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Introduction

During the French Revolution, the writer of a project of law on public instruction com-
plained: “Le défaut ou la disette de bons ouvrages élémentaires a été, jusqu’a présent,
un des plus grands obstacles qui s’opposaient au perfectionnement de I’instruction.
La raison de cette disette, c’est que jusqu’a présent les savants d’un mérite éminent
ont, presque toujours, préféré la gloire d’élever 1’édifice de la science a la peine d’en
éclairer I’entrée.!” Our main motivation here is precisely to “light the entrance” of
the monument Convex Analysis and Minimization Algorithms. This is therefore not
a reference book, to be kept on the shelf by an expert who already knows the build-
ing and can find his way through it; it is rather a book for the purpose of learning
and teaching. We call above all on the intuition of the reader, and our approach is
very gradual: several developments are made first in a simplified context, and then
repeated in subsequent chapters at a more sophisticated level. Nevertheless, we keep
constantly in mind the minimization problem suggested by A. Einstein: “Everything
should be made as simple as possible, but not simpler”. Indeed, the content is by no
means elementary, and will be hard for a reader not possessing a firm mastery of basic
mathematical skill.

As suggested by the title, two distinct parts are involved. One, convex analysis,
can be considered as an academic discipline, of a high pedagogical content, and is
potentially useful to many. Minimization algorithms, on the other hand, form a much
narrower subject, definitely concerning applications of mathematics, and to some
extent the exclusive domain of a few specialists. Besides, we restrict ourselves to what
is called nonsmooth optimization, and even more specifically to the so-called bundle
algorithms. These form an important application of convex analysis, and here lies an
incentive to write the present bi-disciplinary book. The theory is thus illustrated with
a typical field of applications, and in return, the necessary mathematical background
is thus accessible to a reader more interested by the algorithmic part. This has some
consequences for the expository style: for the theoretical part, the pedagogy is based
on geometric visualization of the mathematical concepts; as for minimization, only
a vague knowledge of computers and numerical algorithms is assumed of the reader,
which implies a rather pedestrian pace here and there.

1“The lack or scarcity of good, elementary books has been, until now, one of the greatest obstacles
in the way of better instruction. The reason for this scarcity is that, until now, scholars of great merit
have almost always preferred the glory of constructing the monument of science over the effort of
lighting its entrance.” D. Guedj: La Révolution des Savants, Découvertes, Gallimard Sciences (1988)
130 - 131.



XVI Introduction

This dichotomous aspect emerges already in the first two chapters, which make
a quick guided tour of their respective fields. Many a reader might be content with
Chap. I, in which most concepts are exposed (extended-valued functions, subdifferen-
tiability, conjugacy) in the simplest setting of univariate functions. As for Chap. II, it
can be skipped by a reader familiar with classical minimization algorithms: its aim is
to outline the general principles which, in our opinion, nonsmooth optimization must
start from, and such a reader knows these principles.

Chapters III to VI are the instructional backbone of the work. Entirely devoted
to convex analysis, they contain the basic theory, and geometric intuition is involved
more than anywhere else. Chapter VII does the same thing for basic optimization
theory.

Finally the last chapter of the present first part (Chap. VIII) lays down the neces-
sary theory to develop algorithms minimizing convex functions. This chapter follows
the general principles of Chap. II and serves as an illustration of basic convex anal-
ysis. On the other hand, its material is essential for a comprehension of the actual
algorithms for convex (nonsmooth) optimization, to be studied in the second part.

Each chapter is presented as a “lesson”, in the sense of our old masters, treat-
ing of a given subject in its entirety. We could not completely avoid references to
other chapters; but for many of them, the motivation is to suggest an intellectual link
between apparently independent concepts, rather than a technical need for previous
results. More than a tree, our approach evokes a spiral, made up of loosely interrelated
elements.

Formally, many sections are written in smaller characters; these are not reserved
to advanced material. Actually, these sections often help the reader, with illustrative
examples, side remarks helping to understand a delicate point, or preparing some
material to come in a subsequent chapter. Roughly speaking, they can be compared to
footnotes, used to avoid interrupting the flow of the development; it can be helpful to
skip them during a deeper reading, with pencil and paper. There are no formally stated
exercises; but these sections in smaller characters, precisely, can often be considered
as such exercises, useful to keep the reader awake.

The numbering restarts at 1 in each chapter, and chapter numbers are dropped in
a cross-reference to an equation or theorem from within the same chapter. A reference
of the type A.n refers to Appendix A, which recalls some theoretical background.

We thank all those, including the referees, who contributed the improvement of
the manuscript by their remarks, criticisms or suggestions. Mistakes? there still must
be some, of course: we just hope that they are no longer capital, and that readers will
be able to detect and correct them painlessly.

Among those who helped us most, we would like to thank particularly Th. Dussaut,
J.C. Gilbert, K.C. Kiwiel, S. Maurin, J.-J. Moreau, A.S. Nemirovskij, M.-R. Philippe,
C.A. Sagastizabal, A. Seeger, S. Shiraishi, M. Valadier and, last but not least, the
editorial and production staff of Springer-Verlag, who did a remarkably professional
job. The manuscript was written on an Apple Mac+, using Microsoft Word, and
CricketDraw for the pictures. It was converted into TeX with the help of “rtf2TeX”, a
program written by R. Lupton at Princeton University. The final typeset version was



Introduction XV

produced using the MathTime fonts by M. Spivak, distributed by the TeXplorators
Corp. The role of OzTeX was decisive in this, and we gratefully acknowledge the
technical help of W. Carlip and A. Trevorrow. Thanks and apologies are also due to
Thérése, Lydie, Sébastien, Aurélien, who had to endure our bad mood during seven
years of wrestling with mathematics, computers and the English language.

Toulouse, April 1993 J.-B. Hiriart-Urruty, C. LemaréchalL

Note about this revised printing. Most corrections are minor; they concern mis-
prints and other typographical details, or also informal developments. Besides, some
bibliographical items have been updated and the index has been enriched.

Paris, January 1996



I. Convex Functions of One Real Variable

Prerequisites. A good mastering of the following subjects: basic results from real analysis;

definition and elementary properties of convex sets in R?; elementary geometry in the affine
2

space R”.

Introduction. Convex functions of a real variable form an important class of functions in
the context of what is usually called real analysis. They are useful in optimization — as will be
shown in this book — but also in several areas of applied mathematics, where their properties
are often key ingredients to derive a priori bounds, sharp inequalities, etc.

Even though general convex functions will be studied in extenso further on, there are
several reasons to devote a special chapter to the one-dimensional case.

(i) Convexity is essentially a one-dimensional concept, since it reduces to convexity on
the line joining two arbitrary points x and x’.

(ii) For theoretical as well as algorithmic purposes, the one-dimensional trace of a convex
function f, i.e. the functionz > f(x +td) (¢ real), will have to be studied thoroughly
anyway in later chapters.

(iii) It is a good support for intuition; for example, the so-called subdifferential of a convex
function can be introduced and studied very easily in the univariate case; we will also
take this opportunity to introduce the concept of conjugacy operation, in this simplified
setting.

(iv) Some properties of convex functions are specific to one single variable; these proper-
ties, as well as many examples and counter-examples, will be included here.

The material contained in this chapter provides, on the one hand, sufficient background
for those readers wishing to know basic properties of one-dimensional convex functions, in
order to apply them in other areas of applied mathematics. On the other hand, this chapter
serves as an introduction to the rest of the book; most of its results will be proved rather quickly,
since they will be proved subsequently in the multi-dimensional setting. The chapter can be
skipped by a reader already familiar with properties of convex functions from the viewpoint
of standard real analysis. We believe, however, that our presentation may be helpful for a
better understanding of the whole book.

1 Basic Definitions and Examples

The intervals form the simplest instances of subsets of R. We retain two among their
possible definitions: a subset / C R is an interval if and only if, whenever x and x’
belong to I, one of the following properties holds:
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(i) every point between x and x’ belongs to I (definition based on the natural
ordering of R);

(ii) for all o between 0 and 1, the point ax + (1 — a)x’ belongs to I (definition
using the vector structure of R).

The following classification of nonempty intervals is convenient:

— the compact intervals: I = [a, b] (a, b € R witha < b);
— the bounded but not closed intervals: [a, b], ]a, b], la, b[ (a, b € R, a < b);
— the intervals majorized but not minorized — resp. minorized but not majorized:

]—o00,b] and ]—o00,b[ (beR) —resp. [a,+oof and ]a, +oo[ (a € R);

— the only interval neither majorized nor minorized, namely R itself.

a u b

(=)

Fig.1.0.1. Parametrization of an interval

(t=0)

Bounded intervals will also be called segments, or line-segments. The following
parametric representation, illustrated on Fig. 1.0.1, is classical for a point € ]a, b[:

2 c10,1[. @01
—a

u=ab+ (1 —-—a)a=a+al—a) with a=Z
Finally, we recall basic definitions for a function f : D — R.
Definition 1.0.1 The graph of f is the subset of D x R
grf:={(x,r): xeDandr = f(x)}.
The epigraph of f is “everything that lies above the graph™:
epi f:={(x,r) : xe Dandr > f(x)}.
The strict epigraph is defined likewise, with “>” replaced by “>". ]
Thus, epi f is a juxtaposition of closed non-majorized intervals in R, of the

form [a, +oo[ with a = f(x). In convex analysis, asymmetry arises naturally: the
“hypograph” of a function presents no additional interest.

1.1 First Definitions of a Convex Function

The very first definition of a convex function is as follows:
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Definition 1.1.1 (Analytical) Let / be a nonempty interval of R. A function f :
I — R is said to be convex on I when

flax+ 1 -a)x) <af(x) + (1 —a) f(x) (1.L.I)

for all pairs of points (x, x’) in I and all & €]0, 1[.
It is said to be strictly convex when strict inequality holds in (1.1.1) if x £ x’. 0

The geometric meaning of convexity is clear: consider on Fig. 1.1.1 the segment
P, P,/ joining in R? the point Py = (x, f(x)) to the point P,y = (x/, f(x")). To
say that f is convex is to say that, for all x, x’ in I and all  in ]x, x[, the point
Py = (u, f(u)) of gr f lies below the segment Py P,, (without loss of generality, we
assume x < x').

Once the geometrical meaning of convexity is understood, the following equiva-
lent characterization is easily derived:

|
|

Fig. 1.1.1. The fundamental property of a convex epigraph

Definition 1.1.2 (Geometrical) Let I be a nonempty interval of R. A function f :
I — R is convex on I if and only if epi f is a convex subset of R?. (We recall the
definition of a convex set in RZ: it is a set C such that, if the points P and P/ are in
C, then the segment joining P to P’ is also in C).

Equivalently, a function is convex when its strict epigraph is convex. o

Figure 1.1.1 suggests that, since « lies between x and x” and P, lies below Py Py,
the slope of Py P, (rather: of the line joining Py and P,) is smaller than the slope of
Py P/, whichitselfis smaller than the slope of Py, P,. The next result from elementary

geometry in the affine space R? clarifies the argument.

Proposition 1.1.3 Let Py = (x,y), Py = (u,v) and P,y = (x, y') be three points
in R?, with u € ]x, x'[. Then the following three properties are equivalent:

(i) Py is below Py P, ;
(ii) slope(Px Py) < slope(Px P,s) ;
(iii) slope(Px P,s) < slope(Py P,s) .
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PROOF. Property (i) means v < y + 2 (u — x); this implies ~——X < wh1ch is

(i1); and so on. m]
Translated into the graph-language, (ii) and (iii) above mean

fw) —f&x) _ fG&N) - f) f(X')—f(u)

< 7 <
u—x X —X x' —u

(1.1.2)

which can also be obtained via the representation (1.0.1) of u € Jx, x'[: plugging it
into the definition (1.1.1) of convexity gives

f) < ","“f(x)+ S =

—f()+f() f() 0= f )+f(X) f(X) —u),

and this displays the connection between (1.1.1) and mean-value relations such as
(1.1.2).

Combining the geometric definition of a convex function with the equivalence
stated in Proposition 1.1.3 gives the following characterization of convexity:

Proposition 1.1.4 (Criterion of Increasing Slopes) Let I be a nonempty interval of
R. A function f : I — Ris convexon I ifand only if, for all x, € 1, the slope-function

f(x) — f(x0)
s L)~ J X0

=:s(x) (1.1.3)
X — Xp

is increasing on I\{xo}. O

Knowing that every P, = (u, f(u)) € gr f lies below the line Py P,/ when
u € ]x, x'[, what happens outside this last interval? Proposition 1.1.4 implies that, for
v & [x, x'], Py lies above the line Py P,:. To see it, exchange u and x’ on Fig. 1.1.1.

If ¢ is an increasing function on a segment [a, b], the convexity of the function
X
[a,b] 3 x = f(x) :=/ @(u)du
a

is easily established from Definition 1.1.1. Take @ €10, 1[, and a < x < x’' < b; set x”/ =
ax + (1 — a)x’ and compute

fe") —af@)-Q-a)fx) =
(which must be nonpositive). We have
xll II
D = a/ o)du + (@ —1) o(u)du
x xll
and, using the monotonicity of ¢, we get

& <apxNe —1)(x —x") +afe — Dp(x"x' —x)=0.

‘We mention some other examples.
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Examples 1.1.5 For r > 0, draw the graph of the function whose value at x is
irx? for |xj < 1/r,

x| =g forlx|>1/r,

Jiyrx) == (1.1.4)

to notice that it is convex on R. Look at what happens when r — +o00; whenr | 0.

— The function x +> |x| is also convex on R.
— The function x — f(x) := +/1 + x2 is convex on R.
—If ¢ : [0, 1] — R is continuously differentiable, remember that

1 1
Lig] = fo o' @))du = [0 JTE 2 Gaydu

is the length of the curve {u, ¢(u)}uepo,1]. The convexity of f ensures the “convexity” of
L:
Llap + (1 —a)yl<allpl+ (1 —a)L[y] for a€]0, 1],

a property very useful if one wishes to minimize L. a

Up to now, the tools we have on hand to establish convexity are 1.1.1, 1.1.2 and
1.1.4. They are still rather coarse (§5 will give more in terms of differential calculus)
but the criterion of increasing slopes can be useful. An example is the following
important result.

Theorem 1.1.6 Let f be defined on 10, +-00[. Then the function
O<x gx)=xf(1/x)
is convex on 0, +oo[ if and only if f also is convex on ]0, +00[.

PROOF. Suppose f is convex on ]0, +oo[; let xo > 0 and consider the slope-function

g(x) — 8(x0) _ xf(1/%) — %o (1/%0)

X — X X — Xp

sg(x) :=

defined on ]0, +o00[\{xo}. We have

sg) = 22 p(1/xg) + ——Lf(1/%) = £(1/x0)]
X — Xo X — X
_ 1 fQ/x) = f(/x0) _ 1
= JQ/x0) = I = ) = s ().

When x increases, 1/x decreases, s¢(1/x) decreases (criterion 1.1.4 of increasing
slopes) and sg(x) therefore increases: g is convex. The “only if” part clearly follows
if we observe that xg(1/x) = f(x). O

For example, if we know that the functions —logx and expx are convex on
10, +oo[, we immediately deduce the convexity of the functions x logx and x exp 1/x.
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1.2 Inequalities with More Than Two Points

An essential feature of the basic inequality (1.1.1) is that it can be generalized to more
than two points.

Theorem 1.2.1 Let I be a nonempty interval of R and f be convex on 1. Then, for
any collection {x|, ..., xx} of points in I and any collection of numbers {a,, . .., ay}

satisfying
k
>0 fori=1,....k and Y =1, 1.2.1)

Jensen s inequality holds (in summation form):
F(Zh ) < Dho e f .

PROOF. Consider first k = 2. The relation is trivial if a; or «; is zero; if not, it is just
(1.1.1).

Now, suppose inductively that the relation is true for k — 1; let a collection {x;}
and {¢;} be as in (1.2.1). If o is O or 1, there is nothing to prove. If not, set

@:=) o €l0, 1] (g=1-ael,1p,

& =2 fori=1,....k—1 (&,-;0, Z’.‘“a,-=1),
o

so that
k—1

k
D aixi=a) ax;+ (1 —a)x.
i=l

1 -

In this last relation, the point X := Zf_l a;x; is in I (it is between min; x; and

max; x;). We can therefore apply (1.1.1) to obtain
F(Ehoicin) S@FE + (1 —@f @0 =Ef @+ f (o).

Then the result follows from the induction assumption applied to x:

af(x) < ia (xl)_ial f(xi). 0O

The set described by (1.2.1) is called the unit simplex of R¥. A collection of
a;’s satisfying (1.2.1) is called a set of convex multipliers and the corresponding
x =) ;_, @;X; is a convex combination of the x;’s.

We claim that most useful inequalities between real numbers are consequences of the
above Jensen inequality, even if it is not always easy to discover the underlying convex function.
Let us give some typical examples.
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Example 1.2.2 Suppose we know that the function — log x is convex on 10, +oo[:

—log(Zf-L.aixt-) < —Xheilogy = —log(ﬂf-‘:xx?')

for all positive x; and @ = (ai, ..., ) in the unit simplex. Then the mononicity of the

exponential gives
k

a
x' < E ;X .

i=l i=l

Furthermore, since the function x log x is convex, a similar calculation gives
k
k Zi:l @i Xi
(Zi=1 o xi) <

Example 1.2.3 Sometimes, the use of Jensen’s inequality may call for an f which is hard to
find. Below, we present without details some relations, more or less classical, giving for each
of them the convex “generator” (whose convexity will follow from the more refined criteria
in §5).

— Let a be in the unit simplex and {x;} in ]0, 1]. Then

k
aj k a; -1
Z:1+x,~ < (1+ni=1xi )

i=l

o X
X ' a

—

1

i

(use the function y > —1/(1 + e ) on [0, +o00[ and consider y; = — log x;).
— Let « be in the unit simplex, {x;} and {y;} be positive. Then

] < D4y

k k
=1 i=l i=l

l

(use the function u# — log(1 + exp #) on R and consider u; = logy; — log x;). 0

X4 Xi X

Fig. 1.2.1. Inner approximation of a convex epigraph

The criterion of increasing slopes, illustrated in Fig.1.1.1, also lends itself to
generalization. We simply refer to Fig. 1.2.1: if x; < x, < -+ < xy lie in the interval
I where f is convex, the slopes [ f(x;+;) — f(x;)]/(xi4+1 — x;) increase with .
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Denote by P; the point (x;, f(x;)) on gr f and consider the piecewise affine
function f, whose graph is the sequence of segments [P;, P;4,]. This graph is above
grf: .

f(x)2 f(x) forallxel.
It follows for example that, when approximating the integral of f by the trapezoidal
rule, the resulting error has a definite sign.

1.3 Modern Definition of Convexity

When dealing with convexity, it is convenient to consider a function f as being defined
on the whole space R, by allowing the value 400 for f(x). Until now, convexity
involved a pair (I, f), where I was a nonempty interval and f a function from 7 to
R, satisfying (1.1.1) on I. We can extend such an f beyond I via the function

fx) forxel,

fox) = { +oo forx ¢g1.

This extended-valued function f, sends R to the set RU {400} (extended calculus
is introduced in the appendix §A.2); of course, the value +o00 has been carefully
selected: it is the only way to preserve the relation of definition (1.1.1) outside I.
From now on and without explicit mention, all (potentially) convex functions will be
extended-valued: the subscript “e” will therefore be dropped and the definitions of
§1.1 are accordingly replaced as follows:

Definition 1.3.1 A function f : R — R U {400}, not identically equal to +o0, is
said to be convex when the inequality in R U {400}

flax+ (1 —a)x)<af@)+ 1 —a)f(x)) (1.3.1)

holds for all pairs of points (x, x’) in R and all @ €10, 1[.
Equivalently, it is a function whose epigraph is a nonempty convex setin R x R.
The set of such functions is denoted by Conv R. o

It is on purpose that the somewhat pathological function f = +o0 is eliminated
from Conv R; it presents no interest (note: its graph and epigraph are empty). The new
definition alleviates notation, in that the interval I can be dropped when not needed.
However, it has not suddenly become totally useless, and the concept must not be
forgotten:

Definition 1.3.2 The domain of f € ConvR is the nonempty set
domf:={xeR: f(x) e R}. o

Naturally, dom f is aninterval, say I, and f is after all nothing more than a convex
function on I (in the sense of Definition 1.1.1). In short, two simple operations are
involved, as displayed in Fig. 1.3.1.

The usefulness of Definition 1.3.1 is more than notational; it is especially convenient
when optimization is involved. Let us give three examples to illustrate this.
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fconvexon i
(Definition 1.1.1) extension =~
fDe fConv R
inition 1.3.1
Lgo?vegom f restriction 4__/( etinition )

Fig. 1.3.1. “Classical” and extended-valued convex functions

— Let x be a real parameter and consider the simple optimization problem
inf{—y : y*<x}. (1.3.2)

It is meaningless if x < 0 but, for x > 0, the optimal value is —4/x, a convex function of
x. In view of the convention inf @ = 400, we do have a convex function in the sense of
Definition 1.3.1. It is good to know that problems of the type (1.3.2) yield convex functions
of x (this will be confirmed in Chap. IV), even though they may not be meaningful for all
values of x.

— Associated to a given f is the so-called conjugate function
R>x+ supfxy— f(y) : y eR}.

Here again, the values of x for which the supremum is finite are not necessarily known
beforehand. This supremum is thus an extended-valued function of x, a function which
turns out to be of utmost importance.

— Suppose that a function g, convex on /, must be minimized on some nonempty subinterval
C C 1. The constraint x € C can be included in the objective function by setting

_ | g) ifxecC,
flxy = l +o0o ifnot.

The resulting f is in Conv R and minimizing it (on the whole of R) is just equivalent to the
original problem.

Remark 1.3.3 The price to pay when accepting f(x) = +oo is alluded to in §A.2: some
care must be exercised when doing algebraic manipulations; essentially, multiplications of
function-values by nonpositive numbers should be avoided whenever possible. This was done
already in (1.1.1) or (1.3.1), where the requirement « € ]0, 1{ (rather than « € [0, 1]) was not
totally innocent. O

2 First Properties

2.1 Stability Under Functional Operations

In this section, we list some of the operations which can be proved to preserve con-
vexity, simply in view of the definitions themselves.
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Proposition 2.1.1 Let fi, ..., fm be m convex functions and t,, . . ., t,, be positive
numbers. If there exists xo such that fj(x0) < 400, j =1,...,m, then the function
f =237 tfjisinConvR.

PROOF. Immediate from the relation of definition (1.3.1). i

Note the precaution above: when adding two functions f, and f,, we have to make
sure that their sum is not identically +00, i.e. that dom f; N dom f, # @.

Proposition 2.1.2 Let { fj}jecs be afamily of convex functions. If there exists xo € R
such that Supjey fj(x0) < +00, then the function f := Supje g fj is in ConvR.

PROOF. Observe that the epigraph of f is the intersection over J of the convex sets
epi fj. o

The minimum of two convex functions is certainly not convex in general (draw
a picture). However, the inf-operation does preserve convexity in a slightly more
elaborate setting.

Proposition 2.1.3 Let f and f; be convex and set for all x € R

f@) =T L)X inf{fi(x1) + f2(x2) : x1 + x2 = x}

inf {fi(y) + falx —y) : y € R}.

(2.1.1)

]

If there exist two real numbers sy and ry such that
fj(x) = sox — 1o forj=1,2andallx € R

(in other words, the affine function x > sox — ro minorizes f| and f), then f €
Conv R.

EXPLANATION. The domain of f in (2.1.1) is dom f; + dom f: by construction,
f(x) < 400 if x; and x, can be found such that x; + x, = x and fi(x;) + fo(x3) <
+00. On the other hand, f(x) is minorized by sox — 2rp > —oo for all x. Now,
an algebraic proof of convexity, based on (1.3.1), would be cumbersome. The key is
actually to realize that the strict epigraph of f is the sum (in R?) of the strict epigraphs
of f| and f>: see Definitions 1.0.1 and 1.1.2. u}

The operation described by (2.1.1) is called the infimal convolution of f; and f,. It is
admittedly complex but important and will be encountered on many occasions. Let us observe
right here that it corresponds to the (admittedly simple) addition of epigraphs — barring some
technicalities. It is a good exercise to visualize the infimal convolution of an arbitrary convex
JS1 and
- fo(x) =r if x = 0, +oo0 if not (shift epi f vertically by r);

-~ fo(x) =0 if x = x¢, +oo0 if not (horizontal shift);
— fa(x) = 0if |x| < r, 400 if not (horizontal smear);
— fa(x) = sx — r (itis gr f, that wins);
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Fig. 2.1.1. The ball-pen function

— fax) = 1 — /1 — x2 for x € [—1, +1] (the “ball-pen function” of Fig. 2.1.1); translate
the bottom of the ball-pen (the origin of R?) to each point in gr fi;

— fo(x) = 1/2 x? (similar operation).
Remark 2.1.4 The classical (integral) convolution between two functions F; and F; is
(Fy ¥ i)(x) = f Fi(y)F2(x —y)dy forallx e R.
R

For nonnegative functions, we can consider the “convolution of order p” (p > 0):

1/p
(Fy xp F)(x) := {/[Fl(y)Fz(X — y)]”dy} forallx eR.
R

It is reasonable to claim that this integral converges to supy, Fi(y) F2(x —y) when p — +o0.
Now take F; = exp(—f;), i = 1, 2; we have

(Fi *o00 F2)(x) = supe™ iD= alx=)) = = LN+ (=]
y

Thus, the infimal convolution appears as a “convolution of infinite order”, combined with an
exponentiation.

2.2 Limits of Convex Functions

Proposition 2.2.1 Consider a sequence { fi}xen of functions in ConvR. Assume
that, when k — 400, {fi} converges pointwise (in R U {+00}) to a function
[ : R = R U {400} which is not identically +00. Then f € ConvR.

PROOF. Apply (1.3.1) to f; and let k — +o0. ml

Remark 2.2.2 The interval dom f; may depend on k. Special attention is often paid to the
behaviour of f; on some fixed interval I contained in dom f; for all k. If, in addition, I is
contained in the domain of the limit-function f, then a stronger result can be proved: the
convergence of f; to f is uniform on any compact subinterval of int /. n]

It is usual in analysis to approximate a given function f by a sequence of more
“regular” functions fj. In the presence of convexity, we give two examples of regu-
larization, based on the convolution operation.
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Our first example is classical. Choose a “kernel function” K : R — R*, which s
continuous, vanishes outside some compact interval, and is such that fR K(y)dy =1;
define for positive integer k the function

Ray> Ki(y) :=kK(ky).

Given a function f (to simplify notation, suppose dom f = R), the convolution
7u0) = £ K= [ £ = KONy @2.1)

is an approximation of f, and its smoothness properties just depend on those of K.
If K € C®(R), a C*™ regularization is obtained; such is the case for example with

K(y) :=cexp for |y| <1 (0 outside),

y:—1
where ¢ > 0 is chosen so that K has integral 1.

Proposition 2.2.3 Let {Ki}ken be a sequence of C*° kernel-functions as defined
above, and let f : R — R be convex. Then fi of (2.2.1) is a C* convex function on
R, and { f¢} converges to f uniformly on any compact subset of R.

PROOF. The convexity of f; comes immediately from the analytical definition (1.1.1).
The C®-property of f; and the convergence result of { fz} to f are classical in real
analysis. o

Another type of regularization uses the infimal convolution with a convex kernel
K. It plays an important role in convex analysis and optimization, for both theoretical
and algorithmic aspects. We give two examples of kernel functions:

Kk(y) := ky* and Ki(y) :=kly|,

which have the following effects (the proofs are omitted and will be given later in
§XV.4.1 and §X1.3.4):

Proposition 2.2.4 Let f € ConvR. For all positive k, define

fao@) = inf {f() + k(x —3)? 1y e R}; 222)

then:

(i) fk) is convex from R to R and fx)(x) < fk+1)(x) < f(x) for all x € R;
(ii) if xo minimizes f on R, it also minimizes f() and then fi)(x0) = f(xo); the
converse is true whenever X, is in the interior of dom f;
(iii) f() is differentiable and its derivative is Lipschitz-continuous:

| Fy o) = fly )| < klxy —xa| - for all (31, x2) € R x R;
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(iv) except possibly on the boundary of dom f, { f(x)} converges pointwise to f when
k — +o0.

For k large enough, define
Sig(x) :=inf {f(y) + klx —y| : y e R}; (2.2.3)

then:

() fik; is convex from R to R and fiy(x) < fix411(x) < f(x) forall x € R;
(ij) i xo € intdom f, then fi)(x0) = f(xo) for k large enough;
(i) fix is Lipschitz-continuous:

| far ) = figG2)| <klx—x;| forall (x1, %) € R x R. a
f(x) = |x|

i fi ()
fag () oplf )

x=1/k

Fig.2.2.1. Moreau-Yosida C' regularizations

Replacing f by f) of (2.2.2) is called Moreau-Yosida regularization. It yields
C!-smoothness, without essentially changing the set of minimizers; note also that
the function to be minimized in (2.2.2) is strictly convex (and even better: so-called
strongly convex). It is not too difficult to work out the calculations when f(x) =
|x|: the result is the function of (1.1.4), illustrated on Fig. 2.2.1. It has a continuous
derivative, as claimed in (iii), but no second derivative at x = +1/k. The right part
of the picture shows the effect of the same regularization on another function.

. opi f

slope k

Fig.2.2.2. A Lipschitzian regularization

Note the difference between the two regularizations. Basically, fiky coincides
with f at those points where f has a slope not larger than k. Figure 2.2.2 illustrates
the operation (2.2.3), which has the following mechanical interpretation: gr Sikyisa

string, which is not allowed slopes larger than k, and which is pulled upwards under
the obstacle epi f.
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2.3 Behaviour at Infinity

When studying the minimization of a function f € Conv R, the behaviour of f(x)
for |x| — oo is crucial (assuming dom f = R, the case of interest). It turns out that
this behaviour is directly linked to that of the slope-function (1.1.3).

Indeed, for fixed xo, the increasing slope-function (1.1.3) satisfies

lim s(x) = sup s(x) = sup s(x
Jim 5 = sup s = sp 5

(equalities in R U {4-00}). For x — —o0, its limit exists as well (in R U {—oc}) and
is likewise its infimum over x # xg, or over x < xo. To embrace the two cases in one,
and to eliminate the unpleasant —oo, it is convenient to introduce a positive variable
t, playing the role of |x — xo|: we fix a number d # 0 and we consider

fGo+1td) — f(xo) _ sup f(xo+1td) — f(xo)

lim =: @(xg, d). 2.3.1)

t—>-+4-00 t >0 t

When d is positive [resp. negative], ¢ is the limiting maximal slope to the right
[resp. left] of xg. It is rather obvious that, for @ > 0, ¢(xq, @d) = a@(xy,d): in
other words, ¢(x, -) is positively homogeneous (of degree 1). Hence, only the values
@(xo, d) for d = £1 are relevant, the other values being obtained automatically.

Theorem 2.3.1 Let f : R — R be convex. For each xy € R (= dom f), the function
@(xo, ) of (2.3.1) is convex and does not depend on x.

PROOF. The result will be confirmed in §IV.3.2, and closedness of epi f is needed,
which will be proved later; nevertheless, we give the proofbecause it uses an interesting
geometric argument. Fix ¢t > 0; the convexity of f implies that, for arbitrary d,, d,
anda €]0, 1],

fxo+tad, +t(1 — a)dy) Saf(xo+td) + (1 — @) f(xo +1d2) .

Subtract f(x,) and divide by ¢ > 0 to see that the difference quotient s(xq + ¢d) in
(2.3.1) is a convex function of d. Moreover, ¢(xy, 0) = 0, hence Proposition 2.1.2
establishes the convexity of ¢(xp, -).

To show that ¢ (xy, ) does not depend on x, is more involved. Let x; # x¢ and
take (d, r) € epig(x), -); we must show that (d, r) € epi ¢(xo, -) (then the proof will
be finished, by exchanging the roles of x; and xo).

By definition of epi ¢(xo, -), what we have to prove is that Py(t) € epi f (look
at Fig.2.3.1), where ¢t > 0 is arbitrary and Py(¢) has the coordinates xo + td and
S (xo) + tr. By definition of epi ¢(xy, ), Pi(t) := (x; +td, f(x1) +tr)isinepi f.
Taking ¢ € ]0, 1], the key is to write the point M, of the picture as

M =ePi(t) + (1 —e)Po(t) = ePi(t/e) + (1 — ) Py(0).

Because (d,r) € epig(x, -), the second form above implies that M; € epi f; the
first form shows that, when ¢ | 0, M, tends to Py(¢). Admitting that epi f is closed
(Theorem 3.1.1 and Proposition 3.2.2 below), Py(t) € epi f. O
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Po(0) =
(X0f(x0))
(x1.(xq))

Fig. 2.3.1. Inscribing a pantograph in a closed convex set

Thus, instead of ¢ (xg, d), the notation
S (xo +td) — f(xo) = sup S (xo +td) — f(xo)

t t>0 t

! — :
foold) = t—lgToo

is more appropriate; x is eliminated, the symbols ' and oo suggest that £ is a sort of
“slope at infinity”. This defines a new convex and positively homogeneous function,
associated to f, and characterizing its behaviour at infinity in both directions d = +1:

Corollary 2.3.2 For f : R — R convex, there holds

x_l}rJrrxoo fx)y=400 <= fi(1)>0, 2.3.2)
im 2% oo e flo) = +00. (2.3.3)

xX—>+00 X

PROOF. By definition, f(x)/x — f%,(1) for x — +o0, which proves (2.3.3) and the
“&"in (2.3.2). To finish the proof, use

tflo () = flo@®) = f@#) — f(0) > +o0 when t— 400

(remember 0 € dom f = R) and observe that ¢tf,(1) — +oo certainly implies
foo(1) > 0. ]

Naturally, (2.3.2) and (2.3.3) have symmetric versions, with x — —oo.

For (2.3.2) to hold, it suffices that f be strictly increasing on some interval of positive
length. Functions satisfying (2.3.2) [resp. (2.3.3)] in both directions will be called 0-coercive
[resp. I-coercive]; they are important for some applications.

Geometrically, the epigraph of fJ is a convex cone with apex at (0, 0). When this apex
is translated to a point (x, f(x)) on gr f, the cone becomes included in epi f: in fact, the
definition of fZ, gives for all y

i(—y—)j—fi"—) <)+ fLo=—x).

fMH=rfx+

It is then clear that epi f + epi f, = epi f (see Fig.2.3.2), i.e. that f = f & fl..

The epigraph of f3, is the largest convex cone K in R? (with apex at (0,0)) such that
epi f+ K Cepif.
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Fig.2.3.2. The cones included in epi f

3 Continuity Properties

3.1 Continuity on the Interior of the Domain

Convex functions turn out to enjoy sharp continuity properties. Simple pictures sug-
gest that a convex function may have discontinuities at the endpoints of its interval of
definition dom f, but has a continuous behaviour inside. This is made precise in the
following result.

Theorem 3.1.1 If f € ConvR, then f is continuous on intdom f. Even more: for
each compact interval [a, b] C intdom f, there is L > 0 such that

If(x) = fFG&NI K Lix —x'| forall x and x' in [a, b]. (3.1.1)
m]

Property (3.1.1) is the Lipschitz continuity of f on [a, b]. What Theorem 3.1.1
says is that f is locally Lipschitzian on the interior of its domain. It follows that the
difference quotients [f(x) — f(x")]/(x — x’) are themselves locally bounded, i.e.
bounded on every bounded interval of intdom f.

To prove Theorem 3.1.1, the basic inequality (1.1.1) can be used on an enlargement
of [a, b], thus exhibiting an appropriate Lipschitz constant L. We prefer to postpone
the proof to Remark 4.1.2 below, where another argument, coming from the differential
behaviour of f, yields the Lipschitz constant directly.

It remains to see how f can behave on the boundary of its domain (assumed to be
“at finite distance”™). In the statement below, we recall that our notation x | a excludes
the value x = a.

Proposition 3.1.2 Let the domain of f € ConvR have a nonempty interior and
call a € R its left endpoint. Then the right-limit f(ay) = limy, f(x) exists in
R U {+o0}, and f(a) = f(a4).

Similarly, if b € R is the right endpoint of dom f, the lefi-limit f(b_) exists in
R U {+o00} and f(b) 2 f(b_).

PROOF. Let xy € intdom f, setd := —1, ;) := xp — a > 0. The increasing function

fxo+1td) — fxo) .
> P =

0<t q@)

has a limit £ € R U {+o00} for ¢ 1 to, in which case xq + td | a. It follows



3 Continuity Properties 17
fxo+1td) = f(xo) +1q(t) = f(x0) + (xo —a)t =: f(ay) € RU{+00}.

Then let ¢ 1 1, in the relation

q®)<q@) =

w forall z €0, fo[
—

a
to obtain
‘= flay) — f(xo) < f(a) — f(xo)
Xo—a S x—a
hence f(a+) < f(a). The proof for b uses the same arguments. a

The function g of the above proof'is the directional difference quotient, already encoun-
tered in §2.3, and is nothing more than the slope-function [ f (x) — f(xg)]/(x — x¢). We took
the trouble to use it as an illustration of Remark 1.3.3, to avoid the unpleasant division by
x — xo < 0. Furthermore it will play an important role in several dimensions.

Among other things, Proposition 3.1.2 says that f is upper semi-continuous (relative to
dom f) on the edge of its domain, hence on its whole domain. This property, however, is
specific to the one-dimensional case, and is not true in several dimensions.

3.2 Lower Semi-Continuity: Closed Convex Functions

According to Proposition 3.1.2, the behaviour of a convex function at the endpoints
of its domain has to resemble one of the cases illustrated on Fig. 3.2.1. We see that
case (2) is somewhat “abnormal”; it is ruled out by the following definition, which
thus appears as “natural”, and important for existence of solutions in minimization
problems.

f(a) e [f(a,),+]

f(a,)

a a a

(1) Continuous (2) Upper semi-continuous (3) Unbounded

Fig. 3.2.1. Continuity properties of univariate convex functions

Definition 3.2.1 We say that f € Conv R is closed, or lower semi-continuous, if

liminf f(x) > f(xo) forallx, e R. 3.2.1)
X=Xy

The set of closed convex functions on R is denoted by Conv R. B
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Of course, (3.2.1) is an inequality in R U {+00}. A reader not totally alert may
overlook a significant detail: both x and x are points in the whole of R. A closed
function is therefore lower semi-continuous on the whole line, and not only relative
to its domain of definition, as is the usual practice in real analysis. This is why the
terminology “closed” should be preferred to lower semi-continuous.

The requirement (3.2.1) demands nothing of f beyond the closure of its domain;
it is moreover true for xo € intdom f (Theorem 3.1.1), the only possible problems are
on the boundary of dom f. As far as the left endpoint is concerned, a closed convex
function has to look like case (1) or (3) in Fig. 3.2.1 (and note: if a = —o0, no trouble
arises).

The closedness property can also be described geometrically, which by the same
token justifies the terminology (note that convexity plays little role here).

Proposition 3.2.2 The function f is closed if and only if one of the following condi-
tions holds:

(i) epi f is a closed set of R?;
(ii) the sublevel-sets
Sr(fl=xeR: fx)<r}

are closed intervals of R (possibly empty), for allr € R. 0

The best way of proving this result is probably to look at Fig. 3.2.1. In practice,
the closedness criterion (ii) is very useful. As an example, the function f7, of §2.3 is
always closed.

Example 3.2.3 Let f be a convex function whose domain is the whole of R, and let
C be a nonempty closed interval. Then the “convex restriction” of f to C:

fc(x) = f(x)ifx € C, 400 otherwise

is closed and convex. Its epigraph is the intersection of epi f with the vertical stripe
generated by C. )

Example 3.2.4 Let C be a nonempty interval of R. The indicator function of C is

Ie(x) == 0 ifxeC,
C¥ =1 4oo otherwise.
Itis a closed convex function if and only if C is closed (its sublevel-sets are empty or
O).

The above indicator function, of constant use in convex analysis, must not be
confused with the characteristic function x¢ of measure theory, which is 1 on C and
0 outside — in fact x¢c = exp(—Ic¢). (]

Let us return to Fig. 3.2.1. In case (2) — the only bad case — we see that it is not
difficult to close f: it suffices to pull f(a) down to f(a.). The result is in Conv R,
and differs very little indeed from f.
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Definition 3.2.5 The closure of f € ConvR is the function defined by:

11)1;11)11}f f(@) ifx € cldom f,

cl f(x) = { (3.2.2)
+00 O

if not.

Remark 3.2.6 The construction (3.2.2) affects f only at the endpoints of its domain. Geo-
metrically, cl f is the function whose epigraph is the closure (in the usual topological sense)
of the set epi f C R2. The closure of f is also the largest closed convex function minorizing
f:

cl f(x) =sup{g(x) : geConvR and g < f}. 3.2.3)
To close f, however, it is actually not necessary to scan the whole set of closed convex
functions. It can be proved that, in (3.2.3), g can be restricted to being an affine function:

clf(x)=sup{sx —r : sy—r< f(y) forally e R}; (3.2.4)
s,r

this will be established formally in Proposition IV.1.2.8. Of course, it is the convexity of f
which allows this simplification.

The analytic operation (3.2.2), illustrated by Fig. 3.2.1, does not easily lend itself to
generalizations in several dimensions (taking the lower semi-continuous hull of a function
may be difficult). The operation (3.2.4) thus appears as a possible useful alternative. o

3.3 Properties of Closed Convex Functions

Closed convex functions are of fundamental importance in convex analysis and opti-
mization. For one thing, the existence of a solution for the problem

min{f(x) : x € C}

requires first f to be closed (i.e. lower semi-continuous), and also C to be closed (and
of course C Ndom f # @). Just as §2.1 did with convexity, it is therefore useful to
know which combinations of functions preserve closedness.

Proposition 3.3.1 Let fi,..., fin be m closed convex functions and t,, ..., t, be
positive numbers. If there exists xo such that fj(xo) < +o0c for j = 1,...,m, then
the function f =} 7. 1; fj is in Conv R. mi

Here, convexity is taken care of by Proposition 2.1.1; as for closedness, recall that
limes inferiores are stable under addition and positive multiplication, i.e.

liminf ¢ (uy + vg) >t liminf ug + ¢ lim inf vg

(an inequality in R U {+00}).
The next result also comes easily, since an intersection of closed sets is closed.

Proposition 3.3.2 Let { fj}jey be a family of closed convex functions. If there exists
xo € R such that supjey fj(xo) < =400, then the function f := Supjey fj is in
ConvR. O
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Example 3.3.3 Let f : R - R U {400} be a function not identically +o0o (but
not necessarily convex) minorized by some affine function: there are sy, ro such that
f(x) = sox — rg for all x. Then the so-called conjugate function of f:

R>os+> supf{sx — f(x) : x € dom f}

is finite at least at s¢, and it is closed convex (as a supremum of affine functions!). 0O

The case of the infimal convolution is much more delicate (it is an infimum, hence
a limit, and the inequality signs go the wrong direction, in contrast with Proposition
3.3.2).

Remark 3.3.4 It can indeed be proved that the inf-convolution of two functions of Coniv R is
still closed, but this is a specific result of the univariate case: its extension to several variables
requires some additional assumption.

To accept the closedness of a one-dimensional inf-convolution, a first key is to realize
that, if a is the left endpoint of the domain of f = fi ¢ f2, thena = a; + a; and f(a) =
fi(a1) + fa(ay) where, fori = 1, 2, a; is the left endpoint of dom f;. Thus, fork =1, 2,...,
take x{‘ and xé‘ satisfying: x{‘ € dom f; and x{‘ + xé‘ = xj | a; a second key is then to see
that x¥ | a; fori = 1, 2. If, in addition,

AHED + 65 < (i d R0 + 1/k,

it suffices to pass to the limit, using the properties f (x{c )— f(a;) fori=1,2. (n]

Finally, the case of limit-functions of §2.2 is of course hopeless. The traditional
example x — fi(x) := |x|¥ converges pointwise when k — 00 to

0 ifxe]—-1,+1],
x> fx)=41 ifx € {—1,+1},
+00 otherwise,

which is not closed. Some “uniformity” in the convergence is required, and this es-
tablishes a link between Remark 2.2.2 and Theorem 3.1.1.

4 First-Order Differentiation

Monotonicity of the slope-function (1.1.3) provides convex functions with rather
astonishing properties of “one-sided differentiability”, which allow the introduction
of a substitute for the concept of derivative: the “set of subderivatives” of a convex
function at a point of its domain. A “subdifferential calculus” can then be developed
for convex functions, which plays the role of differential calculus in the C' case, and
which gives similar results.
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4.1 One-Sided Differentiability of Convex Functions

Theorem 4.1.1 Let f € ConvR. At all xg in the interior of its domain, [ admits a
finite left-derivative and a finite right-derivative:

i L) = fO0) sup S &) — f(x0)

D_f(xo) := I 4.1.1)
x4 xo X — Xp X <Xy X — Xp
Dy f(xo) i= lim L =S@0 _ o SO = fGo) 4.1.2)
x1xg X — X X>Xo X — X
They satisfy
D_ f(x0) < D4 f(x0) - (4.1.3)

PROOF. Apply the criterion 1.1.4 of increasing slopes: the difference quotient involved
in (4.1.1), (4.1.2) is just the slope-function s. For any two points x, x’ in intdom f
satisfying x < xo < x/, s(x) and s(x") are finite numbers satisfying s(x) < s(x’).
Furthermore, when x 1 xo [resp. x | xo], s(x) increases [resp. s(x’) decreases],
hence they both converge, say as described by the notation (4.1.1), (4.1.2); this proves
(4.1.3) at the same time. O

Remark 4.1.2 Proof of Theorem 3.1.1. Take [a, b] C intdom f (a < b: there is
nothing to prove if a = b)anda <x < x’ < b; ifa < x, use (4.1.1) and (4.1.2)
written at appropriate points to obtain

D, f(@) < ﬁ’%}f(—‘” <D_f(x) <Dsf(x) <
< f—("—x){—f"—) <D_fGN< ete. <D_f(b);

note that the relevant inequalities hold as well if x = a. This proves (3.1.1) with
L = max{-D f(a), D_ f(b)}. o

A sort of differentiability being thus established on the interior of dom f, what
can be said about its endpoints? Let again a be its left endpoint, as in Fig. 3.2.1. First
of all, the whole concept is meaningless if a & dom f (case 3), and the very definition
shows that D__ f (a) = —o0. As for the right-derivative, its existence is ruled out if f
is not closed (case 2); finally, the criterion of increasing slopes tells us that D f(a)
does exist, but in R U {—00}. Let us summarize these observations:

Proposition 4.1.3 For x, on the left [resp. right] endpoint of dom f, (4.1.2) [resp.
(4.1.1)] holds as an equality in R U {—o0} fresp. R U {4+00}]. O

Remark 4.1.4 Our notations deserve comment, since the left- and right-derivatives are usu-
ally denoted by f’ and fi in real analysis.
In Sections 2.3 and 3.1, we have encountered the directional difference quotient

d) —
Qxy,d(t) = q(t) := fxo+t t) S (xo0)
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at xo € dom f in the direction d € R. It is monotonic, satisfies gx;,0d(t) = qx,,qa(at) for
a > 0, its supremum over ¢ > 0 is f5,(d), its infimum over ¢t > 0 is its limit for ¢ | 0. Of
central importance in convex analysis is the corresponding directional derivative of f at xg
in the direction d (= =1), traditionally denoted by:

P, d) = lim LT ID = S0 _ o fGo +1d) — Fxo)
e t >0 t :

4.1.4)

Now the concept of derivative in real analysis contains several distinct objects.

— From its definition, it is first a number, say D f (xo), computed as a limit.
— On the other hand, this number is also a linear form which, when applied to a dx, yields the
corresponding d f:
df =Df(x) -dx.

— It is therefore also the value of this linear form at dx = 1 (naturally, the fact that this linear
form happens to depend on xo does not help to clarify the matter).

The notation (4.1.4) definitely represents this last interpretation, namely the value of the linear
form at d; by contrast, (4.1.1), (4.1.2) is the linear form itself (or a pair of such) — hence our
choice of two definitely different notations. As a matter of fact, the two things do not coincide:

f'(x0, 1) =Dy f(x0) but D_f(xo) = ~f'(x0,—1) 4.1.5)

(beware of the minus sign!).
For this reason, we will generally denote by D f (x) the ordinary derivative of a function
f differentiable at x. It is only when no confusion is possible (mainly in subsequent chapters)
that we will use the more classical notation f(x), and also f”(x) for the second derivative.
o

We are now in a position to introduce the notion of subderivative of a convex
function.

Definition 4.1.5 Let f € ConvR. We say that s € R is a subderivative of f at
x € dom f when

D_fx) <s<D4+f(x). (4.1.6)
The subdifferential 8f (x) is the set of all subderivatives of f at x. Itis the line-segment
[D_f(x),D4f(x)] when D_ f(x) and D f(x) are finite. O

Thus, it is clear that

— for x € intdom f, the subdifferential 9f (xo) is a nonempty compact interval: this
results from Theorem 4.1.1;

— for xo & dom f, 3f (xp) is empty;

— at an endpoint point such as a of Fig. 3.2.1, af is certainly empty if f is not closed;
if f is closed, 9f may be empty (case of a vertical slope), otherwise it has the form
]—o00,Dy f(a)].

In the language of Remark 4.1.4, a subderivative suggests a linear form. It can also
be characterized in terms of the values of this linear form, namely: s is a subderivative
of f at xy if and only if
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fx) 2 fxe) +5s(x —xg) forallx eR, 4.1.7)

a result which comes directly from the property of increasing slopes (to prove it,
avoid division by x — xo, but set x — xy = td with d = +1, and divide by ¢ > 0).
The linear form attached to a subderivative thus defines an affine function which
minorizes f. Incidentally, (4.1.7) readily gives a necessary and sufficient condition
for xo to minimize f, namely:

xo minimizes f € ConvR <<= 0e€df(xg). (4.1.8)

Remark 4.1.6 Comparing (4.1.5) with (4.1.6), we can see that the subdifferential is also
characterized as

af (o) ={s €R : sd < f'(x0,d) foralld e R};
or alternatively, the directional derivative is characterized (whenever 3f (x) # @) as
f'(xo,d) =sup{sd : s € 3f (x)}.

The directional derivative takes its values in R U {£00}. All these observations concerning
the directional derivative will have their importance when going to several dimensions. O

Altogether, the subdifferential defines a multifunction from R (or rather dom f)
to the subsets of R. See Fig. 4.1.1 for a possible behaviour of this multifunction; and
see §A.5 for an introduction to the most important concepts of set-valued analysis.

grf

gr of

s

Fig. 4.1.1. A typical subdifferential mapping

Remark 4.1.7 Denoting by dom 3f the domain of 3f, it is a consequence of Theorem
4.1.1 and of the definition (4.1.6) that

dom f D domdf D intdom f .

Remembering (4.1.7), we see that a convex function is minorized by some affine
function whenever the interior of its domain is nonempty: just take a subderivative.
Now, the only convex functions whose domain has an empty interior are very special:
up to a constant, they are indicators of one single point, say x,. For them also, the
existence of a minorizing affine function is clear (actually, 3f (x;) = R in this case).
We conclude that any convex function is minorized by some affine function. o
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A kink (or corner-point) is a point x where 9f (x) is not a singleton. If x is nota
kink, then f is differentiable at x: D f (x) = D_ f(x) = D4 f(x).

Example 4.1.8 Leta; <az < --- < ap be m real numbers and ¢4, . . ., t,, be positive. We
consider f defined on R by

f&) =) tlx—ajl.

j=1

Convexity and closedness of f, if not considered as trivial, come from Propositions 3.3.1 and

3.3.2 (recall that {z| = max{z, —z}). This f is differentiable at all x exceptata;, ..., a, and
there holds
af (x) = Z[j:aj<x) t —Z{j:aj>x}’f ?f x ¢fai,....a;m)
{j:aj<x} 5 — Z{j:aj>x] tj+ [_tjo' tjo] if x= ajy -

If we want to minimize f, an algorithm can then be conceived, based on scanning the
interval [a;, ap, ] from left to right. The algorithm stops when the minimality condition (4.1.8)
is met. ]

Example 4.1.9 Consider the function x - f(x) := f(f @(u)du, where o(u) = u foru <0
and, for u > 0, ¢ is defined via the integer part of 1/u:

o) = ifk+l>l>k€N
u

1
1+k
(g oscillates between the functions x and x /(1 + x), see Fig. 4.1.2). The function f is convex
(criterion 1.1.4 of increasing slopes), has 0-derivative at 0, but is differentiable on no segment
10, u[: its kinks are at 1/k, with 8 (1/k) = [1/(k+1),1/k), k= 1,2,... a

Fig.4.1.2. Infinitely many discontinuities

4.2 Basic Properties of Subderivatives

Convexity implies that f is differentiable at “many” points, and that 3f (x) behaves
very nicely when x varies:

Theorem 4.2.1 For f € ConvR, the following properties hold:
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(i) The multifunction 8f is increasing on its domain, in the sense that
S} < 2 whenever s; € 3f (x1), s; € df (xp) and x; < x3. “4.2.1)

(ii) The set of points where f fails to be differentiable is at most countable.
(iii) For all x, € intdom f, the sets df (x) converge increasingly to D _ f (xo) when
x 1 xo, in the following sense: for all ¢ > 0, there is § > 0 such that

sedf(x)andx €lxo—8,x] = s€[D_f(xo)—¢&, D_f(x0)];
4.2.2)
likewise, 3f (x) converges decreasingly to Dy f(xo) when x | xq (Ssymmetric
definition).

PROOF. Start from (4.1.1), (4.1.2) and Proposition 4.1.3: for any two points x; < x,
indom df C dom f,

si<Dyfe) < L2 <p_rry < (423)
whenever s; € 3f (x;), i = 1, 2 (see Definition 4.1.5). This proves (i).
It follows from (4.2.3) that the intervals df (x;) and 8f (x,) are disjoint if x; # x;.
Let A be the set of points in intdom f where f fails to be differentiable, i.e. where
D_f(x) < D4 f(x). Then{]D_ f(x), D+ f (x)[ }xea form acollection of nonempty
disjoint intervals of R; this collection is therefore at most countable, and so is A.
Now let xy € intdom f. In view of (i),

limsup{s : s € 3f(x),x 1 x0} < D_ f(x0)- “4.2.4)

Take dom f > x < x’ < xp and write (4.1.1) with x, replaced by x’: by definition of
af,
fx) = f(x))

Py <s' foralls’ € 3f (x').

Letting x” 1 x, and using the continuity of f at x:

f @) — f(x0)

< liminf {s" : 5" € 3f (x'), x" 1 x0}.
X —Xp

It remains to let x 1 xo and to compare with (4.2.4) to obtain (4.2.2). o

Property (iii) means that, when x tends to x, while staying on the same side of x,
the whole set 3f (x) shrinks to one single particular endpoint of 8f (xo), namely the
half-derivative corresponding to the side that x comes from. The proof can of course
be extended when x, is the right endpoint of dom f, provided that f is closed (the
continuity of f is explicitly used). Finally, remember Example 4.1.9, which shows
that existence of a (half-)derivative of f does not imply single-valuedness of 3f in a
neighborhood.
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Remark 4.2.2 What Theorem 4.2.1(iii) says is that D_ f is left-continuous and D, f
is right-continuous, wherever they exist. This double result can be condensed into one
with the help of the notation (4.1.4): for all x € dom f and all d, the following holds
in R U {£o00}

flx+1td,d)} f'(x,d) when 0. o

Needless to say, 3f (x) is the ordinary derivative {D f(x)} whenever f is differ-
entiable at x — and this occurs for “most” x. More can be said about this case:

Corollary 4.2.3 With f € ConvR, let xy € intdom f be a point where f is differ-
entiable, with derivative D f (xg) = D_ f(x9) = D4 f (x0). Then 3f (x) converges to
D f (x¢) when x — xy.

In particular, f is continuously differentiable at x, whenever it is differentiable
in a neighborhood of x. O

As shown for example by (4.2.3), the difference quotient between x; and x; lies
between the slopes at x; and x,. This suggests that some mean-value theorem should
hold as an equality. Such is indeed the case:

Theorem 4.2.4 (Mean-Value Theorem) Let f € ConvR and let [a, b] C dom f
with a < b. Then there exists c € la, b[ such that

f®b) - fla
a

P € af(c). (4.2.5)

PROOF. As usual in this context, consider the auxiliary function

b) — f(a
5@ = fo) - f@ - LT D).
—a
It is continuous on [a, b}, it has been constructed so that g(a) = g(b) = 0, so it is
minimal at some ¢ € ]a, b[. Also, inspection of the left- and right-derivatives shows

that f® - 1@
— f(a
88(c) = 9f () —[ . }
—-—a
Thus, the minimality condition (4.1.8) characterizing c is exactly (4.2.5). o

Remark 4.2.5 The particular subderivative singled out by (4.2.5) is a convex combination
of D_ f(c) and D, f(c). Now Fig.4.2.1 suggests the following construction: take arbitrary
s1 € 3f(cy) and 57 € 3f(cz) witha < ¢} < ¢ < ¢ < b. From the monotonicity property
(4.2.1), 8f(c) C [s1, s2], hence (4.2.5) can also be represented as a convex combination of
these s; and s5.

Another observation is that the locally Lipschitzian f is, at least locally, absolutely

continuous (see §A.6). Indeed, if s : dom3f — R is an arbitrary selection s(u) € 3f (u),
there holds

b
F®) - f@) = f s(u)du. 42.6)
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a Cq c c, b
Fig.4.2.1. Mean-value theorem for convex functions

The symbolic writing

f(x)—f(a)=/x3f(u)du forall x € [a, b]

a
gives one more mean-value theorem. An easy consequence of this integral representation is:
if f and g are closed convex functions such that
df(x) Cc 9g(x) forall x € [a,b] C intdom f Nintdomg,

then f and g differ by a constant on [a, b]. o

4.3 Calculus Rules

When convex functions are combined so as to form a new convex function, their
subdifferentials obey calculus rules resembling those of ordinary differential calculus.
A difference, however, is that there are operations preserving convexity which do not
preserve differentiability (like taking a pointwise maximum). Indeed, computing the
subdifferential of a composite function f amounts to computing the half-derivatives
D_ f and D, f; difficulties might occur, however, at the endpoints of the various
domains involved, where these half-derivatives might take on infinite values.

Proposition 4.3.1 Let fy,..., fm be m convex functions, all finite in the neigh-
borhood of some point x, and let t,, ..., tm be positive numbers. Then, for f =
;n=l tjfj'
m
af (x) = Y_t;9f(x).
j=l

PROOF. Just apply to the half-derivatives D__ f; and D f; the standard calculus on
limits, and use the addition of compact intervals of R. O

Proposition 4.3.2 Let f1, ..., fin and x be as described in Proposition 4.3.1. Setting
f=max; fj, let

J@) i={j=1...,m: fj(x) = f(x)

be the set of active indices at x. Then df (x) is the smallest interval containing each
afj(x), j € J(x).
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PROOF. Observe by direct calculation that
D = max D.f; and D = min D_ fi(x). o
+f(x) jmax, +fj(x) _fx) jin, _fix®)

As an illustration, suppose that all the f;’s are differentiable, with derivatives D fj (x).

Then
3f (x) = [minje j(x) D fj(x), maxjex) Dfj(x)].

If, in addition, there is only one active index at x, say j(x) (a situation likely to happen most
of the time, draw a picture), then f is differentiable at x and D f (x) = D fj (x)(x).

Note: Propositions 4.3.1 and 4.3.2 could be extended to an x on the boundary
of some dom f;, provided that all the 3f;(x)’s are nonempty (then, calculus on the
half-derivatives is to be understood in R U {=00}).

Proposition 4.3.3 With f, and f, convex and minorized by a common affine function,
let f = fi$ f, € ConvR. Take x € dom f = dom f; + dom f,, and suppose that
there exists (x1, x2) € dom f, x dom f, such that the infimal convolution is exact at
x =X+ Xy, i.e. f(x) = fi(x1) + fa(x2). Then

of (x) = af1(x1) N dfa(xz) .

PROOF. Use (4.1.7) and decompose any y € R as y = y; + y,: a slope s belongs to
af (x) if and only if, for all (y, ;) € R?,

fi) + 200 2 filx) + falx2) + 51 +y2 — x). 4.3.1)

Setting successively y; = x;,i = 1,2, we seethats € 3f (x;),i =1, 2.
Conversely, if s € 3f (x;) fori = 1, 2, we have

fi) 2 fixi) +s(i —x;) fori =1,2andall y; € R;
then (4.3.1) follows by mere addition. o

It is worth noting in the above result that, if either f; or f; is differentiable, so is
fi ¥ fa. A particularly interesting application is the regularization of Moreau-Yosida
(2.2.2):1et f € Conv R and y(x) (x) be the unique solution of (2.2.2); since the function
x > 1/2kx? has the derivative kx, we conclude that f is differentiable, and that
D f(x) (x) = k[yx(x) — x]. See again Example 1.1.5 and Fig.2.2.1.

Propesition 4.3.4 Let { fy}xen be a sequence of convex functions converging point-
wise to a (convex) function f and take x € dom f (assumed nonempty). For any
sequence sy € 8fy(x), the cluster points of {sy} are all in 3f (x). u]

With set-theoretic notation, the property expressed in this result can be written as

limextdfi(x) C 3f(x); 4.3.2)
k—00

(see §A.5: the limes exterior is the set of all cluster-points). Just as with Proposition
4.3.3, the proof uses the characterization (4.1.7): it suffices to pass to the limit in



5 Second-Order Differentiation 29

ftO) = fi(x) +sg(y —x) forally e R

(a technical point is that, since the limit f is finite at x by assumption, then necessarily
Jx(x) is also finite for k large enough).

Counter-examples to the converse inclusion in (4.3.2) are known even in classical
differential calculus, for instance x > fx(x) = /x2+ 1/k: when k — +o00, f;
converges (even uniformly) to |x| and

Dfi0)=0—0e[-1,4+1]1=0( - |)O0).

We conclude this section with a simple example: taking f to be a convex function and
C a closed interval included in intdom f, consider the minimization problem

inf {f(x) : x € C}. (4.3.3)

With the help of the indicator function of Example 3.2.4, it can be transformed to the obviously
equivalent problem:

inf{g(x) : xeR}, where g=f+Ic,

in which the constraint is hidden; formally, it suffices to study unconstrained problems. Fur-
thermore, (4.1.8) tells us that this in turn is equivalent to finding x such that 0 € dg(x), which
can be further expressed as:

—00<D_gx) 0L Dygx) < + 00,
or also, in terms of the directional derivative:
g'(x,d)>0 foralldorford = +1.

Existence of such a solution is linked to the behaviour of g(x) when |x| — o0, see §2.3.
We just mention a result emerging from the continuity properties of the half-derivatives: if
there exist x; and x; withx; < x; and D, g(x;) > 0, D_g(x2) < 0, then there exists a solution
in [x, x2].

Our assumption C C intdom f enables the use of Proposition 4.3.1: the subdifferential
dIc(x) is clearly empty for x ¢ C, {0} for x € intC, and ] — oo, 0] (resp. [0, +o00[) for x
on the left (resp. right) endpoint of C. It is then easy to characterize an optimal solution: x
solves (4.3.3) if and only if it satisfies one of the three properties:

—either x € intC and 0 € 3f (x);
—or x is the left endpoint of C and D, f(x) > 0;
— or x is the right endpoint of C and D_ f(x) < 0.

5 Second-Order Differentiation

First-order differentiation of a convex function f results in the increasing derivatives
D_ f(:) and D4 f(-) — or, in a condensed way, in the increasing multifunction 3f.
In view of Lebesgue’s differentiation theorem (§A.6), a convex function is therefore
“twice differentiable almost everywhere”, giving way to some sort of second deriva-
tives. The behaviour of such second derivatives, however, is much less pleasant than
that of first derivatives. In a word, anything can happen: they can oscillate, or approach
infinity anywhere; their only certain property is nonnegativity.
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5.1 The Second Derivative of a Convex Function
First of all, we specify what we mean by “twice differentiability” for a convex function.
Definition 5.1.1 Let f € ConvR. We say that the multifunction df is differentiable

at x € intdom f when

(i) 3f (x) is a singleton {D f (x)} (which is thus the usual derivative of f at x), and
(ii) there is a real number D, f (x) such that

. f(x+h)~Df(x)
lim
h->0 h

= {Dyf(x)}, 5.1.D

i.e.: Ve > 0,38 > O such that |#| < § and s € 0f (x + h) implies

Is = Df(x) —D2f (x)h| < €lh]. (5.1.2)

a

Putting s on each endpoint of 3f (x + &) in (5.1.2), one sees that differentiability

of 3f implies the usual differentiability of D_ f and D+ f at x. Conversely, it is not too

difficult to see via Theorem 4.2.1 that differentiability of D_ f implies differentiability

of 9f at x, and of D4 f as well. In a word: differentiability at x of the multifunction
of ,orof D_ f, or of D f, are three equivalent properties.

Note that this differentiability does not force 3f to be single-valued in a neighborhood of
x:indeed, the df of Example 4.1.9 is differentiable at 0, with D; £ (0) = 1. Geometrically, the
multifunction 8f is differentiable when it is as displayed in Fig. 5.1.1: all the possible curves
h > s(h) € 3f (x + h) have the same tangent, of equation s(h) = D f(x) + D, f (x)h.

Fig.5.1.1. Allowed values for a differentiable multifunction

In real analysis, a function f has a second derivative £ at x if

Df(x+h)—Df(x)
h

this means that D f has a first-order development near x:

has a limit £ fork — 0; (5.1.3)

Df(x +h) =Df(x) + £h + o(jh]).

Then f itself has a second-order development near x:
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fx+h)=f(x)+Dfx)h+ 3£h* + o(h?). (5.1.4)

Conversely, it is generally not true that a second-order development of f implies the
existence of a second derivative. In the convex case, however, equivalence is obtained
if the differentiability definition (5.1.1) is used as a substitute for (5.1.3):

Theorem 5.1.2 Let f € ConvR and x € intdom f. Then the two statements below
are equivalent:

(i) of is differentiable at x in the sense of (5.1.1);
(ii) f has a second-order development (5.1.4) at x with £ = D, f (x).

PROOF. [(i) = (ii)] Given ¢ > 0, take |A| so small that, for all |u| < |h|,
—elul <s(x +u) —Df(x) —Dof (x)u < elul.
Integrate from O to 4 to obtain with (4.2.6):
|f(x+h) = f(x) =Df(x)h — D2 f (x)W?| < 3eh*.

[(ii) = (i)] Fix 0 arbitrarily in ]0, 1[; develop f(x + h) and f(x + 6h) according to
(5.1.4) and obtain by subtraction

fG+h) = f(x+6h)=(1—60)Df(x)h+ 1e(1 — 6*)h* + o(h*).
From the mean-value theorem 4.2.4, there is c between x +h and x+6h,and s € 3f (¢)

such that
s = f(x+h)— f(x+06h)
- (1-06)h
Applying the definition (5.1.4) to f(x + k) and f(x + 6h), we therefore get

s =Df(x)+ 3£(1 +0)h + o(h).

Now apply the monotonicity property (4.2.1): assuming for example i > 0,
af(x+0h)<s<af(x+h) (5.1.5)

so that we obtain
of (x +6h) —Df(x) <5 -Df(x) lel +6 N o(h)

Oh = 6h ) h
3f(x+h;_Df(x) > s"lzf(x) = %auen%").

If h < 0, inequalities are reversed in (5.1.5) but the division by 4 reproduces the same
last two inequalities.
Finally, let A — 0 (6 is still fixed):

h) —D
limsupaf(x+ ) fx) < %£1+9
h—0 h 6
liminf &L &M =DI®) 10 gy

h—0 h 2
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These inequalities are valid for all ¢ €]0, 1[, hence we have really proved that the
lim sup and the lim inf are both equal to £. o

Note that the equivalence with the usual second derivative still does not hold:
Example 4.1.9 is differentiable in the sense of Theorem 5.1.2 but not in the sense of
(5.1.3), since D f (x + k) does not even exist in the neighborhood of 0. On the other
hand, the property (5.1.1) appears as a suitable adaptation of (5.1.3) to the case of a
“set-valued derivative”; therefore we agree to postulate Definition 5.1.1 as the second
differentiability of a convex function. It is clear, for example from (4.1.7), that D, f
is a nonnegative number whenever it exists. Lebesgue’s differentiation theorem now
says:

Theorem 5.1.3 A4 function f € ConvR is twice differentiable almost everywhere on
the interior of its domain. u]

Unfortunately, this kind of second differentiability result does not help much in
terms of f. Consider for example a piecewise affine function:

f(x) =max{sjx —rj : j=1,...,m}.

Ithas first and second derivatives except at a a finite number of points (those where two
different affine pieces meet, see Theorem 4.3.2). Its second derivative is 0 wherever
it exists, but yet f differs substantially from being affine.

Remark 5.1.4 The derivative D f of f € ConvR is locally integrable on the interior of its
domain /; as such, it can be seen as a distribution on I: why not consider its differentiation in
the sense of distributions, then? A second derivative of f would be obtained, which would be
a nonnegative Radon measure; for example, the second derivative of | - | would be the Dirac
measure at 0: the piecewise affine f above would be reconstructed with the sole help of this
second derivative.

However, this approach is blind to sets of zero-measure; as such, it does not help much
in optimization, where one is definitely interested in a designated point (the optimum): for
this purpose, a pointwise differentiation is in order. o

5.2 One-Sided Second Derivatives

In Definition 5.1.1, existence of the usual first derivative is required at x, so as to
control the difference quotient (5.1.1). However, we can get rid of this limitation; in
fact, if h | 0, say, Theorem 4.2.1(iii) tells us that [8f (x + k) — D, f(x)]/ k is the
appropriate difference quotient — and the situation is symmetric for 2 1 0. The way
is open to “half-second derivatives”. From now on, it is convenient to switch to the
directional notation of Remark 4.1.4: for given x € intdom f, we fix d # 0 and we
set h = td,t > 0. We make appropriate substitutions in (5.1.1), (5.1.3) and (5.1.4) to
obtain respectively

lim f(x+td) — f(x,d) ’

tlo t

5.2.1)
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s(@) — f'(x, d)

¥s() €[D_f(x+1d), Dy f(x +1d)), lim == (5.2.2)
lim L&D =S (xz) —xd (5.2.3)
t10 /2

As before, the definitions (5.2.1) and (5.2.2) are just equivalent: if one of the limits
exists, the other two exist as well and are the same; this is the so-called point of view
of Dini. As for (5.2.3) (the point of view of de la Vallée-Poussin), equivalence also
holds:

Theorem 5.2.1 Ifoneofthelimits in(5.2.1)—(5.2.3) exists and is denoted by f" (x, d)
(> 0), then the other limits exist as well and are equal to f" (x, d).

PROOF. Just reproduce the proof of Theorem 5.1.2, without bothering with the sign
of h. o

To illustrate what has been gained in passing from §5.1 to §5.2, take Example 4.1.9 and
modify ¢ by setting ¢(u) = 0 for u < 0. Then the new f has the two “half-second derivatives”
£7(0, —=1) = 0 and f"(0, 1) = 1.

Still, the limits in (5.2.1) — (5.2.2) may fail to exist, for two possible reasons: the difference
quotients may go to +00, asin f(x +td) = 13/2, or they may have several cluster points. Take
again Example 4.1.9: 3f (0+1) is squeezed between the curves s = t and s = #/(1+1), which
are tangent to each other at 0. If ¢ is modified so that this second curve becomes s = 1/2¢,
say, then the set of cluster points in the difference quotient (5.2.1) blows up to the segment

[1/2,1].

Remark 5.2.2 (Interpretation of Second Difference Quotients) Forfixedx andd,
consider the family of parabolas of equations indexed by ¢ > 0:

T pe(t) = fet? + 5ot + f(x), with so= f'(x,d). (5.2.4)

They are constructed in such a way that p.(0) = f(x) and pL(0) = f'(x, d).

Now, fix # > 0 and compute ¢ so as to fit either the slope-value p(¢) = s() or
the function-value p.(t) = f(x + td). In the first case, ¢ is given by the difference
quotient in (5.2.2) and in the second case by the difference quotient in (5.2.3). Both
difference quotients thus appear as an estimate of the “curvature” of f at x in the
direction d. o

5.3 How to Recognize a Convex Function

Given a function defined on an interval I, the question is now: can we decide whether
it is convex on I or not? The answer depends on how much information is available:
about the function itself, about its first derivatives (possibly one-sided), or about its
second derivatives (or some sort of generalization). We review here the main criteria
that are useful in optimization.
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(a) Using the Function Itself Many criteria exist, relying on the definition of f and
nothing more. Some of them are rather involved, most of them are of little relevance
in the context of optimization. The most useful attitude is generally to view f as being
constructed from other functions known to be convex, via operations such as those
of §2.1 — and others to be seen in Chap. I'V.

At this stage, the criterion 1.1.4 of increasing slopes should not be forgotten: f
is convex if and only if the function

f&) = f(xN

A f(x,x) = —

, 5.3.1)
defined for pairs of different points in I, is increasing in each of its arguments. Note,
however, that A, f is a symmetric function of its two variables; hence it suffices that
A, f(x, -) be increasing for each x.

As seen in §3.1, convexity of f on I = [a, b] implies its upper semi-continuity
ata and b. Conversely, if f is convex on int /, and upper semi-continuous (relative to
I') on the boundary of I, then f is convex on I: just pass to the limit in (1.1.1). We
will therefore content ourselves with checking the convexity of a given function on
an open interval. Then, checking convexity on the closure of that interval will reduce
to a study of continuity, usually much easier.

(b) Using the First Derivative Passing to the limitin A, f of (5.3.1), one obtains the
following result:

Theorem 5.3.1 Let f be continuous on an open interval I and possess an increasing
right-derivative, or an increasing left-derivative, on I. Then f is convexon I.

PROOF. Assume that f has an increasing right-derivative D f. For x, x’ in I with
x < x’ and u € ]x, x'[, there holds

f@—fe _

/ —
< sup Dyf(®)< inf Dyf(r)< f&) ), f@)
u—x 1€ x,u te Ju,x' x

—Uu

(the first and last inequalities come from mean-value theorems — in inequality form
— for continuous functions admitting right-derivatives). Then (1.1.1) is obtained via a
multiplication by x’ — x > 0, knowing that 4 = ax + (1 — a)x’ for some « €0, 1[.
The proof for D_ f is just the same. o

Corollary 5.3.2 Assume that f is differentiable on I with an increasing derivative
on an open interval I. Then f is convex on I. O

(¢) Using the Second Derivative To begin with, an immediate consequence of
Corollary 5.3.2 is the following well-known criterion, by far the most useful of all,
even though second differentiability is required:

Theorem 5.3.3 Assume that f is twice differentiable on an open interval 1, and its
second derivative is nonnegative on 1. Then f is convex on I. o
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To illustrate a combination of Theorems 5.3.1 and 5.3.3, assume for example that f is
“piecewise C? with increasing slopes”, namely: there is a subdivision xo = a < x; < --- <
x; = b of I =]a, b[ such that:

— f is continuous on I,
— fisof class C? and D, f > 0 on each subinterval 1x;_y, x;[,i = 1,...,k,
— f has one-sided derivatives at xi, ..., x;— satisfying

D_f(x;) <Dyf(x;) fori=1,... . k—1.

Then f is convex on I.

In the absence of second differentiability, some sort of substitute is required to
determine convexity. Translating to second order the criterion using the (symmetric)
function A, f of (5.3.1), we obtain: f is convex if and only if A; f is nonnegative on
I x I x I, where

Mrf(x, 6, 2" = - [f W-Jx) J&- I >]

x—x' x —x

is defined for all triples of different points x, x’, x” in I. Note that A, f is symmetric
in its three variables.

Letting x’ and x” tend to x in A, f, just as was done with A, f, one can get an
analogue to Theorem 5.3.1. One must be careful when letting x" and x” converge,
however: consider

x> f(x) :==min {3x? +x, ;x> — x} . (5.3.2)

Its half-second derivatives (5.2.1) are constantly 1, but it is not convex: when passing
to the limit with x” and x”, account must be taken of both sides of x. The “Schwarz
second derivative”, for example, does the job by taking x — x’ = x” — x:

fx—=t)=2f(x)+ f(x+1)

A_zf(x) := lim sup > (5.3.3)
tlo t
We obtain the second derivative of f at x if there is one; the counter-example (5.3.2)
has A, f(0) = —oo0, and is thus eliminated. When f is convex,
Ay f(x)>0 forallx el. (5.3.4)

This condition turns out to be sufficient if combined with the continuity of f:

Theorem 5.3.4 Assume that f is continuous on the open interval I and that (5.3.4)
holds. Then f is convex on I.

PROOF. Take a and b in I witha < b, ¢ €]0, 1{ and set x := aa + (1 — «)b. We
have to prove the “mean-value inequality”

f(b) — f(a)
a

f®) < f@+=——

(x—a). (5.3.5)

We take
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g(x) == f(x) - f(a) -

f(b) ;{(a) G—a)

b
and we prove g < 0 on ]a, b[. We have g(a) = g(b) = 0 and, since f and g differ by
an affine function, A,g = A, f.

Suppose first

Arg(x) = Ay f(x) >0 forall x €la, b[. (5.3.6)

We claim that g is then nonpositive on ]a, b[: if such were not the case, the continuous
g would assume its maximal value at some x* € ]a, b[ and the relation

g(x* —1) —2g(x*) + g(x* +1) <0 forall t small enough

would contradict (5.3.6). Thus (5.3.5) is proved.

Now define fi(x) := f(x) + 1/kx2. If (5.3.4) holds, A, f; is positive on Ja, b[
and, from the first part of the proof, f; is convex. Its pointwise limit f is therefore
convex (Proposition 2.2.1). O

Remark 5.3.5 With relation to Remark 5.2.2, observe that the difference quotient in (5.3.3)
represents one more “curvature” estimate. Let 5o be free in (5.2.4) and force p. to coincide
with f atx,x —t, x +¢: we again obtainc = A f(x, x — ¢, x +1). u]

6 First Steps into the Theory of Conjugate Functions

On several occasions, we have encountered the conjugate function of f, defined by
R>s+— f*(s) :=sup{sx — f(x) : x € dom f}. (6.0.1)

Because sx is a finite number, we can let x run through the whole of R, and of course
this does not change the supremum: instead of (6.0.1), we may as well write the simpler
form

f*(s) = sup [sx — f(x)]. (6.0.2)
XER

Remark 6.0.1 Some comments are in order with respect to Remark 1.3.3. What is
actually computed in (6.0.2) is

h}f [f(x) —sx], (6.0.3)
a number which is certainly not +oc0. As a result, its opposite f*(s) is in our space
of interest R U {+o0}. Furthermore, this opposite will be seen to behave as a convex

function of s (already here, remember Proposition 2.1.2).
Indeed, one should realize that (6.0.1), (6.0.2) — or (6.0.3) — actually means

f*(s) =sup{sx —r : (x,r) € epi f}, (6.0.9)
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grf grf

-r

£'(s)
Fig. 6.0.1. Constructing a conjugate function

and this last writing has two advantages: first, it suppresses the “— f(x)” operation;
and more importantly, it interprets the conjugacy operation as the supremum of a
linear function [£s(x, r) := sx — r] over a closed convex set of R2. We will return
later (Chapters IV and X) to this aspect; considering that (6.0.4) is rather heavy, the
versions (6.0.1) or (6.0.2) are generally preferable, and will be generally preferred.

(]

We retain from (6.0.4) the geometrical interpretation displayed in Fig. 6.0.1: for
given s and r, consider the affine function as,, defined by

Roaxasr(x)=sx—r

and the corresponding line gr as r in R2. Due to the geometry of an epigraph, there are
two kinds of r for given s: those, small enough, such that a; » < f; and those so large
that as r(x) > f(x) for some x. The particular r = f *(s) is their common bound,
obtained when the line gras , “leans” on epi f, or supports epi f. For the particular
value s = 0, we obtain

— f*©) =inf {f(x) : x € R}. (6.0.5)

Figure 6.0.1 displays the set for which f* is finite; and this set depends exclusively
on the behaviour of f at infinity, which therefore plays an important role for the
determination of dom f* (remember §2.3). On the other hand, let xo € dom f and
choose s € df (xp); then the corresponding “optimal” line supports gr f at (xo, f (xo)),
so that f*(s) = sxq — f(xo) for suchans.

Examples 6.0.2 For each f € ConvR considered below, we give the corresponding conju-
gate function f*. Draw the graph of f* in each case.

— f(x) = |x|: then f* is the indicator function I} +1}; more simply, f(x) = sx gives
=l

~ f(x) = (1/p)|x|P,with p > 1:then f*(s) = (1/g9)is|9, with1/p+1/g = 1.Inparticular,
f*=fifp=2.

— f(x) = xlogx ifx > 0, 400 if not: then f*(s) =exps — 1 foralls € R.
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V1452, o

It is important to realize that the argument s, which f* depends on, is a slope,
i.e. strictly speaking an element of the dual of R. When taking again the conjugate of
f*, one goes back to the primal and the result is the biconjugate function of f:
FY@) = (fH*(x) =sup{sx — f*(s) : s € dom f*}.

For illustration, compute the biconjugates in the examples above.

The transformation f +— f* is (the one-dimensional version of) the so-called
Fenchel correspondence, and is closely related to the Legendre transform. In view of
its importance for a deep understanding of the properties of a convex function, we are
going to explore step by step some basic results about it.

6.1 Basic Properties of the Conjugate

First of all, the very definition (6.0.1) directly implies the relation

sx < f(x)+ f*(s) forall x € dom f and all s € dom f*, 6.1.1)
called the Young-Fenchel inequality (which, incidentally, holds for all s and x!).
Proposition 6.1.1 Let f € ConvR. Then

— the conjugate of f is a closed convex function (f* € Conv R),

— the biconjugate of f is its closure (f** =cl f).

PROOF. The function f* takes its values in R U {400} by construction. Its domain is
nonempty, see Remark 4.1.7. Then, its convexity and closedness result from Propo-

sition 3.3.2.
Now, use the form (6.0.4) to define f**:

@) =sup{sx —r : r > f*)}. 6.1.2)
s, r

By definition of f*, to say r > f*(s) is to say that, for all y € dom f,
rzsy—f(y), ie. sy—-r<f().

In other words, (6.1.2) can be written

™) =supi{sx —r : sy—r< f(y) forally e dom f},
s,r
in which we recognize the expression (3.2.4) of cl f. o

When conjugating a function f, one considers the set of all affine functions
minorizing it. As mentioned in Remark 3.2.6, this is also the set of all affine functions
minorizing cl f. It follows that f and cl f have the same conjugate: from now on,
we may assume that the convex f is closed, this will be good enough. Then the
relation f** = f, established in Proposition 6.1.1, shows that the Legendre-Fenchel
transformation is an involution in Conv R. This is confirmed by the next result, in
which we have also an involution between s and x via the solution-set of (6.0.1).
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Proposition 6.1.2 Let f € ConvR. Then
sx = f(x)+ f*(s) ifandonlyif x € dom f ands € 3f (x); (6.1.3)
s €0f(x) ifandonlyif x € df*(s). (6.1.4)
PROOF. We have that
—f*(@s) =inf {f(x) —sx : x € R}.

The function g5 : x > f(x) — sx, which is in Conv R, achieves its infimum at x if
and only if 0 € 9g(x) —see (4.1.8) —i.e.

—f*(s) = f(x) —sx ifandonlyifs € 3f (X).

This implies s € dom f* and can be written as (6.1.3). Applying this same result to
f* (which is closed), we obtain

x € 3f*(s) ifandonlyif sx = f*(s)+ f**x),
which is again (6.1.3) since f** = f. a

What (6.1.3) says is that the pairs (x, s) € R? for which the inequality of Young-
Fenchel (6.1.1) holds as an equality form exactly the graph of 3f . In view of (6.1 .4), the
mapping 3f* is obtained by inverting the mapping 3f, i.e. reflecting its graph across
the line of equation s = x: see Fig.6.1.1, and remember the increasing property
(4.2.1).

or of

grof

Fig.6.1.1. The symmetry between 3f and 8f*

Remark 6.1.3 The above inversion property suggests a way of computing a conju-
gate which may be useful: “differentiate” f to obtain 3f; then invert the resuit and
integrate it to obtain f* up to a constant. As an exercise, compute graphically the
conjugate of 1/2x2 + |x]. O
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6.2 Differentiation of the Conjugate

The question we address in this section is: what differentiability properties can be
expected for f*, perhaps requiring from f something more than mere convexity?
Let s € intdom f* and consider the statement

f* is differentiable at s, .
According to Proposition 6.1.2, it means
there is a unique solution to the “equation” (in x) 3f (x) 3 so, (6.2.1)
which in turn relies on the key property
af is “strictly increasing” on its domain, 6.2.2)
in the sense that 3f (x;) < df(x;) whenever x; < x;. As is easily checked, this last

property is equivalent to
f is strictly convex . (6.2.3)

Thus, we have:

Proposition 6.2.1 Let f be strictly convex. Then f* is differentiable on the interior
of its domain and, for all s € intdom f*,

Df*(s) = x(s)
where x(s) is the unique solution of

sedfx), or sx— f(x)=f*s), or n}in[f(x)—sx]. 8]

The converse to Proposition 6.2.1 is false: f* may be differentiable on the interior
of its domain while f is not strictly convex. A counter-example is

1x? if x| <1
- 2 ~ »
f(])(x) . { xl _ 1/2 if’xl 2 1 , (6'2'4)
for which easy computations give
£ (s) = 352 ifIs| <1,
O 382 + Iy 40(s) = +oo if|s] > 1.

The only explanation is that (6.2.1) (assumed to hold for all s, € intdom f*)
does not imply (6.2.2). More precisely, two different x, and x, are allowed to give
a nonempty intersection 3f (x;) N 8f(x;) > s, provided that this s, falls on the
boundary of dom f*. Some additional assumption is necessary to rule this case out;
among other things, the following result illustrates further the involutional character
of the Legendre-Fenchel transformation.
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Proposition 6.2.2 Let f : R — R be strictly convex, differentiable, and I-coercive
(f(x)/|x| = +oo0 for |x| > oc). Then

(i) f* enjoys the same properties
and, for all s € R,
(ii) there is a unique solution to the equation D f (x) = s,

(iii) f*(s) =sD)7'(s) = FUD)s).

PROOF. We claim first that the 1-coercivity assumption on f (which, according to
(2.3.3), is equivalent to f5,(1) = f%,(—1) = +00) amounts to saying that

lim Df(x)=— lim Df(x)=+oo.
x—>+oo X—>—00

In fact, for x > 0, (4.1.7) gives

f(x) - f(0)
Df(X)?——x——-

When x — +o00, the right-hand side goes to f5,(1), so f5,(1) = +oo implies
D f(x) — +4o00. To prove the converse, let x — +o0 in the inequalities

Df(x) < fx+1) — f(x) < flo(D),

which come from the property of increasing slopes. The same proof works for x —
—o0 and establishes our claim.

Remembering the equivalence between (6.2.2) and (6.2.3), we therefore see that
D is a bijection from R onto R. Its inverse (D f) ! = D f* is a bijection as well and
the whole result follows. O

Example 6.2.3 The function f(x) = chx satisfies the assumptions of Proposition 6.2.2:
D f(x) = shux, hence the inverse D f*(s) = (sh) ™! (s). We readily obtain

F*(s) = s(sh)~'(s) = V1 +s2,

which is an illustration of (iii). Among other things, the 1-coercivity of the above function is
implied by (i), but could not be seen at first glance. u]

Consider now the problem of differentiating f* twice, which is (not unexpectedly)
more complex. To get an idea of what can be expected and what is hopeless, we suggest
meditating on the following examples.

Examples 6.2.4

(a) fi =|-]is C* in a neighborhood of an arbitrary xo > 0. Nevertheless, f;* =1 11
is not even finite in a neighborhood of so = D f;(xg) (= 1 for all xp > 0).
(b) The previous function was not differentiable everywhere, but consider

0 if x| <1,
3(Ix| = 1)? otherwise.

Hx) = {

Then, £ (s) =1/2 52 + |s] is still not differentiable (at s = 0).
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(c) The following function is convex, 1-coercive and twice differentiable everywhere:

0 iflx|<1,
Hx) = [ % (x| — 1)} otherwise .
Yet, f;(s) = 2/3|sI*/2 + [s| is not even once differentiable (at s = 0).

(d) A slight perturbation of the previous example is f4(x) = 1/3|x —1 13;itis strictly convex,
1-coercive and twice differentiable throughout R but f(s) = 2/3 |s 132 + 5 is only once
differentiable.

(e) Take the conjugate of (6.2.4): fs(x) = 1/2x% + I1—1,+17(x) is C* on the interior of its
domain, with D, f5s > 0 throughout (while D, f4 was 0 at the only point 0). Its conjugate
S = fay of (6.2.4) is not twice differentiable at £1. o

The deep reason for all these oddities is that f* is a global concept, as it takes into
account a priori the behaviour of f on its whole domain; as a result, the smoothness
of f* is a tricky matter. We just mention two results: a local one, and a global one
which echoes Proposition 6.2.1 via the inverse function theorem.

Proposition 6.2.5 Assume that f € Conv R is twice differentiable at x, (in the sense
of Definition 5.1.1) with D, f(x0) > 0. Then f* is likewise twice differentiable at
5o = D f(xp) and |
Dy f*(sg) = ———.

2f" (5o D, f (xo)

PROOF. First of all, we claim that f* is differentiable at 5o, with derivative x;. In fact,
xo € 8f*(so) because of (6.1.4). If the convex set df *(so) contains another xo + d,
then it contains also the whole interval xo + [0, 1]d: we have s, € 3f (xo + td) for
t | 0; comparing with (5.1.1), we see that the positivity of D, f (xo) is contradicted.

Now, we want to prove that, for arbitrary x € 3f*(s),

X — X 1 . s — 8o
0, .e. D
s—s Do 0 M a7 D)

when s — so; but this follows from (5.1.1): s € 3f (x) and Corollary 4.2.3 tells us
that x — xo, since f* is differentiable at x,. O

As a result, suppose that f € ConvR is twice differentiable on intdom f with
D, f > 0 throughout. Then f* enjoys the same properties, but only on the image-set
D f (intdom f); see Example 6.2.4(e).

A one-sided version of Proposition 6.2.5 can also be stated just as in Theo-
rem 5.2.1. We rather give the global version below, obtained via the C' parametrization
of Proposition 6.2.1: Df* = (D).

Corollary 6.2.6 Assume that f is I-coercive, and twice differentiable on R, with
D, f > 0 throughout. Then f* is likewise and
1
Dyff= ————. O
Dyf o (DN

For illustration, see again Example 6.2.3:

Dyf(x) =chx and Dyf*(s) =+1+s2.
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6.3 Calculus Rules with Conjugacy

In §2.1, we have introduced some operations preserving convexity, whose effect on
the subdifferentials has been seen in §4.3. Here, we briefly review their effect on the
conjugate function.

Proposition 6.3.1 Let f, and f, be two (closed) convex functions, minorized by a
common affine function. Then

(s =1+ 1. 6.3.1)

PROOF. The proof illustrates some properties of extremization (see in particular
§A.1.2). Fors € R,

GEEINO) sup, {sx —infy 4y, =x[fi(x1) + fz(xz)]}
SUPy 4 x,=x[S(X1 + x2) — fi(x1) — fa(x2)]
supy, 5, [sCr1 +x2) = fi(x1) — fa(x2)]

supy [sx1 — fi(x1)] + supy,[sx2 — f2(x2)]

i

and we recognize f;*(s) + f,"(s) in this last expression. u]

The dual version of this result is that, if f; and f; are two closed convex functions
finite at some common point, then

i+ =31 6.3.2)

The way to prove it is to observe that the two functions fi* and f,* satisfy the
assumptions of Proposition 6.3.1, and their conjugates are f; and f, respectively;
hence

(fl*'\'/-fz*)* =f1 +f2-

Taking the conjugate of both sides and knowing that an infimal convolution is closed
(see Remark 3.3.4) gives directly (6.3.2). In several dimensions, however, an inf-
convolution is no longer closed, so technical difficulties can be anticipated to establish
(6.3.2).

The value at s = 0 of the function (6.3.2) gives an interesting relation: in view of
(6.0.5), we have

LA + @) =i+ £)"0) = D16 + £(=9)],

which is known as (the univariate version of) Fenchels duality theorem — but once
again, beware that it does not extend readily to several variables.

Formulae (6.3.1) and (6.3.2) show that the addition of functions and their infimal
convolution are operations dual to each other. The sup-operation is more complex:
it is dual to an operation that we have not seen yet, namely that of taking the closed
convex hull of a nonconvex function. Indeed, convexity of f is by no means necessary
to define its conjugate (6.0.1): the result is “meaningful” as soon as we have:



44 I. Convex Functions of One Real Variable

(i) f is not identically +oo (otherwise f* would be — identically! — —o0)
(ii) f is minorized by some affine function (otherwise f* would be identically +00).

Now, to f satisfying these properties, we can associate the family of affine functions
s = sx — f(x), indexed by x € R: Proposition 3.3.2 tells us that their supremum f*
is a closed convex function of s.

In a word, the conjugacy operation can perfectly well be applied to any function
[ satisfying the conditions (i) and (ii) above, “and nothing more”. Looking again at
the proof of Proposition 6.1.1, we see that the biconjugate of f is then the pointwise
supremum of all the affine functions minorizing f. The epigraph of f** appears as
the closed convex hull of epi f, as indicated by Fig. 6.3.1. In view of this remark, a
more suggestive notation can be used:

f=clecof = cof. (6.3.3)

This last function appears as the “close-convexification” of f, i.e. the largest closed
and convex function minorizing f; naturally, co f < f!

a kinky function

f(x) = (x2 - 1)2
Fig.6.3.1. Taking a closed convex hull

The extension thus introduced for the conjugacy is used in our next results.

Proposition 6.3.2 Let { fj}jcy be a collection of functions not identically +oo, and
all minorized by some common affine function. Then the function f := infje; f
satisfies (i) and (ii), and its conjugate is

(inf; fj)* = supj(fj*) . (6.3.4)
PROOF. That f satisfies (i) and (ii) is clear. Then (6.3.4) is proved as (6.3.1), via the
same properties of extremization. 0

Corollary 6.3.3 Let{gj}jecs bea collection of functions in Conv R, and suppose that
there is some xy such that SUpj e 8j (x0) < +00. Then

(supj gj)* = co(inf; g}?) .
PROOF. Proposition 6.3.2 applied to f; = g]’.* gives
(infj g7)* = sup; g}* = sup; g; .

The result follows from (6.3.3), by taking the conjugate of each side. O
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Example 6.3.4 Given two arbitrary functions ¢ and ¢ from some arbitrary set Y to R,
consider the (closed and convex) function

Raxr gx) :=sup{xc(y) —p(y) : ye Y} (6.3.5)
which we assume < 400 for some x9 € R. With the help of the notation
gy(x) :==xc(y) —¢(y) forallyeYandx € R,
we can apply Proposition 6.3.3 to compute g*. We directly obtain
g*(s) = co[inf ey g5(s)] (6.3.6)
where the conjugate of each gy is easy to compute:

*(s) = (») ifs =c(y)
&= sup,[(s — c(y))x + ¢(y)] = +oo otherwise .

This calculation is of interest in optimization: consider the (abstract) minimization prob-
lem with one constraint
inffe(y) yeY
c(y)=s.
Here, the right-hand side of the constraint is parametrized by s € R. The optimal value
is a function of the parameter, say P(s), usually called the value-function, or also primal,
perturbation, or marginal function. Clearly enough, this function can be written

6.3.7)

P(s) = inf{g;(s) :yevY}.

Observe that P has no special structure since we have made no assumptionon Y, ¢, ¢ —
other than g £ +oo0 in (6.3.5). Nevertheless, what (6.3.6) tells us is that the closed convex
hull of P is the conjugate of g in (6.3.5):

gf=¢coP.

In particular, if P happens to be closed and convex, we obtain from (6.0.5): —inf g = g*(0) =
P(0). With notation closer to that of (6.3.7), this means

sup inf [@(y) — xc(y)] = inf {p(y) : c(y) = 0}. s
xeR Y€Y

The closed convex hull of a function is an important object for optimization, even
though it is not easily computable. A reason is that minimizing f or minimizing ¢o f
are “equivalent” problems in the sense that:

X minimizes f <= [Xx minimizes ¢o f and €0 f(x) = f(x)] .
Even more can be said:

Theorem 6.3.5 Let f : R — R be a differentiable function with derivative D f.
Then x minimizes f on R if and only if

Df(F) =0 and & f(%) = f@).

In such a case, o f is differentiable and minimal at x.
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PROOF. The condition Df(x) = 0 is known to be necessary for x to minimize
the differentiable function f. Furthermore, the (constant) affine function defined by
£(x) = f(x) minorizes f — hence £ < Co f — and coincides with f at x — hence
£(x) = o f(x).

Conversely, let x satisfy Df(x) = 0 and €6 f(x) = f(x). Since ¢o f < f, we

have _
ofxth—c0fx) flx+h)—fx)
h = h
Letting & | 0, we obtain

forallkh > 0.

Dy f(x)<Df(x) =0.
Taking A < 0, we show likewise that
D_c f(x) >Df(x) =0.

On the other hand, the convex ¢o f satisfies D_ o f < D4 ¢o f: we conclude
that Do f(x) = 0, o f has a O-derivative at x, is therefore minimal at x, and f as
well. o

Thus, what is needed for a stationary point x of f to be a minimum is just to satisfy
€0 f(x) = f(x). The examples of Fig. 6.3.1 help understanding this last property:
the function (x2 — 1)? has the minima =41, and 0 is left out. It is interesting to note
that the condition D f(x) = 0 is purely local and makes no reference whatsoever to
minimality of x, rather than maximality, say. In fact, suppose f has only one-sided
derivatives; if the stationarity condition “D f(x) = 0” is replaced by the apparently
natural “D_ f(x) <0< D4 f(x)”, then Theorem 6.3.5 breaks down: see the right
part of Fig. 6.3.1. By contrast, the condition “co f(x) = f(x)” has global character.



II. Introduction to Optimization Algorithms

Prerequisites. Some knowledge of computer programming; elementary differential calcu-
lus in R": inner products, gradient vectors, Hessian operators.

Introduction. In this chapter, we survey the techniques that are suitable for solving mini-
mization problems. By “solving”, we mean actually computing a solution, or at least approx-
imating it. In this domain, convexity of the functions involved is of little relevance, what is
important is rather their smoothness. We will therefore limit our attention to smooth enough
functions (say C*) and neglect their convexity as a minor detail: it will become important
only in subsequent chapters.

Our aim is not to give a complete list of existing algorithms (there are other books for
that); rather, we will extract those concepts that will be useful for us later, when we develop
algorithms in the context of convex analysis.

1 Generalities

1.1 The Problem

We are interested in the following optimization problem: given an objective function
f :R® > R, find x € R" such that

fi=f& < f(x) forallx e R", (1.1.1)
i.e. we want to solve (see the appendix §A.1.3 — A.1.4 for the notation)
min {f(x) : x eR"} =: f. (1.1.2)

Remark 1.1.1 There are problems in which one is more interested in finding F, and the
precise value of x is of smaller interest. This is the case for instance when f represents an
actual cost, say in French francs, but (1.1.2) represents only a simulation (say of a power plant,
an investment, . .. ) rather than the actual operation (of that power plant, ...). In some other
cases, one is definitely more interested in finding X, the value f being only a by-product. This
latter case is illustrated by the following well-known situation: to solve a system of equations

F(x)=0 with F: R"— R™, (1.1.3)
one sometimes prefers to solve the optimization problem

min {|F(x)|| : x € R"}
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which is normally equivalent to (1.1.3). Clearly then, one is not very interested in the minimal
value, which is normally 0, but more so in the minimal solution, which supposedly solves the
original problem (1.1.3). o

(i) Existence questions for (1.1.1) are rather well known. Provided that r € R is
large enough to imply that the sublevel-set S, (f) is nonempty — say r > f(x;),
x; arbitrary — (1.1.2) is clearly equivalent to

min{f(x) : x € §;()}.

If we assume that some S, (f) is bounded, then the continuity of f, or even
its lower semi-continuity, implies the existence of a solution x to (1.1.2).

(ii) Uniqueness is a different matter, for which the suitable assumptions are related
with convexity: for example, strict convexity of f implies uniqueness of x solving
(1.1.2).

(iii) Recognizing a solution is, after existence and uniqueness, the next question con-
cerning (1.1.2): when can it be ascertained that a given x is optimal? This is
an unsolved problem, unless f has some particular structure — and convexity
is again the most classical one (we neglect the direct checking of (1.1.1) for all
possible x!). This means that the question of whether a given x minimizes f
cannot in general be answered with certainty. This question is important in prac-
tice, however, because optimization methods that actually compute an optimal
solution will precisely be based on the characterization of such a solution. Thus,
instead of really solving (1.1.2), one looks rather for a so-called local minimum,
i.e. a point such that one must, to obtain better values for f, move a definite
distance from it:

Definition 1.1.2 A local minimum of f is an ¥ € R” satisfying

Je >0 suchthat |x —¥|<e= f(X)< f(x). (1.1.9)
m}

Now, differential properties of f help describing a local minimum, and the fol-
lowing result is classical:

Theorem 1.1.3 Suppose f is a differentiable function.

(a) First-order necessary condition: if x is a local minimum then
Vfix)=0. (1.1.5)

Suppose now that f is twice differentiable.

(b) Second-order necessary condition: if x is a local minimum then
(h, VIf(X)h) >0 forallh e R". (1.1.6)
(¢) Second-order sufficient condition: if ¥ satisfies (1.1.5) together with
(h, V2 f(%)h) > 0 forall h € R"\{0}, 1.1.7)

then x is a local minimum.
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PROOF. Exercise; everything is based on the following developments: for h arbitrary
in R®,
fG&E+h)=f&) + (Vf(X),h)+o(llhl)
= fX) +(Vf@X), b) + 5(h, V2 (D)h) + o(lIR]?) . o

Among the above optimality conditions, (1.1.5) is the most used and there is a
name for it:

Definition 1.1.4 A critical, or stationary point for the differentiable f is an x € R”
satisfying V f(x) = 0. D

A genuinely necessary and sufficient condition for local optimality does not exist,
but observe that the difference between (1.1.6) and (1.1.7) is fairly small: the latter
requires that all the eigenvalues of V2 f (x) be positive, while the former allows some
of them to be zero. Anyway, filling the gap between (b) and (c) would amount to
analyzing higher order expansions of f: for those k having (h, V2 f(X)h) = 0, the
third-order term must be 0 and the fourth-order term must be strictly positive (sufficient
condition) or at least nonnegative (necessary condition) etc.

This is not generally considered a very fruitful pastime, and it has been a tradition
to limit the study to second order, which is already difficult enough in practice: to
check whether a given x is a local minimum, one must first check whether the gradient
is 0 at x; then one must compute the second derivatives, and then check if they form
a positive (semi-)definite operator. This is not practical as soon as n becomes large,
say beyond some hundreds, which is common for optimization problems.

(iv) Knowing that checking local optimality is already a difficult task in practice,
computing alocal minimum is even worse. In other words, (1.1.4) isnota tractable
problem yet, and one has to be even more modest in solving (1.1.2); in fact, an
optimization problem like (1.1.2) is considered as numerically “solved” if one
has found a critical point in the sense of Definition 1.1.4. Yet, finding such a point
is in general possible by approximation only, i.e. one must construct a sequence
{xx} such that

xp —> X with x stationary

or at least
Vf(xg) >0 whenk — oo

or, if we are less and less demanding,
liminf ||V f(xg)|| =0. (1.1.8)
k— 00

Let us sum up: to solve an optimization problem like (1.1.2), one is usually content
with a sequence {xx} satisfying (1.1.8). Accordingly, the following terminology is
generally used:

Definition 1.1.5 A minimization algorithm is said to be convergent, or also globally

convergent, for f in a given class (say a C' function) if (1.1.8) holds for all x; € R”
and all f in this class. o
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‘We mention here thi at the terminology “globally :onvergent” is misleading, be-
cause it does not mean convergence vo a grooar mmnmum (1.1.1) (let us repeat that
global optimality of a stationary point cannot be ascertained for a general f). Here,
the term “global” rather refers to the initial point x,;, which can be arbitrarily far from
the cluster point x.

1.2 General Structure of Optimization Schemes

To solve numerically our optimization problem, a set of rules must be defined which,
knowing the objective f and starting from some initial x,, construct the sequence
{xr} iteratively, in order to obtain (1.1.8).

In practice, of course, k does not go to infinity (otherwise no optimization problem
would ever be solved!) so one of the things an algorithm must do at each iteration is
answer the question: “Can the current xj be considered an accurate enough approxi-
mation of some critical point?” (if yes stop; if no, proceed to computing xy_). This
is the stopping criterion, or stopping test, which directly conditions the time to be
spent in solving the problem. According to our development above, the most natural
stopping criterion is: stop if

IVfal <3 1.2.1)

for some prescribed tolerance § > 0. If (1.1.8) holds, then (1.2.1) will certainly occur
for some k; when (1.2.1) occurs, some critical point can be hoped to exist close to x;,
(although not necessarily, cf. f(x) = e*, x € R, which has no critical point although
f/(x) = €* can be arbitrarily close to 0).

Remark 1.2.1 The above test (1.2.1) is not the only possibility for stopping an algo-
rithm: a sound optimization process can and must contain several other tests; actually,
designing good stopping criteria is not so simple and the question is not really solved
in a totally satisfying way; occasionally, we will return to this later, especially in §3.

=]

Thus we see that the complete optimization procedure, which is supposed to solve
(1.1.1) or (1.1.5), is made up of several ingredients: the algorithm itself, f, x;, §, etc
(this list being non-exhaustive). They fall into two categories:

(U) those pieces that characterize the problem to be solved; they are within the
responsibility of the user, who has posed the problem and who is interested in
knowing its solution; there we find: the choice of the initial x, (the user may have
some idea of a solution point), of the tolerance such as § for (1.2.1) (only the
user knows how accurately the problem should be solved) and, last but not least,
the objective function f itself;

(A) the second category contains the algorithm proper, i.e. the set of rules to construct
the iterative sequence {x}; it is in the responsibility of the algorithm’s designer,
who has defined the rules for iteration.

If we are dealing with general optimization — as opposed to a problem with special
structure and a method especially tailored for it — the above two categories (U) and
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(A) are fairly independent of each other. The most important part in (U), namely the
definition of f, does not depend on the particular algorithm that is going to minimize it!
On the other hand, and this is the most important point, the algorithm (the set of rules)
is also totally independent of the actual f; usually, it has in fact been designed long
before the particular problem was posed and long before the optimization process is
executed. We mention, however, that this independency property has some exceptions;
for example, a tolerance such as § for (1.2.1) cannot be chosen totally in abstracto:
there are algorithms whose convergence in the sense of (1.1.8) is so slow that, in
practice, they cannot accommodate very small values of §.

In most cases, an optimization process is a computer program, or something
similar. This means that the sequence of operations that make up the process are
somehow automatized: they have been organized before the actual execution of the
process, during which no human action can be taken. We will see later, particularly in
Chap. XII, that some optimization problems (having decentralized character) can be
made up of several programs, not coexisting in the same computer; worse, they may
not even be in the same computing center. Under these conditions, the dichotomous
structure (U) — (A) mentioned above must be reflected in the optimization set, the
two parts of which must be clearly identified and separated. For the user, (A) is a
black box which, when fed with x;, § and f, outputs its last iterate x g, approximately
optimal if possible. Conversely, (U) is for the algorithm’s designer another black box,
actually made up of two parts: one part is the “driver”, or the “main program”, which
sets up the problem, prepares the work for the algorithm and gives it some general
instructions such as x;, § etc; the second part contains the definition of f itself; when
needed, it computes informations about f at a given x.

In this chapter, as well as later throughout this book, we assume that this second
part in the user’s black box (U) computes the value f(x) of f at a given x, and also
the value V f(x) of its gradient. We will always use the notation s for the gradient; so
from now on we define

s(x) =V f(x), sx:=Vf(xx) etc.

Remark 1.2.2 In most applications, the numerical value of V f(x) can be calculated in a
computing time that is of the same order as the time needed to calculate the numerical value
of f(x). On the other hand, it is quite usual in applications that the hAuman time needed to
compute the formal derivatives (i.e. to write the corresponding computer program) is much
larger than for f: examples where it takes a man-year are not exceptional; computing the
gradient can be quite an investment. o

To summarize, the optimization schemes that we will always consider are or-
ganized as illustrated in Fig. 1.2.1. Blocks (U0) and (U1) are the two parts in (U)
mentioned above (the driver and the characterization of f) and (A) is the algorithm.
The optimization process starts with execution of (U0), until everything is ready to
construct the iterations {x;}; then the control is passed to the black box (A) which,
during the iterations, passes the control temporarily and regularly to the black box
(U1) in order to get the necessary information concerning f for various x-values.

Our point of view will be that of the designer and our aim is to study optimization
algorithms only, i.e. what is inside (A); we therefore simply assume that (U1) exists
to compute f(x) and s(x) at any x that we may decide.
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Block (U0) i
Set up problem Block (U1) Block (A)

itializati test for stop
‘(E‘r:}g':: tions Compute f(x) -
tolerances ot |

Get infos
i Compute VI(x)

Cali algorithm Undate x
Exploit results ) ‘

Fig. 1.2.1. General organization of an optimization program

Remark 1.2.3 It is important to realize that the only information available from
S (apart from general properties like its degree of smoothness) reduces to (U1), or
rather to executions of (U1); it is a good idea to think of (U1) as, say, a computer
tape, unreadable for a human being. The information available is, therefore, purely
pointwise; it is not permissible, for example, to choose r € R and to say: “Let us take
x such that f(x) = r”,oreven®...suchthat f(x) < r”; although there may be many
such x’s, finding just one is already a nontrivial problem.

1.3 General Structure of Optimization Algorithms

We study now in more detail the construction of the sequence {x;} mentioned in §1.1:
how can it be a “good”, “minimizing” sequence, reaching (1.2.1) as soon as possible?

Most minimization algorithms are so-called descent algorithms, in the sense that
[ is forced to decrease at each iteration:

Sfp41) < flxx) fork=1,2,... (1.3.1)

In view of the limited information available from f (see the end of §1.2) it may be
necessary to try several x-values before the actual move can be made from x; to x;;. An
iteration of a descent algorithm is essentially a trial and error process, roughly comparable
to a walk in the dark toward the top of a hill: x € R? is the position, — f(x) is the altitude
to be maximized. The hiker does not have a direct, continuous, feeling of his altitude: he can
only measure it at discrete moments, by a call to (U1), and it takes time to measure it. On the
other hand, (U1) is more than an altimeter since it also gives the local variation of the altitude
(the gradient of f). At a given x, the hiker must estimate the behaviour of the terrain around
him in order to guess where to go. Then he moves and checks whether he seems to get closer
to his target. If not, he must retrace his steps and try again.

For most classical algorithms, an iteration starting from the current iterate x; is
composed of two stages.

— The first stage, the direction-finding procedure, consists of finding d € R”, inter-
preted as a direction along which it is worth looking for the next iterate Xk+1- ToO
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compute this direction, a local study around x; is made, and the original problem
is approximated by a simpler one providing an easy guess where to go.

— The second stage, called the line-search, is the actual computation of xi,: one
computes a stepsize t; > 0 along dy, and then x, is updated to x| = xy + tgdg; in
contrast with the first stage, this computation is made upon observation of the true
original problem, i.e. upon direct calls to (U1), so as to obtain exact values of f.

A classical optimization algorithm, therefore, presents itself schematically as follows:

Algorithm 1.3.1 (Schematic Descent Algorithm) Theinitial pointx; € R” and the
tolerance § > 0 are given, as well as the black box (U1) which computes f(x) and
V f (x) for arbitrary x € R". Setk = 1.

STEP 1 (Stopping criterion). If |V f(xg)| < & stop.
STEP 2 (Finding the direction). With the help of a model of the problem around x,
find di € R" for which

3t >0 suchthat f(xx+tdy) < f(xx).

STEP 3 (Line-search). By repeated calls to (U1) at x; + tdy for various values of ¢,
find a convenient #; > 0, satisfying in particular

Sk + tdp) < f (xxe) -
STEP 4 (Loop). Set xyy; = xx + txdy, replace k by k + 1 and loop to Step 1. o

Remark 1.3.2 Itisin Step 3 that the trial and error process mentioned at the beginning
of this Section 1.3 takes place. The descent property (1.3.1) must be obtained there
and, knowing from f only the local information contained in the black box (U1), it is
not a trivial matter —recall Remark 1.2.3. O

The methods functioning along this descent principle could be called local methods. It
is a privilege of optimization to furnish a direct criterion (namely f) measuring how good a
given x can be. An important advantage of the above technique 1.3.1, in which the objective
function f is improved at each k, is that it automatically ensures stability. Considering that
optimization algorithms are after all methods to solve nonlinear equations like V f(x) = 0,
one may ask whether there is any difference between such algorithms and general equation-
solvers. There is indeed a difference: to construct a sequence {x;} for solving

Fx)=0

where F : R” — R™ is not a gradient, a very basic difficulty is to have {x;} bounded (an
essential requirement for x; to converge to some solution x!). In optimization, forcing f to
decrease at each iteration tends to stabilize {xg}, which in particular must lie in the sublevel-set
S¢(x) (f)- In most applications, this sublevel-set is bounded. Said otherwise, an unbounded
{xx} would suggest some ill-posedness of the original optimization problem, rather than a
failure of the algorithm.

The advantage of the descent property has its price: requiring f (xx + #di) < f(xx) can
drastically restrict the move from xj to xx4); very often, it results in little progress toward
the solution, unless the direction dj is an excellent one and points inside regions where f is
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largely decreasing. This is illustrated by Fig. 1.3.1, showing a sublevel-set of f: a long step
along dj would place x;+; much closer to the solution X, but this long step is forbidden if
the sublevel-set is narrow and elongated. One may think that the situation considered in this
picture is particularly unfavourable; it is actually quite common — in fact it is the rule as soon
as xj starts approaching x. The lesson is that the direction must be chosen with great care.

Xk
f=f(xy)
dk L3

Fig. 1.3.1. Descent methods can be slow

In view of this division of one iteration into two stages, we will study successively
the direction finding, and then the line-search.

2 Defining the Direction

2.1 Descent and Steepest-Descent Directions
The next definition is motivated by our care to decrease f at each iteration: we want

3t >0 suchthat f(xp+td) < fxp). 2.1.1)
[m]

Definition 2.1.1 A descent direction issued from x for the continuously differentiable
f is ad € R" such that (recall our notation s = V f)

(s(x),d) <0. (2.1.2)
=]

Clearly, if f is a fixed given function, there may exist directions which satisfy
the natural property (2.1.1) but not (2.1.2) — think of f(x) := —|lx||?atx = 0 :
every d # 0 satisfies (2.1.1) and no d satisfies (2.1.2). Definition 2.1.1 then appears
somewhat artificial. However, one should remember Remark 1.2.3 and the rules of the
game for numerical optimization: if f is an arbitrary function compatible with the
known information f(x) and s(x) at a given fixed x, then (2.1.2) is the only chance
to obtain (2.1.1):

Proposition 2.1.2 Let the triple {xy, fi, st} be given in R" x R x R" and consider
the set of functions

@y := (f differentiable at x; : f(xx) = fx, Vf(xg) = si}.

Then, d € R" satisfies (2.1.1) for any f € ® ifand only if {sy,d) < 0.
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PROOF. [if] Take d with (s, d) < 0 and f arbitrary in @y; then

S +td) = fxp) +tisg,d) +o(t)

and it suffices to take ¢ > 0 small enough to obtain (2.1.1).
[only if] Take d with (sg, d) > 0 and f € &y defined by

FO = fio+ (56, — x) s
then, there holds
V20 fOu+ed) = fu) + sk d) > Fou),
so this d cannot satisfy (2.1.1) for all f € &y. o

Thus, Definition 2.1.1 does appear as the relevant concept for a descent direction.
It implies more than (2.1.1), namely

3t >0 suchthat f(x+td) < f(x) forallr €]0,7]

and this makes sense since, in optimization algorithms, the move from x; to x4, —
and hence #; — is usually quite small (remember Fig. 1.3.1).

A descent direction in the sense of Definition 2.1.1 is one along which not only
does f decrease, but it does so at a non-negligible rate, i.e. the decrease in f is
proportional to the move from x. This rate of decrease, precisely, is the number
(s(x), d), the directional derivative of f at x in the direction d (see Remark 1.4.1.4).
It is the derivative at O of the univariate function ¢ + f(x + td) and it measures
the above-mentioned progress that is made locally when moving away from x in the
direction d. Then it is a natural idea to choose d so as to make this number as negative
as possible, a concept which we now make precise:

Definition 2.1.3 Let || - || be a norm on R”. A normalized steepest-descent direction
of f at x, associated with || - JJ, is a solution of the problem

min{(s(x),d) : |idlf = 1}. (2.1.3)

A non-normalized steepest-descent direction is a d # 0 such that j|d||~'d is a nor-
malized steepest-descent direction. 0

Problem (2.1.3) does have optimal solutions because the (continuous) function
{(s(x), -) attains its minimum on the (compact) boundary of the unit ball; it may
have several solutions (see §2.2 below). To characterize these solutions, the results of
Chap. VII are needed. For our present purpose, however, it suffices to display them
graphically, which is done on Fig. 2.1.1: for given « € R, the locus of those d having
{(s(x), d) = « is an affine hyperplane D, orthogonal to s(x); the optimal solutions are
obtained for « as small as possible, i.e. when D, is as far as possible in the direction
of —s(x), yet touching the unit ball.
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Fig. 2.1.1. Homothety in the steepest-descent problem

Remark 2.1.4 Figure 2.1.1 displays the need for a normalization in Definition 2.1.3: without
its constraint, problem (2.1.3) would have no solution (or, rather, a solution “at infinity”, with
a directional derivative “equal to —00”) and the concept would not make sense. A norm
il - I, which does not have to be the Euclidean norm || - || = (-, -} 172 must be specified when
speaking of a steepest-descent direction.

This implies also the artificial introduction of the number 1 in (2.1.3). It should be noted,
however, that the particular value “1” is irrelevant, as far as a steepest-descent direction is of
interest, regardless of its length. Looking at Fig. 2.1.1 with different glasses, we observe that
collinear solutions are obtained if, ¥ being kept fixed, say x = —1, the radius of the unit ball
is changed so as to become as small as possible yet touching D_,. In other words, (2.1.3) and

min {{|dff : (s(x),d) = -1} (2.1.4)

have collinear solutions. This property is due to homothety in Fig. 2.1.1: the functions (s (x), .)
and || - | are positively homogeneous of degree 1. This remark explains the important property
that replacing “1” by « > 0in(2.1.3) or (2.1.4) would just multiply the set of optimal solutions
by «. Within a descent algorithm, this multiplication would be cancelled out by the line-search
and, finally, the only important definition for our purpose is that of non-normalized (steepest-
descent) directions. ]

The choice of the norm in (2.1.3) or (2.1.4) is of fundamental importance for
practical efficiency, and we will divide our study into two parts, according to this
choice. Afterwards, we will study the conjugate-gradient method, which is based on
a different principle.

2.2 First-Order Methods

The first possibility for the norm in (2.1.3) is a choice a priori, independent of f.
Classically, there are two such choices: the £; norm and the Euclidean norm.

(a) One Coordinate at a Time The £, norm is
n
il = ldl, =) Id'| @2.2.1)
i=l

(here and in what follows, R” is assumed to have a basis, in which z¢ is the i'" coordinate
of a vector z, and the natural dot-product is used). Figure 2.2.1 particularizes Fig. 2.1.1
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/ d Vi)
\

Fig.2.2.1. An ¢,-steepest-descent direction

to this norm. It clearly indicates the following characterization of an optimal dj (which
will be confirmed in Chap. VII): let iy be an index such that

‘sik(xk)‘ > lsi(xk)l fori=1,...,n
(note that there may be several such i, just choose one); then the » numbers
. 0 if i#ig,
dy=1{ _s%0) oo i (22.2)
|5tk (x|

make up an optimal direction. In other words: among the solutions of (2.1.3) with
the £, norm (2.2.1), there is one of the vectors of the basis of R" (neglecting its sign,
chosen so as to obtain a descent direction), namely one corresponding to a maximal
coordinate of the gradient.

Remark 2.2.1 Under these conditions, x4, is obtained from x; by changing only one coor-
dinate, namely one which locally changes f most. The resulting scheme has an interpretation
in terms of a traditional method, the method of Gauss-Seidel, which we briefly describe now.
To solve the linear system

Ox+b=0, 2.2.3)

this method consists of choosing at iteration k one of the equations, say the i,‘ch, and of solving
this equation with respect to the single variable x%, the other “unknowns” x/ being set to
the (known) coordinates of the current x;. In other words, the whole vector x4 is just xg,
except for its i}ch coordinate, which is set to the value o € R solving

> G5+ digige + by =0 (2.2.4)
J#ik
(the method is well-defined if all diagonal entries of Q are nonzero).
Now, suppose that our function to be minimized

f&) = 30x, x) + (b, x)

is quadratic with Q symmetric positive definite; the gradient s(x) = Qx + b is affine and
minimizing f is just solving (2.2.3). Then, the Gauss-Seidel iterate given by (2.2.4) has the
form xy + . dy with di given by (2.2.2). It can be shown also that the stepsize #; corresponding
to & is positive and actually minimizes f along dj (this is due to positive definiteness of Q,
which implies in particular g;,;, > 0). In other words, the £,-steepest-descent method is
simply a variant of the method of Gauss-Seidel, in which:
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— iy is an index giving a most violated equality in (2.2.3) (in the original method, iy was rather
chosen cyclically, thus resulting in a direction totally blind to the behaviour of f),

— there is some freedom for the actual value of «, obtainable by some line-search instead of
as a solution of (2.2.4).

(b) Euclidean Steepest Descent The second classical choice for || - | in (2.1.3)
is simply the Euclidean norm || - f| := || - || induced by the scalar product (., -)
defining V f. When Fig.2.1.1 is particularized to this case, the spheres ||d}j = «
become “ordinary” circles and it is easy to realize that dy is then —s(xy) (up to the
normalization coefficient). We therefore obtain:

Definition 2.2.2 The gradient method is the steepest-descent method in which the
norm || - ) for Definition 2.1.3 is (-, -)!/2. In this method, the next iterate is looked for
in the form

xk_H =Xk — tVf(Xk) ,

the stepsize ¢ > 0 being given by a line-search. n|

Remark 2.2.3 Justasin Remark 2.2.1, we also have an interpretation of the gradient method.
To solve a system of equations (linear or not)

s(x) =0, (2.2.5)

where s : R — R” is or is not a gradient mapping, a classical method consists of defining
the sequence of iterates by

Xk+1 = Xk + ps(xg) (2.2.6)

with a suitable parameter p € R. All the coordinates of the current iterate are modified at the
same time, instead of one by one as in the case of Gauss-Seidel. A motivation to do so is that
(2.2.5) is equivalent to

x =x+4+ ps(x)

where p # 0 is arbitrary; (2.2.6) is then the first idea that comes to mind, namely the process
of successive approximations, to solve the above fixed-point problem. It remains to choose
p and we have here an illustration of Remark 1.3.2. To solve (2.2.5) by (2.2.6), the question
of choosing a suitable value for p is in fact puzzling — for convergence as well as numerical
efficiency. Here however, knowing that s is actually the gradient of some function f which
must be minimized, and being able to actually calculate f, provides decisive information: (i)
it indicates that p (= —t) should be negative, and (ii) it gives a constructive way of adapting
p at each iteration, via a line-search.

(c) General Normings The above two steepest-descent methods (Gauss-Seidel and
gradient) are only two instances of an infinite number of possibilities, each corre-
sponding to a particular | - || in (2.1.3). Among all these norms, it is natural to ask
whether there is a “best” one, yielding a “best” method in some sense? Whatever
“best” means, the norm in question should be “universal”, i.e. chosen a priori and
independent of the particular f to be minimized (by contrast, §2.3 will be devoted to
a norm depending on f and on the iteration index k).
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In the context of an algorithm of the type 1.3.1, an essential characteristic of the
direction dy is the angle that it makes with the gradient; thus, for nonzero s and d in
R”, set

Istidn
By the Cauchy-Schwarz inequality, any value of cos is in {—1, 41]. To say thatd is a
descent direction at x is to say that cos(V f(x), d) € [—1, O ; in the gradient method,
cos(sg, dr) = —1 is as negative as possible.

It so happens that the choice of || - |j has little influence on whether x; converges
or not to a critical point (for this, the line-search is much more crucial). On the other
hand, the value of cos(sg, di) does influence the speed of that convergence, i.e. how
fast (1.2.1) can be obtained. The following result gives a useful indication in this line;
we omit the proof, which is of little interest in the framework of this book.

cos(s,d) :

Theorem 2.2.4 Let {x;} be the sequence generated by a steepest-descent method
in which t is chosen as a solution of ming~¢ f(x¢ + tdy). Suppose that f is twice
continuously differentiable, that x; — X with V f(x) = 0, and that there are two
constants 0 < £ < L such that, for all h € R" and x close enough to x,

elR)? < (V2f (x)h, k) < L|R|2. 22.7)
Suppose also that there is C €10, 1] such that
cos(sg,dp) < —C fork=1,2,... (2.2.8)
Then there is M > 0 such that, for k large enough:

If (k) — () < M[1 = (Ce/LY**. (2.2.9)
O

This result suggests that the error f(xx) — f(x), assumed to converge to O,
probably behaves like a geometric series with ratio close to 1 when C is close to 0. For
given f (£/L fixed), a steepest-descent method with C =~ 0 (direction and gradient
almost orthogonal) can be expected to converge much more slowly than the gradient
method (C = 1) — at least if the majorization in (2.2.9) is reasonably sharp.

Consider for example the method of Gauss-Seidel and the usual dot-product
(s,d) = s"d in R". It is easy to see that, with dj, of (2.2.2), there holds

. . 2
(st di) = = sG], Il =1 and el < [si o)

50 (2.2.8) holds with C = 1/4/n. If, once again, the majorations (2.2.8) and (2.2.9)
are reasonably sharp, the method of Gauss-Seidel becomes drastically slow when »
becomes large. For the gradient method, however, C = 1 is independent of n and the
rate of convergence does not deteriorate when n — oo.

Example 2.2.5 To illustrate the above comments, take the symmetric positive definite n X n
matrix Q defined by
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2 ifi=j
Qij=1 -1 ifli—jl=1
0 ifli—jl>1
(which is common when differential equations are discretized) and consider the problem of
minimizing
f@) =3Il + 3(Qx,x) forx eR".

As a quadratic function, f has the constant Hessian I 4+ Q, for which (2.2.7) holds with
¢/L =~ 0.2. Therefore, the gradient method should converge roughly as (0.96)* (at least),
independently of n. On the other hand, the method of Gauss-Seidel might have the rate of
convergence 1 — 0.04/n.

log f(xy)

10 20 30 k
Fig. 2.2.2. Typical behaviour of gradient method

log (x)

-3
5
7
N,
~ n=100
-9 10 n=50
100 1000 K

Fig. 2.2.3. Corresponding behaviour of Gauss-Seidel

This is confirmed graphically: Fig.2.2.2 displays, for various values of the dimension
n, the decrease of log f(x;) obtained by the gradient method, as a function of the iteration-
number k. It is remarkably constant and convergence can be considered as obtained in some
20-30 iterations. On the other hand, Fig. 2.2.3 displays the decrease obtained with the method
of Gauss-Seidel, which clearly deteriorates for large n. For n > 200, it becomes so slow that
the method must be considered as non-convergent (note the difference in horizontal scales
between Figures 2.2.2 and 2.2.3!). a
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Remark 2.2.6 The gradient method thus appears as optimal in some sense among all the
steepest-descent methods, since it minimizes cos(sg, di) at each iteration. This property
should not be misinterpreted, however: there may well be functions for which Gauss-Seidel’s
method is much faster (think of f(£!,...,£") = Y ;(i£')?, for example!). The gradient
method is optimal in a “minimax” sense, among the functions satisfying the assumptions of
Theorem 2.2.4. o

Let us conclude this section by a terse comment: all these first-order methods
should NEVER be used, because they are highly inefficient in terms of speed of con-
vergence. One can just say that there is some excuse for using the £, method: it does
not really require computing derivatives (if the choice for iy in (2.2.2) is cyclic instead
of optimal and if the line-search accepts negative stepsizes); on the other hand, it is
admittedly even worse than the gradient method (recall Example 2.2.5). Actually, the
methods of the next sections go so much faster, and with so little additional cost, that it
would be a sin against economy to give preference to the present first-order methods.

2.3 Newtonian Methods

The methods of §2.2 are of first-order type in the sense that the objective function
{(Vf(x),-) of (2.1.3) is a first-order model for f. By contrast, the methods of the
present section build a second-order model, which is then used in the normalization
constraint of (2.1.3) to improve the direction.

Let O be a symmetric positive definite operator; then (Qx, x) defines (the square
of) a norm; (2.1.3) can therefore be specialized to

min {(s(xx), d) : (Qd,d) = 1} (2.3.1)

(note that the presence or absence of the square root in the constraint does not matter
a bit). It so happens that (2.3.1) has a unique solution which is collinear to that of

ngn[(s(xk), d) + 3(0d, d)] (23.2)

(this will be confirmed in Chap. VII). Now, if V2 f (x;) happens to be positive definite
and if we take Q := V2 f(x}), we obtain a method with a sensible rationale: (2.3.2)
then consists of minimizing the second-order development of f near x;

min [(V f (ve), d) + 3V f(p)d, d)]. (2.3.3)

Remark 2.3.1 Thus, the direction can now be computed in three different ways, which are
essentially equivalent: by solving (2.3.1) = (2.1.3), by solving (2.1.4), or by solving (2.3.2).
These three ways only differ by the length of the resulting direction, this length being directly
related to the value “1” in (2.3.1) and (2.1.4). When Q = V2 f(x}), the form (2.3.2) =(2.3.3)
is superior to the other two because it gives not only a direction but also a length, i.e. a stepsize.

" Clearly enough, (2.3.3) is of particular interest since its solution minimizes the second-
order approximation of d > f(xx + d). On the other hand, if dj, solves (2.3.3) and if« > 0,
then xdy minimizes (remember Remark 2.1.4)
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(V). d) + (V2 f(xr)d, d)

which has little to do with a second-order approximation of f. As a result, the stepsize ¢t = 1,
which yields the iterate xi + dj, is supposedly better than any other stepsize. By contrast,
neither (2.1.3) nor (2.1.4) gives an idea of what the stepsize should be. This will have some
consequences for the line-search. n]

Remark 2.3.2 Asin §2.2, we can draw a parallel between the present second-order method
and equation-solving: consider again a system like s(x) = 0. Apart from the process of
successive approximations, the next idea for solving it is Newton’s method. Starting from the
current iterate x;, we would like the next iterate x; + d to solve

s(xx+d)=0.

To mimic this, we replace s locally around x; by its first-order approximation and we solve
instead

[sCe +d) =] s(xx) +Is(xp)d =0,
where Js is the Jacobian operator of s. Here, in the context of optimization, the Jacobian
operator of s := V f is the Hessian operator of f and the above linear system is

[V Gk +d) > Vo) +Vif()d =0, (2.3.4)

which is nothing other than the optimality condition for (2.3.3). All this is perfectly normal:
a second-order development of f corresponds to a first-order development of V f.

The qualities and deficiencies of Newton’s method are well-known:

(i) it is an extremely fast method, with so-called 2™ order Q-convergence. Roughly
speaking, this means that if the current iterate has £ exact digits, the next iterate
has 2¢ exact digits; but

(ii) it often diverges violently, especially if x; is not close to the solution of s (x) = 0;

(iii) it requires computing second derivatives — which is usually a highly unpleasant
task for the user — and then solving a linear system such as (2.3.4); all this is
somewhat heavy and may not be convenient.

(iv) Another disadvantage, peculiar to optimization problems, is that V2 f (x;) must
be positive definite, otherwise dy may not be a descent direction. Note also that,
if V2 f (x;) is indefinite, (2.3.3) has usually no solution and (2.3.4) does not make
sense for minimization: its solution(s) tend(s) to approximate a saddle-point or
a maximum of f, not a minimum. Yet, while V2 f is normally positive definite
in a neighborhood of a (local) minimum (if it varies continuously with x and if
Theorem 1.1.3(c) applies), it has certainly no reason to be so in the whole space.

The aim of Newtonian methods is to eliminate (ii) — (iv) without destroying the
advantage (i). Eliminating (ii) is quite easy and the line-search technique is made just
for that (once again, recall Remark 1.3.2), provided that dy, is a descent direction.

Remark 2.3.3 With Remark 2.3.1 in mind, the line-search should be understood as a mere
safeguard against divergence of Newton’s method, rather than a means to decrease f as much
as possible — recall also the discussion following Remark 1.3.2. In other words, the stepsize
t = 1 should definitely be preferred, and only in case of total failure, whatever this means,
should it be relinquished for another value. o
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As for (iii) and (iv), they will be eliminated by the same single mechanism. The
problem is that one does not want to compute V2 f, which in addition may not be
convenient to use if it is not positive definite. So then the idea is: why not approximate
it? Even more: why not approximate its inverse, which is in fact more useful for
(2.3.4)? A further idea, related to (iv): the qualities of Newton’s method are local only
and V2 f(x;) (or its inverse) is not much needed when x; is far from a minimum.
On the other hand, V2 f (x;) usually becomes positive definite when x; approaches a
minimum. This provides two incentives for the following idea: why not take a positive
definite approximation, albeit rough during the early stages of the descent process,
when xy is still far from a minimum?

With this last argument in mind, we realize that our problem resembles that of
finding a minimum of f: what we need is another algorithm which, starting from
some positive definite operator W, and working in parallel with the construction of
{xz}, accumulates second-order information from f to construct a sequence {Wy}
of positive definite operators. Only at the end of the process, need these operators
approach the desired W*, whatever it is.

Neglecting for the moment the issue of defining W* (it should be something like
[V2f(@)]7", if xx — X), we obtain a specification of Algorithm 1.3.1:

Algorithm 2.3.4 (Schematic Variable Metric Algorithm) The initial point x; €
R”" and the tolerance § > 0 are given. Choose an initial symmetric positive defi-
nite operator W;. Set k = 1; s; will denote V f (xy) as usual.

STEP 1 (Stopping criterion). If |isg|| < & stop.

STEP 2 (Finding the direction). Compute dy = — Wsk.

STEP 3 (Line-search). Find#; > 0and the corresponding xg, = xj+2;dy satisfying
in particular f(xg4+;) < f(xg)-

STEP 4 (Metric update and loop). Select a new symmetric positive definite operator
Wi 1; replace k by k + 1 and loop to Step 1. o

It remains to specify the choice of Wiy, in Step 4, the only new ingredient with
respect to the general scheme 1.3.1. As seen already, the first property to be satisfied
is:

Wi is symmetric positive definite fork = 1,2, ... (2.3.5)

Now, remembering that Wy, is supposed to approach some inverse Hessian, we impose
the following relation:

Wit 1 (k41 — Sk) = X1 — Xk (2.3.6)

known as the secant equation. Observe that x;y, is already known in Step 4 of
Algorithm 2.3.4, so s¢4, can be obtained from a call to block (U1) of Fig.1.2.1;
solving (2.3.6) for Wy, is not an impossible task.

We will call secant, or quasi-Newton methods, the methods of the type 2.3.4
where Wy is updated in Step 4 so as to satisfy (2.3.6). The motivation for (2.3.6)
can be explained as follows: making the necessary assumptions on f, start from the
equality
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1
V F ) — V. () = fo V2 £ (x4 (xkt — 30) (ks — x)dlt

and call |
G !=f V2 f (xk + t (xgqy — xg))dt
0

the mean value of V2 f between x; and xj,. Then there holds by definition
Gy 'V S (i) = V)] = X — Xk,

50 (2.3.6) is a natural requirement since we would like Wy, to resemble G;', at least
asymptotically.

Remark 2.3.5 The reason why (2.3.6) is called the secant equation is that it extends to the
multi-dimensional case a known method to solve equations in one variable. Let the equation

sx)=0 (s:R—->R)
be solved by the one-dimensional Newton method (x. is the next iterate, x is the current one)
Xy =x—s(x)/s'(x).

This Newton method could be called the tangent method, as it approximates the graph of s by
its tangent at the current x. Suppose that, just as in the multi-dimensional case, one does not
wish to compute the derivative s'. Then, the idea of the secant method is to replace the above
tangent by the secant crossing the graph of s at the two points (x, s(x)) and (x_, s(x_)) in
R? (x_ is the previous iterate). Straightforward calculations show that the next iterate is now

xy =x— Ws(x)

where we have set

) X —x_
T s —s(x))
and we recognize here the secant equation (2.3.6). (n}

The above remark shows that, if » = 1, there is exactly one quasi-Newton method

— which, incidentally, need not satisfy (2.3.5). For n > 1, it is rather clear that the

n scalar equations in (2.3.6) do not suffice to determine uniquely the 1/2n(n + 1)

unknowns in Wi.,. In order to choose among the solutions, an additional requirement
is imposed:

Wi, should be “close” to Wy, 2.3.7)

for rather understandable stability reasons: if {W}} bumps back and forth between
several values, {dy} will do the same and {x;} will oscillate, resulting in a loss of
efficiency. Depending on the meaning chosen for (2.3.7), one obtains a potentially
infinite number of variants.

The most widely used, known as BFGS (for C. Broyden, R. Fletcher, D. Goldfarb
and D. Shanno), consists of taking Wy, as follows: set

E=fo=xp—xk and 0= 0) = Sppy — K 2.3.8)
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then Wy is the operator which, to z € R", associates the image (we drop the subscript
from W, to alleviate notation)

(2.3.9

(0,8) :

_ (0, Wo)] (@.£) . (0. Wa)§ + (2. §)Wo
Weer1z = We + [1 * ] (0, E) (0, E) '

When (-, -) is the usual dot-product, Wy, has the explicit matrix expression

1+0"Woo Tt T 1 T T
Wigr =W+ ~—G—TE——§§ ~TE [fo"™W+Woe']. (2.3.10)
Note: an expression like £o 1 means the column matrix £ post-multiplied by the row
matrix o '. The result is an n x n matrix, whose kernel is the (n — 1)-dimensional
subspace orthogonal to £, when & # 0.

A study of the convergence properties of secant methods would be far beyond the scope
of this book. In relation with (2.3.5), we just mention without proof the following (important)
result, which will be of interest to us later.

Theorem 2.3.6 Suppose Wy, is positive definite. A necessary and sufficient condition for
Wiy, defined by (2.3.9) to be positive definite is {a, £) > 0. o

A last remark concerning actual implementations: in the case of the dot-product, when
{ W} is defined by (2.3.10), some prefer not to use Wy explicitly but rather its inverse (hence
the approximation of the Hessian itself) in the product-form

My=W;'=LDL". (2.3.11)

Here D is a positive diagonal matrix and L is a lower triangular matrix with diagonal elements
all equal to 1. The system

Mid +s, =0

is then solved via 3 easy systems:

Ly+sg=0 Dz=y, L'd=z.

2.4 Conjugate-Gradient Methods

The Newtonian methods of §2.3 are extremely efficient but become impractical when
the number # of variables is large. Then it is impossible to store the quasi-Newton
matrix, and furthermore the algebraic calculations may become overwhelming, as
computing the direction involves O(n?) operations. In this section, we introduce
the conjugate-gradient methods, which have opposite characteristics. They use little
storage, at the price of more modest speed of convergence, although they usually do
not suffer the unacceptable behaviour of first-order methods of §2.2.
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(a) Linear Case The rationale for conjugate-gradient methods is purely algebraic.
It does not rely on a second-order development of the objective function, which is
assumed to be exactly quadratic. Therefore suppose

F(x) = 3(0Qx,x) + (b, x) + ¢ (4.1)

is our quadratic objective function, where Q) is a symmetric positive definite operator,
b is an arbitrary vector in R” and ¢ € R.

Definition 2.4.1 At iteration k of a descent algorithm, call
Uy =lin{sy, ..., s¢} == {d eR" . d= Zf:; a;js;, (@, ...,ar) € Rk}

the subspace spanned by the “accumulated information” s, . .., sg. The conjugate-
gradient method to minimize f of (2.4.1) is the method in which, for each k, x4,
minimizes f in the affine manifold

Vi i={x} + Uk

parallel to Uy and containing x. o

Thus, our conjugate-gradient method minimizes f at the first iteration in the
direction of the gradient, at the second iteration in the plane generated by s, and s,
and passing by x,, and so on. The sequence {xj} is determined without ambiguity by
x, only; at iteration k, set

k
R o> x(@) = x; + Zais,- .

i=l

Thus, the method consists in minimizing with respect toa € R¥ the function gi (@) ==
f(x(@)); then, having a solution @, we set x4, = x(@) and sg4; = V f(x(@)).
Observe that

a—qlf(ot) =(Vf(x(@)),s;)) fori=1,...,k
aa;

(and that all these derivatives must vanish for each k at@ = @). It immediately follows
that:

(i) for each k, (s, 5;) =0fori =1, ..., kie.

(si,sj) =0 fori#j. 24.2)
This implies:

(ii) the dimension of Uy increases by exactly one at each iteration (the gradients
are independent!) until sz, = 0 — an event which certainly happens for k < 7,
probably for k = n.

Setting xg4; = xx + t;dy as usual, one sees also that
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(iii) di has a nonzero component over s, at each iteration (otherwise xj; = xg, the
minimum of f in Vx_,!); as a result, the directions dj, are also independent, Uy,
can equivalently be defined as

Uy =lin{dy, ..., d¢} =lind,, . .., dr—y, sk}

and, for the same reason as in (i), there holds

(ke di) =0 fori=1,.... k. (2.4.3)

(iv) Because s(-) = Vf is an affine mapping, sg4, = sk + t Qdy holds and we
obtain from (2.4.3)

0 = (sg, d;) + tx(Qdg, d;) = 44(Qdy,d;) fori=1,...,k—1
which can be written
(Sity —s8i,dg) =0 fori=1,...,k—1 2.4.4)
or also (remember (iii), #; is nonzero):
(Qd;,dj) =0 fori#j.

This last relation explains the name of the method: the directions are mutually con-
Jjugate with respect to the symmetric operator Q. Algebraically, we thus have a bi-
orthogonalization process, which constructs the orthogonal sequence {sx} and the se-
quence {dj}, orthogonal with respect to the scalar product {(x, y)) := {(x, Qy).

Computing dy, is an easy task: using (2.4.4), one writes
(si,dg) =k fori=1,...,k 2.4.5)

where the normalization factor iy, is at our disposal (dy is a direction!). Note that

(2.4.5) is a linear system of k equations with & unknowns «; (see Dcﬁmtlon 24. 1)

Thanks to (2.4.2), its solution is straightforward: we obtain dy = ki }:,_1 si/lsi 2.
It is useful to express dy by recurrence formulae: writing

Kk+1 Sk+1
diy1 = o dy +Kk+1——-——" "

Sk 12
and using the particular value x; = —||s; ||?, we obtain
A1 = =Sk + Prdr (2.4.6)
where | "
WSk41 1™
Br = . 2.4.7
sl

With the above choice of the «’s, the method becomes reminiscent of §2.2: the
direction in (2.4.6) is that of the gradient plus a correction, which is a multiple of the
previous direction.

The algorithm is now completely defined if we add that the stepsize must of course
be optimal (a minimization in V}, of Definition 2.4.1 implies a minimization along
dy € Up!).
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Algorithm 2.4.2 (Conjugate Gradient, Linear Case) The initial point x; is given,
as well as the tolerance § > 0 and the objective function

fO) =30x,x) + (b, x) +c.

Again, the notation s := V f is used. Setk = 1.

STEP 1 (stopping criterion). If ||sx|| < & stop.

STEP 2 (computation of the direction). If k = 1 set dy = —sy; otherwise set dy =
=Sk + Br—19k—1-

STEP 3 (line-search). Find #; > 0 solving

(sk, di)

min Sfxx +tdy) e 1= _(Qdk, )

and set xg4 = xg + tdg.
STEP 4 (B-update and loop). Set B = |lsk+; 11/ llskll%, replace k by k + 1 and loop
to Step 1. n]

Remark 2.4.3 Thetoleranced > 0 for stopping may seem superfluous, since s; must anyway
be zero for some k < n + 1. However there are still two reasons for keeping § > 0 as in the
general case. First, the theoretical value s; = 0 may never be reached because of roundoff
errors; second, if the number of variables is, say, n = 10%, one is usually not prepared to wait
for 10* iterations before stopping. In most applications, ||sx|| is (fortunately) small enough
long before that. Keeping in mind that conjugate-gradient methods are precisely tailored to
large n, this remark is of course essential. o

(b) Nonlinear Extensions Now we should generalize the algorithm to non-quadratic
objective functions. This is not straightforward because then, the theory breaks down
from the very beginning. With regard to Definition 2.4.1, it is certainly not possible
to minimize a general f (only known, recall, via the black box (U1) of Fig.1.2.1) in
any affine manifold — even one-dimensional, as is a direction.

A first simple idea is to pretend that f is quadratic and apply Algorithm 2.4.2 as
it is — except that Step 3 must be set back to a general line-search scheme, to be seen
in §3. At least one can reasonably hope that the direction of (2.4.6) is more efficient
than the plain gradient because By > 0 has a stabilizing effect. It smooths out the
path linking the successive iterates (see Fig. 2.4.1: the angle between dj, and di, is
smaller than the angle between dj, and the gradient direction —sg4).

“Sk+1 /

dk+1

Xk Xk41

Py

dy

Fig. 2.4.1. Conjugate gradient as a path-smoothing device

Fortunately, there is a better argument. The value ¢ of (2.4.7) comes out naturally
from the system (2.4.5); there are several other possible values, however, which all
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give the same result in the “perfect case” (f quadratic and optimal line-searches) but
which are not equivalent in general. Let us mention

b = {Sk+1 — Sks Sk+1)
lse 11

known as the formula of Polak and Ribiére (as opposed to (2.4.7), called the formula of
Fletcher and Reeves). Observe the equivalence of (2.4.8) with (2.4.7), due to (2.4.2).

(2.4.8)

Remark 2.4.4 It is amusing — and instructive ~ to mention the following point. The choice
(2.4.7) is practically never used because (2.4.8) invariably converges faster. On the other hand,
one can prove that, under suitable and reasonable assumptions on f and on the line-search,
(2.4.7) yields a convergent algorithm, while a counter-example exists, showing that (2.4.8)
need not converge to a critical point! o

Among the many possibilities to choose B;, one is more interesting than the others,

namely:

5 (k41— Sk Sk+1)

By = ——m———————.

(Sk+1 — Sk, dk)

To explain why, let us write the resulting direction in a rather artificial way. We set as in (2.3.8)
& 1= Xg41 — Xk = ldk, 0 = Sg4) — Sk. Now add a term which is 0 if the stepsize # is
optimal (then (sg41, £) = 0):

di1 = —Sk+1 + Brdy =
_ (9, Sk+1) (et 80 of?
= —Sg+1 + . do) di + (0.£) [a (l + zla_.b) S] .

We stress that, if the stepsizes are optimal, (2.4.9) provides another form of linear conjugate
gradient, just as (2.4.6) — (2.4.7) or (2.4.8). The reason of our rather complicated form of
(2.4.9) is the following. Do not suppose that f is quadratic nor that the stepsizes are optimal
and consider the BFGS formula (2.3.10), with W replaced by the identity matrix. Then
the resulting direction is exactly (2.4.9). In other words, B of (2.4.8) with the modification
appearing in (2.4.9) (which matters only when z; is not optimal) yields a “memoryless” quasi-
Newton method in which, for want of storage, the sequence of matrices is reinitialized at each
iteration.

This gives a serious motivation for the somewhat sophisticated formula (2.4.9), although it
is slightly more expensive to compute than the others. Taken as a nonlinear conjugate-gradient
method, it is based on a second-order development of f. By contrast, the purely algebraic
arguments of the beginning of this Section 2.4 do not extend properly to the nonlinear case.
Among its advantages, we mention that di.4+; of (2.4.9) is a descent direction under the mere
condition (o, £) > 0 (recall Theorem 2.3.6). This property is not easy to obtain with 8-choices
like (2.4.7) or (2.4.8).

(2.4.9)

Remark 2.4.5 We mention that the way is thus open for methods intermediate between
(2.3.9) and (2.4.9). Suppose one has a limited memory allowing the storage of say N real
numbers simultaneously (with N <« n2/2). Then a quasi-Newton method such as 2.3.10)
cannot be used; but if we give up using the form (2.3.11) we see that, after all, Wy can be
computed by using 2k vectors only, say
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&,01, £,0,..., &, 0k.

Then, the intermediate methods we are alluding to would consist in using explicitly at each
iteration the largest possible number K =~ N /2n among the above pairs of vectors, so as
to include in dj as much information as possible concerning second-order behaviour of f;
observe in particular that (2.4.9) takes K = 1, while (2.3.10) demands K arbitrarily large.

Remark 2.4.6 An easy observation will be of interest to us later in this book, when defining
other generalizations of the conjugate-gradient method (§XIV.4.3). The direction obtained in
the “perfect case” (f quadratic and optimal stepsize) is defined by (cf. (2.4.5))

k
dy=Y asi and (si,di) =(sj,dp) fori,j=1,...,k. (2.4.10)
i=l

Geometrically, this means that d, is orthogonal to the affine hull of the gradients, i.e. the
affin hyperplane
Hy = {Z{f:l aisi + YN i = 1}
of dimension k — 1 passing through sy, .. ., s¢ (see Fig. 2.4.2). If dy is scaled so that ) _; &; =
—1in (2.4.10), then —dj, € Hy and —dj is actually the projection of the origin onto Hj.

Fig. 2.4.2. Conjugation is projection

Furthermore, the orthogonality of the gradients also implies that the @;’s defined by
(2.4.10) all have the same sign and —d is actually the projection of the origin onto

Cy = [ZLI aisi : Zf:l‘li =1, a; 20},

the convex hull of the gradients sy, ..., sg.
Note also the following property, again due to this orthogonality: if one (i) selects k — 1
generators of Hg, say §i, ..., Sk—1, then (ii) projects the origin onto their convex hull C_;

to obtain —di_, and finally (iii) projects the origin onto the segment [—dj_.;, s¢], one still
obtains the same —dj (see Fig.2.4.2). This, among other things, explains why a recurrence
formula like (2.4.6) is possible. o

3 Line-Searches

Now, considering the direction-finding problem as solved, we concentrate exclusively
on the stepsize.
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Thus, we are given a function defined by
Rt st g@t) :== fxx +tdy),

where x;, is the starting point and dj, is the direction of search. More precisely — let us
insist once again on this point — we are given a black box, namely (U1) in Fig. 1.2.1,
which computes g(¢) and q’(t) = (V. f(xx + tdy), di) for any value ¢ > 0 that we
may choose (it is an elementary exercise to check that the derivative of ¢ does have
the above expression).
We also know that
q'(0) <0

i.e. di is a descent direction in the sense of Definition 2.1.1.
With these data, we want to find a “suitable” (whatever this means) stepsize t > 0,
satisfying in particular
q(t) < q(0). 3.0.1)

Recalling Remark 1.2.3, we see that (3.0.1) implies a trial and error process,
already mentioned in Remark 1.3.2. The line-search is in fact a subalgorithm, to
be executed for each k at Step 3 of Algorithm 1.3.1. Our aim is now to study this
subalgorithm, which is an essential element for an optimization program to work
properly in practice. Actual computation of the direction is usually straightforward,
even if its theory may require rather sophisticated mathematics but the situation is
reversed here: only elementary mathematics is involved, and practical difficulties
appear. It requires some computational expertise to implement a good line-search
algorithm.

3.1 General Structure of a Line-Search

Just as any iterative algorithm, the line-search has a rule for iteration and a stopping
criterion; this means that the following two questions must be answered:

(i) How the sequence of trial stepsizes should it be computed?
(ii) When is the current trial ¢ acceptable as the real stepsize from xy to x4,?

Remark 3.1.1 The line-search must also have an initialization: which ¢ > 0.should be tried
first? Although it is extremely important, we pass it silently for the moment because it is really
a question relevant to the direction-finding issue. Remark 3.4.2 will say a bit more about this
problem. a

Between the above two items, the rule for iteration is the more important part for
efficiency of an algorithm in general (after all, the stopping criterion is only executed
once). For the line-search subalgorithm, however, it is the other way around. For one
thing, (i) is a one-dimensional problem, relatively easy: on a line, there are only two
alternatives, go right or go left. More ‘importantly, the stopping rule for the line-
search is (at least part of) the iterative rule for the outer descent algorithm, which
directly conditions the choice of xj.,. Furthermore, it is crucial that the line-search
be stopped as soon as possible, since it is executed many times, as many times as there
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are descent iterations. For these reasons, the concept of acceptable stepsize, i.e. the
stopping criterion of the line-search, must be defined with great care.

Here, it is useful to organize the stopping criterion so that it gives not only a
dichotomous answer by “yes” (the given stepsize is suitable) or “no” (it is not), but
also some indication for the next trials in case the present one is not suitable. The
essential object characterizing a line-search is then a test which, given a stepsize ¢
and suitable information on ¢ (obtained from (U1)), has three possible answers:

(0) This ¢ is suitable and the line-search can be stopped.
(R) This ¢ is not suitable and no suitable ¢* is likely to be found on its right.
(L) This ¢ is not suitable and no suitable ¢* is likely to be found on its left.

Then, any ¢ for which (L) [resp. (R)] holds can serve as a lower [resp. upper]
bound for subsequent trials because this ¢ lies to the left [resp. to the right] of the
interesting area of search. As a result, the following scheme suggests itself.

Algorithm 3.1.2 (Schematic Line-Search) An initial trial stepsize ¢t > 0 is given.
Sett; =0andtg = +o00.

STEP 1. Test ¢; in case (0) stop the line-search and pass to the next iterate xj,.
STEP 2. Incase (L)set?, = t; in case (R) set g = ¢. Go to Step 3.
STEP 3. Selectanew ¢ in ¢, tg[ and loop to Step 1. (]

Some comments will help our understanding this procedure.

— During the early cycles, as long as ¢g remains infinite, the update of Step 3 is actually
an extrapolation beyond ¢ ; when some real upper bound tg < +o0 is found, the update
becomes an interpolation between ¢, and ¢p (rather than the hard-to-define “tp = +00”,
one could equally initialize “1g = 0”, meaning conventionally “no real upper bound has
been found yet”).

— By construction, ¢;, can only increase, tg can only decrease and all the ¢;.s generated
during this process are strictly smaller than all the tg’s. The whole idea actually consists in
generating a sequence of nested intervals [¢7, g]): at each cycle, either 7, or tg is moved
toward the other endpoint, thus reducing the interval. The interval [¢7, tg] appears as a
safeguarding bracket, inside which the final suitable #; is searched for.

Fig.3.1.1. A possible line-search scenario

Figure 3.1.1 illustrates a possible scenario: at the first trial ¢!, suppose (L) holds; then #;,
is moved from 0 to this ¢! > 0, which becomes a left-bound for all subsequent trials. The next
trial is some ¢? > t!; suppose (R) holds there: t> becomes a right-bound ¢ and one takes 3
between ¢! and 12, i.e. between t;, and tg. At ¢3, it may be again (R), say, which holds, etc.
Each trial increases the dashed area, in which no future trial is ever placed.

As was said earlier, it is crucial that Algorithm 3.1.2 be finite, i.e. that case (0) be
reached after a finite, and if possible small, number of cycles. For this, two properties
must be respected:
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Property 3.1.3 (Safeguard-Reduction Property) The update of Step 3 must be
such that:

(i) infinitely many extrapolations would let t;, — +o00, and
(ii) infinitely many interpolations would let tg — t7 — O. o

Property 3.1.4 (Consistency Property) The test (O), (R), (L) must be organized so
that:

(i) when ¢ is large enough, case (L) never occurs, and
(ii) when tp — 7, is small enough, case (0) occurs for all ¢ in between. 0

Properties 3.1.3(i) and 3.1.4(i) taken together imply that, after a finite number of
cycles, either Algorithm 3.1.2 stops at case (0), or it finds a g < +o00; the number
of extrapolations is finite. The (ii)-combination implies likewise that the number of
interpolations is finite as well. Altogether, this implies that Algorithm 3.1.2 must
terminate. For an easier understanding, another way to state 3.1.4(ii) is as follows:
there is an interval I of positive length such that (0) occurs at any ¢ € I, and such that
I Cltp, tg[ forall t7 and tg generated by the algorithm.

Example 3.1.5 The actual meaning of 3.1.4(ii) will become clearer later on; let us use a
very simple and naive example to illustrate its importance. Define the test by:

(0) ¢ is suitable when ¢’(¢) = 0,

(L) tisat, whengq'(t) <0,

(R) t isazg whenq’(t) > 0.

This test is natural, as it is motivated by the desire to minimize g —i.e. f along di. The
continuity of g’ implies that, for arbitrary ¢ and tg, there is a t* in between which satisfies
(0) (the initialization t;, = 0 is consistent thanks to the descent property ¢’(0) < 0). Then
Algorithm 3.1.2 should find such a t*.

Yet, the resulting line-search is impractical, for at least two reasons:

— assuming for example that the equation q’(¢) = 0 has a unique solution, the interpolation
process will never find it. Readers not familiar with numerical computations may not be
convinced by this fact. They should think of the example q(t) = expt — 2¢: no computer
can find its minimum log 2, an irrational number;

— even if, by an extraordinary luck, one lands on ¢ satisfying (0), it may not be a minimum.
It may not even satisfy q(¢) < ¢(0), see Fig.3.1.2. o

avf oy t tR

Fig. 3.1.2. An undesired stepsize

Since it is the more important, we will first study the test (O) (R) (L), which defines
a suitable stepsize; then we will say a few words on the interpolation-extrapolation
formulae for iterating the line-search subalgorithm.
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3.2 Designing the Test (0), (R), (L)

Historically, the aim of the line-search has been to minimize the one-dimensional
function q. Example 3.1.5, however, reveals that finding an optimal stepsize may take
an infinite amount of computing time; approximating it is therefore likely to take a
long time. Nowadays, it is recognized that, after all, since the function to be minimized
is f andnot g, it may notbe a good idea to waste time on a minor, purely local problem.
This is especially true of Newtonian methods, for which the stepsize # = 1 is probably
a better choice than an optimal stepsize — recall Remark 2.3.3.

Remark 3.2.1 The total computing time of an iterative algorithm is roughly the average
time spent by one iteration multiplied by the number of iterations. For a descent algorithm of
the form 1.3.1, the number of iterations is mainly driven by the quality of the directions —- and
also by the stopping tolerance, say & of (1.2.1). As for the computing time of one iteration, it
is the sum T4 + €Ty, where

— T4 is the computing time needed by block (A) of Fig. 1.2.1,
— £ is the average number of trials needed by the line-search, and
— Ty is the time needed for one execution of the black box (U1).

It is usually the case that Ty is much larger than Ty, say Ty =~ 10T,4. The total execution
time (of one iteration, hence of the overall descent algorithm) is therefore almost exclusively
spent in (U1). Even more can be said: for practically all algorithms, T4 is small in absolute
terms, say a fraction of a second on a “standard” computer. Thus, in those cases where Ty
is not dominant, Ty is also small and trying to reduce the total execution time is not crucial:
the net benefit will be again small, say a matter of seconds.

We conclude that the number of calls to (U1) is a sensible measure for the execution time
of an optimization algorithm. It is therefore crucial for efficiency to keep £ small (keeping
in mind that the overall number of descent iterations — of line-searches — must also be kept
small). Of course, the main ingredient influencing the value of £ is the (O)-clause in the test.

s]

The modern point of view for designing a line-search consists in looking for a
compromise between obtaining (0) fast, and decreasing f well. It can be added that,
when something goes wrong in a descent algorithm of the form 1.3.1, it is invariably
within the line-search, i.e. during the execution of Step 3. Another important aspect
is therefore robustness: in addition to being fast, a line-search must be fail-safe and
simple, so as to work as often as possible and, in case of failure, to make it clear where
the possible troubles come from, as well as their possible cures.

In order to make the move from xj to x| reasonable, the least that can be required
from a good stepsize is to be neither too large nor too small. A stepsize that is not too
large is necessary to prevent the sequence {x} from oscillations, and in particular to
force the decrease (3.0.1) (recall Fig. 1.3.1). On the other hand, the stepsize should
not be too small, so as to yield a non-negligible progress from x;, toward the cluster
point ¥, which can be far if x, is a poor initialization. Defining the test, and more
precisely its (0)-part, consists precisely in giving a meaning to “large” and “small”.
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Deciding (R) A fairly general consensus exists to define “large”: one says thatt > 0
is not too large when

|4(®) < 4(0) + mtq' (0)] (3.2.1)

where m is a coefficient chosen in ]0, 1[ (whose precise value is not crucial, various
authors favour various choices, let us say for example that m = 0.1 is a reasonable
value).

In view of the descent requirement, property (3.2.1) makes much sense; in partic-
ular, it guarantees g (t) < ¢(0) automatically. Suppose that g were linear: then (3.2.1)
would hold (even with m = 1) for all . As a result, (3.2.1) does hold when ¢ > 0 is
close enough to 0, provided that g is smooth enough: the coefficient m < 1 appears
as a tolerance, allowing g to deviate from linearity.

A stepsize t satisfying “not (3.2.1)” is declared too large and case (R) occurs.
Figure 3.2.1 illustrates all this: in dashed areas R; and R;, (R) occurs; they are both
far from 0. For (0) to occur, ¢ must be in a non-dashed area (although this is not
sufficient: such a ¢ may still be too small). To say that Property 3.1.4(i) does not hold
is to say that the dashed area is bounded. This can happen only when g —hence f —is
unbounded from below, implying that the minimization of f on R" is ill-posed and
has no solution.

} a0

q'(0)
Fig. 3.2.1. Distributing the possible stepsizes

Remark 3.2.2 The value m = 1/2in(3.2.1) plays a special role, due to a geometric property
illustrated on Fig. 3.2.2: no matter where the point P is located on the parabola, the slope
of its tangent is twice the slope of the chord pointing to the summit O: OM = OM ! In
analytical terms, this property (which can easily be established) reads: if ¢ is quadratic, and
if t* minimizes g, then

\M'

Fig.3.2.2. A property of quadratic functions
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q(t*) = q(0) + 31*¢'(0).

This implies an important consequence: in (3.2.1), it is strongly advisable to take m < 1/2.
Otherwise, when g happens to be quadratic, its optimal stepsize will be considered too large
— a paradox. (n]

Remark 3.2.3 Along the same lines, (3.2.1) has a useful interpretation. Let us come back
to §2.3 — more precisely to (2.3.1) and (2.3.2) — and let us interpret the function

f@d) = f) + (sGx), d) + 3(Qd, d)

as a model, which approximates f (x; + d). The strategy of §2.3 consists of minimizing this
model to obtain dg, the direction of search. Then we obtain the restricted model

R> 1t @) := f(xx +1dp) = q(0) +14'(0) + 3ar’

where a := (di, Qdy). With this interpretation, the idea of the line-search is to correct the
model f by a further adjustment of t > 0. Of course, di := —Q's; is such that § is
minimized at ¢ = 1 (the minimum of § has to reproduce the minimum of f 1). In fact, direct
calculations show that g can be written

3@ = q(0) +14'(0) — 3°¢'(0) . 322
Now suppose we are testing t = 1 in (3.2.1); we ask the question:
is (1) — ¢(0) lower than mq’(0) ?
which, using the form (3.2.2) for 4, can be written:
is g(1) — gq(0) lower than 2m[g(1) — q(0)] ?

In other words, the question that we are asking is: “Does the model f agree well enough
with the real f£?”; or also: “Is the real decrease q(1) — ¢(0) at least a fraction (namely 2m,
supposedly smaller than 1) of the predicted decrease g(1) — q(0)?

With this interpretation, ¢’(0) plays a minor role and is rather replaced by §(1) — g(0).
This will be useful later on (Sections XV.1.3 and XV.3.3(c)) in special situations when ¢’(0)
is actually unknown. Of course, the idea could be extended to stepsizes other than 1: for
example, one could imagine replacing the descent test (3.2.1) by

q(1) <q(0) +2m[G (1) — q(0)].

This cannot be done without care, however: if §(t) > ¢(0), the descent property q(¢) < q(0)
is no longer guaranteed. a

Deciding (L) It remains to define the stepsizes that are too small. Here there are
several possibilities and we just mention two of them, namely (3.2.3) and (3.2.4)
below. One chooses another tolerance m’ satisfying

O<m<m <1;

then, for some authors, ¢ is not too small when
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[2) > 90 +m'tg ©)] (3.2.3)
while for some others, t is not too small when
ld®) >m'q' 0] (3.2.4)

Inspect Fig. 3.2.1 carefully for an interpretation. Neither (3.2.3) nor (3.2.4) can hold
for ¢ > 0 close to 0; this is due to the continuity of ¢’ and to the descent property
q'(0) < 0.

To sum up, there are (at least) two possibilities to design (0), (R), (L). One is

(0) holds when ¢ satisfies (3.2.1) and (3.2.3),
(R) holds when ¢ does not satisfy (3.2.1),
(L) holds when ¢ does not satisfy (3.2.3),

sometimes called the criterion of Goldstein and Price and illustrated in Fig.3.2.3.
With relation to 3.1.4(ii), this figure shows rather clearly that, for two arbitrary points
tr, and tg with ], < tg, there is always an (0)-segment in between.

Fig. 3.2.3. The criterion of Goldstein and Price

The other possibility is

(0) holds when ¢ satisfies (3.2.1) and (3.2.4),
(R) holds when ¢ does not satisfy (3.2.1), (3.2.5)
(L) holds when ¢ satisfies (3.2.1) but not (3.2.4),

which is often called the Wolfe criterion. We observe that, when ¢ (¢) is very small,
t seems excellent for a descent to f(xx4,;); but (3.2.3) does not hold, so case (L)
occurs and this 7 is rejected by the criterion of Goldstein and Price. This appears as
a deficiency and it explains that Wolfe’s criterion is usually preferred. On the other
hand, the criterion of Goldstein and Price does not require computing g’. It is therefore
useful when f can be computed much more cheaply than V f in the black box (Ul)
(remember Remark 3.2.1); this situation may happen in practice, although rarely.

3.3 The Wolfe Line-Search

For an illustration we give the specific form of Algorithm 3.1.2 when the test (3.2.5) is
used. It is not only useful for the descent methods outlined in this chapter, but it is also
convenient for more sophisticated methods, to be seen later in this book. Therefore,
it deserves special study.
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Algorithm 3.3.1 (Wolfe’s Line-Search) An initial trial ¢+ > 0 is given, as well as

m €]0, 1[andm’ €]m, 1[. Sett;, =0 and tg = 0.

STEP 1 (Test for large t). Compute g(¢); if (3.2.1) does not hold set 1z = ¢ and go to
Step 4.

STEP 2 (Stopping criterion; # is not too large). Compute g’(¢); if (3.2.4) holds stop
the line-search and pass to the next iterate x;,. Otherwise set #; = ¢ and go to
Step 3.

STEP 3 (Extrapolation). Ifzg > 0 go to Step 4.

Otherwise find a new ¢ by extrapolation beyond #;, and loop to Step 1.
STEP 4 (Interpolation). Find a new ¢ by interpolation in ]¢7 , #g[ and loop to Step 1.
a

Given : g(0),g'(0)<0, O<m<m'<1, t>0.

Set t| =tg=0

Compute q(t) interpolate
l

(9 < q(0)+miq(0) ?}Tl.ﬂ
Iy
Compute q'(t)
[ extrapolate
@—!—@'(t) > m' q'(0) 'q
n y
— n
tL = t have tH ?

Fig. 3.3.1. Wolfe’s line-search

The flow-chart corresponding to this algorithm is displayed in Fig.3.3.1. It is
fairly simple, which means that corresponding computer programs can be made fairly
robust. We show now that the consistency property 3.1.4 holds:

Theorem 3.3.2 (Consistency of Wolfe’s Line-Search) Assume that q is continu-
ously differentiable, and that the descent property q'(0) < 0 and the safeguard-
reduction property 3.1.3 hold. Then, Algorithm 3.3.1 either generates a sequence of
stepsizes t with q(t) | —oo, or terminates after a finite number of cycles.

PROOF. Suppose that the stop never occurs. First observe that we have at each cycle

q(tr) < q(0) +mty4'(0). (3.3.1)
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Suppose first that Algorithm 3.3.1 loops indefinitely between Step 3 and Step 1.
Then, by construction, every generated ¢ is a #7, and satisfies (3.3.1). From 3.1.3(i),
t;, — +oo; because ¢’(0) < 0, (3.3.1) shows that g(t) — —o0.

Thus, if f(x + td) is bounded from below, g becomes positive at some cycle.
From then on, the algorithm loops between Step 4 and Step 1; by construction, we
have at each subsequent cycle

q(tg) > q(0) + mtprq’(0), (3.3.2)

the sequence {z1 } is (strictly) increasing, the sequence {g} is (stricly) decreasing, ev-
ery t7, is smaller than every ¢ g, and Property 3.1.3(ii) implies that these two sequences
are actually adjacent i.e., for some ¢t* > 0:

tp A t* and g | t*;
(3.3.1) and (3.3.2) imply by the continuity of g that
q(t*) = q(0) +mr*q'(0). (3.3.3)
Then we write (3.3.2) as
q(tr) > q(0) + mq' (O)tg —t* +1%) = q(t") + m(tg — 1*)4'(0).
By (3.3.2) and (3.3.3), tg > t*, hence

_ *
D=0 1

and, passing to the limit:
q'(t*) > mg'(0) > m'q’(0),

where we have used ¢’(0) < Oandm < m’.
Now, the stopping criterion of Step 2 implies that ¢’ (¢;) < m’q’(0) and it suffices
to pass to the limit to obtain the contradiction

q'(t*) > mq'(0) > m'q'(0) > ¢’ (t*) . (3.3.4)
[m]

We leave it as an exercise to show the same result for the criterion of Goldstein
and Price, simply by modifying the end of the above proof.

Remark 3.3.3 It is only a rather weak continuity property of ¢’ that is used in the above
proot. It serves only to obtain the contradiction (3.3.4), ana for this a left continuity property
alone is needed for ¢’ (note that z;, 1 t*!). This remark, which we leave informal for the
moment, will become essential for the numerical methods considered in this book. m]

Remark 3.3.4 Withrelation to the secant methods of §2.3, we mention an important property

of the Wolfe criterion. In view of (3.2.4), the actual stepsize 1 satisfies q’(tx) > m’q’(0), which
can be written
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a' (%) ~q'0) > (m' —1)g'(0) > 0

or, using the gradients explicitly:
(sOek1) = (), die) > (m' — 1)(s(xx), di) > 0. (3.3.5)

Now recall Theorem 2.3.6: the quasi-Newton operators Wy, in Algorithm 2.3.4 remain positive
definite if (and only if) {0k, &) > 0 for all k (the notation (2.3.8) is used); knowing that
& = tydy, this is clearly implied by (3.3.5), which can be written

L (0w, ) > Bl (s, &) > 0.

In other words, the Wolfe criterion automatically preserves positive definiteness in secant
methods, hence its interest in this framework. u]

It remains to check that our general methodology for line-searches — and in par-
ticular the Wolfe criterion (3.2.1), (3.2.4) — does preserve the convergence properties
of the outer descent algorithm. This question cannot be answered in absolute terms
since it also depends on the choice of the direction. Convergence results have to be
stated for each combination “direction x stepsize”. To illustrate how they are proved,
we consider the following realization of Algorithm 1.3.1:

Algorithm 3.3.5 (Steepest-Descent with Wolfe’s Line-Search) The starting point
x; € R” and the tolerances § > 0,0 < m < m’ < 1 are given, as well as the
line-search subalgorithm 3.3.1. Set k = 1.

STEP 1. If ||V f(xp)|l < 8 stop.
STEP 2. Takedy = —V f(xz).
STEP 3. Obtain xg4, = xi + fxdy satisfying

f Gein) < f ) = muy ||V f () |1 (3.3.6)
(VfGian)sdi) = —m' |V F 1P (3.3.7
STEP 4. Replace k by k + 1 and loop to Step 1. a

Of course, this algorithm is given for the sake of illustration only, since the gradient
method is forbidden (recall the end of §2.2). In fact, Algorithm 3.3.5 is good enough
for our present purpose, which is to demonstrate the convergence mechanism of a
descent method.

Theorem 3.3.6 Suppose that V f is uniformly continuous on the sublevel-set
Sty () i={x e R" : f(x) < f(x1)}.
Then Algorithm 3.3.5 stops in Step 1 for some finite k, unless f(xy) — —oo.

PROOF. We proceed in three steps.
[(i)] From (3.3.6), we get

FO0) = f 1) 2 mIV f ol trdill = mIV £ Gl lxge41 — xell - (3.3.8)
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[(ii)] On the other hand, subtracting (V f(xx), di)} = — ||V f(xx)|l lldx|l from (3.3.7),
we get

(VfGra1) = V), di) 2 (1= m)IV F )l gl -
So, using the Cauchy-Schwarz inequality:

IV k1) = VL@ = A =m)IV f i)l - (3.3.9)

[(iii)] Now assume that the algorithm does not stop (|| V f (x¢)|| > & for all k) and that
{f (xx)} is bounded from below. Then both sides in (3.3.8) form a convergent series;
Xk+1 — X — 0; the uniform continuity of V f implies V f (xg41) — Vf(xz) = 0,a
contradiction to (3.3.9). o

Observe the scheme of this proof: ||V f(x¢)|| plays the role of a convergence parameter,
hopefully tending to 0; then (i) [resp. (ii)] quantifies the fact that # is not too large [resp. not
too small]; finally (iii) synthesizes these arguments. If the stopping criterion of Step 1 were
not present, the same scheme would prove by contradiction that 0 is a cluster point of the
sequence {V f(xx)} — remember (1.1.8).

3.4 Updating the Trial Stepsize

We turn now to the possibilities for interpolation and extrapolation in an algorithm
such as 3.3.1. The simplest way to satisfy the safeguard-reduction property 3.1.3 isa
rough doubling and halving process such as

—iftg = +oo replace t by 2t,
—iftg < 4+ooreplacet by 1/2(tf, + tR).-

More intelligent formulae exist, however: as the number of cycles increases in
the line-search, more and more information is accumulated from ¢, which can be
used to guess where a convenient ¢ is likely to lie. Then, the idea is to fit a simple
model-function (like a polynomial) to this information. The model-function is used
to obtain a desired value, say t4, for the next trial, and it remains to force 4 inside the
safeguard J¢g, t1[, so as to ensure the safeguard-reduction property 3.1.3.

Remark 3.4.1 The idea of having g(t) := f(xx + tdy) as line-search function, of fitting a
model to it, say 6(¢), and of choosing ¢y minimizing 6, is attractive but may not be the most
suitable. Remember that the descent test (3.2.1) might be satisfied by no minimizer of g.

A possible way round this discrepancy is to compute #; minimizing the tilted function
t > 6(t) — mtq’(0); or equivalently to choose 6(¢) fitting g(¢) — mtq’(0); or also to take
q@) := f(xx+tdy) —me(V f(xx), di) as line-search function. The resulting ¢4 will certainly
aim at satisfying (3.2.1) and

(V f(xk + tdp), di) 2 m(V f (xx), di) -

It will thus aim at satisfying (3.2.4) as well, and this strategy is more consistent with a Wolfe
criterion, say; see Fig.3.4.1.

The above strategy may look anti-natural, but luckily the perturbation term mtq’(0) is
small, admitting that m itself is small (see Remark 3.2.2). O
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slope m >

Fig.3.4.1. A perturbation of the line-search function

} 1)

—

(a) Forcing the Safeguard-Reduction Property The forcing mechanism can be
done as follows:

~ When no tg > 0 has been found yet, one chooses ¥k > 1 and the next trial 7,
is max{t4, kt} (each extrapolation multiplies the stepsize at least by «; « may
vary with the number of extrapolations but one should not let it tend to 1 without
precautions).

—~ When some g < +o00 is on hand, one chooses p €]0, 1/2] and one does the
following:

—replace 4 by max{tg, (1 — p)tL + ptg};
— then replace the new ¢4 thus obtained by min {#4, pt;, + (1 — p)tr};
— finally, the next trial ¢, is set to this last z4.

In other words, ¢, is forced inside the interval obtained from [#],, tg] by chopping
off p(tg — t1) from its two endpoints. At the next cycle, ;. will become a ¢;, or a
tr (unless clause (0) occurs) and in both cases, the bracket [z, zz] will be reduced
by a factor of at least 1 — p; p may vary at each interpolation but one must not let
p | 0 without precaution.

These questions, particularly that of choosing t;, present a moderate interest
because efficient line-searches need on the average far less than two cycles to reach
(0) and to accomplish the descent iteration. Asymptotic properties of the interpolation
formulae are therefore hardly involved.

Remark 3.4.2 The question of the initial trial is crucial, since the above-mentioned score
of less than two cycles per line-search is certainly not attainable without a good initialization.
With Newtonian methods, one must try ¢t = 1 first, so the Newton step has a chance to prevail.
For other methods, the following technique is universally used: pretend that q is quadratic

a®) ~3ar* +4'(0)t +4q(0) (a > 0 is unknown)

and that its decrease from ¢t = 0 to the (asserted) optimal r* := —g’(0)/a is going to be
A = f(xg—1)— f(x); itis straightforward to check that t* is then given by t* = —2A/4’(0),
which happens to be an excellent initialization.

Observe that, at the first descent iteration Xk = 1, A does not exist. In the notations of
Fig. 1.2.1, it is actually block (U0) which should give to block (A) an idea of the very first
initial trial; for example (U0) may pass to (A) an estimate of A together with x; and 8. These
are the kind of details that help an optimization program to run efficiently. ]
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Remark 3.4.3 Having thus settled the question of the initialization, let us come again to the
question of stopping criteria. The “ideal” event ||V f (x)]| < 8 occurs rarely in practice, for
many possible reasons. One is that § may have been chosen too small by the user and, in view
of the speed of the minimization algorithm, iterations should go on essentially forever.

Another reason, a very common one, is that s(x) is actually not the gradient of f at x,
either (i) because of a mistake in the black box (U1) — this is fairly frequent, see Remark 1.2.2
— or (ii) simply because of roundoff errors: (Ul) can work only with finitely many digits,
and there must be a threshold under which the computation errors become important. Then,
observed values of g and of ¢’ [= (s, d)] are inconsistent with each other and a proof like
that of Theorem 3.3.2 does not reflect reality. For example, the property

q(tg) — q(t™)

T q'(t*) whentg | t*
R —

may become totally wrong. As a result, (0) never occurs, tg — ¢1, does tend to zero and the
line-search loops forever. The cause of this problem can be (i) or (ii) above; in both cases,
the process must be stopped manually, so as to “spare” computing time (i.e. reduce it from
infinity to a reasonable value!).

Thus, in addition to § for the ideal test (1.2.1), the user [i.e. block (U0)] must set another
tolerance, say &', allowing block (A) to somehow guess what a very small stepsize is. This
8’ defines a threshold, under which tg — z;, must be considered as essentially 0. In these
conditions, an “emergency stopping criterion”, acting when tg — t7, becomes lower than this
threshold, can be inserted in Step 4 of Algorithm 3.3.1. Note also that another emergency
stop can be inserted in Step 3 to prevent infinite loops occurring when the objective function
is unbounded from below.

It is interesting to observe that this §’-precaution is not sufficient, however: the user
may have overestimated the accuracy of the calculations in (U1) and 8’ may never act, again
because of roundoff errors. There exists, at last, an unfailing means for Algorithm 3.3.1 to
detect that it is starting to loop forever. When the new stepsize ¢, becomes close enough to a
previous one, say 77, there holds

xx +trdy = xx + tpdg

although #;, # ¢... This is another effect of roundoff errors — but beneficial, this time: when it
happens, Algorithm 3.3.1 can be safely stopped.

All this belongs more to the art of computer programming than to mathematics and
explains what we meant in the introduction of this Section 3, when mentioning that imple-
menting a good line-search requires experience. ]

We gave the above details in Remark 3.4.3 because they illustrate the kind of care that
must be exercised when organizing automatic calculations. We conclude this section with
some more details concerning the fit of ¢ by some simple function. Although not particularly
exciting, they are further illustrations of another kind of precaution: when doing a calculation,
one should try to avoid division by 0!

(b) Computing the Interpolation t; The most widely used fit for ¢ is by a cubic
function, which is done by the following calculations:

— Call @ and o _ the two stepsize-values that have been tried last (the current one and
the previous one; at the first cycle, a_ = 0).

— We have onhand g := g (), ¢' == q'(@),q_ :=q(a_) andq’ :=q'(a_).
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— These four data define a polynomial of degree < 3 in #, which we find convenient
to write as

0(t) :=1a(t —a)P +b(t —a)’ +q't —a) +q.

— The coefficients a and b are identified by equating (c_) and 6’ (a_) with g_ and
q’_ respectively. Knowing that E := @ — a_ # 0 this gives the linear system

1E’a—Eb=Q —¢'
E?a—-2Eb=4q_ —q'
in which we have set Q' := (¢ — ¢_)/E. With P’ := q' + q’_ — 3@/, its unique
solution is
Ela=q +q_ +2P and Eb=4q + P .

— Then the idea is to take t; as the local minimum of & (if it exists), i.e. one of the
real solutions (if they exist) of the equation

0'(t)=a(t —a)>+2b(t —a)+ ¢ =0. (3.4.1)

With respect to the unknown ¢ — «, the reduced discriminant of this equation is
1
A=b—aq = Ez—(P” -q'q)) (3.4.2)

which we assume nonnegative, otherwise there is nothing to compute.
— Clearly enough, if t — & = (—b = A'/2)/a solves (3.4.1), then

0"(t) =2a(t —a) +2b = +2A'/2.

Because 6” must be nonnegative at #4, it is the “+” sign that prevails; in a word, #4
can be computed by either of the following equivalent formulae:

_ 1/2
ty— o= —b—%‘i‘— (3.4.3)
(e A+ a7y g
ty—o= bt A7) =y TAT (3.4.4)

— The tradition is to use (3.4.3) if b < 0 and (3.4.4) if b > 0. Then, roundoff errors
are reduced because the additions involve two nonnegative numbers. In particular,
the denominator in (3.4.4) cannot be zero.

— Now comes the delicate part of the calculation. In both cases, the desired ¢ is
expressed as

t—a+N 3.4.5
d = D (3.4.5)

but this division may blow up if D is close to 0. On the other hand, we know that
if 14 is going to be outside the interval ]t , 5[ (assumed to be known; in case of
extrapolation we can temporarily set zg = 10« t1), the forcing mechanism of §(a)
above will kill the computation of 7. A formula like (3.4.5) is then useless anyway.
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Now, a key observation is that & € [t7,, tg]. In fact, the current trial « is either ;.
or tR, as can be seen from a long enough contemplation of Algorithm 3.1.2. Then

the property
N
IL—O!<-5<IR—(¥,

which must be satisfied by 74, implies

[N]
— <IiR—1L. (3.4.6)
|D|
To sum up, 4 should be computed from (3.4.5) only if (3.4.6) holds. Otherwise
the cubic model is helpless, as it predicts a new stepsize outside the bracket [¢; , g].
Then t; should be set for example to ¢, or g according to the sign of q’.

Remark 3.4.4 Perhaps the most important reason for these precautions is the danger
of so-called overflows. When a computer is asked to do an arithmetic operation whose
result is very large in absolute value — say larger than 10°° — it usually stops. All the
current work is definitely lost, with all its intermediate results; a disaster (note here
that the situation is not symmetric: if the result is small in absolute value, then it can
be replaced by 0; in other words, a computer understands 0 but not “infinity”). This
danger appears when multiplications, or equivalently divisions, are done; additions
are less critical. ,

In our context, there are two types of quantities: z-values and g-values; they are
independent in the sense that they are expressed in different units; their ratios form
a third type: ¢’-values. One may think, for example, that 1 ~ 10719, g ~ 10%, so
g’ ~ 10, Then, the above calculations should be performed with some care.

Because Q' is homogeneous to a derivative, its computation is relatively safe. By
contrast, (3.4.2) is dangerous because terms like P> may have crazy values: in our
example above, P"? ~ 109, Thus, computing directly P’ — ¢’q’ should be done
only if | P’| < 1. Otherwise, observing that only A!/2 is used, one should write (3.4.2)
as (we skip the sign-problems)

P%—g'q_ =P [P ~(q'/P)q"

and respect the stated order when computing this right-hand side. Finally, the test
(3.4.6) is necessary only when | D] < 1; then, it should be performed as

IN|<|D|(tr —1L). a

Remark 3.4.5 The distinction between (3.4.3) and (3.4.4) reduces the roundoff er-
rors, and it also takes care of a vanishing a. The event a = 0 does happen from time
to time, namely when ¢ is (close to) a quadratic function. From this point of view, the
role of the sign of b is essential.

—If b > 0, then formula (3.4.4) is used and the role of a is minor: even if a ~ 0
(meaning that 6 looks like a convex quadratic function) (3.4.4) gives the safe value

tg ~ —q'/b.
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—If b < 0, then the case a ~ 0 means that 6 looks like concave quadratic, possibly
linear (b = 0); in both cases, & has no minimum and it is the cubic approximation
which is meaningless anyway.

The interesting point is that this whole technique gives a stable computation
of t4, even though the cubic function & may degenerate. It should be said that the
computation (3.4.2) of A does suffer from roundoff, though: Q' = ¢’(t) for some
T €Jo, a_[, so P’ and A are obtained by subtracting numbers which may have the
same sign and be close together. When « and «_ are close together, A has to be close
to 0 even though q’-values are large. 0



III. Convex Sets

Prerequisites. Topology and Euclidean geometry of R"; a skill to visualize 2- and 3-
dimensional objects, so as to illustrate the results, and to support the intuition in higher
dimensions.

Introduction. Our working space is R”. We recall that this space has the structure of a real
vector space (its elements being called vectors), and also of an affine space (a set of points);
the latter can be identified with the vector-space R"” whenever an origin is specified. It is not
always possible, nor even desirable, to distinguish vectors and points.

We equip IR” with a scalar product (-, -), so that it becomes a Euclidean space, and also
a complete normed vector space for the norm ||x}| := (x, x)'/ 2, If an orthonormal basis is
chosen, there is no loss of generality in assuming that (x, y) is the usual dot-product x 7 y; see
§A.3. ,

The concepts presented in this chapter are of course fundamental, as practically all
the subsequent material is based on them (including the study of convex functions). These
concepts must therefore be fully mastered, and we will insist particularly on ideas, rather than
technicalities.

1 Generalities

1.1 Definition and First Examples

Definition 1.1.1 The set C C R” is said to be convex if ax + (1 — a)x’ isin C
whenever x and x” are in C, and & € ]0, 1[ (or equivalently o € [0, 1]). 0

Geometrically, this means that the line-segment
[x,xl:={ex+ (1 —a)x' : 0<a< 1}

is entirely contained in C whenever its endpoints x and x’ are in C. Said otherwise: the
set C — {c} is a star-shaped set whenever ¢ € C (a star-shaped set is a set containing
the segment [0, x] for all its points x). A consequence of the definition is that C is
also path-connected, i.e. two arbitrary points in C can be linked by a continuous path.

Examples 1.1.2 (Sets Based on Affinity) We have seen in Chap. I that the convex

sets in R are exactly the intervals; let us give some more fundamental examples in
several dimensions.
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(a) An affine hyperplane, or hyperplane, for short, is a set associated with (s,r) €
R” x R (s # 0) and defined by

Hsr:={xeR": (s,x) =r}.

An affine hyperplane is clearly a convex set. Fix s and let r describe R ; then the affine
hyperplanes H; , are translations of the same linear, or vector, hyperplane Hg o. This
Hj j is the subspace of vectors that are orthogonal to s and can be denoted by Hy o =
{s}+. Conversely, we say that s is the normal to Hy o (up to a multiplicative constant).
Affine hyperplanes play a fundamental role in convex analysis; the correspondence
between 0 # s € R” and Hj ; is the basis for duality in a Euclidean space.

(b) More generally, an affine subspace, or affine manifold, is a set V such that the
(affine) line {ax + (1 — a)x’ : @ € R} is entirely contained in V whenever x and x’
are in V (note that a single point is an affine manifold). Again, an affine manifold is
clearly convex.

Take v € V; itis easy —but instructive — to show that V — {v} is a subspace of R”,
which is independent of the particular v; denote it by Vj. Thus, an affine manifold V
is nothing but the translation of some vector space V;, sometimes called the direction
(-subspace) of V. One can therefore speak of the dimension of an affin manifold V: it
is just the dimension of V. We summarize in Table 1.1.1 the particular cases of affine
manifolds.

Table 1.1.1. Various affine manifolds

Name Possible definition Direction Dimension
point {x} (xeR?) {0} 0
affine {faxi+ (1 —a)x; : a € R} vector line 1
line x| # xz (bothin R?) R(x — x')
affine fxeR": (s,x)=r} vector hyperpl. !
hyperplane (#0,reR) {s} n=

(c) The half-spaces of R" are those sets attached to (s,r) € R” x R, s # 0, and
defined by

{x e R" : (s,x) <r} (closed half-space)

{x eR"” : (s,x) <r} (open half-space);
“affine half-space” would be a more accurate terminology. Naturally, an open [resp.
closed] half-space is really an open [resp. closed] set; it is the interior [resp. closure]
of the corresponding closed [resp. open] half-space; and the affine hyperplanes are

the boundaries of the half-spaces; all this essentially comes from the continuity of the
scalar product (s, -}. o

Example 1.1.3 (Simplices) Call @ = (a;, ..., a) the generic point of the space
R¥. The unit simplex in R is

Api={ae R Th o =1, @ >0fori=1,...,k}.
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Equipping RK with the standard dot-product, {e,, ..., e;} being the canonical basis
and e := (1, ..., 1) the vector whose coordinates are all 1, we can also write
Aci={aeRr: eTa=1, a>0fori=1,....k| . (1.L1)

Observe the hyperplane and half-spaces appearing in this definition. Unit simplices
are convex, compact, and have empty interior —being included in an affine hyperplane.
We will often refer to a point a € Ay as a set of (k) convex multipliers.

It is sometimes useful to embed Ay in R™, m > k, by appending m — k zeros to
the coordinates of @ € R¥, thus obtaining a vector of A,,. We mention that a so-called
simplex of R” is the figure formed by n 4 1 vectors in “nondegenerate positions”; in
this sense, the unit simplex of R¥ is a simplex in the affine hyperplane of equation
e'a = 1; see Fig. 1.1.1.

Fig. 1.1.1. Representing a simplex

If we replace e = 1 in (1.1.1) by e" @ < 1, we obtain another important set,
convex, compact, with nonempty interior:

Ay = [aeRk ce'a<l, o; 20fori = 1,...,k} .
In fact, this set can also be described as follows:
a€d, <= 3ogy >0suchthat (o, agqi) € Agy -

In this sense, the simplex A;( C R* can be identified with Ag4, via a projection
operator.

A (unit) simplex is traditionally visualized by a triangle, which can represent A
or A’; see Fig. 1.1.1 again. o

Example 1.1.4 (Convex Cones) A cone K is a set such that the “open” half-line
{ox : @ > 0} is entirely contained in K whenever x € K. In the usual representation
of geometrical objects, a cone has an apex; this apex is here at 0 (when it exists: a
subspace is a cone but has no apex in this intuitive sense). Also, K is not supposed to
contain 0 — this is mainly for notational reasons, to avoid writing 0 x (4-00) in some
situations. A convex cone is of course a cone which is convex; an example is the set
defined in R” by
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(sj,x)=0forj=1,...,m, (smtj,x)<0forj=1,...,p, (1.1.2)

where the s; ’s are given in R” (once again, observe the hyperplanes and the half-spaces
appearing in the above example, observe also that the defining relations must have
zero right-hand sides).

Convexity of a given set is easier to check if this set is already known to be a cone: in
view of Definition 1.1.1, a cone K is convex if and only if

x+yeK whenever xandyarein K,

ie. K + K C K. Subspaces are particular convex cones. We leave it as an exercise to show
that, to become a subspace, what is missing from a convex cone is just symmetry (K = —K).

A very simple cone is the nonnegative orthant of R"
Qi ={x=E....8M : E>0fori=1,...,n}.
It can also be represented in terms of the canonical basis:
Qp={Y" | aei : ¢ >0fori=1,...,n}
or, in the spirit of (1.1.2):
2, ={xeR": (e,x)=0fori=1,...,n}.
Convex cones will be of fundamental use in the sequel, as they are among the
simplest convex sets. Actually, they are important in convex analysis (the “unilateral”

realm of inequalities), just as subspaces are important in linear analysis (the “bilateral”
realm of equalities). o

1.2 Convexity-Preserving Operations on Sets

Proposition 1.2.1 Let {Cj}jc; be an arbitrary family of convex sets. Then
C:=n{C; : jelJ}
is convex.

PROOF. Immediate from the very Definition 1.1.1. 0

Intersecting convex sets is an operation of utmost importance; on the other hand,
a union of convex sets is usually not convex.

Example 1.2.2 Let (s1,71),..., (Sm, rm) be m given elements of R"® x R and consider the
set

{xeR" : (sj,x)<rjforj=1,...,m}. 1.2.1)

It is clearly convex, which is confirmed if we view it as an intersection of m half-spaces; see
Fig. 1.2.1.

We find it convenient to introduce two notations; A : R” — R™ is the linear operator

which, to x € R”, associates the vector with coordinates {sj, x); and in R™, the notation

a < b means that each coordinate of a is lower than or equal to the corresponding coordinate

of b. Then, the set (1.2.1) can be characterized by Ax < b, where b € R™ is the vector with
coordinates ry, ..., I'imy. [w}
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Fig. 1.2.1. An intersection of half-spaces

It is interesting to observe that the above construction applies to the examples of §1.1:

— an affine hyperplane is the intersection of two (closed) half-spaces;
— an affine manifold is an intersection of finitely many affine hyperplanes;
— a unit simplex is the intersection of an affine hyperplane with a closed convex cone (£2.+);

— a convex cone such as in (1.1.2) is an intersection of a subspace with (homogeneous) half-
spaces.

Piecing together these instances of convex sets, we see that they can all be considered
as intersections of sufficiently many closed half-spaces. Another observation is that, up to
a translation, a hyperplane is the simplest instance of a convex cone — apart from (linear)
subspaces. Conclusion: translations (the key operations in the affine world), intersections
and closed half-spaces are basic objects in convex analysis.

Convexity is stable under Cartesian product, just as it is under intersection.

Proposition 1.2.3 Fori = 1,...,k, let C; C R" be convexsets. Then C, x - - - x Cy
is a convex set of R™ x ... x R"%.

PROOF. Straightforward. o

The converse is also true; C; x - - - X Cy, is convex if and only if each C; is convex,
and this results from the next property: stability under affine mappings. We recall that
A : R" — R™ is said affine when

Alax + (1 —a)x) =aA@x) + (1 — a)A(X)

for all x and x” in R” and all @ € R. This means that x > A(x) — A(0) is linear,
so an affine mapping can be characterized by a linear mapping A, and a point y, :=
A(0) € R™:

A(x) = Apx + yo forall x e R™.

It goes without saying that images of affine manifolds under affine mappings are affine
manifolds (hence the name!) So is the case as well for convex sets:
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Proposition 1.2.4 Let A : R" — R™ be an affine mapping and C a convex set of
R™. The image A(C) of C under A is convex in R™.
If D is a convex set of R™, the inverse image

A(D):={x €R" : A(x) € D}
is convex in R".

PROOF. For x and x’ in R”, the image under A of the segment [x, x'] is clearly the
segment [A(x), A(x")] c R™, This proves the first claim, but also the second: indeed,
if x and x’ are such that A(x) and A(x") are both in the convex set D, then every point
of the segment [x, x’] has its image in [A(x), A(x/)] C D. u]

Immediate consequences of this last result are:

— the opposite —C of a convex set is convex;
— the sum (called direct sum, or Minkowski sum, denoted with the symbol @ by some
authors)

Ci+Cri={x=x1+x : x€C, x,€ Cy}

of two convex sets C; and C, is convex; when C, = {c,} is a singleton, we will
sometimes use the lighter notation C; + ¢, for C| + {¢;};

— more generally, if ¢; and o, are two real numbers, the set

a,C, +(¥2C2 = {a.xl +ax; . X] € Cl,x;_ € Cz} (122)
is convex: it is the image of the convex set C; x C; (Proposition 1.2.3) under the

linear mapping sending (x;, x;) € R"” x R” to a;x; + apx; € R".

We recall here that the sum of two closed sets need not be closed, unless one of the sets
is compact. This property is not changed when convexity is present: with n = 2, take for
example

Cr:={¢.n:620,n20,6n>1} and C;:=R x {0}.

Example 1.2.5 Let C be convex in R™ x R™2; see Fig. 1.2.2.
Use for A the projection from R"' x R"2 onto R™ to see that the “slice” of C along y

Cy)={xeR": (x,y)eC}
and the “shadow” of C over R™
Ci:={x eR" : (x,y) € C forsome y € C}

are convex. If, in particular, C = C; x C, is a product-set, we obtain the converse to Propo-
sition 1.2.3. n]
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Fig. 1.2.2. Shadow and slice of a convex set

Example 1.2.6 When setting ¢ = —ay = 1 in (1.2.2), we obtain a “difference” C; — C»,
which is actually a sum: C| + (—C3); the result is always a rather large set, as it contains “as
many elements” as C; X Cy, so to speak.

Another “difference” between sets is the following star-difference

Ci*¥Cy:=N{Ci—c:ceC}={xeR": x+C, C(C}.

It is a convex set, even if C; is not convex — use in particular Proposition 1.2.1. Observe the
contrast: C; — C; is a “large” set but C; * C, is “small”, and even very often empty (try
examples with a ball for C»). O

We finish with a topological operation.
Proposition 1.2.7 If C is convex, so are its interior int C and its closure c1C.

PROOF. For given different x and x’, and €10, 1[, we set x”" = ax + (1 —a)x’ €
Ix, X[

Take first x and x’ in int C. Choosing § > 0 such that B(x’, §) C C, we show
that B(x”, (1 — @)8) C C. As often in convex analysis, it is probably best to draw a
picture. The ratio ||x” — x||/[|x’ — x|| being precisely 1 — «, Fig. 1.2.3 clearly shows
that B(x”, (1 — «)8) is just the set ax + (1 — a)B(x/, §), obtained from segments
with endpoints inint C: x” € intC.

x ‘0

1-a [od
Fig. 1.2.3. Convex sets have convex interiors
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Now, take x and x’ in ¢l C: we select in C two sequences {x;} and {x,’c} converging
to x and x’ respectively. Then, axg + (1 — a)x;C is in C and converges to x”/, which
is therefore in cl C. ]

The interior of a set is (too) often empty; convexity allows the similar but much more
convenient concept of relative interior, to be seen below in §2.1. Observe the nonsymmetric
character of x and x’ in Fig. 1.2.3. It can be exploited to show that the intermediate result
Jx, x'[ C int C remains true even if x € ¢l C; a property which will be seen in more detail in
§2.1.

1.3 Convex Combinations and Convex Hulls

The operations described in §1.2 took convex sets and made new convex sets with
them. The present section is devoted to another operation, which takes a nonconvex
set and makes a convex set with it. First, let us recall the following basic facts from
linear algebra.

(i) A linear combination of elements xi, ..., x;y of R" is an element ZL | O Xis
where the coefficients «; are arbitrary real numbers.

(ii) A (linear) subspace of R" is a set containing all its linear combinations; an
intersection of subspaces is still a subspace.

(iii) To any nonempty set S C R”, we can therefore associate the intersection of all
subspaces containing S. This gives a subspace: the subspace generated by S (or
linear hull of S), denoted lin S — other notations are vect S or span S.

(iv) For the C-relation, lin S is the smallest subspace containing S; it can be con-
structed directly from S, by collecting all the linear combinations of elements

of S.
(v) Finally, xy, ..., x¢ are said linearly independent if ZLl o;x; = 0 implies that
o) = -+ = o = 0. In R”, this implies k < n.

Now, let us be slightly more demanding for the coefficients «;, as follows:

(i’) An affine combination of elements x,, ..., x; of R" is an element Zf-;] o;x;i,
where the coefficients o; satisfy Z{-‘zl a;=1.

As explained after Example 1.2.2, “affinity = linearity + translation”; it is therefore
not surprising to realize that the development (i) — (v) can be reproduced starting from
@):

(ii”) An affine manifold in R” is a set containing all its affine combinations (the
equivalence with Example 1.1.2(b) will appear more clearly below in Proposi-
tion 1.3.3); it is easy to see that an intersection of affine manifolds is still an
affine manifold.

(iii’) To any nonempty set S C R", we can therefore associate the intersection of all

affine manifolds containing S. This gives the affine manifold generated by S,
denoted aff S: the affine hull of S.
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(iv’) For the C -relation, aff S is the smallest affine manifold containing S; it can
be constructed directly from S, by collecting all the affine combinations of
elements of S. To see it, start from xy € S, take lin(S — x¢) and come back by
adding xo: the result xp + lin(S — xo) is just aff S.

(v’) Finally, the k + 1 points xg, X1, .. ., xi are said affinely independent if the set
xo + lin{xo — xq, X1 — X0, ..., Xx — X0} = xo + lin{x; — xq, ..., Xt — Xo}
has full dimension, namely k. The above setis exactly aff {xo, x;, ..., x¢}; hence,

it does not depend on the index chosen for the translation (here 0). In linear
language, the required property is that the k vectors x; — xo, i # 0 be linearly
independent. Getting rid of the arbitrary index 0, this means that the system of

equations
k k
Y aixi=0, ) ;=0 (1.3.1)
=0 =0

has the unique solution oy = &) = --- = ay = 0. Considered as elements of
R**T! = R" x R, the vectors (xo, 1), (x1, 1), ..., (xx, 1), are linearly indepen-
dent. In R", at most n + 1 elements can thus be affinely independent.

If xq, x1, - .., xi, are affinely independent, x € aff{xg, xi, ..., xx} can be written in
a unique way as

k k
x = Za,-x,- with Zai =1.

The corresponding coefficients «; are sometimes called the barycentric coordinates
of x — even though such a terminology should be reserved to nonnegative «;’s. To say
that a set of vectors are affinely dependent is to say that one of them (any one) is an
affine combination of the others.

Example 1.3.1 Consider the unit simplex A onthe left part of Fig. 1.1.1; calle; = (1, 0, 0),
e; = (0,1,0), e3 = (0,0, 1) the three basis-vectors forming its vertices. The affine hull of
S = {ey, ez} is the affine line passing through e, and e;. For § = {e), e, &3}, it is the affine
plane of equation a; + a2 + a3 = 1. The four elements 0, ¢, e,, e3 are affinely independent
but the four elements (1/3, 1/3, 1/3), e], €2, e3 are not. o

Passing from (i) to (i’) gives a set aff S which is closer to S than lin S, thanks to
the extra requirement in (i’). We apply once more the same idea and we pass from
affinity to convexity by requiring some more of the ¢;’s. This gives a new definition,
playing the role of (i) and (i’):

Definition 1.3.2 A convex combination of elements x,, . .., x; in R” is an element
of the form

k k
Zaixi where Zai=1 and o; 20fori=1,...,k. o

i=1 =1
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A convex combination is therefore a particular affine combination, which in turn
is a particular linear combination. Note in passing that all convex combinations of
given xp, . .., x; form a convex set: it is the image of A; under the linear mapping

RE 3 (ay,....¢%) > ayxg + - + agxg € R”.

The sets playing the role of linear or affine subspaces of (ii) and (ii’) will now be
logically called convex, but we have to make sure that this new definition is consistent
with Definition 1.1.1.

Proposition 1.3.3 4 set C C R” is convex if and only if it contains every convex
combination of its elements.

PROOF. The condition is sufficient: convex combinations of two elements just make

up the segment joining them. To prove necessity, take x;,...,x; in C and o =
(ay, ..., ar) € Ag. One at least of the ¢; s is positive, say @; > 0. Then form
ay [+ 7] [ 1 ]
= x X = ——(a1x] + arx
V= l+a1+(x2 2 aa, (ax + 0ox2)

which is in C by Definition 1.1.1 itself. Therefore,

. ua+toa ot a3 X [__
Y3 G tatas g tontas

2—31_—' Z?z] aixi]

i=) %
is in C for the same reason; and so on until

o+ ok 1wk
Vi = ——~—T——-}’k.—| + TXk [= 1 Zi:l a,-x,-] . m]
The working argument of the above proof is longer to write than to understand. Its
basic idea is just associativity: a convex combination x = ) a;x; of convex combinations
x; = )_ Bijyij is still a convex combination x = }_ 3 (a;B;;)yij. The same associativity
property will be used in the next result.

Because an intersection of convex sets is convex, we can logically define as in
(iii), (iii”) the convex hull co S of a nonempty set S: this is the intersection of all the
convex sets containing S.

Proposition 1.3.4 The convex hull can also be described as the set of all convex
combinations:

coS := N{C : C is convex and contains S}
= {x € R” : for some k € Ny, there exist x,, ..., x € Sand (1.3.2)
a=(a,...,ar) € A such that ZLlaix,- = x}.

PROOF. Call T the set described in the rightmost side of (1.3.2). Clearly, T D S. Also,
if C is convex and contains S, then it contains all convex combinations of elements
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in S (Proposition 1.3.3), i.e. C D T. The proof will therefore be finished if we show
that T is convex.

For this, take two points x and y in T, characterized respectively by (x;, ), .. .,
(xk, ax) and by (y1, B1), ..., (¥e, Be); take also A €10, 1[. Then Ax + (1 — A)y isa
certain combination of k + £ elements of §; this combination is convex because its
coefficients Aa; and (1 — A)B; are nonnegative, and their sum is

k [
AY @i+ (-0 bj=A+1-A=1. a

i=] Jj=1
Example 1.3.5 Take a finite set {xi, ..., x;z}. To obtain its convex hull, it is not
necessary to list all the convex combinations obtained viac € Ay forallk =1, ..., m.

In fact, as already seen in Example 1.1.3, Ay C Ap, if kK < m, so we can restrict
ourselves to k = m. Thus, we see that

co{xy,...,xXxm} = {Z}Ll ojxj : = (a,...,anm) € Am}.

Make this example a little more complicated, replacing the collection of points
by a collection of convex sets:

S=C/U---UCy, where each C; is convex .

A simplification of (1.3.2) can again be exploited here. Indeed, consider a convex
combination Z{;] «; x;. It may happen that several of the ;s belong to the same C;.
To simplify notation, suppose that x¢_., and x; are in C;; assume also o > 0. Then
set (Bi, yi) = (e, x;),i=1,...,k—2and

Br—1 = g + g, Yh—1 = ml_—l(dk—ﬂ%—n +agx) € Cy,

so that Zf.;l aix; = f.:ll Biyi. Our convex combination («, x) is useless, in the
sense that it can also be found among those with k — 1 elements. To cut a long story
short, associativity of convex combinations yields

coS=[Z:."=la,-xi P A€ A, x;i€C; fori=1,...,m}.

From a geometrical point of view, the convex hull of C; U C; (m = 2) is simply
constructed by drawing segments, with endpoints in C; and C;; for C, U C, U C3, we
paste triangles, etc. o

When § is infinite, or has infinitely many convex components, £ is a priori un-
bounded in (1.3.2) and cannot be readily restricted as in the examples above. Yet, a
bound on k exists for all S when we consider linear combinations and linear hulls —
and consequently in the affine case as well; this is the whole business of dimension.
In the present case of convex combinations, the same phenomenon is conserved to
some extent. For each positive integer k, call S the set of all convex combinations of
k elements in S: we have
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§=8CSC---C8HC---

The Si’s are not convex but, “at the limit”, their union is convex and coincides with
co S (Proposition 1.3.4). The theorem below tells us that £ does not have to go to +oo:
the above sequence actually stops at S,4; = co S.

Theorem 1.3.6 (C. Carathéodory) Any x € coS C R” can be represented as a
convex combination of n + 1 elements of S.

PROOF. Take an arbitrary convex combination x = Zf=1 a;x;, withk > n+ 1. We
claim that one of the x; s can be assigned a 0-coefficient without changing x. For this,
assume that all coefficients ¢; are positive (otherwise we are done).

The k > n + 1 elements x; are certainly affinely dependent: (1.3.1) tells us that
we can find &y, . . ., 8, not all zero, such that

k k
D 8ix;=0 and ) 8 =0.

i=l i=1

There is at least one positive §; and we can set a,f =aq;—t*8; fori =1, ..., k, where

o
t* :=max{t>0: a —18>0fori=1,...,k} =min L.
>0 5]'

Clearly enough,

[automatic if §; < 0,

’ ,
al>20 fori=1,...,k . .
iz by construction of t* if §; > 0]

k k k

Zaf:Zai—t*28i=l;

i=1 i=l i=1

P k
Za,{xi =x—t*28,-xi =x;

i=l i=1
iy such that a,fo =0. [by construction of £*]

In other words, we have expressed x as a convex combination of k — 1 among the
x;’s; our claim is proved.

Now, if k — 1 = n + 1, the proof is finished. If not, we can apply the above
construction to the convex combination x = Z:‘;‘ o;x; and so on. The process

can be continued until there remain only n 4 1 elements (which may be affinely
independent). ]

The same proof technique is commonly used in actual computations dealing with linearly
constrained optimization. Geometrically, we start froma = (o, ..., a;) € Ag. We compute
a direction —d = (4, ..., &), which is in the subspace parallel to aff A, so that for any
stepsize ¢, @ — td € aff Ag; and also, x is kept invariant. The particular ¢* is the maximal
stepsize such that @ — td € Ag; as a result, @ — t*d is on the boundary of Ag, i.e. in Ag_;
see Fig. 1.3.1.
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Fig.1.3.1. Carathéodory’s theorem

The theorem of Carathéodory does not establish the existence of a “basis” with n + 1
elements, as is the case for linear combinations. Here, the generators x; may depend on
the particular x to be computed. In R?, think of the corners of a square: any one of these
4 > 2+ 1 points may be necessary to generate a point in the square; also, the unit disk cannot
be generated by finitely many points on the unit circle. By contrast, a subspace of dimension
m can be generated by m (carefully selected but) fixed generators.

It is not the particular value » + 1 which is interesting in the above theorem, but rather the
fact that the cardinality of relevant convex combinations is bounded: this is particularly useful
when passing to the limit in a sequence of convex combinations. This value n + 1 is not of
fundamental importance, anyway, and can often be reduced — as in Example 1.3.5: the convex
hull of two convex sets in R!% can be generated by 2-combinations; also, the technique of
proof shows that it is the dimension of aff § that counts, not n. Along these lines, we mention
without proof a result geometrically very suggestive:

Theorem 1.3.7 (W. Fenchel and L. Bunt) If'S C R" has no more than n connected com-
ponents (in particular, if S is connected), then any x € co S can be expressed as a convex
combination of n elements of S. ]

This result says in particular that convex and connected one-dimensional sets are the
same, namely the intervals. In R, the convex hull of a continuous curve can be obtained by
joining all pairs of points in it. In R3, the convex hull of three potatoes is obtained by pasting
triangles, etc.

1.4 Closed Convex Sets and Hulls

Closedness is a very important property in convex analysis and optimization. Most
of the convex sets of interest to us in the subsequent chapters will be closed. It is
therefore relevant to reproduce the previous section, with the word “closed” added.
As far as linearity and affinity are concerned, there is no difference; in words, equal-
ities are not affected when limits are involved. But convexity is another story: when
passing from (i), (i’) to Definition 1.3.2, inequalities are introduced, together with
their accompanying difficulty “< vs. <”.

To construct a convex hull co S, we followed in §1.3 the path (iii), (iii’): we took
the intersection of all convex sets containing S. An intersection of closed sets is still
closed, so the following definition is also natural:
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Definition 1.4.1 The closed convex hull of a nonempty set S C R” is the intersection
of all closed convex sets containing S. It will be denoted by ¢o S. o

Another path was also possible to construct co S, namely to take all possible
convex combinations: then, we obtained co § again (Proposition 1.3.4); what about
closing it? It turns out we can do that as well:

Proposition 1.4.2 The closed convex hull ¢6 S of Definition 1.4.1 is the closure
cl(co S) of the convex hull of S.

PROOF. Because cl(co S) is a closed convex set containing §, it contains ¢o S as well.
On the other hand, take a closed convex set C containing S; being convex, C contains
co S; being closed, it contains also the closure of co S. Since C was arbitrary, we
conclude NC D clco S. 0o

From the very definitions, the operation “taking a hull” is monotone: if S} C S5,
then aff §;, C aff 5,, cl S C ¢clS,, coS; C coS,, and of course 6 S; C To S,.
A closed convex hull does not distinguish a set from its closure, just as it does not
distinguish it from its convex hull: <0 § = ¢o(cl §) = &6(co ).

‘When computing 0 via Proposition 1.4.2, the closure operation is necessary (co §
need not be closed) and must be performed after taking the convex hull: the operations
do not commute. Consider the example of Fig. 1.4.1:

S={0,0}U{¢E 1 : £=>0}.

Itis a closed setbut co S fails to be closed: it misses the half-line (R*, 0). Nevertheless,
this phenomenon can occur only when § is unbounded, a result which comes directly
from Carathéodory’s theorem:

Fig.1.4.1. A convex hull need not be closed

Theorem 1.4.3 If S is bounded [resp. compact], then co S is bounded [resp. com-
pact].

PROOF. Let x = "+l | @ix; € coS.If S is bounded, say by M, we can write

n-+1 n+1

lIxll < Za, llxi I < MZa, =
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Now take a sequence {xk } C co §. For each k we can choose
xf‘,...,xﬁ+l inS and of = (a{‘, ...,aﬁ,H) € Ap+i

such that x* = ?=+11 oe{‘x!‘ . Note that A, is compact. If S is compact, we can
extract a subsequence as many times as necessary (not more than n + 2 times) so that
{a*} and each {x{‘ } converge: we end up with an index set K C N such that, when
k —> 400,

{x,k}keK — x; €S and {ak}keK — Q€ Apy .

Passing to the limit for k € K, we see that {xk} kek converges to a point x, which can
be expressed as a convex combination of points of S: x € co §, whose compactness
is thus established. O

Thus, this theorem does allow us to write:
SboundedinR® = <CoS=clcoS=coclS.

Remark 1.4.4 Let us emphasize one point made clear by this and the previous sec-
tions: a hull (linear, affine, convex or closed) can be constructed in two ways. In the
inner way, combinations (linear, affine, convex, or limits) are made with points taken
from inside the starting set S. The outer way takes sets (linear, affine, convex, or
closed) containing S and intersects them.

Even though the first way may seem more direct and natural, it is the second which
must often be preferred, at least when convexity is involved. This is especially true
when taking the closed convex hull: forming all convex combinations is already a nasty
task, which is not even sufficient, as one must close the result afterwards. On the other
hand, the external construction of ¢0 S is more handy in a set-theoretic framework.
We will even see in §4.2(b) that it is not necessary to take in Definition 1.4.1 all closed
convex sets containing §: only rather special such sets have to be intersected, namely
the closed half-spaces of Example 1.1.2(c). ]

To finish this section, we mention one more hull, often useful. When starting from
linear combinations to obtain convex combinations in Definition 1.3.2, we introduced
two kinds of constraints on the coefficients: e " = 1 and ; > 0. The first constraint
alone yielded affinity; we can take the second alone:

Definition 1.4.5 A conical combination of elements x|, . . ., xi is an element of the
form Zle «;x;, where the coefficients «; are nonnegative.

The set of all conical combinations from a given nonempty S C R” is the conical
hull of S. It is denoted by cone S. n|

Note that it would be more accurate to speak of convex conical combinations and convex
conical hulls. If @ := Z{":x «; is positive, we can set 8; := a; /a to realize that a conical
combination of the type

k k
Zaixi =&Zﬁ,~xi with a >0, Be A
i=]

i=l
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is then nothing but a convex combination, multiplied by an arbitrary positive coefficient. We
leave it to the reader to realize that

cone S = R*(co S) = co(R*S).

Thus, 0 € cone S; actually, to form cone S, we intersect all convex cones containing S, and
we append O to the result. If we close it, we obtain the following definition:

Definition 1.4.6 The closed conical hull (or rather closed convex conical hull) of a
nonempty set S C R" is

c?b’rfeS::clconeS:cl{Zf___,aix,- ta; 20, x € Sfori=1,...,k}. O

Theorem 1.4.3 states that the convex hull and closed convex hull of a compact set
coincide, but the property is no longer true for conical hulls: for a counter-example,
take the set {(£, n) € R? : (£ —1)?>+4n? < 1}. Nevertheless, the result can be recovered
with an additional assumption:

Proposition 1.4.7 Let S be a nonempty compact set such that 0 & co S. Then
cone S = R*(coS) [=coneS].

PROOF. The set C := co S is compact and does not containing the origin; we prove
that R*C is closed. Let {t;x;y} C R*C converge to y; extracting a subsequence if
necessary, we may suppose x; — x € C; note: x # 0. We write

b

tk'—"—c_ —) _y_ ,

=kl flxll

which implies ¢y — |[¥|l/lx|| =: ¢ = 0. Then, tgxy — tx = y, whichis thus in RTC.
O

2 Convex Sets Attached to a Convex Set

2.1 The Relative Interior

Let C be a nonempty convex set in R”. If int C # @, one easily checks that the affine
hull aff C is the whole of R” (because so is the affine hull of a ball contained in C):
we are dealing with a “full dimensional” set. On the other hand, let C be the sheet of
paper on which this text is written. Its interior is empty in the surrounding space R?,
but not in the space R? of the table on which it is lying; by contrast, note that cl C is
the same in both spaces.

This kind of ambiguity is one of the reasons for introducing the concept of relative
topology: we recall that a subset A of R” can be equipped with the topology relative to
A, by defining its “closed balls” B(x, )N A, for x € A; then A becomes a topological
space in its own. In convex analysis, the topology of R" is of moderate interest: the
topologies relative to affine manifolds turn out to be much richer.
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Definition 2.1.1 The relative interior 1i C (or relint C) of a convex set C C R" is the
interior of C for the topology relative to the affine hull of C. In other words: x e riC
if and only if

x c€aff C and 38 > Osuchthat (aff C)N B(x,8) C C.

The dimension of a convex set C is the dimension of its affine hull, that is to say
the dimension of the subspace parallel to aff C. o

Thus, the wording “relative” implicitly means by convention “relative to the affine hull”.
Of course, note that ri C C C. All along this section, and also later in Theorem V.2.2.3, we will
see that aff C is the relevant working topological space. Already now, observe that our sheet of
paper above can be moved ad libitum in R3 (but not folded: it would become nonconvex); its
affine hull and relative interior move with it, but are otherwise unaltered. Indeed, the relative
topological properties of C are the properties of convex sets in R¥, where k is the dimension
of C or aff C. Table 2.1.1 gives some examples.

Table 2.1.1. Various relative interiors

C aff C dim C nC

{x} tx} 0 .
[x, '] affine line /
xx  generated by x and x 1 I, X[

A affine manifold n—1 {a€dn:a >0}

of equation e’ = 1

B(xq, 8) R” n int B(xg, 8)

Remark 2.1.2 The cluster points of a set C are in aff C (which is closed and contains C), so
the relative closure of C is just cl C: a notation relcl C would be superfluous. On the contrary,
the boundary is affected, and we will speak of relative boundary:

rbd C :=clC\1riC. o
A first demonstration of the relevance of our new definition is the following:
Theorem 2.1.3 IfC # 0, thentiC # 0. In fact, dim(ri C) = dim C.

PROOF. Let k := 1 4+ dim C. Since aff C has dimension k — 1, C contains k elements
affinely independent x,, . . ., xg. Call A := colx, ..., xz} the simplex that they gen-
erate; see t1g. 2.1.1; aff A = att C because A C C and dimA = & — 1. The proof
will be finished if we show that A has nonempty relative interior.

Take x := 1/k Z{; , Xi (the “center” of A ) and describe aff A by points of the

form
k

k
F+y=%+) aixi=) [f+e]x,

i=1 i=l1
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Fig. 2.1.1. A relative interior is nonempty

where a(y) = (@1 (y), ..., (y)) € R solves

k k
Zaix,- =y, Zai =0.

i=1 i=1

Because this system has a unique solution, the mapping y > a(y) is (linear and)
continuous: we can find § > 0 such that ||y} < é implies

;M <1/k fori=1,...,k, hence x+ye€A.

In other words, x eriA CriC.
It follows in particular dimri C = dim A = dim C. o

Remark 2.1.4 We could have gone a little further in our proof, to realize that the relative
interior of A was

[ ixi T =1, 0> 0fori=1,...,k}.

Indeed, any point in the above set could have played the role of x in the proof. Note, incidentally,
that the above set is still the relative interior of co{x|, . .., x¢}, even if the x;’s are not affinely
independent. u]

Remark 2.1.5 The attention of the reader is drawn to a detail in the proof of The-
orem 2.1.3: A C C implied ri A C ri C because A and C had the same affine hull,
hence the same relative topology. Taking the relative interior is not a monotone opera-
tion, though: in R, {0} C [0, 1] but {0} = ri{0} is not contained in the relative interior
10, 1[ of [0, 1]. ul

We now turn to a very useful technical result; it refines the intermediate result in
the proof of Proposition 1.2.7, illustrated by Fig. 1.2.3: when moving from a point in
ri C straight to a point of cl C, we stay inside ri C.
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Lemma 2.1.6 Let x € c1C and x’ € 1i C. Then the half-open segment
I ]={ax+Q-a)x’ : 0<a <1}
is contained inri C.

PROOF. Take x” = ax + (1 —a)x’, with 1 > a > 0. To avoid writing “N aff C” every
time, we assume without loss of generality that aff C = R”.
Since x € clC, forall ¢ > 0, x € C + B(0, ¢) and we can write

B(x", ¢) ax+ (1 —a)x’ + B(0, ¢)
aC+ (1 —a)x’+(1+a)B(0,¢)
aC+ (1 —a){x’ + B(0, 12¢)}.

' l—a

Nl

Since x’ € int C, we can choose ¢ so small that x’ + B(0, a.) < C. Then we have
1—a

B(x",e&)caC+ (1 -a)C=C

(where the last equality is just the definition of a convex set). O

Remark 2.1.7 We mention an interesting consequence of this result: a half-line issued from
x' € 1i C cannot cut the boundary of C in more than one point; hence, a line meeting ri C
cannot cut ¢l C in more than two points: the relative boundary of a convex set is thus a fairly
regular object, looking like an “onion skin” (see Fig. 2.1.2). n]

rC
X
e N

Fig. 2.1.2. The relative boundary of a convex set

Note in particular that [x, x'] C ri C whenever x and x’ are inri C, which confirms
that ri C is convex (cf. Proposition 1.2.7). Actually, ri C, C and cl C are three convex
sets very close together: they are not distinguished by the operations “aff”, “ri” and
‘601’7.

Proposition 2.1.8 The three convex sets 1i C, C and cl C have the same affine hull
(and hence the same dimension), the same relative interior and the same closure (and
hence the same relative boundary).

PROOF. The case of the affine hull was already seen in Theorem 2.1.3. For the others,
the key result is Lemma 2.1.6 (as well as for most other properties involving closures
and relative interiors). We illustrate it by restricting our proof to one of the properties,
say: ri C and C have the same closure.

Thus, we have to prove that c1C C cl(riC). Let x € ¢l C and take x’ € ri C (it
is possible by virtue of Theorem 2.1.3). Because ]x, x’] C 1iC (Lemma 2.1.6), we
do have that x is a limit of points in ri C (and even a “radial” limit); hence x is in the
closure of ri C. O
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Remark 2.1.9 This result gives one more argument in favour of our relative topology: if we
take a closed convex set C, open it (for the topology of aff C), and close the result, we obtain
C again — a very relevant topological property.
Among the consequences of Proposition 2.1.8, we mention the following:
- C and cl C have the same interior — hence the same boundary: in fact, either both are empty
(when dim C = dimclC < n), or they coincide because the interior equals the relative
interior.

—If C, and C; are two convex sets having the same closure, then they generate the same
affine manifold and have the same relative interior. This happens exactly when we have the
following “sandwich” relation

riC; C C; CclCy. [w}

Our relative topology fits rather well with the convexity-preserving operations
presented in §1.2. Our first result in these lines is of paramount importance in convex
analysis and optimization.

Proposition 2.1.10 Let the two convex sets C| and C, satisfy 1i C; Nri C, # 0. Then
(CiNGC) =riC NriC, (2.1.1)
c(CiNGy) =clCNclC,. (2.1.2)

PROOF. First we show that c1C; NclC; C cl(Cy N C,) (the converse inclusion is
always true). Given x € cl C; N cl C,, we pick x in the nonempty ri C; Nri C,. From
Lemma 2.1.6 applied to C; and to C;,

x,x'1crnC NriC,.
Taking the closure of both sides, we conclude
xecl(riCiNnC) Ccc(C;NCy),

which proves (2.1.2) because x was arbitrary; the above inclusion is actually an equal-
ity.

Now, we have just seen that the two convex sets ri C; Nri C; and C, N C; have
the same closure. According to Remark 2.1.9, they have the same relative interior:

(Ci;NG) =1 CNriCy) CriC, NriC,.

It remains to prove the converse inclusion, so let y € ri C; N riC;. If we take
x’ € C) [resp. C;], the segment [x’, y] is in aff C| [resp. aff C,] and, by definition of
the relative interior, this segment can be stretched beyond y and yet stay in C; [resp.
C,] (see Fig. 2.1.3). Take in particular x’ € ri(C; N C3), x’ # y (if such an x’ does
not exist, we are done). The above stretching singles out an x € C; N C, such that
y €lx, x'[:
y =ax+ (1 —a)x’ forsomea €10, 1].

Then Lemma 2.1.6 applied to C, N C, tells us that y € ri(C; N Cy). ]
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Fig. 2.1.3. The stretching mechanism

Observe that, if we intersect infinitely many convex sets — instead of two, or a finite
number —, the proof of (2.1.2) still works, but certainly not the proof of (2.1.1): the stretching
possibility is killed. The condition that the relative interiors have a nonempty intersection is
very important and will be encountered many times in the sequel; it is essential for both (2.1.1)
and (2.1.2) (use the same counter-example as in Remark 2.1.5). Incidentally, it gives another
sufficient condition for the monotonicity of the ri-operation (use (2.1.1) with C, C C5).

We restrict our next statements to the case of the relative interior. Lemma 2.1.6
and Proposition 2.1.8 help in carrying them over to the closure operation.

Proposition 2.1.11 Fori =1,...,k, let C; C R" be convex sets. Then
r(Cy x ---xCy)=(@iCy) x--- x (riCy).
PROOF. It suffices to apply Definition 2.1.1 alone, observing that
aff(C, x - x Cy) = @ff Cy) x --- x (aff C) . o

Proposition 2.1.12 Let A : R® — R™ be an affine mapping and C a convex set of
R™. Then

H[A(C)] = AGiC). (2.1.3)
If D is a convex set of R™ satisfying ;\‘(ri D) #£ (3, then

ri[?x'(l))] = A@D). 2.1.4)

PROOF. First, note that the continuity of A implies A(clS) C cl[A(S)] for any S C
R”. Apply this result to ri C, whose closure is cl C (Proposition 2.1.8), and use the
monotonicity of the closure operation:

A(C) C A(cIC) = A[Cl(ri C)] C cl[A(ri C)] C cl[A(C)];

the closed set cl[A(ri C)] is therefore cl[A(C)]. Because A(ri C) and A(C) have the
same closure, they have the same relative interior (Remark 2.1.9):

nA(C) =rifAFiC)] C A@C).

To prove the converse inclusion, let w = A(y) € A(riC), with y € riC. We
choose ' = A(x’) € riA(C), with x’ € C (we assume 7/ # w, hence x’ # y).
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Using in C the same stretching mechanism as in Fig.2.1.3, we single out x € C
such that y €]x, x/[, to which corresponds z = A(x) € A(C). By affinity, A(y) €
1A(x), A(x")[ =1z, Z[ . Thus, z and 2’ fulfil the conditions of Lemma 2.1.6 applied
to the convex set A(C): w € ri A(C), and (2.1.3) is proved.

The proof of (2.1.4) uses the same technique. D

As an illustration of the last two results, we see that the relative interior of ) Cy +a2C3 is
a; 1i C] + ap ri C. If we take in particular @) = —ay = 1, we obtain the following theorem:

0erni(C;—Cy)) & @C)NEiC)+#0, (2.1.5)

which gives one more equivalent form for the condition in Proposition 2.1.10. We will come
again to this property on several occasions.

2.2 The Asymptotic Cone

Let x be a point in a closed convex cone K. Draw a picture to see that, foralld € K,
the half-line x + R*d is contained in K: x + td € K for all t > 0. Conversely, if
x+RYd CK,ie.if

K—x

de =K —{ix} forallz>0,
then (K is closed), d € K. In words, a closed convex cone is also the set of directions
along which one can go straight to infinity. We now generalize this concept to non-
conical sets.

In this section, C will always be a nonempty closed convex set. For x € C, let

Coo(x) :={d eR" : x+td € C forallt > 0} . (2:2.1)

Despite the appearances, Coo(x) depends only on the behaviour of C “at infinity”:
in fact, x + td € C implies that x + td € C forall t € [0, t] (C is convex). Thus,
Coo(x) is just the set of directions from which one can go straight from x to infinity,
while staying in C. Another formulation is:

Coolt) = [ 2, 2.2.2)

t>0 t

which clearly shows that Coo(x) is a closed convex cone, which of course contains 0.
The following property is fundamental.

Proposition 2.2.1 The closed convex cone Coo(x) does not depend on x € C.

PROOF. See Theorem 1.2.3.1 and the pantographic Figure 1.2.3.1. Take two different
points x; and x; in C; it suffices to prove one inclusion, say Coo(x;) C Coo(x2). Let
d € Co(x;) and t > 0, we have to prove x; + td € C. With ¢ €]0, 1[, consider the
point

Xe:=x1+td+ (1 —8e)(xy —x;).
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Writing it as
X =¢(x1+ £d) + (1 - &)x,
we see that x, € C (use the definitions of Coo(x;) and of a convex set). On the other

hand,
x;+td =limxg; €clC =C. ]
elo

It follows that the notation Co is more appropriate:

Definition 2.2.2 The asymptotic cone, or recession cone of the closed convex set C
is the closed convex cone Coo defined by (2.2.1) or (2.2.2), in which Proposition 2.2.1
is exploited. o

Figure 2.2.1 gives three examples in R?. As for the asymptotic cone of Exam-
ple 1.2.2, it is the set {d € R" : Ad < 0}.

Fig. 2.2.1. Some asymptotic cones

Proposition 2.2.3 A closed convex set C is compact if and only if Coo = {0}.

PROOF. If C is bounded, it is clear that Coo cannot contain any nonzero direction.
Conversely, let {x;} C C besuchthat ||xi|| — +oo(weassume x; # 0). The sequence
{dy := xp/llxll} is bounded, extract a convergent subsequence: d = limge g dy with
K c N(||d]] = 1). Now, given x € C and ¢ > 0, take k so large that |lxi|| > ¢. Then,
we see that

= 1i _ .t t
x+td= ’zlenl} [(1 Tl )x + Tf—xkuxk]
is in the closed convex set C, hence d € Cxo. O
Another easy-to-see relationship is
Co={deR":d+CCC})=C*C,

where the star-difference is that of Example 1.2.6. It follows that Co can be viewed as the
maximal X C R” (in the sense of the C -relation) solving the set-valued equation

X +C =C [orequivalently X + C C C],

whose solution is C if C is a cone (see the introduction to this Section 2.2).
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Remark 2.2.4 Consider the closed convex sets (C — x)/¢, indexed by ¢ > 0. They form a
nested decreasing family: for #; < r; and y arbitrary in C,

h—t
= where y 1= 2L

131
x+—yeC.
143 hn %) t

Thus, we can write (see §A.5 for the set-limit appearing below)

C—x . C—x
Coo = DO — =, lim ——, (2.2.3)

which interprets Co as a limit of set-valued difference quotients, but with the denominator
tending to oo, instead of the usual 0. This will be seen again later in §5.2. o

In contrast to the relative interior, the concept of asymptotic cone does not always
fit well with usual convexity-preserving operations. We just mention some properties
which result directly from the definition of C.

Proposition 2.2.5

—1If {Cj}jey is a family of closed convex sets having a point in common, then
(Njes €)oo = Njes (€)oo
—If for j = 1,...,m, Cj are closed convex sets in R", then
(Cy X+ XCm)oo=(Coo X X (Cm)oo-

—Let A : R" — R™ be an affine mapping. If C is closed convex in R" and A(C) is
closed, then

A(Coo) C [A(O)]oo -
—If D is closed convex in R™ with nonempty inverse image, then
-1 -1
[4D)] =4Ww). o
00
Needless to say, convexity does not help to ensure that the image of a closed set under a

continuous mapping is closed: take A(§,n) = & (lincar)and C = {(§,n) : n > 1/§ > O}

2.3 Extreme Points

In this section, C is a nonempty convex set of R”and there would be no loss of
generality in assuming that it is closed. The reader may make this assumption if he
finds it helpful in mastering faster the definitions and properties below; the same
remark holds for §2.4.

Definition 2.3.1 We say that x € C is an extreme point of C if there are no two
different points x; and x; in C such that x = 1/2 (x; + x2). a
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Some other ways of expressing the same thing are:

—x = ax; + (1 — a)x; is impossible whenever x; and x; are two distinct points of C and
a €]0, 1[ : indeed, convexity of C implies that x; and x; in the definition can be replaced
by two other points in the segment [x, x2]; this amounts to replacing the number 1/2 by
some other a €]0, 1[. In short:

x is an extreme point of C if and only if
[x=ax;+(1—a)xz, x; €C,0<a<1] = x=x=ux.

— There is no convex combination x = Zf;l a;x; other than x; = -+ - = x; [=x].
— The set C\{x} is still convex.

Examples 2.3.2
— Let C be the unit ball B(0, 1). Multiply by 1/2 the relation

Hixy + 220 = Ik + 2l — 32 — x1 ) (2.3.1)

to realize that every x of norm 1 is an extreme point of B(0, 1). Likewise, if O :
R" — R” is a positive definite symmetric linear operator, any x with (Qx, x) =1
is an extreme point of the convex set

(x eR" : (Ox,x) < 1}.

On the other hand, if (Q-, -} 12 s replaced by the £,-norm, the corresponding unit
ball has finitely many extreme points.
—If C is a convex cone, a nonzero x € C has no chance of being an extreme point.
— An affine manifold, a half-space have no extreme points. o

The set of extreme points of C will be denoted by ext C. We mention here that it
is a closed set when n < 2; but in general, ext C has no particular topological or linear
properties. Along the lines of the above examples, there is at least one case where
there exist extreme points:

Proposition 2.3.3 If C is compact, then extC # @.

PROOF. Because C is compact, there is X € C maximizing the continuous function
x > [x||>. We claim that X is extremal. In fact, suppose that there are x; and x,
in C with X = 1/2(x; + x;). Then, with x; # x; and using (2.3.1), we obtain the
contradiction

1202 = 100 +x)|° < SIxl? + e < SAEIP+ 11D = %12, ©

The definitions clearly imply that any extreme point of C is on its boundary, and
even on its relative boundary. The essential result on extreme points is the following,
which we will prove later in §4.2(c).

Theorem 2.3.4 (H. Minkowski) Let C be compact, convex in R™. Then C is the
convex hull of its extreme points: C = co(extC). 0
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Combined with Carathéodory’s Theorem 1.3.6, this result establishes that, if
dim C = k, then any element of C is a convex combination of at most k + 1 ex-
treme points of C.

Example 2.3.5 Take C = co{xy, ..., xm}. All the extreme points of C are present in
thelistx,, ..., x;;; but of course, the x; ’s are not all necessarily extremal. Let u < m be
the number of extreme points of C, suppose to simplify thatthese are xy, . . ., x,. Then
C = cofxy, ..., x,} and this representation is minimal, in the sense that removing one
of the generators x;, .. ., x,, effectively changes C. The case u = n + 1 corresponds
to a simplex in R®. If 4 > n + 1, then for any x € C, there is a representation
x = 25;1 «;x; in which at least 4 — n — 1 among the alfs are zero. o

A higher-dimensional generalization of extreme points can be defined. Consider
again Definition 2.3.1, and replace “the point x € C” by “the convex subset F C C”.
Our definition is then generalized as follows: the convex subset F C C is extremal if
there are no two points x; and x, in C\ F such that 1/2 (x; + x,) € F.

Once again, the number 1/2 has nothing special and can be replaced by any other
a €10, 1]. The above statement can be rephrased in reversed logic as: if x; and x; in
C are such that ax; + (1 — a)x; € F for some « €]0, 1], then x; and x; are in F as
well. Convexity of F then implies that the whole segment [x,, x,] is in F, and we end
up with the traditional definition:

Definition 2.3.6 A nonempty convex subset F C C is a face of C if it satisfies the
following property: every segment of C, having in its relative interior an element of
F, is entirely contained in F. In other words,

(xl,12) eCxC and

3 €]0,1[: ax;+ (1 —a)x, € F ] =[x, ] CF. (2.3.2)

O

Being convex, a face has its own affine hull, closure, relative interior and di-
mension. By construction, extreme points appear as faces that are singletons, i.e.
0-dimensional faces:

x €extC <<= {x}isafaceofC.

One-dimensional faces, i.e. segments that are faces of C, are called edges of C; and
so on until (k — 1)-dimensional faces (where k = dim C), called facets ... and the
only k-dimensional face of C, which is C itself.

A useful property is the “transmission of extremality”: if x € C’ C C is an
extreme point of C, then it is a fortiori an extreme point of the smaller set C/. When
C' is a face of C, the converse is also true:

Proposition 2.3.7 Let F be a face of C. Then any extreme point of F is an extreme
point of C.
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PROOF. Take x € F C C and assume that x is not an extreme point of C: there are
different x;, x; in C and a €]0, 1] such that x = ax; + (1 — a)x; € F. From the
very definition (2.3.2) of a face, this implies that x; and x; are in F: x cannot be an
extreme point of F. o

This property can be generalized to: if F’ is a face of F, which is itself a face of C, then
F’ is a face of C. We mention also: the relative interiors of the faces of C form a partition
of C. Examine Example 2.3.5 to visualize its faces, their relative interiors and the above
partition. The C of Fig. 2.3.1, with its extreme point x, gives a less trivial situation; make
a three-dimensional convex set by rotating C around the axis A: we obtain a set with no
one-dimensional face.

i
Fig. 2.3.1. A special extreme point

Faces (other than extreme points) are not too important in convex analysis and optimiza-
tion — and this is fortunate: after all, Definition 2.3.6 is rather tricky. A much more useful
concept is that of exposed faces, the subject of the next section.

2.4 Exposed Faces

The rationale for extreme points is an inner construction of convex sets, as is particu-
larly illustrated by Theorem 2.3.4 and Example 2.3.5. We mentioned in the important
Remark 1.4.4 that a convex set could also be constructed externally, by taking in-
tersections of convex sets containing it (see Proposition 1.3.4: if S is convex, then
S = co S). To prepare a deeper analysis, coming in §4.2(b) and §5.2, we need the
following fundamental definition, based on Example 1.1.2.

Definition 2.4.1 (Supporting Hyperplane) An affine hyperplane H , is said to
support the set C when C is entirely contained in one of the two closed half-spaces
delimited by Hj ,: say

(s,y)<r forallyeC. 24.1)

It is said to support C at x € C when, in addition, x € H; ,: (2.4.1) holds, as well as
(s,x)=r. m]

See Fig.2.4.1 for an illustration. Up to now, it is only a formal definition; existence of
some supporting hyperplane will be established later in §4.2(a). Naturally, the inequality-sign
could be reversed in (2.4.1): Hy,, supports C when H_s _, supports C. Note also that if
x € C has a hyperplane supporting C, then x € bd C.
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Fig. 2.4.1. Supporting hyperplanes at various points

Definition 2.4.2 The set F C C is an exposed face of C if there is a supporting
hyperplane H r of C suchthat F = C N H;,.

An exposed point, or vertex, is a 0-dimensional exposed face, i.e. a point x € C
at which there is a supporting hyperplane H; , of C such that Hs, N C reduces to
{x}. u]

See Fig. 2.4.1 again. A supporting hyperplane H;,; may or may not touch C. If
it does, the contact-set is an exposed face. If it does at a singleton, this singleton is
called an exposed point. As an intersection of convex sets, an exposed face is convex.
The next result justifies the wording.

Proposition 2.4.3 An exposed face is a face.

PROOF. Let F be an exposed face, with its associated support Hs . Take x; and x; in
C:
{(s,x;)<r fori=12; 2.4.2)

take also a €10, 1[ such that ax; + (1 —a)x; € F C Hsr:
(s,axi+ (1 —a)x)=r.

Suppose that one of the relations (2.4.2) holds as strict inequality. By convex combi-
nation, we obtain (0 < a < 1)

(s,ax;+ (1 —a)x) <r,
a contradiction. O

The simple technique used in the above proof appears often in convex analysis: if a
convex combination, with positive coefficients, of inequalities holds as an equality, then so
does each individual inequality.

Remark 2.4.4 Comparing with Proposition 2.3.7, we see that the property of transmission
of extremality applies to exposed faces as well: if x is an extreme point of the exposed face
F c C,thenx € extC. m}

One could believe (for example from Fig. 2.4.1) that the converse to Proposition 2.4.3
is true. Figure 2.3.1 immediately shows that this intuition is false: the extreme point x is
not exposed. Exposed faces form therefore a proper subset of faces. The difference is slight,
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however: a result of S. Straszewicz (1935) establishes that any extreme point of a closed
convex set C is a limit of exposed points in C. In other words,

expC C extC C cl(exp C)

if exp C denotes the set of exposed points in C. Comparing with Minkowski’s result 2.3.4,
we see that C = co(exp C) for C convex and compact. We also mention that a facet is
automatically exposed (the reason is that n — 1, the dimension of a facet, is also the dimension
of the hyperplane involved when exposing faces).

Enrich Fig. 2.3.1 as follows: take C’, obtained from C by a rotation of 30° around A ;
then consider the convex hull of C U C’, displayed in Fig. 2.4.2. The point P, is an extreme
point but not a vertex; P, is a vertex. The edge E| is not exposed; E is an exposed edge. As
for the faces F) and F», they are exposed because they are facets.

Fig.2.4.2. Faces and exposed faces

Remark 2.4.5 (Direction Exposing a Face) Let F be an exposed face, and Hj , its
associated supporting hyperplane. It results immediately from the definitions that

(s, y) < (s,x) forallyeCandallx € F.

Another definition of an exposed face can therefore be proposed, as the set of maxi-
mizers over C of some linear form: F is an exposed face of C when there is a nonzero
s € R” such that

F={rec: (sx=swpycls n} 2.4.3)

A relevant notation is thus F¢(s) to designate the exposed face of C associated
with s € R”; it can also be called the face of C exposed by s. For a unified notation,
we will consider C itself as exposed by 0: C = F¢(0). o

Beware that a given s may define no supporting hyperplane at all. Even if it does,
it may expose no face (the supremum in (2.4.3) may be not attained). The following
result is almost trivial, but very useful: it is “equivalent” to extremize a linear form
on a compact set or on its convex hull.

Proposition 2.4.6 Let C be convex and compact. For s € R", there holds

max(s, x}) = max (s, x).
xeC xeextC
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Furthermore, the solution-set of the first problem is the convex hull of the solution-set
of the second:

Argmax (s, x) = co {Argmax, e . c (s, )} .
xeC
PROOF. Because C is compact, (s, -) attains its maximum on F¢(s). The latter set is
convex and compact, and as such is the convex hull of its extreme points (Minkowski’s

Theorem 2.3.4); these extreme points are also extreme in C (Proposition 2.3.7 and
Remark 2.4.4). (m]

3 Projection onto Closed Convex Sets

3.1 The Projection Operator

Denote by py the (orthogonal) projection onto a subspace V C R". The main prop-
erties of the operator x > py (x) are to be linear, symmetric, positive semi-definite,
idempotent (py opy = py), nonexpansive (||py (x)|| < |lx|| for all x); also, it defines
a canonical decomposition of R” via x = py (x) + Py L (x). We will generalize this
operator to the case where V is merely convex.

In what follows, C is a nonempty closed convex set of R”. For fixed x € R”, we
consider the following problem:

inf {3ly—x|>: yeC}, (3.1.1)

i.e. we are interested in those points (if any) of C that are closest to x for the Euclidean
distance. Let f; : R” — R be the function which, to y € R”, associates

f() = 3lly — xIP. (3.1.2)

For ¢ € C, take the sublevel-set S := {y € R" : fx(y) < fx(c)}. Then (3.1.1) is
clearly equivalent to

inf {fx(y):yeCnS§},

which has a solution since fx is continuous and S —hence C N S — is compact. We
deduce the existence of a closest point in C to x; the inf in (3.1.1) is a min.

Note that convexity of C plays no role in the above existence result. Uniqueness,
however, depends crucially on convexity: let y; and y, be two solutions to (3.1.1). Use
(2.3.1) with x; = y; — x to obtain

Fe(o) = 3L + ()] = §lly2 — w2,

where yg 1= 1/2(y; + ¥2) € C; this implies uniqueness.

We have thus defined a projection operator, namely the mapping x > pc(x)
which, to each x € R”, associates the unique solution pc(x) of the minimization
problem (3.1.1). It is possible to characterize pc (x) differently, as solving a so-called
variational inequality; and this characterization is the key to all results concerning
pPc-
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Theorem 3.1.1 A point yx € C is the projection pc (x) if and only if
(x =y, Yy—¥x)<0 forallyeC. (3.1.3)

PROOF. Call yy the solution of (3.1.1); take y arbitrary in C, so that yy +a(y —yx) € C
for any o € ]0, 1[. Then we can write with the notation (3.1.2)

Sxx) € fxOx oy —yx)) = %")’x —x+a(y— )’x)”2 .

Developing the square, we obtain after simplification
0<a(yx —x,y— yx) + 3e2lly — yxll*.

Divide by & (> 0) and let « | O to obtain (3.1.3).
Conversely, suppose that yx € C satisfies (3.1.3). If y, = x, then y, certainly
solves (3.1.1). If not, write for arbitrary y € C:

0Z(Xx =y, y=yx)=(x =Y, y—x+x—ye) =
= llx —yel?+ (x = yx, ¥y = x) = |lx = x> = llx — yll lIx = yxll,

where the Cauchy-Schwarz inequality is used. Divide by |{x — yx || > 0 to see that y,
solves (3.1.1). o

Incidentally, this result proves at the same time that the variational inequality (3.1.3) has
a unique solution in C. Figure 3.1.1 illustrates the following geometric interpretation: the
Cauchy-Schwarz inequality defines the angle 8 € [0, m] of two nonzero vectors u and v by

(u, v)
= —— —1, 1 .
6= Qg b

Then (3.1.3) expresses the fact that the angle between y — yx and x — y, is obtuse, for any
y € C. Writing (3.1.3) as

(x —pc(x),¥) < {x —pcx), pc(x)) forallyeC, (3.1.4)
we see that pc(x) lies in the face of C exposed by x — pc(x).

Yx

y

Fig.3.1.1. The angle-characterization of a projection

Remark 3.1.2 Suppose that C is actually an affine manifold (for example a subspace); then
yx —y € C whenever y — yx € C. In this case, (3.1.3) implies that

(x—=yx,y—yx}) =0 forallyeC. (3.1.5)

We are back with the classical characterization of the projection onto a subspace, namely that
x — yx € C* (the subspace orthogonal to C). Passing from (3.1.3) to (3.1.5) shows once
more that convex analysis is the realm of inequalities, in contrast with linear analysis. 0
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Some obvious properties of our projection operator are:

—the set {x € R" : pc(x) = x} of fixed points of p¢ is C itself;
— from which it results that pc o pc = pc, and also that
~pc is a linear operator if and only if C is a subspace.

More interesting is the following result:
Proposition 3.1.3 For all (x1, x;) € R" x R", there holds
Ipc (1) = pcG)I? < (pc(x1) = pe(x2), X1 — xa) .
PROOF. Write (3.1.3) with x = x;, y = pc(xz) € C:
{pc(x2) —pc(x1), x1 —pc(x1)) < 0;

likewise,
{pc(x1) — pc(x2), x2 — pc(x2)) <0,

and conclude by addition
(pc(x1) —pc(x2), X2 — x1 + pc(x1) — pc(x2)) 0. a
Two immediate consequences are worth noting. One is that
0 < (pc(x1) —pc(x2), x1 —x3) forall (x;, x;) € R" x R,

aproperty expressing that the mapping pc is, in a way, “monotone increasing”. Second,
we obtain from the Cauchy-Schwarz inequality:

lpc(x1) —pc @)l < lixi — x2f, (3.1.6)

i.e. pc is nonexpansive; in particular, ||pc(x)|| < |Ix|| whenever 0 € C. However, it
is not a contraction: the best Lipschitz constant

L [Ilpc(xn) —~ pcx)|
= sup

T X) # X3, x1 and x; out ofC}
flx; — xal

is equal to 1 (suppose C is a subspace!), unless more is known about the “curvature”
of C.

3.2 Projection onto a Closed Convex Cone

As already mentioned in Example 1.1.4, convex cones are important instances of
convex sets, somehow intermediate between subspaces and general convex sets. As
a result, the projection operator onto a closed convex cone enjoys properties which
are finer than those of §3.1, and which come closer to those of the projection onto a
subspace.
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Definition 3.2.1 Let K be a convex cone, as defined in Example 1.1.4. The polar
cone of K (called negative polar cone by some authors) is:

K°:={seR": (s,x)<Oforallx € K} . o

A very first observation is that the polar cone depends on the scalar product: changing (-, -)
changes K °. One easily sees that K © is a closed convex cone (use in particular continuity of the
scalar product). If X is simply a subspace, then K ° is its orthogonal K 4 polarity generalizes
orthogonality, remember Remark 3.1.2. Incidentally, it will be seen later in §4.2(d) that the

polar of K° is nothing but the closure of K. Polarity establishes a correspondence in the set
of closed convex cones, which is order-reversing:

K'ck = (K)°>K°

(and the converse is true if the relation K °° = K is admitted for K closed). Finally, the only
possible element in K N K° is 0.

Examples 3.2.2 (see Fig.3.2.1).

(a) For given x,, ..., xm in R", take the conical hull of m points x|, . .., xp in R™:
K= {Z;?;l“jxj taj>0forj= 1,...,m}.
We leave it as an exercise to check the important result:

K°={seR": (s,xj)<Oforj=1,...,m}.

Fig. 3.2.1. Examples of polar cones

(b) As aparticular case, take the usual dot-product for (-, -), R"” being equipped with
the canonical basis. Then the polar of the nonnegative orthant

Qi ={x=@¢E"..., 6" E>0fri=1,...,n)

is the nonpositive orthant
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R _=R)° ={s=(1,...,0n) : 0;<0fori =1,...,n}.

Naturally, such a symmetry is purely due to the fact that the basis vectors are mutually
orthogonal.

(c) Let K be a revolution cone: with s € R” of norm 1 and 6 € [0, 7/2],
K@) :={x e R" : (s,x) > ||x|| cosb}.
Then [K(0)]° = K_s(r/2 - 0). ]
The characterization 3.1.1 takes a special form in the present conical situation.

Propeosition 3.2.3 Let K be a closed convex cone. Then yx = pg (x) if and only if

€K, x—yx€K® (x—yxy)=0. (3.2.1)
PROOF. We know from Theorem 3.1.1 that y, = pg (x) satisfies
(x—ye,y—yx) <0 forallyeKk. (3.2.2)

Taking y = ayy, with arbitrary « > 0, this inequality implies
(@—1D(x—yxr,yx) <0 foralla 20.
Since o — 1 can have either sign, this implies (x — yx, yx) = 0 and (3.2.2) becomes
(y,x—yx) <0 foralye K, ie x—yyeK°®.
Conversely, let yy satisfy (3.2.1). For arbitrary y € K, use the notation (3.1.2):
[ ) =31 — yx + yx = yIP > fxx) + (x — yx, yx — )
but (3.2.1) shows that
x—yr,yx—y)=—(x—yx,y 20,
hence fx(¥) = fx(¥x): yx solves (3.1.1). o
Remark 3.2.4 We already know from (3.1.4) that px (x) lies in the face of K exposed by
x — pk (x); but (3.2.1) tells us more: by definition of a polar cone, x — px (x) is also in the
face of K° exposed by px (x) (a symmetry confirming that K°° = K).
Take for an illustration K = $2, of Example 3.2.2(b): denote by (!, . .., ") the
coordinates of px (x). They are nonnegative because px (x) € £2,; each term (¢' — n)n!

is nonpositive because x — px (x) € $2_. Because their sum is zero, each of these terms is
actually zero, i.e.

Fori=1,...,n, §i —ai=0orni=0 (or both) .
This property is usually called a transversality condition. Thus, we have:
Foreachi, eithern’=¢' or nf =0;
taking the nonnegativity of 7 into account, we obtain the explicit formula
xt =max{0,§i} fori=1,...,n.

This implies in particular that 7 — £/ > 0,ie.x — 7 € £2_. o



4 Separation and Applications 121

We list some properties which are immediate consequences of the characterization
(3.2.1): for all x € R",

px(x) =0 ifandonlyif x € K°;
pr(ax) =apg(x) foralla >0;
pk(—x) = —p-g(x).
They somehow generalize the linearity of the projection onto a subspace V. An addi-

tional property can be proved, using the obvious relation (—K)° = —K*°:

Pk (x) +pge(x) =x. (3.2.3)

It plays the role of py (x) + py1 (x) = x and connotes the following decomposition
theorem, generalizing the property R” = V @ v

Theorem 3.2.5 (J.-J. Moreau) Let K be a closed convex cone. For the three ele-
ments x, x| and x, in R", the properties below are equivalent:

() x =x; +x, withx; € K, x; € K° and (x1,x3) =0,
(i) x; = pg (x) and x3 = pgo(x).

PROOF. Straightforward, from (3.2.3) and the characterization (3.2.1) of x; = pg (x).
[m]

In contrast with the decomposition in subspaces, the decomposition x = x; + x3,
with x; € K and x, € K° is not unique because orthogonality is not automatic; but
the decomposition (i), (ii) is optimal in the sense that

x=x1+x Il 2 lipg ()l
with EES and
x; € K and x; € K° fix2ll 2 lipgo ()|l -

4 Separation and Applications

4.1 Separation Between Convex Sets

Take two disjoint sets S; and S,: $; N S, = . If, in addition, S, and S, are convex,
some more can be said: a simple convex set (namely an affine hyperplane) can be
squeezed between S and S,. This extremely important property follows directly from
those of the projection operator onto a convex set.

Theorem 4.1.1 Let C C R" be nonempty closed convex, and let x & C. Then there
exists s € R™ such that

(s, x) > sup{(s, y). “.1.1)
yeC
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PROOF. Set s 1= x — pc(x) # 0. We write (3.1.3) as
0> (s,y—x+s)=(s,9) — (s, %) + |IslI.

Thus we have
(s,x) = lIs|* > (s,y) forally eC,
and our s is a convenient answer for (4.1.1). O

Naturally, s could be replaced by —s in (4.1.1) and Theorem 4.1.1 could just be
stated as: there exists s’ € R" such that

(s',x) <inf {(s',y) : y € C}.

Geometrically, we know that an s # 0 defines hyperplanes H; , as in Exam-
ple 1.1.2(a), which are translations of each other when r describes R. With s of
(4.1.1) (which is certainly nonzero!), pick

r =rs = 3((s,x) +supyec(y,s)) .
Then
(s,x)—rs>0 and (s,y)—rs <0 forallyeC,

which can be summarized in one sentence: the affine hyperplane Hj ,; separates the
two convex sets C and {x}. These two sets are in the opposite (open) half-spaces
limited by that hyperplane.

Remark 4.1.2 With relation to this interpretation, Theorem 4.1.1 is often called the Hahn-
Banach Theorem in geometric form. On the other hand, consider the right-hand side of (4.1.1);
it suggests a function o¢ : R" — R U {400}, called the support function of C:

oc(s) :=sup{(s,y) : y € C},
which will be studied thoroughly in Chap.V. If x € C, we have by definition
(s,x) <oc(s) foralls e R";

but this actually characterizes the elements of C: Theorem 4.1.1 tells us that the converse is
true. Therefore the test “x € C?” is equivalent to the test “(-, x) < o¢?”, which compares
the linear function (-, x) to the function o¢. With this interpretation, Theorem 4.1.1 can be
formulated in an equivalent analytical way, involving functions instead of hyperplanes; this
is called the Hahn-Banach Theorem in analytical form. u]

A convenient generalization of Theorem 4.1.1 is the following:

Corollary 4.1.3 (Strict Separation of Convex Sets) Let C;, C; be two nonempty
closed convex sets with C; N C, = @. If C, is bounded, there exists s € R" such that

sup (s, y) < min (s, y). “4.1.2)
yeC, yeC,
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PROOF. The set C; — C; is convex (Proposition 1.2.4) and closed (because C, is
compact). To say that C; and C, are disjoint is to say that 0 ¢ C; — C;, so we have by
Theorem 4.1.1 an s € R” separating {0} from C, — C;:

sup{(s,y) : yeC; —C,} < (5,0) =0.

This means:
0 > supycc (s, y1) +supy.ec, (s, —y2)
= supylecl (s’ )’l) - infy2€C2(s7 y2) .
Because C; is bounded, the last infimum (is a min and) is finite and can be moved
to the left-hand side. a

Once again, (4.1.2) can be switched over to infyec, (s, y) > maxyec, (s, y). Using the
support function of Remark 4.1.2, we can also write (4.1.2) as oc,(s) + oc,(—s) < 0.
Figure 4.1.1 gives the same geometric interpretation as before. Choosing r = r; strictly
between oc, (s) and —o¢,(—s), we obtain a hyperplane separating C; and C; strictly: each
set is in one of the corresponding open half-spaces.

Fig. 4.1.1. Strict separation of two convex sets

Fig.4.1.2. Strict separation needs compactness

Fig.4.1.3. An improper separation

When C) and C; are both unbounded, Corollary 4.1.3 may fail — even though the role of
boundedness was apparently minor, but see Fig. 4.1.2. As suggested by this picture, C; and



124 III. Convex Sets

C; can nevertheless be weakly separated, i.e. (4.1.2) can be replaced by a weak inequality.
Such a weakening is a bit exaggerated, however: Fig. 4.1.3 shows that (4.1.2) may hold as

(s, y1) = (s, y2) forall (31, y2) € C; x C;

if s is orthogonal to aff (C; U C,). For a convenient definition, we need to be more demanding:
we say that the two nonempty convex sets C; and C; are properly separated by s € R™ when

sup (s,y1) < inf (s,y;) and inf (s, y1) < sup (s, y2).
yneC »2€C; nec, y,€C>
This (weak) proper separation property is sometimes just what is needed for technical

purposes. It happens to hold under fairly general assumptions on the intersection C; N C;.
We end this section with a possible result, stated without proof.

Theorem 4.1.4 (Proper Separation of Convex Sets) If the two nonempty convex sets C,
and C; satisfy (ri C;) N (1i C2) = @, they can be properly separated. (]

Observe the assumption coming into play. We have already seen it in Proposition 2.1.10,
and we know from (2.1.5) that it is equivalent to

0¢&ri(C) — Cy).

4.2 First Consequences of the Separation Properties

The separation properties introduced in §4.1 have many applications. To prove that
some set § is contained in a closed convex set C, a possibility is often to argue
by contradiction, separating from C a point in S\C, and then exploiting the simple
structure of the separating hyperplane. Here we review some of these applications,
including the proofs announced in the previous sections. Note: our proofs are often
fairly short (as is that of Corollary 4.1.3) or geometrical. It is a good exercise to develop
more elementary proofs, or to support the geometry with detailed calculations.

(a) Existence of Supporting Hyperplanes First of all, we note that a convex set
C, not equal to the whole of R", does have a supporting hyperplane in the sense of
Definition 2.4.1. To see it, use first Proposition 2.1.8: cl C # R” (otherwise, we would
have the contradiction C D riC =riclC = riR" = R"). Then take a hyperplane
separating ¢l C from some x ¢ cl C: it is our asserted support of C. Actually, we can
prove slightly more:

Lemma 4.2.1 Let x € bdC, where C # @ is convex in R" (naturally C # R").
There exists a hyperplane supporting C at x.

PROOF. Because C, ¢l C and their complements have the same boundary (remember
Remark 2.1.9), a sequence {x;} can be found such that

xpdelC fork=1,2,... and lim x=x.
k—+00
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For each k we have by Theorem 4.1.1 some s with [ls¢|| = 1 such that
(S, xxk —y) >0 forally e C CclC.

Extract a subsequence if necessary so that sy — s (note: s # 0) and pass to the limit
to obtain
(s,x—y)=20 forallyeC,

which is the required result (s, x) =r > (s, y) forall y € C. o

Remark 4.2.2 The above procedure may well end up with a supporting hyperplane contain-
ing C: (s,x —y) = O forall y € C, a result of little interest; see also Fig.4.1.3. This can
happen only when C is a “flat” convex set (dim C < n — 1), in which case our construction
should be done in aff C, as illustrated on Fig. 4.2.1. Let us detail such a “relative” construction,
to demonstrate a calculation involving affine hulls.

Fig.4.2.1. Nontrivial supports

Let V be the subspace parallel to aff C, with U = V1 its orthogonal subspace: by
definition, (s, y —x) = O foralls € U and y € C. Suppose x € rbd C (the case x € riC
is hopeless) and translate C to Cp := C — {x}. Then Cj is a convex set in the Euclidean
space V and 0 € rbd Cy. We take as in 4.2.1 a sequence {x;} C V\ cl Cy tending to 0 and
a corresponding unitary s; € V separating the point x; from Cyp. The limit s # 0 isin V,
separates (not strictly) {0} and Cy, i.e. {x} and C: we are done.

We will say that Hy , is a nontrivial support (at x) if s & U, i.e. if sy # 0, with the
decomposition s = sy + sy. Then C is not contained in Hj ,: if it were, we would have for
allyeC

r={s,y) = {sy,y) + {sv, x).

In other words, (sy, -) would be constant on C; by definition of the affine hull and of V, this
would mean sy € U, i.e. the contradiction sy = 0. To finish, note that s;; may be assumed
to be 0: if sy + sy is a nontrivial support, so is sy = sy + 0 as well; it corresponds to a
hyperplane orthogonal to C. [n]

In terms of Carathéodory’s Theorem 1.3.6, a consequence of our existence lemma
is the following:
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Proposition 4.2.3 Let S C R” and C := co S. Anyx € CNbd C can be represented
as a convex combination of n elements of S.

PROOF. Because x € bd C, there is a hyperplane Hy , supporting C at x: for some
s#0andr e R,

(s,x)—r=0 and (s,y)—r<OforallyeC. “4.2.1)
On the other hand, Carathéodory’s Theorem 1.3.6 implies the existence of points
X1,...,Xp+1 in S and convex multipliers «;, ..., &p4; such that x = ?:11 X,

and each «; can be assumed positive (otherwise the proof is finished).
Setting successively y = x; in (4.2.1), we obtain by convex combination

n+l
0=(s,x) —r=> asx)—r)<0,
i=1
so each (s, x;) —r is actually 0. Each x; is therefore not only in S, but also in H; , a set
whose dimension is n — 1. It follows that our starting x, which is in co{x, ..., Xp4+1},
can be described as the convex hull of only » among these x;’s. o

(b) Outer Description of Closed Convex Sets Closing a (convex) set consists in
intersecting the closed (convex) sets containing it. We mentioned in Remark 1.4.4
that convexity allowed the intersection to be restricted to a simple class of closed
convex sets: the closed half-spaces. Indeed, Lemma 4.2.1 ensures that a nonempty
convex set C & R" has at least one supporting hyperplane: if we denote by

Hi, :={yeR" : (s,y)<r}
a closed half-space defined by a given (s, r) € R" x R, (s # 0), then the index-set

Xc {s,r)eR" xR : C C Hyg,}
{(s,r) : (s,y)<rforally € C}

[}

4.2.2)

is nonempty. As illustrated by Fig. 4.2.2, we can therefore intersect all the half-spaces
indexed in Y'¢:

Fig.4.2.2. Outer construction of a closed convex set

cccC*:= n(s,r)eZ’CI'Is—,—r =
{z € R" : (s,z) <r whenever (s, y) < rforally € C}.
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Theorem 4.2.4 Let @ # C & R" be convex. The set C* defined above is the closure
of C.

PROOF. By construction, C* O clC. Conversely, take x ¢ cl C; we can separate x
and cl C: there exists sp # 0 such that

(S0, x) > sup(so, y) =:rp.
yeC

Then (so, ro) € Xc; butx ¢ Hy, ,,, hence x ¢ C*. m]

The definition of C*, rather involved, can be slightly simplified: actually, Z¢ is redundant,
as it contains much too many r’s. Roughly speaking, for given s € R", just take the number

r=rs:=inf{reR : (s,r) € X¢}

that is sharp in (4.2.2). Letting s vary, (s, rs) describes a set Z‘g, smaller than ¥'¢ but just as
useful. With this new notation, the expression of C* = ¢l C reduces to

cdC={zeR": (s,2) < supyec(s, »)} .

We find again the support function of Remark 4.1.2 coming into play. Chapter V will follow
this development more thoroughly.

The message from Theorem 4.2.4 is that a closed convex set can thus be defined
as the intersection of the closed half-spaces containing it:

Corollary 4.2.5 The data (sj,rj) € R" x R for j in an arbitrary index set I is
equivalent to the data of a closed convex set C via the relation

C= ﬂ{xeR" : (s]-,x)grj}.
jel

PROOF. If C is given, define {(sj, 7j)}; := Zc asin(4.2.2). If {(sj, r;)} ; is given, the
intersection of the corresponding half-spaces is a closed convex set. Note here that
we can define at the same time the whole of R” and the empty sets as two extreme
cases. O

As an important special case, we find:

Definition 4.2.6 (Polyhedral Sets) A closed convex polyhedron is an intersection of
finitely many half-spaces. Take (sy,71), ..., (Sm, rm) in R*? x R, with 5; £ 0 for
i=1,..., m;then define

P:={xeR": (sjx)<rjforj=1,...,m},
or in matrix notations (assuming the dot-product for (-, -)),
P={xeR": Ax <b},

if A is the matrix whose rows are sjand b € R™ has coordinates rj.
A closed convex polyhedral cone is the special case where b = 0. O
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(c) Proof of Minkowski’s Theorem We turn now to the inner description of a convex
set and prove Theorem 2.3.4, asserting that C = co ext C when C is compact convex.

The result is trivially true if dimC = 0, i.e. C is a singleton, with a unique
extreme point. Assume for induction that the result is true for compact convex sets of
dimension less than k; let C be a compact convex set of dimension k and take x € C.
There are two possibilities:

—If x € rbd C, §4.2(a) tells us that there exists a nontrivial hyperplane H supporting
C at x. The nonempty compact convex set C N H has dimension at most k — 1,
so x € C N H is a convex combination of extreme points in that set, which is an
exposed face of C. Using Remark 2.4.4, these extreme points are also extreme in
C.

—~Ifx € riC (= C\1bd C), take in C a point x’ # x; this is possible for dim C > 0.
The affine line generated by x and x’ cuts rbd C in at most two points y and z (see
Remark 2.1.7, there are really two points because C is compact). From the first part
of the proof, y and z are convex combinations of extreme points in C; and so is their
convex combination x (associativity of convex combinations).

(d) Bipolar of a Convex Cone The definition of a polar cone was given in §3.2, where
some interesting properties were pointed out. Here we can show one more similarity
with the concept of orthogonality in linear analysis.

Proposition 4.2.7 Let K be a convex cone with polar K°; then, the polar K°° of
K° is the closure of K.

PROOF. We exploit Remark 4.1.2: due to its conical character («x € K if x € K and
a > 0), cl K has a very special support function:

{s,0) =0 if(s,x)<Oforallx eclK,

Tak(s) = 400 otherwise .

In other words, o, g is 0 on K°, +00 elsewhere. Thus, the characterization

xeclKk < (,x)<0o4k()

becomes
cclK = {s,x) <0 forall s € K°
* (s, x) arbitrary fors & K°1),
in which we recognize the definition of K°°. o

Of course, if K is already closed, K°° = K. Withrelation to (a) above, we observe
that every supporting hyperplane of K at x € bd X also supports K at 0: when dealing
with supports to a cone, it is enough to consider linear hyperplanes only.

Remark 4.2.8 Consider the index-set X'x of (4.2.2), associated with a closed convex cone
K: its r-part can be restricted to {0}; as for its s-part, we see from Definition 3.2.1 that it
becomes K °\{0}. In other words: barring the zero-vector, a closed convex cone is the set of
(linear) hyperplanes supporting its polar at 0. o
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4.3 The Lemma of Minkowski-Farkas

Because of its historical importance, we devote an entire subsection to another con-
sequence of the separation property, known as Farkas’ Lemma. Let us first recall a
classical result from linear algebra: if A is a matrix with » rows and m columns and
b € R", the system Aa = b has a solution in R™ (we say that the system is consistent)
exactly when

belmA=[KerAT]";

this can be rewritten {b}- D Ker AT, or
[xeR": ATx=O}C{x€]R" : bTx=O} .

Denoting by sy, . .., sm the columns of A and using our Euclidean notation, we write
the equivalence of these properties as

b € lin{s,, ..., s} ifand only if
(b, x) =0 whenever (sj,x)=0forj=1,...,m.

Moving to the unilateral world of convex analysis, we replace linear hulls by
conical hulls, and equalities by inequalities. This gives a result dating back to the end
of the XIX™ Century, due to J. Farkas and also to H. Minkowski; we state it without
proof, as it will be a consequence of Theorem 4.3.4 below.

Lemma 4.3.1 (FarkasI) Letb,s,..., sy be given in R". The set
{xeR":(sj,x)<0 forj=1,...,m} 4.3.1)

is contained in the set
[x eR" : (b,x) <0} 4.3.2)

if and only if (see Definition 1.4.5 of a conical hull)

b € cone{sy, ..., sm}. (4.3.3)
m}

To express the inclusion relation between the sets (4.3.1) and (4.3.2), one also says
that the inequality with b is a consequence of the joint inequalities with s;j. Another
way of expressing (4.3.3) is to say that the system of equations and inequations in o

m
b=) ajsj, aj>0frj=1,...,m 4.3.4)
j=

has a solution.

Farkas’ Lemma is sometimes formulated as an alternative, i.e. a set of two state-
ments such that each one is false when the other is true. More precisely, let P and O
be two logical propositions. They are said to form an alternative if one and only one
of them is true:

P = notQ and notP =— Q
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or, just as simply:

P & notQ [or O & notP].
This applies to Farkas’ lemma:

Lemma 4.3.2 (Farkas II) Let b, sy, ..., sy be given in R". Then exactly one of the
Jfollowing statements is true.

P := (4.3.4) has a solution a € R" .
The system of inequations
Q = (b,x}) >0, (sj,x)<0forj=1,....m
has a solution x € R" . o

Still another formulation is geometric. Call K the convex cone generated by
S1s ..., Sm; as seen in Example 3.2.2, K° is the set (4.3.1). What Farkas’ Lemma says

is that
b e K [ie.(4.3.3)holds] ifand only if

(b, x) <0 whenever x € K° [i.e.b e K°°].

More simply, Farkas’ Lemma is: K°° = K; but we know from §4.2(d) that this
property holds under the sole condition that K is closed. The proof of Farkas’ Lemma
therefore reduces to proving the following result:

Lemma 4.3.3 (Farkas III) Lets, ..., sy, be given in R™. Then the convex cone
K :=cone{s,...,sm} = {Z;-';laj.s‘j tajz0forj= 1,...,m]
is closed.

PROOF. It is quite similar to that of Carathéodory’s Theorem 1.3.6. First, the proof is
easy if the s;’s are linearly independent: then, the convergence of

m
x* = Za}‘Sj fork — oo 4.3.5)
j=1
is equivalent to the convergence of each {a}‘ } to some &, which must be nonnegative
if each a}‘ in (4.3.5) is nonnegative.
Suppose, on the contrary, that the system Z;":l Bjs;j = 0 has a nonzero solution

B € R™ and assume B; < 0 for some j (change B to —B if necessary). As in the
proof of Theorem 1.3.6, write each x € K as

m m
x = Zaij = Z[aj +t*(x)Bjlsj = Z a}sj- ,
j=1

j=1 J#i(x)

where
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—a; —a
i(x) € Argmin —2, 1*(x) 1= —&) |
gi<o Bj Bix)
so that each a;. =aj+ t*(x)B ; is nonnegative. Letting x vary in K, we thus construct

a decomposition
K=UK; :i=1,...,m},

where K; is the conical hull of the m — 1 generators s;, j # i.

Now, if there is some i such that the generators of K; are linearly dependent, we
repeat the argument for a further decomposition of this K;. After finitely many such
operations, we end up with a decomposition of X as a finite union of polyhedral convex
cones, each having linearly independent generators. All these cones are therefore
closed (first part of the proof), so K is closed as well. o

We are now in a position to state a general version of Farkas’ Lemma, with non-
homogeneous terms and infinitely many inequalities. Its proof uses in a direct way
the separation Theorem 4.1.1.

Theorem 4.3.4 (Generalized Farkas) Let be given (b, r) and (s, pj) in R" x R,
where j varies in an (arbitrary) index set J. Suppose that the system of inequalities

(sj,x)<pj foralljelJ (4.3.6)
has a solution x € R" (the system is consistent). Then the following two properties

are equivalent:

@) (b, x) < r for all x satisfying (4.3.6) ;
(i1) (b, r) is in the closed convex conical hull of S := {(0, 1)} U {(s, pj)}jes-

PROOF. [(ii) => (i)] Let first (b, r) be in K := cone S. In other words, there exists
a finite set {1, ..., m} C J and nonnegative oy, ;, . . ., ¢m such that (we adopt the
convention ) 5 = 0)

m m
b=2ajs]- and r=ao+2ajpj.
j=1 Jj=1

For each x satisfying (4.3.6) we can write
(b,x)<r—ap<r. 4.3.7)

If, now, (b, r) is in the closure of K, pass to the limit in (4.3.7) to establish the
required conclusion (i) for all (b, r) described by (ii).

[() = (@@)] If (b, r) & clK, separate (b, r) from cl K: equipping R” x R with the
scalar product

(&, r), d, 1)) :=(b,d) +rt,
there exists (d, —t) € R" x R such that
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sup [(s,d) — pt] < (b,d)—rt. (4.3.8)
(s.0)eK

It follows first that the left-hand supremum is a finite number «. Then the conical
character of K implies k < 0, because ax < « for all @ > 0; actually ¥ = 0 because
(0, 0) € K. In summary, we have singled out (d, t) € R” x R such that

t>0 [take (0, 1) € K]
(%) (sj,d) — pjt <Oforall j € J [take (sj, pj) € K]
(%) (b,d) —rt >0. [don’t forget (4.3.8)]

Now consider two cases:
—Ift > 0, divide (x) and (xx) by ¢ to exhibit the point x = d/¢ violating (i).
—Ift = 0, take x, satisfying (4.3.6). Observe from (x) that, for all « > 0, the point
x(a) = xo + ad satisfies (4.3.6) as well. Yet, let¢ — +o00 in

(b, x()) = (b, x0) + (b, d)

to realize from (*x) that x () violates (i) if « is large enough.
Thus we have proved in both cases that “not (ii) = not (i)”. o

We finish with two comments relating Theorem 4.3.4 with the previous forms of
Farkas’ Lemma. Take first the homogeneous case, where r and the p;’s are all zero.
Then the consistency assumption is automatically satisfied (by x = 0) and the theorem
says:

@) [sj,x)<OforjeJ] = [(b,x)<0]
is equivalent to
(ii’) b € conels; : j € J}.

Second, suppose that J = {1, ..., m} is a finite set, so the set described by (4.3.6)
becomes a closed convex polyhedron, assumed nonempty. A handy matrix notation
(assuming the dot-product for (., -}), is ATx < p, if A is the matrix whose columns
are the s;s,and p € R™ has the coordinates p,, . .., om;. Then Theorem 4.3 .4 writes:

@) {xeR": ATx<p} C {xeR":bTx<r}
is equivalent to
(ii”) 3 € R™ suchthat «>0, Ac=b, p'a<r.

Indeed, it suffices to recall Lemma 4.3.3: the conical hull involved in (ii) of
Theorem 4.3.4 is already closed. Beware that the last relation in (ii”) is really an
inequality.

5 Conical Approximations of Convex Sets

Given a set S and x € S, a fruitful idea is to approximate S near x by a “simpler”
set. In classical differential geometry, a “smooth” surface S is approximated by an
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affine manifold “tangent” to S. This concept is most exploited in the differentiation of
a “smooth” function f : R® — R, whose graph is “tangent” to an affine hyperplane
inR* xR:

grf={(y,r) :r—fx)=(Vfx),y—x}.

Because convex sets have no reason to be “smooth”, some substitute to affine man-
ifolds must be proposed. We know that affine manifolds are translations of subspaces;
say, we approximate S near x by

S Hg(x) = {x} + Vs(x),

where Vg(x) is a subspace: the subspace tangent to S at x. It is therefore time to
remember §3.2: in convex analysis, the natural substitutes for subspaces are the closed
convex cones. Besides, another important object is the set of normals to S at x, i.e.
the subspace orthogonal to V(x); here, orthogonality will be replaced by polarity, as
in Moreau’s Theorem 3.2.5.

5.1 Convenient Definitions of Tangent Cones

In order to introduce the convenient objects, we need first to cast a fresh glance at
the general concept of tangency. We therefore consider in this subsection an arbitrary
closed subset § C R".

A direction d is classically called tangent to S at x € S when it is the derivative at
x of some curve drawn on S; it follows that —d is a tangent as well. Since we are rather
interested by cones, we will simply require a half-derivative from the curve in question
— incidentally, taking half-derivatives goes together with §1.4.1. Furthermore, sets of
discrete type cannot have any tangent direction in the above sense, we will therefore
replace curves by sequences. In a word, our new definition of tangency is as follows:

Definition 5.1.1 Let S C R” be nonempty. We say thatd € R”" is a direction fangent

to S at x € S when there exists a sequence {x;} C S and a sequence {#;} such that,

when k — +00,

Xp — X
I

X —>x, {0, —d. 5.1.1)
The set of all such directions is called the tangent cone (also called the contingent
cone, or Bouligand’s cone) to S at x € S, denoted by Tg(x). O

Observe immediately that 0 is always a tangent direction (take x; = x!); also, if
d is tangent, so is ad for any ¢ > 0 (change # to f;/a!). The terminology “tangent
cone” is therefore legal. If x € int §, Tg(x) is clearly the whole space, so that the only
interesting points are those on bd S.

If we set in Definition 5.1.1 di := (xx — x)/tx [ d], i.e. xy = x + txdy [€ S],
we obtain the equivalent formulation:
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Proposition 5.1.2 A direction d is tangent to S at x € S if and only if
Hdr} = d, e} 1 O suchthat x + tydy € S forallk. a

A tangent direction thus appears as a set of limits; a limit of tangent directions is
therefore a “limit of limits”, and is a limit itself:

Proposition 5.1.3 The tangent cone is closed.
PROOF. Let {d;} C Ts(x) be converging to d; for each £ take sequences {x; x}x and

{te .k }k associated with dy in the sense of Definition 5.1.1. Fix £ > 0: we can find &,
such that

Xg, 1
[ af <}
te,kg L
Letting £ — 00, we then obtain the sequences {xg ,}¢ and {#¢ t,}¢ which define d as
an element of Tg(x). o

The examples below confirm that our definition reproduces the classical one when S is
“well-behaved”, while Fig. 5.1.1 illustrates a case where classical tangency cannot be used.

X+ Tg(x)

Fig.5.1.1. Tangency to a “bad” set

Examples 5.1.4 Given m functions cy, . .., ¢, continuously differentiable on R”, consider
={xeR":c(x)=0fori=1,...,m}.

Let x € S be such that the gradients V¢ (x), ..., Ve (x) are linearly independent. Then
Tgs(x) is the subspace

{deR" : (Vgi(x),d) =0fori=1,...,m}. (5.1.2)

Another example is
={xeR" : c;(x) <0}.

At x € S such that ¢;(x) = 0 and Ve, (x) # 0, T5(x) is the half-space
{d eR” : (Vci(x),d) <0}. (5.1.3)
Both formulae (5.1.2) and (5.1.3) can be proved with the help of the implicit function

theorem. This explains the assumptions on the V¢;(x)’s; things become more delicate when
several inequalities are involved to define S. a
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Naturally, the concept of tangency is local, as it depends only on the behaviour of
S near x. From its definition (5.1.1), Tg(x) appears as the set of all possible cluster
points of the difference quotients {(y — x)/t}, with y € S and ¢ | 0; using set-valued
notation (see §A.5):

Tg(x) = limext (5.14)
tyo
Another interpretation uses the distance function x > dg(x) := minyeg [|y—x||:
Tg(x) can also be viewed as the set of d’s such that

d
liminf ds(x +1d) =

0. 5.1.5
tlo t (5.1.5)

Knowing that dg(x) = 0 when x € §, the infimand of (5.1.5) can be interpreted as a
difference quotient: [ds(x + td) — dg(x)]/¢. Finally, (5.1.5) can be interpreted in a
set-formulation: for any £ > 0 and for any § > 0, there exists 0 < ¢ < & such that

S —

x
; + B(0,¢).

x+tde S+ B(,te), ie de

Remark 5.1.5 In (5.1.4), we have taken the tangent cone as a lim ext, which corre-
sponds to a liminf in (5.1.5). Another possible approach could have been to define
another “tangent cone”, namely
T -
lim int
t}0 t

In this case, (5.1.5) would have been changed to

. dg(x +td)
lim sup — =

0 [= lim,wds(x +td)/t] (5.1.6)
tl0

(where the second form relies on the fact that dg is nonnegative). In a set-formulation
as before, we see that (5.1.6) means: for any ¢ > 0, there exists § > 0 such that

de>"X 1 B0,s) forall0<t<3s.

t

We will see in §5.2 below that the pair of alternatives (5.1.5) — (5.1.6) is irrelevant
for our purpose, because both definitions coincide when S is convex. u]

Remark 5.1.6 Still another “tangent cone” would also be possible: one says that d is a
“feasible direction” for S at x € S when there exists § > 0 such that

x+tdeS [ie.de(S—x)/t] forall0 <¢<$.

Once again, we will see that the difference is of little interest: when S is convex, Ts(x)
is the closure of the cone of feasible directions thus defined. o
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5.2 The Tangent and Normal Cones to a Convex Set

Instead of a general set S, we now consider a closed convex set C C R”. In this
restricted situation, the tangent cone can be given a more handy expression. The key
is to observe that the role of the property 7 § 0 is special in (5.1.5): when both x and
x +1trdy arein C, then x +tdy, € C forall T €]0, #]. Inparticular, C - {x} C T¢(x).
Indeed, the tangent cone has a global character:

Proposition 5.2.1 The tangent cone to C at x is the closure of the cone generated
by C — {x}:

Tc(x) = cone(C —x) = clRY(C —x) 5.2.1)
= cf{deR* : d=a(y—x), yeC, a>0}. -
PROOF. We have just said that C — {x} C T¢(x). Because Tc(x) is a closed cone
(Proposition 5.1.3), it immediately follows that clR*(C — x) C T¢ (x). Conversely,
for d € Tc(x), take {x;} and {#;} as in the definition (5.1.1): the point (x; — x)/# is
in R*(C — x), hence its limit d is in the closure of this latter set. a

Remark 5.2.2 This new definition is easier to work with — and to master. Furthermore, it
strongly recalls Remark 2.2.4: the term in brackets in (5.2.1) is just a union,

C—-x
t

cone(C — x) := U

>0

and, thanks to the monotonicity property of the “difference quotient” t > (C — x)/t, it is
also a limit:
C—x

t

cone(C —x) = lim
t}0

to be compared with the definition (2.2.3) of the asymptotic cone. Having taken a union, or
a limit, the closure operation is now necessary, but it was not when we took an intersection.
Also, the limit above is unambiguous (it is a union!), and can be understood as the lim ext or
the lim int; see Remark 5.1.5. As for Remark 5.1.6, we see that the cone of feasible directions
for the convex C at x is just the very last set in brackets in (5.2.1). u]

As a closed convex set, T¢c(x) can also be described as an intersection of closed
half-spaces — remember §4.2(b). In the present conical situation, some more can be
said:

Definition 5.2.3 The direction s € R" is said normal to C at x € C when

(s,y—x)<0 forallyeC. 5.2.2)

The set of all such directions is called normal cone to C at x, denoted by N¢o(x). O
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That N¢(x) is a closed convex cone is clear enough. A normal is a vector s such that the
angle between s and y — x is obtuse for all y € C. A consequence of §4.2(a) is that there is
a nonzero normal at each x of bd C. Indeed, Theorem 3.1.1 tells us that

v—pc(@) € Nc(pc(v)) forallv e R".
By contrast, Nc(x) = {0} for x € intC. As an example, if
C=H;,={yeR": (s5,y)<r}

is a closed half-space limited by a given Hg r, then its normals at any point of Hy, , are the
nonnegative multiples of s.

Proposition 5.2.4 The normal cone is the polar of the tangent cone.

PROOF. If (s, d) < O foralld € C — x, the same holds for alld € R*(C — x), as well
as for all d in the closure T¢ (x) of the latter. Thus, Nc(x) C [T¢ (x)]°.

Conversely, take s arbitrary in [T¢ (x)]°. The relation (s, d) < 0, which holds for
alld € T¢(x), a fortiori holds for all d € C — x C T (x); this is just (5.2.2). O

Knowing that the tangent cone is closed, this result can be combined with Propo-
sition 4.2.7 to obtain a third definition:

Corollary 5.2.5 The tangent cone is the polar of the normal cone:
Teix)={d eR" : (s,d)<0foralls e Nc(x)}. u]

This describes Tc(x) as an intersection of homogeneous half-spaces and the
relationship with §4.2(b) is clear. With the notation thereof, s = 0 for each s, and
the index-set E.(r’c ) is nothing more than N¢ (x); see again Remark 4.2.8.

It is interesting to note here that normality is again a local concept, even though (5.2.2)
does not suggest it. Indeed the normal cone at x to C N B(x, 8) coincides with N¢(x). Also,
if C’ is “sandwiched”, i.e. if

C—{x}cC - {x}CTck),

then N¢v(x) = N¢(x) —and T¢s(x) = T (x). Let us add that tangent and normal cones to a
nonclosed convex set C could be defined if needed: just replace C by ¢l C in the definitions.

Another remark is that the tangent and normal cones are “homogeneous” objects, in that
they contain O as a distinguished element. It is most often the translated version x + T¢(x)
that is used and visualized; see Fig. 5.1.1 again.

Examples 5.2.6 (a) If C = K is aclosed convex cone, Tg (0) = K: the polar K° of
a closed convex cone is its normal cone at 0. On the other hand, if 0 # x € K, then
T g (x) contains at least one subspace, namely R{x}. Actually, we even have

Nx@x)={s€ K°: (s,x) =0} forx #0.

To see it, observe that Ty (x) D {x} means Ng(x) C {x}-’-; in other words, the
relation of definition of K°
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(s,y—x)<0 forallye K
reduces to
(5,)<0 [=(s,x)] forallyeK.

A cone is a set of vectors defined up to a multiplicative constant, and the value of this
constant has often little relevance. As far as the concepts of polarity, tangency, normality are
concerned, for example, a closed convex cone T (or N) could equally be replaced by the
compact T N B(0,1); or also by {x € T : ||x|| = 1}, in which the redundancy is totally
eliminated.

(b) Take a closed convex polyhedron defined by m constraints:
C:= {xGR" P (s, x) <rj forj=1,__‘,m} (5.2.3)
and define
Jx):={j=1,...,m: (sj,x) =rj}

the set of active constraints at x € C. Then

Tc(x) ={d €eR" : (sj,d) <Ofor j € J(x)},
Nc(x) = cone{s]- cjelJx)}= [Zje](x) ajsj : aj 20] .

(c) Let C be the unit simplex A, of Example 1.1.3 and @ = (&), ..., a,) € An. If
each ¢; is positive, i.e. if ¢ € 1i A,, then the tangent cone to A, at« is aff A, — {a},
i.e. the linear hyperplane of equation ) ;_, &; = 0. Otherwise, withe := (1,...,1) €
R”:

Ta,@)={d=(d,...,dn) : €'d=0, d; 20ifa; =0} .
Using Example (b) above, calling {ey, . . ., e,} the canonical basis of R” and denoting
by J() := {j : @j = 0} the active set at o, we obtain the normal cone:

Na,(@) = cone[{e} U{—e}Ujes){—¢j}]
{Zje(o}UJ(a) Bjej : Bj<Oforje J(a)] ;

This last example illustrates an interesting complexity property: for a closed convex
polyhedron described by (5.2.3),

— the tangent cone is conveniently defined as an intersection of (homogeneous) half-spaces:
it “resembles” C;

— the normal cone is conveniently defined as a conical hull, with a “small” number of gener-
ators; its description by closed half-spaces would be tedious.

When characterizing pairs of polar cones, say T and N, which are both polyhedral, this
kind of duality is usual: one characterization is complex when the other is simple. o
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5.3 Some Properties of Tangent and Normal Cones

Let us give some properties of the tangent cone, which result directly from Proposi-
tion 5.2.1.

— For fixed x, T¢c(x) increases if and only if Nc(x) decreases, and these properties
happen in particular when C increases.

— The set cone(C — x) and its closure T¢ (x) have the same affine hull (actually linear
hull!) and the same relative interior. It is not difficult to check that these last sets are
(aff C — x) and R} (ri C — x) respectively.

—Tc(x) = aff C — x whenever x € ri C (in particular, Tc(x) = R” if x € intC). As
aresult, approximating C by x + T ¢ (x) presents some interest only when x € rbd C.
Along this line, we warn the reader against a too sloppy comparison of the tangent
cone with the concept of tangency to a surface: with this intuition in mind, one
should rather think of the (relative) boundary of C as being approximated by the
(relative) boundary of T¢ (x).

— The concept of tangent cone fits rather well with the convexity-preserving operations
of §1.2. Validating the following calculus rules involves elementary arguments only,
and is left as an exercise.

Proposition 5.3.1 Here, the C s are nonempty closed convex sets.
(i) For x € Cy N C,, there holds

Tene,(x) C Te,(x) NTe,(x) and N¢nc,(x) D N¢,(x) + Ng, (x) .
(i) With C; C R%, i = 1,2 and (x1,x3) € C; x C,,
Te,xc, (1, x2) = Te, (x1) x Te,(*2),

N¢, x¢,(*1, x2) = N¢,(x1) X N¢, (x2) .
(iii) With an affine mapping A(x) = yo + Aox (Ao linear) and x € C,

TAQIAW] = ATC)] and NalA®)] = AiNC ().
(iv) In particular (start from (ii), (iii) and proceed as when proving (1.2.2)):
Te+c,(x1 + x2) = cl[T¢, (x1) + Tc,(x2)1,
N¢,+¢,(x1 +x2) = N, (x1) N N¢, (x2) . n]

Remark 5.3.2 To obtain equality in (i), an additional assumption is necessary. One was used
in Proposition 2.1.10, see also (2.1.5):

0€eri(C;—Cy) or (riCHN@EIC) #0 (5.3.1)

(the proof of the corresponding statement becomes a bit longer). The gap between the sets of
(i) explains many of the technical difficulties that will be encountered later. It also explains
that its cure (5.3.1) will also cure these difficulties. O



140 III. Convex Sets

Some more properties of tangent and normal cones are worth mentioning, which
patch together various notions seen earlier in this chapter.

Proposition 5.3.3 For x € C and s € R", the following properties are equivalent:
(1) s € Nc(x) ;
(ii) x is in the exposed face Fc(s): (s, x) = maxyec(s, ),

(iii) x = pc(x +5).

PROOF. Nothing really new: everything comes from the definitions of normal cones,
supporting hyperplanes, exposed faces, and the characteristic property (3.1.3) of the
projection operator. o

This result is illustrated on Fig. 5.3.1 and implies in particular:

Ecl' (x) ={x}+Nc(x) forallxeC.

Also,
x#x = [(x}+Nc@]N[{x'} +Nc&x)]=0

(otherwise the projection would not be single-valued).

Fc(s)

o
e
*®

X Lo ** -1
c ) {x} + Ng(x) = Pox)

.
()
.
.

{x}+ Te(x)

Fig. 5.3.1. Normal cones, projections and exposed faces

Remark 5.3.4 Let us come back again to Fig. 4.2.2. In a first step, fix x € C and consider
only those supporting hyperplanes that pass through x, i.e. those indexed in Nc(x). The
corresponding intersection of half-spaces just constructs T¢ (x) and ends up with

fx}+Tcx)DC.

Note in passing that the closure operation of Proposition 5.2.1 is necessary when rbd C
presents some curvature near x.
Then, in a second step, do this operation for all x € C:

Ccc(\x+Tc()]. (53.2)

xeC

A first observation is that x can actually be restricted to the relative boundary of C: for
x € riC, Tc(x) expands to the whole aff C — x and contains all other tangent cones. A
second observation is that (5.3.2) actually holds as an equality. In fact, write a point y ¢ C
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as y = pc(y) + s with s = y — pc(y); Proposition 5.3.3 tells us that s € N¢[pc(»)], hence
the nonzero s cannot be in Tc[pc(y)]: we have established y & pc(y) + Tclpc(y)], y is not
in the right-hand side of (5.3.2). In a word:

C= () b+Tc®l,

x€rbd C

which sheds a new light on the outer description of C discussed in §4.2(b). O

We conclude with an interesting approximation result. As indicated by (3.1.6),
the projection onto a fixed convex set is a continuous operator. More can actually be
said, and the normal and tangent cones help estimating the variation of this projection.
The following result can be proved using the material developed in this chapter.

Proposition 5.3.5 For given x € C and d € R", there holds

td) —
limpC(x+ )—x

= d). 3.
im == Prc (@) (533)

HINT. Start from the characterization (3.1.3) of a projection, to observe that the dif-
ference quotient [pc (x + td) — x]/¢ is the projection of d onto (C — x)/t. Then let
t | 0; the result comes with the help of (5.1.4) and Remark 5.2.2. a

This result is illustrated on Fig. 5.3.2. It gives us a sort of derivative, more precisely
the directional derivative of pc at x. If x € ri C, then Tc(x) becomes the subspace
parallel to aff C and we recover the linearity (at least local) of the projection operator.

X + TC(X) X+ td '.0'..

o
o

0
o
o

\ X + No(x)

Fig. 5.3.2. Differentiating a projection

In view of (5.3.3), the notation

Pre) () =Pe*, )

is natural (it has already been seen in §1.4.1 in a one-dimensional setting). Moreover,
remembering the approximation role of tangent cones, a possible (although daring)
notation is also T¢(x) = C’(x); then (5.3.3) can be rephrased as: the projection and
derivation operations commute: pcr(y)(-) = p’c (x, ).



IV. Convex Functions of Several Variables

Prerequisites. Basic definitions and properties of convex sets (Chap. III); basic results on
the analysis of functions of several variables; and to support intuition if necessary: convex
functions of one real variable (Chap. I).

Introduction. The study of convex functions goes together with that of convex sets; ac-
cordingly, this chapter and the previous one constitute the first serious steps into the world
of convex analysis. Most of the concepts to come have already been seen in Chap. I; a reader
mastering that chapter should therefore have no major difficulty following our development.
Nevertheless, some of the definitions and properties introduced or proved in a simple one-
dimensional setting may become harder to visualize when several variables come into play:
the natural ordering of R is no longer present to help.

This chapter has no pretension to exhaustivity; similarly to Chap. III, it has been kept min-
imal, containing what is necessary to comprehend the sequel. Furthermore, it contains many
examples commonly appearing in convex optimization, like: piecewise affine and quadratic
functions, max-functions, functions associated to convex sets (indicator, support, distance
functions).

1 Basic Definitions and Examples

1.1 The Definitions of a Convex Function

Definition 1.1.1 Let C be a nonempty convex set in R”. A function f : C — R is
said to be convex on C when, for all pairs (x,x’) € C x C and all @ €]0, 1[, there
holds

flax+ (A —-a)x)<af@) + 1 —a)f(x)). (1.1.1)
O

We say that f is strictly convex on C when (1.1.1) holds as a strict inequality if
x # x’. An even stronger property is that there exists ¢ > 0 such that

flex+ (1 —a)x) <af@x) + (1 —a) f(x) = jea(l —a)llx — x> (1.1.2)
forall (x, x’) € C x C and all @ €]0, 1[. In this case, f is said to be strongly convex

on C (with modulus of strong convexity c). Passing from (1.1.1) to (1.1.2) does not
change much the class of functions considered:
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Proposition 1.1.2 The function f is strongly convex on C with modulus c if and only
if the function f —1/2¢c|| - || is convex on C.

PROOF. Use direct calculations in the definition (1.1.1) of convexity applied to the
function f — 1/2¢]| - ||%, namely:

flax + (1 —a)x’) — icllax + (1 —a)x|? <
Saf(x)+ 1 —a) f(x") — jefalx)® + 1 —a)x'|2]. o

Although simple, this statement illustrates a useful technique in convex analysis: to prove
that a convex function has a certain property, one establishes a related property on a suitable
strongly convex perturbation of the given function.

The set C needed in Definition 1.1.1 (which can be the whole space) appears as a
sort of domain of definition of f. Of course, it has to be convex so that the left-hand
side of (1.1.1) makes sense. In a more modern definition, a convex function f is
considered as defined on the whole of R”", but possibly taking infinite values:

Definition 1.1.3 (The Set ConvR") A function f : R® — R U {400}, not identi-
cally +00, is said to be convex when, for all (x,x’) € R” x R” and all @ €]0, 1[,
there holds

flax+ (1 -a)x)<af@)+ (1 -a)f&),

considered as an inequality in R U {4-00}.
The class of such functions is denoted by Conv R”. n]

We mention here that our definition coincides with that of proper convexity used by other
authors. The distinction is necessary when the value f(x) = —oo is allowed; but this value
is excluded from the very beginning in the present book.

To realize the equivalence between our two definitions, extend an f from Defini-
tion 1.1.1 by
fx):=400 for x¢&C, (1.1.3)

thus obtaining a new f, which is now in Conv R". Conversely, consider the following
definition (meaningful even for nonconvex f, incidentally):

Definition 1.1.4 The domain (or effective domain) of f € Conv R" is the nonempty
set
dom f:={x e R" : f(x) <+o0}. o

Clearly enough, an f satisfying (1.1.1), (1.1.3) has a convex domain; given f €
Conv R”, we can therefore take C := dom f to obtain a convex function in the sense
of Definition 1.1.1. Strong convexity is also defined in the spirit of Definition 1.1.3,
via (1.1.2) with x and x’ varying in dom f or in R”: it makes no difference. Same
remark for strict convexity (checking all these claims is a good exercise to familiarize
oneself with computations in R U {4+o0}).

Now, we recall that the graph of an arbitrary function is the set of couples (x, f(x))
in R" x R. When moving to the unilateral world of convex analysis, the following is
relevant:



1 Basic Definitions and Examples 145

Definition 1.1.5 Given f : R" — R U {400}, not identically equal to +o0, the
epigraph of f is the nonempty set

epif:={(x,rn)eR* xR : r> fx)}.

Its strict epigraph epi f is defined likewise, with “ > * replaced by “>" (beware
that the word “strict” here has nothing to do with strict convexity). a

In terms of sublevel-sets, we have the equivalent definition
(x,r)eepif <= x€S(f) [={xeR": fx)<r}]. (1.1.4)

The following property is easy to derive, and can be interpreted as giving one
more definition of convex functions, which is now of geometric nature.

Proposition 1.1.6 Let f : R®" — R U {400} be not identically equal to +occo. The
three properties below are equivalent:

(i) f is convex in the sense of Definition 1.1.3;
(ii) its epigraph is a convex set in R" x R;
(iii) its strict epigraph is a convex set in R" x R.

PROOF. Left as an exercise. ]

We say that f is concave when — f is convex, or equivalently when the hypograph of
f (revert the inequality in Definition 1.1.5) is a convex set. We will see on examples that
either the analytical Definition 1.1.3 or the geometric one coming from 1.1.6 may be more
convenient, depending on the situation.

Remark 1.1.7 The sublevel-sets of f € Conv R" are convex (possibly empty) subsets of R”.
To construct S, (f), we cut the epigraph of f by a horizontal blade, forming the intersection
epi f N (R” x {r}) of two convex sets; then we project the result down to R” x {0} and we
change the environment space from R” x R to R”. Even though this latter operation changes
the topology, it changes neither the closure nor the relative interior.

Conversely, a function whose sublevel-sets are all convex need not be convex (see
Fig. 1.1.1); such a function is called quasi-convex. [m]

Fig.1.1.1. Forming a sublevel-set
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Observe that dom f is the union of the sublevel-sets S, ( ), which form a nested family;
it is also the projection of epi f C R" x R onto R” (so, Proposition III.1.2.4 confirms its
convexity). We will see later that a convex function behaves nicely on the interior of its domain,
and even on its relative interior. By contrast, anything can happen on the (relative) boundary
of dom f; of course, f can be infinite there, but can also behave much more strangely than
in the univariate case.

The basic inequality (1.1.1) can be generalized to convex combinations of more
than two points:

Theorem 1.1.8 Let f € ConvR". Then, for all collections {x,, . .., x¢} of points in
dom f and all @ = (ay, . .., ak) in the unit simplex of R, there holds the inequality
of Jensen (in summation form)

f(Sh @in) < T i f @),
PROOF. Nothing particular: just proceed as in Theorem 1.1.2.1. o

Starting from f € Conv R", we thus construct the convex set epi f. Conversely,
if E ¢ R" x R is the epigraph of a function in Conv R", this function is directly
obtained from

fx)=inf{r : (x,r) € E}

(recall that inf @ = +o00; we will see in §1.3(g) what sets are epigraphs of a convex
function). In view of this correspondence, the properties of a convex function f are
intimately related to those developed in Chap. III, applied to epi f. For example, we
will see later that important functions, maybe the most important in optimization, are
those having a closed epigraph. Also, it is clear that aff epi f contains the vertical
lines {x} x R, with x € dom f. This shows that epi f cannot be an open set, nor
relatively open: take points of the form (x, f(x) — €). As a result, riepi f cannot be
an epigraph, but it is nevertheless of interest to see how this set is constructed:

Proposition 1.1.9 Let f € Conv R". The relative interior of epi f is the union over
x € ridom f of the open non-majorized intervals with bottom endpoints at f(x):

riepi f = {(x,r) eR" xR : x eridom f, r > f(x)}.

PROOF. Since dom f is the image of epi f under the linear mapping “projection onto
R™”, Propositions II1.1.2.4 and I11.2.1.12 tell us that

ridom f is the projection onto R” of riepi f. (1.1.5)

Now take x arbitrary in ri dom f. The subset of riepi f that is projected onto x is just
({x} x R)Nriepi f, whichin turnis ri[({x} x R) Nepi f] (use Proposition I11.2.1.10).
This latter set is clearly ] f(x), 4+-o0[.

In summary, we have proved that, for x € ridom f, (x, r) € riepi f if and only
ifr > f(x). Together with (1.1.5), this proves our claim. u]

Beware that riepi f is not the strict epigraph of f (watch the side-effect on the
relative boundary of dom f).
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1.2 Special Convex Functions: Affinity and Closedness

In view of their Definition 1.1.6(ii), convex functions can be classified on the basis of
a classification of convex sets in R” x R.

(a) Linear and Affine Functions The epigraph of a linear function is characterized
by s € R”", and is made of those (x, r) € R" x R such thatr > (s, x).

Next, we find the epigraphs of affine functions f, which are conveniently written
in terms of some xy € R™:

{Ge,r) 2 r 2 flxo) + (s, x —x0)} = {(x,r) : (5,%) —r < (s, %) — fx0)}.

In the language of convex sets, the epigraph of an affine function is a closed half-
space, characterized by (a constant term and) a vector (s, —1) € R” x R; the essential
property of this vector is to be non-horizontal. Affine functions thus play a special
role, just as half-spaces did in Chap. III. This explains the interest of the next result;
it says a little more than Lemma I11.4.2.1, and is actually of paramount importance.

Proposition 1.2.1 Any f € ConvR” is minorized by some affine function. More
precisely: for any x, € ridom f, there is s in the subspace parallel to aff dom f such
that

f@x) = f(xo) + (s, x —x0) forallx e R".

In other words, the affine function can be forced to coincide with f at x,.

PROOF. We know that dom f isthe image of epi f under the linear mapping “projection
onto R™”, Look again at the definition of an affine hull (§1I1.1.3) to realize that

aff(epi f) = aff(dom f) x R.

Denote by V the linear subspace parallel to aff (dom f), so that aff (dom f) = {xo}+V
with x4 arbitrary in dom f; then we have

aff(epi f) = {xo + V} x R. (1.2.1)

We equip V x R and R” x R with the scalar product of product-spaces.

Choose xy € ridom f. Then Proposition 1.1.9 tells us that (xo, f (xo)) € rbdepi f
and we can take a nontrivial hyperplane supporting epi f at (xg, f (xo)): using Re-
mark I11.4.2.2 and (1.2.1), there are s = sy € V and a € R, not both zero, such
that

(s, x) +ar < (s, xo) + af (xo) (1.2.2)
forall (x,r) with f(x) <r.

Because of our choice of s (in V') and x (in ri dom f), we can take § > 0 so small
that xg + ds € dom f, for which (1.2.2) gives

8lIslI* < e[ f (xo) — f(xo + 85)] < +00;

this shows a # 0 (otherwise, both s and « would be zero). Without loss of generality,
we can assume o = —1; then (1.2.2) gives our affine function. u]
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Once again, the importance of this result cannot be over-emphasized. With res-
pect to Lemma I11.4.2.1, it says that a convex epigraph is supported by a non-vertical
hyperplane. Among its consequences, we see that a convex function, having an affine
minorant, is bounded from below on every bounded set of R”.

As already said on several occasions, important special convex sets are the cones,
and conical epigraphs will deserve the full Chap.V. So we turn to another class,
especially important for optimization, namely closed convex sets.

(b) Closed Convex Functions For a (convex) function to have a minimum, a very first
requirement is lower semi-continuity (1.s.c.). This property is therefore of fundamental
importance for our subsequent developments: if we want to minimize a function f
on some compact set K, we do not need to bother with existence if f is known to be
lower semi-continuous on R"; and this holds even if X is not contained in dom f —
an appreciable formal advantage.

First, we give some material, independently of any convexity. A function f is
lower semi-continuous if, for each x € R?,

ligl_jgf f2 1. (1.2.3)

This relation has to hold in R U {4-00}, which complicates things a little; so the
following geometric characterizations are useful:

Proposition 1.2.2 For f : R®* — R U {+00)}, the following three properties are
equivalent:

(i) f is lower semi-continuous on R";
(ii) epi f is a closed set in R™ x R;
(iii) the sublevel-sets Sy (f) are closed (possibly empty) for allr € R.

PROOF. [(i) = (ii)] Let {(yx, rz)} be a sequence of epi f converging to (x,r) for
k — +o0o0. Since f(yx) < ry for all k, the L.s.c. relation (1.2.3) readily gives

r = limrg > liminf f(y) 2 li;gigff(y) = fx),

ie.(x,r) eepif.

[(i) = (iii)] Construct the sublevel-sets S, (f) as in Remark 1.1.7: the closed sets
epi f and R® x {r} have a closed intersection.

[(iii) = (i)] Suppose f is not lower semi-continuous at some x: there is a (sub)sequen-
ce {yx} converging to x such that f(y;) convergesto p < f(x) < + o0o. Pickr €

1p, f(x)[: for k large enough, f(yx) <r < f(x); hence S,(f) contains the tail of
{yx} but not its limit x. Consequently, this S, (f) is not closed. o

Beware that, with Definition 1.1.1 in mind, the above statement (i) means more
than lower semi-continuity of the restriction of f to C: in (1.2.3), x need not be in
dom f. Note also that these concepts and results are independent from convexity.
Thus, we are entitled to consider the following definition:
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Definition 1.2.3 The function f : R” — RU {400} is said to be closed if it is lower
semi-continuous everywhere, or if its epigraph is closed, or if its sublevel-sets are
closed. O

The next step is to take the lower semi-continuous hull of a function f, whose
value at x € R” is liminfy_, » f(y). In view of the proof of Proposition 1.2.2, this
operation amounts to closing epi f. When doing so, however, we may slide down to
—00.

Definition 1.2.4 The closure (or lower semi-continuous hull) of a function f is the
function cl f: R" — R U {£o00} defined by:

—h H n
cl f(x) = ll)llll’lilf f(y) forallx e R", (1.2.4)

or equivalently
epi(cl f) := cl(epi f) . (1.2.5)
a

An Ls.c. hull may be fairly complicated to compute, though; furthermore, the
gap between f(y) and cl f(y) may be impossible to control when y varies in a
neighborhood of a given point x. Now convexity enters into play and makes things
substantially easier, without additional assumption on f in the above definition:

— First of all, a convex function is minorized by an affine function (Proposition 1.2.1);
closing it cannot introduce the value —o0.

— Second, the issue reduces to the one-dimensional setting, thanks to the following
radial construction of cl f.

Proposition 1.2.5 Let f € ConvR" and x’ € ridom f. There holds (in R U {+00})

(el fHx) = ltiw fx+t(x'—x)) forallx e R". (1.2.6)

PROOF. Since x; := x +t(x’ — x) = x whent | 0, we certainly have

l f)(x) < lirﬁionf fx +1(' —x)).

We will prove the converse inequality by showing that

limsup f(x +t(x' —x)) <r forallr > (cl f)(x)
t40

(non-existence of such an r means that cl f(x) = +o00, the proof is finished).
Thus let (x, ) € epi(cl f) = cl(epi f). Pickr’ > f(x’), hence (x', r’) € riepi f
(Proposition 1.1.9). Applying Lemma II1.2.1.6 to the convex set epi f, we see that
t(x',ry+ (A —t)(x,r) eriepi f Cepif forallt €]0,1].

This just means
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fa+t —x)<tr'+ (1 —6)r forallt €]0,1]
and our required inequality follows by letting ¢ | 0. O

Another way of expressing the same thing is that, to compute cl f at some point x, it
suffices to consider the restriction of f to a half-line, say x + R*d, meeting ri dom f; here,
d stands for x” — x. The resulting one-dimensional function ¢(¢) := cl f(x + td) becomes
“continuous” from the right at ¢ = 0, in the sense that ¢(0) = lim; o ¢(¢) — an equality in
R U {+4o00}.

Some simple but important properties come in conjunction with the results of the
previous chapters:

Proposition 1.2.6 For f € ConvR", there holds
cl f € ConvR"; 1.2.7
cl f and f coincide on the relative interior of dom f. (1.2.8)

PROOF. We already know from Proposition I1I.1.2.7 that epicl f = clepi f is a
convex set; also cl f < f # +o0; finally, Proposition 1.2.1 guarantees in the relation
of definition (1.2.4) that ¢l f(x) > —oo for all x: (1.2.7) does hold.

On the other hand, suppose x € ridom f; then, the one-dimensional function
@) = f(x + td) is continuous at ¢ = 0 (Theorem 1.3.1.1); it follows that cl f
coincides with f onridom f; besides, cl f(x) is obviously equal to f(x) = +o0 for
all x ¢ cldom f. Altogether, (1.2.8) is true. O

In particular, a finite-valued convex function (dom f = R") is lower semi-continuous;
actually, Theorem 3.1.2 below will confirm that it is more than that: it is continuous, and even
locally Lipschitzian.

Due to their importance, closed convex functions deserve a special notation:

Notation 1.2.7 (The Set Coniv R”) The set of closed convex functions on R” is de-
noted by Conv R”. o

(c) Outer Construction of Closed Convex Functions The property proved in Propo-
sition 1.2.5 corresponds to a direct (or inner) construction of cl f from (1.2.4). Equiv-
alently, cl f can be constructed as the largest l.s.c. (convex) function minorizing f.
Correspondingly, the closed (convex) set epicl f can also be described externally, as
an intersection of closed (convex) sets. In view of §111.4.2(b), these closed convex sets
can be restricted to be closed half-spaces: convexity provides another simplification
of the closure operation. Besides, in view of Proposition 1.2.1, these half-spaces can
be assumed non-vertical.

Proposition 1.2.8 Theclosureof f € Conv R” is the supremum of all affine functions
minorizing f:

cdf(xy=sup {(s,x)—=b: (s,59)=b< fQ)forally eR"}. (1.2.9)
(s,b)ER™ xR
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PROOF. A closed half-space containing epi f is characterized by a nonzero vector
(s, @) € R" x R and a real number b such that

(s, x)+ar<b forall (x,r) eepif (1.2.10)

(we equip the graph-space R” x R with the scalar product of a product-space). Let
us denote by ¥ C R"” x R x R the index-set of such triples o = (s, «, b) and by

H; :={(x,r) : (s,x) +ar<b} (1.2.11H)
the corresponding half-spaces. In other words,
epi(cl f) = cl(epi f) = Npex Hy -

Because of the particular nature of an epigraph, (1.2.10) implies & < 0 and, by
positive homogeneity, the values & = 0 and & = —1 suffice: X' can be partitioned in

%, = {(s, —1,b) : (1.2.10) holds with @ = —1}

and
Yo :={(s,0,b) : (1.2.10) holds with o = 0} .

Indeed, X corresponds to affine functions minorizing f (Proposition 1.2.1 tells us
that X, # @) and X to closed half-spaces of R” containing dom f (note that Xy =
if dom f = R"™).

We have to prove that, even when Xy # @, intersecting the half-spaces H;
over X' or over X} produces the same set, namely clepi f. For this we take arbitrary
oo = (80, 0, by) € Xy and 0y = (51, —1, b)) € X}, we set

a(t) .= (sy +tso,—1,b; +thy) € Xy forallt >0,
and we prove (see Fig. 1.2.1)

Hy, N Hy = Ny50Hy = H™.

Fig.1.2.1. Closing a convex epigraph
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It results directly from the definition (1.2.11) that an (x, r) in H; N H, satisfies
(s + 189, x) — (by +tby) <r forallt >0, (1.2.12)

i.e. (x,r) € H™. Conversely, take (x,r) € H™. Sett = 0 in (1.2.12) to see that
(x,r) € Hy . Also, divide by 7 > 0 and let t — +00 to see that (x,r) € H, . The
proof is complete. o

1.3 First Examples

(a) Indicator and Support Functions Given a nonempty subset S C R", the func-
tion Ig : R” — R U {+oo} defined by

0 ifxes,
+00 if not

Is(x) := {

is called the indicator function of S. We mention here that other notations commonly
encountered in the literature are 85, ¥'s, or even x . Clearly enough, I is [closed and]
convex if and only if S is [closed and] convex. Indeed, epilg = § x R* by definition.

More generally, if f € ConvR” and if C is a nonempty convex set, the function

fx) ifxeC,

400 ifnot

o(x) := {

is again convex under one condition: that dom f and C have a nonempty intersection (other-
wise ¢ would be identically +00). Furthermore, ¢ is closed when so are f and C. Observe
in passing that ¢ = f + Ic.

Attached to a nonempty subset S, another function of interest is the support
function of S, already encountered in Remark I11.4.1.2:

os(x) :=sup{(s,x) : s € S}.

It turns out to be closed and convex; this is already suggested by Proposition 1.2.8
and will be confirmed below in §2.1(b). Actually, the importance of this function will
motivate an extensive development in Chap. V. Here, we just observe that, for ¢ > 0,

sup (s, ax) = asup (s, x),
ses seS

hence og(ax) = aog(x): the epigraph of a support function is not only closed and
convex, but it is a cone in R" x R. Its domain is also a convex cone in R":

domog = {a € R" : 3r such that (s,a) <r foralls € S}.
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(b) Piecewise Affine and Polyhedral Functions Let (sy, b;), ..., (Sm, bm) be m
elements of R” x R and consider the function

R” 5 x > f(x) :=max{(sj,x) —bj : j=1,...,m}. (1.3.1)

Such a function is suggestively called pzecewzse affine: R" is divided into (at most
m) regions in which f is affine: the ji" region, possibly empty, is the closed convex
polyhedron

{x e R" : (Sjo,x)-—bjOZ(Sj,x)—bj forj=1,...,m}.

This terminology is slightly ambiguous, though: a function whose graph is made up of
pieces of affine hyperplanes need not be convex, while (1.3.1) can be seen to produce
convex functions only (just as with a support function, convexity and closedness of f
will be confirmed below). It can even be seen that epi f isaclosed convex polyhedron;
but again, (1.3.1) cannot describe all polyhedral epigraphs.

A polyhedral function will be a function whose epigraph is a closed convex
polyhedron. Its most general form is given by Definition I11.4.2.6:

epi f = {(x,r) e R" xR : (sj,x) + ajr <bj for j € J},

where J is a finite set, the (s, o, b); being given in R” x R x R, (sj, @j) # 0 (and
R™ x R is equipped with the scalar product of a product-space). For this set to be an
epigraph, each o; must be nonpositive and, if @; < 0, we may assume without loss of
generality o = —1. Furthermore, we may denote by {1, ..., m} the subset of J such
thataj = —1,and by {m + 1, ..., m + p} the rest. With these notations, we see that
f(x) is given by (1.3.1) whenever x satisfies the set of constraints

(Sj,x)gbj forj=m+1,...,m+p;

otherwise, f(x) = +4o00. Of course, these constraints (usually termed linear, but affine
is more correct) define a closed convex polyhedron.

In a word, a polyhedral function is a function which is piecewise affine on its
domain, the latter being a closed convex polyhedron. Said otherwise, it is a closed
convex function of the form f + 1p, where f is piecewise affine and P is a closed
convex polyhedron.

(c) Norms and Distances It is a direct consequence of the axioms that a norm is
a convex function, finite on the whole space (use Definition 1.1.1). More generally,
let C be a nonempty convex set in R” and, with an arbitrary norm || - ||, define the
distance function

dc(x) :=inf {Jjy — x|} : y € C}.

To establish its convexity, Definition 1.1.1 is again convenient. Take {y;} and { yk}
such that, fork — +o0, || yx —x|| and || yk—x II tend to dc (x) and d¢ (x”) respectively.

Then form the sequence z; := ay; + (1 — ) yk € C witha €]0, 1[; pass to the limit
for k — 400 in
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de(ax + (1 —a)x') < llzx — ax — 1 —e)x'll <ellyx — xll + A — )y, — 2l -

Here again domd¢ = R"; the (lower semi-)continuity of d¢ follows.

Clearly enough, d¢c = d, ¢ so, with the help of Proposition I11.2.1.8, we see that
C, clC and ri C have the same distance function (associated with the same norm
Il - I). In particular, d¢ is 0 on the whole of cl C; the following variant is slightly more
accurate, in that it distinguishes between int C and bd C:

dec(x) if x e C¢,

De® =1 _gcex) ifxec,

where C¢ is the complement of C in R". Assuming that C and C€ are both nonempty,
it is not particularly difficult to prove that D¢ is convex, finite everywhere, and that

intC = {xeR": D¢c(x) <0},
bdC = {xeR": Dc(x) =0},
€lC)¥ = {xeR": Dc(x) > 0}.

(d) Quadratic Forms Let A : R” — R" be a symmetric linear operator. Then the
quadratic form
f(x) := 3(Ax, x)

is a convex function — with dom f = R” —if and only if A is positive semi-definite,
i.e. its eigenvalues are all nonnegative. Call A; > --- > A, > 0 these eigenvalues; it
is well-known that a basis can be formed with the corresponding eigenvectors, and
that as a result,

Anllxl? < (Ax, x) < A fix]|? forallx e R".

From the first inequality, direct but somewhat tedious calculations yield, with the
notation of (1.1.2):

flax+ (1 -a)x) <af(@x) + 1 =) (') = jrna(l — a)lx — x'|1%.

Thus, if A is positive definite, f is strongly convex with modulus A, > 0 (while
f is not even strictly convex when A is degenerate). A straightforward proof comes
also from a general characterization of differentiable strongly convex functions, to be
seen below in Theorem 4.1.4 or 4.3.1.

For r > 0, the sublevel-sets of f:

Sr(f) :={x e R" : 3{Ax,x) <r}

are concentric ellipsoids: Ser (f) = +/kS;(f). Their common “shape” is given by the
eigenvalues of A. These ellipsoids may be degenerate, in that they contain the subspace
Ker A (one should rather speak of elliptic cylinders if Ker A # {0}). However, S, (f)
is a neighborhood of the origin for r > 0:

Sr(f) D B(0,&) whenever %Mez <r.
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(e) Sum of Largest Eigenvalues of a Matrix Instead of our working space R”,
consider the vector space S, (R) of symmetric n x n matrices. Denote the eigenvalues
of A € S(R) by A1(A) = -+ = Ay (A), and consider the sum f, of the m largest
such eigenvalues (m < n given):

Sh(R) 5 A > fm(A) =) Aj(A).
j=l

This is a function of A, finite everywhere. Equip S, (R) with the standard dot-product
of R**".

n
(A, B) :=ttAB= )  A;B;;.
i,j=I

The function f; turns out to have the following representation:
fm(A) =sup{{QQT, A) : Q e 2},

where 2 := {Q : QT Q = I} is the set of matrices made up of m orthonormal n-
columns. Indeed, §2 is compact and the above supremum is attained at Q formed with
the (normalized) eigenvectors associated with Ay, . .., Ap;. Keeping Proposition 1.2.8
in mind, this explains that f;, is convex, as being a supremum of linear functions on
Sp(R).

Naturally, f;(A) is the largest eigenvalue of A, while f;,(A) is the trace of 4, a
linear function of A. It follows by taking differences that f,, — f, (for example the
smallest eigenvalue A, = f, — fr—1) is a concave function on S, (R).

(f) Volume of Ellipsoids Still in the space of symmetric matrices S, (R), define the
function

log(det A™') if A is positive definite,
+00 if not.

A f(A) = {

It will be seen in §3.1 that the concave finite-valued function A, (-) is continuous. The
domain of f, which is the set of A € S, (R) such that A,(A) > 0, is therefore open,
and even an open convex cone. It turns out that f is convex. To see it, start from the
inequality

det[aA + (1 —a)A’] > (det A)*(det A")! ™%,

valid for all symmetric positive definite matrices A and A’ (and « €]0, 1[); take the
inverse of each side; remember that the inverse of the determinant is the determinant
of the inverse; finally, pass to the logarithms.

Geometrically, consider again an ellipsoid

E4:={xeR": xTAxgl}

where A is a symmetric positive definite matrix. Up to a positive multiplicative
constant (which is the volume of the unit ball E;,), the volume of E 4 is precisely

Vdet AL,
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Because dom f is open, ridom f = intdom f = dom f, which establishes the
lower semi-continuity of f on its domain. Furthermore, suppose Ay — A with A
not positive definite; by continuity of the concave function A, (-), A is positive semi-
definite and the smallest eigenvalue of Ay tends to 0: f(Ax) — +o00. The function
f is closed.

(g) Epigraphical Hull and Lower-Bound Function of a Convex Set Given a non-
empty convex set C C R” x R, an interesting question is: when is C the epigraph
of some function f € ConvR"? Let us forget for the moment the convexity issue,
which is not really relevant. First, the condition f(x) > —oo for all x means that C
contains no vertical downward half-line:

{r e R : (x,r) € C}is minorized for all x € R" . (13.2)
A second condition is also obvious: C must be unbounded from above, more precisely
x,r)eC = (x,rYeCforallr' >r. (1.3.3)

The story does not end here, though: C must have a “closed bottom”, i.e.
[x,rYeCandr | r] = ((x,r)eC. (1.3.4)

This time, we are done: a nonempty set C satisfying (1.3.2) —(1.3.4) is indeed an
epigraph (of a convex function if C is convex). Alternatively, if C satisfying (1.3.2),
(1.3.3) has its bottom open, i.e.

(x,r)eC = (x,r—¢e)eC forsomee=¢(x,r)>0,

then C is a strict epigraph. To cut a long story short: a [strict] epigraph is a union of
closed [open] upward half-lines — knowing that we always rule out the value —oo.

The next interesting point is to make an epigraph with a given set: the epigraphical
hull of C C R” x R is the smallest epigraph containing C. Its construction involves
only rather trivial operations in the ordered set R :

(i) force (1.3.3) by stuffing in everything above C': for each (x,r) € C, add to C all
(x,rywithr’ > r;

(ii) force (1.3.4) by closing the bottom of C: put (x, r) in C whenever (x,r’) € C
withr’ — r.

These operations (i), (ii) amount to constructing a function:
x> lcx)=inf{reR: (x,r) e C}, (1.3.5)

the lower-bound function of C; clearly enough, epi ¢ is the epigraphical hull of C.
We have that £0(x) > —oo for all x if (and only if) C satisfies (1.3.2).

The construction of an epigraphical hull is illustrated on Fig. 1.3.1, in which the
point A and the curve I" are not in C; nevertheless, there holds (epi, is the strict
epigraph)

epi,£c C C + {0} x R* C epilc € cl(C + (0} x RY). (1.3.6)
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Fig. 1.3.1. The lower-bound function

Theorem 1.3.1 Let C be a nonempty subset of R" x R satisfying (1.3.2), and let its
lower-bound function £¢ be defined by (1.3.5).

(i) If C is convex, then ¢ € ConvR";

(ii) If C is closed convex, then £¢ € Conv R”.

PROOF. We use the analytical definition (1.1.1). Take arbitrary ¢ > 0, @ €]0, 1{ and
(x;,r;) € C,i = 1,2 such that

ri<lcx)+e fori=1,2.
When C is convex, (ax; + (1 — a)x,, ary + (1 — a)r,) € C, hence
Lelax + (1 —a)xy) Sar+ (1 —a)ra <ale(x) + (1 —a)le(x) +¢.

The convexity of £¢ follows, since € > 0 was arbitrary; (i) is proved.

Now take a sequence {(xx, px)} C epi £¢ converging to (x, p); we have to prove
£c(x) < p (cf. Proposition 1.2.2). By definition of £¢(xy), we can select, for each
positive integer &, a real number rg such that (xg, rx) € C and

Lc(u) S Lo + < P+ - (1.3.7)

We deduce first that {ry} is bounded from above. Also, when £¢ is convex, Proposi-
tion 1.2.1 implies the existence of an affine function minorizing £¢: {r¢} is bounded
from below.

Extracting a subsequence if necessary, we may assume ry — r. When C is closed,
(x,7r) € C, hence £¢(x) < r; but pass to the limit in (1.3.7) to see that r < p; the
proof is complete. n|

2 Functional Operations Preserving Convexity

It is natural to build up new convex functions from simpler ones, via operations
preserving convexity, or even yielding it. This approach goes together with that of
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§II1.1.2: convex epigraphs can be made up from simpler epigraphs. Here again, prov-
ing convexity of the new function will rely either on the analytical definition or on the
geometric one, whichever is simpler.

2.1 Operations Preserving Closedness

(a) Positive Combinations of Functions

Proposition 2.1.1 Let f1,..., fm be in ConvR® [resp. in ConvR"*], t;, ..., tm be
positive numbers, and assume that there is a point where all the f; s are finite. Then

the function
m
f = Z tjf:,
Jj=1

is in ConvRR" [resp. in Conv R"].

PROOF. The convexity of f is readily proved from the relation of definition (1.1.1).
As for its closedness, start from

li§n_31}ftj,)‘j(y) =t li§ll)i§clffj(Y) 2 tj fj(x)

(valid for ¢; > 0 and fj closed); then note that the lim inf of a sum is not smaller than
the sum of lim inf’s. m]

As an example, let f € ConivR" and C C R” be closed convex, with dom f N C # @.
Then the function f +I¢ of Example 1.3(a) is in Conv R”. This trick can be used to simplify
the notation for constrained minimization problems:

inf{f(x) : xeC} and inf{(f+Ic)x): xeR"}

are clearly equivalent in the sense that they have the same infimal value and the same solution-
set.

(b) Supremum of Convex Functions

Proposition 2.1.2 Let { fj}jes be an arbitrary family of convex [resp. closed con-
vex] functions. If there exists xo such that sup; fj(xo) < +00, then their pointwise
supremum

f=sup{fj: jel}

is in Conv R" [resp. in Conv R"].
PROOF. The key property is that a supremum of functions corresponds to an intersec-

tion of epigraphs: epi f = Nje epi fj, which conserves convexity and closedness.
The only needed restriction is nonemptiness of this intersection. a

In a way, this result was already announced by Proposition 1.2.8. It has also been used
again and again in the examples of §1.3.
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Example 2.1.3 (Conjugate Function) Let f : R® — R U {400} be a function not identi-
cally 4+c8, minorized by an affine function (i.e., for some (so, b)) € R" x R, f > (s, ) — b
on R™), Then,

¥ R" >35> sup{(s,x) — f(x) : x € dom f}

is called the conjugate function of f, to be studied thoroughly in Chap.X. Observe that
f*(s0) < b and f*(s) > —oo for all s because dom f # @. Thus, f* € ConvRR"; this is
true without any further assumption on f, in particular its convexity or closedness are totally
irrelevant here. u]

Example 2.1.4 Let S be a nonempty set (not necessarily convex) and take
R" 3 x > ¢s(x) := 3 [IxI? - &§)] ,

where dg is the distance function to S, associated with the Euclidean norm || - ||. A surprising
fact is that @g is always convex. To see it, develop

d2(x) = inf |Ix — ¢l = [Ix|I* = sup [2(c, x) — licll’]
ceS ces
to obtain

ps(x) = sup {(c,x) — licl® : ceS};

@s thus appears as the pointwise supremum of the affine functions {(c, -) — 1/2 llcli?, and is
closed and convex. In view of the previous example, the reader will realize that ¢g is the
conjugate of the function 172 | - || + Is. o

(c) Pre-Composition with an Affine Mapping

Proposition 2.1.5 Let f € ConvR" [resp. Conv R"] and let A be an affine mapping
from R™ to R™ such that Im A N dom f # @. Then the function

foA: R"3 x> (foA)(x) = f(AKx))
is in ConvR™ [resp. Conv R™].

PROOF. Clearly (f o A)(x) > —oo for all x, and there exists by assumption y =
A(x) € R" such that f(y) < +00. To check convexity, it suffices to plug the relation

Afax + (1 —a)x) = aA(x) + (1 — a)AK)

into the analytical definition (1.1.1) of convexity. As for closedness, it comes readily
from the continuity of A when f is itself closed. O

Example 2.1.6 With f (closed) convex on R”, take xo € dom f, d € R" and define
A: Rot—> A@)=xp+1td;

this A is affine, its linear part is t > Aqt := td. The resulting f o A appears as (a parametriza-
tion of) the restriction of f along the line x + Rd, which meets dom f (at xo).

This operation is often used in applications: think for example of the line-search problem,
considered in §I1.3. Even from a theoretical point of view, the one-dimensional traces of f
are important, in that f itself inherits many of their properties; Proposition 1.2.5 gives an
instance of this phenomenon. O
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Remark 2.1.7 With relation to this operation on f € ConvR” [resp. Conv R"], call V
the subspace parallel to aff dom f. Then, fix x9p € dom f and define the convex function
fo € Conv V [resp. Conv V] by

fo(y) = f(xo+y) forallyeV.

This new function is obtained from f by a simple translation, composed with a restriction
(from R” to V). As a result, dom fp is now full-dimensional (in V), the relative topology
relevant for fj is the standard topology of V. This trick is often useful and explains why “flat”
domains, instead of full-dimensional, create little difficulties. ]

(d) Post-Composition with an Increasing Convex Function

Proposition 2.1.8 Let f € ConvR" [resp. ConvR"] and let g € ConvR [resp.
Conv R/ be increasing. Assume that there is xy € R”" such that f(xy) € dom g, and
set g(+00) := +o00. Then the composite function go f : x > g(f(x)) is in ConvR"
[resp. in Conv R"].

PROOF. It suffices to check the inequalities of definition: (1.1.1) for convexity, (1.2.3)
for closedness. u)

The exponential g(¢) := expt is convex increasing, its domain is the whole line, so
exp f(x) is a [closed] convex function of x € R” whenever f is [closed] convex. A function
f : R* = ]0, +00] is called logarithmically convex when log f € ConvIR” (we set again
log(4+00) = +00). Because f = explog f, a logarithmically convex function is convex.

As another application, the square of an arbitrary nonnegative convex function (for ex-
ample a norm) is convex: post-compose it by the function g(t) = (max{0, t})2.

2.2 Dilations and Perspectives of a Function

For a convex function f and u > 0, the function
fu:R" 3 x> fu(x) =uf(x/u)

is again convex. This comes from Propositions 2.1.1 and 2.1.5 but can also be seen
geometrically: since fy,(x)/u = f(x/u), the epigraphs and sublevel-sets are related
by
epifu =uepif, epiyfu=uepif, S;(fu)=u Sr/u(f),

which express that f, is a “dilated version” of f.

More interesting, however, is to study f, as a function of both variables x and u,
i.e. to consider the set of all dilations of f. We therefore define the perspective of f
as the function from R x R" to R U {+-00} given by

uf(x/u) ifu>0,
+00 if not .

flu,x) :={

Proposition 2.2.1 If f € ConvR", its perspective f is in Conv R" 1,
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PROOF. Here also, it is better to look at f with “geometric glasses”:
epif = [, x,r)eRf xR" xR : f(x/u) <r/u}

= {u(,x',r) : u>0,&"r") ecepif)
Uusofu({1} x epi )} = Ry ({1} x epi f)

and epi f is therefore a convex cone. o

Fig. 2.2.1. The perspective of a convex function

Figure 2.2.1 illustrates the construction of epi f, as given in the above proof. Embed
epi f into R x R" x R, where the first R represents the extra variable u; shift it horizontally
by one unit; finally, take the positive multiples of the result. Observe that, following the same
technique, we obtain

dom f = R} ({1} x dom f). 2.2.1)
Another observation is that, by construction, epi f [resp. dom £1 does not contain the origin
of R x R" x R [resp. R x R"].

Convexity of a perspective-function is an important property, which we will use later in
the following way. For fixed xo € dom f, the functiond + f(xo +d) — f(xp) is obviously
convex, so its perspective

r(u,d) ;= ulf(xo +d/u) — f(x0)] (foru > 0) 2.2.2)

is also convex with respect to the couple (4, d) € R} x R". Up to the simple change of
variable u +— ¢t = 1/u, we recognize a difference quotient.

The next natural question is the closedness of a perspective-function: admitting
that f itself is closed, troubles can still be expected at u = 0, where we have brutally
set f(0, ) = +oo (possibly not the best idea . . .) A relatively simple calculation of
cl f is in fact given by Proposition 1.2.5:
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Proposition 2.2.2 Let f € ConvR” and let x’ € ridom f. Then the closure cl f of
its perspective is given as follows:

. uf(x/u) if u>0,
Cl Hu,x) =3 limgoafx' —x+x/a) if u=0,
+o00 ifu<0.

PROOF. Suppose first u < 0. For any x, it is clear that (u, x) is outside cl dom f and,
in view of (1.2.8), ¢l f(u, x) = +00.

Now let u > 0. Using (2.2.1), the assumption on x’ and the results of §II1.2.1, we
see that (1, x') € ridom f, so Proposition 1.2.5 allows us to write

©Hu,x) = iii’éf (@, %) + af(1, x") — (u, x)])

. Ha(x'—
= lim[u+a(l-w] £(5a=).

If u = 1, this reads cl f(l, x) =cl f(x) = f(x) (because f is closed); if u = 0, we
just obtain our claimed relation. O

Remark 2.2.3 Observe that the behaviour of f (u, -) foru } 0 just depends on the behaviour
of f at infinity. If x = 0, we have

cl £(0,0) = lii%af(x') =0 [f(x) < +oo!].

For x # 0, suppose for example that dom f is bounded; then f(x’ — x + x /&) = +o0 for &
small enough and cl £(0, x) = +00. On the other hand, when dom f is unbounded, cl f ©, )
may assume finite values if| at infinity, f does not increase too fast.

For another illustration, we apply here Proposition 2.2.2 to the perspective-function r of
(2.2.2). Assuming xo € ridom f, we can take d’ = 0 — which is in the relative interior of the
function d > f(xo + d) — f(xp) — to obtain

f(xo —d +td) — f(x0)
T

(clr)(0,d) = lim
T—>+00

Because (t — 1)/t — 1 for t — +00, the last limit can also be written (in R U {+o00})

f(xo +td) — f(xo0)
p .

(clr)(0,d) = t—lﬂlw

We will return to all this in §3.2 below. [w}

2.3 Infimal Convolution
Starting from two functions f; and f,, form the set epi f} + epi f; C R” x R:

C:={(x1+x,ri+r):ry> fix) for j =1,2}.
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Under a suitable minorization property, this C has a lower-bound function £¢ as in
(1.3.5):

Lcx) =inf{ri +r2 ¢ rj 2 fi(xj) for j = 1,2, x; + x2 = x}.

In the above minimization problem, the variables are ry, 3, x1, x,, but the r;’s can be
eliminated; in fact, £ can be defined as follows.

Definition 2.3.1 Let f; and f, be two functions from R” to R U {+oo}. Their infimal
convolution is the function from R” to R U {£00} defined by

(i L&) = inf{filx)+ falx2) : x1 4 x =x}

= infyeplfi) + & — ] @3-h

We will also call “infimal convolution” the operation expressed by (2.3.1). It is
called exact at x = x; + x, when the infimum is attained at (x;, x;), not necessarily
unique. O

We refer to Remark 1.2.1.4 for an explanation and some comments on the termi-
nology “infimal convolution”. To exclude the undesired value —oo from the range of
an inf-convolution, an additional assumption is obviously needed: in one dimension,
the infimal convolution of the functions x and —x is identically —oo. Our next result
proposes a convenient such assumption.

Proposition 2.3.2 Let the functions f, and f, be in ConvR". Suppose that they have
a common affine minorant: for some (s, b) € R" x R,

fj(x)=(s,x)—b forj=1,2andallx €R".
Then their infimal convolution is also in Conv R”.
PROOF. For arbitrary x € R" and x,, x, such that x| + x, = x, we have by assumption
Silxe) + falx2) 2 (s, x) —2b > —00,

and this inequality extends to the infimal value (f1 ¢ f2)(x).

On the other hand, it suffices to choose particular values x; € dom fj, j = 1, 2,
to obtain the point x, + x, € dom(f; ¥ f2). Finally, the convexity of f, & f» results
from the convexity of a lower-bound function, as seen in §1.3(g). 0

Remark 2.3.3 To prove that an inf-convolution of convex functions is convex, one
can also show the following relation between strict epigraphs:

epis(fl ¢ f2) = epis fl + epis f2 . (232)
In fact, (x, r) € epig(fi ¥ f2) if and only if there is ¢ > 0 such that

fitx1) + fa(xy) =r + ¢ for some x; and x; adding up to x .
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This is equivalent to
fj(Xj) <rj for some (x, 1) and (x,, r,) adding up to(x, r)

(setrj := fj(xj) +¢/2 for j = 1,2, to show the “=” direction). This last property
holds if and only if (x, r) € epi, fi + epi, f2.

This proof explains why the infimal convolution is sometimes called the (strict)
epigraphic addition. O

Similarly to (2.3.2), we have by construction
dom(f; ¢ f2) = dom f; + dom f;.

Let us mention some immediate properties of the infimal convolution:

Hh$ =AY i (commutativity) (23.3)
NIRRT H=LF 2T ) (associativity) (234)
F¥ Loy =S (existence of a neutral element in Cofiv R") (2.3.5)

<f, = fivg<fa¥g (preservesthe order).

With relation to (2.3.3), (2.3.4), more than two functions can of course be inf-
convolved:

(i3 fmd@ =inf (I, £) + Ty =x).
Remark 2.3.4 If C; and C, are nonempty convex sets in R”, then

Ie, ¥1c, =lcy+c, -

This is due to the additional nature of the inf-convolution, and can also be checked
directly; but it leads us to an important observation: since the sum of two closed sets
may not be closed, an infimal convolution need not be closed, even if it is constructed
from two closed functions and if it is exact everywhere. O

Example 2.3.5 Let C be anonempty convex subset of R” and || - || an arbitrary norm.
Then

Ic$ll-ll=dc,
which confirms the convexity of the distance function dc. It also shows that inf-

convolving two non-closed functions (C need not be closed) may result in a closed
function. o

Example 2.3.6 Let f be an arbitrary convex function minorized by some affine function
with slope s. Taking an affine function g = (s, -) — b, we obtain

fvg=g-c

where ¢ is a constant: ¢ = supy[{s, ¥} — f()]. Note: we have already encountered in
Example 2.1.3 ¢ = f*(s), the value at s of the conjugate of f.
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Take in particular a constant function for g: assuming f bounded below,

—g=f:= inf £(7).

Then _

F9(==0.
Do not believe, however, that the infimal convolution provides Conv R” with the structure of
a commutative group: in view of (2.3.5), the 0-function is not the neutral element! u]

Example 2.3.7 We have seen (Proposition 1.2.1) that a convex function is indeed minorized
by some affine function. The dilated versions f;, = uf(-/u) of a given convex function
f are minorized by some affine function with a slope independent of u > 0, and can be
inf-convolved by each other. We obtain

Ju$ fur = futurs

the quickest way to prove this formula is probably to use (2.3.2), knowing that epi; fy, =
u epig f. In particular, inf-convolving m times a function with itself gives a sort of mean-
value formula:

Lo s pHw = f(&x).

Observe how a perspective-function gives a meaning to a non-integer number of self-
inf-convolutions. o

Example 2.3.8 Consider two quadratic forms
i) =3(Ajx,x) forj=1,2,
with A; and A, symmetric positive definite. Expressing their infimal convolution as
%irylf[(Aly, Y) + (Ax(x = ). x — y)1,
the minimum can be explicitly worked out, to give (f; ¥ f2)(x) = 1/2(A2x, x), where

A= (A7 + 477N

This formula has an interesting physical interpretation: consider an electrical circuit made
up of two generalized resistors A; and A; connected in parallel. A given current-vectori € R”
is distributed among the two branches (i = i| + i), in such a way that the dissipated power
(A1iy, iy) + (Azia, ip) is minimal (this is Maxwell’s variational principle); see Fig.2.3.1. In
other words, if i = 1] + 13 is the real current distribution, we must have

(A1, ) +(Azi, 12) = inf  ((Ayiy, iy) + (Azi2, i2)) .
i1 +iy=i
The unique distribution (i}, i2) is thus characterized by the formulae

A = Axip = Al 2.3.6)

from which it follows that
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Ay

Ay

Fig. 2.3.1. Equivalent resistors

(A1, 1) + (Az2iz, 2) = (Ap2i. i) .

Thus, A}, plays the role of a generalized resistor equivalent to A; and A, connected in
parallel; when n = 1, we get the more familiar relation 1/r = 1/r; + 1/r; between ordinary
resistances r; and r». Note an interpretation of the optimality (or equilibrium) condition
(2.3.6). The voltage between P and Q [resp. P’ and Q'] on Fig.2.3.1, namely A 7] = Aalp
[resp. Aj2i], is independent of the path chosen: either through A;, or through A,, or by
construction through A ;.

The above example of two convex quadratic functions can be extended to general
functions, and it gives an economic interpretation of the infimal convolution: let f, (x)
[resp. f2(x)] be the cost of producing x by some production unit U, [resp. U,]. If we
want to distribute optimally the production of a given x between U; and U,, we have
to solve the minimization problem (2.3.1). o

Remark 2.3.9 In Example II1.1.2.6, we have seen two kinds of differences between sets,
which may be applied to epigraphs. One difference, C; — C; = C| + (—C>), leads nowhere:
the opposite of an epigraph is not an epigraph. On the other hand, it is not too difficult to see
that the star-difference of two epigraphs is again an epigraph; it therefore corresponds to an
operation with convex functions, namely the deconvolution, or epigraphic star-difference:

(17 &) :=sup{fi(x +y) — fo(y) : y € dom f},
Being a supremum of convex functions, the result is a convex function provided that
lepi(f/1 v f2) =] epi fiXxepifo #0.
In the language of function-values, this means that, for some (xp, rg) € R* x R:
Hx) < foalx —x0) +rg forallx e R*.

In words: f; must not be too larger than f,.

Indeed, the above operation can be seen to a great extent as the inverse operation of the
inf-convolution. It goes without saying that the deconvolution is not commutative. A detail is
worth mentioning, though: in contrast to the inf-convolution, fi 7 f, is now a supremum,; by
virtue of Proposition 2.1.2, it is therefore closed when f] is closed. ]

2.4 Image of a Function Under a Linear Mapping

Consider a constrained optimization problem, formally written as



2 Functional Operations Preserving Convexity 167
inf {p(u) : c(u) < x}, (2.4.1)
uelU

where the optimization variable is u, the right-hand side x being considered as a
parameter taken in some ordered set X. The optimal value in such a problem is then a
function of x, characterized by the triple (U, ¢, c), and taking its values in RU £-{oo}.
In convex analysis and optimization, this is an important function, usually called the
value function, or marginal function, or perturbation function, or primal function,
etc.

Several variants of (2.4.1) are possible: we may encounter equality constraints,
some constraints may be included in the objective via an indicator function, etc. A
convenient unified formulation is the following:

Definition 2.4.1 Let A : R™ — R” be linear and let g : R™ — R U {+00}. The
image of g under A is the function Ag : R* — R U Zo00 defined by

(Ag)(x) :=inf{g(y) : Ay =x} 2.4.2)
(here as always, inf @ = +00). o

The terminology comes from the case of an indicator function: when g = I¢, with C
nonempty in R™, (2.4.2) writes

0 ifx = Ay forsome y € C,
+o00 otherwise .

(Ag)(x) = {

In other words, Ag = I4(c) is the indicator function of the image of C under A (and we know
from Proposition I1I.1.2.4 that this image is convex when C is convex).

Even if U and X in (2.4.1) are Euclidean spaces, we seem to limit the generality when
passing to (2.4.2), since only linear constraints are considered. Actually, (2.4.1) can be put
in the form (2.4.2): with X = R? and y = (4, v) € U x X = R™, define Ay := v and
g(y) == @(u) + Ic(y), where

C:={y=®w,v)eR”: cu) <v}. (2.4.3)

Note that conversely, (2.4.2) can be put in the form (2.4.1) via an analogous trick turning its
equality constraints into inequalities.

Theorem 2.4.2 Let g of Definition 2.4.1 be in ConvR™. Assume also that, for all
x € R”, g is bounded from below on the inverse image

Ax)={yeR" : Ay =x}.
Then Ag € Conv R™.

PROOF. By assumption, Ag is nowhere —o0; also, (Ag)(x) < 400 whenever x = Ay,
with y € dom g. Now consider the extended operator

A R"xR>(y,r)— A'(y,r) = (Ay,r) e R™ x R.
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The set A’ (epi g) =: C is convex in R" x R, let us compute its lower-bound function
(1.3.5): for given x € R",

inf {r : (x,r)€C} = infy,{r: Ay=xand g(y) <r}
= infy{g(y) : Ay =x} = (4g)(x),

and this proves the convexity of Ag = £c. u}

Usually, X(x) contains several points — it is an affine manifold of R” — and Ag(x)
selects one giving the least value of g (admitting that (2.4.2) has a solution). If A is invertible,

Ag = goA™!; more generally, the above proof discloses the following interpretation: epi(Ag)
-1
is the epigraphical hull of the inverse image (A’)(epi g) (a convex set in R* x R).

Corollary 2.4.3 Let (2.4.1) have the following form: U = RP; ¢ € ConvRP; X =
R” is equipped with the canonical basis; the mapping c has its components cj €
ConvRP? for j = 1,...,n. Suppose also that the optimal value is > —oo for all
x € R", and that

domg Ndome; N---Ndomce, # 0. 2.4.4)

Then the value function
vp,c(x) :=1nf {p) : cj(u) <xjforj=1,...,n}
is in Conv R".

PROOF. Note first that we have assumed vy ¢(x) > —oo for all x. Take uy in the
set (2.4.4) and set M := max; c¢;j(uo); then take xp := (M, ..., M) € R”, so that
Vp,c(x0) < @(up) < +00. Knowing that vy ¢ is an image-function, we just have to
prove the convexity of the set (2.4.3); but this in turn comes immediately from the
convexity of each c;. O

Taking the image of a convex function under a linear mapping can be used as
a mould to describe a number of other operations — (2.4.1) is indeed one of them.
An example is the infimal convolution of §2.3: with f; and f, in ConvRR", define
g € Conv(R" x R") by

8(x1, x2) == fi(x1) + falx2)
and A : R™ x R" — R” by
A(x1, x2) ==X+ x;.

Then we have Ag = f; § f> and (2.3.1) is put in the form (2.4.2). Incidentally, this
shows that an image of a closed function need not be closed.

Another example has lots of practical applications: the marginal function of g €
Conv(R” x R™) is

R" 3 x > y(x) :=inf{g(x,y) : y € R™}.
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This is the image of g under the linear mapping projecting each (x, y) € R” x R™
onto x € R”. It is therefore convex if g is bounded below on the set {x} x R™ for
all x € R”. Geometrically, a marginal function is given by Fig. 2.4.1, which explains
why convexity is preserved: the strict epigraph of y is the projection onto R” x R of
the strict epigraph of g (C R" x R™ x R). Therefore, epi, y is also the image of a
convex set under a linear mapping; see again Example 111.1.2.5.

Fig. 2.4.1. The shadow of a convex epigraph

As seen in §2.1(b), supremization preserves convexity. Here, if g(-, y) were concave for
each y, y would therefore be concave: the convexity of y is a little bit surprising. Needless
to say, it is the convexity of g with respect to the couple of variables x and y that is crucial.

2.5 Convex Hull and Closed Convex Hull of a Function

Given a (nonconvex) function g, a natural idea coming from §II1.1.3 is to take the
convex hull co epi g of its epigraph. This gives a convex set, which is not an epigraph,
but which can be made so by “closing its bottom” via its lower-bound function (1.3.5).
As seen in §111.1.3, there are several ways of constructing a convex hull; the next result
exploits them, and uses the unit simplex of R¥:

Ay = {(al,...,ak)eRk : Z;f:laj:l, aj >0forj=l,...,k}. (2.5.1)

Proposition 2.5.1 Let g : R" — R U {400}, not identically +0o0, be minorized by
an affine function: for some (s, b) € R* x R,

gx) = (s,x)—b forallx e R". 2.5.2)
Then, the following three functions f,, f, and f3 are convex and coincide on R":
filx) :=inf {r : (x,r) € coepig},
fox) :==sup{h(x) : h € ConvR", h<g}.
f3(x) :=inf [Zle ajg(xj) - k=1,2,...

(2.5.3)
o € Ay, xj € domg, Z;;lajxj = x].
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PROOF. We denote by I" the family of convex functions minorizing g. By assumption,
I # @, then the convexity of f; results from §1.3(g).

[f2 < fi] Consider the epigraph of any h € I': its lower-bound function £y, is
itself; besides, it contains epi g, and co(epi g) as well (see Proposition I11.1.3.4). Ina
word, there holds

h= eepih < eooepig =
and we conclude f, < f) since h was arbitrary in I".

[f3 < f,] We have to prove f3 € I', and the result will follow by definition of f;
clearly f; < g (take o € A;!), so it suffices to establish f; € ConvR". First, with
(s, b) of (2.5.2) and all x, {x;} and {a;} as described by (2.5.3),

k k
Zajg(xj Za]( (s, xj) — b) = (s, x) —
j=1 j=1

hence f; is minorized by the affine function (s, -) — b. Now, take two points (x, )
and (x', ') in the strict epigraph of f;. By definition of f3, there are k, {a i), {xj} as
described in (2.5.3), and likewise £/, {a}}, {xJ’-}, such that

kl
Zajg(x]) < r and likewise Za g(x y<r
Jj=1 Jj=1

For arbitrary ¢ €0, 1[, we obtain by convex combination

k k'
Ztajg(xj) + Z(l - t)aj’-g(xj'-) <tr+1-0r.
j=l j=1

Observe that
k £
> tajx + > a- nejx; = tx + (1 -nx',
— =

i.e. we have in the left-hand side a convex decomposition of tx + (1 — #)x’ ink + &’
elements; therefore, by definition of f3:

k K
Alx+ 1 -0x) < Y rgx) + ) (1 - Najg(x))

j=] j=1
and we have proved that epi, f; is a convex set: f3 is convex.
[fi < f3] Let x € R” and take an arbitrary convex decomposition x = Z’f=1 ajxj,
with aj and x; as described in (2.5.3). Since (xj, g(xj)) € epigfor j =1,...,k,
(x, Z};l ozjg(xj)) €coepig

and this implies
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k
i) <) ajglx)
j=i

by definition of f;. Because the decomposition of x was arbitrary within (2.5.3), this
implies f;(x) < f3(x). o

Note in (2.5.3) the role of the convention inf @ = +o0, in case x has no decomposition
— which means that x ¢ codom g. The restrictions x; € dom g could be equally relaxed (an
xj ¢ dom g certainly does not help making the infimum); notationally, o should then be taken
in 1i Ag, so as to avoid the annoying multiplication 0 x (4-00). Beware that epi(co g) is not
exactly the convex hull co(epi g): we need to close the bottom of this latter set, asin §1.3(g)(ii)
— an operation which affects only the relative boundary of coepi g, though. Note also that
Carathéodory’s Theorem yields an upper bound on k for (2.5.3), namely k< (n + 1)+ 1=
n + 2. We just mention a property which is of little use for the time being: the upper bound
can be reduced to k < n + 1 (see Proposition I11.4.2.3).

Instead of co epi g, we can take the closed convex hull coepi g = clcoepi g (see
§I11.1.4). We obtain a closed set, with in particular a closed bottom: it is already
an epigraph, the epigraph of a closed convex function. The corresponding opera-
tion that yielded f,, f,, f3 is therefore now simpler. Furthermore, we know from
Proposition 1.2.8 that all closed convex functions are redundant to define the function
corresponding to f;: affine functions are enough. We leave it as an exercise to prove
the following result:

Proposition 2.5.2 Let g satisfy the hypotheses of Proposition 2.5.1. Then the three
functions below

) fl(x) =inf{r : (x,r) € Coepig},
_ fo(x) :=sup{h(x) : h e ConvR"”, h < g},
f(x) :=sup{(s,x) = b : (s,y) —b< g(y) forall y e R"}

are closed, convex, and coincide on R" with the closure of the function constructed
in Proposition 2.5.1. u]

In view of the relationship between the operations studied in this Section 2.5 and
the convexification of epi g, the following notation is justified, even if it is not quite
accurate.

Definition 2.5.3 (Convex Hulls of a Function) Let ¢ : R” — R” U {400}, not
identically 400, be minorized by an affine function. The common function f; =
f» = f; of Proposition 2.5.1 is called the convex hull of g, denoted co g. The closed
convex hull of g is any of the functions described by Proposition 2.5.2; it is denoted
cogorclcog. O

If {gj}jes is an arbitrary family of functions, all minorized by the same affine
function, the epigraph of the [closed] convex hull of the function inf ;¢ y g j is obtained
from Uje; epigj. An important case is when the g;’s are convex; then, exploiting
Example II1.1.3.5, the formula giving f; simplifies: several x j’s corresponding to the
same g; can be compressed to a single convex combination.
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Proposition 2.5.4 Let gy, ..., gn be in ConvR", all minorized by the same affine

Jfunction. Then the convex hull of their infimum is defined by
R" 5 x +> [co(min; g;)](x) = 554
inf{Z;';] @jgj(xj) : @ € Am, xj € domgj, Z;"zlajxj =x} . 2.5.4)

PROOF. Apply Example II1.1.3.5 to the convex sets C; = epi g;. o

The above statement was made in the simple situation of finitely many g;’s, but the
representation (2.5.4) can be extended to an arbitrary family of convex functions g;: it
suffices to consider in the infimand all the representations of x as convex combinations
of finitely many elements x; € dom g;.

Along these lines, note that an arbitrary function g : R” — R U {+00} can be seen as
an infimum of convex functions: considering dom g as an index-set,

g(x) = inf [g(xj) +Ix)(x) ¢ xj € domg] ,
where each g(x;) denotes a (finite) constant function.

Example 2.5.5 Let (x1, b1), ..., (xm, by) be givenin R” x R and define for j = 1,...,m

b; ifx = xj,
400 ifnot.

gi(x) = {

Then f := co(min g;) = €o(min g;) is the polyhedral function with the epigraph illustrated
on Fig. 2.5.1, and analytically given by

Fx) = min{zy'=lajbj . o€ Ap, Z;-';lajxj =x] ifx € colxy,...,xm},
400 ifnot.

Calling b € R™ the vector whose components are the b;’s and A the matrix whose
columns are the x;’s, the above minimization problem in & can be written — at least when
x € co{xy, ..., xm}:

f(x) =min {bTa:aeAm, Aa=x}. ]

Fig. 2.5.1. A convex hull of needles

To conclude this Section 2, Table 2.5.1 summarizes the main operations on func-
tions and epigraphs that we have encountered.
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Table 2.5.1. Main operations yielding convexity

o o Gl

;-":, t fi nothing interesting preserved

supje s fj Njesepi f; preserved

g o A (A affine) ;II’ (epig) preserved
ug(x/u) RI({1} x epig) must be forced

Ly hf epis fi + epig f destroyed

hvh epig fi * epig /2 preserved from f

Ag (A linear) epigr. hull of A’(epi g) destroyed

infy g(-, y) Projgn g €Pis & destroyed
cog epigr. hull of coepi g can be forced

3 Local and Global Behaviour of a Convex Function

3.1 Continuity Properties

173

Convex functions turn out to enjoy remarkable continuity properties: as already seen
in §1.3, they are locally Lipschitzian on the relative interior of their domain. On the

relative boundary of that domain, however, all kinds of continuity may disappear.

We start with a technical lemma.

Lemma 3.1.1 Let f € ConvR” and suppose there are xo, 8, m and M such that

m< f(x) <M forall x € B(xg,26).

Then f is Lipschitzian on B(xy, 8); more precisely: for all y and y' in B(xy, 8),

M-
1f0) = fON < =5

PROOF. Look at Fig. 3.1.1: with two different y and y’ in B(x,, 8), take

Y-y

ly—=y1I.

/ /
=y +6———— € B(xp,28);
Vi y by € B
by construction, )’ lies on the segment [y, '], namely
/_ Wy =yl 8

Tty - iy =
Applying the convexity of f and using the postulated bounds, we obtain

1y =yl
S+ 1y -l

Then, it suffices to exchange y and ¥/ to prove (3.1.1).

JACORNIC)ES

1
LFO") - fMI< glly’ —yI(M —m).

3.1.1)
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4

Fig.3.1.1. Moving in a neighborhood of xq

Theorem 3.1.2 With f € ConvR?”, let S be a convex compact subset of ridom f.
Then there exists L = L(S) = 0 such that

Lfx) = fON S Llix —x"|| forallx andx'in S. (.1.2)

PROOF. [Preliminaries] First of all, our statement ignores x-values outside the affine
hull of the convex set dom f. Instead of R”, it can be formulated in R?, where d is
the dimension of dom f; alternatively, we may assume ridom f = intdom f, which
will simplify the writing.

Make this assumption and let xo € S. We will prove that there are § = 8§(x) > 0
and L = L(xo, 8) such that the ball B(xo, §) is included in intdom f and

I/ = FONIS LIy~ Yl forall yand y/ in B(xo, §) . (3.1.3)

If this holds for all x, € S, the corresponding balls B(x, §) will provide a covering
of the compact set S, from which we will extract a finite covering (x;, 8;, Ly), ...,
(xk» 8k, Lr). With these balls, we will divide an arbitrary segment [x, x'] of the con-
vex set S into finitely many subsegments, of endpoints yp := x, ..., ¥, ..., yp :=x’.
Ordering properly the y;’s, we will have ||x — x/|| = Zle I3 — yi—1li; further-
more, f will be Lipschitzian on each [y;—, ;] with the common constant L :=
max{L, ..., L}. The required Lipschitz property (3.1.2) will follow.

[Main Step] To establish (3.1.3), we use Lemma 3.1.1, which requires boundedness of
f in the neighborhood of x,. For this, we construct as in the proof of Theorem I11.2.1.3
(see Fig.I11.2.1.1) a simplex

A = co{vy, ..., vy} C dom f
having x, in its interior: we can take § > 0 such that B(xy,28) C A. Then any
y € B(xo, 28) can be written — we use the notation (2.5.1):
n
y= Za,-v,- with o € Ayyy,
i=0

so that the convexity of f gives

SOOI Y e f).
i=0
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On the other hand, Proposition 1.2.1 tells us that f is bounded from below, say
by m, on this very same B(xg, 28). Our claim is proved: we have singled out § > 0
such that, with M := max{ f(vy), ..., f(vn)},

m< f(y)S M forall y € B(xg, 28). o

Note that the key-argument in the main step above is to find a (relative) neigh-
borhood of x € ridom f, which is convex and which has a finite number of extreme
points, all lying in dom f. The simplex A is such a neighborhood, with a minimal
number of extreme points

Remark 3.1.3 It follows in particular that f is continuous relatively to the relative
interior of its domain, i.e.: for xo € ridom f and x € ridom f converging to x,, we
have that f(x) = f(xo).

An equivalent formulation of Theorem 3.1.2 is: f is locally Lipschitzian on the
relative interior of its domain, i.e. for all xo € ridom f, there are L(xo) and 8(x,)
such that

1f(x) — f(x")| < L(xo)|lx — x’}| forall x and x’ in the set
S(xg) := B(xg, 8(xp)) Naffdom f C ridom f.

In fact, the bulk of our proof is just concerned with this last statement. Of course,
when x, gets closer to the relative boundary of dom f, the size 8(xo) of the allowed
neighborhood shrinks to 0; but also, the local Lipschitz constant L(x) may grow
unboundedly (gr f may become steeper and steeper). m}

Because of the phenomenon mentioned in the above remark, we cannot put
ridom f instead of S in Theorem 3.1.2: a convex function need not be Lipschitzian
on the relative interior of its domain. However, it is possible to modify f outside the
given compact S, and to obtain a convex function which is Lipschitzian on the whole
space:

Proposition 3.1.4 (Lipschitzian Extension) Let C be a nonempty convex set, and
let f € ConvR" be Lipschitzian with constant L on C. Then there exists a convex
Jfunction fi satisfying

filx) = f(x) forallx eC, (3.1.4)

J1 is Lipschitzian with constant L on the whole space . 3.1.5)

Moreover, there is a largest function satisfying (3.1.4), (3.1.5), namely the infimal
convolution

R" 3 x = (f + 10 (x) [(f +1c) (LD - DIx)

inf (f0)+ Lix -yl : yecy. GO

I

PROOF. Call f the function (3.1.6). First we show that f (x) > —oo for all x. In fact,
let xo € ri C and apply Proposition 1.2.1 to the function f + I, whose domain is
clearly C: there is s in the subspace V parallel to aff C such that
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Fx) = fxo) + (s,x —xp) forallx e R".

Taking § > 0 so small that x = x¢ 4 85 is in C, we obtain with the Lipschitz property
of fonC:

Lélisl > f(x) — f(x0) > 8lis)?,
whence ||s|| < L. Then

(s, ) <lisll Ixll € L|x|| forallx e R".

Thus, the two functions making up f are mjnorized by a common affine function
(with slope s): in view of Proposition 2.3.2, f € ConvR".
Next, given x and x’ in R” and ¢ > 0, let y’ € C be such that

FON+ LI =Y < f(x') +e;
by definition, we also have
FE S FONV+LIx=YI<FO)+Lix - x| +Lix" -y,

so we obtain ) )
fE) S FE)+Lix—x"|| +e.
This relation holds for arbitrary x, x’ and ¢, so it does imply the Lipschitz property
of f onR".
Now letx € C. Againby definition, f(x) < f(x);andalso, the Lipschitz property
of f on C implies

FOSFO)+Llly—x|| forallyeC,

so f(x) < f (x). In a word, f coincides with f on C.
Finally, let f; satisfy (3.1.4), (3.1.5). We obtain in particular

fix)— fFO)KL|x—y| foralxeR"andyeC,
S0 f) minorizes f on R” and the proof is complete. u]

Constructing from the given f and C the Lipschitzian function of (3.1.6) thus appears
as a sort of regularization. Such a mechanism is often useful and will be encountered again.

Let us sum up the continuity properties of a convex function.

— First of all it is aff dom f, and not R”", that is the relevant embedding (affine)
space: there is no point in studying the behaviour of f when moving out of this
space. Continuity, and even Lipschitz continuity, holds when x remains “well inside”
ridom f.

— When x approaches rbddom f, continuity may break down: f may go to infinity,
or jump discontinuously to some finite value, etc. Still, irregular behaviour of f is
limited by Proposition 1.2.5.

— Closing epi f if necessary, lower semi-continuity of f is a tolerable assumption.
Doing this, we only miss functions having little interest in our framework of mini-
mization.
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— It remains to ask whether f can be assumed upper semi-continuous (on rbd dom f,
and relative to dom f): we have seen in §1.3.1 that this property automatically holds
for univariate functions. The answer is no in general, though: a counter-example is

R2>x=(§n) > fx) =sup{éa+nB : ja><B}.

a,p

We see that f(0) = 0, and we know from Proposition 2.1.2 that f € Conv R”. In
fact, the optimal («, B) (if any) satisfies 1/2a> = B, so that
0 iff=n=0,
52
f& n) =sup (3na’® +§a) = 5 ifn <0, (3.1.7)
o
400 otherwise.
Thus, when x tends to 0 following the path n = —1/2£2, then f(x) =1 > 0 = f(0).
To conclude this subsection, we give a rather powerful convergence result: convex
functions converging pointwise to some (convex) function f do converge uniformly on
each compact set contained in the relative interior of dom f. For the sake of simplicity,
we limit ourselves here to the case of finite-valued functions. For the general case, just
specify that the compact set S in the next statement must be in ri dom f, and adapt
the proof accordingly.

Theorem 3.1.5 Let the convex functions f, : R" — R converge pointwise for
k > 4ooto f : R* - R. Then f is convex and, for each compact set S, the
convergence of [y to f is uniform on S.

PROOF. Convexity of f is trivial: pass to the limit in the definition (1.1.1) itself. For
uniformity, we want to use Lemma 3.1.1, so we need to bound f on S independently
of k; thus, let r > 0 be such that S C B(0, r).

[Step 1] First the function g := sup;, f is convex, and g(x) < oo for all x because
the convergent sequence { fx(x)} is certainly bounded. Hence, g is continuous and
therefore bounded, say by M, on the compact set B(0, 2r):
Jix)<gx) <M forallkandall x € B(0,2r).
Second, the convergent sequence { f¢(0)} is bounded from below:
< fr(0) forallk.
Then, for x € B(0, 2r) and all k, write the convexity relation on [—x, x] C B(0, 2r):

2u < 2£i(0) < fix) + fir (=) < fix) + M,

i.e. the fi’s are bounded from below, independently of k. Thus, we are within the
conditions of Lemma 3.1.1: there is some L (independent of k) such that

/) — fkONI < Llly — Y| forallkandall y, y’ in B0, 7). (3.1.8)
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Naturally, the same Lipschitz property is transmitted to the limiting function f.

[Step 2] Now fix € > 0. Cover S by the balls B(x, ¢) for x describing S, and extracta
finite covering S C B(x;, €) U - - - U B(xy,, €). With x arbitrary in S, take an x; such
that x € B(x;, €). There is k; o such that, forall k > k; ,

[ fe ) — £ < 1fie) = fee) |+ 1fie(@xi) = F Gl +1f (i) — F( < QL+ De

where we have also used (3.1.8), knowing that x and x; are in S C B(0, r). The above
inequality is then valid uniformly in x, providing that

k> max{kl,g,..-,kmyg} = kg. a

3.2 Behaviour at Infinity

Having studied the behaviour of f(x) when x approaches rbd dom f, it remains to
consider the case of unbounded x. An important issue is the behaviour of f (xo + td)
when t — 400 (xo and d being fixed). It has already been addressed in the simple
situation of §1.2.3, where only two directions d = £1 had to be considered. Here we
have infinitely many directions, but epi f is after all a special unbounded convex set
of R**!; so we can use the results of §I11.2.2.

Thus we assume f € Conv R”, which allows us to consider the asymptotic cone
(epi f)oo of the closed convex set epi f. It is a closed convex cone of R” x R, which
clearly contains the half-line {0} x R*. According to its Definition I11.2.2.2,

(epi oo = {(d, p) € R" xR : (xq,79) +t(d, p) €epi f forall t > 0}, (3.2.1)
where (xo, ro) is an arbitrary element of epi f. This can be written
(epi floo =1{(d, p) : epi f +1t(d, p) Cepif forall t > 0}
and, since we already know that (epi f)oo is a convex cone:
(epi floo = {(d, p) : epi f + (d, p) C epi f}.

Remark 3.2.1 Such an object was already encountered in Example II1.1.2.6: we are
dealing with the star-difference between epi f and itself:

(epi floo =epi f *epi f.

This in turn was seen in Remark 2.3.9, and it shows that (epi f)oo is itself an epigraph:
the epigraph of the deconvolution of f by itself:

(epi floo =epi(f 7V f).

In other words, the behaviour of f at infinity can be described with the help of the
function

(fv @) =sup{f(x+d)— f(x) : x €dom f}. (3.2.2)
w

Using directly the definition (3.2.1) of (epi f)oo, there is an alternate way of
expressing the function (3.2.2):
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Proposition 3.2.2 For f € ConvR", the asymptotic cone of epi f is the epigraph
of the function f, € Conv R" defined by
S (xo+td) — f(xo)

d > flo(d) :=sup foottd) = f0) _ ., (3.2.3)

t>0 t t—+00 t

where x is arbitrary in dom f.

PROOF. Since (xg, f(xo)) is anelement of epi f, (3.2.1) tells us that (d, p) € (epi f)o
if and only if
fo+td) < f(xo)+tp forallz >0,

which means

£ (xo +td) — f(xo)

sup <p.

t>0 t
In other words, (epi f)co is the epigraph of the function whose value at d is the left-
hand side of (3.2.4); and this is true no matter how x, has been chosen in dom f. The
rest follows from the fact that the difference quotient in (3.2.4) is closed convex in d,
and increasing in ¢ (the function ¢ > f(x -+ td) is convex and enjoys the property
of increasing slopes, remember Proposition 1.1.1.4). o

(3.2.4)

It goes without saying that the expressions appearing in (3.2.3) are independent
of xq: f4, is really a function of d only. By construction, this function is.positively
homogeneous:

foolad) =afl (d) foralla >0.

Our notation suggests that it is something like a “slope at infinity” in the direction d.

Definition 3.2.3 The function fZ, of Proposition 3.2.2 is called the asymptotic func-
tion, or recession function, or auto-deconvolution, of f. o

Consider for example the indicator I¢c of a closed convex set C. By definition of the
asymptotic cone, we see that Ic (xg +¢td) = 0 forall ¢t > 0 if and only ifd € Coo; We obtain

(10)eo = I(Coo) -
The next example is more interesting and extends Remark 2.2.3:

Example 3.2.4 Let f € ConvR". Take xo € dom f and consider the convex function
d v+ f(xo+d)— f(xp), whose domain contains 0, and whose perspective-function is r of
(2.2.2). The closure of r can be computed with the help of Proposition 2.2.2: with xq + d’
arbitrary in ridom f,

(1r)(0,d) = lima(f (xo + d' —d+d/a) - f(x0)].
[+1
Note that the term f(xo) < 400 can be suppressed, or replaced by f(xo + d’) (because
a | 0); moreover, as in Remark 2.2.3, the above limit is exactly

U ' _ ’
lim Sfo+d +td)= lim fxo+d +1td)— f(xo+d)

t—>+00 t t—+00 t

= foold).
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In summary, the function defined by

ulf(xo+d/u) — f(xp)] ifu>0,
RxR*> u,d)> { fi(d) ifu=0,
+00 elsewhere

is in Conv(R x R"); and only its “u > 0-part” depends on the reference point xo € dom f.
o

Our next result assesses the importance of the asymptotic function.

Proposition 3.2.5 Let f € ConvR". All the nonempty sublevel-sets of f have the
same asymptotic cone, which is the sublevel-set of f’ at the level 0:

Vr e RwithSr(f) # 0, [Sr(Nleo=1{d eR" : fi(d) <0}.

In particular, the following statements are equivalent:

(i) There is r for which Sy (f) is nonempty and compact;
(ii) all the sublevel-sets of f are compact;
(iii) f%(d) > 0 for all nonzerod € R".

PROOF. By definition (I11.2.2.1), adirection d is in the asymptotic cone of the nonempty
sublevel-set S, (f) if and only if

x€S(f) = [x+tdeS(f)forallt > 0],
which can also be written — see (1.1.4):
(x,r)eepif = (x+td,r+tx0)eepifforallt>0;

and this in turn just means that (d, 0) € (epi f)oo = €pi f,. We have proved the first
part of the theorem.

A particular case is when the sublevel-set So( f5,) is reduced to the singleton {0},
which exactly means (iii). This is therefore equivalent to

[Sr(f)loo = {0} forall 7 € R with S,(f) # @,

which means that S, (f) is compact (Proposition I11.2.2.3). The equivalence between
(i), (ii) and (iii) is proved. |

Needless to say, the convexity of f is essential to ensure that @/l its nonempty sublevel-
sets have the same asymptotic cone. In Remark 1.1.7, we have seen (closed) quasi-convex
functions: their sublevel-sets are all convex, and as such they have asymptotic cones, which
normally depend on the level.

Definition 3.2.6 (Coercivity) The functions f € Conv R” satisfying (i), (ii) or (iii)
are called 0-coercive. Equivalently, the 0-coercive functions are those that “increase
at infinity™:

f(x) > +oo whenever |x|| — 400,

and closed convex 0-coercive functions achieve their minimum over R”.
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An important particular case is when f5,(d) = +oo foralld # 0,ie. fi, = Lig)-
It can be seen that this means precisely

fx)
lix])
In words: at infinity, f increases to infinity faster than any affine function (to establish

this equivalence, extract a cluster point of {xy /|| x¢ ||} and use the lower semi-continuity
of fZ.). Such functions are called I-coercive, or sometimes just coercive. a

— +o0o0 whenever |x|| - +o00.

Suppose for example that f is quadratic:
) =3(0x,x) + (b, x) +c,

with Q a positive semi-definite symmetric operator, b € R" and ¢ € R. Then it is easy to
compute

(b,d) ifd eKer Q,

+oo ifnot.

@ = |
In this particular case, the different sorts of coercivity coincide:
f isO-coercive <= fisl-coercive <<= (Q ispositive definite.

The word “coercive” alone comes from the study of bilinear forms: for our more general
framework of non-quadratic functions, it becomes ambiguous, hence our distinction.

Proposition 3.2.7 A function f € Conv R” is Lipschitzian on the whole of R" if and
only if f5, is finite on the whole of R". The best Lipschitz constant for f is then

sup { foo(d) : lldll = 1}. (3.2.5)

PROOF. When the (convex) function f, is finite-valued, it is continuous (§3.1) and
therefore bounded on the compact unit sphere:

sup { f5o(d) : lldll =1} =: L < +00,
which implies by positive homogeneity
foo@ < L|d|| foralld e R".
Now use the definition (3.2.2) of f.:
fix+d)— f(x)<L|d] forallx € dom f andd € R";
thus, dom f is the whole space (f(x + d) < +oo for all d) and we do obtain that L
is a global Lipschitz constant for f.

Conversely, let f have a global Lipschitz constant L. Pick xo € dom f and plug
the inequality
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fxo+td) — f(xo) < Lt||d]] forallt >0andd € R"
into the definition (3.2.3) of fZ, to obtain
fiod) < L|d|| foralld e R".
It follows that fZ is finite everywhere, and the value (3.2.5) does not exceed L. O

Concerning (3.2.5), it is worth mentioning that the index-set B can be replaced by the
unit ball B, and/or absolute value can be inserted in the supremand; these two replacements
are made possible thanks to convexity.

Remark 3.2.8 We mention the following classification, of interest for minimization theory:

let f € ConvR".

~If fi(d) < 0 for some d, then f is unbounded from below; more precisely: for all xy €
dom f, f(xp +td) | —oo whent — +o00.

— The condition fZ,(d) > 0 foralld # 0 is necessary and sufficient for f to have a nonempty
bounded (hence compact) set of minimum points.

~1If f%, > 0, with f3,(d) = 0 for some d # 0, existence of a minimum cannot be guaranteed
(but if xo is minimal, so is the half-line x¢ + R*d).

Observe that, if the continuous function dr f&o(d) is positive for all d # 0, then it is
minorized by some m > 0 on the unit sphere B and this m also minorizes the speed at which
f increases at infinity. u]

To close this section, we mention some calculus rules on the asymptotic function.
They come directly either from the analytical definitions (3.2.2), (3.2.3), or from the
geometrical definition epi f, = (epi f)oo combined with Proposition I11.2.2.5.

Proposition 3.2.9

—Let fi,..., fm be m functions of ConvR", and t,, ..., ty be positive numbers.
Assume that there is xo at which each fj is finite. Then, for f = Z;-';] tj fj»

foo=Y_ti(fi)oo-
Jj=1

— Let {fj}jes be a family of functions in Conv R". Assume that there is x, at which
supjej fj(xo) < +00. Then, for f :=supjc; fj,

foo = SUp(f})no -
jeJ

—Let A : R" — R™ be affine with linear part Ay, and let f € Conv R™. Assume that
AR") Ndom f # @. Then

(f oMo = fog 0 Ao. o
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For an image-function (2.4.2), the corresponding formula is
(Ag)ho(d) = inf (g, (z) : Az =d}

which can be written symbolically: (Ag),, = A(gl,)- However, this formula cannot
hold without an additional assumption, albeit to guarantee Ag € Conv R". One such
assumption is

8oo(z) > 0 forall z € Ker A\{0}

(appropriate coercivity is added where necessary, so that the infimum in the definition
of (Ag)(x) is always attained). Proving this result is not simple.

4 First- and Second-Order Differentiation

Let C C R” be nonempty and convex. For a function f defined on C (f(x) < 400
for all x € C), we study here the following questions:

— When f is convex and differentiable on C, what can be said about the gradient V f?
— When f is differentiable on C, can we characterize its convexity in terms of V f?
— When f is convex on C, what can be said about its first and second differentiability?

We start with the first two questions.

4.1 Differentiable Convex Functions

First we assume that f is differentiable on C. Given xq € C, the sentence “f is
differentiable at x,” is meaningful only if f is at least defined in a neighborhood of
xo. Then, it is normal to assume that C is contained in an open set £2 on which f is
differentiable.

Theorem 4.1.1 Let f be a function differentiable on an open set 2 C R", and let
C be a convex subset of 2. Then

(i) f is convex on C if and only if
fx) = f(xo) +(Vf(xp), x —xo) forall (xg,x) e C xC; “4.1.1)

(ii) f is strictly convex on C if and only if strict inequality holds in (4.1.1) whenever
x # xo;

(iii) f'is strongly convex with modulus c on C if and only if, for all (xy, x) € C x C,
Fx) 2 f(x0) + (Vf(x0), x — x0) + 3¢llx — Xol>. (4.1.2)

PROOF. [(i)] Let f be convex on C: for arbitrary (x, x) € C x C anda € ]0, 1[, we
have from the definition (1.1.1) of convexity

Sflax + (1 —a)xg) — fxo) <el[flx) = f(x0)].
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Divide by « and let o | 0: observing that ax + (1 — a)xp = x¢ + a(x — xg), the
left-hand side tends to (V f(x¢), x — xo) and (4.1.1) is established.

Conversely, take x; and x, in C, ¢ €]0, 1[ and define xy := ax; + (1 —a)x; € C.
By assumption,

fxi) 2 fxo) +(Vf(xo0), xi —x0) fori=1,2 4.1.3)
and we obtain by convex combination

af (x1) + (1 —a) f(x2) 2 f(xo0) + (Vf(x0), ax; + (1 — a)xz — x0)
which, after simplification, is just the relation of definition (1.1.1).
[(i)] If f is strictly convex, we have for xy % x in C and « €10, 1,

fxo+a(x —x0)) — fxo) <alf(x)— f(xo)l;
but f is in particular convex and we can use (i):
(Vf(x0), at(x — x0)) < f(x0+ t(x — x0)) — f(x0),

so the required strict inequality follows.
For the converse, proceed as for (i), starting from strict inequalities in (4.1.3).

[(iii)] Using Proposition 1.1.2, just apply (i) to the function f — 1/2¢|| - ||?, which is
of course differentiable. |

Thus, a differentiable function is convex when its graph lies above its tangent hyperplanes:
for each xg, f is minorized by its affine approximation x +— f(xo) + (V f(x0), x — x¢)
(which coincides with f at xg). It is strictly convex when the coincidence set is reduced to
the singleton (xo, f(xo)). Finally, f is strongly convex when it is minorized by the quadratic
convex function

x = f(x0) + (VF(x0), x — xo) + 5clix — xoll®,

whose gradient at xg is also V f(xo). These tangency properties are illustrated on Fig.4.1.1.

Fig. 4.1.1. Affine and quadratic minorizations

Remark 4.1.2 Inequality (4.1.1) is fundamental. In case of convexity, the remainder term r
in

f(x) = fxo) + (V f(x0), x — xo) + r(x0, x)

must be well-behaved; for example, it is nonnegative for all x and xy; also, 7 (xp, -) is convex.
m]
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Both f- and V f-values appear in the relations dealt with in Theorem 4.1.1; we
now proceed to give additional relations, involving V f only. We have seen in Chap. I
that a differentiable function is convex if and only if its derivative is monotone in-
creasing (on the interval where the function is studied). Here, we need a generalization
of the wording “monotone increasing” to our multidimensional situation. There are
several possibilities, one is particularly well-suited to convexity:

Definition 4.1.3 LetC C R" be convex. The mapping F : C — R” issaid monotone
[resp. strictly monotone, resp. strongly monotone with modulus ¢ > 0] on C when,
forall x and x’ in C,

(F(x) = F(x),x—x'y>0
[resp. (F(x) — F(x'),x —x') >0 whenever x # x’,
resp. (F(x) — F(x'), x —x') > cllx — x'||?]. O

In the univariate case, the present monotonicity thus corresponds to F being
increasing. When particularized to a gradient mapping F = V f, our definition char-
acterizes the convexity of the underlying potential function f:

Theorem 4.1.4 Let f be a function differentiable on an open set 2 C R”, and let
C be a convex subset of 2. Then, f is convex [resp. strictly convex, resp. strongly
convex with modulus c] on C ifand only ifits gradient V f is monotone [resp. strictly
monotone, resp. strongly monotone with modulus c] on C.

PROOF. We combine the “convex < monotone” and “strongly convex < strongly
monotone” cases by accepting the value ¢ = 0 in the relevant relations such as
(4.1.2).

Thus, let f be [strongly] convex on C: in view of Theorem 4.1.1, we can write
for arbitrary xo and x in C:

f&x) = fxo) +(Vf(x), x — xo) + jellx — xol?
fxo) > fO)+(VF(x), x0— x) + dellxo — x|?,

and mere addition shows that V f is [strongly] monotone.

Conversely, let (x, x;) be a pair of elements in C. Consider the univariate function
t = @(t) := f(x¢), where x; := xg+t(x; — xo); for ¢ in an open interval containing
[0,1], x; € £2 and ¢ is well-defined and differentiable; its derivative at ¢ is ¢'(¢) =
(V f(xt), x; — xp). Thus, we have forall 0 < ¢’ <t < 1

PO -9 () = (V) =V f(x), x1— xo) l
V() = V() %0 — x0) @.1.4)

and the monotonicity relation for V f shows that ¢’ is increasing, ¢ is therefore convex
(Corollary 1.5.3.2).

For strong convexity, set 7’ = 0in (4.1.4) and use the strong monotonicity relation
forVf:

@) = ¢'(0) > fellxe — xoli* = tellx; — xoll®. (4.1.5)
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Because the differentiable convex function ¢ is the integral of its derivative, we can
write

1
(1) —90) — ¢’ (0) = /0 [ () — ¢ 0)]1dt > icllx; — xoll?

which, by definition of ¢ , is just (4.1.2) (the coefficient 1/2 is [ ¢ dt!).
The same technique proves the “strictly monotone < strictly convex” case; then,
(4.1.5) becomes a strict inequality — with ¢ = 0 — and remains so after integration.
m]

The attention of the reader is drawn on the coefficient ¢ — and not 1/2 ¢ — in the defini-
tion 4.1.3 of strong monotonicity. Actually, a sensible rule is: “Use 1/2 when dealing with
a square”; here, the scalar product (AF, Ax) is homogeneous to a square. Alternatively,
remember in Proposition 1.1.2 that the gradient of 1/2c|| - ||2 at x is cx.

‘We mention the following example: let

f(x) = 3(Ax, x) + (b, x)

be a quadratic convex function (A is symmetric), and let A, > 0 be its smallest eigenvalue.
Observe that V f(x) = Ax + b and that

(Ax — Ax', x — %'y = (A(x —x"), x = x') = Myllx — X))2.
Thus V f is monotone {strongly with modulus A, ]. The [strong] convexity of £, in the sense
of (1.1.2), has been already alluded to in §1.3(d); but (4.1.2) is easier to establish here: simply

write

F(x) = f(x0) — (V f(x0), x — x0)

3(Ax, x) — $(Axq, x0) — (Axg, x — x0)

F(AG = x0), x — x0) > {Anllx — xolf?.

Note that for this particular class of convex functions, strong and strict convexity are equivalent
to each other, and to the positive definiteness of A.

Remark 4.1.5 Do not infer from Theorem 4.1.4 the statement “a monotone mapping is the
gradient of a convex function”, which is wrong. To be so, the mapping in question must first
be a gradient, an issue that we do not study here. We just mention the following property: if
£2 isconvex and F : £2 — R" is differentiable, then F is a gradient if and only if its Jacobian
operator is symmetric (in 2 or 3 dimensions, curl F = 0). ]

Example 4.1.6 Let C C R” be nonempty closed convex. We have already seen in
Example 2.1.4 that the function

R" 5 x > pc(x) = 3 [lIx]* — d&(x)]
is convex and finite everywhere. It would be so for arbitrary C, but the convexity of

C here implies the differentiability of ¢c, with gradient Voc = pc (the projection
operator on C). To differentiate the only delicate term d2., consider

A:=dp(x+h) —di(x).
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Because dZ (x) < [lx — pc(x + h)|%, we have
A2 |lx+h—pcx+hm)I —lIx —pcx +hm)|* = kI +2(h, x — pc(x + h)).
Inverting the role of x and x + A, we obtain likewise
A< lx +h =pc@I? = Ix = pc @I = 1Al* +2(h, x = pc(x)) .
Now remember from (II1.3.1.6) that p¢ is nonexpansive, hence
A =2(x —pcx), h) +o(lhl),

and this gives the announced result. Incidentally, take x ¢ C, hence dc(x) > 0; by
standard differential calculus,

x —pc(x)

vd =V,/d = .
c) ]

Now we ask the question: is ¢ strictly or strongly convex on some (nontrivial)
convex set? Because of Proposition 111.3.1.3, we have for all x and x” in C:

[(Voc(x) — Voc(x),x —x') =] (pc(*®) —pc(x’), x — x)

> llpc(x) —pc DI = |lx — x|12, (4.1.6)

so Vg [resp. ¢c] is strongly monotone [resp. strongly convex] with modulus 1 on
C —but we knew it already, since ¢ = 172 - || there.

On the other hand, ¢ cannot be strongly convex outside C: take p € bd C and
two different points x, x’ in the normal cone N¢(p); then pc(x) = pc(x’) = p and
the left-hand side of (4.1.6) is zero. In other words, ¢ is affine on { p} + N¢(p). This
geometrical property is illustrated by Fig. 4.1.2: apply the triangular relation

Ipl® + llx = pli* = llx* = 2lipll lx — pll cos@
to observe that
pc(x) = 3(IxlI* = llx — pI>) = 31plI* + lipll lix — plicos @

is affine with respect to the single variable ||x — p|| when p and the angle 0 are fixed.

Fig.4.1.2. Difference of squared distances
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4.2 Nondifferentiable Convex Functions

A convex function need not be differentiable over the whole interior of its domain;
nevertheless, it is so at “many points” in this set. Before making this sentence math-
ematically precise, we note the following nice property of convex functions.

Proposition 4.2.1 For f € ConvR" and x € intdom f, the three statements below
are equivalent:

(i) The function
fx+1d)— f(x)

R" 5d — lim is linear in d,;
tlo t

a
(ii) for some basis of R" in which x = (', ..., £"), the partial derivatives é—f—i(x)

existatx, fori=1,...,n;
(iii) f is differentiable at x.

PROOF. First of all, remember from Theorem 1.4.1.1 that the one-dimensional function
t > f(x + td) has half-derivatives at 0: the limits considered in (i) exist for all d.
We will denote by {b, . .., bn} the basis postulated in (ii), so that x = ) |, Eib;.

Denote by d +— £(d) the function defined in (i); taking d = =+b;, realize that,
when (i) holds,

i L&+ Thi) = f(%)

t10 -7

= 0(=b;) = —£(b;) = — lim fx +1tb) — f(x) .
tlo0 t

This means that the two half-derivatives at ¢ = 0 of the function t = f(x + tb;)
coincide: the partial derivative of f at x along b; exists, (ii) holds. That (iii) implies
(i) is clear: when f is differentiable at x,

. fx+1td)— f(x)
m

li
{0 t

=(Vfx),d).

We do not really complete the proof here, because everything follows in a
straightforward way from subsequent chapters. More precisely, [(ii) = (i)] is Proposi-
tion V.1.1.6, which states that the function £ is linear on the space generated by the b; s,
whenever it its linear along each b;. Finally [(i) = (iii)] results from Lemma VI.2.1.1
and the proof goes as follows. One of the possible definitions of (jii) is:

/
lim fGx+1d) - f(x)
t}o0,d'—>d t

is linearind .

Because f is locally Lipschitzian, the above limit exists whenever it exists for fixed
d’ = d —i.e. the expression in (i). u]

The function defined in (i), called the directional derivative of f at x in the
direction d, is denoted by
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fx+1td) - f(x)
t

f'(x,d) :=lim
tio
and will be encountered many times in the sequel.

Remark 4.2.2 The above result reveals three interesting properties enjoyed by convex func-
tions:

— First, consider the restriction @4 (¢) := f(x +td) of f along a line x + Rd. As soon as there
are n independent directions, say dj, . .., dn, such that each ¢4, has a derivative atz = 0,
then the same property holds for all the other possible directions d € R".

— Second, this “radial” differentiability property of ¢4 for all d (or for many enough d) suffices
to guarantee the “global” (i.e. Fréchet) differentiability of f at x; a property which does not
hold in general. It depends crucially on the Lipschitz property of f.

— One can also show that, if f is convex and differentiable in a neighborhood of x, then V f
is continuous at x. Hence, if £2 is an open convex set, the following equivalence holds true
for the convex f:

f differentiableon 2 <<= feCl(2).

This rather surprising property will be confirmed in §V1.6.2. o

The largest set on which a function can be differentiable is the interior of its
domain. We are now in a position to show that a convex function is differentiable
almost everywhere on that set.

Theorem 4.2.3 Let f € ConvR”". The subset of intdom f where f fails to be
differentiable is of zero (Lebesgue) measure.

PROOF. Since intdom f is the union, fork = 1, 2, .. ., of the open sets
2 ;= {x e intdom f : ||x|| <k},
it suffices to prove that each set
E ;= {x € £ : f is not differentiable at x}

is of measure zero. In view of Proposition 4.2.1, E is also the set where some partial
derivative does not exist. In other words

E=EU.--UEy;

here E; is the subset of £2; where the partial derivative of f along b; does not exist
({b1, ..., by} being some basis of R"). Using the property (1.4.1.3) of increasing
slopes,

Ei:={xe2: fl(x,b) >—f'(x, b))} .

Each E; is measurable (the functions f'(-, d) are measurable as pointwise limits of
measurable functions), so we will be done if we prove that each E; is of measure zero.
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Let us establish meas E| = 0. First, E; C §2; is bounded, so the characteristic
function x; (1 on E,, O elsewhere) is integrable. According to Fubini’s Theorem
(§A.6.2), we therefore write the measure of E; as

fxms‘,...,s")ds‘...dS"=f...f Ux1<s‘,...,s")ds‘]d§2...ds",

(&', ..., &™) being the coordinates of a point x along the given basis. The one-
dimensional convex function&! > f(£!, £2, ..., £") has a derivative except possibly
at countably many points of E; (Theorem 1.4.2.1), and this implies

f}(x(S[,--.,E")dE‘:O forall £2,... &". o

It is worth mentioning that this property follows from a more general result, due
to H. Rademacher (1919): a function which is locally Lipschitzian on an open set £2,
for example a convex function (Theorem 3.1.2), is differentiable almost everywhere
in £2. Our direct proof above cannot be extended to that case, though: we explicitly
used the equivalence (ii) <> (iii) of Proposition 4.2.1, for which convexity is essential.

4.3 Second-Order Differentiation

We have seen in Chap. I that the most useful criterion to recognize a convex function
uses the second derivative: a function ¢ which is twice differentiable on an interval I
is convex on I if and only if ¢” is nonnegative on I. In our present framework, the
best idea is to reduce the question to the one-dimensional case: a function is convex if
and only if its restrictions to the segments [x, x] are also convex. These segments can
in turn be parametrized via an origin x and a direction d: convexity of f amounts to
the convexity of t = f(x + td). Then, it suffices to apply calculus rules to compute
the second derivative of this last function. Our first result mimics Theorem 4.1.4.

Theorem 4.3.1 Let f be twice differentiable on an open convex set 2 C R". Then

(i) f is convex on $2 ifand only if V2 f (x) is positive semi-definite for all x, € $2;
(i) if V2 f(xo) is positive definite for all xy € 2, then f is strictly convex on £2;
(iii) f is strongly convex with modulus ¢ on $2 if and only if the smallest eigenvalue

of V2 f(-) is minorized by c on 2: for all xo € 2 and all d € R",

(V2f(x0)d, d) > cl|d|>.
PROOF. For given xo € £2,d € R" and ¢ € R such that xq + td € £2, we will set
xp:=xo+td and @@):=f(x)=f(x+1td),

so that ¢ (t) = (V2f(x1)d, d).

[(D)] Assume f is convex on £2; let (xo, d) be arbitrary in £2 x R", withd # 0: ¢ is
then convex on the open interval I := {t € R : x¢ + td € 2}. It follows
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0< ¢"(t) = (V2f(x:)d,d) foralltel >0

and V2 f (xp) is positive semi-definite.

Conversely, take an arbitrary [xg, x;] C £2, setd := x; — xo and assume V2 f (x;)
positive semi-definite, i.e. ¢’ (t) > 0, forz € [0, 1}. Then Theorem 1.5.3.3 tells us that
@ is convex on [0,1], i.e. f is convex on [xg, x;]. The result follows since xy and x;
were arbitrary in £2.

[(ii)] To establish the strict convexity of f on §2, we prove that V f is strictly monotone
on £2: Theorem 4.1.4 will apply. As above, take an arbitrary [xo, x;] C £2, x| # X0,
d := x| — xp, and apply the mean-value theorem to the function ¢’, differentiable on
[0,1]: for some T €]0, 1],

') —¢'(0) = ¢"(x) = (V2 f(x2)d,d) > 0
and the result follows since

@' (1) = ¢'(0) = (V f(x;) = V f(x0), x1 — Xo) -

[(iii)] Using Proposition 1.1.2, apply (i) to the function f — 1/2¢|| - ||, whose Hessian
operator is V2 f — cI,, and has the eigenvalues A — ¢, with A describing the eigenvalues
of V2f. o

Some differences have appeared with respect to §4.1:

— The sufficiency condition in (ii) is not necessary, even for univariate functions: think
of f(x) =1/ax".

— Theorem 4.1.1 stated that the affine (first-order) approximation of f around x, was
actually a global minorization — more or less “comfortable”. Here, we cannot say
that the quadratic approximation (of f around x,)

x > f(xo0) + (V. f(x0), x — Xo) + 3(V2f (x0)(x — X0), x — xo)

minorizes f: think of f(x) = 1/2x2 — 1/4x*, which is convex for |x|> < 1/3.

— The present statements do not characterize convexity on a convex subset C C £2:
C must be open. The reason is that §4.1 was dealing with the image (through f or
V f) of pairs of points in C (x; and x, or x and x’). Here, V2 f looks at f in the
neighborhood of a single point, say xo. Thus, a statement like

fisconvexonC C 2 < VZf()is positive semi-definite on C

may be wrong if C is not open: f (£, n) := £2 — 5% is convex on C = R x {0} but
its Hessian is nowhere positive semi-definite.

Remark 4.3.2 Despite the last comment above, the convexity criterion using second
derivatives is still the most powerful, even if positive (semi-)definiteness is not always
easy to check. To recognize a convex function on a non-open set C, the best chance is
therefore to use the Hessian operator on §2 = int C, hopefully nonempty, and then to
try and conclude by passing to the limit: the property C C cl(int C) = ¢l C is useful
for that. O
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Example 4.3.3 To illustrate Theorem 4.3.1, consider the function

Q= [x=(§',...,§") L g >0fon'=1,...,n},

fiR25xm f(x):= —(E'g2. .- gMm/n .

Direct computations give its second derivatives, i.e. its Hessian operator associated with the
dot-product of R"*:
3*f . f®)
ogiosl  wEiE)
where 8;; is Kronecker’s symbol. We obtain, withd = (d’, ..., d") e R™:

[V f(x)d]'d = %[( i=1 ‘gd’:)Z —n ¥ (%)2] ’

The £, - and £»-norms are related on R" by the inequality || - ||} < /7] - iz (take a vector
of the type (%1, ..., 1) and use the Cauchy-Schwarz inequality); because f is negative on
£2, the above expression is therefore nonnegative: f is convex. Observe in passing that we
obtain an equality if d and x are collinear: our f is positively homogeneous.

Observe here that f can be extended to cl £2 by posing f(x) = 0 if some &/ is zero.
Convexity is preserved, and this illustrates Remark 4.3.2. (n]

() (1~ n&;j)

Having thus established a parallel with §4.1, we now consider the existence of
second derivatives. In one dimension, the first derivative is monotone and, as such, it
in turn has a derivative almost everywhere (Theorem 1.5.1.3). In several dimensions,
monotonicity becomes that of Definition 4.1.3; the differentiability of such operators
involves much more sophisticated concepts from analysis. We just mention without
proof the main result:

Theorem 4.3.4 (A.D. Alexandrov) Let f € ConvR". For all x € intdom f except
inaset of zero (Lebesgue) measure, f is differentiable at x and there exists a symmetric
positive semi-definite operator D? f (x) such that, for h € R"

Fx+h)=f@x) +(Vf(x), h) + $(D*f(x)h, by + o(I|h)%) . O

The operator D? f(x) can hardly be called the “second derivative” of f atx
because its existence does not even imply the existence of V f in a neighborhood of
x. One should rather say that it gives a second-order approximation of f around x.

Remark 4.3.5 'We also mention that much can be said concerning the set E; where
V f fails to exist; but the set E; where D? f fails to exist seems much more mysterious.
Despite the analogy between Theorems 4.2.3 and 4.3.4, there is a drastic difference
between first- and second-order approximations of a convex function.

Also, the interesting properties mentioned in Remark 4.2.2 do not transfer to
second order: f may be twice differentiable on £2 without being twice continuously
differentiable on £2; the (first- and) second-order partial derivatives of f may exist at
x while f is not twice differentiable at x; and so on. 0



4 First- and Second-Order Differentiation 193

Remark 4.3.6 (The Case of Flat Domains) In all the present Section 4, dom f was
implicitly assumed full-dimensional, in order to have a nonempty intdom f. When
such is not the case, some kind of differentiation can still be performed. In fact, exploit
Remark 2.1.7 and make a change of variable:

y = foy) = flxo+Y),

where x; is fixed in dom f, y varies in V, V C R” being the subspace parallel to
aff dom f. Now, f; € Conv V and dom fj is full-dimensional in V. Equipping V with
the induced scalar product (-, -} and the induced Lebesgue measure, the main results
above can be reproduced. More precisely: almost everywhere in intdom fj, i.e. for
almost all xo + y € ridom f,

—there is a vector s € V (the gradient of f; at y) which gives the first-order approxi-
mation of f around xg

VheV, f(xo+y+h)=f(xo+y)+ (s, h)+o(lhl)

(the remainder term o(}|2|}) being nonnegative); this s could be called the “relative
gradient” of f at x := xo + y; it exists at xo + y if and only if the function
t > f(xo+ y+td)hasaderivativeatt =Oforalld € V;
— there is a linear operator D : V — V which is symmetric positive semi-definite: for
allhandkinV,
DheV and (Dh,k)= (h,Dk),

and which gives the second-order approximation

YheV, f(o+y+h)=f(xo+y)+(s,h)+ (Dhh)+o(lh|>). 0O



V. Sublinearity and Support Functions

Prerequisites. Basic definitions, properties and operations of convex sets (Chap. III) and
convex functions (Chap. IV).

Introduction. In classical real analysis, the simplest functions are linear. In convex
analysis, the next simplest convex functions (apart from the affine functions, widely
used in §1V.1.2), are so-called sublinear. There are several motivations for their study;
we give three of them, which are of particular importance in the context of convex
analysis and optimization.

(i) A suitable generalization of linearity. A linear function £ from R” to R, or a linear
form on R", is primarily defined as a function satisfying for all (x;, x;) € R” x R"
and (1, 1) € R x R:

L(tix; + txy) = 1€(x1) + BE(x3) . 0.1)

A corresponding definition for a sublinear function o from R” into R is: for all
(x1,x7) € R" x R™ and (t,h) € Rt x R+,

o(hix) + 1xy) < 4o (x)) + Lo (xy) . 0.2)

A first observation is that requiring an inequality in (0.2), rather than an equality,
allows infinite values for o without destroying the essence of the concept of sublinear-
ity. Of course, (0.2) is less stringent than (0.1), but more stringent than the definition of
a convex function: the inequality must hold in (0.2) even if t; + £, # 1. This confirms
that sublinear functions, which generalize linear functions, are particular instances of
convex functions.

Remark 0.1 Note that (0.1) and (0.2) can be made more similar by restricting ¢; and #, to
be positive in (0.1) — this leaves unchanged the definition of a linear function.

The prefix “sub” comes from the inequality-sign “ < ” in (0.2). It also suggests that
sublinearity is less demanding than linearity, but this is a big piece of luck. In fact, draw the
graph of a convex and of a concave function and ask a non-mathematician: “which is convex?”.
He will probably give the wrong answer. Yet, if convex functions were defined the other way
round, (0.2) should have the “ > ™ sign. The associated concept would be superlinearity, an
unfortunate wording which suggests “more than linear”. ]
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In a word, sublinear functions are reasonable candidates for “simplest non-trivial
convex functions”. Whether they are interesting candidates will be seen in (ii) and
(iii). Here, let us just mention that their epigraph is a convex cone, the next simplest
convex epigraph after half-spaces.

(ii) Tangential approximation of convex functions. To say thata function f : R" —» R
is differentiable at x is to say that there is a linear function £, which approximates
f(x 4+ h) — f(x) to first order, i.e.

fGx+h)— fx) = Lx(h) +o(lhl).
This fixes the rate of change of f when x is moved along a line d: with ¢(t) — 0 if

t— 0,
fx+1td) = f(x)
t

Geometrically, the graph of f has a tangent hyperplane at (x, f(x)) € R" x R;
and this hyperplane is the graph gr £, of the affine function h > f(x) + £ (k).

When f is merely convex, its graph may have no tangent hyperplane at a given
(x, f(x)). Nevertheless, under reasonable assumptions, f (x + k) — f(x) can still be
approximated to first order by a function which is sublinear: there exists a sublinear
function & — oy (h) such that

=L€x(d)+e() forallt#0.

fx+h) = f(x) =oax(h) +o(llh]) .

This will be seen in Chap. VI.

Geometrically, gr oy is no longer a hyperplane but rather a cone, which is therefore
tangent to gr f (the word “tangent” should be understood here in its intuitive meaning
of a tangent surface, as opposed to tangent cones of Chap. III; neither gr oy, nor gr f
are convex). Thus, one can say that differentiable functions are “tangentially linear”,
while convex functions are “tangentially sublinear”. See Fig. 0.1, which displays the
graph of a differentiable and of a convex function. The graph of £, is the thick line
L, while the graph of oy is made up of the two thick half-lines S; and S».

o et

V' x+h X x+h

tangential linearity tangential sublinearity

Fig. 0.1. Two concepts of tangency

(i) Nice correspondence with nonempty closed convex sets. In the Euclidean space
(R", (-, -)), a linear form £ can be represented by a vector: there is a unique s € R”
such that
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£(x) = (s,x) forallx e R". 0.3)

The definition (0.3) of a linear function is more geometric than (0.1), and just as
accurate. A large part of the present chapter will be devoted to generalizing the above
representation theorem to sublinear functions.
First observe that, given a nonempty set S C R”, the function o5 : R" —
R U {400} defined by
os(x) :=sup{(s,x) : s € S} 0.4)

is sublinear. It is called the support function of S, already encountered in Sects I11.4.1
and IV.1.3(a). When § is bounded, its support function is finite everywhere; otherwise,
o can take on the value 400 but it remains lower semi-continuous. Furthermore, it
is easy to check that o is also the support function of the closure of S, and even of
the closed convex hull of S. It is therefore logical to consider support functions of
nonempty closed convex sets only.

Now, a key result is that the mapping S +> oy is then bijective: a lower semi-
continuous (i.e. closed) sublinear function is the support function of a uniquely de-
termined nonempty closed convex set. Thus, (0.4) establishes the announced repre-
sentation, just as (0.3) does in the linear case. Note that the linear case is covered: it
corresponds to S being a singleton {s} in (0.4).

This correspondence between nonempty closed convex sets of R” and closed
sublinear functions allows fruitful and enlightening geometric interpretations when
studying these functions. Vice versa, it provides powerful analytical tools for the
study of these sets. In particular, when closed convex sets are combined (intersected,
added, etc.) to form new convex sets, we will show how their support functions are
correspondingly combined: the mapping (0.4) is an isomorphism, with respect to a
number of structures.

1 Sublinear Functions

1.1 Definitions and First Properties

Definition 1.1.1 A function o : R” — R U {400} is said to be sublinear if it is
convex and positively homogeneous (of degree 1): 0 € ConvR" and

o(tx) =to(x) forallx eR"andt > 0. (1.1.1)
[m]

Remark 1.1.2 Inequality in (1.1.1) would be enough to define positive homogeneity:
a function o is positively homogeneous if and only if it satisfies

o(tx)<to(x) forallx e R"andt > 0. (1.1.2)
In fact, (1.1.2) implies (¢x € R” and ™! > 0!)
o(x)=0( tx) <t 7 'o(tx)

which, together with (1.1.2), shows that o is positively homogeneous. u}
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We deduce from (1.1.1) that 0(0) = t0(0) for all # > 0. This leaves only two
possible values for o (0): 0 and +oo. However, most of the sublinear functions to be
encountered in the sequel do satisfy o (0) = 0. According to our Definition IV.1.1.3
of convex functions, o should be finite somewhere; otherwise dom o would be empty.
Now, if 0(x) < +00, (1.1.1) shows that o (tx) < +oo forall ¢ > 0. In other words,
dom o is a cone, convex because o is itself convex. Note that, being convex, o is
continuous relatively to ri dom o, but discontinuities may occur on the boundary-rays
of dom o, including at 0.

The following result is a geometrical characterization of sublinear functions.

Proposition 1.1.3 A function o : R® — R U {400} is sublinear if and only if its
epigraph epi o is a nonempty convex cone in R x R.

PROOF. We know that o is a convex function if and only if epi o is a nonempty convex
setin R” x R (Proposition IV.1.1.6). Therefore, we just have to prove the equivalence
between positive homogeneity and epi o being a cone.

Let o be positively homogeneous. For (x, r) € epi o, the relation o (x) < r gives

o(tx) =to(x)<tr forallt >0,

s0 epi o is a cone. Conversely, if epi o is a cone in R" x R, the property (x, o(x)) €
epio implies (¢x,to(x)) € epio, i.e.

o@x)<to(x) forailt>0.
From Remark 1.1.2, this is just positive homogeneity. o

Another important concept in analysis is subadditivity: a function o is subadditive
when it satisfies

o(x; +x2) <o(x;) +0o(xz) forall (x, x;) € R* x R, (1.1.3)

Here again, the inequality is understood in R U {+o0}. Together with positive ho-
mogeneity, the above axiom gives another characterization (analytical, rather than
geometrical) of sublinear functions.

Proposition 1.1.4 4 function o : R" — R U {+00}, not identically equal to +oo,
is sublinear if and only if one of the following two properties holds:

o(tix) + thxy) < ho(x)) + ho(xy) forall x;,x; € R%and t), 1, >0, (1.1.4)

or
o is positively homogeneous and subadditive . (1.1.5)

PROOF. [sublinearity => (1.1.4)} For x;,x, € R" and t;,1, > O,sett :=¢t; + 1, > 0;
we have

I

o (tix) + 1xp) o (e[%x + 2x)))

to ('tiL X+ ftZ x2) [positive homogeneity]

t [-ti‘a(xl) + £t7=0‘ (xz)] s [convexity]

N
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and (1.1.4) is proved.

[(1.1.4) = (1.1.5)] A function satisfying (1.1.4) is obviously subadditive (take ¢; =
t; = 1) and satisfies (take x; = x; = x, 4, =t = 1/21)

o(tx) <to(x) forallx e R"andt > 0,

which is just positive homogeneity because of Remark 1.1.2.

[(1.1.5) = sublinearity] Take t;,t, > O with t; + t, = 1 and apply successively
subadditivity and positive homogeneity:

o (hix) + hx) S o(tix)) + 0 (hxy) = 1o (x1) + o (x2) ,
hence o is convex. ]
Corollary 1.1.5 If o is sublinear, then
o(x)+0o(=x)=20 forallx e R". (1.1.6)
PROOF. Take x, = —x, in (1.1.3) and remember that o (0) > 0. o

It is worth mentioning that, to become sublinear, a positively homogeneous func-
tion just needs to be subadditive as well (rather than convex, as suggested by Def-
inition 1.1.1); then, of course, it becomes convex at the same time. Figure 1.1.1
summarizes the connections between the classes of functions given so far. Note for
completeness that a convex and subadditive function need not be sublinear: think of

fx)y=1.

: positively homogeneous

I‘{ sublinear |
subadditive L convex

L

Fig. 1.1.1. Various classes of functions

Similarly, one can ask when a sublinear function becomes linear. For a linear
function, (1.1.6) holds as an equality, and the next result implies that this is exactly
what makes the difference.

Proposition 1.1.6 Let o be sublinear and suppose that there exist xi, ..., Xy in
dom o such that

o)) +o(-x)=0 forj=1,...,m. (1.1.7)

Then o is linear on the subspace spanned by x, ..., Xm.
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PROOF. With x|, ..., X as stated, each —Xj isindomo. Let x := Z;-’;] 1jx; be an
arbitrary linear combination of x4, . . ., Xz ; we must prove thato (x) = Z;'; (Lo (x j).
Set

Jii={j:4 >0}, JL={j:t <0}
and obtain (as usual, Y g = 0):

o(x) = U(Z]]tjxj+212(_tj)(_xj))

< X240 (x) + 305, (=)o (—xj) [from (1.1.4)]
= 25, t0(x) + X ptio () =27, tjo (x)) [from (1.1.7)]
= = 5 tjo(=xj) — X5, (=tj)o(x)) [from (1.1.7)]
< -0 (— i tjxj) [from (1.1.4)]
= —o(—x)<ox). [from (1.1.6)]

In summary, we have proved
m

o(x)< Y _tjo(x) < —o(-x)<o(x). o
Jj=

Thanks to this result, we are entitled to define
U:={xeR": g(x)+0(~x) =0} (1.1.8)

which is a subspace of R”: the subspace in which o is linear. Note that U nonempty
corresponds to o (0) = 0 (even if U reduces to {0}).

"ﬂ

Fig.1.1.2. Subspace of linearity of a sublinear function

What is interesting in this concept is its geometric interpretation. If V is another subspace
such that U N V = {0}, there holds by definition

oc(x)+o(—=x)>0 forall0#xeV.
This means that, if 0 £ d € V, o is “V-shaped” along d: for ¢ > 0,
o(td)=at and o(—td) =Bt

for some  and B in R U {400} such that @ 4+ 8 > 0; whereas « and 8 would be 0 if d were
in U. See Fig. 1.1.2 for an illustration. For d of norm 1, the number o + B above could be
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called the “lack of linearity” of o along d: when restricted to the line d, the graph of o makes
an angle; when finite, the number o + 8 measures how acute this angle is.

Figure 1.1.2 suggests that gro is a hyperplane not only in U, but also in the
translations of U': the restriction of o to {y} 4+ U is affine, for any fixed y. This comes
from the next result.

Proposition 1.1.7 Let o be sublinear. If x € U, i.e. if
ox)+o(—x)=0, (1.1.9)
then there holds
o(x+y)=o0(x)+o(y) ﬁJrallyeR". (1.1.10)

PROOF. In view of subadditivity, we just have to prove “ > ” in (1.1.10). Start from
the identity y = x + y — x; apply successively subadd1t1v1ty and (1.1.9) to obtain

oc(y)So@x+y)t+o(—=x)=ocx+y)—o(x). i

1.2 Some Examples

We start with some simple situations. If K is a nonempty convex cone, its indicator

function
Ix () = 0 ifxek,
K271 +oo ifnot
is clearly sublinear. In R” x R, the epigraph epi [ is made up of all the copies of K,
shifted upwards. Likewise, a distance function

dg (x) :==inf {Jly —x|| : y € K}

is also sublinear: nothing in the picture is essentially changed when both x and y are
multiplied by ¢ > 0. Another example is the function from R? to R U {400}

—2vén if £,n2>0

+00 if not.

ox)=o0(,n) = {

Its positive homogeneity is clear, its convexity is not particularly difficult to check
(see Example IV.4.3.3), it is therefore sublinear. A good exercise is to try to visualize
its epigraph.

Example 1.2.1 Let f € ConvR”; its perspective f of §1V2.2, which is convex, is
clearly positively homogeneous (from R"t! to R U {400}); it is an important instance
of sublinear function. For example, in R?

1% u ifu>0,
400 ifnot

fu,§) = [ 1.2.1)

is the perspective of £ > f (&) =1/282.
Note that £(0,0) = +oc. The closure of f can be computed with the help
of Example Iv3.2.4: clearly enough, the asymptotic function of f is I{o}- Hence

(c1 £)(0, 0) = 0, while f coincides with its closure everywhere else. O
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Example 1.2.2 (Norms) We recall that a norm | - }j on R” is a function from R" to
[0, +oo[ satisfying the following properties:

@) lixlj = 0 if and only if x = 0;

Gii) Yexll = |t] fix)l forallx € R* and ¢t € R;
(iii) flxr + x2fl < Wxil + lixll for all (xy, x2) € R* x R™.

Clearly, || - || is a positive (except at 0) and finite sublinear function which, more-

over, is symmetric i.e. || — x| = f|x}j for all x. It is linear on no line: the subspace U
of (1.1.8) is reduced to {0}.

Conversely, if o is a sublinear function from R” into [0, +oo[ which is linear on
no line, i.e. such that

o(x)+o0(—x)>0 forallxs+#0,
then [|x|| := max{o (x), 0 (—x)} is a norm on R”". a

Example 1.2.3 (Quadratic Semi-Norms) Take a symmetric positive semi-definite
operator Q from R" to R” and define

f(x) =+(Qx,x) forallx e R".

Convexity of f (i.e. its subadditivity, i.e. the Cauchy-Schwarz inequality) is not so
easy to prove directly. Consider, however, the convex set

Eg:={x eR" : (Qx,x)<1}.
Then f can be obtained as follows:

fx) = inf{A>0: (Qx x)gkz}
= inf{A>0: (0%, %) <1}
= inf{A>0: AGEQ}

and we will see below that this establishes convexity — hence sublinearity — of f.
Observe in passing that E  is the sublevel-set atlevel 1 of both f and f* = (Q-, ).

Decompose the space as R* = Ker Q @ Im Q: the intersection of Eg w1th ImQisan
ellipsoid centered at the origin, say E 0- The entire E ) is the cylinder E g +KerQ,
whose asymptotic cone is just the subspace Ker Q. If and only if Ker Q = {0}, i.e. Q
is positive definite, is E g compact, namely an ellipsoid. On the other hand, f is finite,
nonnegative, symmetric because Eg has center 0; and f is zero on the asymptotic
cone Ker Q of Eg. Theorem 1.2.5 below establishes the convexity of f, which is
therefore a semi-norm, actually a norm if Q is positive definite. ]

The mapping Eg > f, introduced in Example 1.2.3, is important in the context
of sublinear functions; let us put it in perspective.

Definition 1.2.4 Let C be a closed convex set containing the origin. The function
yc defined by

yc(x) :=inf{A >0 : x € AC} (1.2.2)
is called the gauge of C. As usual, we set yc(x) := +o0ifx € AC fornoA > 0. O
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Geometrically, yc can be obtained as follows: shift C (C R”) in the hyperplane
R™ x {1} of the graph-space R" x R (by contrast to a perspective-function, the present
shift is vertical, along the axis of function-values). Then the epigraph of yc is the
cone generated by this shifted copy of C; see Fig. 1.2.1.

Fig. 1.2.1. The epigraph of a gauge

The next result summarizes the main properties of a gauge. Each statement should
be read with Fig. 1.2.1 in mind, even though the picture is slightly misleading, due to
closure problems.

Theorem 1.2.5 Let C be a closed convex set containing the origin. Then

(i) its gauge yc is a nonnegative closed sublinear function;
(ii) yc is finite everywhere if and only if 0 lies in the interior of C,
(iii) Coo being the asymptotic cone of C,

(xeR” : ye(x)Lr}=rC forallr >0,
(xeR": yc(x) =0} = Coo .

PROOF. [(i) and (iii)] Nonnegativity and positive homogeneity are obvious from the
definition of y; also, yc(0) = 0 because 0 € C. We prove convexity via a geometric
interpretation of (1.2.2). Let

Kc :=cone(C x {1) = {(Ac, ) eR" xR : c€C, >0}

be the convex conical hull of C x {1} C R” x R. It is convex (beware that K¢ need
not be closed) and y¢ is clearly given by

yc(x) =inf{r : (x,2) € Kc}.

Thus, y( is the lower-bound function of §1V.1.3(g), constructed on the convex set K ¢;
this establishes the convexity of yc, hence its sublinearity.
Now we prove

[xeR": yew) <1} =cC. (1.2.3)
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This will imply the first part in (iii), thanks to positive homogeneity. Then the second
part will follow because of (II1.2.2.2):

Coo=0N{rC : r >0}

and closedness of y¢ will also result from (iii) via Proposition IV.1.2.2.

So, to prove (1.2.3), observe first that x € C implies from (1.2.2) that certainly
yc (x) < 1. Conversely, let x be such that yc(x) < 1; we must prove that x € C. For
this we prove that x; := (1 — 1/k)x € C fork = 1,2,... (and then, the desired
property will come from the closedness of C). By positive homogeneity, yc (xx) =
(1 — 1/k)yc(x) < 1, so there is A €]0, 1[ such that x; € A;C, or equivalently
xx /A € C.Because C is convex and contains the origin, Ag (xg /Ag) + (1 —Ag)0 = xi
is in C, which is what we want.

[(ii)] Assume O € intC. There is € > 0 such that for all x # 0, x; := ex/||x|| € C;
hence yc(x¢) < 1 because of (1.2.3). We deduce by positive homogeneity

yc(x) = "—xl—l)'c(xe) < M;
€ €

this inequality actually holds for all x € R” (y¢(0) = 0) and y( is a finite function.
Conversely, suppose yc is finite everywhere. By continuity (Theorem IV.3.1.2),
yc has an upper bound L > 0 on the unit ball:

IxI<1 = ycx)SL = =xelLC,
where the last implication comes from (iii). In other words, B(0, 1/L) C C. o

Since yc is the lower-bound function of the cone K¢ (= K¢ + {0} x RY) of
Fig. 1.2.1, we know from (IV.1.3.6) that

Kc Cepiyc CclKc;
but yc has a closed epigraph, therefore
epiyc = cl K¢ = ¢one(C x {1}). (1.2.4)

Since Coo = {0} if and only if C is compact (Proposition II1.2.2.3), we obtain
another consequence of (iii):

Corollary 1.2.6 C is compact if and only if yc(x) > 0 for all x # 0. o

Example 1.2.7 The quadratic semi-norms of Example 1.2.3 can be generalized: let
S € ConvR" have nonnegative values and be positively homogeneous of degree 2,
ie.

0< f(tx) =t>f(x) forallx e R" andall? > 0.

Then, 4/ f is convex; in fact
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VT inf {A >0 : J/F(x) <A}
inf{A>0: f(x) <A?%}

inf {A>0: £eSi(N},

which displays the sublevel-set
SI(H=xeR”: fX)L1}=C.

In other words, /f is the gauge of a closed convex set C containing the origin. O

Gauges are examples of sublinear functions which are closed. This is not the case
of all sublinear functions: see the function f of (1.2.1); another example in R? is

0 ifn>0,
hé,n):=1{ &I ifn=0,
+o0 ifnp <0.

By taking the closure, or lower semi-continuous hull, of a sublinear function o,
we get a new function defined by

clo(x) := liminf o (x’) (1.2.5)

x'—>x

which is (i) closed by construction, (ii) convex (Proposition IV.1.2.6) and (iii) posi-
tively homogeneous, as is immediately seen from (1.2.5). For example, to‘close the
above h, one must set A(£, 0) = 0 for all £. We retain from this observation that, when
we close a sublinear function, we obtain a new function which is closed, of course, but
which inherits sublinearity. The subclass of sublinear functions that are also closed is
extremely important, particularly for minimization; in fact most of our study will be
restricted to these.
Note that, for a closed sublinear function o,

a(0) < liina(tx) =0 forall x € domo,
tlo

so certainly o(0) = 0; otherwise, dom o would be empty, a situation that we re-
ject from our definitions. Another observation is that a closed sublinear function o
coincides with its asymptotic function:

o4o =0 if o is closed and sublinear

(take xo = 0 in the definition of Proposition IV.3.2.2). In particular, if ¢ is finite
everywhere, then Proposition IV.3.2.7 tells us that it is Lipschitzian, and its best
Lipschitz constant is

sup{o(d) : ||dll =1}. (1.2.6)
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1.3 The Convex Cone of All Closed Sublinear Functions

Similarly to convex functions, sublinear functions, closed or not, can be combined to
give new sublinear functions.

Proposition 1.3.1
(i) If 01 and o, are [closed] sublinear and t,, t, are positive numbers, then o =
101 + oy is [closed] sublinear, if not identically +o00c.
(i) If {oj}jey is a family of [closed] sublinear functions, then o = supjcj oj is
[closed] sublinear, if not identically +ooc.

PROOF. Concerning convexity and closedness, everything is known from §IV.2. Note
in passing that a closed sublinear function is zero (hence finite) at zero. As for positive
homogeneity, it is straightforward. O

Proposition 1.3.2 Let {0}}jc s be a family of sublinear functions all minorized by
some linear function. Then
(i) o = co(infje s 0}) is sublinear.
(i) If J = {1, ..., m} is a finite set, we obtain the infimal convolution
comin{oi,...,om}=01 %S om.

PROOF. [(i)] Once again, the only thing to prove for (i) is positive homogeneity. Actu-
ally, it suffices to multiply x and each x; by # > 0 in a formula giving co(inf;; 5;)(x),
say (IV.2.5.4).

[(ii)] By definition, computing co(min; o;)(x) amounts to solving the minimization
problem in the m couples of variables (x j» @) € dom 0j X R

: m
mfmz:j=1 ajoj(x;j) =20

- (1.3.1)
j=1 oj = 1, ZT=‘anj =X.

In view of positive homogeneity, the variables «; play no role by themselves: the
relevant variables are actually the products ajx; and (1.3.1) can be written — denoting
ajx; again by x;:

inf {Z;.":l 0j(xj) + 27 % = x} .
We recognize the infimal convolution of the o;’s. o

From Proposition 1.3.1(i), the collection of all closed sublinear functions has an
algebraic structure: it is a convex cone contained in Conv R”. It contains another
convex cone, namely the collection of finite sublinear functions.

A topological structure can be defined on the latter cone. In linear analysis, one
defines the Euclidean distance between two linear forms £; = (s}, -) and £, = (s, -):

1€y — L2l == lIs1 — s2ll = max [£;(x) — £2(x)].
llxlt<1
A distance can also be defined on the convex cone of everywhere finite sublinear

functions (the extended-valued case is somewhat more delicate), which of course
contains the vector space of linear forms.
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Theorem 1.3.3 For o, and o, in the set @ of sublinear functions that are finite
everywhere, define

A(0y, 02) = [z lo1(x) — o2 (x)] . (1.3.2)

]

Then A is a distance on ®.

PROOF. Clearly A(oy, 03) < +00 and A(oy, 03) = A(0,, 01). Now positive homo-
geneity of 0| and o, gives for all x # 0

lo1 (x) — 03(x)] ||xu|m () = vz(ui—u)l

llx Il maxy, = lo1(u) — o2(u)]
flxil Aey, 02) .

N IN

In addition, o;(0) = 0,(0) = 0, so
lo1(x) — o2(x)| < lix|| Aoy, 07) forall x € R”

and A (04, 0;) = 0 if and only if o) = 03.
As for the triangle inequality, we have for arbitrary oy, 03, 03 in @

lo1(x) — o3(x)| < |o1(x) — 02(x)| + |o2(x) — 03(x)| forallx e R",
so there holds

A (01, 03) < maxy < [lo1(x) = 02(x)| + |02(x) — 73(x)[]
< max|y| <1 101(x) — 02(x)| + max) x| <1 lo2(x) — 03(x)]

which is the required inequality. o

The index-set in (1.3.2) can be replaced by the unit sphere ||x|| = 1, just as in
(1.2.6); and the distance between an arbitrary o € @ and the zero-function (which
is in @) is just the value (1.2.6). The function A(-, 0) acts like a norm on the convex
cone P.

Example 1.3.4 Consider || - ||| and || - ljoo, the £;- and £oo-norms on R”. They are finite
sublinear (Example 1.2.2) and there holds

n—1
Al -0 - =
- s - Hood Tn
To accept this formula, consider that, for symmetry reasons, the maximum in the definition
(1.3.2) of A is achieved at x = (1/\/n, ..., 1//n). O

The convergence associated with this new distance function turns out to be the
natural one:

Theorem 1.3.5 Let {0y} be a sequence of finite sublinear functions and let o be a
finite function. Then the following are equivalent when k — +o00:

(i) {ox} converges pointwise to o ;
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(ii) {0y} converges to o uniformly on each compact set of R";
(iii) A(og, 0) = 0.

PROOF. First, the (finite) function o is of course sublinear whenever it is the pointwise
limit of sublinear functions. The equivalence between (i) and (ii) comes from the
general Theorem I'V.3.1.5 on the convergence of convex functions.

Now, (ii) clearly implies (iii). Conversely A(og, o) — 0 is the uniform conver-
gence on the unit ball, hence on any ball of radius L > 0 (the maximand in (1.3.2) is
positively homogeneous), hence on any compact set. O

2 The Support Function of a Nonempty Set

2.1 Definitions, Interpretations

Definition 2.1.1 Let S be a nonempty set in R”. The function og : R” — RU {400}
defined by
R" 3 x > og(x) :=sup {{(s,x) : 5 € S} (2.1.1)

is called the support function of S. o

For a given S, the support function is therefore attached to the scalar product (-, -): in
(2.1.1), the space where s runs and the space where o5 acts are dual to each other. It follows,
for example, that if the scalar product is changed, S remaining the same, o5 is changed.

The supremum in (2.1.1) may be finite or infinite, achieved on S or not. In this
context, S can be interpreted as an index set: o5(-) is the supremum of the collection
of linear forms (s, -) over §. We obtain immediately:

Proposition 2.1.2 A4 support function is closed and sublinear.

PROOF. This results from Proposition 1.3.1(ii) (a linear form is closed and convex!).
Observe in particular that a support function is null (hence < +00) at the origin. O

The domain of o is a convex cone, closed or not. Actually, x € dom o5 means
that, for some r := og(x):

Sc{seR": (s,x)<r} (2.1.2)
i.e. § is contained in a closed half-space “opposite” to x.

Proposition 2.1.3 The support function of S is finite everywhere if and only if S is
bounded.

PROOF. Let S be bounded, say S C B(0, L) for some L > 0. Then
(s, x) < lisll Ixff < LJix|| forallse S,

which implies o5(x) < L||x|| for all x € R™.
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Conversely, finiteness of the convex og implies its continuity on the whole space
(Theorem IV.3.1.2), hence its local boundedness: for some L,

(s,x) <ogx)<L forall(s,x) €S x B(0,1).
If s # 0, we can take x = s/||s|| in the above relation, which implies ||s|| < L. ]
Observing that

—0g(—x) = —sup[—{s, x)] = inf (5, x),
ses s€S

the number o5(x) + os(—x) of (1.1.6) is particularly interesting here:
Definition 2.1.4 The breadth of the nonempty set S along x # 0 is

os(x) + og(—x) = sup (s, x) — inf (s, x),
ses sES

a number in [0, +o0]. It is 0 if and only if S lies entirely in some affine hyperplane
orthogonal to x; such a hyperplane is expressed as

{y eR" : (y,x) =a5(0)},

which in particular contains S. The intersection of all these hyperplanes is just the
affine hull of S. O

If x has norm 1 and is interpreted as a direction, the breadth of S measures how
“thick” § is along x: it is the distance between the two hyperplanes orthogonal to x
and “squeezing” S. This observation calls for a more general comment: a sublinear
function x + o (x) being positively homogeneous, the norm of its argument x has
little importance. This argument should always be thought of as an oriented direction,
i.e. a normalized vector of R”. Accordingly, we will generally use from now on the
notation o (d), more suggestive for a support function than o (x).

Here, we give two geometric constructions which help interpreting a support
function.

Interpretation 2.1.5 (Construction in R”) Given S C R” and d # 0, consider for
each r € R the closed half-space alluded to in (2.1.2):

Hy, ={zeR": (z,d)<r}. (2.1.3)

If (2.1.2) holds, we can find r large enough so that § C H,; ,. The value og(d) is the

smallest of those r: decreasing r as much as possible while keeping § in H; , means
“leaning” onto S the affine hyperplane '

Hy, ={zeR": (z,d) =r}.

See Fig. 2.1.1 for an illustration.
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Fig. 2.1.1. Supporting hyperplanes and support functions

If (2.1.2) does not hold, however, this operation is impossible: § is “unbounded
in the oriented direction” d and o5(d) = +o00. Take for example in R?

S:={¢,0): §>0}.

For d = (1, 1) say (and assuming that (-, -) is the usual dot-product), no closed
half-space of the form (2.1.3) can contain S, even if r is increased to +o00.

If S is compact, the supremum of the linear form {-, d} is achieved on S, no matter
how d is chosen. This means that, somewhere on the hyperplane Hy o4(d) there is
some sy which is also in S, actually a boundary point of S. O

Figure 2.1.1 suggests (and Proposition 2.2.1 below confirms) that the support
functions of S and of o § coincide. Note also that the distance from the origin 0 to
the “optimal” hyperplane Hy ;¢(4) is los(d/||ld|))|. This is easily confirmed: project
the origin onto Hy, g¢(4) to obtain the vector t*d such that (d, 1*d) = og(d). Then
the distance from 0 to Hy 5(g) is [|t*d]|.

Interpretation 2.1.6 (Construction in R”*!) In the graph-space R” x R, we shift
S down to R” x {—1} and consider the convex conical hull Kg of this shifted copy of
S. Then the polar cone (K5)° of Kg is nothing else than the epigraph of 0. Indeed

Ks=R*co(S x {—1}) = co[R*(S x {-1})],
so that

(Ks)° = {(d,r):t{s,d) —tr <Oforalls € S and ¢t > 0}
{d,r) : (s,d)<rforalls €S}
{d,r) : supgegis,d) <r} =epios.

This is illustrated on Fig. 2.1.2. We have intentionally chosen a case with 0 € §. It
implies og(d) > 0 for all d, as is obvious just from its definition (2.1.1). This property
is fundamental in optimization (and frankly, the picture is then a lot easier to draw?).

[n]
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Fig. 2.1.2. The epigraph of a support function

2.2 Basic Properties

First, we list some properties of support functions that are directly derived from their
definition.

Proposition 2.2.1 For S C R" nonempty, there holds o5 = 0, 5 = 0., 5, whence
0§ =0g5S . 2.2.1)

PROOF. The continuity [resp. linearity, hence convexity] of the function (s, -), which
is maximized over S, implies that og = o, s [resp. o5 = o, 5]. Knowing that
co S = clco S (Proposition II1.1.4.2), (2.2.1) follows immediately. O

This result is of utmost importance: it says that the concept of support function
does not distinguish a set S from its closed convex hull. Thus, when dealing with
support functions, it makes no difference if we restrict ourselves to the case of closed
convex sets.

As aresult of (2.1.1) and (2.2.1), we can write

setS => [(s,d)<os(d) foralldeR"].

Now, what about the converse? Can it be that the above (infinite) set of inequalities
still holds if s is not in €6 S? The answer is no:

Theorem 2.2.2 For the nonempty S C R" and its support function o, there holds
secoS <« [(s,d)<os(d) foralld € X], 2.2.2)

where the set X can be indifferently taken as: the whole of R", the unit ball B(0, 1)
or its boundary B, or domoy.
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PROOF. First, the equivalence between all the choices for X is clear enough; in partic-
ular due to positive homogeneity. Because “=>" is Proposition 2.2.1, we have to prove
“&” only, with X = R" say.

Suppose that s ¢ ¢0S. Then {s} and 6.5 can be strictly separated (Theo-
rem I11.4.1.1): there exists dy € R” such that

(s, do) > sup{(s’,do) : s' €08} = 0g(dp),
where the last equality is (2.2.1). Our result is proved by contradiction. o

As a result, a closed convex set is completely determined by its support func-
tion: between the classes of closed convex sets and of support functions, there is a
correspondence which is bijective, as illustrated on Fig. 2.2.1.

take the sup of <s,.> over C
closed Lo L2 support
convex function
setC - - o
filter x with "<s,.> < ¢ 7"

Fig. 2.2.1. Correspondence between closed convex sets and support functions

Thus, whether a given point s belongs to a given closed convex set S can be
checked with the help of (2.2.2), which holds as an equivalence. Actually, more can
be said: the support function filters the interior, the relative interior and the affine hull
of a closed convex set.

This property is best understood with Fig. 1.1.2 in mind. Let V be the subspace
parallel to aff S, and U := V1. Indeed, U is just given in (1.1.8) with o = os: U
[resp. V] can be viewed either as the subspace where the sublinear o7 is linear [resp.
kinky], or where the supported set S is flat [resp. thick]. When drawn in the geometric
space of convex sets, Fig. 1.1.2 becomes Fig.2.2.2, which is very helpful to follow
the next proof.

Theorem 2.2.3 Let S be a nonempty closed convex set in R". Then
(1) s € aff S if and only if

(s,d) = os(d) foralld with os(d) + og(—d) =0; 2.2.3)
(ii) s € 1i S if and only if
(s,d) < os(d) foralld with og(d) + o5(—d) > 0; 2.2.4)
(iii) in particular, s € int S if and only if
(s,d) <og(d) foralld #£0. (2.2.5)
PROOF. [(i)] Let first s € S. We have already seen in Definition 2.1.4 that

—0s5(—d) < (s,d) < os5(d) foralld e R".
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Fig. 2.2.2. Affine hulls and orthogonal spaces

If the breadth of S along d is zero, we obtain a pair of equalities: for such d, there
holds
(s,d) =0s(d),

an equality which extends by affine combination to any element s € aff §. .

Conversely, let s satisfy (2.2.3). A first case is when the only d described in (2.2.3)
is d = 0; as a consequence of our observations in Definition 2.1.4, there is no affine
hyperplane containing S, i.e. aff § = R” and there is nothing to prove. Otherwise,
there does exist a hyperplane H containing S; it is defined by

H:={peR": (p,dy) = os@dn)} 2.2.6)

for some dy # 0. We proceed to prove (s, -) < of.

In fact, the breadth of S along dy is certainly 0, hence (s, dy) = o5(dy) because
of (2.2.3), while (2.2.6) shows that o5(dy) = oy(dy). On the other hand, it is
obvious that oy (d) = +00 if d is not collinear to dg. In summary, we have proved
(s,d) < og(d) foralld,ie. s € H. We conclude that our s is in any affine manifold
containing S: s € aff S.

[(5i)] In view of positive homogeneity, we can normalize d in (2.2.5); accordingly,
denote b’y B the unit sphere. For s € int S, there exists £ > 0 such that s + ed € § for
all d € B. Then, from the very definition (2.1.1),
osd) > (s +ed,d) = (s,d) +¢& forallde B.
Conversely, let s € R” be such that
os(d) — (s,d) >0 foralld € B

which implies, because o is closed and the unit sphere is compact:

0 <& :=inf{og(d) — (s,d) : d € B} < +00.
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Thus -
(s,d)+e<os(d) foralld e B.

Now take u with [ju|| < &. From the Cauchy-Schwarz inequality, we have for all
deB :
(s +u,d) =(s,d) + (u,d) < (s,d) + e < os5(d)

and this implies s + u € S because of Theorem 2.2.2: s € int S and (iii) is proved.

[(ii)] Look at Fig.2.2.2 again: decompose R" = V @ U, where V is the subspace
parallel to aff S and U = V. In the decompositiond = dy +dy, (-, dy) is constant
over S, so S has 0-breadth along dyy and

os(d) = sup(s, dy +dy) = (s, dy) + sup(s, dy)
s€eS

seS

for any s € S. With these notations, a direction described as in (2.2.4) is a d such that
os5(d) + os(—d) = os(dy) + o5(—dy) > 0.
Then, (ii) is just (iii) written in the subspace V. o

We already know that the effective domain of o is a convex cone, which consists
of all oriented directions “in which § is bounded” (remember Interpretation 2.1.5).
This can be made more explicit.

Proposition 2.2.4 Let S be a nonempty closed convex set in R". Then cldom o5 and
the asymptotic cone Soo of S are mutually polar cones.

PROOF. Recall from §II1.3.2 that, if X, and K, are two closed convex cones, then
K, C K, if and only if (K)° D (K>,)°.

Let p € Seo. Fix s¢ arbitrary in S and use the fact that Soo = MNy~0t (S — 59)
(§111.2.2): for all ¢+ > 0, we can find s; € S such that p = ¢(s; — s¢). Now, for
q € domoyg, there holds

(P, q) = t{st —s0,q) <tlos(q) — (50, q)] < +00

and letting ¢ | O shows that {p, g) < 0. In other words, domog C (So0)°; then
cldomays C (Seo)® since the latter is closed.

Conversely, let ¢ € (domag)°, which is a cone, hence tg € (domag)®° for any
t > 0. Thus, given sy € S, we have for arbitrary p € domog

{(so + tq, p) = (s0, p) + t{q, p) < {s0, p) < o5(p),

50 5o + tg € S by virtue of Theorem 2.2.2. In other words

forallt > 0

S —
qe

andq € Soo. a
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2.3 Examples

Let us start with elementary situations. The simplest example of a support function
is that of a singleton {s}. Then o5} is merely (s, -), we have a first illustration of the
introduction (iii) to this chapter: the concept of a linear form (s, -) can be generalized to
s not being a singleton, which amounts to generalizing linearity to closed sublinearity
(more details will be given in §3). The case when S is the unit ball B(0, 1) is also
rather simple:

d .
opo,(d) > (N—dﬁ , d) = ||l (ifd #0)
and, fors € B(0, 1), the Cauchy-Schwarz inequality implies (s, d) < ||d||. Altogether,

0B, 1)(d) = |ld|l . 2.3.1)

Our next example is the simplest possible illustration of Proposition 2.2.4, namely
when Soo is S itself.

Example 2.3.1 (Cones, Half-Spaces, Subspaces) Let K be a closed convex cone

of R™. Then
0 if (s,d) <0 foralls € K,

400 otherwise.

og(d) = {

In other words, ok is the indicator function of the polar cone K °. Note the symmetry:
since K°° = K, the support function of K° is the indicator of K.
Two particular cases are of interest. One is when K is a half-space:

K:={seR": (s,0)<0};
then it is clear enough that

0 ifd =tvwitht >0,

400 otherwise. 23.2)

og(d) = {

Needless to say, the support function of the haif-line R*v (the polar of K) is in turn
the indicator of K.

The other interesting case is that of a subspace. Let A : R” — R™ be a linear
operator and H be defined by

H:=KerA={seR": As =0} .
Then the support function of H is the indicator of the orthogonal subspace H+:

0 if (s,d) =0foralls € H,

o(d) =1y1(d) = { +o00 otherwise.

The subspace H~ can be defined with the help of the adjoint of A:

H' = (KerA)* =ImA* = {A*A : L eR"}.
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If A or H are defined in terms of linear constraints
H:={seR": (s,aqj) =0forj=1,...,m},
then
H:={5m xa; : AeR7}.

All these calculations are useful in constrained optimization, where one often
deals with closed convex polyhedra expressed as intersections of half-spaces and
subspaces.

Figure 2.3.1 illustrates a modification in which our cone K is modified to K/ :=
K N B(0, 1). The calculus rules of §3.3 will prove what is suggested by the picture:
the support function of K’ is the distance function to K° (check the similarity of the
appropriate triangles, and note that og/(d) = 0 whend € K°). O

Fig. 2.3.1. Support function of a truncated cone

Example 2.3.2 Set
S:={s=(,1)eR*: p>0,1>1/p}. 2.3.3)
Its asymptotic cone is
Soo={(p,T) €R? : p>0, T >0}
and, from Proposition 2.2.4:
domog C {(§,n) : £<0, n<0}.

The exact status of the boundary of dom o (i.e. when £ = 0) is not specified
by Proposition 2.2.4: is o finite there? The computation of o can be done directly
from the definitions (2.1.1) and (2.3.3). The following geometrical argument yields
simpler calculations, however (see Fig. 2.3.2): for givend = (£, ) # (0, 0), consider
the hyperplane

Hy o) = (@, B) : §a +nf = o5(d)}.
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Fig.2.3.2. A support function

It has to be tangent to the boundary of S, defined by the equation af = 1. So, the
discriminant o §(d) — 4&7 of the equation in &

1
fa +n— =0s5(d)
[0

must be 0. We obtain directly s (£, n) = —24/&n for £ < 0, n < 0 (the sign is “—”
because 0 ¢ S; remember Theorem 2.2.2). Finally, Proposition 2.1.2 tells us that the
closed function og(£, n) has to be 0 when £n = 0. All this is confirmed by Fig. 2.3.2.

O

Remark 2.3.3 Two features concerning the boundary of dom o are worth mentioning on
the above example: the supremum in (2.1.1) is not attained when d € bd domoyg (the point
sq4 of Fig. 2.1.1 is sent to infinity when d approaches bd dom o), and domos is closed.

These are not the only possible cases: Example 2.3.1 shows that the supremum in (2.1.1)
can well be attained for all d € dom o; and in the example

§:={(0,7) : T30},
domosy is not closed. The difference is that, now, S has no asymptote “at finite distance”. 0O

Example 2.3.4 (cf. Example 1.2.3) Let QO be a symmetric positive definite operator
from R” to R" and consider the sublevel-set

Eg:={seR": (Qs,s)<1}.
The support function of E is defined by
d— O’EQ(d) :=max {(s,d) : (Qs,s) <1}. 2.3.4)
Calling Q'/? the square root of Q, the change of variable p = Q'/2s in (2.3.4) gives
org(d) =max|(p, 07%) : IpIP <1}

—l/Zd

whose unique solution for d # 0 (again Cauchy-Schwarz!) is p = rng/;d—n an

d
finally
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ory(d) = Q7' ?d| = Vid, 0 'd). 23.5)

Observe in this example the “duality” between the gauge x > /{Qx, x) of E¢ and
its support function (2.3.5).

When Q is merely symmetric positive semi-definite, Ep becomes an elliptic
cylinder, whose asymptotic cone is Ker Q (remember Example 1.2.3). Then Proposi-
tion 2.2.4 tells us that

cldomaEQ =Ker0)°=KerQ)'=ImQ.

Whend € Im Q, o 0 (d) is finite indeed and (2.3.5) does hold, 0 ~'d denoting now
any element p such that Op = d. We leave this as an exercise. o

3 The Isomorphism Between Closed Convex Sets
and Closed Sublinear Funqtions

3.1 The Fundamental Correspondence

‘We have seen in Proposition 2.1.2 that a support function is closed and sublinear. What
about the converse? Are there closed sublinear functions which support no set in R"?
The answer is no: any closed sublinear function can be viewed as a support function.
The key lies in the representation of a closed convex function f via affine functions
minorizing it: when the starting f is also positively homogeneous, the underlying
affine functions can be assumed linear.

Theorem 3.1.1 Let o be a closed sublinear function; then there is a linear function
minorizing o. In fact, o is the supremum of the linear functions minorizing it. In other
words, o is the support function of the nonempty closed convex set

So :={se€R" : (s,d) <o(d) foralld e R"}. (3.1.1)

PROOF. Being convex, o is minorized by some affine function (Proposition IV.1.2.1):
for some (s,7) € R” x R,

(s,d) —r<o(d) foralld e R". (3.1.2)
Because o (0) = 0, the above r is nonnegative. Also, by positive homogeneity,
(s,d)—4r<o(d) foralld e R" andallt > 0.
Letting t — 400, we see that o is actually minorized by a linear function:
(s,d)<o(d) foralld e R". (3.1.3)

Now observe that the minorization (3.1.3) is sharper than (3.1.2): when express-
ing the closed convex o as the supremum of all the affine functions minorizing it
(Proposition IV.1.2.8), we can restrict ourselves to linear functions. In other words
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o(d) = sup{(s, d) : the linear (s, -) minorizes c};
in the above index-set, we just recognize Sy . O

One of the important points in this result is the nonemptiness of S in (3.1.1); we have
here the analytical form of Hahn-Banach theorem: there exists a linear function minorizing
the closed sublinear function .

Another way of expressing Theorem 3.1.1 is that the closed convex set epio is the
intersection of the closed half-spaces containing it; but since epi o is actually a cone, these half-
spaces can be assumed to have linear hyperplanes as boundaries (remember Remark 111.4.2.8).
A connectionbetweensS, andtheconepolartoepi o isthusintroduced;Chap. VI willexploit
this remark.

The main consequence of this important theorem is an assessment of closed
sublinear functions. Section 2.2 has established a bijection from closed convex sets
onto support functions. Thanks to Theorem 3.1.1, this bijection is actually onto closed
sublinear functions, which is of course much more satisfactory: the latter class of
functions is defined in abstracto, while the former class was ad hoc, as far as this
bijection was concerned.

Thus, the wording “support function” in Fig. 2.2.1 can everywhere be replaced
by “closed sublinear”. This replacement can be done in Theorem 2.2.2 as well:

Corollary 3.1.2 For a nonempty closed convex set S and a closed sublinear function
o, the following are equivalent:

(i) o is the support function of S ,

() S = {s : (s,d) <o(d) forall d € X}, where the set X can be indifferently
taken as: the whole of R", the unit ball B(0, 1) or its boundary, or domo.

PROOF. The case X = R" is just Theorem 3.1.1. The other cases are then clear. O

Remember §I11.4.2(b): a closed convex set § is geometrically characterized as an inter-
section of half-spaces, which in turn can be characterized in terms of the support function of
S. Each (d, r) € R" x R defines (for d # 0) the half-space H (Z , via (2.1.3). This half-space
contains S if and only if r 2> o (d), and Corollary 3.1.2 expresses that

S=0N{s: (s,d)<rforalld e R" and r > o(d)},

in which the couple (d, r) plays the role of an index, running in the index-setepioc C R” x R
(compare with the discussion after Definition 2.1.1). Of course, this index-set can be reduced
down to R”: the above formula can be simplified to

S=nN{s : {s,d)<o(d) foralld € X}

where X can be taken as in Corollary 3.1.2.

Recall from §I11.2.4 that an exposed face of a convex set S is defined as the set
of points of § which maximize some (nonzero) linear form. This concept appears as
particularly welcome in the context of support functions:
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Definition 3.1.3 Let S be a nonempty closed convex set, with support function o.
For given d # 0, the set

Fsd):={s€ S : (s,d) =0(d)}
is called the exposed face of S associated with d, or the face exposed by d. a

For a unified notation, the entire S can be considered as the face exposed by 0.
On the other hand, a given d may expose no face at all (when § is unbounded).

Symmetrically to Definition 3.1.3, one can ask what are those d € R" such that
(-, d) is maximized at a given s € S. We obtain nothing other than the normal cone
Ng(s) to S at s, as is obvious from its Definition I11.5.2.3. The following result is
simply a restatement of Proposition II1.5.3.3.

Proposition 3.1.4 For s in a nonempty closed convex set S, it holds
seFgd) << deNg(). o

When d describes the set of normalized directions, the corresponding exposed
faces exactly describe the boundary of S:

Proposition 3.1.5 For a nonempty closed convex set S, it holds
bd S = U{Fg(d) : d € X}
where X can be indifferently taken as: R"\{0}, the unit sphere B, or dom os\{0}.

PROOF. Observe from Definition 3.1.3 that the face exposed by d # 0 does not depend
on ||d}. This establishes the equivalence between the first two choices for X. As for
the third choice, it is due to the fact that Fg(d) = @ if d ¢ domoyg.

Now, if s is interior to S and d # 0, thens + ed € S and s cannot be a maximizer
of (-, d): 5 is not in the face exposed by d. Conversely, take s on the boundary of S.
Then Ng(s) contains a nonzero vector d; by Proposition 3.1.4, s € Fs(d). O

3.2 Example: Norms and Their Duals, Polarity

Let |} - || be an arbitrary norm on R”. It is a positive (except at 0) closed sublinear
function and its sublevel-set

B:={xeR": jx|| <1} 3.2.1)

is particularly interesting. It is the unit ball associated with the norm, a symmetric,
convex, compact set containing the origin as an interior point; || - || is the gauge of
B (§1.2). On the other hand, why not take the set whose support function is || - ||? In
view of Corollary 3.1.2, it is defined by

{s €R" : (s, x) < lIx|| forall x € R"} =: B*. (3.2.2)
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It is an easy exercise to check that B* is also symmetric, convex, compact; and it
contains the origin as an interior point (Theorem 2.2.3(iii)).

Now, we have two closed convex sets B and B*. We can generate two more closed
sublinear functions: take the support function op of B and the gauge yg* of B*. It
turns out that we then obtain the same function, which actually is a norm, denoted
I - II*: the so-called dual norm of || - ||. The game finishes there: the two sets that || - J|*
supports and is the gauge of, respectively, are B and B*.

Proposition 3.2.1 Let B and B* be defined by (3.2.1) and (3.2.2), where || - || is a
norm on R™. The support function of B and the gauge of B* are the same function
Il - W* defined by

lsll* := max {(s, x) : llx}l <1}. (3.2.3)
Furthermore, || - |* is a norm on R™. The support function of its unit ball B* and
the gauge of its supported set B are the same function || - || there holds
llxll = max {(s, x) : fIsl* < 1}. (3.2.4)
PROOF. It is a particular case of the results 3.2.4 and 3.2.5 below. O

Note the following symmetric relation (“Cauchy-Schwarz”)
(s, x) < lIsl™ lixll forall (s, x) € R* x R*, (3.2.5)

which comes directly from (3.2.3), using positive homogeneity. It expresses the du-
ality correspondence between the two Banach spaces (R”, || - |I) and (R", || - ||*).
Furthermore, equality holds in (3.2.5) when s # 0 and x # 0 form an associated pair
via Proposition 3.1.4:

s x
€ Fpx(x) orequivalently — € Fpg(s).
Isix =P lix

Thus, a norm automatically defines another norm (its dual); and the operation is
symmetric: the dual of the dual norm is the norm itself.

Remark 3.2.2 The operation (3.2.3)—(3.2.4) establishes a “duality” correspondence
within a subclass of closed sublinear functions: those that are symmetric, finite ev-
erywhere, and positive (except at 0) — in short, norms.

This analytic operation has its counterpart in the geometric world: starting from
a closed convex set which is symmetric, bounded and contains the origin as an in-
terior point — in a word, a “unit ball” — such as B, one constructs via gauges and
support functions another closed convex set B* which has the same properties. This
correspondence is called polarity, demonstrated by Fig. 3.2.1: the polar (set) of B is

B* :={s : (s,x) <1 forall x € B} (3.2.6)
and symmetrically, the polar of B* is

(B¥)*:={x : (s,x)<1foralls € B*} = B. (327
O
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Norm ake the unit ball B
as a closed sublinear |———sublevel-set as closed convex set
nonnegative function at level 1 containing 0
take the take the
support P°‘a"w support

function function

unit ball B take the dual norm
as a closed convex set sublevel-set — | as a closed sublinear
containing 0 at level 1 nonnegative function

Fig. 3.2.1. Dual norms and polar sets

We leave it as an exercise to draw the unit balls of the £,- and £co-norms on R”:

felly ==Y x| and fxlloo = max {|x'], ..., |x"|}

i=l1

(proceed as in Interpretation 2.1.5: a picture in R” will do). Observe on the picture
thus obtained that they are in polarity correspondence if the scalar product is the usual
dot-product (x, y) = xTy.

A more complicated situation is illustrated by the “hexagonal norm” of Fig. 3.2.2.
Observe how elongation in one direction corresponds to contraction for the polar. Also:
a facet of one of the sets is exposed by a vertex in the polar.

Fig.3.2.2. Hexagonal unit-balls

Example 3.2.3 Other important norms are the quadratic norms, defined by

fixllg = +(Qx, x)

where Q is a symmetric positive definite linear operator. They are important because
they derive from a scalar product on R", namely:

(x,y)g = (Qx,y).

We refer to Example 2.3.4, more precisely formula (2.3.5), to compute the corre-
sponding dual norm
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UIsll@)* = Vs, @7's) = lisllg—1 -

When Q = I, we get back the Euclidean norm (-, -)!/2. A comparison of (2.3.1)
and (3.2.3) shows that it is self-dual: || - ||* = {| - ||. Among all the possible norms on
R”, it is the only one having this property (once the scalar product is chosen!). 0O

Actually, polarity neither relies upon symmetry, nor boundedness, nor on having
0 as an interior point. To take gauges and support functions resulting in (3.2.6) —
(3.2.7), the only important property is after all that 0 be in the closed convex set under
consideration (B or B*). In other words, the polarity relations (3.2.6), (3.2.7) establish
an involution between sets that are merely closed convex, and contain the origin. More
precisely, we have the following result:

Proposition 3.2.4 Let C be a closed convex set containing the origin. Its gauge yc
is the support function of a closed convex set containing the origin, namely

C°:={seR"”: (s,dy<1foralld € C}, (3.2.8)
which defines the polar (set) of C.

PROOF. We know that y¢ (which, by Theorem 1.2.5(i), is closed, sublinear and non-
negative) is the support function of some closed convex set containing the origin, say
D; from (3.1.1),

D={seR": (s,d)<rforall (d,r) €epiyc}.

As seen in (1.2.4), epi yc is the closed convex conical hull of C x {1}; we can use
positive homogeneity to write

D={seR"”: (s,d) <1 forall d such that yo(d) < 1}.

In view of Theorem 1.2.5(iii), the above index-set is just C; in other words, D = C°.
a

Geometrically, the above proofis illustrated by Fig. 3.2.3, in which dual elements
are drawn in dashed lines: D = C° is obtained by cutting the polar cone (epi y¢)° at
the level —1. Turn the picture upside down: cutting the polar cone (epi yco)° at the
level which has now become —1, we obtain (C°)°. But the polarity between closed
convex cones is involutive: the picture shows that (epi yco)° is our original cone
epi yc. In other words, C°° = C, Proposition 3.2.4 has its dual version:

Corollary 3.2.5 Let C be a closed convex set containing the origin. Its support
Junction oc is the gauge of C°. o

Remark 3.2.6 The elementary operation making up polarity is a one-to-one mapping be-
tween nonzero vectors and affine hyperplanes not containing the origin, via the equation
inspired from (3.2.8):
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Fig. 3.2.3. Gauges and supports

st> H(s):=H;, 1 ={yeR": (5s,y) =1}. (3.2.9)
Direct calculations show for example that the polar of the half-space
H ={(y=¢EneR:£<2)
is the segment

(H™)? ={(p,0) : 0K p<1/2}.

This simple example suggests the following comment: if o is a given nonnegative closed
sublinear function, it is the gauge of a set G which can be immediately constructed: along
0 # s € R”, plot the point g(s) = s/o(s) € [0, +00]s. Then G is the union of the segments
[0, g(s)], with s describing the unit sphere. If, along the same s, we plot the point o (s)s, we
likewise get a description of the set S supported by o, but in a much less direct way: G is
now enveloped by the affine hyperplane orthogonal to s and containing the point o (s)s; now,
differentiation is involved.

Fig. 3.2.4. Description of mutually polar sets

An expert in geometry will for example see on Fig. 3.2.4 that the polar of the circle

C={(.1): P+ —1/2<1/4}
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has a parabolic boundary. We leave it as an exercise to compute the gauge of C, and to realize
that it is the support function of

P={En:E<1-n}.

Constructing a set from its gauge thus appears to be substantially easier than it is from its
support function. Furthermore, to make a support function, we need a scalar product, while a
gauge just needs an origin in R*. These advantages, however, are balanced by the rich calculus
which can be developed with support functions, and which will be the subject of §3.3. O

It is clear from (3.2.8) that, for all (d,s) € C x C°, (s, d) < 1; this implies in
particular that no nonzero s € C° can be in the asymptotic cone of C. Furthermore,
the property (s, d) = 1 means that d exposes in C° a face Fco(d) containing s; and s
exposes likewise in C°° = C a face F¢(s) containing d. Because the boundary of a
closed convex set is described by its exposed faces (Proposition 3.1.5), the following
result is then natural; compare it with Fig. 3.2.2.

Proposition 3.2.7 Let C be a nonempty compact convex set having 0 in its interior,
so that C° enjoys the same properties. Then, for all d and s in R", the following
statements are equivalent (the notation (3.2.9) is used)

(i) H(s) is a supporting hyperplane to C at d;
(ii) H(d) is a supporting hyperplane to C° at s;
(iii)d e bdC, s e bdC® and (s,d) = 1;
(ivideC,se€C°and (s,d)=1.

PROOF. Left as an exercise; the assumptions are present to make sure that every nonzero
vector in R” does expose a face in each set. O

Finally, suppose that C in (3.2.8) is a cone. By positive homogeneity, the number
“1” can be replaced by any positive number, and even by “0” (remember the proof of
Theorem 3.1.1). We recognize the definition of polarity between closed convex cones.

3.3 Calculus with Support Functions

From §1.3, the set of sublinear functions has a structure allowing calculus. Likewise,
a calculus exists with subsets of R”. Then a natural question is: to what extent are
these structures in correspondence via the supporting operation? In other words, to
what extent is the supporting operation an isomorphism? The answer turns out to be
very rich indeed.

We start with the order relation

Theorem 3.3.1 Let S| and S, be nonempty closed convex sets, call o, and o, their
support functions. Then

SiCS <<= o01d)<od)foralld e R".
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PROOF. Apply the equivalence stated in Corollary 3.1.2:

S$ICS & seSforallses,
< 03(d) > (s,d) foralls € S| andalld € R"
= 02(d) > supseg, (s, d) foralld e R". o

In a way, the above result generalizes Theorem 2.2.2. It can be supplemented with
a partial ordering rule:

Corollary 3.3.2 Let Py (S) denote the projection of a set S onto a fixed subspace V.
If S| and S, are nonempty closed and convex,

cl(Py(81)) Ccl(Py(S2)) <= o5 <os,onV. (3.3.1)
PROOF. Theorem 3.3.1 tells us that the first inclusion is equivalent to
opy(s)@) <opy(s,)(d) foralld e R",
which actually means
opy(s)(d) <op,(s,)(d) foralldeV. 3.3.2)

The reason is that, in terms of the decomposition d = dy + dy 1, we have (s,d) =
{s,dy) forall s € V. This equality is transmitted to the supremum over S or S,, both
sets being included in V.

Now write any sy € Py(S;) assy =s —sy,1 withs € §;:

Upv(si)(d) =o0s,(d) fori=12anddeV.
Using these equalities in (3.3.2), the equivalence (3.3.1) is established. O
The next statement goes with Propositions 1.3.1 and 1.3.2.

Theorem 3.3.3

(i) Let oy and o, be the support functions of the nonempty closed convex sets S\ and
S>. If t; and t, are positive, then

1101 + 1,0, is the support function of cl(t; S} + t.5,) .

(ii) Let {0j}jes be the support functions of the family of nonempty closed convex
sets {Sj}jer. Then

SUp;j ey 0 is the support function of €o {Us; : jelJ}.

(iil) Let {o}}jc s be the support functions of the family of closed convex sets {S iljed-
If
S:=[)$#9,
jeJ
then
os =(Y){infoj : jelJ}.
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PROOF. [(i)] Call S the closed convex set cl(#;S; + 1,5,). By definition, its support
function is

os(d) =sup{(tis) + s, d) 1 51 €8}, 52 € 8).

In the above expression, s, and s, run independently in their index sets S; and S5, ¢,
and ¢, are positive, so

os(d) =1 sup(s,d) + t; sup(s,d).
SES[ SGSZ

[(i))] The support function of § := Uje S is
sup (s, d) = sup [SusteSj (sj,d)] = supa;j(d).
seUS; jeJ jeJ

This implies (ii) since 0§ = 05 §.-

[(5i)] The set § := NS; being nonempty, it has a support function o5. Now, from
Corollary 3.1.2,

s€ES & sefj foralljeJ
& (s,) <0j forall j e J
< (s, )< infjejo; <= (s,-) < Co(infjey 0j)

where the last equivalence comes directly from the Definition I1V.2.5.3 of a closed con-
vex hull. Again Corollary 3.1.2 tells us that the closed sublinear function €6(inf j¢ s 0;)
is just the support function of §. O

— Itis important to observe in (i) that, if S, is bounded, then ¢, S} 4+, 5; is automatically
closed. This addition rule can be used to complete Corollary 3.3.2: the right-hand
side in (3.3.1) exactly means

os, +1ly <og, +1y;
now use Example 2.3.1: Iy = oy, and finally, (3.3.1) is further equivalent to

cl(S + V1) c (S + VY. (3.3.3)

— As for (iii), we have seen in Proposition 1.3.2(ii) that, if J = {1, ..., m} is a finite set, then
the “co” operation can be replaced by the infimal convolution: there holds

osin..nS, =cllo1 ... $om). 3.3.4)
This last formula is a simplification of (iii), but the closure operation should not be forgotten,

and it is something really complicated; these issues will be addressed more thoroughly in
§X.2.3.
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— Let K be aclosed convex cone and, as in the end of Example 2.3.1, take K’ := K N B(0, 1).
In view of the above observation, the support function of K/ is given by an inf-convolution:

ok/(d) = cl{infy[og (y) + opd — y)]} .

Since og = Igo, the infimum forces y to be in K°, in which case o vanishes; knowing
that op(,1) = || - II, the infimum is

inf{|ld —y|l : y e K°}.
Here, we are in a favourable case: this infimum is actually a minimum — achieved at the

projection px-(d) — and the result is a finite convex function, hence continuous; the closure
operation is useless and can be omitted. In a word,

oKnB(,1) = dge . (3.3.5)

— Positive homogeneity can also be exploited in Theorem 3.3.3(i) to write
ot5(d) = os(td) foralld e R" andt > 0,

a formula which also holds for negative ¢ (just write the definition). More generally:

Proposition 3.3.4 Let A : R" — R™ be a linear operator, R™ being equipped with
a scalar product (-, -)) for which A* is the adjoint of A. For S C R" nonempty, we
have

oaaS)(y) =0s(A*y) forally e R™.
PROOF. Just write the definitions

oA(s)(y) = sup (As, y)) = sup (s, A*y)
SES s€eS

and use Proposition 2.2.1 to obtain the result. O

Taking an image-function (see §IV.2.4) is another operation involving a linear
operator. Its status is slightly more delicate.

Proposition 3.3.5 Let A : R™ — R” be a linear operator, R™ being equipped with
a scalar product ((-, -)) for which A* is the adjoint of A. Let o be the support function
of a nonempty closed convex set S C R™. If o is minorized on the inverse image

A ={peR™: Ap=d) (3.3.6)

-1
of each d € R", then the support function of the set (A*)(S) is the closure of the
image-function Ac.
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PROOF. Our assumption is tailored to make sure that Ac € ConvR" (see Theo-
rem [V.2.4.2). The positive homogeneity of Ao is clear: ford € R” andt > 0,

(Ao)(td) = Azl)l}__ftdff(P) = A(pi?tf; dtU(P/t) = tAi;lidU(Q) =1t(Ao)(@d).

Thus, the closed sublinear function cl(Ac’) supports some set S’; by definition, s € S’
if and only if

(s,d) < inf {o(p) : Ap=d} foralld e R";

but this just means
(s, Ap) <o(p) forall p e R™,

i.e. A¥s € S, because (s, Ap) = {{A*s, p)). o

-1

Note that (A*)(S), the inverse image of the closed set S under the continuous mapping
A*, is closed. By contrast, Ao need not be a closed function. As a particular case, suppose that
S is bounded (o7 is finite everywhere) and that A is surjective; then Ao is finite everywhere

-1
as well, which means that (A*)(S) is compact.

Remark 3.3.6 The assumption made in Proposition 3.3.5 means exactly that the function
Ao is nowhere —oo; in other words, its closure cl(A¢) is the support function of a nonempty

-1
set: (A*)(S) # 0. This last property can be rewritten as
SNIMA*#0@ or 0eS—ImA* =5+ (KerA)*. 3.3.7

On the other hand, the same starting assumption implies that (3.3.6) must hold in particular
for d = 0. Then o is bounded from below on the subspace Ker A; by positive homogeneity,
its lower bound is 0 on that subspace. Applying Corollary 3.3.2 and (3.3.3), this means

0 € cl(PgeraS) or 0 eclS+ (Ker A)*]. (3.3.8)

Yet, the stronger property (3.3.7) is really necessary for Proposition 3.3.5 to hold. For a
counter-example, define A : R?2 - Rby A(&,n) = & and S of (2.3.3). Then (3.3.8) holds
but not (3.3.7); as seen in Example 2.3.2, we have here

(Aos)®) = inf ~2/En  forall § <0,
ns
which is —o0 if § < 0. u]

It has already been mentioned that taking an image-function is an important oper-
ation, from which several other operations can be constructed. We give two examples
inspired from those at the end of §IV.2.4:

—Let S; and S, be two nonempty closed convex sets of R", with support functions o;
and o, respectively. With R = R" x R”, take A(x,y) =x+ yand o(d,, d;) =
o1(d;) + 02(d,); observe that o is the support function of S = S| x S, associated
with the scalar product
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{(s1,52), (d1, d2))) = (51, d1) + (52, dy) .

Then we obtain A = 0 §; 02. On the other hand, the adjoint of A is clearly given
by
A*x = (x,x) e R" xR" forall x ¢ R",

so that the inverse image of S under A* is nothing but S, N S;: we recover (3.3.4).

— Let o be the support function of some nonempty closed convex set S C R” x R?
and let A(x, y) = x, so that the image of o under A is defined by

R" 5 x > (Ao)(x) = inf {o(x,y) : y e RP}.

Now A* is
R*>x > A*x = (x,0) e R" x R?

and we obtain that cl(Ao) is the support function of the “slice”
[xeR": (x,0) € S}.

This last set must not be confused with the projection of S onto R”, whose support
function is x — og(x, 0) (Proposition 3.3.4).

Remark 3.3.7 Letus mention some more rules dealing with the operations reviewed
in §IV.2.3:

—The closure of a perspective-function f is the support function of a (nonempty
closed convex) set in R x R”. A good exercise is to try and figure out what it looks
like; it will be extensively studied in Chap. XI (see §XI.1.2).

— The support function of a star-difference is obtained as follows. Let S; and S, be
two nonempty closed convex sets, with S, bounded; assuming S := S§; * S; # @,

o5 = Co(og, — 0g,) .

— On the other hand, the deconvolution yields an interesting exercise, even though the
result is of little value. Let o; and o, be two closed sublinear functions. One can
prove that their deconvolution o, y; 0, is closed, convex and positively homogeneous.
Most of the time, it is identically 4-00; a non-degenerate situation corresponds to
(01 ¥ 02)(0) = 0; it is obtained if and only if 0y < 03, and theno, J o, =0,. O

Having studied the isomorphism with respect to order and algebraic structures, we
pass to topologies. Theorem 1.3.3 has defined a distance A on the set of finite sublinear
functions. Likewise, the Hausdor(f distance A iy can be defined for nonempty closed
sets (see §A.5). When restricted to nonempty compact convex sets, A g plays the role
of the distance introduced in Theorem 1.3.3:

Theorem 3.3.8 If S and S’ are two nonempty compact convex sets of R",

A(os, ogr) 1= [oax, los@) — og/(d)| = Au(S, ). (3.3.9)
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PROOF. As already mentioned, for all r > 0, the property
max {dg(d) : d € S’} <r (3.3.10)

simply means
S’ c S+ B(,r).

Now, the support function of B(0, 1) is || - || — see (2.3.1). Calculus rules on support
functions therefore tell us that (3.3.10) is also equivalent to

og(d) <os(d) +r|d|| foralld eR" <= ”ghax [og(d) —os(@d)] <

In summary, we have proved

max dg(d) = max [aS/(d) —os(d)]

deS’ lidll <
and symmetrically
xde(d max |og(d) — oo (d
max s(d) = ax, [os(d) — o5 @] ;
the result follows. o

Fig. 3.3.1. Hausdorff distances

Naturally, the max in (3.3.9) is attained at some dp: for S and §’ convex compact, there
exists dg of norm 1 such that

AH(S, S') = A(os, o5) = los(do) — o5/(do)] -
Figure 3.3.1 illustrates a typical situation. When S’ = {0}, we obtain the number
A ({0}, §) = max ||s]| = max o5(d),
#({0), $) = max sl = max os(d)
already seen‘in (1.2.6); it is simply the distance from 0 to the most remote hyperplane Hy @
touching S (see again the end of Interpretation 2.1.5).

Using (3.3.9), it becomes rather easy to compute the distance in Example 1.3.4, which
becomes the Hausdorff-distance (in fact an excess) between the corresponding unit balls.

‘When speaking of limits of nonempty convex compact sets to a nonempty convex
compact set, the following result is a further illustration of our isomorphism.
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Proposition 3.3.9 A4 convex-compact-valued and locally bounded multifunction F :
R™ — R" is outer [resp. inner] semi-continuous at xy € int dom F if and only if
its support function x — o (x)(d) is upper [resp. lower] semi-continuous at x for
all d of norm 1.

PROOF. Calculus with support functions tells us that our definition (A.5.2) of outer
semi-continuity is equivalent to

Ve > 0,38 > 0:y € B(xo,8) => 0F(y)(d) < 0F(x)(d) +¢||d| forall d € R"

and division by [|d|| shows that this is exactly upper semi-continuity of the support
function for ||d|| = 1. Same proof for inner/lower semi-continuity. a

Thus, a convex-compact-valued, locally bounded mapping F is both outer and
inner semi-continuous at xo if and only if its support function oz (.)(d) is continuous
at x for all d. In view of Theorem 1.3.5, o5 (.)(d) is then continuous at xo uniformly
for d € B(0, 1); and Theorem 3.3.8 tells us that this property in turn means:

Ap (F(x), F(x)) > 0 when x — xo.
The following interpretation in terms of sequences is useful.

Corollary 3.3.10 Let {Si} be a sequence of nonempty convex compact sets and S a
nonempty convex compact set. When k — +oo, the following are equivalent

(i) Sx — S in the Hausdorff sense, i.e. Ay (Sg, S) — 0,
(ii) o5, — o pointwise;
(iii) o5, — o uniformly on each compact set of R". a

Let us sum up this Section 3.3: when combining/comparing closed convex sets,
one knows what happens to their support functions (apply the results 3.3.1 — 3.3.4).
Conversely, when closed sublinear functions are combined/compared, one knows what
happens to the sets they support. The various rules involved are summarized in Ta-
ble 3.3.1. Each S; is a nonempty closed convex set, with support function o;.

This table deserves some comments.

— Generally speaking, it helps to remember that when a set increases, its support
function increases (first line); hence the “crossing” of closed convex hulls in the last
two lines.

— The rule of the last line comes directly from the definition (2.1.1) if each S; is
thought of as a singleton.

— Most of these rules are still applicable without closed convexity of each S; (remem-
bering that os = o s5). For example, the equivalence in the first line requires closed
convexity of S, only. We mention one trap, however: when intersecting sets, each
set must be closed and convex. A counter-example in one dimension is S; := {0, 1},
S, := {0, 2}; the support functions do not see the difference between S; N S, and
co S, Ncos,.
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Table 3.3.1. Calculus rules for support functions

Closed convex sets Closed sublinear functions
S1CSH 01 L0
Ag(Sy, $2) (S; bounded) Aoy, 07) (o; finite)

uniform/compact or
pointwise convergence
(on finite functions)

Hausdorff convergence
(on bounded sets)

tS (@¢>0 to
cl(Sy + 52) o1+ 0,
clA(S) (A linear) oo A*
(A*)(S) (A linear) cl(Ao)
Nie1S;  (nonempty) coinfje;0;  (minorized)
coUierSi) SUp; ¢; Ti

Example 3.3.11 (Maximal Eigenvalues) Recall from §IV.1.3(e) that, if the eigen-
values of a symmetric matrix A are denoted by A;(A) > - -+ 2> A,(A), the function

Sn(R) 3 A > fm(A) =) Aj(A)
j=

is convex — and finite everywhere. Its positive homogeneity is obvious, therefore it is
the support function of a certain convex compact set Cpy of symmetric matrices. Let
us compute the set C; when the scalar product in S, (R) is the standard dot-product
of R™*%:

n
(A, B) :=trAB= ) _ A;jBij.
i,j=1
Indeed, we know that
Ai(A) = sup xTAx = sup ((xxT, A).
xTx=1 x ' x=1
Hence C; is the closed convex hull of the set of matrices
{)cx-r Cxlx = l} s

which is clearly compact. Actually, its Hausdorff distance to {0} is

Ay ({0}, C) = max VxxT, xxTH =1.

x ' x=1

Incidentally, A, (-) is therefore nonexpansive in S, (R).
We leave it as an exercise to demonstrate the following nicer representation of
C -

Ci=co{xx" : xTx=1}=({MeS$®) : \i(M)>0,tM=1}. O
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3.4 Example: Support Functions of Closed Convex Polyhedra

In optimization, polyhedral sets are encountered all the time, and thus deserve special
study. They are often defined by finitely many affine constraints, i.e. obtained as
intersections of closed half-spaces; in view of Table 3.3.1, this explains that the infimal
convolution encountered in Proposition 1.3.2 is fairly important.

Example 3.4.1 (Compact Convex Polyhedra) First of all, the support function of
a polyhedron defined as
P :=co{pi, ..., pm} 3.4.1)
is trivially
dw— op(d) =max{(p;,d) : i=1,...,m}.
There is no need to invoke Theorem 3.3.3 for this: a linear function (-, d) attains its

maximum on an extreme point of P (Proposition II1.2.4.6), even if this extreme point
is not the entire face exposed by d. 0

Example 3.4.2 (Closed Convex Polyhedral Cones) Going back to Example 2.3.1,
suppose that the cone K is given as a finite intersection of half-spaces:

K=n{K;:j=1,...,m}, (34.2)

where
Kj:= Ha;,o ={seR" : (aj,s) <0} (3.4.3)

(the a;’s are assumed nonzero). We use Proposition 1.3.2:

og(d) = clinf{ ;'n=| aKj(dj) : Z}"___] dj = d] .

Only those dj in K j‘? —namely nonnegative multiples of a;, see (2.3.2) — count to yield
the infimum; their corresponding support vanishes and we obtain

0 ifd=Z;-"=]tjaj, thOforj=1,...,m,
+00 otherwise.

ok (d) = I

Here, we are lucky: the closure operation is useless because the right-hand side
is already a closed convex function. Note that we recognize Farkas’ Lemma I11.4.3.3;
K° = domoyg is the conical hull of the a j’s, which is closed thanks to the fact that
there are finitely many generators. ul

Example 3.4.3 (Extreme Points and Directions) Suppose our polyhedron is de-
fined in the spirit of 3.4.1, but unbounded:

S :=co{py,..., pm} +cone{ay, ..., ap}.

Then it suffices to observe that § = P + K°, with P of (3.4.1) and K of (3.4.2),
(3.4.3). Using Table 3.3.1 and knowing that K°° = K —hence ogo = Ig:

max;—, . m(pi.d) if{aj,d)<0forj=1,...,¢
d) = 1=l1,....m\Fi '] » 4,
os(d) [ +00 otherwise . 0O
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The representations of Examples 3.4.1 and 3.4.3 are not encountered so frequently.
Our next examples, dealing with intersections, represent the vast majority of situations.

Example 3.4.4 (Inequality Constraints) Perturb Example 3.4.2 to express the sup-
port function of S := ﬂH b with

H ,:={seR": (s,a)<b} (a#0).

a,

Here, we deal with translations of the K i ’s:
b .
- % . .
b = Tar% + K
so, with the help of Table 3.3.1:

. ) = {tb ifd =taj, 120,

H +o00 otherwise.
0

Provided that § s @, our support function o is therefore the closure of the function

m m
N inf[;tjbj : ;tjaj =d, tj 20} if d € cone(ay, ...,am),
+00 otherwise . O

Now we have a sudden complication: the domain of o is still the closed convex
cone K°, but the status of the closure operation is no longer quite clear. Also, it is
not even clear whether the above infimum is attained. Actually, all this results from
Farkas’ Lemma of §I11.4.3; before giving the details, let us adopt different notations.

Example 3.4.5 (Closed Convex Polyhedra in Standard Form) Equalities can be
formulated as pairs of reversed inequalities, thus enabling Example 3.4.4 to treat any
kind of constraints. A “standard” description of closed convex polyhedra, however,
is as follows. Let A be a linear operator from R" to R”, b e ImA c R™, K Cc R”
a closed convex polyhedral cone (K is usually characterized as in Example 3.4.2).
Then S is given by

={seR": As=b,se K}=({so} + H)NK, (3.4.4)
where s¢ is some point in R” satisfying Aso = b, and H := Ker A.

In view of the expression of o in Example 2.3.1, the support function of {so} + H
is finite only on Im A*, where it is equal to

(s} (d) + op(d) = (s0,d) = (b,2) ford = A%z, zeR"

(here, (-, -)) denotes the scalar product in R™). Thus, o is the closure of the infimal
convolution

(0150} + 0H) $ 0k = (0150} + o) T 1k, (3.4.5)
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which can be explicited as the function
d > inf {(b,2z) : (z,y) eR™ x K°, A*z+y=d}.
Of course, this formula clearly displays
domos = domogy + domIgo = ImA* + K°.

In the pure standard form, R" and R™ are both equipped with the standard dot-
product — A being a matrix with m rows and n columns — and X is the nonnegative
orthant; K° is therefore the nonpositive orthant. Our “standard” S of (3.4.4) is now

{seR": As=b, s >0}, (3.4.6)
assumed nonempty. Then (3.4.5) becomes
inf {bz : ATz >d}, (3.4.7)

a function of d which is by no means simpler than in 3.4.4 — only the notation is
different. In summary, the support function

os(d) =sup {s'd: As=b, s >0} (3.4.8)

of the set (3.4.6) is the closure of (3.4.7), considered as a function of d € R”.
Now, invoke Farkas’ Lemma: write the equivalent statements (i) and (ii)” from
the end of §II1.4, with (x, p, , r) changed to (—z, —d, s, —0):

[zeR": ATz>d} c{zeR" : bTz>0) (3.4.9)

is equivalent to
35 >0 suchthat As=b, s'd>o. (3.4.10)

In other words: the largest o for which (3.4.9) holds —i.e. the value (3.4.7) —is also the
largest o for which (3.4.10) holds —i.e. o5(d). The closure operation can be omitted
and we do have

osd)=inf {b'z: A"z>d} foralld eR".

Another interesting consequence can also be noted. Take d such that og(d) <
+oo: if we put o = og(d) in (3.4.9), we obtain a true statement, i.e. (3.4.10) is also
true. This means that the supremum in (3.4.8) is attained when it is finite. u}

It is worth noting that Example 3.4.5 describes general polyhedral functions, up
to notational changes. As such, it discloses results of general interest, namely:

— A linear function which is bounded from above on a closed convex polyhedron
attains its maximum on this polyhedron.

— The infimum of a linear function under affine constraints is a closed sublinear
function of the right-hand side; said otherwise, an image of a polyhedral function
is closed: in Example 3.4.5, the polyhedral function in question is

R™ xR" > (y,2) > b z+1g(y),
and (3.4.7) gives its image under the linear mapping [ AT | 0].



V1. Subdifferentials of Finite Convex Functions

Prerequisites. First-order differentiation of convex functions of one real variable (Chap. I);
basic definitions, properties and operations concerning finite convex functions (Chap. IV);
finite sublinear functions and support functions of compact convex sets (Chap. V).

Introduction. We have mentioned in our preamble to Chap. V that sublinearity per-
mits the approximation of convex functions to first order around a given point. In
fact, we will show here that, if f : R® — R is convex and x € R” is fixed, then the

function )
dw f'(x,d) Z=liinf(x+t t)—f(X)
0

exists and is finite sublinear. Furthermore, f’ approximates f around x in the sense
that

f+m) = fx)+ f(x k) +o(lhl). 0.1

In view of the correspondence between finite sublinear functions and compact
convex sets (which formed a large part of Chap. V), f/(x, -) can be expressed for all
d e R" as :

f'(x,d) = og(d) = max {(s,d) : s € S}

for some nonempty compact convex set S. This S is called the subdifferential of
f at x and is traditionally denoted by df (x). When f is differentiable at x, with
gradient V f(x), (0.1) shows that f’(x, -) becomes linear and S contains only the
element V f(x). Thus, the concept of subdifferential generalizes that of gradient, just
as sublinearity generalizes linearity.

This subdifferential has already been encountered in the one-dimensional case
where x € R. In that context, 3f (x) was a closed interval, interpreted as a set of
slopes. Its properties developed there will be reconsidered here, using the powerful
apparatus of support functions studied in Chap. V.

The subdifferentiation thus introduced is supposed to generalize the ordinary dif-
ferentiation; one should therefore not be surprised to find counterparts of most of
the results encountered in differential calculus: first-order Taylor expansions, mean-
value theorems, calculus rules, etc. The importance of calculus rules increases in the
framework of convex analysis: some operations on convex functions destroy differ-
entiability (and thereby find no place in differential calculus) but preserve convexity.
An important example is the max-operation; indeed, we will give a detailed account
of the calculus rules for the subdifferential of max-functions.
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This chapter deals with finite-valued convex functions exclusively: it is essential
for practitioners to have a good command of subdifferential calculus, and this frame-
work is good enough. Furthermore, its generalization to the extended-valued case
(Chap. XI) will be easier to assimilate. Unless otherwise specified, therefore:

If: R”—-»Risconvex.l

This implies the continuity and local Lipschitz continuity of f. We note from (0.1),
however, that the concept of subdifferential is essentially local; for an extended-valued
f, most results in this chapter remain true at a point x € int dom f (assumed non-
empty). It can be considered as an exercise to check those results in this generalized
setting — with answers given in Chap. XL

1 The Subdifferential: Definitions and Interpretations

1.1 First Definition: Directional Derivatives

Let x and d be fixed in R" and consider the difference quotient of f at x in the

direction d: y
g(t) = f(x'Ht)—f(x) fort > 0. (1.1.1)

We have seen already that the function ¢ > g(t) is increasing (criterion 1.1.1.4 of
increasing slopes) and bounded near 0 (local Lipschitz property of f, §IV.3.1); so the
following definition makes sense.

Definition 1.1.1 The directional derivative of f at x in the direction d is

f(x,d) :=1lim{q(t) : t | 0} =inf{q(t) : t > 0}. (1.1.2)
m]

If ¢ denotes the one-dimensional function ¢t  ¢(t) := f(x + td), then

f'(x,d) =D4+¢(0) (1.1.3)

is nothing other than the right-derivative of ¢ at 0 (see §1.4.1). Changing d to —d in
(1.1.1), one obtains

(GG _ St ) = S

'(x, —d) = li
Fx ) tlﬁ} 10 ~T

which is not the left-derivative of ¢ at 0 but rather its negative counterpart:
f'(x,—d) = =D_p(0). (1.1.4)

Proposition 1.1.2 For fixed x, the function f'(x, -) is finite sublinear.
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PROOF. Let d;, d; in R", and positive ¢, o with @; + a; = 1. From the convexity of
f:
fOx+t(ond + oady)) — f(x) =
flai(x +td) + ar(x +tdy)) —a f(x) —aa f(x) <
Salf(x +1td) — f)] + ax[f(x +td) — f(x)]

for all ¢. Dividing by ¢ > 0 and letting ¢ | 0, we obtain
f(x,oudy + oady) <oy f'(x, dy) + on f'(x, d)

which establishes the convexity of f’ with respect to d. Its positive homogeneity is
clear: for A > 0

fx+Atd) — f(x) — A lim
At 740

f'(x, Ad) = lim A Ferd = O s e ay.
40 T

Finally suppose (|d|| = 1. As a finite convex function, f is Lipschitz continuous
around x (Theorem IV.3.1.2); in particular there exist ¢ > 0 and L > 0 such that

|[fx+td)— f(x)] <Lt for0<t<e.
Hence, | f/(x, d)| < L and we conclude with positive homogeneity:

If'(x,d)| < L|d| foralld € R". (1.1.5)
=]

Remark 1.1.3 From the end of the above proof, a local Lipschitz constant L of f around
x is transferred to f'(x, -) via (1.1.5). In view of (V.1.2.6), this same L is a global Lipschitz
constant for f’(x, -). This is even true of f'(y, -) for y close to x: with § and L such that f
has the Lipschitz constant L on B(x, §),

ly=xll<é = |f'(.d)~f.d)I<LId—dy| foralld;,d, eR". O

A consequence of Proposition 1.1.2 is that f/(x, -) is a support function, so the
following suggests itself’

Definition 1.1.4 (Subdifferential I) The subdifferential 3/ (x) of f at x is the non-
empty compact convex set of R” whose support function is f/(x, -), i.e.

af (x) :={s e R" : (s,d) < f'(x,d) foralld € R"}. (1.1.6)
A vector s € 3f (x) is called a subgradient of f at x. o

A first observation is therefore that the concept of subdifferential is attached
to a scalar product, just because the concept of support is so. All the properties
of the correspondence between compact convex sets and finite sublinear functions
can be reformulated for 3f (x) and f’(x, -). For example, the breadth of 8f (x) (cf.
Definition V.2.1.4) along a normalized direction d is

f'(x,d) + f'(x, ~d) =D1p(0) ~D_g(0) >0

and represents the “lack of differentiability” of the function ¢ alluded to in (1.1.3),
(1.1.4); remember Proposition IV.4.2.1.
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Remark 1.1.5 In particular, for d in the subspace U of linearity of f'(x, ) — see
(V.1.1.8) — the corresponding ¢ is differentiable at 0. The restriction of f/(x, -) to U
is linear (Proposition V.1.1.6) and equals (s, -}, no matter how s is chosen in 3f (x). In
words, U is the set of h for which & +— f(x + h) behaves as a function differentiable
at h = 0. See Fig. 1.1.1: 3f (x) is entirely contained in a hyperplane parallel to U;
said otherwise, U is the set of directions along which 9f (x) has 0-breadth.

We also recall from Definition V.2.1.4 that

—f'(x, —d) < (s,d) < f'(x,d) forall (s,d) € 3f (x) x R" . a
u
v
ET

Fig,. 1.1.1. Linearity-space of the directional derivative

It results directly from Chap. V that Definition 1.1.4 can also be looked at from the other
side: (1.1.6) is equivalent to

f(x,d) =sup{(s,d) : s € df(x)}.

Remembering that 3f(x) is compact, this supremum is attained at some s — which depends
on d! In other words: for any d € R", there is some s4 € 3f (x) such that

Fx+td) = f(x)+1t(sq,d) +teq(t) fort>0. 1.1.7)

Here e4(t) — O fort | 0, and we will see later that &4 can actually be made independent
of the normalized d; as for sy, it is a subgradient giving the largest (s, d). Thus, from its
very construction, the subdifferential contains all the necessary information for a first-order
description of f.

As a finite convex function, d +— f’(x, d) has itself directional derivatives and
subdifferentials. These objects at d = 0 are of particular interest; the case d # 0 will
be considered later.

Proposition 1.1.6 The finite sublinear function d — o (d) := f’(x, d) satisfies
0'(0,8) = f'(x, 8) forall s e R"; (1.1.8)
g(8) =0(0)+0'(0,8) =0'(0,8) foralls e R"; (1.1.9)
30(0) = 9f (x). (1.1.10)
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PROOF. Because o is positively homogeneous and o (0) = 0,

t8) —a(0
@—t—-”(—) =0(8) = f'(x,8) forallt>0.
This implies immediately (1.1.8) and (1.1.9). Then (1.1.10) follows from uniqueness
of the supported set. o

One should not be astonished by (1.1.8): tangency is a self-reproducing operation.
Since the graph of f/(x, -) is made up of the (half-)lines tangent to gr f at (x, f(x)),
the same set must be obtained when taking the (half-)lines tangent to gr f/(x, -). As
for (1.1.9), it simply expresses that, when developing a sublinear function to first order
at 0, there is no error of linearization: (1.1.7) holds with ¢4 = 0 in that case.

1.2 Second Definition: Minorization by Affine Functions

The previous Definition 1.1.4 of the subdifferential involved two steps: first, calcu-
lating the directional derivative, and then determining the set that it supports. It is
however possible to give a direct definition, with no reference to differentiation.

Definition 1.2.1 (Subdifferential II) The subdifferential of f at x is the set of vec-
tors s € R" satisfying

fO) > fx)+(s,y—x) forally e R". 12.1)

O

Of course, we have to prove that our new definition coincides with 1.1.4. This
will be done in Theorem 1.2.2 below. First, we make a few remarks illustrating the

difference between Definitions 1.1.4 and 1.2.1.

— The present definition is unilateral: an inequality is required in (1.2.1), expressing
the fact that the affine function y +> f(x) + (s, y — x) minorizes f and coincides
with f fory = x.

— 1t is a global definition, in the sense that (1.2.1) involves all y in R".

— These two observations do suggest that 1.2.1 deviates from the concept of differen-
tiation, namely:

(i) no remainder term shows up in (1.2.1), and
(ii) every y counts, not only those close to x.

Actually, the proof below will show that nothing changes if:

(i°) an extra o(lly — x1}) is added in (1.2.1), or
(ii”) (1.2.1) is required to hold for y close to x only.

Of course, these two properties (i’) and (ii") rely on convexity of f; more precisely
on monotonicity of the difference quotient.

— All subgradients are described by (1.2.1) at the same time. By contrast, f "(x,d) =
(s4, d) plots, for d # 0, only the boundary of 3f (x), one exposed face at a time.
The whole subdifferential is then obtained by convexification — remember Proposi-
tion V.3.1.5.
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Theorem 1.2.2 The definitions 1.1.4 and 1.2.1 are equivalent.

PROOF. Let s satisfy (1.1.6), i.e.
(s,d) < f'(x,d) foralld e R". (12.2)
The second equality in (1.1.2) makes it clear that (1.2.2) is equivalent to

fx+1td) - fx)

" foralld e R"” andt > 0. (1.2.3)

(s,d) <

When d describes R” and ¢ describes R}, y := x + td describes R" and we
realize that (1.2.3) is just (1.2.1). o

The above proof is deeper than it looks: because of the monotonicity of slopes, the
inequality of (1.2.3) holds whenever it holds for all (d, ) € B(0, 1)x]0, £]. Alternatively,
this means that nothing is changed in (1.2.1) if y is restricted to a neighborhood of x.

It is interesting to note that, in terms of first-order approximation of f, (1.2.1) brings
some additional information to (1.1.7): it says that the remainder term £4(¢) is nonnegative
for all ¢ 2> 0. On the other hand, (1.1.7) says that, for some specific s (depending on y), (1.2.1)
holds almost as an equality for y close to x.

Now, the path “directional derivative — subdifferential” adopted in §1.1 can be
reproduced backwards: the set defined in (1.2.1) is
— nonempty (Proposition IV.1.2.1),
— closed and convex (immediate from the definitions),

— bounded, due to a simple Lipschitz argument: for given 0 % s € 3f(x), take in
(1.2.1) y = x + 8s/lIsll (6 > 0 arbitrary) to obtain

Fx)+ L8> f(y) > f(x) + Slisll,

where the first inequality comes from the Lipschitz property IV.3.1.2, written on the
compact set B(x, 8).

As aresult, this set of (1.2.1) has a finite-valued support function. Theorem 1.2.2
simply tells us that this support function is precisely the directional derivative JEAD)
of (1.1.2).

Remark 1.2.3 A (finite) sublinear function o has a subdifferential, just as any other
convex function. Its subdifferential at 0 is defined by

00 (0) ={s : (d,s) <o(d) foralld € R"},

in which we recognize Theorem V.2.2.2. This permits a more compact way than
(V:2.2.2) to construct a set from its support function: a (finite) sublinear function is
the support of its subdifferential at 0.

In Fig. V.2.2.1, for example, the wording “filter with (s, -) < 0?” can be replaced
by the more elegant “take the subdifferential of o at 0”. s
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1.3 Geometric Constructions and Interpretations

Definition 1.2.1 means that the elements of 9f(x) are the slopes of the hyperplanes
supporting the epigraph of f at (x, f(x)) € R" x R. In terms of tangent and normal
cones, this is expressed by the following result, which could serve as a third definition
of the subdifferential and directional derivative.

Proposition 1.3.1

(i) 4 vector s € R" is a subgradient of f at x if and only if (s, —1) € R" x R is
normal to epi f at (x, f(x)). In other words:

Nepi (%, f(X)) ={(As, —1) : s € 9f (x),A = 0}.

(ii) The tangent cone to the set epi f at (x, f(x)) is the epigraph of the directional-
derivative functiond v f'(x, d):

Tepi f %, f&) ={(d, 1) : r > f'(x,d)}.
PROOF. [(i)] Apply Definition II1.5.2.3 to see that (s, —1) € Ng;; £(x, f(x)) means
(s, y~x)+(Dr— fx)]1<0 forally e R andr > f(y)

and the equivalence with (1.2.1) is clear. The formula follows since the set of normals
forms a cone containing the origin.

[(ii)] The tangent cone to epi f is the polar of the above normal cone, i.e. the set of
(d, r) € R x R such that

(As,d) + (—A)r <0 foralls € af(x)and A >0.
Barring the trivial case A = 0, we divide by A > 0 to obtain
r> max{{s,d) : s€df(x)} = f'(x,d). o

Fig. 1.3.1. Tangents and normals to the epigraph

Figure 1.3.1 illustrates this result. The right part of the picture represents the
normal cone N and tangent cone T to epi f at (x, f(x)). The intersection of N with
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the space R”" at level —1 is just 3f (x) x {—1}. On the left part of the picture, the
origin is translated to (x, f(x)) and the translated T is tangent to epi f. Note that
the boundary of 7 4 (x, f(x)) is also a (nonconvex) cone, “tangent”, in the intuitive
sense of the term, to the graph of f; it is the graph of f/(x, -), translated at (x, f (x)).

Proposition 1.3.1 and its associated Fig. 1.3.1 refer to Interpretation V.2.1.6, with
a supported set drawn in R” x R. One can also use Interpretation V.2.1.5, in which the
supported set was drawn in R”. In this framework, the sublevel-set passing through x

Sf) =Srx)(f)={yeR" : f(») < f()} (1.3.1)

is particularly interesting: it is important for minimization, and it is closely related to

af (x).

Lemma 1.3.2 For the convex function f: R" — R and the sublevel-set (1.3.1), we
have

Tsfx)(x) C{d: f'(x,d) <0}. (1.3.2)

PROOF. Take arbitrary y € Sf(x), t > 0, and set d := #(y — x). Then, using the
second equality in (1.1.2),

fx+d/t) - f(x)

!
1t z fl(x,d).

0=21[f(M - Sf®]=

So we have proved
RY[Sf(x) —x1C{d : f(x,d) <0} (1.3.3)

(note: the case d = 0 is covered since 0 € Sf (x) — x).

Because f'(x, -) is a closed function, the right-hand setin (1.3.3) is closed. Know-
ing that Tgg () (x) is the closure of the left-hand side in (1.3.3) (Proposition I11.5.2.1),
we deduce the result by taking the closure of both sides in (1.3.3). o

The reader should be warned that the converse inclusion in (1.3.2) need not
hold: for a counter-example, take f(x) = 1/2[|x||%. The sublevel-set Sf(0) is then
{0} and f’(0,d) = 0 for all d. In this case, (1.3.2) reads {0} c R"! To prove the
converse inclusion, an additional assumption is definitely needed — for example the
one considered in the following technical result.

Proposition 1.3.3 Let g : R” — R be convex and suppose that g(x,) < 0 for some
xo € R"™. Then

cl{z : g(z) <0} ={z : g(z) <0}, 1.3.4)

{z:8()<0}=int{z : g(z) <0}. (1.3.5)
It follows

bd{z : g(z2) <0} ={z : g(z) =0}. (1.3.6)
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PROOF. Because g is (lower semi-) continuous, the inclusion “C” automatically holds
in (1.3.4). Conversely, let z be arbitrary with g(z) < 0 and, for k > 0, set

2= gxo+ (1= §)Z.

By convexity of g, g(zx) < 0, so (1.3.4) is established by letting k — +o0.

Now, take the interior of both sides in (1.3.4). The “int cl” on the left is actually
an “int” (Proposition II1.2.1.8), and this “int”-operation is useless because g is (upper
semi-) continuous: (1.3.5) is established. (o

The existence of xg in this result is often called a Slater assumption, and will be useful in
the next chapters. When this xg exists, taking closures, interiors and boundaries of sublevel-
sets amounts to imposing “ < ”, “<” and “=" in their definitions. Needless to say, convexity
is essential for such an equivalence: with n = 1, think of g(z) := min{0, |z| — 1}.

We are now in a position to characterize the tangential elements to a sublevel-set.

Theorem 1.3.4 Let f : R® — R be convex and suppose 0 & 3f (x). Then, Sf(x)
being the sublevel-set (1.3.1),

Tsfn(x) ={d eR" : f'(x,d) <0} (1.3.7)
int[Tgry(®)]={deR" : f(x,d) <0} #0. (1.3.8)

PROOF. From the very definition (1.1.6), our assumption means that f/(x, d) < 0 for
some d, and (1.1.2) then implies that f(x + td) < f(x) for ¢t > 0 small enough: our
d is of the form (x + td — x)/t with x + td € Sf(x) and we have proved

{d: f(x,d) <0} CRF[SF(x) = x] C Tsf(ry(x). (1.3.9)
Now, we can apply (1.3.4) with g = f/(x, -):
c{d: fl(x,d)<0}=1{d : f'(x,d) <0},

so (1.3.7) is proved by closing the sets in (1.3.9) and using (1.3.2). Finally, take the
interior of both sides in (1.3.7) and apply (1.3.5) with g = f/(x, -) to prove (1.3.8).
[m]

The above result can be formulated in terms of normal cones.

Theorem 1.3.5 Let f : R® — R be convex and suppose 0 & 3f (x). Then a direction
d is normal to Sf (x) at x if and only if there is some t > 0 and some s € 3f (x) such
thatd =ts:

Ngry(x) =RYaf(x).
PROOF. Write (1.3.7) as

Tsfry(x) ={d €eR” : (s,d) <Oforall s € 3f (x)}
={deR": (As,d) <OforallA >0ands € 3f(x)} = [RTYaf(x)]°.

The result follows by taking the polar cone of both sides, and observing that, by
assumption, Rtaf (x) is closed (Proposition I11.1.4.7):

Nsfx)(x) = cl[RTf (x)] = RTaf (x). o
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Remark 1.3.6 The assumption 0 ¢ 3f (x), required by the above two results, can be formu-
lated in a number of equivalent ways:

— In view of Definition 1.1.4, it means f’(x, dp) < 0 for some dp.
— Using the other definition (1.2.1), there is some xg such that f(xo) < f(x).
— The latter implies that the same assumption holds everywhere on the level-set f(-) = f(x).

As a result, the existence of one point x with 0 ¢ 3f(x) allows the computation of
the tangent and normal cone to the corresponding sublevel-set Sf (x) at all its points: on its
boundary — which, thanks to (1.3.6), is the level-set f(-) = f(x) —and on its interior (trivial
case). a

Figure 1.3.2 illustrates these results. It is similar to Fig. 1.3.1, except that it is
drawn in R". Its left part represents the horizontal cut of Fig. 1.3.1 at level f(x), i.e.

Tepif(xr fonn{d,r)eR* xR : r =0}

whichis Ty (x) (x) x {0}; considered asasetin R", itis the tangent cone to the sublevel- -
set Sf(x). In the right part of the picture, we have also drawn the subdifferential,
neglecting its vertical component drawn in Fig. 1.3.1. The cone Nz (x)(x) generated
by this subdifferential appears to be the projection (onto the same horizontal space)
of the normal cone N; £ (x, f(x)).

Fig. 1.3.2. Tangent and normal cones to a sublevel-set

All this confirms how a subdifferential generalizes a gradient: if 3f(x) is the
singleton {V f(x)}, the level-set f(-) = f(x) has a tangent hyperplane at (x, f(x));
the cone Tgy (x) (x) is the half-space opposite to V f (x); the cone Nz, (x) is the half-
line RtV f(x). When af (x) becomes “fatter”, S f (x) becomes “narrower” around x.

Drawing the normal cone to the sublevel-set, i.e. considering only nonnegative multiples
of the subgradients, does describe the sublevel-set locally around x; but it also destroys
some information, namely the magnitudes of these gradients. This information contains the
magnitudes of the directional derivatives, and Fig. 1.3.3 shows how to recover it, even in R”,
It is similar to Fig. 1.3.2 and should be compared to Fig. V2.1.1: the supporting hyperplane

H:={seR":{d,s —x)= f(x,d)}

is orthogonal to d; its (algebraic) distance to x is f'(x, d), if d is normalized. The half-
iine x + R*d would cut the sublevel-set S F(x)—1(f) at the (algebraic) distance f/(x, d) if
t > f(x + td) were an affine function of t > 0.
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Fig. 1.3.3. Rate of decrease along a direction

1.4 A Constructive Approach to the Existence of a Subgradient

The existence of a subgradient of f at x results from Lemma V.3.1.1: 3f (x) of Defi-
nition 1.1.4 is nonempty just because the closed sublinear function f’(x, -) supports a
nonempty set. Alternatively, such a subgradient can be singled out in Definition 1.2.1
because f is minorized by some affine function (Proposition IV.1.2.1). In both cases,
the seminal argument is the separation Theorem II1.4.1.1.

We mention here an interesting alternative construction of a linear function mi-
norizing a (finite) sublinear function o — standing for f’(x, -). The key idea will be as
follows: take the directional derivative of o at some d # 0. It is easy to realize from
positive homogeneity that

o'd,d)+o'(d,—-d) =0.

In other words, the sublinear function o’(d, -) is linear at least on the 1-dimensional
subspace generated by d (remember Theorem V.1.1.6). Furthermore, the following
result ensures that the subspace where o was already linear is not spoiled when passing
too’(d, -).

Lemma 1.4.1 Let a subspace U C R" and two functions o\ and o, satisfy the
Jfollowing properties: o is linear on U, 0 is sublinear on U, and

ay(x) <oy(x) forallx eU.
Then there actually holds
0y(x) =0o1(x) forallxeU.
PROOF. For all x € U, we have
0 < 02(x) + 02(—x) < 01 (x) + 01(—x) =0,

so we conclude
02(x) = —02(—x) 2 — o1(—x) = 01(x) . o

Then, given our sublinear function o, let {e), ..., e;} be a basis of R" and define
recursively the following sublinear functions:
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oo:=0 and ox:=0y_, (e, ) for k=1,...,n. (1.4.1)

By now, it should be clear that the subspace on which oy, is linear increases by at least
one more dimension at each k: we must end up with a linear function.

Theorem 1.4.2 [n the process (1.4.1), we have
oS <o <0og=0. (14.2)
It follows that oy, is linear and minorizes o. Moreover, o,(e;) = o (e)).
PROOF. From the definition of o} and sublinearity:

_ td) — oy _
ak(d)=tigf;ak (e + t) k l(ek)Sovk_l(d) foralld e R",

which proves (1.4.2).
Now, by definition of oy, fork =1,...,n
(1 +t)og—(ex) — o—;(ex)

o (ex) = lim = ok—;(ex) (14.3)
140 t

where we have used positive homogeneity of oy _,; likewise

(1 — t)og—,(ex) — ox—(ex)
t

ok (—er) = lim = —0k—(ex) -
t}o

We deduce simply by addition

ok (ex) + ok (—ex) = og—(ex) — ox—1(ex) =0 fork=1,..,n.

In view of Theorem V.1.1.6, each oy is linear on the 1-dimensional subspace
generated by ey. Recursively, Lemma 1.4.1 together with (1.4.2) implies that each oy
is linear on the subspace generated by {e;}; < x: oy is linear on the whole space.

Finally, observe from (1.4.3) that o,(e;) = o (e;). Since o is linear on the sub-
space generated by e;, Lemma 1.4.1 again implies recursively

og(e)) =oi(e)) =---=ople). o

In summary, any sublinear function such as f/(x,-) is minorized by a linear
function £. This is essentially the so-called Hahn-Banach Theorem in analytical form;

indeed, £ supports a singleton {s}, which is a subgradient of f at x, and there holds
forall y € R”

fONZf@+fxy=—02fE)+s,y—x),
i.e. £ discloses a hyperplane supporting the convex set epi f at (x, f(x)) (Hahn-

Banach Theorem in geometric form).
The following example shows how the process (1.4.1) works in practice.
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Example 1.4.3 Ford = (8', ..., §"), suppose that our initial sublinear function is

[f'(x,d) =] oo(d) := max {§',...,8"},

and take e; := (1, 1,...,1),e;:=(0,1,...,1),...,en
basis of R”. It is not too difficult to see that

©,...,0,1) forming a

max {t8!, ..., t8¥ 1 18k, . 1 +18") -1

- = max {5%, ..., 8"}

ox(d) = lim
tlo

s0 op = (en, -} (we take the standard dot-product for (-, -}).

This example is interesting because no oy, is linear for k¢ < n: the process does
take n steps, although oy is already linear along e,. The reason is that o7 = oy: the
first step is useless. Figure 6.3.2 will clearly show that

—if iterated in the order e, . . ., ey, €], the process takes n — 1 steps: o, —) is linear;
— if started on ey, the linear (e, -) is already produced at the first iteration. O

2 Local Properties of the Subdifferential

In this section, we study some properties of df (x), considered as a generalization of
the concept of gradient, at a given fixed x.

2.1 First-Order Developments

As already mentioned, a finite convex function enjoys a “directional first-order ap-
proximation” (1.1.7), and an important result is that the convergence in (1.1.7) is
uniform in d on any bounded set: ¢4 can be taken independent of the normalized d.

Lemma 2.1.1 Let f : R” — R be convex and x € R". For any € > 0, there exists
& > 0 such that |h|| < & implies

If(x+h)— f(x) = f'Gx, DI < el (2.1.1)

PROOF. Suppose for contradiction that there is &¢ > 0 and a sequence {h;} with
[lhell =: tx < 1/k such that

[f(x+he)— f(x)— flxe b))l > ety fork=1,2,...

Extracting a subsequence if necessary, assume that hy /ty — d for some d of norm
1. Then take a local Lipschitz constant L of f (see Remark 1.1.3) and expand:

ety < 1fG+hp)— fx) = f'&x Rl
< If&+h) - fx+ud)+
+Hf (e +ed) — f(x) = f/ O, trd)] + 1 (x, tkd) — f/(x, b
< 2L\ — Al + | f(x + tkd) — f(x) =t f'(x, d)] .
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Divide by #; > 0 and pass to the limit to obtain the contradiction ¢ < 0. o

Another way of writing (2.1.1) is the first-order expansion

fGx+h)=f@x)+ f'x, h) +o(|rl), 2.1.2)
or also v
im JEHZI®
tlo,d'—d t

Remark 2.1.2 Convexity plays a little role for Lemma 2.1.1. Apart from the existence of a
directional derivative, the proof uses only Lipschitz properties of f and f/(x, -).

This remark is of general interest. When defining a concept of “derivative” D : R* — R
attached to some function f : R” — R at x € R", one considers the property

fx+h)— f(x) — D(h)
Al
with h tending to 0. Even without specifying the class of functions that D belongs to, several
sorts of derivatives can be defined, depending on the type of convergence allowed for 4:
(i) the point of view of Gateaux: (2.1.3) holds for h = td, d fixedin R*,t — 0 in R;
(ii) the point of view of Fréchet: (2.1.3) holds for h — 0;
(i°) the directional point of view: as in (i), but with ¢ > 0;
(ii’) the directional point of view of Dini: & = td’, with¢ | 0 and d’ — d in R".

-0, (2.1.3)

It should be clear from the proof of Lemma 2.1.1 that, once the approximating function D
is specified, these four types of convergence are equivalent when f is Lipschitzian around x.
a

Compare (2.1.2) with the radial development (1.1.7), which can be written with
any subgradient s; maximizing (s, d). Such an s, is an arbitrary element in the face of
df (x) exposed by d (remember Definition V.3.1.3). Equivalently, d lies in the normal
cone to 3f (x) at s4; or also (Proposition I11.5.3.3), s, is the projection of s4 + d onto
df (x). Thus, the following is just a restatement of Lemma 2.1.1.

Corollary 2.1.3 Let f : R® — R be convex. At any x,
fGx+h)= f(x)+ (s, h) + o(k])

whenever one of the following equivalent properties holds:
seFyrmy(h) = heNyp)(s) = s= Paf(x)(s +h). O

In words: as long as the increment 4 varies in a portion of R” that is in some fixed
normal cone to 3f (x), f looks differentiable; any subgradient in the corresponding
exposed face can be considered as a “local gradient”, active only on that cone; see
Fig.2.1.1. When h moves to another normal cone, it is another “local gradient” that
prevails.

Because 9f (x) is compact, any nonzero h € R” exposes a nonempty face. When
h describes R"\{0}, the corresponding exposed faces cover the boundary of 3f (x):
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1@

f(x+h) - f(x) = <sy,h>
forhe Naf(x)(s1) 1

Fig. 2.1.1. Apparent differentiability in normal cones

this is Proposition V.3.1.5. An important special case is of course that of 3f (x) with
only one exposed face, i.e. only one element. This means that there is some fixed
s € R" such that

lim fx+1td) - f(x)
140 t

= (s,d) foralld e R",

which expresses precisely the Gdteaux differentiability of f at x. From Corollary 2.1.3
(see again Remark 2.1.2), this is further equivalent to

fOx+h)— f(x)=(s,h) +o(|h]l) forallh e R",

i.e. f is Fréchet differentiable at x. We will simply say that our function is differentiable
at x, a non-ambiguous terminology.
We summarize our observations:

Corollary 2.1.4 Ifthe convex f is (Giteaux) differentiable at x, its only subgradient
at x is its gradient V f (x). Conversely, if 3f (x) contains only one element s, then f
is (Fréchet) differentiable at x, with V f (x) = s. o

Note the following consequence of Proposition V.1.1.6: if {d}, ..., di} is a set of
vectors generating the whole space and if f/(x,d;) = — f'(x, —d;) fori = 1,...,k,
then £ is differentiable at x. In particular (take {d;} as the canonical basis of R"), the
existence alone of the partial derivatives

af

_é—g_i_(x) =fl(x,e))=—f'(x,—¢;) fori=1,...,n
guarantees the differentiability of the convex f atx = (§ L ..., &™). See again Propo-
sition IV4.2.1.

For the general case where 3 (x) is not a singleton, we mention here another way
of defining faces: the function f’(x, -) being convex, it has subdifferentials in its own
right (Proposition 1.1.6 studied the subdifferential at 0 only). These subdifferentials
are precisely the exposed faces of 3f (x).

Proposition 2.1.5 Let f : R” — R be convex. For all x and d in R", we have

Far(o)d) = 3[f'(x, )]d) .



252 VI. Subdifferentials of Finite Convex Functions

PROOF. If s € 3f(x) then
f'(x,d) > (s,d’) foralld e R"

simply because f’(x,-) is the support function of 3 (x). If, in addition, (s,d) =
f'(x, d), we get

flx,d)> f/(x,d)+ (s,d —d) foralld e R" (2.1.4)

which proves the inclusion Faz(x)(d) C 8[f'(x, -)1(d). N
Conversely, let s satisfy (2.1.4). Setd” := d’ — d and deduce from subadditivity

flae,d)+ f'x,d) 2 f'(x,d") 2 f'(x,d) + (s,d") foralld” e R"

which implies f/(x,-) 2 (s, -), hence s € 3f(x). Also, putting d’ = 0 in (2.1.4)
shows that (s, d) > f'(x, d). Altogether, we have s € Fyz(x)(d). n|

This result is illustrated in Fig. 2.1.2. Observe in particular that the subdifferential
of f/(x,-) at the point td does not depend on ¢t > 0; but when ¢ reaches 0, this
subdifferential explodes to the entire af (x).

Fig. 2.1.2. Faces of subdifferentials

Definition 2.1.6 A point x at which 3f (x) has more than one element — i.e. at which
f is not differentiable — is called a kink (or corner-point) of f. O

We know that f is differentiable almost everywhere (Theorem IV.4.2.3). The set of kinks
is therefore of zero-measure. In most examples in practice, this set is the union of a finite
number of algebraic surfaces in R”.
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Example 2.1.7 Letgq, ..., gn be m convex quadratic functions and take f as the max of
the g;’s. Given x € R”, let

Jx) ={j<m : qj(x) = f(x)}

denote the set of active gj’s at x.

Itis clear that f is differentiable at each x such that J (x) reduces to a singleton { j (x)}: by
continuity, J () is still this singleton {j (x)} for all y close enough to x, so f and its gradient
coincide around this x with the smooth g (x) and its gradient. Thus, our f has all its kinks in
the union of the 1/2m(m — 1) surfaces

Zij={x eR" : gi(x) =qj(x)} fori#j.

Figure 2.1.3 gives an idea of what this case could look like, in R?. The dashed lines represent
portions of X;; at whichg; = g; < f. ]

f=0Q

Q, =Q,

Fig. 2.1.3. A maximum of convex quadratic functions

2.2 Minimality Conditions

We start with a fundamental result, coming directly from the definitions of the sub-
differential.

Theorem 2.2.1 For f : R® — R convex, the following three properties are equiva-
lent:

(i) f is minimized at x over R", i.e.: f(y) 2 f(x) forall y € R";

(i) 0 € 3f (x);
(iii) f'(x,d) >0 foralld € R™.

PROOF. The equivalence (i) < (ii) [resp. (ii) < (iii)] is obvious from (1.2.1) [resp.
(1.1.6)]. O

Naturally, x can be called “stationary” if 0 € 3f (x). Observe that the equivalence
(i) < (iii) says: f is minimal at x if and only if its tangential approximation f’(x, -)
is minimal at 0; a statement which makes sense, and which calls for two remarks.
— When x is a local minimum of f (in the sense of Definition I1.1.1.2), (iii) holds;
thus, convexity implies that a local minimum is automatically global.
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— In the smooth case, the corresponding statement would be “the tangential approx-
imation (V f(x),-) of f(-) — f(x), which is linear, is identically 0”. Here, the
tangential approximation f’(x, -) need not be 0; but there does exist a minorizing
linear function, usually not tangential, which is identically 0.

Remark 2.2.2 The property “0 € 3f(x)” is a generalization of the usual stationarity con-
dition “V f(x) = 0” of the smooth case. Even though the gradient exists at almost every x,
one should not think that a convex function has almost certainly a 0-gradient at a minimum
point. As a matter of fact, the “probability” that a given x is a kink is 0; but this probability
may not stay 0 if some more information is known about x, for example that it is a stationary
point. As a rule, the minimum points of a convex function are indeed kinks. u]

The position of 0 in 3f (x) is useful for determining the nature of x as a minimum
point: it tells us how f increases in the neighborhood of x. In the smooth case, f is
stationary at x if and only if 9f (x) is the singleton {0}. This means that the first-order
approximation of f at x is constant. In addition, convexity implies that f is really
minimal at x — and not maximal, say. If we ask more about the behaviour of f around
x, not much can be extracted from the property “V f(x) = 0” alone. It cannot be
ascertained, for example, whether x is a unique minimum. In the nonsmooth case,
the possible existence of additional nonzero subgradients makes the geometry of the
graph of f much more versatile. The essential result is the following.

Proposition 2.2.3 Let x minimize the convex f : R" — R and let Ny () (0) denote
the normal cone to of (x) at 0.
For all ¢ > O there exists § > 0 such that

h€Npry()NBO,8) == fx+h) < fx)+eln|. (2.2.1)
On the other hand,
h&Ngrx)(0) =  fx+h) > fx). (2.2.2)

PROOF. By definition, & € Ny (4)(0) if and only if
{s,h) <0 foralls € 3f(x) 2.2.3)

and, knowing that x minimizes f, this is equivalent to f/(x, #) = 0. Then (2.2.1) is
a consequence of the first-order development (2.1.2).

When h & Njr(x)(0), the negation of (2.2.3) is f/(x, h) > 0, whence (2.2.2)
follows immediately. o

Remark 2.2.4 A somewhat more accurate statement than (2.2.2) can be given, taking into
account the direction of h # 0: for all d & Ny (,)(0), there is & > 0 such that

fx+td)> f(x)+et forallz>0. (2.2.4)

Of course, ¢ certainly depends on d: it is nothing but f’(x, d), which is positive since
d & Narx)(0). a
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Proposition 2.2.3 is important for optimization theory, because it divides the space around
a minimum point x in two parts:

— The first part is the normal cone Ny (,)(0) to 3f (x) at 0. For a direction d in this normal
cone, f'(x,d) = 0 and the function ¢ : 0<t > f(x + td) is constant to first order at
t = 0. For such a d, it might be the case, for example, that ¢(#) = ¢(0) for small ¢ > 0. To
check whether or not ¢ is strictly increasing, and at what speed it does so, requires more
work; the situation is similar in the smooth case, where a second-order analysis is required.

— When d is out of this normal cone, f(x + td) increases with a nonzero linear rate: if only
this part of the space were concerned, x would be a guaranteed unique minimum.

Remark 2.2.5 The normal cone Njs(x)(0) can thus be called the critical cone, its nonzero
elements being the critical directions. In classical (smooth) optimization, the space around a
local minimum x is divided analogously into two regions:

— One is a subspace: the kernel of V2 f (x), sometimes called the set of critical directions. For
all ¢ > 0, there exists § > 0 such that

heKerVif(x)NB(0,8) = f(x+h)<f&x) +elhl?. (2.2.5)

— In the complement of this subspace, f increases as fast as a strongly convex quadratic
function: for all d ¢ Ker V2 f (x), there is ¢ > 0 such that

f(x+1td) > f(x) +er* fort close enoughto 0. (2.2.6)

The present nonsmooth situation is fairly similar, if we replace subspaces by cones and
1? by t: compare (2.2.5) with (2.2.1) on the one hand, (2.2.6) with (2.2.4) on the other. A
substantial difference, however, is that the existence of critical directions is now the rule; by
contrast, in smooth optimization, the assumption Ker V2 f (x) = {0} —i.e. V2 f(x) is positive
definite — is well-accepted.

As mentioned earlier, the possible property Ny (x)(0) # R” is a privilege of nonsmooth
functions. It brings some definite advantages, one being that a first-order analysis may some-
times suffice to guarantee uniqueness of a minimum point. ]

There are various interesting special cases of Proposition 2.2.3. For example, the
property “0 € ridf (x)” is equivalent to

f'(x,d) >0 forall d with f'(x,d) + f'(x, —d) > 0

(remember Theorem V.2.2.3). In the language of Remark 1.1.5, this last property
means that x is a strict minimum in all directions along which f is not smooth. A
“super-special” case arises when, in addition, 9f (x) is full-dimensional, i.e.

Oeridf(x) =intdf(x) # 0.
Then there are no critical directions.

Proposition 2.2.6 A4 necessary and sufficient condition for the existence of ¢ > 0
such that

fOx+h)>= f(x)+elhll forallh e R* 2.2.7)
is 0 € intaf (x).
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PROOF. The condition 0 € int 3f (x) means that B(0, &) C 3f(x) for some ¢ > 0
which, in terms of support functions, can be written as f'(x, -) > || - ||. From the
definition of the directional derivative, this last property is equivalent to (2.2.7). 0O

With the above results in mind, it is instructive to look once more at Fig.1.1.1.
Take x to be a minimum point (on the right part of the picture, translate 3f (x) down
to V). Then the critical cone is just the subspace U, in which f’(x, -) is linear — and
identically zero.

The case illustrated by this figure is rather typical: the subdifferential at a minimum
point is often not full-dimensional; it has therefore an empty interior, and Proposi-
tion 2.2.6 does not apply. In this case, the critical cone is definitely nontrivial: it is
U.

On the other hand, this cone often coincides with this subspace, which means that
0 € ridf (x). Still in the same Fig. 1.1.1, translate 3f (x) further to the right so as to
place 0 at its left endpoint. Then the critical cone becomes the left half-space. This is
not a typical situation.

Let us sum up:

— A minimum point x is characterized by: 0 € 3f (x), or f'(x,d) > 0 foralld € R".

— A critical direction is a d # 0 such that f/(x,d) = 0. Existence of a critical
direction is equivalent to 0 € bd 3f (x).

— If there is a critical d with —d non-critical, x can be considered as degenerate. This
is equivalent to 0 € rbd 3f (x).

To finish, we mention that a non-minimal x is characterized by the existence of a
d with f/(x,d) < 0. Such a d is called a descent direction, a concept which plays an
important role for minimization algorithms. The set of descent directions was shown
in Theorem 1.3.4 to be the interior of the tangent cone to Sf(x), the sublevel-set
passing at x.

2.3 Mean-Value Theorems

Given two distinct points x and y, and knowing the subdifferential of f on the whole
line-segment ]x, y[, can we evaluate f(y) — f(x)? Or also, is it possible to express
S as the integral of its subdifferential? This is the aim of mean-value theorems.

Of course, the problem reduces to that of one-dimensional convex functions

(Chap.I), since
F() = f(x) = ¢(1) — ¢(0)
where
@)= f@ty+ (1A —-1)x) forallt €[0,1] (2.3.1)
is the trace of f on the line-segment [x, y]. The key question, however, is to express
the subdifferential of ¢ at  in terms of the subdifferential of f at ty + (1 — ¢)x in the

surrounding space R". The next lemma anticipates the calculus rules to be given in
§4. Here and below, we use the following notation:

xp=ty+({1-1tx

where x and y are considered as fixed in R”.
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Lemma 2.3.1 The subdifferential of ¢ defined by (2.3.1) is

dp@) = {{s,y—x) : s € 3f (xy)}

or, more symbolically:
() = (3f (x1), y — x).

PROOF. Apply the definitions from §1.4:
fGr+t(y—x) = flx)

Dio@) = Lli% - [,y —x)
Do = lm LEHTO =D = FG)
10 T
so, knowing that
flxny—x)= Se%l%t)(sy y—x),
— l — — - 1 —
f (xl1 ()’ X)) Seglfl?xt)(s, y X) s
we obtain
(1) :=[D_e(), D1p@®)] ={(s,y — x) : s € df (x)}. o

Remark 2.3.2 The derivative of ¢ exists except possibly on a countable set in R. One should
not think that, with this pretext, f is differentiable except possibly at countably many points
of ]x, y[. For example, with f(&,7n) := |&], x := (0,0), y := (0, 1), f is differentiable
nowhere on [x, y]. What Lemma 2.3.1 ensures, however, is that for almost all ¢, 3f (x;) has a
zero breadth in the direction y — x: f'(xs, y —x) + f/(xt, x —y) = 0.
Note, on the other hand — and this is a consequence of Fubini’s theorem — that almost
all the lines parallel to [x, y] have an intersection of zero-measure with the set of kinks of f.
O

With the calculus rule given in Lemma 2.3.1, the one-dimensional mean-value
Theorem 1.4.2.4 applied to the function ¢ of (2.3.1) becomes the following result:

Theorem 2.3.3 Let f : R” — R be convex. Given two points x # y in R", there
existt €0, 1[ and s € 3f (x;) such that

fO) = fx)={,y—x). 2.3.2)
In other words,
fO)—f@e | (@), y—x}. O
telo,lf

The mean-value theorem can also be given in integral form.



258 VI. Subdifferentials of Finite Convex Functions

Theorem 2.3.4 Let f : R® — R be convex. For x,y € R",

1
FO) = Fx) = / O (), y — x) dr @33
0

The meaning of (2.3.3) is as follows: if {s; : ¢+ € [0, 1]} is any selection of
subgradients of f on the line-segment [x, y], i.e. s; € 8f(x;) for all ¢ € [0, 1], then
fol (s¢, y — x)dt is independent of the selection and its value is f(y) — f(x).

Example 2.3.5 Mean-value theorems can be applied to nondifferentiable functions
in the same way as they are in (ordinary) differential calculus. As an example, let
f» g be two convex functions such that f(x) = g(x) and f(y) < g(y) forall yina
neighborhood of x. It follows from the definitions that 9f (x) C 3g(x).

Conversely, suppose that f, g are such that 3f(x) C dg(x) for all x € R”; can
we compare f and g? Same question if 3f (x) N dg(x) 5 @ for all x. The answer lies
in (2.3.3): the difference f — g is a constant function (take the same selection in the
integral (2.3.3)!).

An amusing particular case is that where f and g are (finite) sublinear functions:
then, f < g if and only if 3f (0) C 9g(0) (f and g are the support functions of 3f (0)
and 9g(0) respectively!). u)

3 First Examples

Example 3.1 (Support Functions) Let C be a nonempty convex compact set, with support
function oc. The first-order differential elements of o at the origin are obtained immediately
from the definitions:

doc(0)=C and (oc)(0,")=o0cC.

Read this with Proposition 1.1.6 in mind: any convex compact set C can be considered as
the subdifferential of some finite convex function f at some point x. The simplest instance
is f=o0c,x=0.

On the other hand, the first-order differential elements of a support function o¢ at x 5 0
are given in Proposition 2.1.5:

doc(x) =Fc(x) and (0¢)'(x,") = Opc(y) - 3.1)

The expression of (oc) (x, d) above is a bit tricky: it is the optimal value of the following
optimization problem (s is the variable, x and d are fixed, the objective function is linear,
there is one linear constraint in addition to those describing C):

max({d, s) seC
(s, x) = oc(x).
As a particular case, take a norm | - §|. As seen already in §V.3.2, it is the gauge of its

unit ball B, and it is the support function of the unit ball B* associated with the dual norm
Il - *. Hence

M-UO =B*={seR": maxggy<i(s,d) <1} .

More generally, for x not necessarily zero, (3.1) can be rewritten as
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- x) = {s € B* : (s, x) = maxyep+(u, x) = fIx}i} . (3.2)
All the points s in (3.2) have dual norm 1; they form the face of B* exposed by x. 0O

Example 3.2 (Gauges) Suppose now that, rather than being compact, the C of Example 3.1
is closed and contains the origin as an interior point. Then, another example of a convex finite
function is its gauge yc (Theorem V.1.2.5). Taking into account the correspondence between
supports and gauges — see Proposition V.3.2.4 and Corollary V.3.2.5 — (3.1) can be copied if
we replace C by its polar set

C°:={x:{(s,x)<1 forallseC}.

So we obtain
dyc©) =C° (yc)©,)=yc,
and of course, Proposition 2.1.5 applied to C° gives at x # 0

dyc(x) =Fco(x) and (vc) (%, ) = Opo(x) -

Gauges and support functions of elliptic sets deserve a more detailed study. Given a
symmetric positive semi-definite operator Q, define

Rn ER g f(_x) = (Q_x,x)
which is just the gauge of the sublevel-set {x : f(x) < 1}. From elementary calculus,
Ox
f(x)={Vfx)}={——t forx gKer Q
fx)

while, for x € Ker Q, s € 8f(x) if and only if, for all y € R”*

5,7 = 1) < Vi@ = VRO —n,y—n = [ @y - »)|

From the Cauchy-Schwarz inequality (remember Example V.2.3.4), we see that 3f (x) is
the image by Q!/2 of the unit ball B(0, 1). ]

Example 3.3 (Distance Functions) Let again C be closed and convex. Another finite con-
vex function is the distance to C:

dc(x) :=min{lly — x| : y € C},
in which the min is attained at the projection pc(x) of x onto C. The subdifferential of d¢ is

oo Ne(x) N B@©,1) ifxeC, .
= [rfc:fpci_(;;u} ifxgC, '

a formula illustrated by Fig. V.2.3.1 when C is a closed convex cone. The case x & C was
already proved in Example IV.4.1.6; let us complete the proof. Thus, forx € C,lets € ddc(x),
ie.

de(x") = (s,x"' —x) forallx’ e R"®.

This implies in particular (s, x’ — x) <0 for all x’ € C, hence s € N¢(x); and taking
x' = x + s, we obtain
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Isi> < dc(x +5) < llx +5 —x|| = |is|l -
Conversely, let s € N¢(x) N B(0, 1) and, for all x’ € R", write
(s, x' = x) = (s, x' —pc(x)) + (s, pc(x’) — x) .

The last scalar product is nonpositive because s € N¢(x) and, with the Cauchy-Schwarz
inequality, the property ||s]| < 1 gives

(.2 —pc(x)) < I’ = pc ()l = dc(x).

Altogether, s € ddc (x). Note that the set of kinks of d¢ is exactly the boundary of C. This
proves once more that the boundary of a convex set is of zero-measure.

Consider the closed convex cone K := Nc(x), whose polar cone is K° = T¢(x). As
seen in Chap. V, more particularly in (V.3.3.5), the support function of K’ = K N B(0, 1) is
the distance to T¢ (x). From (3.3), we see that

de(x,-) = drery forallx eC.
Compare also this formula with Proposition II1.5.3.5. o
Example 3.4 (Piecewise Affine Functions) Consider the function
R" 3 x> f(x) :=max{fjx) : j=1,...,m} 34)
where each f; is affine:
fix)i=rj+(sj,x) forj=1,....,m.

To compute the first-order differential elements of f at a given x, it is convenient to
translate the origin at this x. Thus, we rewrite (3.4) as

FO) = f&x)+max{—ej + (sj,y—x) : j=1,...,m} 3.5)
where we have set,for j =1,...,m
e = fx) —rj—(sj,x) = f(x) - fj(x) 20 (3.6)

(look at the left part of Fig. 3.1 to visualize e;).

1

f2 \ f(x)
>

0 X
Fig.3.1. Piecewise affine functions: translation of the origin and directional derivative

Now consider f(x +td), as illustrated on the right part of Fig. 3.1, representing the space
R” around x. For t > 0 small enough, those j such that e j > 0 do not count. Accordingly,
set



4 Calculus Rules with Subdifferentials 261
Jx):={j : ¢ =0={j: fjx) = f(x)}.
Rewriting (3.5) again as
fx+td) = f(x) +tmax((sj,d) : jeJ(x)} forsmallt >0,
it becomes obvious that
fl(x,d) = max {(sj,d) : jeJx)}.
From the calculus rule V.3.3.3(ii) and Definition 1.1.4, this means exactly that
af(x)=colsj : jeJ)}. 3.7)
This result will be confirmed in §4.4. We have demonstrated it here nevertheless in
intuitive terms, because piecewise affine functions are of utmost importance. In particular,

the notation (3.6) and Fig. 3.1 will be widely used in some of the subsequent chapters, devoted
to minimization algorithms. o

4 Calculus Rules with Subdifferentials

Calculus with subdifferentials of convex functions is important for the theory, just as
in ordinary differential calculus. Its role is illustrated in Fig. 4.0.1: if f is constructed
from some other convex functions fj, the problem is to compute 3f in terms of the
afj’s.

Convex functiow Anew
I fation preserving convext convex function f

Their
subdifferentials

To develop our calculus rules, the two definitions 1.1.4 and 1.2.1 will be used.
Calculus with support functions (§V.3.3) will therefore be an essential tool.

, jon on closed co,
Hperal Nvex sets

Fig.4.0.1. Subdifferential calculus

4.1 Positive Combinations of Functions

Theorem 4.1.1 Let f), f, be two convex functions from R" to R and 1, t, be positive.
Then

N +0f)(x) =408fi(x) +1,0f2(x) forallx e R". (4.1.1)
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PROOF. Apply Theorem V.3.3.3(i): #;8f1(x) + ,3f>(x) is a compact convex set whose
support function is
nfix ) +nfx, ). 4.12)

On the other hand, the support function of 3(¢; f; + 1, f2)(x) is by definition the
directional derivative (t fi + £2f2)’(x, -) which, from elementary calculus, is just
(4.1.2). Therefore the two (compact convex) sets in (4.1.1) coincide, since they have
the same support function. 0

Remark 4.1.2 Needless to say, the sign of #; and t; in (4.1.1) is important to obtain a resulting
function which is convex. There is a deeper reason, though: take fi(x) = fo(x) = |x|,
t) = —tp = 1. We obtain fj — fo, =0, yet

118£1(0) + 129/2(0) = B(0,2),
a gross over-estimate of {0}! O
To illustrate this calculus rule, consider f : R? x R? — R defined by
fGnx2) = fikn) + falx2),
with f; and f, convex on R? and R respectively. First, call
R? x R? 5 (x1,%2) = fi(x1, x2) = fi(x1)
the extension of f; and observe that its subdifferential is obviously
/101, 22) = 3fi(x1) x {0}.
Then Theorem 4.1.1 gives, after the same extension is made with f;,
8f (x1, x2) = 8f1(x1) x {0} + {0} X 3f2(x2) = 8f1(x1) x 8fa(x2). 4.1.3)

Remark 4.1.3 Given a convex function f : R® — R, an interesting trick is to view its
epigraph as a sublevel-set of a certain convex function, namely:

R*xR> x,r) > glx,r) = f(x)—r.

Clearly enough, epi f is the sublevel-set So(g). The directional derivatives of g are easy to
compute:

g, f(x);d,p)=f(x,d)—p forall(d,p) eR" xR
and (4.1.3) gives for all x € R”

3g(x, f(x)) =0f(x) x {~1} F 0.

We can therefore apply Theorems 1.3.4 and 1.3.5 to g, which gives back the formulae of
Proposition 1.3.1:

Tepif(xv fx)
int Tep; £(x, f(x))
Nepi £ (x, f(x))

{d,p): f'(x,d) < p},
{d.p): fl(x,d) < p} #,
R*[3f (x) x {~1}]. o
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4.2 Pre-Composition with an Affine Mapping

Theorem 4.2.1 Let A : R® — R™ be an affine mapping (Ax = Aox + b, with Ag
linear and b € R™) and let g be a finite convex function on R™. Then

d(goA)(x) = A?,‘ag(Ax) forall x e R" . “4.2.1)
PROOF. Form the difference quotient giving rise to (g o A)’(x, d) and use the relation
A(x +td) = Ax + tAod to obtain
(g0 AY(x,d) = g’ (Ax, Apd) foralld e R".
From Proposition V.3.3.4, the right-hand side in the above equality is the support
function of the convex compact set AFdg(Ax). ]

This result is illustrated by Lemma 2.3.1: with fixed x, y € R”, consider the affine
mapping A : R —» R”
At =x+t(y —x).

Then Ayt = t(y — x), and the adjoint of Ao is defined by
Aj(s) =({y —x,s) foralls eR".

Twisting the notation, replace (n, m, x, g) in Theorem 4.2.1 by (1, n, ¢, f): this gives the
subdifferential ¢ of Lemma 2.3.1.

As another illustration, let us come back to the example of §4.1. Needless to say, the
validity of (4.1.3) relies crucially on the “decomposed” form of f. Indeed, take a convex
function f : R? x R? — R and the affine mapping

RP 3 x> Ax; = (x1,x) e RP xRY.

Its linear part is x; > Agx; = (x, 0) and A3 (s1, 52) = 5. Then consider the partial function
foA:RP 3 x > f§,”(x1) = f(x1,x).
According to Theorem 4.2.1,
3P (x1) = {s1 € R? : 35, € RY such that (s1, 52) € 3f (x1, x2))
is the projection of 3f (x, x2) onto R”?. Naturally, we can construct likewise the projection
of 3f (x;, x2) onto RY, which yields the inclusion
8f (x1, x2) C 3fy (1) X Bf5D (x2). @22)

Remark 4.2.2 Beware that equality in (4.2.2) need not hold, except in special cases; for
example in the decomposable case (4.1.3), oralso when one of the projections is a singleton, i.e.

when the partial function f,le ), say, is differentiable. For a counter-example, take p = q = 1
and

fGx2) =[x — x| + 3G + D + 2 + 12
This function has a unique minimum at (—1, —1) but, at (0, 0), we have
afP ) =[0,2] fori=1,2,

hence the right-hand side of (4.2.2) contains (0, 0). Yet, f is certainly not minimal there,
3£ (0, 0) is actually the line-segment

2,1 —a) : ¢ €[0,1]}. (]
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4.3 Post-Composition with an Increasing Convex Function of Several Variables

As seen in §I1V.2.1(d), post-composition with an increasing one-dimensional convex
function preserves convexity. A relevant object is the subdifferential of the result;
we somewhat generalize the problem, by considering a vector-valued version of this
operation.

Let fi, ..., fm be m convex functions from R” to R; they define a mapping F by

Rax > F(x):=(fi(x),..., fm(x)) e R™.

Equip R™ with the dot-product and let g : R™ — R be convex and increasing
componentwise, i.e

yedfori=1,....m = g0)>gQ).
Establishing the convexity of the function

R" 3 x> (g0 F)(x) := g(fi(x),..., fm(x))

is an elementary exercise. Another easy observation is that, if ', ..., p™) € 3g(y),
then each p' is nonnegative: indeed, {e;, .. ., e;;} being the canonical basis in R™,

m
g =g —e) =8N+ ) o' (~g) =g(y) —p’.

i=l

Theorem 4.3.1 Let f, F and g be defined as above. For all x € R",

8(g o F)(x) = [, pfsi 1 (', p™) € Bg(F(x)),

4.3.1)
s; € 8fi(x) fori = 1,...,m}.
PROOF. [Preamble] Our aim is to show the formula via support functions, hence we
need to establish the convexity and compactness of the right-hand side in (4.3.1) — call
it S. Boundedness and closedness are easy, coming from the fact that a subdifferential
(be it dg or 9f;) is bounded and closed. As for convexity, pick two points in S and
form their convex combination

m

m
5= ozz,o's,- +(1 —a)Zp"s,f = Z[apisi +(1 - oz)p'is,f] ,
i=1

i=1 i=l
where o €10, 1[. Remember that each p' and o is nonnegative and the above sum
can be restricted to those terms such that p”" := ap' + (1 —a)p” > 0. Then we write
each such term as

ro i l——a 1"
pm[ _% 5 +( ”i)p {]_
P P

It suffices to observe that p” i e 9g(F (x)), so the bracketed expression is in af; (x);
thuss € §.
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[Step 1] Now let us compute the support function o of S. For d € R", we denote by
F'(x,d) € R™ the vector whose components are fi’ (x, d) and we proceed to prove

os(d) = g'(F(x), F'(x,d)) . 4.3.2)

Foranys =Y/ pls; € S, we write (s, d) as

m m

> psid Z fi,d) < g (Fx), F'(x,d)) ; (4.3.3)

i=] i=l

the first inequality uses p' > 0 and the definition of 1 "(x,:) = oaf; (x); the second
uses the definition g'(F(x), ) = Og(F(x))-

On the other hand, the compactness of dg(F(x)) implies the existence of an
m-tuple (5°) € 9g(F (x)) such that

m .
g(F), F'x,d)) =) p'f{(x.d),

and the compactness of each 3f; (x) yields likewise an §; € 9f;(x) such that
f(x d)=(s;,d) fori=1,...,m.
Altogether, we have exhibited an § = ) /2| p's; € S such that equality holds in

(4.3.3), s0 (4.3.2) is established.

[Step 2] It remains to prove that the support function (4.3.2) is really the directional
derivative (g o F)'(x, d). Fort > 0, expand F (x + td), use the fact that g is locally
Lipschitzian, and then expand g(F (x + td)):

g(F(x +1td)) = g(F(x)+tF’(x d)+o(@)) =g(F(x) +tF'(x,d)) + o(t)
g(F(x) +1g'(F(x), F'(x,d)) + o(t).

From there, it follows

F(x +1d)) — g(F
o FY'(x.d) 2= lim m 8! )t) s _ g(F), Fixd)). o

Let us give some illustrations:
— When g is differentiable at F(x), (4.3.1) has a classical flavour:

m

a
dgoF)0) =) a—f;(F(x))afi x).

i=1

In particular, with g(y!, ..., y™) = 1/2 f"zl(y”)z (r* denoting max{0, r}), we
obtain

o[ XL U = EL, £ ofi.
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—Take g(y', ..., y™) = ¥/ (¥')* and use the following notation:
Lx):={i : fix)=0}, L&) :={i: fi(x)>0}.
Then
[T, 1) = Tier, 0 i @) + Tiesywl0: 118/ @) -

— Finally, we give once more our fundamental example for optimization (generalizing
Example 3.4, and to be generalized in §4.4):

Corollary 4.3.2 Let fy,..., fm be m convex functions from R" to R and define
fi=max{fi,..., fm}.

Denoting by
I(x):={i : fi(x) = fx)}

the active index-set, we have
af (x) =co{Udf;(x) : i € I(x)}. “4.3.4)

PROOF. Take g(y) = max({y', ..., y™}, whose subdifferential was computed in (3.7):
{e;} denoting the canonical basis of R™,

9g(y) = co{e; : i such that yi =gMN}.

Then, using the notation of Theorem 4.3.1, we write dg(F (x)) as

[(p',...,pm) . pl=0fori g I(x), pi >0forielx), Z;":lpi:l},
and (4.3.1) gives

af (x) = {Ziel(x)piaf'i(x) i 20fori € I(x), Tiery o' = 1}.

Remembering Example I11.1.3.5, it suffices to recognize in the above expression
the convex hull announced in (4.3.4) o

4.4 Supremum of Convex Functions

We come now to an extremely important calculus rule, generalizing Corollary 4.3.2. It
has no equivalent in classical differential calculus, and is of constant use in optimiza-
tion. In this subsection, we study the following situation: J is an arbitrary index-set,
{fj}jey is a collection of convex functions from R” to R, and we assume that

f(x):=sup{fj(x) : jeJ} <+ooforallx e R". “4.4.1)

We already know that f is convex (Proposition IV.2.1.2) and we are interested in
computing its subdifferential. At a given x, call

Jx):={jeJ: fjx) = f(x)} 4.4.2)

the active index-set (possibly empty).
Let us start with an elementary result.
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Lemma 4.4.1 With the notation (4.4.1), (4.4.2),
af (x) D cofudfj(x) : j e J(x)}. 4.4.3)

PROOF. Take j € J(x) and s € 3f;j(x); from the definition (1.2.1) of the subdifferen-
tial,

fO = i) > fix)+(s,y—x) forally e R",
so df (x) contains df;(x). Being closed and convex, it also contains the closed convex
hull appearing in (4.4.3). O

Conversely, when is it true that the subdifferentials 3f;(x) at the active indices j
“fill up” the whole of 3f (x)? This question is much more delicate, and requires some
additional assumption, for example as follows:

Theorem 4.4.2 With the notation (4.4.1), (4.4.2), assume that J is a compact set (in
some metric space), on which the functions j v f;(x) are upper semi-continuous
Jor each x € R". Then

af (x) = co{Udfj(x) : j € J(x)}. 4.4.4)

PROOF. [Step 0] Our assumptions make J (x) nonempty and compact. Denote by S the
curly bracketed set in (4.4.4); because of (4.4.3), S is bounded, let us check that it is
closed. Take a sequence {sx} C §, with {s;} converging to s; to each si, we associate
some ji € J(x) such that s € 3fj, (x), i.e.

Jie ) 2 fj, ) + (sg, y —x) forally e R".

Letk — o0; extract a subsequence so that jy — j € J(x); we have fix) =fx)=
fj(x); and by upper semi-continuity of the function f.(y), we obtain

i) > limsup f;, (%) > fj(x) +(s,y —x) forally e R",

which shows s € dfj(x) C S. Altogether, S is compact and its convex hull is also
compact (Theorem II1.1.4.3).

In view of Lemma 4.4.1, it suffices to prove the “C”-inclusion in (4.4.4); for this,
we will establish the corresponding inequality between support functions which, in
view of the calculus rule V.3.3.3(ii), says: for all d € R”,

fl(x,d) < os(d) =sup{fj'(x,d) 1 jelJ®)}. (4.4.5)

{Step I]Let &£ > 0; from the definition (1.1.2) of f/(x, d),

fx+1td) — f(x)

. > f'(x,d) —¢ forallt > 0. (4.4.6)

Fort > 0, set

C fix+1td) — f(x)
' t

Iy = {jeJ >f’(x,d)—s}.
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The definition of f(x + td) shows with (4.4.6) that J; is nonempty. Because J is
compact and f(.)(x + td) is upper semi-continuous, J; is visibly compact. Observe
that J; is a superlevel-set of the function

R fix +tdt) = fj(x) + fi(x) t— fx) ’

0<

which is nondecreasing: the first fraction is the slope of a convex function, and the
second fraction has a nonpositive numerator. Thus, J;, C Ji, for 0 < ¢; < ;.

[Step 2] By compactness, we deduce the existence of some j* € N;soJ; (for each
t €]0,¢t], pick some j; € Jr C Jy; take a cluster point for t | 0: it is in J;). We
therefore have

fj*(x +td) — f(x) >1t[f'(x,d)—€] forallt >0,

hence j* € J(x) (continuity of the convex function fjx for ¢t | 0). In this inequality,
we can replace f(x) by fj*(x), divide by z and let ¢ | 0 to obtain

os(d) > fix(x.d) > f'(x,d) - &.
Since d € R” and & > 0 were arbitrary, (4.4.5) is established. a

Some comments on the additional assumption are worth mentioning. First, the result
concerns df (x), for which it is sufficient to know f only around x. It therefore applies if we
have some neighborhood V of x, in which f is representable as

f) =sup{fj() : jeJ(V)} forallyeV,

where J (V) is a compact set on which j > fj(y) is upper semi-continuous whenevery € V.
Secondly, this assumption deals with j only but this is somewhat misleading. The convexity
of each f; actually implies that f is jointly upper semi-continuous on J x R".

Finally, the set J is usually a subset of some R? and our assumption then implies three
properties: J is closed, bounded, and the f{.) are upper semi-continuous. Let us examine what
happens when one of these properties does not hold. If J is not closed, we may first have
J(x) = @, in which case the formula is of no help. This case does not cause much trouble,
though: nothing is changed if J is replaced by its closure, setting

fix) = limsup £+ (x)
J'—J

for j € (cl J)\J. A simple example is
Raxe fix)=x—j with jeJ=101]. “4.4.7)

Closing J places us in a situation in which applying Theorem 4.4.2 is trivial. The other two
properties (upper semi-continuity and boundedness) are more fundamental.

Example 4.4.3 [Upper Semi-Continuity] Complete (4.4.7) by appending 0 to J and set
Jo(x) = 0; then f(x) = x* and
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[ (0} ifx<0,
J(")‘{ 0 ifx>0.

Here, j +— fj(x) is upper semi-continuous at x = 0 only; J(0) yields 3f,(0) = {0} C
af(0) = [0, 1] and nothing more.

Observe that, introducing the upper semi-continuous hull f(.)(x) of f()(x) does not
change f (and hence 3f), but it changes the data, since the family now contains the additional
function fo(x) = x*. With the functions f; instead of f;, formula (4.4.4) works.

[Boundedness] Take essentially the same functions as in the previous example, but with other
notation:

folx) =0, fj(x)=x—§ forj=1,2,...
Now J = N is closed, and upper semi-continuity of f(.,(x) is automatic; f(x) and J(x) are
as before and the same discrepancy occurs at x = 0. a

A special case of Theorem 4.4.2 is when each f; is differentiable (see Corol-
lary 2.1.4 to remember what it means exactly).

Corollary 4.4.4 The notation and assumptions are those of Theorem 4.4.2. Assume
also that each f; is differentiable; then

af (x) =co{Vfjx) : jeJ(x)}. O

A geometric proof of this result was given in Example 3.4, in the simpler situation
of finitely many affine functions f;. Thus, in the framework of Corollary 4.4.4, and
whenever there are only finitely many active indices at x, 3f (x) is a compact convex
polyhedron, generated by the active gradients at x.

The case of J (x) being a singleton deserves further comments. We rewrite Corol-
lary 4.4.4 in this case, using a different notation reflecting a situation frequently
encountered in optimization.

Corollary 4.4.5 For some compactsetY C RP, let g : R" x Y — R be a function
satisfying the following properties:
—for each x € R", g(x, -) is upper semi-continuous;
—foreachy €Y, g(-, y) is convex and differentiable;
— the function f := supycy g(:, y) is finite-valued on R";
—at some x € R", g(x, -) is maximized at a unique y(x) € Y.
Then f is differentiable at this x, and its gradient is

Vf(x) = Veg(x, y(x)) (4.4.8)
(where Vyg(x, y) denotes the gradient of the function g(-, y) at x). ]

Computing f at a given x amounts to solving a certain maximization problem, to obtain
a solution y*, say (which depends on x!). Then a practical rule is: to obtain the gradient of
f, simply differentiate g with respect to x, the variable y being set to this value y*. If, by
any chance, no other y € Y maximizes g at this x, one does get V f(x). If not, at least a
subgradient is obtained (Lemma 4.4.1).
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Remark 4.4.6 When Y is a finite set, Corollary 4.4.5 can be easily accepted (see Corol-
lary 4.3.2): when x varies, y* stays locally the same, just because each g(-, y) is continuous.
When Y is infinite, however, a really baffling phenomenon occurs: although f is a fairly
complicated function, its gradient exists (1), and is given by the very simple formula (4.4.8) (!!).
It is perhaps easier to accept this result after looking at the following naive calculation.
Suppose that we are in a very favourable situation: Y is some space in which differentiation
is possible; g(-, -) is a smooth function; the problem max g (x + &, -) has a unique solution for
h close to 0; and finally, this unique solution y(-) is a smooth function. Then write formally

Vf(x) = Vxgx, yx)) + Vyg(x, y(x))Vy(x)

and here comes the trickery: because y(x) is a maximal point, g(x, -) is stationary at y(x);
the second term is therefore zero. n]

Because of the importance of sup-functions, we give one more result, valid without
any assumption, in which case (4.4.4) breaks down from the very beginning. When
the crucial property J(x) # @ does not hold, a natural cure is to enlarge J(x), so as
to take into account the indices that are almost active; we therefore set, for given x
and$ > 0,

Js):={j e : fi(x)> f(x)—8}. (4.4.9)

This is not enough, however, as shown by the following counter-example with
n=1:
fjx) = ix// forjeJ=]1,2]. (4.4.10)

Then f(x) = |x| for x € [—1, +1] (and x? elsewhere). At x = 0, every j € J
is active, and considering the almost active indices brings just nothing; but every
dfj(0) is reduced to {0}! Some further idea is wanted; this idea is to collect also
the subgradients around the given point — which we will now call xo. Thus, we are
interested in the set

S5 := U{afj(x) : j € Js(x0), x € B(xo, 8)}. (4.4.11)
To recover 9f (x), we will simply let § | 0; everything is now set to obtain

the most possible general formula in the present framework of a finite-valued sup-
function. First, we need a technical lemma.

Lemma 4.4.7 For given xq € R" and § > 0, consider the following index-set:
J* 1= U{J5(x) : x € B(xg, 28)}.
There exists a common Lipschitz constant L for the functions { f;} jeJ* on the ball
B(xy, 8), and for f on B(x,, 28).
As a result, the set Ss of (4.4.11) is bounded and, for s € S;, there holds

FO) = fxo)+ (s, y—x0) — (AL +2)§ forally e R". (4.4.12)
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PROOF. Because f is finite-valued, there are m and M such that

m< f(x) <M forall x € B(xg, 46)
and therefore
m—38< fj(x) <M forall (j,x) € J* x B(xo, 28).
Then the Lipschitz properties stated follow from Lemma IV.3.1.1.

In particular, take s € Ss: there are j € J5(x9) C J* and x € B(x, 8) such that
s € 9fj(x); write the following chain of inequalities:

(5, y=x)< fjO) = fi) < fFO) — fj(x) <
SfO) = fj(xo) + L8 f(y) — f(xo) + (L + 1)S.

This is true for all y; if s # 0, take y = x + &s/||s|| € B(xo, 28) and use the Lipschitz
property of f to obtain

(4.4.13)

Slslt <2Lé+ (L +1)6.
A bound is thus established for s. Use it in (4.4.13):

(s, y = x0) S fF(Y) — f(x) + (L + 1S+ [Islld < f(y) — f(x0) + 4L +2)6. O

Theorem 4.4.8 With the notation (4.4.1), (4.4.9), (4.4.11) and given x, € R",

3f (xo) = ()0 S5 (4.4.14)
§>0

PROCF. [D] If s € S5, we know that (4.4.12) holds; it holds also for all convex
combinations, and for all limits of such. If s € €0 S; for all § > 0, s therefore satisfies
(4.4.12) for all § > 0, and is thus in 3f (xg).

[C] The right-hand side in (4.4.14) is nonempty, being an intersection of nested
nonempty compact sets. We use support functions: from the calculus rule V.3.3.3(iii),
we need to show that f/(x, -) < infs- oss- Choose § > 0, > 0, and d of norm 1.
Since

os;(d) = Sup{fjl(x,d) : J € Js(x0), x € B(xy, )},
we will be done if we single out j* € Js(xo) and x* € B(xq, §) such that
[0, d) < fix(x*,d) + €.

With the notations of Lemma 4.4.7, we choose first 0 < ¢* < min{e, 8§} such that
2Lt* + t*? < 8. Then we choose j* € J such that

fxo+t*d) < fjx(xo + t*d) + 1*.

Because 1*? < 8 and xo +t*d € B(xo, 8), j* € J* and the Lipschitz properties allow
us to write

f(x0) — Lt* < fis(xo + t*d) + ** < fjx(xo) + Lt* + £*2;

we do have j* € Js(xq).
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On the other hand,
* ]y
Fondy < BT
fj*(xo + 1*d) +1*2 — f(x0)
X t*
. *0) — fix
< & (xo+ttci) 00 g praetdy e,

where we have used the mean-value Theorem 2.3.3: x* € Jxo, xo + t*d[ C B(xo, 8).
In summary, our j* and x* do satisfy the required properties, the theorem is proved.
0

Apart from its ability to describe df (xo) accurately, this result gives a practical
alternative to Lemma 4.4.1: given x,, first compute some j solving approximately
the optimization problem (4.4.1); then compute a subgradient of f;, possibly at some
neighboring point x; this subgradient is reasonably close to 3f (x¢) — remember in
particular (4.4.12).

4.5 Image of a Function Under a Linear Mapping

Let g : R™ — Rbe a convex functionand A : R™ — R”" a surjective linear operator.
We recall from §IV.2.4 that the associated function

R"” 5 x = (Ag)(x) :=inf {g(y) : Ay = x} 4.5.1)

is convex, provided that, for all x, g is bounded from below on X (x). Analogously to
(4.4.2), we denote by

Y(x) :={y e R" : Ay =x, g(y) = (Ag)(x)} (45.2)
the set of minimizers in (4.5.1).

Theorem 4.5.1 With the notation (4.5.1),(4.5.2), let x be such that Y (x) is nonempty.
Then, for arbitrary y € Y (x),

HAD() = (s €R™: A% € 9g()) = (AN[9gN] (453
(and this set is thus independent of the particular optimal y).
PROOF. By definition, s € 3(Ag)(x) if and only if

(Ag)(x") > (Ag)(x) + (s, x' —x) forallx’ e R",
which can be rewritten

(Ag)(x") > g(y) + (s, x" — Ay) forall x’' € R"
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where y is arbitrary in ¥ (x). Furthermore, because A is surjective and by definition
of Ag, this last relation is equivalent to

80) 2 8(y) + (s, Ay — Ay) = g(y) + (A*s,y' —y) forally e R™
which means that A*s € 9g(y). o

The surjectivity of A implies first that (Ag)(x) < +oo for all x, but it has a more
interesting consequence:

Corollary 4.5.2 In (4.5.1), (4.5.2), if g is differentiable at some y € Y (x), then Ag
is differentiable at x.

PROOF. Surjectivity of A is equivalent to injectivity of A*: in (4.5.3), we have an
equation in s: A*s = Vg(y), whose solution is unique, and is therefore V(Ag)(x).
O

A first example of image-function is when A is a restriction in a product space:
g being a convex function on R" x R™, consider the marginal function, obtained by
partial minimization of g:

R s x - f(x):=inf{g(x,y) : y e R"}. 4.5.4)

This f is put under the form Ag, if we choose A : R"? x R™ — R" defined by
Ax,y) =x.

Corollary 4.5.3 Suppose that the subdifferential of g in (4.5.4) is associated with a
scalar product ((-, -)) preserving the structure of a product space: for all x,x’ € R"
andy,y € R™,

(Ge ), & YO = (6, X )n + (9, ¥ )m -

At a given x € R", take an arbitrary y solving (4.5.4). Then
af(x)={s eR" : (5,0) € dx,y)8(x, )} .

PROOF. With our notation, A*s = (s,0) for all s € R". It suffices to apply The-
orem 4.5.1 (the symbol 3y y)g is used as a reminder that we are dealing with the
subdifferential of g with respect to the variable (-, -) € R" x R™). O

If g is differentiable on R” x R™ and is minimized “at finite distance” in (4.5.4), then
the resulting f is differentiable (see Remark 4.5.2). In fact,

Vi, 8x, y) = (Vxg(x, y), Vyg(x, y)) e R” x R™
and the second component is 0 just because y is a minimizer. We do obtain
Vf(x) = Vyg(x,y) withysolving (4.54).

A geometric explanation of this differentiability property appears on Fig. 4.5.1: the shadow
of a smooth convex epigraph is normally a smooth convex epigraph.



274 VI. Subdifferentials of Finite Convex Functions

1T

Rm

Y(x)
Fig.4.5.1. The gradient of a marginal function

Remark 4.5.4 The following counter-example emphasizes the necessity of a minimizer y
to apply Theorem 4.5.1: in R2, the function

gx,y) = Vxt +e¥

is convex (check it), perfectly smooth (C°°), but “minimal at infinity” (for all x). The resulting
marginal function f(x) = |x| is not a smooth function. o

Another important instance of an image-function was seen in §IV.2.3: the infimal
convolution of two functions, defined by

iy L&) =inf{fiy)+ LO2) : y, 2 € R, y1+y, =x}. 4.5.5)

Recall from the end of §IV.2.4 that this operation can be put in the form (4.5.1),
by considering

R” x R" 3 (y1, y2) = g0y, Y2) := filn) + f2(y2) € R,
R*XR” 3 (yi,2) > A1, y2) =y + y, e R".

Corollary 4.5.5 Let fi and f, : R" — R be two convex functions minorized by a
common affine function. For given x, let (y, y;) be such that the inf-convolution is
exactat x =y, + yp, i.e.: (fi ¥ )X) = fin) + f2(32). Then

3(fi ¥ LX) =23fi(y) Nfa(y2). 4.5.6)

PROOF. First observe that A*s = (s, s). Also, apply Definition 1.2.1 to see that

(51, 52) € 9g(y1, y2) if and only if 5, € 3f;(y1) and 5, € 8f,(»,). Then (4.5.6) is just
the copy of (4.5.3) in the present context. O

Once again, we obtain a regularity result (among others): V(f; ¥ f,)(x) exists
whenever there is an optimal (y,, ;) in (4.5.5) for which either f, or f; is differen-
tiable. For an illustration, see again Example IV.2.3.8, more precisely (IV.2.3.6).

Remark 4.5.6 Inconclusion, letus give a warning: the max-operation (§4.4) does not destroy
differentiability if uniqueness of the argmax holds. By contrast, the differentiability of a min-
function (§4.5) has nothing to do with uniqueness of the argmin.
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This may seem paradoxical, since maximization and minimization are just the same
operation, as far as differentiability of the result f is concerned. Observe, however, that
the differentiability obtained in §4.5 relies heavily on the joint convexity of the underlying
function g of Theorem 4.5.1 and Corollary 4.5.3. This last property has little relevance in
§4.4. o

S Further Examples

With the help of the calculus rules developed in §4, we can study more sophisticated
examples than those of §3. They will reveal, in particular, the important role of §4.4:
max-functions appear all the time.

5.1 Largest Eigenvalue of a Symmetric Matrix

We adopt the notation of §IV.1.3(e): in the space S, (R) of symmetric n x n matrices
equipped with (-, -)), the function

SsR)s M- A (M)eR
is convex and can be represented as
M(M)=max{u"Mu : ueR", u'u=1}. (5.1.1)

Furthermore, the set of optimal # in (5.1.1) is the set of normalized eigenvectors
associated with the resulting A,.

Thus, Corollary 4.4.4 will give the subdifferential of A; if the gradient of the
function M +> u | Mu can be computed. This is easy: by direct calculation, we have

" Mu = (uu', M) (5.1.2)

so the linear function « — u' Mu supports the singleton { " u}, a rank-one matrix
of S, (R) (its kernel is the subspace orthogonal to u). The subdifferential of A; at M
is therefore the convex hull of all these matrices:

M) =cofuu’ : uTu=1, Mu=xr(Mu}. (5.1.3)

Naturally, this is the face of 91,(0) exposed by M, where 91, (0) was given in Exam-
ple V.3.3.11. It is the singleton {VA, (M)} if and only if the maximal eigenvalue A, of
M is simple.

The directional derivatives of A; can of course be computed: the support function
of (5.1.3) is, using (5.1.2) to reduce superfluous notation,

P> (M, P) =max {u" Pu : u normalized eigenvector for A,(M)} .

Remark 5.1.1 It is tempting to think of the problem as follows. There are a finite number of
eigenvalues; each one is a root of the characteristic polynomial of M, whose coefficients are
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smooth functions of M; therefore, each eigenvalue is a smooth function of M: A is a max of
finitely many smooth functions.

If this reasoning were correct, Corollary 4.4.4 would tell us that dA, (M) is a compact
convex polyhedron; this is certainly not the case of the set (5.1.3)! The flaw is that the roots
of a polynomial cannot be enumerated. When they are all distinct, each can be followed by
continuity; but when two roots coincide, this continuity argument vanishes. o

As anexample, let us study the cone of symmetric negative semi-definite matrices,
i.e. the sublevel-set
K™ :={M : (M) <0}.

Its boundary is the set of matrices M € K~ that are singular (—I, has A;(—I,) < 0,
so Proposition 1.3.3 applies). For such M, Proposition 1.3.4 characterizes the tangent
and normal cones to K~ at M:

Tg-(M) = {P: u"Pu<0 forallu e KerM},
Ng-(M) = co {uuT T uE€ KerM} .
If M # 0, Example II1.5.2.6 gives a more handy expression for the normal cone:
Ng—(M) = {P symmetric positive semi-definite : (M, P)) = 0}.

In problems involving largest eigenvalues, the variable matrix M is often im-
posed a certain pattern. For example, one considers matrices with fixed off-diagonal
elements, only their diagonal being free. In that case, a symmetric matrix M, is given
and the function to be studied is A; (M, + D), where D is an arbitrary diagonal n x n
matrix. Identifying the set of such diagonals with R", we thus obtain the function

fe)=f(E, ... 6™ = A (Mo + diag(g', ..., &M).
This f is A, pre-composed with an affine mapping whose linear partis A, : R* —
S, (R) defined by
R*>x=(£',...,") > Ag(x) := diag!, ..., £") € Sh(R).
We have

n
(Aox, M) =Y &'M;; forallx € R" and M € Sn(R).

i=l1

Knowing that R” is equipped with the usual dot-product, the adjoint of A, is therefore
defined by

n
xTAIM =) &'M;; forallx € R” and M € Sy(R) .

i=l

Thus, A} : S, (R) — R" appears as the operator that takes an n x n matrix and makes
an n-vector with its diagonal elements. Because the (i, j)™ element of the matrix uu "
is u*ut, (5.1.3) gives with the calculus rule (4.2.1)

af(x) =co {((u')z, .oo, (W™?) : unormalized eigenvector atf(x)} .
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5.2 Nested Optimization

In optimization, convex functions that are themselves the result of some other opti-
mization problem are encountered fairly often. Let us mention, among others, prob-
lems issuing from game theory, all kinds of decomposition schemes, semi-infinite
programming, optimal control problems in which the state equation is replaced by an
inclusion, etc. We consider two examples below, which are still within the framework
of this book: partially linear least-squares problems, and Lagrangian relaxation.

(a) Partially Linear Least-Squares Problems In our first example, there are three
vector spaces: R", R™ and RP, each equipped with its dot-product. A matrix A(x) :
R™ — RP is given, depending on the parameter x € R", as well as a vector b(x) €
RP. Then one considers the function

R" x R™ 3 (x,y) > g(x, ) = ;| A@)y = b@)|>. (5.2.1)

The problem is to minimize g, assumed for simplicity to be convex.
It makes good sense to minimize g hierarchically: first with respect to y (x being
fixed), and then minimize the result with respect to x. In other words, defining

f() :=min{g(x,y) : y e R"},

(5.2.1) isreplaced by the problem of minimizing f withrespect to x. In theory, nothing
is changed; in practice, a lot is changed.

For one thing, f has less variables than g. More importantly, however, it is usually
the case in the model (5.2.1) that x and y have nothing to do with each other. For
example, y may be a set of weights, measured in kilograms; and x may be interest
rates, i.e. dimensionless numbers. Under these conditions, any numerical method to
minimize g directly will run into trouble because an appropriate scaling is hard to
find. To cut a long story short, f is likely to be more easily minimized than g.

Now, y is given by a linear least-squares system

AT@[A@)Y —b(x)]=0 (5.2.2)

which has always a solution (not necessarily unique): we are right in the framework
of Corollary 4.5.3. Without any assumption on the rank of A(x),

Vf(x)=[A"(y) - b'(Ay — b). (5.2.3)

Here y is any solution of (5.2.2); b’ is the matrix whose k™ row is the derivative of
b with respect to the k™ component £ of x; A’(y) is the matrix whose k™ row is
yT(A})T; A} is the derivative of A with respect to &*. Then, f can be minimized
numerically by any of the available algorithms of Chap. II, having (5.2.3) as the black
box (U1) of Fig. I1.1.2.1. It is most probable that a very efficient method will thus be
obtained.
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(b) Lagrangian Relaxation Our second example is of utmost practical importance
and will motivate the full Chapter XII. Here, we content ourselves with a brief de-
scription of the problem. Given a set U and n + 1 functions cg, ¢y, ..., ¢, from U to
R, consider the problem

supco(u) u €U,

ciw)=0 fori=1,...,n. (5.2.4)

Associated with this problem is the Lagrange function, which depends on x =
(&', ...,&") e R" and u € U, and is defined by

g(x, u) = co(w) + ) _Eci(u).

i=l
We will see in Chap. XII that another function is important for solving (5.2.4), namely
fx) :=sup{g(x,u) : ueU}, (5.2.5)

which must be minimized. Needless to say, f is convex, as the supremum of the linear
functions g(-, #). In the good cases, when the hypotheses of Theorem 4.4.2 bring no
trouble, its subdifferential is given by Corollary 4.4.4

af (x) =co{c(u) : u € U(x)} (5.2.6)

where c(u) € R" denotes the vector whose coordinates are c; («), and U(x) is the
optimal set in (5.2.5).

According to (5.2.6), the subgradients of f are obtained from the constraint-
values at those u solving (5.2.5); at least, the inclusion “>” always holds in (5.2.6),
and approximations are possible if Theorem 4.4.8 must be invoked. An x minimizing
f is characterized by the following condition: for some positive integer p < n + 1,
there existu,, ..., up in U(X) and a set of convex multipliers & = (ay, ... ., ap) € Ap
such that

p
g, up) = f(®) and ) age(ur) =0eR".
k=1
In particular, if g(x, -) happens to have a unique maximum #, then p = 1, which
means that c(iz) = 0.
At a non-optimal x, the descent directions for f are described by Theorem 1.3.4:

int Tgf(x)(x) = [deR": d c(u) <Oforallu e Ux)}.

5.3 Best Approximation of a Continuous Function on a Compact Interval

Let T be a compact interval of R and g, a real-valued continuous function defined
on T'. Furthermore, n functions ¢, ... ., g, are given in the space C(T') of real-valued
continuous functions on T'; usually, they are linearly independent. We are interested
in finding a linear combination of the ¢;’s which best approximates ¢y, in the sense
of the max-norm. In other words, we want to minimize over R” the error-function
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f(x) :=max{|g(x,t)| : t €T} (5.3.1)

where g denotes the function (affine in x)

n
glx, 1) =) E@i®) — po() = [0(®)] x — (0. (53.2)

i=li

Minimizing f is one of the simplest instances of semi-infinite programming: opti-
mization problems with finitely many variables but infinitely many constraints.

The error-function is convex and, once more, enters the framework of Corol-
lary 4.4.4 (observe in particular that |g| = max{g, —g}). We neglect the case of an x
with f(x) = 0, which is not particularly interesting: g(x, -) = 0, x is optimal anyway.
Denoting by H the (usually n-dimensional) subspace of C(T") generated by the ¢; s,
we therefore assume ¢ ¢ H.

Fix an x with f(x) > 0, and call T(x) C T the set of ¢ yielding the max
in (5.3.1); T(x) is nonempty from our assumptions. At each such ¢, we can define
e@) € {—1,+1} by

et)g(x,t) = f(x) forallt e T(x).

Then, 9f (x) is the convex combination of all the n-vectors €(t)¢(t), where ¢
describes T (x). Deriving an optimality condition is then easy with Corollary 4.4.4
and Theorem 4.1.1:

Theorem 5.3.1 With the notations (5.3.1), (5.3.2), suppose ¢y ¢ H. A necessary
and sufficient condition for ¥ = (£, ..., &") € R" to minimize f of (5.3.1) is that,
Jor some positive integer p < n + 1, there exist p points ty,...,tp in T, p integers
El,...,€pin{—1,+1} and p positive numbers a, . . ., ap such that

Y Egit) — wolte) = exf@ fork=1,...,p,

i=1

P
Zakskfﬂi(tk) =0 fori=1,...,n
k=1
(or equivalently: 211::1 arer V() =0 forally € H). o

Indeed, this example is formally identical to Lagrangian relaxation; the possible
differences are usually in the assumptions on 7', which plays the role of U.

6 The Subdifferential as a Multifunction

Section 2 was mainly concerned with properties of the “static” set af (x). Here, we
study the properties of this set varying with x, and also with f.
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6.1 Monotonicity Properties of the Subdifferential

We have seen in §1V4.1 that the gradient mapping of a differentiable convex function
is monotone, a concept generalizing to several dimensions that of a nondecreasing
function. Now, this monotonicity has its formulation even in the absence of differen-
tiability.
Proposition 6.1.1 The subdifferential mapping is monotone in the sense that, for all
x, and x; in R",

(s2—s,x20—x) >0 forall s; €df(x;), i=1,2. (6.1.1)
PROOF. The subgradient inequalities

fx2) =2 fla)+(s1,x2—x) foralls; €df(x))
fx) = f@)+(s2,x1 —x;) forall s, € 3f (x2)

give the result simply by addition. O

A convex function can be “more or less non-affine”, according to how much its
graph deviates from a hyperplane. We recall, for example, that f is strongly convex
on a convex set C when, for some modulus of strong convexity ¢ > 0, all x;, x, in C,
and all @ €10, 1[, it holds

flaxs + (1 —a)x) <af(x) + (1 —a) f(x;) — jca(l —a)|lxz — xi )2 (6.1.2)

It turns out that this “degree of non-affinity” is also measured by how much (6.1.1)
deviates from equality: the next result is to be compared to Theorems 1V.4.1.1(ii)-
(iii) and IV.4.1.4, in a slightly different setting: f is now assumed convex but not
differentiable.

Theorem 6.1.2 A necessary and sufficient condition for a convex function f : R" —
R fo be strongly convex (with modulus ¢ > 0) on a convex set C is that, for all
X1, X3 € C,

F&2) 2 fa)+ (s, x2—x1) + 3clxa — x> foralls € 3f(x;)  (6.1.3)
or equivalently
($2 — 81, %2 — x1) = cllx2 — x1 || forallsi e 3f (x;),i=1,2. 6.1.4)
PROOF. For x;, x; given in C and « € 10, 1], we will use the notation
¥ =axs+ (1 —a)x; =x +alx; — x))

and we will prove (6.1.3) = (6.1.2) = (6.1.4)= (6.1.3).
[(6.1.3) = (6.1.2)] Write (6.1.3) with x; replaced by x* € C: for s € 3f (x%),

Fx2) 2 Fx%) + (s, 22 — x%) + Lclixy — x|
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or equivalently
FO2) = Fx) + (1 —a)(s, x2 — x1) + 3¢(1 — @)l — x1 1%

Likewise,
FO) = £ +afs, x — x2) + Lea?lx — xall?.

Multiply these last two inequalities by « and (1 — o) respectively, and add to
obtain

af(@)+ (1 —a)f(x) = f&) + jelx —x P el — ) + (1 — a)a’].
Then realize after simplification that this is just (6.1.2).
[(6.1.2) = (6.1.4)] Write (6.1.2) as

FED =T 4ot - i =l < £la) — Sx0)

and let « | 0 to obtain

fl(x1, % = x1) + ellx — xlP < f(x) — f@x)

which implies (6.1.3). Then, copying (6.1.3) with x, and x, interchanged and adding
yields (6.1.4) directly.

[(6.1.4) = (6.1.3)] Apply Theorem 2.3.4 to the one-dimensional convex function
R > a > @) ;= f(x%):

1
f(xz)~f(xl)=<o(1)—<p(0)=f0 (s%, x; — x,) da 6.1.5)

where s* € 3f (x%) for a € [0, 1]. Then take s, arbitrary in df (x;) and apply (6.1.4):
(5% = 51, x% = x1) Z cllx® — x|
i.e., using the value of x%,
a(s®, x; — x1) 2 &y, X2 — x1) + oz — |17
The result follows by using this inequality to minorize the integral in (6.1.5). o

Monotonicity properties of df characterize strictly convex functions in just the
same way as they do for strongly convex functions.

Proposition 6.1.3 A necessary and sufficient condition for a convex function f :
R” — R to be strictly convex on a convex set C C R" is that, for all x,, x, € C with
X2 # X1,

fx2) > f@x) +(s,x2—x1) foralls € df(x))

or equivalently
(2 —s1,x3—x1) >0 forall s; €df(x;), i=1,2.

PROOF. Copy the proof of Theorem 6.1.2 with ¢ = 0 and the relevant “ > ”-signs
replaced by strict inequalities. The only delicate point is in the [(6.1.2) => (6.1.4)]-
stage: use monotonicity of the difference quotient. a
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6.2 Continuity Properties of the Subdifferential

When f is a differentiable convex function, its gradient V f is continuous, as a map-
ping from R” to R". In the nondifferentiable case, this gradient becomes a set 3f and
our aim here is to study continuity properties of this set: to what extent can we say
that 8f (x) “varies continuously” with x, or with f? We are therefore dealing with
continuity properties of multifunctions, and we refer to § A.5 for the basic terminology.

We already know that 3 f (x) is compact convex for each x, and the next two results
concern “global” properties.

Proposition 6.2.1 Let f : R® — R be convex. The graph of its subdifferential
mapping is closed in R" x R".

PROOF. Let {(xt, sg)} be a sequence in graf converging to (x,s) € R*” x R". We
must prove that (x, s) € graf, which is easy. We have for all &

FO) = fOk) + (s, y — xx) forally e R”;

pass to the limit on k, using continuity of f and of the scalar product. O

Proposition 6.2.2 The mapping of is locally bounded, i.e. the image df (B) of a
bounded set B C R" is a bounded set in R".

PROOF. For arbitrary x in B and s # 0 in 8f (x), the subgradient inequality implies
in particular

fx+s/lsl) =2 f&x) + sl
On the other hand, f is Lipschitz-continuous on the bounded set B + B(0, 1) (Theo-
rem IV.3.1.2). Hence ||s}| < L for some L. (]

Remark 6.2.3 Combining these two results, we obtain a bit more than compact-
valuedness of df, namely: the image by df of a compact set is compact. In fact,
for {xx} in a compact set, with a subsequence {x;s}, say, converging to x, take s €
of (xx) and extract the subsequence {s;/}. From Proposition 6.2.2, a subsequence of
{sy/} converges to some s € R"; from Proposition 6.2.1, s € 3f(x). As another
consequence, we obtain for example: the image by 3f of a compact connected set is
compact connected.

On the other hand, the image by 9f of a convex set is certainly not convex (except
for n = 1, where convexity and connectedness coincide): take for f the £,-norm on
R?; the image by 3f of the unit simplex A, is the union of two segments which are
not collinear.

Concerning the graph of 3f, the same type of results hold: if K C R” is compact
connected, the set

{(x,5) eR" xR" : x € K, s € 3f (x)}

is compact connected in R” x R". Also, it is a “skinny” set (see again Fig.1.4.1.1)
because df (x) is a singleton almost everywhere (Theorem 1V.4.2.3). o
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Thanks to local boundedness, our mapping df takes its values in a compact set
when the argument x itself varies in a compact set; the “nice” form (A.5.2) of outer
and inner semi-continuity can then be used.

Theorem 6.2.4 The subdifferential mapping of a convex function f : R" — R is
outer semi-continuous at any x € R", i.e.

Ve>0,35>0: yeB(x,8) = 3f(y) C df (x) + B(0,¢). 6.2.1)

PROOF. Assume for contradiction that, at some x, there are ¢ > 0 and a sequence
{(xk, s)} with

xp > x fork — oo and

si € 9F (), s & Of (¥) + B(O,8) fork=1,2, ... (62.2)

The bounded {s;} (Proposition 6.2.2) has a subsequence converging to s, which is in
af (x) (Proposition 6.2.1). This is a contradiction since (6.2.2) implies

s ¢ 3f (x) + B(0, 3¢) . u!

In terms of directional derivatives, we recover a natural result, if we remember
that £/, d) is an infimum of continuous functions [ f (- + td) — f(-)]/¢ overt > O:

Corollary 6.2.5 For f : R" — R convex, the function f'(-,d) is upper semi-
continuous: at all x € R",

f'(x,d) =limsup f'(y,d) foralld e R".
y—x

PROOF. Use Theorem 6.2.4, in conjunction with Proposition V.3.3.9. a

Remark 6.2.6 If f is differentiable at x, then Theorem 6.2.4 reads as follows: all the
subgradients at y tend to V f(x) when y tends to x. The inner semi-continuity then
follows: 8f is actually continuous at x. In particular, if f is differentiable on an open
set £2, then it is continuously differentiable on £2.

In the general case, however, inner semi-continuity is hopeless: for n = 1 and
f(x) :=|x], 3f is not inner semi-continuous at 0: 3f (0) = [—1, +1] is much larger
than, say, 3f (x) = {1} when x > 0. o

All the previous results concerned the behaviour of 3f (x) as varying with x. This
behaviour is essentially the same when f varies as well.

Theorem 6.2.7 Let { fy} be a sequence of (finite) convex functions converging point-
wiseto f : R* — R and let {xy} converge to x € R". For any ¢ > 0,

dfx(xk) C 8f (x) + B(0,¢) for k large enough .
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PROOF. Let ¢ > 0 be given. Recall (Theorem IV.3.1.5) that the pointwise convergence
of { f¢} to f implies its uniform convergence on every compact set of R”.
First, we establish boundedness: for s # 0 arbitrary in 3£ (xx), we have

S + se/lsel) 2 fie(x) + liskll -

The uniform convergence of { fx} to f on B(x, 2) implies for k large enough

skl < f Gee + s/ Wsll) = f (ki) + €,

and the Lipschitz property of f on B(x, 2) ensures that {si} is bounded.

Now suppose for contradiction that, for some infinite subsequence, there is some
Sk € 9fi(xx) which is not in 3f (x) + B(0, ). Any cluster point of this {s;} — and
there is at least one — is out of 3f (x) + B(0, i/2¢). Yet, with y arbitrary in R", write

Je) 2 fielxg) + (s y — xi)

and pass to the limit (on a further subsequence such that s — s): pointwise [resp.
uniform] convergence of { ¢} to f at y [resp. around x], and continuity of the scalar
product give

FO) 2 f) +(s,y—x).
Because y was arbitrary, we obtain the contradiction s € af (x). O

The differentiable case is worth mentioning:

Corollary 6.2.8 Let {fr} be a sequence of (finite) differentiable convex functions
converging pointwise to the differentiable f : R* — R. Then V fi converges to V f
uniformly on every compact set of R".

PROOF. Take S compact and suppose for contradiction that there existe > 0, {xz} C S
such that
Vi) = Vi)l >¢ fork=1,2,...

Extracting a subsequence if necessary, we may suppose xy — x € §; Theorem 6.2.7
assures that {V fi (x¢)} and {V f (xx)} both converge to V f (x), implying0 > ¢. O

6.3 Subdifferentials and Limits of Gradients

One of the main results of the previous section was the outer semi-continuity of the
subdifferential: (6.2.1) just means that this latter set contains all the possible limits of
subgradients calculated at all neighboring points.

The question that we consider in this section is in a sense the converse: to what
extent can the whole subdifferential be built up from limits of subgradients at neighbor-
ing points? In other words: we are given x € R" and we want to construct sequences
{(¥k» sk)} C graf so that the limits of {sx} make up the entire 3f (x). Of course, we
are not too interested in the trivial case where y; = x; we will actually consider two
special kinds of sequences {y;}.
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(a) Sequences of Differentiability Points First, consider sequences {y;} such that
f is differentiable at each yj. Recall from Theorem 1V.4.2.3 that f is differentiable
except possibly on a set of measure zero; call it A€, i.e.

yedA < 3Ifm={VrHm}.

Thus, even if our given x is not in A, we can construct a sequence {y;} C A with
¥yt — x. The corresponding sequence {V f (y)} is bounded (by a Lipschitz constant
of f around x), so we can extract some cluster point; according to §6.2, any such
cluster point is in 3f (x). Then we ask the question: how much of 3f (x) do we cover
with all the possible subgradients obtained with this limiting process?

Example 3.4 can be used to illustrate the construction above: with the x of the
right part of Fig. 3.1, we let {y;} be any sequence tending to x and keeping away from
the kinky line where f; = f,. For example, with the d of the picture, we can take

Yk :=x+(—:,:-Lkd,

in which case the corresponding sequence {V f (y¢)} has two cluster points s; and s, —
and our set of limits is complete: no other sequence of gradients can produce another
limit. Observe in this example that df (x) is the convex hull of the cluster points s,
and s, thus obtained. We will show that this is always the case.

So we set

yf(x) = {s : Iy} C Awith yy > x, Vf(y) — s}. (6.3.1)

It is rather clear that y f (x) is bounded, and also that it is closed (as a “limit of lim-
its”); its convex hull is therefore compact (Theorem II1.1.4.3) and, by Theorem 6.2.4,

yf(x) Ccoyf(x) Caf(x). (6.3.2)
The next result establishes the converse inclusion.
Theorem 6.3.1 Let f : R” — R be convex. With the notation (6.3.1),
Aaf(x) =coyf(x) forallx eR". (6.3.3)
PROOF. In view of (6.3.2), we only have to prove that
flx,d) < oyf(x)(d) foralld e R",
where the support function of y f (x) is obtained from (6.3.1):
oyfx)(d) =limsup {{(Vf(y),d) : y > x, y € 4}. (6.3.4)
Suppose that, for some & > 0 and (normalized) d, it holds that
oyry @ < f(x,d) —¢.

In view of the formulation (6.3.4), this means that, for some § > 0,
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(V). d)< f'(x,d) — 3¢ forallx’ € B(x,8)NA.
Consider the following set (see Fig. 6.3.1):
Bg(x,8) :={y € B(x,0) : (d,y) =0}

and, for each y € By(x, 8), denote by Ly := y + Rd the line passing through y and
parallel to d. According to Fubini’s Theorem, the 1-dimensional measure of Ly, N A€
is zero for almost all y € By (x, 8) (equipped with its (n — 1)-dimensional measure).
Take such a y, so that f is differentiable at almost all points of the form y + #d; then
write

fOy+td) = f(y) _

1 t
Flond) < : =1 /0 (V5O +ad), d)da < £ d) ~ 2

which contradicts the upper semi-continuity of f/(-, d) at x (Corollary 6.2.5). o

Fig. 6.3.1. Meeting the set of kinks of a convex function

In summary, the subdifferential can be reconstructed as the convex hull of all
possible limits of gradients at points yj tending to x. In addition to 1.1.4, 1.2.1 and
1.3.1, a fourth possible definition of 3f (x) is (6.3.3).

Remark 6.3.2 As a consequence of the above characterization, we indicate a practical trick
to compute subgradients: pretend that the function is differentiable and proceed as usual in
differential calculus. This “rule of thumb” can be quite useful in some situations.

For an illustration, consider the example of §5.1. Once the largest eigenvalue X is com-
puted, together with an associated eigenvector u, just pretend that A has multiplicity 1 and
differentiate formally the equation Mu = Au. A differential dM induces the differentials di
and du satisfying

Mdu+dMu = du +dru.

We need to eliminate du; for this, premultiply by « 7 and use symmetry of M,i.e.u™ M = AuT:
Mdu+u"dMu = du"du +driu"u.

Observing that u"dM u = uu"dM, dA is obtained as a linear form of dM:
T
dA =2 dM =S5dM.
uTu

Moral: if A is differentiable at M, its gradient is the matrix S; if not, we find the expression
of a subgradient (depending on the particular u).
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This trick is only heuristic, however, and Remark 4.1.2 warns us against it: forn = 1,
take f = fi — fo with fi(x) = fo(x) = |x]|; if we “differentiate” naively f; and f, at 0
and subtract the “derivatives” thus obtained, there are 2 chances out of 3 of ending up with a
wrong result. O

Example 6.3.3 Let dc be the distance-function to a nonempty closed convex set C. From
Example 3.3, we know several things: the kinks of d¢ form the set A° =bd C; forx € intC,
Vdc(x) = 0; and
Vae() = ~—P€® g v gc. (6.3.5)
lx = pc)l

Now take xo € bd C; we give some indications to construct ddc (xp) via (6.3.3) (draw a

picture).

— First, ydc(xg) contains all the limits of vectors of the form (6.3.5), for x — xo, x & C.
These can be seen to make up the intersection of the normal cone N¢(xp) with the unit
sphere (technically, the multifunction x —> 3ddc (x) is outer semi-continuous).

—Ifint C # @, append {0} to this set; the description of ydc(x¢) is now complete.

— As seen in Example 3.3, the convex hull of the result must be the truncated cone N¢ (xp) N
B(0, 1). This is rather clear in the second case, when 0 € yd¢(xg); but it is also true even
if int C = @: in fact N¢(xo) contains the subspace orthogonal to aff C, which in this case
contains two opposite vectors of norm 1. o

(b) Directional Sequences We consider now a second type of sequences: those of
the form x + t;d, for fixed normalized d and #; | 0. We start with a fairly easy but
important lemma, which supplements the closedness result 6.2.1.

Lemma 6.3.4 Letx andd with|d| = 1 begiveninR". For any sequence {(ty, sx)} C
R} x R" satisfying

{0 and spedf(x+uyd) fork=1,2,...
and any cluster point s of {sy}, there holds
s€df(x) and (s,d)= f'(x,d).

PROOF. The first property comes from the results in §6.2. For the second, use the
monotonicity of 3f:

0< (s — 5, x+txd —x) =tg{sgy —s',d) foralls’ € 3f(x).

Divide by #; > 0 and pass to the limit to get f/(x, d) < (s, d). The converse inequality
being trivial, the proof is complete. o

In other words, taking a limit of subgradients from a directional sequence amounts
to taking a subgradient which is not arbitrary, but which lies in a designated face of
af (x): the face Fyf(y)(d) exposed by the direction d in question. When this direction
describes the unit sphere, each exposed face of 8f (x) is visited (Proposition V.3.1.5).
We thus obtain a second set of subgradients, analogously to the way y f(x) was
constructed by (6.3.1).

More precisely, suppose that we have a process (call it IT) which, given x and the
normalized d, does the following:
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— form a directional sequence y;y = x + #d tending to x;
— for each k, select a subgradient s; € df (y);
— take a cluster point s of {s}.

We call s(d) € 3f(x) the subgradient thus obtained — a notation s7(d) would be
more correct, to emphasize the dependence of s(d) on the particular process used.

Remark 6.3.5 In view of Lemma 6.3.4, another process would do the same kind of job,
namely:

— Maximize (s, d) over s € 3f (x) to obtain some solution s(d) — or sf7(d).

We took the trouble to describe the more complicated process /T above because the
concept of directional sequences is important for minimization algorithms to be studied later,
starting from Chap. IX. u]

Now we form the set of all outputs of the above process IT (whatever it may be),
for all directions d:

8f(x) = {sd) : deR", |d|| =1} [ordf(x):=Ujay=1sp@].

Once again, 8;7 f (x) is a compact set included in 3f (x) and there holds

3 f(x) Ccodprf(x) Caf(x).

It turns out that Theorem 6.3.1 can be reproduced:

Theorem 6.3.6 No matter how the process Il is chosen to generate each cluster
point sr7(d), it holds that

af (x) = codr f(x). (6.3.6)

PROOF. We have to prove only the “C”-inclusion in (6.3.6). Use Lemma 6.3.4: for
each d of norm 1, the s(d) generated by the process satisfies

oaf(x)d) = f(x,d) = (s(d), d) <057 7 (x)(d) . o
A fifth possible definition of the subdifferential of f at x is thus given by (6.3.6).

Remark 6.3.7 As an application, consider the following problem: given a (finite) sublinear
function o, how can we construct its supported set do (0)? Answer: differentiate o wherever
possible; do (0) is then the closed convex hull of the collection of gradients thus obtained.

In fact, if the gradient Vo (d) exists, it exists (and stays the same) all along the ray R} d:
we are therefore constructing o (0); and we can limit ourselves to computing Vo on the unit
sphere.

For example, the £;-norm |x|; = ZL‘ |§i | can be differentiated whenever no & i is0; the
resulting gradients are the vectors whose components are +1. Their convex hull is 3] - |; (0)
and we refer to §V.3.2 for the various interpretations that this set can be given, in terms of
polarity, duality, sublevel-sets, gauges, etc.

The linear function (-, d) being maximized in 3o (0) on the face exposed by d, we write

o(d) = (d0(d),d).
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When 9o (d) is the singleton {Vo (d)}, this is known as Euler’s relation associated with
the positively homogeneous function o. Remember also the geometric construction: d # 0
defines the hyperplane

Hyg@y={s €R" : (s,d) =0 (d)},

which remains fixed when d is replaced by «d, k > 0, and which envelops do (0) when d
describes R”\{0}. o

To conclude this chapter, we point out a rather important property of convex
functions revealed by Lemma 6.3.4: to expose a face in some subdifferential af (x)
along a direction d, it suffices to know the trace of f along x + R*d. By contrast,
exposing a face in an abstract closed convex set C requires the maximization of a
linear function over C — which somehow implies a full knowledge of C.

With this in mind, a geometric interpretation of the process in §1.4 can be given.
When we compute 1 = a, (e, -), we simply expose by e, a face of 359(0) = 3f (x):

@' := 801(0) = Fag,(0) (1) = Fop(x)(er) .

Needless to say, the breadth (in the sense of Definition V.2.1.4) of @' along e is zero
— another way of saying that oy is differentiable at e, in the subspace Re,. As a result,
the dimension of ®! is at most n — 1. Then, we extract recursively from ®*~! the
face exposed by ey:

®* = 804(0) = Fag,_ (0)(ek) = Fpie—i (ex) -

At each stage, dim @* thus loses one unit. We end up with a face of @"~! which is
certainly of dimension 0.

Remembering Remark I11.2.4 .4, we see that the subgradient " is not quite ar-
bitrary: it is a subface (more precisely a vertex) of each @K, in particular of the
original set af (x). Figure 6.3.2 illustrates the process applied to Example 1.4.3 (use
Remark 6.3.7 to realize that d0y(0) is the unit simplex).

ez

P2 /

Stage 2 Stage 3
Fig. 6.3.2. Exposing a vertex in a subdifferential



VII. Constrained Convex Minimization Problems:
Minimality Conditions, Elements of Duality Theory

Prerequisites. Subdifferentials of finite convex functions (Chap. VI); tangent and
normal cones to convex sets (Chap. III).

Introduction. The basic convex minimization problem is that of finding some x € C
such that

fE =inf{f(x) : x € C}, (0.1)

where C € R" and f : R” — R are a closed convex set and a (finite-valued) convex
function respectively; the points in C are called feasible; a solution x must therefore
satisfy two properties: feasibility, and optimality.

In this chapter, we are mainly interested in characterizing a solution in terms of
the data of the problem: the constraint-set C and the objective function f. This study
is indeed preliminary to an actual resolution of (0.1), possibly an approximate one via
the construction of a minimizing sequence. An exact solution can be constructed in
simple cases, such as quadratic programming, where f is quadratic (convex) and C
is a closed convex polyhedron.

The question of conditions for a candidate X to be a solution was already evoked in
§I1.1.1: starting just from the definition of a minimum,

f(X)< f(x) forallx € C (and of course: x € C),

we want to derive more useful conditions, using the “tangential elements” of the data, namely
the directional derivative of f and the tangent cone to C. Dually, we will also use the subdif-
ferential of f and the normal cone to C. The situation is here more involved than in Chap. II
because we have constraints, but on the other hand convexity makes it simpler to some extent.
In particular, necessary and sufficient conditions are available, while sufficiency is usually
out of reach in the nonconvex case.

Depending on the properties and information concerning the data, various approaches
can be relevant, each based on appropriate techniques.

— When C is not specified, no wonder that the only available conditions are “abstract”, or
“formal”: they involve the tangent cone T¢ and normal cone N¢ and nothing more. This
will be the subject of §1.

— When C is described more explicitly (§2), these cones can themselves be characterized
more explicitly. The most important case is a representation of the closed convex C by
constraints:
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(aj,x)=b; fori=1,...,m,

ci(x) <0 forj=1,...,p. ©02)

where the c¢;’s are finite-valued convex functions, so as to make C convex (equality con-
straints are taken to be affine for the same reason). When expressing the minimality condi-
tions, the subdifferentials dc; and the gradients a; will certainly show up, as will 8f. This
can be done in two different ways: one is to expand the expression of T¢ and N¢ in the
“formal” minimality conditions of § 1; the other is to tackle the problem directly, linearizing
the functions (f and) c;.

We limit our study to finite-valued functions. One reason is that we make extensive use
of subdifferentials, studied in Chap. VI in this framework only; and also, this is sufficient to
capture the essential features of any convex minimization problem. Just as in Chap. VI, it
would of course suffice to assume that the candidate x to minimality is interior to the domain
of the functions involved.

In the case of a description by (0.2), a solution x of (0.1) is essentially characterized by
the existence of m + p numbers Ay, ..., Am, U1, ..., ip — the multipliers — satisfying

0 € df (@) + X7, Miai + 1), u;jdc;(%) and

0.3
forj=1,...,p, pj20 and p;j=0if¢;(x) <0. ©.3)

There are infinitely many ways of representing a set via constraints as in (0.2), and it turns
out that a characterization like (0.3) cannot be expected to hold in all cases. Indeed, the data
have to satisfy some assumption: a constraint qualification condition.

In view of the calculus rule V1.4.1.1, (0.3) displays the subdifferential of a certain func-
tion: the Lagrange function

m P
L(x, A, p) = f)+ Y Millai, x) — bi) + Y pjcj(x)
i=l1 j=l

which is central in all this theory. Its role will be the subject of §3. Indeed, X minimizes
L(-, A, p) for some (A, u) € R™ x (R*)? and we will see that the couple (A, 1) maximizes
L(x, -, -). This observation motivates our Section 4, in which we give some account of duality
and saddle-point problems.

Unless otherwise specified, we postulate that our original constrained minimization prob-
lem (0.1) does have an optimal solution. Thus, the general framework throughout this chapter
is as follows: we have a convex function f : R” — IR, anonempty closed convex set C C R",
and f assumes its minimum over C at some X € C. We will sometimes denote by

S={xeC: fX)X f(x) forallx e C} # @

the solution-set of (0.1).

1 Abstract Minimality Conditions

We start with the “abstract” convex minimization problem

inf {f(x) : x € C}, (1.0.1)
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for which we characterize a solution (assumed to exist) in terms of the data (C, f)
alone and their “first-order elements” (T¢, f'; N¢, 3f).

First of all, we make sure that, just as in the unconstrained case, there can be no
ambiguity in the definition of a minimum:

Lemma 1.0.1 Any local minimum of f on C is a global minimum. Furthermore, the
set of minima is a closed convex subset of C.

PROOF. Suppose that, for some r > 0,
f&x)< f(x) forallx e B(x,r)NC.

Take x € C,x & B(x,r) andset ¢t := r/|lx — x|, x; := (1 — t)x + tx. Clearly,
0 <t < 1andx; € B(x, r) N C; by assumption and using the convexity of f,

fFOS )<A= fX)+1f(x).

Hence, £ (x) < tf(x), so x is a global minimum of f on C.
On the other hand, the solution-set

CNixeR": fx)< fD}

is the intersection of two closed convex sets, and is therefore closed and convex. 0O

1.1 A Geometric Characterization

Theorem 1.1.1 With f and C as above, the following statements are equivalent when
xeC:
(i) x minimizes f over C;
(i) f/(x,y—Xx)=0forally € C;
(i) f/(x,d) >0 foralld € Tc(%);
(iii) 0 € 3f (x) + N (x).

PROOF. [(i) = (ii) = (ii’)] Pick an arbitrary y € C: by convexity, x + t(y — k) € C
for all ¢ € [0, 1]. If (i) holds, (ii) follows by letting ¢ | 0 in

fEHIG =N =f®)
t =

, validforallz €]0, 1].

Setting d := y — x and using positive homogeneity, we thus have f’(x, d) > 0 for all
d in the cone R*(C — X), whose closure is T¢ () (Proposition I11.5.2.1). Then (ii’)
follows from the continuity of the finite convex function f/(x, -) (Remark VI.1.1.3).

[(ii’) = (i)] For arbitrary y € C, we certainly have y — X € T¢ (), hence (ii’) implies

0< f'&y =0 < f) - f&)
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(where the second inequality comes from the Definition VI.1.1.1 of the directional
derivative of f) and (i) is established.

[(ii’) « (iii)] Because f’(x, -) is finite everywhere, (ii’) can be rewritten as follows:
&, d+ Iic)(@) >0 foralld e R".

The indicator I of the closed convex cone T¢(x) is the support o of its polar cone
(see Example V.2.3.1), which is N¢ (¥) (by Proposition I11.5.2.4); also, f/(x, -) is the
support of af (x) (by Definition VI.1.1.4); using the calculus rule V.3.3.3(i) on the
sum of support functions, we therefore obtain

(i) = 0< 05 +ONe () = O0f (D) +NC () -

Recall that the sum of the compact set 3f (x) and of the closed convex set N¢(x) is
a closed convex set: the above inequality is just (iii) in terms of support functions,
thanks to Theorem V.2.2.2. O

When (1.0.1) is unconstrained, C = R" and, for all x, Tc(x) = R", N¢(x) = {0};
the above minimality conditions reduce to those of Theorem V1.2.2.1. The other extreme
case C = {x} presents no interest! Of course, it is a privilege of convexity that (ii) — (iii)
are sufficient for minimality, just because f’(x,-) underestimates f(x + ) — f(x) [i.e.
epi f'(x, -) contains epi f — {(x, f(x))}] and T¢c(x) overestimates [contains] C — {x}. This
confirms Lemma 1.0.1: a Jocal minimality condition is actually global.

Remark 1.1.2 While f/(x, -) is the tangential approximation of f near x, T¢c(x) is the set
of tangent directions to C at x. The minimization problem

ix‘}f{f’(i,d) . d € Te(®)} 1.1.1)

is the “tangent problem to (1.0.1)” at x and (ii’) says that its infimal value is nonnegative (in
fact exactly 0, achieved at d = 0). The negation of (ii’) is that the infimal value is —ooc.

The tangent problem can be rephrased via the change of variable d = y — x: consider
the first-order approximation of f near x

yP () =fE)+ & y—% [=f0)+olly —xI)]
and plug the translation (0, 0) — (x, f(x)) € R" into (1.1.1), which becomes
ir}l,f {ex(@) : y —x € Tc(®}. (1.1.2)

If ¥ minimizes f over C, then y = x solves (1.1.2) — possibly together with other solutions.
Conversely, if ¥ does not minimize f over C, then (1.1.2) has no solution “at finite distance”.
Observe that g3z, and also {x} 4+ T¢(¥), could be replaced by more accurate approximations
of f and C, using a second-order approximation of f, for example. The essence of the result
would not be changed: a solution of (1.0.1) would again be characterized as solving (1.1.2),
modified accordingly. The equivalent condition (ii) does just this, replacing {x} + T¢(X) by
C itself, i.e. no approximation at all.

Still another way of reading (ii’) is that f is locally increasing along each element of the
set R*(C — x) of feasible directions for C at x; and this property is conserved when taking
limits of such feasible directions, i.e. passing to T¢(X). ]
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Condition (iii) appears as a dual formulation of (ii’), insofar as subgradients and
normals are in the dual of R”. It can also be written

—9f(x) NNc(x) #0, (1.1.3)

which lends itself to a translation in plain words: there is some subgradient of f at x
whose opposite is normal to C at x. If f is differentiable at x, this means that —V f (x)
points inside the normal cone: —V f(x) makes an obtuse angle [or V f(x) makes an
acute angle] with all feasible directions for C at x; see Fig. 1.1.1. When 3f (x) is not
a singleton, the above property has to be satisfied just by some of its elements: this
one element, call it s, suffices to rule out any feasible descent direction. Indeed,

f@&E+td) — f(x) >t({s,d) forallt >0;

if 51 satisfies the above angle property, these terms are nonnegative for all feasible d.

Fig. 1.1.1. The dual minimality condition

Remark 1.1.3 If the problem were to maximize f over C, the (then local and not sufficient)
optimality condition (ii) = (ii’) would become

flE y—%)<0 forallyeC,
fl(x,d)<0 foralld € Te(x).

This would mean that all subgradients should make an acute angle with the feasible directions
for C at x, i.e. (iii) = (1.1.3) should at least be replaced by

af (x) C Nc¢(x) (1.1.4)

— which would still be insufficient (because local no longer implies global), but at least more
accurate.

Thus, maximizing a convex function over a convex set is a totally different problem, even
though the data still enjoy the same properties. o

For an illustration of Theorem 1.1.1, suppose that f happens to be differentiable at x,
and let

C :=cofvy,..., Um}



296 VII. Minimality Conditions and Elements of Duality Theory

be a compact convex polyhedron characterized as a convex hull. In this case, it is condition
(ii) that is the most useful: indeed, it reads
(Vf(E),y—x)>20 forallyeC.
It is immediately seen that this is true if and only if
(VfE),vj—%) 20 forj=1,....,m,

a set of conditions very easy to check.

Example 1.1.4 (Affine Manifolds) Let C = {x¢} + H be an affine manifold in R",
H being a subspace. The tangent and normal cones at x to C are also the tangent and
normal cone at x — x, to H, namely H itself and its orthogonal H 1 respectively. In
this case, the primal minimality condition (ii’) is: f'(%, d) > O foralld € H; the dual
minimality condition is:

[there is a subgradient of f that is orthogonal to Hj

Depending on the analytic description of H, this condition may take several forms.
If H is characterized as a linear hull, say: for given xg and ¢, . . ., e,

C={xn+Tmibe i 6=, ...bm eR"),

then (ii1) is:

|there is s € 3f (¥) such that (s, e;) = 0for j =1, .. m]

On the other hand, H can be characterized as an intersection of hyperplanes: A being
a linear operator from R” to R™, and b € R™,

C={xeR": Ax =b} (here Axo=0). (1.1.5)

Then H- is the subspace Im A* and (iii) becomes: A*A € 3f (%) for some A € R™,
or

mere ares € 3f (x) and A € R™ such thats + A*A =0 I (1.1.6)
Note in this last expression that, even if s is fixed in 8f (x), there are as many possible
A’s as elements in Ker A*. u]

Example 1.1.5 As a follow-up of the previous example, suppose again that C is
characterized by (1.1.5), with A surjective, and take a quadratic objective function:

f(x) =3(Qx,x) + (¢, x),

with Q : R® — R" symmetric positive definite and ¢ € R”. Clearly enough, C is
nonempty and the minimization problem has a unique solution x; also, (1.1.6) has a
unique solution (s, A), with s = QX + c. Let us compute X and A: they solve

Ox+c+A*A=0,
A =b.
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Since @ is invertible, this is equivalent to

4+ Q07 'c+ Q'A*A =0,
AQ'A*A+AQ 'c+b=0.

The linear operator AQ™'4* : R™ — R™ is clearly symmetric and we claim
that it is positive definite: indeed, with (-, -)) denoting the scalar product in R™,

(AQT'A*y, y) = (Q7'A*y, A*y)

is always nonnegative (Q ™! is positive definite), and it is positive if y £ 0 (A* is
injective). We therefore obtain the explicit expression

A=-B(AQ7'c+b), i=Q 'A*B(AQ 'c+b)-Q ¢,
where we have set B := (AQ 'A%~ o

Example 1.1.6 (Nonnegativity Constraints) Suppose that (-, -) is the usual dot-
product and that

C={(x=E"....6" : & >0fri=1,...,n}

is the nonnegative orthant in R”. The expression of the normal cone to this C at a
given x was given in Examples I[11.3.2.2(b) and I11.5.2.6(a). We find that X minimizes
f on C if and only if there exists s = (s!, ..., s") € 3f (¥) such that

fori=1,...,n, siZOandsi=0if§i >0.

A slightly more complicated example is when
C=tn={@E .6 : T g =1,¢30fri=1,..,n|

is the unit simplex of R”; its normal cones were given in Example I11.5.2.6(c). We
obtain: x minimizes f on C if and only if there exist s = (s',...,s") € 3f (%) and
A € R such that

s'> —AifEf =0 and s =-AifE > 0. a]

Example 1.1.7 (“Oblique” Projections) Let |- |j be anorm onR" and consider the problem
of projecting a given x onto C: to find x € C (not necessarily unique!) such that

fI¥ — x| = min |}y — x|l 1.1.7)
yeC
Denote by
B*:={s : (s,y) < |ly] forall y € R"}

the unit ball of the dual norm (see §V.3.2). We have seen in Example V1.3.1 that the subdif-
ferential of || - || at z is the optimal set in B*:

M- N2 ={s € B* : (s,2) = lzll} =Argglax {s,2).
SEB*
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Setting z = y — x in this formula, we can apply Theorem 1.1.1(iii): X is a projection of
x onto C, in the sense of the norm [ - {, if and only if

Js € B* suchthat (s,x —x) = Jx —xfl and s € Nc(X).
Another way of expressing the same thing is that the problem
max {(s,x — x) : s € B¥} (1.1.8)

has a solution in N¢ (x). Note that, if x € C, thenx = x is itself a projection —unique because
the minimal value in (1.1.7) is zero! In this case, the solution-set of (1.1.8) is the whole of
B*, which contains 0 € N¢(x).

Figure 1.1.2 illustrates a situation in which C is the lower half-space in R? and [ - || is
the £o0-norm. The projections of x are those x = (&, 0) that see x under an angle 6 of at least
7 /4, so that the optimal s in (1.1.7) is the vertical (0,1). The projection-set is also Boo N C,
where B is the £o0-ball around x having radius just equal to the £4,-distance from x to C.

Fig. 1.1.2. Solutions to a projection problem

If || - i concides with the Euclidean norm || - ||, then B = B* and

B ifz =0,

Using this value in (iii) shows that the projection onto C is the point pc(x) € C (known to
be unique) such that x — pc(x) € N¢(x). This can also be seen from (1.1.8), which has the
unique solution (x — x)/|lx — x|| (assuming x ¢ C). We thus come back to results seen in
§IIL3.1. o

1.2 Conceptual Exact Penalty

The constrained minimization problem (1.0.1) can be viewed as the unconstrained
minimization of f + I¢, where I¢ is the indicator function of C. The new objective
becomes extended-valued, however; we will not study the subdifferentials of such
functions until Chap. X; furthermore, minimizing such a function is not a computa-
tionally tractable task (cf. Chap. II). On the other hand, I can be viewed as an infinite
penalty imposed to the points outside C. A relevant idea is therefore to approximate
it by an external penalty function, i.e. a function p satisfying
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o ifxec,
PO =1 px)>0 ifxgC.

An example of such a function is the distance-function dc. When p is on hand, the
original problem can be replaced by the unconstrained one
inf {f(x)+ p(x) : x e R"}. (1.2.2)

Now, a first natural question is: to what extent can we replace (1.0.1) by the simpler
(1.2.2)7 We start with elementary properties of external penalty functions, which are
actually independent of any assumption on C and f.

Lemma1.2.1 Let f : R" - R, C C R", and p : R" — R satisfy (1.2.1); call S
and Sp the solution-sets (possibly empty) of (1.0.1) and (1.2.2) respectively.

(1.2.1)

(i) Any xp € Sp which belongs to C is also a solution of (1.0.1).
(ii) Sp O S whenever Sp N S # 0.
(iii) If Sp N S # @ and if the penalty function q is such that q(x) > p(x) for all
x & C, then S4 = §.
PROOF. Let xp, solve (1.2.2): in particular, for all x € C,

Fxp) + plxp) < f(x)+ p(x) = f(x).
If x, € C, the first term is f(xp); (i) is proved.
To prove (ii), take xp € Sp N S and let x € S; xp and x are both in C and
F) +p&x) = f(x) < fxp) = f(xp) + p(xp) < f(x) + p(x)

for all x € R™. Hence X € Sp.

Finally, let p and g be as stated in (iii) and take x, € Sp N S; it is easily seen
that xp € Sg, hence § C 4 by virtue of (ii). Conversely, let x4 € Sg; if we can show
x4 € C, the proof will be finished thanks to (i). Indeed, we have

f(xg) +q(xg) < f(xp) +q(xp) = fxp) = f(xp) + p(xp); (1.2.3)
and if x4 ¢ C,
flxg) +q(xg) > fxg) + p(xg) = f(xp) + p(xp),
which contradicts (1.2.3). u]

Thus, feasibility is the only possibly missing property for solutions of the penal-
ized problem (1.2.2) to solve the original problem (1.0.1); and to recover feasibility,
the best is to increase the penalty function. To do so, the usual technique is to choose
it of the form 7 p, with a fixed “basic” penalty function p, and a possibly increasing
penalty coefficient m 2 0.

Having chosen p, one solves

Jinf {f(x) + 7p(x) : x e R"}. (1.2.9)

It may happen that, no matter how 7 is chosen, (1.2.4) has no solution in C — or
even no solution at all. By contrast, the favourable case is described by the following

property:



300 VII. Minimality Conditions and Elements of Duality Theory

Definition 1.2.2 (Exact Penalty) Let the constrained minimization problem (1.0.1)
have a nonempty solution-set. A penalty function p satisfying (1.2.1) is said to have
the exact penalty property if there is 7w > 0 such that (1.2.4) has a solution belonging
to C.

An equivalent definition (Lemma 1.2.1) is that the solution-sets of (1.0.1) and
(1.2.4) coincide for r large enough. o

This property does hold for at least one basic penalty function, namely the
distance-function:

Theorem 1.2.3 Let C C R”" be nonempty closed convexand f : R* — R be convex.
Then the following statements are equivalent when x € C:

(i) x minimizes f over C;
(ii) there exists w > 0 such that X minimizes f + nwdc over R™.

PROOF. It is clear that (ii) = (i) since d¢ = 0 over C. Now, taker > Oandletsr > O be
a Lipschitz constant of f over B(x, r) (§1V.3.1); we claim that ¥ minimizes f + 7 dc.
Because the projection operator pc over the convex set C is nonexpansive (§111.3.1),

Ix = yll > lpc(*) = pcOI = X —pcMI -

Thus, for y € B(x,r), pc(y) is also in B(x, r) and we can use the local Lipschitz
property of f:

fO) = floc®) 2 —xmlly —pcOIl = —wdc(y) (1.2.5)
and we deduce, if (i) holds:

FO) +rdc() 2 floc) 2 f(X) = f(%) +mdc(x).

‘We have thus proved that X minimizes the convex function f + wd¢ on B(x, r),
hence on the whole of R”. o

The above proof uses direct arguments only; with some more refined results from convex
analysis, it can be substantially shortened. Indeed, X minimizes the convex function f + wd¢
over R" if and only if (use the calculus rule VI.4.1.1 and Example V1.3.3)

0 € d(f +mdc)(x) =3f(x) + 7#[Nc(X) N B(0, )] = 3f (x) + Nc(x) N B0, ).
To say that this holds for some x is really to say that
0 €df(x) + Nc(x),

i.e. the properties stated in Theorem 1.2.3(ii) and Theorem 1.1.1(iii) are equivalent when
x € C. However, our proof is preferable, because it lends itself to generalizations:

Remark 1.2.4 It is interesting to extract the essential assumptions in Theorem 1.2.3:

— The only useful property from the projection operation p¢ is its local boundedness, i.e. all
the projections pc (y) must be in some B(%, R) if y € B(x, r): then take for 7 in the proof
a Lipschitz constant of f on B(X, max{r, R}).
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— Apart from the local vs. global problem, convexity of f is of little use; what really matters
for f is to be locally Lipschitzian.

Even under these weaker assumptions, the key inequality (1.2.5) still holds. The result is
therefore valid under more general assumptions: for example, the projection can be made
under some other metric; or dc may be replaced by some other function behaving similarly;
and convexity of f and C is secondary.

Observe that the exact penalty property is normally a concept attached to a particular
f. The distance function, however, depends only on C; it has therefore an “intrinsic exact
penalty” property, which holds for arbitrary f (within a certain class, say f convex). o

f+ndg
o f+nd@

H
i
i
i
i
i
i
i
H
i
i
H
H

Cc
Fig. 1.2.1. The property of exact penalty

The property of exact penalty is illustrated by Fig. 1.2.1. We see that it is essential for the
penalizing function (here d¢) to “break” the derivative of f when x crosses the boundary of
C. In fact, another usual penalty technique replaces (1.0.1) by

inf {f(x) + 37ndZ(x) : x eR"}.

Here the property of exact penalty cannot hold in general, and = must really go to infinity:
more precisely,

3(f +imdk) (x) =3f(x) + nVdL(x) = 3f (x) forallx e C.

Hence, an x* € C minimizing the above penalized function should already satisfy 0 €
df (x*); an uninteresting situation, in which (1.0.1) is an essentially unconstrained problem.
Basically, the trouble is that the function d%: is smooth and its gradient is O for x € C: when
x leaves C, VdZ (x) is small and dZ (x) does not increase fast enough.

2 Minimality Conditions Involving Constraints Explicitly

Now, we suppose that the constraint-set of §1 has a representation via equalities and
inequalities: C is the set of x € R” such that

(@i, x)=bifori=1,...,m, cj(x)<0forj= 1,...,p.| (2.0.1)

Here each (aq;, b;) € R” x R, cj R" — R is a convex function; altogether, they
form the data (a, b, ¢).

The two groups of constraints in (2.0.1) really represent a classification “equalities
vs. inequalities” — rather than “affine vs. general nonlinear”. In a way, it is by chance
that the first group contains only affine functions: as far as equality constraints are
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concerned to characterize a convex set, only affine functions are relevant; but nota-

tionally, we could just write the equalities as d; (x) = 0, say. Note also that an equality

could as well be written as a pair of affine inequalities. Similarly, some inequalities
cj may be affine, they still appear in the second group.
The following conventions will be useful:

—m = 0 means that the representation (2.0.1) has no equalities, while p = 0 means
that there are no inequalities.

— Since this last case has already been dealt with in Example 1.1.4, the present section
will be essentially limited to two cases: [m = 0, p > 1] (only inequalities) and
[m > 1, p > 1] (both types of constraints present).

— In either case, an expression like ?=, means a summation on the empty set, whose
result is by convention 0.

We find it convenient to equip R™, the space of equality-constraints values, with
the standard dot-product: for (A, b) € R™ x R™,

m
ATh= Zx,-b,- ) (2.0.2)
s

Also, A : R* — R™ is the linear operator which, to x € R", associates the vector of
coordinates (a;, x),i = 1, ..., m. Thus we can write

Ax =b insteadof [(a;,x)=0b; fori=1,...,m]
and
C={xeR” : Ax =b, Cj(x)<0forj=l,...,p}.

The adjoint A* of A is then the operator which, to A = (A, ..., A») € R™, associates
the vector A*A = )i~ A;a; € R".
Thus, our basic convex minimization problem (1.0.1) is now written as

min f(x) x e R",
(aj, x)y=b; fori=1,...,m, [or Ax =b € R™], (2.0.3)
cj(x) <0 forj=1,...,p.

Of course, the same set C can be represented by equalities and inequalities in many
different ways. Just to give an example, there holds in terms of the distance-function
dc:

¢ C={xeR": dc(x) <0}, (2.0.4)
or also
C={xeR": {d;(x)<0}.
Thus, if d¢ is known, we have already two possible representations in the form (2.0.1).

As another example, which will be of fundamental importance below, consider the
following summarization of the data in (2.0.1):

R's x> IM'x):=
(Han®) =Bl lame ) = bl ), 0)) et 20S)
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(recall that ¢+ := max{0, ¢}). It allows the description of C with the help of the unique
vector-equation I"(x) = 0. Taking an arbitrary norm || - || in R™*P, this can then be
expressed as

={xeR": yx) <0}, 2.0.6)

where y (x) := i I" ().
We will see that the relevant object associated with the representation (2.0.6) is
actually independent of the particular norm; we can for example choose

Yoo = max[l(ah ) _blly ey I(a"'h ') _bml; cr’ ey ;} ) (207)

or
m P
v=) lai, ) =bil+) ¢ (2.0.8)
i=1 j=1

In both cases y is a (convex) “global constraint-function” characterizing C.

There are two ways (at least) of deriving minimality conditions in (2.0.3): one,
which will be the subject of §2.1 — 2.3, is to use §1.1 after a characterization of T¢
and N¢ in terms of the data (a, b, ¢); the other, tackling the minimization problem
(2.0.3) directly, will come in §2.4.

2.1 Expressing the Normal and Tangent Cones
in Terms of the Constraint-Functions

When representing the convex set C by (2.0.6), it is desirable that y be convex; for
this, we choose a norm in R *7 satisfying: for all pairs (z, Z/) € R®tP x R™1P,

Izl < lIZ’ll whenever 0< < foralli=1,...,m+p 2.1.1)

See §VI.4.3 for the convexity of the resulting function y; observe also that the £,-
norms, 1 < p < o0, satisfy this property. The subdifferential 9y (x) is then a convex
compact set in R” which contains 0 if x € C. Of course, this set depends on the norm
Il - Il chosen but its conical hull cone 3y (x) = R*3y (x) does not:

Lemma 2.1.1 Fori = 1,2 let || - ||; be two norms in R™*P, satisfying the mono-
tonicity property (2.1.1), and let y; = ||I"|l; be the corresponding convex functions
used in (2.0.5), (2.0.6). Forany x € C,

R*oy1(x) =R 3y (x).

PROOF. The two norms are equivalent: there exist 0 < £ < L such that £} - |, < || -
lla < LIl - ll;. As aresult, for all x € C (i.e. y;(x) = 0),d e R"® and ¢t > 0,

¢ Yi(x +td) — yi(x) < Y2(x + td) — ya(x) <L vi(x +td) — yi(x) .
t t t
Let¢ § 0 to obtain
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y/(x,d) < y;(x,d) < Ly/(x,d) foralld e R".
According to the definition of a subdifferential, for example VI.1.1.4, this just means
£3y1(x) C 3y2(x) C Loy (x). o

It so happens that the conical hull considered in the above lemma is the useful
object for our purpose. Its calculation turns out to be simplest if || - || is taken as the
£,-norm; we therefore set

m 4
R"3x > y(x) =Y lai,x) = bil + Y _cf (1),
i=1 j=1

but once again, any other norm would result in the same expression (2.1.3) below. We
also recall the notation A*A for Y _; A;a;.
In what follows, we will denote by

Jx)y={j=1,...,p: ¢cj(x) =0} 2.1.2)
the set of active inequality constraints at x € C (or active set for short).

Propesition 2.1.2 For x € C, the conical hull of 3y (x) is

Néa,b,c)(x) = [A*)‘ +XjesxykisSj © A €R™,

(2.1.3)
uj >0, sj € dcj(x) for j € J(x)].

PROOF. Use the various relevant calculus rules in §VI.4 to obtain successively:
9 ({ai, ) = bil) (x) =[-1,+1]a; fori=1,...,m;

[0, 113¢j(x) if j € J(x),

3cf (0) =
{0} if j & J(x);
m
) =) [-1,+lla+ Y [0,1]3¢;(x), (2.1.4)
i=1 jel(x)
and (2.1.3) follows. O

The important point in (2.1.3) is that it involves only the data (a, b, ¢) of the
problem: the cone N { a,b.c) (x) presents itself as a natural substitute for the normal

cone N¢ (x). Now consider the polar of N ( a.b.c) (x), which is by definition

{deR™ : (s,d) <Oforall s € RT3y (x)
{[deR" : (s,d)<Oforalls € dy(x)
{deR": y'(x,d) <0} =: T(/a,b,c)(x)'

o
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To alleviate notation, we will often write N’(x) and T/ (x), or even N’ and T, instead
of N é a.b,c)) and T(’ 2.b,c)(%)- Using for example (2.1.4), we can compute

Y d) =) la,dl+ Y cx.d),
i=l jeJ(x)

so that, not unexpectedly, T’ also has an expression in terms of the data of the problem
only:
[N =T'(x)={d eR": Ad =0, c;.(x,d) <O0forjeJ(x)}. (2.1.5)
Being a polar cone, T’ is closed and convex; geometrically, it is obtained by
linearizing — or sublinearizing — the constraints at x, a rather natural operation. When
passing to the dual, the next natural operation is to take the polar of T’, but be aware
that this is does not give N’, simply because N’ is not closed.
In §1 we used (T¢, N¢, d¢) only; here the corresponding triple is (77, N', y),
attached to the data (a, b, ¢). Our duty is now to make the connection between these two

triples. The form (2.0.6) expresses C as a sublevel-set, so the problem of calculating
its normal and tangent cones has already been addressed in §VI.1.3.

Lemma 2.1.3 For all x € C, there holds
Tc(®) C T () (2.1.6)
Furthermore, [T(/a,b,c)(x)]o =cl Néa,b,c)(x) and
Ne(®) D elN(y b ) D Nig py 0y (%) - @17

PROOF. (2.1.6) is just a rewriting of Lemma VI.1.3.2. Because 7/ = (N')°, we have
(T")° = (N")°° = ¢l N’ and (2.1.7) is obtained by taking the polar of both sides in
(2.1.6). o

We know from Theorem 1.1.1 that a solution X of our minimization problem
(2.0.3) is characterized by

f'(%,d) >0 foralld € Tc(Z), or 0e€af(x) +Nc(X);
but we wish to use the data (a, b, ¢). This amounts to writing
f'(%,d)>0 foralld e T'(x), or 0€df(x)+ N'(x)

(with an extra technical detail: N’ is not the polar cone of T’). We therefore need the
property N’(x) = N¢(X), which may not hold in general. Nevertheless, Lemma 2.1.3
enables us to prove the following fundamental result:

Theorem 2.1.4 For x € C, consider the following statements:

(i) X solves the constrained minimization problem (2.0.3);



306 VII. Minimality Conditions and Elements of Duality Theory

(i) f'(%, d) > 0foralld € T, , (&)
(i) 0 € Bf (%) + cLN(, }, , (B);

(iv) there exist A = (Ay, ..., Am) € R™ and u = (1, ..., up) € RP such that
0 € 3f (@) + XJL, hiai + LF_, ujde; (), (2.1.8)
uj 20 and pjci(x) =0 forj=1,...,p. 2.1.9)

Then we have the following relations: (iv) = (iii) ¢ (ii) = (i). If the equality N' =
N¢ (¥) holds, we have the full equivalence (i) < (ii) < (iii) < (iv).

PROOF. [(ii) < (iii)] Because T’ and cl N’ are mutually polar cones, this is the same
as the equivalence between (ii’) and (iii) in Theorem 1.1.1.
[(iv) = (iii)] Using the definition (2.1.3) of N’, (iv) means 0 € 8f(x) + N’, which
itself implies (iii).
[(iii) = (i)} In view of (2.1.7), (iii) implies 0 € 3f (x) + Nc(x) which, according to
Theorem 1.1.1, means that x minimizes f over C.

Finally, the equality N’ = N¢(x) implies in particular N’ = ¢l N’, and also
T' = T¢(x); the four statements become equivalent, just as in Theorem 1.1.1. o

The statements (i), (ii), (iii) in this result play the role of those in Theorem 1.1.1; as for
(iv), it does nothing other than develop the expression of N’, thereby giving a computable way
of checking the condition 0 € 3f + N’. In Theorem 2.1.4, the difference between (ii) = (iii)
and (iv) is slim: only the boundary of N’ is involved (see Example 2.1.7 below, though). The
real question is whether (i) implies (ii) = (iii) ~ (iv): then, a computable necessary condition
is obtained to eliminate a candidate x which would not be optimal. If this implication does
not hold, our computable condition (iv) [~ (iii) = (ii)] is only sufficient for optimality.

The equivalence between (i) and (ii) = (iii) is given by the property N’'(X) = N¢ (%),
which yields the closedness of N’ at the same time — hence (iv). This property thus appears
as a cornerstone to derive conditions equivalent to minimality; it will motivate Sections 2.2,
2.3 by itself.

The existence of coefficients satisfying (2.1.8), (2.1.9) in Theorem 2.1.4 is called
Lagrange, or Karush-Kuhn-Tucker (KKT) conditions; actually, Lagrange derived
them in the case of equality constraints only, and for differentiable data. The cor-
responding coefficients (A, u) € R™ x (R*)? are called the (Lagrange) multipliers.

Remark 2.1.5 Callc := (¢, ..., cp) € RP. For feasible x, the vector —c(x) is in
(R*)? and there are different ways of expressing (2.1.9):

—oneis u € (RT)P and p j = 0 whenever ¢;(x) < 0 (but the converse is not true:
one may have u; and cj(x) both zero);
—another one is 1 € (RT)? and u"c(x) = 0.
This equivalence, together with the notation (2.1.2), allows the following abbre-
viation of (2.1.8) and (2.1.9):

0€df(®)+ A*A+ Y pjdcj(®), ;>0 forjel@. (2.1.10)
jel(®)
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The condition "¢ = 0 is called transversality, or complementarity slackness;
when ¢;(X) = 0 does imply uj > 0, we say that strict complementarity slackness
holds. O

We finish this subsection with some illustrations.

Example 2.1.6 If ¢ = d, the condition N’ = N¢ obviously holds, since dd¢ (x) =
Nc(x) N B(0, 1) for feasible x (see Example V1.3.3). By contrast, representing C
with the single inequality 1/2 d2C (x) < O results in N’ = {0}, probably a gross under-
estimate of the true normal cone N¢. This remark has a general interest: replacing a
representation

C={xeR": c(x) <0}

by
C={xeR": I(cH)*(x) <0}

kills the possibility of having N’ = N¢ on the boundary of C. See again the quadratic
penalty mentioned at the end of §1.2. O

Example 2.1.7 (Nonclosed N') Take the dot-product for (-, -) in R? and
C={x=(En) :cx)=§+]E nI<0}=R" x{0}.
At x = 0, straightforward calculations give
T'0)={deR?: (0,d) <0} =C =Tc(0).

Then, a function f (whatever it is) is minimized on C at x = 0 if and only if (ii) holds
in Theorem 2.1.4. Yet, 3c(0) = {(1, 0)} + B(0, 1) and

N'(0) =R%3c(0) = {s = (p,7) : p > 0}U{(0,0)}

is not closed: it is only cl N/ that coincides with N¢(0). Indeed, take the objective
function f(£,n) = n (which is constant on C, hence minimal at 0). Its gradient
V £(0) = (0, 1) is not in —N’; (iv) does not hold in Theorem 2.1.4.

This phenomenon is entirely due to nonsmoothness: if the constraints c; were
smooth, N’ would have finitely many generators, and as such would be closed (Farkas
Lemma I11.4.3.3). o

2.2 Constraint Qualification Conditions

In the previous section, we have seen that the relevant minimality condition in terms of
the data (a, b, ¢) was the KK T conditions (2.1.8), (2.1.9), which needed the property

(ab,)® =Nc ). (2.2.1)

This property will be called the basic constraint qualification condition (BCQ). It is
of fundamental use in optimization theory and deserves additional comments.
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—~ As shown in Example 2.1.6, it is a property to be enjoyed not by C itself, but by
the constraints defining it: BCQ depends on the representation of C; and also, it
depends on the particular x € C. Take for example n = 1, C = [0, 1] defined by a
single inequality constraint with

) = max {0, -1 +x} ifx>0
W= e ifx <0;

BCQ is satisfied at x = 1 butnotat x = 0.

~ In the representation (2.0.1) of C, N’ remains unchanged if we change cj to cj'.*',
and/or to tjc;j (¢tj > 0) and/or (a;, b;) to (—a;, —b;), and/or (a;, x) — b; = 0 to the
pair {a;, x) — b; <0, {(a;, x) — b; > 0. At least, BCQ enjoys some coherence, since
these changes do not affect C.

— The basic constraint qualification does not depend on f. When it holds at some
x, it therefore allows the derivation of the KKT conditions (2.1.8), (2.1.9) for any
objective function that is minimized at the given x. The following result shows that
the converse is also true: in some sense, BCQ is a “minimal” condition.

Proposition 2.2.1 Let C havetherepresentation(2.0.1). Foranyx € C, thefollowing
statements are equivalent:

(i) For any convex function f . R"* — R minimized on C at x, there exist . € R™
and p € RP such that the KKT conditions (2.1.8), (2.1.9) hold at x.

(ii) The basic constraint qualification condition N(' @b C)(JE) = N¢(x) holds.

PROOF. It suffices to prove that (i) implies (ii), i.e. Nc(x) C N’(x). Let s € N¢ (%)
and consider the affine function x — f(x) = (—s, x —x). By definition of the normal
cone, f is minimized on C at x; then (i) applies, which means that 0 € —s 4+ N/(x).

a

‘We mention some situations where BCQ holds at every x € C.

— When C is represented by dc(x) < 0: Example 2.1.6 tells us that we recover Theorem 1.1.1.
~ When m = 0 (inequalities only) and there exists xq such that cj(xg) <Oforj=1,...,p:
then, using Theorem VI.1.3.5 and the calculus rule V1.4.3.2 directly gives (for J (x) # @)

Nc (x) = R*3(max; cj)(x) = cone{Udcj(x) : J € J(x)} =
[Siescymssi : 1y >0, 5 €d6(x) for j I} =N,

— When C is represented by affine equalities and inequalities. This is indeed an important
result:

Proposition 2.2.2 Let the constraint-set C have the representation
C={xeR": Ax=b, (sj,x)—rj<O0forj= L,...,p}.
If J(x) denotes again the active set (2.1.2) at x € C, we have
Nc(x) = Im A* + conefs; : j € J(x)} = N'(x)
and BCQ holds at every x € C.
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PROOF. Use Example II1.5.2.6(b) to obtain the above expression for the normal cone. n]

The next problem will be to check the basic constraint qualification condition
easily, in terms of the data (a, b, ¢). A natural question is therefore: can BCQ be
replaced by more practical (and possibly more restrictive) conditions? One such is
the condition mentioned above in the context of inequalities, whose importance will
be clear later. To state it, the affine constraints in (2.0.1) must be particularized:

Jo:={j=1,..., p : ¢jisan affine function}
will denote the set (possibly empty) of affine inequality constraints.

Definition 2.2.3 We say that the constraint-set (2.0.1) satisfies the weak Slater as-
sumption (WSA for short) if there is a point at which all the non-affine constraints are
strictly satisfied, i.e.:

dxg € C suchthat | Axg =0,
cj(x0) <0 for je Jy, 2.2.2)
cj(xo) <0 for j & J,. O

Proposition 2.2.4 An equivalent formulation of (2.2.2) is:

Vx € C, 3d € R” such that | Ad =0,
c;.(x,d) L0 forjeJx)NJ,, (2.2.3)
c;-(x,d) <0 forjeJ(x)\/a.

PROOF. [(2.2.2) = (2.2.3)] Consider x € C with J(x) # & (otherwise there is nothing
to prove) and take d = xo — x (# 0). Then Ad = Ax — Axy = 0; the inequality
cJ'. (x,d) < cj(x) —¢j (x) = ¢j(xo), true for all j € J(x), does the rest.

[(2.2.3) => (2.2.2)] Consider x € C with J(x) # @ (if no such x exists, (2.2.2) just
expresses C # @) and compute ¢;(x + td) for small ¢t > 0. Since

i(x+td
¢, d) = g SETD i e TN
t>0 t
and
i(x +1td
c;-(x,d) = i(—t—) forje J(x)NJ,,
there exists #; > 0 such that xq = x + #,d satisfies (2.2.2). m]

It is interesting to note that (2.2.2) holds as soon as the conditions in (2.2.3) are
satisfied by some x € C. In such a case, these conditions are therefore satisfied for all
x € C; this “propagation effect”, typical of convex constraint-sets, was already seen
in Remark VI.1.3.6.

Thus, we have partitioned the inequality constraints into two sets:

(i) the non-affine constraints ¢;(x) <0 forall j € {1, ..., p}\J, which could be
summarized in a single inequality constraint

co(x) :=max{cj(x) : j & Ja} <O0; 2.2.4)
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(ii) the affine inequality constraints, to which could actually be added the “two-sided
inequality versions” of the affine equality constraints:

{aj, x) —b; <0and (—a;,x) +b; <0 fori=1,...,m.

It is worth noting that the weak Slater assumption (2.2.2) remains unchanged
under these transformations. So, in fine, the constraints describing C in (2.0.1) could
be replaced by

(i) a single (non-affine) inequality constraint cy(x) < 0, and
(ii) affine inequalities, say (sg, x) —rgy <Ofork=1,...,4.
With these new notations, WSA is formulated as

Jxo € C such that | (sg,xo) —rx <0 fork=1,...,q,

and Co(Xo) <0. (225)

Theorem 2.2.5 Let the weak Slater assumption hold. At any x € C, the KKT condi-
tions (2.1.8), (2.1.9) are (sufficient and) necessary for x to minimize a convex function
fonC.

PROOF. Let X minimize f on C, we have to show that the KKT conditions hold. Using
the notation (2.2.5), consider the auxiliary function

R" 3 x > F(x) := max {f(x) — f(¥), co(x)},
the closed convex polyhedron
P = [x eR” : (sg,x) ~ry<Ofork = 1,...,q},
and the set of affine constraints
Kx):={k=1,...,q9 : (st,x) —ry=0}.

Clearly enough, F(x) > F(x) = 0 for all x € P. By virtue of Proposition 2.2.2,
there exist nonnegative multipliers ug, k € K (x), such that

0€dF(®)+ ) misk. 2.2.6)
keK (x)

Let us compute 3 F (x): if co(x) < 0, then
AF(x) = 3[f — f(OI(X) = 3f (x);
if co(x) = 0, use the calculus rule V1.4.3.2 to obtain
aF (x) = co[df (X) U dcy(X)].
In both cases, we deduce from (2.2.6) the existence of a € [0, 1] such that

0 € adf (®) + (1 — @)dco®) + Y pksk. (2.2.7)
keK (x)
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We prove o > 0 (which is automatically true if ¢o(x) < 0). Indeed, if o were 0,
we would have from (2.2.7)

0edco(®) + ) mask-
keK (%)

This would imply that ¥ minimize ¢y on P (Theorem 2.1.4). Because we are in the
case cy(x) = 0, this would contradict (2.2.5).

In summary, dividing (2.2.7) by « > 0 if necessary, we have exhibited nonnegative
multipliers vg and vg, k € K (x), such that

0 € 3f (%) + vodeo(®) + . vksk.
keK(x)

Finally, referring back to the original data (a, b, ¢) of our problem (2.0.3), we just
remark that

—any s € 9cy(x) can be written as a convex combination of elements in dcj(x),
J € J\Ja;

— pairs of nonnegative multipliers, say (vg, vs), representing an original affine equal-
ity, say the i™, can be condensed in one unsigned multiplier A; := vy — vy O

Thus, WSA is a practical property ensuring the existence of Lagrange multipliers
Jfor any pair (X, f) satisfying

f is convex from R” to R, and x € C minimizes f on C. 2.2.8)

Remembering Proposition 2.2.1, we see that this implies the BCQ condition (2.2.1).

2.3 The Strong Slater Assumption

For given optimal x € C, denote by M(x) the set of multipliers. So far, we have
concentrated our attention on conditions to guarantee nonemptiness of M (x); namely
BCQ of (2.2.1), and WSA of (2.2.2). Now, M(X) is a closed set in R™*P, as can be
checked from its definition; furthermore, it is convex: to see this, look again at the
KKT conditions and remember that, because each dc;(x) is convex,

apjoci(x) + (1 — a)uj-acj-(i) =[ap; + (1 - a)u,;-]acj-(i) fora € [0, 1].

To say more about M(x), we need to restrict our qualification conditions; the
following practical strengthening of WSA will imply among others that M (x) is also
bounded.

Definition 2.3.1 We say that the constraint-set (2.0.1) satisfies the strong Slater as-
sumption (SSA for short) if:

the vectors a;, i = 1, ..., m, are linearly independent, @)

(2.3.1)
dxo suchthat Axo =5 and cj(xo) <Oforj=1,..., p.|(ii) O
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Thus the affine inequality constraints are no longer particularized. As aresult, SSA
would be killed if equalities were split into pairs of inequalities! The (i)-part, stating
that A is surjective, is not too restrictive: it expresses the fact that the system Ax = b
is not redundant. Needless to say, M (x) would certainly be unbounded otherwise: for
(A, ) € M(x), the whole affine manifold (A + Ker A*, 1) would be in M (x).

Just as in Proposition 2.2.4, the (ii)-part of SSA can be replaced by

For all x € C, there exists d € R" such that . 231
Ad=0 and ci(x,d) <OforalljeJ(x); [@)  @3.D
and here again, the required relations hold for all x € C as soon as they hold at some
xeC.

As before, SSA is exclusively concerned with the description (2.0.1) of C. It will
imply that M (x) is nonempty compact and convex for all pairs (x, f) satisfying (2.2.8).
Furthermore, the condition is necessary: one cannot have a pair (x, f) satisfying
(2.2.8) with M(x) nonempty compact and convex if SSA does not hold. This is
summarized in the next statement:

Theorem 2.3.2 Consider X minimizing f over the constraint-set C described in
(2.0.1). A necessary and sufficient condition for the set of multipliers M (x) to be
nonempty compact and convex is the strong Slater assumption (2.3.1).

PROOF. [Sufficiency] Let SSA hold. We already know that M (x) is nonempty, closed
and convex, we have to prove that it is bounded. For this, (2.3.1)(ii’) allows us to take
d € R” such that

Ad =0 and c;-(f,d)s —e<0forjeJX).

Compute at this d the support function of the right-hand side in (2.1.8) — a non-
negative number. Using various results from Chap. VI and knowing that Ad = 0, it
has the value

fGEd+ Y ujcix,.d)>0.

JjeJ(x)
Because each y; is nonnegative, we obtain the bound for u
V4 /(2
fi(x,d)
z lujl = E Mj < . 2.3.2)
. , At €
Jj=! JjeJ(x)

Let us now show the boundedness of the A-contribution in M (x). Consider the
subspace E := lin(ay, ..., am) generated by the rows a; of A. We write the KKT
conditions as

m
D hai€ —df(®)— Y pjdci(®).
i=l

jel(x)
Because df (x), the dc j(¥)’s and the u j's are bounded, the right-hand side is a bounded
set of the finite-dimensional space E, in which {ay, ..., an} is a basis by assumption.

This implies that the corresponding coordinates A; are bounded.
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[Necessity] Suppose that SSA does not hold: we have to prove that M (x) is unbounded
if nonempty.

In case (2.3.1)(i) does not hold, we have already observed after Definition 2.3.1
that M (%) is either empty or unbounded. So suppose it is (2.3.1)(ii) which does not
hold: for all x satisfying Ax = b, we have

co(x) :=max{cj(x) : j=1,...,p} 20 [= co(x)].

This implies that x minimizes ¢, over the affine manifold Ax = b. From Example 1.1.4
and the calculus rule V1.4.3.2, there exist A’ € R™ and convex multipliers u;., j €
J (x), such that

m
0e) Mai+ ), wjci (%)) -
i=1 jeJ(x)

Thus, if (A, u) € M(X), any element of the form (A + tA/, u + ) is again in
M(x) for t > 0. Since u’ # 0, this implies that M (x) is unbounded. o

Remark 2.3.3 An effective bound for the p-part of the KKT multipliers can be derived: to
obtain (2.3.2), we can take d = x¢ — X, in which case

'@ d) < flxo) = f(B),

¢j(%,d) < cj(xo) forall j € J(®),

hence

Z”‘j< fxo) - f . g

= min{—cj(x0) : j=1,..., p}

j=1
Remark 2.3.4 It is interesting to note that, under SSA, we have
nC={xeR": Ax=bandcj(x) <0forj= 1,...,m}

hdC = {x € R" : Ax = b and ¢j(x) = 0 for some j} .

In the above expressions, the word “relative” can be dropped if there are no equality constraints,
cf. Proposition VI.1.3.3. u]

Example 2.3.5 Consider the problem of finding a steepest-descent direction, which was the
subject of §II.2.1. More precisely, let Q be a symmetric positive definite operator and take
ldli? := (Qd, d) for the normalization constraint in (I1.2.1.3). With Remark I1.2.1.4 in mind,
we choose a normalization factor k > 0 and we want to find d solving

min {(s,d) : 3(Qd,d) = j«} (233)

(here s = s(x) # 0 is the gradient of f at the given current iterate x).
Consider the following relaxation of (2.3.3):

min {(s,d) : $(Qd,d) < }x} . (2.3.4)
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Now we have a convex minit}lization problem, obviously satisfying SSA — take dg = 0.
According to Theorem 2.2.5, d solves (2.3.4) if and only if there is u such that

s+pu0d=0, p>0, and p((Qd,d)—x)=0.
Because s # 0, this u cannot be zero: (Qd, d) = x and we can write

d=-107" and (0d,d)=h(s,07's)=x.

The last equation gives y as a function of ¥ (remember u > 0), and d is then obtained
from the first equation. This d solves (2.3.4) and is a posteriori feasible in (2.3.3); hence it
solves (2.3.3) as well.

Observe in passing the confirmation of Remark 11.2.1.4: as a direction, the optimal d
does not depend on k > 0; changing x amounts to changing 4, and just multiplies d by some
positive factor. o

2.4 Tackling the Minimization Problem with its Data Directly

So far, we have studied sufficient conditions only, namely the KKT conditions of
Theorem 2.1.4; they became necessary under some qualification condition: BCQ of
(2.2.1), or a practical property guaranteeing it, say some Slater assumption. All these
qualification conditions involved the data (a, b, ¢) defining C in (2.0.1), but not f.

On the other hand, all the data (f, a, b, ¢) appearing in the minimization problem
(2.0.3) can be collected into a set of minimality conditions, which are always nec-
essary, without any assumption. The price to pay for this generality is that they are
usually not too informative. Our basic tool for this will be the function (seen already
in the proof of Theorem 2.2.5):

R"3x > F(x):=max {f(x) — f; c1(x),...,cp(x)} . (2.4.1)
Proposition 2.4.1 Let f in (2.4.1) be the optimal value of (2.0.3). Then the problem
inf {F(x) : Ax = b}

has optimal value 0 and the same solution-set as (2.0.3).

PROOF. Straightforward: by definition, F(x) > 0 for all x satisfying Ax = b, and to
say that such an x satisfies F'(x) = 0 is to say that it solves (2.0.3). n]

Thus, it suffices to write the minimality conditions of our new problem, from
which all nonlinear constraints have been removed:

Theorem 2.4.2 Ifx solves(2.0.3), thereexist A = (A, ..., Am) € R™ and (o, 1) =
(o, M1, - - ., p) € R x RP, with g and . not both zero, such that
0 € podf (8) + LI, Mg + X0 1jdci (@), (2.4.2)

uj=z0for j=0,1,...,p and pjcj(x)=0frj=1,...,p. (24.3)
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PROOF. We know that x minimizes F on the affine manifold of equation Ax = b.
Use Example 1.1.4 and the calculus rule VI.4.3.2 to compute 3 F (x) and obtain the

required result, in which
Ho + Z Hj = 1. O

jeJ(®)

The set of necessary conditions for minimality introduced by this result is called
John's conditions; we will call the associated multipliers (A, wo, u) € R™ 117 the
positively homogeneous (or John’s) multipliers; and we will call My (x) the (nonempty)
set of such multipliers. Just as M (), it is a convex set; and it is obviously also a cone,
which explains our wording “positively homogeneous”. On the other hand, M, (x) is
not closed because 0 has been excluded from it; but {0} U My(x) is indeed closed:
proceed as with M (x).

Remark 2.4.3 Letx € C;then d F(x) is not the convex hull of 3f (x) and of the dc;j (x)’s for
active indices j: for this, we should have f(x) = f. As a result, the minimality conditions
in Theorem 2.4.2 do not state that X minimizes F on the affine manifold Ax = b. These
conditions are not sufficient: if, for example, there is some index jo such that cj; = 0 on C,
then any point in C satisfies John’s conditions: set each A; and u; to 0 except uj, = 1.
The trick is that the unknown f does not appear in (2.4.2), (2.4.3), even though thls value
has its importance. Naturally, John’s conditions become useful in two cases:
— When a posteriori f(x) = f: forexample, f was known beforehand. Then the minimization
of F is easy, see Example 1.1.4. Note, however, that (2.0.3) is no longer a constrained
minimization problem, but rather a system of equations and inequations, namely

Ax =b, f(x)<f, cix)<0forj=1,...,p.
— When a posteriori a point has been found satisfying John’s conditions with po > 0: by
positive homogeneity, we can take po = 1. In other words,
M@x) ={(R, p) : A, 1, u) € Mo(x)}.
Here, we have gained nothing with respect to the standard KK T conditions. O

Example 2.4.4 Take the constraint-set of Example 2.1.7:
={x=¢EneR : ckx)=§+E nNI<0} =R x {0}

with the objective function

faE,n) =n—af (a > 0being a parameter).

In all cases, x = 0 minimizes fy over C.

If a > 0, there are positively homogeneous multipliers with g > 0, hence Lagrange
multipliers: in fact, M(0) = [1/2 (@ + 1/a), +oo[. If & = 0, My(0) = {0} x R]. Naturally,
and as predicted by Theorem 2.2.5, no Slater assumption holds in this example. o

Consider the minimization of f on an affine manifold of equation Ax = b, as in
Example 1.1.4. There are Lagrange multipliers (WSA automatically holds); but there
may exist “exotic” positively homogeneous multipliers, having po = 0: those of the
form (A, 0), with A € (Ker A*)\{0} (which implies A* non-injective, and therefore
precludes SSA). This explains the following result: generally speaking, to guarantee
that all positively homogeneous multipliers have po > 0 precisely amounts to SSA.
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Theorem 2.4.5 Letapair (x, f) satisfy (2.2.8). The strong Slater assumption (2.3.1)
is equivalent to the property

o >0 forall (A, wo, u) € My(x) . 244

PROOF. Using Theorem 2.3.2, we replace SSA by nonemptiness and boundedness of
M (x). Consider the sets (Fig. 2.4.1 is helpful)

H :=R"™ x {1} x RP
and
K ={0JUM(x)cR" x Rx RP.

As observed already in Remark 2.4.3, their intersection
HNK ={@A,1,u) : A, u) € M(x)}

is a shift of M(x), and it is clear enough that M (%) is nonempty and bounded if and
only if H N K is nonempty and bounded. From Proposition I11.2.2.3, the latter holds
if and only if the asymptotic cone (H N K)o is the zero vector (of R™t!11P), Using
the calculus rule I11.2.2.5, we see in summary that M (x) is nonempty and bounded if
and only if

Hx N Koo = {0}. 24.5)

We have Hoo = R” x {0} x RP, while Koo = K (we have seen that K is a nonempty
closed convex cone). In other words, (2.4.5) means

[R™ x {0} x RP]N[{0} U Mo()] = {0},

and this is exactly (2.4.4). o

Ho
1
Mg RM+p
"Degenerate" case: *Normal" case: " Comfortable" case:
p.0=0 for all l’-0>0 for some p.o>0 for all
pos. hom. mult. pos. hom. mult. pos. hom. mult.

Fig. 2.4.1. Different possibilities for the multipliers

Note that (2.4.4) can be expressed in the following equivalent form: the only
(A, n) € R™ x (R1)P satisfying



3 Properties and Interpretations of the Multipliers 317

m
0ed Mai+ Y wjdci(®)

i=1 jeT®)
is the zero vector. Naturally, this is only another form of strong Slater assumption:
take i = 0 to obtain the linear independence of the a;’s; and realize that x cannot
minimize the function max; ¢; under the constraint Ax = b. Thus, if the property
holds at some x € C, it holds throughout C.

Figure 2.4.1 displays the various possibilities concerning the sets of multipliers;

it also illustrates the proof of Theorem 2.4.5. Finally, Fig. 2.4.2 summarizes the main
results of §2.

x solves the constrained Therei :reML?)gra:gze mult.
minimization problem (===>with BCQ atx)

4

There are pos.hom. mult. i.e. Mg(x) # &

BcQ
SsAl = wsal = atall x
g 8
M‘x) nonempty compact M(x) nonempty
for all minimization problems for all minimization problems

Fig. 2.4.2. Connection between minimality conditions and Qualification Conditions

3 Properties and Interpretations of the Multipliers

3.1 Multipliers as a Means to Eliminate Constraints: the Lagrange Function

From their very definition in §2, the multipliers seem to depend on the data (f, a, b, ¢)
of the constrained minimization problem (2.0.3), and also on the particular solution
X considered. Actually, they do not depend on the latter.

Proposition 3.1.1 Let x and x’ be two solutions of the constrained minimization
problem (2.0.3), M (x) and M (x') being their associated sets of Lagrange multipliers.
Then M (x) = M(x').

PROOF. By definition, (A, #) € M(x) means

0 € 3f (%) +A*X+Z]’-’=l njdcj(¥), (%)
;Lj}Oandp,jCj(f):O fori=1,...,p. (%%)
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Consider the convex function

P
RS x> £ () = f(x)+ A (Ax —b) + ) pjcj(x)
j=l
and observe that (x) just expresses the fact that x is an unconstrained minimum of
€3, Thus, we can write €, ,,,(i') 2 €y, (). Straightforward calculations using (+x)
yield

p
FEY+ Y wicE) > f& = f = f&).
Jj=1

Because of the signs of uj and ¢; (x"), this implies

pjcjx)=0 forallj=1,...,p. (3.1.1D)
It follows

OHuE)=FE) = FE) =63,
i.e. X’ is an unconstrained minimum of £, u: (%) holds with ¥ replaced by x’. Together
with (3.1.1), we finally have (A, n) € M(x').

Thus, we have proved M(X¥) C M(x’); the converse inclusion follows by sym-
metry. 0

The same proof could have been used to establish My(x) = My(x’). However,
from now on, we will pay attention to the Lagrange multipliers exclusively.

Remark 3.1.2 As aresult of Proposition 3.1.1, we are entitled to use the notation M
for the set M (x) of Lagrange multiplier. This notation is symmetric to the notation S
for the solution-set of (2.0.3).

In particular, the u-part of the Lagrange multipliers does not depend on the solution
x; and because of the complementarity slackness (see Remark 2.1.5), u ; has to be zero for
J=1,..., p, as soon as there is a solution X with ¢;(X) < 0. Expressed otherwise,
=1...,p:pj>0CN{J(X) : x € 5}.
Because the set J(x) of active constraints does depend on X, we say: when S increases, the
chances of having the strict complementarity slackness decrease. u]

A by-product of the proof of Proposition 3.1.1 is a function £ ,,, which is minimal
at x. This function is in fact fundamental in optimization and deserves a formal
definition:

Definition 3.1.3 The Lagrange function, or Lagrangian, associated with the con-
strained minimization problem (2.0.3) is the function L : R"® x R™*P — R defined
by

m p
x, A, ) > Lx, A, 1) == f(x)+ Z)»,-((a,-,x) - b))+ Zujcj-(x) .
i=1 j=1

Using the notation from (2.0.2), we will also write more simply

Lx,A\p)=f@x)+AT(Ax = b) + uTe(x). o
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It is important to understand that L is a “bivariate” function: it depends on the two
groups of variables x € R” and (A, ) € R™P, which play quite distinct roles. For
fixed (A, u), L(-, A, u) is a convex function from R” to R; and the “interesting” values
of the variable x form the set S. Alternatively, for fixed x, L(x, -, -) is affine on R *7;
and the “interesting” values of the variable (A, u) form the set M C R™ x (R*)P.

From Proposition 3.1.1, M is an intrinsic object, attached to the data (f, a, b, ¢)
of our constrained minimization problem (2.0.3). The next result goes along the same
lines: by contrast to the definition (2.1.8), (2.1.9) of M (which implies to have x
first), it establishes the ability of M to produce optimal solutions via an unconstrained
minimization problem.

Proposition 3.1.4 For (A, u) € M, the two statements below are equivalent:
(i) x € C minimizes L(-, A, u) over R" and pjcj(x) =0for j=1,..., p;
(ii) x solves the original problem (2.0.3).

PROOF. It suffices to observe that (i) is just the KKT conditions (2.1.8), (2.1.9), with
an equivalent formulation of (2.1.8). n]

As a first illustration, let us return to the steepest-descent problem of Example 2:3.5. To
obtain a solution, we could minimize on R” the convex function

dv Ld, p) = (s,d) + su(Qd,d) — }

for some multiplier £, which turned out to be positive. The constant term 1/2 ux plays no role
and can be dropped,; if, furthermore, 4 Q = V2 f(x) (assuming existence of the Hessian),
we recognize in the minimand the second-order approximation of f(x + d) — f(x). This
confirms that Newtonian methods can be considered as steepest-descent methods with a
suitable norming of R”.

The end of Remark I1.2.1.4 can also be illustrated: as an alternative to (2.3.3), consider

min {1(Qd.d) : (s,d) =5} .
It has just one affine constraint, so it is equivalent to minimizing for some A the function
d v 3(0d,d) + s, d),

which gives d = —AQ~!s. The multiplier is then obtained from the feasibility condition:
A = —8/{s, @~ 's). Once again, d depends multiplicatively on A, i.e. on 8, and equivalence
with (2.3.3) follows if A < 0, i.e. if § < 0 (a sensible requirement, since a positive value of §
would result in an uphill direction).

Let us sum up the information furnished by a multiplier (A, u) € M:

— The values in two minimization problems are equal, namely:
inf{f(x) : x € C}=inf {L(x, A, n) : x € R"}

(as can be seen from the proof of Proposition 3.1.1).

— The solutions of the first problem are those x solving the second problem which are
in C and satisfy the complementarity slackness: ¢ j(x)=0ifuj > 0.

This aspect will be further developed in §4 below.
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3.2 Multipliers and Exact Penalty

In §1.2, we introduced another way of eliminating constraints, through penalty. Our
study there was based on the distance-function dc; but this function can usually not be
computed with the help of the problem-data (a, b, ¢) of (2.0.1). On the other hand, we
saw that d¢ satisfied the nice exact penalty property of Definition 1.2.2: it reproduced
a solution of the original problem, provided that it was amplified by a large enough
penalty coefficient 7.

Here let us introduce more formally a penalty function, depending explicitly on
the data (a,b,c). Fori =1,...,mand j = 1, ..., p, we choose individual penalty
functions p;, gj, all convex from R to R*, satisfying the following properties:

pi(0)=0 and p;@)>0fort#0;

gj(t)=0fort <0 and g¢j(t) >0forz>0. 3.2.0)
Then we construct
m P
R"> x> P(x):=)_ pi({ai,x) —b) + »_qj(cj(x)); (3.2.2)
i=1 j=i
this P is a penalty function: it satisfies (1.2.1).
Recall our substitute unconstrained problem:
inf{f(x)+ P(x) : x e R"}. 3.2.3)

We know from Lemma 1.2.1 that a solution of (3.2.3) solves the original constrained
problem as soon as it is feasible; and to force this feasibility, each p; () and g; ()
should increase fast enough when ¢ leaves 0: remember Fig. 1.2.1. The wording “fast
enough” is precisely made clear by the corresponding Lagrange multiplier:

Lemma 3.2.1 Let (A, n) € M. If the penalty functions (3.2.1) are chosen so that

A €9pi(0) fori=1,...,m, (3.2.4)
wnj €9qj(0) forj=1,...,p, (3.2.5)
then any solution of the original problem (2.0.3) solves the penalized problem (3.2.3).
PROOF. For each i = 1, ..., m, the subgradient inequality (3.2.4) gives:
[pi(©0) + Ajt =] At < pi(t) forallz e R.
Taking successively ¢ = (a;, x) — b; fori =1, ..., m and summing up, we obtain
m
AT(Ax—b)< Y pi(ia;, x) —b) forallx e R".
i=l

Starting from (3.2.5), we similarly arrive at
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pTe(x) < Y gj(cj(x)) forallx e R

j=1
and we deduce by summation:
AT(Ax —b) + pu'c(x) < P(x) forallx e R". (3.2.6)

Now let % solve (2.0.3) and write

f@) + Px) = f(x) [feasibility of X}
= f(&) +AT(A% — b) + u" c(x) [with transversality]
< f@E)+AT(Ax —=b)+uTc(x) forall x [Proposition 3.1.4]
L fx)+ P(x) forall x. [using (3.2.6)]
In a word, x solves (3.2.3). o

Remark 3.2.2 It is instructive to note that the above proof is almost identical to that of
Proposition 3.1.4. Indeed, with (A, 1) € M, the Lagrange function L(:, A, i) resembles, but
is not, a penalized function, in which each of the individual p; and ¢; would be linear, with
slopes A; and u; respectively. The geometrical meaning of A, w appears in Fig.3.2.1. o

Pit) qj()

o bt 0 t

Fig.3.2.1. Behaviour of a penalty term near zero

Now, remembering Lemma 1.2.1, the above result makes it easy to find an imple-
mentable exact penalty function:

Corollary 3.2.3 Let the constrained minimization problem (2.0.3) have a nonempty
(solution-set and) set of Lagrange multipliers. Then the function y, of (2.0.8) satisfies
the exact penalty property of Definition 1.2.2. More precisely, if

m > n* i=max {|Ail, ..., [Aml 1y -0 pp)
then the solutions of (2.0.3) are the unconstrained minima of f + mwy).

PROOF. The function ¢ := mwy, has the form described via (3.2.1), (3.2.2), with
pi(t) = m|t| and gj(2) = att, If o is as stated, we see from Lemma 3.2.1 that g
satisfies the conditions of Lemma 1.2.1(iii). O

Having thus singled out an exact penalty function, we can obtain many others; a simple
variant has one penalty coefficient for each constraint:
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pi@)=mjt|fori=1,....,m and g¢j@t)=mapyjt*forj=1,...,p,

where 7; > |A;|, Tm4j > pj. Actually, consider the vector-function I" of (2.0.5): because
all norms are equivalent, any function of the type §I"§ is an exact penalty when M # @.
Another useful example is (with 7 > 0)

pi(@t) =m|expt — 1|, ¢qj(t) = 7w max{expz — 1, 0}.

These functions tend to +-oo rapidly when ¢t — +o00; therefore, they increase the chances of
having compact sublevel-sets in (3.2.3).

Thus, the property M # @ suffices to provide a convenient exact penalty func-
tion. This condition turns out to be necessary, which is not surprising in view of
Remark 3.2.2.

Theorem 3.2.4 For the constrained minimization problem (2.0.3) (assumed to have
a solution), the three statements below are equivalent:

OM=#£0,;
(ii) there is a penalty function P of the form (3.2.2) such that any solution of the
original problem (2.0.3) solves the penalized problem (3.2.3);
(iii) there is a penalty function P of the form (3.2.2) such that the original problem
(2.0.3) and the penalized problem (3.2.3) have the same solution-set.

PROOF. (i) = (ii) is Lemma 3.2.1; (ii) < (iii) is Corollary 3.2.3, the only thing to
prove is (i))= (i).

Let x solve (2.0.3) — hence (3.2.3) — and write the minimality condition 0 €
3(f + P)(x): from the appropriate calculus rules of §VI1.4,

m P
0€dfE + ) api(Oa; + Y gj(cj(®)dc; ().

i=1 j=1

This displays A; € dp;(0),i = 1,...,m and u; € 3gj(cj(x)),j = 1,..., p such
that (2.1.8) holds. It remains only to check (2.1.9), which follows easily from the
properties (3.2.1) of g;: [uj €] dq;(t) C R forall ¢ and [{nj} =10q;() = {0} if
t <0. a

So far, we have seen three possibilities to remove the constraints from the original
problem (2.0.3):

(i) A penalty function can be added to f; in practice, it depends on a penalty coef-
ficient 7, which is increased until the penalized problem (hopefully) produces a
feasible solution.

(ii) Linear functions of the constraints can be added to f, thus forming the La-
grange function; the coefficients A, u of these linear functions must be adjusted
so that a minimum is (hopefully) obtained, which is feasible and satisfies the
complementarity slackness.
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(iii) A shift f can be subtracted from f, to form the max-function F of 24.1),
which must be minimized on the affine manifold of equation Ax = b. The value
f (here viewed as an unknown parameter) must be adjusted so that a minimizer
x* of F is obtained, (hopefully) satisfying F(x*) = f(x*) — f = 0.

None of these approaches is straightforward, in the sense that they all contain
some unknown parameter: 7, (A, &), or f. The techniques (i) and (ii) require the
existence of a multiplier, i.e. in practice the weak Slater assumption; by contrast, (iii)
is satisfied merely with the existence of a solution. On the other hand, (i) appears as
the most tractable: 7 just has to be large enough; while (ii) and (iii) require an accurate
value of their respective parameters.

At any rate, most methods for constrained minimization possess an interpretation
in terms of at least one of the techniques (i), (ii), (iii).

3.3 Multipliers as Sensitivity Parameters with Respect to Perturbations

For many applications, it is important to study the behaviour of the optimal value of
a minimization problem such as (2.0.3), when the data (f, a, b, ¢) vary. We consider
here perturbations in the right-hand sides of the constraints only: other perturbations
result in much more involved studies, which would go beyond the scope of this book;
incidentally, the behaviour of the optimal solutions is likewise a delicate subject.

Thus, for (¥, v) = (41, ..., um; v1, ..., vp) € R™ x RP, we consider
inf f(x)
(aj,x)—bj=u;fori=1,...,m [or Ax =b+u € R™] 33Dy
cj(x)<vjforj=1,...,p. for v — c(x) € RT)?] -

Of course, (3.3.1)y,¢ is simply our original problem (2.0.3). We call C (u, v) the feasible
setin (3.3.1),,y and P(u, v) the optimal value:

Pu,v) :=mf {f(x) : x € C(u,v)}.
We still assume that the original problem does have a solution ¥, i.c.
PO,0)=inf{f(x) : x€C0,0)} = f(x), with x€C(0,0);
but anything can happen for (#, v) # (0, 0), even close to (0, 0): C(u, v) may be
empty (then P(u, v) = +o00 by convention), or f may not be bounded from below on
C(u, v),ie. P(u,v) = —oo. Thus P assumes its values a priori in R U {+00}. Note,
however, the following property of P:

v< v componentwise inR? = P(u,v) > P(u,v). (3.3.2)

In this section, we consider the following questions:

— When is the value —oo excluded for P(u, v) ? (from §IV.2.4, P will then be in
Conv R™1P).
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— When is P finite in a neighborhood of (0,0)? (from Theorem IV.3.1.2, P will then
be Lipschitzian near the origin).
— At what speed does P (u, v) tend to P (0, 0)? (this depends on the subdifferential of
P at the origin).
— What are the constraints provoking the largest perturbation on P?
The answers to all these questions lie in the set of multipliers at (3.3.1), . To get
an idea of what can be expected and what is hopeless, we start with an example.

Example 3.3.1 Consider again Example 2.4.4:

Cw)={x=@¢EmeR : &+IE nI<v}.
If v < 0, C(v) = @.If v > 0, direct calculations give the parabolic set of Fig. 3.3.1:

Cw) = {(£,n) : 26 <v—n*/v}.

Fig.3.3.1. A parabolic constraint-set

With the objective function fy(£,17) = n — a§ (o > 0), we have P(0) = 0,
P(v) = 400 if v < 0; as for v > 0, there are two cases:

—ifa = 0, then P(v) = —o0.
—if a > 0, solving the perturbed problem is a good exercise to apply §2; we find

()= (3v— g2V, —av), P =—-jv(a+31).
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