluation function can
become an issue. We will need to optimize the code carefully, and make sure the rule evaluation tests can actually be computed in our Al
tick time.

Another tricky problem is coping with variable-duration Al tests. RSs explore rules sequentially until one of them is proven true (or until no
more rules are available). Clearly, if the first rule is true, our Al code will be executed in very little time. On the other hand, if no rule is
valid, we would need a very significant processing time to reach the final rule. A variable Al processing time generates a variable frame
rate, which is by no means a good thing.

Clearly, we need a structured way to lay out RSs, which makes extion time more or less independent of the path taken. One of the best

approaches is the Rete algorithm, proposed by C.L. Forgy in 1982. 1 The algorithm greatly improves the efficiency of forward-chaining
RSs (the systems where we test conditions sequentially) by limiting the effort required to reevaluate the RS after a first iteration has been
run. It exploits two facts:

WeL, Forgy. "Rete: A fast algorithm for the many patterns/many objects match problem,"Artificial Intelligence,
19(1)(1982): 17-37.

® The activation of a rule usually changes just a few facts.

® The same facts and patterns usually appear in the LHS of many rules.

Rete works by keeping a directed acyclic graph that represents the facts in memory. New facts are added to the graph as they are
activated by rules. We can also delete facts and modify existing ones (for example, if the number of soldiers in our camp increases from
20 to 21). Each node in the graph represents a pattern (a unique comparison in the LHS of a rule). Then, by tracing paths from the root to
the leaves, complete LHSs of rules are extracted.

Here is a very simple example of a Rete built from the rules:

(defrule
(slow(x))
(has_ranged_weapon(x))
(stronger_than_me(x))
=>
(evade(x))
)
(defrule
(slow(x))
(weak(x))
=>
(attack(x))
)

The associated algorithm is shown in .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 6.10. Rete algorithm, starting point. Circles are predicates, squares indicate restrictions
we must satisfy, rectangles are the RHS of rules. At runtime, the tree is explored so we can
cache partial results from one test to the next.

sronger) .| evade
than_ma
has_ranged A=C
_weapon|C)
weak{B)

A=B | —— | attacki(D)

Notice how we have repeated facts that are in fact shared by the two rules. In Rete, we usually merge those, so we eliminate the fact
redundancy. We can also eliminate operators that are repeated, so we cache parts of the LHS that are repeated in many rules.

Now, imagine we add a new rule, such as:

(defrule
(slow(x))
(has_ranged_weapon(x))
(weaker_than_me(x))

=>
(attack(x))

)

The final Rete for the preceding example is shown in .

Figure 6.11. Rete after insertions.

stronger
than_me

——» | evade

has_ranged

sirm el

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

waakear
than_ma
N Q

fi= ——| attackiD)

The number of elements in the Rete is no longer linear to the number of rules. In fact, as the number of rules grows, the chances of
patterns in the LHS being repeated increases. Thus, extra rules will come at little cost for the Rete. Coding the graph function is definitely
not for the faint of heart, so | suggest you take a look at, "Further Reading," for more details in implementing the algorithm. In
the long run, the Rete algorithm guarantees that execution time will be more or less independent from the number of rules because we're
not really testing rules anymore but checking for changes in our fact database. In fact, Rete is widely considered to be the fastest
pattern-matching algorithm in the world and is used by many popular production RSs, such as CLIPS and Jess.

User-Defined Facts

The RSs we have seen so far only test for conditions and perform actions. Often, a third construct is added to increase the expressive
potential of the RS so it can model more problems accurately. User-defined facts are added, so one rule can set a flag, and another rule
can test whether the flag has a certain value. This is very useful because it allows the Al programmer to somehow implement the concept
of memory or state in the otherwise stateless world of rules.

Imagine that we are working on a strategy game and are coding the RS that controls resource gathering, as in the earlier wood example.
We have written a rule for the lumber camp construction that is not very different from the previous one. For increased realism, we want to
show the player the process of building the lumber camp. Specifically, once the "build camp" rule is triggered, we want one Al entity to
move to the building spot, and then perform a series of animations that show the building process. Obviously, this is a sequence of actions
that must be performed in a specific order, and we already know that RSs are not very well suited for this task.

We could achieve this result by writing the following rules, which would do the job:

(defrule
(constructor-available)
(need-to-build lumber-camp)
(I-am-in lumber-camp)

=>

(construct lumber-camp)

(defrule
(constructor-available)
(need-to-build lumber-camp)
=>

(move-to lumber-camp)

(defrule
(resource-found wood)
(building-type-count-total lumber-camp < 5)
(dropsite-min-distance wood > 5)
(can-build lumber-camp)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

(build lumber-camp)

Now, try to think of the amount of extra facts we would need to add to our system to cover all the possibilities. Age of Empires can build
dozens of structures, and each one would require specific rules for it. Clearly, that's not the way to go, but some of its philosophy is
definitely valid. If you think about it, you will realize that all we have to do is add a construct that allows us to set a value in a memory
position, so subsequent rules can read it back as part of their condition evaluation code. Instead of hard coding all the new facts, we would
provide an open interface so the user can define them as needed. This is what user-defined facts are all about—allowing the user to
implement sequences and store intermediate values, which are read back when needed. The case of the lumber camp constructor can be
easily solved with the following rules:

(defrule

(constructor-available)

(check-fact-value lumber-camp-construction-step equals 1)
=>

(build-structure lumber-camp)

(defrule
(constructor-available)
(check-fact-value lumber-camp-construction-step equals 0)
(distance-to lumber-camp less-than 5

=>

(set-fact lumber-camp-construction-step 1)

(defrule

(constructor-available)

(check-fact-value lumber-camp-construction-step equals 0)
=>

(move-to lumber-camp)

(defrule
(resource-found wood)
(building-type-count-total lumber-camp < 5)
(dropsite-min-distance wood > 5)
(can-build lumber-camp)

=>
(build lumber-camp)
(set-fact lumber-camp-construction-step 0)

We only need to add the set-fact and check-fact value constructs. Some systems (Age of Empires, for example) do not allow user-defined
facts to be identified by character strings but by numbers. We have a certain number of facts whose identifiers are integers. But the added
parsing complexity of implementing a symbol table that allows the user-defined facts to be assigned character strings pays off in the long
run because readability is increased and rules are easier to debug. In the end, the symbol table is converted to integers as well, so
performance does not vary.

Notice how the process of building the lumber camp is in fact a sequence, much like what we would code in a state machine. In fact,
user-defined facts make RSs engulf state machines in terms of expressive power. Everything we can do with a state machine can now be
done with an RS with user facts. The opposite is not always true because RSs have a sense of priority that is hard to express with a state
machine.

Thus, user-defined facts provide a best-of-both worlds solution. Complex behaviors can be prioritized and layered using the RS, but each
one might involve sequences of actions, much like a state machine would. Most RSs used in commercial game engines use this approach
to increase the flexibility of the system at a very low coding and computational cost.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Planning and Problem Solving

FSMs and rule sets are very useful paradigms to model simple behavior. If our problem can be expressed in terms of sequences and
phases, FSMs are clearly the way to go. RSs, on the other hand, are better suited for priority lists or tasks that should be performed
concurrently. Clearly, these tools are at the core of any action Al programmer's toolbox. However, both approaches are limited when it
comes to modeling other, more complex behaviors. How can we teach a computer how to play chess? Chess is definitely not played in
terms of steps, so FSMs won't help much. It definitely doesn't look like the kind of problem we can tackle with rules either. The nature of
chess is predicting moves, analyzing the possible outcomes of a certain sequence of operations, and trying to outperform the analysis
power of the opponent. Clearly, some problems are simply too hard for the kind of solutions we have proposed so far. Some phenomena
require real-world analysis, reasoning, and thinking. Chess is a good example, but there are many others. As a quick sampler, consider
the following list:

® Solvea puzzle
® Decide the weakest spot in a battlefield to attack the enemy
® Select the best route to attack N ground targets in a flight simulator

® Tracea path from A to B with obstacles in between

All these problems have some characteristics in common, which make them hard to model with our existing toolset. These problems
require the following:

® Thinking in more complex terms than numbers. We need to understand the importance of a chess piece or the meaning of a
battlefield layout.

® Planning long-term strategies, well beyond the current Al cycle. We need to create a projection of the future and trace a
strategy to reach our final goal.

Clearly, we need to add some additional tools to our battle chest, tools that help us build plans, solve problems, and create tactics. These
tools will not replace our FSMs or RSs but complement them.

State-Space Search

If I had to choose between FSMs and RSs, | would say chess is somehow similar to a state machine. It has board configurations that
resemble the machine's states, and it has moves that resemble state transitions. But the structural complexity of chess is not easy to
describe by means of FSMs. The key difference is that any state machine representing chess would have to be dynamic, not static. We
would start from the current configuration of the board and propagate some moves into the future to choose the movement sequence that
we think suits us best. A state machine, on the other hand, is completely built beforehand, so all states are designed before we even turn
the Al on. Problems like solving a puzzle can also be expressed this way, using an initial state or configuration and a series of potential
moves from which we will select the best one according to some strategies. The kind of problems based on exploring candidate transitions
and analyzing their suitability for reaching our goals is globally called state-space search problems. We search the state-space to find
ways to move from the initial conditions to our goals.

State-space search is a very powerful paradigm that can be used to create strategies and plans. We propagate each possible move into
the future and evaluate its consequences. This family of algorithms is well suited for everything from playing chess to finding the exit to a
maze. It all boils down to representing the game as a tree with possible configurations as nodes in the tree and moves as branches
between moves. Given an initial state and a target state, we can use a variety of methods to find the best route (and thus, move sequence)
to go from one to the other. Eigure 6.14 shows the classic state-space for the game of tic-tac-toe.

Figure 6.12. State-space tree for tic-tac-toe (subset).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

|

|)
=) —
=0

- >
O EG\

> | >

>

X
O
Goal
Slate

Many exploration algorithms exist for state-space problems. Some of them are blind search methods, meaning they use brute force to
explore all possible moves. An example is depth-first search. We select candidates recursively using a single path until we reach an end
state from which no further moves can be performed. Then, if the end state is not a goal, we start all over again using the next candidate.
Blind search methods always work, but sometimes their cost can make them impractical. Take chess again, for example. Doing a
depth-first search for such a game can take forever because the game does not necessarily have to end in a finite amount of time. So,
other algorithms have been devised through the years. These algorithms use information about the problem to select not just any
candidate, but one that looks like a promising option. These algorithms are said to be heuristic based, which means they use extra
information that usually improves results. A good example is a problem-solving algorithm called A*. A* examines the current state and then
explores future states, prioritizing those that look like better candidates. It is widely used for path finding. In this scenario, A* needs to have
some extra information about the domain of the problem we are trying to solve. Then, it can find very good solutions without exploring all
opportunities. In fact, for many problems, A* is an optimal algorithm, meaning it is capable of finding the optimal way to move between two
locations. It's all a matter of using information about the problem we are solving. You can find a complete discussion of A* and other path
finding algorithms in the next several chapters.

We also need to be aware that some problems are just too big, even for heuristic-based approaches. Chess, again, is a good example.
Put simply, there is no computer in the world (and there won't be at least for a few years) that can hold the complete chess movement
state space. The number of board configurations is of astronomic proportions (just think about it: the board has 64 squares, there are 16
pieces, each one different. Get a calculator and do the math). Besides, most configurations can be connected in cycles. We can move a
gueen to a position, only to move it back to the original state. Thus, trying to explore the whole tree is just plain impossible. What most
good programs do is analyze the tree with limited depth, trying to forecast the next N moves and select the best strategy for that
movement sequence. By concatenating this sequentially, a good game should hopefully emerge.

Biology-Inspired Al

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

All the core Al technologies we have explored so far are clearly rooted in computer science and mathematics concepts. The graphs, rules,
or trees we have been using are not biological concepts but computational structures. Essentially, we have simulated human behavior, but
we have used nonhuman tools.

Thus, you could be inclined to generalize this and believe that all Al works the same way, that all simulations take place in the computer's
mind-set. Although this is partly true, other techniques exist that are rooted not in computer science but in biology and neurology. We can
try to simulate not only the intelligence that emerges from cognitive processes, but also the cognitive processes.

The main issue with this biological approach is that today we are just beginning to scratch the surface of how the brain really works. Our
cognitive processes are just being explored, and so far, their complexity has not yet been tamed. Thus, all biology-inspired models suffer
from a certain sense of instability. But once these limitations are well understood, some of the methods are mature enough to offer
promising results in specific areas.

Genetic Programming

A very popular biology-inspired approach is genetic programming, inspired by genetic theory as developed by Mendel and evolution theory
as developed by Charles Darwin (both in the nineteenth century). For those of you who are not familiar with these theories, I'll provide a
short explanation in the next two paragraphs.

The core idea behind genetic theory is that all living beings are defined by a molecular construct called genetic code (which was latter
discovered to consist of DNA strings). DNA encodes the features of each individual. Different species (such as birds and mammals) have
different DNA structures, and individuals from a single species share their DNA layouts. But individuals from the same species have
minimal variations in some values in their DNA. These variations yield slightly different individuals, with differences in gender, external
appearance, and so forth. Then, each generation can create a new generation whose DNA code will consist of a combination of the
parent's respective DNA code, plus a minor degree of mutations.

Based on genetic theory, Charles Darwin developed his theory of evolution. This theory essentially states that living beings in an
ecosystem survive or expire depending on the suitability or fitness of their DNA to the said environment. The fittest survive, and the less
well suited will simply disappear. Imagine a cold environment and a population of bears. Logically, those with better temperature insulation
will live longer and will create a second generation that will, statistically, share their temperature protection scheme (be it thicker hair,
stronger skin, and so on). Thus, nature is somehow biased toward better individuals. Every few generations, small mutations will appear,
causing some of the DNA elements to change. Most bears will resemble their parents (using a normal distribution), but a small part of the
Nth generation bears will have different eyes, longer legs, or even better temperature shielding. These bears, being better suited to their
environment, will survive better, statistically breed more and fitter descendants, and so forth. If you extend this process, which is merely
statistical, over several thousand generations, these micro changes will have paid off, and the species that will have survived the process
will be very well adapted (within the obvious limits of biology) to the environment. Today, evolutionary theory is accepted and proven,
despite some annoying questions as to how and why seahorses and other funny-looking animals ever came to be.

The genetic and evolutionary theories work very well as a whole. The complete genetic theory deals with both the creation of a uniform
population and the evolution of its individuals according to the rules of survival and improvement in the ecosystem. Interestingly, this
process is well suited for numerical simulation. We can generate synthetic individuals and make them evolve using a computer simulation
of these evolutionary principles. This way we can evolve virtual creatures and ecosystems in reasonable amounts of time, far from the
millions of years it takes nature to select the fittest.

Additionally, genetic programming can be used in game Al. Although FSMs and RSs are the workhorses of any Al programmer, these
novel techniques are beginning to find their way into computer games in very specific applications. So let's now explore genetic algorithms
in some detail to understand their potential applications. | will propose two examples. In the first example, we will use DNA codes to
generate similar, yet varied, individuals. Then, we will explore how a Darwinian selection process can help us tune our game Al.

Generating Populations

The first component we will study is the core genetic simulator, which will allow us to create individuals according to a virtual DNA. The
DNA will be represented as an array of values; each one being one parameter of the species to model. So, if we are to genetically derive

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

human pedestrians to act as part of the scenario in a game set in a city (think GTA3, Midtown Madness, but also The Sims, and so on),
we could have a DNA string such as this:

Gender: (Male, Female)

Race: (Caucasian, African American, Latino, Oriental)

HairStyle: (No hair, Ponytail, Short hair, Long hair)

DressStyle: (Formal, Jeans and T-shirt, Hawaiian, Military)

Height: (Petite, Small, Medium, Tall, Huge)

Speed: (1...5 meters/second)

Resolution: (1: The character wanders with no apparent goal; 5: The character follows a planned route)

The linear combination of these seven parameters can generate a variety of individuals; each with its own DNA. Given the number of
parameters and the possible choices for each individual, we could have approximately 30,000 different specimens. It would then be the
task of a sophisticated graphics animation engine to render the different variations.

Here are two specimens from our DNA sequence:
Specimen 1: (Male, Caucasian, No hair, Hawaiian, Medium, 5, 2)
Specimen 2: (Female, Latino, Ponytail, Hawaiian, Petite, 3, 4)

Using genetic combinations, we can derive many descendants from this couple. Genetically speaking, about 200 possible descendants
can be generated (not including mutations). Here's how:

® Because parents are one male and one female, statistically speaking, we can generate both males and females with the same
probability.

® Descendants will be either Caucasian or Latino (we are not taking race hybrids into consideration for the sake of simplicity).

® Dpescendants will either have no hair or end up with a ponytail. This does not make much sense biologically speaking, but it is
indeed what our DNA encoded.

® Regarding clothing habits, clearly all descendants will wear Hawaiian attire.

® Assuming size is a linear measure, descendants will range from petite to medium with equal probability, yielding three possible
combinations (petite, small, medium).

® The same applies to the speed, which will be in the range of 3 to 5 (3 different values).

® The resolution will range from 2 to 4, adding 3 possible results for the final gene.

Thus, the equation is the linear combination of all these variations:
2*¥2*2*1*3*3*3 = 216
The result is the number of possible descendants from that pair of source genetic codes.

From this simple example, one of the main uses of genetic programming becomes evident. It is a great tool to create variations for groups,
whether it's orcs, pedestrians, or lemmings. Genetic programming adds a degree of statistical variance that makes results more
interesting. Moreover, genetic programming is not limited to living beings. How about using DNA codes for a cityscape, so each house is a
variation of the standard genetic code of a core house? You could even have different neighborhoods with distinctive looks and qualities by
creating a unique DNA structure and then modeling each neighborhood in terms of specific values for each gene. Then, you could create
transitional zones between two neighborhoods by mating the DNA from each zone, weighted by the distance to the zone itself. Thus, we

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

could seamlessly blend a Victorian downtown with a residential area. Once you get into the computer's realm, the possibilities are
endless. Genetic programming can help us overcome uniform and boring games.

Evolutionary Computation

Now it is time to implement Darwin's theory of natural selection. This is slightly trickier than simple genetic computation because we need
to test individuals against their ecosystem and somehow measure their performance or fitness. This way the better suited will survive, and
the remainder will simply perish (actually, they will become NULL pointers). By iterating this selection process, better-suited generations
will statistically dominate in the long run. Here is the general layout of any Darwinian system:

1. Generate the first N individuals with random DNA codes.
2. Perform fitness testing on them.
3. Select the top percent.
4. Generate N descendants that are
a. Linear combinations of the parents' DNA
b. Mutations
5. Go to step 2 until you have reached your desired number of generations.

Let's explore each step in detail. We will skip step 1 because it's the traditional genetic computation we have just explored.

Fitness Testing

The fitness test determines which specimens are interesting (and thus deserve new generations) and which ones are simply not worth it.
Thus, it is an essential component to ensure proper evolution and improvement. There are two ways of performing the test: automatic and
supervised. In an automatic scenario, we define a function that can be computed automatically and will be applied to all individuals with no
user interaction. An assisted system needs user supervision to select the cream of each crop. To better understand each system's
potential and shortcomings, imagine that we are genetically deriving opponents for a Formula-1 racing game. We have defined their DNA
as:

MaxSpeed (speed in a straight area of the course)

MinSpeed (speed in a curve)

MetersBeforeBrake (how many meters before a curve does the driver brake)
BrakeAmount (how much does it brake to enter the curve)

PositionCurve (how does it attack the curve: by the inner side or outer side)
MinDistance (minimum distance to any other car to avoid collision)

AttackAngle (angle of attack when entering a curve)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

AccelMoment (% of the curve passed when the driver accelerates again)

Obviously, we do not know beforehand which combination of the preceding parameters yields the best driver. Even more interesting, there
might be different parameter combinations (and thus different driving styles) that yield top results. So, we build an evolutionary tester and
run a number of generations to breed a good selection of drivers. As mentioned earlier, we need a significant number of generations to
achieve interesting results. So, we run the system for 50 generations with 50 drivers being born in each one. In each run, we select the top
10 drivers as generators for the next iteration.

Clearly, having to examine 2,500 drivers is a time-consuming task. Besides, as generations advance, the differences in driving will
diminish as they converge to create stable, almost perfect driving styles. So, a human supervisor can have a hard time selecting the best
specimens.

In these situations, we can define an automatic fitness function, and thus perform the whole evolutionary loop as a batch process. For our
driver selector, the fitness function can be a weighted sum of:

The time per lap (lowest=best)
The status of the car (less impacts=best)

Now, assuming we run this as a batch process, and each driver gets a two-minute time slice to run a lap around the circuit and thus
generate input for the fithess function, we will need about three days (using a single computer) to reach our final selection. Although
significant, this time will ensure that we have top Al opponents using a vastly automatic process. The main programming task is defining
the DNA we are going to use and determining the fitness function.

A different strategy of performing the fitness test is to make specimens compete with one another in a tournament. We pair them randomly
and test which one of them performs better. Then, the losing specimen is discarded, and the winning one advances to the next round. This
can be a very useful technique to select specimens that are combat or competition oriented. For example, you can test Quake bots this
way by making them fight each other in an empty level, and the one that achieves more frags in a given time is selected. But be careful
with this approach. Imagine that two very good contestants are matched in the first round. Even if one of them wins in the end, this does
not necessarily mean that the other one should be discarded. This kind of phenomena happens in many sports competitions (the
Wimbledon tennis tournament and the Soccer World Cup are good examples). Sometimes, very good teams or players get coupled early
on in the competition, which forces some quite good contestants to be discarded too early.

However, in some instances, it will be hard to define a feasible, automatic fitness test. Sometimes the selection criteria will be nhonnumeric,
or quite simply, hard to put into numbers. Let's go back for a second to our crowd genetic simulator. Imagine you choose to iterate a crowd
in an evolutionary way. Your goal is to create visually interesting combinations. You parameterize your virtual pedestrians using a variety
of values and simply need to generate a few people that are visually attractive.

One classic method is to let a supervisor select couples and then genetically derive descendants from them. This same method is used to
procedurally generate textures in some packages based on the user's desired style. Then, it is hard, if not impossible, to automate what a
person might find attractive or ugly. It is much better to create a system that can be evolved interactively, so the user can perform the
Darwinian selection. The process can actually be done very quickly. We can select the best-looking pedestrian out of a population of 20 in
one minute. This means we can derive 60 generations in an hour, which is more than enough.

When coding this kind of supervised system, there are two guidelines that should be strictly observed:

® The system must evolve in a relatively small number of iterations.

® The time required to evaluate and select individuals from one iteration must be brief.

These two conditions try to guarantee the rapid convergence of the evolution, so we can reach interesting results in a short time.

Mating, Mutations, and Plateaus

Once we have selected the best individuals, it is time to generate descendants as linear combinations of the parents' DNA strings. This
process is really straightforward and, if the parents were among the cream of the crop, they will generate a better iteration. But it is very
important to introduce some kind of mutation to the process. Assign a random gene value to a small portion of the newborn population to

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

test that solution as well. The reason why we must act this way might not be trivial. Evolutionary computation is just a process of local
optimization. Each generation is, on average, slightly better than the last one, and in the long run, this leads to perfect specimens. In fact,
evolutionary computation is nothing but a special case of what's usually called a hill-climbing approach. Each step of the algorithm
produces an improvement based on local characteristics, much like a hill climber. When climbing a hill, provided you always advance in
the steepest direction, you should reach the top. But we all know a hill-climbing method only guarantees that we will reach a local maxima
because we can reach a plateau from which we can no longer climb (and is not necessarily the top of the mountain). That's why mutations
are essential. They guarantee that we can always generate a different individual who can by chance find a different way to evolve and
reach better fitness values that the current generation cannot.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In Closing

Artificial intelligence is a deep, involved subject, and game developers are now beginning to harness its real power. In this chapter, we
have explored the main techniques that are currently being used in production by game developers worldwide. Other techniques, such

as fuzzy logic, Bayesian networks, and neural networks, show great potential as well and will progressively be incorporated into our
arsenal in the future. It is now time to move on and apply these methods in different scenarios, from a fast-paced, frantic action game to a
slow-paced, strategic title.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 7. Action-Oriented Al

"Action may not always bring happiness; but there is no happiness without action."”

—Benjamin Disraeli
KEY TOPICS

® 0O Action Games

® Choreographed Als

o Object Tracking

® Chasing

® Eyasion

o Patrolling

® Hiding and Taking Cover
® Shooting

o Putting It All Together

® | Closing

Now that we have a global understanding of the building blocks of any Al system, it is time to delve into the details of how Al is built into
video games. Because this is a lengthy subject, with different techniques used for different gameplay styles, | have divided the
information into three separate chapters. Most game Al techniques might not be very complex, but there are many twists and interesting
ideas to which we will have to devote some space.

In this chapter, | will provide an overview of Al methods used in fast-paced action games. We will review general techniques, and then do
a case-by-case analysis on fighting games, racing simulators, and so on, providing insider information on many popular algorithms.

The next chapter will deal with the subject of tactical Al, which finds its main use in strategy games. We will learn to build plans, analyze
enemy configurations, and trace maneuvers that would marvel most real-world generals.

We will end our journey through artificial intelligence techniques with a chapter on scripting, which is one of the most powerful paradigms
for coding Als. By separating the Al code from the main game engine, scripting provides a robust and flexible way of creating large Al
systems. In fact, most professional Als today are built via some sort of scripting engine. So we will analyze the different scripting
techniques in detail.

Let's begin with the basics. We need to create little creatures that chase us and shoot, so let's get to work.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

On Action Games

For this book, | will define action as intelligent activity that involves changes of behavior at a fast speed. Examples of action are all
locomation behaviors (a character that runs in Mario), simple aggression or defense (enemies shooting or ducking irQuake), and so on.
Notice how action is put in a contraposition to tactical reasoning, which is in turn described as the analysis process used to create a plan
that will then guide the actions of an intelligent character. So, action deals with immediate activity, and tactics plan that activity.

Action is thus driven by relatively simple tests. We will need to compute distances to targets, angular separations, and so on. Action is
also quite fast-paced. Action games have higher rhythms than tactic/strategic games.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Choreographed Als

In its simplest form, an action Al system can be implemented as a preprogrammed action sequence that is executed repeatedly. This
form of Al is used in industrial robots and can be applied to simple games as well. An elevator in Quake, for example, is just executing a
very simple movement sequence. These systems are merely state machines with no optional transitions—just a series of states the
automata loops through endlessly.

But we can use the same technique for quite interesting Al entities, well beyond elevators and robot arms. A security guard in an
adventure game, for example, can be programmed to walk up and down the alleys in a prison, maybe performing some specific actions.
Ships in top-down arcade scrollers sometimes exhibit quite beautiful choreographies, often involving tens of ships. Gameplay in these
games emerges from analyzing movement patterns and detecting the pitfall that allows us to avoid the guard, shoot down enemy ships,
and so on.

Choreographed Al systems usually employ a very simple scripting engine to represent movement sequences. shows a
diagram of such a system. Note that we are not talking about a full-blown Al system built with a scripting engine. We are starting with
very simple and deterministic behaviors that are stored in files, as in the following example:

set animation "walk"
goto0100

set animation "rotate"
rotate 180

set animation "walk"
goto000

set animation "rotate"
rotate 180

Figure 7.1. Sequencer for a choreographed Al system.

10 meters

290°

80°

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Advance

10 meters

The preceding example could very well be an animation for a security guard in a prison. He just walks up and down an alley, executing
different animation cycles. Most coin-operated machines from the 70s and 80s used variations of this approach, shared (among other
classics) by the LOGO programming language and the BigTrak vehicle toy sold by Milton Bradley.

The main design decision you must make when coding any choreographed Al system is selecting the range of commands the Al will
respond to, or in other words, the instruction set for your programming language. | recommend you take a second to carefully think about
the level of abstraction you will use with your Al system. Should any movement be decomposed into a series of straight lines, or should
more complex tasks like spirals and circles be directly built into the language? Clearly, setting the right abstraction level will allow us to
create more interesting scripts with less work. Unfortunately, this is a context-sensitive decision. Designing the scripting language largely
depends on the kind of game (and Al) you are trying to craft. Once the level is set, decide on the instructions and parameters you will be
implementing. Again, try to think in terms of what gives you the most expressive potential for the game.

Implementation

The first choreographed Als stored sequences that were hard-coded into the game's assembly source. But as time passed and
sequencing languages became more and more powerful, small scripting languages were evolved, so content creators could work on
more complex sequences easily.

Today, implementing a choreographed Al system is, fundamentally, implementing a very simple script language. You need a parser that
reads the script into main memory. Then, a run-time interpreter processes the file and executes its instructions, affecting game engine
internals such as enemy positions and orientations. We will discuss script languages in detail in , "Scripting," so | suggest you
refer to it when trying to code a choreographed Al system.

Team LiB |

Lhis document was created by an unreqgistered ChmMaagic, please go to http://www.bisenter.com to reqgister it. T

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Object Tracking

One of the first problems we must deal with in any action Al system is maintaining eye contact with a target, whether it's moving or static.
This is used everywhere in action-oriented games, from rotating a static shooting device (like the turrets in Star Wars' trenches) to aiming
at an enemy we are chasing or evading, or basic navigation (to track a waypoint we must reach).

Eye contact can be formulated as, given an orientation (both position and orientation angles) and a point in space, computing the best
rotation to align the orientation with the point. It can be solved in a variety of ways, which I'll cover one by one in the following sections.

Eye Contact: 2D Hemiplane Test

If we are in a 2D world, we can solve the eye contact problem easily with very little math. Let's first take a look at the variables involved in
our system. | will assume we are in a top-down view, overseeing the X,Z plane.

point mypos; /I position of the Al
float myyaw; /I yaw angle in radians. | assume
top-down view

point hispos; /I position of the moving target

The first step is to compute whether hispos effectively lies to the left or right of the line formed bymypos and myyaw. Using parametric
equations, we know the line can be represented as:

X = mypos.x + cos(myyaw) * t
Z = mypos.z + sin(myyaw) * t

where t is the parameter we must vary to find points that lie on the line. Solving fot, we get the implicit version of the preceding equation,
which is as follows:

(X — mypos.x)/cos(myyaw) = (Z — mypos.z)/sin(myyaw)

By making this into a function, we know the points on the line are

F(X,2)= (X — mypos.x)/cos(myyaw) - (Z — mypos.z)/sin(myyaw) =0

If we have a point in space and test it against our newly created function, we will have
F(X,Z) > 0 (it lies to one side of the line)

F(X,Z) = 0 (it lies exactly on the line)

F(X,2) < 0 (it lies to the opposite side)

This test, which is illustrated in , requires:

® 3 subtractions
® divisions

® comparison (to extract the result)

Figure 7.2. Hemispace test.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

We can speed the routine up if we need to do batches of tests (against several targets) by calculating the expensive trigonometric
functions only once, and storing them as the inverse so we can save the expensive divides. The formula will be

F(X,2)= (X — mypos.x)*(1/cos(myyaw)) - (Z — mypos.z)*(1/sin(myyaw))

If we do these optimizations, the overall performance of the test will be (for N computations):
3*N subtractions
2*N multiplies
2 trigonometric evaluations
2 divisions (for the invert)
N comparisons (for the result)

which is fairly efficient. For sufficiently large batches, the cost of divisions and trigonometric evaluations (which can be tabulated anyway)
will be negligible, yielding a cost of three subtractions and two multiplies.

For completeness, here is the C code for the preceding test:

int whichside(point pos, float yaw, point hispos)
/I returns —1 for left, O for aligned, and 1 for right
{

float c=cos(yaw);

float s=sin(yaw);

if (c==0) ¢=0.001;

if (s==0) s=0.001;

float func=(pos.x-hispos.x)/c — (pos.z-hispos.z)/s;
if (func>0) return 1,

if (func==0) return O;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

if (func<0) return —1;

}

3D Version: Semispaces

To compute a 3D version of the tracking code, we need to work with the pitch and yaw angles to ensure that both our elevation and
targeting are okay. Think of a turret in the Star Wars Death Star sequence. The turret can rotate around the vertical axis (yaw) and also
aim up and down (changing its pitch). For this first version, we will work with the equations of a unit sphere, as denoted by:

x = cos(pitch) cos(yaw)
y = sin(pitch)
z = cos(pitch) sin(yaw)

Clearly, the best option in this case is to use two planes to detect both the left-right and the above-below test. One plane will divide the
world into two halves vertically. This plane is built as follows:

point pos=playerpos;

point fwd(cos(yaw),0,sin(yaw));
fwd=fwd+playerpos;

point up(0,1,0);
up=up+playerpos;

plane vertplane(pos, fwd, up);

Notice how we are defining the plane by three passing points. Thus, the plane is vertical, and its normal is pointing to the left side of the
world, as seen from the local player position.

The second plane is built with the pitch and divides the world into those points above and below the current aiming position. Here is the
code:

point pos=playerpos;

point fwd(cos(pitch)*cos(yaw), sin(pitch), cos(pitch) sin(yaw));
fwd=fwd+playerpos;

point left(cos(yaw+P1/2),0,sin(yaw+P1/2));

left=left+playerpos;

plane horzplane(pos,fwd,left);

In this case, the normal points up. Then, all we need to do to keep eye space with a point in 3D space is compute the quadrant it's
located at and react accordingly:

if (vertplane.eval(target)>0) yaw-=0.01,;
else yaw+=0.01,;

if (horzplane.eval(target)>0) pitch-=0.01;
else pitch+=0.01;

Notice that the signs largely depend on how you define pitch and yaw to be aligned. Take a look at for a visual explanation of
the preceding algorithm.

Figure 7.3. Semispace test, 3D version.

Lhis document was created by an unreqgistered ChmMaagic, please go to http://www.bisenter.com to reqgister it. T

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chasing

Now that we know how to aim at a target, we will use that knowledge to implement a chase behavior. To be honest, chasing is easy once
you know how to keep eye contact, so this section should be pretty straightforward.

In its simplest form, chasing involves moving forward while keeping eye contact with the target. Thus, we will keep aligned with the target
and advance toward it. If by some unknown reason we lose sight of the target (because the target moved, for example), we will correct
our orientation and keep moving.

Chase 2D: Constant Speed

The source code for a constant-speed, 2D chaser follows. Notice how we follow the guideline in the previous section, and just try to
re-aim while moving forward. More sophisticated, variable-speed methods can be devised for specific purposes.

void chase(point mypos, float myyaw, point hispos)

{

reaim(mypos,myyaw,hispos);

Mypos.X = Mypos.X + cos(myyaw) * speed,;
mypos.z = mypos.z + sin(myyaw) * speed;

}

The success of this approach largely depends on the relationship between our speed, the target's speed, and our turning ability. If we
can turn quickly, we can assume that we will be effectively facing the target much of the time, so we will perform a pretty optimal chase.
But we will need our speed to be higher than the target's speed to ensure we make contact. A faster target will thus be unreachable. On
the other hand, a much slower target might also escape our pursuit, especially if our maneuverability is restricted. To understand this,
think of a fighter jet trying to chase a helicopter. Quite likely, the jet will have a hard time trying to stay aligned with the helicopter.

Predictive Chasing

One alternative to ensure a better chase is to use predictive techniques. Here we will not aim at the target directly, but try to anticipate
his movements and guess his intentions. In much the same way as a good chess player can use intuition to discover what his opponent
is trying to do, a chaser can use some clever interpolation to anticipate his opponent's moves.

This idea is really straightforward. Keep track of the position his opponent and use that information to create a "predicted
position" some time in the future. Then, aim at that position. In Fi:ure 7.j, you can see how a predictive chaser can outperform an
opponent, even if their respective speeds and maneuverability are the same. The predictive chaser will make more informed decisions,
which will ultimately make him succeed.

Figure 7.4. Predictive chasing, where the dotted line shows the predictive course.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chased

Mon-predictive

Chaser

Predictive chasing is performed as a preprocess to the chase routine just explained. Instead of aiming and advancing, we will use a
three-step approach, which involves:

1. Calculating a projected position
2. Aiming at that position
3. Advancing

Calculating the projected position can be implemented with a number of interpolation techniques. We could, for example, take the last
two position samples from the enemy and use a straight line as the interpolator. The code for this approach would look something like
this:

void chase(point mypos, float myyaw, point hispos,point prevpos)

{
point vec=hispos-prevpos; // vec is the 1-frame position difference
vec=vec*N; /I we project N frames into the future

point futurepos=hispos+vec; // and build the future projection

reaim(mypos,myyaw,futurepos);
Mypos.X = mypos.x + cos(myyaw) * speed;
Mypos.z = mypos.z + sin(myyaw) * speed;

}

Just these three simple lines allow our chaser to perform better. By varying the value of N (which depends on the relationships of speeds
and our chaser's turning ability), we can find the perfect match.

An added value of the preceding code is that it will correctly treat the degenerate case of a target that holds still. It will predict that the
target will remain unchanged.

We can implement variants of the preceding code using better interpolators. Instead of using the last two points in the trajectory, we

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

could use N points for better results. By usingN points, we can derive anN-1 interpolation polynomial. Obviously, as we increase the
degree of the polynomial, the fitness to the trajectory will improve, and we will be able to make longer-lived predictions. But we will soon
see that this improvement comes at a price. Computing higher-order polynomials has a computational cost that you might not be willing
to pay.

One of the best ways to compute interpolation polynomials is to use the method of finite differences. These are a set of equations that
define the Nth degree polynomial (thus, passing throughN+1 values). For a quadratic polynomial, the equation has the form:

P(x) = a0 + al*(X-x0) + a2*(X-x0)*(X-x1)

where:

a0 =yl

al = (yl -y0)/ (x1-x0)

a2 = (((y2 — y1) / (x2-x1)) - ((y1-y0) / (x1-x0))) / (x2-x0)

You can guess the pattern that generates the Nth degree equation by examining the way each extra parameter—a0, al, and a2—value
is generated.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Evasion

Once we know how to chase targets around, it is easy to learn to evade. Essentially, evading is the opposite of chasing. Instead of trying
to decrease the distance to the target, we will try to maximize it. Thus, an evasion algorithm will be very similar to a chasing algorithm
except for some sign changes. Here it is in detail:

void evade(point mypos, float myyaw, point hispos)

{

reaim(mypos,myyaw,hispos); negated

Mypos.X = Mypos.X + cos(myyaw) * speed,;
mypos.z = mypos.z + sin(myyaw) * speed;

}

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Patrolling

Another interesting behavior in any action Al system is patrolling. Policemen, dogs, and many other in-game characters patrol a
predefined area, sometimes engaging in combat when an enemy is discovered.

To implement a patrolling behavior, we have to store a set of waypoints that will determine the path followed by the Al. These waypoints
can be followed in two configurations: cyclic and ping-pong. Given waypoints W1...W5, here are the visit sequences for both schemes:

Cyclic: W1 W2 W3 W4 W5 W1 W2 W3 W4 W5 ...
Ping-pong: W1 W2 W3 W4 W5 W4 W3 W2 W1 W2 ...

| recommend using the cyclic approach because ping-pong trajectories can be expressed as cycles (explicitly adding the way-back),
whereas the opposite is not true. Following a waypoint is not very different from a chase behavior. It is just a chase where we follow a
sequence of targets. The easiest way to implement this is through a minimal, two-state finite-state machine. The first state is used to
advance toward the next waypoint (represented internally by an integer). Then, as we approach closer to a predefined threshold, we
move to the second state. This is a nonpersistent state, where the integer used to represent the next waypoint is updated. We then go
back to the first state, follow the waypoint, and so on.

Patrol behaviors (depicted in can often be enhanced by adding a third state, which implements a chase behavior. This is
usually triggered by using a view cone for the Al, testing whether the player actually entered the cone (and was thus discovered by the
Al). Games such as Commandos: Behind Enemy Lines made good use of this technique.

Figure 7.5. A patrolling Al, surrounding two buildings.

oW4
W5 e<————

aW2

Lhis document was created by an unreqgistered ChmMaagic, please go to http://www.bisenter.com to reqgister it. T

Wie—

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Hiding and Taking Cover

Sometimes we will need our Als to run for cover or remain unnoticed by the player. For example, maybe they want to catch the player by
surprise, or maybe the Al is controlling a soldier under heavy player fire. Whatever the case, knowing how (and where) to seek cover is
always an interesting twist for the Al. Many game reviews praise this behavior as highly sophisticated, and players enjoy seeing it in action
because it offers an extra challenge.

Taking cover is usually a matter of two actions performed sequentially. First, a good hiding spot must be located in the game level.
Second, we must move there quickly. This second phase is nothing but a chase routine, very similar to those explained earlier in this
chapter; so we will focus on detecting good hiding spots. To do so, we will need three data items:

® The position and orientation of the player
® Oour position and orientation

® The geometry of the level

The geometry of the level must be stored in such a way that it allows proximity queries on objects that can actually become hiding spots. A
good structure, for example, is having the world separated into terrain data with objects laid on top. Then, the objects must be laid out
using quadtrees, spatial indices, or any other technique, so we can quickly compute which objects lie closest to certain map locations.

The actual algorithm involves finding the closest object to the Al's location and computing a hiding position for that object. The algorithm
works as follows. We start by using the scene graph to select the closest object to the Al. This step largely depends on how the world is
laid out. Once we have selected the object, we shoot one ray from the player's position to the barycenter of the object. We propagate the

beyond that point, computing a point along the ray that's actually behind the object (from the player's standpoint). As shown in
@, that's a good hiding spot. Keep in mind that hiding in places can be sped up if we can guarantee convex hiding spots.

Figure 7.6. Geometry of playing hide-and-seek with the player.

X Al

Barycenter

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Als that implement hiding behaviors can easily be enhanced to work with the player's view cone. This is very useful for shooters. As
shooters, we remain hidden while the view cone is focused on us. As soon as the player is looking somewhere else, we know we can
leave our hiding spot and attack him. Games such as Medal of Honor have made great use of this technique, with German soldiers staying
under cover until the right opportunity arises.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Shooting

We know how to chase the player, evade him, and keep an eye on his position. We have even predicted his future actions. So, now it's
time to work on the mechanics of shooting. We need to learn when is it a good idea to shoot at the player in different contexts. We also
need to know whether we are handling a machine gun, a sniper rifle, or a catapult. As you will soon see, each one requires slightly
different approaches to the problem of targeting.

Before starting, | need to give some personal words of warning. The same way | enjoyed movies like Star Wars, Alien, and Saving
Private Ryan, | think games with a fighting/shooting element should be recognized as enjoyable experiences. | don't have any moral
problem with that, and | think any healthy person can differentiate between the fictitious violence shown by games/movies/books and real
violence. On the other hand, I'd recommend that people play many different games, not all of them with a combat/violence component,
just as I'd go to see different types of movies. That said, the following sections deal with the specifics of shooting, so they necessarily
focus on the algorithms required to target and shoot down enemies.

Infinite-Speed Targeting

The first approach we will explore is shooting with a weapon that has infinite speed, or in practical terms, very high speed compared to
the speed of the target. This can be the case of a laser gun, which would advance at light speed, for example. Then, we can assume the
time it takes for the projectile to reach the target is virtually zero. Thus, the selection of the shooting moment is really easy. All you have
to do is make sure you are well aligned with the target at the moment of shooting. As the velocity is very high, we will have a sure hit
because the target will have very little time to move and avoid the collision with the bullet. Clearly, it is not a good idea to abuse
infinite-speed weapons because they can unbalance your game. If you build these weapons into the game, make sure you balance them
well in terms of gameplay. For example, the firing rate can be very low, the ammunition limited, or the weapon might be really hard to
get.

Real-World Targeting

What happens with a real-world firing device? Even a real gun shoots projectiles at a limited speed (approximately 300-600 meters per
second). This means shooting a fast moving target is harder than shooting one that stands still. Thus, most weapons must be modeled
as finite-speed devices, where some careful planning is used. | will explain two popular approaches.

Version A: The Still Shooter

The still shooter targets the enemy and only shoots whenever the enemy is standing still for a certain period of time. The reason is
simple. If the bullet takes one second to hit the target, and the target has been standing still for a certain period of time, it is a good
hypothesis to assume the target will stand still for another second, thus making it a good moment to attempt shooting.

An enhancement to this algorithm is to watch the target for specific actions that indicate restrictions in his ability to move. For example, if
the target is standing still, he might begin walking in any given moment, thus making it an unsafe target. But what happens if he sits

down or if he is tying one of his shoes? Clearly, we have a better aim here because we know for sure he won't be going anywhere in the
next few seconds. This would be the kind of reasoning that would drive a sniper-style Al. He looks for very safe shoots that hit the target

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

most of the time. By shooting only when a safe hit is granted, the shooter ensures one kill while not giving away his position easily. The
disadvantage is that maybe the shooter will have very few opportunities to actually shoot, so it is a good idea to make him less
restrictive. The way to do this is to introduce errors in his processing. He might sense time incorrectly, confuse animations, and so on. So
sometimes he will shoot when he's not supposed to. When done carefully, this can accurately model fatigue and morale, affecting the
ability of the sniper to stay focused.

As a summary, here is the algorithm in detail:

Global variables:
Timestill time since the enemy began standing still
StandingStill 1 if standing still, O otherwise

When it begins standing still
StandingStill=1
Timestill=now

If StandingStill and more than X seconds have elapsed since Timestill
Shoot

Version B: The Tracker

The tracker Al also tries to model the behavior of a sniper. In this case, he will shoot moving targets, not just those who are standing still.
Shooting a moving target is really hard. We need to combine the shooting behavior with a target tracking routine, and there is a
predictive component going on as well. If the gun has a finite speed, we need to target not the current position, but the position where the
target will be when the bullet hits him.

The idea is simple: Compute the distance from the sniper to the target, use the projectile velocity to compute how long it will take for the
projectile to reach the target, and predict where the target will be in the future, exactly when the projectile arrives, This way you can aim
at that spot and get a safer shoot, especially in distant or fast-moving targets. The algorithm in full is depicted in figure 7.7.

float d=distance (sniper, target)

float time=d/bulletspeed

point pos=predictposition(target,time)
if aiming at pos shoot()

else target at pos;

Figure 7.7. Predictive shooter.

x = rEdiGtEd
+ Position Player
v 8
\ Velocity

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

il =

Alm

Whether predictive or still shooters, we have focused so far on single-shot firing devices, where each shot is considered an individual Al
decision. But other weapons, such as machine guns, offer the possibility of shooting bursts of bullets at high frequency but with reduced
precision. The Al logic for such weapons is a completely different subject, and thus deserves its own separate discussion.

Machine Guns

Machine guns offer fast firing rates at the cost of inferior precision. Shots cause the cannon to shake due to recoil, making it hard to aim
accurately. Thus, their main use is found not in targeting people, but areas. The machine gun is aimed in the right direction, and short
bursts are fired to hit anyone in the area.

The first type of gun we will examine is the fixed machine gun. This kind of behavior is exhibited by gunners in bunkers, trenches, and so
on. Some classic guns would be the MG-42 used by the German army in World War II, the M60 used in Vietnam, and so on. Here are
some stats from the former:

MG-42 (with lightweight tripod)
Firing rate: 25 rounds per second
Range: 1000 meters
Muzzle velocity: 820 meters per second
Weight: 11.6 Kg

MG-42 (with Lafette tripod)
Firing rate: 25 rounds per second
Range: 1000 meters
Muzzle velocity: 820 meters per second
Weight: 31.1 Kg

From these statistics, several lessons can be extracted. First, these guns hardly ever moved, but instead kept on targeting and shooting
down enemies from a fixed position. Second, these guns did not have a lot of autonomy, the standard feed type for the MG-42 was a
50/250 metal belt. Thus, a burst could not last longer than 10 seconds, followed by a pause to change the metal belt. These guns were
thus used for performing short firing bursts. Their algorithm is relatively straightforward. By default, the soldier stands still, waiting for new
enemies to arrive. Then, as they begin to get closer, the gunner must rotate the gun to face the enemy. Rotation must somehow be
penalized for slower models. When the angular difference between the gunner and the enemy is smaller than a certain threshold, the
gunner will hold down the trigger while trying to refine his aiming. Keep in mind each shot introduces some distortion to the aiming due to
recoil, so the gunner must re-aim every time. As a result, fixed gunners do not usually aim carefully; they aim at an area. Thus, these
gunners are especially useful when we need to stop a wave composed of many soldiers. By pure chance, some bullets shot by the
gunner will reach their target.

A common mistake is to forget about feed sizes. Many World War || games display machine guns that seem to have infinite ammunition.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Let's now examine the problem of a moving character carrying a light machine gun, such as an AK-47 or an M-16. As a rule of thumb,
only movie characters use moving machine guns to shoot long bursts. Recoil makes it impossible to aim, especially if standing up. So,
ammunition is wasted because most projectiles will be lost. Besides, these guns do not have long cartridges, so ammunition must be
used with care. Here are some stats from the World War Il Thompson submachine gun, aka the "Tommy gun":

Thompson
Firing rate: 10-12 rounds per second
Range: 50 meters
Muzzle velocity: approximately 400 meters per second
Weight: 5 Kg

The gun came with 30 bullet cartridges, and a soldier in World War 1l usually carried three such magazines. As you can see, ammunition
was still more of an issue than with heavy, fixed machine guns. Thus, the most common practice is to treat these assault guns as rifles
with very high firing rates. Bullets are shot one by one or in very short bursts. The only situation where a moving gunner can effectively

waste ammo is in a fantasy setting, such as space ship games. Here we can forget about realism and make the tie fighter or other ship
of your choice shoot long firing bursts.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Team LiB |

Putting It All Together

We have seen the basic routines to move a character, chase other people, and shoot different weapons. But these are all individual
tasks, which must somehow be combined. To do so, | will now examine two techniques that allow us to blend these simple behaviors
into a rich, engaging Al system: parallel automata and Al synchronization. The techniques we have seen so far will thus behave like
bricks in a LEGO game, each serving a specific function or task.

Parallel Automata

The first way to blend different actions together is to use a parallel automata. In this case, the first automata would control locomotion
(chasing, evading, patrolling, hiding), whereas a second automata would evaluate the firing opportunities. The algorithm for this solution
would be best implemented via state machines (thus, two state variables would be required). You can see this in the following example:

class enemy
{
int locomstate,gunstate;
void recalc();

}

void enemy::recalc()

{

switch (locomstate)
{
state IDLE:
state WALKING:
}

switch (gunstate)
{
state IDLE:
state WALKING:

}

We have thus divided the problem in two. Now, the locomotion Al is in charge of tasks such as reaching waypoints, collision detection,
seeking cover as needed, and so on. Then, the gunner Al takes care of targeting and shooting down enemies.

Al Synchronization

Another way of combining simple behaviors into complex systems is to make use of Al synchronization. This is generally considered an
advanced topic, but adding it to our toolbox of action Al technigues can greatly increase the expressive potential of the overall
system—the same way a group of ants looks more intelligent to the observer than an individual ant. Groups of enemies that coordinate,
implement tactics, and work as a team are one of the most impressive features of any Al system. This technique was made popular by
Half-Life, where enemy soldiers would call for help, cover each other, and operate as a squad realistically.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Implementing enemy synchronization is just a matter of using a shared memory pool, which is visible to all entities and can be written
and read by the Als. Then, the rule systems or finite-state machines must be enhanced to take advantage of this shared memory.

At the simplest level, our shared memory pool can be something like this:

typedef struct
{
bool flags[64];
} sharedmemory;

We need this structure to be visible from all automata, so we can add sentences like this:

if (sharedmemory[3]) state=(...)

As an example, imagine a game that takes place in a prison. The center of the prison is dominated by a large tower with a powerful light
cannon, which continually scans the ground at night to prevent inmates from escaping. A simple Al controls the light. Then, there are a
few patrol Als that walk around the complex, and if the player enters their view cone, they chase him and kill him. Now, imagine that the
watchtower Al uses a shared memory location to indicate whether the player is actually inside the light cone. If this is so, another
memory location stores his position. Then, patrol Als are implemented just like we discussed earlier, but with an exception. They read
the said memory location, and |i Ilf sz/er is detected, they run to the location specified by the watchtower. This very simple
synchronization, illustrated in Figure 7.4, can yield a significant improvement in the gameplay. The player can voluntarily enter the light
cone to be detected, then run away, so guards are sent to an area of the camp while he escapes somewhere else.

Figure 7.8. Two Als use the shared memory to communicate.

Shared
memory

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

More complex synchronization mechanisms can be devised. A soldier can confront the player, and if the player is carrying a more
powerful weapon, the soldier can run for cover. Once hidden, he can raise a signal so other Als can come to help him. Add some radio
messages as sound effects, and you have a very credible Al behavior.

Synchronization becomes more complex if we try to model larger groups involved in more sophisticated interactions. If we need to create
lifelike behaviors involving dozens of entities, we better use artificial life techniques. These techniques use specific tools to convey the
illusion of living entities acting in groups, such as troops, schools of fish, or birds in the sky.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Team LiB |

In Closing

As a conclusion, | will provide some Al coding hints for a variety of action-based genres.

Platform Games

The first genre we will address is that of platform/jump'n'run games such as Mario or Jak and Daxter. In these games, Al is all about
variety, having lots of enemies to keep the game fresh and new. On the other hand, these Als are not very complex because encounters
with Al enemies are quite short and simple. From the moment we see the baddie in such a game to the moment either he or we are
dead, only a few seconds pass.

Platform game enemies can be easily coded using finite-state machines. In the simplest incarnation, they can be
sequential/choreographed Als that perform deterministic moves. Turtles in the first Mario game, for example, walked up and down map
areas and killed on contact. Many old-school classics were built with this idea in mind.

One step higher in the complexity scale, we can implement chasers that get activated whenever the player is within a certain range. This
represents the vast majority of Als found in platformers, often hidden in great aesthetics that largely increase the believability of the
character. Sometimes, these chasers will have the ability to shoot, which is implemented with parallel automata. One controls locomotion
and the other just shoots whenever we are within angular reach.

Another interesting Al type is the turret, be it an actual turret that shoots, a poisonous plant that spits, or anything in between. A turret is
just a fixed entity that rotates, and when aiming at the player, shoots at him. This behavior can be implemented with the eye contact
approach explained at the beginning of the chapter.

Whichever Al type you choose, platform games require Als to perform sequences that show off their personalities. The basic behavior
will be one of the behaviors we have seen so far. But usually, we will code an Al system with some extra states, so the character
somehow has a personality that is engaging to the player. | will provide two examples here.

In Jak and Daxter: The Precursor Legacy, there are gorillas that chase the player and kill on contact. They are triggered by distance. A
gorilla stands still until we approach to within 10 meters. Then, he just walks toward us, and whenever he makes contact, tries to hit us.
But this is just a plain chase behavior, which would make the game too linear and boring if that is all the gorilla did. Besides, we need a
way to beat the gorillas—maybe a weak spot that makes them winnable. Thus, the gorilla expands his behavior to incorporate a short
routine that involves hitting his chest with both fists, the same way real gorillas do. As a result, the gorilla chases us around, and
whenever he's tired or a certain amount of time has elapsed, he stops, does the chest-hitting routine, and starts over. This makes sense
because the gorilla is showing off his personality with this move. But this is also useful because we know we can attack the gorilla
whenever he is hitting his chest. That's his weak spot. Many enemies in Jak and Daxter work the same way. They have a basic behavior
that is not very different from the behaviors explained in this chapter and some special moves that convey their personalities to the
player.

Another, more involved type of enemy is the end-of-level bosses. I'm thinking about usually large enemies that perform complex Al
routines. Despite their spectacular size, these Als are in fact not much different than your everyday chaser or patrolling grunt. The main
difference is usually their ability to carry out complex, long-spanning choreographies. Although these routines can become an issue from
a design standpoint, their implementation is nearly identical to that of the cases we have analyzed so far. As an example, consider the
killing plant from Jak and Daxter: The Precursor Legacy. This is a large creature, about 5 meters tall, that tries to kill our hero by hitting
him with its head. The flower is fixed to the ground, so it's not easy to avoid it. To make things more interesting, every now and then the
flower will spawn several small spiders, which will become chasers. So you have to avoid the flower and keep an eye on the spiders
while killing them. Then, the carnivorous flower will fall asleep every so often, so we c¢an climb on it and hit it. By following this strategy
repeatedly, we can finally beat it. Take a look at the summary presented in .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 7.9. A classic boss from Jak and Daxter: The Precursor Legacy.

Done?

Spawn
spiders

Awake?
player?

Wake

up
sequence

As engaging and well designed as this may sound, all this complexity does not really affect our implementation. The boss is just a
sequential automata that has a special ability of generating new creatures, but overall the implementation is really straightforward.

Shooters

We will now focus on shooters like Half-Life or Goldeneye. These games are a bit more complex than platformers because the illusion of
realistic combat must be conveyed. The core behavior engine is usually built around finite state machines (FSMs): simple sequential
algorithms that convey the attack and defend sequences. Also, the comment about aesthetics-driven Al in the previous section is also
valid here. We need the character to convey his personality in the game.

Most shooters these days allow enemies to think in terms of the scenario and its map. Enemies can follow us around the game level,
understand context-sensitive ideas like taking cover, and so on. Thus, we need a logical way to lay out the scenario. A popular approach
is to use a graph structure with graph nodes for every room/zone and transitions for gates, doors, or openings between two rooms. This
way you can take advantage of the graph exploration algorithm explained in the next chapter. We can use Dijkstra's algorithm to
compute paths, we can use crash and turn (also in the next chapter) to ensure that we avoid simple objects such as columns, and so on.

Another interesting trend, which was started by Half-Life, is group behavior for games—being chased by the whole army and so on.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Group dynamics are easily integrated into a game engine, and the result is really impressive. Clearly, it's one of those features in which
what you get is much more than what you actually ordered.

Fighting Games

The algorithms used to code fighting games vary greatly from one case to another. From quasi-random action selection in older titles to
today's sophisticated Als and learning features, fighting Al has evolved spectacularly.

As an example, we could implement a state machine with seven states: attack, stand, retreat, advance, block, duck, and jump. When
connected in a meaningful way, these states should create a rather realistic fighting behavior. All we need to do is compute the distance
to the player and the move he's performing and decide which behavior to trigger. Adding a timer to the mix ensures the character does
not stay in the same state forever.

If you want something more sophisticated, we can build a predictive Al, where the enemy learns to detect action sequences as he fights
us. Here, the enemy would learn our favorite moves and adapt to them. The idea is quite straightforward: Keep a list with the
chronological sequence of the last N player movements. This can be a circular queue, for example. Then, using standard statistics,
compute the degree of independence from the events in the queue. For example, if the player is performing a kick and then a punch, we
need to compute whether these two events are correlated. Thus, we compute the number of times they appear in sequence versus the
number of times a kick is not followed by a punch. Tabulating these correlations, we can learn about the player's fighting patterns and
adapt to them. For example, the next time he begins the kick sequence, we will know beforehand whether or not he's likely to punch
afterward, so we can take appropriate countermeasures.

The finite-state machine plus correlations approach is very powerful. It is just a problem of adding states to the machine so we have
more and more flexibility. If we need to create several fighters, each with its own style, all we need to do is slightly change the states or
the correlation-finding routine to change the fighter's personality. Don't be overly optimistic, though, most games implement character
personality at the purely aesthetic level, giving each character specific moves, a certain attitude in the animation, and so on.

So far, our fighter is highly reactive. He knows how to respond to attacks efficiently by learning our behavior patterns. It would be great,
especially for higher-difficulty enemies, to make him proactive as well, making him capable of performing sophisticated tactics. To do so,
the ideal technique would be to use space-state search. The idea would be to build a graph (not a very big one, indeed) with all the
movement possibilities, chained in sequences. Then, by doing a limited depth search (say, three or four levels), we can get the
movement sequence that better suits our needs according to a heuristic. Then, the heuristic would be used to implement the personality.
Although this looks like a good idea, executing the state search in real time at 60 frames per second (fps) can be an issue.

Thus, a simpler approach is to use a tabulated representation. We start with a table with simple attack moves and their associated
damage. Then, every time we do a new attack combination, we store the damage performed and the distance at which we triggered it.
For example, we can store:

Distance = 3 meters, high kick, jump, punch, Damage =5

Then, we can use this list afterward, accessing it by distance and selecting the attack that maximizes damage. It's all just very simple
pattern matching both for the attack and defense, but it produces the right look and feel.

Racing Titles

Racing games are easily implemented by means of rule-based systems. Generally speaking, most racing games are just track followers
with additional rules to handle actions like advancing on a slower vehicle, blocking the way of another vehicle that tries to advance, and
so on. A general framework of the rule set would be (starting with the higher priority rules):

If we are behind another vehicle and moving faster ; advance

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

If we are in front of another vehicle and moving slower ; block his way

Else ; follow the track

The advance behavior can be implemented as a state machine or, even simpler, using field theory to model the repulsion that makes a
car advance on another by passing it from the side. Here the cars would just be particles attracted to the center of the track, and each
car we happen to find standing in our way would be repulsive particles.

The track follow is often coded using a prerecorded trajectory that traverses the track optimally. A plug-in is used to analyze the track and
generate the ideal trajectory. Then, at runtime the drivers just try to follow that race pattern, using the higher-priority rules as needed.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 8. Tactical Al

"We are not retreating—we are advancing in another direction.

—General Douglas Mac Arthur
KEY TOPICS

® Tactical Thinking Explained
® \ilitary Analysis: Influence Maps
o Representing Tactics

® | Closing

Now we know how action-oriented Al can be built into any game. We have seen simple methods to convey the illusion of intelligent
behavior, from chasing a spaceship to choosing an attack move in a fighting game. However, these behaviors can hardly qualify as
"intelligent thinking." They more closely resemble the behavior of a robot. They are simple sequential tests, which, despite looking
intelligent as a whole, are not very far from conventional programming.

Now we will move one step higher on the reasoning scale as we advance into the realm of tactical Al. In this chapter, we won't bother
with the behavior itself, but instead will worry more about analyzing and making the right decisions in complex scenarios. We will learn to
create intelligent paths through game worlds, to sense and analyze combat strategies, and to synthesize general solutions to complex
problems. We will learn to make informed decisions or, even better, to think.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Tactical Thinking Explained

A formal definition of tactic is the sequence of operations designed to achieve a goal. Thus, a tactic consists of three elements:

® Aninitial state
® A goal state

® The plan to move from one state to the other

Human brains are very well suited for tactic creation. Consciousness informs us of our current state, the goals are set by our internal
needs, and our brains create (and modify on the fly) pretty good plans. Machines, on the other hand, are not designed for tactics. They are
much better at numerical computations than they are at these kinds of cognitive processes. Proof of this difference is the speed at which a
good sorting algorithm was evolved (about 30 years ago). Playing chess, which involves tactics, has only recently been completely
mastered, and even today the methods are quite brute force, radically different from what a brain would do.

Machine tactics are complex for a variety of reasons. As an example, take a bird's eye view of a battlefield, as seen in popular games such
as Age of Empires. It is no problem for a computer to perform a variety of tests, such as computing distances between enemies, making
sure they do not overlap, and so on. But a question like "Who is winning the battle?" is a completely different business. Computers do not
know what "winning" means. It's a highly sophisticated concept and definitely not the kind of idea you can represent easily with ones and
zeros. Any human being flying over a battlefield would recognize at first sight which side is actually winning, but computers have a hard
time coping with this kind of query. Thus, we must begin by creating specific data structures that allow us to ask meaningful questions
about the status of the system, so we can build plans based on that status.

Another problem derived from machine tactics is making the actual plan. Machines are good at computing plans, but creating one that
actually looks human is very complex. As you will soon see, many tactical algorithms have an undesirable side effect. They are too
perfect, and thus can frustrate the player in the long run. Besides, they can kill realism in a game. Players will detect an unnatural behavior
pattern, and the sense of immersion will be destroyed.

We will now study several classic problems, which we can broadly classify into three large groups: learning to move intelligently in a
scenario (path finding), learning to analyze the scenario (its geometry, enemies, and so on), and learning to create a meaningful plan in
terms of selecting the right actions to achieve our goals.

Path Finding

In the previous chapter, we learned how to chase a moving target. We assumed no obstacles were around, and by doing so, calculations
were greatly simplified. Now, let's make things more interesting by assuming there are a few existing obstacles. The more obstacles, the
more we need to plan the sequence of moves we will use to reach our destination. In fact, as path finding complexity increases, we will
reach a point where most animals, man included, would get lost and be unable to succeed in finding an adequate path through the
obstacles. Just think about how easy it is to get lost in a city you don't know. Clearly, some analysis beyond basic animal capabilities is
required, and that is what this section is all about—finding paths between two endpoints in a world full of obstacles.

This problem has been studied thoroughly in both academia and in the games industry, and many good solutions exist. It belongs to the
search field of Al: Given initial and end states (represented by the two endpoints), find a sequence of transitions (movements) that allows
us to go from one state to the other efficiently. Some of the proposed algorithms will even be optimal, computing the perfect path between
two endpoints. But these solutions will often look too perfect and unnatural, because a living entity rarely uses the optimal solution. So let's
start with the simplest approaches and refine them to more involved solutions.

Path finding algorithms can be divided in two broad categories: local and global. Local approaches try to find a path to a destination by
analyzing the surroundings of the current position only. We know in which direction we want to go, and we try to perform the best move by

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

studying our local neighborhood. Global algorithms, on the other hand, analyze the area as a whole and trace the best path using all the
information, not only the surroundings. As a side effect, local algorithms are computed online on a frame-by-frame basis, whereas global
approaches are usually precomputed in a single shot and then executed.

A person visiting a city for the first time would use a local path finding algorithm, trying to determine from his surroundings which is the way
to a certain location. Now, give that same visitor a map, and he will be using a global algorithm. He will be able to study the path as a
whole and trace an efficient path beforehand. Keep this distinction in mind as you choose which path finding approach you implement. Are
your Al entities well informed about the structure of the game world (and can we assume they have a map), or should they use more
trial-and-error, which is realistic but nonoptimal? Strategy games have usually chosen global algorithms (such as the popular A*, which we
will study later in its own section), whereas action games tend to prefer local approaches.

Crash and Turn

The first algorithm we will explore is a local method that quite closely resembles what a simple animal would try to do. Let's start at point A
and try to find a way to point B. Logically, we would try to move in a straight line as long as we can. Once we reach an obstacle, we would
choose one of the two sides (left or right) and try to go around it using the left- or right-hand rule—follow the object parallel to its sides until
we have open line of sight of the destination again, and thus can return to the straight line of advance. The algorithm can thus be
formalized as follows:

while we have not reached our destination
if we can advance in a straight line to the destination point, do so
else
select one direction (left or right) using one of several heuristics
advance in the said direction keeping your left/right hand touching the obstacle's
= \vall
when you can advance in a straight line towards the target again, do so
end if
end while

We can see this algorithm in action in .

Figure 8.1. The crash and turn path finding algorithm.

B X

Obstacle 2

Obstacle 1

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

A X

All we need to define is which heuristic we will use to decide which side we will use to go around the obstacle. Two possibilities are

® Choosing the side that deviates less from the initial trajectory

® Choosing a random side (sounds crazy, but works surprisingly well)

Crash and turn always finds a way from origin to destination if we can guarantee that obstacles are all convex and not connected (two
connected convex obstacles could form a concave one). The path is seldom optimal, but will look fine, especially if you are modeling
wandering behaviors that do not need to be efficient in the first place. The algorithm is quite lightweight and thus can be implemented with
very low CPU impact. As you can imagine, the algorithm has some problems dealing with concave obstacles. We will get stuck in

d areas in an infinite loop, because we won't be able get around the obstacle once we get inside. This situation is clearly depicted

Figure 8.2. Stuck trajectory in crash and turn.

AX » XB

There are some improvements to the original algorithm, but none of them solves the problem completely. In fact, the problem arises from
the fact that the algorithm computes the best path based on partial data, and that always incorporates errors into the solution.

Dijkstra's Algorithm

This algorithm, named after its inventor, E. W. Dijkstra, finds optimal paths in those cases where we can describe the geometry of the
game world as a set of vertices with weighted connections between them being used to express distances. Take, for example, a level from
a first-person shooter as shown in . To the right you can see the same level represented in terms of vertices (rooms) and edges
that are labeled with the distance from one room to another. This kind of data structure, often called a weighted graph, is what Dijkstra's
algorithm starts with, so it shouldn't be surprising that this algorithm has been very popular in first-person shooter Al programming.

Dijkstra's algorithm is also called a "single source, shortest paths" algorithm, because it does not compute the path between two
endpoints, but rather the optimal paths from one source node to all other nodes. The algorithm is very compact and elegant, but quite

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

complex. We will now review it thoroughly, so you can fully understand this cornerstone of path finding programming.

Figure 8.3. Top-down view of a game level and associated graph.

i,
L]
A
[]
.\'"“‘-._
N L
J

The explanation for Dijkstra's algorithm starts with a graph G=(V,E), with V vertices and E edges, and a node s, which is the source. It also
has a weight matrix W, which is used to store the weights of the different edges. Starting from the source, we explore the graph using the
edges, choosing the lightest weight ones first. For the first step, only the edges from the source can be expanded. But as we move
forward, other nodes will have been visited already, and the newly expanded edge will be the one from all the vertices in the visited set
that offers the lowest cost.

Every time we visit a new node, we store an estimate of the distance between that node and the source. For the first iteration, the estimate
is just the weight of the edge we have expanded. Later, as new edges are added to the visited nodes list, the distance can always be
broken down into two components: the weight of the edge we just expanded and the best distance estimate of an already visited node.
Sometimes, the expansion process will find a way to reach an already visited node using an alternative, lower-cost route. Then, we will
override the old path and store the new way of reaching the node. This progressive optimization behavior is called node relaxation, and it
plays a crucial role in the implementation of Dijkstra's algorithm.

Let's now focus on the algorithm. To begin with, we use two sets. One set contains the nodes that have not been visited (the Pending set),
and the other holds the nodes that have already been explored (the Visited set). For efficiency reasons, thePending set is usually
implemented as a priority queue. Additionally, we need two numeric arrays. One array stores the best distance estimate to each node, and
the other stores, for each node, its predecessor in the expansion process. If we expand node five, and then we expand node nine, the
predecessor of nine is five. The first step of the algorithm initializes this data structure, so we can later loop and compute the shortest
paths. The initialization is pretty straightforward, as shown in this subroutine:

initialise_single_source(graph g, vertex s)
for each vertex v in Vertices(g)
distance[v]=infinity;
previous[v]=0;
end for
distance[s]=0;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The second step consists of the relaxation routine. In graph theory, relaxation is the process of iteratively updating a value by looking at its
immediate neighbors. In this case, we are updating the cost of the path.

Thus, Dijkstra's relaxation routine works by comparing the cost of the already computed path to a vertex with a newer variant. If the new
path is less costly, we will substitute the old path for the new one and update the distance and previous lists accordingly. To keep the main
algorithm clean and elegant, here is a subroutine that computes the relaxation step given two nodes and a weight matrix:

relax(vertex u, vertex v, weights w)

if (distance[v] > distance[u] + w(u,v))
distance[v]=distance[u]+w(u,v);
previous[v]=u;

end if

The w structure stores the weights of all edges in the graph. It is nothing but a 2D array of integers or floats. The value stored at wli][j] is
the weight of the edge from vertex i to vertex j. For unconnected vertices, w[i][j] equals infinity.

Here is the complete source code for Dijkstra's algorithm in all its glory, making reference to both the initialization and relaxation functions
previously provided. Notice how we pass the graph, the weight matrix that specifies the lengths of the edges, and the source vertex that
starts the whole process:

dijkstra(graph g, weights w, vertex s)
initialize_single_source(G,s);
Visited=empty set;
Pending=set of all vertexes;
while Pending is not an empty set
u=Extract-Min(Pending);
Visited=Visited + u;
for each vertex v which is a neighbour of u
relax(u,v,w);
end for
end while

We start by resetting the distance and previous vectors. Then, we put all vertices in the Pending set and empty the Visited set. We must
extract vertices from Pending to convert them to Visited, updating their paths in the process. For each iteration we extract the vertex from
the Visited set that has the least distance to the source. This is done using the distance array. Remember thaPending is a priority queue
sorted by distance. Thus, in the first iteration, the source (distance=0) will be extracted from the Pending queue and converted to Visited.
Now, we take each edge from the extracted vertex u and explore all neighbors. Here we call the relax function, which makes sure the
distance for these nodes is updated accordingly. For this first iteration, all neighbors of the source had distance set to infinity. Thus, after
the relaxation, their distances will be set to the weight of the edge that connects them to the source.

Then, for an arbitrary iteration, the behavior of the loop is not very different. Pending contains those nodes we have not yet visited and is
sorted by the values of the distance. We then extract the least distance node and perform the relaxation on those vertices that neighbor
the extracted node. These neighboring nodes can be either not-yet-expanded or already expanded nodes for which a better path was
discovered. Iterating this process until all nodes have been converted from Pending to Visited, we will have the single-source shortest
paths stored in the distance and previous arrays. Distance contains the measure of the distance from the source to all nodes, and
backtracking from each node in the previous array until we reach the source, we can discover the sequence of vertices used in creating
these optimal length paths.

Dijkstra's algorithm is a remarkable piece of software engineering. It is used in everything from automated road planners to network traffic
analyzers. However, it has a potential drawback: It is designed to compute optimal paths between one source and all possible endpoints.
Now, imagine a game like Age of Empires, where you actually need to move a unit between two specified locations. Dijkstra's algorithm is
not a good choice in this case, because it computes paths to all possible destinations. Dijkstra's algorithm is the best choice when we need
to analyze paths to different locations. But if we only need to trace a route, we need a more efficient method. Luckily it exists and is
explained in detail in the next section.

A*

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

A* (pronounced A-star) is one of the most popular and powerful problem-solving (and hence, path finding) algorithms. It is a global
space-search algorithm that can be used to find solutions to many problems, path finding being just one of them. It has been used in many
real-time strategy games and is probably the most popular path finding algorithm. We will thus devote some space to study it carefully.
Before we do so, I'd like to examine some simpler algorithms such as depth or breadth first, so we get a better understanding of the
problem and can visualize what A* does more easily.

Let's begin by realizing that for the sake of path finding, states will be used to represent locations the traveler can be in, and transitions will
represent unitary movements in any direction. Remember our good old checkerboard? Think about path finding in the same way. We have
checkers that represent each portion of the map, and we can move one checker in any direction. So how many positions do we need to
represent or, in other words, how many states do we need if we can only move on a checkerboard? A checkerboard consists of eight
squares by eight squares, for a grand total of 64 possibilities. Games like Age of Empires are not very different: They use grids that also
represent map locations. For Age of Empires, maps between 64x64 and 256x256 were common. A 6464 grid yields 4,096 possible
locations, whereas a 256x256 grid yields the infamous, 65,536 (two raised to the sixteenth power).

The original algorithms devised to explore such structures were exhaustive: They explored all possibilities, selecting the best one between
them. The depth-first algorithm, for example, gave priority to exploring full paths, so nodes were expanded until we reached the endpoint.
A score was computed for that path, and then the process was repeated until all paths were computed. The name depth-first indicated that
the algorithm would always advance, reaching deeper into the graph before exploring other alternatives. A different algorithm, called
breadth-first, followed the opposite approach, advancing level-by-level and exploring all nodes on the same level before moving deeper.

That worked well for games such as tic-tac-toe, where the number of steps is small. But what happens when you try to apply the same
philosophy to something like chess? There's a huge number of states to explore, so this kind of analysis is very risky both in terms of
memory and CPU use. What about finding a path? In a 256x256 map (which can be used to represent a simple, 25256 meter map with a
resolution of down to one meter), we would need to examine 65,000 locations, even though some of them are obviously not very good
candidates.

Are we really going to use regular state-space searches, where we will basically need to examine all those options one by one—in
real-time? To make the response even more obvious, think not only about how many locations but also about how many different paths we
need to test for. How many paths exist between two endpoints in a playing field consisting of more than 65,000 locations? Obviously, brute
force is not a good idea in this situation, at least not if you want to compute this in real-time for dozens of units moving simultaneously. We
need an algorithm that somehow understands the difference between a good path and a bad path, and only examines the best
candidates, forgetting about the rest of the alternatives. Only then can we have an algorithm whose CPU usage is acceptable for real-time
use. That's the main advantage of A*. It is a general problem-solving algorithm that evaluates alternatives from best to worst using
additional information about the problem, and thus guarantees fast convergence to the best solution.

At the core of the algorithm lies a node expansion policy that analyzes nodes in search of the complete path. This expansion prioritizes
those nodes that look like promising candidates. Because this is a hard-to-code condition, heuristics are used to rate nodes, and thus
select the ones that look like better options.

Assuming we model the path finding problem correctly, A* will always return optimal paths, no matter which endpoints we choose.
Besides, the algorithm is quite efficient: Its only potential issue is its memory footprint. As with Dijkstra's approach, A* is a short but
complex algorithm. Thus, | will provide an explanation first, and then an example of its implementation.

A* starts with a base node, a destination node, and a set of movement rules. In a four-connected game world, the rules are move up,
down, left, and right. The algorithm is basically a tree expansion method. At every step, we compute possible movements until all
movements have been tried, or we reach our destination. Obviously, for any mid-sized map this could require many states, with most of
them being arranged in loops. Thus, we need a way to expand the tree in an informed way, so we can find the solution without needing to
explore all combinations. This is what sets A* apart from the competition: It quickly converges to find the best way, saving lots of CPU
cycles. To do so, it uses a heuristic—a metric of how good each node is, so better looking paths are explored first.

Let's summarize what we have discussed so far. Starting with the base node, expand nodes using the valid moves. Then, each expanded
node is assigned a "score," which rates its suitability to be part of the solution. We then iterate this process, expanding best-rated nodes
first until these paths prove invalid (because we reach a dead-end and can no longer expand), or one of these paths reaches the target.
Because we will have tried the best-rated paths first, the first path that actually reaches the target will indeed be the optimal path.

Now, we need to devote some space to the rating process. Because it is a general-purpose problem-solving algorithm, A* uses a very
abstract way of rating states. The overall score for a state is described as:

f(node)= g(node) + h(node)

where f(node) is the total score we assign to a node. This cost is broken down into two components, which we will learn to compute in the
next few pages. For now, suffice it to say that g(node) is the portion that takes the past decisions into consideration and estimates the cost
of the path we have already traversed in moves to reach the current state. The h(node) is the heuristic part that estimates the future. Thus,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

it should give an approximation of the number of moves we still need to make to reach our destination from the current position.

This way we prioritize nodes, not only considering how close they are to the destination but also in terms of the number of steps already
taken. In practical terms, this means we can have a node with a very low h value (thus, close to the target), but also a very high g value,
meaning we took many steps to reach it. Then, another, younger node (low g value _hi alue) can be prioritized before the other one
because it obtains a lower overall score. Thus, we estimate it is a better candidate. Ei:ure 8.4 provides a visual representation of the A*
algorithm.

Figure 8.4. The A* algorithm. Left: chosen path. Right: nodes required to compute it.

-] P
] - —g———
|
: i
| |
|
| 1
1
|
|
’ i
Yok [T aym i
(S ——

— - 5 f s T oo =
A B | [e | DR S=ryin i lom "l:' m-EEE s =y 2,
=]] = it e 0 Rl — i —a . gy || e | T gl S— e]

s B

Notice how this method is valid for many problems, whether it's playing tic-tac-toe, building a puzzle, or computing paths. We add a
component that accounts for our past behavior and estimate our future as well. For path finding problems, computing g is not really a
problem; it's just the number of steps taken to reach the node. If we think in terms of a tree, it's the level in the tree. The heuristic part, on
the other hand, is more complex. How do we estimate the remainder of the path without effectively examining it? For path finding, the
main approach is to estimate remaining distance as the Manhattan distance between our current location and the destination. Remember
that the Manhattan distance is the sum of the differentials in X and Z, as in the expression:

Manhattan(pl,p2) = abs(p2.x-p1.x) + abs(p2.z-p1.z)

If you try to visualize it, the Manhattan distance is the number of steps we would need to make if we were unobstructed. Thus, it is an
optimistic heuristic. It always underestimates the effort required to reach our goal. This is an essential characteristic. If we can guarantee
our heuristic is always underestimating (or giving the exact estimation) of the path ahead, A* always produces optimal paths. This is
because it will try to find the path that more closely resembles (in terms of score) the estimate. Think about it for a second: A target node
has a score of (N,0), which meansN is the number of steps we needed to take, and 0 is the estimation of what remains. Using an estimate
that is always optimistic forces us to reach the path with a minimal N value for the end node, which is what we are looking for. By the way,
the Manhattan distance heuristic is a good choice for four-connected game worlds.

If your world is eight-connected, Manhattan would not always be optimistic, so I'd recommend the classic Euclidean distance equation
defined here instead:

distance = sqrt((p1.x-p2.x)2 + (pl.z-p2.2)2)

The downside is the added cost of squaring and computing square roots, but convergence to the optimal solution always requires
optimistic heuristics.

We have seen how and why A* works. Now, let's propose a complete A* algorithm. Here is the pseudocode:

priorityqueue Open
list Closed

s.g =0 /I sis the start node
s.h = GoalDistEstimate(s)
sf=s.g+s.h

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

s.parent = null
push s on Open
while Open is not empty
pop node n from Open // n has the lowest f
if nis a goal node
construct path
return success
for each successor n' of n
newg = n.g + cost(n,n’)
if n"is in Open or Closed, and n'.g < = newg
skip
n'.parent=n
n'.g = newg
n'.h = GoalDistEstimate(n')
n.f=n".g+n'h
if n"is in Closed
remove it from Closed
if n"is not yet in Open
push n' on Open
push n onto Closed
return failure

Notice how we use two data structures: Open is a priority queue that stores nodes we have visited, sorted by f-value. Thus, we can always
extract the best-rated node. Then, we start by placing the start node in Open. We expand nodes in thewhile loop until no more nodes exist
(that means we have explored the whole tree and did not find a solution, so we return failure). Then, at each step, we pop the best
candidate from Open. We compute all successors from this node and rate them, storing them inOpen as well. If the new rating is better
than the previous one for the same node, notice how we overwrite the old value with the new one. This is useful when we have already
visited one node, but a newer path yields a better score. As nodes are visited and expanded, we place them inClosed. We iterate this
process until we have reached a goal or until no more nodes are in Open, meaning there is no solution.

A* is a powerful algorithm. But it does not come without a host of problems of its own. First, it precomputes the whole path before even
performing the first step. This makes it unusable for scenarios with dynamic geometry, such as collisions between soldiers, and so on.
Second, A* always produces optimal results. This might seem like an advantage instead of a problem, but paths computed using A*
sometimes look too perfect, and we need to modify the algorithm to add a degree of believability to the results. Third, A* computes the
whole path in a single process. So how can we blend that with fog-of-war techniques? Many times we won't be seeing the whole path at
once, so precomputing it using A* will simply be wrong. Our walking character will effectively see inside the fog-of-war to construct the
path, which is cheating. Fourth, A* can create memory use problems. In any decent-sized map with obstacles, A* will explore lots of states
to compute the best option. It is true that the end result will be optimal, but it will have claimed a high price in the process. A* is a
memory-hungry algorithm, and considering its main use is found in strategy games where we need to move many units at once, this can
become a pretty serious issue. Some variants have been proposed to deal with these issues. Two of the most popular variants are
explained in the following sections. However, A* is currently the most widely used path finding algorithm: It is robust, it can handle both
convex and concave geometry, and it is very well suited to games.

Region-Based A*

One problem with the A* algorithm is that if many obstacles block our advance, we need to expand a lot of nodes to reach our destination.
This results in a very high memory footprint and low performance. We need to store lots of states. Two solutions have been proposed to
deal with this problem. One solution involves tracing the path at a higher-abstraction level. The other involves tracing the path
progressively, not expanding the whole state space at once. Region-based A* is explained in this section, and the next section describes
Iterative-Deepening A* (IDA*).

Regular A* decomposes paths in terms of primitive operations. In a four-connected scenario, we can move up, down, left, and right.
Obviously, using such a low-level operator has a downside. Any reasonably sized path will be composed of many actions, and that means
the search space will grow quickly. Now, A* does not necessarily need to use such primitives. We could implement A* using a different,
higher-abstraction level space representation. For example, we could divide our game world into regions (be it rooms, zones in a map, and
so on) and implement an edge or state transition whenever we move from one room to the other.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Using a region-based A* algorithm is especially useful when coupled with convex map regions. If a region is convex, we can move
between two endpoints without finding any obstacles in our way. This is the basis of Jordan's curve theorem. We can paint a line, and if the
region is indeed convex, the line will cross it exactly twice. This means path finding inside the region can be handled in the simplest
form—no obstacles to worry about, just walk in a straight line between the entry and exit point. The same idea can be extended to support
convex obstacles in convex rooms as well. Imagine a square room full of columns. We can use A* to navigate the complete scenario and
crash and turn (which works fine on convex obstacles) for intra-room navigation. This is an especially interesting result. If you think about it
for a second, most obstacles in an indoors environment are either convex or can easily be considered convex by means of a convex
hull/lbounding box computation preprocess. Then, we would have the global correctness of A* while using a low-cost, low-memory footprint
such as crash and turn for local analysis. The overall solution would also be faster to compute, because A* would converge faster in a
smaller state space.

Interactive-Deepening A*

Another alternative to reduce space requirements in A* is to compute the whole path in small pieces, so we do not examine the whole
search tree at once. This is the core concept behind IDA*, a very popular variant to the basic A* algorithm.

In IDA*, a path is cut off when its total cost f(n) exceeds a maximum cost threshold. IDA* starts with a threshold equal to f(start node),
which by the way is equal to h(start node) because g(start node) = 0. Then, branches are expanded until either a solution is found that
scores below the cutoff cost or no solution is found. In this case, the cutoff is increased by one, and another search is triggered. The main
advantage of IDA* over A* is that memory usage is significantly reduced. A* takes O(b”d), where b is the tree's branching factor and d is
the number of levels in the tree. IDA* is just O(d) due to its iterative deepening nature.

A Note on Human Path Finding

To get some perspective on path finding algorithms, let's stop and think about how humans trace paths in the real world. We tend to rely
on very different methods than those used by machines. As mentioned earlier, tracing a path with or without a map really does make a
difference—the difference from a local to a global algorithm. When using the global approach, our methods would not be very different
from A*. But how do we trace paths in unexplored areas? Drop a tourist in the center of a city, give him a compass, and he'll find a way to
a certain monument (provided we tell him in which direction to aim). How can he, and people in general, do that?

To begin with, people use a hybrid local-global algorithm. It is local whenever we are exploring new ground. But we have the ability to build
pretty good mental maps on the fly. When we walk through an unfamiliar neighborhood, we automatically store information about the
places we see, so we can recognize them later. Thus, if we return to the same location (say, because we reached a dead end), we will be
using a global path finding method. We have all the information about the area, and thus use it to our advantage.

Formally, the main path planning routine is fundamentally a depth-first, trial-and-error algorithm, assisted by the maps we make in our
mind. We try to advance in the direction the goal seems to be, and if we reach a dead end, we back up using the map and try a different
strategy. Different people use slightly different strategies, but the overall algorithm stays the same. The pseudocode for such an algorithm
would be something like this:

while not there yet,
detect the direction where the target is at
choose from the unexplored available paths the one that seems
to move in the right direction
explore the path, storing the features of the areas we visit in an internal map
if we reach a dead-end, back-up to the latest junction,
marking everything as already tried (and failed)
go to step 3
end while

With quite a bit of precision, the algorithm we use enables us to find our way around in places we've never visited before. And | might add,
it works remarkably well as long as we have the ability to remember places we just visited. As you can see, the algorithm does not look
very hard to implement. But how do you store relevant information for later use as a map? What is relevant? How do we store map data?

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Humans are light years ahead of computers when it comes to representing and working with symbolic information. We can remember
locations, sounds, and people, and build accurate maps based on them. We can handle types and amounts of information that a
computer, as of today, cannot deal with well. Notice, however, that the human path finding algorithm is essentially local, and thus does not
guarantee an optimal path will be found. As we repeat the same journey or simply wander around the neighborhood, we will gather more
information for our map, thus making path finding less local and more of a global strategy. However, even with the imperfections of the
map making, the algorithm is light years away from its philosophy from the mathematical perfection of an algorithm like A*.

On the other hand, there is a clear reason for using algorithms such as A*. Most games using path finding need it for military simulations,
where the Al must be solid and compelling. Keep in mind that games are not about realism: They are about having a good time, and no
one wants soldiers to get stuck trying to find a way to the frontline—no matter how realistic that might be. After all, people do get lost in
cities all the time, but programmers don't want that to happen in the middle of a game.

However, it is likely that the near future will bring more humanlike path finding to games, where behavior is not so much based in tactics
but in conveying the complexity of real creatures.

Group Dynamics

We will now move higher on the abstraction scale to study how we can emulate the movement patterns of groups of entities, whether it's a
highly unorganized herd of mammals or a Roman cohort performing complex formations. We will not use the synchronization ideas from
the previous chapter, because they do not scale well. Synchronizing two soldiers is qualitatively different from trying to move a wedge of
500 cavalrymen, so a whole different approach must be devised. We will start with a classic animal behavior algorithm and then move on
to formations in the next section.

Boids

One of the best examples of synthetic group behavior can be found in the boids algorithm introduced by Craig W. Reynolds in the 1990s.
The algorithm was initially designed for creating movie special effects and was used in movies like Disney's The Lion King. The boids
algorithm became a cornerstone in real-time group dynamics and was a huge influence in many movies, such as Starship Troopers. As
years went by, the boids algorithm slowly found its way into computer games, from simple flockipg birds inUnreal to complete group

igure 8.9.

dynamics for large-scale strategy games. You can see many types of boids-driven behaviors in

Figure 8.5. Different types of boid-like algorithms: follow the leader, enter through a door,
follow a path.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The boids algorithm allows the real-time simulation of flocks, herds, schools, and generally speaking, any creature that acts as part of a
group with hardly any room for individuality. Interestingly enough, the boids algorithm can efficiently simulate traffic jams on a highway,
pedestrian behaviors, and many other human activities as well as simple animal behavior.

The core hypothesis of the boids system is that the behavior of a group of individuals is largely governed by a relatively small set of simple
rules. Birds, goats, and even human beings are not extremely intelligent when it comes to working in groups. Thus, Reynolds believed that
the apparent complexity must simply arise from relatively straightforward mechanisms. After some research, he found that flocking
behavior could easily be modeled with as few as three rules:

® Separation: Each member of the group will try to prevent having another member closer than a set threshold, thus avoiding a
collision within the flock. If a member invades the area of influence of another member, they must both correct their orientation
to try and separate.

® Alignment: All members of a group will try to aim in the same direction, much like a herd of sheep would do. It simply makes no
sense for each member to be facing in a completely different direction.

® Cohesion: All members of the same group should try to stay close to the group's center of gravity or barycenter. By doing so,
the flock stays together, except for those circumstances when the separation rule needs to be enforced.

The combination of these three rules (depicted in) can effectively simulate any flock. The system is really simple to code. Notice
that a boid does not even have an internal state variable. Each computed frame starts from scratch, so it makes no sense for the bots to
have a working memory. On the other hand, some changes need to be made in order to increase the boids system's expressive potential.
For example, one of the members of the formation must be a scripted Al (or even the player). We need someone to generate the influence
field so the others will conform to this behavior. Another interesting issue is the handling of a more complex system. To analyze this, we
need to fully understand how boids works, and even better, why.

Figure 8.6. The three rules of boids.

-—>
Separation Alignment

*—>

|
&>
x“ + -
4 Cohesion
|
|

*—»

To better understand boids, you need to think about them as analogies to fields or zones of influence. Imagine that each boid is actually a
charged particle. It is repelled by a strong (but quickly diminishing) field, so it never collides with another particle of the same sign, and it
has an attractive force toward the center of gravity (in the boids case, the center of the flock). Thus, we can rewrite most of the boids
algorithm in terms of attractions and repulsions. Even more complex and involved simulations can be created by just adding layers and

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

layers of information to the core boids algorithm. Imagine, for example, two types of birds, pigeons, and hawks. Hawks try to catch
pigeons, which in turn try to escape as soon as they see an incoming hawk. We can simulate this behavior by just adding a fourth rule to
the core boids system. It is a special-case separation rule, which affects much higher distances than the traditional separation rule
explained in the original formulation. If you have followed this example, you will see how this hawk and pigeon approach allows us to
elegantly incorporate obstacle handling in our boids code. Obstacles can be modeled as an extra type of entity, so other entities just feel a
strong repulsive force toward them. Notice how a group of birds will effectively avoid the collision using the obstacle information. On the
other hand, once the obstacle has been avoided, the third rule (cohesion) will play a key role, ensuring that everyone is working diligently
to reestablish the formation.

Let's now adapt these methods to groups of humans, quite likely in the context of military strategy.

Formation-Based Movement

Moving in formation is a bit more involved than acting on an individual basis or acting like a flock of birds. Any error in our alignment or
speed will generate unwanted collisions with other members of our unit and quite likely will end up breaking up the group. Several
approaches can be used to implement formation-based navigation.

In one approach, you can totally discard the individual component and make the whole squadron act as a single soldier. The Al is
assigned to the squadron, so each soldier is just placed wherever needed. For example, imagine that we need to control a squadron
consisting of 60 men in 6 ranks, 10 men per rank. We represent the squadron by its barycenter and yaw vector. Thus, here is the
rendering code needed to paint each soldier individually:

#define SPACING 2
for (int xi=0;xi<COLUMNS;xi++)
{
for (int zi=0;zi<RANKS;zi++)
{
point pos(xi-(COLUMNS/2),0,zi-(RANKS/2));
pos=pos*SPACING;
pos.rotatey(yaw);
pos.translate(barycenter);
}
}

This approach has a limitation, however: We cannot assign individual behaviors. For example, our troops will fight in perfect formation and
will not avoid obstacles on an individual level. The whole troop will change its trajectory to avoid a tree, for example. Thus, more powerful
ways of dealing with group dynamics must be devised.

Adapting the ideas from the boids algorithm, we can represent group dynamics for humans by means of a summation of potential fields.
Here, we will resolve locomotion as the addition of several fields of influence, such as:

® One field (repulsive) that keeps us separated from nearby units
® One field (attractive) that keeps us near the position we are supposed to occupy in the formation

® One field (repulsive) that is used for collision detection with obstacles

By adding the influence of these three fields, you can achieve very realistic formation-based movement. A column might break to avoid an
obstacle, only to merge again on the opposite side. Formations can perform rotations, and so on. The main pitfall of such an approach is
that obstacle geometry must be kept simple, so we can generate potential fields efficiently. Concave objects will definitely not be modeled.
Another issue comes from computing the repulsion with obstacles and enemy units. Here we will need an efficient data representation to
ensure we can compute these fields without having to resort to NxN tests. A spatial index can definitely help us in this respect.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Military Analysis: Influence Maps

An influence map (IM) is a data structure that allows us to perform queries useful to tactical analysis. Once built, an IM can tell the Al
system about the balance of power, frontlines, flanks, and so on with very simple queries. The data structure is dynamic in nature, so it
responds well to changes in the conditions. Entities can be added, others suppressed due to dying, and some others might move, and
the IM will still be valid. All that needs to be done is to recompute the structure every few seconds to ensure the analysis is based on
current conditions.

An IM is a 2D array of numeric values. Integers, floats, and so on can all be used. The map is very similar to a field in physics. The
values held at each 2D position represent the influence of a certain variable. As a very simple example, imagine two armies. Each soldier
on a side will have a value of —1, whereas soldiers on the opposite side will have a value of 1. Then, cells in the array holding one soldier
will have the soldier's value, whereas the remaining cells will simply be interpolated, so there is a smooth gradation in neighboring cells.
IMs are thus rather easy to build and can provide useful information to the tactician if analyzed well. The trick is that once abstract
information has been mapped to a 2D array, obtaining information is a matter of image analysis, which is a well-known, deeply
researched science.

For example, analyzing the map and searching for zero-valued points will give us the exact location of the frontline between the two
armies, the point at which both armies are equidistant. Searching the point on the map that is a local maxima will give us unit locations;
and selecting between these, the point whose neighbors are more distant (in value) to the central point will give us the more isolated
enemy unit, which is more suitable for targeting.

Once the basics of IMs have been explained, we will explore implementation details for the data structure as well as a collection of IM
analysis routines.

Data Structure

IMs are usually just 2D arrays (see for an example) with size depending on the size of the scenario. Choosing the right size is
essential: Bigger maps take longer to compute, whereas smaller maps can lose some detail. In some circumstances, hierarchical maps
can be used in a way similar to mip-maps; each map being half the size of its ancestor.

Figure 8.7. Influence maps. Dark colors represent the influence of one army, white represents
the other.

The cell value can be any numeric value or a list of numeric values. IMs are not limited to mapping a single value. One of their main uses
is analyzing several parameters in parallel, so all of them can then be used to create a plan. For example, here is the declaration of an
IM holding the balance of power and information relative to the speed of the units as a 2D map:

typedef struct
{

float speed;

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

float value;

} cell;

class influencemap

{

cell **data;
int sizex,sizez;

5

The structure is rather simple. Only the dynamic nature of the 2D array can be a problem for less advanced programmers. Then, a
routine to update the structure is needed. In a simple scenario, the routine would be something like this:

for (ix=0;ix<sizex;ix++)
for (iz=0;iz<sizez;iz++)
for each primitive
compute the influence of the primitive on the cell (ix,iz)

This is a three-times nested loop, which is not very good in terms of efficiency.

Some Useful Tests

This section provides a listing of useful tests for IMs. These tests provide the 2D analysis routine and the "tactical meaning" of the
analysis for the Al engine.

Team LiB |

Balance of Power. Using the balance of power test, we compute the summation of the whole IM. If the value is greater than
zero, the side represented by positive values is winning. If the value is smaller, the other side wins. This test should be
applied to an IM where each cell holds the value of each unit. This value can be as simple as the life level plus the damage
value, or some more complex computation.

Frontline Location. In an IM map, such as the one previously mentioned, locate the zeros. If you want the frontline as a
strict distance metric from opposite units, consider only locations with +1 and —1 and forget each unit's life level. If you use the
life level, a strong unit displaces the frontline toward the enemy.

Breakability of Enemy Forces. Use an IM as the one previously mentioned. Then, detect the two largest (or smallest)
values on the enemy side of the field. Trace a line between those two points and compare the values along the line with the
values at both tips. If the line's values differ by more than a given threshold, the enemy is basically divided, so you can charge
the weakest spot to divide and conquer.

Weakest Enemy. The weakest enemy is the minimum (or maximum) value on the enemy field that is surrounded by smaller
values. If the enemy is assigned negative values, we must look for a point on the map that is minimal regarding its neighbors,
but which itself is the least negative minimum. This implies a unit of least value.

Detecting Charges. To detect whether the enemy is charging toward us, we store the map at regular intervals (say, every
second). Then, a progressive drop in value in a point near our units (assuming the enemy is negatively valued) means that
enemies are approaching. The faster the drop, the faster they move. Similarly, the opposite implies if they are retreating.

Safe Routes. To detect whether a moving unit will enter an enemy zone, we must make sure each and every cell the unit
visits has the same sign as the unit. This means the unit will be closer to its own army than to any enemy.

Many more tests can be implemented using simple math on the IM. All that's needed is some imagination of how to express
tactically relevant tests in terms of simple additions and so on.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Representing Tactics

Most real-time strategy games are built around a two-layered Al system. From a low-level perspective, individual units are controlled by
simple rule systems or state machines, which control their behavior, simple interactions with the environment, and so on. But how about
tactics? How do armies get built, and how do they command troops on the battlefield? Most times, a higher-abstraction, complex rule
system is used, which becomes an expert system that holds a significant body of knowledge regarding the art of war. In this section we
will explore this tactical layer.

For our simple Al example, we will use classic rules in the form:

FACT —> ACTION

Our fact list will need to store all those items we need to test for. A similar system was used in Microsoft's Age of Kings. Here are, for
example, two rules that control the frequency of the computer attacks:

(defrule

.(game-time > 1100)

==

.(attack-now)

.(enable-timer 7 1100)
.(disable-self)
.(chat-local-to-self "first attack")

)

(defrule

.(timer-triggered 7)
.(defend-soldier-count >= 12)

==

.(attack-now)

.(disable-timer 7)

.(enable-timer 7 1400)
.(chat-local-to-self "other attacks")

)

The first rule is triggered after 1,100 seconds have elapsed (approximately 20 minutes into the gameplay) and once every 23 minutes
from that initial wave. Notice how timers are used to control the timing of these second-wave attacks, and how subsequent attacks are
only started if 12 or more soldiers are available to defend our positions.

Also notice the fact that action language is highly symbolic. We need to implement each and every call in our programming language so
Al programmers can work from a comfortable, high-abstraction level.

Imagine that we need to create a rule system for a Roman army battle that starts with the configuration shown in . I'll first
provide some brief background information on the Roman army on the battlefield. In Roman battles, troops were deployed on a frontline
with less-trained infantry in the first ranks and more experienced soldiers behind them. Some artillery and archer support were also
available. The cavalry was kept to a minimum and was located at the wings to perform flanking moves around enemy troops. As the
battle started, the first ranks of infantry (the lesser-trained soldiers) advanced while archers and ballistae rained projectiles on the enemy.
As the distance between the first ranks of the infantry to the enemy reached a threshold, soldiers threw their spears or pila toward the
enemy and kept advancing until the final clash actually took place. At that moment, the highly experienced legionnaires from the second
wave started to advance toward the enemy as well. Then, after a short battle, the lesser-trained infantry would retreat through the gaps in
the formations, and the experienced legionnaires would appear from the back, engaging in close combat with the enemy. At this point,
the cavalry from the wings would charge until the battle was resolved.

Figure 8.8. Roman army disposition on the battlefield.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

FIRST

“emttdddddh

L i ——

g I s Y g B . . s (- |
[EXPERIENCED INFANTRY |

SECOND

R N B A AN
L]

[novice inFanTay |||

st 1)t

XPERIEMNCED INFANTRY

THIRD

WaVE
[calvairy] [EXPERIENCED INFANTRY | |[catvalry

[][wovice inFantay][]

Now, let's build a rule system for such a battle. We will begin with some general rules that start the confrontation and follow the syntax
from the Age of Kings Al system for simplicity:

(defrule

.(true)

=>
.(shoot-catapults)
.(shoot-arrows)
.(disable-self)

)

(defrule

.(true)

=>

.(enable-timer 1 30)
.(disable-self)

)

These first two rules start the battle. The first rule states that both arrows and catapults must continue to shoot throughout the battle. The
second rule is just used to delay the advance of the first wave by 30 seconds. We set a timer so it triggers after 30 seconds, signaling the
start of the infantry advance. Notice how we use the fact true whenever we want to express a rule that is always available for execution.
Also notice how we need a construct like disable-self to manually delete a rule, so it is not inspected in further execution loops:

(defrule
.(timer-triggered 1)
==
.(attack-first-wave)
.(disable-timer 1)
.(disable-self)

)

(defrule
.(first-wave-distance < 100)
.(have-pilum)

==

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

.(throw-pilum)

)

(defrule
.(first-wave-distance < 20)
=>

.(engage-combat)

)

(defrule
.(first-wave-distance < 20)
=>

.(attack-second-wave)
.(disable-self)

)

These four rules implement the advance, pilum-throwing, and engagement in combat of the first wave. The last two rules allow us to
begin fighting (rule 3, which can be activated repeatedly) and to notify the second wave that we are requesting their help (rule four, which
is disabled right after its first activation). Now, these rules should provide you with a practical example of how tactical Als are designed.

But this example only shows part of the picture. After all, a choreographed battle has a defined sequential pattern, and rule systems are
great when parallel behaviors are to be modeled. Now, imagine the power of such a system where rules apply not to the army as a
whole, but to specific squadrons. Each squad would evaluate the expert system, and complex behaviors would emerge from apparent
simplicity.

Here is when a choice must be made or a balance must be found. Will we implement our tactic as rules and hence as a reactive, highly
emergent system, or will we choose to sequence actions as in the preceding Roman example? Sequential systems are all about
memorizing the CPU's actions and learning how to defeat them. Emergent gameplay is somehow harder to master because it requires
skill more than memory.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In Closing

Tactic Al is a huge field that goes on forever. We have focused on three areas: path finding (individual and group-based), tactic analysis,
and tactical representation. But many subjects are left for the reader to explore: learning, adaptation, and a great deal of real-world
military tactics.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chapter 9. Scripting

"Life is like a B-picture script. It is that corny. If | had my life story offered to me to film, I'd turn it down."

—Kirk Douglas
KEY TOPICS

® Building a Scripting Language
® Embedded Languages
® Socket-Based Scripting

® Closing

So far we have discussed how hard-coded Al systems can deal with many scenarios efficiently, from action to strategy and everything in
between. Some games will work fine with small Al systems, whereas others will require tons of code to implement the Al feature set.
However, as the Al grows in complexity, keeping it hard-coded will eventually become a problem. Hard-coded Als are efficient, but are
often limited in terms of flexibility. The internals of the Al are built into the game's source, so adding or changing anything requires
recompiling the full source code, making the process tiring and troublesome. This is especially important in large-sized games, where
many different Al types exist. Imagine a role-playing game with dozens of characters, each with his or her own personality, behavior
patterns, and dialogs. Hard coding these Als can create a bottleneck, can introduce bugs in the game's source code, and is overall a
risky decision.

Under these circumstances, it would be great to externalize the Al so it could be run from separate modules that were "satellites" to the
core engine. These satellite modules would be written in a specific programming language (often different from the one used in the main
engine) and would run in a "safe" environment, so a faulty Al module would not cause problems for the main application. If these
conditions were met, the Al modules could be coded by different people, such as Al designers, content production people, and so on
rather than those coding the main engine. As a result, the benefits would not be limited to flexibility. These satellite modules would be
useful for team management and program security issues as well.

Each of these satellite modules that externally implement Al (or, more generally, gameplay-related) routines in a specific language is
called a script, and the global technique,scripting, is what this chapter is all about.

Scripting is a very popular method used these days where large teams work on even larger games. It streamlines the creation of the Al
and logic content by placing that responsibility in the hands of people different from those actually coding the engine. It also allows for
more creative Al design. Often, a dedicated Al programmer using a scripting language will come up with new ideas, and because the
language will allow him to test them immediately, he will create more compelling and believable characters. It all boils down to selecting
the right feature set for the scripting language so that it combines a powerful set of primitive calls with the ease of use your content team
will demand.

Obviously, scripting languages will incur a significant performance hit, more so than a compiled, binary implementation done in a
language such as C++. Here your mileage may vary greatly depending on your choice of language, because some scripts perform much
better than others. Notice, however, that focusing on performance is actually missing the point concerning why scripting makes sense in
the first place. A scripting language has more to do with extensibility and flexibility than it does with efficiency. But some of the more
modern script engines, such as Lua, offer a small memory footprint and very good performance, so you get a "best of both worlds"
solution.

There are many different approaches to using scripting languages. You can code your own, use an embedded language, or even
communicate with the engine using a network connection. Although the goals are more or less identical, each approach has its
advantages and disadvantages. For the rest of this chapter, we will analyze each approach in detail, so you can make an informed
decision in your next game project.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Building a Scripting Language

The first technique we will explore is building a scripting language from scratch. This used to be common some years ago, when each
team had to devote many hours to get a flexible scripting language to work. But recent advances in programming languages have made
this technique less and less popular, as newer and better methods have appeared through the years. Today, you can have a top-class
scripting engine up and running in just a few hours, with little or no trouble at all. However, for completeness, let me give you some idea of
how creating your own programming language might work. | will deliberately only provide some hints, because programming
creation is a very in-depth subject to which you can devote many years (and several books as thick as this one). Check out]
"Further Reading," at the end of the book for some suggested reading on compilers, parsers, and other tools.

Generally speaking, creating a programming language involves a three-step process. The first step entails defining the programming
language syntax. This can be done on paper, because it is basically a matter of deciding which features you need and which syntax those
features will be exposed through. The second step involves the creation of a program loader, which takes a file written in the said
programming language and loads it into memory for execution. In this step, we must check for syntactic validity and take the appropriate
steps to ensure efficient execution. The third and final step is the execution of the program itself. Depending on the coding strategy, this
can range from just executing a binary module written in machine code to interpreting a high-level language such as BASIC, to something
in between like Java.

Whichever route you choose, the complexity of the task will largely depend on the syntax of the language of choice. As an example, we will
now focus on two popular choices: a simple language that we will use to code a symbolic rule system and a full-blown structured language
similar to BASIC or C.

Parsing Simple Languages

In this section, | will describe the process of creating the parser and execution module for a simple language. | have chosen a language
that is to be used to specify rule systems via scripting. The language is very similar to that used in the Age of Empires series. It is
composed of a list of rules, and each rule is made up of a condition and an action, so the run-time engine selects the first one (in order)
whose condition is active and executes the associated action.

Following the preceding scheme, we will begin by deciding the syntax of our programming language: which constructs will be supported,
the keywords, and so on. There are dozens of different approaches to this problem. But for this example, we will use the following syntax:

defrule
conditionl
condition2

actionl
action2

Each rule can have multiple conditions (which are ANDed) and multiple actions (which are run sequentially). As an example, let's define a
very simple scripting language that we will use as a case study. We will build the parser manually because the syntax is very simple. Each
condition, for example, can be defined by the simple grammar:

condition -> [float_function] [operator] float | [boolean_function]
float_function -> DISTANCE | ANGLE | LIFE

operator -> GREATER | SMALLER | EQUAL
boolean_function -> LEFT | RIGHT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

So we can query the Euclidean distance, angular distance, and life level of the enemy. We can also test whether he is to our left or to the
right. As you may already have guessed, this rule system is designed for controlling an action Al such as a ship.

The actions we can perform can be defined as:

action -> [float_action] float | [unary_action]
float_action -> ROTATE | ADVANCE
unary_action -> SHOOT

Thus, here is a complete rule system built using these rules to demonstrate the expressive potential of the language:

defrule
distance smaller 5
left

rotate 0.01
advance 0.1

defrule
distance smaller 5
right

=>
rotate -0.01
advance 0.1

defrule
angle < 0.25
=>

shoot

defrule
left

rotate -0.01
advance 0.1

defrule
right

=>
rotate 0.01
advance 0.1

Because rules are executed in order, the previous example enacts a ship that tries to shoot down the player while avoiding collisions. The
first two rules detect whether the player is too close and evades the player (rotating in the opposite direction, in radians). The next rule
detects whether we can actually shoot down the player because he's at a small angular distance, whereas the last two rules implement a
chasing behavior.

These kinds of languages are really easy to load because their syntax is very regular. For each rule, you just have to parse the conditions,
and depending on its value, parse the right parameter list. Then we repeat the process for each action. Thus, we will start by defining the
data structure we will use to hold the rules. For our case, this can be defined as

typedef struct
{
int opcode;
int operation;
float param;
} fact;

typedef struct
{

list<fact> condition;
list<fact> action;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

}rule;

Thus, the whole virtual machine would be

class vmachine
int pc;
int numrules;
rule *program;

public:
void load(char *); // Loads from the provided file name
void run();

h

The first phase (language definition) is complete. Now it is time to implement the loader and parser, so we can initialize the data structures
while checking for the validity of the script. Because the language is very regular in its structure, the loader is not a big issue. Here is a
portion of its code, which begins by computing the number of rules by counting the number of defrule apparitions in the source file:

void load(char *filename)

{
()
for (i=0;i<numrules;i++)
{
while (convert_to_opcode(readtoken(file))!'=THEN)
{
fact f;

/I read a condition
char *stropcode=readtoken(file);
f.opcode=convert_to_opcode(stropcode);
switch (f.opcode)
{
case ANGLE:
char *operation=readtoken(file);
f.operation(convert_to_opcode(operation);
/I GREATER, etc
f.param=atoi(readtoken(file));
rules[i].condition.push_back(f);
break;
(...)
}
/I rule conditions ok... move on to actions
while ('file.eof() && (convert_to_opcode(readtoken(file))'=DEFRULE))
{
fact f;
/I read an action
char *stropcode=readtoken(file);
f.opcode=convert_to_opcode(stropcode);
switch (f.opcode)
{
case ROTATE:
f.param=atoi(readtoken(file));
rules[i].action.push_back(f);
break;

(.)

We only need to provide a routine to parse tokens (strings or numeric values separated by spaces or newline). Notice how we have
assumed there is a define for eachopcode, which we use to access its symbolic value. In our case, thelefine list would be

#define LEFT O

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

#define RIGHT 1
#define ADVANCE 2
#define ROTATE 3
#define SHOOT 4
#define ANGLE 5
#define DISTANCE 6
#define DEFRULE 7
#define THEN 8
#define GREATER 9
#define SMALLER 10
#define EQUAL 11

#define WRONG_OPCODE -1

Notice how we reserve an additional opcode to process parsing errors. By following this convention, the final code to the
convert_to_opcode routine would just be

int convert_to_opcode(char *opcode)
{

if (Istrcemp(opcode),"left") return LEFT;
()

if (!strcemp(opcode),"=>") return THEN;
return WRONG_OPCODE;

}

In this example, our language is case sensitive like C. By changing the strcmp call, you can implement case-insensitive languages as well.

Once we have defined the language syntax and have coded a loader, it is time to move on to the execution module of our virtual machine.
Again, because this is a relatively simple language, it is very helpful. We just have to scan the list of sentences and take the appropriate
actions for each one of them. Here is the source code for part of the vmachine::run operation:

void vmachine::run()
{

rule *ru;

bool end=false;
pc=0;

while (('end) && (!valid(rule[pc]))
{
pc++;
}
if (valid(rule[pc].condition))
{
run_action(rule[pc]);

}

Notice that we really scan the rules searching for the first one that has a valid condition. If we fail to find such a rule, we simply return.
Otherwise, we call the action execution subroutine, which will take care of executing each and every action assigned to that rule. The real
meat of the algorithm lies in the routine that evaluates whether a rule is valid and the routine that executes the actions. Here is part of the
source code of the first routine:

bool valid (rule r)

{
list<fact>::iterator pos=r.condition.begin();
while (pos!=r.condition.end())

{

switch (pos->opcode)
{
case ANGLE:

/I compute angle... this is internal game code
angle=...

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

if ((pos->operation==GREATER) && (angle<pos->param))
return false;

if ((pos->operation==SMALLER) && (angle>pos->param))
return false;

if ((pos->operation==EQUAL) && (angle!=pos->param))
return false;

break;

case DISTANCE:

()

break;

pos.next();

}

return true;

}

Basically, we test all the facts in the condition. As we AND them, all of them must be valid for the rule to be valid. Thus, the moment one of
them is not valid, we reject the rule totally and return false. If we happen to reach the end of the fact list and all of the facts are true, the

whole rule is true, and we must validate it.

Now, here is the action execution:

void run_action(rule r)

{

list<fact>::iterator pos=r.action.begin();
while (pos!=r.action.end())

{

switch (pos->opcode)

{

case ROTATE:
yaw+=pos->param;
break;

case ADVANCE:
playerpos.x+=pos->param*cos(yaw);
playerpos.z+=pos->param*sin(yaw);
break;

()
}

Notice how in this case we do not test but instead execute actions sequentially, as if the routine were a regular computer program.

We have seen how to parse and execute a simple programming language in the form of a symbolic rule system. From here, we can add
many constructs to enhance the expressive potential. Age of Empires had well over 100 facts, so both action and conditions could be
based in sophisticated routines. In an extreme case, you could end up with a very involved programming language. It all depends on your
knowledge of parsing techniques and the time spent polishing the language. Efficiency, on the other hand, is quite good, especially if each

sentence has st
(and pictured in

ong sema

iqure 9.

ntics (its execution is complex and takes many clock cycles). In a language such as the one outlined earlier
, each sentence has an implicit performance hit for the loop and switch constructs. But the rule execution is just

binary code. Clearly, the impact of the parsing and switch constructs will be noticeable if each rule has very light-weight binary code that
takes almost no time to execute. Now, in a language where each instruction takes a lot of binary code to execute, the overhead of the loop
and switch will be negligible, and performance on your scripting language will be almost identical to that of native code.

Figure 9.1. Weak (top) versus strong (bottom) semantics.

Parsinn Fxariition

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

® wemr wmran e oy e W EmORE W R OE

Parsing Execution

Parsing Structured Languages

It is possible to code parsers for more complex languages following the ideas outlined earlier. But coding a language such as C from
scratch would definitely be a challenging task. There are hundreds of constructs, function calls, and symbols to account for. That's why
specific tools, such as lexical scanners, were designed many years ago to help in the creation of programming languages. Lexical
scanners are used to detect whether a token (character string in a programming language) is valid or not. The most popular example of
these analyzers is called Lex. Basically, you use Lex to generate a beefed-up version of our convert_to_token routine. Lex receives a
formal definition of the lexicon for the language and is able to generate C code that decodes and accepts valid tokens only. To declare this
lexicon, you must use Lex's convention. For example, here is a portion of the lexicon for the C programming language:

"break" { count(); return(BREAK); }
"case" { count(); return(CASE); }
"char" { count(); return(CHAR); }
"const" { count(); return(CONST); }
"continue” { count(); return(CONTINUE); }
"default" { count(); return(DEFAULT); }
"do" { count(); return(DO); }
"double” { count(); return(DOUBLE); }
"else" { count(); return(ELSE); }
"enum"” { count(); return(ENUM); }
"extern" { count(); return(EXTERN); }
()

e { count(); return(*"); }

e { count(); return('/"); }

"%" { count(); return('%"); }

< { count(); return('<); }

"> { count(); return(>"); }

o { count(); return(""); }

" { count(); return('"); }

" { count(); return('?"); }

Once Lex has detected the lexical constructs, it is time to move higher in the abstraction scale and detect full language constructs such as
an if-then-else loop. To achieve this, the syntax of the language must be described in mathematical terms. Aiif sequence, for example, can
be described in a variety of alternative ways, such as:

1. [if] (LOGICAL_EXPRESSION) SENTENCE

[if] (LOGICAL_EXPRESSION)

SENTENCE_LIST

[if] (LOGICAL_EXPRESSION)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

SENTENCE_LIST

else

SENTENCE

[ifl (LOGICAL_EXPRESSION) SENTENCE

else

SENTENCE_LIST

[if] (LOGICAL_EXPRESSION)

SENTENCE_LIST

}
else
{
SENTENCE_LIST
}

Formally speaking, this sequence can be described using a mathematical construct called Context-Free Grammars (CFGs). CFGs allow
us to declare languages by using a substitution rule. For example, here is the rule for the IF construct in the C language:

if_statement
. IF '(" expression ')' statement
| IF'(" expression ')’ statement ELSE statement

Each lowercase token is another rule we can apply. For a simpler example, here is a CFG for evaluating numeric expressions:

Expression
: NUMBER
| expression opcode expression

| (expression)

opcode

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

5
[

K

Thus, we can apply the two rules recursively to obtain the syntactic tree shown i.

Figure 9.2. Syntactic tree for a mathematical expression.

Expression

* { "expression”) "

axprassion apcoda axprassion
number “p" * [“expression™) "
"3 expression opcode expression
number upr number
5" “10"
(3 + | 5 / 10))

Once we have specified our programming language by means of its grammar, we need a program that actually parses the input file, and
once it has been converted to tokens, checks for syntactic correctness. The most popular of such applications is called Yet Another
Compiler Compiler (Yacc). Yacc takes a grammar file as input and generates the C code required to parse the grammar. Then, it's up to
the application developer to decide what to do with this syntax checker. We could decide to convert the input file to a different format, such
as a bytecode used in the Java programming language. Alternatively, we could decide to execute the program as it's being checked for
validity. We would then use an interpreter, such as BASIC. In addition, we could choose a middle-of-the-road solution and convert the input
file to an intermediate representation, such as an assembly-like syntax, which is faster to execute in an interpreter-like fashion. This is
usually referred to as a just-in-time (JIT) compiler.

For computer game scripting, Yacc is commonly used as an interpreter or as a JIT compiler. It does not make much sense to actually
output any bytecode, because we really want to run the script.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Embedded Languages

In the preceding section, you got an idea of how to create a new programming language from scratch using simple tools. But most
projects would do with a regular, C-like language, and quite likely developers do not see much added value in coding the language
themselves. It would be great to have off-the-shelf languages designed specifically with scripting in mind. Embedded languages are
exactly that—programming languages designed specifically to be called from a host application, much like the way plug-ins work. Thus,
they provide both the internals of the programming language and an API to communicate back and forth with the host application. This
way you can start with a full-featured language instead of having to code your own, which is time-consuming, and most of the time, does
not make a difference in the final product.

Embedded languages exist in two fundamental flavors. Some are specifically designed to be embedded, such as Python or Lua. And
others are just regular programming languages that can be embedded by using special tools. The Java Native Interface (JNI), for
example, allows Java code to be executed from a C/C++ application. We will now explore one of each kind in detail. Let's begin with Lua,
which is one of the most popular embedded languages.

Learning Lua

Lua is a lightweight programming language developed at the Pontifical Catholic University of Rio de Janeiro in Brazil. It follows a
BASIC-like syntax with dynamic typing and can be compiled into efficient bytecodes, which can then be run from either a command-line
interpreter or, more often, from a C application. Lua is very popular among game studios because it includes a great feature set while
providing a low learning curve. It was used in games such as Grim Fandango, Escape from Monkey Island, Baldur's Gate, and
Impossible Creatures.

We will now explore Lua programming and integration with code. For the rest of this section, it is recommended that you

download the latest version of Lua, which can be found at

Just make sure you download the precompiled binaries for your platform of choice, or the source code, should you want to build the
language for a different platform. You only need the include and library files as well as the associated DLLs. Make sure you also grab a
copy of the reference manual so you can learn all about Lua.

Programming

In this section, | will try to provide you with a brief overview of Lua as a programming language. Coding Lua scripts is really
straightforward if you are fluent in high-level languages. The syntax is not very different from BASIC or C. You can code loops,
if-then-else sequences, define and call your own functions, and so on. There are some specific syntax rules, but overall you should feel
right at home using the language. Take a look at this example:

function calculate(a,b)
local temp
temp=a+b
return temp

end

c=calculate(1,2)
if c==0 then

http://www.lua.org/default.htm

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

result="zero"

elseif c<0 then
result="negative"

else
result="positive"

end

print(“the result is: ",result)

The example adds two numbers using a subroutine and prints whether the value of the result is positive, negative, or zero. The syntax is
really straightforward and can be learned in a matter of hours, not days. But Lua scripts are nothing but a curiosity if we do not embed
them into actual binary code. The possibility of exchanging data back and forth between the two languages is where Lua's power really
exists.

Integration

From the host application's standpoint, a Lua script is just a regular function you can call. You can pass parameters and retrieve results,
and the function can have an internal state so subsequent calls to it store previous values. The main difference is that the function is an
interpreted script, so it runs in a safe environment, can be modified without affecting the core code, and so on.

As an example, let's see how we can call a Lua script from C++, with no parameters or results involved. The code is really
straightforward. We initialize Lua, make the call, and shut down the language interpreter:

lua_State *Is=lua_open(100);

int result=lua_dofile(Is,"d:/lua/bin/work/hello.lua");
lua_close(ls);

The first line is used to initialize both the Lua stack (which we will use in a second to send data back and forth with the script) and the
lua_State variable, which is the main Lua object. Stack size should be at least 100, with larger values for scripts with lots of variables or
recursive behavior. This stack is associated with the lua_State object, which is required by all calls to the Lua C API. Once Lua is up and
running, the second line is used to execute a Lua script by simply passing the file name. Notice that the file can either be a pure Lua
script or precompiled for higher speed. The function call should return 0O if everything goes well, and a host of error codes otherwise. It is
interesting to note that Lua scripts can be run either from a file, as shown in the preceding code, or from a user-defined string using the
interface:

lua_dostring(lua_State *, const char *);
Whichever the case, lua_close should be called as soon as we are done with Lua to shut down all data structures in memory.

However, running Lua scripts is useless if you can't exchange data with them. Lua is great for Al scripting; thus, we will need the results
of the Al processing or any other behavior we choose to implement. Communicating with Lua is made possible by a stack where we can
push parameters from the C/C++ side, so Lua can retrieve them. Once the Lua script is finished, it can dump its results to the same
stack, so we can read them back from C++ code.

In the following example, we will pass an integer to a Lua script, and it will return a different string for each number. To begin with, here is
the C++ code to interface with Lua:

lua_State *Is=lua_open(100);

lua_pushnumber(ls,3);
lua_setglobal(ls,"index");

int res=lua_dofile(ls,"d:/lua/bin/work/hw.lua");

int i=lua_gettop(ls);
const char *s=lua_tostring(ls,i);

lua_close(ls);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The first line is again the Lua initialization sequence. We then pass the integer 3 to the stack. To do so, we first push it to the stack, and
then we use the setglobal call to assign the value at the top of the stack (the integer 3) to the variable we pass as a parameter—in this
case, index. After these two calls, Lua knows it must assign the value 3 to the variable index. Then, we call the script, which we will
examine in a second. For now, let's look at the different interfaces to send data to Lua:

lua_pushnumber(lua_State *, double);
lua_pushstring(lua_State *, const char *);

Once we are done, it is time to retrieve the results from the execution of the Lua script. To do so, we first call lua_gettop, which returns
the position index of the element at the top of the stack. If the stack only holds one element, it will have the index 1, and so on. Then, we
can directly retrieve the stack element value by passing its index to the lua_tostring call. We can directly usetostring because we know
the element we are trying to retrieve is a string. But here are other options:

double lua_tonumber(lua_State *, int);
const char *lua_tostring(lua_State *, int);
int lua_strlen(lua_State *, int);

From the Lua side, the code associated with this example (the hw.lua script) is also really simple. Here it is:

if index==1 then
do
return "Hello world 1"
end

end

if index==2 then
do
return "Hello world 2"
end

end

if index==3 then
do
return "Hello world 3"
end

end

if index==4 then
do
return "Hello world 4"
end

end

if index==5 then
do
return "Hello world 5"
end

end

Notice how we do not set an index to any value at the beginning of the script. The variable will already have a value set by the C++ code.
We can thus use it as if it was already initialized. Then, to send a result value to the calling application, we just need to use the return
function, which, in this case, returns a different string for each if-then block. These strings will then be read back from the stack by the
C++ application.

A corollary to the preceding example is how do we return more than one result from a Lua script? The return call is clearly limited to
single variables, and many times we will need to return more complex data structures. To do so, we only need to read Lua variables
back using the getglobal call. The getglobal call receives the name of the Lua variable to retrieve and pushes it to the top of the stack so
we can read it back. Here is a very simple example:

lua_State *Is=lua_open(100);
float x=5;
float y=6;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

lua_pushnumber(ls, x);
lua_setglobal(ls,"xvalue");
lua_pushnumber(ls, y);
lua_setglobal(ls,"yvalue");

int res=lua_dofile(ls,"addition.lua");

lua_getglobal(ls,"xvalue");
int i=lua_gettop(ls);
x=lua_tonumber(ls,i);

lua_getglobal(ls,"yvalue");
i=lua_gettop(ls);
y=lua_tonumber(ls,i);

lua_close(ls);

Notice how getglobal pushes the variable id to the top of the stack. Then, agettop — tonumber sequence must be used to retrieve its
value. Here is the very simple addition.lua script:

xvalue=xvalue+1
yvalue=yvalue+1

The retrieved value must be incremented.

User-Defined Functions

Lua is an extensible language. If we provide a function in our game code, we can make it callable from Lua. This is a great way to
customize the base language so newer, more powerful constructs are supported. Games like Baldur's Gate ran on highly customized
versions of Lua, taking advantage of all core constructs such as if-then-else and for loops, but adding new routines as needed. Let's look
at a complete example on how to add a new routine to Lua.

To begin with, we must implement the C function, which must conform to some Lua coding standards. The function will receive all its
arguments coming from Lua by using a lua_State structure and will send back its results by pushing them in the same state used to
retrieve arguments. The number of arguments is passed on the top of the stack. Then, stack positions from 1 to the number ofargs store
the arguments. Once we have the arguments ready, we can carry out whichever task the routine has been designed for. Just remember
to push the results to the stack when finished. Also, inform Lua of the number of results to expect using the standard return C call. Take
a look at this function, which returns the life level and gender of a given character, assuming we have indexed them by a serial number
in a large character array:

static int lifelevel (lua_State *L)

{

int nargs=lua_gettop(L);

int characterid=lua_isnumber(L,1);

/I here we access the game's data structures
int result=character_array[characterid].life;
lua_pushnumber(L,result);

int result2=character_array[characterid].gender;
lua_pushnumber(L,result2);

/I the next line tells Lua there were two results
return 2;

}

This is just a very simple function to expose the binding mechanism. But the philosophy is obvious: Define C functions that grant the Lua
script visibility of in-game symbols and values. Now it is time to register the function so it is callable from Lua. This is achieved by using a
single line:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

lua_register(L, "lifelevel", lifelevel);

And that's all really. Just make sure you register the new function before you actually execute any Lua code that tries to use it, or the
program will fail. Thus, the correct sequence would be as follows:

lua_open
lua_register

(...) pass arguments
lua_dofile

(...) retrieve results

Remember, Lua pushes values in direct order. Thus, a Lua call like the following expects the C side to first retrieve id1, and thenid2 from
the stack:

Life, gender = lifelevel(id1,id2)

As far as results go, notice how Lua supports multiple assigns. In this case, we must first push Life, and thenGender, when creating the
results from the C side.

Real-World Lua Coding

I'd like to complete this section with a brief overview of what a real-world Lua-based script might look like. Lua is an interpreted language.
This has the benefit of the scripts running in a safe environment, and because each script is a separate entity, Lua is able to build large
Al systems consisting of thousands of scripts. Unsurprisingly, Lua was used in Baldur's Gate, one of the games with the largest Al in
history. On the other hand, a binary, hard-coded approach would have been better in terms of efficiency, but would not have scaled well.
Imagine the whole nonplayer character cast from Baldur's Gate in C++ code. So, the idea is to choose the best of both worlds. Enrich
Lua with some C++ side functions, which are precisely those that require higher performance: complex geometrical tests, database
accesses, and so on. Then, expose them through an API to Lua so programmers can use these new calls. This way your Lua code will
be more elegant and performance will increase.

Another interesting idea is to use Lua as an action selector for a state-machine-based language. Code a state machine in C++, which
does not really have transitions, but just a switch construct with lots of behaviors. Then, build some C++ queries visible from Lua that
allow you to perform action selection, thus, setting the state for the C++ state machine. The Lua code could look like this:

if EnemyCloserThan(Myself, 10) then
Attack()
else

Stay()
end

Here EnemyCloserThan would be a query receiving a numerical character id and a threshold distance. TheMlyself string is a Lua variable
that has been loaded as an argument from C. The C caller pushes the enemy identifier so it can perform its own tests. Notice how Attack
and Stay are two behaviors, which we are selecting with the scriptAttack involves path finding and seeking contact with the enemy, and
Stay is just an idle behavior. The C++ code has the behavior implementation details, which are executed efficiently, but the task of
selecting the right action for each moment is left to Lua. As a more involved example, we can have a behavior collection consisting of
many different behaviors, and by changing the Lua script, recode the personality of the Al. This way we would only have a single enemy
class, because behaviors are similar at all times. Then, Lua would customize each state machine and make sure the Al is rich and
varied.

Java Scripting

Lua is a very popular choice for game scripting. We will now focus on an alternative option, which is to use the Java programming
language as an embedded script interpreter. With Java, you get a multiplatform, object-oriented language, which has more libraries and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

built-in routines than you will need in your whole life. Overall, the option is not so different from Lua as you would expect. Both are
embedded languages that can exchange information with the host and both support user-provided routines on the host side to be called
from the script. So, in the end, differences are more related to specific language features and not so much about the design philosophy.
Java will probably be more powerful than Lua, but is that extra power really needed for game Al? As usual, there are lots of opinions
about this, and most times it all boils down to personal preferences.

The main difference between Lua and Java is that the former was designed to be embedded, whereas the latter is multipurpose. Thus, a
specific tool set is required to make Java embeddable. We will not worry much about Java here. There are tons of books on
programming in Java, and the specifics have little to do with actual game programming. We will just cover the basics of embedded Java,
focusing on how to connect a Java module to an application, which is achieved with the Java Native Interface (JNI).

Java Native Interface

The JNI is a specific set of calls within the Java programming language that makes integrating Java and classic compiled languages
such as C or C++ easier. The mechanism is bidirectional. From one side, a Java program can call a C/C++ routine, and thus extend its
functionality. This is especially useful when the Java code needs to access platform-specific functionality. It is also interesting if you need
to access legacy code that is already written in a compiler language or, even better, if you need to perform time-critical tasks that are
more efficient in a low-level language.

On the other end of the spectrum (the end we will be more interested in), a C/C++ program can access methods written in Java using the
Invocation API. Under this model, we have a C/C++ program, which we want to extend using Java. We can examine Java objects, call
methods, or even embed the whole Java Virtual Machine in our game code for full flexibility and efficiency. Clearly, this is what we will be
interested in as far as scripting goes—providing a clean method for scripts written in Java to be called from our C++ code.

Let's begin with a very simple example: a C program that calls a Java routine via JNI. The Java code is just a hello, world application, but
we will use it to understand the JNI boot sequence and overall operation. Here is the code from the C side:

#define USER_CLASSPATH "." // where Prog.class is

void main()

{

JNIENv *env;

JavaVM *jvm;
JDK1_1InitArgs vm_args;
char classpath[1024];

vm_args.version = 0x00010001;
JINI_GetDefaultJavaVMInitArgs(&vm_args);

/I append where our .class files are to the classpath
sprintf(classpath, "%s;%s",vm_args.classpath, USER_CLASSPATH);
vm_args.classpath = classpath;

/I create the java VM
jint res = JNI_CreateJavaVM(&jvm,&env,&vm_args);
if (res < 0)
{
/[can't create the VM
exit(1);
}

jclass cls=env->FindClass("Prog");
if (cls == 0)
{
/I can't find the class we are calling
exit(1);
}
jmethodID mid=env->GetStaticMethodID(cls,"main", "([Ljava/lang/String;)V");

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

if (mid == 0)
{
/I can't find Prog.main
exit(1);
}

env->CallStaticVoidMethod(cls, mid, args);
jvm->DestroyJavaVM();
}

Now, here is the content of Prog.java, which is the module called from the previous C++ code:

public class Prog {
public static void main(String[] args) {
System.out.printin("Hello World %d\n",args[1]);

}
}

The operation is pretty similar to Lua. We first create the virtual machine. But we need to be very careful with the CLASSPATH, or the
virtual machine will not boot. Then, the FindClass and find GetStaticMethodID are used to retrieve the class compiled Java file and the
method within the file we want to call. In our case, we are just trying to call the main function. Then, all we have to do is execute the JNI
call. We pass the class and method identifiers and a number of arguments that will be retrieved by the Java module.

As with Lua also, all you have to do from here is establish an interfacing method that passes arguments and retrieves results from the
C/C++ side. To pass arguments, the following code can be used:

jstring jstr = env->NewStringUTF(" argument");
args = env->NewObjectArray(1, env->FindClass("java/lang/String"), jstr);
env->CallStaticVoidMethod(cls, mid, args);

Notice how we declare a UTF8 string, which is the kind of string used internally by the Java Virtual Machine. Then, we need to put it in an
array, because the standard command-line argument mechanism calls for arrays. Additionally, we use the created array in the
CallStaticVoidMethod array, so the standard argument passing mechanism can retrieve the arguments from the Java side. Notice that
CallStaticVoidMethod was used as the method we were calling and is of type static void. Other variants exist to adapt to all the possible

return values. For example, if we need to retrieve a floating-point value from C as a result of a computation performed in Java, the
method would be

jfloat jf=env->CallFloatMethod(cls,mid,args);

So we get the return value in the jf variable. Also note that the method we used to locate thé’>rog.main routine can be changed to adapt
to any routine you need to execute. This way you can have a Java file that is just a library of useful routines, which get triggered from
C.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Socket-Based Scripting

Most projects will work well if you choose one of the scripting methods just explained. Whether it's a custom-built language, something
like Lua, or the JNI, we have covered a lot of ground that should help you in most scenarios. For improved flexibility, we have even taken
a look at how a dynamically linked library scripting system might work.

However, there is an additional technique that can be useful when extreme flexibility and safety are required. We could choose to code
our application's scripts using a DLL. But a DLL can contain malicious code that can make our application misbehave or even crash.
Besides, DLLs (or whatever equivalent mechanism you end up using) are highly platform specific.

So, we will try to come up with a new solution that provides:

® A separate running environment for the script, so it can be safely shut down if necessary

e A platform-independent infrastructure

The solution is to implement your scripting modules by means of sockets. Sockets (explained in detail in , "Network
Programming”) are the standard mechanism to implement network connections using the TCP/IP protocol. They can be imagined as
bidirectional queues. Both peers in a communication stream can write data to one end of the socket, and the other computer will then be
able to retrieve it by reading from the opposite end.

As you might have already guessed, one end of the socket will belong to the main game module, and the other end will be at the script
module. Because they will be two separate applications, a faulty script module will not necessarily affect the game. On the other hand,
socket programming is largely standard. Sockets are supported by PCs, UNIX/Linux boxes, and Macintosh computers, and will probably
be supported in Internet-ready game consoles. They can be coded from C, C++, Java, and a host of other programming languages.

But sockets have two unexpected benefits. First, the script module can be a compiled binary, which means performance will be better
than in other scripting strategies (DLLs excluded). Second, the script does not need to be physically on the same machine as the main
game code. Scripts are executed through Internet connections, which can be handy in certain scenarios.

Notice, however, that these benefits come at a cost. The scripting language will have to be your programming language of choice (C,
C++, and so on). Custom routines can certainly be added to make life easier for script writers, but overall you get less control of the
syntax (as opposed to a custom-built language). In addition, socket communications are not very well suited for time-critical tasks.
Admittedly, networks are getting better all the time, but some projects will find sockets too limiting in terms of performance—not for the
script itself, but for the time required to pass arguments (and return results). Another issue you must be aware of is that sockets can be
tricky to maintain if lots of scripts must be handled. In the extreme case, your game can begin to resemble a massively multiplayer title
with scripts instead of gamers.

Let's examine the creation of a socket-based script system. The first step is to decide the taxonomy of the callable module. Clearly, we
want maximum efficiency, so we will keep the module loaded in memory instead of executing it every time. Besides, by making it
persistent, we can make modules that keep their own state variables and use them from one iteration to another.

Thus, modules will by started by the parent, and once booted, will enter an infinite loop that will remain until told by the caller to shut
down. While on the loop, they will watch the socket for requests, process them, and optionally return any results to the calling process.
Here is the coding idea for such a module:

/I open socket to main game module
while (lend)
{
/I read opcode from socket
switch (opcode)
{
case QUIT:
end=true;
break;

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I opcode specific operations go here

}
}

/I close socket

This algorithm is quite efficient both in terms of speed and CPU use. Concerning speed, keeping the module loaded and the socket open
ensures that communication overhead is kept to a minimum. But keeping many scripts in memory can cause some problems, especially
f they are CPU hungry. That's why we keep the socket open and read from it at the beginning of each iteration. As you will learn in
Chapter 10, most sockets are usually blocking. This means that reading from an empty socket causes the process to halt until new data
arrives. Thus, the "read socket" call somehow acts like a semaphore. It pauses the script process until a command arrives (so CPU use
is virtually zero). Once a new request arrives, the process is resumed, the request is dealt with in one of the switch opcode-handling
routines, results are returned using the same socket, and the process is put to sleep again until new commands are received. The
complete process is showcased in .

Figure 9.3. Socket-based scripting transparently integrates the network into the game engine.

Internet

Game | Socket
engine

A

Socket

Local
Al

module

Notice, however, that the problems we had with Java scripting are still present here. For example, it is hard for the script to access data
structures or algorithms stored on the core game engine. When we were using JNI, we saw how making a call from the script to native
C/C++ code was a little complex and had associated overhead. With sockets, the situation gets even worse. The script is simply
designed to receive parameters through the socket, perform local calculations, and return a result.

There are two solutions to this problem. The first one is the poor man's solution: sending commands through the pipeline to the host
application using a predefined protocol. This can work with simple use cases, but when lots of commands are present, will quickly
become unmanageable. A more elegant solution to this is using the Remote Procedure Call (RPC) mechanism to ensure that we can
make calls to our code from the script module. RPC allows developers to register functions at compile time so they are visible by both
peers. A routine implemented in the core game engine can be exposed to the script and the other way around. This makes compilation a
bit more complex because we need to use tools like RPCGen, but the benefit is obvious.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In Closing

Not so long ago, games were a single, monolithic entity. With scripting, you can now decompose your code into smaller components that
interact with each other. We have seen how this technique can be used to prevent errors, isolate portions of the code that might
endanger the whole application, or separate engine code from all the code that is effectively written by the content development team.

The scripting alternatives and languages we have explored should help you increase the expressive potential of your Al subsystem.
Coupled with the techniques we have covered in the previous chapters, you should now be ready to create solid, compelling behaviors.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 10. Network Programming

"...it is important to realize that any lock can be picked with a big enough hammer."

—Sun System & Network Admin manual
KEY TOPICS

® ow the Internet Really Works

® The Programmer's Perspective: Sockets
® Clients

® A Simple TCP Server

® Multiclient Servers

® UDP Servers

® Preventing Socket Blocks

® Designing Client-Server Games

o Massively Multiplayer Games

® | Closing

Playing against human opponents is more rewarding than playing against a machine or, even worse, playing alone. Games such as
football, chess, and hundreds of others teach us how competing against an opponent creates addiction— a desire to play repeatedly,
well beyond the shorter entertainment value of automatic opponents.

Ever since the first multiplayer games appeared, their popularity has been steadily increasing. Although today it seems clear that both
single-player and multiplayer games will exist in the future, it is in the multiplayer arena where some of the most interesting innovations
are taking place.

In this chapter, we will explore the techniques required to create multiplayer games. From the foundations of Internet protocols to
game-specific optimization techniques, we will try to cover lots of ground that will allow you to create compelling online gameplay
experiences. The first few pages of this chapter will provide a thorough overview of the fundamentals of network programming. Once we
are able to create reliable client-server systems, we will deal with networked game issues.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

How the Internet Really Works

The Internet is a packet-switched, fault-tolerant network. Packet switching means that information is broken down into small packets
(usually a few bytes or kilobytes in size) and sent from point A to point B by traversing a weblike server structure (which we commonly
call cyberspace). By saying the Internet is fault-tolerant, we mean that packets are sent using paths that adapt to network circumstances,
errors, server malfunctions, and so on. If a server goes down, packets will use alternative paths to reach their destination. As a corollary
of both these principles, a large block of information sent between two communicating peers does not necessarily need to follow a
unique route. Some packets might use different paths to take advantage of the network's status.

Packet-switched networks differ from circuit-based networks. In circuit-based networks, we "own" a private communication circuit from
the origin to the destination, which we access exclusively. In a circuit system, we have a path from the origin to the destination, and we
simply transfer all the information as a single block. A classic example of such systems is the "traditional" (nondigital) telephone system.

It is very intuitive to picture the Internet as a large factory. On one end of the communication pipeline, a machine breaks data into smaller
pieces, so it can be transferred efficiently. These packets of information are then numbered and sent through a vast network of Internet
servers, sometimes using separate routes. Once these packages reach their destination (probably not in the correct order), a second
factory looks at the serial numbers and puts the data back together in a meaningful way.

Clearly, there are two tasks taking place at very high speeds. First, data is fragmented and reassembled. Second, individual packets are
routed through the Internet. These two tasks are performed by two protocols working in parallel. Transmission Control Protocol (TCP) is
the data separator and assembler, and Internet Protocol (IP) takes care of the routing. So now you know what TCP/IP is about: dividing

data into blocks so it's easier to transfer and then routing it efficiently.

In network programming jargon, TCP is said to be a connection-oriented protocol. In other words, the protocol keeps a permanent
connection open between two (or more) peers. Notice how this does not necessarily imply a dedicated, fixed communication channel.
Because IP performs dynamic routing, some data might follow different courses in order to reach its destination. But TCP works on top
of IP, providing a logical end-to-end connection that can be used at any time.

TCP/IP is recommended for “traditional" networking. Connection-based protocols guarantee FIFO operation (data arrives in the right
order) and ensure that all data sent from one end of the TCP stream will reach its destination. A variety of mechanisms allow the receiver
to detect lost packets, re-request them, and thus make sure all the data is received (in the right order). However, there is a downside:
Connection-based protocols are slow. They need to wait for several packets to arrive to rebuild the initial sequence, and they check for
lost packets. As a result, they provide secure transmission at the cost of reduced performance.

Another protocol exists that can be used to replace the TCP in TCP/IP. It's a very lightweight protocol that sacrifices some of the "slower"
features for the sake of speed. It is the User Datagram Protocol (UDP), and because it does not require an active connection, it is said to
be a connectionless protocol. UDP allows us to send fixed-size packages of information between two endpoints. These packages might
or might not reach their destination (although they almost always do). Additionally, they might not arrive in sequential order. A package

might be routed through a faster server path, thus passing other packages emitted before it. But UDP offers very good performance.
able 10.] lists the differences between TCP and UDP.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 10.1. Differences Between TCP and UDP

TCP UDP
Keeps connection Does not keep connection
Variable-size packets Fixed-size packets
Guarantees reception Does not guarantee reception
FIFO Not necessarily FIFO
Slow Fast

However, it would be wrong to think of UDP as "good" and TCP as "bad" per se. The protocol you choose depends on what you are
trying to code. If you need to code a strategy game where lags are acceptable but each move is essential for the sake of the game, TCP
is still the way to go. It is a slower protocol, but the pacing of your game will be able to handle that well. If you need to code something
like a first-person shooter running at 60 fps on today's networks, TCP will most likely be too slow for you, and UDP's packet loss will be a
minor inconvenience.

For the remainder of this chapter, we will discuss both protocols in detail, showing examples of both in use and exposing potential
pitfalls, so you can make an informed decision about which one to use.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

The Programmer's Perspective: Sockets

As you know, the Internet is a very complex system, consisting of millions of servers speaking quite elaborate languages. Luckily, most
of the Internet's complexity is hidden from the programmer by some cleverly designed APIs. You don't have to deal with TCP, UDP, or IP
directly, nor are they separate tools. You don't even have to break the information into pieces manually. From a programmer's viewpoint,
accessing the Internet is pretty much like accessing a file: You can "open" a site, read from it, write to it, and so on. All this elegance is
achieved through an abstraction layer that makes network programming a breeze. This abstraction layer is called the socket interface
and was introduced in the 1980s at the University of California, Berkeley.

A socket is simply an input/output device (such as a file, a modem, and so on) that opens a communication pipeline between two sites.
To transfer information, both sites must keep a socket open (and aimed at the other). We will soon discover that establishing the
communication channel can sometimes be a tricky process that requires some specific programming. But once the socket is working,
sending data back and forth is as simple as writing it to the socket. Every byte written at one of the socket's endpoints will automatically
appear at the other end. Sockets can either operate in TCP or UDP mode. In both modes, they automatically route information between
both sites. For TCP, the typical partition/reassembly routines are performed as well as packet numbering and reordering. So, data is
recovered at the destination endpoint in the same sequence as it was sent, much like in a FIFO queue. The socket internally
reassembles the data so we don't have to bother with transmission issues. The UDP socket interface is more lightweight, but offers
greater speed and flexibility.

Data transfer using the Internet is not very different from traditional file input/output (1/0). Establishing the communication is, on the other
hand, a bit more complicated. To understand this complexity, we need to classify networked applications into two broad groups called
clients and servers.

A client application (such as a web browser) is typically an endpoint of the communications network. It always works in connection to a
server and consumes data transferred from the server to the client. Sometimes clients send data back to the server (commands, and so
on), but the main raison d'étre of a client is reading data provided by the server. Generally speaking, a client is connected to one (and
only one) server, which acts as the data provider.

Servers, on the other hand, can be connected to many different clients simultaneously. Think of a web server such as Yahoo! and the
multitude of connections it is simultaneously serving. In a more game-related scenario, think of the game server in a massively
multiplayer game. Individual players use clients to retrieve data about the game world and to update the game server with their current
position and status.

Clearly, communications on the client's side are very simple. One socket connects us to our game server, so data transfer takes place
using a well-established route. Establishing such a connection is also pretty simple. Game servers, on the other hand, have a harder time
keeping up with all the incoming connections. A new player might join the game at any time, or another player might abandon it, either
because he quits the game, or because there was a network problem. In these server-side scenarios, communications get more
complicated, and some careful code planning is required.

Clients and servers can both be connection-oriented (thus coded with TCP) or connectionless (coded with UDP). In the following section,
we will take a look at both TCP and UDP clients, and then move on to the server side.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Tean1UB|

Clients

We will start by creating a minimal TCP client, and then we will tackle a minimal UDP client.

A Minimal TCP Client

Let's take a close look at the client's perspective in any networked application. The client's perspective fundamentally involves one
socket that we will use to explicitly connect to a game server whose address is known beforehand. Because we are using TCP for this
first example, our communication protocol will thus consist of four fundamental operations:

® Connecting to the game server
® Writing data to the server
L4 Reading data from the server

® Closing the connection when the game is over

Connection

Establishing a connection is a very simple process for a network client. All we need to do is retrieve the required connection information
(IP address, port) and then execute the connect call using that information. A step-by-step analysis of the connection process follows:

int sock = socket(AF_INET, SOCK_STREAM,IPPROTO_TCP);

This first line creates a socket. As in typical UNIX file system programming, a socket is identified by a file descriptor, which is a
nonnegative integer. The first parameter to the socket call specifies that we want the socket to use the Internet (other values such as
AF_UNIX are used to perform communications that take place inside a single computer). The second parameter specifies that we want
stream-based communications, which fundamentally means we want TCP to keep packets in sequence. Other values would be
SOCK_DGRAM for datagram-based communications (more on this later) orSOCK_RAW, which is a low-level interface that dumps data
as it is received by the socket, with no reordering or sequencing. The third parameter indicates we effectively request TCP as the
transport protocol. Other values would be IPPROTO_UDP, which would initialize the socket in UDP mode.

Once the socket is available, we need to make it target the server. Remember that we are using TCP, so we need a stable connection
between the client and the server. This is a relatively complex process because we traditionally like to work with DNS addresses such
as:

gameserver.myprovider.com

But computers need these addresses to be converted to numeric IP addresses. This conversion process is performed by the name
server. So, the first step in the connection is to perform this translation, which is achieved by using the following code, whereost is a
character string containing the server's DNS address:

struct hostent *H=gethostbyname(host);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This call connects to the name server and retrieves addressing information for the DNS address passed as the parameter. The hostent
structure returned by this call consists of the following members:

struct hostent

{

char * h_name;
char **h_aliases;
int h_addrtype;

int h_length;

char **h_addr_list;

3

The first member contains the official DNS address of the host. The second parameter is a list of null-terminated strings containing all the
aliases (alternate DNS addresses) to the host. The third parameter contains a symbolic constant to identify which type of address we are
using. Currently, it always holds the AF_INET constant. The h_length parameter contains the length of the address in bytes. Theaddr_list
contains a list of IP addresses for the host.

Additionally, a #define statement is used to define the memberh_addr. This points to the first address in theh_addr_list. It is a convenient
addition because the first IP address in the list is the one we will be using later in the process.

So, gethostbyname allows us to retrieve address data for the specified server using the name server. Once we know the IP address, all
we need to do is complete our connection using the socket and connection data. This is achieved by using another structure called
sockaddr_in. Here is the required source code:

struct sockaddr_in adr;

adr.sin_family=AF_INET,;

adr.sin_port = htons(port);
adr.sin_addr.s_addr=*((unsigned long *) H->h_addr);
ZeroMemory(adr.sin_zero,8);

This seems to be getting more complex, but it really isn't. Think of sockaddr_in as the address information on a postcard. Thesin_family
member must indicate that we want an Internet connection. The sin_port attribute must contain the port we need to open at the
destination server. Notice that we use the htons call (Host-To-Network) to ensure that the port number is in network format. Remember
that different computer architectures encode numbers in different ways (big-endian, little-endian, and so on), so making sure we encode
these network-related numbers as a neutral format is a must.

Once the port has been initialized, we load the s_addr attribute with the IP address, which we obtained from theh_addr attribute of the
hostent structure. In addition, we use theZeroMemory call because we must clear thesin_zero attribute.

Now we have a new structure that holds all the connection data. All we have to do is effectively connect our socket to the server using it.
This task is performed by using the following line:

int error=connect(sock, (struct sockaddr *) &adr,sizeof(adr));

Here the connect call will attempt to connect the socket to the specified host. A return value of 0 will indicate success. Errors are
indicated by —1, and the standard errno reporting mechanism is set to indicate the error cause.

Once the connect call has been executed, we have an active line of communication with the other endpoint. Let's take a second to
review the following encapsulated, fully functional client-side connection method, which tries to connect and returns the socket
descriptor:

int ConnectTCP(char *host,int port)

{
int sock= socket(AF_INET, SOCK_STREAM,IPPROTO_TCP);
struct hostent *H=gethostbyname(host);

struct sockaddr_in adr;
adr.sin_family=AF_INET,;

adr.sin_port = htons(port);
adr.sin_addr.s_addr=*((unsigned long *) H->h_addr);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ZeroMemory(adr.sin_zero,8);

int error=connect(sock,(struct sockaddr *) &adr,sizeof(adr));
if (error==0) return sock;
else return error;

}

Data Transfer

Once your communication pipeline is open, transferring data is just a matter of reading and writing from the socket as if it were a regular
file descriptor. For example, the following line reads from an open socket:

int result=recv(sock,buffer,size,0);

Here we are attempting to read "size" bytes from the socket and then store them on the buffer. Notice that this buffer must have
assigned memory to accommodate the incoming data. The ending parameters are flags that allow us to maintain sophisticated control
over the socket.

By default, sockets have a blocking nature. This is the source of many problems and fundamentally means a recv call will only return
when the socket effectively holds as much data as we have requested (or if the other peer closes the connection). So, if we try to receive
256 bytes, but the socket only holds 128, the recv call will remain blocked until more data can be read. This can result in deadlocks and
annoying situations, so we will need to add a bit more code to ensure that we handle this situation properly. This code will create

0 i phich will not block regardless of whether or not data is available. We will cover nonblocking sockets in the section

NRIOCKING SOCKE
Preventing Socket Blocks

But for our simple client, the preceding code should suffice.

later in this chapter, because they are an advanced subject.

Once we know how to read from a socket, we can implement the following code, which performs the opposite operation, writing data so
that the other peer can read it:

int result=send(sock,buffer,strlen(buffer),0);

Notice that the syntax is very similar. A word on result values must be provided, though. Both therecv and send calls return an integer
value, which tells us how many bytes of data were actually sent or received. In a send command, this could be due to a network
malfunction. Because data is sent sequentially, sending less than the whole message means that we will need a second call to send to
make sure the remaining data makes it through the network.

With a recv call, receiving less data than we are supposed to usually means that either the emitter closed the socket or we have
implemented some nonblocking policy that allows us to receive shorter than expected messages. Remember that sockets should block if
the amount of data available is less than expected.

Closing Sockets

After all the data has been transferred, it is time to close the socket. On a low-level, this involves making sure the other endpoint has
received all the data, and then effectively shutting down the communication port. This is performed by using a very simple command:

close(sock);

A Minimal UDP Client

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Working with UDP is much easier than with TCP. As mentioned earlier, the downside is reduced reliability. But from our simplified look at
the world of networking, all we need to know is that there is no connection establishment or shutdown, so all the networking takes place
directly in the data transfer sequences. We will still need to create a socket, but other than that, it is pretty accurate to say that UDP really
consists of two calls. Let's first create a UDP socket, which can easily be achieved through the following line of code:

int sock= socket(AF_INET, SOCK_DGRAM,IPPROTO_UDP);
Notice that we request a datagram socket and specify UDP as the desired transport protocol.

Once this initial step is performed, we can directly send and receive data with our datagram socket. Notice that each data transfer call
must explicitly specify the destination of the datagram because we don't have a "live" connection. Thus, our regular send primitive won't
be of much use here. We will revert to its datagram counterpart:

Int sendto(int socket, char *msg, int msglength, int flags, sockaddr *to, int tolen);

Again, we initially specify the socket, message, message length, and flags. All these parameters are identical to a regular send call.
Additionally, we must specify a sockaddr structure and its length, as in aconnect call. As an example, here is the source code to send a
message in datagram mode:

Void SendUDP(char *msg, char *host, int port,int socket)
{

struct hostent *H=gethostbyname(host);
struct sockaddr_in adr;

adr.sin_family=AF_INET;

adr.sin_port = htons(port);
adr.sin_addr.s_addr=*((unsigned long *) H->h_addr);
ZeroMemory(adr.sin_zero,8);

Sendto(socket,msg,strlen(msg),0, (struct sockaddr *) &adr,sizeof(adr));

}

Notice that we are accessing the name server for each send call, which is inefficient. Alternatively, we could store thesockaddr structure
and reuse it for each call. Even better, we can use a variant of UDP called connected UDP, which maintains UDP's nonsequential,
nonguaranteed performance while storing a connection to a server. To work with connected UDP, we will follow these simple steps:

1. Create a datagram socket with UDP as the protocol.
2. Use a connect call to specify the destination server.
3. Use regular send calls instead of sendto.

Connected UDP is the protocol of choice for UDP applications working with a permanent, stable server (such as a game server). The
sendto call provides greater flexibility because we can send messages to different servers easily. But for a one-to-one scenario,
connected UDP has a lower overhead and thus offers better performance.

Receiving data from a UDP socket is performed through the recvfrom call:

int recvfrom(int socket, char *buffer, int buflen, int flags, sockaddr *from, int
= fromlen);

Again, we need extra parameters to retrieve information about our peer. Because we are working in connectionless mode, we need the
from parameter to tell us where the message comes from. Server programming under UDP is simpler than with TCP precisely for this
reason. We can have a single socket serving many connectionless peers.

As a summary of simple clients, [Table 10.4 shows you the call sequence for our minimal TCP, connectionless UDP, and connected UDP
clients.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 10.2. Call sequences for TCP, connectionless UDP, and connected UDP for a simple
client protocol.

TCP Client Connectionless UDP Connected UDP
socket socket socket
connect connect
send—recv sendto—recvfrom send—recv
close close

Lhis document was created by an unreqgistered ChmMaagic, please go to http://www.bisenter.com to reqgister it. T

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

A Simple TCP Server

Now that we know how to connect to a server and exchange information with it, we are ready to take a look at the other end of the wire.
Be warned, though, coding servers is a very involved process.

To begin with, servers must be able to exchange information with many peers at once. This can be achieved either by sequentially
scanning the open sockets (in a nonblocking manner or we might get in trouble) or by writing a concurrent server that runs several
processes in parallel, each with its own socket and peer.

To start our discussion of servers, we will focus on a single-peer server. This should suffice for two-player games and will serve as a
foundation from which we will move on to more involved solutions.

In a two-player scenario, we don't need to worry about several sockets at once because we are in a one-to-one situation. But this is not a
symmetrical relationship. The client and the server play different roles and thus need different system calls.

As a first step, the server must create its own socket and put it in a "listening" mode. Under this mode, the socket is left open on a
specific port, so it awaits incoming connection requests from the client. As new connections arrive, a brief setup sequence takes place
and data transfer can begin. So, let's focus on the initialization of our TCP server. As usual, it all begins with the creation of a socket.
This process is identical to the client side and is performed by using the line:

int sock= socket(AF_INET, SOCK_STREAM,IPPROTO_TCP);

Now, we must create a relationship between this socket and an IP address/port pair. This way we state that the socket will be looking for
connection requests arriving through that entry point. You might ask why we should specify an IP address to listen to if we know which
server we are at. The answer lies in the nature of Internet servers. An Internet server might be known by different IP addresses (aliases
to the base IP). So, we need to specify whether we want the socket to respond to only one of those addresses. However, most servers
will want to respond to requests arriving at any of the IP addresses the server is identified by, so a special command will allow us to
specify all of the addresses at once. Overall, this binding between socket and IP/port pair is performed by the bind call, whose prototype
is as follows:

int bind(int socket, sockaddr *s,int saddrlen);

We will use the sockaddr (sockaddr_in in the case of Internet servers) to specify the IP/port pair. Here is the exact initialization code for
such a call:

struct sockaddr_in adr;

adr.sin_family=AF_INET,;
adr.sin_port = htons(port);
adr.sin_addr.s_addr=INADDR_ANY;
ZeroMemory(adr.sin_zero,8);

bind(socket, (struct sockaddr *) &adr, sizeof(adr));

Notice the use of the INADDR_ANY wild card to specify that we want to respond using any of the aliases the server is known by.
Alternatively, we could manually specify an IP address for the socket to respond to exclusively. That IP address could easily be taken
from the gethostbyname() return value. Upon completion, bind() will return an integer value, which will be zero if the call was successful
and —1 otherwise. Popular errors include the socket being undefined or already bound, or the IP/port pair being already in use by another
service.

By now your server is up and running, and the OS knows which address and port it is bound to. Thus, it is now time to enter passive
mode or, in other words, put the server to sleep while waiting for connections. This is performed by using the call listen(), which makes
the server wait for an incoming connection:

int listen(int socket, int queuelen);

As usual, the first parameter is the socket to work with. The second parameter allows programmers to specify the length of the
connection queue. The TCP/IP stack will queue up to queuelen connections while the server is handling another request. As you will
soon see, a server can be busy taking care of one entrant connection. To prevent other connections from being lost while this process

his document was created by an unreqgistered ChmMaugic, please go to http://www.bisenter.com to reqister it. T

takes place, you can save them in a queue for later use. Traditionally, queuelen has a maximum size of five, allowing six connections to
be "on hold" while the server handles one peer.

There is only one call ahead of us in the process of starting our server. This call effectively puts the server on hold until a new
connection takes place. The call is

int accept(int socket, sockaddr *addr, int *addrlen);

Accept remains blocked until a new connection takes place. Its parameters are the socket we are listening from andssckaddr/length pair
that will hold the data from the client, mainly its IP and DNS addresses. As a result of the accept() call, we will receive either —1 if there
was an error, or a nonnegative socket descriptor. This new socket is activated and ready to transfer data with the client, whereas the
initial socket remains untouched so we can keep accepting connections.

After accept, we are ready to begin working with our client in aecv-send manner. As a summary of the client-server relationship, see
. Notice that the server must be inaccept() state to be able to receive connections. Obviously, this means that the server-side
boot process must already have taken place.

Figure 10.1. Client-server protocol call by call.

Server Client

Socket
Bind
Listen

Accept Socket

Connect
Receive = Send
Send » Receive

Close Close

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Multiclient Servers

We have now seen how a TCP server is initialized and performs data transfer with a single client. Although this suffices for a very simple,
two-player game, real-world game servers need to cope with more complex scenarios. At least eight players should be supported, and
many massively multiplayer games can handle thousands in parallel. But our server can only carry out one task at a time. If, after
accept(), we decide to take care of the client, we will lose the ability to handle any more incoming connections.

Clearly, we need a way of keeping an eye on the incoming connection queue while we perform data transfers with the already connected
players. At least two ways exist to perform this task. We could take a concurrent approach and create several processes running in
parallel from our core server, each one taking care of different tasks. Under this assumption, we would have N+1 processes (whereN is
the number of connected users). N processes would handle one connected socket each while the extra process would be the one
running the server, and thus permanently waiting for new connections at an accept() call. Alternatively, we could take an iterative

approach, and by making sure we don't get blocked at any connected socket, check all the communication endpoints into a loop. The
following sections describe these two approaches.

Concurrent, Connection-Oriented Servers

In this section, we will focus on concurrent (thus, multiprocess) TCP servers. The strategy we will use is to spawn a child process for
each accepted connection, so the parent can always keep waiting for new connections.

For those not familiar with multiprocess programming, it usually revolves around the fork() UNIX system call. This is a parameterless call
that, upon execution, duplicates the execution environment, so there are two copies of the program in execution. Fork() returns an
integer that has the peculiarity of being different for the two newly created processes. The child process will receive a 0, whereas the
parent will receive a nonnegative integer that is the process identifier of the child process. Fork() is available only in UNIX and Linux
operating systems, which are the operating systems on which many servers are built. For Windows-based servers, a similar technique
would use the CreateThread call.

As a sample of the fork() call's behavior, take a look at the apparently innocent code that follows:

#include <stdio.h>

void main()

{

printf("l am a simple program\n");
int id=fork();

printf("My id is: %d\n",id);

}

This program produces the following output:
| am a simple program

My id is: O

My id is: 37

Intrigued? Well, remember that fork() divides the program in two. So, the firstprintf() is executed once, and the secondprintf() is executed
by the two programs, producing a different output in each one. Now that we know how the fork() call operates, the following algorithm
should be easy to understand:

Master 1: Create a socket, and bind it to the IP and port

Master 2: Put it in passive mode with listen

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Master 3: Wait for a new connection withaccept
Master 4: When a new connection arrives, fork, creating Slave
Master 5: Go to step 3
1. Slave 1: Enter asend-recv loop with the new connection
2. Slave 2: Once the connection terminates, exit

So we have a master process that is permanently blocked in the accept call, spawning child processes to handle the connected users.

You can see this method in action in fFigure 10.4. We need to make sure the number of processes remains in control (for example,
limited to the number of players), but other than that, the algorithm is relatively straightforward. Here is the commented source code for
the preceding example:

/l create a TCP socket
int sock= socket(AF_INET, SOCK_STREAM,IPPROTO_TCP);

/1 fill the address info to accept connections on any IP on port "port"
struct sockaddr_in adr;

adr.sin_family=AF_INET;
adr.sin_port = htons(port);
adr.sin_addr.s_addr=INADDR_ANY;
ZeroMemory(adr.sin_zero,8);

/I bind socket to address
bind(sock, (struct sockaddr *) &adr, sizeof(adr));

/I put the socket in passive mode, and reserve 2 additional
connection slots
listen(sock,2);

/I'loop infinitely for new connections
while (1)
{
struct sockaddr_in connectionaddr,
int caddrsize;
/I we have a new connection
int newsock=accept(sock,&connectionaddr, &caddrsize);

/I spawn a child process
switch (fork())
{
case 0: // child, | handle the connection
communicate(newsock,connectionaddr);
exit(0);
case -1
/I error in fork
exit(-1);
default:
close (newsock);
break;

Figure 10.2. Concurrent, connection-oriented server with three clients and an open socket
awaiting connections.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Open
socket

Game
sSever

Client Client Client
socket 1 socket 2 socket 3

- - — —

Client 1 Client 2 Client 3

Some error handling code as well as the communicate() function have been eliminated for the sake of clarity. Notice how the parent
must close the newsock socket descriptor because fork duplicates variables, which means we have an open descriptor that we are not
going to use. If we do not close sockets handled by the child process, we might run out of descriptors.

Iterative, Connection-Oriented Servers

Now, imagine that we want to implement the same behavior without using the fork() call, so the whole server is run in a single process.
This is easy for just two peers: Put the server in accept mode and wait until a new connection arrives. But how can we do this with many
users? As soon as the first user is accepted and we are exchanging messages with him, we can no longer execute an accept call
because it would stop the whole server while we wait for a new connection that can or cannot take place. Thus, we need a way to keep a
socket open for incoming connection requests while we continue working with already connected clients. This is achieved with the select
call, which allows us to check many sockets at once. The syntax follows:

int select(int nfds, fd_set *read, fd_set *write, fd_set *except, struct timeval
= *timeout);

The call returns the number of sockets for which activity was detected. Then, the parameters are used to pass the sockets we want to
check. To do so, the socket's API provides a structure called fd_set, which represents a set of sockets. The namefd_set, incidentally,
comes from “file descriptor set," because in UNIX systems (where sockets were first devised), a socket is similar to a regular file
descriptor. So, we can add sockets to an fd_set, delete them, and check for activity on such a set with theselect call. Thus, the following
three parameters for select are a set with those sockets we want to read from, a second set with sockets to write to, and a third,
generally unused set with exceptions. The last parameter is just a timeout so select does not wait forever. Because the syntax is pretty
obscure, here is a full select() example:

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

int msgsock;
char buf[1024];
fd_set ready;
int sock;

int maxsocks;

listen(sock, 5); /I'5 positions in the queue
FD_ZERO(&ready);

FD_SET(sock, &ready);

maxsocks=sock;

while (1) /I server loops forever
{
struct timeval to;
to.tv_sec = 5;

to.tv_usec = 0;
select(maxsocks, &ready, 0, 0, &to);

if (FD_ISSET(sock, &ready))
{
msgsock = accept(sock, (struct sockaddr *)0, (int *)0);
bzero(buf, sizeof(buf));
read(msgsock, buf, 1024);
printf("-->%s\n", buf);
close(msgsock);
maxsocks++;
}
}

I'll comment on the code a bit. Basically, we want to check those sockets we have already been connected through while keeping an eye
on the initial socket, so we detect new connections. To do so, after listen(), we initialize an empty set of socket descriptors. We clear the
array with FD_ZERO, which is just a macro. Then, we initialize the entry occupied by our own socket to specify that it's the only socket
available, and we are awaiting connections through it. After we do this, we enter the infinite loop where we call select, passing the
maximum number of sockets to be tested. We also pass the ready array so the call fills it with data referring to those sockets that have
data available. Obviously, here we can find two situations: data available in the base socket, which means we have a new incoming
connection that must be accepted, or data in another socket, which is already communicating with us. If we're receiving a connection
request, the entry corresponding to the initial socket will be activated. Then, we check for that event with the FD_ISSET call and, if
needed, accept the incoming connection and read the string the other peer is sending out. This way we are effectively handling many
clients with just one initial socket and opening new ones as needed using select. A complex communication protocol should then be
implemented on top of this skeleton, but this simple example should suffice to understand how select works.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

UDP Servers

TCP servers are complex, especially when several clients are to be handled. UDP, on the other hand, provides a much easier
communications mechanism. The downside is reduced reliability and security, but for fast-action games, UDP is the way to go. As you
already know, UDP does not maintain a fixed connection, so each packet must come identified with its source. We read packets with
recvfrom and send them back withsendto. Using the samesockaddr structure for both calls guarantees perfect echoing, thus, returning
the packet to its originator. Here is a simple echo example:

void do_echo(int sockfd)

{

struct sockaddr *pcli_addr;

char mesg[MAXMESG];

while (1)
{
int n = recvfrom(sockfd, mesg, MAXMESG, 0, pcli_addr, &clilen);
nosent = sendto(sockfd, mesg, n, 0, pcli_addr, clilen);

}

The socket has already been opened and bound to an address. Then, we loop, reading packages and sending them back to the client.
This is a connectionless, stateless server. It does not store any state information, but just acts like a data relay.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Preventing Socket Blocks

Sockets are delicate by nature. They are designed for a network that never fails, transfers data at infinite speeds, and thus always works
under ideal conditions. However, this is the real world, and therefore some extra code must be employed to ensure that our sockets
respond well to the hazards of everyday use.

One potentially big issue is that of not having enough data to read. Imagine a client-server system where messages can be of variable
size and where you read data with recv calls. As a parameter, you pass the amount of data you want to read back from a call, but how
are you supposed to know how much data there is without looking at the socket in the first place?

You could play it safe by reading data on a byte level: one byte at each call. However, that strategy would be slow and could potentially
backfire on you. If no data is available, the socket would still block.

At least two different methods can cope with this situation. The first tries to take "sneak peeks" at sockets before actually reading any
data from them, ensuring that we read as much as is available. The second allows us to directly request any number of bytes from the
socket while making sure it does not block due to insufficient data.

In the first method, we will use the flags provided by the recv() call. These flags can have the following values:

® (Default value, no special behavior.

® MSG_OOB Used to handle Out-Of-Band data. OOB data is data marked as urgent by the sender. To send OOBs, the sender
must specify MSG_OOB in the send call. Then, when the receiver uses theMSG_OOB flag on the recv call, the OOB data is
retrieved as an individual element, outside of the sequence stream.

® MSG_PEEK Used to peek at the socket without reading data from it. Arecv call with MSG_PEEK correctly returns the number
of bytes available for a subsequent recv call, but does not remove them from the incoming queue.

Clearly, MSG_PEEK can be very useful to us. A code sequence like the following correctly ensures that we only read as much data as
the socket effectively holds:

#define BUFFERSIZE 256
Char *buffer=new char[BUFFERSIZE] ;

int available=recv(sock,buffer, BUFFERSIZE,MSG_PEEK) ;
recv(sock,buffer,available,0);

This way we can prevent the blocking nature of sockets.

Another strategy is to convert our regular socket into a nonblocking socket. Nonblocking sockets do not get locked if there is not enough
data in the incoming pipeline. They just return the call and inform us of this circumstance. To create a nonblocking socket, we first need
to open it, and once the communications channel is set, modify its characteristics with the powerful fentl() call. Here is a simple UNIX
example that converts a socket passed as an argument to nonblocking:

void setnonblocking(int sock)

{
int opts = fentl(sock,F_GETFL);
if (opts < 0)

{

perror(“fcntl(F_GETFL)");
exit(EXIT_FAILURE);

}
opts = (opts | O_NONBLOCK);

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

if (fcntl(sock,F_SETFL,opts) < 0)
{
perror(“fcntl(F_SETFL)");
exit(EXIT_FAILURE);
}

return;

}

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Designing Client-Server Games

We have mastered the basics of network and socket programming, so let's put on a designer's hat for a second and try to relate all this
knowledge to a real game. Fundamentally, all the preceding sections expose the tools we have access to. Thinking about the goals for a
moment will provide some perspective and focus. In this section, | will focus on a small area game (8 to 16 players), whereas the next
section deals with massively multiplayer game design issues.

In a small area game, all players are running a game client, and one player (usually the one with the fastest computer and Internet
connection) runs the server as well. This is the main reason that these games must maintain reduced user groups. A larger user base
would make the server too resource consuming, and running a client and server on the same machine would become unfeasible.

In , the architecture for this kind of system implies that the user running the server starts a new game, putting the server in an
accept() call. This is usually performed through a "game lobby." At this point in time, the other users join the game, so the server can
effectively stop accepting any further calls. Once the multiplayer game begins, no one can join until the server enters the lobby again.

Figure 10.3. UDP acts like a data relay, whereas TCP maintains session control and manages
the game lobby.

TCP server UDP server

Lobby ¥ Packet

relay
Accept —™

A

Client 1 Client 1

Client 2 Client 2

This allows the game server to easily blend inside the main game engine, using the following algorithm:

Server, step 1: Create socket, and bind to IP and port.
Server, step 2: Listen, and wait in anaccept call. Open “"game lobby" and show IP/port.

Server, step 3: Now the server is awaiting connections. Two threads/processes are required: an interface thread running the
game menu interaction and another running the accept call so the system does not lock.

Client, steps 1 to N: Open socket, and connect to the game server.

Server, step 4: Update screen for each accepted connection. Implement the desired connection policy (connectionless
iterative, connection-oriented concurrent).

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Server, steps N+1: At this point, all the clients are connected to the server. When the game menu interaction thread indicates
a player has started the game, you can effectively close the main server socket, interrupt the accept call, and start the game
with the connection sockets. The game server thus shuts down and accepts no further connections.

This method allows us to simplify our game code. The game server only works at boot time, and afterward it is all a data transfer issue.
But there are some potential pitfalls we must be aware of.

What happens when a player loses his connection? The server will realize this either by the socket closing or simply by not receiving
data over a long period of time. As soon as we detect this inconvenience, we must create a new socket, put it in accept mode, and wait
for the lost user to (hopefully) resurface.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Massively Multiplayer Games

A massively multiplayer game (MMG) is a dream come true for devoted network programmers. The techniques, problems, and solutions
found in their design and programming are as complex as network programming can get: lots of connections, lots of data transfer, and
very restrictive time constraints. Add the ever-present lag to the equation and, well, you get the picture.

To begin with, I'l describe MMGs as those games that serve a large community, using a single machine (or more) as dedicated game
servers. The players run clients that update the servers with player state information, whereas the servers basically broadcast
information to the playing community. MMGs are hard to code, not because they are an inherently complex problem, but because of their
sheer size: Coding an eight-player game with a dedicated game server is not complex "per se." The problems arise when you try to
cover thousands of players. So, all we need to do is work on techniques that allow us to "tame the size" of the problem. Let's explore a
few of these methods.

Data Extrapolation

Unfortunately, networks are sometimes slower than we would like them to be. We code our client-server systems assuming that the
network is an infinitely fast and reliable highway, but this is seldom the case. Lags occur, and many times gameplay gets interrupted as
we wait for the next position update from the other end of the wire. Under these circumstances, we must take every possible step to try
to minimize the lag's impact on the gameplay, so the player can enjoy our game despite the network's problems. In a slow-paced game,
speed will seldom be the problem. However, if you are playing a fast-action game, the last thing you expect is your opponent to freeze
due to a network malfunction. Clearly, we need to put some math to work to ensure that we "smooth out" these network irregularities.

The technique that we will use tries to determine the value of any player state characteristic at the present time, even when we haven't
had a recent update. It works for any continuous value, so | will demonstrate its use with the most common parameter in any networked
game: a player's position. For simplicity, | will assume we are in a 2D world with a player's position expressed using an x,z pair of
floating-point values.

Under these circumstances, all we have to do is store the last N position updates (I will demonstrate with N=3) as well as a time stamp
(provided by timeGetTime()) for each one of them. As you already know, three values can be interpolated with a quadratic polynomial. If
our positions are labeled PO, P1, and P2 (P2 being the most recent) and time stamps are respectively TO, T1, and T2, we can create a
function:

P(T)

which gives us a position given a time stamp. To create the polynomial, we must only remember:
P(T)=aT"2+bT +c

By substituting PO, P1, and P2 and TO, T1, and T2 in the preceding equation we get:

POx = ax TO"2 + bxTO + cx
P1x = ax T1"2 + bxT1 + cx
P2x = ax T2"2 + bxT2 + cx

Remember that P0.x, P1.x, P2.x, TO, T1, and T2 are well known, so the only unknown values are ax, bx, and cx. This system can easily
be solved by triangulation. Once solved for x and z, we have two polynomials:

Px(T) = axT"2 + bxT + ¢
Pz(T) = azT"2 + bzT + ¢

These polynomials compute, given a certain value for T, a pair x,z that corresponds to that time stamp. If T represents one of the initial

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

values (TO, T1, T2), obviously the polynomial will return PO, P1, and P2, respectively (because we used them to compute the
polynomial). But because we have chosen a parabolic curve (a polynomial of grade 2), values in between PO, P1, and P2 will be
smoothly interpolated, so we will get an approximation of the value of a smooth trajectory going from PO to P1 and P2.

A more interesting property of polynomials tells us that they are continuous functions, meaning that values located close in parameter
space (T, in this case) have similar return values (x,z pairs). Thus, if we _extrapolate (which means we choose a value close but beyond
P2), the value returned by the polynomial will still be valid (as shown in) as an approximation of the trajectory in the vicinity of
P2. In other words, a car performing a curve at time stamp T will very likely follow a smooth trajectory for a while, and thus we can
assume the polynomial will be an accurate approximation.

Figure 10.4. Extrapolating data to cover network lags.

1
Extrapolated
; data

pos
t-2,

pos t
t-1

As a result, we can trust this polynomial to accurately represent the future behavior of the position (assuming we don't get too far from T2
in time).

So, every time a new position update arrives, we must discard the oldest update and rebuild the interpolation polynomials. Thus, we will
use the interpolator to evaluate the position of the networked player until we receive a new update, and so on. If lag grows, we might
perceive a "jump" in position when a new sampling point arrives (because we are moving from a very distant predicted position to a very
close one). However, in real-world, moderate-lag scenarios, the preceding technique should help to significantly smooth out a player's
trajectories.

Hierarchical Messaging

Imagine a game where lots of network packets are continually being sent between players. Not all players have the same level of
connection. Some players are playing on high-speed DSL or cable, whereas others are still using an analog modem. As traffic intensity
increases, the modem user will begin feeling an information overload, and his playing experience will degrade. Hierarchical messaging is
a technique designed to ensure that everyone gets the best information on a heterogeneous configuration.

At the core of the method lies the notion that messages have different importance levels. For example, an enemy position update is more
relevant than the configuration of his arms with regard to the animation system. Messages should be classified and assigned relevance
levels. Then, as a new player enters the game, a network test should provide us with information on the user's expected
bandwidth—how much data he can exchange per second. Then, we will decide which messages are sent to him depending on that
bandwidth to ensure he gets the most important messages, but maybe loses some secondary information.

Take, for example, a first-person shooter. Messages could be (in descending order of relevance):

® position updates

® Shooting

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

L4 Weapon changes

® \esh configuration/animation

Each "level" of transmission must be quantified in bytes per second, and then the right set of messages will be determined. Thus, in a
first-person-shooter, maybe one player is just seeing positions and ignoring the rest of the information. But because he has the most
relevant information, the game is still playable on a low-end machine.

Spatial Subdivision

Spatial subdivision is designed specifically for massively multiplayer games. It uses spatial indexing to ensure that only relevant packets
are transmitted and, by doing so, it can decrease the overall traffic by orders of magnitude.

Imagine a squad-based game, where a player can join teams of up to four players in a quest—something like Diablo, for example.
Obviously, we will need to send the position updates quite frequently, because the game is pretty high-paced. This is not much of a
problem, because we are only dealing with four players. However, try to imagine what goes on inside a game such as
Everquest—thousands of players roaming a huge game world, many of them located at days of distance (in gameplay terms) from other
gamers. Under these circumstances, does it really make sense to update everyone about our current state? We might be consuming the
bandwidth of a gamer at the other end of the game world with useless information.

Now, imagine that players are stored in a spatial index data structure, usually held on the game servers managed by the publisher. Every
time we want to broadcast new data regarding a player, we start by querying the spatial index about which players are located within a
certain distance from the first one. Then, we only send the data to those players, saving lots of bandwidth. Let's stop and review an
example. Think of an Everquest type of game with 100,000 players in a game world that is 102100 kilometers across.

The first alternative is to use standard broadcasts, where each packet is sent to everyone. Using very simple math, you will see that this

requires sending 100,0002 packets of information if we want to update all players.

Now, imagine that we divide the game world into a grid 100x100 meters. Each grid section contains the players specific to that grid.
Assuming that their distribution is homogeneous, we would have 10 players per grid cell. Now, let's assume we only send the update to
those players located in the current cell or in any of the nine neighboring cells. That means an update must be sent to 100 players (10
cells, 10 players per cell). Thus, the grand total of packets required to update everyone is just 10,000,000, which is 1,000 times less than
if we did not use spatial subdivision. The only hidden cost is the data structure, but we can definitely afford that for a game server, which
usually comes with lots of RAM.

Send State Changes Only

If you are willing to accept some restrictions, you can greatly reduce your game's bandwidth by sending only state change information,
not the actual in-game data stream. To understand how this method works and which restrictions we need to apply, think of a game like
Diablo or Dungeon Siege, where two peers connected in a network are playing in cooperative multiplayer fashion. They explore the
game world and solve quests. There are lots of monsters (each with its own logic routines) onscreen and lots of items to choose.

In a game like this, you can choose between two networked approaches. Using one approach, you can run the game logic engine on
only one of the two machines and propagate results to the other machine, which would receive all game logic information through the
network and use it to drive the presentation layer. The second PC would thus only have the graphics engine and not much else,
becoming a "game terminal." But the problem is ensuring that the network will be able to pump the data at the right speed, so the other
player sees exactly the same game world, and the experience is seamless. This can be achieved on a local area network (LAN), but the
Internet is a whole different business.

Thus, we need an alternative. Basically, we keep two world simulators working in sync on both PCs. Both simulators must be 100
percent deterministic for this to work, meaning they must not depend on any outside events or random numbers. Only by ensuring this
can we stop sending all game world update messages (monster positions, and so on) and focus on transmitting just player positions.
This is a very popular approach, which requires checking for world syncing every now and then to make sure both game worlds don't

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

diverge and end up being two completely different representations of the same level.

If you are following such an approach, we can move one step further, changing the explicit information in our messages by using state
change messages. Currently, you are sending a player position update for every logic tick, which is a waste of bandwidth. If the player is
on a deterministic system (obviously, with the chaos inherent to gamer interaction), we can send only state changes and save much of
this bandwidth. Instead of saying "the player is here" all the time, you only need to send "the player pressed the advance key" when a
state change condition takes place. Do not forget that our player is, at the core, a finite-state machine. The player will continue
performing the same action (such as walking or fighting) for many clock cycles. Sending only the state change lets you forget about all
this continuous messaging, making your bandwidth requirements drop sharply.

Just remember the restrictions imposed by this method: Both game worlds must be kept in sync. This will force some changes in your
code, like the random number processing, for example. You can still have random numbers as long as both PCs have the same ones.
Generating the same sequence in both PCs might seem like a crazy idea, but it's one of the essential tasks to ensure proper
synchronization. To keep both random number generators in sync, all you have to do is have a random number table precomputed in
memory (the same one for both machines, obviously) and use it instead of actually computing numbers. This change will have the
desirable side effect of a significant performance gain, because random number generators are traditionally very slow, and tabulating
them is a classic optimization trick as well.

Working with Server Clusters

No serious MMG can be managed with a single server. As player count increases, we reach a point when we need to move to a cluster,
so more users can be accommodated. This opens the door to a whole new area of programming, which deals with how to lay out the
players on the servers, how to communicate with them efficiently, and so on. This is a relatively new science, but some interesting
methods have already arisen. | will now comment on those, explaining the methods behind some popular solutions.

To begin with, multiple servers are used to reduce the number of players that each server must handle. This might seem obvious, but
most problems come from not understanding this key fact. We need each server to handle less players. So, we need:

® |ess players connected directly to the server

® Tests for one player inside one server to be resolved in the same server

The second item in the list is the key fact. Imagine that we have 100 users, and we split them randomly into two groups of 50. Because
we split them randomly, chances are that checking the collision of a player will require us to look at other players on his server, and on
the other server as well, totally killing performance. We will still need to check with all the players in the game world.

The solution, obviously, is to map our spatial subdivision engine to the server level. Each server will handle players located in a
continuous part of the game world, thus ensuring that most tests can be solved locally. For example, we can divide the game world in
half. Then, when we need to send a player update to the rest of the players, we test which other players are close to the original player.
This is performed by the game server, hopefully on a local basis. All players needing the update will lie on the same machine as the
original player. Once we have the list of those players that actually need to know that the original player has moved, we send the
message to them only. Notice how we have improved performance in two ways. At the server level, only half of the gamers were tested.
The rest of them lie on another server and did not even notice the player in the example moved. We optimized network bandwidth as
well, sending the update only to those players within a certain range of the player.

Now, let's generalize this to N servers in a large game world. We can divide the scenario in a gridlike fashion and assign grid quadrants
to individual servers, so all players within that region are handled internally, and CPU and bandwidth are kept to a minimum. If the
developer wants to add new regions to the game world, all we need to do is add extra servers to the cluster. Obviously, this approach will
mostly have server-user traffic, but server-server communications will be important as well. How do we notify a server that a player has
crossed the grid boundaries and must thus be relocated to the neighboring grid cell? To help visualize this, think in terms of vertical
(server-user) and horizontal (server-server) messages. Vertical messages will be most frequent, whereas horizontal messages will carry
control information and be less frequent.

Dynamic Servers and the Braveheart Syndrome

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Sometimes the clustered approach explained in the preceding section will fail to do its work. Basically, we have divided the game world
spatially, assuming that means a homogeneous player division as well. Each cell region has approximately the same number of players.
But what happens if a large number of gamers are, at a point in time, located in the same grid cell? Imagine a "hotspot" region to which
many players converge for some game-related reason. Obviously, that server will sustain more workload than the rest. Imagine the
"launchpad" area, where most gamers in a MMG appear when they first enter a game. It's an overpopulated area, which will make our
servers stall.

The first option would be to study these cases carefully and further divide the game world, much like in a quadtree, around these regions.
But this implies that these hotspot regions are fixed, which doesn't really have to be the case. Imagine that one day there's an extra
guest proposed by the game developers, and that quest increases traffic in a certain portion of the game world. How can we ensure that
the gaming experience will not degrade that day? And how can we get things back to normal after the activity is over, and the traffic level
is reduced? This is often referred to as the Braveheart syndrome: how to prevent a situation in which lots of gamers move to a small
ortion of the map and then leave it, much like in a battle like those portrayed in the Braveheart movie. This phenomenon is depicted in
Figure 10.9.

Figure 10.5. The Braveheart syndrome. Left: servers with homogeneous load. Right: players
concentrate on a specific spot, bringing the system down.

100 users 90 users 5 users 373 users
Sarver 1 Server 2 51 52
Sarver 3 Server 4 53 54

t t t t

B8 usars 110 usars 3 usars T users

Obviously, the solution is to allow dynamic server reallocation, so servers can be assigned to specific regions in real time with no
user-perceived performance loss. When lots of players converge to a specific region, the server array must reconfigure itself
automatically, subdividing the affected regions further so the overall number of players per server stays under control. This is a very

involved solution, implemen ong others) by games such as Asheron's Call. It is also offered by many MMG creation packages,

a(ad
like the Game Grid by .

Two ways of dealing with the Braveheart problem come to mind. One approach would be to resize server zones to try to guarantee that
all servers are equally loaded at all times. The idea is that if a zone gets overcrowded, this implies that other zones are emptying, and
thus we can expand those zones so they assume part of the load from the crowded zone.

Another approach would be to have hot-swappable servers that are basically ready and waiting for spikes. If a spike occurs, the whole
game world stays the same. Only the affected server will call for help, dividing itself in two and passing part of the population to the
hot-swappable server. This passing can cause some annoyances as the players are moved from one server to the other, but assuming
the spike is progressive (players enter the zone one by one), we can gradually move them to the new server so performance loss is not
detected. This second idea has an added benefit: If we implement hot-swappable servers, we can grow the game world dynamically
without big changes in the design. We just add more servers and assign them to specific game zones, and we are all set.

http://www.butterfly.net/default.htm
file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In Closing

Networked games are one of the areas of game programming that is growing faster than others. The advent of the massively multiplayer
titles has taken the world by storm, and all analysts forecast that this growth will continue for at least the next few years. After all, playing
against (or with) other humans is always more rewarding than confronting an Al-controlled character. We feel challenged, we get more

addicted, and we have more fun.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 11. 2D Game Programming

"PICTURE: A representation in two dimensions of something wearisome in three.

—Ambrose Bierce, The Devil's Dictionary
KEY TOPICS

® O Older Hardware

® Data Structures for 2D Games
o Mapping Matrices

® 2D Game Algorithms

® Special Effects

® Closing

The first generation of video games were all two dimensional. The internal representation of the game world had only two axes at most
(usually up-down or left-right). Some games, such as Diablo, tried to give the illusion of depth by using isometric perspective, but it was
all make-believe.

Two-dimensional games are mostly gone from high-end platforms such as PCs and consoles. However, there are many other uses of
two-dimensional technologies, which still remain today. Handhelds, game-capable telephones, and even interactive television are only
some of the scenarios where 2D is still the way to go. Moreover, the strict limitations imposed by the 2D programming rules are a good
exercise for any modern game programmer. Many of the optimizations and techniques found in 2D titles are still used in higher-end
platforms today.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

On Older Hardware

In the age of 2D games, computers were limited by slow CPUs and small memory sizes. The Sinclair ZX Spectrum, for example, used a
Zilog Z80 8-bit processor running at 4.77 MHz and included 48KB of RAM. In the console arena, the original Nintendo Entertainment
System (NES) ran on a 6502 chip. So, game programming was really a case of creating detailed, rich environments on very restrictive
platforms. As an example, a typical 640x480 image taken from a digital camera is, by today's imaging standards, pretty low resolution.
But stored in 24-bits of color, that image would take approximately 900KB—about 20 times the amount of memory available on a classic
8-bit computer.

In fact, reversing this equation, you would discover that the 48KB available on these little machines can barely hold a 128128 image
using 24 bits per pixel for the color. And that's assuming we could use all the memory for the bitmap, forgetting about the operating
system (OS) and main program code!

The size of the memory is only one of the problems of coding for 8-bit machines. You might assume that those 48KB of RAM would be
arranged in an intuitive fashion, such as a linear array you could freely allocate. But no, old-school memory mapping was more complex.
Memory was usually fragmented into sections reserved for specific purposes. Part of the addressing space was taken by the OS, part
was dedicated to interrupt vectors (which held the machine code for low-level routines such as keypresses and hardware timers), and
part was dedicated to devices such as the color palette, and so on. Coding for one such platform involved knowing the memory map very
well, so the programmer understood what could be placed where.

This might sound like history for many programmers, but it is more recent than you think. The IBM PC was coded this way for ages until
Windows 95 (and hence DirectX) came along. In the following listing, you can see a traditional memory map of a PC-compatible
machine, with the interrupt vectors (IV), interrupt service routines (ISRs), and frame buffer at address AOOOOH.

1 Mb = 0x10000:0000
1 Mb-1 = O0xFFFF:000F End System BIOS area
896 Kb OxE000:0000 Start System BIOS area
896 Kb-1 = OXDFFF:000F End Expansion card BIOS area
768 Kb 0xC000:0000 Start Expansion card BIOS area
768 Kb-1 = OxBFFF:000F End Video RAM
640 Kb 0xA000:0000 Start Video RAM
640 Kb-1 = 0x9FFF:000F End DOS RAM
0 Kb 0x0000:0000 Start DOS RAM

As a final note on memory, it is important to understand that many systems did not have "secondary storage," such as a hard drive
where you can store data and swap it in at runtime. In a modern game, only the data for the current level is usually held in memory; every
time a player advances one level, old data is flushed out to leave room for the new data. Many old machines did not have file systems.
Data and code were interleaved in an integrated whole, and programmers had to be careful that coding mistakes did not access data
zones. These machines came with a program loader that basically dumped data from physical media (tapes, cartridges, and so on) to
main memory.

Notable exceptions to this rule were game consoles, which did not need to load memory because the cartridge was the memory, and the
IBM PC, which had a reasonable file system thanks to DOS.

Today, it is hard to understand what it means to code for some of the older hardware. CPU speed is now measured in gigahertz, but
some of the older machines barely reached the megahertz scale. However, there is more to programming than raw speed. Do you want
to code a game like Asteroids, with its simple yet elegant physics and inertia? If you try that as an exercise, you will surely need
trigonometric functions such as the sine and cosine. They govern the direction (given the yaw angle and the speed) using the popular
equation:

X=x+speed*cos(yaw)
Z=z+speed*sin(yaw)

Mathematical signs and whichever axis you call X or Z can vary depending on the convention you follow. But the heart of the equation
should be familiar to you. Now, let's stop and consider that simple but devilish equation. You can see that we need two trigonometric

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

evaluations, two multiplies, two additions, and two variable assigns. Simple enough, isn't it? But the situation is far from ideal, especially
in 8-bit computers. To begin with, imagine that you don't have that fancy floating-point unit that performs sin and cos for you. Getting
headaches? Well, | can hear the advanced readers telling me to revert to lookup tables instead. But wait, there's more. Imagine that you
don't have floating-point instructions such as the multiply and the addition. To make matters worse, also imagine that you don't have
floating-point numbers, but instead have 8-bit integer values only. Does this sound like mission impossible? Well, that's the world game
programmers lived in for about 15 years, and some of them on simpler platforms still code under these restrictions today.

In this chapter we will first cover the data structures that made these games possible. We will then move on to classic algorithms, and
wrap up with a summary of popular 2D-age special effects. As a whole, this should provide a good overview of 2D game programming
algorithms.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Data Structures for 2D Games

We have seen how hardware was the main limiting factor for game development. Clearly, coding Quake on 48KB sounds like a nice
challenge. But 2D games use simpler and smaller data structures, and less-involved routines than more advanced 3D titles. We will now
study these constituent elements of classic 2D games. Defining the structure to three key elements here is essential:

® A way to encode the character graphics
® A way to encode background images

® A way to store the game map

Sprite-Based Characters

Let's take a look back in time to see how characters were represented in the early days of the animation industry. In the days of Walt
Disney, each frame of each character was painted on cellophane sheets with transparent areas where the character would "see
through." To produce the illusion of animation, drawings were layered and movement was simulated by swapping the frames from each
animation. This technique became known as cel animation, from the cellophane sheets used in it.

Analogous to cellophane sheets, 2D games store each character in a rectangular, bitmapped graphic, so it can be drawn quickly
onscreen. Additional information allows the game code to detect transparent areas, so our characters blend seamlessly with the
backgrounds. Then, specific hardware and software is used to render these layers to the screen. Each of these bitmaps (with its
associated transparency information) is called a sprite. The name comes from the early days of 2D games. Because most games
involved ghosts, sprites, and knights, graphics adopted the name.

Sprites can be stored in a variety of ways depending on the hardware. A cell phone can have a black-and-white, 200x150 pixel display,
whereas some newer sprite games on the PC can run at 800x600, 24-bit color with alpha effects. Again, memory and CPU performance
are the limiting factors. The former would occupy 30,000 bits (black and white requires one bit per pixel only), which is about 4KB. The
latter option would be in excess of 1IMB. Next, | will explore some formats that have been popular through the years.

A first format stores the sprites in black and white (or any two given colors), and restricts sprite sizes to multiples of eight. Some cell
phones, as well as 8-bit machines like the Spectrum, support this format. It is very convenient because each pixel in the sprite can be
stored in one bit, and keeping sizes in multiples of eight makes the sprites easier to store in bytes. The Spectrum, for example, used 8x8,
two-color sprites. The foreground and background colors are selected from a 16-color palette, so each of them requires 4 bits, for an
extra byte total. Overall, this format uses 9 bytes per sprite only. Because the frame buffer is 256x176 pixels, or 32x23 sprites, the whole
frame buffer occupies approximately 6KB (if the sprites are "flattened out" so we have a picture of the screen). For increased efficiency,
many 8-bit machines do not have a frame buffer, but ca? fgdf ﬁth a tile table and a buffer holding only sprite identifiers. This is the case
with the NES (more on its architecture can be found in [Chapter 1|, "Chronology of Game Programming"). Assuming the same resolution
as a Spectrum and one byte for each sprite, this representation system only requires 736 bytes (plus the sprite memory). Whichever
method you choose, the low memory footprint comes at a cost. Each 8x8 square can only hold two colors, significantly degrading the
visual richness.

A more involved option can be used if you are working on a display adapter that supports a palette of 16 colors, directly mappable to
each pixel (so you can display more than two colors per sprite). Under these circumstances, each pixel can be coded to 4 bits, and every
two pixels take one byte. Thus, in this case, the restriction is that sprite size needs to be a power of 2 (8, 16, 32, 64...). An 8x8 sprite will
then require as much as 32 bytes. Again, a 256x176 display would take up 23KB, around four times more space than the preceding
case. But we can represent much richer scenes.

Building on this last approach, we can encode sprites supporting up to 256 colors per pixel. These colors usually come from a fixed

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

palette or a palette freely defined by the user. This is the case with the popular 320x200 PC format, where each palette entry can
encode a 24-bit RGB triplet. Given these restrictions, our 8x8 sprite takes exactly 64 bytes, a display with the resolution of a Spectrum
display would take 46KB, and a PC frame buffer running at 320x200 takes exactly 64,000 bytes. Add the space needed for the palette
table (256 colors of 24 bits each, 768 bytes total), and the whole will fit perfectly in the 64KB found in one memory segment of our
beloved PCs.

Moving up in the color scale we can encode high-color sprites (16 bits per pixel). Here, two options are available. First, you can choose
to encode using 5-5-5-1 (five bytes for red, green, and blue, plus one for alpha). Second, you can encode using 6-5-5 and encode the
transparency color as one of the color combinations that you are not really using, as in a chroma key approach.

In an ideal world, you could use true-color sprites, either in 24 or 32 bits if you want to work with alpha blending. Quite likely, 8 bits for
alpha will be way too much, but this has the advantage that each pixel can be transferred in one double word (32 bits), which is
convenient. However, by the time you begin working with true-color sprites, your hardware platform will most likely support 3D graphics.
So that's the reason why 2D games using true color are much less popular than their 8-bit counterparts.

Now, we need to talk about transparency. Our sprites need to blend seamlessly with the background, so we need a way to encode the
parts of the sprite that should leave the background unaffected. Several approaches have been used to achieve this effect.

One popular alternative is to use a separate 1-bit mask to encode transparent zones. This mask is used in the transfer process to ensure
the blend is performed properly. In , the mask is multiplied by the background, leaving in black the area that will later be
occupied by the sprite. Then, by adding the sprite to the background directly, the blending is achieved.

Figure 11.1. Mask and sprite.

This approach is simple to code, but the mask takes a significant amount of memory, especially in animated sprites. For a 32x32,
256-color sprite (which itself takes 1KB), we would need 128 extra bytes for the mask. There is an alternative to this technique: reserving
one color entry in our palette as the "transparent” color and storing only those pixels that encode nontransparent colors. In a 256-color
palette, the loss of one color would be reasonable. But on a lower-color platform, such as a 16-color palette, losing one color for the sake
of transparency might be unacceptable; thus, the masking approach would be preferred.

To produce the illusion of animation, sprites need to be layered on the screen quickly. At least 25 screen updates per second are
required, but numbers in excess of 50 are not uncommon. This operation of layering sprites onscreen is called blitting. The name comes
from the word "blit," which is a contraction of "block image transfer." Some platforms, such as early game consoles, employed specific
hardware to perform these blits. Blitting engines were usually modified memory copy routines, because 2D screens are usually mapped
into linear memory arrays.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Mapping Matrices

Many 2D games were able to present large, varied game worlds on very limited machines. The trick was to use compression techniques
to make data fit on the very small memory chips. As an example, let's analyze how much memory a top-down game such as The
Legend of Zelda required. To support the argument, I'll assume the game level occupies %6 television screens across, and that every
screen is 256x200 pixels, palletized to 16 colors. If you do the math, you'll discover that a bitmap with those dimensions would take up
1.25MB of space, clearly more than a Nintendo console had at that time. There must be a trick somewhere, and that trick is called
mapping.

Mapping is a compression technique that will allow us to create good-looking game worlds at a fraction of the memory footprint. We will
lose some visual variety in the process, but our dream game will fit on our target platform. Mapping is an extremely popular technique. It
was used in thousands of games for classic consoles and arcades, and is still used today, even in some 3D games. The key idea is to
divide our game world into a set of tiles or basic primitives. Each tile will represent a rectangular pattern, which we will combine with
other tiles to represent the level. So, if our game world must represent grass, stone, snow, and sand, we will use four tiles, and then map
them as if we were putting tiles on the floor.

The compression comes from the fact that, if we repeat the same pattern frequently, we will only have it once in memory. To prove this,
let's assume we represent our initial game with a tile set. We will use 256 different tiles (more than enough to provide richness to the
game world). Each tile will be 8x8 pixels.

So, each tile occupies
8x8 = 64 = 32 bytes (we are using 16 colors only)

The whole tile set will require

32x256 = 8KB

We will call this structure the tile table (more on tile tables in the next section). We will then need a second data structure, called the
mapping matrix. This structure stores the layout information: how the tiles should be arranged in game level. From the sprite size, we
know the size of our mapping matrix will be

256x5/8=160
200x5/8=125

Because each entry will be a byte-sized value so we can index the 256 possible tiles, the whole table will require

160x125 = 20000 bytes

So, our compressed map will take up around 19.5KB, with 8 extra kilobytes dedicated to the tile list. On the whole, that is 27.5KB, down
from 1.25MB. That means dividing by a factor of 50 approximately. Clearly, there is a big gain to mapping, and that's the reason
mapping was extremely popular in the '80s. Games such as Mario Bros, Zelda, 1942, and many others use variants of the mapped
scheme.

Tile Tables

We have seen how to encode character graphics. We have also explored how to store a game map based on a mapping matrix. It is
time to talk about the background graphics or tiles. Thus, the data structure we will now cover is the tile table (TT). Put simply, it is a list
of background images that can be tiled and combined using a mapping matrix to create a complete game map. Some platforms, such as
the NES, had this structure defined in the hardware's specifications. Others, like PCs, allowed the developer to specify its own. Whatever
the case, the TT is used to store unique tiles that will later be mapped to the screen. There are a number of decisions involved in creating

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

an efficient TT.

Format of the Tiles

First and foremost, we need to know the format of the tiles we will be storing. This is a really important choice, because different formats
dramatically affect the table's size. Traditionally, tile sizes used to be powers of 2, as this allowed some optimization in the blitting
routines used to transfer them to the screen. Instead of transferring bytes, we can use words or even 32-bit values for increased
efficiency.

We also need to decide whether all tiles will be the same size or if they will differ. Classic games used equal-sized tiles for easier screen
rendering. But if we consider a real-time strategy game that uses an isometric view where buildings are all different sizes, wouldn't it be
wiser to allow for different tile sizes?

In addition, we must decide the color format of the tiles. In the old days, tiles were palletized, so each pixel was encoded in one byte that
indexed the color palette. However, more recent games have used high-color modes (16 bits encoding RGB in 6-5-5) or even true color

(24 bits encoding RGB as 8-8-8). Clearly, the more colors the better. But keep in mind that more colors means more memory, more bus

usage, and thus less performance.

However, there is an equation that will give us the memory size of a single tile, as a function of several parameters. Keep this in mind
when designing your game so your graphics fit in memory:

Size = bits per pixel * wide * tall

Number of Tiles

The number of tiles held in the TT will be as important as their format. On one hand, more tiles means nicer graphics. On the other hand,
memory use will increase dramatically in more ways than you think.

Imagine that our game needs to hold 256 different tiles. The TT will encode them in positions 0 to 255. Thus, each position in the
mapping matrix will need to index that table using an unsigned, 8-bit number. However, imagine that our artist raises the bar to 300 tiles.
The TT will grow accordingly, but the mapping matrix will also undergo some changes. We cannot encode 300 values in a byte. We have
two options:

® Use 9 bits, which allow 512 values, but require some rather obfuscated code to access.

® Use a 16-hit value, which will take up double the memory but give us simple access.

An alternative to allow this in platforms that have some sort of file system is to ensure that only 256 tiles are used per level, so each level
has a different TT. This way we can preserve the variety without the memory hit. But some platforms require the full program (including
data) to be in main memory at the same time, so there is no way to select the TT.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

2D Game Algorithms

We have reviewed the constituent elements of traditional 2D games. We will now move on to specific game techniques, reviewing the
algorithms behind popular classics such as Zelda and Mario Bros. All the algorithms use the same data structures we discussed
previously: tile tables, sprites, and mapping matrices.

Screen-Based Games

The simplest mapped game is the screen-based game, in which the player confronts a series of screens. When he exits one screen
through its edge, the graphics are substituted by those in the next screen, and so forth. There is no continuity or transition between
screens. The classic Boulder Dash would be a good example of this technique.

In these games, each screen is represented using a different mapping matrix, which represents the screen layout of the different
elements. So, for a 320x240 screen using 32x32 tiles, we would store the screen in a 1&8 matrix of bytes. Notice that 240 does not allow
for an exact number of tiles to be rendered vertically onscreen (we can fit 7.5 tiles). So, we take the integer excess to ensure the whole
screen is mapped.

Then, the rendering routine is very straightforward. Its code would look something like this:

#define tile_wide 32
#define tile_high 32
#define screen_wide 320
#define screen_high 240

int xtiles=screen_wide/tile_wide;
int ytiles=screen_highftile_high;

for (yi=0;yi<ytiles;yi++)

{

for (xi=0;xi<xtiles;xi++)
{
int screex=xi*tile_wide;
int screey=yi*tile_high;
int tileid=mapping_matrix [yi][xi];
blit(tile_table[tileid],screenx,screeny);
}

}

An interesting variant of the preceding code generalizes the mapping matrix to a 3D matrix indexed by room identifier, x value and y value.
This way a single data structure can hold the whole game map. To use this approach, we would need a line such as this in our code:

int tileid=mapping_matrix [roomid][yi][xi];

Two- and Four-Way Scrollers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Screen-based games divide the gameplay into chunks that must be dealt with individually. That makes rendering easier, at the cost of
breaking the entertainment each time screens are changed. It would be much better, in terms of gameplay, if the action was a continuum,
with no screen swapping at all. This is the goal of scrolling games: to create a larger-than-screen gameworld that we can continually
explore from a sliding camera. Classics like 1942 (2-way top-down scrolling), Super Mario Bros (2-way side-scrolling), andZelda (4-way
top-down scrolling) are all part of this large family. Games such as Diablo or the Commodore classicHead over Heels used isometric
perspectives, but the approach is virtually the same.

Scrolling games are a bit more complex than screen-based games. The game world is larger than the player's screen, so we need to
process only those areas that are visible to the player. Besides, the screen mapping of a scrolling world depends on the player's position,
making our code significantly harder.

The initial problem we will be dealing with will be selecting the "window" or portion of the game world that will be visible. For consistency, |
will use the same constants we used in the preceding section:

#define tile_wide 32
#define tile_high 32
#define screen_wide 320
#define screen_high 240

Clearly, the number of onscreen tiles is

int xtiles=(screen_widef/tile_wide)+1;
int ytiles=(screen_high/tile_high)+1;

Notice how we added one in each direction to account for the last tile showing, which will probably be cut.

Then, we need to know which cell in the mapping matrix the player is standing on. This way, assuming the player is in the middle of the
screen, we can deduct the window coordinates. Specifically, assuming the player is at

Int playerx;
int playery;

his cell position will be

tileplayerx= Playerx/tile_wide
tileplayery= Playery/tile_high

And we must paint the following tile intervals:

X: (tileplayerx — xtiles/2 ... tileplayerx + xtiles/2)
Y: (tileplayery — ytiles/2 tileplayery + ytiles/2)

Now we know which tiles in the mapping matrix are visible and should be painted. We must now calculate where in screen space those
tiles should be painted. Again, this is relatively straightforward. In a screen-based game, we would project at

int screenx=xi*tile_wide;
int screeny=yi*tile_high;

which means we are painting the screen as if it was a checkerboard. Now, the checkerboard is larger than the screen, and it slides
according to the player's position. Thus, the new transform will be

int screenx=xi*tile_wide - playerx;
int screeny=yi*tile_high - playery;

There is a caveat to this though. If we implement the previous transform “as is," we are translating by the player's position, which would
mean the player is located in the coordinates 0,0 in screen space. This is not usually the case, as players in scrollers are usually placed in
the center of the screen. Clearly, the player's coordinates are

Screenplayerx=screenx/2
Screenplayery=screeny/2

So, the final, correct world-to-screen transform must be

int screenx=xi*tile_wide — playerx-screenplayerx;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

int screeny=yi*tile_high — playery-screenplayery;
And the complete rendering loop must be

#define tile_wide 32
#define tile_high 32
#define screen_wide 320
#define screen_high 240

int beginx= tileplayerx — xtiles/2;
int beginy= tileplayery — ytiles/2;
int endx= tileplayerx + xtiles/2;
int endy= tileplayery + ytiles/2;

tileplayerx= Playerx/tile_wide
tileplayery= Playery/tile_high

int xtiles=screen_wide/tile_wide;
int ytiles=screen_hight/tile_high;

for (yi=beginy;yi<endy;yi++)

{

for (xi=beginx;xi<endx;xi++)
{
int screenx=xi*tile_wide — playerx-screenplayerx;
int screeny=yi*tile_high — playery-screenplayery;,
int tileid=mapping_matrix [yi][xi];
blit(tile_table[tileid],screenx,screeny);
}

}

Notice how | was careful not to impose any restriction on which axis does the scrolling effect. Thus, the preceding code will handle both 2-
and 4-way scrollers equally well. If you want to do 2-way only scrolling, you will need to deactivate the superfluous code from the general
case explained earlier.

Multilayered Engines

Basic scrollers have been very successful through the years. So successful that a number of variants have been developed for specific
scenarios to overcome restrictions imposed by the basic code. We will now see some of them, starting with multilayered engines.

Imagine that we are doing a top-down game that takes place outdoors, in forests and fields. Our art team has created a number of ground
tiles to provide variation. The team has also created some great looking trees; so overall, the scenario looks natural and nonrepetitive.
Clearly, if all the trees can be painted on all the terrains, we will need a large number of combinatory tiles in order to reach the desired
variety. For five terrain types and 10 trees, we will be occupying 50 tiles in our precious, limited memory.

This is one of the use cases for multilayered engines, which allow us to encode the mapping in layers of tiles, so we can combine different
tiles (such as terrain and trees from the previous paragraph) at a lesser cost. This is a popular method, which can be used if

® \We need to combine tiles.
® \We need to move objects over the background.

® \We want to give the illusion of depth.

Multilayered engines use several mapping matrices to encode the game map. One matrix represents the background, another matrix the
trees, and so on. Then, matrices are painted in a parallel fashion, such as:

for (yi=beginy;yi<endy;yi++)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

{
for (xi=beginx;xi<endx;xi++)
{
int screenx=xi*tile_wide — playerx-screenplayerx;
int screeny=yi*tile_high — playery-screenplayery;
for (layeri=0;layeri<numlayers;layeri++)
{
int tileid=mapping_matrix [layeri][yi][xi];
blit(tile_table[tileid],screenx,screeny);
}
}

Notice how | assumed that layers are ordered back-to-front in ascending order: 0 is the background, and larger numbers are closer to the
viewer.

Also notice in the preceding code that although the first layer (numbered 0) will usually completely cover the screen, those layers in the
foreground will mostly be empty. In other words, there will only be a few trees or clouds. So, front layers will need some optimization to
ensure we can handle empty tiles efficiently.

The best way to achieve this is to reserve one tile (usually, the first one) as the "empty space" indicator. So, the preceding code can easily
be changed into the following code, which will handle empty space, ensuring that we don't waste time painting empty tiles:

for (yi=beginy;yi<endy;yi++)

{
for (xi=beginx;xi<endx;Xi++)
{
int screenx=xi*tile_wide — playerx-screenplayerx;
int screeny=yi*tile_high — playery-screenplayery;
for (layeri=0;layeri<numlayers;layeri++)
{
int tileid=mapping_matrix [layeri][yi][xi];
if (tileid>0) blit(tile_table[tileid],screenx,screeny);
}
}

Parallax Scrollers

We have seen how multilayered engines can reduce our memory footprint in some scenarios, but this is only one of their properties. With
some extra code, we can convert our plain scroller to a semi-3D approach, which adds a sense of depth and perspective at no extra cost.
This is what parallax scrollers are all about.

Parallax is the optical phenomenon described as the apparent displacement of a distant object (with respect to a more distant background)
when viewed from two different positions. In other words, if you are driving a car on a highway and you see a fence along the side with
mountains on the horizon, the fence seems to move much faster than the mountains. This is due to the fact that perceived object size
decreases with the distance to the viewer squared. Thus, apparent movement speeds from distant (but large) objects are smaller than
speeds from foreground objects.

Now, imagine that each layer in our tile engine represents one of x possible depth values: Layer 0 will represent the mountains, layer 1 the
fence, and layer 2 the foreground. If we move the different layers at decreasing speeds (depending on their depth), we could somehow
fool the eye and achieve a sense of depth similar to that found in 3D viewing. This technique is what we usually refer to as parallax
scrolling: storing depth-layered tiles and moving them at different speeds to convey a sense of depth.

For easier coding, layer 0 is usually the farthest one, so we can paint back-to-front, increasing the movement speed. Then, we only have
to move each layer at a different speed so the parallax effect becomes visible. Because we are really not moving the background but
instead are moving the player in front of it, one of the easiest ways to code this is by storing several player positions, depending on the
layer. The position from layer 0 (mountains) will advance at a set speed, the position from the next layer (fence) will advance faster, and so
on. In practical terms, this will make the layers move at different speeds on the screen, and thus create the illusion of depth. Here is a
parallax loop in full:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

if (pressed the right cursor)
for (layeri=0;layeri<numlayers;layeri++) playerx+=1*(layeri+1);

for (layeri=0;layeri<numlayers;layeri++)

{
for (yi=beginy;yi<endy;yi++)
{
for (xi=beginx;xi<endx;xi++)
{
int screenx=xi*tile_wide — playerx[layeri]-screenplayerx;
int screeny=yi*tile_high — playery[layeri]-screenplayery;
int tileid=mapping_matrix [layeri][yi][Xi];
if (tileid>0) blit(tile_table[tileid],screenx,screeny);
}
}

Notice that, as parallax scrollers slide layers on top of others, we choose to make the outer loop cycle through each layer. This way we
render the entire first layer before moving on to the next one, making sure order is preserved.

Isometric Engines

Parallax scrollers attempted to convey the illusion of a third dimension by simulating depth. But there is another way to simulate a 3D
scenario. It was discovered by architects and industrial designers centuries ago. Using isometric perspective, we can create a convincing
3D effect on a 2D piece of paper, or if we want, in a computer game. The technique was extremely popular in the 1980s, with games such
as Knight Lore and Head over Heels leading the way. It is still in use today, and games such a®iablo and many real-time strategy titles are
living proof.

Isometric perspective consists of representing an object or game level sideways and from a raised viewpoint, as if it was rotated 45°. It is a
parallel perspective, meaning that lines do not converge as in conic perspective projection. Thus, isometric perspective does not suffer
from distortion and keeps the object's real proportions and relationships.

Isometric games are coded in a very similar way to regular games. They still use a mapping matrix, a Style Table, and so on. The only
changes are that tiles are defined as rhomboids not rectangles, and the screen projection routine is somewhat more complex.

To begin with, tiles for an isometric title are rhomboids, leaving the outer area blank for easy tiling with neighboring tiles. Thus, rendering
these tiles requires keeping a transparency mask active at all times. Another characteristic is that these tiles tend to be wider than they are
high. The reason for this is that isometric perspective only looks convincing when the viewer is not very high above the ground. Thus, a

regular square tile will be converted to a rhomboid with 3x1/6x1 width-height aspect ratio. Several examples using different width-height
ratios are shown in

Figure 11.2. Isometric tile examples.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Isometric tile rendering must be performed with a different projection routine. We project diagonally on the screen, along the two mapping
matrix axes. Here is the source code for the full rendering loop:

inti,j;
for (i=LIM;i>-LIM;i--)
{
for (j=-LIM;j<LIM;j++)

{

int sx=MAXSCREENX/2+(i*TILEWIDE/2)+(*TILEWIDE/2)-(TILEWIDE/2);
int sSy=MAXSCREENY/2-(*TILEHIGH/2)+(*TILEHIGH/2)-(TILEHIGH/2);

SX=SX-Ix+ly;
sy=sy+(Ix/3)+(ly/3);

int orgx=0;

int orgy=TILEHIGH*(world[px+i][py+]]);

int tx1=orgx;

int tx2=orgx+TILEWIDE;

int tyl=orgy;
int ty2=orgy+TILEHIGH

if ((SX<XMAXSCREENX) && (Sy<MAXSCREENY) &&
(sx+TILEWIDE>0) && (sy+TILEHIGH>0))

{

tiles.render(tx1,tyl1,tx2,ty2,sx,sy);

}

To begin with, we loop from —LIM (a fixed constant) to LIM, so we make sure enough tiles are actually painted to cover the screen. The

specific value for LIM will depend on the tile size and screen resolution. In this case, we are working at 646480, and tiles are 150 pixels

wide and 50 pixels high. Thus, we need to loop from —7 to 7 to ensure full screen coverage.

Then, sx and sy are assigned the screen coordinate for the tile being rendered. The equation is simpler than it looks. Let's look asx first. An

increase in the iterator i (used to iterate in X sense of the mapping matrix) causes the next tile to shiffTILEWIDE/2 pixels. Tiles are

overlapped, and we need to displace by half of the tile width for each X increment. Variations in j (used to loop in Y) produce the same
effect. Then, the other two parameters are used to recenter the matrix to the middle of the screen. Now, let's look at sy. A change inX
(which is controlled by the iterator i) reduces the Y value by a factor of TILEHIGH/2. Think about it: As the matrix is painted sideways,

advancing in positive Y places tiles closer to the top of the screen, thus decreasing theily value. What happens if we increase theY (by

changing the j iterator)? We wil
For additional clarification, see

then be pl

acing the tile closer to the bottom of the screen, thus adding TILEHIGH/2 for each iteration in j.

Figure 11.3.

Figure 11.3. Isometric.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

™~

Page-Swap Scrollers

Another variant of the classic scrolling algorithm can be used in those games where we want to offer a scrolling playing field without being
restricted to a closed set of tiles. Imagine a level that offers the gameplay smoothness of a scroller, but where every single piece of art is
indeed unique. Games such as Baldur's Gate or the Monkey Island saga come to mind as classic examples of page-swap scrolling.

The starting point is to work on the level map as a single image, and then divide it into sectors, much like checkers on a checkerboard.
Then, we use the player's position to determine which sectors should be loaded into main memory. The rest are stored on secondary
media (hard drive, CD, etc.), but will be swapped into main memory as needed. It is all a matter of ensuring that our disk bandwidth is
good enough so that the player does not notice the loading going on in the background. The smaller the rectangle, the less noticeable it
will be. The mapper thus resembles a cache memory: keeping frequently used data within fast reach and swapping it to ensure that we
always maintain optimal performance.

There is a specific data structure that can be very helpful when coding this kind of game. It allows us to represent the visible data window
and thus pan through a large game map comfortably. The structure is a 2D array, where each node represents one tile of the larger map.
The array has a size we will have specified, depending on the preceding parameters, as well as memory constraints. Here is the sample

source code:

class tile *tileptr;

class pagescroller
tileptr **matrix;
int sizex,sizey;
int cornerx,cornery;

k

Notice that we store the matrix itself but also need two attributes that help us map the window to the game world. cornerx and cornery tell
us where the upper-left corner of the matrix should be placed in the whole map.

Also notice that the double pointer is just used to declare a dynamic-size 2D matrix of pointers to sectors. We use pointers so we can shift
the whole matrix just by doing some pointer assigns, not really copying data, which would be too slow. For example, here is the routine
used to shift the whole matrix as we advance to higher X values:

for (int iy=0;iy<sizey-1;iy++)
{
aux=matrix[iy][0]; // the first element is really thrown away
for (int ix=0;ix<sizex-1;ix++)
{
matrix[iy][ix]=matrix[iy][ix+1];
}
matrix[iy][sizex-1]=aux;
Fill matrix[iy][sizex-1] with new data from the sector appearing in high X

}

It is good to note how we wrap the deleted column around so it appears on the opposite end and is reassigned the newly loaded data. This
way we avoid having to call delete and new, which is always costly.

Some techniques that can improve the performance of these scrollers have to do with the format of the graphics also. If your game runs at
a very high resolution, the screen updates will need to take place more frequently, because the user will pan through a bigger data set.
Similarly, using more colors can reduce performance. Files will become larger and loading times will increase. The last factor we need to

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

keep in mind is the velocity of the player. Clearly, a walking character will traverse the game world at a slower pace than a jet fighter,
simplifying the loading routines. Fast players in page-swap scrollers require lots of reloading.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Special Effects

In the early years of 2D gaming, titles were simple sprite renderers with little or no visual enhancements. These were the years of very
restrictive hardware, where every call to PutPixel was counted in clock cycles. As years passed and hardware evolved, programmers
began implementing special effects (sometimes referred to as eye candy), so games looked better than the competition. In this section, |
will provide a list of common effects that have become classic through the years. They are all very easy to code and will greatly enhance
any 2D game.

Palette Effects

Most graphics displays from the old days were palletized, offering between 16 and 256 colors. Those systems didn't have very good
access time to the frame buffer (or did not have a frame buffer), so sometimes effects had to be coded without directly accessing the
screen memory. The most popular of those effects were implemented by manipulating, not the screen itself, but the hardware color
palette that controlled how colors were displayed onscreen. A palette was usually composed of 256 entries; each consisting of three
bytes (red, green, and blue). So altering the palette was much faster than having to write to the frame buffer.

A good example of this family of effects can be found in the popular fade-in and fade-out routines present in many games. To ease the
transitions, these games progressively illuminated (or switched off) the screen, so colors appeared smoothly. This would be a really
simple effect in a true-color game. Take a look at the following fade-out routine, which works on a fictitious true-color screen. Each pixel
represents an RGB triplet in byte format, thus representing the full 24-bit spectrum:

for (ix=0;ix<SCREENX;ix++)

{

for (iy=0;iy<SCREENX;iy++)
{
color col=screenarray[ix][iy];
if (col.r>0) col.r--;
if (col.g>0) col.g--;
if (col.b>0) col.b--;
screenarrayl[ix][iy]=col;

}

Notice that this loop is computationally expensive. It depends on the screen resolution; and even on a low-resolution setting like 320x200
pixels, it would take 64,000 loop iterations to achieve the effect. Now, assume the screen is palletized, and each pixel is represented by
a single byte that points to a hardware palette. Again, the palette will be composed of RGB byte triplets. Then, we could save some
precious clock cycles by using an alternative loop such as this one:

for (ip=0;ip<NUMCOLORS;ip++)
{
color col=palette][ip];
if (col.r>0) col.r--;
if (col.g>0) col.g--;
if (col.b>0) col.b--;
palette[ip]=col;

}

This loop is much faster and does not depend on the screen resolution. Because the palette is implemented in hardware, changing it will
immediately affect all the pixels on screen regardless of how many pixels are affected. Here is the full source code of a fade-out routine
written in C++, using the PC-VGA graphics architecture as a starting point:

void GetPaletteEntry(unsigned char id, unsigned char &r, unsigned char &g, unsigned char
- ob)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

{
outp(0x03C7,id);
r=inp(0x03C9);
g=inp(0x03C9);
b=inp(0x03C9);
}

void SetPaletteEntry(unsigned char id, unsigned char r, unsigned char g, unsigned char b)
{

outp(0x03C8,id);

inp(0x03C9,r);

inp(0x03C9,9);

inp(0x03C9,b);

}

void FadeOut()
{

unsigned char r,g,b;

for (int isteps=0;isteps<64;isteps++)

{

WaitVSync();

for (int ipal=0;ipal<256;ipal++)
{
GetPaletteEntry(ipal,r,g,b);
if (r>0) r--;
if (9>0) g--;
if (b>0) b--;
SetPaletteEntry(ipal,r,g,b);
}

}

Notice how the VGA frame buffer was accessed by reading and writing to specific ports. Port 0x3C7 was used to request a palette read,
and port 0x3C8 was used for palette writes. These routines, which | have presented here in C++, were usually hard-coded in assembly
language for improved performance. In addition, | call the routine WaitVSync to make sure we change palette colors only when the
screen is not being accessed by the electron beam. Failing to do so would result in flicker. Finally, the outer loop runs for 64 iterations
because 64 was the maximum value of R, G, and B values in the VGA palette.

A fade-in routine could be implemented in a similar way. We only need a persistent palette in main memory, and the routine will
increment the hardware palette progressively until it matches the persistent version. Here is the full source code:

void Fadeln()
{

unsigned char r,g,b;

for (int isteps=0;isteps<64;isteps++)

{

WaitVSync();

for (int ipal=0;ipal<256;ipal++)
{
GetPaletteEntry(ipal,r,g,b);
if (r<palette[ipal].r) r++;
if (g<palette[ipal].g) g++;
if (b<palette[ipal].b) b++;
SetPaletteEntry(ipal,r,g,b);
}

}

We have seen how some clever palette handling can implement fade-ins and fade-outs. But there is much more we can achieve using

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

palettes. Now, | will focus on one of the most popular effects used in countless games, technology demos, and so on in the 1980s. The
effect is generally called a palette rotation and can be used in many scenarios, from drawing flowing water to creating animated
textures.

The trick is to realize that, if we change some palette entries, we can produce color changes in sprites that look like real animation. | will
begin with a simple palette effect and afterward show a general-case palette rotation trick. Imagine that we want to produce a
semaphore with a red and green light. In order to render the right color, depending on the state of the semaphore, we could simply paint
a colored sprite on top of the semaphore graphic, which represents either a green walking character or a red stop sign. But we ¢

achieve the same effect with only one sprite and some clever palette tricks. To better understand this technique, take a look at lﬁ
. Here, we reserve four palette entries for the semaphore sprite. The first color (labeled 1) will be used for the semaphore and will be
a yellow hue. The second (2) will be the background color for the semaphore, generally black. The third color will be used to render the
green walking character, and the fourth color will be used for the red stop sign. Instead of repainting the screen with sprites, we only
paint the semaphore once, and then manipulate palette entries 3 and 4 to modify the semaphore. To make the semaphore appear in the
green state, we put green as the third palette color and leave the fourth color black. Inversely, turning the traffic light red only requires
putting red as the fourth color, leaving the third one black.

Figure 11.4. Traffic light.

We have saved precious clock cycles, because we only need to render the semaphore light. But there is a downside to all this. We are
manipulating palette entries 3 and 4, which will need to be reserved for this traffic light. If we have two semaphores, we will need more
palette entries, or the semaphores will be in sync because they will share the palette.

Now, let's extend this core idea to a more complex situation. Let's imagine that we want to paint a river with animated water. | am not
thinking about real-time, reflective water. All we need is some animated water such as the kind found in many 8-bit games. We will use
the same technique as we did for the semaphore, but extend it a bit. For example, let's reserve six palette entries, which we will use to
store different hues of water color. Initially, the entry labeled 1 will contain very deep blue, and entry number 6 will hold a light blue color.
Then, if we rotate the colors in these six palette entries, all sprites using those colors will keep on changing. If we draw them carefully,
water animation will seem to appear. It is all a matter of artistic talent: being able to imagine how a sprite will evolve as we rotate its
colors. In Figure 11.5, you can see a larger-than-life version of the sprite | will be using. You can also see a waterfall as rendered using
this technique. Although these effects look simplistic in today's cutting edge graphics cards, some of these concepts might prove useful
even today, because they provide a simple, cheap way of cheating the eye and conveying a sense of motion.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 11.5. Water sprite.

Palette rotation tricks were used for water, lava, fire, neon glows, and countless other tricks. Once you master the core technique, it is
really easy to adapt it to many situations. Surely, the next time you play an old-school game you will discover many of its
incarnations.

Stippling Effects

Another interesting technique you can use in 2D games is stippling. A stipple is just a simple patterned texture that combines one color
(generally black or grey) with the transparency index. This way, rendering a stipple on top of another sprite covers it in part, creating a
rather convincing illusion of shadow. All you have to do is

1. Render the background
2. Using the transparency index, render the stipple
3. Render the character

If you follow these simple steps, the shadow of the character will effectively look as if it is blended with the background: Some areas will
look darker than others, and so on. Stippling looks especially good in high resolutions. The pattern is almost indistinguishable, and the
blending becomes smoother.

There are many other uses for stippling. For example, you can implement varying-density fog by using several stippling patterns (with
different densities). To achieve this, you will need to reverse the rendering order, so you actually do the following:

1. Render the background.

2. Render the character.

3. Using the transparency index, render the stipple.
This way the character will also be immersed in the fog.

Another interesting use of stippling is to illuminate parts of the scene, for example, the trail of an explosion or a torch in the ground. Here,
the stippling pattern must be colored as the light source (yellow, orange). By painting the stipple, the background will seem to illuminate,
with more light at the center of the stippling pattern.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In addition, stippling has been broadly used in fog-of-war techniques. These techniques are used in real-time strategy games, where
only the part of the map where the player has actually explored is shown, and the rest is covered in fog—the closer the area, the less
dense the fog. Stippling patterns have been used in games such as Warcraft and Age of Empires for the PC to implement fog-of-war. As
a summary, you can see a variety of stippling effects in figure 11.4.

Figure 11.6. Stipples.

Glenzing

Stippling is nothing but a poor man's transparency. But we can do more to simulate transparency effects, whether it's a shadow, light, or
fog-of-war. The technique we will be using is called glenzing, and it allows us to really mix colors as if we were painting a partially
transparent object. In the end, it all boils down to some palette handling tricks, but the results will be quite convincing, usually better than
those achieved by simple stippling.

Basically, glenzing converts a color interpolation, such as the ones required to compute semitransparent objects, into a palette value
interpolation. If you wanted to paint a semitransparent object on top of another, opaque object, you would mix both objects' colors
according to an opacity index. The resulting color would be

Color=Color_transparent*opacity + Color_opaque*(1-opacity)

Now, we simply cannot do that in a palletized world. But we can do something similar. Imagine that we lay out our palette so that for each
semitransparent object, we have some extra palette positions that are reserved for transparency effects. If the transparent object is blue,
and the background is red, we will make sure we have a position with some sort of magenta to be used when both objects collide.

Several glenzing methods exist. The most popular substitutes the sprite or triangle-rendering core with one that looks up the current
frame buffer value and increments it by the new fragment's palette value. The code would be

set the palette

paint the base object

paint the semi-transparent object
for each pixel, read the frame-buffer value
add the second object's palette value
write the pixel back

Then, we must make sure the palette is cleverly laid out to guarantee that proper transparency colors are generated.

Fire

Fire can be simulated using a variety of technigues. It can be an animated sprite painted by hand, so it loops properly. Or, it can use
some kind of 2D particle system (see ., "Particle Systems," for more on particle systems). But in the 2D era, the word "fire"
didn't really refer to the previous options. Fire was extensively used in menus, special effects, and so on using a cellular automata on the
frame buffer. As you might already know, a cellular automata is an automata consisting of a number of cells running in parallel whose

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

behavior is governed by neighboring cells. They have been used to simulate life, and in the '80s, they were the best way to create fire.

Essentially, the effect consists of defining an area that will work as the fire emitter. This could be the bottom of the screen, some text, a
drawing, and so on. Then, each frame pixel belonging to the emitter is initialized to the pure white fire color. This made each pixel in the
emitter glow and flicker. All that was needed were some flames, which is what the cellular automata did. Let's consider each pixel as a
cell in our automata, continuously executing the following algorithm (assume we are working on pixel (X,y)):

color(x,y) = (color (x,y+1) + color (x+1,y+1) + color (x-1,y+1))/3

This rather minimal routine simply computes a pixel's new color as the average of the colors of the three pixels below it. This makes fire
rise above the emitter, and because the emitter's colors are somewhat random, the averages inherit this randomness and produce a
somewhat chaotic living effect.

Fire was usually mapped on palletized modes. The palette was occupied entirely or in part with a gradient of colors suitable for fire, from
whites to reds and oranges. Thus, averaging colors was really a process of averaging color indices. Here is a full example of a fire effect
that is emitted by the bottom of the screen (y=SCREENY-1) and climbs vertically. | assume a 256-color palette, with the first entry being
used for pure white colors, which fade to yellow, orange, red, and finally black as we traverse the palette.

/I generate new sparks

for (int i=0;i<SCREENX/2;i++)
{
int x=rand()%SCREENX;
int col=rand()%25;
PutPixel(x, SCREENY-1,col);
}

/I recompute fire
for (int ix=0;ix<SCREENX;ix++)
{
for (int iy=0;iy<SCREENY;iy++)
{
unsigned char col=(GetPixel(ix-1,iy+1) + GetPixel(ix,iy+1) + GetPixel(
= ix+1,iy+1)) / 3;
PutPixel (ix,iy,col);
}

As you might have guessed, fire was an expensive effect, because it needed the whole screen to be recalculated at each frame.
Sometimes the effect was confined to a specific area to avoid recalculating the whole screen and keep the focus on the fire-accessible
area only.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In Closing
Looking back at the techniques that made 2D games so popular, you cannot help but feel a sense of respect for the professionals that
crafted them and admiration for those who still use these ideas today. Platforms were much harder to code back then.

On the other hand, this difficulty is what made coding so much fun: having to be creative to get a faster fade-in routine or simulate more
colors than you actually had. It was all about challenges and creative people trying to confront them.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 12. 3D Pipeline Overview

"Show me how you do that trick... the one that makes me scream” — she said

—The Cure
KEY TOPICS

® A First Look

® rundamental Data Types

o Geometry Formats

® A Generic Graphics Pipeline

® Closing

The advent of powerful consumer-level 3D accelerators has increased the expressive potential of games at the cost of higher
development complexity. Graphics engines have evolved from simple sprite painting routines to real-time geometry processors; their
complexity spiraling up to rival high-end CAD systems and military simulations.

In this new scenario, getting the graphics code right is probably the biggest challenge any development team will face. Developers must
be able to create the illusion of immersion and reality at interactive frame rates. The complexity (and hence, the beauty) of the problem
comes from the fact that each game poses new challenges and requires specific techniques. But some global coding ideas can be
shared between most 3D games, making the design and coding of graphics subsystems feasible and cost-manageable.

We can imagine any 3D engine as a sequence of operations performed on incoming geometry, from the moment it's loaded from
secondary storage to the moment part of it is displayed on screen. This process resembles a pipeline consisting of different segments:
Geometry is pumped in through one end. Then, each pipe segment has a unique filter that is applied to the incoming stream (eliminating
unseen data, illuminating it, and so on). After a number of stages, the surviving geometry exits through the opposite end of the pipeline,
where it is displayed onscreen. It is thus common to refer to this process as the 3D graphics pipeline and to the data as the geometry
stream.

This chapter provides a first look at the design and coding of 3D pipelines. We will analyze the global data structures and algorithms
required to deliver the geometry stream to the 3D hardware efficiently. We will present a global pipeline framework, which we can use to
build a wide range of simple games.

More elaborate titles will require using more advanced algorithms that deal with very specific problems: rendering organic geometry,
indoor scenarios, and so on. We will explore those subjects in subsequent chapters. By using all this information combined, you should
have a deep understanding of how commercial graphics engines are designed and coded.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

A First Look

If you want to design and code 3D game engines, it is essential that you fully understand one fundamental truth that determines the way
games are written. This theorem states: "No matter how powerful the target platform is, you will always need more."

Game development is an innovative craft. Each game version must be better than the last one. Thus, you will always need more memory
than you actually have, require better sound cards, and as far as this chapter is concerned, employ more and better graphics. If you can
draw six million triangles per second, you will want to draw nine million, and so forth. In fact, games are one of the main reasons that
keep computer hardware evolving so quickly. If you think about it, most of the standard applications do not have very restrictive hardware
requirements.

But we need to restrain our ambition. Blue-sky thinking works great as a design tool, but as we try to put our design into actual running
code, we need to be realistic and learn to discard the most extreme concepts. The hardware progression is sadly limited, and frequently,
we will have ideas whose time will not have arrived yet. So writing games is a craft that involves prioritizing and selecting, and being able
to transform your wild design ideas into working code that can be executed on the target platform at an interactive frame rate.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Fundamental Data Types

3D pipelines are built on top of a number of basic data types, which are common regardless of the APl in use. In the following sections, a
concise list is provided, which should provide some "common ground" for the rest of the book.

Vertices

Vertices are usually stored in XYZ coordinates in a sequential manner. The most frequent format uses the float type, which provides
enough precision for most uses. Some applications will require using doubles for special calculations, but most of today's graphic
processing units (GPUs) will only use floats as their internal format.

Vertices are of little use individually. But in a serial way, they can be used to explicitly enumerate the vertices of a 3D object. A list of
vertices can be interpreted, taking them in triplets as a sequence of triangles composing a 3D solid mesh. So the representation would
be something like this:

Triangle 0, 1st vertex
Triangle 0, 2nd vertex
Triangle 0, 3rd vertex
Triangle 1, 1st vertex
Triangle 1, 2nd vertex
Triangle 1, 3rd vertex
()

Triangle N-1, 1st vertex
Triangle N-1, 2nd vertex
Triangle N-1, 3rd vertex

A variant of this method can be used for primitives with triangles that share vertices between their faces. Take a cube from (-1,-1,-1) to
(1,1,1), for example. As you already know, a cube consists of 8 vertices and 6 faces, totaling 12 triangles. Using our initial approach, we
would code this cube by enumerating the 3 vertices of each one of the 12 faces. This would yield a list of 36 entries. Because each
vertex is 3 floats, and a float is 4 bytes, we have a total memory footprint for the cube of 36x3x4 = 432 bytes.

Indexed Primitives

Now, let's follow a different approach. We are repeating the same vertices many times | ist using this initial representation. A single
vertex can appear as many as six times because it belongs to different triangles (see Eigure 12.%). To avoid this repetition, let's put the
vertices in a list (with no repetition), and then use a second list to express the topology of the faces. We will then have two lists: The first

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

one will contain exactly eight vertices (remember, no repetition). The second one will be a list of the face loops required to build the cube.
For each triangle, we will write down not the vertices themselves, but the position on the first list where they can be found.

Figure 12.1. A sample mesh with its vertex and face lists.

2 Vertex List

0 x y x
1 | X y X
0 3 2 | x ¥y X
3 ' x ¥y X
4 ' x y x

4

Face List
o 1 2
i 3 2
0 4 1
4 3 1

This second list is called the index list because it provides you with the indices of the vertices for each face. If we are coding a cube, the
index list will be 36 elements long (12 faces, each with 3 vertices). Each element will be a 16-bit unsigned integer value. Now we are
ready to do some math and compare the results of the classic versus indexed coding. For this new variant, we will have

8 vertices, taking up 8x3x4 bytes = 96 bytes total

36 short integers, taking up 36x2 = 72 bytes total

So, the whole cube will take up 96 + 72 = 168 bytes, which is roughly 40 percent of what it would require using the classic method.
These results can be extrapolated to higher complexity meshes, with triangle indexing cutting the memory footprint in half,
approximately.

Triangle indexing is a very good technique to use to reduce memory footprint for your games. Most 3D packages can directly export
indexed primitives, which you can plug into your engine. Indexing is essential for economizing memory in memory-limited platforms
(read: all of them), but is also relevant to your engine's performance. Do not forget that data transfer through the bus has a cost, which
depends on the amount of data. Thus, sending half the data is approximately twice as fast. Moreover, this technique has an additional
advantage: Most graphics cards and applications have internal support for indexed primitives, so it all becomes a cradle-to-the-grave
solution. All phases in the pipeline can work with this efficient strategy, yielding an overall improvement on the performance and the
memory use at zero CPU cost.

They say every rose has its thorn, so it shouldn't surprise us that this technique has a potential problem. As you will soon see, texture
coordinates and materials, which are essential to convey a sense of realism, are applied to vertices on a triangle basis. Imagine a vertex
shared by two faces that have different material identifiers and texture coordinates depending on the triangle you are looking at. Handling
these situations in an indexed list is an additional burden. You need to reenter the vertex in the vertex list as many times as the different
"impersonations" it appears under. If it's shared between four triangles, each one with different texture coordinates and materials, that
vertex must appear as many as four times in your vertex list.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Quantization

Vertex indexing can reduce the memory hit in 3D meshes at no cost. There is no CPU overhead involved, nor does the data suffer any
loss of quality in the process. Now we will explore a different technique aimed in the same direction. This time we will be using alossy
technigue (meaning some quality will be lost along the way). Under the right circumstances, we will be able to minimize the loss and
achieve additional gain, keeping a very good quality. The method is data quantization.

The core idea behind quantization is very simple: Keep the data compressed in memory, and uncompress it whenever you need to use

it. In fact, quantization is really the name of the compression scheme, but the overall compress-in-memory philosophy could be
implemented with other compression schemes as well. The reason it's called quantization is because this specific compression

technique is very fast, so it can be used in real-time applications. Decompressing a different format (say, ZIP files) would definitely have a
significant processing time, which makes it less attractive to game developers.

Quantizing can be defined as storing values in lower precision data types, thus saving precious space in the process. You can
downsample a double to a float, and you will be taking up half the memory space. You will have lost bits of precision along the way, but
in many cases, that extra precision conveyed little or no information anyway, so the results look almost identical. However, quantizing
does not usually involve doubles and floats. Those types have good precision and usually can fit any value perfectly. Quantizing has
more to do with coding floats into unsigned shorts (16 bits) or even unsigned bytes (8 bits).

For example, imagine that you want to store the geometry for a human being. You have modeled him in a 3D package and centered his

feet in the origin. Thus, you can expect him to be bound by a box 2 meters high, 80 centimeters wide, and maybe 50 centimeters deep.
In other words, the vertex coordinates you will be storing are (assuming you model in meters):

X (wide): -0.40 .. 0.40
Y (tall): 0..2
Z (deep): -0.25 .. 0.25

Then, if you store each vertex coordinate in a floating-point value, chances are you will be using IEEE 754-compliant floats (IEEE is the
Institute of Electrical and Electronics Engineers, and 754 is the name of the standard). Under this standard, a floating-point value is
encoded in a 32-bit sequence consisting of:

1 bit for the sign (s)
8 bits for the exponent (e)
23 bits for the mantissa (m)

As a result of this coding scheme, the range of the float type is, as specified in the standard:

+- (3.4E-38 to 3.4E+38)

which means you can represent incredibly small and very large numbers on both the positive and negative ends of the spectrum. But we
don't need to encode a huge number. We are only trying to encode numbers in a 2-meter range at most. So, do we really need to occupy
that much storage space?

Let's try a different way. Take a smaller precision data type (shorts or bytes usually) and encode the floating-point coordinates into that
data type. For example, to encode numbers in the range from MINVALUE to MAXVALUE, we could do the following:

Compressed_value=Compressed_type_size*(original_value-minvalue)/(maxvalue-minvalue)

This would map the float value range limited by MIN and MAX linearly to the compressed type. For example, to encode theY value of our
human model into unsigned shorts (16 bits), we would do the following, because an unsigned short is in the range of 0 to 65535 (216 —
1):

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Compressed_value=65536*(original_value-0)/(2-0)

Using this approach, we would divide by two the memory requirements for our geometry, but would lose some precision in the process. If
we do the math, we will see that the loss of precision is relatively small. Generally speaking, the precision of a quantization will be

Precision = (MAXVALUE-MINVALUE)/Compressed_type_size

which in this case yields a precision of:

Precision = 2/65535= 0,00003

This is about three hundredths of a millimeter. We can even compress this into a byte, yielding the following:

Compressed_value=255x(original_value-0)/(2-0)
Precision = 2/256 = 0,007 meters

So the maximum error we can incur when compressing is about 7 millimeters, which is quite likely acceptable for many uses.

The decompression routine (sometimes called "reconstruction") is again relatively simple and follows the equation:

Reconstructed_value=Precision*compressed_value+Min_value

There are several strategies for both compression and reconstruction that have slightly different results and side effects. The one |
recommend using is called the TC method (because it truncates and thencenters). Scale to the desired value (in the following example, a
byte) and truncate the floating point to an integer. Then, to decode, decompress by adding 0.5 to make each decompressed value stay in
the middle of its interval:

unsigned char encodeTC (float input)

{

float value = (input-input_min)/(input_max-input_min);
unsigned char = (int)(value * 255);

return result;

}

float decodeTC(int encoded)

{

float value= (float)(encoded + 0.5f)/255;

return value* (input_max - input_min) + input_min;

}

Color

3D games mainly use the RGB (or RGBA) color space. For simple applications and demos, using floating-point values is again the
format of choice. Using floats is handy if you need to work with software illumination algorithms or need to do color interpolation. Usually,
floats are restricted to the range from O to 1 in each of the three components, with black being (0,0,0) and white being (1,1,1). The other
color spaces, such as Hue-Saturation-Brightness, Cyan-Magenta-Yellow, and so on are mostly useful when working in printed media or
to perform image-processing algorithms. So, they are used in games only on very few occasions.

Coding colors in float values is somehow an excess. If you remember the explanation about quantization, the same ideas can be applied
here: We have way too much range and precision, which we are not taking advantage of. Also, with RGB screens working in 24-bit
modes, it doesn't make much sense to deliver color values to the GPU in anything but bytes. Any additional bits of information will be
discarded, so the extra precision provided by floats will not make any difference in the final output. Additionally, colors coded as bytes are
internally supported by most APIs and GPUs, so no decompression/reconstruction is required. Again, we have a winning strategy with no
undesired side effects.

In some special cases, you will work with BGR (and consequently, BGRA) formats. This is a regular RGB stream where you must swap
the red and blue bytes before displaying. BGR colors are used for historical reasons in some applications and texture formats—one
being the very popular Targa texture format. Always keep this in mind if you don't want inaccurate colors onscreen. As a helper, some

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

APIs, like OpenGL, support these new formats internally as well, so no manual swapping is really required.

In addition, some applications do not use color but instead use luminance values. For example, you might want to store only the
grayscale value of the color so you can use it for static lighting. By doing so, you are losing the chromatic information, but you can save
even more memory. However, you will need to decompress in a full RGB triplet if your API of choice cannot use luminance data
directly.

Alpha

Alpha encodes transparency and can be associated with the color value to obtain a 32-bit RGBA value. The transparency value can
either be used per vertex or per pixel by embedding it into texture maps. In both cases, the rule to follow is that the lower the value, the
less opacity: Zero alpha would be completely invisible. Alphas closer to 1 (in floats) or 255 (in bytes) designate opaque items that will not
let the light pass through them.

Using alpha values embedded into texture maps should be kept to a minimum because they will make your textures grow by one fourth.
If you need to do a map with constant alpha (such as a glass window, for example), you can save precious memory by using a regular
RGB map and specifying alpha per vertex instead. If you think about it, you will find similar strategies to ensure that you only use alpha in
a texture map whenever it's absolutely necessary.

Texture Mapping

Texture mapping is used to increase the visual appeal of a scene by simulating the appearance of different materials, such as stone,
metal, and so on, using pictures that are then mapped to the geometry. Thus, two separate issues must be dealt with. First, we must
specify which texture map we will use for each primitive. Second, we need to know how the texture will wrap around it.

Textures are specified by using numerical identifiers. So each of your texture maps is assigned at load time a unique identifier that you
must use in order to make it current. These texture maps are assigned per face, so every triangle has a single texture map that covers it
fully. An interesting side effect is that a single vertex can indeed have more than one texture. Imagine a vertex that is shared between
two faces, each having different materials. The vertex will have a different texture identifier (and probably texturing coordinates)
depending on the face you are looking at.

Sometimes we will be able to layer several textures in the same primitive to simulate a combination of them. For example, we could have

a base brick texture and a second map layered on top to create dirt. This technique (called multitexturing or multipass rendering) will be
explored in ‘, "Shading." It is one of the most powerful tools used to create great looking results.

%2& f“ lj[jlow how textures are specified. However, the same texture can be applied in a variety of ways to the geometry, as shown in
FFigure 12.4. Let's stop for a second to understand how textures are mapped onto triangles. Essentially, we need to specify where in the
texture map each triangle vertex will be located, so by stretching the texture according to these texturing coordinates, it is applied to the
triangle. Each vertex is assigned a pair of coordinates that index the texture map's surface fully. These coordinates, which are commonly
referred to as (U,V), map that vertex to a virtual texture space. By defining three (U,V) pairs (one per vertex), you can define the mapping
of a triangle. Texture mapping coordinates are usually stored as floats in the range (0,1). This makes them ideal candidates for
guantization and compression.

Figure 12.2. Texture mapping explained.

(u1, v1)

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

(u3, v3)

(u2, v2)
(u2, v2)

(u3, v3)

(ul, v1)

In most cases, you will want to specify texture coordinates manually, taking them from a 3D modeling package. But some special effects
will require these coordinates to be evaluated on the fly. One such example is environment mapping, which is a technique that allows

you to create the illusion of reflection by applying the texture not directly to the surface but as a "reflection map." In these situations,
ne engine or, in most cases, by the API. We will see more of these advanced uses

coordinates might be manually computed hy your ga
when we talk about shading techniques in .

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Geometry Formats

Once all the fundamental data types have been laid out, it is time to move one notch higher in the abstraction scale and concentrate on
how we will deliver the geometry stream to the graphics subsystem. It is essential to understand the different geometry packing methods
because performance will largely depend on them. The same engine can achieve x2 performance, just by packing the geometry in an
optimal way. Additionally, understanding geometry formats will yield lower memory footprints, which is a must for most games.

As mentioned earlier, our geometry stream will consist of five data types: vertices, normals, texture coordinates, colors, and optionally,
indices to them to avoid repetition. Generally, I'll describe the geometry formats in an encoded way, similar to that used in chemistry. As
a first example, the following format means three floats per vertex, two floats per texture coordinate, three floats per normal, and three
floats per color:

V3f T2f N3f C3f

This takes up 132 bytes per triangle, which is quite a lot. You can choose to pre-illuminate vertices, and thus skip the normal information.
This eliminates the option of dynamic lighting, but saves lots of space: A V3f T2f NO C3f format takes 96 bytes per triangle.

Other options allow us to reduce memory footprint even more. We can quantize the different data values until we reach this aggressive
configuration, which takes only 18 bytes per vertex:

V3b T2b NO C1b

Notice how vertices and texture coordinates have been quantized, normals have been skipped completely, and we have stored the color
information in bytes, using the luminance channel only.

Also notice how indexing can significantly reduce these memory footprints due to vertex sharing. An indexed mesh usually takes
between 40 and 60 percent of the space used by the original data set, so it always pays off in terms of performance and memory
usage.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

A Generic Graphics Pipeline

The first part of the chapter dealt in detail with the data types and structures we will be using in our graphics engines. Now it is time to
move on and describe the algorithms we will need to render the data efficiently. This is a vast subject, and we will be discussing it in the
following three chapters as well. So, | will begin by describing a global framework for a graphics pipeline, from which any specific graphics
engine can be built by refining the desired components.

Generally speaking, we can decompose any 3D pipeline in four stages:

® Visibility determination
o Clipping
o Culling
O Occlusion testing
® Resolution determination
O Lop analysis
® Transform, lighting

® Rasterization

By combining these processes, we can make sure we paint the desired scenario at a frame rate suitable for real-time games. By refining
the design of each component (and the relationships between them), we can achieve a broad result spectrum.

Clipping

Clipping is the process of eliminating unseen geometry by testing it against a clipping volume, such as the screen. If the test fails, we can
discard that geometry because we will know for sure it will not be seen. Obviously, the clipping test must be faster than drawing the
primitives in order for clipping to provide a significant speedup. If it took us longer to decide whether to paint or not to paint the primitive,
clipping would be an unneeded burden.

There are several ways to do clipping for games, depending on how early in the pipeline you perform the test. In general, it is important to
clip geometry as soon as we can in the graphics pipeline, so we can reduce data transfer to the GPU, and ultimately, the rasterization of
unseen primitives.

Clipping can provide a very significant speedup to any graphics engine. But exact results vary between different clipping methods (and
engine types). For example, a game like Tekken, where most of the geometry is visible all the time, will not benefit from clipping. As a
corollary, games with small, spatially localized data sets will not be able to eliminate lots of geometry in a clipping pass. This would apply
to fighting games, but also to many other genres.

Let's look at a more favorable case to see the real benefit of clipping. Consider a 3D game that takes place in the XZ plane, such as most
first-person shooters (FPS), driving simulators, and so on. Here, we are surrounded by geometry that extends in all directions in a more or
less homogeneous way. This is the ideal scenario for a clipping algorithm: large, homogeneous levels that we can traverse freely. The
reason is simple: In this case, lots of geometry will be outside the clipping volume behind our back or to the sides.

For example, imagine that you want to clip against your camera to discard unseen primitives. The camera has a horizontal aperture of 60°,
which would be pretty much standard. Taking an average case, we would be seeing 60/360 of our full level, so only one of every six

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

primitives would be processed. This means that we can concentrate on 17 percent of the geometry and discard the remaining 83 percent
of the data. Clearly, clipping makes a big difference in this case. All games with large levels, such as role playing games (RPGs), FPSs,
real-time strategy (RTS) games, space simulators, driving games, and so on, will yield equally interesting results.

Now that we know clipping can provide a very significant performance boost to our engine, let's explore how clipping can be
implemented.

Triangle Clipping

We will start by clipping each and every triangle prior to rasterizing it, and thus discard those that lie completely outside of the clipping
frustum. Again, this only makes sense if the triangle clipping is significantly faster than the rasterization process. However, even if this is
the case, the triangle-level test will not provide very good results. But let's discuss it for a second because it will provide some useful
concepts for more advanced methods.

You should know that almost all current graphics accelerators provide triangle-level clipping tests for the frame buffer. This means that you
can safely send all your geometry to the graphics chip, where nonvisible fragments will be discarded. Thus, only visible portions will take
up processing time in the rasterization engine.

You might think that you will get great performance with no coding because the hardware clipper will get rid of unseen triangles.
Unfortunately, great performance rarely comes for free. Hardware clipping your triangles is a good idea, but you will need some code to
ensure top performance. The reason is simple: In order to decide whether to paint or not paint a triangle, you must send it to the graphics
chip, where it will be tested. This means your triangle (whether it's seen or not) will travel through the data bus, which is slow.

However, clipping geometry at the triangle level requires sending it through the bus to the graphics card, which is where the clipping is
performed. In other words, using triangle-level clipping forces us to send lots of invisible triangles to the card, just to be clipped there.
Clearly, we are not using the bus very efficiently. This is where object-level clipping can help.

Object Clipping

As mentioned earlier, triangle clipping is limited by the bus speed. So, we will need a new method that allows us to clip the geometry
before it is sent to the graphics card. Additionally, this method must work on a higher abstraction level than triangles. Software testing each
triangle is too slow for rich, real-time games that display millions of triangles per second.

The preferred approach is, obviously, to work on an object level. Rejecting a complete object, which is possible in the thousands of
triangles, with a simple test will provide the speed boost we are aiming for. Essentially, we will decompose our scene into a list of objects
and test each one as if it were a fundamental primitive for clipping. As you will soon see, some easy tests can tell us if a whole object is
completely invisible so we can discard it. For those objects that lie completely or partially within the clipping volume, hardware triangle
clipping will automatically be used.

This approach is not limited to objects in the "game logic" sense of the word. We can cut any large geometry block into spatially localized
chunks and consider them as objects for our clipping routines. This is especially helpful for level geometry processing. We can cut the
complete area into rooms, including walls and ceilings, and reject nonvisible data very quickly.

The core idea behind object clipping is simple: For each object, compute a simpler volume that can quickly be clipped. This volume will
represent the boundary of the object. Thus, performing the test on the volume will provide an easy rejection test.

Sometimes, the bounding volume will be visible but the object won't, yielding a "false positive." But the benefits clearly outperform the
added cost of these false positives.

So why don't we use the actual geometry for the clipping test? The answer is that regardless of the clipping strategy you used, you would
end up with a computational cost that would depend (in terms of cost) on the geometry complexity. For instance, testing a 1,000-triangle
object would be faster than testing a 10,000-triangle object, and that's an unpleasant side effect.

Bounding volumes provide us with constant-cost clipping methods, so we can keep a stable frame rate regardless of the object's inner
complexity. Many bounding objects can be used, but spheres and boxes are by far the most common. Let's study their properties and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

tests in detail.

Bounding Spheres

A bounding sphere is defined by its center and radius. Given the six clipping planes mentioned earlier, rejecting a sphere is very easy.
Let's start with a single plane, represented by the equation:

Ax+By+Cz+D=0

where A,B,C are the normalized components of the plane normal, andD is defined using A,B,C and a point in the plane.

For a sphere with its center in SC and radius SR, the following test:

A-SCx+B-Scy+C-SCz+D<-SR

returns true if (and only if) the sp ompletely in the hemispace opposite the plane normal, and false otherwise. You can see a
graphic representation of this in ‘.

Figure 12.3. Clipping spheres against a plane.

Partially
Visible

Fully
Clipped

Fully
Visible

Notice how this test requires only three multiplies, four additions, and one compare. Interestingly, this test is a logical extension of the point
versus plane test, which for a point P would be:

A-Px+B-Py+C-Pz+D<0
This would return true if (and only if) point P was in the hemispace opposite the plane normal.

Returning to our main argument, we can use the sphere versus plane test to implement a very efficient sphere versus view frustum. Here |
will use the view frustum notation we used in preceding sections. The pseudocode would be:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

For each clipping plane

If the sphere is outside the plane return false
End for
Return true

In a strict C implementation, the preceding code would translate into:

for (i=0;i<6;i++)
{
if (frij[O]*sc.x+fr[i][1]*sc.y+fr[i][2]*sc.z+r[i][3]<=-sr)
return false;

}

return true;

The first conclusion reached from the preceding analysis is that testing against a sphere is inexpensive. In fact, the cost is the same as
testing a point. This makes spheres a good idea for tests that have to be performed frequently.

A second advantage of using spheres is rotation invariance. Imagine that you have a spaceship you need to clip against the view frustum.
The bounding sphere will remain the same regardless of the orientation of the ship; rotating the object will not affect the bounding volume.
This is another handy property of spheres.

Spheres are not, however, perfect, Eor example, they tend not to fit the geometry well, yielding lots of false positives. Imagine a
pencil-shaped object, as shown in . In this case, using a bounding sphere will create a false impression of size, which will
translate into lots of false positives in our clipping routines. Generally speaking, spheres work better with geometry that occupies the space
in a more or less homogeneous fashion—objects that occupy all directions of space similarly.

Figure 12.4. Pencil-shaped object.

Tight Fit Pencil-Shaped
Object

Bounding Boxes

As an alternative to spheres, we can use boxes to clip our geometry. Boxes generally provide a tighter fit, so less false positives will
happen. In contrast, the clipping test is more complex than with spheres, and we don't have rotational invariance. So clearly, choosing
between spheres and boxes is not a black-and-white scenario.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Boxes can either be axis aligned or generic. An axis-aligned bounding box (AABB) is a box whose faces are parallel to the X,Y,Z axes.
They are the simplest form of box, and thus the easiest to compute. To compute an AABB for a set of points, the following algorithm must
be applied.

From all the points,

Select the minimum X value found in any of them

Select the minimum Y value found in any of them

Select the minimum Z value found in any of them

Select the maximum X value found in any of them

Select the maximum Y value found in any of them

Select the maximum Z value found in any of them

The AABB is defined by two points: one that will store the minimum values and another one for the maxima.

The visibility test is significantly harder than for spheres. We need to test whether any vertex is inside the frustum while keeping in mind
that a box with all vertices outside the frustum can still be visible if it totally encloses it. Here is one of the possible tests for such a routine:

bool CubelnFrustum(float x, float y, float z, float sizex, float sizey, float sizez)

{
int p;

for(p=0;p <6; p++)
{
if(frustum([p][0] * (x — sizex/2) + frustum[p][1] * (y — sizey/2) + frustum[p][2] * (z
= _ sizez/2) + frustum[p][3] > 0)
continue;
if(frustum([p][0] * (x + sizex/2) + frustum[p][1] * (y — sizey/2) + frustum[p][2] * (z
= _ sizez/2) + frustum[p][3] > 0)
continue;
if(frustum([p][0] * (x — sizex/2) + frustum[p][1] * (y + sizey/2) + frustum[p][2] * (z
= _ sizez/2) + frustum[p][3] > 0)
continue;
if(frustum([p][0] * (x + sizex/2) + frustum[p][1] * (y + sizey/2) + frustum[p][2] * (z
= _ sizez/2) + frustum[p][3] > 0)
continue;
if(frustum([p][0] * (x — sizex/2) + frustum[p][1] * (y — sizey/2) + frustum[p][2] * (z
==+ sizez/2) + frustum[p][3] > 0)
continue;
if(frustum([p][0] * (x + sizex/2) + frustum[p][1] * (y — sizey/2) + frustum[p][2] * (z
==+ sizez/2) + frustum[p][3] > 0)
continue;
if(frustum([p][0] * (x — sizex/2) + frustum[p][1] * (y + sizey/2) + frustum[p][2] * (z
==+ sizez/2) + frustum[p][3] > 0)
continue;
if(frustum([p][0] * (x + sizex/2) + frustum[p][1] * (y + sizey/2) + frustum[p][2] * (z
==+ sizez/2) + frustum[p][3] > 0)
continue;
return false;
}
return true;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In the preceding code, X, y, z is the center of a box of sizes: sizex, sizey, sizez. Notice how the frustum still contains the six clipping planes
given the current camera position.

Culling

Culling allows us to eliminate geometry depending on its orientation. A well-executed culling pass can statistically eliminate about one half
of the processed triangles. As an added benefit, the culling pass can be connected to a clipping stage, providing the combined benefit of
both stages.

To better understand culling, we must first discuss the nature of 3D objects. Compare both sides of , which represent two 3D
entities. In the right figure, you can see a large number of triangles laid out in a chaotic, unorganized way. On the left is a 3D model of a
house. Clearly, when we talk about a 3D object we are referring to the figure on the left. But what are the characteristics of these objects?

Figure 12.5. House mesh versus polygon soup.

Primarily, a properly defined 3D object uses its triangles to fully divide the space in two: a volume enclosed by the object (which we will call
inside) and the remaining area (the outside). This is what we will call the boundary representation (B-rep) of an object. As a corollary of this
property, both subspaces (inside and outside) are mutually disconnected: The object has no openings or holes that allow us to look inside.
We can have a passing hgle that allows us to cross the object, but we will never see the inside of the object. You can see examples of
B-reps and non-B-reps in

Figure 12.6. B-rep versus non-B-rep geometries.

B-rep Non-B-rep

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

~ s é

Non-B-rep

Another important property of a well-formed object is that the vertices of each triangle are defined in counterclockwise order (as seen from
the outer side of the object).

Applying the polygon winding rule, this means that face normals should point outward. When doing a simple cross product, we can
automatically generate per face normals.

Having defined these fundamental properties, we can now move on and enumerate the following theorem: Given an arbitrary 3D
well-formed object, the faces whose normals are pointing away from the viewpoint will be occluded by other faces, and thus can be culled
away.

The simplest (and most frequently used) form of culling takes place inside the GPU. As triangles are received, their winding order is used
to determine the direction of the normal. Essentially, the order in which we pass the vertices defines the orientation (and hence the normal)
of the triangle. This direction is used to discard back-facing primitives. Notice how the GPU can perform triangle culling even if we do not
provide the normals of the triangles: The order of the vertices is enough. The reason is simple: Some methods use per triangle normals,
others use per vertex (for example, Phong shading). Thus, the algorithm for rejecting primitives has to be independent of the normal
format.

After reading the preceding section on clipping, you should expect a section on object-level culling, so we can work with higher abstraction
on the pipeline. But object-level culling is by far less popular than object-level clipping. There are several reasons for this:

® The benefit of culling is 50 percent; the benefit of clipping is about 80 percent.
® Object culling is significantly harder to do.

® i your geometry is prepacked in linear structures (vertex arrays or buffers), you don't want to reorder it because of the culling.

Object Culling

The basis of object-level culling involves rejecting back-facing primitives at a higher abstraction level. To do this, we will need to classify
different triangles in an object according to their orientation. This can either be done at load time or as a preprocess. The result of this
process will be a series of clusters of similarly aligned primitives. Then, the rendering loop will process only those clusters that are properly
aligned with the viewer.

Several methods have been designed to create these clusters; all of them trying to do a partition of the normal value space. Because
normals are unit vectors, their longitude and latitude are used. To prevent distortions at the poles, one popular method uses a cube as an
intermediate primitive. Each face of the cube is divided into subfaces like a checkerboard, and then vectors are computed from the center
of the cube to the edge of each square. Each square represents a range in the longitude—latitude normal space. We only need to sort our
,%\o these clusters, and then paint only the clusters that can potentially face the viewer. You can see this approach in action in
Figure 12.1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 12.7. Object culling.

. T // : Culled Faces

"

Occlusion Testing

Clipping and culling can dramatically reduce the scene's triangle complexity. But some redundant triangles can still survive those tests. If
we do not implement additional measures, all triangles lying in the view frustum facing the \Lﬂe considered valid. But what if two
Figure 12.

visible, camera-facing primitives overlap each other? You can see this situation depicted in |

. In this case, the pipeline will

process both, consider them valid, and paint them using the Z-buffer to properly order them. Evidently, only one of them will be seen (the
one closest to the viewer, sometimes referred to as the occluder). So we will need to process both, and only in the fragment rasterization
stage decide which one will stay on the Z-buffer and get painted. We will have committed one of the deadly performance sins: overdraw.

Figure 12.8. Occlusion.

Occluded
Object

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The best way to picture overdraw is to think of an FPS that takes place indoors in a maze full of twisting corridors. In these types of
games, our line of sight is usually limited to a few meters. There's always one corner or gate to ensure we don't see what we are not
supposed to. In graphics jargon, these scenarios are "densely occluded.” Now, imagine that we do not perform some kind of occlusion
testing on the depicted situation. Clearly, performance from the viewpoints marked as A would be poor, whereas performance onB would
be very good. To avoid this situation, FPS designers try to ensure that approximately the same number of triangles are visible onscreen at
any given time. And having a good occlusion policy is fundamental to reaching this goal.

Many occlusion prevention policies largely depend on the kind of game you are building. Many of the tests (such as Potentially Visible Set
[PVS] culling, portal rendering, and so on) are designed to work in indoor scenarios, and some of them (the lesser part) are designed for
the great outdoors. So, we will leave those for the following chapters and concentrate on universal policies.

Some hardware has built-in occlusion testing options. This is the case in some Hewlett Packard cards as well as NVIDIA's cards starting
with the GeForce3 onward, ATls frgm the 8500 upward can also perform occlusion testing, which can be handled by both DirectX and
OpenGL. Take a look at [Chapter 13, "Indoors Rendering," for a complete tutorial on enabling hardware occlusion.

Using the hardware is an extremely powerful and flexible way of performing occlusion tests and is growing quickly in popularity.
Essentially, it works on an object level and allows you to discard large blocks of geometry with a single query. The interface is relatively
straightforward: Each object must be completely surrounded by a bounding object, which can be an AABB, a sphere, a generic bounding
box, a convex hull, and so on. In fact, any geometry that completely encloses the object can be used. We must then run the occlusion
guery by sending the bounding object down the graphics pipeline. This object will not be painted, but instead will be tested against the
Z-buffer only. As a return from the test, we will retrieve a value that will tell us:

® fthe object actually modified the Z-buffer

® it did so, how many pixels were modified

So, we now have a trivial occlusion rejection query. Draw the geometry front to back (so large occluders are painted first), and then paint
the geometry testing for each object if its bounding volume (BV) will alter the Z-buffer. If the BV will not affect the results (because it is fully
behind other objects), we can reject the object and skip to the next one. Needless to say, the speedup achieved by hardware occlusion
culling techniques can be huge, especially in dense scenes with lots of occluders.

As usual, this test can yield false positives. There is a minimal chance that the BV will be visible, but the object will not. However, being
able to reject most occluded objects with a single test is such an advance that false positives are definitely a minor issue.

Resolution Determination

When | think about realism in a computer game, | always think of Yosemite National Park in California—huge mountains and thousands of
trees in a richness and variety that makes any visitor feel tiny in comparison. | don't think we will be reaching that level of complexity in
some time. So, it's a perfect example to show how resolution and level-of-detail (LOD) techniques work.

Let's imagine for a second that you actually tried to do a game set in Yosemite with the tools we have seen so far. You do some
aggressive clipping, which, because your camera has an aperture of 60°, reduces complexity to one-sixth of the total triangles. Then, some
serious culling chops that in half to reach one-twelfth. Also, you have a dreamlike occlusion calculator. Let's daydream for a second and
imagine that after the three stages, you have reduced the visible triangle counts to about one-fiftieth.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Now, how many triangles does Yosemite have? | know it might sound absurd, but follow me through this exercise because it will be a true
eye-opener. Let's assume you do a 20kmx20km square terrain patch, with terrain sampled every meter. If you do the math, you will see we
are talking about a 400 million triangle map. Not bad, but let's not stop there. Now comes the fun part: trees. Trees are hard to get right.
From my experience, a high-quality, realistic tree should be in the 25,000 triangle range (yes, each one). Assuming one tree for every 20
meters, that yields 1 million trees for the whole park, or even better, 25 billion triangles per frame. At a very reasonable 30 frames per
second, the triangle throughput of our engine is...well, you get the idea, right?

We can reduce that by 50 using conventional techniques. We could even reduce it by 500, and still the cost would be prohibitive. At the
core of the problem there's a brute-force approach that has resulted in this exponential growth scheme. Assuming the trees are about 50
meters high and remembering that objects have a perceived size that is inversely related to the distance, squared, we will reach the
conclusion that our magnificent tree, seen from one kilometer away, is almost invisible. So, it didn't really make any sense to use 25,000
triangles for it, right? These kinds of tactics are what resolution determination is all about. Clipping, culling, and occlusion tests determine
what we are seeing. Resolution tests determine how we see it.

Our Yosemite game is an example of the ideal scenario for multiresolution strategies: an outdoor game with little or no occlusion and a
very high triangle count. At the core of such a system lies the concept of priority: We can assign more triangles to items in the front, using
lower quality models for those in the back. The human visual system tends to focus on larger, closer objects (especially if they are
moving). If done right, we can make the player think the whole scenario is as detailed as the closer elements, and thus create the illusion
of a larger level.

Many multiresolution strategies exist, depending on the scenario. Some methods are better suited for outdoors landscapes, whereas
others are designed to work on individual objects. But generally speaking, all consist of two components. First, a resolution-selection
heuristic that allows us to assign relative importance to onscreen objects; and second, a rendering algorithm that handles the desired
resolution.

Focusing on the heuristic that sets the resolution level, we could begin by computing the distance from the object to the viewer and use
that as a resolution indicator. As the object moves away from the viewer, its resolution can change accordingly. But this method is far from
perfect. Imagine that you are looking at the San Francisco Bay, with the Golden Gate Bridge looming near the horizon. The bridge might
be very far away, but it's huge, so reducing its resolution can have undesirable side effects.

Thus, a more involved heuristic is required. This time, we project the bounding box of the object onscreen and calculate the area of the
projected polygon. An object's importance has to do with perceived size, not with distance: A small onscreen object can be painted at a
lower level of detail than a huge object. Thus, we can use this projected area as the selection criteria for the multiresolution algorithm. With
this strategy, a case like the Golden Gate Bridge, mentioned earlier, will be treated correctly. If we are looking at the bridge from a
distance and a car is crossing the bridge, we will assign a much lower detail level to the car than we will to the bridge, even if they are
more or less at the same distance from the viewer.

Once the selection criteria have been evaluated, it is then time to apply the painting policy. Here the criteria largely depend on the kind of
primitive we are painting because different primitives employ completely different rendering strategies. Terrain renderers, for example, use
very specific techniques such as Contj el Of Detail (CLOD), Real-time Optimally Adapting Meshes (ROAM), or GeoMipMapping.
Because these are involved subjects, lCha:ter 12, "Outdoors Algorithms," has been devoted to outdoors renderers. However, primitives
broadly conform to two different families of solutions. We can choose either a discrete approach, where we simply select the best-suited
model from a catalog of varying quality models, or we can use a continuous method, where we can derive a model with the right triangle
count on the fly. The first method will obviously be memory intensive, whereas the second will have a lower memory footprint but a higher
CPU hit due to the inherent calculations. Let's examine both in detail.

Discrete Level of Detail Policies

Using the discrete approach, we would have a table with different models (anything from two to five is common) of varying quality. These
models can easily be computed using standard 3D packages, because all of them offer excellent triangle-reduction options. Models are
stored in an array, top-quality first. Each model must be assigned an associated numeric value that represents the upper limit that the
model is designed for (either in distance or screen area). Then, in the painting routine, we only have to compute the chosen metric and
scan the list to see which model suits us best.

This first technique can be seen in hundreds of games, especially those with large viewing distances where the size of the displayed items
can vary a lot. The characteristic is a more or less noticeable popping that happens whenever there is a change in the displayed model.

Some simple techniques exist that eliminate the popping and provide the continuous look without the CPU cost. One of the most popular

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

techniques is alpha-blended LODs. The idea is to start with the classic discrete approach as explained in the previous paragraph. Then,
additional code is added to ensure no popping is visible. The new code is designed to ensure a smooth transition between models by
alpha-blending them.

The idea is simple and can be seen in . Instead of storing only the distance at which models are swapped, we store a pair of
values that represent the beginning and the end of the transition. As we move inside that range, the two models are blended accordingly,
so only model A is shown at one end of the range, and modelB is shown at the opposite end. Carefully selecting the blending function
ensures a smooth, almost unnoticeable transition.

Figure 12.9. Alpha-blended LODs.

High LOD | Low LOD

Distance

Alpha-blended LODs have the advantage of building upon the simple, well-analyzed technique of discrete LODs. Thus, they are simple to
code and provide excellent results. The only downside is that painting two objects during the transition has a significant GPU overhead.
But this technique is gaining ground rapidly, surpassing in popularity the mesh reduction algorithms.

Continuous Level of Detail Policies

To avoid the popping completely, we can implement a continuous method, which can decrease the triangle count on the fly and thus
generate the right model for each distance. There are many different approaches to reach this goal; all of them involve a good deal of
math and computational geometry. To begin with, we will need to store more information about the object to perform the triangle reduction
tests at an interactive frame rate that includes edge information, neighboring data, and so on.

To better understand continuous LOD strategies, we will now explore one of the most popular methods in some detail. This method (called
Edge Collapsing) involves detecting edges that carry little information and eliminating them by joining the two end vertices into one. By
doing this to a solid model, we are eliminating two triangles, two edges, and one vertex. By performing this operation sequentially, we can
reduce our model's triangle count to whatever fits us best.

Collapsible edges should be selected from those that carry the least information. Thus, because an edge can be shared between two (and
only two) triangles, we are looking for those edges where the support planes from their neighboring triangles are almost coplanar, or at
least the angle between those planes is smaller than a threshold. Once the desired edge is found, two different collapse operations can be
performed.

You could collapse one vertex into the other, as shown in . Again, the vertex that will be destroyed in the process is the one
whose neighboring faces are more coplanar (thus conveying less information). Another strategy is to collapse the edge to a new vertex
(thus both old vertices are destroyed) located along the edge. This second strategy can yield better results at a higher computational cost.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 12.10. Edge collapse.

This process is not trivial when you want to eliminate more than one triangle. Either you do N loops, eliminating one edge at each iteration
(which is costly), or you do a composite loop where you take away many triangles at once (which is hard to code).

However, there is a significant CPU hit involved in this process. A way to lower the computational cost is to use temporal coherence.
Perform the edge collapse only once every few frames, using a metric. Every time you do the math, you store the distance (or screen
area) of the object, and before you perform the calculation again, you make sure there has been a significant difference between the
previous metric value and the current value. The pseudocode for this strategy would be

/I global variable
float distance, area;

/I rendering loop
newdist = compute distance to object
newarea = compute screen area of object
if (abs(newdist-distance)>DISTANCETHRESHOLD ||
abs(newarea-area)>AREATHRESHOLD)
{
perform edge collapse
distance=newdist
area = newarea

}

paint object

This temporal coherence technique can greatly speed up your code because the costly edge-collapse routine will only be calculated when
it is necessary.

Whichever option you use, real-time triangle reduction policies are sometimes described as a total solution and a panacea. On one hand,
this is partly true, because they allow us to get rid of the popping and have the exact triangle count that we need. But an objective analysis
will also reveal some interesting drawbacks. First, there is a significant CPU hit in any reduction strategy: Edge collapsing is a pretty
involved process if you want to get rid of many polygons at once. Second, there are texturing issues involved: What happens if the two
vertices shared by the edge are made of two different materials? There are many caveats similar to this one, which limit the scope in which
we can use the strategy.

Transform and Lighting

Before being displayed onscreen, the geometry stream passes through transform and lighting stages. These stages are hardware
accelerated in current accelerators (GeForces, Radeons), but some older hardware performed these routines in the software driver.

The transform stage is used to perform geometric transformation to the incoming data stream. This includes the familiar rotation, scaling,
and translation, but also many other transforms. In its more general definition, a transform can be described as a 4x4 matrix, which

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

left-multiplies incoming vertices to get transformed vertices back. This stage also handles the projection of transformed vertices to
screen-coordinates, using projection matrices. By doing so, 3D coordinates are converted into 2D coordinates, which are then rendered to
the screen.

The lighting stage implements lighting models to increase the realism of the scene. Most current APIs and GPUs offer hardware lighting,
so we can define light sources and surface properties, and have illumination applied at a zero CPU hit. Unfortunately, only per-vertex, local
models of illumination can be applied directly in today's hardware, so no real-time ray tracing or radiosity is performed on the hardware
automatically.

Sometimes, per-vertex local lighting will not be enough for your game. You might want a more involved global illumination look (such as
radiosity in Quake I1) or special effects that must be computed per pixel. Then, you might decide to override the hardware lighting model
and use your own lighting policy. Unsurprisingly, per-vertex techniques are losing ground as better hardware lighting is introduced

(especially programmable pipelines with vertex and pixel shaders). However, many games still use these approaches. One of the most
popular is lightmapping, which stores the lighting information in low-resolution textures that are then painted on top of the base textures

using multitexture techniques. Lightmapping allows per-pixel quality at a reasonable cost, and when coupled with a radiosity preprocessor,
yields strikingly good results. Light mapping is fully explained in

Rasterization

Rasterization is the process by which our geometry is converted to pixel sequences on a CRT monitor. Since the advent of the first
consumer accelerators, this process is performed fully in hardware, so the only task left to the programmer is the delivery of geometry to
the GPU. This is very good news because rasterizing triangles is extremely time-consuming when done in software. Today, there are even
several ways to perform this task, each one suited to different scenarios—thus having specific advantages and disadvantages.

As a first, introductory option, geometry can be delivered in an immediate mode. Under this mode, you will be sending the primitives
(points, lines, triangles) individually down the bus, one by one. It is the easiest to code, but as usual offers the worst performance. The
reason is that sending data in many little packets results in bus fragmentation. Because the bus is a shared resource between many
devices in your computer, it is not a good policy. However, a complete example of a triangle delivered in immediate mode in OpenGL is
provided:

glBegin(GL_TRIANGLES);
glColor3f(1,1,1);
glVertex3f(-1,0,0);
glVertex3f(1,0,0);
glVertex3f(0,1,0);

glEnd();

The preceding code would paint a white triangle on the screen. Notice how you are using six commands, and how each vertex and color is
specified separately.

Next in the performance scale are packed primitives, which are available in both OpenGL and DirectX under different names. In OpenGL,
we call them vertex arrays, whereas DirectX refers to the same concept asvertex buffers. These primitives allow us to pack all the data in
one or more arrays, and then use a single call (or very few calls) to deliver the whole structure to the hardware. Because the arrays can be
sent in a single burst to the hardware, and there are fewer API calls, performance is greatly increased.

The most basic form of array uses one array per type of data. Thus, to deliver a mesh with vertex, color, and texture information to the
hardware, you would need three separate arrays. After all the arrays have been loaded and exposed to the graphics hardware, a single
call transfers them and does the rendering. Keep in mind that vertex arrays store their data in system memory, so you are accessing the
bus every time you want to draw the desired object. As an improvement, arrays can use the indexing policy explored at the beginning of
this chapter. This way the amount of data delivered to the hardware is smaller, and the performance gain is bigger.

One alternate strategy is to use interleaved arrays, in which all the information is encoded in a single array, interleaving the different types
of information. So, if you need to send vertex, color, and texture information, your geometry stream would look something like this:

V[0].x V[0].y V[O].y C[0].r C[0].g C[0].b T[0].u T[0].v (...)

Using interleaved arrays, you can reduce the number of calls required to deliver the geometry. There might be a performance increase,
but overall, this strategy would be quite similar to regular vertex arrays. The most popular use of interleaved arrays is the implementation
of vertex buffers in Direct3D.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

All the techniques we have explored so far share a common principle: Geometry is delivered to the hardware from system memory on a
frame-by-frame basis. Although this is appropriate in many situations, remember that bus bandwidth is usually the bottleneck, so we must
avoid using it as much as we can. Imagine, for example, a car racing game, where you need to display several cars that look the same.
Wouldn't it be a good idea to be able to send the car once through the bus, and then paint it several times without having to resend it? This
functionality, which | will refer to generally as server-side techniques, is available in modern hardware, offering much improved
performance over regular vertex arrays and obviously immediate mode.

Server-side techniques allow us to deliver the geometry to the GPU, and store it there for a period of time. Then, each time we need to
render it, we only send the render call, not the geometry, which is living in GPU memory space. This way we are rendering at the top
speed the GPU can offer and are not being limited by bus bandwidth.

This technique must be handled with care, though. GPU memory is limited, so its use should be kept under strict control. However, if we
master this technique, we will achieve a performance gain, sometimes doubling regular performance.

Server-side techniques must be supported by your graphics hardware. ATI Radeon and anything beyond GeForce2 support different
rendering primitives that work from GPU memory. But most of the older hardware doesn't, so you will need to implement this as an option
(or be restrictive in your hardware requirements). Additionally, different vendors and APIs expose this functionality in different ways.

As an example, we can use Compiled Vertex Arrays (CVAs), which offer functionality that is similar to cache memory. Using CVAs, we can
deliver geometry to the hardware and leave it there if we are going to need it again soon. Thus, subsequent calls get the geometry from
the GPU, not main memory. This technique is very useful in instance-based scenarios, such as the car racing game mentioned earlier.
You specify the primitive once, and from that moment on, it is "cached" on the GPU. As an extreme case, imagine the Yosemite resolution
example mentioned in a previous section. In these cases, it makes no sense to have all trees modeled individually. Rather, you would do a
few different instances, and by combining them randomly, get the overall feeling of a forest. Then, using CVAs can greatly speed up the
rendering of the trees because many of them would really be the same core geometry primitive.

Extending this concept, we could think of GPU memory as a fast cache, which we can freely access and manage. We could write models
to it, delete them, and send them down the rendering pipeline efficiently. The main advantage to CVAs would be complete control over the
memory, which would become similar in functionality to system memory. This new primitive is available on newer cards (GeForce2 GTS
and later, ATI Radeon) and on both OpenGL (as an extension) and DirectX 8. The sad news is that cards implement this functionality
under proprietary standards, so you need to code differently depending on the hardware you are running. Under OpenGL, NVIDIA cards
expose this as the Vertex_Array_Range (VAR) extension, whereas ATI usesVertex_Array_Objects. Although both are essentially the
same, coding is card specific, which is a burden on the programmer. Under DirectX 8, all these functions and alternatives are
encapsulated in the VertexBuffer interface for easier access. All we need to do is mark the vertex buffer as write-only, so the API knows it
can be delivered and cached in the graphics card for effiecient rendering.

Having complete access to GPU memory offers the programmer top flexibility and performance. Models that are used frequently or that
require instancing can be stored in GPU memory and will be rendered without bus speed constraints.

There are, however, limitations to these techniques. Primarily, they are designed for static data only. If you need to display an animated
character, it makes no sense to store it persistently in GPU memory. The same applies to procedural geometry, or simply geometry that
goes through a triangle reduction routine on a frame-by-frame basis. GPU memory is slow to access, so performance with dynamic
geometry is comparatively low.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

In Closing

In this chapter, we explored the building blocks of a generic, basic graphics engine. Starting with geometry formats and delivery
methods, we then moved on to clipping, culling, and occlusion testing, which provide different ways to quickly determine the visible part
of any given scene. We saw how LOD techniques can be used to reach a playable frame rate in the target platform. We also explored
transform and rasterization stages to make sure we are sending data to the hardware in the most efficient manner.

Using these techniques, you could build many basic games or even some that are not so basic. Professional, high-end games are,
however, a different business. There's more to them than a few general techniques that can be applied regardless of the nature of the
game we are working on. To craft something unique and technologically advanced, we will need to understand the nature of our design;
and by restricting its scope to a specific genre or gaming perspective, we will unleash better and faster tools that will allow us to reach
state-of-the-art game programming.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 13. Indoors Rendering

"His house was perfect, whether you wanted food, or sleep, or work, or story-telling, or singing, or just sitting and
thinking, best, or a pleasant mixture of them all."

—J. R. R. Tolkien, The Fellowship of the Ring
KEY TOPICS

® General Analysis

® Occluder-Based Algorithms

o Binary Space Partition Algorithms
® portal Rendering

® Hierarchical Occlusion Maps

o Hybrid Approaches

® Hardware-Assisted Occlusion Tests

® Closing

Indoors rendering has been a popular technigue for game development ever since Wolfenstein 3D by id Software was released. Games
taking place inside buildings have become widespread; their visual appeal increasing with each new hardware iteration or engine
release. In this chapter, we will explore the building blocks for any indoors engine. Three popular approaches—Binary Space Partitions
(BSPs), portal rendering, and octree rendering—will be explored in full, and some specialized solutions will be covered thereafter. As you
will soon discover, indoors games often require quite complex techniques.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

General Analysis

In the previous chapter, you saw how any good 3D pipeline can be divided into clipping, culling, occluding, and computing the right level
of detail (LOD). This structure can be adapted to any game genre, so different genres emphasize certain components to reach the
desired performance. Let's now analyze clipping, culling, occlusions, and LODs to understand how indoors games work and why they
have been (and still are) so popular.

To begin with, we must understand that the clipping phase is usually independent from the game genre. Cameras always cover more or
less the same angle, so the amount of clipped geometry can be considered stable. A camera covering 90° will statistically clip around
three-quarters of the global geometry of the level. Culling follows a pretty similar pattern: It is usually performed by the hardware, and we
can expect about one-half of the geometry to be back-facing, and thus not painted. Combining both clipping and culling, we reach the
conclusion that approximately one-eighth of the incoming geometry effectively survives this two-pass sequence and can be considered
to be both onscreen and front-facing.

In an ideal world, this one-eighth would be sufficient to display the desired geometry, but this is not usually the case. Game graphics are
about richness and complexity; therefore, we will often need more than we can afford. Thus, we need to use the LOD and occlusion
phases to reduce the triangle count even more. Now, is level-of-detail relevant to an indoors game, where view distances are bounded?
Clearly not much, because we will rarely see geometry from very far away. Thus, by elimination, occlusion culling must be the way to go,
because we have lots of walls that are perfect occluders.

We can now formally define an indoors rendering algorithm as one software piece that optimizes the rendering pipeline by quickly
determining occlusions (in addition to clipping and culling) in the level geometry, thus allowing interactive rendering. This clearly draws a
distinction with outdoors rendering methods (explained in the next chapter), which will in turn emphasize LOD processing because view
distances will be large. This characterization does not imply that an indoors algorithm does not use LODs: some of them do, some don't.
But it's the occlusion component that will dominate. In addition, both indoors and outdoors algorithms will have similar approaches with
regard to clipping and culling, which are genre independent and provide the same speed-up factors in both cases.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Occluder-Based Algorithms

Occlusion testing is not an easy task. Generally speaking, it is a O(number of triangles”2) problem, because we need to test each
triangle in the view frustum against each other to see whether they are occluding themselves. Clearly, some clever approaches are
required to compute this at interactive frame rates. The first approach we will explore works by reducing the number of potential
occluders to a small set of very promising candidates. Because closer triangles will statistically cover more area on the screen than
distant ones, we only need to test for occlusions between very close geometry (which we will call occluders) and distant objects
(occluded objects). This can decrease our initial cost to almost O (number of triangles). If you couple this with the fact that we know an
upper bound to the view distance, we can further decrease the cost by assuming any triangle located away from this bound is effectively
occluded, without really testing it. Here you can see the pseudocode of this raw occlusion algorithm:

from the current viewpoint
select a set of potential occluders (close, large triangles)
for each triangle in the scene
if it is closer than the viewing distance
test for occlusion with any of the occluders
if passes the test -> paint it
end if
end if
end for

This algorithm can also take advantage of the clipping and culling steps. Obviously, an occluder must be visible and thus not be clipped
away, and must not be culled. Back-facing triangles will never cover geometry, because they are not even painted.

The implementation details for such an algorithm are relatively straightforward. For each frame, perform software clipping and culling.
Then, sort the remaining triangles by Z distance and take the firstN entries of the list. Because the sorting process is relatively
expensive, we can just perform it every few frames. If you think about it, the results will not change if the viewer did not move between
two successive frames. Thus, we store the player's position and orientation, and only recompute the solution if the change in position or
orientation exceeds a fixed threshold. This philosophy, called frame-coherence, can yield significant improvements, especially in costly
routines. The overall structure of a frame-coherent loop would be

if orientation or position changed more than X
recompute solution
store new position
store new orientation

end if

Then, in the painting phase, we take triangles and test for inclusion inside the pyramid formed by the viewpoint and the occluder. The
problem with such an approach is that a per triangle test is costly, and thus we will probably end up with a CPU-bound application. The
CPU is the bottleneck here, sorting and testing for inclusion. Better methods need to be employed: methods in which we do not need to
perform the full occlusion detection test at runtime, because part of the solution is precomputed beforehand. These are the methods
used in most commercial games.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Binary Space Partition Algorithms

One of the classic approaches to compute indoors rendering at interactive frame rates involves using a BSP data structure. Variants of this
approach have been used in the Doom and Quake series as well as in dozens of other gamesDoom used a 2D BSP, whereas newer
versions have moved to 3D data structures and added a host of optimizations and improvements.

A BSP is just a binary tree data structure that allows us to classify geometric data (in our case, triangles) spatially. As you will soon see, its
main advantage is viewpoint-independent triangle ordering. We can query the BSP from a given waypoint, and it will return to us the list of
triangles it's storing, ordered by Z-value. With some enhancements, a BSP can also be customized to help with occlusions. Unfortunately,

BSPs are traditionally considered hard to explain, so we will need some in-depth analysis to understand how to harness their power.

Construction

The construction of a BSP begins with an unordered set of triangles, which we want to classify. The usual starting point is the whole
geometry data set of a game level, for example. The algorithm is recursive and can be outlined as follows:

1. Begin with the complete set.

2. Select the triangle that best divides the set in half.

3. Compute the support plane of the said triangle.

4. Store the selected triangle and its support plane in the current node.

5. Divide the remaining triangles depending on which side of the selected plane each one stays.
6. If any of the two sublists is not empty, create a new node and go to step 2.

This is rather obscure, so let's try to shed some light on the whole construction process. | will use a 2D drawing to illustrate, so instead of
D triangles (which are quite hard to picture on a flat page), you will see 2D lines. But the process is the same. Think of this drawing (see
) as a top-down view of aQuake level; each line depicting one wall.

Figure 13.1. Game level, top-down view.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

r it

The process would begin by splitting the set in half using 8 as a base (see).

Figure 13.2. is split using 8 as a base. The front contains 1.2, 2, 3, 4, 5.2, whereas

the back contains 1.1, 6, 7, 9, 5.1.

Then it would split the front using 3 (see .

Figure 13.3. After this second split, the front contains 4 and 5.2, and the back contains 2 and
1.2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

wr Y g

The two remaining nodes can be split trivially: Given a node with two primitives (4 and 5.2, for example), one will always be the root, and
the other will be one of the two children. In this case, we choose 4 as a root, and thus 5.2 is in the front node. In the second case, 1.2 is
the root, and 2 is in front of it.

Thus we have the first subtree. The map is shown in .

Figure 13.4. State of the map after the front subtree has been completely processed.

The tree is shown in .

Figure 13.5. BSP tree with the front subtree processed.

1,2,3,4,5,
6,7,8,9

front

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=3

front back

1.2,
4, 2
5.2
; ba

front

/

()

Working similarly with the front node from the root, we get the tree shown in .

ck back
" front \

Figure 13.6. Full BSP tree after completely scanning the map.

1,2,3.4.5

6,789
1 .2. 3. /.\o
4,52 front back

front back front

9 5.1.2

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

illustrates what the map looks like now.

Figure 13.7. Resulting map after BSP construction, showcasing the partition planes.

BSPs just take geometrical sets and divide them recursively using support planes. In the end, each node of the BSP holds exactly one
triangle, which was used to split the data set at that point. There are just two questions we need to solve in order to code the algorithm.
First, we need to define the criteria of selection for the splitting plane. Second, we need to decide what to do when a triangle is divided into
two halves by the splitting plane.

Choosing the ideal splitting plane can be achieved in a variety of ways. One option is to divide the set using the triangle whose support
plane is closest to the center of the set, trying to make sure both subtrees have the same amount of geometry, which results in a balanced
BSP tree. But such criteria can often generate lots of vertex splits, and thus the geometric data set will quickly grow, increasing our
memory footprint. An alternative method consists of selecting, from the triangles located approximately in the middle (close to the center),
the triangle whose support plane generates less vertex splits.

NOTE

Let's clarify what "center" means here. One option would be to use the mathematical barycenter, expressed as the
average value of all points comprising the set. Thus, for a set V, the barycenter would be as follows:

Barycenter=(S(V[i]))/i

Although mathematically correct, this might not suit our needs completely. Because this is a subtle concept, | will provide
an example. Imagine an object with vertices distributed unevenly. Think, for example, of a lollypop: Its barycenter will be
displaced toward the center of the candy ball, just because that area has more vertices. Although this is correct (both
sets resulting from the plane split will be equally sized in terms of number of primitives), we might run into trouble
because cells created by the BSP will not be of equal size. In some games, Al developers will prefer to sacrifice tree
balance in order to keep equal-sized cells. If this is your situation (your Al programmer will tell you so), a better choice for
a center will be the midpoint of the bounding box of the incoming data set. This way you ensure that the set is divided in
half not by number of primitives, but by its spatial allocation.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Whichever division plane you choose, the main problem with the implementation of a BSP is deciding what to do if, when splitting the
geometry set, one triangle effectively crosses the support plane. The usual strategy is to split the triangle, which in general generates three
new triangles—one on one side of the support plane and two on the opposite side. Triangle splitting makes coding BSPs a bit more
complex. The code is not that hard, but it's pretty unstable, and thus many special cases must be covered carefully. The following listing,
one of the longest in the book, is the complete triangle split routine, commented. | think it is of great value because it's a pretty involved
routine that hasn't been published in many books. The main idea of this implementation is to evaluate the three points in the triangle
against the plane, compute the addition of these values, and use that to drive a switch construct. This way we narrow down the different
cases quickly (there are 27 variants, many of them symmetrical) to achieve good performance.

int triangle::split(plane pl,triangle *tris1,int &numl,triangle *tris2,int &num2)
{

int v1= pl.testpoint(pl); /I -1, 0 or 1 depending on which side we are in
int v2= pl.testpoint(p2);

int v3= pl.testpoint(p3);

int val=v1+v2+v3;

switch (val)
{
case 3:
/I triangle completely in positive side
tris1[0]=(*this);
numl=1;
num2=0;
return 1;
case -3:
/I triangle completely in negative side
tris2[0]=(*this);
num1=0;
num2=1;
return 1;
case -2:
/I triangle with two vtx on the plane and the other on negative side
/I no need to divide it
tris2[0]=(*this);
num1=0;
num2=1;
return 1;
case 2:
/I triangle with two vtx on the plane and the other on positive side
/I no need to divide it
tris1[0]=(*this);
numl=1;
num2=0;
return 1;
case O:
/I triangle in plane or triangle with one vertex in plane and
/I other two in opposite sides. The latter requires a divide.
if (v1]| v2 || v3) // two vertices on opposite sides... divide
{
point pivot, positive, negative;
if (v1==0)
{
pivot=p1,;
if (v2>0) { positive=p2; negative=p3; }
else { positive=p3; negative=p2; }
}
if (v2==0)
{

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

pivot=p2;
if (v1>0) { positive=p1; negative=p3; }
else { positive=p3; negative=p1; }

}

if (v3==0)
{
pivot=p3;

if (v1>0) { positive=p1; negative=p2; }
else { positive=p2; negative=p1; }
}
/I here positive, pivot and negative are ready
point i;
pl.testline(positive,negative,i);
tris1[0].create(positive,i,pivot);
num1=1;
tris2[0].create(negative,pivot,i);
num2=1;
return 2;
}
else // triangle is inside plane... assign to positive node
{
tris1[0]=(*this);
num1=1;
num2=0;
return 1;
}
break;
case -1:
/I can be: two vtx on plane and one on negative side, one vertex
/I on positive and two vertices on negative. Latter requires a divide
if (v1*v2*v3==0) // one of them was zero: we're on the first case
{
tris2[0]=(*this);
num1=0;
num2=1;
return 1;
}
/I one vertex on positive, two on negative. Split
point positive,negativel,negative2;
if (v1==1) { positive=p1; negativel=p2; negative2=p3;}
if (v2==1) { positive=p2; negativel=pl; negative2=p3;}
if (v3==1) { positive=p3; negativel=pl; negative2=p2;}
point vl=negativel-positive;
point v2=negative2-positive;
point i1,i2;
pl.testline(negativel,positive,il);
pl.testline(negative2,positive,i2);
tris1[0].create(positive,il,i2);
numl=1;
tris2[0].create(negative2,i2,il);
tris2[1].create(negative2,il,negativel);
num2=2;
return 3;
case 1:
/I can be: two vtx on plane and one on positive side, one vertex
/I on negative and two vertices on positive.Latter requires a divide
if (v1*v2*v3==0) // one of them was zero: we're on the first case
{
tris1[0]=(*this);
num1=1;
num2=0;
return 1;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

}
/I one vertex on negative, two on positive. Split
point positivel,positive2,negative;
if (v1==-1) { negative=p1; positivel=p2; positive2=p3;}
if (v2==-1) { negative=p2; positivel=p1l; positive2=p3;}
if (v3==-1) { negative=p3; positivel=p1l; positive2=p2;}
point vl=positivel-negative;
point v2=positive2-negative;
point i1,i2;
pl.testline(positivel,negative,il);
pl.testline(positive2,negative,i2);

tris1[0].create(positivel,il,i2);
tris1[1].create(positivel,i2,positive2);
numl=2;

tris2[0].create(negative,i2,il);
num2=1;
return 3;

It's a very lengthy routine. But if you examine it carefully, you will discover that the execution paths rarely run more than a few
instructions.

Once we have the triangle splitting routine, we need the overall definition of the BSP tree:

class bsp;

class bsp
{
bsp *leftnode;
bsp *rightnode;
plane supportplane;
triangle tri;

public:
void create(list<triangle>);

3
Then, creating the BSP is just a routine:

select best support plane
for each triangle in the input set
split it
arrange the resulting triangles in a front and back list

if front list is not empty

call create with this front list
if back list is not empty

call create with this back list

View-Dependent Sorting

You have now seen how to build a BSP data structure. It is a complex, counterintuitive process with no apparent goal. From the building
algorithm, it is hard to imagine how useful BSP trees can really be. As a first glimpse toward its benefits, consider the following
algorithm:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

begin with a viewpoint, and at the root node of the tree
test if we are "in front" or "behind" the plane
if we are in front:
scan the back node
paint the triangle which divides the set
scan the front node
else
scan the front node
paint the triangle which divides the set
scan the back node

If we execute this algorithm recursively on th
the triangles will be painted is shown in fi

Figure 13.8. BSP example for view-dependent sorting. Triangles are painted (back to front) as
follows: 6,5.1.1,1.1,5.1.2,9,8,1.2, 2, 3,4,5.2.

Note how the list enumerates all the triangles in the set in Z-order from back to front while keeping a linear cost. The capability of ordering
triangles back to front was an immediate benefit from BSPs, because it eliminated the need for a Z-buffer at a time when Z-buffers were
implemented in software at a very high computational cost. If you want to understand why a BSP can order in linear time, consider this
explanation: We basically scan the tree, and we keep selecting the most distant nodes from the available ones. So, each node we paint
will be a bit closer to the viewpoint than the already painted ones, but not closer than any other.

Clearly, the complex construction algorithm was worth it. However, Z-ordering is less important today than in the 1980s when BSPs were
introduced. We have 3D accelerators that come with built-in hardware Z-buffers, right? Well, not really. By reversing the algorithm just
explained, we can achieve front-to-back order as well, and that's a blessing for a modern video card. Video cards usually perform a set of
operations on each pixel:

Test if the pixel's Z-value affects the Z-buffer

If it doesn't, reject the pixel and move on to the next
If it does,

Compute texture mapping

Compute interpolated colors

Compute lighting

Mix these to generate a single pixel color

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Paint the pixel
Update the Z-buffer

Quite clearly, the "accept pixel" path is much longer than the "reject pixel" path. Pixels that are rejected by the Z-buffer early in the process
take less time from the GPU. Painting back-to-front in such an architecture actually hurts performance. Each new triangle will cover old
triangles, so there will be lots of "pixel accept" paths. If you reverse the order, large, close triangles enter the Z-buffer first and make sure
many subsequent calls fail due to early Z-rejection. As a result, most modern 3D accelerators experience a noticeable performance
increase if you paint primitives front-to-back, and this is something a BSP can definitely help you with.

Hierarchical Clipping

BSPs can easily be extended to accelerate clipping computations, which allow us to eliminate the geometry that effectively lies outside of
the view frustum. The key concept here is really simple: As part of the construction process, compute a bounding volume for each tree
node. Clearly, successive levels in the BSP will have smaller bounding volumes because the partition condition of the tree guarantees that
each node will consist of a spatially tighter triangle set. Besides, if the planes effectively divide sets in half, we can ensure that this
bounding box hierarchy will divide box sizes in half approximately, with each new iteration.

Now it is just a matter of using these bounding boxes as part of the traversal algorithm, which is explained in the next section. The required
modification works as follows:

begin with a viewpoint, and at the root node of the tree
if the current node's bounding box is visible
test if we are "in front" or "behind" the plane
if we are in front:
scan the back
paint the triangle which divides the set
scan the front node
else
scan the front node
paint the triangle which divides the set
scan the back node
end if
end if

Notice how this algorithm can prune large sections of the BSP tree very early in the rendering pipeline. As we traverse the tree, the
moment one bounding box lies outside the frustum, we can reject not only that node but the complete subtree that is derived from it.
Remember, boxes will be stacked hierarchically, so if an Nth level box is outside the frustum, any further box, which will be inside the initial
box, will be outside as well. So, you can expect this improvement to greatly effect the overall performance of an indoors renderer.
Remember, we are talking about game levels where the geometry surrounds the player, so there are lots of opportunities for clipping
geometry that's behind him. Additionally, you can enhance the "is visible" test with a Z-rejection step. If you know the upper bound of the
visibility range (distance at which geometry can be seen), any bounding box located further than that can definitely be pruned along with its
complete subtree. If you review the code, you will see that our clipping processor has a huge impact, consuming very litle CPU time in the
process—ijust a few box-in-frustum tests.

Occlusion Detection

BSPs can also be used to compute occlusion detection. But for this technique to work, it requires some additional preprocessing because
a regular BSP is not well suited for these tests. A new type of BSP, called the leafy-BSP, needs to be introduced at this point. Leafy-BSPs
are at the core of Quake's rendering pipeline, which is the program that made them quite popular for game developers. They have the
property of automatically dividing the incoming data set in an array of convex cells, which will prove very useful.

A leafy-BSP is a regular BSP where all the geometry has been propagated to the leaves. In a regular BSP, data is stored in internal nodes
in the form of triangles that divide the triangle sets. So, leaf nodes really only store the last triangle that survived the plane division

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

approach. Now we will need to transform this BSP to leafy form by "shaking" the tree from the root so all triangles in internal nodes are
propagated to the leaves. You can see the leafy process applied to our classic BSP tree in

Figure 13.9. Leafy-BSP, showing the contents of each leaf node.

1.2,34,5,
6.7.89

back 11,8,
N?, 9
front

fromt back
a, / \112 1.1,3,5.1.1/ \ 9,5.1.2
5.2
; ban:! k E back

1::',:“' "4 f'iﬂm N 11,511 front o front back

\ N

5.2 2 5.1,
2
cell O cell 1

fromnt

4,52 ff'_,..-'
back

8,3, 1.2 2 e
{83,452 | } , :f - baﬂ\; {8,7,9,5.1.2)
1.1
cell 2

{B, 7.8 5.1.1, 1.1}

Once we have propagated the data, we can forget about the tree for a second and store the triangle list of each i ist of numbered
cells. The list for our previous example, along with its geometrical representation in the game level, is shown in Figure 13.19

Figure 13.10. Leafy-BSP with cells.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6

5.1.1

Notice how each cell represents a contiguous spatial zone in our initial triangle set. Moreover, we can demonstrate that each of those cells
is really a convex zone of the map, which will be very handy. The walls of the cells can either be areas occupied by level geometry or
openings between cells. We will detect these openings at this point and store them along with the cells they belong to. Each opening
should belong to exactly two cells.

If you analyze the process we have just gone through, you will see that we have just found an automatic algorithm to convert any triangle
set into a list of convex cells and gates that connect them. The hard part is well behind us, and it is now time to take advantage of this new
data structure the same way we took advantage of the classic BSP.

We will first precompute cell-to-cell visibility. Starting with one cell, we need to detect the set of cells that can be seen standing from the
first one. To do so, we will use the gates (usually called portals) associated with that cell. We send rays from points in the portal toward the
other portals in the level, and test whether any of them effectively reach their destination. If a single ray travels from portal A to portal B, it
means the rooms connected to that portal are mutually visible. Note how visibility is a symmetrical property. This algorithm was introduced
by Seth Teller and is called portal stabbing. As you will learn in the next section, there is a slightly different approach callegortal rendering,
which somehow has the same starting point.

Additionally, we will store the visibility information in a data structure called a Potentially Visible Set (PVS). A PVS is just a matrix of bits. If
position X,Y has a value of true, then room X sees room Y. Thus, the PVS stores a summary of all the visibility processing. This is the real
meat we will be using in the rendering loop.

Rendering

Now that we have analyzed how to perform clipping, view-independent sorting, culling, and occlusion determination using a BSP, let's
examine a complete rendering algorithm that combines all these features in a general solution. The algorithm that follows is not very
different from the one used in Quake llI: Arena.

We start by using the BSP to quickly determine the cell the player is standing in. We traverse the BSP and use the splitting plane to narrow
down and finally reach the cell. Then, we use the PVS to determine which cells are visible from the one we are standing in. All we need to
do is scan the bit masks in the PVS. Notice how, at this stage, we have already computed occlusions, which was the hardest of all
computations before leafy-BSPs were introduced. Then, we need to render all the potentially visible cells. We paint front-to-back (which
helps the Z-buffer reject unseen fragments as soon as possible and is thus more efficient than back-to-front), sort the cells by distance,
use their bounding box to clip them to the screen, and send them to the graphics hardware.

Overall, we have taken occlusions, clipping, and culling (which will be performed on the hardware) into consideration, with almost zero
visibility computations in the real-time loop. All we need to compute is the room the player is standing in and the view frustum culling of the
visible cells. Besides, we know which cell the player is staying at, so we can use that information for Al, collision detection, and so on. The
combination of clipping, culling, and a leafy-BSP approach for occlusion determination provides a complete rendering framework that
tames the visibility problem's complexity.

TeamlJB|

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Portal Rendering

BSP algorithms are a very efficient way of computing visibility in occluded environments. But they are not the only way of achieving
interactive frame rates with indoors data sets. A completely different approach, called portal rendering, has been evolving through the
years, offering a similar performance with a different approach. A variant of this algorithm was used in the Unreal engine and has gained
widespread acceptance since then. Like BSPs, it allows programmers to paint only what is effectively seen. Unlike BSPs, the world
hierarchy is not automatically computed, and visibility is computed in real time, not preprocessed.

I will begin by describing the data structure used to perform the portal visibility checking, and then move on to the algorithms. Portal
rendering is based on the concept that the game world is divided into cells or rooms connected by doors or portals. Thus, our game world
is really a list of rooms; each one connected to other rooms by a number of portals. It is a very human and logical way of laying out the

ame level, |f you think about it, you will see that the data structure that more closely resembles this one is the nondirected graph (see
Figure 13.11)). Each room is considered a graph node, and each portal is represented by an edge between two rooms or graph nodes. The
only difference with regular graphs is that two rooms can be directly connected with more than one portal (imagine two rooms with two
windows separating them). Thus, our graph must allow two connected nodes to have any number of edges between them.

Figure 13.11. Map and graph.

cedl 1

call 2

cell 0 cell 0

cell 3

Each room will hold its geometrical data and a tight bounding volume (a convex hull is a good choice) to test whether the player is
effectively inside the room. Some portal implementations, especially the older ones, need the rooms to be convex. Later versions of the
technigue remove this restriction and handle concave rooms as well. Whichever you choose, keep in mind you need a bounding volume

t can perform a precise player-in-room test. Thus, concave rooms will require a more complex point inclusion test. Check out
Qa, "Geometrical Algorithms," for more information on geometric tests.

Once the room structure is defined, we need to specify a list of portals emanating from it. For each portal, we will need links to both rooms
connected by it and the geometry of the polygon that describes the portal shape. Portal polygons can be concave or convex, although
some implementations impose some restrictions on their shape. Some use four-sided portals only, others force them to be all convex, and
so on. By using the portals along with the associated rooms, we need to be able to traverse the game level much like a walking character
would do, moving through the rooms using the doors that connect them. This is the core of any portal rendering algorithm.

The data structures that support the portal rendering algorithm are usually created by hand in the content development phase. The world
editing tool must allow designers to cut geometry into pieces, place portals, and so on. In this respect, portal rendering is a bit more
complex than BSP handling, where the world hierarchy is created automatically. However, this complexity will result in many advantages in

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

the long run.

It is now time to move on to the painting algorithm. Portal systems do not store precomputed visibility tables like some BSPs do. They
resolve visibility queries at runtime using the portals to cull away unseen geometry. We begin by using the bounding volumes of the
different rooms (either individually or using some hierarchy) to detect the room the camera is standing in. This room will be the starting
point of the rendering algorithm. Then, we paint the room geometry, locate any visible portals, and move on to the rooms connected to
them. For this second-level of rooms, we clip geometry through the portals, test whether there is any second-level portal that can still be
seen, and so on. We will recursiv‘ﬂ.: : fff f[f g\e game level as long as new portals are still visible. When no more portals can be seen, the
rendering routine will return (see Eigure 13.17).

Figure 13.12. Recursive portal rendering.

The main difficulty in portal rendering is learning how to use portals as clipping volumes. We need to detect which triangles are seen
through them, what part of a portal is visible through another portal, and so on. The main tool for the job will be a variant of the view
frustum, which we will call the portal frustum—a frustum that emanates at the camera position and passes through the portal's vertices.
This type of frustum can be used to test for inclusion of triangles inside the portal and only paint those that are effectively inside. But wait,
there's more. We can intersect two portal frustums to compute the part of a second-level portal that is visible through a first-level portal.
Frustum-based computations are the meat of any good portal rendering system. They are the core routines that make the algorithm
complex and also determine the final performance of the technique.

Now, let's take a look at different strategies regarding frustums that have been used throughout the years. | will start with a perfect,
general-case frustum analyzer and then present optimized, more restrictive options.

In a general case, a portal can have any number of vertices and be both convex and concave. Intersecting two such portals is thus a case
of 2D shape intersection. We start by projecting both portals to 2D window coordinates. This way the test only needs to handle the X and Y
coordinates, simplifying some math. Then, to compute the test, we start with the first vertex of portal P1 and follow the sequence of
vertices used in the portal definition. For each vertex, we do a point-in polygon with P2. Clearly, those points that are part of P2 will be part
of the intersection. But there's more: Imagine an edge composed by two subsequent vertices. The first vertex on the sequence is not in P2,
but the second vertex is. This case represents an edge that crossed P2's boundaries. Thus, we need to compute the intersection between
that segment and P2, and store the intersection point in the result as well. In addition, we need to test the opposite case. If a point is
outside P2 but the previous point in sequence was inside, we need to compute the intersection again and store that point. If you do this
until you have cycled P1, the resulting list will contain the new portal (or nothing if there was no intersection). Here is the pseudocode for
the algorithm in full:

portal intersect(portal p1, portal p2)
{

list<points> result;
bool previnside=false;

if p2.contains(pl.vertices[pl.numvertices-1])

{

previnside=true;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

for (i=0;i<pl.numvertices;i++)
{
curinside= p2.contains(pl.verticesli]);
if (curinside)
result.push_back(p1l.verticesl[i]);
if ((previnside && !curinside) || (!previnside && curinside))
{
int aux=i-1;
if (aux<0) aux+=pl.numvertices;
point inter=compute_intersection(pl.vertices[aux], pl.vertices]i], p2);
result.push_back(inter);
}
previnside=curinside;
}
portal presult(result);
return presult;

}

Notice how we take special measures to guarantee that we cycle through the array. Thus, we begin by initializing the previous value to that
of the last vertex to check the segment formed by the last and the first vertex.

However, this is not a fast routine. Each call is linear to the number of vertices in P2, and the intersection test is not much better.
Remember that this must be recomputed per frame, so we might not reach the desired performance with such a complex test. Thus, faster
alternatives must be devised.

A popular choice was proposed by Luebke and Georges. Using their method, we don't use the portal, but instead use the screen-aligned
2D bounding box of the portal, making the portal intersection routine very straightforward. Intersecting screen-aligned boxes is just a
matter of selecting the right X and Y values through very simple tests, and thus the routine is significantly sped up. The downside is
precision. The resulting bounding box will be bigger than the portal it contains; and some tests that should return a negative value will
return a positive value, as if a fragment or triangle were actually visible.

However, in modern-day hardware, rendering some extra triangles comes at no additional cost, so we should not worry about this.
Remember, most geometry data structures are usually grouped together (like all triangles in a room, for example). A vertex buffer or vertex
arrays in OpenGL will be prebuilt for each room. So, the effort of classifying triangles one by one will clearly not pay off in the long run, and
a gross visibility test such as the one we have just proposed will be perfect.

Optical Effects Using Portals

One of the main advantages of portal rendering is that optical effects such as reflections and translucency can be elegantly implemented
on top of the core algorithm. This was first showcased in games such as Epic's Unreal. All you have to do is enrich the portal data
structure, so a portal can be much more than a simple door. It can be a mirror, a glass surface, and many other surreal effects you can
think of.

Take reflections, for example. Any optics manual will tell you that looking at a mirror is, in practical terms, equivalent to looking at the same
room from a virtual position that is the specular reflection of your position through the mirror. That is, if you look at a mirror at a 45° angle

from five meters away, the scene you will see in the mirror is exa the same scene a viewer located five meters away inside the mirror
would see. Feeling like Alice in Wonderland? Check out for a visual explanation.

Figure 13.13. Mirrors on portals.

Aparent
Aﬁ\ Viewpoint

Real \

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

v m o wmr]

Viewpoint P

So, implementing a reflection is only a matter of having a special kind of portal that connects a room with itself while inverting the viewing
matrices in the process. A general portal structure that incorporates this optical phenomenon would be as follows:

class portal
{
point *vertices;
int numvertices;
int type;
roomid room1,room2;

5

where type would store the type of portal—that is, regular, reflective, or translucent. Remember that both room identifiers for reflective

portals would be the same, because a mirror does not really connect two rooms. Then, the portal propagation code would be something
like this:

switch (type)

{

case REGULAR:
{
/I Paint destination room of the portal
break;
}

case REFLECTIVE:
{
/I calculate the virtual camera using the support plane of the portal
/I invert viewing matrices
/I Paint destination room of the portal
I paint portal using alpha blend if you need a "stained glass" effect
break;
}

case TRANSLUCENT:
{
/I Paint destination room of the portal
I paint portal using alpha blend if you need a "stained glass" effect
break;
}

}

The amount of code needed to implement these great looking effects is minimal, keeping the overall elegance of the portal approach.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Hierarchical Occlusion Maps

You have seen how both BSP and portal implementations try to compute indoors environments by means of quickly computing the
occlusion portion. Clipping and culling are usually added to the mix easily, but it's the occlusion part that causes most trouble. Let's now
review another approach. Like portal rendering, this technique is designed to compute occlusions at runtime. The main advantage of this
new technique, called hierarchical occlusions maps (HOM), is that no preprocessing is actually needed. Occlusions can be computed
from geometry that comes directly from your modeling package of choice. Another advantage is that HOM can handle static and
dynamic geometry seamlessly, making it a bit more powerful (but also more complex) than portal rendering.

HOM was introduced in 1998 by Zhang. It is based on a hierarchy of occlusion maps, each one half the size of the previous one. We start
with a full-resolution black-and-white rendering of our scene and compute a series of mipmaps, blending every 2x2 pixel into one.
Obviously, this makes the algorithm easier to code if you start with a power-of-two sized image. This series of bitmaps is the hierarchical
occlusion map. The occlusion map does not represent the whole scene, only a set of good occluders chosen with a method similar to the
one explained in the first section of this chapter: large, close objects that are aligned to the screen.

Then, at runtime, we paint object-by-object, probably assisted by some hierarchical representation such as an octree or quadtree. For
each object or node, we need to compute the screen-aligned bounding rectangle. This rectangle will enclose the whole object and be
used in the occlusion processing part. Then, we select the HOM level in which the pixel size is approximately the size of the rectangle. If
the HOM pixels are all white, there's a full overlap, so the object is either in front of the occluders or behind them. If the HOM is pure
black, the object must be painted because no occlusion took place. If the HOM is gray, it means the current resolution cannot determine
clearly whether we are occluded or not, so we will need to examine higher-resolution HOMs to discover whether we are in a white area
after all.

For those objects in white zones, we need to test for Z-values and thus discover whether they are in front or behind the occluders. This is
achieved with a depth estimation buffer (DEB), which is just a software Z-buffer constructed from the occluders. The DEB takes the
bounding box of each occluder and stores in the pixels covered by it the farthest Z-value. Notice that we use farthest, not closest as in a
regular Z-buffer. Because the DEB has a lower resolution than a regular Z-buffer, each pixel must provide a conservative estimation of
the Z-value for all objects contained within its boundaries. Selecting the farthest Z-value performs that task.

The overall algorithm for the HOM is as follows. During preprocessing, preselect a good database of occluders. Objects smaller than a
certain threshold, narrow, or with high polygon counts are discarded. Redundant objects are rejected as well. Any decoration on top of a
wall should be discarded, and so on. In the end, the best occluders are probably room walls and large pillars. An alternative is to not use
real scene geometry, but instead use placeholder objects that are manually located to act as good occluders.

Then, at runtime, we select the N closest occluders from the database. Remember that occluders need to be visible, so performing a
clipping test as well will be worthwhile. We then build the HOM based on these objects. The high-resolution version is created with
render-to-texture capabilities. To create the low-resolution copies, we can compute them on software, or even better, using lower
resolution textures and bilinear minification filters. As we traverse our scene graph, we test visible nodes against the HOM. If they lie in a
black zone, we need to paint them. If they are in a white zone, we perform the Z-test with the DEB and decide whether we should discard
them or not based on the results. Objects in gray areas require further refining in the HOM before moving on to the DEB phase. In the
end, a well-built HOM can cull away between 40 and 60 percent of all incoming geometry.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Hybrid Approaches

Pure BSPs, portals, and octrees are just general-purpose, academic solutions. Real-world games have specific requirements and often
combine these approaches along with other clever ideas to create unique, high-quality solutions. In this section, | will show you some of
the hybrid algorithms used by some high-end games today.

Portal-Octree Hybrid

Some games show very detailed and dense indoors environments. Think of a game that takes place in a large castle with rooms full of
objects: lamps, tables, chairs, and treasure chests galore. The overall environment gives a sense of density and richness to the player.
Also, the design of the game calls for a highly interactive world. We need to be able to push objects, grab items, and drop them wherever
we want to. Can we handle this kind of environment with the techniques explained earlier? Although all methods will definitely support
such a scenario, performance will not be very good. BSPs, for example, will tend to grow indefinitely, because the triangle count will be
extremely high. Even worse, using a BSP will also impose the restriction of geometry being static. How does that fit with our interactivity
requirements for the game world?

Portal methods look a bit more promising at the beginning, until you realize that each room is actually composed of a high number of
triangles, thus making it slow to test for triangle visibility. You could choose to test for the room walls only, but you need some fast way to
test for the visibility of room contents as well.

A better solution to this problem is to use a nested portal-octree system, which combines portal visibility for the rooms and hierarchical
culling using an octree for the room contents. Thus, the level is laid out in a series of rooms connected by portals, as in a regular portal
renderer. Rooms include the geometry for the room walls only, but not for the contents. Each room must hold a small octree with the
contents arranged in it. This octree will only be a few levels deep, but will allow us to test for object visibility hierarchically.

Another benefit of this technique is that the octree must not really hold the object data, but instances to it. By doing so, we can have a
room full of chairs with just one chair model, thus reducing the memory footprint. In this type of scenario, level-of-detail policies for the
room contents could be easily integrated with the core algorithms, thus creating a complete solution. A global visibility algorithm would
be implemented using portals, and octrees would deal with the room contents. This approach also allows objects to be moved around
with just a small cost for redoing the affected octree. In addition, level-of-detail processing can be used to ensure that triangles are spent
where they can affect the results, not on distant, background objects.

Quadtree-BSP Hybrid

A quadtree-BSP hybrid approach can be used in games where large areas need to be explored, especially if very precise collision
detection needs to be used. Here the idea is to divide the game world into a quadtree, stopping the creation process when leaves reach
a certain number of triangles or a predefined size. We could start with a level that is one kilometer in size and subdivide until a cell is
either below 500 triangles or 10 meters in size. Then, each leaf node would store the geometry in a BSP tree data structure. The
implementation details are definitely nontrivial, but the resulting structure has a number of advantages.

Quadtrees converge faster than BSPs do. A quadtree divides the input data by four in each level, whereas BSPs only divide in half. A
guadtree would thus be faster in determining the area the player is in. A pure quadtree is not very helpful for collision detection. BSPs,
on the other hand, can be configured to speed up this process significantly. (Take a look at for information on computing
collisions with a BSP.) Thus, blending the two structures gives us the best of both worlds. The quadtree allows us to detect where we are
quickly, and then a BSP helps us refine our location to the triangle level to perform collision detection efficiently.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Hardware-Assisted Occlusion Tests

Some modern video cards (GeForce3 and later, and most ATI recent boards) support specific calls to make occlusion detection easier by
computing it on the hardware. Although these calls will never be a substitute for our occlusion code completely, they are a nice addition
because code complexity is largely reduced. Let's examine how hardware-assisted occlusion detection works, and then reformulate
some of our algorithms to take advantage of them.

Generally speaking, all video cards perform early Z-rejection these days. Z-buffer is checked for as early as possible, so subsequent
passes (texturing, color interpolation, and so on) can be skipped for those fragments where the Z test fails. However, we still need to
send the data to the video card, thus spending time on the bus transforming vertices, projecting, and so on. For hardware occlusion
detection to really make a difference, we would need calls that would work on an object level and have the ability to reject many triangles
at once, thus saving lots of effort. This is exactly what modern cards provide—tests that can be used on full objects. The idea is quite
simple. First, we need to activate the occlusion query mode. Second, we send whatever geometry we want to test occlusions for. This
geometry will not be painted, but only checked against the Z-buffer using speedy routines. Third, the call will tell us if the said primitive
actually altered any pixels of the Z-buffer. It will even tell us how many pixels were updated, so we get a measure of relevance for the
object. Now, we could use this approach for each triangle on an object, but then we wouldn't benefit much. In fact, performance would
degrade due to more vertices being sent.

The real benefit from occlusion queries comes from using them with bounding objects, such as boxes or spheres. A bounding box is just
12 triangles, and by sending them and testing for occlusions, we can effectively avoid sending thousands. Complete objects can be
rejected this way. So, here is the full algorithm:

for each object
activate occlusion query
send bounding box
deactivate occlusion query
if pixels were modified by the test
render object
end if
end for

We can further improve this approach by sending data front-to-back, and thus maximize occlusions. Closer objects will be painted earlier,
and thus many primitives will be fully covered by them. Additionally, we can implement our occlusion tests in a hierarchical manner. If the
bounding box of a set of objects is rejected, all bounding boxes from descendant nodes (such as in a quadtree) will be rejected as well,
and thus we can prune the tree data structure. This last approach can be elegantly integrated with a clipping pass, resulting in a global
visibility algorithm that performs all tests efficiently. Here is the pseudocode for such an algorithm:

Paint (node *n)

Sort the four subnodes using their distance to the viewer
for each subnode (in distance order)
if subnode is not empty
if subnode is not clipped
activate occlusion query
paint bounding box
if pixels were modified
paint object
end if
end if
end if
end for

When using occlusion queries, not all bounding volumes will offer the same performance. Spheres should be avoided because painting
the bounding volume while performing the occlusion query pass will be costly. There are a lot of faces and vertices in a sphere. Boxes,
on the other hand, offer tighter packing and require much less rendering effort.

For the sake of completeness, let's look at two working examples of hardware occlusion queries that could be implemented in OpenGL
using a proprietary NVIDIA extension and in DirectX 9. Here is an implementation for a GeForce board using OpenGL:

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Gluint queries[N];
GLuint pixelCount;
glGenOcclusionQueriesNV(N, queries);
for i=0;i<N;i++) {
glBeginOcclusionQueryNV(queriesi]);
/I render bounding box for ith geometry
glEndOcclusionQueryNV();
}
for (i=0;i<N;i++)
{
glGetOcclusionQueryuivNV(queries|i], GL_PIXEL_COUNT_NV, &pixelCount);
if (pixelCount > MAX_COUNT)
/I render ith geometry

}

The same functionality comes built-in directly in DirectX 9. To access occlusion queries, we must create an IDirect3DQuery9 object with
the call

CreateQuery(D3DQUERYTYPE Type,IDirect3DQuery9** ppQuery);

Here is a complete example:

IDirect3DQuery9 *myQuery;
g_pd3dDevice->CreateQuery(D3DQUERYTYPE_OCCLUSION, &myQuery);
myQuery->Issue(D3DISSUE_BEGIN);

/I paint the object to test occlusions for
myQuery->Issue(D3DISSUE_END);

DWORD pixels;
while (myQuery->GetData((void *)&pixels, sizeof(DWORD), D3ADGETDATA_FLUSH) == S_FALSE);

if (pixels>SMAX_COUNT) {
/I render the object

}

The philosophy behind the code is very similar to the OpenGL version. We send an occlusion query and render the object we want to
test visibility for. Notice that occlusion queries are asynchronous (as in OpenGL, by the way). This means that GetData might be
executed prior to the occlusion test actually returning any results, and hence the while loop. In the end, theGetData call returns the
number of painted pixels, so we can use that information to paint geometry or not.

Now, some advice on hardware-assisted occlusion queries must be provided to ensure that you get good performance. Although the
technique looks very powerful on paper, only careful planning will allow you to get a significant performance boost. Remember that
rasterizing the occlusion query objects will take up some fill rate, so use these wisely. Make sure culling is on, and turn off any textures,
lighting, and so on. You need your occlusion queries to be as fast as possible. You don't want to speed up rasterization at the cost of
wasting fill rate in the query. This issue is less important with hierarchical occlusion queries. Build a bounding box hierarchy, and prune it
with an occlusion query so large parts of the scene are culled away. Eliminating several objects with one test will definitely pay off the
effort of rendering the occlusion query object.

Another interesting idea is to use occlusion queries with geometry you actually would render anyway. A good example here is multipass
rendering. If we need to render the same object two or more times, we can activate the occlusion query for the first pass, and only if it
returns a no occlusion result, render subsequent passes. This way we are not throwing away our precious fill rate because we would be
rendering the object anyway. Another good idea is to substitute objects by lower triangle count approximations: Convex hulls can be a
useful primitive in this situation.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In Closing

Hardware-assisted occlusion queries are revolutionizing the way indoors rendering algorithms are coded, now that clipping, culling, and
occlusions have been mastered. But there's plenty of room for innovation. Whether it's better indoors lighting, movable geometry pieces
such as tables and chairs, or dense environments, there will always be room for improvements.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 14. Outdoors Algorithms

"It's a dangerous business going out your front door."

—J. R. R. Tolkien, The Fellowship of the Ring
KEY TOPICS

® Overview

® Data Structures for Outdoors Rendering
o Geomipmapping

® ROAM

® Chunked LODs

® A GPU-Centric Approach

® Outdoors Scene Graphs

® Closing

In the previous chapter, we explored indoors rendering algorithms in detail and learned all about dungeons, castles, and houses. Now
we will move out of the building and into the great outdoors. We will focus on hills, trees, and valleys, where we can see for miles away.
Rendering outdoors scenarios is a completely different business than indoors rendering. Luckily, some robust methods have been
devised through the years, which ensure that we can render virtually any outdoors scene with reasonable performance. Let's study these
popular algorithms in detail.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Overview

In any indoors renderer, we can take advantage of clipping and culling to detect the portion of the game world that effectively lies inside
the viewing frustum. Then, an occlusion-detection policy must be implemented to minimize overdraw, and thus ensure optimal
performance. Occlusion tests can be performed because the visibility range (sometimes called Z-distance) is bounded. Outdoors
renderers are a bit different. Like indoors algorithms, they can take advantage of clipping and culling. This way a significant part of the
game world's geometry can simply be eliminated because it does not lie within the viewing frustum.

But what about occlusions? Well, truth be told, there are frequent occlusions in nature: a hill covering parts of the scene, trees acting as
natural occluders, and so on. But even with that level of occlusion, the triangle counts for any outdoors scene are generally beyond the
hardware's capabilities. Imagine that you are on top of a mountain looking downhill onto a huge plain. How many triangles do you need
to render that scene? There are some nearby objects (stones, for example) that can be modeled using just a few triangles, but what
about the distant horizon located at least 10 miles away? Will you still model each stone and crack of the ground, even if it's unnoticeable
from where you are standing?

Clearly, outdoors algorithms are all about level-of-detail (LOD) strategies—being able to reallocate triangles so more relevant items (in
terms of screen size) get a better resolution than distant or smaller items. This relationship is summarized in[lable 14.1, which | use to
explain the difference between indoors and outdoors rendering.

Table 14.1. Characterization of Outdoors Versus Indoors Rendering Algorithms

Algorithm Clipping Culling Occlusions LOD

Indoors Yes Yes Yes Optional

Outdoors Yes Yes Optional Yes

For the remaining sections of this chapter, | will define outdoors algorithms as those algorithms that work with large viewing distances
and focus on LOD strategies instead of occlusion testing algorithms.

This is not to say that occlusions will be secondary or even irrelevant. Most outdoors algorithms have a significant degree of occlusion.
But because outdoors data sets are generally larger than their indoors counterparts, sometimes computing occlusions will be too
complex, and thus will be discarded altogether. Some outdoors approaches incorporate occlusions into the equation; others focus on the
LOD policies only. The last algorithm in this chapter is an example of an outdoors renderer that handles occlusions elegantly.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Data Structures for Outdoors Rendering

We will begin our journey by examining the different ways commonly used to store the outdoors rendering data. We must begin by
distinguishing the different elements. The data used to represent terrain is what will concern us most. We have already explored ways to
ff fftf jgular objects that you can use to store objects laid on top of the land—like a building, for example. You can find more on that in
Ehapter 14, "3D Pipeline Overview." Some interesting approaches tg this problem that are well suited for outdoors scenarios (namely, a
continuous LOD policy called progressive meshes) are discussed inChapter 24, "Geometrical Algorithms." If you need information on trees
and vegetation, look no further than , "Organic Rendering."

We will now focus on storing land masses, which is an interesting and difficult problem in its own right. First, we will need to store large
data sets. Second, we will need some kind of LOD policy to make sure we don't spend lots of triangles painting very distant areas. Third,
this policy must be smooth enough so we can progressively approach a new terrain region and switch from the low-res version to the
high-res version imperceptibly. This makes terrain rendering algorithms somewhat more specialized and complex than most of their
indoors counterparts.

Heightfields

The easiest way to store terrain is to use a grayscale bitmap that encodes the height of each sampled point at regular distances.
Traditionally, dark values (thus, closer to zero) represent low height areas, and white values encode peaks. But because bitmaps have a
fixed size and color precision, you need to define the real scale of the map in X, Y, and Z so it can be expanded to its actual size. For
example, a 256x256 bitmap with 256 levels of gray can be converted into a landmass of 21 kms and 512 meters of height variation by
supplying a scale factor of (4,4,2).

Heightfields are the starting point for many terrain renderers. They can be handled directly and converted to quadtrees, and they provide a
simple yet elegant way of specifying the look of the terrain. You can even create these bitmaps with most paint programs or with specific
tools such as Bryce, which creates very realistic terrain maps using fractal models. Once created, heightfields can be stored in memory
either directly as an array of height values or in uncompressed form, with each value expanded to its corresponding 3D point. The first
option is usually preferred because the memory footprint is really low, and expansion is not that costly anyway. Additionally, painting a
heightfield is usually achieved through triangle strips, indexed primitives, or a COE?ETT f both. A landmass is really just a grid with the
Y values shifted vertically, and grids are very well suited for strips and indices (sefigure 14.1).

Figure 14.1. Terrain and underlying heightfield.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The downside of the simplicity and elegance of heightfields is that they are limited to 2D and half maps. Obviously, for a fixed X,Z pair
there is only one pixel value on the heightfield, so it is impossible to implement an arch or an overhang using this representation. These
elements must be handled in a second layer added on top of the base terrain. Additionally, heightfields are not especially well suited for
LOD modeling. Thus, they are frequently used only in the first stage, deriving a better-suited structure from them. Most popular algorithms,
such as the geomipmapping and Real-time Optimally Adapting Meshes (ROAM), use heightfields as a starting point. However, other data
structures such as quadtrees and binary triangle trees are used when it comes to LOD processing.

Quadtrees

Another way of storing terrain is to use a quadtree data structure. Quadtrees are 4-ary trees that subdivide each node into four subnodes
that correspond to the four subgquadrants of the initial node. Thus, for a terrain mass lying in the X, Z plane, the quadtree would refine each
node by computing its midpoint in X and Z and creating four subnodes that correspond to the (lowX, low Z), (low X, high Z), (high X, low Z),
and (high X, high Z). 4 will help you to better picture this splitting.

Figure 14.2. Node splitting on a quadtree.

z level N level N + 1
low % high x
high z high z
subnode subnode

original node

low X high x
low 2 low 2
subnode subnode

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Quadtrees are popular for terrain representation because they provide a twofold adaptive method. The construction of the quadtree can be
adaptive in itself. Starting with a heightfield, you can build a quadtree that expands nodes only when more detail is needed. The resulting
guadtree will be a 4-ary, fully unbalanced tree, meaning that some branches will dig deeper than others. The metric for the detail level can
then be of very different natures. A popular approach is to analyze the contents of the node (be it a single quad or the whole terrain
landmass) and somehow estimate the detail as the variance between the real data and a quad that took its place. For each X,Z pair, we
retrieve the Y from the original data set and compare it to an estimatedY, which is the bilinear interpolation of the four corner values. If we
average these variances, we will obtain a global value. Larger results imply more detail (and thus a greater need to refine the quadtree),
whereas smaller, even zero, values mean areas that have less detail and can thus be simplified more.

But that's only one of the two adaptive mechanisms provided by a quadtree. The second mechanism operates at runtime. The renderer
can choose to traverse the quadtree, selecting the maximum depth using a heuristic based upon the distance to the player and the detail
in the mesh. Adding the proper continuity mechanisms to ensure the whole mesh stays well sown allows us to select a coarser
representation for distant elements (for example, mountain peaks located miles away from the viewer) while ensuring maximum detail on
nearby items.

This double adaptiveness provides lots of room to design clever algorithms that take advantage of the two adaptive behaviors of the
quadtree.

Binary Triangle Trees

Abinary triangle tree (BTT) is a special case of binary tree that takes most of its design philosophy from quadtrees. Like quadtrees, it is an
adaptive data structure that grows where more detail is present while keeping a coarser representation in less-detailed areas. Unlike
guadtrees, the core geometrical primitive for a BTT is, as the name implies, the triangle. Quadtrees work with square or rectangular terrain
areas, whereas BTTs start with a triangular terrain patch. In order to work with a square data set, we must use two BTTs that are
connected.

Because the core primitive is different from a regular quadtree, the division criteria for the BTT are different from that of quadtrees as well.
Quadtrees are divided in four by the orthogonal axis at the center of the current region. A BTT triang is divided in two by creating
two new triangles, which share an edge that splits the hypotenuse of the initial triangle in half (see .

Figure 14.3. Top-down view on a terrain patch scanned using a BTT.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

T L T

BTTs are popular for terrain rendering because they provide an adaptive level of detail, and each node has fewer descendants and
neighbors than quadtrees. This makes them easier to keep well connected in continuous LOD algorithms. The ROAM algorithm explained
in a later section in this chapter takes advantage of this fact and uses a BTT to implement a continuous level-of-detail (CLOD) policy
efficiently.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Geomipmapping

Mipmapping (explained in detail in, "Texture Mapping") is a texture mapping technique aimed at improving the visual quality of
distant, textured primitives. In a distant triangle, the screen area of the triangle (in pixels) will be smaller than the size of the texture. This
means each pixel gets to be textured by several texels, and as the triangle moves even slightly, flicker appears. Texture mipmapping
works by precomputing a series of scaled-down texture maps (¥, ¥%, and so on) called mipmaps. Mipmaps are prefiltered so they average
texel value correctly. Then, when texturing, the triangle is textured using the mipmap that most closely resembles its screen size. This way
flicker is reduced, and even distant triangles get proper texturing.

Based on the same concept, Willem de Boer devised the geomipmapping algorithm (INww.ﬂipcode.com/tutorials/qeomipmaps.pdh, which
implements a CLOD terrain system by using mipmaps computed not on textures, but on the terrain geometry (hence the name). All we
need to do is select the right geometrical representation depending on the distance to the viewer, and make sure the seams where two
different representations meet merge smoothly without visible artifacts.

The concept behind geomipmapping can be adapted to any terrain data structure. However, because it is a texture-like approach, the
easiest way to use it is to start from a heightfield representation. Incidentally, heightfields can be represented using grayscale images, so
the similarities with texture maps are still present. We then need to compute the geometry mipmaps. To do so, we can scale down the
heightfield bitmaps using image processing software or simply compute them at runtime. Just remember that mipmaps are computed
sequentially by dividing the last texture map's size by a factor of two, combining each of the four texels of the initial map into a single,
averaged value. Again, building geometry mipmaps is no different than working on textures.

Remember that your terrain size must be a power of two for this method to work (because of the subdivision step). Specifica errain size
must be in the form 2n+1 because we need an extra vertex to make sure we get a power-of-two number of quads. Se , which
shows this in a 4x4 mesh, using 55 vertices.

Figure 14.4. To create a 4x4 triangle mesh (which actually holds 32 triangles), we need a 5x5
vertex mesh.

N\

http://www.flipcode.com/tutorials/geomipmaps.pdf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The first step in the rendering process is to effectively load the data structures in memory. For geomipmapping, terrain data is organized in
a quadtree; each leaf node contains what's called a terrain block. Terrain blocks are pieces of terrain consisting of several triangles each.
In his initial formulation, de Boer suggests using a 4x4 mesh (consisting of 32 triangles). To build the quadtree, you start with the whole
terrain data set. The root node stores its 3D bounding box, and then each of the four descendants contains one of the four subquadrants
of the data set. Each subsequent node will contain the bounding box of the incoming set and pass four pointers to its descendants until a
node is exactly composed of a single terrain block. A 257x257 terrain map will require exactly six levels (measuring 256, 128, 64, 32, 16,
8, and 4 triangles across each). Organizing the data in a quadtree will help us perform fast hierarchical clipping. We will depth-traverse the
tree, and as soon as the bounding box from one node is rejected as totally invisible, the whole subtree will be rejected, hence speeding up
the calculations significantly.

Notice how, up to this point, we have not performed any LOD. All we have done is arrange the source data in a quadtree, which will
indeed speed up clipping, but that's about it. In fact, we could stop here and implement the preceding algorithm. Using hardware culling, it
would be a good way of selecting only those triangles effectively onscreen. Besides, the block layout allows for packed primitives such as
strips and indexed triangle lists to be used, delivering quite good performance.

But there is no LOD policy yet, so distant triangles would probably eat away all our CPU cycles, effectively killing performance. This is
where geomipmaps enter the scene to speed up the rendering process. The idea is straightforward: As we reach the leaves of the
quadtree, we decide which resolution to use for that terrain block. We need to store not only the high-resolution terrain, but mipmapped
versions as well. The decision criteria, as usual, depend on the quantity of detail in the block and the distance to the viewer. We begin by
computing the error of a geometry block, expressed as the maximal distance (in screen space) from a mipmap's position to the real
position of the actual geometry. We call this an error because it is a measure of how much deviation actually exists between the real value
(taken from the mesh) and the value we are using for rendering purposes.

Thus, we take all the vertices in a block and compute the distances from the mipmapped vertices to the real geometry. When projected to
the screen, these return pixel amounts, which take into consideration detail (the more detail, the more error) and distance (the more
distance, the less error). Then, we work with a fixed threshold (values of about 5 pixels are frequent) and select the first mipmap level so
error is bounded. Thus, distant geometry blocks will be heavily simplified, and closer blocks will not. An interesting side effect of such an
approach is that top-down cameras will usually end up rendering lower resolution meshes, because the screen-space error will be virtually
none.

Using geomipmapping, we must deal with two potential issues in order to convey a good sense of realism. First, we must deal with the
geometry gaps that occur whenever two blocks of different resolution are adjacent. This breaks the continuity of the terrain. Second, we
must ensure that a change in detail in a certain area is virtually imperceptible, so the player does not realize the LOD work that is taking
place. Let's examine each problem and the way to deal with it.

We will start by dealing with geometry cracks and gaps, which occur whenever two blocks with different mipmaps are adjacent. This is a
common problem that is shared by most terrain algorithms, not just mipmapping, so the solution we will propose is valid for other
algorithms as well. A good overview of different approaches can be found in de Boer's original paper. The best solution proposed is to alter
the connectivity of the higher defajl mesh so it blends with the lower detail mesh seamlessly. Basically, we have a high detail mesh and a
lower detail mesh (see Eigure 14.5, left). Then, all we have to do is reconstruct the high-res mesh so it connects cleanly with the low-res
mesh. By skipping one in each of the two vertices of the high-res mesh, we can ensure that both meshes connect properly with no gaps.
This implies that some vertices in the high-res meshes will remain unused, but the result will be unnoticeable.

Figure 14.5. Left: Connected, unsown mesh. Right: Skip one of every two vertices in the
high-res mesh and reconstruct the face loops to weld terrain blocks together.

/) 9

T

Let's now discuss how to avoid sudden pops that take place whenever we change the resolution level of a terrain block. A powerful

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

technique for this problem is called geomorphing and involves smoothing the transition from one mipmap to the next by linear
interpolation. The key idea is simple: Popping is caused whenever we change the resolution suddenly, so new vertices appear (each with
its own shading), and overall we see an abrupt change in appearance. Geomorphing works by ensuring that no single frame actually
changes the appearance more than a fixed threshold. Whenever we want to increase the detail level, we start by using the high-detail
mesh but with its new vertices aligned with the plane of the low-res mesh. Thus, we change a low-res mesh by using a high-res mesh, but
the Y of each point in the terrain is still the same for both resolutions. We then take these interpolated values and progressively shift them
to their final position as the camera approaches. This way detail does not appear suddenly but "pops in" slowly, ensuring continuity and
eliminating pops completely.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ROAM

ROAM is one of the most powerful outdoors approaches devised to date. The algorithm was designed by a team working at the Lawrence
Livermore National Laboratory, led by Mark Duchaineau. It became popular in games such as Tread Marks by Seumas McNally and has
been used in many others since then. The algorithm combines a powerful representation of the terrain with a dynamic LOD rendering
approach that changes the resolution of the terrain as we move around. What follows is a thorough description of the ROAM algorithm.
However, | must provide a word of warning. ROAM, like BSPs, is a very complex algorithm. | suggest you take the following sections one
step at a time, making a drawing along the way to ensure you understand it. For more information, | recommend that you review the

iginal paper, which provides many implementation details, and the Gamasutra article by Bryan Turner. Both are referenced in
ﬁ "Further Reading." Having these papers at hand will prove very useful if you are serious about ROAM.

ROAM is a two-pass algorithm that allows very fast terrain rendering. ROAM does not have a geometric representation of the terrain
beforehand: It builds the mesh along the way, using precomputed measures of detail to know where it should refine further. On the first
pass, terrain data is scanned into a bintree, and a view-independent error metric is computed. This metric will allow us to detect zones in
which more detail is needed. Then a second pass constructs a second bintree, which performs the actual mesh construction and
rendering.

Pass One: Construct the Variance Tree

In the first phase, we will build a representation of the detail in the terrain. To do so, we need to establish a metric for detail. Several
metrics are proposed in the original paper, and others were devised later. One of the most popular error metrics is called the variance,
which was introduced in the game Tread Marks, and is defined inductively. For a leaf node (a bintree that is one pixel across), we define
the variance as the difference in height between the interpolated hypotenuse and the real value of the heightmap for that point. Thus, we
compute the hypotenuse midpoint and compare that to the real value of the terrain (see figure 14.

Figure 14.6. Variance in ROAM for a leaf node.

Interpolated
Value

#
-
-
-
-
#
-

== Heightmap
Value

Variance

For any node in the tree that is not a leaf, the variance is the maximal variance of any descendant from that node. Thus, we need to
explore the terrain fully until we reach the base nodes, each representing just one pixel from our heightmap. We compute basic variances
at these nodes, and then propagate them to build nested variances in the backtracking phase. The variance of the root node will be the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

maximal variance of any of the triangles that are derived from it. Here is the algorithm to compute the variance:

int CalcVariance(tri)

{

int RealHeight = the map height at the middle of the hypotenuse

int AvgHeight = the average of the real heights at the two ends of the hypot
int v = abs(RealHeight - AvgHeight)

if tri->LeftChild is valid

{
v = max(v, CalcVariance(tri->LeftChild))
}

if tri->RightChild is valid
{
v = max(v, CalcVariance(tri->RightChild))
}

return v

}

As you can see, we need a data structure for the nested variances. The logical structure would be a binary tree, so we can reproduce the
nested behavior of variances. This tree is often mapped to a static array for faster access in the rendering phase because we will need to
access this structure frequently.

Thus, the first phase of any ROAM implementation basically builds the nested variance data structure, which provides us with useful
information for the mesh reconstruction and rendering phase.

Pass Two: Mesh Reconstruction

Once the variance tree is built, we can take advantage of it to build the mesh for rendering. To do so, we build a BTT of geometry, and then
expand it more or less using the variance hints.

The BTT is just a regular tree that is used to store triangles. The root node represents a large triangular area of the terrain, and each
descendant covers a subset of that initial zone. Because it is a triangular shaped tree, some magic will be needed to support quadrilateral
zones (usually two trees joined at the root). Each node of the triangle tree approximates a zone of the terrain by storing only its corner
values. If the vertices inside the zone are not coplanar to these corners, we can use the variance tree to determine how much detail still
,ﬂe that subzone, and thus make a decision to supersample it further. You can see this construct along with a complete BTT in
Figure 14.4.

Figure 14.7. BTT, shown from the top down.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

PANVANGZANZN

The key idea of the BTT construction is to use the view-independent error metric, coupled with a view-dependent component to decide
how deep we must propagate into the tree while building the mesh in the process. As with geomipmaps, we set a maximum threshold and
recurse until a node generates an error smaller than the threshold. But we know beforehand that this process will indeed introduce gaps
and cracks because neighboring triangles need not be of the same resolution level. Thus, sometimes their edges simply will not match.
Geomipmapping solves this issue by welding patches of different resolution together. ROAM works in a different direction. Whenever we
encounter a discontinuity, we oversample neighboring patches to make sure they are sown together properly. To do so, we need to label
each side of a triangle and use some rules that guarantee the continuity of the mesh.

We will call the hypotenuse of the triangle the base and call the other two sides the left and right sides, depending on the orientation of the
triangle. The same terminology applies to neighbors. Thus, we can talk about the base neighbor (which is along the hypotenuse) and so
on (see . If you analyze several bintrees, you will discover that neighbors from a triangle can only exist in specific
configurations. For example, the base neighbor will either be from the same level as the original node or from the next coarser level. Left
and right nodes, on the other hand, can either be located at the same level or one level finer at most.

Figure 14.8. Triangles and their labels.

Apex Vertex

Left
Neighbor

Right
Meighbor

Left
Vertex

Right
Vertex

-
Center Vertex

Base
Neighbor

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

From this fact, we can derive three rules of splitting that govern when and how we can recurse further into the tree. The first rule applies to
those nodes that are part of a diamond (thus, connected to a base neighbor of the same level). In these cases, we must split the node and
the base neighbor to avoid creating cracks. Both nodes will split in sync, and continuity will be preserved. A second case happens when a
node is at the edge of the mesh. This is the trivial case because we can keep splitting even if we cause side effects. The third case deals
with nodes that are not part of a diamond. In this case, we must first-force split the base neighbor before we split our current node, and
thus preserve continuity. Here is a summary of these rules:

® part of a diamond, split the node and the base neighbor.
® |fatthe edge of a mesh, split as needed.

® |inot part of a diamond, force-split the base neighbor before splitting the current node.

So fundamentally, the run-time algorithm is as follows: Traverse the bintree and couple the view-independent variance with a
view-dependent component (usually, the distance to the viewer) so a view-dependent metric of error is returned. We then want to recurse
until the error level for that node is lower than a fixed threshold. We must follow the three splitting rules as_explained in the previous
paragraph to ensure we create a continuous mesh. For an example of the splitting at work, take a look at .

Figure 14.9. Left: Split begins; we are not part of a diamond, so if we split the shaded triangle,
continuity will be lost. Center: We recursively split (using the rules) the base neighbor so we
gain the vertex, which we will use to (right) split the current node.

Split operation begins, but cusrent Recursively force-split the base Original triangle can now be split;
triangle is not part of a diamond: neighbor until a diamond is found:

.+ -
(Y
LY
%
L

Notice that the mesh will be quite conservative. Because of rules 1 and 3, we will sometimes be forced to split a node further than required,
so its resolution will be higher. This is because the node might have a highly detailed neighbor, and because we need to recurse the
neighbor further, we also end up recursing the node more than is needed. Notice, however, that the opposite is not true: The mesh will
never be coarser than the fixed threshold.

Nodes pending a split operation are usually arranged in a priority queue, called the split queue. This is sorted by priority, which is generally

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

the view-dependent error. Then, we start at the base triangulation of the bintree (the root, which covers the whole terrain with a single
triangle) and trigger the following greedy algorithm:

T = base triangulation
while T is too inaccurate
identify highest priority node from T (node with biggest error)
force-split using the rules
update queue:
remove the node that has just been split
add the new nodes resulting from the split
end while

So we store nodes where the algorithm is standing currently. We compute the incurred error of the triangulation as the biggest error in the
nodes, and if the overall error is too large, we select the node with the highest priority (biggest error) and force split it using the splitting
rules previously explained. We then remove the offending node, substitute it with those nodes arising from the split, and start over. If we
implement the splitting rules correctly, this generates an optimal, continuous mesh with error levels below the fixed bound.

This is the simplest type of ROAM and is usually referred to as split-only ROAM. It computes a continuous mesh for a terrain heightfield,
but it comes with a host of problems that must be addressed to reach reasonable performance. ROAM is a hard algorithm because its
base implementation is not fast enough for more or less anything.

Optimizations

As you have seen, ROAM is a CPU-intensive algorithm. In fact, its performance is seldom limited by the sheer number of triangles to
render, but by the binary triangle tree construction and traversal. Experience shows that, in most cases, a split-only ROAM will not be fast
enough to render large, detailed pieces of terrain. We will now cover some optimization techniques that will multiply the performance of
any split-only ROAM implementation.

The first change to the ROAM engine is to divide the terrain into sectors so the bintree does not cover the whole map. Rather, we would
have a 2D matrix of bintrees, each covering parts of the terrain. This makes trees less deep and also simplifies tessellation. ROAM is still
too expensive to be computed per frame, and besides, doing so is a complete waste of resources.

Imagine that the player is standing still facing the landscape. Do we really need to recompute the tessellation per frame? Obviously not,
and that's why ROAM is usually implemented on a frame-coherent basis. The terrain is only recomputed every few frames, usually using
an interleaved bintree policy as well. We do not recompute each bintree each frame, but rather cycle through the different trees frame by
frame (or even every number of frames). So if we have an NxM array of bintrees, we compute a bintree's tessellation once everyNxM
frames. This greatly reduces the CPU hit of the tessellation. A similar approach is to make ROAM retessellation dependent on the player's
change of position and orientation. We can force a recalc if and only if the player has moved more than X meters from the last recalc
position or has rotated more than Y degrees. If coupled with the sector-by-sector approach outlined earlier, this should definitely put an
end to most of our performance concerns. Take a look at a ROAM algorithm in action in Figure 14.1Q.

Figure 14.10. ROAM at work. Left: Camera view of the level with the mesh (above) and the wire
frame views (below). Right: The same frame, seen from a top-down camera. Notice how the
blending of the view-dependent and the view-independent components preserves detail.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

]
T

.
§
i
e
W
r

5
|

F

A

¥ HE
A I | e ,

s Ek
o

L b 1}
%, o
.-".':‘- Wbl

Another completely different line of thought is to work on frustum culling. Remember that we are working with a BTT, so there's some
interesting issues that arise from the frustum cull phase. The most popular technique is to label each node in the bintree with six flags, one
for each half space delimiting the frustum. This effectively means storing a Boolean for each one of the six clipping planes to determine if
the triangle is completely inside or if it's either partially or totally outside. Then, a global IN, OUT, and DON'T-KNOW (for triangles part-in,
part-out) label is assigned to the node. Because the tree is hierarchical, we can update this information easily on a frame-to-frame basis. A
node IN means all subnodes—until we reach the leaves—that are allN, for example, and the opposite is also true folOUT nodes. Because
we recalc the culling information, only some portions of the tree will have changed, and we will devote our efforts to those. Suddenly, a
node that was IN or OUT (and required no further analysis) will turn toDON'T-KNOW because it will be partly inside, partly outside. We
then need to scan only that subtree to keep the information current. Then, for painting purposes, all we need to do is render those nodes
that are IN or DON'T-KNOW and prune OUT nodes directly.

Another improvement to the core ROAM algorithm is to stripify triangles as we retessellate. This is obviously not for the faint of heart,
because real-time stripification is a complex problem. In the original paper, a suboptimal incremental tristripper tries to create strips as
nodes are split. Results show splits between four and five vertices on average, which also helps reduce the amount of data sent over the
bus.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chunked LODs

The algorithm discussed in this section was proposed by Thatcher Ulrich of Oddworld Inhabitants at SIGGRAPH 2002. Its main focus is
allowing massive terrain data sets to be displayed in real time. As an example, the classic demo of chunked LODs involves a Puget Sound
data set that covers 160x160 km. The triangle data takes 512MB, and the textures require 3GB uncompressed (60MB in JPEG). Thus, the
algorithm is very well suited for huge terrain data sets, such as the data sets found in flight simulators.

The algorithm starts with a huge data set, usually coming from a satellite picture. Then, it builds a quadtree so the root node contains a
very low-resolution mesh from the original data set, and each descendant node refines the area covered by its parent in four quadrants,
adding detail to the base geometry in each one of them. Leaf nodes then contain chunks of geometry that cover a very small area on the
map, but provide very good quality.

A number of approaches can be used to implement this strategy. One possibility is to start at the leaves and build the quadtree bottom up.
We start by dividing our picture into chunks of fixed sizes using a geometric progression. The base picture should be a power of two for this
to work easily. For example, if the map is 4096x4096, we can start by doing chunks of 3232 pixels. This means we will need a seven-layer
guadtree. We then recurse by building the parent to each cluster of four chunks. Because we want this new cluster to have more or less
the same geometric complexity as any one of its four descendants, we must apply a triangle reduction algorithm to the mesh. Overall, we
will end up with chunks that are all about 32x32 triangles. Leaf nodes will represent small areas on our map, and as we move closer to the
root, the area covered by the chunk will be much higher. So, any given level from our quadtree will cover the whole map. The only
difference is the resolution at which we cover it. Take a look at figure 14.11] to see the level of detail and huge data sets processed by a
chunked LOD algorithm.

Figure 14.11. Chunked LOD demo by Thatcher Ulrich. If you look closely at the wire frame
version, you will notice the skirts used to weld different resolution zones together.

i iy e A TR .
B ony SE Tl e ¥ S 5
=t e T e .

Quadtree construction is usually performed as a preprocess. We start from a high-resolution reference mesh, creating lower resolution
meshes by using mesh simplification algorithms. We then store these meshes hierarchically in the nodes of the quadtree: lower resolution,
global meshes at the root, and then we refine them into higher resolution (and lower scope) meshes as we move toward the leaf nodes of
the quadtree. For each node, we store a measure of its error with regard to the real data set. We compute the maximum geometric
deviation of a chunk from the portion of the underlying mesh. Logically, nodes closer to the root will have higher error values, with errors
converging to zero as we move toward the leaves. Then, at runtime, we set a screen-space maximum error threshold and use the nodes'
error metrics to compute a conservative LOD error level. If a node has error level delta, the screen-space error is computed by:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Rho= delta/D*K

where D is the distance from the viewpoint to the closest point in the bounding volume, and is a perspective scaling factor that corrects
the fact that the viewport is using perspective projection. The following equation is used:

K=viewportwidth/(2*tan(horizontalfov/2))

Rendering the chunk quadtree is then pretty straightforward. The quadtree is traversed, using it to perform hierarchical clipping. Then, at
each node we can choose between expanding it (thus, accessing higher detail data located closer to the leaves) or staying where we are,
and use the current node's data to render it. The decision depends on the screen-space error metric, which determines if the region and
the distance require further refinement or if we are fine with the current resolution. Thus, a view-dependent approach is used.

The problem with chunked LOD approaches is, as with ROAM and quadtrees, the appearance of pops and cracks. Pops are solved by
geomorphing, which was explained in the "Geomipmapping" section. Remember that geomorphing involves transitioning from one base
node to its children (and thus expanding data into a finer version), gradually. We start by placing the finer representation triangles along
the planes used by the coarse version; we then interpolate those positions linearly with their final, fine detail version. This way detail in the
terrain grows slowly, and popping is eliminated.

As for the cracks in the terrain, they can easily be solved by stitching terrain chunks together with additional mesh strips. Ulrich suggests
sowing adjacent meshes by using vertical ribbons that join together the two meshes. This is the simplest of the possible approaches, and
given the resolution at which we are working, results are fine. The ribbon will be limited in screen size due to our error metric bound,
becoming virtually invisible.

An alternative is to use a skirt that surrounds each chunk. The skirt is simply a strip of triangles that vertically extends around the
perimeter of the chunk. Its size is determined by the maximum error bound. With reasonable bounds (about five pixels typically), the skirt is
unnoticeable, and assuming our texturing function is computed from X,Z values, texturing will work as expected. Skirts have an additional

advantage over ribbons in that we do not really need to sew chunks together, so the algorithm is much simpler. We just place chunks
beside each other, and use skirts to fill the gaps (see).

Figure 14.12. Zooming in to reveal one of the skirts used to weld regions together.

A note on texturing: Texturing a chunk LOD approach is done in a very similar way to regular geometry processing. Textures are derived
from an initial, high-resolution map (usually satellite pictures). Then, we build a texture quadtree similar in philosophy to the geometry
guadtree. The root represents the lowest resolution texture, and each level toward the leaves expands the map, covering a smaller region

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

with higher resolution. This way, at runtime, the criteria used to expand the geometry quadtree are recycled for the texture quadtree.
Because texturing data sets are usually in the hundreds of megabytes, it is common to use two threads and load new texture portions in
the background while we keep rendering frames to the graphics subsystem. All we need to do for this paging scheme to work is to be
aware of the amount of memory available for texturing. As we move closer to the terrain, and new maps are paged in, we will be able to

discard other maps (usually closer to the root of the tree). So the overall memory footprint for textures will stay consistent throughout the
execution cycle.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

A GPU-Centric Approach

All the algorithms we have reviewed so far share one feature in common: They all implement some kind of CLOD policy. This means that
these algorithms require expensive computations, usually performed on the CPU, to generate the multiresolution mesh. Simple
performance tests show algorithms like ROAM tend to be bounded not by the raw rendering speed, but by the CPU horsepower, which
needs to recompute the terrain mesh frequently.

In a time when CPUs are mostly devoted to Al and physics, occupying them with terrain rendering can be dangerous because it can take
away precious resources needed for other areas. Besides, remember that today's GPUs have huge processing power, not just to render
triangles, but to perform tests on them as well. In fact, in many cases, the GPU is underutilized because it is not fed with data properly by
the application stage.

Thus, | want to complete this chapter by proposing a radically different approach to terrain rendering, one where the CPU is basically
idle, and all the processing takes place on the GPU. This might sound a bit aggressive, but the experience will be clarifying, at least in
perspective. Our research shows such an algorithm can not only compete with traditional CPU-based approaches, but can surpass them
in many cases as well.

The premise of the algorithm is simple: The CPU must be idle at all times, and no data will use the bus for rendering purposes. Thus,
terrain geometry will be stored directly on the GPU in a method suitable for quick rendering. The format we have selected is blocks of
17x17 vertices, totaling 512 triangles each. These blocks will be stripped and indexed to maximize performance. By using degenerate
triangles, we can merge the different strips in one sector into one large strip. Thus, each terrain block consists of a single strip
connecting 289 unique vertices. Assuming the index buffer is shared among all terrain blocks, we only need to store the vertices. A
couple lines of math show that such a block, stored in float-type variables, takes only 3KB. A complete terrain data set of 257x257
vertices takes 700KB of GPU memory.

Then, geometry blocks will be stored in the GPU and simply painted as needed. Bus overhead will thus be virtually nonexistent. The
CPU will then just preprocess culling and occlusion information, and dispatch the rendering of blocks. Thus, we will begin by dividing the
terrain map using a quadtree data structure, where leaf nodes are the terrain blocks. This quadtree will be in user memory, and we will
use it to make decisions on what blocks need to be rendered. This way we can quickly detect the block the player is standing on and
perform hierarchical clipping tests using the quadtree.

We can easily integrate culling into the algorithm. For each terrain block, we compute the average of all the per-vertex normals of the
vertices in the block. Because terrain is more or less continuous, normals are more or less grouped. Thus, on a second pass, we
compute the cone_that, having the average normal as its axis, can contain all of the remaining normals. We call this the clustered normal
cone (CNC) (see Eigure 14.13). We can then use the CNC to perform clustered backface culling as explained i For each
block, we test the visibility of the CNC and, if the cone is not visible, the whole terrain block is ignored. Notice how testing for visibility
with a cone has exactly the same cost as regular culling between vectors. For two vectors, we would cull away the primitive if the dot
product between the normal and the view vector was negative. For a cone, all we need to do is the dot product between the view vector
and the averaged normal. Then, if the result is below the cone's aperture, we can reject the whole terrain block.

Figure 14.13. The CNC, which holds information about the normals of a terrain block.

I

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Clustered backface culling is performed on software. For a sector that is going to be totally culled away, one test (that's a dot product and
a comparison) will eliminate the need to do further culling tests on each triangle.

As a final enhancement, we can use our terrain blocks to precompute visibility and thus perform occlusion culling. The idea is again
pretty straightforward: In a preprocess, we compute the Potentially Visible Set (PVS) for each node and store it. Thus, at render time, we
use the following global algorithm:

using the quadtree, find the block the player is on
for each block in its pvs
if it can't be culled via clustered culling
if it can't be clipped
paint the block
end if
end if
end for

To precompute the PVS, we compute a bounding column (BC) for each terrain block. A BC is a volume that contains the whole terrain
block but extends to infinity in the negative Y direction. Thus, the terrain will be simplified to a voxel-like approach. Once we have
computed the BC, it is easy to use regular ray tracing using the boxes to precompute interblock visibility. Fire rays from points at the top
of each bounding column toward surrounding cells, trying to detect if they reach them or are intersected by other geometry. An
alternative method for a platform supporting occlusion queries is to use them on the BC geometry to detect whether a block is visible.

Now, let's examine the results. Notice that this algorithm does not use a CLOD policy. But it performs similarly to ROAM using the same
data set. The main difference is the way time is spent in the application. In ROAM, we encountered a 10-20 percent CPU load time,
whereas the GPU-centric approach used only 0.01 percent. Additionally, the full version with clustered culling and occlusions
outperformed ROAM by a factor of two, and occlusion detection can be very useful for other tasks like handling occlusions for other
elements (houses, characters, and so on), Al, and so on.

As an alternative, we have created tests on a variant that does use LODs in a way similar to the chunked LOD/skirts method explained
earlier in this chapter. We store terrain blocks at four resolutions (17x17, 9x9, 5x5, 3x3 vertices) and at runtime select which one we will
use, depending on the distance to the viewer and an onscreen error metric. Unsurprisingly, performance does not improve: It simply
changes the cost structure. The GPU reduces its workload (which wasn't really an issue), but the CPU begins to slow the application
down. The only reason why implementing LOD in the core algorithm makes sense is really to make it work on cards that are fill-rate
limited. On these cards, adding LODs might improve performance even more. In this case, the algorithm would be

using the quadtree, find the block the player is on
for each block in its pvs
if it can't be culled via clustered culling
if it can't be clipped
select the LOD level for the block
paint the block
end if
end if
end for

This section is really meant to be an eye-opener for game developers. Sometimes we forget that there's more than one way to solve a
problem, and this terrain rendering approach is a very good example.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Outdoors Scene Graphs

The first outdoors games were just plain terrain renderers—simple flight simulators with coarse meshes. The advent of faster graphics
cards has allowed for greater realism, and today, we can do much more than render vast areas of land. Cities, forests, and rivers can all
be displayed to convey the sense of size and fullness players have learned to expect. But rendering realistic outdoor environments does
not come without a host of challenges and restrictions that you should be aware of. In this section, we will explore them, exposing some
well-known approaches to some of these problems.

To begin with, outdoors scenarios are significantly bigger than indoors-only levels. Often spanning several square kilometers, the amount
of geometry required to fill these levels is simply huge. How many triangles does a forest have? Well, recall that we did the math a
couple of chapters ago and reached the conclusion that Yosemite National Park is about 25 billion triangles. Assuming approximately
100 bytes per triangle, which is reasonable, we get 2.5 trillion bytes, or 2.5 terabytes. That's quite a challenge in terms of fill rate, bus
speed, and memory footprint.

There are three obvious conclusions to this analysis. First, we will need to use instance-based engines, so we don't store each geometry
piece individually but as an instance that we will repeat many times. Storing unique geometry would require a huge amount of storage
space. Second, some kind of LOD analysis will be required to maintain a decent performance level. Third, a fast routine to discard an
object (based on its size and distance) will be required.

A popular approach is to combine a primitive table with some clever spatial indexing and LODs to ensure that we can display a realistic,
full environment at interactive frame rates. To begin with, we will have a primitive list, which is nothing but an array holding the
fundamental building blocks of our scenario, similar to the old-school sprite tables used to hold tiles in a side scroller. This table will store
each unique geometrical entity in our game world. For a forest, for example, we will need several types of trees as well as some stones
and plants. Clearly, we won't store each tree, but just a few, which, once combined, will provide enough variation for the game. From my
experience, 10 to 15 good quality trees are all you need to create a good-looking forest.

Each object should then come with LOD support, so we can vary its triangle rate depending on distance. Discrete LODs, probably with
alpha-blending, are the most popular technique. Other, more sophisticated methods such as progressive meshes can be used as well,
but we need to be aware of some potential pitfalls. Remember that a progressive mesh recomputes the representation as a combination
of vertex splits and edge collapses dynamically. The key is to reuse the solution for several frames, so we are not recomputing the object
model in each frame. So how can we do that in an instance-based game world? Quite possibly, the same tree will appear at varying
distances within a single frame, making us recompute it too frequently and slowing down the application.

Once we have our primitive list, equipped with LODs, we need to decide how to access spatial information. For large scenarios, it is
fundamental to allow fast queries such as "Which objects are in our view frustum?" and so on. We simply cannot afford to traverse the
instance list object by object. Imagine a large game level, spanning many miles. We will then store the map in a spatial index. |
recommend using a regular grid with each bucket holding a list of <primitiveid, position> pairs. By using a spatial index, we can quickly
scan only that portion of the map surrounding the player, not the whole thing. The choice of a gridlike approach offers great performance
at the cost of some extra memory footprint. But it surely pays off at render time. Other approaches such as quadtrees work equally well,
but they are designed for static geometry only. A grid can easily be tailored so items can continually move around without degrading
performance.

The spatial index should then be used for two different purposes. Using a frustum test, we will need to know which objects lie within the
viewing frustum, and process only those. Here | recommend using not the four lateral planes, but the farZ plane as well. This way we
can incorporate Z clipping elegantly. Add some fog so objects do not pop in too abruptly, and you are all set. Then, the second purpose
of the spatial index is to aid in computing collision detection. Here we can restrict the search to the cell the player is staying in and the
nine neighboring cells. Only objects located in these cells will be checked, so our collision detection can be considered effectively as
independent of the level size.

There is a downside to all these great features, and that is memory footprint. A grid spatial index will eat some of your precious
resources, so make sure you select the cell size carefully to control memory usage. Indexing a 1x1 km with a cell size of 10 meters
(great for speedy collision detection) involves slicing it into 10,000 cells. Even if each cell is just a <primitiveid, position> pair (assuming
only one object per cell), the resulting structure will only be a couple of megabytes in size.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html
file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

In Closing

Outdoors algorithms are extremely different from their indoors counterparts. The focus is no longer on occlusion, but on detail handling,
and this makes a huge difference in their design. Indoors algorithms are well understood today, whereas terrain (and especially scene
graphs) rendering for outdoors algorithms is still being researched. Currently, most effort goes into occlusion detection for outdoors
games. For example, how can we detect that a hill is actually occluding part of the action, and thus save precious triangles? This is no
easy question. The amount of data makes this a very interesting question. A quick and easy solution, assuming your hardware supports
occlusion culling, is to render the terrain front-to-back before rendering any other objects such as houses and characters. We can then
use the Z information from the terrain to drive an occlusion query phase. But this is not a perfect solution. Thus, many teams are working
to incorporate concepts such as PVS and view distances into outdoors scene graphs. The complexity of the problem definitely makes for
an exciting challenge!

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 15. Character Animation

"As a director, | wouldn't like me as an actor. As an actor, | wouldn't like me as a director."”

—Robert Redford
KEY TOPICS

® Analysis

® Explicit Versus Implicit Methods

o Explicit Animation Techniques

® Implicit Animation Overview

L4 Prop Handling

® A Note on Vehicles

® | imb Slicing

® acial Animation

® |nverse Kinematics

® Blending Forward and Inverse Kinematics

® Closing

We have seen many different techniques to effectively display compelling scenarios in real time. These game worlds are the perfect
setting for our adventures. But who will the player be? Who will his enemies be? And his friends? In traditional drama theory, characters
are used to make us feel emotions. We are attracted to or repulsed by them, and thus get attached to the story. Computer games and
video games are no different. Characters play a key role in the gameplay. Whether they are purely decorative, used as narrative
elements, or are part of the action, characters make us feel involved in the game.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Analysis

Some problems in computer science have well-established, solid solutions. The intricacies of such problems are completely understood,
and optimal algorithms have been found. As anyone familiar with algorithm theory knows, sorting a list of N numbers needs at most
N*log(N) comparisons, and no algorithm can perform better than that (in a worst-case scenario). Sorting algorithms is thus a great
example of these "silver bullets." But most problems are a bit more complicated, and each solution has some downsides, so evaluating
and selecting the right option is far from trivial. Character animation is one of these tricky problems. Many different approaches have
been devised through the years, but all of them have potential pitfalls. Generally, we will be able to choose between CPU-intensive
methods (which use little memory) or memory-hungry methods (which in turn use little CPU resources). In this chapter, | will expose
many different methods, trying to make evident the advantages and shortcomings of each technique. This way you will be able to select
the algorithm that best suits your needs.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ETY K

Explicit Versus Implicit Methods

A first distinction divides animation algorithms into two broad categories: explicit and implicit methods. Explicit methods store the sequence
of animated vertices from our geometry every few frames, like snapshots from a movie. Once stored, a variety of techniques can be used
to reconvert the original data, ensuring smooth animation. As a characterization, explicit animation methods are easy to code and
understand, and often involve very simple math. On the other hand, storing animated vertices is memory intensive. Many poses are
needed to convey the true sense of motion, and that means storing lots f ifﬁ f ;rpical MD3 file (the popular explicit animation format
used by Quake 3) is about 10MB, and that is only for one character. SeJFi ure 15.7 for an example of an animation loop created using one
of the explicit methods explained in this chapter.

Figure 15.1. Explicit animation. We store the full mesh animated for each frame.

On the other end of the spectrum, we have implicit animation systems. These methods do not store the animation data, but instead store a
higher level description of the motion. Skeletal animation systems, for example, store the configuration (in terms of its rotation angles) for
each joint, like the elbow, knee, and so on in our virtual character. Then, in real time, this description is mapped to an unanimated
character mesh, so the animation is computed. This computation usually involves complex math with trigonometry and matrices. Thus,
these methods are all fairly intensive for the CPU.

On the other hand, memory footprint is minimal._Implicit methods only need small data structures to convey the description of the motion.
You can see skeletal animation depicted in .

Figure 15.2. Left: animated character; right: skeleton that generates the animation.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Explicit methods were very popular in older 3D games because the hardware did not have CPU power to spare. Those games did not use
many animation cycles anyway, so the relatively high memory footprint was fairly acceptable. More recently, explicit methods have
successfully been used in games depicting groups of people, because animating them using implicit (hence, CPU-intensive) methods
would be prohibitive. On the other hand, implicit animation is becoming more and more popular. It is the way to go as character animation
becomes more detailed, triangle counts skyrocket, and games try to provide a broad variety of interactions. In these scenarios, you simply
can't have all the animations precomputed. It would be memory suicide.

An added advantage of implicit methods is that they can be adapted to the scenario. Imagine a character who walks in an outdoors
scenario full of hills and slopes. If explicit animation is used, all the possible animation cycles must be preprocessed. Thus, if the character
can walk on different sloped terrain, you need to have cycles readily computed for each one. With an implicit method, it is easier to modify
the animation on the fly so the feet adapt to the irregular ground. Using inverse kinematics, the animation can be recomputed, so the
terminal elements (hands, feet, and so on) are in specific configurations. The same applies to characters grabbing objects, dropping them,
climbing, or any other situation in which the character interacts with external elements.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Explicit Animation Techniques

We will begin by reviewing explicit animation techniques. Although they are being substituted by the more powerful implicit paradigm lately,
there are still many applications for explicit methods. Some games will need to render lots of characters onscreen, and the CPU hit
imposed by implicit methods will be prohibitive. Other games will need simple animations attached to characters, and using an implicit
solution might be a bit too much effort for the results needed. Whichever the case, we will review three classic approaches to explicit
animation.

Frame Animation

The simplest way of animating a character can be derived from traditional animation techniques. In old-school animation, the frames of a
character in an animated movie were drawn on cellophane sheets, so there were as many sheets as poses or frames we should depict.
Frame animation works similarly: It involves storing each frame in the animation sampled at whichever rate we will be displaying it (usually
25 frames per second or more). We will thus store many copies of the same mesh, one per frame. Then, at runtime, we will just paint the
mesh that depicts the current state of the character. By synchronizing this with a timer or an input controller, the illusion of animation can
be achieved.

So, what do we need to store for each frame? Clearly, we need to store vertex coordinates. But it does not really make much sense to
store mapping coordinates as well, because texture mapping will very likely be constant throughout the animation cycles. We only need
one copy of this data for the whole animation. In the end, you will discover we only really need the vertices for each position and probably
the shading information: vertex colors, normals for lighting, and so on. This greatly reduces the memory footprint. Even better, if our
character is defined by means of an indexed list of faces, the index list only needs to be stored once.

Even with all these optimizations, frame animation is memory hungry. This brute-force approach can only be recommended for very
specific situations involving very few frames and small triangle counts.

Frame animation can also have another potential downside. In-game frame rates are never completely stable. Oscillations in geometry
complexity, number of onscreen characters, or many other situations can make our ideal frame rate go up or down. As you saw in the
opening chapters, we need to implement some measures to ensure that the in-game action does not vary in speed as well. We don't want
our characters to walk faster or slower depending on the circumstances.

The solution comes from using a real-time clock and using the timing to compute real-time positions for all in-game elements. The problem
with frame animation is that we have the mesh evaluated at discrete points in time. We can choose the closest available evaluation to the
current point in time, but we will always see the jitter in animation speed.

To keep animation running at a smooth rate, we will need to accurately compute in-between frames, so we can display a good
approximation of the animation with arbitrary precision. To do this, we will use interpolation techniques, which use mathematical functions
to compute the desired value. Interpolation is extensively used in the next section, so read on for more information.

Keyframe Animation

A more involved technique can help us reduce our memory needs while keeping the same simplicity and elegance as regular frame
animation. To better understand this variant, we first need to discuss how animation is created in content-creation packages such as 3ds
max, Maya, or Lightwave. Animators usually create a motion by defining a number of "key frames," or well-known positions that determine
the complete motion in their package of choice. For a 50-frame sequence, this might involve setting keyframes at frame 0, 15, 30, and 45.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The character will then loop through the sequence, using keyframes and interpolation to derive all the remaining frames. This is a
timesaver for the artists because they can determine a complex motion using just a few directions. A two-second cycle (which would total
50 frames) can often be described within 5 to 10 keyframes.

Taking advantage of this property is the core of keyframe animation. We will only store these keyframes as specified in the modeling
package. This is clearly a memory savings aditional frame animation. The animation engine will take care of computing any
in-between frame at runtime. As shown in , if we are requesting the frame at 0.67, we need to blend the two closest keyframes
(the one at 0.5 and the one at 0.9). You might think the interpolator is an added CPU cost to the algorithm, but this is actually untrue. Any
frame animator would end up using interpolation as well, and thus, the CPU cost of frame and keyframe animation is essentially the same.

Figure 15.3. Interpolation is required to render a frame in-between two keyframes, such as
frame 0.67 in the figure.

° ° keyframes

| l |
| ! |
0 0.25 0.5 1

time

There are several variants of the keyframe animation scheme, and each differs fundamentally in the interpolator used. As a first (and most
popular) option, we can choose to compute the required frames using linear interpolation, which will interpolate each value (X, Y, and Z)
using a straight line between an initial and an end value. Linear interpolation can be computed easily using the following equation:

Interpolator=(timevalue-lastkeyframe)/ (nextkeyframe-lastkeyframe);
Interpolated value=lastvalue*(1-Interpolator) + nextvalue*Interpolator

In the equation, lastkeyframe and lastvalue store the time and value of the last keyframe (to the left), andhextkeyframe and nextvalue store

the time and value for the next keyframe (to the right). Remember to perform this same computation for X, Y, and Z. Here is the complete
code to interpolate two 3D points:

point interpolate(point p1,long timel,point p2,long time2,long currenttime)
{

float alpha=(currenttime-timel)/(time2-timel);

float alphainv=1-alpha;

point res;

res.x=pl.x*alphainv + p2.x*alpha;

res.y=pl.y*alphainv + p2.y*alpha;

res.z=pl.z*alphainv + p2.z*alpha;

return res;

}

Linear interpolation ensures smooth movement at a very low CPU cost. In the preceding example, we get a cost of six
additions/subtractions, six multiplies, and one divide per vertex. If we are just using frame animation (time2-timel) equals one, we save
one subtraction and one expensive divide. On the other hand, linear interpolation can sometimes yield poor results. Most animation
packages use more powerful interpolators (Bézier, Hermite, and so on), so when we see the results with just linear interpolation applied,
some motions tend to look robotic and unnatural.

One solution to raise the quality is to make sure your keyframes are not too far apart, thus reducing the blockiness of the motion. A
popular mathematical lemma states that any continuous curve can be reduced to a straight line if the interval is small enough, and this is
what we will try to exploit here. Trial and error in this situation is the best choice because fast motions (such as fighting moves) will require

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

higher sampling rates than slower, paused motions. Note, however, that more keyframes implies a higher memory cost.

Thus, a better solution is to automatically extract keyframes from a high-resolution animation sequence, so the chosen keyframes ensure
that a fixed quality threshold is maintained, and blockiness is minimized. The coding idea is pretty straightforward: Store the animation at a
high sampling rate (such as 25 fps), and then use an analyzer to find out which frames can be discarded with little or no effect on the
results. This can be achieved in an iterative manner, discarding the least significant frame at each step until we reach a limit error level. By
doing this, we can ensure that our resulting animation is well suited for real-time display, keeping the best possible quality. Be warned
though: The problem of deciding on just the perfect set of frames to achieve optimal results is an inherently complex problem, so any
solution you implement will be computationally expensive.

For those working on high-powered platforms, we can solve all these problems by using a more powerful interpolator, hopefully the same
one used by your animation package of choice. This way you can store fewer frames and ensure one-to-one correspondence between
what your artists animate and what the engine renders.

As an example of this approach, one of the most popular interpolators utilizes a cubic curve, which smoothly interpolates using the
beginning and endpoints as well as the beginning and ending normals. Techniques such as Hermite polynomials or even Bézier curves
can be used to do the math.

Tagged Interpolation

Both frame and keyframe animation methods are easy to code, but come with a host of problems for the programmer. Memory footprint,
as we have seen, can become a serious issue, especially if we try to animate high triangle counts or need to store lots of keyframes.

Still, there are other, more subtle problems. Imagine that you are creating a character for an action title. The character must perform a
variety of animations, so the game is visually rich. For example, he must be able to stand still, walk, and run (both forward and backward).
He also needs to jump, crouch, and shoot three different weapons. A first, superficial analysis reveals we will be using 10 different
animation cycles:

® Stand still

® Walk forward

® \Walk backward

® Run forward

® Run backward

® Jump

® Crouch

® Shoot first weapon

® Shoot second weapon

® shoot third weapon

Everything looks fine until the lead designer comes along and suggests allowing the player to shoot while moving for increased realism.
This might look like an innocent suggestion to the untrained eye, but if you do the math, you will discover you don't need 10 cycles
anymore but 28. You have seven "poses" (stand, walk forward, walk back, run forward, run back, jump, and crouch) and four "actions" (do
nothing, and shoot each of the three different weapons). Notice the combinatorial pattern? That's the root of an annoying problem with
keyframe approaches.

® Stand; do nothing
® \Walk forward; shoot weapon 1

® \Walk backward; shoot weapon 2

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

® Run forward; shoot weapon 3
® Run backward
® Jump

® Crouch

In the Quake Il game engine, this problem could be easily spotted during multiplayer games. To save the then scarce animation
resources, these combinatorial cycles simply were not available. So, an enemy running toward us while shooting would correctly render
the "shoot" pose while keeping both legs still as in an idle animation. This was sometimes dubbed "player skating" because players
seemed to glide over the map.

For Quake I, the team at id Software found a satisfactory solution, which they calledagged animation, and implemented in the MD3
animation system. The key idea is to think of each character as if it were divided into several body parts, much like action figures. For
Quake 11, characters were usually divided into a "head" block, a "torso” block (from the neck to the belt level), and a "legs" block (from the
belt downward). Then, each of these body parts had its own animation cycles, so combinatorial actions could be achieved by stacking
cycles from each body part. In this case, our head part would remain unanimated. Animation cycles for the torso and the legs are as
follows.

Legs:

® Stand still

® Walk forward
® \Walk backward
® Run forward

® Run backward
® Jump

® Crouch
Torso:

® Stand still
® Shoot first weapon
® Shoot second weapon

® Shoot third weapon

Once the animation cycles have been identified, it is time to link the body pieces together, so the whole looks like a complete character. To
do so, the designer must manually specify a pivot point in each body part, so each part basically knows where it should be attached.
These pivots (which are nothing but coordinate systems essentially) are called tags, and hence the name of the animation system. In
typical Quake Il terminology, we have three body parts (head, torso, and legs), and four tags. The first tagtéig_floor) is used to indicate the
ground level, so the character stands well on the terrain. This tag is usually attached to the legs. A second tag (tag_legs) specifies the joint
between the legs and torso. A third tag (tag_head) provides the binding between the torso and head. The fourth tag {ag_weapon) is

usually placed inside the right hand, so the character can hold interchangeable weapons realistically. You can see a tagged animation
character with body parts highlighted in Figure 15.4.

Figure 15.4. A character ready for tagged animation. In this case, the body has been divided into
head, torso, legs, and arm, so the arm can be animated as well.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Notice that tags specify where each body part should be placed (both in terms of rotations and translation). But how do we ensure
continuity between legs and torso (or torso and head)? Ideally, we should stitch both body parts together to ensure a perfect joint between
them by sewing continuous triangles together. However, the Quake Il animation system chose the easiest solution. No sewing is
performed, so the two body parts are not really integrated: They are just put one beside the other like two bricks. To prevent players from
noticing this, the body parts interpenetrate each other slightly, so the whole character always stays together. Artist tricks such as wide
belts and clever textures help convey the sense of continuity.

Tagged systems can be extended to achieve quite sophisticated effects. Imagine that you need to bind characters to vehicles, whether it's
a horse for a medieval role-playing game (RPG) or a motorbike in a racing game. All you have to do is tag your vehicle so your animation
engine knows where to place each element. Need to do a system where your character can be heavily customized with weapons, a
helmet, and shoulder pads? Tags are the way to go whenever flexibility and expandability are needed. Tags are also very convenient. You
can add props to your character dynamically. In the end, a character like a flying dragon that carries a rider holding a sword, which in turn
has an apple stuck to the tip, can be achieved with a tagged-animation system. In fact, the paradigm is so well thought-out that some
implicit animation systems use tags to handle props for characters.

Tagged systems offer a significantly lower memory footprint than regular keyframed systems, especially for those cases where we need to
perform different actions with different body parts simultaneously. Obviously, memory footprint will still grow linearly to the number of
vertices as you add cycles to your animation. CPU use, on the other hand, will remain more or less stable and similar to that of regular
keyframe animation, because we are just interpolating keyframes and placing geometry blocks in space. If the graphics hardware supports
hardware transforms, the placement of each body part comes at almost no cost to the CPU.

However, tagged animation systems have some limitations that we must be aware of. First, animation is still bound explicitly to the
character. So, if we need to represent a lot of different characters using the same animation cycles (say, nonplaying characters in a
role-playing title), we will need many copies of those cycles, and sooner or later we will run out of memory. It would be great to share
animation loops between different characters so two characters would only use one walk cycle.

Second, a tagged animation engine will not provide us with environment adaptation: Following the slopes in the ground, reaching out for
objects realistically, and so on, are nearly impossible to do with the methods we have seen so far. Even if we have a large collection of
animation cycles, our range of actions will be limited to what has been canned previously.

Third, there is a limit to body part division. Imagine that you want to do a sword fighting game, where you need to have a wide range of
motions. Your animation programmer proposes doing a tagged system, using more tags to ensure that no combinatorial cycles are ever
needed. Specifically, he proposes the following list:

® ead

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

® Torso (from neck to belt, no arms)
® |eftarm

® Right arm

® | eft leg

® Right leg

This may look good at first glance, but notice how many motions require synchronizing many body parts. Holding a weapon, for example,
will involve both arms and the torso. Walking will involve both legs, and if the upper body is actionless, both arms and the torso. All these
relationships will need to be coded into the system, so our animation engine will require a significant layer of glue code to ensure that body
hierarchies are well kept. Compare that to the classic MD3 file where there are just two body parts to take care of (the head is usually not
animated). The animation logic layer is still there, but it is simpler to manage.

So clearly, tagged animation is a case for the "too much of a good thing can be bad" discussion. In the right measure, it can greatly
improve upon a keyframe approach, often reducing the memory footprint by half or even better. But dividing our body into more parts than
is strictly required will make things worse: The control layer will grow out of control. When programmers fall into this “overdivision"
syndrome with a tagged system, it is usually a sign that they really need to get a skeletal animation system instead. They are just trying to
force the tagged system to behave like a skeletal system at a fraction of the cost, and that's generally not a good idea.

Implementing a tagged animation system is almost as straightforward as implementing a regular, single-mesh keyframe interpolator. We
only need to store animation pointers for each body part, so we can keep track of which animation and frame each mesh is playing. Then,
we need to be able to render the whole hierarchy, using the pivot points. To do so, most systems use a geometric object that hints at the
pivot's location and orientation. In most Quake-based modelers, a triangle is used, so the first point in the triangle is used as the pivot's
location, and then two vectors from that point to the other two define the coordinate axes. By computing the cross product between these
two vectors, an "up" vector is returned.

At runtime, the pivot's position and orientation are usually stored in a quaternion, a mathematical operator that encapsulates locations and
orientations elegantly. A quaternion is the generalization of a complex number, consisting of four floating-point values. Quaternions are
explained in the next chapter as a way of implementing camera interpolators in games like Tomb Raider. Generally speaking, they are the
way to go whenever you need to smoothly blend between successive interpolations. Read the next chapter, especially the section
referring to the spherical linear interpolation, for a thorough description on how a quaternion can be used to compute the pivot point at
runtime. Once we have the pivot point in place, all we need to do is use the transform stacks to apply the right rotations and translations to
the vertices.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Implicit Animation Overview

Now that we have mastered explicit techniques and learned to exploit their benefits, we will move on to implicit animation. Be warned
though: Implicit systems are significantly more complex than explicit systems, so you better make sure your matrix knowledge is
up-to-date. You will surely need it. On the other hand, implicit engines are much more powerful and offer sophisticated controls for the
animation programmer. Perfect environment adaptation, very low memory hit, and higher triangle counts are just a few of its benefits.

As stated in the opening section, implicit animation stores a description of the movement and evaluates it on the fly, effectively animating
vertices in real time. To do this, it requires different data structures than those used in explicit animation.

To begin with, we need to know about the character topology. Usually, a skeletal structure is stored, specifying the rigid bones that drive
that character's movement as well as the relationship between bones and vertices. We need to know which vertices each bone should
influence in order to animate them properly. We will also need to know which bones are connected by joints, so we know how to inherit
movement. Moving the knee should affect the foot, for example.

Additionally, we will need an animation file that stores the animated cycle in implicit form. Usually this file will consist of a series of
snapshots that sample not the geometry, but the joint configuration. By knowing the bone structure and the rotations of each joint at a
given time, we can apply the pose to the geometry and thus animate it.

Two general paradigms exist for implicit animation: forward (or direct) kinematics (FK) and inverse (or reverse) kinematics (IK).

In FK, we will start from a root node (usually, the pelvis) and propagate the skeleton downward, inheriting motions as we advance. The
upper arm should inherit the chest, the lower arm both the upper arm and chest, and finally the hand. FK is coded by stacking series of
transformation matrices as we enter each body part. It is the method of choice for motion-capture data or for coding general, broad moves.

IK works the other way around: It starts at the terminal element (the hand, for example) and computes the joints as it moves higher in the
animation skeleton. Thus, IK allows us to locate an element in space, and then calculate the needed configuration of its ancestor joints.
We can begin by saying "the hand must be here," and automatically compute where the elbow and shoulder should be. IK is very useful
for adaptive and physically correct animation. Characters can adapt their footsteps to irregular ground or reach out to grab an object
realistically. But this sophistication comes at a cost: IK is computationally more expensive than FK.

IK is not, however, a miracle solution. IK alone allows us to position hands and feet on the ground, but this has nothing to do with realistic
walking or running. A new technigue has emerged that blends both techniques for better results. The core idea of this hybrid approach is
to use FK (possibly coupled with motion capture) for overall movement, and blend the results with IK for terminal joints and its direct
ancestors. This way we can combine the perfection and realism of a canned walk cycle while getting realistic knee and feet adaptation to
the ground.

Some systems use physically based animation for increased realism. Under this technique, movement is computed as the consequence of
physical processes. Each body part has a weight and inertia. As the result of the physical simulation, joint configurations are computed,
and the character is finally animated using FK.

Implicit animation has many advantages (and a few disadvantages) over explicit systems. On the plus side, memory use is greatly
reduced. Implicit systems only store joint configurations, which is orders of magnitude cheaper than storing the complete mesh at each
keyframe. Moreover, implicit systems can implement many advanced effects such as physically correct animation, adaptation to rough
terrain, or realistic intercharacter interactions, to name a few. Last, but not least, an implicit animation system can share animation data
between different characters. If you have 10 different in-game characters that share a common walk cycle, you only need to store the
animated joint list once, because the vertices are computed on the fly.

The main disadvantage of an implicit animation system is the coding complexity and computational cost. Programming a skeletal
animation system is significantly harder than storing explicit animation data. Because matrix math is involved, if you decide to implement
IK or a physically correct system, the equations are not trivial. As a direct consequence of this, your animation subsystem will consume
more CPU cycles. Depending on the application and target platform, this computational cost might be prohibitive, and explicit systems
might be the way to go.

Forward Kinematics

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

FK is the easiest way of implementing implicit animation. In its simplest conception, we start at some base node (usually the pelvis) and
propagate transforms to the descendants. Each joint has its own local coordinate system, which we will use to propagate transforms in a
hierarchical manner. The pelvis will only have its own transform, whereas the femur will stack both the pelvis and the local transform, and
so on until we reach our toes. You can see the hierarchical nature of FK pictured in

Figure 15.5. Left-to-right, sequence of FK animation, starting from the pelvis and moving
downward to the right foot.

FK requires three components: the skeleton, the base mesh, and the animation cycles. To begin with, the skeleton defines the hierarchy of
body parts that constitute one complete character. A simple skeleton can consist of about 18 bones:

Hand Upper leg for both legs
Lower arm Pelvis

Upper arm for each of the two arms Three bones for the chest
Foot Neck

Lower leg Head

But more bones can be added as needed: Fingers and facial muscles can all be simulated using extra bones. As an example, we will
review bone-based facial animation at the end of this chapter.

The second element of an FK animation system is the mesh, which is affected by the underlying bones. Skeletal systems usually employ
single-skinned meshes, so continuity is preserved. Additionally, they can choose to let each vertex in the mesh be influenced by one and
only one bone in the skeleton or to allow for multibone influences for smoother animation. This is sometimes not very relevant in highly
rigid body parts like a finger, but a chest, or even more so, a face, will definitely show improved quality by using multibone influences. Old
titles, like the original Tomb Raider, did not use a single-skinned mesh, but instead used a list of separate body parts: Head, arms, legs,
and so on were all divided. This way identifying vertex-bone relationships became trivial. Each object was coupled with one bone and only
one bone. But this technique was quickly abandoned because gaps appeared as the animation was applied, and the body did not hold
together sometimes.

Skeletons and meshes are usually stored in a reference pose, which involves horizontal arms to each side of the body, palms-down, and
legs straight vertically. We will assume this pose does not have any joint rotation component. Then, animation cycles simply store joint
rotations. Most joints are monoaxial (like the elbow, for example), whereas others are biaxial (a shoulder can yaw and pitch, but cannot
roll). A third group allows the three degrees of freedom, like the neck or wrist.

At runtime, we carry out a two-step process. We first reconstruct the matrices for each body part. To do so, we begin at the base node
(pelvis) and follow_the skeletal hierarchy, stacking each joint's transforms. Again, this can be achieved easily both with regular matrices or
quaternions (see , "Cinematography"). If you choose matrices, be aware that gimbal lock may arise, especially in joints that can

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

rotate over more than one axis. If this is the case, switch to quaternions instead.

Once we have recomputed the condensed matrix for each joint, we need to apply matrices to vertices. This process is the most
time-consuming, and the one we need to optimize carefully to reach optimal performance. After all, it's nothing more than matrix-vector
multiplies.

Logically, skeletal animation has a much lower memory footprint than frame-based methods. We only need to store each joint's
orientation, and the run-time engine will take care of reconstructing the mesh.

Math of Skeletal Animation

Let's now assume we have a character mesh where each vertex is influenced by one or more bones. We will also assume each bone has
three degrees of freedom (roll, pitch, and yaw). This can be optimized easily later on for joints with less degrees of freedom. Additionally,
bones are laid out in a hierarchy, so we can access ascendants and descendants easily.

The algorithm works as follows: We first process the skeleton and compute the actual transform for each vertex. To do so, we begin at the
root, which is assigned the transform specified by its roll, pitch, and yaw. Then, we move into the skeleton, chaining transforms along the
way. A first degree descendant of the base node will have the base transform and the descendant's own transform applied. The process is
recursed until all bones have been processed in a treelike fashion. Let's examine the specifics.

We start at the base bone. Then, we perform a nested loop. The outer loop scans the bones that are direct descendants from the one we
called the routine with. If we start with the pelvis, we will probably have three bones to scan: the lower back, the right femur, and the left
femur. We then need to scan each vertex in the mesh and compute whether the bone we are examining actually influences that vertex.
This is performed by a weight function. The weight function usually comes from your modeling package of choice as a series of values that
determine which bones influence which vertices and how. But if you don't have such a function, you can cook your own. All you need to do
is compute weights based on the distance from the vertex to the bone (a line segment). Computing segment-point distances is not very
hard. Store the segment in parametric equation form, such as:

X= X1 + (X2-X1)*
Y= Y1+ (Y2-Y1)*
Z=71 + (Z2-Z1)*

Thus the segment is defined with t-values in the 0..1 range. Then, solve the point-line test, computing not the actual point, but the t-value
assigned to it. Three cases are possible:

T<0 X1 is the least-distance point
0<=T<=1 The computed point is the least distance
T>1 X2 is the least-distance point

Then, the weight function can take the form

Weight = k/distance”

with k determining the scale of the function, andn controlling the falloff speed. For human-sized characters, values of 1 and 4, respectively,
do the job remarkably well.

Back to our main algorithm, we now have two loops. The outer loops bones, and the inner iterates vertices and computes bone-vertex
weights. Then, if the weight is below a threshold, we can forget about it and leave the vertex unaffected by that bone. If, on the contrary,
we detect a significant weight, it is time to transform the vertex.

To do so, we need to first translate it with regard to the bone's pivot point. Because rotations are centered around the origin, we need to
make sure the bone is properly centered before the math can actually start. We can then stack the transform, either in quaternion or matrix
form. At this stage, we actually apply the transform from the bone to the vertex. This involves both the point versus matrix/quaternion
multiply and scaling the processed vertex by the bone weight. Remember that other bones further along the hierarchy can affect this
vertex as well, so we need to accumulate results from each analyzed bone. In addition, we can undo the translate transform so the bone

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

and vertices are referenced to world coordinates again.

This is a recursive algorithm. If the current bone has any descendants, we must call the same routine, so more transforms are weighted in
and incorporated into the solution. In the end, once terminal nodes are reached, the whole mesh will have been affected by different
bones. Here is the complete pseudocode for this routine:

deform (bone root, mesh originaldata, mesh processeddata)

for each children of root
for each vertex in the original mesh
compute weight from bone to vertex
if weight > threshold
translate vertex by negated bone pivot (place pivot at origin)
multiply vertex by joint rotations
scale the resulting point by the bone weight
translate by bone pivot
increment the definitive value of such vertex by this solution
end if
end for
if this bone has children
deform (children of this node, original mesh,processed mesh)
end if
end for

Now, the ideal way to perform this on a single-skinned continuous mesh is to store vertices indexed (so less processing is needed) and
then paint them using a call to DrawPrimitivelndexed (Direct3D) or DrawElements (OpenGL). DirectX programmers will have the
advantage of internal support for quaternions, but overall the algorithm is not very complex.

However, this is a poor solution in terms of performance. Several stages can be improved by thinking a bit. For example, it makes no
sense to compute vertex weights on a per frame basis for all bones and vertices. It is just a waste of resources. In the end, the weight is a
number in the 0..1 range, which can be easily quantized to a byte. Assuming V vertices andB bones, we could store the weights as avxB
matrix. As an example, such a matrix for a character consisting of 1,000 vertices and 20 bones (a reasonable amount by any of today's
standards: notice | said 1,000 vertices, not 1,000 triangles) would occupy around 19KB, which is fairly reasonable. Remember that the
weight computation is pretty intensive because there are segment-point tests. Preprocessing all that information looks like a pretty good
idea, because we can turn it into a simple table lookup.

Hardware-Assisted Skeletal Animation

Another interesting idea is to rearrange your code so you actually store matrices as you go instead of vertex coordinates. This way you
can actually cache results for bones that did not change from one frame to the next, and so on. The source code would use an array of
matrix lists, so we can store which matrices affect which vertices. It would look something like this:

deform (bone root, mesh originaldata, mesh processeddata)

for each children of root
for each vertex in the original mesh
compute weight from bone to vertex
if weight > threshold
translate vertex by negated bone pivot (place pivot at origin)
multiply vertex by joint rotations
translate by bone pivot
add the condensed matrix to the list of matrices for the vertex
end if
end for
if this bone has children
deform (children of this node, original mesh,processed mesh)
end if
end for

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The main advantage of this technique is twofold. First, we can cache partial bone structures and their matrices for parts of the body that did
not actually change. Second, we can take advantage of better animation support in later versions of Direct3D (version 7 and later). In
Direct3D 9, for example, we can use the SetTransform interface to, in the end, stack matrices on a per vertex basis. The code is as follows:

for (vert=0;vert<numvertex;vert++)
{
/I'l assume four matrices per vertex
d3ddev->SetTransform(D3DTS_WORLDMATRIX(0),matrixarray[vert][0]);
d3ddev->SetTransform(D3DTS_WORLDMATRIX(1),matrixarray[vert][1]);
d3ddev->SetTransform(D3DTS_WORLDMATRIX(2),matrixarray[vert][2]);
d3ddev->SetTransform(D3DTS_WORLDMATRIX(3),matrixarray[vert][3]);

d3ddev.DrawPrimitive(D3DPT_TRIANGLELIST,FVF_VERTEX,vertex[vert],3,0);
}

And vertex weights are passed as part of the Flexible-Vertex-Format (FVF). A final improvement over this approach is to implement all the
animation pipeline in a vertex shader. If we follow the previous approach and accumulate the matrices required for each vertex, we can
animate on the hardware by passing the mesh in base position and the matrices on a per vertex basis. In the Cg programming language,
for example, we can do so with a very simple shader. We receive vertices along with four matrices, which are multiplied and weighted to
compute the final sum. Here is the source code for such an approach:

struct inputs

{
float4 position : POSITION;
float4 weights : BLENDWEIGHT,
float4 normal : NORMAL,;
float4 matrixindices : TESSFACTOR,;
float4 numBones : SPECULAR;
h

struct outputs
{
float4 hPosition . POSITION,;
float4 color : COLORO;
h

outputs main(inputs IN, uniform float4x4 modelViewProj,
uniform float3x4 boneMatrices[30], uniform float4 color,
uniform float4 lightPos)

{
outputs OUT;

float4 index = IN.matrixIndices;
float4 weight = IN.weights;

float4 position;
float3 normal;

for (floati = 0; i < IN.numBones.x; i += 1)

{

/I transform the offset by bone i

position = position + weight.x * float4(mul(boneMatrices[index.x], IN.position).xyz, 1.
- 0);

/I transform normal by bone i
normal = normal + weight.x * mul((float3x3)boneMatrices[index.x], IN.normal.xyz).xyz;

/I shift over the index/weight variables, this moves the index and
/I weight for the current bone into the .x component of the
/I index and weight variables

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

index = index.yzwx;
weight = weight.yzwx;

}

normal = normalize(normal);

OUT.hPosition = mul(modelViewProj, position);
OUT.color = dot(normal, lightPos.xyz) * color;

return OUT;
}

Given the CPU hit of any skeletal animation approach, this new hardware-skinning approach will likely become a de facto standard
because we get skeletal animation at a very low cost. All the heavy weight lifting is performed on the GPU.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Prop Handling

One typical enhancement to our base animation system is the addition of props, which can range from weapons to clothes, or even
vehicles. This feature adds richness to the game and has been key to the success of many popular titles. Luckily, accessories are
relatively easy to program. All that is needed are some minor changes and a bit of math, and our characters will be able to carry (or be
carried by) almost anything.

To begin with, we will need to add prop tags to our character. Basically, we need to know where each accessory attaches. The method |
recommend is essentially the same used in the Quake Il MD3 format, adding symbolic objects with no geometry value other than they
help us store the orientation of the prop throughout the animation cycle. Then, we will consider the prop as a rigid object attached to the
prop tag. This can easily be achieved by translating and rotating the prop to the attachment point.

The translation-rotation code can be implemented using two different strategies. If you are working on a frame-by-frame basis, the best
choice is to use matrix math. On the other hand, if you are working with temporally distant keyframes, a more powerful operator such as
quaternions will be a better match. For matrices, | suggest you build basis matrices for the orientation and use those to transform the
prop to its definitive location. The approach is very similar to the one we used for skeletal animation:

1. Translate the pivot point to the origin.
2. Multiply by the basis matrix.

3. Translate to the final position.

And basis matrices are built easily from the tag's geometry. Assuming vour tag is a triangle (which is what Quake used), you can extract
two vectors from the triangle's sides: Segments AB and AC (see figure 15.4) define them. Then, a cross product between them will give
you the third vector. Storing them in column form will give you the basis:

Figure 15.6. Building a base to place props with.

AB cross AC B

Right.x Up.x Front.x Pos.x

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Right.y Up.y Front.y Pos.y
Right.z Up.z Front.z Pos.z
0 0 0 1

This matrix represents a transform, which, when fed with points in the form (x,y,z,1), will convert them to the coordinate system defined
by the basis. In other words, if we transform each vertex in the prop using this matrix, the transformed vertices will be placed (and
oriented) the way our marker depicts. Life could be easy and fun all the time, but not usually. Problems occur when no one expects
them, and prop handling is a good example. To expose its problems, imagine that the sampling rate for the prop marker is lower than the
rate at which you will be displaying animations. Or even worse, imagine that you want to use interpolation to smooth the animation and
improve the results.

In both cases, your animation system would basically need to render something like frame number 3.765, which is definitely not 3, and
not quite 4 either. We have seen how we can use interpolation to approximate the position of the vertices at any given point in time,
integer or fractional. So how do we apply this to prop handling?

Quite clearly, our problem consists of generating a new transform basis for frame number 3.765. Unfortunately, this is easier said than
done. How can we interpolate a matrix, or even worse, an orthonormal matrix? Remember that we need all column vectors to be
normalized to have a modulus of 1. This is the normalization part of the equation. We also need the orthogonal part. The three vectors
(up, front, right) must be perpendicular to each other, which effectively means the determinant must be 1.

At this point, | will make use of our initial assumption. Our sampling rate is high, so orientation differences from one frame to the next will

be relatively small. As a result, we can safely do a direct interpolation of the basis matrices. This would be a deadly sin to a strict
mathematician, but consider this:

® The bottom row (0 0 0 1) does not really affect the interpolation because it remains the same.
® The rightmost column represents the position, which can definitely be interpolated safely.

® The orientation 3x3 submatrix undergoes a minimal change if frames are close in time.

This process will introduce some artifacts because the interpolated matrix is not a transform basis in the strict sense. But the error
incurred will be unnoticeable.

A more robust alternative would be to interpolate the two matrices and renormalize the three vectors (up, front, right) that make the 3x3
orientation submatrix. By doing this, we make sure we comply with the normalization condition of the basis. We can even interpolate front
and right only, and recompute the up vector doing a cross product. This would increase the computational cost but help comply with the
orthogonal condition.

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

A Note on Vehicles

Vehicles can greatly enhance the player's experience. From bikes to horses and seven-headed dragons, riding vehicles is as good as
gameplay gets. Vehicles can be implemented as if the character was a prop to the vehicle. We will place markers in the exact positions
where the character will be placed. All we need to do is make sure character and vehicle blend well together using good animation
cycles. If we are using IK, we can even make sure the hands of the character really hold the car's steering wheel for increased realism.
Additional markers will help us with this. Again, we will need both position and orientation to make sure the character's hands not only
stay on the wheel, but are also properly aligned with it.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Limb Slicing

Limb slicing (or being able to cut away pieces of an animated character in real time) can be easily added to any skeletal animation
system. The problem can be divided into two tasks: Cutting away the geometry (and filling any possible holes) and animating it.

Cutting away a character's arm and leg can easily be performed by deciding on the bone we will be cutting and deleting all triangles that
are influenced by it or any descendant above a threshold weight. Consider that we want to cut an arm away at the shoulder, for example.
We scan all the vertices and compute the bone weight from the upper arm. Those vertices with weights above a threshold will be

marked. Then, the same process is applied recursively to all bones below the selected one in the hierarchy. Notice that | said "above a
threshold," not "above zero." Some relatively distant vertices (for example, part of the chest) might be affected by the bone, even if it's still
distant. Thus, it is good practice to be conservative and set a threshold at which the cutting will begin. Here's the pseudocode for such an
algorithm:

void amputate (bone root, mesh originaldata)
{
for each children of root
for each vertex in the original mesh
compute weight from bone to vertex
if weight > amputation threshold
mark vertex as deleted
end if
end for
if this bone has children
amputate (children of this node, original mesh,processed mesh)
end if
end for

}

Once this step has been performed, we will have our original mesh with some vertices marked as deleted. All we need to do is actually
update the mesh structure deleting the vertices. Then, we will have a mesh with a hole where the arm should begin. We now need to
retriangulate that zone so the whole mesh is completed. To do so, we can follow a number of strategies. We can, for example, take the
pivot point of the ampu tated bone as a reference and do a star triangulation so the mesh is closed again. To detect which vertices we
should triangulate to, we take those affected by the bone with a weight below the amputation threshold and above a slightly inferior limit.
Clearly, these are vertices close to the amputation zone. Any triangulation algorithm can be used on this small data set to actually
reconstruct the mesh.

As for animation, there is no significant change. Matrices and bones will still be valid; the only change being the deletion of several
vertices in the mesh. Overall, the same algorithm can be used.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ETY K

Facial Animation

Most of a character's emotion and personality are conveyed through his face: Anger, fear, and disenchantment are really hard to simulate
if facial gestures are not available. Many of today's games and most games from the future will incorporate some kind of real-time facial
animation. The first step is lip-synching, or the ability to move the mouth and lips so the character looks like he's actually pronouncing each
word. On top of that, you can build a whole facial emotion system. Taking this to the extreme, facial animation could be integrated with a
full-body animation system, so characters could express themselves through body and facial gestures. This kind of approach yields
elegantly to a level-of-detail based policy. Facial expressions are only required for up-close characters because the nuances of emotion
are lost at larger distances. Thus, you could code a system that performed full-body animation, and as characters moved closer to the
camera, introduce facial animation and emotions as well.

There are two schools of facial animation. The first one is characterized by animating the vertices directly. Computational cost is reduced,
but memory footprints can grow, especially if a highly detailed face is to be animated. The second trend is to animate facial muscles using
a skeletal system. The skeleton of the character simply extends to his face, so we can animate areas of the face hierarchically. This
second method is CPU-intensive because many bones are required. For a character in the Sony game The Getaway, as many as 35
bones were used for the face alone.

Vertex-based facial animation is popular for simple games. Vertices are clustered according to face muscles, and displacement functions
are applied to convey personality. Coding such a solution is not very hard, and with some care, emotions can be layered toplex

expressions. One of the best exEmmummhﬂmuanng_Laﬂal animation demo by Ken Perlin, which can be seen infigure 15.4 and
is available from his web site at http://mrl.nyu.edu/~perlin/facedemd.

Figure 15.7. Ken Perlin's facial animation demo with all the controls to set parameters to
expressions.

ACTION

brows * BROWS Iup In-.--.-'. In:l-:--.-n
ond 8 CFEN . u 1-_|-;-l -:-|:.-:-r'.. :.-'.|||1t'.t' shut

fids b LIDSUP
LEFT/RIGHT

paze UP/DOWH
LEFT/RIGHT

haad ™ | WH

up mid down

lef tilinid l:r::uht

i mid down
: I I

0

-
b s |

[

COPEN
WIDE
ShILE
SHEER

http://mrl.nyu.edu/~perlin/facedemo

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Lefit side anly Hizht side only

l lines I 3D shading

Vertex-based systems do not scale well. As the number of expressions increases, especially if you add lip-synching to the mix, the amount
of expressions to model becomes unfeasible, both in terms of man-hours and memory footprint. In these scenarios, using a skeletal
animation system will yield much better results. Representation is extremely compact, and results are equally impressive.

Skeletal animation, on the other hand, animates vertices using a bone hierarchy. For a face, the hierarchical component of skeletal
systems will not be very useful, because these kinds of relationships do not really occur in faces. However, another characteristic of
skeletal animation will indeed be very useful: the ability to influence a single vertex by more than one bone, so a vertex in the cheek gets
influence from the jaw, eyes, and so on. Additionally, skeletal animation systems are great for performing selective blends—mixing a face
for the brows with a different expression for the rest of the face, for example. It's all a matter of selecting which bones from which
expression will be mixed.

Whichever method you choose, it is fundamental to understand the structure of the face in order to achieve realistic results. In this respect,
| recommend taking a look at the Facial Action Coding System proposed by Ekman and Friesen in the late 1970s. This system tries to
describe facial expressions objectively, using scientific criteria. It starts by analyzing expressions in terms of the muscles used to generate
them. All facial muscles affecting the look of the face were analyzed, and a thorough listing of their effect on the face was built. The list had
46 entries, which appeared by moving one single muscle or muscle group. You can then combine different muscles and their states to
convey a composite expression: a different muscle configuration for the eyes, jaw, brows, and so on.

To perform lip-synching, your software must be able to animate the mouth area to simulate the different phonemes, or sounds in the
language the character is speaking. Each language has a different number of phonemes; English has approximately 35. Because that is
such a large number (just imagine the amount of work needed to create the array of animated faces), sometimes phonemes that are
pronounced similarly are simplified, so less work needs to be done. This was discovered a long time ago by Disney animators, who
simplified the whole phoneme set to just 12 canonical mouth positions. Then, a facial animation system such as face morphs or skeletal
animation can be used to perform the actual animation. One of the problems with such an approach is that pronunciation has a high
emotional component. The same word said whispering or yelling at someone will look radically different.

However, facial animation using bones looks like the way to go for the industry— similar to the way skeletal animation replaced
frame-based methods progressively in the past. All that is needed are better bone layout strategies that help convey the wide range of
expressions and emotions of a human face. Obviously, most bones will control either the eyes (or brows) or the mouth, because these are
the main expressive elements in a face. But it's the precise layout that still needs to be mastered.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Inverse Kinematics

IK works from the terminal nodes and solves the transforms for the whole hierarchy, so the terminal has a certain position and
orientation. It is used widely in movies, and it is slowly finding its way into games. Grabbing objects, keeping feet on the ground
realistically, and character-to-character interaction are just some of the uses of IK.

From a programming standpoint, IK starts with some restrictions (usually, a terminal location and orientation) and tries to find solutions
depending on the skeleton geometry. To find such solutions, some approaches use analytic methods, computing solutions from
problem-specific equations. These methods, when possible to use, are the fastest at the cost of lower generality. Then, for complex
configurations, iterative processes are used, much like in numerical analysis where an exact solution is found by progressive refinement,
such as in the popular hill-climbing, problem-solving method. We will now take a look at two examples, one using an analytic solver and
another using Cyclic Coordinate Descent (CCD), which is one of the most popular iterative algorithms.

Analytic IK

Analytic IK solutions are found by describing the animation system we want to model in terms of equations and solving them. For simple
systems, this can be computed in real time and add a greater sense of control to the player. For example, a custom analytic solver could
be designed to animate the shoulder-elbow-wrist system in an RPG, so we can make the character grab objects or open doors
realistically. If we know the constraints beforehand, and the number of joints is small, analytic IK is the way to go.

Take a single bone that can rotate around a single axis, for example. Given a rotation angle R1 and a bone length L1, the endpoint of
the bone is

Px = L1*cos(R1)
Py = L1*sin(R1)
Pz=0

Notice | assumed that the bone rotates in the XY plane and is centered at the origin. Now, imagine that we concatenate that bone to a
second one in a chain.

The second bone is expressed in terms of length L2 and rotation R2 (see). The equation for the endpoint of the second bone
interms of L1 L2 and R1 R2 is

Px = L1*cos(R1) + L2*cos(R1+R2)
Py = L1*sin(R1) + L2*sin(R1+R2)

Figure 15.8. Two-bone chain as used for analytic IK.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/ /SR S

&

This gives us positions based on bone configurations, which is what we have been calling FK so far. It is now time to inverse these
equations and represent R1 and R2 (the real parameters, because L1 and L2 can be considered constants) in terms of a predefined
Px,Py pair. Thus, the equation must give us the joint orientations required to reach one endpoint in particular. Now, we will need some
algebra to get this working. To begin with, we will use the following identities:

cos(atb) = cos(a)*cos(b) — sin(a)*sin(b)
sin(a+b) = cos(a)*sin(b) + sin(a)*cos(b)

Coupling these with our FK equations and squaring both FK equations and then adding them, we reach the following:
PX2 + PX2 =L12 + L22 + 2L1L2cos(R2)

which can be trivially solved into:

Px2+ Py2- L12- L22
2L1L2

R2 = arccos

And substituting we get:

- (Losin({Ra))P + (L1 + Lacos(R:))R
(Lsin{Ra))P + (L + Lacos{Ra))P

Rl=arclan

This is the analytical solution to our IK problem, assuming it's happening in 2D. Similar approaches can be used for 3D, or we can simply
rotate the bones so they lie in one of the coordinate planes.

Now, you need to notice several relevant ideas. First, notice how the equations introduce the concept of reachability. Take a look at the
way we compute R2. It's an arc-cosine. Thus, it is assuming the argument is in the range between -1 and 1. So what happens if this isn't
s0? Obviously, the equations would have no solution, and the geometric interpretation would be that the point Px,Py is just too far.

Second, notice how reachability does not imply the use of restrictions. Imagine that this two-link system is indeed the upper and lower
parts of an arm. Maybe the proposed solution will imply bending it in ways we humans simply cannot do. Pure IK does not handle that.
We would need additional equations to take care of restrictions. In the case of a human elbow (which would be controlled by R2), we
would add:

R2>0
R2<Pi

to represent the fact that an elbow can actually only bend approximately 180 degrees.

The third interesting fact about all this is tha imes more than one solution will appear. In our case, | guess it's fairly clear that two
solutions are always possible, as shown in figure 15.9.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 15.9. Different solutions are often frequent in inverse kinematics.

solution 1

target

solution 2

Analytic solutions are used frequently in games, because they are easy to solve and can handle many game-specific problems. Need a
character to reach out with a hand? The preceding code is perfectly well suited for this, because the arm-hand is not very relevant, and
we need to focus on the shoulder and elbow. Need a character to place his feet on the ground? You can adapt the preceding equations
easily, maybe adding a third restriction that represents the angle at which the foot must stand on the ground, probably derived from the
slope. But what about general IK solvers? There are numerical methods available that can solve more or less anything by using iterative
processes. By using them, more complex systems with many restrictions can be analyzed. One of the most popular algorithms is the
CCD. Let's take a look at it.

Cyclic Coordinate Descent

CCD (introduced in 1993 by Chris Welman) works by analyzing joints one by one in a progressive refinement philosophy. It starts with
the last joint in the chain (the hand, for example) and tries to rotate it to orientate it toward the target. Then, it moves one link up, and so

Figure 1510

on. Let's take a look at the example in

Figure 15.10. CCD.

his document was created by an unreqgistered ChmMaugic, please go to http://www.bisenter.com to reqister it. T

We start at the last link in the chain. If the target was effectively within reach, that would mean we would need to rotate that bone to aim
at the goal. Thus, we compute that hypothetical rotation. This is easy, especially if you've read the chapter on action Al. It is like a
starship rotating to face an enemy. We create two vectors: one from the last joint position to the endpoint of the last bone (the effector)
and another from the same last joint to the target we are trying to reach. Now we can compute the angle between these two vectors by
computing the dot product of their unit vectors. Notice that we have the angle between two vectors, but we need to make sure we rotate
in the appropriate direction to make the shortest path possible. Again, we can use our Al knowledge by performing a cross product
between the two vectors to obtain a third, perpendicular vector. Then, we use the sign of the Z coordinate of the newly computed vector.
This sign determines the direction at which we must rotate, and the arc-cosine of the dot product will give you the angle.

Now we can move up one link and repeat the angle rotation process. In the end, this is a progressive refinement algorithm that will
eventually leave the last bone's endpoint close enough to the target, or bail out. But remember that this is just a computational algorithm.
The results are not meant to be shown to the user because the process of reaching out to the target by CCD does not necessarily look
very human. What we would actually do is use the angles computed as results of the CCD process to drive a quaternion or matrix
interpolator, which would create the animation. Thus, CCD is a preprocess we perform the moment we decide we must reach out for
something.

Here is the pseudocode for the CCD system | have just outlined. I'll assume we are starting at the final bone in the system.

While distance from effector to target > threshold and numloops<max
Take current bone
Build vector V1 from bone pivot to effector
Build vector V2 from bone pivot to target
Get the angle between V1 and V2
Get the rotation direction
Apply a differential rotation to the current bone
If it is the base node then the new current bone is the last bone in the chain
Else the new current bone is the previous one in the chain
End while

Team LiB |

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Blending Forward and Inverse Kinematics

Sometimes neither FK nor IK will do the job for us. FK will give us high-quality animation, especially when coupled with motion capture.
But the cycles will be canned, and thus behaviors like reaching out or placing feet on the ground properly will be impossible. On the other
hand, IK can help us in these situations, but solving a full body animation using IK will often yield unnatural animation. A human body is
full of micromovements and nuances that IK will fail to simulate, and there is a great deal of physics involved as well. IK cannot compete
with the quality of motion-capture data, and motion capture cannot provide us with the adaptiveness of IK.

Clearly, the solution is to blend both mechanisms. After all, techniques are just that: techniques. Our goal is not IK or FK per se, but the
creation of realistic character movement. Thus, we want high-quality characters that can interact with their environment realistically. This
problem was also encountered by the movie industry some years ago, and specific methods were devised to take advantage of the best
of both worlds. One interesting technique that I'd like to take a second to explain involves mixing FK and IK on a bone-by-bone basis,
making bones closer to the root more FK-oriented and bones closer to the terminals more geared toward IK. After all, both methods
output the same kind of data, usually in the form of quaternions.

Take a human arm, for example, and imagine that we want the character to shake hands with another character of variable height
realistically. If you think about it, this usually involves raising your shoulder more or less and changing the orientation of the elbow. Now,
imagine that we have a very good FK animated character with its arm motionless. All we have to do to take advantage of this cycle and
still create the IK handshake is to make joints closer to the hand more influenced by IK and less by FK. The shoulder would have most of
its control under FK with a little IK thrown in. The elbow would mix the two solutions in equal parts, whereas the wrist would almost totally
be controlled by IK.

To compute this, we can use CCD on top of an FK animation, making joints more stiff as we reach higher in the hierarchy. The chest, for
example, will be immovable; the shoulder will have a rotation factor that is half of what the elbow has; and so on. This way IK will be
weighted with FK, and both animation systems can coexist on the same platform. Such an approach was used in The Lord of the Rings
movies, because FK provided very good overall movements (such as walking and fighting). But IK was required in the terminals to
ensure good interaction with the environment.

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

In Closing

Character animation is a lengthy subject, and we have only scratched the surface. Subjects like motion blending or full-body IK
animation are left for the reader's research. Animation is an evolving subject, and new techniques are being devised constantly. Today,
the tide seems to be moving away from keyframed animation, and FK and IK are becoming more widely used. Physically based
characters that keep self-balance and implement correct joint rotation restrictions are beginning to surface for real-time games. After all,
the CPU is free from most rendering tasks, and that benefits animation engines. On the other end of the spectrum, many
hardware-assisted animation algorithms are surfacing. Right now, shader-based multibone skinning has become a reality, and some
demos show the incredible potential of this scheme. But there's mych more, A few books the size of this one are available, devoted
entirely to character animation. Luckily, some of them are listed in, "Further Reading."

Team LiB |

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Chapter 16. Cinematography

"Movies should start with an earthquake, and keep on growing in action.

—Cecil B De Mille
KEY TOPICS

® [irst-Person Shooters

L4 Handling Inertia

o Flight Simulators and Quaternions

® Third-Person Cameras

® Cinematic Cameras: Camera Styles

® Cinematic Cameras: Placement Algorithms
® Agent-Based Approaches

® Closing

Old-school games were little more than a few sprites painted onscreen with some bleeps pumping through the speakers. But as
technology has evolved and our craft has become more sophisticated, attention to detail has increased as well. Today, games involve
millions of polygons, visual and audio effects not so different from those used in movies, and strong cinematographic production values.
Placing the camera and illuminating the scene is extremely important from a narrative standpoint. It helps convey the story, but also can
act as a gameplay improvement. How many interesting games have been spoiled due to bad camera angles?

This chapter tries to shed some light on the world of interactive cinematography. More than a structured chapter, it is an unordered
collection of techniques that can be used to control cameras and lighting in a variety of games. Most of these algorithms will not be very
complex. Some trigonometry and algebra should suffice. But these simple technigues will in the end make a difference, enabling you to
create games that truly showcase a movielike experience to the player.

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

First-Person Shooters

The first camera approach we will explore is the first-person camera used in many first-person shooter titles, such as Quake. It is a
camera defined by at least four degrees of freedom (X,Y,Z and yaw), with pitch sometimes added to the mix. As far as control goes, the
camera uses the left and right cursor to rotate, and up and down are used to advance or move backward in the direction we are facing. A
side movement called strafing is sometimes present, allowing us to advance sideways. Strafing is useful in dangerous corners.

The math for such a camera is not very complex. To begin with, here is the code (using an abstract input controller) for the left and right
cursors:

yaw+=ROTSPEED*elapsed*(input.right-input.left);

In this line of code, input.left and input.right return 1 if the specified cursor is pressed, and 0 otherwise. The parenthetical expression will
return —1 if we are pressing left, O if both (or none) are pressed, and 1 if right is pressed. The result of this parenthetical expression will
act as a modifier to the first part of the expression. Basic physics tells us that

Velocity=Space/Time
Then, solving for Space we get
Space=Velocity*Time

which is fundamentally what we are doing here (albeit in an angular fashion)— multiplying a constant ROTSPEED (which will determine
how fast our character can turn) by the elapsed time; that is, the time it takes to complete a full game loop. By using this formula, we get
nice, device-independent rotation speeds. The character will rotate at the same speed on different computers.

Now we need the code that handles the up and down cursors. It follows the same strategy:
int dz=(input.up-input.down);
playerpos.x= SPEED*elapsed*dz*cos(yaw);

playerpos.z= SPEED*elapsed*dz*sin(yaw);

In the preceding code, dz is just the same idea we used before to control which keys are pressed. The meat lies in the next two lines. As
we did earlier, we'll use SPEED*elapsed to obtain device independence. To understand the next section (iz*cos(yaw)), a small diagram

and some trigonometry is required. See Figure 16.1.

Figure 16.1. Trigonometrical sphere, FPS camera.

J5im (yaw)

W

COS (yaw)

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Remember that the cosine and sine functions relate the angle in a right triangle to the length of its sides. In our case, we have the angle
(the yaw), and we need to compute the length of the side contiguous to it (which will become the increment inx) and opposite to it (which
will be z). We assume the hypotenuse to be 1 and scale bySPEED*elapsed*dz to reach the end result.

Strafing is just a variant of the advance controller just shown. The trick is that a strafe move is performed by advancing sideways—that
is, with a 90° increment with respect to regular movement. Here is the source code:

int dstrafe=(input.straferight-input.strafeleft);
playerpos.x= STRAFESPEED*elapsed*dstrafe*cos(yaw+3.1416/2);
playerpos.z= STRAFESPEED*elapsed*dstrafe*sin(yaw+3.1416/2);

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Handling Inertia

Most first-person shooters (FPSs) implement inertia on their camera controllers for increased realism. Our character accelerates
progressively and also stops moving in an inertial fashion. This makes movement smoother at almost no coding cost. To add inertia, we
just have to remember a few physics equations, such as this one:

acceleration=velocity/time

Solving for velocity, we get

velocity=acceleration*time

Consider how a car works: You do not actually set the speed of the vehicle but instead use the pedals to add acceleration (or braking) to
it. So we really need to implement our controller in terms of acceleration, not velocity directly. Our yaw controller would thus be

yawvel+=ROTACCEL*elapsed*(input.right-input.left);

if (yawvel>ROTSPEED) yawvel=ROTSPEED;

if (yawvel<-ROTSPEED) yawvel=-ROTSPEED;

if (input.right-input.left==0) yawvel=yawvel*BRAKINGFACTOR;
yaw+=yawvel*elapsed*(input.right-input.left);

The first line is just the acceleration version of our initial controller. Then, we use two lines to limit the velocity, so we cannot rotate faster
than our initial #define. The fourth line is probably the most cryptic of them all. To understand it, notice that thé condition is activated if
neither left nor right are pressed. In this case, we need to slow down the rotation progressively. We achieve this result by multiplying the
current speed by a braking factor (0.85, for example). The last line only updates the yaw according to the calculated rotation velocity.

Almost identical code can handle forward and backward movement:

dz=(input.up-input.down);
vel+=ACCEL*elapsed*dz;

if (ve|>SPEED) vel=SPEED;

if (vel<-SPEED) vel=-SPEED;

if (dz==0) vel=vel*BRAKINGFACTOR;
playerpos.x+=vel*elapsed*dz*cos(yaw);
playerpos.z+=vel*elapsed*dz*sin(yaw);

Now that we have seen how to implement cameras for FPSs, it is time to render them. In most graphics APIs, like OpenGL and DirectX,
we have macro routines that place the camera, given a camera position and a look-at point. We will use these primitives because they
provide a convenient way to specify this kind of camera.

Specifying the camera location is trivial. Now, to specify the look-at point, we will use some trigonometry again. If you understood the sin
and cos used to advance according to the yaw angle, the following should become obvious:

lookat.x=playerpos.x+cos(yaw);
lookat.z=playerpos.x+sin(yaw);

Intuitively, the look-at point is placed in the same direction we are aiming; thus, using the same increments to compute it is very
convenient. Assuming that convention, we can specify our FPS camera in OpenGL with the following piece of code:

gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(fovy,aspect,nearplane,farplane);

gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(playerpos.x,playerpos.y,playerpos.z,lookat.x,lookat.y,

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

lookat.z,0,1,0);

The line that actually places the camera is the last two lines, but | provided the full camera setup code for completeness. Remember that
the gluPerspective call sets optical parameters such as field of view, aspect ratio, and so on, whereas thgluLookAt places the camera by
means of nine parameters grouped in triplets. The first triplet is the camera position, the second is the look-at point, and the third is a
vector pointing up, which we will need for more sophisticated camera models.

Camera setting is very similar under DirectX. The syntax here is

D3DXMATRIX matView;
D3DXMatrixLookAtLH(&matView,&D3DXVECTORS3(playerpos.x,playerpos.y,
playerpos.z),&D3DXVECTOR3(lookat.x,lookat.y,lookat.z),
&D3DXVECTOR3(0,1,0));

g_pd3dDevice->SetTransform(D3DTS_VIEW, &matView);

D3DXMATRIX matProj;
D3DXMatrixPerspectiveFovLH(&matProj, fovy, aspect, near, far);
g_pd3dDevice->SetTransform(D3DTS_PROJECTION, &matProj);

assuming playerpos and the look-at point have all been computed using the algorithms we just explored.

file:///C:/DOCUME~1/ME/LOCALS~1/Temp/New.Riders.Core.Techniques.And.Algorithms.In.Game.Programming.eBook-LiB.chm/0131020099_14061533.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Flight Simulators and Quaternions

Placing your virtual camera inside an airplane cockpit (or a spaceship, for instance) is a bit different from what we have seen so far. Itis a
first-person camera, but we need to account for six degrees of freedom (three for position, and one each for the roll, pitch, and yaw
angles). Besides, most airplanes can perform loops, which imply that the camera is effectively upside down. We must be careful, however.
If you take a look at the following equations for the sphere and analyze them, you will discover they are not what we are looking for.

X =r cos(v pi) cos(u 2 pi)
y = rsin(v pi)

z =r cos(v pi) sin(u 2 pi)

Here u would represent yaw, whereasv would represent pitch (forget roll for a second). Now, imagine that we are climbing vertically using
such equations to represent movement. The airplane then tries to rotate using the yaw angle to perform any kind of acrobatic move, and
unexpectedly, the yaw becomes a roll, and we just roll around the north pole of the parameter sphere.

The problem with the roll, pitch, and yaw representation (sometimes called the Euler angle representation) is that often axes get all mixed
up, and combining rotations does not work as expected. This is called the gimbal lock problem. The solution is to use a whole different
representation altogether. The representation was devised in the 18th Century by Hamilton and is called quaternions. Quaternions are a
powerful mathematical operator that can be used for anything involving orientations, from a flight simulator camera to implementing
scripted camera paths. Because it's one of the core techniques used by many games today, | will provide a short tutorial on quaternions.

A quaternion is a mathematical construct that consists of four real numbers. These numbers represent an extension of a complex number.

Remember that complex numbers have a real and an imaginary part. Quaternions have one real and three imaginary parts, so their
representation is as follows:

Q=w+xi+yj+zk

In this representation, (x,y,z) is the vector, andw is the scalar. The vector is not related to regular 3D vectors, so forget about that
representation for a second. Quaternions can alternatively be expressed in this form:

Q=[wyV]

So, we place the scalar followed by the vector components.

Popular Operations

Let's now review how popular operations are implemented using quaternions. Here is the list:
® Addition: g+ g =[w+ W, V+V]
e Multiplication: qq' = [ww' - v - V', v * V' + wvv +w'V]

where denotes vector dot product and * denotes vector cross product.
® Conjugate: g* = [w, -v]

2

® Norm: N(q) Y y2+ z

® |nverse: q_1 =q*/ N(q)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

® Unit guaternion: g is a unit quaternion ifN(g)= 1 and then q-l =q*

® Identity: [1, (0, 0, 0)] (when involving multiplication) and [0, (0, 0, 0)] (when involving addition)

® Rotation of a vector v by a unit quaternion g: v' = q*v*q-1 (where v = [0, v])

Quaternions can be converted to homogeneous matrices and vice versa. To begin with, here is the operation that computes a matrix
based on a quaternion:

we o+ x® - y* - g2 2xy - 2wz 2%z + 2wy
2xy + 2wz wi - x? 4 },2 - g2 2yzZ - 2wWx
2xz - 2wy 2yz + 2wx we - %% - y? 4 2°

If the quaternion is normalized, we can simplify the preceding transform to the matrix:

1 - 2y2 - 2z% 2%y - 2wz 2%z + 2WY
2Xy + 2wz 1 - 2x® - 2z° 2yz - 2wx
2xz - 2wy 2yz + 2WX 1 - 2x2 - 2y2

The opposite operation can also be performed easily. Here is the transform that computes a quaternion based on a Euler rotation:
g = qyaw gpitch groll
where

groll = [cos (y/2), (sin(y/2), 0, 0)]
gpitch = [cos (g/2), (0, sin(g/2), 0)]
gyaw = [cos(f /2), (0, 0, sin(f /2)]

For completeness, here is the source code for a function that converts a quaternion into a matrix:

QuatToMatrix(QUAT * quat, float m[4][4])
{

float wx, wy, Wz, XX, Yy, Yz, Xy, Xz, 2z, X2, y2, z2;

/I calculate coefficients used for building the matrix

X2 = quat->x + quat->x; y2 = quat->y + quat->y;

z2 = quat->z + quat->z;

XX = quat->x * x2; Xy = quat->x * y2; xz = quat->x * z2;
yy = quat->y * y2; yz = quat->y * z2; zz = quat->z * z2;
WX = quat->w * x2; wy = quat->w * y2; wz = quat->w * z2;

/I fill in matrix positions with them

m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz;
m[2][0] = xz + wy; m[3][0] = 0.0;

m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zZ);
m[2][1] = yz - wx; m[3][1] = 0.0;

m([0][2] = xz - wy; m[1][2] = yz + wX;
m[2][2] = 1.0 - (xx +yy); m[3][2] = 0.0;
m[0][3] = 0; m[1][3] = O;

m[2][3] = 0; m[3][3] = 1;

}

And the reverse operation that converts a rotation matrix to its corresponding quaternion follows:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

MatToQuat(float m[4][4], QUAT * quat)
{

float tr, s, q[4];

int i, j, k;

int nxt[3] = {1, 2, O};
/I compute the trace of the matrix
tr = m[0][0] + m[1][1] + m[2]2];

/I check if the trace is positive or negative
if (tr > 0.0)
{
s = sqrt (tr + 1.0);
quat->w =s/2.0;
s=0.5/s;
quat->x = (m[1][2] - m[2][1]) * s;
quat->y = (m[2][0] - m[O][2]) *s;
quat->z = (m[0][1] - m[1][0]) *s;
}

else

{

/I trace is negative

i=0;

if (m[1][1] > m[O][0]) i = 1;
it (m{2](2] > m{i][i]) i = 2;

j = nxt[i];

k = nxt[j];

s = sqrt (M[il[i] - (][] + mK][K])) + 1.0);
glil=s*0.5;
if(s!'=0.0)s=05/s;
q[3] = (K] - mIK]LD) * s;
qlil = (m[il[] + m{I[]) * s;
q[k] = (k] + m[K][i]) * s;
quat->x = q[0];
quat->y = q[1];
quat->z = q[2];
quat->w = q[3];
}

}

Additionally, here is the code for a routine that converts from Euler angles (roll, pitch, and yaw) to quaternion:

EulerToQuat(float roll, float pitch, float yaw, QUAT * quat)
{

float cr, cp, cy, sr, sp, Sy, Cpcy, SPSyY;

/I compute all trigonometric values used to compute the quaternion
cr = cos(roll/2);

cp = cos(pitch/2);

cy = cos(yaw/2);

sr = sin(roll/2);
sp = sin(pitch/2);
sy = sin(yaw/2);

cpcy =cp * cy;
Spsy =sp * sy;

/I combine values to generate the vector and scalar for the quaternion

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

quat->w = cr * cpcy + Sr * spsy;
quat->x = sr * cpcy - cr * spsy;
quat->y = cr*sp *cy + sr * cp * sy;
quat->z = cr*cp *sy - sr * sp * cy;

}
So how do quaternions solve our gimbal lock problems? Well, basically, we need to follow a four-step routine.

First, we need to encode rotations using quaternions. If our engine internally uses roll, pitch, and yaw, we can transform those to a
guaternion as in the code in the previous section. Second, we will encode frame-to-frame orientation variations in a temporary quaternion,
which represents the change in orientation from one frame to the other. Third, we will post-multiply the frame-to-frame quaternion with the
original one. This results in a hew orientation that combines both rotations. Fourth, we convert the quaternion to a matrix and use matrix
multiplication as usual to render the object. By doing so, gimbal lock is gone, and our flight simulator is flying.

Quaternions are not internally supported by OpenGL, so we need to create a new class or library for them. DirectX provides a quaternion
object along with all the logical operations in the D3DX utility library. The structure is called D3SDXQUATERNION and comes with
approximately 20 useful operations, such as the Euler angle-quaternion transform, which can be performed with the following code:

D3DXQUATERNION*D3DXQuaternionRotationYawPitchRol(D3DXQUATERNION *pOut, FLOAT Yaw, FLOAT
= pitch, FLOAT Roll);

Team LiB |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Team LiB |

Third-Person Cameras

Now that we have mastered flight simulators (and quaternions, hopefully), we will learn to specify a floating camera that follows the player
behind and above his head, much like those in the classic Tomb Raider titles. To do so, our first approach involves always placing the
camera behind the player and at a certain elevation angle over his position. The camera will be aimed at the player, who will therefore
occupy the center of the screen. Using very simple math, here are the equations for this first camera's position and look-at point:

camposition.x= playerpos.x — cos(yaw)*cos(pitch)*distance;
camposition.y= playerpos.y + sin(pitch)*distance
camposition.z= playerpos.z — sin(yaw)*cos(pitch)*distance;

camlookat=playerpos;

We can implement such a camera by rehashing the OpenGL or DirectX we previously used in this chapter. Notice how we are basically
applying a spherical coordinate transform using distance as the radius and pitch and yaw as the sphere mapping parameters. Then,
pitch=0 means the camera is at the same height as playerpos, and we should limit the camera to a pitch no greater than P1/2 (90°). If we
didn't impose such a restriction, the camera would be upside down because we would have surpassed the vertical (90° from ground
level). Remember that sphere mapping creates X,Y,Z coordinates from radius, longitude, latitude, using an equation such as

X=Radius*cos(longitude)*cos(latitude)
Y=Radius*sin(latitude)
Z=Radius*sin(longitude)*cos(latitude)

where longitude is a number in the range (0..2*Pl), and latitude is in the range (-P1/2.. PI/2). Latitude=0 w