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Introduction 

During the French Revolution, the writer of a project oflaw on public instruction com
plained: "Le defaut ou la disette de bons ouvrages elementaires a ete,jusqu'a present, 
un des plus grands obstacles qui s'opposaient au perfectionnement de l'instruction. 
La raison de cette disette, c'est que jusqu'a present les savants d'un merite eminent 
ont, presque toujours,pre/ere la gloire d'e/ever l'Mifice de la science a la peine d'en 
eclairer l'entree. l " Our main motivation here is precisely to "light the entrance" of 
the monument Convex Analysis and Minimization Algorithms. This is therefore not 
a reference book, to be kept on the shelf by an expert who already knows the build
ing and can find his way through it; it is rather a book for the purpose of learning 
and teaching. We call above all on the intuition of the reader, and our approach is 
very gradual: several developments are made first in a simplified context, and then 
repeated in subsequent chapters at a more sophisticated level. Nevertheless, we keep 
constantly in mind the minimization problem suggested by A. Einstein: "Everything 
should be made as simple as possible, but not simpler". Indeed, the content is by no 
means elementary, and will be hard for a reader not possessing a firm mastery of basic 
mathematical skill. 

As suggested by the title, two distinct parts are involved. One, convex analysis, 
can be considered as an academic discipline, of a high pedagogical content, and is 
potentially useful to many. Minimization algorithms, on the other hand, form a much 
narrower subject, definitely concerning applications of mathematics, and to some 
extent the exclusive domain of a few specialists. Besides, we restrict ourselves to what 
is called nonsmooth optimization, and even more specifically to the so-called bundle 
algorithms. These form an important application of convex analysis, and here lies an 
incentive to write the present bi-disciplinary book. The theory is thus illustrated with 
a typical field of applications, and in return, the necessary mathematical background 
is thus accessible to a reader more interested by the algorithmic part. This has some 
consequences for the expository style: for the theoretical part, the pedagogy is based 
on geometric visualization of the mathematical concepts; as for minimization, only 
a vague knowledge of computers and numerical algorithms is assumed of the reader, 
which implies a rather pedestrian pace here and there. 

I "The lack or scarcity of good, elementary books has been, until now, one of the greatest obstacles 
in the way of better instruction. The reason for this scarcity is that, until now, scholars of great merit 
have almost always preferred the glory of constructing the monument of science over the effort of 
lighting its entrance." D. Guedj: La Revolution des Savants, Decouvertes, Gallimard Sciences (\988) 
130- 13\. 
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This dichotomous aspect emerges already in the first two chapters, which make 
a quick guided tour of their respective fields. Many a reader might be content with 
Chap. I, in which most concepts are exposed (extended-valued functions, subdifferen
tiability, conjugacy) in the simplest setting of univariate functions. As for Chap. II, it 
can be skipped by a reader familiar with classical minimization algorithms: its aim is 
to outline the general principles which, in our opinion, nonsmooth optimization must 
start from, and such a reader knows these principles. 

Chapters III to VI are the instructional backbone of the work. Entirely devoted 
to convex analysis, they contain the basic theory, and geometric intuition is involved 
more than anywhere else. Chapter VII does the same thing for basic optimization 
theory. 

Finally the last chapter of the present first part (Chap. VIII) lays down the neces
sary theory to develop algorithms minimizing convex functions. This chapter follows 
the general principles of Chap. II and serves as an illustration of basic convex anal
ysis. On the other hand, its material is essential for a comprehension of the actual 
algorithms for convex (nonsmooth) optimization, to be studied in the second part. 

Each chapter is presented as a "lesson", in the sense of our old masters, treat
ing of a given subject in its entirety. We could not completely avoid references to 
other chapters; but for many of them, the motivation is to suggest an intellectual link 
between apparently independent concepts, rather than a technical need for previous 
results. More than a tree, our approach evokes a spiral, made up ofloosely interrelated 
elements. 

Formally, many sections are written in smaller characters; these are not reserved 
to advanced material. Actually, these sections often help the reader, with illustrative 
examples, side remarks helping to understand a delicate point, or preparing some 
material to come in a subsequent chapter. Roughly speaking, they can be compared to 
footnotes, used to avoid interrupting the flow of the development; it can be helpful to 
skip them during a deeper reading, with pencil and paper. There are no formally stated 
exercises; but these sections in smaller characters, precisely, can often be considered 
as such exercises, useful to keep the reader awake. 

The numbering restarts at I in each chapter, and chapter numbers are dropped in 
a cross-reference to an equation or theorem from within the same chapter. A reference 
of the type A.n refers to Appendix A, which recalls some theoretical background. 

We thank all those, including the referees, who contributed the improvement of 
the manuscript by their remarks, criticisms or suggestions. Mistakes? there still must 
be some, of course: we just hope that they are no longer capital, and that readers will 
be able to detect and correct them painlessly. 

Among those who helped us most, we would like to thank particularly Th. Dussaut, 
1.e. Gilbert, K.e. Kiwiel, S. Maurin, 1.-1. Moreau, AS. Nemirovskij, M.-R. Philippe, 
C.A Sagastizeibal, A Seeger, S. Shiraishi, M. Valadier and, last but not least, the 
editorial and production staff of Springer-Verlag, who did a remarkably professional 
job. The manuscript was written on an Apple Mac+, using Microsoft Word, and 
CricketDraw for the pictures. It was converted into TeX with the help of "rtf2TeX", a 
program written by R. Lupton at Princeton University. The final typeset version was 
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produced using the MathTime fonts by M. Spivak, distributed by the TeXplorators 
Corp. The role of OzTeX was decisive in this, and we gratefully acknowledge the 
technical help of W Carlip and A. Trevorrow. Thanks and apologies are also due to 
Therese, Lydie, Sebastien, Aur61ien, who had to endure our bad mood during seven 
years of wrestling with mathematics, computers and the English language. 

Toulouse, April 1993 I-B. Hiriart-Urruty, C. LemarechaL 

Note about this revised printing. Most corrections are minor; they concern mis
prints and other typographical details, or also informal developments. Besides, some 
bibliographical items have been updated and the index has been enriched. 

Paris, January 1996 



I. Convex Functions of One Real Variable 

Prerequisites. A good mastering ofthe following subjects: basic results from real analysis; 
definition and elementary properties of convex sets in il2; elementary geometry in the affine 
spaceJR.2• 

Introduction. Convex functions of a real variable form an important class of functions in 
the context of what is usually called real analysis. They are useful in optimization - as will be 
shown in this book - but also in several areas of applied mathematics, where their properties 
are often key ingredients to derive a priori bounds, sharp inequalities, etc. 

Even though general convex functions will be studied in extenso further on, there are 
several reasons to devote a special chapter to the one-dimensional case. 

(i) Convexity is essentially a one-dimensional concept, since it reduces to convexity on 
the line joining two arbitrary points x and x'. 

(ii) For theoretical as well as algorithmic purposes, the one-dimensional trace of a convex 
function f, i.e. the function t ~ f (x + t d) (t real), will have to be studied thoroughly 
anyway in later chapters. 

(iii) It is a good support for intuition; for example, the so-called subdifferential of a convex 
function can be introduced and studied very easily in the univariate case; we will also 
take this opportunity to introduce the concept of conjugacy operation, in this simplified 
setting. 

(iv) Some properties of convex functions are specific to one single variable; these proper
ties, as well as many examples and counter-examples, will be included here. 

The material contained in this chapter provides, on the one hand, sufficient background 
for those readers wishing to know basic properties of one-dimensional convex functions, in 
order to apply them in other areas of applied mathematics. On the other hand, this chapter 
serves as an introduction to the rest ofthe book; most of its results will be proved rather quickly, 
since they will be proved subsequently in the multi-dimensional setting. The chapter can be 
skipped by a reader already familiar with properties of convex functions from the viewpoint 
of standard real analysis. We believe, however, that our presentation may be helpful for a 
better understanding of the whole book. 

1 Basic Definitions and Examples 

The intervals fonn the simplest instances of subsets of R. We retain two among their 
possible definitions: a subset I C JR. is an interval if and only if, whenever x and x, 
belong to I, one of the following properties holds: 
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(i) every point between x and x' belongs to I (definition based on the natural 
ordering of JR.); 

(ii) for all a between 0 and 1, the point ax + (1 - a)x' belongs to I (definition 
using the vector structure ofR). 

The following classification of nonempty intervals is convenient: 

- the compact intervals: I = [a, b] (a, bE JR. with a ~ b); 
- the bounded but not closed intervals: [a, b[, la, b], la, b[ (a, b E JR., a < b); 

- the intervals majorized but not minorized - resp. minorized but not majorized: 

] - 00, b] and ] - 00, b[ (b E JR.) - resp. [a, +oo[ and la, +oo[ (a E R); 

- the only interval neither majorized nor minorized, namely JR. itself. 

a u b 

(t=O) (t=1) 

Fig.1.0.t. Parametrization of an interval 

Bounded intervals will also be called segments, or line-segments. The following 
parametric representation, illustrated on Fig. 1.0.1, is classical for a point U E la, b[: 

u-a 
u = ab + (1 - a)a = a + a(b - a) with a = -- E ]0, 1[. 

b-a 

Finally, we recall basic definitions for a function f : D ~ R 

Definition 1.0.1 The graph of f is the subset of D x R 

gr f := {(x, r) : xED and r = f(x)}. 

The epigraph of f is "everything that lies above the graph": 

epif:= {(x,r) : XED andr;;': f(x)}. 

The strict epigraph is defined likewise, with ";;':" replaced by">". 

(1.0.1) 

o 

Thus, epi f is a juxtaposition of closed non-majorized intervals in R, of the 
form [a, +oo[ with a = f(x). In convex analysis, asymmetry arises naturally: the 
"hypograph" of a function presents no additional interest. 

1.1 First Definitions of a Convex Function 

The very first definition of a convex function is as follows: 
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Definition 1.1.1 (Analytical) Let I be a nonempty interval of R A function f 
I -+ JR. is said to be convex on I when 

f(ax + (1 - a)x') ~ af(x) + (1 - a)f(x') (1.1.1) 

for all pairs of points (x, x') in I and all a E ]0, 1 [. 
It is said to be strictly convex when strict inequality holds in (1.1.1) if x #- x'. 0 

The geometric meaning of convexity is clear: consider on Fig. 1.1.1 the segment 
PxPx' joining in JR.2 the point Px = (x, f(x» to the point Px' = (x', f(x '». To 
say that f is convex is to say that, for all x, x' in I and all u in ]x, x I [, the point 
Pu = (u, f(u» of gr f lies below the segment PXPx' (without loss of generality, we 
assume x < x'). 

Once the geometrical meaning of convexity is understood, the following equiva
lent characterization is easily derived: 

x u x' 

Fig.I.I.l. The fundamental property of a convex epigraph 

Definition 1.1.2 (Geometrical) Let I be a nonempty interval of R A function f : 
I -+ JR. is convex on I if and only if epi f is a convex subset of JR.2. (We recall the 
definition of a convex set in JR.2: it is a set C such that, if the points P and pi are in 
C, then the segment joining P to pi is also in C). 

Equivalently, a function is convex when its strict epigraph is convex. 0 

Figure 1.1.1 suggests that, since u lies between x and x' and Pu lies below Px Px" 
the slope of Px Pu (rather: of the line joining Px and Pu) is smaller than the slope of 
P x Px" which itself is smaller than the slope of PuP x,. The next result from elementary 
geometry in the affine space JR.2 clarifies the argument. 

Proposition 1.1.3 Let Px = (x, y), Pu = (u, v) and Px' = (x', y') be three points 
in JR.2, with u E]X, X'[. Then the follOWing three properties are equivalent: 

(i) Pu is below Px Px' ; 
(ii) slope(Px Pu ) ~ slope(Px Px ') ; 

(iii) slope(Px Px') ~ slope(Pu Px') . 
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, , 
PROOF. Property (i) means v ~ y + .l,=l(u - x); this implies v-y ~ .l,=l, which is x -x u-x x-x 
(ii); and so on. 0 

Translated into the graph-language, (ii) and (iii) above mean 

feu) - f(x) f(x') - f(x) f(x') - feu) 

u - x ~ x' - x ~ x' - u ' 
(1.1.2) 

which can also be obtained via the representation (1.0.1) of u E lx, x'[: plugging it 
into the definition (1.1.1) of convexity gives 

x' - u u - x 
feu) ~ -,-f(x) + -,-f(x') = 

x -x x -x 
= f(x) + f(x') - f(x) (u _ x) = f(x') + f(x) - f(x') (x' - u) , 

x' - X x'- x 

and this displays the connection between (1.1.1) and mean-value relations such as 
(1.1.2). 

Combining the geometric definition of a convex function with the equivalence 
stated in Proposition 1.1.3 gives the following characterization of convexity: 

Proposition 1.1.4 (Criterion of Increasing Slopes) Let I be a nonempty interval of 
R A jUnction f : I -+ ~ is convex on I if and only if, for all Xo E I, the slope-function 

is increasing on I\{xo}. 

x t-+ f(x) - f(xo) =: sex) 
x -Xo 

(1.1.3) 

o 

Knowing that every Pu = (u, f(u» E gr f lies below the line PxPx' when 
u E]X, x'[, what happens outside this last interval? Proposition 1.104 implies that, for 
v f/ [x, x'], Pv lies above the line Px Px'. To see it, exchange u and x' on Fig. 1.1.1. 

If cp is an increasing function on a segment [a, b], the convexity ofthe function 

[a, b] 3 x H- f(x) := LX cp(u)du 

is easily established from Definition 1.1.1. Take a E ]0, 1[, and a ~ x < x' ~ b; set x" := 
ax + (1 - a)x' and compute 

f(x") - af(x) - (1- a)f(x') =: lP 

(which must be nonpositive). We have 

x" x' 
lP = a ( cp(u)du + (a - 1) ( cp(u)du Jx lXIl 

and, using the monotonicity of cp, we get 

lP ~ aqJ(x")(a - l)(x - x') + a(a - l)qJ(x")(x' - x) = o. 

We mention some other examples. 
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Examples 1.1.5 For r > 0, draw the graph of the function whose value at x is 

{ !rx2 for Ixl ,,;; l/r. 
fl/r(X) := I~I _ -iF for Ixl ;;:: l/r, 

to notice that it is convex on Ii. Look at what happens when r -+ +00; when r ..\.- 0. 

- The function x 1-+ Ix I is also convex on Ii. 

- The function x 1-+ f (x) := ~ is convex on Ii. 
- If rp : [0, 1] -+ Ii is continuously differentiable, remember that 

L[rp]:= f J(rp'(u»du = 11 Jl + rp,2(u)du 

(1.1.4) 

is the length of the curve {u. rp(U)}UE[O,lj. The convexity of f ensures the "convexity" of 
L: 

L[arp + (1 - a)1jr] ,,;; aL[rp] + (1 - a)L[1jr] for a E ]0, 1[, 

a property very useful if one wishes to minimize L. o 

Up to now, the tools we have on hand to establish convexity are 1.1.1, 1.1.2 and 
1.1.4. They are still rather coarse (§5 will give more in terms of differential calculus) 
but the criterion of increasing slopes can be useful. An example is the following 
important result. 

Theorem 1.1.6 Let f be defined on ]0, +00[. Then thefunction 

o < X 1-+ g(x) := xf(l/x) 

is convex on ]0, +oo[ if and only if f also is convex on ]0, +00[. 

PROOF. Suppose f is convex on ]0, +00[; let Xo > ° and consider the slope-function 

g(x) - g(xo) xf(I/x) - xof(l/xo) 
Sg(x):= = , 

x -Xo x - Xo 

defined on ]0, +00[\ {xol. We have 

Sg(x) 
x -Xo x 

= --f(I/xo) + --[f(I/x) - f(l/xo)] 
X-Xo X-Xo 

I f(1/x) - f(l/xo) 1 = f(l/xo) - I = f(I/xo) - -sj(I/x) . 
Xo I/x - /Xo Xo 

When x increases, 1/ x decreases, S j (1/ x) decreases (criterion 1.1.4 of increasing 
slopes) and S g (x) therefore increases: g is convex. The "only if" part clearly follows 
if we observe that xg(I/x) = f(x). 0 

For example, if we know that the functions - log x and exp x are convex on 
]0, +00[, we immediately deduce the convexity ofthe functions x log x and x exp 1/ x. 
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1.2 Inequalities with More Than Two Points 

An essential feature of the basic inequality (1.1.1) is that it can be generalized to more 
than two points. 

Theorem 1.2.1 Let I be a nonempty interval of IR and f be convex on I. Then,for 
any collection {XI. ... ,Xk} of points in I and any collection of numbers {aI. ... ,ad 
satisfying 

k 

ai ~ 0 for i = 1, ... , k and L ai = 1 , (l.2.1) 
i=l 

Jensen s inequality holds (in summation form): 

f(L:f=1 aixi) ~ L:f=l ai!(Xi)· 

PROOF. Consider first k = 2. The relation is trivial if al or a2 is zero; ifnot, it is just 
(1.1.1). 

Now, suppose inductively that the relation is true for k - 1; let a collection {Xi} 
and {ai} be as in (l.2.1). If ak is 0 or 1, there is nothing to prove. Ifnot, set 

k-l 

a:= Lai E]O, l[ (ak = I-a E]O, 1[), 
i=l 

ai := ~ for i = I, ... , k - I (ai ~ 0, L:f:::l1 ai = 1) , 
so that 

k k-l 

Laixi = a Laixi + (1 - a)xk. 
i=l i=l 

In this last relation, the point i := L:~:::ll aixi is in I (it is between mini Xi and 
maxi Xi). We can therefore apply (l.1.1) to obtain 

f(L:f=1 aixi) ~ af(i) + (1- a)f(xk) = af(i) + akf(xk)· 

Then the result follows from the induction assumption applied to i: 

k-l k-l 

af(i) ~ a Lai!(xi) = Lai!(xi). o 
i=l i=l 

The set described by (l.2.1) is called the unit simplex of IRk. A collection of 
ai's satisfying (l.2.1) is called a set of convex multipliers and the corresponding 
X = L:f=l aiXj is a convex combination of the Xi'S. 

We claim that most useful inequalities between real numbers are consequences of the 
above Jensen inequality, even if it is not always easy to discover the underlying convex function. 
Let us give some typical examples. 
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Example 1.2.2 Suppose we know that the function -Iogx is convex on ]0, +00[: 

-log (L~=I CliXi) ~ - L~=I Cli 10gxi = -log (n~=1 X~i) 

for all positive Xi and Cl = (ClI, ... , Clk) in the unit simplex. Then the mononicity of the 
exponential gives 

k k n X~i ~ LCliXi. 
i=1 i=1 

Furthermore, since the function x log x is convex, a similar calculation gives 

( k )
"k a·x· k 
~i=l r 'a-x· 

Li=1 CliXi ~ n Xi I I • 

i=1 
o 

Example 1.2.3 Sometimes, the use of Jensen's inequality may call for an! which is hard to 
find. Below, we present without details some relations, more or less classical, giving for each 
of them the convex "generator" (whose convexity will follow from the more refined criteria 
in §5). 

- Let Cl be in the unit simplex and {Xi} in ]0, I]. Then 

k '" ~ ~ ( nk ai)-I f;;r I +Xi '" 1 + i=1 Xi 

(use the function Y 1-+ -1/(1 + e-Y) on [0, +oo[ and consider Yi = -log Xi). 

- Let Cl be in the unit simplex, {Xi} and {Yi} be positive. Then 

k k k n ai + n ai ~ "'( + )ai Xi Yi '" L... Xi Yi 
i=1 i=1 i=1 

(use the function U 1-+ 10g(1 + exp u) on lit and consider Ui = log Yi - log Xi). 0 

I 

! Pi 
i 

X1 Xi Xk 

Fig. 1.2.1. Inner approximation of a convex epigraph 

The criterion of increasing slopes, illustrated in Fig. 1.1.1, also lends itself to 
generalization. We simply refer to Fig. 1.2.1: if XI < X2 < ... < Xk lie in the interval 
I where! is convex, the slopes [f(Xi+l) - !(xi)]/(Xi+l - Xi) increase with i. 
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Denote by Pi the point (Xi, / (Xi» on gr / and consider the piecewise affine 
function l, whose graph is the sequence of segments [Pi, Pi+ I]. This graph is above 
gr /: 

lex) ~ lex) for all X E I. 

It follows for example that, when approximating the integral of / by the trapezoidal 
rule, the resulting error has a definite sign. 

1.3 Modern Definition of Convexity 

When dealing with convexity, it is convenient to consider a function / as being defined 
on the whole space JR, by allowing the value +00 for lex). Until now, convexity 
involved a pair (l, f), where I was a nonempty interval and / a function from I to 
JR, satisfying (1.1.1) on I. We can extend such an / beyond I via the function 

J. (x) := {/(X) for x E I, 
e +00 for x ¢ I . 

This extended-valued function /e sends JR to the set JR U {+oo} (extended calculus 
is introduced in the appendix §A.2); of course, the value +00 has been carefully 
selected: it is the only way to preserve the relation of definition (1.1.1) outside I. 
From now on and without explicit mention, all (potentially) convex functions will be 
extended-valued: the subscript "e" will therefore be dropped and the definitions of 
§ 1.1 are accordingly replaced as follows: 

Definition 1.3.1 A function / : JR -+ JR U {+oo}, not identically equal to +00, is 
said to be convex when the inequality in IR U {+oo} 

/(ax + (1 - a)x') ~ alex) + (1 - a)/(x') (1.3.1) 

holds for all pairs of points (x. x') in JR and all a E ]0, 1 [. 
Equivalently, it is a function whose epigraph is a nonempty convex set in JR x R 
The set of such functions is denoted by Conv R 0 

It is on purpose that the somewhat pathological function / == +00 is eliminated 
from Conv JR; it presents no interest (note: its graph and epigraph are empty). The new 
definition alleviates notation, in that the interval I can be dropped when not needed. 
However, it has not suddenly become totally useless, and the concept must not be 
forgotten: 

Definition 1.3.2 The domain of / E Conv JR is the nonempty set 

dom/:= {x E JR : lex) E JR}. o 

Naturally, dom / is an interval, say I, and / is after all nothing more than a convex 
function on I (in the sense of Definition 1.1.1). In short, two simple operations are 
involved, as displayed in Fig.1.3.!. 

The usefulness of Definition 1.3.1 is more than notational; it is especially convenient 
when optimization is involved. Let us give three examples to illustrate this. 
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f convex on I 
(Definition 1 .1.1 ) 

f convex 
on 1= dom f 

extension 

restriction 

----f E Con v R 
(Definition 1.3.1) 

Fig.l.3.1. "Classical" and extended-valued convex functions 

- Let x be a real parameter and consider the simple optimization problem 

inf {-y : l ~ x}. (1.3.2) 

It is meaningless if x < ° but, for x ;;:: 0, the optimal value is -..jX, a convex function of 
x. In view of the convention inff2l = +00, we do have a convex function in the sense of 
Definition 1.3.1. It is good to know that problems ofthe type (1.3.2) yield convex functions 
of x (this will be confirmed in Chap. IV), even though they may not be meaningful for all 
values ofx. 

- Associated to a given f is the so-called conjugate function 

R ;:) x ~ sup {xy - f(y) : y E R} . 

Here again, the values of x for which the supremum is finite are not necessarily known 
beforehand. This supremum is thus an extended-valued function of x, a function which 
turns out to be of utmost importance. 

- Suppose that a function g, convex on I, must be minimized on some nonempty subinterval 
eel. The constraint x E C can be included in the objective function by setting 

f(x):= {g(X) if x E C, 
+00 ifnot. 

The resulting f is in Conv R and minimizing it (on the whole ofR) is just equivalent to the 
original problem. 

Remark 1.3.3 The price to pay when accepting f(x) = +00 is alluded to in §A.2: some 
care must be exercised when doing algebraic manipUlations; essentially, multiplications of 
function-values by nonpositive numbers should be avoided whenever possible. This was done 
already in (1.1.1) or (1.3.1), where the requirement a E ]0, 1[ (rather than a E [0, 1]) was not 
totally innocent. 0 

2 First Properties 

2.1 Stability Under Functional Operations 

In this section, we list some of the operations which can be proved to preserve con
vexity, simply in view of the definitions themselves. 
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Proposition 2.1.1 Let II, ... , 1m be m convex functions and tl, ... , tm be positive 
numbers. If there exists Xo such that /j(xo) < +00, j = 1, ... ,m, then thefunction 
1:= Ej=1 tjlj is in ConvR 

PROOF. Immediate from the relation of definition (1.3.1 ). o 

Note the precaution above: when adding two functions II and h, we have to make 
sure that their sum is not identically +00, i.e. that dom II n dom h =1= 0. 

Proposition 2.1.2 Let {/j }jEJ be afamily of convexfunctions.Ifthere exists Xo E IR 
such that SUPjEJ /j (xo) < +00, then the function I := SUPjEJ /j is in Conv R 

PROOF. Observe that the epigraph of I is the intersection over J of the convex sets 
epi /j. 0 

The minimum of two convex functions is certainly not convex in general (draw 
a picture). However, the inf-operation does preserve convexity in a slightly more 
elaborate setting. 

Proposition 2.1.3 Let II and h be convex and set for all x E IR 

I(x) := (fl t h)(x) := inf{fl (XI) + h(X2) : XI + X2 = X} 
= inf {f1(Y) + h(x - y) : Y E 1R}. 

If there exist two real numbers So and ro such that 

/j(x) ~ SoX - ro for j = 1, 2 and all x E IR 

(2.1.1) 

(in other words; the affine function x ~ sox - ro minorizes II and h), then I E 

ConvR 

EXPLANATION. The domain of I in (2.1.1) is dom/l + domh: by construction, 
I(x) < +00 if XI and X2 can be found such that XI + X2 = x and II (XI) + h(X2) < 
+00. On the other hand, I(x) is minorized by SOX - 2ro > -00 for all x. Now, 
an algebraic proof of convexity, based on (1.3.1), would be cumbersome. The key is 
actually to realize that the strict epigraph of I is the sum (in 1R2) of the strict epigraphs 
of II and h: see Definitions 1.0.1 and 1.1.2. 0 

The operation described by (2.1.1) is called the infimal convolution of II and h. It is 
admittedly complex but important and will be encountered on many occasions. Let us observe 
right here that it corresponds to the (admittedly simple) addition of epigraphs - barring some 
technicalities. It is a good exercise to visualize the infimal convolution of an arbitrary convex 
II and 

- h (x) = r ifx = 0, +00 if not (shift epi II vertically by r); 
- h(x) = 0 if x = Xo, +00 if not (horizontal shift); 

- h(x) = 0 if Ixl :( r, +00 if not (horizontal smear); 
- h(x) = sx - r (it is gr h that wins); 
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Fig.2.1.1. The ball-pen function 

-h(x) = 1-.J1=X2forx E [-1,+1] (the "ball-pen function" of Fig. 2.1.1); translate 
the bottom of the ball-pen (the origin ofll~2) to each point in gr II; 

- h(x) = 1/2X2 (similar operation). 

Remark 2.1.4 The classical (integral) convolution between two functions FI and F2 is 

(F] * F2)(X) := 1 F] (y)F2(X - y)dy for all x E JR. 

For nonnegative functions, we can consider the "convolution of order p" (p > 0): 

(F] *p F2)(X):= {L[F] (y)F2(X - y)]Pdyrp for all X E JR. 

It is reasonable to claim that this integral converges to SUPy FI (y) F2 (x - y) when p ~ +00. 

Now take Fi := exp(- Ii), i = 1,2; we have 

(F j *00 F2)(X) = supe-!I(Y)- !2(x-y) = e-infY[!I(Y)+ !2(x-y)]. 

Y 

Thus, the infimal convolution appears as a "convolution of infinite order", combined with an 
exponentiation. 

2.2 Limits of Convex Functions 

Proposition 2.2.1 Consider a sequence Uk} kEN of functions in Conv R Assume 
that, when k ~ +00, Uk} converges pointwise (in JR U {+oo}) to a function 
f : JR ~ IR U {+oo} which is not identically +00. Then f E Conv R 

PROOF. Apply (1.3.1) to fk and let k ~ +00. o 

Remark 2.2.2 The interval dom!k may depend on k. Special attention is often paid to the 
behaviour of !k on some fixed interval 1 contained in dom ik for all k. If, in addition, 1 is 
contained in the domain of the limit-function I, then a stronger result can be proved: the 
convergence of !k to i is uniform on any compact subinterval of int I. 0 

It is usual in analysis to approximate a given function f by a sequence of more 
"regular" functions fk. In the presence of convexity, we give two examples of regu
larization, based on the convolution operation. 
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Our first example is classical. Choose a "kernel function" K : lR --+ lR+, which is 
continuous, vanishes outside some compact interval, and is such that JR K (y )dy = 1; 
define for positive integer k the function 

lR:3 Y t-+ Kk(y) := kK(ky). 

Given a function f (to simplify notation, suppose dom f = 1R), the convolution 

A{x) := f * Kk = fa f{x - y)Kk{y)dy (2.2.1) 

is an approximation of f, and its smoothness properties just depend on those of K. 
If K E Coo{lR), a COO regularization is obtained; such is the case for example with 

1 . 
K{y) :=cexp-2-- forlyl < 1 (0 outsIde) , 

y -1 

where c > 0 is chosen so that K has integral 1. 

Proposition 2.2.3 Let {Kk}kEN be a sequence of COO kernel-functions as defined 
above, and let f : lR --+ IR be convex. Then A of (2.2.1) is a Coo convex function on 
lR, and {A} converges to f uniformly on any compact subset ofR 

PROOF. The convexity of A comes immediately from the analyti<:al definition (1.1.1 ). 
The Coo-property of fk and the convergence result of {A} to f are classical in real 
analysis. 0 

Another type of regularization uses the infimal convolution with a convex kernel 
K k. It plays an important role in convex analysis and optimization, for both theoretical 
and algorithmic aspects. We give two examples of kernel functions: 

Kk{Y) := 4kl and Kk(y):= klyl , 

which have the following effects (the proofs are omitted and will be given later in 
§XY.4.1 and §XI.3.4): 

Proposition 2.2.4 Let f E Conv R For all positive k, define 

f(k){X) := inf {J(y) + 4k(x - y)2 : y E IR} ; (2.2.2) 

then: 

(i) f(k) is convexfrom IR to IR and f(k) (x) ~ f(k+I)(X) ~ f(x)for all x E lR; 
(ii) ifxo minimizes f on R it also minimizes f(k) and then f(k)(XO) = f(xo); the 

converse is true whenever Xo is in the interior of dom f; 
(iii) f(k) is differentiable and its derivative is Lipschitz-continuous: 

IfCk)(Xl) - f Ck)(X2)1 ~ klxl - x21 for all (Xl, X2) E IR x IR; 
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(iv) except possibly on the boundary of dom I. {f(k)} converges pointwise to I when 
k -+ +00. 

For k large enough. define 

l[k](X) := inf {fey) + klx - yl : y E JR.} ; (2.2.3) 

then: 

(j) I[k] is convexfrom JR. to JR. and I[k] (x) ~ l[k+l](X) ~ I(x) for all x E R 
(jj) ifxo E intdom/. then l[k](XO) = I(xo)fork large enough; 

(jjj) I[k] is Lipschitz-continuous: 

I/[k](Xl) - l[k](X2)1 ~ klxl - x21 for all (XI. X2) E JR. x JR.. 0 

f(k) (x) 

x=11k 

Fig. 2.2.1. Moreau-Yosida C1 regularizations 

Replacing I by I(k) of (2.2.2) is called Moreau-Yosida regularization. It yields 
C 1 -smoothness, without essentially changing the set of minimizers; note also that 
the function to be minimized in (2.2.2) is strictly convex (and even better: so-called 
strongly convex). It is not too difficult to work out the calculations when I(x) = 
Ix I: the result is the function of (1.1.4), illustrated on Fig. 2.2.1. It has a continuous 
derivative, as claimed in (iii), but no second derivative at x = ±l/k. The right part 
of the picture shows the effect of the same regularization on another function. 

Fig. 2.2.2. A Lipschitzian regularization 

Note the difference between the two regularizations. Basically, I[k] coincides 
with I at those points where I has a slope not larger than k. Figure 2.2.2 illustrates 
the operation (2.2.3), which has the following mechanical interpretation: gr I[k] is a 
string, which is not allowed slopes larger than k, and which is pulled upwards under 
the obstacle epi I. 
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2.3 Behaviour at Infinity 

When studying the minimization of a function f E Conv JR, the behaviour of f (x) 
for Ixl -+ 00 is crucial (assuming domf = JR, the case of interest). It turns out that 
this behaviour is directly linked to that of the slope-function (1.1.3). 

Indeed, for fixed xo, the increasing slope-function (1.1.3) satisfies 

lim sex) = sup sex) = sup sex) 
x_oo x#xo X>Xo 

(equalities in JR U {+oo D. For x -+ -00, its limit exists as well (in JR U {-oo D and 
is likewise its infimum over x i= xo, or over x < Xo. To embrace the two cases in one, 
and to eliminate the unpleasant -00, it is convenient to introduce a positive variable 
t, playing the role of Ix - Xo I: we fix a number d i= 0 and we consider 

lim f(xo + td) - f(xo) = sup f(xo + td) - f(xo) =: cp(xo, d). 
t-+oo t t>o t 

(2.3.1) 

When d is positive [resp. negative], cp is the limiting maximal slope to the right 
[resp. left] of Xo. It is rather obvious that, for a > 0, cp(xo, ad) = acp(xo, d): in 
other words, cp(xo, .) is positively homogeneous (of degree 1). Hence, only the values 
cp(xo, d) for d = ±1 are relevant, the other values being obtained automatically. 

Theorem 2.3.1 Let f : JR -+ JR be convex. For each Xo E JR (= dom f), the function 
cp(xo, .) of (2.3.1) is convex and does not depend on Xo. 

PROOF. The result will be confirmed in §Iy'3.2, and closedness of epi f is needed, 
which will be proved later; nevertheless, we give the proofbecause it uses an interesting 
geometric argument. Fix t > 0; the convexity of f implies that, for arbitrary d l , d2 

and a E ]0, 1[, 

f(xo + tad l + t(1 - a)d2) ~ af(xo + td l ) + (1 - a)f(xo + td2). 

Subtract f(xo) and divide by t > 0 to see that the difference quotient s(xo + td) in 
(2.3.1) is a convex function of d. Moreover, cp(xo, 0) = 0, hence Proposition 2.1.2 
establishes the convexity of cp(xo, .). 

To show that cp(xo, .) does not depend on Xo is more involved. Let XI i= Xo and 
take (d, r) E epi CP(XI, .); we must show that (d, r) E epi cp(xo, .) (then the proof will 
be finished, by exchanging the roles of XI and xo). 

By definition of epi cp(xo, .), what we have to prove is that poet) E epi f (look 
at Fig. 2.3.1), where t > 0 is arbitrary and poet) has the coordinates Xo + td and 
f(xo) + tr. By definition of epi CP(XI , .), PI(t) := (XI + td, f(xd + tr) is in epif. 
Taking e E ]0, 1], the key is to write the point Me of the picture as 

Me = ePI (t) + (1 - e)Po(t) = ePI (t /e) + (1 - e)Po(O) . 

Because (d, r) E epicp(xlo .), the second form above implies that Me E epi f; the 
first form shows that, when e .j.. 0, Me tends to poet). Admitting that epi f is closed 
(Theorem 3.1.1 and Proposition 3.2.2 below), poet) E epi f. 0 
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PoCO) = 

(Xo,f(Xo» 

Fig.2.3.1. Inscribing a pantograph in a closed convex set 

Thus, instead of cp(xo, d), the notation 

f~(d):= lim f(xo + td) - f(xo) = sup f(xo + td) - f(xo) 

t-++oo t t>O t 

is more appropriate; xo is eliminated, the symbols' and 00 suggest that f~ is a sort of 
"slope at infinity". This defines a new convex and positively homogeneous function, 
associated to f, and characterizing its behaviour at infinity in both directions d = ± I : 

Corollary 2.3.2 For f : JR --+ JR convex, there holds 

lim f(x) = +00 ¢=:} f~(l) > 0, 
x-++oo 

(2.3.2) 

. f(x) , I 
hm -- = +00 {=:::> foo() = +00. 

x-++oo x 
(2.3.3) 

PROOF. By definition, f(x)/x --+ f~(l) for x --+ +00, which proves (2.3.3) and the 
"¢:=" in (2.3.2). To finish the proof, use 

t/~(l) = I~(t) ~ I(t) - 1(0) -+ +00 when t -+ +00 

(remember 0 E domf = JR) and observe that tf60(I) --+ +00 certainly implies 
f6o(1) > O. 0 

Naturally, (2.3.2) and (2.3.3) have symmetric versions, with x --+ -00. 

For (2.3.2) to hold, it suffices that I be strictly increasing on some interval of positive 
length. Functions satisfying (2.3.2) [resp. (2.3.3)] in both directions will be called O-coercive 
[resp. I-coercive]; they are important for some applications. 

Geometrically, the epigraph of I~ is a convex cone with apex at (0, 0). When this apex 
is translated to a point (x, I(x» on gr I, the cone becomes included in epi I: in fact, the 
definition of I~ gives for all y 

I(y) = I(x) + I(y) ~ I(x) ~ I(x) + I~(Y - x) . 

It is then clear that epi I + epi I~ = epi I (see Fig. 2.3.2), i.e. that I = I t I~. 
The epigraph of I~ is the largest convex cone K in jR2 (with apex at (0,0» such that 
epi I + K C epi I. 
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gr 

x 

Fig. 2.3.2. The cones included in epi f 

3 Continuity Properties 

3.1 Continuity on the Interior ofthe Domain 

Convex functions turn out to enjoy sharp continuity properties. Simple pictures sug
gest that a convex function may have discontinuities at the endpoints of its interval of 
definition dom f, but has a continuous behaviour inside. This is made precise in the 
following result. 

Theorem 3.1.1 If f E Conv R then f is continuous on int dom f. Even more: for 
each compact interval [a, b] C int dom f, there is L ~ 0 such that 

If(x) - f(x')1 ~ Llx - x'i for all x and x' in [a, b]. (3.1.1) 
o 

Property (3.1.1) is the Lipschitz continuity of f on [a, b]. What Theorem 3.1.1 
says is that f is locally Lipschitzian on the interior of its domain. It follows that the 
difference quotients [f(x) - f(x')]/(x - x') are themselves locally bounded, i.e. 
bounded on every bounded interval of int dom f. 

To prove Theorem 3 .1.1, the basic inequality (1.1.1) can be used on an enlargement 
of [a, b], thus exhibiting an appropriate Lipschitz constant L. We prefer to postpone 
the proof to Remark 4.1.2 below, where another argument, coming from the differential 
behaviour of f, yields the Lipschitz constant directly. 

It remains to see how f can behave on the boundary of its domain (assumed to be 
"at finite distance"). In the statement below, we recall that our notation x i a excludes 
the value x = a. 

Proposition 3.1.2 Let the domain of f E Conv IR have a nonempty interior and 
call a E lR. its left endpoint. Then the right-limit f(a+) := limx.J..a f(x) exists in 
lR. U Hoo}, and f(a) ;;:: f(a+). 

Similarly, if b E lR. is the right endpoint of dom f, the left-limit f (b _) exists in 
lR. U Hoo} and feb) ~ f(b_). 

PROOF. Let Xo E int dom f, set d := -1, to := Xo - a > O. The increasing function 

f(xo + td) - f(xo) o < t 1-+ =: q(t) 
t 

has a limit e E lR. U {+oo} for t t to, in which case Xo + td i a. It follows 
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f(xo + td) = f(xo) + tq(t) --+ f(xo) + (xo - a)l =: f(a+) E lR U {+oo} . 

Then let t t to in the relation 

f(a) - f(xo) 
q(t) :,;; q(to) = for all t E ]0, toe 

Xo - a 

to obtain 
f(a+) - f(xo) f(a) - f(xo) 

l= :,;; , 
Xo - a Xo - a 

hence f(a+) :,;; f(a). The prooffor b uses the same arguments. o 

The function q of the above proof is the directional difference quotient, already encoun
tered in §2.3, and is nothing more than the slope-function [f(x) - f(xo)]/(x - xo). We took 
the trouble to use it as an illustration of Remark 1.3.3, to avoid the unpleasant division by 
x - Xo < O. Furthermore it will play an important role in several dimensions. 

Among other things, Proposition 3.1.2 says that f is upper semi-continuous (relative to 
dom f) on the edge of its domain, hence on its whole domain. This property, however, is 
specific to the one-dimensional case, and is not true in several dimensions. 

3.2 Lower Semi-Continuity: Closed Convex Functions 

According to Proposition 3.1.2, the behaviour of a convex function at the endpoints 
of its domain has to resemble one of the cases illustrated on Fig. 3.2.1. We see that 
case (2) is somewhat "abnonnal"; it is ruled out by the following definition, which 
thus appears as "natural", and important for existence of solutions in minimization 
problems. 

~ 
f(a) E [f(a+),+oo] 

f(a+) 

a a a 

(1) Continuous (2) Upper semi-continuous (3) Unbounded 

Fig.3.2.1. Continuity properties of univariate convex functions 

Definition 3.2.1 We say that f E Conv lR is closed, or lower semi-continuous, if 

liminf f(x) ~ f(xo) for all Xo E lR. 
x ...... xo 

(3.2.1) 

The set of closed convex functions on lR is denoted by Conv R o 
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Of course, (3.2.1) is an inequality in IR U {+oo}. A reader not totally alert may 
overlook a significant detail: both x and Xo are points in the whole of IR. A closed 
function is therefore lower semi-continuous on the whole line, and not only relative 
to its domain of definition, as is the usual practice in real analysis. This is why the 
terminology "closed" should be preferred to lower semi-continuous. 

The requirement (3.2.1) demands nothing of 1 beyond the closure of its domain; 
it is moreover true for Xo E int dom 1 (Theorem 3.1.1), the only possible problems are 
on the boundary of dom I. As far as the left endpoint is concerned, a closed convex 
function has to look like case (1) or (3) in Fig. 3.2.1 (and note: if a = -00, no trouble 
arises). 

The closedness property can also be described geometrically, which by the same 
token justifies the terminology (note that convexity plays little role here). 

Proposition 3.2.2 The function 1 is closed if and only if one of the following condi
tions holds: 

(i) epi 1 is a closed set of 1R2; 

(ii) the sublevel-sets 
SrU) := {x E IR : I(x) ~ r} 

are closed intervals of IR (possibly empty), for all r E R o 

The best way of proving this result is probably to look at Fig. 3.2.1. In practice, 
the closedness criterion (ii) is very useful. As an example, the function I/x; of §2.3 is 
always closed. 

Example 3.2.3 Let 1 be a convex function whose domain is the whole oflR, and let 
C be a nonempty closed interval. Then the "convex restriction" of 1 to C: 

fc(x) := I(x) if x E C. +00 otherwise 

is closed and convex. Its epigraph is the intersection of epi 1 with the vertical stripe 
generated by C. 0 

Example 3.2.4 Let C be a nonempty interval of IR. The indicator function of C is 

{ o ifxEC, 
Ic(x):= +00 otherwise. 

It is a closed convex function if and only if C is closed (its sublevel-sets are empty or 
C). 

The above indicator function, of constant use in convex analysis, must not be 
confused with the characteristic function xc of measure theory. which is 1 on C and 
o outside - in fact xc = exp( - Ic). 0 

Let us return to Fig. 3.2.1. In case (2) - the only bad case - we see that it is not 
difficult to close I: it suffices to pull I(a) down to I(a+). The result is in ConvlR, 
and differs very little indeed from I. 
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Definition 3.2.5 The closure of I E Conv lR is the function defined by: 

{ 
liminf I(y) if x E cldom/, 

cl I(x) := y-+x 
+00 if not. 

(3.2.2) 
o 

Remark 3.2.6 The construction (3.2.2) affects I only at the endpoints of its domain. Geo
metrically, cl I is the function whose epigraph is the closure (in the usual topological sense) 
of the set epi I C ~2. The closure of I is also the largest closed convex function minorizing 
I: 

cl I(x) = sup (g(x) : g E ConvlR and g ~ f}. (3.2.3) 

To close I, however, it is actually not necessary to scan the whole set of closed convex 
functions. It can be proved that, in (3.2.3), g can be restricted to being an affine function: 

cl/(x) = sup{sx -r : sy - r ~ I(y) forally E JR}; (3.2.4) 
s,r 

this will be established formally in Proposition Iv'I.2.8. Of course, it is the convexity of I 
which allows this simplification. 

The analytic operation (3.2.2), illustrated by Fig. 3.2.1, does not easily lend itself to 
generalizations in several dimensions (taking the lower semi-continuous hull of a function 
may be difficult). The operation (3.2.4) thus appears as a possible useful alternative. 0 

3.3 Properties of Closed Convex Functions 

Closed convex functions are offundarnental importance in convex analysis and opti
mization. For one thing, the existence of a solution for the problem 

min {f(x) : x E C} 

requires first I to be closed (i.e. lower semi-continuous), and also C to be closed (and 
of course C n dom I #- 0). Just as §2.1 did with convexity, it is therefore useful to 
know which combinations of functions preserve closedness. 

Proposition 3.3.1 Let II, ... , 1m be m closed convex functions and tl, ... , tm be 
positive numbers. If there exists Xo such that fj (xo) < +00 for j = 1, ... , m, then 
the jUnction I := I:J=I tj Ij is in Conv R 0 

Here, convexity is taken care of by Proposition 2.1.1; as for closedness, recall that 
limes inferiores are stable under addition and positive multiplication, i.e. 

liminft(Uk + Vk) ~ tliminfuk + tliminfvk 

(an inequality in lR U (+oo}). 
The next result also comes easily, since an intersection of closed sets is closed. 

Proposition 3.3.2 Let (fj }jEJ be afamity of closed convexfunctions. If there exists 
Xo E lR such that SUPjEJ fj(xo) < +00, then the jUnction I := SUPjEJ Ij is in 
ConvR 0 
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Example 3.3.3 Let I : lR --+ lR U {+oo} be a function not identically +00 (but 
not necessarily convex) minorized by some affine function: there are So, ro such that 
I (x) ~ Sox - ro for all x. Then the so-called conjugate function of I: 

lR '3 S ~ sup (sx - I(x) : x E dom f} 

is finite at least at So, and it is closed convex (as a supremum of affine functions!). 0 

The case of the infimal convolution is much more delicate (it is an infimum, hence 
a limit, and the inequality signs go the wrong direction, in contrast with Proposition 
3.3.2). 

Remark 3.3.4 It can indeed be proved that the inf-convolution of two functions of Con v lR is 
still closed, but this is a specific result ofthe univariate case: its extension to several variables 
requires some additional assumption. 

To accept the closedness of a one-dimensional inf-convolution, a first key is to realize 
that, if a is the left endpoint of the domain of I = II t 12, then a = al + a2 and I(a) = 
II (al) + h(a2) where, for i = 1,2, ai is the left endpoint ofdomJi. Thus, for k = 1,2, ... , 
take x~ and x~ satisfying: xf E dom Ii and x~ + x~ = Xk ~ a; a second key is then to see 
that xf ,j. ai for i = 1,2. If, in addition, 

II (x~) + h(x~) :::; (fl t h)(xk) + 1/ k, 

it suffices to pass to the limit, using the properties I(xf) --+ I(ai) for i = 1,2. 0 

Finally, the case of limit-functions of §2.2 is of course hopeless. The traditional 
example x ~ !k (x) := Ix Ik converges pointwise when k --+ +00 to 

x ~ I(x) = 1 ~ 
+00 

if x E]-I,+I[, 
if x E {-I, +l}, 
otherwise, 

which is not closed. Some "uniformity" in the convergence is required, and this es
tablishes a link between Remark 2.2.2 and Theorem 3.1.1. 

4 First-Order Differentiation 

Monotonicity of the slope-function (1.1.3) provides convex functions with rather 
astonishing properties of "one-sided differentiability", which allow the introduction 
of a substitute for the concept of derivative: the "set of subderivatives" of a convex 
function at a point of its domain. A "subdifferential calculus" can then be developed 
for convex functions, which plays the role of differential calculus in the C l case, and 
which gives similar results. 
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4.1 One-Sided Differentiability of Convex Functions 

Theorem 4.1.1 Let I E Conv R At all Xo in the interior of its domain, I admits a 
finite left-derivative and afinite right-derivative: 

D_/(xo) := lim I(x) - I(xo) = sup I(x) - I(xo) 
xtxo x - Xo X<Xo X - Xo 

(4.1.1) 

D+/(xo) := lim I(x) - I(xo) = inf I(x) - I(xo) 
x.J.-xo X-Xo X>Xo X-Xo 

(4.1.2) 

They satisfo 
D_/(xo) ~ D+/(xo). (4.1.3) 

PROOF. Apply the criterion 1.1.4 of increasing slopes: the difference quotient involved 
in (4.1.1), (4.1.2) is just the slope-function s. For any two points x, x' in intdom I 
satisfying x < Xo < x', sex) and s(x') are finite numbers satisfying s(x) ~ s(x'). 
Furthermore, when x t Xo [resp. x t xo], s(x) increases [resp. s(x') decreases], 
hence they both converge, say as described by the notation (4.1.1), (4.1.2); this proves 
(4.1.3) at the same time. 0 

Remark 4.1.2 Proof of Theorem 3.1.1. Take [a, b] C int dom I (a < b: there is 
nothing to prove if a = b) and a ~ x < x' ~ b; if a < x, use (4.1.1) and (4.1.2) 
written at appropriate points to obtain 

I(x) - I(a) 
D+/~)~ ~D_/~)~D+/~)~ 

x-a 

I(x') - I(x) , 
~ , ~ D_/(x ) ~ etc. ~ D_/(b); 

x -x 

note that the relevant inequalities hold as well if x = a. This proves (3.1.1) with 
L = max{-D+/(a), D_/(b)}. 0 

A sort of differentiability being thus established on the interior of dom I, what 
can be said about its endpoints? Let again a be its left endpoint, as in Fig. 3.2.1. First 
of all, the whole concept is meaningless if a f/. dom I (case 3), and the very definition 
shows that D _/(a) = -00. As for the right-derivative, its existence is ruled out if I 
is not closed (case 2); finally, the criterion of increasing slopes tells us that D+/(a) 
does exist, but in lR U {-oo}. Let us summarize these observations: 

Proposition 4.1.3 For Xo on the left [resp. rightJ endpoint of dom I, (4.1.2) [resp. 
(4.1.1)J holds as an equality in lR U {-oo} [resp. lR U {+oo}J. 0 

Remark 4.1.4 Our notations deserve comment, since the left- and right-derivatives are usu
ally denoted by f~ and f~ in real analysis. 

In Sections 2.3 and 3.1, we have encountered the directional difference quotient 

qxo,d(t) := q(t) := f(xo + td) - f(xo) 
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at Xo E dom f in the direction d E JR. It is monotonic, satisfies qxo,ad(t) = qxo,d(at) for 
a > 0, its supremum over t > 0 is f~(d), its infimum over t > 0 is its limit for t -l- O. Of 
central importance in convex analysis is the corresponding directional derivative of f at xo 
in the direction d (= ± 1), traditionally denoted by: 

f'(xo, d) := lim f(xo + td) - f(xo) = inf f(xo + td) - f(xo) 
ttO t t>O t 

Now the concept of derivative in real analysis contains several distinct objects. 

- From its definition, it is first a number, say D f(xo), computed as a limit. 

(4.1.4) 

- On the other hand, this number is also a linear form which, when applied to a dx, yields the 
corresponding df: 

df = Df(xo)' dx. 

- It is therefore also the value ofthis linear form at dx = 1 (naturally, the fact that this linear 
form happens to depend on Xo does not help to clarify the matter). 

The notation (4.1.4) definitely represents this last interpretation, namely the value of the linear 
form at d; by contrast, (4.1.1), (4.1.2) is the linear form itself (or a pair of such) - hence our 
choice of two definitely different notations. As a matter offact, the two things do not coincide: 

f'(xo, 1) = D+f(xo) but D_f(xo) = - f' (xo , -1) (4.1.5) 

(beware of the minus sign!). 
For this reason, we will generally denote by D f (x) the ordinary derivative of a function 

f differentiable at x. It is only when no confusion is possible (mainly in subsequent chapters) 
that we will use the more classical notation f' (x), and also f" (x) for the second derivative. 

o 

We are now in a position to introduce the notion of subderivative of a convex 
function. 

Definition 4.1.5 Let f E Cony JR. We say that s E JR is a subderivative of f at 
x E domf when 

D_f(x) ~ s ~ D+f(x). (4.1.6) 

The subdifJerential a f (x) is the set of all subderivatives of f at x.1t is the line-segment 
[D_f(x), D+f(x)] whenD_f(x) andD+f(x) are finite. 0 

Thus, it is clear that 

- for Xo E int dom f, the subdifferential af (xo) is a nonempty compact interval: this 
results from Theorem 4.1.1; 

- for Xo ¢ dom f, af (xo) is empty; 

- at an endpoint point such as a of Fig. 3.2.1, af is certainly empty if f is not closed; 
if f is closed, a f may be empty (case of a vertical slope), otherwise it has the form 
] - 00, D+f(a)]. 

In the language of Remark 4.1.4, a subderivative suggests a linear form. It can also 
be characterized in terms of the values of this linear form, namely: s is a sub derivative 
of f at Xo if and only if 



4 First-Order Differentiation 23 

I(x) ~ I(xo) + sex - xo) for all x E lR., (4.1.7) 

a result which comes directly from the property of increasing slopes (to prove it, 
avoid division by x - xo, but set x - Xo = td with d = ±1, and divide by t > 0). 
The linear form attached to a subderivative thus defines an affine function which 
minorizes I. Incidentally, (4.1.7) readily gives a necessary and sufficient condition 
for Xo to minimize I, namely: 

Xo minimizes I E Conv lR. {:=:} 0 E al (xo) . (4.1.8) 

Remark 4.1.6 Comparing (4.1.5) with (4.1.6), we can see that the subdifferential is also 
characterized as 

aj(xo) = {s E R : sd::( !'(xo, d) foralld E R}; 

or alternatively, the directional derivative is characterized (whenever aj(x) =1= 0) as 

jf (xo, d) = sup {sd : s E aj(x)} . 

The directional derivative takes its values in R U {±oo}. All these observations concerning 
the directional derivative will have their importance when going to several dimensions. 0 

Altogether, the subdifferential defines a multifunction from lR. (or rather dom f) 
to the subsets of R See Fig. 4.1.1 for a possible behaviour of this multifunction; and 
see §A.5 for an introduction to the most important concepts of set-valued analysis. 

grt 
gr at 

Fig.4.1.1. A typical subdifferential mapping 

Remark 4.1.7 Denoting by dom 8j the domain of 8j, it is a consequence of Theorem 
4.1.1 and of the definition (4.1.6) that 

domf ~ dom8f ~ intdomf· 

Remembering (4.1.7), we see that a convex function is minorized by some affine 
function whenever the interior of its domain is nonempty: just take a subderivative. 
Now, the only convex functions whose domain has an empty interior are very special: 
up to a constant, they are indicators of one single point, say Xo. For them also, the 
existence of a minorizing affine function is clear (actually, 8f(xo) = lR. in this case). 
We conclude that any convex function is minorized by some affine function. 0 
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A kink (or comer-point) is a point x where al (x) is not a singleton. If x is not a 
kink, then I is differentiable at x: DI(x) = D_I(x) = D+I(x). 

Example 4.1.8 Let al < a2 < ... < am be m real numbers and tl, ... , tm be positive. We 
consider I defined on IR by 

m 

I(x):= ~:::>jlx -ajl. 
j=1 

Convexity and closedness of I, if not considered as trivial, come from Propositions 3.3.1 and 
3.3.2 (recall that Izi = max{z. -z}). This I is differentiable at all x except at ai, ... , am and 
there holds 

al(x) = { L/j:aj<x) tj - L/j:apx) tj ~f x ¢ {al •... , am} 

L/j:aj<x) tj - L/j:apx) tj + [-tjo. tjo] If x = ajo . 

If we want to minimize I, an algorithm can then be conceived, based on scanning the 
interval [ai, am] from left to right. The algorithm stops when the minimality condition (4.1.8) 
is met. 0 

Example 4.1.9 Consider the function x 1-+ I(x) := J; qJ(u)du, where qJ(u) = u for u ~ 0 
and, for u > 0, qJ is defined via the integer part of 1/u: 

qJ(u)=_l_ ifk+1>.!.~kEN 
1 +k u 

(qJ oscillates between the functions x and x I (1 + x), see Fig. 4.1.2). The function I is convex 
(criterion 1.1.4 of increasing slopes), has O-derivative at 0, but is differentiable on no segment 
]0. u[: its kinks are at 11k, with a/(1/k) = [1/(k+I),I/k], k = 1.2.... 0 

x .. ....... 
1 + x 

x 

Fig.4.1.2. Infinitely many discontinuities 

4.2 Basic Properties of Subderivatives 

Convexity implies that I is differentiable at "many" points, and that al(x) behaves 
very nicely when x varies: 

Theorem 4.2.1 For I E Cony 1R, the follOWing properties hold: 
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(i) The multifunction al is increasing on its domain, in the sense that 

Sl ~ Sl whenever Sl E al(xd, S2 E al(X2) and XI < Xl. (4.2.1) 

(ii) The set of points where I fails to be differentiable is at most countable. 

(iii) For all Xo E intdom I, the sets al(x) converge increasingly to D_/(xo) when 
X t xo, in the following sense: for all 8 > 0, there is 8 > 0 such that 

s E al(x) and X E ]xo - 8, xo[ ===> s E [D_/(xo) - 8, D_/(xo)]; 
(4.2.2) 

likewise, al(x) converges decreasingly to D+/(xo) when X ,j. Xo (symmetric 
definition). 

PROOF. Start from (4.1.1), (4.1.2) and Proposition 4.1.3: for any two points XI < Xl 

indomal C dom/, 

I(X2) - l(xl) 
Sl ~ D+/(xl) ~ ~ D_/(X2) ~ S2 (4.2.3) 

X2 - XI 

whenever Sj E al(xj), i = 1,2 (see Definition 4.1.5). This proves (i). 
It follows from (4.2.3) that the intervals al(xl) and al(X2) are disjoint if XI =1= X2. 

Let L1 be the set of points in int dom I where I fails to be differentiable, i.e. where 
D_/(x) < D+/(x). Then {]D_/(x), D+/(x)[lxEL1 form a collection of non empty 
disjoint intervals oflR.; this collection is therefore at most countable, and so is LL 

Now let Xo E int dom I. In view of (i), 

lim sup {s : s E al(x), X t xol ~ D_/(xo)· (4.2.4) 

Take dom f :3 X < x' < Xo and write (4.1.1) with Xo replaced by x': by definition of 
af, 

I(x) - f(x') ,,::: s' for all s' E af(x') . 
I '" x-x 

Letting x' t Xo and using the continuity of fat Xo: 

f(x) - f(xo) ~ lim inf {s' : s' E af(x') , x' t xol . 
x -Xo 

It remains to let x t Xo and to compare with (4.2.4) to obtain (4.2.2). o 

Property (iii) means that, when x tends to Xo while staying on the same side of xo, 
the whole set af(x) shrinks to one single particular endpoint of af(xo) , namely the 
half-derivative corresponding to the side that x comes from. The proof can of course 
be extended when Xo is the right endpoint of dom f, provided that f is closed (the 
continuity of f is explicitly used). Finally, remember Example 4.1.9, which shows 
that existence ofa (half-)derivative of f does not imply single-valuedness of af in a 
neighborhood. 
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Remark 4.2.2 What Theorem 4.2.1 (iii) says is that D _ f is left-continuous and D+ f 
is right-continuous, wherever they exist. This double result can be condensed into one 
with the help of the notation (4.1.4): for all x E dom f and all d, the following holds 
in lR U {±oo} 

f'ex +td,d) '" f'(X,d) when t to. o 

Needless to say, a f (x) is the ordinary derivative {D f (x)} whenever f is differ
entiable at x - and this occurs for "most" x. More can be said about this case: 

Corollary 4.2.3 With f E Conv R let Xo E int dom f be a point where f is differ
entiable, with derivative Df(xo) = D_f(xo) = D+f(xo). Then af(x) converges to 
D f (xo) when x ~ Xo· 

In particular, f is continuously differentiable at Xo whenever it is differentiable 
in a neighborhood of Xo. 0 

As shown for example by (4.2.3), the difference quotient between XI and X2 lies 
between the slopes at XI and X2. This suggests that some mean-value theorem should 
hold as an equality. Such is indeed the case: 

Theorem 4.2.4 (Mean-Value Theorem) Let f E ConvlR and let [a, b] c domf 
with a < b. Then there exists c E la, b[ such that 

feb) - f(a) E af(c) . (4.2.5) 

PROOF. As usual in this context, consider the auxiliary function 

g(x) := f(x) - f(a) _ feb) - f(a) 
b (x - a) -a . 

It is continuous on [a, b], it has been constructed so that g(a) = g(b) = 0, so it is 
minimal at some c E la, b[. Also, inspection of the left- and right-derivatives shows 
that 

ag(c) = af(c) _ { f(b~ = ~(a)} . 

Thus, the minimality condition (4.1.8) characterizing c is exactly (4.2.5). 0 

Remark 4.2.5 The particular subderivative singled out by (4.2.5) is a convex combination 
of D _ fCc) and D+f(c). Now Fig.4.2.1 suggests the following construction: take arbitrary 
s\ E af(c\) and S2 E af(C2) with a ~ c\ < c < C2 ~ b. From the monotonicity property 
(4.2.1), af(c) c [S\, S2], hence (4.2.5) can also be represented as a convex combination of 
these s\ and S2. 

Another observation is that the locally Lipschitzian f is, at least locally, absolutely 
continuous (see §A.6). Indeed, if s : domaf -+ lR is an arbitrary selection s(u) E af(u), 
there holds 

feb) - f(a) = Lb s(u)du. (4.2.6) 
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a C1 c C2 b 
Fig.4.2.1. Mean-value theorem for convex functions 

The symbolic writing 

f(x) - f(a) = lx 
af(u)du for all X E [a,b] 

gives one more mean-value theorem. An easy consequence of this integral representation is: 
if f and g are closed convex functions such that 

af(x) c ag(x) for all x E [a,b] C intdomfnintdomg, 

then f and g differ by a constant on [a, b]. 

4.3 Calculus Rules 

o 

When convex functions are combined so as to form a new convex function, their 
subdifferentials obey calculus rules resembling those of ordinary differential calculus. 
A difference, however, is that there are operations preserving convexity which do not 
preserve differentiability (like taking a pointwise maximum). Indeed, computing the 
subdifferential of a composite function I amounts to computing the half-derivatives 
D_I and D+I; difficulties might occur, however, at the endpoints of the various 
domains involved, where these half-derivatives might take on infinite values. 

Proposition 4.3.1 Let II, ... , 1m be m convex junctions, all finite in the neigh
borhood of some point x, and let tl, ... , tm be positive numbers. Then, for I := 

Lj=1 tj/j, 
m 

al(x) = Ltjalj(X). 
j=1 

PROOF. Just apply to the half-derivatives D_Ij and D+/j the standard calculus on 
limits, and use the addition of compact intervals of lR. 0 

Proposition 4.3.2 Let II, ... , 1m and x be as described in Proposition 4.3.1. Setting 
I := maxj /j, let 

lex) := {j = 1, ... , m : /j(x) = I(x)} 

be the set of active indices at x. Then a I (x) is the smallest interval containing each 
a/j(x), j E lex). 
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PROOF. Observe by direct calculation that 

D+/(x) = max D+ij(x) and D_/(x) = min D_Ij(x). 0 
jEJ(X) jEJ(X) 

As an illustration, suppose that all the /j's are differentiable, with derivatives D /j (x). 

Then 
af(x) = [minjeJ(x) D/j(x), maxjeJ(x) D /j(x)] . 

If, in addition, there is only one active index at x, say j (x) (a situation likely to happen most 
of the time, draw a picture), then f is differentiable atx and Df(x) = D/j(x) (x). 

Note: Propositions 4.3.1 and 4.3.2 could be extended to an x on the boundary 
of some dom Ij, provided that all the aij (x)'s are nonempty (then, calculus on the 
half-derivatives is to be understood in IR U {±oo}). 

Proposition 4.3.3 With II and h convex and minorized by a common affine function, 
let I = II thE Conv R Take x E dom I = dom II + dom h. and suppose that 
there exists (XI, X2) E dom h x dom h such that the infimal convolution is exact at 
x = XI + X2, i.e. I(x) = II (XI) + h(X2). Then 

a/(x) = all (XI) n ah(X2). 

PROOF. Use (4.1.7) and decompose any Y E IR as Y = YI + Y2: a slope s belongs to 
al (x) if and only if, for all (YI, Y2) E 1R2, 

II (YI) + h(Y2) ~ II (xd + h(X2) + S(YI + Y2 - x). 

Setting successively Yi = Xi, i = 1, 2, we see that sEal (Xi), i = 1, 2. 
Conversely, if SEa I (Xi) for i = 1, 2, we have 

!i(Yi) ~ Ii (Xi) + S(Yi - Xi) for i = 1,2 and all Yi E 1R; 

then (4.3.1) follows by mere addition. 

(4.3.1) 

o 

It is worth noting in the above result that, if either II or h is differentiable, so is 
11th. A particularly interesting application is the regularization of Moreau-Yosida 
(2.2.2): let I E Conv IR and Y(k) (x) be the unique solution of(2.2.2); since the function 
X ~ 1/2kx2 has the derivative kx, we conclude that I(k) is differentiable, and that ° I(k) (x) = k[Yk (x) - x]. See again Example 1.1.5 and Fig. 2.2.1. 

Proposition 4.3.4 Let {/k} kEN be a sequence of convex functions converging point
wise to a (convex) function I and take x E dom I (assumed nonempty). For any 
sequence Sk E alk(X), the cluster points of{sd are all in a/(x). 0 

With set-theoretic notation, the property expressed in this result can be written as 

limexta!k(x) c al(x); 
k-+oo 

(4.3.2) 

(see §A.5: the limes exterior is the set of all cluster-points). Just as with Proposition 
4.3.3, the proof uses the characterization (4.1.7): it suffices to pass to the limit in 
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fk(y) ;;:, fk(x) + Sk(Y - x) for all Y E lR 

(a technical point is that, since the limit f is finite at x by assumption, then necessarily 
fk(X) is also finite for k large enough). 

Counter-examples to the converse inclusion in (4.3.2) are known even in classical 
differential calculus, for instance x 1-+ fk(X) = Jx2 + 11k: when k -+ +00, fk 
converges (even uniformly) to Ixl and 

Dfk(O) == 0 -+ 0 E [-I, +1] = 0(1·1)(0). 

We conclude this section with a simple example: taking I to be a convex function and 
C a closed interval included in int dom f, consider the minimization problem 

inf {f(x) : x E C} . (4.3.3) 

With the help of the indicator function of Example 3.2.4, it can be transformed to the obviously 
equivalent problem: 

inf {g(x) : x E lR}, where g = I + Ie, 

in which the constraint is hidden; formally, it suffices to study unconstrained problems. Fur
thermore, (4.1.8) tells us that this in tum is equivalent to finding x such that 0 E a g(x), which 
can be further expressed as: 

-00 ~ D_g(x) ~ 0 ~ D+g(x) ~ + 00, 

or also, in terms of the directional derivative: 

g' (x, d) ~ 0 for all d or for d = ± 1 . 

Existence of such a solution is linked to the behaviour of g(x) when Ix I -+ 00, see §2.3. 
We just mention a result emerging from the continuity properties of the half-derivatives: if 
there existxl andx2 with Xl ~ x2 andD+g(xl) ~ 0, D _g(X2) ~ 0, then there exists a solution 
in [Xl, X2]. 

Our assumption C C int dom I enables the use of Proposition 4.3.1: the subdifferential 
aIc(x) is clearly empty for x ¢ C, {OJ for x E int C, and] - 00,0] (resp. [0, +oo[) for x 
on the left (resp. right) endpoint of C. It is then easy to characterize an optimal solution: x 
solves (4.3.3) if and only ifit satisfies one of the three properties: 

- either x E int C and 0 E a/(x); 

- or x is the left endpoint of C and D+/(x) ~ 0; 
- or x is the right endpoint of C and D _ I (x) ~ o. 

5 Second-Order Differentiation 

First-order differentiation of a convex function f results in the increasing derivatives 
D_fO and D+fO - or, in a condensed way, in the increasing multifunction of. 
In view of Lebesgue's differentiation theorem (§A.6), a convex function is therefore 
"twice differentiable almost everywhere", giving way to some sort of second deriva
tives. The behaviour of such second derivatives, however, is much less pleasant than 
that of first derivatives. In a word, anything can happen: they can oscillate, or approach 
infinity anywhere; their only certain property is nonnegativity. 
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5.1 The Second Derivative of a Convex Function 

First of all, we specify what we mean by "twice differentiability" for a convex function. 

Definition 5.1.1 Let I E Conv lR. We say that the multifunction al is differentiable 
at x E int dom I when 

(i) al(x) is a singleton {D/(x)} (which is thus the usual derivative of I at x), and 

(ii) there is a real number Dzf(x) such that 

al(x + h) - D/(x) = {Dzf(x)} , lim , 
h-+o 

i.e.: "Ie> 0,38> 0 such that Ihl :::; 8 ands E al(x + h) implies 

Is - D/(x) - Dzf(x)hl :::; elhl. 

(5.1.1) 

(5.1.2) 
o 

Putting s on each endpoint of al(x + h) in (5.1.2), one sees that differentiability 
of a I implies the usual differentiability ofD _ I and D+ I at x. Conversely, it is not too 
difficult to see via Theorem 4.2.1 that differentiability ofD _ I implies differentiability 
of al at x, and ofD+1 as well. In a word: differentiability at x of the multifunction 
ai, or ofD_I, or ofD+I, are three equivalent properties. 

Note that this differentiability does not force af to be single-valued in a neighborhood of 
x: indeed, the af of Example 4.1.9 is differentiable at 0, with Dzf(O) = 1. Geometrically, the 
multifunction af is differentiable when it is as displayed in Fig. 5.1.1: all the possible curves 
h 1-+ s(h) E af(x + h) have the same tangent, of equation s(h) = Df(x) + D2f(x)h. 

df(x+h) 

Df(x) 

h 

Fig.S.l.l. Allowed values for a differentiable multifunction 

In real analysis, a function I has a second derivative i at x if 

D/(x + h) - D/(x) 

h 
has a limit i for h --+ 0; 

this means that D I has a first-order development near x: 

D/(x + h) = D/(x) + ih + o(lhl). 

Then I itself has a second-order development near x: 

(5.1.3) 
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f(x + h) = f(x) + Df(x)h + 4lh2 + 0(h2). (5.1.4) 

Conversely, it is generally not true that a second-order development of f implies the 
existence of a second derivative. In the convex case, however, equivalence is obtained 
if the differentiability definition (5.1.1) is used as a substitute for (5.1.3): 

Theorem 5.1.2 Let f E Conv lR and x E int dom f. Then the two statements below 
are equivalent: 

(i) af is differentiable at x in the sense of (5.1.1); 

(ii) f has a second-order development (5.1.4) at x with l = D2!(x). 

PROOF. [(i)::::} (ii)] Given c > 0, take Ihl so small that, for all lui :::;; Ihl, 

-clul :::;; sex + u) - Df(x) - D2!(x)u :::;; clul. 

Integrate from 0 to h to obtain with (4.2.6): 

it(x + h) - f(x) - Df(x)h - 4D2!(X)h21 :::;; 4ch2 . 

[(ii) ::::} (i)] Fix e arbitrarily in ]0,1[; develop f(x + h) and f(x + eh) according to 
(5.1.4) and obtain by subtraction 

f(x + h) - f(x + eh) = (l - e)Df(x)h + 4l(1 - e2)h2 + 0(h2). 

From the mean-value theorem 4.2.4, thereiscbetweenx+h andx+eh,ands E af(c) 
such that 

f(x + h) - f(x + eh) s=------
(1 - e)h 

Applying the definition (5.1.4) to f(x + h) and f(x + eh), we therefore get 

s = Df(x) + 4l(1 + e)h + o(h). 

Now apply the monotonicity property (4.2.1): assuming for example h > 0, 

af(x + eh) :::;; s :::;; af(x + h) (5.1.5) 

so that we obtain 

af(x + eh) - Df(x) s - Df(x) 1 1 + e o(h) 
eh :::;; eh = 2l -e- + h 

af(x + h) - Df(x) s - Df(x) 1 o(h) 
h ~ h = 2l(l + e) + h . 

If h < 0, inequalities are reversed in (5.1.5) but the division by h reproduces the same 
last two inequalities. 

Finally, let h -Y 0 (e is still fixed): 

lim sup af(x + h) - Df(x) 

h-+o h 

liminf af(x + h) - Df(x) 
h-+o h 

1 1 +e 
::( -l-
"" 2 e 

~ 4l(l + e). 
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These inequalities are valid for all () E ]0. 1[, hence we have really proved that the 
lim sup and the lim inf are both equal to i. 0 

Note that the equivalence with the usual second derivative still does not hold: 
Example 4.1.9 is differentiable in the sense of Theorem 5.1.2 but not in the sense of 
(5.1.3), since Df(x + h) does not even exist in the neighborhood ofO. On the other 
hand, the property (5.1.1) appears as a suitable adaptation of (5. 1.3) to the case ofa 
"set-valued derivative"; therefore we agree to postulate Definition 5.1.1 as the second 
differentiability of a convex function. It is clear, for example from (4.1.7), that Dd 
is a nonnegative number whenever it exists. Lebesgue's differentiation theorem now 
says: 

Theorem 5.1.3 A function f E Conv lR is twice differentiable almost everywhere on 
the interior of its domain. 0 

Unfortunately, this kind of second differentiability result does not help much in 
terms of f. Consider for example a piecewise affine function: 

f(x):=max{Sjx-rj: j=I •...• m}. 

It has first and second derivatives except at a a finite number of points (those where two 
different affine pieces meet, see Theorem 4.3.2). Its second derivative is 0 wherever 
it exists, but yet f differs substantially from being affine. 

Remark 5.1.4 The derivative D f of f E Conv IR is locally integrable on the interior of its 
domain I; as such. it can be seen as a distribution on I: why not consider its differentiation in 
the sense of distributions. then? A second derivative of f would be obtained, which would be 
a nonnegative Radon measure; for example. the second derivative of I . I would be the Dirac 
measure at 0: the piecewise affine f above would be reconstructed with the sole help of this 
second derivative. 

However, this approach is blind to sets of zero-measure; as such. it does not help much 
in optimization, where one is definitely interested in a designated point (the optimum): for 
this purpose, a pointwise differentiation is in order. 0 

5.2 One-Sided Second Derivatives 

In Definition 5.1.1, existence of the usual first derivative is required at x, so as to 
control the difference quotient (5.1.1). However, we can get rid of this limitation; in 
fact, if h ..j, 0, say, Theorem 4.2. 1 (iii) tells us that [8f(x + h) - D+f(x)]/ h is the 
appropriate difference quotient - and the situation is symmetric for h t o. The way 
is open to "half-second derivatives". From now on, it is convenient to switch to the 
directional notation of Remark 4.1.4: for given x E int dom f, we fix d =1= 0 and we 
set h = td, t > O. We make appropriate substitutions in (5.1.1), (5.1.3) and (5.1.4) to 
obtain respectively 

1. 8f(x + td) - f'(x, d) 
1m • 
t~o t 

(5.2.1) 
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Vs(t) E [D_f(x + td), D+f(x + td)], I. s(t)-f'(x,d) 
1m , 
t,!.o t 

(5.2.2) 

I. f(x + td) - f(x) - tf'(x, d) 
1m . 

t.J,.o 1/2 t 2 
(5.2.3) 

As before, the definitions (5.2.1) and (5.2.2) are just equivalent: if one of the limits 
exists, the other two exist as well and are the same; this is the so-called point of view 
of Dini. As for (5.2.3) (the point of view of de la Vallee-Poussin), equivalence also 
holds: 

Theorem 5.2.1 Ifone of the limits in (5.2.1)-(5.2.3) exists and is denoted by f"(x, d) 
(';3 0), then the other limits exist as well and are equal to f" (x, d). 

PROOF. Just reproduce the proof of Theorem 5.1.2, without bothering with the sign 
ofh. 0 

To illustrate what has been gained in passing from §5.1 to §5.2, take Example 4.1.9 and 
modify cp by settingcp(u) = 0 for u ~ O. Then the new I has the two "half-second derivatives" 
1"(0, -1) = 0 and 1"(0,1) = 1. 

Still, the limits in (5.2.1) - (5.2.2) may fail to exist, for two possible reasons: the difference 
quotients may go to +00, as in I (x + td) = t 3/ 2 , or they may have several cluster points. Take 
again Example 4.1.9: al(O+t) is squeezed between the curves s = t ands = t/(l +t), which 
are tangent to each other at O. If cp is modified so that this second curve becomes s = 1/21, 

say, then the set of cluster points in the difference quotient (5.2.1) blows up to the segment 
[1/2, 1]. 

Remark 5.2.2 (Interpretation of Second Difference Quotients) For fixed x andd, 
consider the family of parabolas of equations indexed by c ';3 0: 

t'l-+pcCt')=~ct'2+sot'+f(x), with so=f'(x,d). (5.2.4) 

They are constructed in such a way that Pc(O) = f(x) and p~(O) = f'(x, d). 

Now, fix t > 0 and compute c so as to fit either the slope-value p~(t) = set) or 
the function-value Pc(t) = f(x + td). In the first case, c is given by the difference 
quotient in (5.2.2) and in the second case by the difference quotient in (5.2.3). Both 
difference quotients thus appear as an estimate of the "curvature" of f at x in the 
direction d. 0 

5.3 How to Recognize a Convex Function 

Given a function defined on an intervall, the question is now: can we decide whether 
it is convex on I or not? The answer depends on how much information is available: 
about the function itself, about its first derivatives (possibly one-sided), or about its 
second derivatives (or some sort of generalization). We review here the main criteria 
that are useful in optimization. 
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(a) Using the Function Itself Many criteria exist, relying on the definition of 1 and 
nothing more. Some of them are rather involved, most of them are of little relevance 
in the context of optimization. The most useful attitude is generally to view 1 as being 
constructed from other functions known to be convex, via operations such as those 
of §2.1 - and others to be seen in Chap. N. 

At this stage, the criterion 1.1.4 of increasing slopes should not be forgotten: 1 
is convex if and only if the function 

Lltf(x, x') := I(x) - I(x') 
x -x' 

(5.3.1) 

defined for pairs of different points in I, is increasing in each of its arguments. Note, 
however, that LlI 1 is a symmetric function of its two variables; hence it suffices that 
LlI 1 (x, .) be increasing for each x. 

As seen in §3.1, convexity of Ion I = [a, b] implies its upper semi-continuity 
at a and b. Conversely, if 1 is convex on int I, and upper semi-continuous (relative to 
l) on the boundary of I, then 1 is convex on I: just pass to the limit in (1.1.1). We 
will therefore content ourselves with checking the convexity of a given function on 
an open interval. Then, checking convexity on the closure of that interval will reduce 
to a study of continuity, usually much easier. 

(b) Using the First Derivative Passing to the limit in Lltf of(5.3.1), one obtains the 
following result: 

Theorem 5.3.1 Let 1 be continuous on an open interval I and possess an increasing 
right-derivative, or an increasing left-derivative, on I. Then 1 is convex on I. 

PROOF. Assume that 1 has an increasing right-derivative D+I. For x, x' in I with 
x < x' and U E]X, x'[, there holds 

I(u) - I(x) ~ sup D+/(t) ~ inf D+/(t) ~ I(X'~ - I(u) 
u - x te]x,u[ telu,x'[ x - u 

(the first and last inequalities come from mean-value theorems - in inequality form 
- for continuous functions admitting right-derivatives). Then (1.1.1) is obtained via a 
multiplication by x' - x > 0, knowing that u = ax + (1 - a)x' for some a E ]0, 1[. 
The proof for D _ 1 is just the same. 0 

Corollary 5.3.2 Assume that 1 is differentiable on I with an increasing derivative 
on an open interval I. Then 1 is convex on I. 0 

(c) Using the Second Derivative To begin with, an immediate consequence of 
Corollary 5.3.2 is the following well-known criterion, by far the most useful of all, 
even though second differentiability is required: 

Theorem 5.3.3 Assume that 1 is twice differentiable on an open interval I, and its 
second derivative is nonnegative on I. Then 1 is convex on I. 0 
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To illustrate a combination of Theorems 5.3.1 and 5.3.3, assume for example that f is 
"piecewise C2 with increasing slopes", namely: there is a subdivision Xo = a < XI < '" < 

Xk = b of I =]a, b[ such that: 

- f is continuous on I, 
- f is of class C2 and Dz! ;;:: 0 on each subinterval ]Xi -I, Xi [, i = 1, ... , k, 

- f has one-sided derivatives at XI, ... , Xk-I satisfying 

D_f(Xi) !(D+f(Xi) fori = 1, ... ,k-l. 

Then f is convex on I. 
In the absence of second differentiability, some sort of substitute is required to 

determine convexity. Translating to second order the criterion using the (symmetric) 
function 11 If of (5.3.1), we obtain: f is convex if and only if I1zf is nonnegative on 
I x I x I, where 

112 f(x, x', x") := 1 [f(X) - f(x') f(x) - f(X")] , " - -----=...-:.-....:.. 
X - X X - x, x - x" 

is defined for all triples of different points x, x', x" in I. Note that I1zf is symmetric 
in its three variables. 

Letting x' and x" tend to x in 112 I, just as was done with 111 I, one can get an 
analogue to Theorem 5.3.l. One must be careful when letting x' and x" converge, 
however: consider 

I( ) .- . {I 2 + I 2 } X ~ X.- mm iX x'ix - x . (5.3.2) 

Its half-second derivatives (5.2.1) are constantly 1, but it is not convex: when passing 
to the limit with x' and x", account must be taken of both sides of x. The "Schwarz 
second derivative", for example, does the job by taking x - x' = x" - x: 

Af() I' f(x-t)-2f(x)+f(x+t) 
L.l2 x := Imsup 2 • 

t~O t 
(5.3.3) 

We obtain the second derivative of f at x if there is one; the counter-example (5.3 .2) 
has Lfzf(O) = -00, and is thus eliminated. When f is convex, 

Lfzf(x) ~ 0 for all x E I. (5.3.4) 

This condition turns out to be sufficient if combined with the continuity of I: 

Theorem 5.3.4 Assume that f is continuous on the open interval I and that (5.3.4) 
holds. Then I is convex on I. 

PROOF. Take a and b in I with a < b, a E ]0, 1[ and set x := aa + (1 - a)b. We 
have to prove the "mean-value inequality" 

f(x) :!( f(a) + feb) - f(a) • (x - a). (5.3.5) 

We take 
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feb) - f(a) 
g(x) := f(x) - f(a) - (x - a) , 

b-a 

and we prove g ~ 0 on la, b[. We have g(a) = g(b) = 0 and, since f and g differ by 
an affine function, .12g = .12f. 

Suppose first 

.12g(x) = ~f(x) > 0 for all x E la, b[. (5.3.6) 

We claim that g is then nonpositive on]a, b[: if such were not the case, the continuous 
g would assume its maximal value at some x* E la, b[ and the relation 

g(x* - t) - 2g(x*) + g(x* + t) < 0 for all t small enough 

would contradict (5.3.6). Thus (5.3.5) is proved. 
Now define !k(x) := f(x) + l/kx2. If (5.3.4) holds, .1dk is positive on la, b[ 

and, from the first part of the proof, !k is convex. Its pointwise limit f is therefore 
convex (Proposition 2.2.1). 0 

Remark 5.3.5 With relation to Remark 5.2.2, observe that the difference quotient in (5.3.3) 
represents one more "curvature" estimate. Let So be free in (5.2.4) and force Pc to coincide 
with f atx, x - t, x + t: we again obtain c = i12f(x, x - t, x + t). 0 

6 First Steps into the Theory of Conjugate Functions 

On several occasions, we have encountered the conjugate jUnction of f, defined by 

R 3 S H- f*(s) := sup {sx - f(x) : x E dom f} . (6.0.1) 

Because sx is a finite number, we can let x run through the whole ofR, and of course 
this does not change the supremum: insteadof(6.0.1), we may as well write the simpler 
form 

f*(s) = sup [sx - f(x)]. (6.0.2) 
XER 

Remark 6.0.1 Some comments are in order with respect to Remark 1.3.3. What is 
actually computed in (6.0.2) is 

inf[f(x) - sX], 
x 

(6.0.3) 

a number which is certainly not +00. As a result, its opposite f*(s) is in our space 
of interest R U {+oo}. Furthermore, this opposite will be seen to behave as a convex 
function of s (already here, remember Proposition 2.1.2). 

Indeed, one should realize that (6.0.1), (6.0.2) - or (6.0.3) - actually means 

!*(s) = sup {sx - r : (x, r) E epi f}, (6.0.4) 
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Fig.6.0.1. Constructing a conjugate function 

and this last writing has two advantages: first, it suppresses the "-I(x)" operation; 
and more importantly, it interprets the conjugacy operation as the supremum of a 
linear function [is (x, r) := sx - r] over a closed convex set ofJR.2• We will return 
later (Chapters IV and X) to this aspect; considering that (6.0.4) is rather heavy, the 
versions (6.0.1) or (6.0.2) are generally preferable, and will be generally preferred. 

o 

We retain from (6.0.4) the geometrical interpretation displayed in Fig. 6.0.1: for 
given s and r, consider the affine function as ,r defined by 

JR. 3 x t-+ as,r(x) = sx - r 

and the corresponding line gr as ,r in R.2 . Due to the geometry of an epigraph, there are 
two kinds ofr for givens: those, small enough, such thatas,r ~ I; and those so large 
that as,r(x) > I(x) for some x. The particular r = f*(s) is their common bound, 
obtained when the line gr as ,r "leans" on epi f, or supports epi I. For the particular 
value s = 0, we obtain 

- 1*(0) = inf {f(x) : x E JR.}. (6.0.5) 

Figure 6.0.1 displays the set for which f* is finite; and this set depends exclusively 
on the behaviour of 1 at infinity, which therefore plays an important role for the 
determination of dom f* (remember §2.3). On the other hand, let Xo E dom 1 and 
choose sEal (xo); then the corresponding "optimal" line supports gr 1 at (xo, 1 (xo)) , 
so that I*(s) = sXo - I(xo) for such an s. 

Examples 6.0.2 For each f E Conv lR considered below, we give the corresponding conju
gate function /*. Draw the graph of /* in each case. 

- f(x) = Ixl: then /* is the indicator function 1[-1.+1]; more simply, f(x) = sx gives 
/* = lIs)' 

- f(x) = (l/p)lxI P, with p > 1: then /*(s) = (l/q)lsIQ, with l/p+ l/q = l.Inparticular, 
f* = f ifp =2. 

- f(x) = x log x if x > 0, +00 ifnot: then /*(s) = exps - 1 for all s E lR. 
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- f(x) = -.Jl=X2iflxl:::;; 1, +00 ifnot(the ball-pen function of Fig. 2.1.1): then !*(s) = 
~. 0 

It is important to realize that the argument s, which f* depends on, is a slope, 
i.e. strictly speaking an element of the dual ofR When taking again the conjugate of 
f*, one goes back to the primal and the result is the biconjugate function of J: 

J**(x) := (f*)*(x) = sup {sx - J*(s) : s E dom J*}. 

For illustration, compute the biconjugates in the examples above. 
The transformation J ~ J* is (the one-dimensional version of) the so-called 

Fenchel correspondence, and is closely related to the Legendre transform. In view of 
its importance for a deep understanding of the properties of a convex function, we are 
going to explore step by step some basic results about it. 

6.1 Basic Properties ofthe Conjugate 

First of all, the very definition (6.0.1) directly implies the relation 

sx ~ J(x) + J*(s) for all x E dom J and all s E dom f* , (6.1.1) 

called the Young-Fenchel inequality (which, incidentally, holds for all s and x!). 

Proposition 6.1.1 Let J E ConvR Then 

- the conjugate of J is a closed convex function (J* E Conv JR.), 
- the biconjugate of J is its closure (f** = cl J). 

PROOF. The function f* takes its values in JR. U {+oo} by construction. Its domain is 
nonempty, see Remark 4.1.7. Then, its convexity and closedness result from Propo
sition 3.3.2. 

Now, use the form (6.0.4) to define J**: 

J**(x) = sup{sx - r r;::: J*(s)}. (6.1.2) 
s,r 

By definition of f*, to say r ;::: f* (s) is to say that, for all y E dom J, 

r ;::: sy - J(y), i.e. sy - r ~ J(y). 

In other words, (6.1.2) can be written 

J**(x)=sup{sx-r: sy-r~J(y) forallYEdomJL 
s,r 

in which we recognize the expression (3.2.4) of cl J. o 

When conjugating a function J, one considers the set of all affine functions 
minorizing it. As mentioned in Remark 3.2.6, this is also the set of all affine functions 
minorizing cl f. It follows that J and cl J have the same conjugate: from now on, 
we may assume that the convex J is closed, this will be good enough. Then the 
relation J** = J, established in Proposition 6.1.1, shows that the Legendre-Fenchel 
transformation is an involution in Conv R This is confirmed by the next result, in 
which we have also an involution between s and x via the solution-set of(6.0.1). 
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Proposition 6.1.2 Let I E Conv R Then 

sx = I(x) + I*(s) ifand only if x E doml and s E al(x); 

s E al(x) ifandonlyif x E af*(s). 

PROOF. We have that 

- f*(s) = inf (I(x) - sx : x E JR} . 

(6.1.3) 

(6.1.4) 

The function gs : x f-+ I (x) - sx, which is in Conv JR, achieves its infimum at x if 
and only if 0 E ag(x) - see (4.1.8) - i.e. 

-I*(s) = I(x) -sx ifandonlyifs E a/(x). 

This implies s E dom f* and can be written as (6.1.3). Applying this same result to 
f* (which is closed), we obtain 

x E af*(s) if and only if sx = f*(s) + I**(x) , 

which is again (6.1.3) since f** = I. D 

What (6.1.3) says is that the pairs (x, s) E JR2 for which the inequality of Young
Fenchel (6.1.1) holds as an equality fonn exactly the graphofal. In view of(6.1.4), the 
mapping al* is obtained by inverting the mapping ai, i.e. reflecting its graph across 
the line of equation s = x: see Fig. 6.1.1, and remember the increasing property 
(4.2.1). 

s=x 

grat* 

Fig.6.1.1. The symmetry between 8j and 8j* 

Remark 6.1.3 The above inversion property suggests a way of computing a conju
gate which may be useful: "differentiate" I to obtain al; then invert the result and 
integrate it to obtain 1* up to a constant. As an exercise, compute graphically the 
conjugate of 1/2X2 + Ixl. D 
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6.2 Differentiation of the Conjugate 

The question we address in this section is: what differentiability properties can be 
expected for j*, perhaps requiring from j something more than mere convexity? 

Let So E int dom j* and consider the statement 

j* is differentiable at So . 

According to Proposition 6.1.2, it means 

there is a unique solution to the "equation" (in x) aj(x) 3 so, (6.2.1) 

which in turn relies on the key property 

aj is "strictly increasing" on its domain, (6.2.2) 

in the sense that aj(Xl) < aj(X2) whenever Xl < X2. As is easily checked, this last 
property is equivalent to 

j is strictly convex. (6.2.3) 

Thus, we have: 

Proposition 6.2.1 Let j be strictly convex. Then j* is differentiable on the interior 
of its domain and,for all s E int dom j*, 

Dj*(s) = x(s) 

where x (s) is the unique solution of 

s E aj(x). or sx - j(x) = j*(s) • or min [f(x) - sx]. 
x 

o 

The converse to Proposition 6.2.1 is false: j* may be differentiable on the interior 
of its domain while j is not strictly convex. A counter-example is 

{ ! x 2 if Ix I ~ I • 
j(1)(x):= IXI - 1/2 if Ixl ~ 1. (6.2.4) 

for which easy computations give 

* s = { !S2 if Is I ~ 1 • 
j(1)() !s2+I[_I,+1)(S)=+oo iflsl > 1. 

The only explanation is that (6.2.1) (assumed to hold for all So E intdom /*) 
does not imply (6.2.2). More precisely, two different Xl and X2 are allowed to give 
a nonempty intersection aj(Xl) n aj(X2) 3 so, provided that this So falls on the 
boundary of dom j*. Some additional assumption is necessary to rule this case out; 
among other things, the following result illustrates further the involutional character 
of the Legendre-Fenchel transformation. 
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Proposition 6.2.2 Let f : lR. -+ lR. be strictly convex, difforentiable, and I-coercive 
(f(x)/lxl -+ +oofor Ixl -+ (0). Then 

(i) f* enjoys the same properties 

and, for all s E R 
(ii) there is a unique solution to the equation Df(x) = s, 

(iii) /*(s) = S(Df)-I(S) - f«Df)-I S ). 

PROOF. We claim first that the I-coercivity assumption on f (which, according to 
(2.3.3), is equivalent to f~ (I) = f60 ( -1) = +(0) amounts to saying that 

lim Df(x) = - lim Df(x) = +00. 
x-++oo x-+-oo 

In fact, for x > 0, (4.1.7) gives 

Df(x) ~ f(x) - f(O) . 
x 

When x -+ +00, the right-hand side goes to f6o(1) , so f~(1) = +00 implies 
D f (x) -+ +00. To prove the converse, let x -+ +00 in the inequalities 

Df(x) ~ f(x + 1) - f(x) ~ fbo(1) , 

which come from the property of increasing slopes. The same proof works for x -+ 

- 00 and establishes our claim. 
Remembering the equivalence between (6.2.2) and (6.2.3), we therefore see that 

D f is a bijection from lR. onto lR. Its inverse (D f) -I = D /* is a bijection as well and 
the whole result follows. 0 

Example 6.2.3 The function f (x) = ch x satisfies the assumptions of Proposition 6.2.2: 
D I(x) = shx, hence the inverse D I*(s) = (Sh)-I (s). We readily obtain 

I*(s) = s(sh)-I (s) -,/1 + s2, 

which is an illustration of (iii). Among other things, the l-coercivity of the above function is 
implied by (i), but could not be seen at first glance. 0 

Consider now the problem of differentiating f* twice, which is (not unexpectedly) 
more complex. To get an idea of what can be expected and what is hopeless, we suggest 
meditating on the following examples. 

Examples 6.2.4 

(a) II = I ·1 is Coo in a neighborhood of an arbitrary Xo > O. Nevertheless, It = 1[-1.+1] 

is not even finite in a neighborhood of So = D II (xo) (= 1 for all Xo > 0). 

(b) The previous function was not differentiable everywhere, but consider 

) {O if Ix I ~ I , 
hex = !(Ixl- 1)2 otherwise. 

Then, g(s) = 1/2 s2 + lsi is still not differentiable (at s = 0). 
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(c) The following function is convex, I-coercive and twice differentiable everywhere: 

f (x) = { 0 if Ix I ~ I , 
3 ~ (Ixl - 1)3 otherwise. 

Yet, g(s) = 2/3IsI3/2 + lsi is not even once differentiable (at s = 0). 

(d) A slight perturbation of the previous example is f4 (x) = 1 /31x - 113; it is strictly convex, 
I-coercive and twice differentiable throughout lR but f 4*(s) = 2/3IsI3/2 + s is only once 
differentiable. 

(e) Take the conjugate of (6.2.4): fs(x) = 1/2X2 + I[-I,+IJ(x) is COO on the interior of its 
domain, with Dds > 0 throughout (while Dd4 was 0 at the only point 0). Its conjugate 
g = f(I) of (6.2.4) is not twice differentiable at ± 1. 0 

The deep reason for all these oddities is that f* is a global concept, as it takes into 
account a priori the behaviour of f on its whole domain; as a result, the smoothness 
of f* is a tricky matter. We just mention two results: a local one, and a global one 
which echoes Proposition 6.2.1 via the inverse function theorem. 

Proposition 6.2.5 Assume that f E Conv lR. is twice differentiable at Xo (in the sense 
of Definition 5.1.1) with Dz!(xo) > o. Then !* is likewise twice differentiable at 
So = Df(xo) and 

* 1 Dz! (so) =-
Dz!(xo) 

PROOF. First of all, we claim that f* is differentiable at so, with derivative Xo. In fact, 
Xo E af*(so) because of (6.1.4). If the convex set af*(so) contains another Xo + d, 
then it contains also the whole interval Xo + [0, l]d: we have So E af(xo + td) for 
t .J.. 0; comparing with (5.1.1), we see that the positivity of Dd (xo) is contradicted. 

Now, we want to prove that, for arbitrary x E a!*(s), 

x - Xo 1 s - So 
-- ~ f > 0, i.e. -- ~ Dz!(xo) 
s - So D2 (xo) x - Xo 

when s ~ so; but this follows from (5.1.1): s E af(x) and Corollary 4.2.3 tells us 
that x ~ xo, since f* is differentiable at Xo. 0 

As a result, suppose that f E Conv lR. is twice differentiable on int dom f with 
Dz! > 0 throughout. Then f* enjoys the same properties, but only on the image-set 
Df(intdomf); see Example 6.2.4(e). 

A one-sided version of Proposition 6.2.5 can also be stated just as in Theo
rem 5.2.1. We rather give the global version below, obtained via the C 1 parametrization 
of Proposition 6.2.1: D!* = (D f) -I. 

Corollary 6.2.6 Assume that f is i-coercive, and twice differentiable on R with 
Dz! > 0 throughout. Then !* is likewise and 

D f* _ 1 
2 - Dd 0 (Df)-I o 

For illustration, see again Example 6.2.3: 

Dz!(x) = chx and Dd*(s) = ~. 
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6.3 Calculus Rules with Conjugacy 

In §2.1, we have introduced some operations preserving convexity, whose effect on 
the subdifferentials has been seen in §4.3. Here, we briefly review their effect on the 
conjugate function. 

Proposition 6.3.1 Let II and 12 be two (closed) convex junctions, minorized by a 
common affine function. Then 

(/1 t 12)* = It + g . (6.3.1) 

PROOF. The proof illustrates some properties of extremization (see in particular 
§A.1.2). For s E JR, 

(/1 t h)*(s) = suPx {sx - infxt +x2=x[f1 (x]) + h(X2)J} 

= sUPXt+x2=AS(XI +X2) - II(xl) - h(x2)] 

= sUPXt,xJS(XI +X2) - II (XI) - h(x2)] 

= SUPXt [SXI - II (x])] + SUPX2[SX2 - h(x2)] 

and we recognize It(s) + Iz*(s) in this last expression. o 

The dual version of this result is that, if II and 12 are two closed convex functions 
finite at some common point, then 

(/1 + 12)* = It t g . (6.3.2) 

The way to prove it is to observe that the two functions It and 12* satisfy the 
assumptions of Proposition 6.3.1, and their conjugates are II and fz respectively; 
hence 

(/t t Iz*)* = II + fz . 

Taking the conjugate of both sides and knowing that an infimal convolution is closed 
(see Remark 3.3.4) gives directly (6.3.2). In several dimensions, however, an inf
convolution is no longer closed, so technical difficulties can be anticipated to establish 
(6.3.2). 

The value at S = 0 of the function (6.3.2) gives an interesting relation: in view of 
(6.0.5), we have 

inf[fl(x) + hex)] = -(/1 + 12)*(0) = inf[ft(s) + g(-s)] , 
XER SER 

which is known as (the univariate version of) Fenchel's duality theorem - but once 
again, beware that it does not extend readily to several variables. 

Formulae (6.3.1) and (6.3.2) show that the addition off unctions and their infimal 
convolution are operations dual to each other. The sup-operation is more complex: 
it is dual to an operation that we have not seen yet, namely that of taking the closed 
convex hull of a nonconvex function. Indeed, convexity of I is by no means necessary 
to define its conjugate (6.0.1): the result is "meaningful" as soon as we have: 
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(i) f is not identically +00 (otherwise f* would be - identically! - -00) 
(ii) f is minorized by some affine function (otherwise f* would be identically +00). 

Now, to f satisfying these properties, we can associate the family of affine functions 
s 1-+ SX - f(x), indexed by x E lR: Proposition 3.3.2 tells us that their supremum f* 
is a closed convex function of s . 

In a word, the conjugacy operation can perfectly well be applied to any function 
f satisfying the conditions (i) and (ii) above, "and nothing more". Looking again at 
the proof of Proposition 6.1.1, we see that the biconjugate of f is then the pointwise 
supremum of all the affine functions minorizing f. The epigraph of f** appears as 
the closed convex hull of epi f, as indicated by Fig. 6.3 .1. In view of this remark, a 
more suggestive notation can be used: 

f** = cl co f = co f . (6.3.3) 

This last function appears as the "close-convexification" of f, i.e. the largest closed 
and convex function minorizing f; naturally, co f ~ f! 

f(x) _ (x2 • 1)2 
a kinky function 

Fig.6.3.1. Taking a closed convex hull 

The extension thus introduced for the conjugacy is used in our next results. 

Proposition 6.3.2 Let {f.; lje] be a collection offunctions not identically +00, and 
all minorized by some common affine function. Then the function f := infje] f.; 
satisfies (i) and (ii), and its conjugate is 

(infj ij)* = SUPj(fj*) . (6.3.4) 

PROOF. That f satisfies (i) and (ii) is clear. Then (6.3.4) is proved as (6.3.1), via the 
same properties of extremization. 0 

Corollary 6.3.3 Let {gj lje] be a collection offunctions in Conv lR, and suppose that 
there is some Xo such that SUPje] gj(xo) < +00. Then 

(SUPj gj)* = co(infj gj) . 

PROOF. Proposition 6.3.2 applied to f.; = gj gives 

(infj gj)* = SUPj gr = SUPj gj . 

The result follows from (6.3.3), by taking the conjugate of each side. o 
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Example 6.3.4 Given two arbitrary functions rp and c from some arbitrary set Y to JR, 
consider the (closed and convex) function 

JR 3 x ~ g(x) := sup {xc(y) - rp(y) : y E Y} (6.3.5) 

which we assume < +00 for some Xo E lR. With the help of the notation 

gy(x) := xc(y) - rp(y) for all y E Y and x E JR, 

we can apply Proposition 6.3.3 to compute g*. We directly obtain 

g*(s) = co[infyeY g;(s)] , (6.3.6) 

where the conjugate of each gy is easy to compute: 

* { rp(y) if s = c(y) 
gy(s) = supA(s - c(y»x + rp(y)] = +00 otherwise. 

This calculation is of interest in optimization: consider the (abstract) minimization prob
lem with one constraint 

I infrp(y) y E Y 
c(y) = s. 

(6.3.7) 

Here, the right-hand side of the constraint is parametrized by s E lR. The optimal value 
is a function of the parameter, say P(s), usually called the value-function, or also primal, 
perturbation, or marginal function. Clearly enough, this function can be written 

pes) = inf {g;(s) : y E Y}. 

Observe that P has no special structure since we have made no assumption on Y, rp, c -
other than g t=. +00 in (6.3.5). Nevertheless, what (6.3.6) tells us is that the closed convex 
hull of P is the conjugate of gin (6.3.5): 

g* = coP. 

In particular, if P happens to be closed and convex, we obtain from (6.0.5): - inf g = g*(O) = 
P(O). With notation closer to that of (6.3.7), this means 

sup inf [rp(y) - xc(y)] = inf {rp(y) : c(y) = O} . 
xeR yeY 

o 

The closed convex hull of a function is an important object for optimization, even 
though it is not easily computable. A reason is that minimizing f or minimizing co f 
are "equivalent" problems in the sense that: 

i minimizes f ¢:::::} [i minimizes co f and co f(i) = f(i)] . 

Even more can be said: 

Theorem 6.3.5 Let f : lR. ~ lR. be a differentiable function with derivative D f. 
Then i minimizes f on lR. if and only if 

Df(i) = 0 and co f(i) = f(i). 

In such a case, co f is differentiable and minimal at i. 
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PROOF. The condition D f (i) = 0 is known to be necessary for i to minimize 
the differentiable function f. Furthermore, the (constant) affine function defined by 
lex) == f(i) minorizes f - hence l ~ co f - and coincides with f at i-hence 
lei) = co f(i). 

Conversely, let x satisfy Df(x) = 0 and co f(x) = f(x). Since co f ~ f, we 
have 

co f(x + h) - co f(x) ~ f(x + h) - f(x) 
h ~ h for all h > O. 

Letting h + 0, we obtain 

D+ co f(x) ~ Df(x) = o. 

Taking h < 0, we show likewise that 

D_ co f(x) ;;:: Df(x) = o. 

On the other hand, the convex co f satisfies D_ co f ~ D+ co f: we conclude 
that D co f (x) = 0, co f has a O-derivative at x, is therefore minimal at x, and f as 
well. 0 

Thus, what is needed for a stationary point x of f to be a minimum is just to satisfy 
co f(x) = f(x). The examples of Fig. 6.3.1 help understanding this last property: 
the function (x2 - 1)2 has the minima ± 1, and 0 is left out. It is interesting to note 
that the condition D f (x) = 0 is purely local and makes no reference whatsoever to 
minimality of x, rather than maximality, say. In fact, suppose f has only one-sided 
derivatives; if the stationarity condition "D f (x) = 0" is replaced by the apparently 
natural "D_f(x) ~ 0 ~ D+f(x)", then Theorem 6.3.5 breaks down: see the right 
part of Fig. 6.3.1. By contrast, the condition "co f(x) = f(x)" has global character. 



II. Introduction to Optimization Algorithms 

Prerequisites. Some knowledge of computer programming; elementary differential calcu
lus in ~n: inner products, gradient vectors, Hessian operators. 

Introduction. In this chapter, we survey the techniques that are suitable for solving mini
mization problems. By "solving", we mean actually computing a solution, or at least approx
imating it. In this domain, convexity of the functions involved is of little relevance, what is 
important is rather their smoothness. We will therefore limit our attention to smooth enough 
functions (say COO) and neglect their convexity as a minor detail: it will become important 
only in subsequent chapters. 

Our aim is not to give a complete list of existing algorithms (there are other books for 
that); rather, we will extract those concepts that will be useful for us later, when we develop 
algorithms in the context of convex analysis. 

1 Generalities 

1.1 The Problem 

We are interested in the following optimization problem: given an objective function 
f : JRn --+ JR, find i E JRn such that 

j := f(i) ::::; f(x) for all x E JRn , 

i.e. we want to solve (seethe appendix §A.l.3 - A.l.4 for the notation) 

min {/(x) : x E JRn } =: j. 

(1.1.1) 

(1.1.2) 

Remark 1.1.1 There are problems in which one is more interested in finding j, and the 
precise value of i is of smaller interest. This is the case for instance when f represents an 
actual cost, say in French francs, but (1.1.2) represents only a simulation (say of a power plant, 
an investment, ... ) rather than the actual operation (of that power plant, ... ). In some other 
cases, one is definitely more interested in finding i, the value j being only a by-product. This 
latter case is illustrated by the following well-known situation: to solve a system of equations 

F(x) = 0 with F: JRn -+ Rm. (1.1.3) 

one sometimes prefers to solve the optimization problem 

min {IIF(x)1I : x ERn} 
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which is normally equivalent to (1.1.3). Clearly then, one is not very interested in the minimal 
value, which is normally 0, but more so in the minimal solution, which supposedly solves the 
original problem (1.1.3). 0 

(i) Existence questions for (1.1.1) are rather well known. Provided that r E R is 
large enough to imply that the sublevel-set Sr(f) is nonempty- say r ~ !(XI), 
Xl arbitrary - (1.1.2) is clearly equivalent to 

min{f(x) : X E Sr(f)}. 

If we assume that some Sr (f) is bounded, then the continuity of !, or even 
its lower semi-continuity, implies the existence of a solution x to (1.1.2). 

(ii) Uniqueness is a different matter, for which the suitable assumptions are related 
with convexity: for example, strict convexity of! implies uniqueness of x solving 
(1.1.2). 

(iii) Recognizing a solution is, after existence and uniqueness, the next question con
cerning (1.1.2): when can it be ascertained that a given x is optimal? This is 
an unsolved problem, unless ! has some particular structure - and convexity 
is again the most classical one (we neglect the direct checking of (1.1.1) for all 
possible xl). This means that the question of whether a given x minimizes! 
cannot in general be answered with certainty. This question is important in prac
tice, however, because optimization methods that actually compute an optimal 
solution will precisely be based on the characterization of such a solution. Thus, 
instead of really solving (1.1.2), one looks rather for a so-called local minimum, 
i.e. a point such that one must, to obtain better values for !, move a definite 
distance from it: 

Definition 1.1.2 A local minimum of f is an x E Rn satisfying 

3e > 0 such that IIx - xII ~ e =} f(x) ~ f(x). (1.1.4) 
o 

Now, differential properties of f help describing a local minimum, and the fol
lowing result is classical: 

Theorem 1.1.3 Suppose f is a differentiable function. 

(a) First-order necessary condition: ifx is a local minimum then 

Vf(x) =0. 

Suppose now that f is twice differentiable. 

(b) Second-order necessary condition: if x is a local minimum then 

(h, V2 f(x)h) ~ 0 for all hE Rn. 

( c) Second-order sufficient condition: if x satisfies (1.1.5) together with 

(h, V2 f(x)h) > 0 for all hE Rn\{O}, 

then x is a local minimum. 

(1.1.5) 

(1.1.6) 

(1.1.7) 
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PROOF. Exercise; everything is based on the following developments: for h arbitrary 
in ]Rn, 

f(i + h) = f(i) + (V' f(i), h) + o(lIhll) 
= f(i) + (V' f(i), h) + 4(h, V'2 f(i)h) + o(lIhIl 2). o 

Among the above optimality conditions, (1.1.5) is the most used and there is a 
name for it: 

Definition 1.1.4 A critical, or stationary point for the differentiable f is an x E ]Rn 
satisfying V' f(x) = o. 0 

A genuinely necessary and sufficient condition for local optimality does not exist, 
but observe that the difference between (1.1.6) and (1.1.7) is fairly small: the latter 
requires that all the eigenvalues ofV'2 f(i) be positive, while the former allows some 
of them to be zero. Anyway, filling the gap between (b) and (c) would amount to 
analyzing higher order expansions of f: for those h having (h, V'2 f(i)h) = 0, the 
third-order term must be 0 and the fourth-order term must be strictly positive (sufficient 
condition) or at least nonnegative (necessary condition) etc. 

This is not generally considered a very fruitful pastime, and it has been a tradition 
to limit the study to second order, which is already difficult enough in practice: to 
check whether a given i is a local minimum, one must first check whether the gradient 
is 0 at i; then one must compute the second derivatives, and then check if they form 
a positive (semi-)definite operator. This is not practical as soon as n becomes large, 
say beyond some hundreds, which is common for optimization problems. 

(iv) Knowing that checking local optimality is already a difficult task in practice, 
computing a local minimum is even worse. In other words, (1.1.4) is not a tractable 
problem yet, and one has to be even more modest in solving (1.1.2); in fact, an 
optimization problem like (1.1.2) is considered as numerically "solved" if one 
has found a critical point in the sense of Definition 1.1.4. Yet, finding such a point 
is in general possible by approximation only, i.e. one must construct a sequence 
{xkl such that 

Xk -+ i with i stationary 

or at least 
V' f(Xk) -+ 0 when k -+ 00 

or, if we are less and less demanding, 

liminf IIV' f(Xk) II = O. 
k-+oo 

(1.1.8) 

Let us sum up: to solve an optimization problem like (1.1.2), one is usually content 
with a sequence {Xk} satisfying (1.1.8). Accordingly, the following terminology is 
generally used: 

Definition 1.1.5 A minimization algorithm is said to be convergent, or also globally 
convergent, for f in a given class (say a C l function) if (1.1.8) holds for all XI E ]Rn 
and all f in this class. 0 
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We mention here thl it the terminology "globally:onvergent" is misleading, be
cause it does not mean conWTgence-tl~-a-gmolu'rnninhum (1.1.1) (let us repeat that 
global optimality of a stationary point cannot be ascertained for a general f). Here, 
the term "global" rather refers to the initial point Xl, which can be arbitrarily far from 
the cluster point i. 

1.2 General Structure of Optimization Schemes 

To solve numerically our optimization problem, a set of rules must be defined which, 
knowing the objective f and starting from some initial X" construct the sequence 
{xd iteratively, in order to obtain (1.1.8). 

In practice, of course, k does not go to infinity (otherwise no optimization problem 
would ever be solved!) so one of the things an algorithm must do at each iteration is 
answer the question: "Can the current Xk be considered an accurate enough approxi
mation of some critical point?" (if yes stop; if no, proceed to computing Xk+l)' This 
is the stopping criterion, or stopping test, which directly conditions the time to be 
spent in solving the problem. According to our development above, the most natural 
stopping criterion is: stop if 

IIV f(Xk) II ~ 8 (1.2.1) 

for some prescribed tolerance 8 > O. If (1.1.8) holds, then (1.2.1) will certainly occur 
for some k; when (1.2.1) occurs, some critical point can be hoped to exist close to Xk 
(although not necessarily, cf. I (x) = eX, x E JR., which has no critical point although 
I' (x) = eX can be arbitrarily close to 0). 

Remark 1.2.1 The above test (1.2.1) is not the only possibility for stopping an algo
rithm: a sound optimization process can and must contain several other tests; actually, 
designing good stopping criteria is not so simple and the question is not really solved 
in a totally satisfying way; occasionally, we will return to this later, especially in §3. 

o 

Thus we see that the complete optimization procedure, which is supposed to solve 
(1.1.1) or (1.1.5), is made up of several ingredients: the algorithm itself, I, x" 8, etc 
(this list being non-exhaustive). They fall into two categories: 

(U) those pieces that characterize the problem to be solved; they are within the 
responsibility of the user, who has posed the problem and who is interested in 
knowing its solution; there we find: the choice of the initial Xl (the user may have 
some idea of a solution point), of the tolerance such as 8 for (1.2.1) (only the 
user knows how accurately the problem should be solved) and, last but not least, 
the objective function I itself; 

(A) the second category contains the algorithm proper, i.e. the set of rules to construct 
the iterative sequence {Xk}; it is in the responsibility of the algorithm's designer, 
who has defined the rules for iteration. 

Ifwe are dealing with general optimization - as opposed to a problem with special 
structure and a method especially tailored for it - the above two categories (U) and 
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(A) are fairly independent of each other. The most important part in (U), namely the 
definition of I, does not depend on the particular algorithm that is going to minimize it! 
On the other hand, and this is the most important point, the algorithm (the set of rules) 
is also totally indep~ndent of the actual I; usually, it has in fact been designed long 
before the particular problem was posed and long before the optimization process is 
executed. We mention, however, that this independency property has some exceptions; 
for example, a tolerance such as 8 for (1.2.1) cannot be chosen totally in abstracto: 
there are algorithms whose convergence in the sense of (1.1.8) is so slow that, in 
practice, they cannot accommodate very small values of 8. 

In most cases, an optimization process is a computer program, or something 
similar. This means that the sequence of operations that make up the process are 
somehow automatized: they have been organized before the actual execution of the 
process, during which no human action can be taken. We will see later, particularly in 
Chap. XII, that some optimization problems (having decentralized character) can be 
made up of several programs, not coexisting in the same computer; worse, they may 
not even be in the same computing center. Under these conditions, the dichotomous 
structure (U) - (A) mentioned above must be reflected in the optimization set, the 
two parts of which must be clearly identified and separated. For the user, (A) is a 
black box which, when fed with Xl, 8 and I, outputs its last iterate X K, approximately 
optimal if possible. Conversely, (U) is for the algorithm's designer another black box, 
actually made up of two parts: one part is the "driver", or the "main program", which 
sets up the problem, prepares the work for the algorithm and gives it some general 
instructions such as Xl, 8 etc; the second part contains the definition of I itself; when 
needed, it computes informations about I at a given x. 

In this chapter, as well as later throughout this book, we assume that this second 
part in the user's black box (U) computes the value I(x) of I at a given x, and also 
the value V I (x) of its gradient. We will always use the notation s for the gradient; so 
from now on we define 

sex) := V I(x), Sk:= V I(Xk) etc. 

Remark 1.2.2 In most applications, the numerical value of 'V I (x) can be calculated in a 
computing time that is of the same order as the time needed to calculate the numerical value 
of I(x). On the other hand, it is quite usual in applications that the human time needed to 
compute the formal derivatives (i.e. to write the corresponding computer program) is much 
larger than for I: examples where it takes a man-year are not exceptional; computing the 
gradient can be quite an investment. 0 

To summarize, the optimization schemes that we will always consider are or
ganized as illustrated in Fig. 1.2.1. Blocks (UO) and (UI) are the two parts in (U) 
mentioned above (the driver and the characterization of f) and (A) is the algorithm. 
The optimization process starts with execution of (UO), until everything is ready to 
construct the iterations {Xk}; then the control is passed to the black box (A) which, 
during the iterations, passes the control temporarily and regularly to the black box 
(UI) in order to get the necessary information concerning I for various x-values. 

Our point of view will be that of the designer and our aim is to study optimization 
algorithms only, i.e. what is inside (A); we therefore simply assume that (UI) exists 
to compute I(x) and sex) at any x that we may decide. 
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I Block (UO) I 1 

Set up problem Block (U1) 
Block (A) 

Initializations ( test for stoOJ 
Choose Compute f(x) 

tolerances t: T 
I 

Call algorithm - f- Compute Vf(x) 
Get infos 

Update x 
Exploit results L- I 

FIg.I.2.1. General organization of an optimization program 

Remark 1.2.3 It is important to realize that the only information available from 
! (apart from general properties like its degree of smoothness) reduces to (VI), or 
rather to executions of (VI); it is a good idea to think of (VI) as, say, a computer 
tape, unreadable for a human being. The information available is, therefore, purely 
pointwise; it is not permissible, for example, to choose r E R and to say: "Let us take 
x such that ! (x) = r", or even" ... such that ! (x) ~ r"; although there may be many 
such x's, finding just one is already a nontrivial problem. 

1.3 General Structure of Optimization Algorithms 

We study now in more detail the construction of the sequence {Xk} mentioned in § 1.1: 
how can it be a "good", "minimizing" sequence, reaching 0.2.1) as soon as possible? 

Most minimization algorithms are so-called descent algorithms, in the sense that 
! is forced to decrease at each iteration: 

!(Xk+l) < !(Xk) for k = 1,2, ... (1.3.1) 

In view of the limited information available from f (see the end of §1.2) it may be 
necessary to try several x-values before the actual move can be made from Xk to Xk+l. An 
iteration of a descent algorithm is essentially a trial and error process, roughly comparable 
to a walk in the dark toward the top of a hill: x E R.2 is the position, - f (x) is the altitude 
to be maximized. The hiker does not have a direct, continuous, feeling of his altitude: he can 
only measure it at discrete moments, by a call to (Ul), and it takes time to measure it. On the 
other hand, (UI) is more than an altimeter since it also gives the local variation of the altitude 
(the gradient of f). At a given x, the hiker must estimate the behaviour of the terrain around 
him in order to guess where to go. Then he moves and checks whether he seems to get closer 
to his target. If not, he must retrace his steps and try again. 

For most classical algorithms, an iteration starting from the current iterate Xk is 
composed of two stages. 

- The first stage, the direction-finding procedure, consists of finding dk E Rn, inter
preted as a direction along which it is worth looking for the next iterate Xk+l. To 
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compute this direction, a local study around Xk is made, and the original problem 
is approximated by a simpler one providing an easy guess where to go. 

- The second stage, called the line-search, is the actual computation of Xk+l: one 
computes a stepsize tk > 0 along db and then Xk is updated to Xk+1 = Xk + tkdk; in 
contrast with the first stage, this computation is made upon observation of the true 
original problem, i.e. upon direct calls to (U1), so as to obtain exact values of f. 

A classical optimization algorithm, therefore, presents itself schematically as follows: 

Algorithm 1.3.1 (Schematic Descent Algorithm) Theinitialpointxl E]Rn and the 
tolerance 8 > 0 are given, as well as the black box (U1) which computes f (x) and 
V I(x) for arbitrary x E ]Rn. Set k = 1. 

STEP I (Stopping criterion). If IIV f(xk) II ~ 8 stop. 
STEP 2 (Finding the direction). With the help of a model of the problem around Xb 

find dk E ]Rn for which 

3t > 0 such that f(xk + tdk) < f(xk) . 

STEP 3 (Line-search). By repeated calls to (Ul) at Xk + tdk for various values of t, 
find a convenient tk > 0, satisfying in particular 

f(xk + tkdk) < f(xk) . 

STEP 4 (Loop). Set Xk+1 = Xk + tkdb replace k by k + 1 and loop to Step 1. 0 

Remark 1.3.2 It is in Step 3 that the trial and error process mentioned at the beginning 
of this Section 1.3 takes place. The descent property (1.3.1) must be obtained there 
and, knowing from f only the local information contained in the black box (U 1), it is 
not a trivial matter - recall Remark 1.2.3. 0 

The methods functioning along this descent principle could be called local methods. It 
is a privilege of optimization to furnish a direct criterion (namely 1) measuring how good a 
given x can be. An important advantage of the above technique 1.3.1, in which the objective 
function f is improved at each k, is that it automatically ensures stability. Considering that 
optimization algorithms are after all methods to solve nonlinear equations like V f(x) = 0, 
one may ask whether there is any difference between such algorithms and general equation
solvers. There is indeed a difference: to construct a sequence {Xk} for solving 

F(x) = 0 

where F : ]Rn ~ ]Rm is not a gradient, a very basic difficulty is to have {Xk} bounded (an 
essential requirement for Xk to converge to some solution it). In optimization, forcing f to 
decrease at each iteration tends to stabilize {Xk}, which in particular must lie in the sublevel-set 
S!(xd(J). In most applications, this sublevel-set is bounded. Said otherwise, an unbounded 
{xt} would suggest some ill-posedness of the original optimization problem, rather than a 
failure of the algorithm. 

The advantage of the descent property has its price: requiring f(xk + tkdk) < f(xk) can 
drastically restrict the move from Xk to Xk+ I; very often, it results in little progress toward 
the solution, unless the direction dk is an excellent one and points inside regions where f is 
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largely decreasing. This is illustrated by Fig. 1.3.1, showing a sublevel-set of f: a long step 
along dk would place Xk+l much closer to the solution i, but this long step is forbidden if 
the sublevel-set is narrow and elongated. One may think that the situation considered in this 
picture is particularly unfavoumble; it is actually quite common - in fact it is the rule as soon 
as Xk starts approaching i. The lesson is that the direction must be chosen with great care. 

Xk .. __ 

f=f(Xk) 

Fig.t.3.t. Descent methods can be slow 

In view of this division of one iteration into two stages, we will study successively 
the direction finding, and then the line-search. 

2 Defining the Direction 

2.1 Descent and Steepest-Descent Directions 

The next definition is motivated by our care to decrease f at each iteration: we want 

3t > 0 such that f(Xk + td) < f(Xk). (2.1.1) 
o 

Definition 2.1.1 A descent direction issued from x for the continuously differentiable 
f is ad E lRn such that (recall our notation s = 'il f) 

(S(X), d} < O. (2.1.2) 
o 

Clearly, if f is a fixed given function, there may exist directions which satisfy 
the natural property (2.1.1) but not (2.1.2) - think of f(x) := -lIxlI2 at x = 0 : 
every d =1= 0 satisfies (2.1.1) and no d satisfies (2.1.2). Definition 2.1.1 then appears 
somewhat artificial. However, one should remember Remark 1.2.3 and the rules of the 
game for numerical optimization: if f is an arbitrary function compatible with the 
known information f(x) and sex) at a given fixed x, then (2.1.2) is the only chance 
to obtain (2.1.1): 

Proposition 2.1.2 Let the triple {Xk, ft. Sk} be given in lRn x lR x lRn and consider 
the set offUnctions 

l/Jk := {f differentiable at Xk : f(Xk) = ik, 'il f(Xk) = Sk} . 

Then, d E lRn satisfies (2·1.1)for any f E l/Jk if and only if (Sb d) < O. 
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PROOF. [if] Take d with (Sb d) < 0 and I arbitrary in <Pk; then 

I(Xk + td) = I(Xk) + t(Sk' d} + oCt) 

and it suffices to take t > 0 small enough to obtain (2.1.1). 

[only if] Take d with (Sk, d) ~ 0 and j E <Pk defined by 

jo := fk + (Sk' . - Xk) ; 

then, there holds 

"It ~ 0 j(Xk + td) = fcXk) + t(Sb d) ~ j(Xk) , 

so this d cannot satisfy (2.1.1) for all I E <Pk. o 

Thus, Definition 2.1.1 does appear as the relevant concept for a descent direction. 
It implies more than (2.1.1), namely 

31> 0 such that I(x + td) < I(x) for all t E ]0, i] 

and this makes sense since, in optimization algorithms, the move from Xk to Xk+l -
and hence tk - is usually quite small (remember Fig. 1.3.1). 

A descent direction in the sense of Definition 2.1.1 is one along which not only 
does I decrease, but it does so at a non-negligible rate, i.e. the decrease in I is 
proportional to the move from x. This rate of decrease, precisely, is the number 
(s(x), d), the directional derivative of I at x in the direction d (see Remark 1.4.1.4). 
It is the derivative at 0 of the univariate function t ~ I (x + t d) and it measures 
the above-mentioned progress that is made locally when moving away from x in the 
direction d. Then it is a natural idea to choose d so as to make this number as negative 
as possible, a concept which we now make precise: 

Definition 2.1.3 Let ~I . III be a norm on JRn. A normalized steepest-descent direction 
of I at x, associated with III . m, is a solution of the problem 

min{(s(x),d} : mdlll = I}. (2.1.3) 

A non-normalized steepest-descent direction is ad =f:. 0 such that IIIdlll-1d is a nor
malized steepest-descent direction. 0 

Problem (2.1.3) does have optimal solutions because the (continuous) function 
(s(x),·) attains its minimum on the (compact) boundary of the unit ball; it may 
have several solutions (see §2.2 below). To characterize these solutions, the results of 
Chap. VII are needed. For our present purpose, however, it suffices to display them 
graphically, which is done on Fig. 2.1.1: for given K E JR, the locus of those d having 
(s (x), d) = K is an affine hyperplane DK orthogonal to S (x); the optimal solutions are 
obtained for K as small as possible, i.e. when DK is as far as possible in the direction 
of -sex), yet touching the unit ball. 
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Fig.2.1.1. Homothety in the steepest-descent problem 

Remark 2.1.4 Figure 2.1.1 displays the need for a normalization in Definition 2.l.3: without 
its constraint, problem (2.1.3) would have no solution (or, rather, a solution "at infinity", with 
a directional derivative "equal to -00") and the concept would not make sense. A norm 
m . m, which does not have to be the Euclidean norm II . II = (', .) 1/2, must be specified when 
speaking of a steepest-descent direction. 

This implies also the artificial introduction ofthe number 1 in (2.1.3). It should be noted, 
however, that the particular value "1" is irrelevant, as far as a steepest-descent direction is of 
interest, regardless of its length. Looking at Fig. 2.1.1 with different glasses, we observe that 
collinear solutions are obtained if, K being kept fixed, say K = -1, the radius of the unit ball 
is changed so as to become as small as possible yet touching D_I. In other words, (2.1.3) and 

min{lildl: (s(x),d) = -I} (2.1.4) 

have collinear solutions. This property is due to homothety in Fig. 2.1.1: the functions (s(x), .) 
and HI· m are positively homogeneous of degree 1. This remark explains the important property 
that replacing "1" by K > 0 in (2.l.3) or (2.1.4) would just multiply the set of optimal solutions 
by K. Within a descent algorithm, this multiplication would be cancelled out by the line-search 
and, finally, the only important definition for our purpose is that of non-normalized (steepest
descent) directions. 0 

The choice of the norm in (2.1.3) or (2.1.4) is of fundamental importance for 
practical efficiency, and we will divide our study into two parts, according to this 
choice. Afterwards, we will study the conjugate-gradient method, which is based on 
a different principle. 

2.2 First-Order Methods 

The first possibility for the norm in (2.1.3) is a choice a priori, independent of f. 
Classically, there are two such choices: the i l norm and the Euclidean norm. 

(a) One Coordinate at a Time The i l norm is 

n 

Mdll = Idb := L Idi I (2.2.1) 
i=1 

(here and in what follows, lRn is assumed to have a basis, in which zi is the i lh coordinate 
of a vector Z, and the natural dot-product is used). Figure 2.2.1 particularizes Fig. 2.1.1 
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Fig. 2.2.1. An ll-steepest-descent direction 

to this norm. It clearly indicates the following characterization of an optimal dk (which 
will be confirmed in Chap. VII): let ik be an index such that 

lik(Xk)I ~ Isi(Xk)1 fori=I, ... ,n 

(note that there may be several such it, just choose one); then the n numbers 

dk = I ~ sik(Xk) 

Isik(Xk) I 

if i =1= it. 

if i = ik 
(2.2.2) 

make up an optimal direction. In other words: among the solutions of (2.1.3) with 
the II norm (2.2.1), there is one of the vectors of the basis ofll~n (neglecting its sign, 
chosen so as to obtain a descent direction), namely one corresponding to a maximal 
coordinate of the gradient. 

Remark 2.2.1 Under these conditions, xk+ 1 is obtained from Xk by changing only one coor
dinate, namely one which locally changes f most. The resulting scheme has an interpretation 
in terms of a traditional method, the method of Gauss-Seidel, which we briefly describe now. 
To solve the linear system 

Qx +b =0, (2.2.3) 

this method consists of choosing at iteration k one ofthe equations, say the iJeh, and of solving 
this equation with respect to the single variable xik, the other "unknowns" x j being set to 
the (known) coordinates of the current Xk. In other words, the whole vector Xk+1 is just Xb 

except for its i~ coordinate, which is set to the value a E IR solving 

L qidxl + qikika + bik = 0 
Hik 

(the method is well-defined if all diagonal entries of Q are nonzero). 
Now, suppose that our function to be minimized 

f(x) = !(Qx, x) + (b, x) 

(2.2.4) 

is quadratic with Q symmetric positive definite; the gradient s(x) = Qx + b is affine and 
minimizing f is just solving (2.2.3). Then, the Gauss-Seidel iterate given by (2.2.4) has the 
form Xk + tkdk with dk given by (2.2.2). It can be shown also that the stepsize tk corresponding 
to a is positive and actually minimizes f along dk (this is due to positive definiteness of Q, 
which implies in particular qhik > 0). In other words, the ll-steepest-descent method is 
simply a variant of the method of Gauss-Seidel, in which: 
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- ik is an index giving a most violated equality in (2.2.3) (in the original method, ik was rather 
chosen cyclically, thus resulting in a direction totally blind to the behaviour of f), 

- there is some freedom for the actual value of ex, obtainable by some line-search instead of 
as a solution of (2.2.4). 

(b) Euclidean Steepest Descent The second classical choice for II . W in (2.1.3) 
is simply the Euclidean nonn W .• := II . II induced by the scalar product (', .) 
defining V!. When Fig. 2.1.1 is particularized to this case, the spheres Illd II = K 

become "ordinary" circles and it is easy to realize that dk is then -S(Xk) (up to the 
nonnalization coefficient). We therefore obtain: 

Definition 2.2.2 The gradient method is the steepest-descent method in which the 
nonn 111·111 for Definition 2.1.3 is (', .) 1/2. In this method, the next iterate is looked for 
in the form 

Xk+1 = Xk - tV!(Xk) , 

the step size t > 0 being given by a line-search. o 

Remark 2.2.3 Just as in Remark 2.2.1, we also have an interpretation ofthe gradient method. 
To solve a system of equations (linear or not) 

S(X) = 0, (2.2.5) 

where s : ]Rn ~ ]Rn is or is not a gradient mapping, a classical method consists of defining 
the sequence of iterates by 

Xk+1 = Xk + PS(Xk) (2.2.6) 

with a suitable parameter pER All the coordinates of the current iterate are modified at the 
same time, instead of one by one as in the case of Gauss-Seidel. A motivation to do so is that 
(2.2.5) is equivalent to 

x = x + ps(x) 

where P =f. 0 is arbitrary; (2.2.6) is then the first idea that comes to mind, namely the process 
of successive approximations, to solve the above fixed-point problem. It remains to choose 
P and we have here an illustration of Remark 1.3.2. To solve (2.2.5) by (2.2.6), the question 
of choosing a suitable value for p is in fact puzzling - for convergence as well as numerical 
efficiency. Here however, knowing that S is actually the gradient of some function f which 
must be minimized, and being able to actually calculate f, provides decisive information: (i) 
it indicates that p (= -t) should be negative, and (ii) it gives a constructive way of adapting 
p at each iteration, via a line-search. 

(c) General Normings The above two steepest-descent methods (Gauss-Seidel and 
gradient) are only two instances of an infinite number of possibilities, each corre
sponding to a particular W • W in (2.1.3). Among all these nonns, it is natural to ask 
whether there is a "best" one, yielding a "best" method in some sense? Whatever 
"best" means, the nonn in question should be "universal", i.e. chosen a priori and 
independent of the particular! to be minimized (by contrast, §2.3 will be devoted to 
a nonn depending on! and on the iteration index k). 
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In the context of an algorithm of the type 1.3.1, an essential characteristic of the 
direction dk is the angle that it makes with the gradient; thus, for nonzero sand d in 
IRn, set 

(s, d) 
cos(s,d):= IIslilldli' 

By the Cauchy-Schwarz inequality, any value of cos is in [ -1, + 1]. To say that d is a 
descent direction at x is to say that cos ('\7 I(x), d) E [-1, 0[; in the gradient method, 
COS(Sk, dk) = -1 is as negative as possible. 

It so happens that the choice of III • III has little influence on whether Xk converges 
or not to a critical point (for this, the line-search is much more crucial). On the other 
hand, the value of COS(Sb dk) does influence the speed of that convergence, i.e. how 
fast (1.2.1) can be obtained. The following result gives a useful indication in this line; 
we omit the proof, which is of little interest in the framework of this book. 

Theorem 2.2.4 Let {xd be the sequence generated by a steepest-descent method 
in which tk is chosen as a solution of mint>o I (Xk + tdk). Suppose that f is twice 
continuously differentiable, that Xk -+ i with '\71 (i) = 0, and that there are two 
constants 0 < i ~ L such that, for all h E IRn and x close enough to i, 

illhll2 ~ ('\72 I(x)h, h) ~ LIIh1l 2. 

Suppose also that there is C E ]0, 1] such that 

COS(Sb dk) ~ - C for k = 1,2, ... 

Then there is M > 0 such that, for k large enough: 

I/(xk) - l(i)1 ~ M[l - (CiIL)2]k. 

(2.2.7) 

(2.2.8) 

(2.2.9) 
o 

This result suggests that the error I(Xk) - I(i), assumed to converge to 0, 
probably behaves like a geometric series with ratio close to 1 when C is close to O. For 
given I (ilL fixed), a steepest-descent method with C ~ 0 (direction and gradient 
almost orthogonal) can be expected to converge much more slowly than the gradient 
method (C = 1) - at least if the majorization in (2.2.9) is reasonably sharp. 

Consider for example the method of Gauss-Seidel and the usual dot-product 
(s, d) = S T d in IRn. It is easy to see that, with dk of (2.2.2), there holds 

(Sb dk) = -iSik(Xk)i ' IIdkll = 1 and IISkll2 ~ n iSik(Xk)i2 

so (2.2.8) holds with C = 1 I In. If, once again, the majorations (2.2.8) and (2.2.9) 
are reasonably sharp, the method of Gauss-Seidel becomes drastically slow when n 
becomes large. For the gradient method, however, C = 1 is independent of n and the 
rate of convergence does not deteriorate when n -+ 00. 

Example 2.2.5 To illustrate the above comments, take the symmetric positive definite n x n 
matrix Q defined by 
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12 ifi = j 
Qij= -I ifli-jl=1 

o ifli-jl>l 

(which is common when differential equations are discretized) and consider the problem of 
minimizing 

f(x) := !lIxll2 + !(Qx, x) for x E lRn • 

As a quadratic function, f has the constant Hessian I + Q, for which (2.2.7) holds with 
il L ~ 0.2. Therefore, the gradient method should converge roughly as (0.96)k (at least), 
independently of n. On the other hand, the method of Gauss-Seidel might have the rate of 
convergence 1 - 0.04In. 

log f(xk) 

-1 
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-5 
0-50,100,200 

-7 
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10 20 30 k 

Fig. 2.2.2. Typical behaviour of gradient method 

log f(xk) 
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-5 

-7 

-9 

100 1000 k 

Fig. 2.2.3. Corresponding behaviour of Gauss-Seidel 

This is confirmed graphically: Fig. 2.2.2 displays, for various values of the dimension 
n, the decrease oflog f (Xk) obtained by the gradient method, as a function of the iteration
number k. It is remarkably constant and convergence can be considered as obtained in some 
20-30 iterations. On the other hand, Fig. 2.2.3 displays the decrease obtained with the method 
of Gauss-Seidel, which clearly deteriorates for large n. For n ~ 200, it becomes so slow that 
the method must be considered as non-convergent (note the difference in horizontal scales 
between Figures 2.2.2 and 2.2.3!). 0 
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Remark 2.2.6 The gradient method thus appears as optimal in some sense among all the 
steepest-descent methods, since it minimizes cos(Sk, dk) at each iteration. This property 
should not be misinterpreted, however: there may well be functions for which Gauss-Seidel's 
method is much faster (think of !(~l, ... , ~n) = Li(i~ii, for example!). The gradient 
method is optimal in a "minimax" sense, among the functions satisfying the assumptions of 
Theorem 2.2.4. 0 

Let us conclude this section by a terse comment: all these first-order methods 
should NEVER be used, because they are highly inefficient in terms of speed of con
vergence. One can just say that there is some excuse for using the i 1 method: it does 
not really require computing derivatives (if the choice for ik in (2.2.2) is cyclic instead 
of optimal and if the line-search accepts negative stepsizes); on the other hand, it is 
admittedly even worse than the gradient method (recall Example 2.2.5). Actually, the 
methods of the next sections go so much faster, and with so little additional cost, that it 
would be a sin against economy to give preference to the present first-order methods. 

2.3 Newtonian Methods 

The methods of §2.2 are of first-order type in the sense that the objective function 
('\7 lex), .) of (2.1.3) is a first-order model for !. By contrast, the methods of the 
present section build a second-order model, which is then used in the normalization 
constraint of (2.1.3) to improve the direction. 

Let Q be a symmetric positive definite operator; then (Qx, x} defines (the square 
of) a norm; (2.1.3) can therefore be specialized to 

min{(S(Xk),d} : (Qd,d} = I} (2.3.1) 

(note that the presence or absence of the square root in the constraint does not matter 
a bit). It so happens that (2.3.1) has a unique solution which is collinear to that of 

min[(s(xk),d} + ~(Qd,d}] 
d 

(2.3.2) 

(this will be confirmed in Chap. VII). Now, if '\72 !(Xk) happens to be positive definite 
and if we take Q := '\72 !(Xk), we obtain a method with a sensible rationale: (2.3.2) 
then consists of minimizing the second-order development of! near Xk 

min [('\7 !(Xk), d} + 4('\72 !(xk)d, d}]. 
d 

(2.3.3) 

Remark 2.3.1 Thus, the direction can now be computed in three different ways, which are 
essentially equivalent: by solving (2.3.1) = (2.1.3), by solving (2.1.4), or by solving (2.3.2). 
These three ways only differ by the length of the resulting direction, this length being directly 
related to the value "I" in (2.3.1) and (2.1.4). When Q = "il2 !(Xk), the form (2.3.2) = (2.3.3) 
is superior to the other two because it gives not only a direction but also a length, i.e. a stepsize. 

. Clearly enough, (2.3.3) is of particular interest since its solution minimizes the second
order approximation of d 1-+ !(Xk + d). On the other hand, if dk solves (2.3.3) and if K > 0, 
then Kdk minimizes (remember Remark 2.1.4) 
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(V!(Xk), d} + 2~ (V2 !(xk)d, d) 

which has little to do with a second-order approximation of!. As a result, the step size t = 1, 
which yields the iterate Xk + dk, is supposedly better than any other step size. By contrast, 
neither (2.1.3) nor (2.1.4) gives an idea of what the stepsize should be. This will have some 
consequences for the line-search. 0 

Remark 2.3.2 As in §2.2, we can draw a parallel between the present second-order method 
and equation-solving: consider again a system like sex) = O. Apart from the process of 
successive approximations, the next idea for solving it is Newton's method. Starting from the 
current iterate Xk, we would like the next iterate Xk + d to solve 

S(Xk +d) = O. 

To mimic this, we replace s locally around Xk by its first-order approximation and we solve 
instead 

[S(Xk + d)~] S(Xk) + Js(xk)d = 0, 

where Js is the Jacobian operator of s. Here, in the context of optimization, the Jacobian 
operator of s := V! is the Hessian operator of ! and the above linear system is 

[V!(Xk + d)~] V!(Xk) + V2 !(xk)d = 0, (2.3.4) 

which is nothing other than the optimality condition for (2.3.3). All this is perfectly normal: 
a second-order development of! corresponds to a first-order development of V!. 

The qualities and deficiencies of Newton's method are well-known: 

(i) it is an extremely fast method, with so-called 2nd order Q-convergence. Roughly 
speaking, this means that if the current iterate has l exact digits, the next iterate 
has 2l exact digits; but 

(ii) it often diverges violently, especially if Xl is not close to the solution of sex) = 0; 

(iii) it requires computing second derivatives - which is usually a highly unpleasant 
task for the user - and then solving a linear system such as (2.3.4); all this is 
somewhat heavy and may not be convenient. 

(iv) Another disadvantage, peculiar to optimization problems, is that V2 !(Xk) must 
be positive definite, otherwise dk may not be a descent direction. Note also that, 
ifV2!(Xk) is indefinite, (2.3.3) has usually no solution and (2.3.4) does not make 
sense for minimization: its solution(s) tend(s) to approximate a saddle-point or 
a maximum of !, not a minimum. Yet, while V2! is normally positive definite 
in a neighborhood of a (local) minimum (if it varies continuously with X and if 
Theorem 1.1.3( c) applies), it has certainly no reason to be so in the whole space. 

The aim of Newtonian methods is to eliminate (ii) - (iv) without destroying the 
advantage (i). Eliminating (ii) is quite easy and the line-search technique is made just 
for that (once again, recall Remark 1.3.2), provided that dk is a descent direction. 

Remark 2.3.3 With Remark 2.3.1 in mind, the line-search should be understood as a mere 
safeguard against divergence of Newton's method, rather than a means to decrease f as much 
as possible - recall also the discussion following Remark 1.3.2. In other words, the stepsize 
t = 1 should definitely be preferred, and only in case of total failure, whatever this means, 
should it be relinquished for another value. 0 
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As for (iii) and (iv), they will be eliminated by the same single mechanism. The 
problem is that one does not want to compute V2 !, which in addition may not be 
convenient to use if it is not positive definite. So then the idea is: why not approximate 
it? Even more: why not approximate its inverse, which is in fact more useful for 
(2.3.4)? A further idea, related to (iv): the qualities of Newton's method are local only 
and V 2 !(Xk) (or its inverse) is not much needed when Xk is far from a minimum. 
On the other hand, V2 !(Xk) usually becomes positive definite when Xk approaches a 
minimum. This provides two incentives for the following idea: why not take a positive 
definite approximation, albeit rough during the early stages of the descent process, 
when Xk is still far from a minimum? 

With this last argument in mind, we realize that our problem resembles that of 
finding a minimum of !: what we need is another algorithm which, starting from 
some positive definite operator WI and working in parallel with the construction of 
{xkJ, accumulates second-order information from! to construct a sequence {Wk} 

of positive definite operators. Only at the end of the process, need these operators 
approach the desired W*, whatever it is. 

Neglecting for the moment the issue of defining W* (it should be something like 
[V2!(i)rl , if Xk ~ i), we obtain a specification of Algorithm 1.3.1: 

Algorithm 2.3.4 (Schematic Variable Metric Algorithm) The initial point XI E 

]Rn and the tolerance 8 > 0 are given. Choose an initial symmetric positive defi
nite operator WI. Set k = 1; Sk will denote V!(Xk) as usual. 

STEP 1 (Stopping criterion). If IIsk II ::::;; 8 stop. 
STEP 2 (Finding the direction). Compute dk = - WkSk. 

STEP 3 (Line-search). Find tk > 0 and the corresponding xk+ I = Xk + tkdk satisfying 
in particular !(Xk+I) < !(Xk). 

STEP 4 (Metric update and loop). Select a new symmetric positive definite operator 
Wk+ I; replace k by k + I and loop to Step 1. 0 

It remains to specify the choice of Wk+1 in Step 4, the only new ingredient with 
respect to the general scheme 1.3 .1. As seen already, the first property to be satisfied 
is: 

Wk+1 is symmetric positive definite for k = 1,2, ... (2.3.5) 

Now, remembering that Wk is supposed to approach some inverse Hessian, we impose 
the following relation: 

Wk+1 (Sk+1 - Sk) = Xk+1 - Xk (2.3.6) 

known as the secant equation. Observe that xk+1 is already known in Step 4 of 
Algorithm 2.3.4, so Sk+1 can be obtained from a call to block (Ul) of Fig. 1.2.1; 
solving (2.3.6) for Wk+1 is not an impossible task. 

We will call secant, or quasi-Newton methods, the methods of the type 2.3.4 
where Wk is updated in Step 4 so as to satisfy (2.3.6). The motivation for (2.3.6) 
can be explained as follows: making the necessary assumptions on !, start from the 
equality 
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V!(Xk+I) - V!(Xk) = 11 V2 !(Xk + t(Xk+1 - Xk»(Xk+1 - xk)dt 

and call 

Gk:= 11 V2 !(Xk + t(Xk+1 - Xk»dt 

the mean value of V2! between Xk and xk+ I. Then there holds by definition 

Gkl[V!(Xk+I) - V!(Xk)] = Xk+1 - xk, 

so (2.3.6) is a natural requirement since we would like Wk to resemble Gkl , at least 
asymptotically. 

Remark 2.3.5 The reason why (2.3.6) is called the secant equation is that it extends to the 
multi-dimensional case a known method to solve equations in one variable. Let the equation 

s(X) = 0 (s: 1R .... 1R) 

be solved by the one-dimensional Newton method (x+ is the next iterate, x is the current one) 

x+ = x - s(x)/s'(x). 

This Newton method could be called the tangent method, as it approximates the graph of s by 
its tangent at the current x. Suppose that, just as in the multi-dimensional case, one does not 
wish to compute the derivative s'. Then, the idea of the secant method is to replace the above 
tangent by the secant crossing the graph of s at the two points (x, s(x» and (x_, s(x_» in 
1R2 (x_ is the previous iterate). Straightforward calculations show that the next iterate is now 

x+ =x - Ws(x) 

where we have set 
x-x 

W·- -
.- s(x) - s(x_) 

and we recognize here the secant equation (2.3.6). o 

The above remark shows that, if n = 1, there is exactly one quasi-Newton method 
- which, incidentally, need not satisfy (2.3.5). For n > 1, it is rather clear that the 
n scalar equations in (2.3.6) do not suffice to determine uniquely the 1/2n(n + 1) 
unknowns in Wk+ I. In order to choose among the solutions, an additional requirement 
is imposed: 

Wk+1 should be "close" to Wk (2.3.7) 

for rather understandable stability reasons: if {Wk} bumps back and forth between 
several values, {dk} will do the same and {Xk} will oscillate, resulting in a loss of 
efficiency. Depending on the meaning chosen for (2.3.7), one obtains a potentially 
infinite number of variants. 

The most widely used, known as BFGS (for C. Broyden, R. Fletcher, D. Goldfarb 
and D. Shanno), consists of taking Wk+1 as follows: set 

~ = ~k := xk+1 - Xk and (1 = (1k := sk+1 - Sk; (2.3.8) 
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then Wk+ I is the operator which, to Z E IRn, associates the image (we drop the subscript 
from Wk to alleviate notation) 

Wk+IZ = Wz + [1 + (a, Wa)] (z, ~) ~ _ (a, Wz)~ + (z, ~}Wa 
(a,~) (a,~) (a,~)· 

(2.3.9) 

When (., .) is the usual dot-product, Wk+1 has the explicit matrix expression 

I+aTWaaT~ T 1 
Wk+I=W+ T~ H ---=r-[~aTW+Wa~T]. 

(f (f ~ 
(2.3.10) 

Note: an expression like ~ a T means the column matrix ~ post-multiplied by the row 
matrix aT. The result is an n x n matrix, whose kernel is the (n - I)-dimensional 
subspace orthogonal to ~, when g =1= O. 

A study of the convergence properties of secant methods would be far beyond the scope 
ofthis book. In relation with (2.3.5), we just mention without proof the following (important) 
result, which will be of interest to us later. 

Theorem 2.3.6 Suppose Wk is positive definite. A necessary and sufficient condition for 
Wk+1 defined by (2.3.9) to be positive definite is (a, ;) > o. 0 

A last remark concerning actual implementations: in the case of the dot-product, when 
{Wk} is defined by (2.3.10), some prefer not to use Wk explicitly but rather its inverse (hence 
the approximation of the Hessian itself) in the product·form 

Mk:= Wk- I = LDLT. (2.3.11) 

Here D is a positive diagonal matrix and L is a lower triangular matrix with diagonal elements 
all equal to 1. The system 

Mkd +Sk = 0 

is then solved via 3 easy systems: 

Ly + Sk = 0, Dz = y, LTd = z. 

2.4 Conjugate-Gradient Methods 

The Newtonian methods of §2.3 are extremely efficient but become impractical when 
the number n of variables is large. Then it is impossible to store the quasi-Newton 
matrix, and furthermore the algebraic calculations may become overwhelming, as 
computing the direction involves O(n2) operations. In this section, we introduce 
the conjugate-gradient methods, which have opposite characteristics. They use little 
storage, at the price of more modest speed of convergence, although they usually do 
not suffer the unacceptable behaviour of first-order methods of §2.2. 
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(a) Linear Case The rationale for conjugate-gradient methods is purely algebraic. 
It does not rely on a second-order development of the objective function, which is 
assumed to be exactly quadratic. Therefore suppose 

I(x) := ~(Qx, x) + (b, x) + c (2.4.1) 

is our quadratic objective function, where Q is a symmetric positive definite operator, 
b is an arbitrary vector in ]Rn and c E R 

Definition 2.4.1 At iteration k of a descent algorithm, call 

Uk = lin {SI' ... , Sk} := {d E]Rn : d = Lf=1 ajSj, (alo ... , ak) E]Rk} 

the subspace spanned by the "accumulated information" SI, ... ,Sk. The conjugate
gradient method to minimize I of (2.4.1) is the method in which, for each k, Xk+1 
minimizes I in the affine manifold 

Vk := {Xk} + Uk 

parallel to Uk and containing Xk. o 

Thus, our conjugate-gradient method minimizes I at the first iteration in the 
direction of the gradient, at the second iteration in the plane generated by SI and S2 

and passing by X2, and so on. The sequence {Xk} is determined without ambiguity by 
XI only; at iteration k, set 

k 

]Rk 3 a ~ x(a):= Xk + LajSj. 

j=1 

Thus, the method consists in minimizing withrespectto a E ]Rk thefunctionqk(a) := 
I(x(a»; then, having a solution &, we set Xk+1 = x(&) and Sk+1 = V I(x(&». 
Observe that 

oqk (a) = (V I(x(a», sj} for i = I, ... , k 
oaj 

(and that all these derivatives must vanish for each k at a = &). It immediately follows 
that: 

(i) for each k, (sk+ I> sj) = 0 for i = I, ... , k i.e. 

(Sj, Sj) = 0 for i :f:. j . (2.4.2) 

This implies: 
(ii) the dimension of Uk increases by exactly one at each iteration (the gradients 

are independent!) until sk+1 = 0 - an event which certainly happens for k :::;; n, 
probably for k = n. 

Setting Xk+1 = Xk + tkdk as usual, one sees also that 
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(iii) dk has a nonzero component over Sk at each iteration (otherwise Xk+l = Xk, the 
minimum of f in Vk-l I); as a result, the directions dk are also independent, Uk 
can equivalently be defined as 

Uk = lin{dJ, ... , dk} = lin{dJ, ... , dk-lo skI 

and, for the same reason as in (i), there holds 

(SHIo~)=O fori=I, ... ,k. (2.4.3) 

(iv) Because s(-) = V f is an affine mapping, SHI = Sk + tkQdk holds and we 
obtain from (2.4.3) 

0= (Sko dj) + tk(Qdk, dj) = tk(Qdk, dj) for i = I, ... , k - I 

which can be written 

(Sj+l-Sj,dk) =0 fori = 1, ... ,k-1 

or also (remember (iii), tk is nonzero): 

(Qdj, dj) = 0 for i ¥= j . 

(2.4.4) 

This last relation explains the name of the method: the directions are mutually con
jugate with respect to the symmetric operator Q. Algebraically, we thus have a bi
orthogonalization process, which constructs the orthogonal sequence {skI and the se
quence {dk}, orthogonal with respect to the scalar product ({x, y)) := (x, Qy). 

Computing dk is an easy task: using (2.4.4), one writes 

(Sj,dk)="k fori=I, ... ,k (2.4.5) 

where the normalization factor "k is at our disposal (dk is a direction!). Note that 
(2.4.5) is a linear system of k equations with k unknowns aj (see Definition 2.4.1). 
Thanks to (2.4.2), its solution is straightforward: we obtain dk = "k L~=I Sj Ills; 112. 

It is useful to express dk by recurrence formulae: writing 

"k+l Sk+l 
dk+1 = --dk + "HI-II -112 

"k . Sk+1 

and using the particular value "j = -IiSi 11 2 , we obtain 

where 

dk+1 = -SHI + f3kdk 

13k = IIsHdl2 

IIskll2 • 

(2.4.6) 

(2.4.7) 

With the above choice of the ,,'s, the method becomes reminiscent of §2.2: the 
direction in (2.4.6) is that of the gradient plus a correction, which is a multiple of the 
previous direction. 

The algorithm is now completely defined if we add that the stepsize must of course 
be optimal (a minimization in Vk of Definition 2.4.1 implies a minimization along 
dk E Uk!)' 
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Algorithm 2.4.2 (Conjugate Gradient, Linear Case) The initial point XI is given, 
as well as the tolerance 8 > 0 and the objective function 

f(x) = ~(Qx, x) + (b, x) + c. 

Again, the notation S := V f is used. Set k = 1. 

STEP 1 (stopping criterion). If IIskli ::;; 8 stop. 
STEP 2 (computation of the direction). If k = 1 set dk = -Sh otherwise set dk = 

-Sk + fJk-Idk-I' 
STEP 3 (line-search). Find tk > 0 solving 

min f(Xk + tdk) i.e. tk = 
t>o 

and set xk+1 = Xk + tkdk' 

(Sk, dk) 

(Qdbdk) 

STEP 4 (fJ-update and loop). Set fJk = II Sk+ I 112 IlIskll2, replace k by k + 1 and loop 
to Step 1. 0 

Remark 2.4.3 The tolerance 8 > 0 for stopping may seem superfluous, since Sk must anyway 
be zero for some k ::;; n + 1. However there are still two reasons for keeping 8 > 0 as in the 
general case. First, the theoretical value Sk = 0 may never be reached because of roundoff 
errors; second, ifthe number of variables is, say, n = 104 , one is usually not prepared to wait 
for 104 iterations before stopping. In most applications, IISk II is (fortunately) small enough 
long before that. Keeping in mind that conjugate-gradient methods are precisely tailored to 
large n, this remark is of course essential. 0 

(b) Nonlinear Extensions Now we should generalize the algorithm to non-quadratic 
objective functions. Ibis is not straightforward because then, the theory breaks down 
from the very beginning. With regard to Definition 2.4.1, it is certainly not possible 
to minimize a general f (only known, recall, via the black box (Ul) of Fig. 1.2.1) in 
any affine manifold - even one-dimensional, as is a direction. 

A first simple idea is to pretend that f is quadratic and apply Algorithm 2.4.2 as 
it is - except that Step 3 must be set back to a general line-search scheme, to be seen 
in §3. At least one can reasonably hope that the direction of (2.4.6) is more efficient 
than the plain gradient because fJk > 0 has a stabilizing effect. It smooths out the 
path linking the successive iterates (see Fig. 2.4.1: the angle between dk and dk+1 is 
smaller than the angle between dk and the gradient direction -Sk+ I)' 

~ Xk+l;?z :+1 
Fig.2.4.1. Conjugate gradient as a path-smoothing device 

Fortunately, there is a better argument. The value fJk of(2.4.7) comes out naturally 
from the system (2.4.5); there are several other possible values, however, which all 
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give the same result in the "perfect case" (f quadratic and optimal line-searches) but 
which are not equivalent in general. Let us mention 

A {Sk+1 - Sb Sk+l} 
fik = II Skll 2 ' 

(2.4.8) 

known as the formula of Polak and Ribiere (as opposed to (2.4.7), called the formula of 
Fletcher and Reeves). Observe the equivalence of(2.4.8) with (2.4.7), due to (2.4.2). 

Remark 2.4.4 It is amusing - and instructive - to mention the following point. The choice 
(2.4. 7) is practically never used because (2.4.8) invariably converges faster. On the other hand, 
one can prove that, under suitable and reasonable assumptions on f and on the line-search, 
(2.4.7) yields a convergent algorithm, while a counter-example exists, showing that (2.4.8) 
need not converge to a critical point! 0 

Among the many possibilities to choose 13k. one is more interesting than the others, 
namely: 

- {Sk+1 - Sk. SHI} 
fh = . 

{sHI - Sk, dk} 

To explain why, let us write the resulting direction in a rather artificial way. We set as in (2.3.8) 
~ := Xk+l - Xk = tkdk, a := sk+1 - sk. Now add a term which is 0 if the stepsize tk is 
optimal (then (Sk+l, ~) = 0): 

dk+l = -sk+l + fikdk = 

= -s + (a, sHd d + (sHJ, ~) [a _ (1 + N) 1:] 
HI (a, dk) k (a,~) \a:rY " . 

(2.4.9) 

We stress that, if the stepsizes are optimal, (2.4.9) provides another form of linear conjugate 
gradient, just as (2.4.6) - (2.4.7) or (2.4.8). The reason of our rather complicated form of 
(2.4.9) is the following. Do not suppose that f is quadratic nor that the stepsizes are optimal 
and consider the BFGS formula (2.3.10), with W replaced by the identity matrix. Then 
the resulting direction is exactly (2.4.9). In other words, fik of (2.4.8) with the modification 
appearing in (2.4.9) (which matters only when tk is not optimal) yields a "memoryless" quasi
Newton method in which, for want of storage, the sequence of matrices is reinitialized at each 
iteration. 

This gives a serious motivation for the somewhat sophisticated formula (2.4.9), although it 
is slightly more expensive to compute than the others. Taken as a nonlinear conjugate-gradient 
method, it is based on a second-order development of f. By contrast, the purely algebraic 
arguments ofthe beginning of this Section 2.4 do not extend properly to the nonlinear case. 
Among its advantages, we mention that dk+ I of (2.4.9) is a descent direction under the mere 
condition (a,~) > 0 (recall Theorem 2.3 .6). This property is not easy to obtain with fJ-choices 
like (2.4.7) or (2.4.8). 

Remark 2.4.5 We mention that the way is thus open for methods intermediate between 
(2.3.9) and (2.4.9). Suppose one has a limited memory allowing the storage of say N real 
numbers simultaneously (with N « n2J2). Then a quasi-Newton method such as (2.3.10) 
cannot be used; but if we give up using the form (2.3.11) we see that, after all, W k can be 
computed by using 2k vectors only, say 
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~J, UI, ~2, u2, ... , ~k, uk· 

Then, the intermediate methods we are alluding to would consist in using explicitly at each 
iteration the largest possible number K :::: N J2n among the above pairs of vectors, so as 
to include in dk as much information as possible concerning second-order behaviour of f; 
observe in particular that (2.4.9) takes K = 1, while (2.3.10) demands K arbitrarily large. 

Remark 2.4.6 An easy observation will be of interest to us later in this book, when defining 
other generalizations of the conjugate-gradient method (§XIY.4.3). The direction obtained in 
the "perfect case" (f quadratic and optimal stepsize) is defined by (cf. (2.4.5» 

k 

dk=LeliSj and (Sj,dk) = (sj,dk) fori,j=I, ... ,k. 
i=1 

(2.4.10) 

Geometrically, this means that dk is orthogonal to the affine hull of the gradients, i.e. the 
affin hyperplane 

Hk := {L:7=1 (XiSi : L:7=1 (Xi = I} 

of dimension k - 1 passing through SI, ... , Sk (see Fig. 2.4.2). If dk is scaled so that L:i eli = 
-1 in (2.4.10), then -dk E Hk and -dk is actually the projection of the origin onto Hk. 

Sk·1 

Sl 

Fig. 2.4.2. Conjugation is projection 

Furthermore, the orthogonality of the gradients also implies that the eli's defined by 
(2.4.10) all have the same sign and -dk is actually the projection ofthe origin onto 

Ck := {L:7=1 (XjSj : L:7=1 (Xj = 1, (Xj ~ O}, 

the convex hull of the gradients SJ, ... , Sk. 

Note also the following property, again due to this orthogonality: if one (i) selects k - 1 
generators of Hko say SI, ... , Sk-b then (ii) projects the origin onto their convex hull Ck-I 

to obtain -dk-lo and finally (iii) projects the origin onto the segment [-dk-h Sk], one still 
obtains the same -dk (see Fig. 2.4.2). This, among other things, explaius why a recurrence 
formula like (2.4.6) is possible. 0 

3 Line-Searches 

Now, considering the direction-finding problem as solved, we concentrate exclusively 
on the stepsize. 
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Thus, we are given a function defined by 

jR+ :3 t 1--+ q(t) := f(Xk + tdk) , 

where Xk is the starting point and dk is the direction of search. More precisely -let us 
insist once again on this point - we are given a black box, namely (U1) in Fig. 1.2.1, 
which computes q(t) and q'(t) = (V f(Xk + tdk), dk) for any value t? 0 that we 
may choose (it is an elementary exercise to check that the derivative of q does have 
the above expression). 

We also know that 
q'(O) < 0 

i.e. dk is a descent direction in the sense of Definition 2.1.1. 
With these data, we want to find a "suitable" (whatever this means) stepsize t > 0, 

satisfying in particular 
q(t) < q(O) . (3.0.1) 

Recalling Remark 1.2.3, we see that (3.0.1) implies a trial and error process, 
already mentioned in Remark 1.3.2. The line-search is in fact a subalgorithm, to 
be executed for each k at Step 3 of Algorithm 1.3.1. Our aim is now to study this 
subalgorithm, which is an essential element for an optimization program to work 
properly in practice. Actual computation of the direction is usually straightforward, 
even if its theory may require rather sophisticated mathematics but the situation is 
reversed here: only elementary mathematics is involved, and practical difficulties 
appear. It requires ,some computational expertise to 'implement a good line-search 
algorithm. 

3.1 General Structure of a LiRe-Search 

Just as any iterative algorithm, the line-search has a rule for iteration and a stopping 
criterion; this means that the following two questions must be answered: 

(i) How the sequence of trial stepsizes should it be computed? 
(ii) When is the current trial t acceptable as·the real stepsize from Xk to Xk+l? 

Remark 3.1.1 The line-search must also have an initialization: which t > 0 should 'be tried 
first? Although it is extremely important, we pass it silently for the moment because it is really 
a question relevant to the direction-finding issue. Remark 3.4.2 will say a bit more about this 
problem. 0 

Between the above two items, the rule for iteration is the more important part for 
efficiency of an algorithm in general (after all, the stopping criterion is only executed 
once). For the line-search subalgorithm, however, it is the other way around. For one 
thing, (i) is a one-dimensional problem, relatively easy: on a line, there are only two 
alternatives, go right or go left. More importantly, the stopping rule for the line
search is (at least part of) the iterative rule for the outer descent algorithm, which 
directly conditions the choice of xk+l' Furthermore, it is crucial that the line-search 
be stopped as soon as possible, since it is executed many times, as many times as there 
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are descent iterations. For these reasons, the concept of acceptable stepsize, i.e. the 
stopping criterion of the line-search, must be defined with great care. 

Here, it is useful to organize the stopping criterion so that it gives not only a 
dichotomous answer by "yes" (the given step size is suitable) or "no" (it is not), but 
also some indication for the next trials in case the present one is not suitable. The 
essential object characterizing a line-search is then a test which, given a stepsize 1 

and suitable information on q (obtained from (VI», has three possible answers: 

(0) This t is suitable and the line-search can be stopped. 

(R) This t is not suitable and no suitable t* is likely to be found on its right. 

(L) This t is not suitable and no suitable 1* is likely to be found on its left. 

Then, any t for which (L) [resp. (R)] holds can serve as a lower [resp. upper] 
bound for subsequent trials because this 1 lies to the left [resp. to the right] of the 
interesting area of search. As a result, the following scheme suggests itself. 

Algorithm 3.1.2 (Schematic Line-Search) An initial trial step size 1 > 0 is given. 
Set tL = 0 and IR = +00. 
STEP 1. Test I; in case (0) stop the line-search and pass to the next iterate xk+ l' 
STEP 2. In case (L) set tL = t; in case (R) set tR = I. Go to Step 3. 
STEP 3. Select a new tin ]IL, tR[ and loop to Step 1. 0 

Some comments will help our understanding this procedure. 

- During the early cycles, as long as tR remains infinite, the update of Step 3 is actually 
an extrapolation beyond tL; when some real upper bound tR < +00 is found, the update 
becomes an interpolation between tL and tR (rather than the hard-to-define "tR = +00", 
one could equally initialize "tR = 0", meaning conventionally "no real upper bound has 

been found yet"). 
- By construction, t L can only increase, t R can only decrease and all the t L 's generated 

during this process are strictly smaller than all the t R 'so The whole idea actually consists in 
generating a sequence of nested intervals [t L, t R]: at each cycle, either t L or t R is moved 
toward the other endpoint, thus reducing the interval. The interval [tL, tRl appears as a 
safeguarding bracket, inside which the final suitable tk is searched for. 

t1 t3 t2 
t. 18m :I::C$9511 ~~;~a~; . - . .: 

o tL tR tR 

Fig.3.1.1. A possible line-search scenario 

Figure 3.1.1 illustrates a possible scenario: atthe first trial t 1, suppose (L) holds; then tL 

is moved from 0 to this t 1 > 0, which becomes a left-bound for all subsequent trials. The next 
trial is some t 2 > t 1 ; suppose (R) holds there: t2 becomes a right-bound t R and one takes t3 

between t 1 and t 2, i.e. between tL and tR' At t 3, it may be again (R), say, which holds, etc. 
Each trial increases the dashed area, in which no future trial is ever placed. 

As was said earlier, it is crucial that Algorithm 3.1.2 be finite, i.e. that case (0) be 
reached after a finite, and if possible small, number of cycles. For this, two properties 
must be respected: 
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Property 3.1.3 (Safeguard-Reduction Property) The update of Step 3 must be 
such that: 

(i) infinitely many extrapolations would let tL -+ +00, and 

(ii) infinitely many interpolations would let tR - tL -+ O. o 

Property 3.1.4 (Consistency Property) The test (0), (R), (L) must be organized so 
that: 

(i) when t is large enough, case (L) never occurs, and 

(ii) when tR - tL is small enough, case (0) occurs for all t in between. o 

Properties 3.1.3(i) and 3.1.4(i) taken together imply that, after a finite number of 
cycles, either Algorithm 3.1.2 stops at case (0), or it finds a tR < +00; the number 
of extrapolations is finite. The (ii)-combination implies likewise that the number of 
interpolations is finite as well. Altogether, this implies that Algorithm 3.1.2 must 
terminate. For an easier understanding, another way to state 3.1.4(ii) is as follows: 
there is an interval I of positive length such that (0) occurs at any tEl, and such that 
I C]tL' tR[ for all tL and tR generated by the algorithm. 

Example 3.1.5 The actual meaning of 3.1.4(ii) will become clearer later on; let us use a 
very simple and naive example to iIIustrate its importance. Define the test by: 

(0) t is suitable when q'(t) = 0, 

(L) t is a tL when q' (t) < 0, 
(R) t is a tR when q'(t) > O. 

This test is natural, as it is motivated by the desire to minimize q - i.e. f along dk. The 
continuity of q' implies that, for arbitrary tL and tR, there is a t* in between which satisfies 
(0) (the initialization tL = 0 is consistent thanks to the descent property q' (0) < 0). Then 
Algorithm 3.1.2 should find such a t*. 

Yet, the resulting line-search is impractical, for at least two reasons: 

- assuming for example that the equation q'(t) = 0 has a unique solution, the interpolation 
process will never find it. Readers not familiar with numerical computations may not be 
convinced by this fact. They should think of the example q(t) = expt - 2t: no computer 
can find its minimum log 2, an irrational number; 

- even if, by an extraordinary luck, one lands on t satisfYing (0), it may not be a minimum. 
It may not even satisfy q(t) < q(O), see Fig. 3.1.2. 0 

QltlN. ~J/ 
Fig.3.1.2. An undesired stepsize 

Since it is the more important, we will first study the test (0) (R) (L), which defines 
a suitable step size; then we will say a few words on the interpolation-extrapolation 
formulae for iterating the line-search subalgorithm. 



74 II. Introduction to Optimization Algorithms 

3.2 Designing the Test (0), (R), (L) 

Historically, the aim of the line-search has been to minimize the one-dimensional 
function q. Example 3.1.5, however, reveals that finding an optimal stepsize may take 
an infinite amount of computing time; approximating it is therefore likely to take a 
long time. Nowadays, it is recognized that, after all, since the function to be minimized 
is f and not q, it may not be a good idea to waste time on a minor, purely local problem. 
This is especially true of Newtonian methods, for which the stepsize t = I is probably 
a better choice than an optimal stepsize - recall Remark 2.3.3. 

Remark 3.2.1 The total computing time of an iterative algorithm is roughly the average 
time spent by one iteration multiplied by the number of iterations. For a descent algorithm of 
the form 1.3.1, the number of iterations is mainly driven by the quality of the directions - and 
also by the stopping tolerance, say 8 of (1.2.1). As for the computing time of one iteration, it 
is the sum TA + tTu, where 

- T A is the computing time needed by block (A) of Fig. 1.2.1, 
- t is the average number of trials needed by the line-search, and 
- Tu is the time needed for one execution ofthe black box (UI). 

It is usually the case that Tu is much larger than T A, say Tu :::::: IOTA. The total execution 
time (of one iteration, hence of the overall descent algorithm) is therefore almost exclusively 
spent in (Ul). Even more can be said: for practically all algorithms, TA is small in absolute 
terms, say a fraction of a second on a "standard" computer. Thus, in those cases where Tu 
is not dominant, Tu is also small and trying to reduce the total execution time is not crucial: 
the net benefit will be again small, say a matter of seconds. 

We conclude that the number of calls to (UI) is a sensible measure for the execution time 
of an optimization algorithm. It is therefore crucial for efficiency to keep t small (keeping 
in mind that the overall number of descent iterations - of line-searches - must also be kept 
small). Of course, the main ingredient influencing the value of t is the (O)-clause in the test. 

o 

The modem point of view for designing a line-search consists in looking for a 
compromise between obtaining (0) fast, and decreasing f well. It can be added that, 
when something goes wrong in a descent algorithm of the form 1.3.1, it is invariably 
within the line-search, i.e. during the execution of Step 3. Another important aspect 
is therefore robustness: in addition to being fast, a line-search must be fail-safe and 
simple, so as to work as often as possible and, in case of failure, to make it clear where 
the possible troubles come from, as well as their possible cures. 

In order to make the move fromxk to Xk+ I reasonable, the least that can be required 
from a good stepsize is to be neither too large nor too small. A stepsize that is not too 
large is necessary to prevent the sequence {Xk} from oscillations, and in particular to 
force the decrease (3.0.1) (recall Fig. 1.3.1). On the other hand, the stepsize should 
not be too small, so as to yield a non-negligible progress from Xk toward the cluster 
point i, which can be far if XI is a poor initialization. Defining the test, and more 
precisely its (O)-part, consists precisely in giving a meaning to "large" and "small". 
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Deciding (R) A fairly general consensus exists to define "large": one says that t > 0 
is not too large when 

I q(t) ~. q(O) + mtq' (0) I (3.2.1) 

where m is a coefficient chosen in )0, 1 [ (whose precise value is not crucial, various 
authors favour various choices, let us say for example that m = 0.1 is a reasonable 
value). 

In view of the descent requirement, property (3.2.1) makes much sense; in partic
ular, it guarantees q(t) < q(O) automatically. Suppose thatq were linear: then (3.2.1) 
would hold (even with m = 1) for all t. As a result, (3.2.1) does hold when t > 0 is 
close enough to 0, provided that q is smooth enough: the coefficient m < 1 appears 
as a tolerance, allowing q to deviate from linearity. 

A stepsize t satisfying "not (3.2.1)" is declared too large and case (R) occurs. 
Figure 3.2.1 illustrates all this: in dashed areas RI and R2 , (R) occurs; they are both 
far from O. For (0) to occur, t must be in a non-dashed area (although this is not 
sufficient: such a t may stilI be too small). To say that Property 3.1.4(i) does not hold 
is to say that the dashed area is bounded. This can happen only when q - hence f - is 
unbounded from below, implying that the minimization of f on IRn is ill-posed and 
has no solution. 

q(t) R1 R2 -1----------.."._"".""",,,,,,,.,. f'~----t 
i .. 
! 
! 

Fig.3.2.1. Distributing the possible stepsizes 

mq'(O) 

Remark 3.2.2 The value m = 1/2 in (3.2.1) plays a special role, due to a geometric property 
illustrated on Fig. 3.2.2: no matter where the point P is located on the parabola, the slope 
of its tangent is twice the slope of the chord pointing to the summit 0: OM = OM'. In 
analytical terms, this property (which can easily be established) reads: if q is quadratic, and 
ift* minimizes q, then 

p 

Fig.3.2.2. A property of quadratic functions 
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q(t*) = q(O) + !t*q'(O). 

This implies an important consequence: in (3.2.1), it is strongly advisable to take m < 1/2. 

Otherwise, when q happens to be quadratic, its optimal stepsize will be considered too large 
- a paradox. 0 

Remark 3.2.3 Along the same lines, (3.2.1) has a useful interpretation. Let us come back 
to §2.3 - more precisely to (2.3.1) and (2.3.2) - and let us interpret the function 

j(d):= I(Xk) + (s(xk),d) + !(Qd,d) 

as a model, which approximates I(Xk + d). The strategy of §2.3 consists of minimizing this 
model to obtain dk, the direction of search. Then we obtain the restricted model 

R. ~ t ~ q(t) := /(Xk + tdk) = q(O) + tq'(O) + !at2 

where a := (db Qdk)' With this interpretation, the idea of the line-search is to correct the 
model/by a further adjustment of t > O. Of course, dk := - Q-l Sk is such that q is 
minimized at t = 1 (the minimum of q has to reproduce the minimum of I!). In fact, direct 
calculations show that q can be written 

q(t) = q(O) + tq' (0) - !t2q' (0). (3.2.2) 

Now suppose we are testing t = 1 in (3.2.1); we ask the question: 

isq(1) -q(O) lower than mq'(O) ? 

which, using the form (3.2.2) for q, can be written: 

is q(l) - q(O) lower than 2m[q(l) - q(O)] ? 

In other words, the question that we are asking is: "Does the model/agree well enough 
with the real I?"; or also: "Is the real decrease q(1) - q(O) at least a fraction (namely 2m, 
supposedly smaller than 1) of the predicted decrease q(1) - q(O)? 

With this interpretation, q'(O) plays a minor role and is rather replaced by q(l) - q(O). 
This will be useful later on (Sections Xy.1.3 and xv.3.3(c» in special situations when q' (0) 
is actually unknown. Of course, the idea could be extended to stepsizes other than 1: for 
example, one could imagine replacing the descent test (3.2.1) by 

q(t) ~ q(O) + 2m[q(t) - q(O)]. 

This cannot be done without care, however: if q(t) ;::: q(O), the descent property q(t) < q(O) 
is no longer guaranteed. 0 

Deciding (L) It remains to define the stepsizes that are too small. Here there are 
several possibilities and we just mention two of them, namely (3.2.3) and (3.2.4) 
below. One chooses another tolerance m' satisfying 

0< m < m' < I; 

then, for some authors, t is not too small when 
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[i(t) ~ q(O) + mltq'(O) 1 (3.2.3) 

while for some others, t is not too small when 

rql(t) ~ mlq'(O) ·1 (3.2.4) 

Inspect Fig. 3.2.l carefully for an interpretation. Neither (3.2.3) nor (3.2.4) can hold 
for t > 0 close to 0; this is due to the continuity of q' and to the descent property 
q'(O) < O. 

To sum up, there are (at least) two possibilities to design (0), (R), (L). One is 

(0) holds when t satisfies (3.2.1) and (3.2.3), 
(R) holds when t does not satisfy (3.2.l), 
(L) holds when t does not satisfy (3.2.3), 

sometimes called the criterion of Goldstein and Price and illustrated in Fig. 3.2.3. 
With relation to 3.l.4(ii), this figure shows rather clearly that, for two arbitrary points 
tL and tR with tL < tR, there is always an (O)-segment in between. 

q(t) 

Fig.3.2.3. The criterion of Goldstein and Price 

The other possibility is 

(0) holds when t satisfies (3.2.1) and (3.2.4), I 
(R) holds when t does not satisfy (3.2.1), 
(L) holds when t satisfies (3.2.1) but not (3.2.4), 

(3.2.5) 

which is often called the Wolfe criterion. We observe that, when q(t) is very small, 
t seems excellent for a descent to !(Xk+I); but (3.2.3) does not hold, so case (L) 
occurs and this t is rejected by the criterion of Goldstein and Price. This appears as 
a deficiency and it explains that Wolfe's criterion is usually preferred. On the other 
hand, the criterion of Goldstein and Price does not require computing q I. It is therefore 
useful when! can be computed much more cheaply than V! in the black box (U1) 
(remember Remark 3.2.1); this situation may happen in practice, although rarely. 

3.3 The Wolfe Line-Search 

For an illustration we give the specific form of Algorithm 3.1.2 when the test (3.2.5) is 
used. It is not only useful for the descent methods outlined in this chapter, but it is also 
convenient for more sophisticated methods, to be seen later in this book. Therefore, 
it deserves special study. 



78 II. Introduction to Optimization Algorithms 

Algorithm 3.3.1 (Wolfe's Line-Search) An initial trial t > 0 is given, as well as 
m E ]0, l[ and m' E ]m, 1[. SettL = 0 and tR = O. 

STEP 1 (Test for large t). Compute q(t); if(3.2.l) does not hold set tR = t and go to 
Step 4. 

STEP 2 (Stopping criterion; t is not too large). Compute q'(t); if (3.2.4) holds stop 
the line-search and pass to the next iterate Xk + I. Otherwise set tl = t and go to 
Step 3. 

STEP 3 (Extrapolation). If t R > 0 go to Step 4. 
Otherwise find a new t by extrapolation beyond t L and loop to Step 1. 

STEP 4 (Interpolation). Find a new t by interpolation in ]tL' tR[ and loop to Step 1. 
o 

Given: q(O), q'(O) < 0, 0 < m < m' < 1, t > O. 

Set tL =tR" 0 

extrapolate 

e 
n 

I-----l have tR ? 
'-----' 

Fig.3.3.1. Wolfe's line-search 

The flow-chart corresponding to this algorithm is displayed in Fig. 3.3.1. It is 
fairly simple, which means that corresponding computer programs can be made fairly 
robust. We show now that the consistency property 3.1.4 holds: 

Theorem 3.3.2 (Consistency of Wolfe's Line-Search) Assume that q is continu
ously differentiable, and that the descent property q' (0) < 0 and the safeguard
reduction property 3.1.3 hold. Then, Algorithm 3.3.1 either generates a sequence of 
stepsizes t with q(t) + -00, or terminates after afinite number of cycles. 

PROOF. Suppose that the stop never occurs. First observe that we have at each cycle 

q(tL) ~ q(O) + mtLq' (0) . (3.3.1) 
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Suppose first that Algorithm 3.3.1 loops indefinitely between Step 3 and Step 1. 
Then, by construction, every generated t is a tL and satisfies (3.3.1). From 3.1.3(i), 
tL --+ +00; because q'(O) < 0, (3.3.1) shows that q(tL) --+ -00. 

Thus, if f(x + td) is bounded from below, tR becomes positive at some cycle. 
From then on, the algorithm loops between Step 4 and Step 1; by construction, we 
have at each subsequent cycle 

q(tR) > q(O) + mtRq' (0) , (3.3.2) 

the sequence {t L} is (strictly) increasing, the sequence {t R} is (stricly) decreasing, ev
ery t L is smaller than every t R, and Property 3 .1.3(ii) implies that these two sequences 
are actually adjacent i.e., for some t* ~ 0: 

tLtt* and tRtt*; 

(3.3.1) and (3.3.2) imply by the continuity of q that 

q(t*) = q(O) + mt*q' (0) . 

Then we write (3.3.2) as 

q(tR) > q(O) + mq'(O)(tR - t* + t*) = q(t*) + m(tR - t*)q'(O). 

By (3.3.2) and (3.3.3), tR > t*, hence 

and, passing to the limit: 

q(tR) - q(t*) > mq'(O) 
tR - t* 

q' (t*) ~ mq' (0) > m' q' (0) , 

where we have used q' (0) < 0 and m < m'. 

(3.3.3) 

Now, the stopping criterion of Step 2 implies that q' (tr) < m' q' (0) and it suffices 
to pass to the limit to obtain the contradiction 

q' (t*) ~ mq' (0) > m' q' (0) ~ q' (t*) . (3.3.4) 
D 

We leave it as an exercise to show the same result for the criterion of Goldstein 
and Price, simply by modifying the end of the above proof. 

Remark 3.3.3 It is only a rather weak continuity property of q' that is used in the above 
proof. It st:rves only to obtain the contradiction ~j.3.4), ana for thIS a left continUity property 
alone is needed for q' (note that tL t t*!). This remark, which we leave informal for the 
moment, will become essential for the numerical methods considered in this book. D 

Remark 3.3.4 With relation to the secant methods of§2.3, we mention an important property 
ofthe Wolfe criterion. In viewof(3.2.4), the actual step size tk satisfies q' (tk) ~ m' q' (0), which 
can be written 
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q'(tk) - q'(O) ~ (m' - l)q'(O) > 0 

or, using the gradients explicitly: 

(S(Xk+l) - S(Xk), dk) ~ (m' - l)(S(Xk), dk) > O. (3.3.5) 

Now recall Theorem 2.3.6: the quasi-Newton operators Wk in Algorithm 2.3.4 remain positive 
definite if (and only it) (Uk. ~k) > 0 for all k (the notation (2.3.8) is used); knowing that 
~k = tkdk. this is clearly implied by (3.3.5), which can be written 

I m'-I Ii (Uk, ~k) ~ """1k (S(Xk) , ~k) > O. 

In other words, the Wolfe criterion automatically preserves positive definiteness in secant 
methods, hence its interest in this framework. 0 

It remains to check that our general methodology for line-searches - and in par
ticular the Wolfe criterion (3.2.1), (3.2.4) - does preserve the convergence properties 
of the outer descent algorithm. This question cannot be answered in absolute terms 
since it also depends on the choice of the direction. Convergence results have to be 
stated for each combination "direction x stepsize". To illustrate how they are proved, 
we consider the following realization of Algorithm 1.3.1: 

Algorithm 3.3.5 (Steepest-Descent with Wolfe's Line-Search) The starting point 
XI E ]Rn and the tolerances 8 > 0, 0 < m < m' < I are given, as well as the 
line-search subalgorithm 3.3.1. Set k = l. 

STEP 1. If IIV !(Xk) II ~ 8 stop. 
STEP 2. Takedk = -V!(Xk). 
STEP 3. Obtain Xk+ I = Xk + tkdk satisfYing 

!(Xk+I) ~ !(Xk) - mtkllV !(Xk) 112 

(V !(Xk+I), dk) ~ - m'IIV!(xk)1I2 • 

STEP 4. Replace k by k + 1 and loop to Step 1. 

(3.3.6) 

(3.3.7) 

o 

Of course, this algorithm is given for the sake of illustration only, since the gradient 
method is!orbidden (recall the end of §2.2). In fact, Algorithm 3.3.5 is good enough 
for our present purpose, which is to demonstrate the convergence mechanism of a 
descent method. 

Theorem 3.3.6 Suppose that V! is uniformly continuous on the sublevel-set 

S!(XI)(f) := {x E]Rn : !(x) ~ !(XI)} . 

Then Algorithm 3.3.5 stops in Step 1 for somejinite k. unless !(Xk) -7 -00. 

PROOF. We proceed in three steps. 
[(ij] From (3.3.6), we get 

!(Xk) - !(Xk+l) ~ mliV !(xk)lIl1tkdkll = mliV !(xk)lIl1xk+1 - xkll. (3.3.8) 
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[(ii)] On the other hand, subtracting (V !(Xk), dk) = -IIV !(xk)lllldkll from (3.3.7), 
we get 

(V!(Xk+I) - V!(Xk), dk} ~ (1 - m')IIV!(xk)lIl1dkll. 

So, using the Cauchy-Schwarz inequality: 

II V !(xk+l) - V !(Xk) II ~ (1 - m')IIV!(xk)lI. (3.3.9) 

[(iii)] Now assume that the algorithm does not stop (I/V !(Xk) 1/ > 8 for all k) and that 
(f(Xk)} is bounded from below. Then both sides in (3.3.8) form a convergent series; 
Xk+1 - Xk ~ 0; the uniform continuity of V ! implies V!(Xk+I) - V f(xd ~ 0, a 
contradiction to (3.3.9). 0 

Observe the scheme ofthis proof: IIV!(xk)1I plays the role ofa convergence parameter, 
hopefully tending to 0; then (i) [resp. (ii)] quantifies the fact that tk is not too large [resp. not 
too small]; finally (iii) synthesizes these arguments. If the stopping criterion of Step 1 were 
not present, the same scheme would prove by contradiction that 0 is a cluster point of the 
sequence {V!(Xk)) - remember (1.1.8). 

3.4 Updating the Trial Stepsize 

We turn now to the possibilities for interpolation and extrapolation in an algorithm 
such as 3.3.1. The simplest way to satisfy the safeguard-reduction property 3.1.3 is a 
rough doubling and halving process such as 

- iflR = +00 replace 1 by 21, 

- if tR < +00 replace t by 1/2 (tL + tR)' 

More intelligent formulae exist, however: as the number of cycles increases in 
the line-search, more and more information is accumulated from q, which can be 
used to guess where a convenient t is likely to lie. Then, the idea is to fit a simple 
model-function (like a polynomial) to this information. The model-function is used 
to obtain a desired value, say td, for the next trial, and it remains to force td inside the 
safeguard ]tR, td, so as to ensure the safeguard-reduction property 3.1.3. 

Remark 3.4.1 The idea of having q(t) := !(Xk + tdk) as line-search function, of fitting a 
model to it, say O(t), and of choosing td minimizing 0, is attractive but may not be the most 
suitable. Remember that the descent test (3.2.1) might be satisfied by no minimizer of q. 

A possible way round this discrepancy is to compute td minimizing the tilted function 
t H- O(t) - mtq'(O); or equivalently to choose O(t) fitting q(t) - mtq'(O); or also to take 
q(t) := !(Xk +tdk) -mt(V !(Xk), dk) as line-search function. The resulting td will certainly 
aim at satisfying (3.2.1) and 

(V!(Xk + tdk), dk) ;:: m(V!(xk), dk) . 

It will thus aim at satisfying (3.2.4) as well, and this strategy is more consistent with a Wolfe 
criterion, say; see Fig. 3.4.1. 

The above strategy may look anti-natural, but luckily the perturbation term mtq' (0) is 
small, admitting that m itself is small (see Remark 3.2.2). 0 
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f(x+td) 

Fig. 3.4.1. A perturbation of the line-search function 

Ca) Forcing the Safeguard-Reduction Property The forcing mechanism can be 
done as follows: 

- When no t R > 0 has been found yet, one chooses K > 1 and the next trial t+ 
is max{td, Ktd (each extrapolation multiplies the stepsize at least by K; K may 
vary with the number of extrapolations but one should not let it tend to I without 
precautions). 

- When some tR < +00 is on hand, one chooses p E]O, 1/2] and one does the 
following: 

-replace td by max{td, (1 - P)tL + ptR}; 

- then replace the new td thus obtained by min {td, pt L + (1 - p)t R}; 

- finally, the next trial t+ is set to this last td. 

In other words, t+ is forced inside the interval obtained from [t L, t R] by chopping 
off P(tR - td from its two endpoints. At the next cycle, t+ will become a tL or a 
tR (unless clause (0) occurs) and in both cases, the bracket [tL, tR] will be reduced 
by a factor of at least 1 - p; p may vary at each interpolation but one must not let 
p .J.. 0 without precaution. 

These questions, particularly that of choosing td, present a moderate interest 
because efficient line-searches need on the average far less than two cycles to reach 
(0) and to accomplish the descent iteration. Asymptotic properties of the interpolation 
formulae are therefore hardly involved. 

Remark 3.4.2 The question of the initial trial is crucial, since the above-mentioned score 
of less than two cycles per line-search is certainly not attainable without a good initialization. 
With Newtonian methods, one must try t = 1 first, so the Newton step has a chance to prevail. 
For other methods, the following technique is universally used: pretend that q is quadratic 

q (t) :::: ! a t 2 + q' (O)t + q (0) (a > 0 is unknown) 

and that its decrease from t = 0 to the (asserted) optimal t* := -q'(O)/a is going to be 
L1:= !(Xk-l)- !(xk);itisstraightforwardtocheckthatt*isthengivenbyt* = -2L1/q'(0), 
which happens to be an excellent initialization. 

Observe that, at the first descent iteration k = 1, L1 does not exist. In the notations of 
Fig. 1.2.1, it is actually block (UO) which should give to block (A) an idea of the very first 
initial trial; for example (UO) may pass to (A) an estimate of L1 together with Xl and 8. These 
are the kind of details that help an optimization program to run efficiently. 0 
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Remark 3.4.3 Having thus settled the question of the initialization, let us come again to the 
question of stopping criteria. The "ideal" event IIV' f(Xk) II ~ 8 occurs rarely in practice, for 
many possible reasons. One is that 8 may have been chosen too small by the user and, in view 
of the speed ofthe minimization algorithm, iterations should go on essentially forever. 

Another reason, a very common one, is that s(x) is actually not the gradient of f at x, 
either (i) because of a mistake in the black box (U 1) - this is fairly frequent, see Remark 1.2.2 
- or (ii) simply because of roundoff errors: (Ul) can work only with finitely many digits, 
and there must be a threshold under which the computation errors become important. Then, 
observed values of q and of q' [= (s, d)] are inconsistent with each other and a prooflike 
that of Theorem 3.3.2 does not reflect reality. For example, the property 

q(tR) - q(t*) -+ q' (t*) when tR i t* 
tR - t* 

may become totally wrong. As a result, (0) never occurs, tR - tL does tend to zero and the 
line-search loops forever. The cause of this problem can be (i) or (ii) above; in both cases, 
the process must be stopped manually, so as to "spare" computing time (i.e. reduce it from 
infinity to a reasonable value!). 

Thus, in addition to 8 for the ideal test (1.2.1), the user [i.e. block (UO)] must set another 
tolerance, say 8', allowing block (A) to somehow guess what a very small step size is. This 
8' defines a threshold, under which tR - tL must be considered as essentially O. In these 
conditions, an "emergency stopping criterion", acting when tR - tL becomes lower than this 
threshold, can be inserted in Step 4 of Algorithm 3.3.1. Note also that another emergency 
stop can be inserted in Step 3 to prevent infinite loops occurring when the objective function 
is unbounded from below. 

It is interesting to observe that this 8' -precaution is not sufficient, however: the user 
may have overestimated the accuracy ofthe calculations in (UI) and 8' may never act, again 
because of roundoff errors. There exists, at last, an unfailing means for Algorithm 3.3.1 to 
detect that it is starting to loop forever. When the new stepsize t+ becomes close enough to a 
previous one, say tL, there holds 

Xk + tLdk = Xk + t+dk 

although tL =f t+. This is another effect of roundoff errors - but beneficial, this time: when it 
happens, Algorithm 3.3.1 can be safely stopped. 

All this belongs more to the art of computer programming than to mathematics and 
explains what we meant in the introduction of this Section 3, when mentioning that imple
menting a good line-search requires experience. 0 

We gave the above details in Remark 3.4.3 because they illustrate the kind of care that 
must be exercised when organizing automatic calculations. We conclude this section with 
some more details concerning the fit of q by some simple function. Although not particularly 
exciting, they are further illustrations of another kind of precaution: when doing a calculation, 
one should try to avoid division by O! 

(b) Computing the Interpolation td The most widely used fit for q is by a cubic 
function, which is done by the following calculations: 

- Call a and a_ the two step size-values that have been tried last (the current one and 
the previous one; at the first cycle, a_ = 0). 

- We have on hand q := q(a), q' := q'(a), q_ := q(a_) and q'- := q'(a_). 



84 II. Introduction to Optimization Algorithms 

- These four data define a polynomial of degree ~ 3 in t, which we find convenient 
to write as 

O(t) := ~a(t - a)3 + b(t - a)2 + q' (t - a) + q . 

- The coefficients a and b are identified by equating O(a_) and O'(a_) with q_ and 
q'- respectively. Knowing that E := a - a_ 0/= 0 this gives the linear system 

! E 2a - Eb = Q' - q' 
3 " E2a - 2Eb = q_ - q 

in which we have set Q' := (q - q_)/ E. With p' := q' + q'- - 3Q', its unique 
solution is 

E2a = q' + q'- + 2P' and Eb = q' + P' . 

- Then the idea is to take td as the local minimum of 0 (if it exists), i.e. one of the 
real solutions (if they exist) of the equation 

0' (t) = a(t - a)2 + 2b(t - a) + q' = o. (3.4.1) 

With respect to the unknown t - a, the reduced.discriminant of this equation is 

1 
..1 := b2 - aq' = E2 (p'2 - q' q'-) 

which we assume nonnegative, otherwise there is nothing to compute. 

- Clearly enough, if t - a = (-b ± ..11/2) / a solves (3.4.1), then 

O"(t) = 2a(t - a) + 2b = ±2..11/ 2 • 

(3.4.2) 

Because Oil must be nonnegative at td, it is the "+" sign that prevails; in a word, td 
can be computed by either of the following equivalent formulae: 

a 
td _ a = -b + ..11/2 

(3.4.3) 

(-b + Ll1/ 2)(b + ..11/2) -q' 
td - a = a (b + ..11/2) = b + ..11/2 . (3.4.4) 

- The tradition is to use (3.4.3) if b ~ 0 and (3.4.4) if b > O. Then, roundoff errors 
are reduced because the additions involve two nonnegative numbers. In particular, 
the denominator in (3.4.4) cannot be zero. 

- Now comes the delicate part of the calculation. In both cases, the desired t is 
expressed as 

N 
td =a+ D (3.4.5) 

but this division may blow up if D is close to O. On the other hand, we know that 
if td is going to be outside the interval ]tL. tR[ (assumed to be known; in case of 
extrapolation we can temporarily set tR = 10 K td, the forcing mechanism of §(a) 
above will kill the computation of td. A formula like (3.4.5) is then useless anyway. 
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Now, a key observation is that ex E [tL' tR]. In fact, the current trial ex is either tL 

or tR, as can be seen from a long enough contemplation of Algorithm 3.1.2. Then 
the property 

N 
tL - ex < D < tR - ex, 

which must be satisfied by td, implies 

INI Wi < tR - tL· (3.4.6) 

To sum up, td should be computed from (3.4.5) only if (3.4.6) holds. Otherwise 
the cubic model is helpless, as it predicts anew stepsize outside the bracket [tL, tRl. 

Then td should be set for example to tL or tR according to the sign of q'. 

Remark 3.4.4 Perhaps the most important reason for these precautions is the danger 
of so-called overflows. When a computer is asked to do an arithmetic operation whose 
result is very large in absolute value - say larger than 1050 - it usually stops. All the 
current work is definitely lost, with all its intermediate results; a disaster (note here 
that the situation is not symmetric: if the result is small in absolute value, then it can 
be replaced by 0; in other words, a computer understands 0 but not "infinity"). This 
danger appears when multiplications, or equivalently divisions, are done; additions 
are less critical. 

In our context, ther~ are two types of quantities: t-values and q-values; they are 
independent in the sense that they are expressed in different units; their ratios form 
a third type: q' -values. One may think, for example, that t ~ 10-JO, q ~ 1020, so 
q' ~ 1030. Then, the above calculations should be performed with some care. 

Because Q' is homogeneous to a derivative, its computation is relatively safe. By 
contrast, (3.4.2) is dangerous because terms like p'2 may have crazy values: in our 
example above, p'2 ~ 1060 • Thus, computing directly pl2 - q' q'- should be done 
only if IP'I ::;; 1. Otherwise, observing that only .1 1/ 2 is used, one should write (3.4.2) 
as (we skip the sign-problems) 

.j p'2 - q' q'- = fft .j P' - (q'l P')q'-

and respect the stated order when computing this right-hand side. Finally, the test 
(3.4.6) is necessary only when IDI ::;; 1; then, it should be performed as 

INI ::;; IDI (tR - tL> . o 

Remark 3.4.5 The distinction between (3.4.3) and (3.4.4) reduces the roundoff er
rors, and it also takes care of a vanishing a. The event a = 0 does happen from time 
to time, namely when q is (close to) a quadratic function. From this point of view, the 
role of the sign of b is essential. 

- If b > 0, then formula (3.4.4) is used and the role of a is minor: even if a ~ 0 
(meaning that (J looks like a convex quadratic function) (3.4.4) gives the safe value 
td ~ -q'lb. 
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- If b ~ 0, then the case a ::::= 0 means that () looks like concave quadratic, possibly 
linear (b = 0); in both cases, () has no minimum and it is the cubic approximation 
which is meaningless anyway. 

The interesting point is that this whole technique gives a stable computation 
of td, even though the cubic function () may degenerate. It should be said that the 
computation (3.4.2) of ..1 does suffer from roundoff, though: Q' = q'(r) for some 
r E ]a, a_[, so P' and..1 are obtained by subtracting numbers which may have the 
same sign and be close together. When ft and ft_ are close together, ..1 has to be close 
to 0 even though q'-values are large. 0 



III. Convex Sets 

Prerequisites. Topology and Euclidean geometry of ]Rn; a skill to visualize 2- and 3-
dimensional objects, so as to illustrate the results, and to support the intuition in higher 
dimensions. 

Introduction. Our working space is ]Rn. We recall that this space has the structure of a real 
vector space (its elements being called vectors), and also of an affine space (a set of points); 
the latter can be identified with the vector-space ]Rn whenever an origin is specified. It is not 
always possible, nor even desirable, to distinguish vectors and points. 

We equip]Rn with a scalar product (., .), so that it becomes a Euclidean space, and also 
a complete normed vector space for the norm IIxll := (x, x)1/2. If an orthonormal basis is 
chosen, there is no loss of generality in assuming that (x, y) is the usual dot -product x T y; see 
§A.3. 

The concepts presented in this chapter are of course fundamental, as practically all 
the subsequent material is based on them (including the study of convex functions). These 
concepts must therefore be fully mastered, and we will insist particularly on ideas, rather than 
technicalities. 

1 Generalities 

1.1 Definition and First Examples 

Definition 1.1.1 The set C c lRn is said to be convex if ax + (l - a)x' is in C 
whenever x and x' are in C, and a E ]0, I [ (or equivalently a E [0, I D. 0 

Geometrically, this means that the line-segment 

[x, x'] := {ax + (1 - a)x' : ° ~ a ~ I} 

is entirely contained in C whenever its endpoints x and x' are in c. Said otherwise: the 
set C - {e} is a star-shaped set whenever c E C (a star-shaped set is a set containing 
the segment [0, x] for all its points x). A consequence of the definition is that C is 
also path-connected, i.e. two arbitrary points in C can be linked by a continuous path. 

Examples 1.1.2 (Sets Based on Affinity) We have seen in Chap. I that the convex 
sets in lR are exactly the intervals; let us give some more fundamental examples in 
several dimensions. 
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(a) An affine hyperplane, or hyperplane, for short, is a set associated with (s, r) E 

IRn x IR (s ¥: 0) and defined by 

Hs.r := {x E JRn : (s, x) = r}. 

An affine hyperplane is clearly a convex set. Fix s and let r describe JR ; then the affine 
hyperplanes Hs.r are translations of the same linear, or vector, hyperplane Hs.o. This 
Hs.o is the subspace of vectors that are orthogonal to s and can be denoted by Hs.o = 
{s}.!.. Conversely, we say thats is the normal to Hs.o (up to a multiplicative constant). 
Affine hyperplanes play a fundamental role in convex analysis; the correspondence 
between 0 i= s E JRn and HS • I is the basis for duality in a Euclidean space. 

(b) More generally, an affine subspace, or affine manifold, is a set V such that the 
(affine) line {ax + (1 - a) x' : a E JR) is entirely contained in V whenever x and x' 
are in V (note that a single point is an affine manifold). Again, an affine manifold is 
clearly convex. 

Take v E V; it is easy - but instructive - to show that V - {v} is a subspace ofJRn , 
which is independent of the particular v; denote it by Yo. Thus, an affine manifold V 
is nothing but the translation of some vector space Yo, sometimes called the direction 
( -subspace) of V. One can therefore speak of the dimension of an affin manifold V: it 
is just the dimension of Yo. We summarize in Table 1.1.1 the particular cases of affine 
manifolds. 

Table 1.1.1. Various affine manifolds 

Name Possible definition Direction Dimension 
point {x} (x E ]Rn) to} 0 

affine {axl + (1- a)x2 : a E 1R} vector line 
line XI -:f: X2 (both in IRn) lR(x - x') 

affine {x E IRn : (s.x) = r} vector byperpl. 
n-l 

hyperplane (s -:f: O. r E 1R) {s }.l 

(c) The half-spaces ofll~n are those sets attached to (s. r) E JRn x JR, s i= 0, and 
defined by 

{x E JRn : (Sf x) ~ r} (closed half-space) 
{x E JRn : (Sf x) < r} (open half-space); 

"affine half-space" would be a more accurate terminology. Naturally, an open [resp. 
closed] half-space is really an open [resp. closed] set; it is the interior [resp. closure] 
of the corresponding closed [resp. open] half-space; and the affine hyperplanes are 
the boundaries of the half-spaces; all this essentially comes from the continuity of the 
scalar product (s • . ). 0 

Example 1.1.3 (Simplices) Call a = (al •...• ak) the generic point of the space 
IRk. The unit simplex in IRk is 

Llk:={aEIRk : :Er=laj=l. a j ;;::Ofori=l •...• k}. 
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Equipping ]Rk with the standard dot-product, {el' ... ,ek} being the canonical basis 
and e : = (1, ... , 1) the vector whose coordinates are all 1, we can also write 

Llk:={aE]Rk: eTa=l, eJa~Ofori=l, ... ,k}. (1.1.1) 

Observe the hyperplane and half-spaces appearing in this definition. Unit simplices 
are convex, compact, and have empty interior - being included in an affine hyperplane. 
We will often refer to a point a E Llk as a set of (k) convex multipliers. 

It is sometimes useful to embed Llk in]Rm, m > k, by appending m - k zeros to 
the coordinates of a E ]Rk, thus obtaining a vector of Llm . We mention that a so-called 
simplex of]Rn is the figure formed by n + I vectors in "nondegenerate positions"; in 
this sense, the unit simplex of]Rk is a simplex in the affine hyperplane of equation 
eTa = 1; see Fig. 1.1.1. 

a:J 
~. -~ '2 ~ 

63 

Fig.I.I.I. Representing a simplex 

If we replace eTa = 1 in (1.1.1) by eTa:::; 1, we obtain another important set, 
convex, compact, with nonempty interior: 

Ll~ := {a E]Rk : eTa ~ 1, aj ~ 0 for i = 1, ... , k} . 
In fact, this set can also be described as follows: 

a E Ll~ {=> 3ak+1 ~ 0 such that (a, ak+l) E Llk+l . 

In this sense, the simplex Ll~ C ]Rk can be identified with Llk+l via a projection 
operator. 

A (unit) simplex is traditionally visualized by a triangle, which can represent ,,13 

or Lli; see Fig. 1.1.1 again. 0 

Example 1.1.4 (Convex Cones) A cone K is a set such that the "open" half-line 
{ax: a > O} is entirely contained in K whenever x E K. In the usual representation 
of geometrical objects, a cone has an apex; this apex is here at 0 (when it exists: a 
subspace is a cone but has no apex in this intuitive sense). Also, K is not supposed to 
contain 0 - this is mainly for notational reasons, to avoid writing 0 x (+00) in some 
situations. A convex cone is of course a cone which is convex; an example is the set 
defined in ]Rn by 
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(Sj, x) = 0 for j = 1, ... , m, (sm+j'x) ~ 0 for j = 1, ... , p, (1.1.2) 

where the S j 's are given in jRn (once again, observe the hyperplanes and the half-spaces 
appearing in the above example, observe also that the defining relations must have 
zero right-hand sides). 

Convexity of a given set is easier to check if this set is already known to be a cone: in 
view of Definition 1.1.1, a cone K is convex if and only if 

x+YEK whenever xandyareinK, 

i.e. K + K C K. Subspaces are particular convex cones. We leave it as an exercise to show 
that, to become a subspace, what is missing from a convex cone is just symmetry (K = - K). 

A very simple cone is the nonnegative orthant of jRn 

Q+:={x=(~t, ... ,~n): ~j~Ofori=I, ... ,n}. 

It can also be represented in terms of the canonical basis: 

Q+={I:l=tajej: aj~Ofori=l, ... ,n} 
or, in the spirit of (1.1.2): 

Q+={XEjRn: (ej,x}~Ofori=l, ... ,n}. 

Convex cones will be of fundamental use in the sequel, as they are among the 
simplest convex sets. Actually, they are important in convex analysis (the "unilateral" 
realm of inequalities ),just as subspaces are important in linear analysis (the "bilateral" 
realm of equalities). 0 

1.2 Convexity-Preserving Operations on Sets 

Proposition 1.2.1 Let {Cj }jE] be an arbitrary family of convex sets. Then 

C := n{Cj : j E J} 

is convex. 

PROOF. Immediate from the very Definition 1.1.1. o 

Intersecting convex sets is an operation of utmost importance; on the other hand, 
a union of convex sets is usually not convex. 

Example 1.2.2 Let (st. rt), ... , (sm, rm) be m given elements oflRn x IR and consider the 
set 

{x E IRn : (Sj' x) (rj for j = 1, ... , m}. (1.2.1) 

It is clearly convex, which is confirmed if we view it as an intersection of m half-spaces; see 
Fig. 1.2.1. 

We find it convenient to introduce two notations; A : IRn -+ IRm is the linear operator 
which, to x E IRn , associates the vector with coordinates (Sj' x); and in IRm , the notation 
a ~ b means that each coordinate of a is lower than or equal to the corresponding coordinate 
of b. Then, the set (1.2.1) can be characterized by Ax (b, where bE IRm is the vector with 
coordinates rt, ... , r m. o 
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Fig.l.2.1. An intersection of half-spaces 

It is interesting to observe that the above construction applies to the examples of § 1.1: 

- an affine hyperplane is the intersection of two (closed) half-spaces; 
- an affine manifold is an intersection of finitely many affine hyperplanes; 

- a unit simplex is the intersection of an affine hyperplane with a closed convex cone (.Q+); 

- a convex cone such as in (1.1.2) is an intersection of a subspace with (homogeneous) half-
spaces. 

Piecing together these instances of convex sets, we see that they can all be considered 
as intersections of sufficiently many closed half-spaces. Another observation is that, up to 
a translation, a hyperplane is the simplest instance of a convex cone - apart from (linear) 
subspaces. Conclusion: translations (the key operations in the affine world), intersections 
and closed half-spaces are basic objects in convex analysis. 

Convexity is stable under Cartesian product, just as it is under intersection. 

Proposition 1.2.3 Fori = 1, ... , k, letCi c IRnj be convex sets. Then C1 x··· x Ck 
is a convex set of IRnl x ... x IRnk. 

PROOF. Straightforward. o 

The converse is also true; C I x ... x Ck is convex if and only if each Cj is convex, 
and this results from the next property: stability under affine mappings. We recall that 
A : IRn --* IRm is said affine when 

A(ax + (l - a)x/) = aA(x) + (l - a)A(x') 

for all x and x/ in IRn and all a E IR. This means that x H- A(x) - A(O) is linear, 
so an affine mapping can be characterized by a linear mapping Ao and a point Yo := 
A(O) E IRm: 

A(x) = Aox + Yo for all x E IRm . 

It goes without saying that images of affine manifolds under affine mappings are affine 
manifolds (hence the name!) So is the case as well for convex sets: 
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Proposition 1.2.4 Let A : lRn ~ lRm be an affine mapping and C a convex set of 
lRn. The image A(C) ofC under A is convex in ]Rm. 

If D is a convex set of lRm, the inverse image 

-I 

A(D) := {x E lRn : A(x) E D} 

is convex in lRn. 

PROOF. For x and x, in lRn, the image under A of the segment [x, x'] is clearly the 
segment [A (x) I A (x')] c lRm. This proves the first claim, but also the second: indeed, 
if x and x' are such that A (x) and A (x') are both in the convex set D, then every point 
ofthe segment [x, x'] has its image in [A(x), A(x')] c D. 0 

Immediate consequences of this last result are: 

- the opposite -C of a convex set is convex; 

- the sum (called direct sum, or Minkowski sum, denoted with the symbol EB by some 
authors) 

CI +C2 := {x =XI +X2 : XI E CII X2 E C2} 

of two convex sets CI and C2 is convex; when C2 = {C2} is a singleton, we will 
sometimes use the lighter notation CI + C2 for CI + {e2}; 

- more generally, if al and a2 are two real numbers, the set 

alCI +a2C2:= {alxl +a2x2 : XI E C I ,X2 E C2} (1.2.2) 

is convex: it is the image of the convex set C I x C2 (Proposition 1.2.3) under the 
linear mapping sending (XI I X2) E lRn x lRn to alxl + a2X2 E Rn. 

We recall here that the sum of two closed sets need not be closed, unless one of the sets 
is compact. This property is not changed when convexity is present: with n = 2, take for 
example 

CI :=«~,'7): ~~O,'7~O,~'7~l} and C2:=lRX{O}. 

Example 1.2.5 Let C be convex in lRnl x lRn2 ; see Fig. 1.2.2. 

Use for A the projection from lRnl x lRn2 onto lRnl to see that the "slice" of C along y 

C(y) := {x E lRnl : (x, Y) E C} 

and the "shadow" of Cover IRnl 

CI := {x E lRnl : (x, Y) E C for some Y E C} 

are convex. If, in particular, C = C I X C2 is a product-set, we obtain the converse to Propo
sition 1.2.3. 0 
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v 
Fig. 1.2.2. Shadow and slice of a convex set 

Example 1.2.6 When setting (Xl = -(X2 = 1 in (1.2.2), we obtain a "difference" Cl - C2, 
which is actually a sum: Cl + (-C2); the result is always a rather large set, as it contains "as 
many elements" as Cl x C2, so to speak. 

Another "difference" between sets is the following star-difference 

Cl .! C2 := n{CI - c : c E C2l = {x E]Rn : x + C2 C Cd . 

It is a convex set, even if C2 is not convex - use in particular Proposition 1.2.1. Observe the 
contrast: C1 - C2 is a "large" set but Cl .! C2 is "small", and even very often empty (try 
examples with a ball for C2). 0 

We finish with a topological operation. 

Proposition 1.2.7 If C is convex, so are its interior int C and its closure cI C. 

PROOF. For given different x and x', and a E ]0, 1[, we set x" = ax + (1 - a)x' E 

]x, x'[. 
Take first x and x' in int C . Choosing 8 > 0 such that B(x', 8) c C, we show 

that B(x", (l - a)8) C C. As often in convex analysis, it is probably best to draw a 
picture. The ratio IIx" - x II/lIx' - xII being precisely 1 - a, Fig. 1.2.3 clearly shows 
that B(x", (1 - a)8) is just the set ax + (1 - a)B(x',8), obtained from segments 
with endpoints in int C: x" E int C . 

,~~ 
1~ a 

Fig. 1.2.3. Convex sets have convex interiors 
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Now, take x and x' incl C: we select in C two sequences {xd and {xk} converging 
to x and x, respectively. Then, aXk + (1 - a)xk is in C and converges to x", which 
is therefore in cl C. 0 

The interior of a set is (too) often empty; convexity allows the similar but much more 
convenient concept of relative interior, to be seen below in §2.1. Observe the nonsymmetric 
character of x and x' in Fig. 1.2.3. It can be exploited to show that the intermediate result 
]x, x' [ C int C remains true even if x E cl C; a property which will be seen in more detail in 
§2.1. 

1.3 Convex Combinations and Convex Hulls 

The operations described in § 1.2 took convex sets and made new convex sets with 
them. The present section is devoted to another operation, which takes a nonconvex 
set and makes a convex set with it. First, let us recall the following basic facts from 
linear algebra. 

(i) A linear combination of elements Xlo ... ,Xk of]Rn is an element :Lf=l ajXj, 
where the coefficients aj are arbitrary real numbers. 

(ii) A (linear) subspace of]Rn is a set containing all its linear combinations; an 
intersection of subspaces is still a subspace. 

(iii) To any nonempty set S C ]Rn, we can therefore associate the intersection of all 
subspaces containing S. This gives a subspace: the subspace generated by S (or 
linear hull of S), denoted lin S - other notations are vect S or span S. 

(iv) For the c-relation, linS is the smallest subspace containing S; it can be con
structed directly from S, by collecting all the linear combinations of elements 
of S. 

(v) Finally, Xl, ... ,Xk are said linearly independent if :Lf=l ajXj = 0 implies that 
al = ... = ak = O. In ]Rn. this implies k ~ n. 

Now, let us be slightly more demanding for the coefficients aj, as follows: 

(i') An affine combination of elements Xlo ... , Xk of]Rn is an element :Lf=l ajxi, 

where the coefficients ai satisfy :Lf=l ai = 1. 

As explained after Example 1.2.2, "affinity = linearity + translation"; it is therefore 
not surprising to realize that the development (i) - (v) can be reproduced starting from 
(i'): 

(ii') An affine manifold in ]Rn is a set containing all its affine combinations (the 
equivalence with Example 1.1.2(b) will appear more clearly below in Proposi
tion 1.3.3); it is easy to see that an intersection of affine manifolds is still an 
affine manifold. 

(iii') To any nonempty set S C ]Rn, we can therefore associate the intersection of all 
affine manifolds containing S. This gives the affine manifold generated by S, 
denoted aff S: the affine hull of S. 
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(iv') For the c -relation, aff S is the smallest affine manifold containing S; it can 
be constructed directly from S, by collecting all the affine combinations of 
elements of S. To see it, start from Xo E S, take lineS - xo) and come back by 
adding Xo: the result Xo + lineS - xo) is just aff S. 

(v') Finally, the k + 1 points Xo, Xl> ... , Xk are said affinely independent if the set 

Xo + lin{xo - Xo, Xl - Xo, ... , Xk - Xo} = Xo + lin{Xl - Xo, ... , Xk - Xo} 

has full dimension, namely k. The above set is exactlyaff{xo, Xl, ... , Xk}; hence, 
it does not depend on the index chosen for the translation (here 0). In linear 
language, the required property is that the k vectors Xi - Xo, i =j:. 0 be linearly 
independent. Getting rid of the arbitrary index 0, this means that the system of 
equations 

k 

"a·x· -0 ~ 11-' 

i=o 

k 

Lai =0 (l.3.1) 
i=o 

has the unique solution ao = al = ... = ak = O. Considered as elements of 
lR.n+l = JR.n x JR., the vectors (xo, I), (Xl, 1), ... , (Xb 1), are linearly indepen
dent. In JR.n, at most n + 1 elements can thus be affinely independent. 

If Xo, XI, •.• , Xk, are affinely independent, X E aff{xo, XI, •.• , xkl can be written in 
a unique way as 

k 

X = Lajxj with 
i=O 

k 

Lai = 1. 
i=O 

The corresponding coefficients ai are sometimes called the barycentric coordinates 
of x - even though such a terminology should be reserved to nonnegative aj 's. To say 
that a set of vectors are affinely dependent is to say that one of them (anyone) is an 
affine combination of the others. 

Example 1.3.1 Consider the unit simplex.,13 on the leftpartofFig. 1.1.1; call el = (1,0,0), 
e2 = (0,1,0), e3 = (0,0,1) the three basis-vectors forming its vertices. The affine hull of 
S = {el' e2} is the affine line passing through el and e2. For S = {el, e2, e3}, it is the affine 
plane of equation al + a2 + a3 = 1. The four elements 0, el, e2, e) are affinely independent 
but the four elements (II), 1/3, 1/3), el, e2, e3 are not. 0 

Passing from (i) to (i') gives a set aff S which is closer to S than lin S, thanks to 
the extra requirement in (i'). We apply once more the same idea and we pass from 
affinity to convexity by requiring some more of the ai's. This gives a new definition, 
playing the role of (i) and (i'): 

Definition 1.3.2 A convex combination of elements Xl, ... , Xk in JR.n is an element 
of the form 

k 

LaiXj 
i=1 

where 
k 

I:ai=l and ai~Ofori=l, ... ,k. 
i=1 

o 
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A convex combination is therefore a particular affine combination, which in turn 
is a particular linear combination. Note in passing that all convex combinations of 
given XI, ... , Xk form a convex set: it is the image of ..1k under the linear mapping 

)Rk :3 (al,"" ak) t-+ alxl + ... + akxk E )Rn . 

The sets playing the role oflinear or affine subspaces of (ii) and (ii') will now be 
logically called convex, but we have to make sure that this new definition is consistent 
with Definition 1.1.1. 

Proposition 1.3.3 A set C C )Rn is convex if and only if it contains every convex 
combination of its elements. 

PROOF. The condition is sufficient: convex combinations of two elements just make 
up the segment joining them. To prove necessity, take XI, ... ,Xk in C and a = 
(aI, ... ,ak) E ..1k. One at least of the aj's is positive, sayal > O. Then form 

al a2 
Y2:= XI + X2 

at +a2 al +a2 
[= al~a2 (alxl + a 2X2)] 

which is in C by Definition 1.1.1 itself. Therefore, 

al +a2 a3 
Y3:= Y2 + X3 

at +a2 +a3 at +a2 +a3 
[=)'~I a.LI=lajXj] 

·'=1 1 

is in C for the same reason; and so on until 

al + ... +ak-I ak 
Yk := 1 Yk-I + T Xk [ = t Lf=l ajXj] . o 

The working argument of the above proof is longer to write than to understand. Its 
basic idea is just associativity: a convex combination x = L ai Xi of convex combinations 
Xi = 'L{3ijYij is still a convex combination X = L L(ai{3ij)Yij. The same associativity 
property will be used in the next result. 

Because an intersection of convex sets is convex, we can logically define as in 
(iii), (iii') the convex hull co S of a nonempty set S: this is the intersection of all the 
convex sets containing S. 

Proposition 1.3.4 The convex hull can also be described as the set of all convex 
combinations: 

co S := n{c: C is convex and contains S} 

= {x E)Rn : for some k E N*, there exist Xl, ... ,Xk E Sand (1.3.2) 

a = (aJ, ... , ak) E..1k such that 2:f=1 ajXj = x} . 

PROOF. Call T the set described in the rightmost side of(1.3.2). Clearly, T :::> S. Also, 
if C is convex and contains S, then it contains all convex combinations of elements 
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in S (Proposition 1.3.3), i.e. C ::J T. The proof will therefore be finished if we show 
that T is convex. 

For this, take two points x and yin T, characterized respectively by (XI, al), ... , 
(Xk, ak) and by (Yi> .81), ... , (Ye, .8e); take also A E ]0, 1[. Then Ax + (l - A)Y is a 
certain combination of k + l elements of S; this combination is convex because its 
coefficients Aai and (l - A){Jj are nonnegative, and their sum is 

k e 
ALai + (I - A) L hj = A + I - A = l. D 

i=1 j=1 

Example 1.3.5 Take a finite set {XI, ... , xm}. To obtain its convex hull, it is not 
necessary to list all the convex combinations obtained via a E Llk forallk = I, ... , m. 
In fact, as already seen in Example 1.1.3, Llk C Llm if k ~ m, so we can restrict 
ourselves to k = m. Thus, we see that 

cO{Xi>"" xm} = {Lj=1 ajxj : a = (ai>"" am) E Llm}. 

Make this example a little more complicated, replacing the collection of points 
by a collection of convex sets: 

S = C I U··· U Cm where each Ci is convex. 

A simplification of (1.3.2) can again be exploited here. Indeed, consider a convex 
combination L~=I aiXj. It may happen that several of the Xj 's belong to the same Cj. 
To simplify notation, suppose that Xk-I and Xk are in C I ; assume also ak > O. Then 
set ({Ji, Yi) := (ai, Xi), i = 1, ... , k - 2 and 

.8k-1 := ak-I + ak, Yk-I := pL, (ak-IXk-1 + akXk) E CI , 

so that Lf=1 aixi = L~:::II {JiYi. Our convex combination (a, x) is useless, in the 
sense that it can also be found among those with k - I elements. To cut a long story 
short, associativity of convex combinations yields 

COS={Lt=laiXi aELlm, XiECifori=I, ... ,m}. 

From a geometrical point of view, the convex hull of CI U C2 (m = 2) is simply 
constructed by drawing segments, with endpoints in CI and C2 ; for CI U C2 U C3 , we 
paste triangles, etc. D 

When S is infinite, or has infinitely many convex components, k is a priori un
bounded in (1.3.2) and cannot be readily restricted as in the examples above. Yet, a 
bound on k exists for all S when we consider linear combinations and linear hulls -
and consequently in the affine case as well; this is the whole business of dimension. 
In the present case of convex combinations, the same phenomenon is conserved to 
some extent. For each positive integer k, call Sk the set of all convex combinations of 
k elements in S: we have 
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S = SI C S2 C ... C Sk C ... 

The Sk'S are not convex but, "at the limit", their union is convex and coincides with 
co S (Proposition 1.3.4). The theorem below tells us thatk does not have to go to +00: 
the above sequence actually stops at Sn+1 = co S. 

Theorem 1.3.6 (C. Caratheodory) Any x E co S C ]Rn can be represented as a 
convex combination of n + 1 elements of S. 

PROOF. Take an arbitrary convex combination x = 2:7=1 aixi, with k > n + 1. We 
claim that one of the Xi'S can be assigned a O-coefficient without changing x. For this, 
assume that all coefficients ai are positive (otherwise we are done). 

The k > n + 1 elements Xi are certainly affinely dependent: (1.3.1) tells us that 
we can find 01 , ... , Ok> not all zero, such that 

k 

LOiXi =0 and 
i=1 

k 

LOi=O. 
i=1 

There is at least one positive 0i and we can set a; := ai - t * 0i for i = 1, ... , k, where 

t* := max{t ~ 0 
a· 

ai - tOi ~ 0 for i = 1, ... , k} = min .2... 
"j>o OJ 

Clearly enough, 

ai ~ 0 for i = 1, ... , k 
[automatic if"; ~ 0, 

by construction of t* if 8; > 0] 
k k k 

La; = L ai - t* L 0i = 1 ; 
i=1 i=1 i=1 

k k 

La;xi =X-t*LOiXi =x; 
i=1 i=1 

3io such that aio = 0 . [by construction of t*] 

In other words, we have expressed x as a convex combination of k - 1 among the 
Xi'S; our claim is proved. 

Now, if k - 1 = n + 1, the proof is finished. If not, we can apply the above 
construction to the convex combination x = 2:}:::11 a;xi and so on. The process 
can be continued until there remain only n + 1 elements (which may be affinely 
independent). 0 

The same proof technique is commonly used in actual computations dealing with linearly 
constrained optimization. Geometrically, we start from a = (ai, ... , ak) E L1k. We compute 
a direction -d = ("1, ... , 15k), which is in the subspace parallel to aff L1b so that for any 
stepsize t, a - td E aff L1k; and also, x is kept invariant. The particular t* is the maximal 
stepsize such that a - td E L1k; as a result, a - t*d is on the boundary of L1k, i.e. in L1k-l; 
see Fig. 1.3.1. 
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-/3 

Fig. 1.3.1. CaratModory's theorem 

The theorem of CaratModory does not establish the existence of a "basis" with n + 1 

elements, as is the case for linear combinations. Here, the generators Xi may depend on 
the particular x to be computed. In 1R2, think of the comers of a square: anyone of these 
4 > 2 + I points may be necessary to generate a point in the square; also, the unit disk cannot 
be generated by finitely many points on the unit circle. By contrast, a subspace of dimension 
m can be generated by m (carefully selected but)fixed generators. 

It is not the particular value n + 1 which is interesting in the above theorem, but rather the 
fact that the cardinality of relevant convex combinations is bounded: this is particularly useful 
when passing to the limit in a sequence of convex combinations. This value n + I is not of 
fundamental importance, anyway, and can often be reduced - as in Example 1.3.5: the convex 
hull of two convex sets in lR 1 00 can be generated by 2-combinations; also, the technique of 
proof shows that it is the dimension of aff S that counts, not n. Along these lines, we mention 
without proof a result geometrically very suggestive: 

Theorem 1.3.7 (W. Fenchel and L. Bunt) If S C IRn has no more than n connected com
ponents (in particular, if S is connected), then any x E co S can be expressed as a convex 
combination oln elements oiS. 0 

This result says in particular that convex and connected one-dimensional sets are the 
same, namely the intervals. In 1R2, the convex hull of a continuous curve can be obtained by 
joining all pairs of points in it. In lR3, the convex hull of three potatoes is obtained by pasting 
triangles, etc. 

1.4 Closed Convex Sets and Hulls 

Closedness is a very important property in convex analysis and optimization. Most 
of the convex sets of interest to us in the subsequent chapters will be closed. It is 
therefore relevant to reproduce the previous section, with the word "closed" added. 
As far as linearity and affinity are concerned, there is no difference; in words, equal
ities are not affected when limits are involved. But convexity is another story: when 
passing from (i), (i') to Definition 1.3.2, inequalities are introduced, together with 
their accompanying difficulty "< vs. :::;;". 

To construct a convex hull co S, we followed in §1.3 the path (iii), (iii'): we took 
the intersection of all convex sets containing S. An intersection of closed sets is still 
closed, so the following definition is also natural: 
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Definition 1.4.1 The closed convex hull of a nonempty set S C IR.n is the intersection 
of all closed convex sets containing S. It will be denoted by co S. 0 

Another path was also possible to construct co S, namely to take all possible 
convex combinations: then, we obtained co S again (Proposition 1.3.4); what about 
closing it? It turns out we can do that as well: 

Proposition 1.4.2 The closed convex hull co S of Definition 1.4.1 is the closure 
cl(co S) of the convex hull ofS. 

PROOF. Because cl( co S) is a closed convex set containing S, it contains co S as well. 
On the other hand, take a closed convex set C containing S; being convex, C contains 
co S; being closed, it contains also the closure of co S. Since C was arbitrary, we 
conclude nc ::) cl co S. 0 

From the very definitions, the operation "taking a hull" is monotone: if SI C S2, 
then aff SI C aff S2, cl SI c cl S2, co SI C co S2, and of course co SI C co S2' 
A closed convex hull does not distinguish a set from its closure, just as it does not 
distinguish it from its convex hull: co S = co(cl S) = co(co S) . 

When computing co via Proposition 1.4.2, the closure operation is necessary (co S 
need not be closed) and must be performed after taking the convex hull: the operations 
do not commute. Consider the example of Fig. 1.4.1 : 

S={(O,O)}U{(g,1) : g~O}. 

It is a closed set but co S fails to be closed: it misses the half-line (lR+ , 0). Nevertheless, 
this phenomenon can occur only when S is unbounded, a result which comes directly 
from Caratheodory's theorem: 

o 
Fig. 1.4.1. A convex hull need not be closed 

Theorem 1.4.3 If S is bounded {resp. compact}, then co S is bounded (resp. com
pact). 

PROOF. Let x = E?,!/ (XiXi E co S. If S is bounded, say by M, we can write 

n+1 n+1 

IIxlI~ L(Xilixill~ML(Xi =M. 
i=1 i=1 
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Now take a sequence {xk} C co S. For each k we can choose 

k k· k k k 
XI' .• ·' xn+1 mS and a = (a l , ... , a n+ l ) E Lln+1 

such that xk = :L?,!/ a7xf. Note that Lln+1 is compact. If S is compact, we can 
extract a subsequence as many times as necessary (not more than n + 2 times) so that 
{ak} and each {xf} converge: we end up with an index set KeN such that, when 
k -+ +00, 

{xf}kEK -+ Xi E Sand {ak}kEK -+ a E Lln+1 . 

Passing to the limit for k E K, we see that {xk}kEK converges to a point X, which can 
be expressed as a convex combination of points of S: X E co S, whose compactness 
is thus established. 0 

Thus, this theorem does allow us to write: 

S bounded in lRn ==} co S = cl co S = co cl S . 

Remark 1.4.4 Let us emphasize one point made clear by this and the previous sec
tions: a hull (linear, affine, convex or closed) can be constructed in two ways. In the 
inner way, combinations (linear, affine, convex, or limits) are made with points taken 
from inside the starting set S. The outer way takes sets (linear, affine, convex, or 
closed) containing S and intersects them. 

Even though the first way may seem more direct and natural, it is the second which 
must often be preferred, at least when convexity is involved. This is especially true 
when taking the closed convex hull: forming all convex combinations is already a nasty 
task, which is not even sufficient, as one must close the result afterwards. On the other 
hand, the external construction of co S is more handy in a set-theoretic framework. 
We will even see in §4.2(b) that it is not necessary to take in Definition 104.1 all closed 
convex sets containing S: only rather special such sets have to be intersected, namely 
the closed half-spaces of Example 1.1.2( c). 0 

To finish this section, we mention one more hull, often useful. When starting from 
linear combinations to obtain convex combinations in Definition 1.3 .2, we introduced 
two kinds of constraints on the coefficients: eTa = I and ai ~ O. The first constraint 
alone yielded affinity; we can take the second alone: 

Definition 1.4.5 A conical combination of elements XI, ... ,Xk is an element of the 
form :L~=I ajXi, where the coefficients ai are nonnegative. 

The set of all conical combinations from a given nonempty S C lR n is the conical 
hull of S. It is denoted by cone S. 0 

Note that it would be more accurate to speak of convex conical combinations and convex 
conical hulls. If a := Lf=1 ai is positive, we can set f3i := ai/a to realize that a conical 
combination of the type 

k k 

L aixi = a L f3i Xi with a > 0, f3 E Llk 
i=1 i=1 
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is then nothing but a convex combination, multiplied by an arbitrary positive coefficient. We 
leave it to the reader to realize that 

cone S = ]R+(co S) = co(lR+ S). 

Thus, 0 E cone S; actually, to form cone S, we intersect all convex cones containing S, and 
we append 0 to the result. If we close it, we obtain the following definition: 

Definition 1.4.6 The closed conical hull (or rather closed convex conical hull) of a 
nonempty set S C jRn is 

coneS:= clconeS = cl {2:7=1 eli xi : eli ~ 0, xi E S fori = 1, ... , k}. 0 

Theorem 1.4.3 states that the convex hull and closed convex hull of a compact set 
coincide, but the property is no longer true for conical hulls: for a counter-example, 
taketheset{(~, 1) E jR2: (~-1)2+1)2 ~ I}. Nevertheless, the result can be recovered 
with an additional assumption: 

Proposition 1.4.7 Let S be a nonempty compact set such that 0 f/. co S. Then 

cone S = jR+(co S) [= cone S]. 

PROOF. The set C := co S is compact and does not containing the origin; we prove 
that jR+C is closed. Let {tkXk} c jR+C converge to y; extracting a subsequence if 
necessary, we may suppose Xk -+ x E C; note: x =1= O. We write 

Xk y 
tk-- -+-, 

IIXkll IIxll 

whichimpliestk -+ lIyll/llxlI =: t ~ O. Then,tkxk -+ tx = y, whichisthusinR+C. 
o 

2 Convex Sets Attached to a Convex Set 

2.1 The Relative Interior 

Let C be a nonempty convex set in Rn. If int C =1= !2J, one easily checks that the affine 
hull aff C is the whole of Rn (because so is the affine hull of a ball contained in C): 
we are dealing with a "full dimensional" set. On the other hand, let C be the sheet of 
paper on which this text is written. Its interior is empty in the surrounding space R3, 

but not in the space R2 of the table on which it is lying; by contrast, note that cl Cis 
the same in both spaces. 

This kind of ambiguity is one of the reasons for introducing the concept of relative 
topology: we recall that a subset A ofRn can be equipped with the topology relative to 
A, by defining its "closed balls" R(x, 8)nA, for x E A; then A becomes a topological 
space in its own. In convex analysis, the topology of Rn is of moderate interest: the 
topologies relative to affine manifolds turn out to be much richer. 
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Definition 2.1.1 The relative interior ri C (or relint C) of a convex set C C ]Rn is the 
interior of C for the topology relative to the affine hull of C. In other words: x E ri C 
if and only if 

X E aff C and 38 > 0 such that (aff C) n B(x, 8) c C. 

The dimension of a convex set C is the dimension of its affine hull, that is to say 
the dimension of the subspace parallel to aff C. 0 

Thus, the wording "relative" implicitly means by convention "relative to the affine hull". 
Of course, note that ri C C C. All along this section, and also later in Theorem Y.2.2.3, we will 
see that aff C is the relevant working topological space. Already now, observe that our sheet of 
paper above can be moved ad libitum in]R3 (but not folded: it would become nonconvex); its 
affine hull and relative interior move with it, but are otherwise unaltered. Indeed, the relative 
topological properties of C are the properties of convex sets in ]Rk, where k is the dimension 
of C or aff C. Table 2.1.1 gives some examples. 

Table 2.1.1. Various relative interiors 

C affC dimC riC 
{x} {x} 0 {x} 

[x, x'] affine line 
]x, X/[ 

x =1= x' generated by x and x' 

L\n 
affine manifold 

n-l {a E L\n : ai > O} 
of equation eTa = I 

B(XQ,8) ]Rn n int B(xQ, 8) 

Remark 2.1.2 The cluster points of a set C are in aff C (which is closed and contains C), so 
the relative closure of C is just cl C: a notation relcl C would be superfluous. On the contrary, 
the boundary is affected, and we will speak of relative boundary: 

rbd C := cl C\ ri C . o 

A first demonstration of the relevance of our new definition is the following: 

Theorem 2.1.3 If C # 0, then ri C # 0. In jact, dim(ri C) = dim C. 

PROOF. Let k := 1 + dim C. Since aff C has dimension k - 1, C contains k elements 
affinely independent Xl. •.• , Xk. Call L\ := CO{XI' .•. , x,d the simplex that they gen
erate; see l'lg. 2.1.1; aff L\ = at! (; because Ll C C and dim L\ = k - 1. The proof 
will be finished if we show that L\ has nonempty relative interior. 

Take x := Ilk 2:7=1 Xi (the "center" of L\ ) and describe aff L\ by points of the 
form 

k k 

x+y=x+ Lai(Y)Xi = L[t+ai(Y)]Xi, 
i=1 i=1 
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affC 

Fig.2.1.1. A relative interior is nonempty 

where a(y) = (al(y), ... , ak(Y)) E IRk solves 

k 

LaiXi = y, 
i=l 

k 

Lai=O. 
i=l 

}-

Because this system has a unique solution, the mapping Y ~ a(y) is (linear and) 
continuous: we can find 8 > 0 such that lIyll ::;; 8 implies 

laj(y)l::;; 11k for i = 1, ... , k, hence i + y E .d. 

In other words, i E ri.d erie. 
It follows in particular dim ri C = dim.d = dim c. o 

Remark 2.1.4 We could have gone a little further in our proof, to realize that the relative 
interior of L1 was 

{L~=l aixi : L~=l ai = 1, ai > 0 for i = 1, ... , k}. 

Indeed, any point in the above set could have played the role of i in the proof Note, incidentally, 
that the above set is still the relative interior of CO{XI, ... , Xk}, even ifthe Xj'S are not affinely 
independent. 0 

Remark 2.1.5 The attention of the reader is drawn to a detail in the proof of The
orem 2.1.3: .d C C implied ri..1 erie because .d and C had the same affine hull, 
hence the same relative topology. Taking the relative interior is not a monotone opera
tion, though: in JR, {OJ C [0, 1] but {OJ = ri{O} is not contained in the relative interior 
]0, l[ of [0, 1]. 0 

We now tum to a very usefol technical result; it refines the intermediate result in 
the proof of Proposition 1.2.7, illustrated by Fig. 1.2.3: when moving from a point in 
ri C straight to a point of cl C, we stay inside ri c. 
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Lemma 2.1.6 Let x E cl C and x' EriC. Then the half-open segment 

lx, x'] = {ax + (1 - a)x' : ° ~ a < l} 

is contained in ri C. 

PROOF. Take x" = ax + (1- a)x', with 1 > a ~ 0. To avoid writing "n aft' C" every 
time, we assume without loss of generality that aft' C = ]Rn. 

Since x E cl C, for all 8 > 0, x E C + B(O, 8) and we can write 

B(X",8) = ax + (1 - a)x' + B(O, 8) 
C aC + (1 - a)x' + (1 + a)B(O, 8) 

= aC + (1 - a){x' + B(O, :~~8)}. 

Since x' E intC, we can choose 8 so small that x' + B(O, ~8} C C. Then we have 

B(X",8) C aC + (1 - a)C = C 

(where the last equality is just the definition of a convex set). o 

Remark 2.1.7 We mention an interesting consequence of this result: a half-line issued from 
x' E ri C cannot cut the boundary of C in more than one point; hence, a line meeting ri C 
cannot cut cl C in more than two points: the relative boundary of a convex set is thus a fairly 
regular object, looking like an "onion skin" (see Fig. 2.1.2). 0 

~~X /x.~ 
Fig. 2.1.2. The relative boundary of a convex set 

Note inparticularthat[x, x'] eriC whenever x and x' areinri C, which confirms 
that ri C is convex (cf. Proposition 1.2.7). Actually, ri C, C and cl C are three convex 
sets very close together: they are not distinguished by the operations "aft''', "ri" and 
"cl" . 

Proposition 2.1.8 The three convex sets ri C, C and cl C have the same affine hull 
(and hence the same dimenSion), the same relative interior and the same closure (and 
hence the same relative boundary). 

PROOF. The case of the affine hull was already seen in Theorem 2.1.3. For the others, 
the key result is Lemma 2.1.6 (as well as for most other properties involving closures 
and relative interiors). We illustrate it by restricting our proof to one of the properties, 
say: ri C and C have the same closure. 

Thus, we have to prove that cl C C cl(ri C). Let x E cl C and take x' EriC (it 
is possible by virtue of Theorem 2.1.3). Because ]x, x'] eriC (Lemma 2.1.6), we 
do have that x is a limit of points in ri C (and even a "radial" limit); hence x is in the 
closure of ri C. 0 
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Remark 2.1.9 This result gives one more argument in favour of our relative topology: if we 
take a closed convex set C, open it (for the topology of aff C), and close the result, we obtain 
C again - a very relevant topological property. 

Among the consequences of Proposition 2.1.8, we mention the following: 

- C and cl C have the same interior - hence the same boundary: in fact, either both are empty 
(when dim C = dim cl C < n), or they coincide because the interior equals the relative 
interior. 

- If C I and C2 are two convex sets having the same closure, then they generate the same 
affine manifold and have the same relative interior. This happens exactly when we have the 
following "sandwich" relation 

riCI C C2 C ciCI. o 

Our relative topology fits rather well with the convexity-preserving operations 
presented in § 1.2. Our first result in these lines is of paramount importance in convex 
analysis and optimization. 

Proposition 2.1.10 Let the two convex sets C I and C2 satisfY ri CI n ri C2 =1= 10. Then 

ri(CI n C2) = ri CI n ri C2 

cl(CI n C2 ) = cl CI n cl C2 • 

(2.1.1) 

(2.1.2) 

PROOF. First we show that clCI n clC2 c cl(CI n C2 ) (the converse inclusion is 
always true). Given x E cl CI n cl C2 , we pick x' in the nonempty ri CI n ri C2 • From 
Lemma 2.1.6 applied to CI and to C2, 

]x, x'] eriC Inri C2 • 

Taking the closure of both sides, we conclude 

x E cl(ri CI n ri C2 ) c cl(CI n C2 ) , 

which proves (2.1.2) because x was arbitrary; the above inclusion is actually an equal
ity. 

Now, we have just seen that the two convex sets ri CI n ri C2 and CI n C2 have 
the same closure. According to Remark 2.1.9, they have the same relative interior: 

ri(CI n C2 ) = ri(ri CI n ri C2 ) c ri CI n ri C2 • 

It remains to prove the converse inclusion, so let Y E ri CI n ri C2 • If we take 
x' E CI [resp. C2], the segment [x', y] is in aff CI [resp. aff C2] and, by definition of 
the relative interior, this segment can be stretched beyond y and yet stay in CI [resp. 
C2 ] (see Fig. 2.1.3). Take in particular x' E ri(CI n C2), x' =1= y (if such an x, does 
not exist, we are done). The above stretching singles out an x E CI n C2 such that 
y E lx, X'[: 

y =ax + (l-a)x' for some a E]O, 1[. 

Then Lemma 2.1.6 applied to C I n C2 tells us that y E ri(CI n C2 ). o 
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Fig.2.1.3. The stretching mechanism 

Observe that, if we intersect infinitely many convex sets - instead of two, or a finite 
number -, the proof of (2.1.2) still works, but certainly not the proof of (2.1.1): the stretching 
possibility is killed. The condition that the relative interiors have a nonempty intersection is 
very important and will be encountered many times in the sequel; it is essential for both (2.1.1) 
and (2.1.2) (use the same counter-example as in Remark 2.1.5). Incidentally, it gives another 
sufficient condition for the monotonicity of the ri-operation (use (2.1.1) with CI C C2). 

We restrict our next statements to the case of the relative interior. Lemma 2.1.6 
and Proposition 2.1.8 help in carrying them over to the closure operation. 

Proposition 2.1.11 For i = 1, ... , k, let Ci C jRnj be convex sets. Then 

ri(C I x .. · x Ck) = (riC I ) x '" x (riCk). 

PROOF. It suffices to apply Definition 2.1.1 alone, observing that 

aff(CI x ... x Ck) = (affCI ) x '" x (affCk). o 

Proposition 2.1.12 Let A : jRn -+ jRm be an affine mapping and C a convex set of 
jRn. Then 

ri[A(C)] = A(ri C) . (2.1.3) 

-) 

If D is a convex set ofJRm satisfying A (ri D) =/: 0, then 

ri[A(D)] = A(riD). (2.1.4) 

PROOF. First, note that the continuity of A implies A(cl S) C cl[A(S)] for any S C 

JRn. Apply this result to ri C, whose closure is cl C (Proposition 2.1.8), and use the 
mono tonicity of the closure operation: 

A(C) c A(clC) = A [cl(ri C)] C cl[A(riC)] C cl[A(C)]; 

the closed set cl[A(ri C)] is therefore cl[A(C)]. Because A(ri C) and A(C) have the 
same closure, they have the same relative interior (Remark 2.1.9): 

ri A(C) = ri[A(ri C)] C A(ri C) . 

To prove the converse inclusion, let w = A(y) E A(riC), with y E riC. We 
choose z' = A(x') E riA(C), with x' E C (we assume z' =/: w, hence x' =/: y). 
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Using in C the same stretching mechanism as in Fig. 2.1.3, we single out x E C 
such that y E lx, x'[, to which corresponds z = A(x) E A(C). By affinity, A(y) E 

]A(x), A(x')[ = ]z, z'[. Thus, z andz' fulfil the conditions of Lemma 2.1.6 applied 
to the convex set A(C): W E ri A(C), and (2.1.3) is proved. 

The proof of (2.1.4) uses the same technique. 0 

As an illustration ofthe last two results, we see that the relative interior of <l I C I + <l2 C2 is 
<ll ri CI + <l2 ri C2. Ifwe take in particular <ll = -<l2 = 1, we obtain the following theorem: 

o E ri(CI - C2) {::::> (ri CI) n (ri C2):,HlJ, (2.1.5) 

which gives one more equivalent form for the condition in Proposition 2.1.10. We will come 
again to this property on several occasions. 

2.2 The Asymptotic Cone 

Let x be a point in a closed convex cone K. Draw a picture to see that, for all d E K, 
the half-line x + R.+d is contained in K: x + td E K for all t > O. Conversely, if 
x + R.+d c K, i.e. if 

K-x 
d E -- = K - Ox} for all t > 0, 

t 

then (K is closed), d E K. In words, a closed convex cone is also the set of directions 
along which one can go straight to infinity. We now generalize this concept to non
conical sets. 

In this section, C will always be a nonempty closed convex set. For x E C, let 

C",ix):= {d E R.n : x +td E C for all t > O} . (2.2.1) 

Despite the appearances, CoO<x) depends only on the behaviour of C "at infinity": 
in fact, x + td E C implies that x + 'fd E C for all 'f E [0, t] (C is convex). Thus, 
Coo (x) is just the set of directions from which one can go straight from x to infinity, 
while staying in C. Another formulation is: 

Coo(x) = n C -x 
t>o t ' 

(2.2.2) 

which clearly shows that Coo (x ) is a closed convex cone, which of course contains O. 
The following property is fundamental. 

Proposition 2.2.1 The closed convex cone Coo(x) does not depend on x E C. 

PROOF. See Theorem 1.2.3.1 and the pantographic Figure 1.2.3.1. Take two different 
points XI and X2 in C; it suffices to prove one inclusion, say Coo(XI) C Coo(X2). Let 
dE Coo(xd and t > 0, we have to prove X2 + td E C. With e E ]0,1[, consider the 
point 

is := XI + td + (l - e)(x2 - XI). 
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Writing it as 
ie = S (XI + fd) + (1 - S)X2' 

we see that ie E C (use the definitions of Coo (x.) and of a convex set). On the other 
hand, 

X2 +td = limxe E clC = C. 
eto 

It follows that the notation Coo is more appropriate: 

o 

Definition 2.2.2 The asymptotic cone, or recession cone of the closed convex set C 
is the closed convex cone Coo defined by (2.2.1) or (2.2.2), in which Proposition 2.2.1 
is exploited. 0 

Figure 2.2.1 gives three examples in ]R2. As for the asymptotic cone of Exam
ple 1.2.2, it is the set {d E ]Rn : Ad ~ OJ. 

c= 

c~= + -+-
Fig.2.2.1. Some asymptotic cones 

Proposition 2.2.3 A closed convex set C is compact if and only if Coo = {O}. 

PROOF. If C is bounded, it is clear that Coo cannot contain any nonzero direction. 
Conversely, let {Xk} C Cbesuchthat IIXkll --+ +00 (weassumexk =1= 0). The sequence 
{dk := xk/llxkll} is bounded, extract a convergent subsequence: d = limkEK dk with 
KeN (lid II = 1). Now, given X E C and t > 0, take k so large that IIXkll ~ t. Then, 
we see that 

x+td= l~~[(l-lI;kll)X+ lI;kllxk] 

is in the closed convex set C, hence d E Coo. o 

Another easy-to-see relationship is 

Coo = {d E Rn : d + C c C} = C :!: C , 

where the star-difference is that of Example 1.2.6. It follows that Coo can be viewed as the 
maximal X C IRn (in the sense of the C -relation) solving the set-valued equation 

X + C = C [or equivalently X + C c C], 

whose solution is C if C is a cone (see the introduction to this Section 2.2). 
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Remark 2.2.4 Consider the closed convex sets (C - x) / t, indexed by t > O. They form a 
nested decreasing family: for tl < t2 and y arbitrary in C, 

y-x 

t2 

y' - X t2 - tl tl 
-- where y':= --x + -y E C. 

~ ~ ~ 

Thus, we can write (see §A.5 for the set-limit appearing below) 

C-x C-x 
C n-~= lim -~, 

00 = t 1-++00 t 
1>0 

(2.2.3) 

which interprets Coo as a limit of set-valued difference quotients, but with the denominator 
tending to 00, instead of the usual O. This will be seen again later in §5.2. 0 

In contrast to the relative interior, the concept of asymptotic cone does not always 
fit well with usual convexity-preserving operations. We just mention some properties 
which result directly from the definition of Coo. 

Proposition 2.2.5 

-If {Cj}j EJ is a family of closed convex sets having a point in common, then 

(njEJCj)oo= njEJ(Cj)oo. 

-If, for j = 1, ... , m, Cj are closed convex sets in lRn j, then 

(CI X ... x Cm)oo = (CI)oo x ... x (Cm)oo. 

- Let A : lRn -+ lRm be an affine mapping. If C is closed convex in lRn and A (C) is 
closed, then 

A(Coo) c [A(C)]oo . 

-If D is closed convex in lRm with nonempty inverse image, then 

[1 (D)]oo = 1 (Doo) . o 

Needless to say, convexity doef not help to ensure that the image of a closed set under a 
continuous mapping is closed: take A(~, 1/) = ~ (linear) and C = {(~, 1/) : 1/ ~ 1/~ > O}. 

2.3 Extreme Points 

In this section, C is a nonempty convex set of lRn and there would be no loss of 
generality in assuming that it is closed. The reader may make this assumption if he 
finds it helpful in mastering faster the definitions and properties below; the same 
remark holds for §2.4. 

Definition 2.3.1 We say that x E C is an extreme point of C if there are no two 
different points XI and X2 in C such that x = 1/2 (XI + X2). 0 
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Some other ways of expressing the same thing are: 

- x = CUI + (1 - a)x2 is impossible whenever XI and X2 are two distinct points of C and 
a E ]0, 1 [ : indeed, convexity of C implies that XI and X2 in the definition can be replaced 
by two other points in the segment [XI, X2]; this amounts to replacing the number 1/2 by 
some other a E ]0, 1 [. In short: 

X is an extreme point of C if and only if 
[x = aXI + (1 - a)x2' Xj E C, 0< a < 1] ==> x = XI = X2. 

- There is no convex combination X = L~=I ajXj other than XI = ... = Xk [= x]. 
- The set C\ {x} is still convex. 

Examples 2.3.2 

- Let C be the unit ball B(O, I). Multiply by 1/2 the relation 

}lIxI + x211 2 = IIxI1I2 + IIx2112 - }lIx2 - XI 112 (2.3.1) 

to realize that every x ofnonn 1 is an extreme point of B(O, 1). Likewise, if Q : 
]Rn ~ ]Rn is a positive definite symmetric linear operator, any x with (Qx, x) = I 
is an extreme point of the convex set 

{x E]Rn : (Qx,x}::;; I}. 

On the other hand, if (Q', .) 1/2 is replaced by the il-nonn, the corresponding unit 
ball has finitely many extreme points. 

- If C is a convex cone, a nonzero x E C has no chance of being an extreme point. 

- An affine manifold, a half-space have no extreme points. 0 

The set of extreme points of C will be denoted by ext C. We mention here that it 
is a closed set when n ~ 2; but in general, ext C has no partiCUlar topological or linear 
properties. Along the lines of the above examples, there is at least one case where 
there exist extreme points: 

Proposition 2.3.3 If C is compact, then ext C =f:. 0. 

PROOF. Because C is compact, there is i E C maximizing the continuous function 
x 1---* IIx1l2. We claim that i is extremal. In fact, suppose that there are XI and X2 

in C with i = 1/2 (XI + X2). Then, with XI =f:. X2 and using (2.3.1), we obtain the 
contradiction 

lIill2 = 11!<xI +x2)11 2 < !(llxdI2 + IIx2112) ~ !<lIiIl2 + lIif) = IIi 112 . 0 

The definitions clearly imply that any extreme point of C is on its boundary, and 
even on its relative boundary. The essential result on extreme points is the following, 
which we will prove later in §4.2( c). 

Theorem 2.3.4 (H. Minkowski) Let C be compact, convex in ]Rn. Then C is the 
convex hull of its extreme points: C = co( ext C). 0 
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Combined with Caratheodory's Theorem 1.3.6, this result establishes that, if 
dim C = k, then any element of C is a convex combination of at most k + 1 ex
treme points of C. 

Example 2.3.5 Take C = co{x\. ... , xm}. All the extreme points ofC are present in 
the listxI, ... ,Xm ; but of course, thexj 's are not all necessarily extremal. Let Ii ~ m be 
thenumberofextremepointsofC, suppose to simplify that these are x\. ... , xJ-L' Then 
C = CO{XI' ... ,xJ-L} and this representation is minimal, in the sense that removing one 
of the generators Xl , ... , X J-L effectively changes C. The case Ii = n + 1 corresponds 
to a simplex in ~n. If Ii > n + 1, then for any X E C, there is a representation 
X = Lt=l ajxj in which at least Ii - n - 1 among the a~s are zero. 0 

A higher-dimensional generalization of extreme points can be defined. Consider 
again Definition 2.3.1, and replace "the point X E C" by "the convex subset FCC". 
Our definition is then generalized as follows: the convex subset FCC is extremal if 
there are no two points Xl and X2 in C\F such that 1/2 (Xl + X2) E F. 

Once again, the number 1/2 has nothing special and can be replaced by any other 
a E ]0, 1[. The above statement can be rephrased in reversed logic as: if XI and X2 in 
C are such that aXI + (1 - a)x2 E F for some a E ]0, 1[, then Xl and X2 are in F as 
well. Convexity of F then implies that the whole segment [Xl, X2] is in F, and we end 
up with the traditional definition: 

Definition 2.3.6 A nonempty convex subset FCC is a face of C if it satisfies the 
following property: every segment of C, having in its relative interior an element of 
F, is entirely contained in F. In other words, 

(XI, X2) E C x C and } 
3a E ]0, 1[: aXI + (1 - a)x2 E F ==:::} [Xl, X2] c F. (2.3.2) 

o 

Being convex, a face has its own affine hull, closure, relative interior and di
mension. By construction, extreme points appear as faces that are singletons, i.e. 
O-dimensional faces: 

X E extC <==? {x} is a face ofC. 

One-dimensional faces, i.e. segments that are faces of C, are called edges of C; and 
so on until (k - I)-dimensional faces (where k = dim C), calledfacets ... and the 
only k-dimensional face of C, which is C itself. 

A useful property is the "transmission of extremality": if X E C' C C is an 
extreme point of C, then it is a fortiori an extreme point of the smaller set C'. When 
C' is a face of C, the converse is also true: 

Proposition 2.3.7 Let F be a face of C. Then any extreme point of F is an extreme 
pointojC. 
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PROOF. Take x E Fee and assume that x is not an extreme point of c: there are 
different x!. X2 in C and a E]O, 1[ such that x = aXl + (1 - a)x2 E F. From the 
very definition (2.3.2) of a face, this implies that Xl and X2 are in F: x cannot be an 
extreme point of F. 0 

This property can be generalized to: if F' is a face of F, which is itself a face of C, then 
F' is a face of C. We mention also: the relative interiors of the faces of C form a partition 
of C. Examine Example 2.3.5 to visualize its faces, their relative interiors and the above 
partition. The C of Fig. 2.3.1, with its extreme point x, gives a less trivial situation; make 
a three-dimensional convex set by rotating C around the axis .:1: we obtain a set with no 
one-dimensional face. 

6 

Fig.2.3.1. A special extreme point 

Faces (other than extreme points) are not too important in convex analysis and optimiza
tion - and this is fortunate: after all, Definition 2.3.6 is rather tricky. A much more useful 
concept is that of exposed faces, the subject of the next section. 

2.4 Exposed Faces 

The rationale for extreme points is an inner construction of convex sets, as is particu
larly illustrated by Theorem 2.3.4 and Example 2.3.5. We mentioned in the important 
Remark 1.4.4 that a convex set could also be constructed externally, by taking in
tersections of convex sets containing it (see Proposition 1.3.4: if S is convex, then 
S = co S). To prepare a deeper analysis, coming in §4.2(b) and §5.2, we need the 
following fundamental definition, based on Example 1.1.2. 

Definition 2.4.1 (Supporting Hyperplane) An affine hyperplane Hs,r is said to 
support the set C when C is entirely contained in one of the two closed half-spaces 
delimited by Hs•r : say 

(s, y) :::;; r for all y E C . (2.4.1) 

It is said to support C at x E C when, in addition, X E Hs.r: (2.4.1) holds, as well as 
(s,x}=r. 0 

See Fig. 2.4.1 for an illustration. Up to now, it is only a formal definition; existence of 
some supporting hyperplane will be established later in §4.2(a). Naturally, the inequality-sign 
could be reversed in (2.4.1): Hs.r supports C when H-s.-r supports C. Note also that if 
x E C has a hyperplane supporting C, then x E bd C. 
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Fig. 2.4.1. Supporting hyperplanes at various points 

Definition 2.4.2 The set FCC is an exposed face of C if there is a supporting 
hyperplane Hs,r of C such that F = C n Hs,r. 

An exposed point, or vertex, is a O-dimensional exposed face, i.e. a point x E C 
at which there is a supporting hyperplane Hs,r of C such that Hs,r n C reduces to 
{x}. 0 

See Fig. 2.4.1 again. A supporting hyperplane Hs,r mayor may not touch C. If 
it does, the contact-set is an exposed face. If it does at a singleton, this singleton is 
called an exposed point. As an intersection of convex sets, an exposed face is convex. 
The next result justifies the wording. 

Proposition 2.4.3 An exposed face is a face. 

PROOF. Let F be an exposed face, with its associated support Hs,r. Take Xj and X2 in 
C: 

(s, xi) ~ r for i = 1, 2 ; 

take also a E ]0, 1[ such that aXj + (1 - a)x2 E F C Hs,r: 

(s, aXj + (1 - a)x2) = r. 

(2.4.2) 

Suppose that one of the relations (2.4.2) holds as strict inequality. By convex combi
nation, we obtain (0 < a < I!) 

(s, aXj + (1 - a)x2) < r, 

a contradiction. o 

The simple technique used in the above proof appears often in convex analysis: if a 
convex combination, with positive coefficients, of inequalities holds as an equality, then so 
does each individual inequality. 

Remark 2.4.4 Comparing with Proposition 2.3.7, we see that the property of transmission 
of extremality applies to exposed faces as well: if x is an extreme point of the exposed face 
Fee, then x E ext C. 0 

One could believe (for example from Fig. 2.4.1) that the converse to Proposition 2.4.3 
is true. Figure 2.3.1 immediately shows that this intuition is false: the extreme point x is 
not exposed. Exposed faces form therefore a proper subset of faces. The difference is slight, 
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however: a result of S. Straszewicz (1935) establishes that any extreme point of a closed 
convex set C is a limit of exposed points in C. In other words, 

exp C C ext C C cl(exp C) 

if exp C denotes the set of exposed points in C. Comparing with Minkowski's result 2.3.4, 
we see that C = co(exp C) for C convex and compact. We also mention that a facet is 
automatically exposed (the reason is that n - I, the dimension of a facet, is also the dimension 
of the hyperplane involved when exposing faces). 

Enrich Fig. 2.3.1 as follows: take C/, obtained from C by a rotation of 30° around L1 ; 
then consider the convex hull of C U C/, displayed in Fig. 2.4.2. The point PI is an extreme 
point but not a vertex; P2 is a vertex. The edge EI is not exposed; E2 is an exposed edge. As 
for the faces FI and F2, they are exposed because they are facets. 

F1 

E2 

F2 

Fig. 2.4.2. Faces and exposed faces 

Remark 2.4.5 (Direction Exposing a Face) Let F be an exposed face, and Hs,r its 
associated supporting hyperplane. It results immediately from the definitions that 

(s, y} ,,;; (s, x} for all y E C and all x E F . 

Another definition of an exposed face can therefore be proposed, as the set of maxi
mizers over C of some linear form: F is an exposed face of C when there is a nonzero 
s E IRn such that 

F = {x E C : (s, x} = SUPYEc(S, y}} . (2.4.3) 

A relevant notation is thus Fc(s) to designate the exposed face of C associated 
with S E IRn; it can also be called the face of C exposed by s. For a unified notation, 
we will consider C itself as exposed by 0: C = Fc(O). 0 

Beware that a given s may define no supporting hyperpJane at all. Even if it does, 
it may expose no face (the supremum in (2.4.3) may be not attained). The following 
result is almost trivial, but very useful: it is "equivalent" to extrernize a linear form 
on a compact set or on its convex hull. 

Proposition 2.4.6 Let C be convex and compact. For s E IRn, there holds 

max(s, x} = max (s, x} . 
XEC XEextC 
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Furthermore, the solution-set of the first problem is the convex hull of the solution-set 
of the second: 

Argmax (s, x) = co {ArgmaxxEextc(S, x}} . 
XEC 

PROOF. Because C is compact, (s, .) attains its maximum on Fc(s). The latter set is 
convex and compact, and as such is the convex hull of its extreme points (Minkowski's 
Theorem 2.3.4); these extreme points are also extreme in C (Proposition 2.3.7 and 
Remark 2.4.4). 0 

3 Projection onto Closed Convex Sets 

3.1 The Projection Operator 

Denote by pv the (orthogonal) projection onto a subspace V c lRn. The main prop
erties of the operator x 1-+ pv(x) are to be linear, symmetric, positive semi-definite, 
idempotent (Pv opv = pv), nonexpansive (lIpv(x)1I ~ IIxll for all x); also, it defines 
a canonical decomposition of lRn via x = Pv (x) + Pv.L (x). We will generalize this 
operator to the case where V is merely convex. 

In what follows, C is a nonempty closed convex set oflRn. For fixed x E lRn, we 
consider the following problem: 

inf BIIY - XH2 : Y E C} , (3.1.1) 

i.e. we are interested in those points (if any) of C that are closest to x for the Euclidean 
distance. Let fx : lRn ~ lR be the function which, to Y E lRn, associates 

fx(Y) := tHY - Xll2 . (3.1.2) 

For c E C, take the sublevel-set S := {y E lRn : fx(Y) ~ fx(c)}. Then (3.1.1) is 
clearly equivalent to 

inf (fx(Y) : Y E C n S}, 

which has a solution since fx is continuous and S - hence C n S - is compact. We 
deduce the existence of a closest point in C to x; the inf in (3.1.1) is a min. 

Note that convexity of C plays no role in the above existence result. Uniqueness, 
however, depends crucially on convexity: let YI andY2 be two solutions to (3.1.1). Use 
(2.3.1) with Xi = Yi - x to obtain 

fx(Yo) = trfx(Yd + fX(Y2)] - ~IIY2 - ydl2 , 

where Yo := 1/2 (YI + Y2) E C; this implies uniqueness. 
We have thus defined a projection operator, namely the mapping x 1-+ pc(x) 

which, to each x E lRn, associates the unique solution PC (x) of the minimization 
problem (3.1.1). It is possible to characterize Pc (x) differently, as solving a so-called 
variational inequality; and this characterization is the key to all results concerning 
pc· 
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Theorem 3.1.1 A point Yx E C is the projection Pc (x) if and only if 

(x - Yx, Y - Yx) ,,;; 0 for all Y E C . (3.1.3) 

PROOF. Call Yx the solution of (3.1.1); take y arbitrary in C, so that Yx +a (y - Yx) E C 
for any a E ]0, 1 [. Then we can write with the notation (3.1.2) 

fx(Yx) ,,;; ix(Yx + a(y - Yx» = ~IIYx - x + a(y - Yx)II2. 

Developing the square, we obtain after simplification 

o ,,;; a(yx - x, y - Yx) + ~a211Y - Yx 112. 

Divide by a (> 0) and let at 0 to obtain (3.1.3). 
Conversely, suppose that Yx E C satisfies (3.1.3). If Yx = x, then Yx certainly 

solves (3.1.1). If not, write for arbitrary y E C: 

o ~ (x - Yx, Y - Yx) = (x - Yx, Y - x + x - Yx) = 
= IIx - Yxll 2 + (x - Yx, Y - x) ~ IIx - Yxll 2 -lix - yll IIx - Yxll, 

where the Cauchy-Schwarz inequality is used. Divide by IIx - Yx II > 0 to see that Yx 
solves (3.1.1). 0 

Incidentally, this result proves at the same time that the variational inequality (3.1.3) has 
a unique solution in C. Figure 3.1.1 illustrates the following geometric interpretation: the 
Cauchy-Schwarz inequality defines the angle () E [0, JT] of two nonzero vectors u and v by 

(u, v) 
cos(}:= lIullllvll E[-I,+I]. 

Then (3.1.3) expresses the fact that the angle between y - Yx and x - Yx is obtuse, for any 
y E C. Writing (3.1.3) as 

(x - pc(x), y) ~ (x - pc(x), pc(x») for all y E C, (3.1.4) 

we see that pc(x) lies in the face of C exposed by x - pc(x) . 

c .".-----

y x 

Fig. 3.1.1. The angle-characterization of a projection 

Remark 3.1.2 Suppose that C is actually an affine manifold (for example a subspace); then 
Yx - Y E C whenever y - Yx E C. In this case, (3.1.3) implies that 

(x - Yx, Y - Yx) = 0 for all y E C. (3.1.5) 

We are back with the classical characterization of the projection onto a subspace, namely that 
x - Yx E C.L (the subspace orthogonal to C). Passing from (3.1.3) to (3.1.5) shows once 
more that convex analysis is the realm of inequalities, in contrast with linear analysis. 0 
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Some obvious properties of our projection operator are: 

- the set {x E ]Rn : pc(X) = X} of fixed points of Pc is C itself; 

- from which it results that Pc 0 Pc = Pc, and also that 
- Pc is a linear operator if and only if C is a subspace. 

More interesting is the following result: 

Proposition 3.1.3 For all (XI, X2) E ]Rn x ]Rn, there holds 

IIpc(xd - Pc(X2)112 ~ (Pc(XI) - Pc(X2) , XI - X2). 

PROOF. Write (3.1.3) with X = XI. Y = Pc(X2) E C: 

(Pc(X2) - pc(xd, XI - Pc(XI)) ~ 0; 

likewise, 
(Pc(XI) - Pc(X2) , X2 - Pc(X2)) ~ 0 , 

and conclude by addition 

(Pc(XI) - Pc(X2) , X2 - XI + Pc(XI) - Pc(X2)) ~ O. 

Two immediate consequences are worth noting. One is that 

o ~ (pc(xd - Pc(X2) , XI - X2) for all (xt. X2) E ]Rn x ]Rn , 

o 

a property expressing that the mapping Pc is, in a way, "monotone increasing". Second, 
we obtain from the Cauchy-Schwarz inequality: 

IIpc(Xl) - Pc(X2) II ~ IIXI - x211 , (3.1.6) 

i.e. Pc is nonexpansive; in particular, IIpc(x) II ~ IIx II whenever 0 E C. However, it 
is not a contraction: the best Lipschitz constant 

L := sup : Xl #- X2, Xl and X2 out ofC { IIpc(Xl) - Pc(X2) II } 
IIXI -x211 

is equal to 1 (suppose C is a subspace!), unless more is known about the "curvature" 
ofe. 

3.2 Projection onto a Closed Convex Cone 

As already mentioned in Example 1.1.4, convex cones are important instances of 
convex sets, somehow intermediate between subspaces and general convex sets. As 
a result, the projection operator onto a closed convex cone enjoys properties which 
are finer than those of §3.1, and which come closer to those of the projection onto a 
subspace. 
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Definition 3.2.1 Let K be a convex cone, as defined in Example 1.1.4. The polar 
cone of K (called negative polar cone by some authors) is: 

KO := {s E lRn : (s, x) ~ 0 for all x E K} . o 

A very first observation is that the polar cone depends on the scalar product: changing ( " .) 
changes K O • One easily sees that K O is a closed convex cone (use in particular continuity of the 
scalar product). If K is simply a subspace, then K O is its orthogonal K.1.: polarity generalizes 
orthogonality, remember Remark 3.1.2. Incidentally, it will be seen later in §4.2(d) that the 
polar of K O is nothing but the closure of K. Polarity establishes a correspondence in the set 
of closed convex cones, which is order-reversing: 

K' C K ==:::} (K,)o:J K O 

(and the converse is true ifthe relation KDD = K is admitted for K closed). Finally, the only 
possible element in K n KO is O. 

Examples 3.2.2 (see Fig. 3.2.1). 

(a) For given XI, ... , Xm in lRn, take the conical hull of m points XI, ... , Xm in lRn: 

K = n=~1 (tjXj : aj ;:: 0 for j = I, ... , m} . 

We leave it as an exercise to check the important result: 

KO={SElRn : (s,xj)~Oforj=l, ... ,m}. 

Fig.3.2.1. Examples of polar cones 

(b) As a particular case, take the usual dot-product for (', .), lRn being equipped with 
the canonical basis. Then the polar of the nonnegative orthant 

.Q+:={X=(~I, ... ,~n): ~i;::Ofori=l, ... ,n} 

is the nonpositive orthant 
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Q_ = (Q+)O = {s = (alo ...• an) : ai ::;; 0 fori = I ..... n}. 

Naturally, such a symmetry is purely due to the fact that the basis vectors are mutually 
orthogonal. 

(c) Let K be a revolution cone: with s E lRn of norm I and e E [0. rr 12], 

Ks(e) := {x E lRn : (s. x) ~ IIxli cose}. 

Then [Ks(ew = K-s(rr/2 - e). 

The characterization 3.1.1 takes a special form in the present conical situation. 

o 

Proposition 3.2.3 Let K be a closed convex cone. Then Yx = P K (x) if and only if 

Yx E K. x - Yx E KO, (x - Yx, Yx) = O. (3.2.1) 

PROOF. We know from Theorem 3.1.1 that Yx = PK(x) satisfies 

(x - Yx, Y - Yx) ::;; 0 for all Y E K . 

Taking Y = ayx, with arbitrary a ~ 0, this inequality implies 

(a - I)(x - Yx. Yx) ::;; 0 for all a ~ O. 

(3.2.2) 

Since a - I can have either sign, this implies (x - Yx, Yx) = 0 and (3.2.2) becomes 

(y, x - Yx) ::;; 0 for all y E K, i.e. x - Yx E KO . 

Conversely, let Yx satisfy (3.2.1). For arbitrary y E K, use the notation (3.1.2): 

fx(Y) = ~lIx - Yx + Yx - yII 2 ~ fx(Yx) + (x - Yx, Yx - y); 

but (3.2.1) shows that 

(x - Yx, Yx - y) = -(x - Yx, y) ~ 0, 

hence fx(Y) ~ fx(Yx): Yx solves (3.1.1). o 

Remark3.2.4 We already know from (3.1.4) that PK(X) lies in the face of K exposed by 
x - P K (x); but (3.2.1) tells us more: by definition of a polar cone, x - p K (x) is also in the 
face of K O exposed by PK(X) (a symmetry confirming that K OO = K). 

Take for an illustration K = Q+ of Example 3.2.2(b): denote by (rrl, ... , :rrn) the 
coordinates OfpK(X). They are nonnegative because PK(X) E Q+; each term (;i - :rri):rr i 
is nonpositive because x - PK(X) E Q_. Because their sum is zero, each of these terms is 
actually zero, i.e. 

Fori=l •... ,n, ;i_:rri=O or :rri=O (orboth). 

This property is usually called a transversality condition. Thus, we have: 

For each i, either:rr i = ~i or :rr i = 0; 

taking the nonnegativity of:rr into account, we obtain the explicit formula 

:rr i =max{O,~i} fori = 1, ... ,n. 

This implies in particular that:rr i - ~i ~ 0, i.e. x - :rr E Q _. o 
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We list some properties which are immediate consequences of the characterization 
(3.2.1): for all X E IRn , 

PK(X) = 0 if and only if x E KO; 
PK(ax) = apK(x) for all a ~ 0; 

PK(-X) = -P-K(X). 

They somehow generalize the linearity of the projection onto a subspace V. An addi
tional property can be proved, using the obvious relation ( - K) ° = - KO: 

PK(X) + PKo(X) = x. (3.2.3) 

It plays the role ofpv(x) + Pvl.(x) = x and connotes the following decomposition 

theorem, generalizing the property IRn = V El1 V 1. . 

Theorem 3.2.5 (J.-J. Moreau) Let K be a closed convex cone. For the three ele

ments x, XI and X2 in IRn, the properties below are equivalent: 

(i) x = XI + X2 with XI E K, X2 E KO and (XI, X2) = 0; 

(ii) XI = PK(X) and X2 = PKo(X). 

PROOF. Straightforward, from (3.2.3) and the characterization (3.2.1) of XI = PK(X). 

o 

In contrast with the decomposition in subspaces, the decomposition X = XI + X2, 

with XI E K and X2 E KO is not unique because orthogonality is not automatic; but 
the decomposition (i), (ii) is optimal in the sense that 

X = XI +X2 I 
with 

XI E K and X2 E KO 

4 Separation and Applications 

4.1 Separation Between Convex Sets 

==> I IIxI II ~ IIpK(x)1I 
and 

IIX211 ~ IIpKo(x)lI· 

Take two disjoint sets SI and S2: SI n S2 = 0. If, in addition, SI and S2 are convex, 
some more can be said: a simple convex set (namely an affine hyperplane) can be 
squeezed between S I and S2. This extremely important property follows directly from 
those of the projection operator onto a convex set. 

Theorem 4.1.1 Let C C ]Rn be nonempty closed convex, and let x ¢ C. Then there 
exists s E IRn such that 

(s, x) > sup (s, y) . 
yEC 

(4.1.1) 
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PROOF. Set s := x - pc(x) =1= O. We write (3.1.3) as 

o ~ (s, Y - x + s) = (s, y) - (s, x) + lis 112 • 

Thus we have 
(s,x}-lIsIl2~(S,y) forallYEC, 

and our s is a convenient answer for (4.1.1). 0 

Naturally, s could be replaced by -s in (4.1.1) and Theorem 4.1.1 could just be 
stated as: there exists s' E IRn such that 

(s',x) < inf{(s',y} : Y E C}. 

Geometrically, we know that an s =1= 0 defines hyperplanes Hs,r as in Exam
ple 1.1.2(a), which are translations of each other when r describes R With s of 
(4.1.1) (which is certainly nonzero!), pick 

r = rs := H(s, x} + sUPyec(Y, s}). 

Then 
(s, x) - rs > 0 and (s, y) - rs < 0 for all Y E C, 

which can be summarized in one sentence: the affine hyperplane Hs.rs separates the 
two convex sets C and {x}. These two sets are in the opposite (open) half-spaces 
limited by that hyperplane. 

Remark 4.1.2 With relation to this interpretation, Theorem 4.1.1 is often called the Hahn
Banach Theorem in geometric form. On the other hand, consider the right-hand side of (4.1.1); 
it suggests a function ac : lRn -+ lR U {+oo}, called the supportfunction of C: 

ads) := sup{(s, y) : y E C}, 

which will be studied thoroughly in Chap.V. If x E C, we have by definition 

(s, x) ~ ads) for all s E lRn ; 

but this actually characterizes the elements of C: Theorem 4.1.1 tells us that the converse is 
true. Therefore the test "x E C?" is equivalent to the test "(., x) ~ ac?", which compares 
the linear function (., x) to the function ac. With this interpretation, Theorem 4.1.1 can be 
formulated in an equivalent analytical way, involving functions instead of hyperplanes; this 
is called the Hahn-Banach Theorem in analytical form. 0 

A convenient generalization of Theorem 4.1.1 is the following: 

Corollary 4.1.3 (Strict Separation of Convex Sets) Let C I, C2 be two nonempty 
closed convex sets with C1 n C2 = 121. IfC2 is bounded, there exists s E IRn such that 

sup (s, y) < min (s, y) . 
yeC1 yeC2 

(4.1.2) 
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PROOF. The set C1 - C2 is convex (Proposition 1.2.4) and closed (because C2 is 
compact). To say that C] and C2 are disjoint is to say that 0 rf. C] - C2• so we have by 
Theorem 4.1.1 an s E ]Rn separating {OJ from C1 - C2: 

This means: 

sup {(s, y} : y E C1 - C2 } < (s,O) = o. 

o > SUPYIEC1 (s, yd + SUPy,EC, (s, -Y2) 

= sUPy,Ec,(s,yd-infy,Ec,(s,Y2}. 

Because C2 is bounded, the last infimum (is a min and) is finite and can be moved 
to the left-hand side. 0 

Once again, (4.1.2) can be switched over to inf yeC I (s, y) > maxyeC, (s, y). Using the 
support function of Remark 4.1.2, we can also write (4.1.2) as acl(s) + ac,(-s) < o. 
Figure 4.1.1 gives the same geometric interpretation as before. Choosing r = rs strictly 
between aC I (s) and -ac, (-s), we obtain a hyperplane separating C] and C2 strictly: each 
set is in one of the corresponding open half-spaces. 

Fig.4.1.1. Strict separation of two convex sets 

C1 

Fig. 4.1.2. Strict separation needs compactness 

Fig.4.1.3. An improper separation 

When C] and C2 are both unbounded, Corollary 4.1.3 may fail- even though the role of 
boundedness was apparently minor, but see Fig.4.1.2. As suggested by this picture, C I and 
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C2 can nevertheless be weakly separated, i.e. (4.1.2) can be replaced by a weak inequality. 
Such a weakening is a bit exaggerated, however: Fig. 4.1.3 shows that (4.1.2) may hold as 

(s, y,) = (s, Y2) foraB (y" Y2) E C, x C2 

if s is orthogonal to aff( C, U C2). For a convenient definition, we need to be more demanding: 
we say that the two nonempty convex sets C, and C2 are properly separated by s E IRn when 

sup (s, yd::;;; inf (s, Y2) and inf (s, y,) < sup (s, Y2). 
YIEC1 Y2EC2 YIEC1 Y2EC2 

This (weak) proper separation property is sometimes just what is needed for technical 
purposes. It happens to hold under fairly general assumptions on the intersection C, n C2. 
We end this section with a possible result, stated without proof. 

Theorem 4.1.4 (proper Separation of Convex Sets) If the two nonempty convex sets C, 
and C2 satisfo (ri C,) n (ri C2) = 0, they can be properly separated. 0 

Observe the assumption coming into play. We have already seen it in Proposition 2.1.10, 
and we know from (2.1.5) that it is equivalent to 

o Ii ri(C, - C2) . 

4.2 First Consequences of the Separation Properties 

The separation properties introduced in §4.1 have many applications. To prove that 
some set S is contained in a closed convex set C, a possibility is often to argue 
by contradiction, separating from C a point in S\ C, and then exploiting the simple 
structure of the separating hyperplane. Here we review some of these applications, 
including the proofs announced in the previous sections. Note: our proofs are often 
fairly short (as is that of Corollary 4.1.3) or geometrical. It is a good exercise to develop 
more elementary proofs, or to support the geometry with detailed calculations. 

(a) Existence of Supporting Hyperplanes First of all, we note that a convex set 
C, not equal to the whole of lR,n, does have a supporting hyperplane in the sense of 
Definition 2.4.1. To see it, use first Proposition 2.1.8: cl C =1= lR,n (otherwise, we would 
have the contradiction C :J ri C = ri cl C = ri lR,n = lR,n). Then take a hyperplane 
separating cl C from some x Ii cl C: it is our asserted support of C. Actually, we can 
prove slightly more: 

Lemma 4.2.1 Let x E bd C, where C =1= f2l is convex in IRn (naturally C =1= lR,n). 
There exists a hyperplane supporting Cat x. 

PROOF. Because C, cl C and their complements have the same boundary (remember 
Remark 2.1.9), a sequence {Xk} can be found such that 

Xk Ii cl C for k = I, 2, ... and lim Xk = x . 
k-++oo 
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For each k we have by Theorem 4.1.1 some Sk with IIsk II = I such that 

(SkoXk - y) > 0 for all y E e c c1e. 

Extract a subsequence if necessary so that Sk ~ S (note: S i= 0) and pass to the limit 
to obtain 

(S, x - y) ~ 0 for all y E e , 
which is the required result (s, x) = r ~ (s, y) for all y E e. o 

Remark 4.2.2 The above procedure may well end up with a supporting hyperplane contain
ing C: (s, x - y) = 0 for all y E C, a result of little interest; see also Fig. 4.1.3. This can 
happen only when C is a "flat" convex set (dim C ~ n - 1), in which case our construction 
should be done in aff C, as illustrated on Fig. 4.2.1. Let us detail such a "relative" construction, 
to demonstrate a calculation involving affine hulls. 

affC 

Fig.4.2.1. Nontrivial supports 

Let V be the subspace parallel to affC, with U = Vi. its orthogonal subspace: by 
definition, (s, y - x) = 0 for all s E U and Y E C. Suppose x E rbdC (the case x EriC 
is hopeless) and translate C to Co := C - {x}. Then Co is a convex set in the Euclidean 
space V and 0 E rbd Co. We take as in 4.2.1 a sequence {Xk} C V\ cl Co tending to 0 and 
a corresponding unitary Sk E V separating the point Xk from Co. The limit S =1= 0 is in V, 
separates (not strictly) {O} and Co, i.e. {x} and C: we are done. 

We will say that Hs.r is a nontrivial support (at x) if s rt U, i.e. if Sy =1= 0, with the 
decomposition s = Sy + su. Then C is not contained in Hs. r: if it were, we would have for 
all y E C 

r = (s, y) = (sy, y) + (su, x). 

In other words, (sy, .) would be constant on C; by definition of the affine hull and of V, this 
would mean sy E U, i.e. the contradiction sy = O. To finish, note that Su may be assumed 
to be 0: if sy + su is a nontrivial support, so is sy = sy + 0 as well; it corresponds to a 
hyperplane orthogonal to C. 0 

In terms of Caratheodory's Theorem 1.3.6, a consequence of our existence lemma 
is the following: 
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Proposition 4.2.3 Let S c JR.n and C := co S. Any x E C n bd C can be represented 
as a convex combination of n elements of s. 
PROOF. Because x E bdC, there is a hyperplane Hs,r supporting C at x: for some 
s =1= 0 and r E JR., 

(s,x}-r=O and (s,y}-r:::;OforallYEC. (4.2.1) 

On the other hand, CaratModory's Theorem 1.3.6 implies the existence of points 
XI, ... ,Xn+1 in S and convex multipliers ai, ... ,an+1 such that x = L?:II aixi; 
and each ai can be assumed positive (otherwise the proof is finished). 

Setting successively y = Xi in (4.2.1), we obtain by convex combination 

n+1 

0= (s,x) - r = Lai«S,Xi} - r):::; 0, 
i=l 

so each (s, Xi) -r is actuallyO. Each Xi is therefore not only in S, but also in Hs,r, a set 
whose dimension is n - 1. It follows that our starting x, which is in CO{Xb •.• ,xn+d, 
can be described as the convex hull of only n among these Xi'S. 0 

(b) Outer Description of Closed Convex Sets Closing a (convex) set consists in 
intersecting the closed (convex) sets containing it. We mentioned in Remark 1.4.4 
that convexity allowed the intersection to be restricted to a simple class of closed 
convex sets: the closed half-spaces. Indeed, Lemma 4.2.1 ensures that a nonempty 
convex set C ;t;JR.n has at least one supporting hyperplane: if we denote by 

Hs-:r := {y E IRn : (s, y) :( r} 

a closed half-space defined by a given (s, r) E JR.n x JR., (s =1= 0), then the index-set 

lJc := {(s,r) E JR.n x JR. : C c Hs-:r} 
= {(s, r) : (s, y) :::; r for all y E C} 

(4.2.2) 

is nonempty. As illustrated by Fig. 4.2.2, we can therefore intersect all the half-spaces 
indexed in lJc: 

Fig. 4.2.2. Outer construction of a closed convex set 

C c C* := n(s,r)EIJcHs-:r = 
{z E Rn (s, z) :( r whenever (s, y) :::; r for all y E C} . 
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Theorem 4.2.4 Let 0 # C ¥ JR.n be convex. The set C* defined above is the closure 
ofe. 

PROOF. By construction, C* J cl C. Conversely, take x f/ cl C; we can separate x 
and cl C: there exists So =1= 0 such that 

(so, x) > sup (so, y} =: ro. 
YEC 

Then (so, ro) E "EC; but x ¢ Hs-;;,ro' hence x ¢ C*. o 

The definition of C*, rather involved, can be slightly simplified: actually, IJc is redundant, 
as it contains much too many r's. Roughly speaking, for given S E JR.n, just take the number 

r = rs := inf {r E lR : (s, r) E IJc} 

that is sharp in (4.2.2). Letting s vary, (s, rs) describes a set IJ~, smaller than IJc but just as 
useful. With this new notation, the expression of C* = cl C reduces to 

cl C = {z E lRn : (s, z) ~ SUPYEc(S, y}}. 

We find again the support function of Remark 4.1.2 coming into play. Chapter V will follow 
this development more thoroughly. 

The message from Theorem 4.2.4 is that a closed convex set can thus be defined 
as the intersection of the closed half-spaces containing it: 

Corollary 4.2.5 The data (Sj, rj) E JR.n x JR. for j in an arbitrary index set J is 
equivalent to the data of a closed convex set C via the relation 

C=n{XElRn : (sj,x}~rj}. 
JEJ 

PROOF. IfC is given, define {(Sj' rj)}J := Ec as in (4.2.2). If {(Sj, rj)}J is given, the 
intersection of the corresponding half-spaces is a closed convex set. Note here that 
we can define at the same time the whole of JR.n and the empty sets as two extreme 
cases. o 

As an important special case, we find: 

Definition 4.2.6 (Polyhedral Sets) A closed convex polyhedron is an intersection of 
finitely many half-spaces. Take (S1, r1), ... , (sm, rm) in lRn x JR., with Si =1= 0 for 
i = 1, ... , m; then define 

P:= {x E lRn : (Sj,x) ';;;Jj forj = 1, ... ,m}, 

or in matrix notations (assuming the dot-product for (', .}), 

P = {x E lRn : Ax ~ b} , 

if A is the matrix whose rows are Sj and b E JR.m has coordinates rj. 
A closed convex polyhedral cone is the special case where b = O. o 
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(c) Proof of Minkowski's Theorem We turn now to the inner description of a convex 
set and prove Theorem 2.3.4, asserting that C = co ext C when C is compact convex. 

The result is trivially true if dim C = 0, i.e. C is a singleton, with a unique 
extreme point. Assume for induction that the result is true for compact convex sets of 
dimension less than k; let C be a compact convex set of dimension k and take x E C. 
There are two possibilities: 

- If x E rbd C, §4 .2( a) tells us that there exists a nontrivial hyperplane H supporting 
C at x. The nonempty compact convex set C n H has dimension at most k - I, 
so X E C n H is a convex combination of extreme points in that set, which is an 
exposed face of C. Using Remark 2.4.4, these extreme points are also extreme in 
C. 

- If x EriC (= C\ rbd C), take in C a point x' =1= x; this is possible for dim C > O. 
The affine line generated by x and x' cuts rbd C in at most two points y and z (see 
Remark 2.1.7, there are really two points because C is compact). From the first part 
of the proof, y and z are convex combinations of extreme points in C; and so is their 
convex combination x (associativity of convex combinations). 

(d) Bipolar of a Convex Cone The definition of a polar cone was given in §3 .2, where 
some interesting properties were pointed out. Here we can show one more similarity 
with the concept of orthogonality in linear analysis. 

Proposition 4.2.7 Let K be a convex cone with polar KO; then, the polar KOO of 
KO is the closure of K. 

PROOF. We exploit Remark 4.1.2: due to its conical character (ax E K if x E K and 
a > 0), cl K has a very special support function: 

( ) _ { (s,O) = 0 if (s, x) ~ 0 for all x E cl K , 
ad K s - +00 otherwise. 

In other words, acl K is 0 on KO, +00 elsewhere. Thus, the characterization 

becomes 

xEclK 

X E clK <=> (·,x) ~aclKO 

<=>{ (s,x) ~O foralls E KO 
«(s, x) arbitrary for s f/. KO!) , 

in which we recognize the definition of KOO . o 

Of course, if K is already closed, K 00 = K. With relation to (a) above, we observe 
that every supporting hyperplane of K at x E bd K also supports K at 0: when dealing 
with supports to a cone, it is enough to consider linear hyperplanes only. 

Remark 4.2.8 Consider the index-set E K of (4.2.2), associated with a closed convex cone 
K: its r-part can be restricted to to}; as for its s-part, we see from Definition 3.2.1 that it 
becomes KO\ to}. In other words: barring the zero-vector, a closed convex cone is the set of 
(linear) hyperplanes supporting its polar at O. 0 
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4.3 The Lemma of Minkowski-Farkas 

Because of its historical importance, we devote an entire subsection to another con
sequence of the separation property, known as Farkas' Lemma. Let us first recall a 
classical result from linear algebra: if A is a matrix with n rows and m columns and 
b E ]Rn, the system Aa = b has a solution in]Rm (we say that the system is consistent) 
exactly when 

bE ImA = [KerATt; 

this can be rewritten {b}.l J Ker AT, or 

{x E]Rn : AT x = O} C {x E]Rn : b T X = O} . 

Denoting by SI, ... , sm the columns of A and using our Euclidean notation, we write 
the equivalence of these properties as 

b E lints!. ... ,sm} if and only if 
(b, x) = 0 whenever (Sj, x) = 0 for j = 1, ... , m. 

Moving to the unilateral world of convex analysis, we replace linear hulls by 
conical hulls, and equalities by inequalities. This gives a result dating back to the end 
of the XIXth Century, due to 1. Farkas and also to H. Minkowski; we state it without 
proof, as it will be a consequence of Theorem 4.3.4 below. 

Lemma 4.3.1 (Farkas I) Let b, SI, ... , Sm be given in ]Rn. The set 

{x E]Rn : (Sj' x) :::; 0 for j = 1, ... , m} 

is contained in the set 
{x E]Rn : (b, x) ~ O} 

if and only if (see Definition 1.4.5 of a conical hull) 

bE cone{sl' ... , sm}. 

(4.3.1) 

(4.3.2) 

(4.3.3) 
o 

To express the inclusion relation between the sets (4.3.1) and (4.3.2), one also says 
that the inequality with b is a consequence of the joint inequalities with Sj. Another 
way of expressing (4.3.3) is to say that the system of equations and inequations in a 

has a solution. 

m 

b=LajSj, aj;;::Oforj=l, ... ,m 
j=1 

(4.3.4) 

Farkas' Lemma is sometimes formulated as an alternative, i.e. a set of two state
ments such that each one is false when the other is true. More precisely, let P and Q 
be two logical propositions. They are said to form an alternative if one and only one 
of them is true: 

P ===? not Q and not P ===? Q 
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or, just as simply: 

P {=} not Q [or Q {=} not P]. 

This applies to Farkas' lemma: 

Lemma 4.3.2 (Farkas II) Let b, SJ, ... , Sm be given in IRn. Then exactly one of the 
following statements is true. 

P := (4.3.4) has a solution U E IRn. 

I The system of in equations 
Q:= (b,x}>O, (Sj,x}~Oforj=l, ... ,m 

has a solution x E IRn . o 

Still another formulation is geometric. Call K the convex cone generated by 
SI, ... , Sm; as seen in Example 3.2.2, K O is the set (4.3.l). What Farkas' Lemma says 
is that 

bE K [i.e. (4.3.3) holds] if and only if 
(b, x) ~ 0 whenever x E K O [i.e. b E K OO ] • 

More simply, Farkas' Lemma is: K OO = K; but we know from §4.2(d) that this 
property holds under the sole condition that K is closed. The proof of Farkas , Lemma 
therefore reduces to proving the following result: 

Lemma 4.3.3 (Farkas III) Let SI, •.. , Sm be given in IRn. Then the convex cone 

K := cone{sJ, ... , sml = {L:j=1 UjSj : Uj ~ Ofor j = 1, ... , m} 

is closed. 

PROOF. It is quite similar to that ofCaratheodory's Theorem 1.3.6. First, the proof is 
easy if the Sj'S are linearly independent: then, the convergence of 

m 
k_'" k. fi x - ~ Uj sJ or k -+ 00 (4.3.5) 

j=1 

is equivalent to the convergence of each {ujl to some Uj, which must be nonnegative 

if each uj in (4.3.5) is nonnegative. 

Suppose, on the contrary, that the system E}=I f3jSj = 0 has a nonzero solution 
f3 E IRm and assume f3j < 0 for some j (change f3 to -f3 if necessary). As in the 
proof of Theorem 1.3.6, write each x E K as 

m m 
X = LUjSj = L[Uj +t*(x)f3j]Sj = L ujSj, 

j=1 j=1 Hi(x) 

where 
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-a' 
i(x) E Argmin-J , 

p} <0 f3j 

-ai(x) 
t*(x):= f3i(x) , 

so that each ai = aj +t*(x)f3j is nonnegative. Letting x vary in K, we thus construct 

a decomposition 
K=U{Ki: i=l, ... ,m}, 

where Ki is the conical hull of the m - 1 generators Sj' j =f:. i. 
Now, if there is some i such that the generators of Ki are linearly dependent, we 

repeat the argument for a further decomposition of this Ki. After finitely many such 
operations, we end up with a decomposition of K as a finite union of polyhedral convex 
cones, each having linearly independent generators. All these cones are therefore 
closed (first part of the proof), so K is closed as well. 0 

We are now in a position to state a general version of Farkas' Lemma, with non
homogeneous terms and infinitely many inequalities. Its proof uses in a direct way 
the separation Theorem 4.1.1. 

Theorem 4.3.4 (Generalized Farkas) Let be given (b, r) and (Sj' Pj) in lRn x lR, 
where j varies in an (arbitrary) index set J. Suppose that the system of inequalities 

(Sj'x) ~ Pj for all j E J (4.3.6) 

has a solution x E lRn (the system is consistent). Then the following two properties 
are equivalent: 

(i) (b, x) ~ r for all x satisfying (4.3.6); 

(ii) (b, r) is in the closed convex conical hull of S := {(O, 1) 1 U {(Sj' Pj) ljE}' 

PROOF. [(ii) =* (i)] Let first (b, r) be in K := cone S. In other words, there exists 
a finite set {l, ... , m 1 C J and nonnegative ao, al> ... ,am such that (we adopt the 
convention L0 = 0) 

m 

b= I>jSj 
j=1 

m 

and r=ao+ 2:ajpj. 
j=1 

For each x satisfying (4.3.6) we can write 

(b, x) ~ r - ao ~ r. (4.3.7) 

If, now, (b, r) is in the closure of K, pass to the limit in (4.3.7) to establish the 
required conclusion (i) for all (b, r) described by (ii). 

[(i) =* (ii)] If (b, r) ¢ clK, separate (b, r) from elK: equipping lRn x lR with the 
scalar product 

(((b, r), (d, t»)) := (b, d) + rt , 

there exists (d, -t) E lRn x lR such that 



132 III. Convex Sets 

sup [(s, d) - pt] < (b, d) - rt. (4.3.8) 
(s,p)EK 

It follows first that the left-hand supremum is a finite number K. Then the conical 
character of K implies K ~ 0, because aK ~ K for all a > 0; actually K = 0 because 
(0,0) E K. In summary, we have singled out (d, t) E lR.n x lR. such that 

(*) 

(**) 

t;::O 

(Sj' d) - Pj t ~ 0 for all j E J 

(b, d) - rt > O. 

Now consider two cases: 

[take (0, 1) E K] 

[take (Sj. Pj) E K] 

[don't forget (4.3.8)] 

- If t > 0, divide (*) and (**) by t to exhibit the point x = d / t violating (i). 
- If t = 0, take Xo satisfying (4.3.6). Observe from (*) that, for all a > 0, the point 

x(a) = Xo + ad satisfies (4.3.6) as well. Yet, let a ~ +00 in 

(b, x(a») = (b, xo) + a(b, d) 

to realize from (**) that x(a) violates (i) if a is large enough. 

Thus we have proved in both cases that "not (ii) => not (i)". o 

We finish with two comments relating Theorem 4.3.4 with the previous forms of 
Farkas' Lemma. Take first the homogeneous case, where r and the Pj'S are all zero. 
Then the consistency assumption is automatically satisfied (by x = 0) and the theorem 
says: 

(i')[(sj, x) ~ 0 for j E J] ==> [(b, x) ~ 0] 
is equivalent to 

(ii') b E cone{sj : j E J}. 

Second, suppose that J = {I, ... , m} is a finite set, so the set described by (4.3.6) 
becomes a closed convex polyhedron, assumed nonempty. A handy matrix notation 
(assuming the dot-product for (-, .», is AT X ~ p, if A is the matrix whose columns 
are the s/s, and P E ]Rm has the coordinates PI> ... , Pm. Then Theorem 4.3.4 writes: 

(i") {x E]Rn : AT x ~ p} C {x E lR.n : b T x ~ r} 
is equivalent to 

(ii") 3a E lR.m such that a;:: 0, Aa = b, pTa ~ r . 

Indeed, it suffices to recall Lemma 4.3.3: the conical hull involved in (ii) of 
Theorem 4.3.4 is already closed. Beware that the last relation in (ii") is really an 
inequality. 

5 Conical Approximations of Convex Sets 

Given a set S and XES, a fruitful idea is to approximate S near x by a "simpler" 
set. In classical differential geometry, a "smooth" surface S is approximated by an 
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affine manifold "tangent" to S. This concept is most exploited in the differentiation of 
a "smooth" function f : JRn -+ JR, whose graph is "tangent" to an affine hyperplane 
in JRn x JR: 

gr f ~ {(y, r) : r - f(x) = (V f(x), y - x)} . 

Because convex sets have no reason to be "smooth", some substitute to affine man
ifolds must be proposed. We know that affine manifolds are translations of subspaces; 
say, we approximate S near x by 

S ~ Hs(x) = {x} + Vs(x) , 

where Vs(x) is a subspace: the subspace tangent to Sat x. It is therefore time to 
remember §3.2: in convex analysis, the natural substitutes for subspaces are the closed 
convex cones. Besides, another important object is the set of normals to S at x, i.e. 
the subspace orthogonal to Vs(x); here, orthogonality will be replaced by polarity, as 
in Moreau's Theorem 3.2.5. 

5.1 Convenient Definitions of Tangent Cones 

In order to introduce the convenient objects, we need first to cast a fresh glance at 
the general concept of tangency. We therefore consider in this subsection an arbitrary 
closed subset S C JRn. 

A direction d is classically called tangent to S at XES when it is the derivative at 
x of some curve drawn on S; it follows that -d is a tangent as well. Since we are rather 
interested by cones, we will simply require a half-derivative from the curve in question 
- incidentally, taking half-derivatives goes together with §I.4.1. Furthermore, sets of 
discrete type cannot have any tangent direction in the above sense, we will therefore 
replace curves by sequences. In a word, our new definition of tangency is as follows: 

Definition 5.1.1 Let S C JRn be nonempty. We say that d E JRn is a direction langent 
to S at XES when there exists a sequence {Xk} C S and a sequence {tk} such that, 
when k ---+ +00, 

xk -+ x. Ik,J.. 0, 
xk -x 
---+d. 

tk 
(5.1.1) 

The set of all such directions is called the langent cone (also called the contingent 
cone, or Bouligand's cone) to S at XES, denoted by TS(x). 0 

Observe immediately that 0 is always a tangent direction (take Xk == x!); also, if 
d is tangent, so is ad for any a > 0 (change tk to Ik/a!). The terminology "tangent 
cone" is therefore legal. If x E int S, T s (x) is clearly the whole space, so that the only 
interesting points are those on bd S. 

Ifwe set in Definition 5.1.1 dk := (Xk - X)/Ik [-+ d], i.e. Xk = x + Ikdk [E S], 
we obtain the equivalent formulation: 
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Proposition 5.1.2 A direction d is tangent to S at XES if and only if 

3{dkl -+ d. 3{tkl -J, 0 such that x + tkdk E S for all k. o 

A tangent direction thus appears as a set oflimits; a limit of tangent directions is 
therefore a "limit of limits", and is a limit itself: 

Proposition 5.1.3 The tangent cone is closed. 

PROOF. Let {del C Ts(x) be converging to d; for each e take sequences {xl,klk and 
{te,klk associated with de in the sense of Definition 5.1.1. Fix e > 0: we can find ke 
such that 

II Xe,ki - x - de II ::;; ! . 
te.ki e 

Letting e -+ 00, we then obtain the sequences {xe.ki le and (te.ki le which define d as 
an element ofTs(x). 0 

The examples below confirm that our definition reproduces the classical one when S is 
"well-behaved". while Fig. 5.1.1 illustrates a case where classical tangency cannot be used. 

x + TS(x) 

Fig.S.l.l. Tangency to a "bad" set 

Examples 5.1.4 Given m functions Ci •...• Cm continuously differentiable on lRn. consider 

S:={XElRn : Cj(x)=Ofori=I •...• m}. 

Let XES be such that the gradients VCi(X) •...• VCm(X) are linearly independent. Then 
Ts(x) is the subspace 

{dEJRn : ('Vcj(x).d)=Ofori=I, ...• m}. (5.1.2) 

Another example is 
S:={XEJRn : Cl(X):::;O}. 

At XES such that Cl (x) = 0 and 'V Cl (x) =/:. 0, T s (x) is the half-space 

(dEJRn : (VCi(x).d):::;O}. (5.1.3) 

Both formulae (5.1.2) and (5.1.3) can be proved with the help ofthe implicit function 
theorem. This explains the assumptions on the V Cj (x) 's; things become more delicate when 
several inequalities are involved to define S. 0 
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Naturally, the concept of tangency is local, as it depends only on the behaviour of 
S near x. From its definition (5.1.1), Ts(x) appears as the set of all possible cluster 
points of the difference quotients f(y - x)/t}, with YES and t ,j.. 0; using set-valued 
notation (see §A.5): 

S-x 
Ts(x) = limext--. 

/.l.o ( 
(5.1.4) 

Another interpretation uses the distancefunctionx t-+ ds(x):= minYEs lIy-xll: 
Ts(x) can also be viewed as the set of d's such that 

liminf ds(x + td) 
t~O ( = O. (5.1.5) 

Knowing that ds(x) = 0 when XES, the infimand of(5.1.5) can be interpreted as a 
difference quotient: [ds(x + td) - ds(x)]/t. Finally, (5.1.5) can be interpreted in a 
set-formulation: for any 6 > 0 and for any 8 > 0, there exists 0 < t ~ 8 such that 

x + td E S + B(O, (6), 
S-x 

i.e. dE --+ B(O, 6). 
t 

Remark 5.1.5 In (5.1.4), we have taken the tangent cone as a lim ext, which corre
sponds to a liminf in (5.1.5). Another possible approach could have been to define 
another "tangent cone", namely 

1 .. S-x 
Immt--
t~O t 

In this case, (5.1.5) would have been changed to 

. ds(x + td) . 
hmsup = 0 [= hmqods(x + td)/t] 

t~O ( 

(5.1.6) 

(where the second form relies on the fact that ds is nonnegative). In a set-formulation 
as before, we see that (5.1.6) means: for any 6 > 0, there exists 8 > 0 such that 

S-x 
d E --+ B(O, s) for all 0 < t ~ 8 . 

t 

We will see in §5.2 below that the pair of alternatives (5.1.5) - (5.1.6) is irrelevant 
for our purpose, because both definitions coincide when S is convex. 0 

Remark 5.1.6 Still another "tangent cone" would also be possible: one says that d is a 
"feasible direction" for S at XES when there exists lJ > 0 such that 

x + td E S [Le. d E (S - x)/t] for all 0 < t :::; lJ. 

Once again, we will see that the difference is of little interest: when S is convex, T S (x ) 

is the closure ofthe cone of feasible directions thus defined. 0 
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5.2 The Tangent and Normal Cones to a Convex Set 

Instead of a general set S, we now consider a closed convex set C C JRn . In this 
restricted situation, the tangent cone can be given a more handy expression. The key 
is to observe that the role of the property tk .,!. 0 is specialin (5.1.5): when both x and 
x +tkdk are in C, then x +.dk E C for all • E ]0, tkl In particular, C - {xl c T c(x). 
Indeed, the tangent cone has a global character: 

Proposition 5.2.1 The tangent cone to C at x is the closure of the cone generated 
byC-{xl: 

Tc(x) = cone(C - x) = clJR+(C - x) 
= cl{d E JRn : d = a(y - x), y E C, a ~ O}. 

(5.2.1) 

PROOF. We have just said that C - {x} C Tc(x). Because Tc(x) is a closed cone 
(Proposition 5.1.3), it immediately follows that clJR+(C - x) c Tc(x). Conversely, 
for d E Tc(x), take {Xk} and {tk} as in the definition (5.1.1): the point (Xk - x)/tk is 
in JR+ (C - x), hence its limit d is in the closure of this latter set. 0 

Remark 5.2.2 This new definition is easier to work with - and to master. Furthermore, it 
strongly recalls Remark 2.2.4: the term in brackets in (5.2.1) is just a union, 

cone(C - x) := U C - X 

1>0 t 

and, thanks to the monotonicity property of the "difference quotient" t 1-+ (C - x) / t, it is 
also a limit: 

C-x 
cone(C -x) = lim--

t,j,o t 

to be compared with the definition (2.2.3) of the asymptotic cone. Having taken a union, or 
a limit, the closure operation is now necessary, but it was not when we took an intersection. 
Also, the limit above is unambiguous (it is a union!), and can be understood as the lim ext or 
the lim int; see Remark 5.1.5. As for Remark 5.1.6, we see that the cone of feasible directions 
for the convex C at x is just the very last set in brackets in (5.2.1). 0 

As a closed convex set, T C (x) can also be described as an intersection of closed 
half-spaces - remember §4.2(b). In the present conical situation, some more can be 
said: 

Definition 5.2.3 The direction s E ]Rn is said normal to C at x E C when 

(s, y - x) :::;; 0 forall y E C. (5.2.2) 

The set ofa11 such directions is called normal cone to C atx, denoted by Nc(x). 0 
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That N c (x) is a closed convex cone is clear enough. A normal is a vector s such that the 
angle between sand y - x is obtuse for all Y E C. A consequence of §4.2(a) is that there is 
a nonzero normal at each x of bd C. Indeed, Theorem 3.1.1 tells us that 

v - pc(v) E Nc(pc(v» for all v E lRn . 

By contrast, Nc(x) = to} for x E intC. As an example, if 

C=Hs~r={YElRn: (s,y)::;:;r} 

is a closed half-space limited by a given Hs.r, then its normals at any point of Hs.r are the 
nonnegative multiples of s. 

Proposition 5.2.4 The normal cone is the polar of the tangent cone. 

PROOF. If (s, d) ::;:;; 0 for all dEC - x, the same holds for all d E 1R+(C - x), as well 
as for all d in the closure Tc(x) of the latter. Thus, Nc(x) C [Tc(x)]o. 

Conversely, take s arbitrary in [T c (x)]o. The relation (s, d) ::;:;; 0, which holds for 
all dE Tc(x), a fortiori holds for all dEC - xC Tc(x); this is just (5.2.2). 0 

Knowing that the tangent cone is closed, this result can be combined with Propo
sition 4.2.7 to obtain a third definition: 

Corollary 5.2.5 The tangent cone is the polar of the normal cone: 

Tc(x) = {d E IRn : (s, d) ::;:;; Ofor all s E Nc(x)}. o 

This describes Tc(x) as an intersection of homogeneous half-spaces and the 
relationship with §4.2(b) is clear. With the notation thereof, rs = 0 for each s, and 
the index-set .L'~c(x) is nothing more than Nc(x); see again Remark 4.2.8. 

It is interesting to note here that normality is again a local concept, even though (S.2.2) 
does not suggest it. Indeed the normal cone at x to C n B(x, 8) coincides with Nc(x). Also, 
if C' is "sandwiched", i.e. if 

C - {x} C C' - {x} c T c(x) , 

then Nc/(x) = Nc(x) - and TC'(x) = Tc(x). Let us add that tangent and normal cones to a 
nonclosed convex set C could be defined if needed: just replace C by cl C in the definitions. 

Another remark is that the tangent and normal cones are "homogeneous" objects, in that 
they contain 0 as a distinguished element. It is most often the translated version x + T c (x) 
that is used and visualized; see Fig. S.U again. 

Examples 5.2.6 (a) If C = K is a closed convex cone, T K (0) = K: the polar KO of 
a closed convex cone is its normal cone at O. On the other hand, if 0 =1= x E K, then 
T K(X) contains at least one subspace, namely lR{x}. Actually, we even have 

NK(X)={SEKO: (s,x)=O} for x =1=0. 

To see it, observe that TK(X) J {x} means NK(x) C {x}-L; in other words, the 
relation of definition of KO 
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(S,y-x)~O forallYEK 

reduces to 
(S, y) ~ 0 [= (s, x) ] for all y E K . 

A cone is a set of vectors defined up to a multiplicative constant, and the value of this 
constant has often little relevance. As far as the concepts of polarity, tangency, normality are 
concerned, for example, a closed convex cone T (or N) could equally be replaced by the 
compact T n B(O, 1); or also by {x E T : IIxll = I}, in which the redundancy is totally 
eliminated. 

(b) Take a closed convex polyhedron defined by m constraints: 

C:={XElRn : (sj,x)~rjforj=I, ... ,m} 

and define 
J(x):= {j = I, ... ,m: (Sj'x) = rj} 

the set of active constraints at x E C. Then 

Tc(x) = {d E IRn : (sj,d) ~ o for j E J(x)} , 

Nc(x) =cone{sj : j E J(x)} = {LjE}(X)ajsj : aj ~o}. 

(5.2.3) 

(c) Let C be the unit simplex.dn of Example 1.1.3 and a = (ah ... , an) E .dn. If 
each ai is positive, i.e. if a E ri .dn , then the tangent cone to .dn at a is aff L1n - {a}, 
i.e. the linear hyperplane of equation Ll=l ai = O. Otherwise, withe := (I, ... , I) E 

IRn : 

TLln(a) = {d=(dh ... ,dn) : eTd=O, di~Oifai=O}. 

Using Example (b) above, calling {el' ... , en} the canonical basis oflRn and denoting 
by J (a) := {j : aj = O} the active set at a, we obtain the normal cone: 

NLln(a) = cone[{e}U{-e}UjEJ(a){-ej}] 

= {LjE{O}UJ(a) Pjej : Pj ~ 0 for j E J(a)} . 

This last example illustrates an interesting complexity property: for a closed convex 
polyhedron described by (5.2.3), 

- the tangent cone is conveniently defined as an intersection of (homogeneous) half-spaces: 
it "resembles" C; 

- the normal cone is conveniently defined as a conical hull, with a "small" number of gener
ators; its description by closed half-spaces would be tedious. 

When characterizing pairs of polar cones, say T and N, which are both polyhedral, this 
kind of duality is usual: one characterization is complex when the other is simple. 0 
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5.3 Some Properties of Tangent and Normal Cones 

Let us give some properties of the tangent cone, which result directly from Proposi
tion 5.2.1. 

- For fixed x, TC(x) increases if and only ifNc(x) decreases, and these properties 
happen in particular when C increases. 

- The set cone( C - x) and its closure T C (x) have the same affine hull (actually linear 
hull!) and the same relative interior. It is not difficult to check that these last sets are 
(aff C - x) and lR; (ri C - x) respectively. 

- T c(x) = aff C - x whenever x EriC (in particular, T c(x) = lRn if x E int C). As 
a result, approximating C by x + T c (x) presents some interest only when x E rbd C. 
Along this line, we warn the reader against a too sloppy comparison of the tangent 
cone with the concept of tangency to a surface: with this intuition in mind, one 
should rather think of the (relative) boundary of C as being approximated by the 
(relative) boundary of Tc(x). 

- The concept of tangent cone fits rather well with the convexity-preserving operations 
of § 1.2. Validating the following calculus rules involves elementary arguments only, 
and is left as an exercise. 

Proposition 5.3.1 Here, the C s are nonempty closed convex sets. 

(i) For x E C l n C2, there holds 

Tc,nc2 (x) eTC, (x) n Tc2 (x) and Nc,nc2 (x):::> Nc, (x) + Nc2 (x). 

(ii) With Ci C lRnj , i = 1,2 and (Xl, X2) E Cl X C2, 

TC, xC2 (Xl, X2) = TC, (Xl) x TC2 (X2) , 

NC, xC2 (Xl, X2) = NC, (Xl) X NC2 (X2) . 

(iii) With an affine mapping A(x) = Yo + Aox (Ao linear) and X E C, 

-, 
TA(C)[A(x)] = c1[AoTc(x)) and NA(C)[A(x)] = A~[Nc(x)]. 

(iv) In particular (start from (ii), (iii) and proceed as when proving (1.2.2»): 

TC,+C/Xl + X2) = c1[Tc, (xd + TC2 (X2)] ' 

Nc,+C2 (XI + X2) = Nc, (Xl) n NC/X2). o 

Remark 5.3.2 To obtain equality in (i), an additional assumption is necessary. One was used 
in Proposition 2.1.10, see also (2.1.5): 

o E ri(CI - C2) or (riC I ) n (riC2) =1= 0 (5.3.1) 

(the proof of the corresponding statement becomes a bit longer). The gap between the sets of 
(i) explains many of the technical difficulties that will be encountered later. It also explains 
that its cure (5.3.1) will also cure these difficulties. 0 
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Some more properties of tangent and normal cones are worth mentioning, which 
patch together various notions seen earlier in this chapter. 

Proposition 5.3.3 For x E C and s E ]Rn, the/ollowingproperties are equivalent: 

(i) s E Nc(x) ; 
(ii) x is in the exposed/ace Fc(s): (s, x) = maxYEc(s, y}; 

(iii) x = pc(x + s) . 

PROOF. Nothing really new: everything comes from the definitions of normal cones, 
supporting hyperplanes, exposed faces, and the characteristic property (3.1.3) of the 
projection operator. 0 

This result is illustrated on Fig. 5.3.1 and implies in particular: 

-\ 
Pc (x) = {x} + Nc(x) for all x E C. 

Also, 
x #- x' ===? [{x} + Nc(x)] n [{x'} + Nc(X')] = 0 

(otherwise the projection would not be single-valued). 

c 

. ... x.) ... ·· -1 

~:. {x} + NC(x) = PC(x) 

{x} + T c(x) 

. . .. . 
Fig.5.3.1. Normal cones, projections and exposed faces 

Remark 5.3.4 Let us come back again to Fig. 4.2.2. In a first step, fix x E C and consider 
only those supporting hyperplanes that pass through x, i.e. those indexed in Nc(x). The 
corresponding intersection of half-spaces just constructs T C (x) and ends up with 

{x} + Tc(x) ::) C. 

Note in passing that the closure operation of Proposition 5.2.1 is necessary when rbdC 
presents some curvature near x. 

Then, in a second step, do this operation for all x E C: 

Cc n[x+Tc(x)]. (5.3.2) 
xeC 

A first observation is that x can actually be restricted to the relative boundary of C: for 
x E ri C, T C (x) expands to the whole aft" C - x and contains all other tangent cones. A 
second observation is that (5.3.2) actually holds as an equality. In fact, write a point y ¢ C 
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as y = pc(y) + s with s = y - pc(y); Proposition 5.3.3 tells us that S E Nc[pc(y)], hence 
the nonzero S cannot be in T c[pc(y)]: we have established y ft pc(y) + T c[pc(y)], y is not 
in the right-hand side of(5.3.2). In a word: 

c= n [x + Tc(x)] , 
xErbdC 

which sheds a new light on the outer description of C discussed in §4.2(b). o 

We conclude with an interesting approximation result. As indicated by (3.1.6), 
the projection onto a fixed convex set is a continuous operator. More can actually be 
said, and the normal and tangent cones help estimating the variation ofthis projection. 
The following result can be proved using the material developed in this chapter. 

Proposition 5.3.5 For given x E C and d E ]Rn, there holds 

lim pc(x + td) - x 
1-1-0 t = PTC(X) (d) . (5.3.3) 

HINT. Start from the characterization (3.1.3) of a projection, to observe that the dif
ference quotient [Pc (x + td) - x]/ t is the projection of d onto (C - x) / t. Then let 
t to; the result comes with the help of (5.1.4) and Remark 5.2.2. 0 

This result is illustrated on Fig. 5.3.2. It gives us a sort of derivative, more precisely 
the directional derivative of PC at x. If x Erie, then T c(x) becomes the subspace 
parallel to aff C and we recover the linearity (at least local) of the projection operator . 

x+ Tc(x) . ' .' .' .' .' .' 

"J" 

.' 
•••••• x + NcCx) .' .' .' .' x r··················· ................ . 

Fig.5.3.2. Differentiating a projection 

In view of (5.3.3), the notation 

PTc(X)O = Pc(x, .) 

is natural (it has already been seen in §I.4.1 in a one-dimensional setting). Moreover, 
remembering the approximation role of tangent cones, a possible (although daring) 
notation is also Tc(x) = C'(x); then (5.3.3) can be rephrased as: the projection and 
derivation operations commute: Pc'<x)O = pc(x, .). 



IV. Convex Functions of Several Variables 

Prerequisites. Basic definitions and properties of convex sets (Chap. III); basic results on 
the analysis of functions of several variables; and to support intuition if necessary: convex 
functions of one real variable (Chap. I). 

Introduction. The study of convex functions goes together with that of convex sets; ac
cordingly, this chapter and the previous one constitute the first serious steps into the world 
of convex analysis. Most ofthe concepts to come have already been seen in Chap. I; a reader 
mastering that chapter should therefore have no major difficulty following our development. 
Nevertheless, some of the definitions and properties introduced or proved in a simple one
dimensional setting may become harder to visualize when several variables come into play: 
the natural ordering ofR is no longer present to help. 

This chapter has no pretension to exhaustivity; similarly to Chap. III, it has been kept min
imal, containing what is necessary to comprehend the sequel. Furthermore, it contains many 
examples commonly appearing in convex optimization, like: piecewise affine and quadratic 
functions, max-functions, functions associated to convex sets (indicator, support, distance 
functions). 

1 Basic Definitions and Examples 

1.1 The Definitions of a Convex Function 

Definition 1.1.1 Let C be a nonempty convex set in Rn. A function f : C -+ lR is 
said to be convex on C when, for all pairs (x, x') E C X C and all a E ]0, 1[, there 
holds 

f(ax + (1 - a)x') :( af(x) + (1 - a)f(x') . (1.1.1) 
o 

We say that f is strictly convex on C when (1.1.1) holds as a strict inequality if 
x =1= x'. An even stronger property is that there exists c > 0 such that 

f(ax + (l - a)x'):( af(x) + (1 - a)f(x') - !ca(l - a)lIx - x'1I 2 (1.1.2) 

for all (x, x') E C X C and all a E ]0, 1 [. In this case, f is said to be strongly convex 
on C (with modulus of strong convexity c). Passing from (1.1.1) to (1.1.2) does not 
change much the class of functions considered: 
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Proposition 1.1.2 The function f is strongly convex on C with modulus c if and only 
ifthefunction f - 1/2cll'1I2 is convex on C. 

PROOF. Use direct calculations in the definition (1.1.1) of convexity applied to the 
function f - 1/2cll . 11 2, namely: 

f(ax + (1 - a)x') - !cllax + (1 - a)x'1I 2 ~ 
~ af(x) + (1 - a)f(x') - !c[allxIl2 + (1 - a)lIx'1I2]. o 

Although simple, this statement illustrates a useful technique in convex analysis: to prove 
that a convex function has a certain property, one establishes a related property on a suitable 
strongly convex perturbation of the given function. 

The set C needed in Definition 1.1.1 (which can be the whole space) appears as a 
sort of domain of definition of f. Of course, it has to be convex so that the left-hand 
side of (1.1.1) makes sense. In a more modern definition, a convex function f is 
considered as defined on the whole of IRn , but possibly taking infinite values: 

Definition 1.1.3 (The Set ConvlRn) A function f : lRn --+ lR U {+oo}, not identi
cally +00, is said to be convex when, for all (x, x') E lRn x lRn and all a E ]0, 1 [, 
there holds 

f(ax + (1 - a)x') ~ af(x) + (1 - a)f(x') , 

considered as an inequality in lR U {+oo}. 
The class of such functions is denoted by Conv lRn . o 

We mention here that our definition coincides with that of proper convexity used by other 
authors. The distinction is necessary when the value f (x) = -00 is allowed; but this value 
is excluded from the very beginning in the present book. 

To realize the equivalence between our two definitions, extend an f from Defini
tion 1.1.1 by 

f(x) := +00 for x ¢ C , (1.1.3) 

thus obtaining a new f, which is now in Conv lRn . Conversely, consider the following 
definition (meaningful even for nonconvex f, incidentally): 

Definition 1.1.4 The domain (or effective domain) of f E Conv IRn is the nonempty 
set 

domf := {x E lRn : f(x) < +oo}. o 

Clearly enough, an f satisfying (1.1.1), (1.1.3) has a convex domain; given f E 

Conv lRn, we can therefore take C := dom f to obtain a convex function in the sense 
of Definition 1.1.1. Strong convexity is also defined in the spirit of Definition 1.1.3, 
via (1.1.2) with x and x' varying in dom f or in ]Rn: it makes no difference. Same 
remark for strict convexity (checking all these claims is a good exercise to familiarize 
oneself with computations in lR U Hoo}). 

Now, we recall that the graph of an arbitrary function is the set of couples (x, f (x» 
in lRn x lR. When moving to the unilateral world of convex analysis, the following is 
relevant: 
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Definition 1.1.5 Given f : IRn --+ IR U {+oo}, not identically equal to +00, the 
epigraph of f is the nonempty set 

epi f := {(x, r) E IRn x IR : r;;: f(x)}. 

Its strict epigraph epis f is defined likewise, with" ;;: " replaced by">" (beware 
that the word "strict" here has nothing to do with strict convexity). 0 

In terms of sublevel-sets, we have the equivalent definition 

(x, r) E epi f {::::::} x E Sr(f) [= {x E IRn : f(x) ~ r}] . (1.1.4) 

The following property is easy to derive, and can be interpreted as giving one 
more definition of convex functions, which is now of geometric nature. 

Proposition 1.1.6 Let f : IRn --+ IR U {+oo} be not identically equal to +00. The 
three properties below are equivalent: 

(i) f is convex in the sense of Definition 1.1.3; 
(ii) its epigraph is a convex set in IRn x 1R; 

(iii) its strict epigraph is a convex set in]Rn x R 

PROOF. Left as an exercise. o 

We say that f is concave when - f is convex, or equivalently when the hypograph of 
f (revert the inequality in Definition 1.1.5) is a convex set. We will see on examples that 
either the analytical Definition 1.1.3 or the geometric one coming from 1.1.6 may be more 
convenient, depending on the situation. 

Remark 1.1.7 The sublevel-sets of f E Conv lRn are convex (possibly empty) subsets oflRn. 
To construct Sr (f), we cut the epigraph of f by a horizontal blade, forming the intersection 
epi f n eRn x {r}) of two convex sets; then we project the result down to lRn x to} and we 
change the environment space from lRn x lR to lRn. Even though this latter operation changes 
the topology, it changes neither the closure nor the relative interior. 

Conversely, a function whose sublevel-sets are all convex need not be convex (see 
Fig. 1.1.1); such a function is called quasi-convex. 0 

/ 
r 

fo ~ 
Fig. 1.1.1. Forming a sublevel-set 
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Observe that dom f is the union ofthe sublevel-sets SrU), which form a nested family; 
it is also the projection of epi f C lRn x lR onto lRn (so, Proposition III.1.2.4 confirms its 
convexity). We will see later that a convex function behaves nicely on the interior of its domain, 
and even on its relative interior. By contrast, anything can happen on the (relative) boundary 
of dom f; of course, f can be infinite there, but can also behave much more strangely than 
in the univariate case. 

The basic inequality (1.1.1) can be generalized to convex combinations of more 
than two points: 

Theorem 1.1.8 Let f E Conv JRn. Then,for all collections {Xl> ... , Xk} of points in 
dom f and all a = (ai, ... ,ak) in the unit simplex ofJRk, there holds the inequality 
of Jensen (in summation form) 

f(Ef=1 ajxj) :::; Ef=1 ai/(Xj). 

PROOF. Nothing particular: just proceed as in Theorem 1.1.2.1. o 

Starting from f E Conv JRn, we thus construct the convex set epi f. Conversely, 
if E c JRn x JR is the epigraph of a function in Conv JRn , this function is directly 
obtained from 

f(x) = inf {r : (x, r) E E} 

(recall that inf 0 = +00; we will see in § l.3(g) what sets are epigraphs of a convex 
function). In view of this correspondence, the properties ofa convex function f are 
intimately related to those developed in Chap. III, applied to epi f. For example, we 
will see later that important functions, maybe the most important in optimization, are 
those having a closed epigraph. Also, it is clear that aff epi f contains the vertical 
lines {x} x JR, with x E dom f. This shows that epi f cannot be an open set, nor 
relatively open: take points of the form (x, f (x) - e). As a result, ri epi f cannot be 
an epigraph, but it is nevertheless of interest to see how this set is constructed: 

Proposition 1.1.9 Let f E Conv JRn. The relative interior of epi f is the union over 
x E ri dom f of the open non-majorized intervals with bottom endpoints at f (x): 

riepi f = {(x, r) E JRn x JR : x E ridomf, r> f(x)}. 

PROOF. Since dom f is the image of epi f under the linear mapping "projection onto 
JRn", Propositions I1I.1.2.4 and 111.2.1.12 tell us that 

ri dom f is the projection onto JRn of ri epi f. (1.1.5) 

Now take x arbitrary in ri dom f. The subset of ri epi f that is projected onto x is just 
({x} x JR) nri epi f, which in turn is ri[({x} x JR) nepi f] (use Proposition 111.2.1.10). 
This latter set is clearly ]f(x), +00[. 

In summary, we have proved that, for x E ri dom f, (x, r) E ri epi f if and only 
if r > f (x). Together with (1.1.5), this proves our claim. 0 

Beware that ri epi f is not the strict epigraph of f (watch the side-effect on the 
relative boundary of dom f). 
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1.2 Special Convex Functions: Affinity and Closedness 

In view of their Definition 1.1.6(ii), convex functions can be classified on the basis of 
a classification of convex sets in JR.n x R 

(a) Linear and Affine Functions The epigraph of a linear function is characterized 
by s E JR.n, and is made of those (x, r) E Rn x R such that r ;;:: (s, x). 

Next, we find the epigraphs of affine functions f, which are conveniently written 
in terms of some Xo E JR.n: 

{(x,r): r;;::f(xo)+ (s,x-xo)} = {(x,r) : (s,x)-r~(s,xo)-f(xo)}. 

In the language of convex sets, the epigraph of an affine function is a closed half
space, characterized by (a constant term and) a vector (s, -1) E JR.n x JR.; the essential 
property of this vector is to be non-horizontal. Affine functions thus playa special 
role, just as half-spaces did in Chap. III. This explains the interest of the next result; 
it says a little more than Lemma III.4.2.1, and is actually of paramount importance. 

Proposition 1.2.1 Any f E Conv JR.n is minorized by some affine function. More 
precisely: for any Xo E ri dom f, there is s in the subspace parallel to aff dom f such 
that 

f(x) ;;:: f(xo) + (s, x - Xo) for all x E JR.n . 

In other words, the affine function can be forced to coincide with f at Xo. 

PROOF. We know that dom f is the image of epi f under the linear mapping "projection 
onto JR.n". Look again at the definition of an affine hull (§III.l.3) to realize that 

aff(epi f) = aff(dom f) x JR.. 

Denote by V the linear subspace parallel to aff ( dom f), so that aff (dom f) = {xo}+ V 
with Xo arbitrary in dom f; then we have 

aff(epi f) = {xo + V} x JR.. (1.2.1) 

We equip V x JR. and JR.n x JR. with the scalar product of product-spaces. 
Choose Xo E ri dom f. Then Proposition 1.1.9 tells us that (xo, f (xo» E rbd epi f 

and we can take a nontrivial hyperplane supporting epi f at (xo, f(xo»: using Re
mark III.4.2.2 and (1.2.1), there are s = SV E V and a E JR., not both zero, such 
that 

(s, x) + ar ~ (s, xo) + af(xo) 0.2.2) 

for all (x, r) with f(x) ~ r. 
Because of our choice of s (in V) and Xo (in ri dom f), we can take 8 > 0 so small 

that Xo + 8s E dom f, for which (1.2.2) gives 

811s11 2 ~ a[f(xo) - f(xo + 8s)) < +00; 

this shows a#-O (otherwise, both s and a would be zero). Without loss of generality, 
we can assume a = -1; then (1.2.2) gives our affine function. 0 
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Once again, the importance of this result cannot be over-emphasized. With res
pect to Lemma 111.4.2.1, it says that a convex epigraph is supported by a non-vertical 
hyperplane. Among its consequences, we see that a convex function, having an affine 
minorant, is bounded from below on every bounded set of lRn . 

As already said on several occasions, important special convex sets are the cones, 
and conical epigraphs will deserve the full Chap.V. So we turn to another class, 
especially important for optimization, namely closed convex sets. 

(b) Closed Convex Functions For a (convex) function to have a minimum, a very first 
requirement is lower semi-continuity (l.s.c.). This property is therefore of fundamental 
importance for our subsequent developments: if we want to minimize a function I 
on some compact set K, we do not need to bother with existence if I is known to be 
lower semi-continuous on lRn; and this holds even if K is not contained in dom I
an appreciable formal advantage. 

First, we give some material, independently of any convexity. A function I is 
lower semi-continuous if, for each x E lRn , 

liminf I(y) ~ I(x). 
y-+x 

(1.2.3) 

This relation has to hold in lR U Hoo}, which complicates things a little; so the 
following geometric characterizations are useful: 

Proposition 1.2.2 For I : lRn ~ lR U {+oo}, the following three properties are 
equivalent: 

(i) f is lower semi-continuous on lRn; 
(ii) epi f is a closed set in lRn x lR; 

(iii) the sublevel-sets Sr(f) are closed (possibly empty) for all r E R 

PROOF. [(i) =} (ii)] Let {(Yk, rk)} be a sequence of epi I converging to (x, r) for 
k ~ +00. Since I(Yk) :::;; rk for all k, the l.s.c. relation (1.2.3) readily gives 

r = limrk ~ liminf f(Yk) ~ liminf fey) ~ f(x) , 
y-+x 

i.e.(x, r) E epi/. 

[(ii) =} (iii)] Construct the sublevel-sets SrU) as in Remark 1.1.7: the closed sets 
epi I and lRn x {r} have a closed intersection. 

[(iii) =} (i)] Suppose I is not lower semi-continuous at some x: there is a (sub )sequen
ce {Yk} converging to x such that I(Yk) converges to p < I(x):::;; + 00. Pick r E 

]p, f(x)[: for k large enough, I(Yk) :::;; r < I(x); hence SrU) contains the tail of 
{yd but not its limit x. Consequently, this SrU) is not closed. 0 

Beware that, with Definition 1.1.1 in mind, the above statement (i) means more 
than lower semi-continuity of the restriction of I to C: in (1.2.3), x need not be in 
dom I. Note also that these concepts and results are independent from convexity. 
Thus, we are entitled to consider the following definition: 
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Definition 1.2.3 The function f : lR.n ---+ lR. U {+oo} is said to be closed if it is lower 
semi-continuous everywhere. or if its epigraph is closed, or if its sublevel-sets are 
closed. 0 

The next step is to take the lower semi-continuous hull of a function f. whose 
value at x E lR.n is lim inf y-+x f (y). In view of the proof of Proposition 1.2.2, this 
operation amounts to closing epi f. When doing so, however, we may slide down to 
-00. 

Definition 1.2.4 The closure (or lower semi-continuous hull) of a function f is the 
function cl f: lR.n ---+ lR. U {±oo} defined by: 

or equivalently 

cl f(x) := liminf f(y) for all x E lR.n , 
y-+x 

epi(cl f) := cl(epi f) . 

(1.2.4) 

(1.2.5) 
o 

An l.s.c. hull may be fairly complicated to compute, though; furthermore, the 
gap between f (y) and cl f (y) may be impossible to control when y varies in a 
neighborhood of a given point x. Now convexity enters into play and makes things 
substantially easier, without additional assumption on f in the above definition: 

- First of all, a convex function is minorized by an affine function (Proposition 1.2.1); 
closing it cannot introduce the value -00. 

- Second, the issue reduces to the one-dimensional setting, thanks to the following 
radial construction of cl f. 

Proposition 1.2.5 Let f E Conv lR.n and x, E ri dom f. There holds (in lR. U {+oo}) 

(clf)(x) = limf(x +t(x'-x» for all x E lR.n . 
t,/.o 

PROOF. Since Xt := x + t(x' - x) ---+ x when t ..j.. 0, we certainly have 

(cl f)(x) ~ liminf f(x + t(x' - x». 
t,/.O 

We will prove the converse inequality by showing that 

lim sup f(x + t(x' - x» ~ r for all r ~ (cl f)(x) 
t,/.O 

(non-existence of such an r means that cl f (x) = +00, the proof is finished). 

(1.2.6) 

Thuslet(x,r) E epi(clf) =cl(epif).Pickr' > f(x'),hence(x',r') E riepif 
(Proposition 1.1.9). Applying Lemma III.2.1.6 to the convex set epi f, we see that 

t(x'. r') + (l - t)(x, r) E riepif C epi f for all t E ]0,1]. 

This just means 
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I(x + t(x' - x)) ::;; tr' + (I - t)r for all t E ]0, 1] 

and our required inequality follows by letting t .J, O. o 

Another way of expressing the same thing is that, to compute c1 f at some point x, it 
suffices to consider the restriction of f to a half-line, say x + ]R+ d, meeting ri dom f; here, 
d stands for x' - x. The resulting one-dimensional function 'P(t) := cl f(x + td) becomes 
"continuous" from the right at t = 0, in the sense that 'P(O) = limt -\.0 'P(t) - an equality in 
]R U {+oo}. 

Some simple but important properties come in conjunction with the results of the 
previous chapters: 

Proposition 1.2.6 For f E Conv]R.n, there holds 

cl I E Conv]R.n ; 

cl f and I coincide on the relative interior of dom I. 

(1.2.7) 

(1.2.8) 

PROOF. We already know from Proposition 111.1.2.7 that epi cl I = c1 epi I is a 
convex set; also c1 I ::;; I ;f:. +00; finally, Proposition 1.2.1 guarantees in the relation 
of definition (1.2.4) that cl I(x) > -00 for all x: (1.2.7) does hold. 

On the other hand, suppose x E ri dom I; then, the one-dimensional function 
ep(t) = I(x + td) is continuous at t = 0 (Theorem 1.3.1.1); it follows that cll 
coincides with I on ri dom I; besides, cl I (x) is obviously equal to I (x) = +00 for 
all x ¢ cl dom I. Altogether, (1.2.8) is true. 0 

In particular, a finite-valued convex function (dom f = ]Rn) is lower semi-continuous; 
actually, Theorem 3.1.2 below will confirm that it is more than that: it is continuous, and even 
locally Lipschitzian. 

Due to their importance, closed convex functions deserve a special notation: 

Notation 1.2.7 (The Set Conv ]R.n) The set of closed convex functions on]R.n is de
noted by Conv ]R.n . 0 

(c) Outer Construction of Closed Convex Functions The property proved in Propo
sition 1.2.5 corresponds to a direct (or inner) construction of c1 f from (1.2.4). Equiv
alently, c1 I can be constructed as the largest I. s.c. (convex) function rninorizing I. 
Correspondingly, the closed (convex) set epi cl I can also be described externally, as 
an intersection of closed (convex) sets. In view of §IIIA.2(b), these closed convex sets 
can be restricted to be closed half-spaces: convexity provides another simplification 
of the closure operation. Besides, in view of Proposition 1.2.1, these half-spaces can 
be assumed non-vertical. 

Proposition 1.2.8 Theclosureofl E Conv]Rn is the supremum ofallaffinejimctions 
minorizing I: 

c1f(x) = sup {(s,x)-b: (s,y)-b::;;/(y)lorallYElRn }. (1.2.9) 
(S,b)ElRn xR 
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PROOF. A closed half-space containing epi f is characterized by a nonzero vector 
(s, a) E ]R.n x IR and a real number b such that 

(s,x) + ar ~ b for all (x, r) E epif (1.2.10) 

(we equip the graph-space IRn x IR with the scalar product of a product-space). Let 
us denote by E C IRn x IR x IR the index-set of such triples a = (s, a, b) and by 

H;:={(x,r): (s,x)+ar~b) (1.2.11) 

the corresponding half-spaces. In other words, 

epi(clf) = cl(epif) = naEEH;. 

Because of the particular nature of an epigraph, (1.2.10) implies a ~ 0 and, by 
positive homogeneity, the values a = 0 and a = -1 suffice: E can be partitioned in 

EI := res, -1, b) : (1.2.10) holds with a = -I} 

and 
Eo := {(s, 0, b) : (1.2.10) holds with a = O}. 

Indeed, EI corresponds to affine functions minorizing f (Proposition 1.2.1 tells us 
that E I =1= 0) and Eo to closed half-spaces oflRn containing dom f (note that Eo = 0 
if dom f = ]R.n). 

We have to prove that, even when Eo =1= 0, intersecting the half-spaces H;; 
over E or over E I produces the same set, namely cl epi f. For this we take arbitrary 
ao = (so, 0, bo) E Eo and al = (st. -1, bl ) E Et. we set 

aCt) := (Sl + tso, -1, b l + tbo) E EI for all t ;? 0, 

and we prove (see Fig. 1.2.1) 

H~ n H;;; = nt ;;. oH;;(t) =: H- . 

(5~(O'O) 

(5, +tso.-1) (s, ,-1) 
00 E :Eo 

Fig.I.2.I. Closing a convex epigraph 
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It results directly from the definition (1.2.11) that an (x, r) in H~ n H;;; satisfies 

(Sl + tso, x) - (hi + tho) ~ r for all t ~ 0, (1.2.12) 

i.e. (x, r) E H-. Conversely, take (x, r) E H-. Set t = 0 in (1.2.12) to see that 
(x, r) E H;;;. Also, divide by t > 0 and let t -+ +00 to see that (x, r) E H~. The 
proof is complete. 0 

1.3 First Examples 

(a) Indicator and Support Functions Given a nonempty subset S C jRn, the func
tion Is : jRn -+ jR U Hoo} defined by 

{ o if XES, 
Is(x):= +00 if not 

is called the indicator function of S. We mention here that other notations commonly 
encountered in the literature are os, 1/Is, or even xs. Clearly enough, Is is [closed and] 
convex if and only if S is [closed and] convex. Indeed, epi Is = S X jR+ by definition. 

More generally, if I E Conv Rn and if C is a nonempty convex set, the function 

lP(x):= {/(X) if X E C, 
+00 if not 

is again convex under one condition: that dom I and C have a nonempty intersection (other
wise lP would be identically +00). Furthermore, lP is closed when so are I and C. Observe 
in passing that lP = I + Ie· 

Attached to a nonempty subset S, another function of interest is the support 
function of S, already encountered in Remark III.4.1.2: 

l1S(x) := sup {(s, x) : s E S}. 

It turns out to be closed and convex; this is already suggested by Proposition 1.2.8 
and will be confirmed below in §2.1 (b). Actually, the importance of this function will 
motivate an extensive development in Chap. V. Here, we just observe that, for a > 0, 

sup (s, ax) = a sup (s, x) , 
seS seS 

hence l1S(ax) = al1S(x): the epigraph of a support function is not only closed and 
convex, but it is a cone in jRn x R Its domain is also a convex cone in jRn: 

doml1s = {a E jRn : 3r such that (s, a) ~ r for all s E S}. 
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(b) Piecewise Affine and Polyhedral Functions Let (SI, b l ), ... , (sm, bm ) be m 
elements oflRn x lR and consider the function 

lRn 3xl-+j(x):=max{(sj,x}-bj: j=I, ... ,m}. (1.3.1) 

Such a function is suggestively called piecewise affine: lRn is divided into (at most 
m) regions in which j is affine: the jcih region, possibly empty, is the closed convex 
polyhedron 

{x E lRn (sio'x) -bjo ~ (Sj,x) -bj for j = 1, ... ,m}. 

This terminology is slightly ambiguous, though: a function whose graph is made up of 
pieces of affine hyperplanes need not be convex, while (1.3.1) can be seen to produce 
convex functions only Gust as with a support function, convexity and closedness of j 
will be confirmed below). It can even be seen that epi f is a closed convex polyhedron; 
but again, (1.3.1) cannot describe all polyhedral epigraphs. 

A polyhedral function will be a function whose epigraph is a closed convex 
polyhedron. Its most general form is given by Definition III.4.2.6: 

epi f = {(x, r) E lRn x lR : (Sj, x) + ay ~ bj for j E J}, 

where J is a finite set, the (s, a, b)j being given in JRn x JR x JR, (Sj, aj) =f. ° (and 
JRn x lR is equipped with the scalar product of a product-space). For this set to be an 
epigraph, each aj must be nonpositive and, if aj < 0, we may assume without loss of 
generalityaj = -1. Furthermore, we may denote by {l, ... , m} the subset of J such 
that aj = -1, and by {m + 1, ... ,m + p} the rest. With these notations, we see that 
f (x) is given by (1.3.1) whenever x satisfies the set of constraints 

(Sj, x) ~ bj for j = m + 1, ... , m + p; 

otherwise, f (x) = +00. Of course, these constraints (usually termed linear, but affine 
is more correct) define a closed convex polyhedron. 

In a word, a polyhedral function is a function which is piecewise affine on its 
domain, the latter being a closed convex polyhedron. Said otherwise, it is a closed 
convex function of the form j + Ip, where j is piecewise affine and P is a closed 
convex polyhedron. 

(c) Norms and Distances It is a direct consequence of the axioms that a norm is 
a convex function, finite on the whole space (use Definition 1.1.1). More generally, 
let C be a nonempty convex set in lRn and, with an arbitrary norm m . III, define the 
distance function 

dc(x) := inf {b - xiii: Y E C}. 

To establish its convexity, Definition 1.1.1 is again convenient. Take {Yk} and {Yk} 
such that, for k ~ +00, IllYk -xm and b k -x'il tend to dc(x) anddc(x') respectively. 
Then form the sequence Zk := aYk + (1 - a)Yk E C with a E]O, 1 [; pass to the limit 
fork ~ +00 in 
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dcCax + (1 - a)x') :::; Illzk - ax - (1 - a)x'm :::; aWYk - x~1 + (1 - a)bk - x'lIl. 

Here again dom de = ]Rn; the (lower semi-)continuity of de follows. 
Clearly enough, de = del e so, with the help of Proposition 111.2.1.8, we see that 

C, el C and ri C have the same distance function (associated with the same norm 
m . liD· In particular, de is 0 on the whole of el C; the following variant is slightly more 
accurate, in that it distinguishes between int C and bd C: 

DcCx) := { dcCx) if x E CC, 
-dec (x) if x E C , 

where CC is the complement of C in ]Rn • Assuming that C and CC are both nonempty, 
it is not particularly difficult to prove that De is convex, finite everywhere, and that 

intC = {x E ]Rn 

bdC = {XE]Rn 

(el C)C = {x E ]Rn 

DcCx) < O}, 
DcCx) = O}, 
DcCx) > O}. 

(d) Quadratic Forms Let A : ]Rn ~ ]Rn be a symmetric linear operator. Then the 
quadratic form 

f(x) := t(Ax, x} 

is a convex function - with dom f = ]Rn - if and only if A is positive semi-definite, 
i.e. its eigenvalues are all nonnegative. Call Al ~ ... ~ An ~ 0 these eigenvalues; it 
is well-known that a basis can be formed with the corresponding eigenvectors, and 
that as a result, 

An IIx 112 :::; (Ax, x}:::; Adlxll2 for all x E]Rn. 

From the first inequality, direct but somewhat tedious calculations yield, with the 
notation of (1.1.2): 

f(ax + (1 - a)x') :::; af(x) + (1 - a)f(x') - tAna(1 - a)lIx - x'1I2 • 

Thus, if A is positive definite, f is strongly convex with modulus An > 0 (while 
f is not even strictly convex when A is degenerate). A straightforward proof comes 
also from a general characterization of differentiable strongly convex functions, to be 
seen below in Theorem 4.1.4 or 4.3.1. 

For r ~ 0, the sublevel-sets of f: 

Sr(f) := {x E]Rn : t(Ax, x} :::; r} 

are concentric ellipsoids: SKr(f) = .jKSr(f). Their common "shape" is given by the 
eigenvalues of A. These ellipsoids may be degenerate, in that they contain the subspace 
Ker A (one should rather speak of elliptic cylinders ifKer A :f:. {O}). However, Sr(f) 
is a neighborhood of the origin for r > 0: 

Sr(f) :J R(O, 8) whenever tA182 :::; r. 
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( e) Sum of Largest Eigenvalues of a Matrix Instead of our working space IRn, 
consider the vector space Sn (IR) of symmetric n x n matrices. Denote the eigenvalues 
of A E Sn(lR) by AI(A) ~ ... ~ An(A), and consider the sum 1m of the m largest 
such eigenvalues (m :::;; n given): 

m 

Sn(IR):3 A ~ Im(A):= LAj(A). 
j=1 

This is a function of A, finite everywhere. Equip Sn (IR) with the standard dot-product 
oflRnxn : 

n 

((A, B)) := tr AB = L AijBij. 
i,j=1 

The function 1m turns out to have the following representation: 

1m (A) = sup {(QQT, A} : QEQ}, 

where Q := {Q : QT Q = 1m} is the set of matrices made up ofm orthonormal n
columns. Indeed, Q is compact and the above supremum is attained at Q formed with 
the (normalized) eigenvectors associated withAl, ... , Am. Keeping Proposition 1.2.8 
in mind, this explains that 1m is convex, as being a supremum of linear functions on 
Sn(IR)· 

Naturally, II (A) is the largest eigenvalue of A, while In(A) is the trace of A, a 
linear function of A. It follows by taking differences that In - 1m (for example the 
smallest eigenvalue An = In - In-I) is a concave function on Sn(IR). 

(t) Volume ofEUipsoids Still in the space of symmetric matrices Sn(IR), define the 
function 

A ~ I(A):= {IOg(detA- 1) if A is positive definite, 
+00 if not. 

It will be seen in §3.1 that the concave finite-valued function An (.) is continuous. The 
domain of I, which is the set of A E Sn(lR) such that An(A) > 0, is therefore open, 
and even an open convex cone. It turns out that I is convex. To see it, start from the 
inequality 

det[aA + (1 - a)A'] ~ (detA)O!(detA')I-O!, 

valid for all symmetric positive definite matrices A and A' (and a E]O, 1[); take the 
inverse of each side; remember that the inverse of the determinant is the determinant 
of the inverse; finally, pass to the logarithms. 

Geometrically, consider again an ellipsoid 

EA := {x E IRn : x T Ax:::;; I} 

where A is a symmetric positive definite matrix. Up to a positive multiplicative 
constant (which is the volume of the unit ball EI,J, the volume of E A is precisely 
JdetA-I. 
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Because dom f is open, ri dom f = int dom f = dom f, which establishes the 
lower semi-continuity of f on its domain. Furthermore, suppose Ak -+ A with A 
not positive definite; by continuity of the concave function AnO, A is positive semi
definite and the smallest eigenvalue of Ak tends to 0: f(Ak) -+ +00. The function 
f is closed. 

(g) Epigraphical Hull and Lower-Bound Function of a Convex Set Given a non
empty convex set C C JRn x JR, an interesting question is: when is C the epigraph 
of some function f E Conv JRn? Let us forget for the moment the convexity issue, 
which is not really relevant. First, the condition f(x) > -00 for all x means that C 
contains no vertical downward half-line: 

{r E JR : (x, r) E C} is minorized for all x E JRn . (1.3.2) 

A second condition is also obvious: C must be unbounded from above, more precisely 

(x, r) E C ===} (x, r') E C for all r' > r . (1.3.3) 

The story does not end here, though: C must have a "closed bottom", i.e. 

[(x, r') E C and r' ..t- r] ==> (x, r) E C . (1.3.4) 

This time, we are done: a nonempty set C satisfying (1.3.2) - (1.3.4) is indeed an 
epigraph (of a convex function if C is convex). Alternatively, if C satisfying (1.3 .2), 
(1.3.3) has its bottom open, i.e. 

(x,r)EC ==> (x,r-e)EC forsomee=e(x,r) >0, 

then C is a strict epigraph. To cut a long story short: a [strict] epigraph is a union of 
closed [open] upward half-lines - knowing that we always rule out the value -00. 

The next interesting point is to make an epigraph with a given set: the epigraphical 
hull of C C JRn x JR is the smallest epigraph containing C. Its construction involves 
only rather trivial operations in the ordered set JR : 

(i) force (1.3.3) by stuffing in everything above C: for each (x, r) E C, add to C all 
(x, r') with r' > r; 

(ii) force (1.3.4) by closing the bottom of C: put (x, r) in C whenever (x, r') E C 
with r' -+ r. 

These operations (i), (ii) amount to constructing a function: 

X t-+ tc(x) := inf {r E JR : (x, r) E C} , (1.3.5) 

the lower-bound function of C; clearly enough, epi t c is the epigraphical hull of C. 
We have that tc(x) > -00 for all x if (and only if) C satisfies (1.3.2). 

The construction of an epigraphical hull is illustrated on Fig. 1.3.1, in which the 
point A and the curve r are not in C; nevertheless, there holds (epis is the strict 
epigraph) 

epis tc C C + {O} X JR+ C epitc C cl(C + {O} X JR+). (1.3.6) 
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A 

Fig.1.3.1. The lower-bound function 

Theorem 1.3.1 Let C be a nonempty subset o/F,.n x F,. satisfying (1.3.2), and let its 
lower-bound/unction fc be defined by (1.3.5). 

(i) IfC is convex, then fc E ConvF,.n; 

(ii) If C is closed convex, then fc E Conv F,.n. 

PROOF. We use the analytical definition (1.1.1). Take arbitrary £ > 0, a E ]0, 1 [ and 
(Xi, ri) E C, i = 1,2 such that 

ri ::::; fc(Xi) + £ for i = 1, 2 . 

When C is convex, (axJ + (1 - a)x2' arJ + (l - a)r2) E C, hence 

fc(axJ + (1 - a)x2) ::::; arJ + (l - a)r2::::; afc(xJ) + (1 - a)fc(x2) + £. 

The convexity of fc follows, since 8 > ° was arbitrary; (i) is proved. 
Now take a sequence {(Xk, Pk)} C epifc converging to (x, p); we have to prove 

fc(x) ::::; P (cf. Proposition 1.2.2). By definition of fc(Xk), we can select, for each 
positive integer k, a real number rk such that (Xk' rk) E C and 

fc(Xk) ::::; rk::::; fc(Xk) + k ::::; Pk + k· (1.3.7) 

We deduce first that irk} is bounded from above. Also, when fc is convex, Proposi
tion 1.2.1 implies the existence of an affine function minorizing fc: {rk! is bounded 
from below. 

Extracting a subsequence if necessary, we may assume rk --+ r. When C is closed, 
(x, r) E C, hence fc(x) ::::; r; but pass to the limit in (1.3.7) to see that r ::::; P; the 
proof is complete. 0 

2 Functional Operations Preserving Convexity 

It is natural to build up new convex functions from simpler ones, via operations 
preserving convexity, or even yielding it. This approach goes together with that of 
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§ 111.1.2: convex epigraphs can be made up from simpler epigraphs. Here again, prov
ing convexity of the new function will rely either on the analytical definition or on the 
geometric one, whichever is simpler. 

2.1 Operations Preserving Closedness 

( a) Positive Combinations of Functions 

Proposition 2.1.1 Let II, ... , 1m be in Conv IRn [resp. in Conv IRn], tl, ... , tm be 
positive numbers, and assume that there is a point where all the /j s are finite. Then 
the function 

m 

1:= Ltj/j 
j=1 

is in Conv IRn [resp. in Conv IRn ). 

PROOF. The convexity of I is readily proved from the relation of definition (1.1.1). 
As for its closedness, start from 

liminftjlj(Y) = tj liminf Ij(Y) ~ tj/j(x) 
y-+x y-+x 

(valid for tj > 0 and /j closed); then note that the lim inf of a sum is not smaller than 
the sum of lim inf's. 0 

As an example, let f E Conv Rn and C C ]Rn be closed convex, with dom f n C i= 0. 
Then the function f + Ie of Example 1. 3 (a) is in Conv IR.n • This trick can be used to simplify 
the notation for constrained minimization problems: 

inf {f(x) : x E C} and inf{(f + Ie)(x) : x E ]Rn} 

are clearly equivalent in the sense that they have the same infimal value and the same solution
set. 

(b) Supremum of Convex Functions 

Proposition 2.1.2 Let {fj }jE} be an arbitrary family of convex [resp. closed con
vex] functions. If there exists Xo such that sup} Ij(xo) < +00, then their pointwise 
supremum 

I := sup {/j : j E J} 

is in Conv]Rn [resp. in Conv IRn). 

PROOF. The key property is that a supremum of functions corresponds to an intersec
tion of epigraphs: epi I = njE} epi Ij' which conserves convexity and closedness. 
The only needed restriction is nonemptiness of this intersection. 0 

In a way, this result was already announced by Proposition 1.2.8. It has also been used 
again and again in the examples of § 1.3. 
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Example :U.3 (Conjugate Function) Let f : JRn ~ iR U {+oo} be a function not identi
cally +~, minorized by an affine function (i.e., for some (so, b) E JRn x JR, f ~ (so, .) - b 
on ]Rn). Then, 

f* :]Rn 3 s 1-+ sup {(s,x) - f(x) : x E dom!} 

is called the conjugate function of f, to be studied thoroughly in Chap. X. Observe that 
I*(so):::; band I*(s) > -00 for all s because domf ! 121. Thus, 1* E Conv]Rn; this is 
true without any further assumption on f, in particular its convexity or closedness are totally 
irrelevant here. 0 

Example 2.1.4 Let S be a nonempty set (not necessarily convex) and take 

]Rn 3 x 1-+ IPS(x) := ! [lIxlI2 - d~(x)] , 

where dS is the distance function to S, associated with the Euclidean norm 11·11. A surprising 
fact is that IPs is always convex. To see it, develop 

d~(x) = inf IIx - cll2 = IIxll2 - sup [2(c, x) -lIcU2] 
cES ceS 

to obtain 
IPS(x) = sup {(c, x) - !lIcll2 : c E S} ; 

IPS thus appears as the pointwise supremum of the affine functions (c, .) - 1/211c1l2, and is 
closed and convex. In view of the previous example, the reader will realize that IPs is the 
conjugate of the function 1/211 . 112 + Is. 0 

(c) Pre-Composition with an Affine Mapping 

Proposition 2.1.5 Let f E Conv]Rn [resp. Conv]Rn J and let A be an affine mapping 
from ]Rm to ]Rn such that 1m A n dom f =1= 0. Then the function 

f 0 A: ]Rm 3 X ~ (f 0 A)(x) = f(A(x» 

is in Conv]Rm [resp. Conv]Rm J. 

PROOF. Clearly (f 0 A)(x) > -00 for all x, and there exists by assumption y = 
A(x) E ]Rn such that f(y) < +00. To check convexity, it suffices to plug the relation 

A(ax + (1 - a)x') = aA(x) + (1 - a)A(x') 

into the analytical definition (1.1.1) of convexity. As for closedness, it comes readily 
from the continuity of A when f is itself closed. 0 

Example 2.1.6 With f (closed) convex on lRn , take Xo E dom f, d E ]Rn and define 

A: lR 3 t 1-+ A(t) = Xo + td; 

this A is affine, its linear part is t 1-+ Aot := td. The reSUlting f 0 A appears as (a parametriza
tion of) the restriction of f along the line Xo + Rd, which meets dom f (at xo). 

This operation is often used in applications: think for example of the line-search problem, 
considered in §II.3. Even from a theoretical point of view, the one-dimensional traces of f 
are important, in that f itself inherits many of their properties; Proposition 1.2.5 gives an 
instance ofthis phenomenon. 0 
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Remark 2.1.7 With relation to this operation on f E ConvlRn [resp. ConvlRn ], call V 
the subspace parallel to aff dom f. Then, fix Xo E dom f and define the convex function 
fo E Conv V [resp. Conv V] by 

fo(Y) := f(xo + Y) for all y E V. 

This new function is obtained from f by a simple translation, composed with a restriction 
(from ]Rn to V). As a result, dom fo is now full-dimensional (in V), the relative topology 
relevant for fo is the standard topology of V. This trick is often useful and explains why "flat" 
domains, instead of full-dimensional, create little difficulties. 0 

(d) Post-Composition with an Increasing Convex Function 

Proposition 2.1.8 Let f E Conv IRn [resp. Conv IRn] and let g E Conv IR [resp. 
Conv lR] be increasing. Assume that there is Xo E IRn such that f (xo) E dom g, and 
set g(+oo) := +00. Then the compositejunction g 0 f : x f-+ g(f(x)) is in ConvlRn 

[resp. in Conv IRnj. 

PROOF. It suffices to check the inequalities of definition: (1.1.1) for convexity, (1.2.3) 
for closedness. 0 

The exponential g(t) := exp t is convex increasing, its domain is the whole line, so 
exp f (x) is a [closed] convex function of x E IRn whenever f is [closed1 convex. A function 
f : IRn ~ ]0, +00] is called logarithmically convex when log f E Conv IRn (we set again 
log(+oo) = +00). Because f = explog f, a logarithmically convex function is convex. 

As another application, the square of an arbitrary nonnegative convex function (for ex
ample a norm) is convex: post-compose it by the function g(t) = (max{O, t})2. 

2.2 Dilations and Perspectives of a Function 

For a convex function t and u > 0, the function 

fu : IRn 3 x f-+ fu(x) = uf(x/u) 

is again convex. This comes from Propositions 2.1.1 and 2.1.5 but can also be seen 
geometrically: since fu(x)/u = f(x/u), the epigraphs and sublevel-sets are related 
by 

epi fu = u epi f, episfu = u epis t, Sr (fu) = U Sr /u (f), 

which express that fu is a "dilated version" of f. 
More interesting, however, is to study fu as a function of both variables x and u, 

i.e. to consider the set of all dilations of f. We therefore define the perspective of f 
as the function from IR x IRn to IR U {+oo} given by 

j(u, x) := {uf(x/U) if u > 0, 
+00 ifnot. 

Proposition 2.2.1 If t E Conv IRn, its perspective j is in Conv IRn+ I. 
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PROOF. Here also, it is better to look at j with "geometric glasses": 

epij = {(u,x,r)ElRtxlRnxlR: f(x/u)~r/u} 
= {u(l,x',r'): u > 0, (x',r') E epif} 

= Uu>o{u({l} x epif)} = lRt({l} x epif) 

and epi j is therefore a convex cone. 

~(I 

Fig.2.2.1. The perspective of a convex function 

o 

Figure 2.2.1 illustrates the construction of epi j, as given in the above proof. Embed 
epi f into IR x JRn x JR, where the first JR represents the extra variable u; shift it horizontally 
by one unit; finally, take the positive multiples ofthe result. Observe that, following the same 
technique, we obtain 

domj = 1R~({l} x domf) . (2.2.1) 

Another observation is that, by construction, epi j [resp. dom j) does not contain the origin 
oflR x lRn x IR [resp.lR x lRn). 

Convexity of a perspective-function is an important property, which we will use later in 
the following way. For fixed Xo E dom f, the function d ~ f (xo + d) - f (xo) is obviously 
convex, so its perspective 

r(u, d) := u(f(xo + d/u) - f(xo») (for u > 0) (2.2.2) 

is also convex with respect to the couple (u, d) E lRt x ]Rn. Up to the simple change of 
variable u ~ t = l/u, we recognize a difference quotient. 

The next natural question is the closedness of a perspective-function: admitting 
that f itself is closed, troubles can still be expected at u = 0, where we have brutally 
set j(O, .) = +00 (possibly not the best idea ... ) A relatively simple calculation of 
cl j is in fact given by Proposition 1.2.5: 
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Proposition 2.2.2 Let I E Conv]Rn and let x' E ri dom I. Then the closure cl j of 
its perspective is given as follows: 

{ 
ul(x/u) if u > 0, 

(cl j)(u, x) = lillla-l-oal(x' - x + x/a) if u = 0, 
+00 if u < O. 

PROOF. Suppose first u < O. For any x, it is clear that (u, x) is outside cl dom j and, 
in view of (1.2.8), cl j(u, x) = +00. 

Now let u ? O. Using (2.2.1), the assumption on x' and the results of §I11.2.1, we 
see that (1, x') E ri dom j, so Proposition 1.2.5 allows us to write 

(cl j)(u. x) = lim j (u, x) + a [(1 , x') - (u, x)]) 
a-l-o 

= lim [u + a(1 - u)] I(x+a(xl-x») 
a-l-o u+a(l-u) . 

If u = 1, this reads cl j(l, x) = cl I(x) = I(x) (because I is closed); ifu = 0, we 
just obtain our claimed relation. 0 

Remark 2.2.3 Observe thatthe behaviour of j(u, -) for u + 0 just depends on the behaviour 
of f at infinity. If x = 0, we have 

cl ](0,0) = lirnaf(x') = 0 [f(x') < +oo!]. 
a./-O 

For x =1= 0, suppose for example that domf is bounded; then f(x' - x + x/a) = +00 for a 
small enough and cl ](0. x) = +00. On the other hand, when domf is unbounded, cl ](0, .) 
may assume finite values if, at infinity, f does not increase too fast. 

For another illustration, we apply here Proposition 2.2.2 to the perspective-function r of 
(2.2.2). Assuming Xo E ri dom f, we can take d' = 0 - which is in the relative interior of the 
function d H- !(xo + d) - !(xo) - to obtain 

(cl r)(O, d) = lim !(xo - d + .d) - !(xo) 
r-++oo • 

Because (. - 1)/. ~ 1 for. ~ +00, the last limit can also be written (in lR U {+oo}) 

(clr)(O. d) = lim f(xo + td) - f(xo) 
1-++00 

We will return to all this in §3.2 below. o 

2.3 Infimal Convolution 

Starting from two functions II and /Z, fonn the set epi 11 + epi h c IRn x IR: 

C := {(XI + X2, rl + '2) : rj ? !.i(Xj) for j = 1. 2}. 
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Under a suitable minorization property, this C has a lower-bound function le as in 
(1.3.5): 

lc(x) = inf {rl + r2 : rj ~ f.j(Xj) for j = 1,2, Xl + X2 = x}. 

In the above minimization problem, the variables are rl, r2, Xl, X2, but the rj's can be 
eliminated; in fact, le can be defined as follows. 

Definition 2.3.1 Let II and f2 be two functions from IRn to IR U {+oo}. Their infimal 
convolution is the function from IRn to IR U {±oo} defined by 

(fl t h)(x) ;= inf {fl (Xl) + h(X2) ; Xl + X2 = X} 
= infyERn[fI(Y) + hex - y)]. 

(2.3.1) 

We will also call "infimal convolution" the operation expressed by (2.3.1). It is 
called exact at X = Xl + X2 when the infimum is attained at (Xl, X2), not necessarily 
~~. 0 

We refer to Remark 1.2.1.4 for an explanation and some comments on the termi
nology "infimal convolution". To exclude the undesired value -00 from the range of 
an inf-convolution, an additional assumption is obviously needed: in one dimension, 
the infimal convolution of the functions X and -x is identically -00. Our next result 
proposes a convenient such assumption. 

Proposition 2.3.2 Let the functions II and 12 be in Conv IRn. Suppose that they have 
a common affine minorant:forsome (s, b) E IRn x R 

Ij(x) ~ (s, x) - b lor j = 1,2 and all X E IRn . 

Then their infimal convolution is also in Conv IRn. 

PROOF. For arbitrary X E IRn and x], X2 such that Xl +X2 = x, we have by assumption 

II (Xl) + h(X2) ~ (s, X) - 2b > -00, 

and this inequality extends to the infimal value (fl t h)(x). 
On the other hand, it suffices to choose particular values Xj E dom f.j, j = I, 2, 

to obtain the point XI + X2 E dom(fl t h). Finally, the convexity of II t 12 results 
from the convexity of a lower-bound function, as seen in § 1.3(g). 0 

Remark 2.3.3 To prove that an inf-convolution of convex functions is convex, one 
can also show the following relation between strict epigraphs: 

epis (fl t h) = epis II + epis 12 . (2.3.2) 

In fact, (X, r) E epis (fl t h) if and only if there is e > 0 such that 

II (XI) + 12 (X2) = r + e for some Xl and X2 adding up to X . 
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This is equivalent to 

Ii (Xj) < rj for some (XI, rl) and (X2, r2) adding up to (x , r) 

(set rj := Ij (Xj) + e /2 for j = I, 2, to show the ":::}" direction). This last property 
holds if and only if (x, r) e epis II + epis f2. 

This proof explains why the infimal convolution is sometimes called the (strict) 
epigraphic addition. 0 

Similarly to (2.3.2), we have by construction 

dom(fl t h) = dom II + dom h . 

Let us mention some immediate properties of the infimal convolution: 

11th = h t II (commutativity) 

(fl t h) t h = II t (h t h) (associativity) 

It I{o} = I (existence ofaneutral element in ConvlRn) 

II ~ h => II t g ~ h t g (;t; preserves the order). 

(2.3.3) 

(2.3.4) 

(2.3.5) 

With relation to (2.3.3), (2.3.4), more than two functions can of course be inf
convolved: 

(fl t··· t Im)(x) = inf {L:j=1 !.i(Xj) : L:1=1 Xj = x}. 

Remark 2.3.4 If CI and C2 are nonempty convex sets in Rn, then 

ICI t Icz = Icl+Cz • 

This is due to the additional nature of the inf-convolution, and can also be checked 
directly; but it leads us to an important observation: since the sum of two closed sets 
may not be closed, an infimal convolution need not be closed, even if it is constructed 
from two closed functions and if it is exact everywhere. 0 

Example 2.3.5 Let C be a nonempty convex subset ofRn and M •• an arbitrary norm. 
Then 

IctW'W=dc, 
which confirms the convexity of the distance function dc. It also shows that inf
convolving two non-closed functions (C need not be closed) may result in a closed 
function. 0 

Example 2.3.6 Let f be an arbitrary convex function minorized by some affine function 
with slope s. Taking an affine function g = (s, .) - b, we obtain 

ftg=g-c 

where c is a constant: c = SUPy[{s, y) - f(y)]. Note: we have already encountered in 
Example 2.1.3 c = f*(s), the value at s of the conjugate of f. 
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Take in particular a constant function for g: assuming I bounded below, 

Then 

-g = 1:= inf I(y)· 
y 

It(-j)=o. 

Do not believe, however, that the infimal convolution provides Conv IRn with the structure of 
a commutative group: in view of (2.3.5), the O-function is not the neutral element! 0 

Example 2.3.7 We have seen (Proposition 1.2.1) that a convex function is indeed minorized 
by some affine function. The dilated versions lu = ulUu) of a given convex function 
I are minorized by some affine function with a slope independent of u > 0, and can be 
inf-convolved by each other. We obtain 

lu t lUi = lu+u l ; 

the quickest way to prove this formula is probably to use (2.3.2), knowing that epis lu 
u epis I. In particular, inf-convolving m times a function with itself gives a sort of mean
value formula: 

fn(j t··· t I)(x) = I (fnx) . 
Observe how a perspective-function gives a meaning to a non-integer number of self-

inf-convolutions. 0 

Example 2.3.8 Consider two quadratic forms 

f)(x) = ~(Ajx, x) for j = 1,2, 

with AI and A2 symmetric positive definite. Expressing their infimal convolution as 

~ inf [(Aly, y) + (A 2(x - y), x - y}], 
y 

the minimum can be explicitly worked out, to give (/1 ~ h)(x) = 1/2(A I2X, x}, where 

A (A-I A-I)-I 
12:= I + 2 . 

This formula has an interesting physical interpretation: consider an electrical circuit made 
up oftwo generalized resistors A I and A2 connected in parallel. A given current-vector i E IRn 

is distributed among the two branches (i = i I + i2), in such a way that the dissipated power 
(A I ii, it} + (A2i2, i2) is minimal (this is Maxwell's variational principle); see Fig. 2.3.1. In 
other words, if i = II + 12 is the real current distribution, we must have 

(Alii, It} + (A212, 12) = . i~f .«(Alil, i l ) + (A2i2, i2)' 
1,+/2=1 

The unique distribution (/1,/2) is thus characterized by the formulae 

Alii = A2/2 = Al2i, (2.3.6) 

from which it follows that 



166 N. Convex Functions of Several Variables 

i1 

p a 

i2 

Fig.2.3.1. Equivalent resistors 

{AliI, ld + {A212, 12} = {AI2i. i}. 

Thus, A 12 plays the role of a generalized resistor equivalent to A I and A2 connected in 
parallel; when n = 1, we get the more familiar relation 1/, = 1/'1 + 1/'2 between ordinary 
resistances 'I and '2. Note an interpretation of the optimality (or equilibrium) condition 
(2.3.6). The voltage between P and Q [resp. P' and Q'] on Fig. 2.3.1, namely AliI = A212 
[resp. Al2i], is independent of the path chosen: either through AJ, or through A2, or by 
construction through A12. 

The above example of two convex quadratic functions can be extended to general 
functions, and it gives an economic interpretation ofthe infima! convolution: let II (x) 
[resp. hex)] be the cost of producing x by some production unit UI [resp. U2]. Ifwe 
want to distribute optimally the production of a given x between UI and U2, we have 
to solve the minimization problem (2.3.1). 0 

Remark 2.3.9 In Example III.1.2.6, we have seen two kinds of differences between sets, 
which may be applied to epigraphs. One difference, CI - C2 = CI + (-C2), leads nowhere: 
the opposite of an epigraph is not an epigraph. On the other hand, it is not too difficult to see 
that the star-difference of two epigraphs is again an epigraph; it therefore corresponds to an 
operation with convex functions, namely the deconvolution, or epigraphic star-difference: 

Ulvh)(x):=sup{fl(x+y)-h(y): yEdomh}, 

Being a supremum of convex functions, the result is a convex function provided that 

[epiUI v h) =] epi II :!:epi h:;6 0. 

In the language of function-values, this means that, for some (xo, '0) E lin X lR: 

II (x) ~ hex - Xo) +'0 for all x E lin . 

In words: II must not be too larger than h. 
Indeed, the above operation can be seen to a great extent as the inverse operation of the 

inf-convolution. It goes without saying that the deconvolution is not commutative. A detail is 
worth mentioning, though: in contrast to the inf-convolution, II v h is now a supremum; by 
virtue of Proposition 2.1.2, it is therefore closed when II is closed. 0 

2.4 Image of a Function Under a Linear Mapping 

Consider a constrained optimization problem, formally written as 
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inf {cp(u) : c(u) ~ x}, (2.4.1) 
UEU 

where the optimization variable is u, the right-hand side x being considered as a 
parameter taken in some ordered set X. The optimal value in such a problem is then a 
function of x, characterized by the triple (U, cp, c), and taking its values in IRU ±{oo}. 
In convex analysis and optimization, this is an important function, usually called the 
value function, or marginal function, or perturbation function, or primal function, 
etc. 

Several variants of (2.4.1) are possible: we may encounter equality constraints, 
some constraints may be included in the objective via an indicator function, etc. A 
convenient unified formulation is the following: 

Definition 2.4.1 Let A : IRm ~ IRn be linear and let g : IRm ~ IR U {+oo}. The 
image of g under A is the function Ag : IRn ~ IR U ±oo defined by 

(Ag)(x) := inf {g(y) : Ay = x} (2.4.2) 

(here as always, inf 0 = +00). o 

The terminology comes from the case of an indicator function: when g = Ic, with C 
nonempty in IRm, (2.4.2) writes 

(A )(x) = { 0 if x = ~y for some y E C, 
g +00 otherwise. 

In other words, Ag = IA(C) is the indicator function ofthe image of C under A (and we know 
from Proposition IlL 1.2.4 that this image is convex when C is convex). 

Even if U and X in (2.4.1) are Euclidean spaces, we seem to limit the generality when 
passing to (2.4.2), since only linear constraints are considered. Actually, (2.4.1) can be put 
in the form (2.4.2): with X = ]Rn and y = (u, v) E U X X = IRm, define Ay := v and 
g(y) := rp(u) + Ic(y), where 

C := {y = (u, v) E IRm : c(u) ~ v}. (2.4.3) 

Note that conversely, (2.4.2) can be put in the form (2.4.1) via an analogous trick turning its 
equality constraints into inequalities. 

Theorem 2.4.2 Let g of Definition 2.4.1 be in Conv IRm. Assume also that, for all 
x E IRn, g is bounded from below on the inverse image 

-1 
A (x) = {y E IRm : Ay = x} . 

Then Ag E Conv]Rn. 

PROOF. By assumption, Ag is nowhere -00; also, (Ag)(x) < +00 whenever x = Ay, 
with y E dom g. Now consider the extended operator 

A': ]Rm x ]R 3 (y, r) 1-+ A' (y, r) := (Ay, r) E ]Rm x IR. 
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The set A' (epi g) =: C is convex in JRn x JR, let us compute its lower-bound function 
(1.3.5): for given x E JRn, 

infr{r : (x, r) E C} = infy,r{r: Ay = x and g(y) ::;:; r} 
= infy{g(y) : Ay = xl = (Ag) (x) , 

and this proves the convexity of Ag = lc. 
-I 

o 

Usually, A(x) contains several points - it is an affine manifold ofJRn - and Ag(x) 
selects one giving the least value of g (admitting that (2.4.2) has a solution). If A is invertible, 
Ag = goA -I; more generally, the above proof discloses the following interpretation: epi(Ag) 

-I 

is the epigraphical hull ofthe inverse image (A')(epi g) (a convex set in JRn x R). 

Corollary 2.4.3 Let (2.4.1) have the following form: U = JRP; q; E Conv JRP; X = 
JRn is equipped with the canonical basis; the mapping C has its components Cj E 

Conv JRP for j = 1, ... , n. Suppose also that the optimal value is > -00 for all 
x E JRn, and that 

domq; n domcl n··· n domcn #- 0. (2.4.4) 

Then the value function 

VVl,c(X) := inf {q;(u) : Cj(u)::;:; Xj for j = 1, ... , n} 

is in ConvJRn. 

PROOF. Note first that we have assumed vVl,C(x) > -00 for all x. Take Uo in the 
set (2.4.4) and set M := maxj Cj(uo); then take Xo := (M, ... , M) E IRn , so that 
vg>,c(xo) ::;:; q;(uo) < +00. Knowing that vg>,c is an image-function, we just have to 
prove the convexity of the set (2.4.3); but this in turn comes immediately from the 
convexity of each Cj. 0 

Taking the image of a convex function under a linear mapping can be used as 
a mould to describe a number of other operations - (2.4.1) is indeed one of them. 
An example is the infimal convolution of §2.3: with fl and h in Conv JRn, define 
g E Conv(JRn x JRn) by 

g(XI, X2) := fl(xl) + h(X2) 

and A : JRm x ]Rm ~ JRn by 

A(XI' X2) := XI + X2. 

Then we have Ag = fl t hand (2.3.1) is put in the form (2.4.2). Incidentally, this 
shows that an image of a closed function need not be closed. 

Another example has lots of practical applications: the marginal function of g E 
Conv(]Rn x ]Rm) is 

]Rn 3 X 1--+ y(x) := inf {g(x, y) : y E JRm}. 



2 Functional Operations Preserving Convexity 169 

This is the image of g under the linear mapping projecting each (x, y) E IRn x IRm 
onto x E IRn. It is therefore convex if g is bounded below on the set {x} x IRm for 
all x E IRn. Geometrically, a marginal function is given by Fig. 2.4.1, which explains 
why convexity is preserved: the strict epigraph of y is the projection onto IRn x IR of 
the strict epigraph of g (C IRn x IRm x IR). Therefore, epis y is also the image of a 
convex set under a linear mapping; see again Example III. 1.2.5. 

Bpi"! 

-
~~- -~ ...........-. 

- .. Rm 

Fig.2.4.1. The shadow of a convex epigraph 

As seen in §2.1(b), supremization preserves convexity. Here, if g(., y) were concave for 

each y, y would therefore be concave: the convexity of y is a little bit surprising. Needless 
to say, it is the convexity of g with respect to the couple of variables x and y that is crucial. 

2.5 Convex Hull and Closed Convex Hull of a Function 

Given a (nonconvex) function g, a natural idea coming from§III.1.3 is to take the 
convex hull co epi g of its epigraph. This gives a convex set, which is not an epigraph, 
but which can be made so by "closing its bottom" via its lower-bound function (1.3.5). 
As seen in § 111.1.3, there are several ways of constructing a convex hull; the next result 
exploits them, and uses the unit simplex of IRk: 

.dk:= {(at, ... ,ak) EIRk : L:j=taj=l, aj~Oforj=I, ... ,k}. (2.5.1) 

Proposition 2.5.1 Let g : IRn -+ IR U {+oo}, not identically +00, be minorized by 
an affine jUnction: for some (s, b) E IRn x R 

g(x) ~ (s,x) -b for all x E IRn. (2.5.2) 

Then, the following three functions ft, hand h are convex and coincide on IRn: 

ft(X) :=inf{r: (x,r) Ecoepig}, 

f2(X):=sup{h(x): hEConvlRn, h:::;;g}. 

h(x):=inf{L:j=tajg(Xj): k=1,2, ... 

a E .dk, Xj E domg, I:j=t ajXj = x} . 
(2.5.3) 
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PROOF. We denote by r the family of convex functions minorizing g. By assumption, 
r ¥ 0; then the convexity of II results from § 1.3(g). 

[h ~ III Consider the epigraph of any hEr: its lower-bound function lepih is h 
itself; besides, it contains epi g, and co( epi g) as well (see Proposition III. 1.3 .4). In a 
word, there holds 

h = lepih ~ lcoepig = II 
and we conclude h ~ II since h was arbitrary in r. 
[13 ~ h] We have to prove 13 E r, and the result will follow by definition of h; 
clearly 13 ~ g (take a E ill!)' so it suffices to establish 13 E ConvJRn. First, with 
(s, b) of (2.5.2) and all x, {Xj} and {aj} as described by (2.5.3), 

k k 

Lajg(xj) ~ Laj«s,xj) -b) = (s,x) -b; 
j=1 j=1 

hence h is minorized by the affine function (s, .) - b. Now, take two points (x, r) 
and (x/, r') in the strict epigraph of A By definition of h, there are k, {aj}, {Xj} as 
described in (2.5.3), and likewise k/, (ail, {xi}, such that 

k 

L aj g(Xj) < r and likewise 
j=1 

k' 

Laig(xi) < r'. 
j=1 

For arbitrary t E ]0, 1 [, we obtain by convex combination 

k k' 

L tajg(xj) + L(l - t)ajg(xj) < tr + (l - t)r/ . 
j=1 j=1 

Observe that 
k k' 

LtajXj + L(l - t)aixj = tx + (1 - t)x/, 
j=1 j=1 

i.e. we have in the left-hand side a convex decomposition of tx + (1 - t)x' in k + k' 
elements; therefore, by definition of 13: 

k k' 

h(tx + (1 - t)x/) ~ Ltajg(xj) + L(l - t)ajg(xj) 
j=1 j=1 

and we have proved that epis 13 is a convex set: 13 is convex. 

[fl ~ 131 Let x E ]Rn and take an arbitrary convex decomposition x = I:j=1 ajxj, 
with aj and Xj as described in (2.5.3). Since (Xj. g(Xj» E epi g for j = 1 •...• k, 

(x. I:j=1 ajg(xj») E co epi g 

and this implies 
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k 

fl(X) ~ Lajg(xj) 
j=l 

by definition of fl. Because the decomposition of x was arbitrary within (2.5.3), this 
implies fl(X) ~ h(x). 0 

Note in (2.5.3) the role of the convention inf0 = +00, in case x has no decomposition 
- which means that x fj co dom g. The restrictions x j E dom g could be equally relaxed (an 
Xj fj dom g certainly does not help making the infimum); notationally, ex should then be taken 
in ri Llk, so as to avoid the annoying multiplication 0 x (+00). Beware that epi(co g) is not 

exactly the convex hull co( epi g): we need to close the bottom of this latter set, as in § 1.3(g)(ii) 
- an operation which affects only the relative boundary of co epi g, though. Note also that 
Caratheodory's Theorem yields an upper bound on k for (2.5.3), namely k ( (n + 1) + 1 = 
n + 2. We just mention a property which is of little use for the time being: the upper bound 
can be reduced to k ( n + 1 (see Proposition IIIA.2.3). 

Instead of co epi g, we can take the closed convex hull co epi g = cl co epi g (see 
§III.1.4). We obtain a closed set, with in particular a closed bottom: it is already 
an epigraph, the epigraph of a closed convex function. The corresponding opera
tion that yielded II, fz, h is therefore now simpler. Furthermore, we know from 
Proposition 1.2.8 that all closed convex functions are redundant to define the function 
corresponding to fz: affine functions are enough. We leave it as an exercise to prove 
the following result: 

Proposition 2.5.2 Let g satisfy the hypotheses of Proposition 2.5.1. Then the three 
functions below 

!l(X) := inf {r : (x, r) E co epi g} , 
h(x):=sup{h(x): hEConvlRn, h~g}, 

h(x) := sup {{s, x} - b : (s, y) - b ~ g(y) for all Y E JRn} 

are closed, convex, and coincide on IRn with the closure of the function constructed 
in Proposition 2.5.1. 0 

In view ofthe relationship between the operations studied in this Section 2.5 and 
the convexification of epi g, the following notation is justified, even if it is not quite 
accurate. 

Definition 2.5.3 (Convex Hulls of a Function) Let g : IRn ~ IRn U {+oo}, not 
identically +00, be minorized by an affine function. The common function fl = 
fz = h of Proposition 2.5.1 is called the convex hull of g, denoted co g. The closed 
convex hull of g is any of the functions described by Proposition 2.5.2; it is denoted 
co g or cl co g. 0 

If {gj }jE] is an arbitrary family of functions, all rninorized by the same affine 
function, the epigraph of the [closed] convex hull of the function infj E] g j is obtained 
from UjEJ epi gj. An important case is when the gj's are convex; then, exploiting 
Example 1II.1.3.5, the formula giving h simplifies: several Xj'S corresponding to the 
same gi can be compressed to a single convex combination. 
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Proposition 2.5.4 Let gl •...• gm be in Conv]Rn, all minorized by the same affine 
jUnction. Then the convex hull of their infimum is defined by 

]Rn :3 x H- [co(minj gj)](x) = 

inf{'Lj=lajgj(Xj): aEL1m.XjEdomgj. 'Lj=lajXj=X}. 

PROOF. Apply Example 111.1.3.5 to the convex sets Cj = epigj' 

(2.5.4) 

o 

The above statement was made in the simple situation of finitely many gj 's, but the 
representation (2.5.4) can be extended to an arbitrary family of convex functions gj: it 
suffices to consider in the infunand all the representations of x as convex combinations 
of finitely many elements Xj E domgj' 

Along these lines, note that an arbitrary function g : Rn -7 R U {+oo} can be seen as 
an infimum of convex functions: considering dom g as an index-set, 

g(X) = inf {g(Xj) + I{Xj} (x) : Xj E domg} • 

where each g(Xj) denotes a (finite) constant function. 

Example 2.S.S Let (x I. bI) • ...• (xm. bm) be given in Rn x R and define for j = 1 •...• m 

( {bj ifx = Xj • 
gj x) = +00 if not . 

Then f := co (min gj) = co (min gj) is the polyhedral function with the epigraph illustrated 
on Fig. 2.5.1, and analytically given by 

f(x) = { min {E;!:I ajbj : a E Lim. E;!:I ajXj = x} if x E CO{XI ..... Xm }. 

+00 ifnot. 

Calling bERm the vector whose components are the bi'S and A the matrix whose 
columns are the Xi 's, the above minimization problem in a can be written - at least when 
X ECO{XI •...• Xm}: 

f(x) = min {b T a : a E Lim. Au = x} . o 

Xl X2 X3 X4 

Fig.2.S.1. A convex hull of needles 

To conclude this Section 2, Table 2.5.1 summarizes the main operations on func
tions and epigraphs that we have encountered. 
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Table 2.5.1. Main operations yielding convexity 

Operations Operations on sets: 
Closedness 

on functions: 1 = epi 1 or epis 1 = 
LJ!=1 tjij nothing interesting preserved 

SUPjEJ ij njEJepiij preserved 
-I 

goA (A affine) A'(epig) preserved 

ug(xju) IRt({l} x epig) must be forced 

lIth epis II + epis 12 destroyed 

IIvh epis II ! epis h preserved from II 
Ag (A linear) epigr. hull of A'(epig) destroyed 

infyg( .• y) ProjlRn x IR epis g destroyed 

cog epigr. hull of co epi g can be forced 

3 Local and Global Behaviour of a Convex Function 

3.1 Continuity Properties 

Convex functions turn out to enjoy remarkable continuity properties: as already seen 
in §1.3, they are locally Lipschitzian on the relative interior of their domain. On the 
relative boundary of that domain, however, all kinds of continuity may disappear. 

We start with a technical lemma. 

Lemma 3.1.1 Let f E Conv jRn and suppose there are Xo, 8, m and M such that 

m ::::;; f(x) ::::;; M for all x E B(xo. 28). 

Then f is Lipschitzian on B(xo. 8); more precisely: for all y and y' in B(xo. 0), 

M-m 
If(y) - f(y')I::::;; -8 -lly - y'll. (3.1.1) 

PROOF. Look at Fig. 3.1.1: with two different y and y' in B(xo, 8), take 

" . , "y' - y B( 2") . Y .= Y + 0 y' E Xo, 0 , 

II -YII 
by construction, y' lies on the segment [y, y"], namely 

, II y' - YII" 8 
y = 8 + 1Iy' - YII Y + 8 + 1Iy' - YII Y . 

Applying the convexity of f and using the postulated bounds, we obtain 

fey') - fey) ::::;; 0 ~I~ -: YII III [f(y") - fey)] ~ ~1Iy' - ylI(M - m). 

Then, it suffices to exchange y and y' to prove (3.1.1). o 
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Fig. 3.1.1. Moving in a neighborhood of Xo 

Theorem 3.1.2 With f E Conv IRn, let S be a convex compact subset of ri dom f. 
Then there exists L = L(S) ~ 0 such that 

If(x) - f(x') I ~ Lllx - x'lI for all x and x' in s. (3.1.2) 

PROOF. [Preliminaries] First of all, our statement ignores x-values outside the affine 
hull of the convex set dom f. Instead of Rn , it can be formulated in IRd, where d is 
the dimension of dom f; alternatively, we may assume ri dom f = int dom f, which 
will simplify the writing. 

Make this assumption and let Xo E S. We will prove that there are 8 = 8(xo) > 0 
and L = L(xo, 8) such that the ball B(xo, 8) is included in int dom f and 

I fey) - fey') I ~ Lily - y'll for all yand y' in B(xo, 8) . (3.1.3) 

If this holds for all Xo E S, the corresponding balls B(xo, 8) will provide a covering 
of the compact set S, from which we will extract a finite covering (x\, 8\, L\), ... , 
(Xk> 8k> Lk). With these balls, we will divide an arbitrary segment [x, x') ofthe con
vex set S into finitely many subsegments, of endpoints)\) := x, ... , Yi, ... , Ye := x'. 

Ordering properly the Yi'S, we will have IIx - x'II = L:f=\ IIYi - Yi-dl; further
more, f will be Lipschitzian on each [Yi _\' Yi] with the common constant L := 
max{L\, ... , Lk}. The required Lipschitz property (3.1.2) will follow. 

[Main Step] To establish (3.1.3), we use Lemma 3.1.1, which requires boundedness of 
f in the neighborhood of Xo. For this, we construct as in the proof of Theorem I1I.2.1.3 
(see Fig. III.2.U) a simplex 

..1 = co{vo, ... , vn} C domf 

having Xo in its interior: we can take 8 > 0 such that B(xo, 28) C ..1. Then any 
Y E B(xo, 28) can be written - we use the notation (2.5.1): 

n 

Y = 2:>~iVi with a E ..111 -H , 
i=O 

so that the convexity of f gives 

II 

f(y) ~ L ai f(Vi)· 
i=O 
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On the other hand, Proposition 1.2.1 tells us that I is bounded from below, say 
by m, on this very same B(xo, 28). Our claim is proved: we have singled out 8 > 0 
such that, with M := max{f(vo), ... , I(vn)}, 

m ~ I(y) ~ M for all y E B(xo, 28). o 

Note that the key-argument in the main step above is to find a (relative) neigh
borhood of x E ri dom I, which is convex and which has a finite number of extreme 
points, all lying in dom I. The simplex .,1 is such a neighborhood, with a minimal 
number of extreme points 

Remark 3.1.3 It follows in particular that I is continuous relatively to the relative 
interior of its domain, i.e.: for Xo E ri dom I and x E ri dom I converging to xo, we 
have that I(x) ~ I(xo). 

An equivalent formulation of Theorem 3.1.2 is: I is locally Lipschitzian on the 
relative interior of its domain, i.e. for all Xo E ri dom I, there are L(xo) and 8(xo) 
such that 

I/(x) - l(x')1 ~ L(xo)lIx - x'lI for all x and x' in the set 
S(xo):= B(xo, 8(xo» naffdoml c ridom/. 

In fact, the bulk of our proof is just concerned with this last statement. Of course, 
when Xo gets closer to the relative boundary of dom I, the size 8 (xo) of the allowed 
neighborhood shrinks to 0; but also, the local Lipschitz constant L(xo) may grow 
unboundedly (gr I may become steeper and steeper). 0 

Because of the phenomenon mentioned in the above remark, we cannot put 
ridom I instead of S in Theorem 3.1.2: a convex function need not be Lipschitzian 
on the relative interior of its domain. However, it is possible to modifY I outside the 
given compact S, and to obtain a convex function which is Lipschitzian on the whole 
space: 

Proposition 3.1.4 (Lipschitzian Extension) Let C be a nonempty convex set, and 
let I E Conv IRn be Lipschitzian with constant L on C. Then there exists a convex 
Junction II satisfYing 

II (x) = I(x) Jorall x E C, 

II is Lipschitzian with constant L on the whole space. 

(3.1.4) 

(3.1.5) 

Moreover, there is a largest Junction satisfYing (3.1.4), (3.1.5), namely the irifimal 
convolution 

IRn 3 x ~ (f + Ie)[L] (x) := [(f + Ie) t (LII· 1I)](x) 
= inf {fey) + LlJx - yll : y E C} . 

(3.1.6) 

PROOF. Call 1 the function (3.1.6). First we show that lex) > -00 for all x. In fact, 
let Xo E ri C and apply Proposition 1.2.1 to the function I + Ie, whose domain is 
clearly c: there is s in the subspace V parallel to aff C such that 
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I(x) ~ I(xo) + (s, x - xo) for all x E lRn . 

Taking 0 > 0 so small that x = Xo + os is in C, we obtain with the Lipschitz property 
of f on C: 

Lolisil ~ f(x) - f(xo) ~ 811s11 2 , 

whence IIsll ~ L. Then 

(s,x) ~ IIsllllxll ~ Lllxll for all x E lRn. 

Thus, the two functions making up j are minorized by a common affine function 
(with slope s): in view of Proposition 2.3 .2, j E Conv lRn . 

Next, given x and x' in lRn and e > 0, let y' E C be such that 

f(y') + Lllx' - y'li ~ /(x') + e; 

by definition, we also have 

j(x) ~ I(y') + Lllx - y'li ~ f(y') + Lllx - x'il + Lllx' - y'lI, 

so we obtain 
j(x) ~ j(x') + Lllx - x'lI + e . 

This relation holds for arbitrary x, x' and e, so it does imply the Lipschitz property 
of jon lRn. 

Now let x E C. Again by definition.! (x) ~ f (x); and also, the Lipschitz property 
of f on C implies 

f(x) ~ f(y) + Lily - xII for all Y E C, 

so f(x) ~ j(x). In a word, j coincides with f on C. 
Finally, let II satisfy (3.1.4), (3.1.5). We obtain in particular 

fl (x) - f(y) ~ Lllx - yll for all x E lRn and y E C, 

so fl minorizes j on lRn and the proof is complete. o 

Constructing from the given f and C the Lipschitzian function of (3.1.6) thus appears 
as a sort of regularization. Such a mechanism is often useful and will be encountered again. 

Let us sum up the continuity properties of a convex function. 

- First of all it is aff dom f, and not lRn, that is the relevant embedding (affine) 
space: there is no point in studying the behaviour of I when moving out of this 
space. Continuity, and even Lipschitz continuity, holds when x remains "well inside" 
ridomf· 

- When x approaches rbd dom f, continuity may break down: f may go to infinity, 
or jump discontinuously to some finite value, etc. Still, irregular behaviour of f is 
limited by Proposition 1.2.5. 

- Closing epi f if necessary, lower semi-continuity of f is a tolerable assumption. 
Doing this, we only miss functions having little interest in our framework of mini
mization. 
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- It remains to ask whether I can be assumed upper semi-continuous (on rbd dom I, 
and relative to dom f): we have seen in §1.3.1 that this property automatically holds 
for univariate functions. The answer is no in general, though: a counter-example is 

Jl~23X=(~''1)H- l(x)=sup{~a+'1.8: !a2~.8}. 
a,p 

We see that 1(0) = 0, and we know from Proposition 2.1.2 that IE ConvlRn. In 
fact, the optimal (a,.8) (if any) satisfies 1/2a2 = {J, so that 

1
0 if~='1=O, 

~2 
1(~''1)=s~pG1Ja2+~a)= -2'1 if'1<O, 

+00 otherwise. 

(3.1. 7) 

Thus, when x tends to 0 following the path '1 = -1/2~2, then I(x) == 1 > 0 = 1(0). 
To conclude this subsection, we give a rather powerful convergence result: convex 

functions converging pointwise to some (convex) function I do converge uniformly on 
each compact set contained in the relative interior of dom I. For the sake of simplicity, 
we limit ourselves here to the case of finite-valued functions. For the general case, just 
specify that the compact set S in the next statement must be in ri dom I, and adapt 
the proof accordingly. 

Theorem 3.1.5 Let the convex functions Ik : lRn --:lo lR converge pointwise for 
k --:lo +00 to I : lRn --:lo R Then I is convex and, for each compact set S, the 
convergence of Ik to I is uniform on S. 

PROOF. Convexity of I is trivial: pass to the limit in the definition (1.1.1) itself. For 
uniformity, we want to use Lemma 3.1.1, so we need to bound Ik on S independently 
of k; thus, let r > 0 be such that S C B(O, r). 

[Step 1] First the function g := sUPk fk is convex, and g(x) < +00 for all x because 
the convergent sequence {fk(x)} is certainly bounded. Hence, g is continuous and 
therefore bounded, say by M, on the compact set B(O, 2r): 

fk(x) ~ g(x) ~ M for all k and all x E B(O, 2r) . 

Second, the convergent sequence {fk (O)} is bounded from below: 

tL ~ fk(O) for all k . 

Then, for x E B(O, 2r) and all k, write the convexity relation on [-x, x] c B(O,2r): 

2/-L ~ 2fk(O) ~ fk(x) + fk(-x) ~ fk(x) + M, 

i.e. the fk's are bounded from below, independently of k. Thus, we are within the 
conditions of Lemma 3.1.1: there is some L (independent of k) such that 

Ifk(y) - Ik(y')/ ~ L/Iy - y'lI for all k and all y, y' in B(O, r) . (3.1.8) 
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Naturally, the same Lipschitz property is transmitted to the limiting function I. 
[Step 2) Now fix e > O. Cover S by the balls B (x, e) for x describing S, and extract a 
finite covering S C B(x\, e) U ... U B(xm, e). With x arbitrary in S, take an Xi such 
that x E B(xj, e). There is k;,s such that, for all k ;;::: kj,s, 

Ifk(x) - l(x)1 :( Ifk(x) - fk(xj)1 + Ifk(xj) - l(xj)1 + I/(xj) - l(x)1 :( (2L + l)e 

where we have also used (3.1.8), knowing that X and X; are in S C B(O, r). The above 
inequality is then valid uniformly in x, providing that 

k;;::: max{k\,s, ... , km,s} =: ks . o 

3.2 Behaviour at Infinity 

Having studied the behaviour of I(x) when x approaches rbddom/, it remains to 
consider the case ofunboundedx. An important issue is the behaviour of I(xo + td) 
when t -+ +00 (xo and d being fixed). It has already been addressed in the simple 
situation of §1.2.3, where only two directions d = ±l had to be considered. Here we 
have infinitely many directions, but epi I is after all a special unbounded convex set 
of JRn+ \; so we can use the results of §III.2.2. 

Thus we assume I E Conv JRn, which allows us to consider the asymptotic cone 
(epi f)oo of the closed convex set epi I. It is a closed convex cone ofJRn x JR, which 
clearly contains the half-line {OJ x JR+. According to its Definition 111.2.2.2, 

(epi f)oo = {Cd, p) E JRn x R. : (xo, ro) + ted, p) E epi I for all t > O}, (3.2.1) 

where (xo, ro) is an arbitrary element of epi I. This can be written 

(epi f)oo = {Cd, p) : epi 1+ ted, p) c epi I for all t > O} 

and, since we already know that (epi f)oo is a convex cone: 

(epif)oo = {Cd, p) : epil + (d, p) c epifl. 

Remark 3.2.1 Such an object was already encountered in Example 111.1.2.6: we are 
dealing with the star-difference between epi I and itself: 

(epi f)oo = epi I .:!: epi I. 

This in turn was seen in Remark2.3.9,and it shows that (epi f)oo is itself an epigraph: 
the epigraph of the deconvolution of I by itself: 

(epi f)oo = epi(j v f) . 
In other words, the behaviour of I at infinity can be described with the help of the 
function 

(j v f)(d) = sup {f(x + d) - I(x) : x E dom fl. (3.2.2) 
o 

Using directly the definition (3.2.1) of (epif)oo, there is an alternate way of 
expressing the function (3.2.2): 
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Proposition 3.2.2 For f E Conv]Rn, the asymptotic cone of epi f is the epigraph 
of the function f60 E Conv]Rn defined by 

d .. ' (d) '- f(xo + td) - f(xo) _ l' f(xo + td) - f(xo) (323) 
~ Joo .- sup - 1m , .. 

t>o t t~+oo t 

where Xo is arbitrary in dom f. 

PROOF. Since (xo, f(xo)) is anelementofepi f, (3.2.l) tells us that (d, p) E (epi f)oo 
if and only if 

f(xo + td) ~ f(xo) + tp for all t > 0, 

which means 
f(xo + td) - f(xo) 

sup ~ p. 
t>O t 

(3.2.4) 

In other words, (epi f)oo is the epigraph of the function whose value at d is the left
hand side of (3 .2.4); and this is true no matter how xo has been chosen in dom f. The 
rest follows from the fact that the difference quotient in (3.2.4) is closed convex in d, 
and increasing in t (the function t ~ f(xo + td) is convex and enjoys the property 
of increasing slopes, remember Proposition 1.1.1.4). 0 

It goes without saying that the expressions appearing in (3.2.3) are independent 
of xo: f60 is really a function of d only. By construction, this function is.positively 
homogeneous: 

f~(ad) = af~(d) for all a > O. 

Our notation suggests that it is something like a "slope at infinity" in the direction d. 

Definition 3.2.3 The function fbo of Proposition 3.2.2 is called the asymptotic func
tion, or recession function, or auto-deconvolution, of f. 0 

Consider for example the indicator Ic of a closed convex set C. By definition of the 
asymptotic cone, we see that Ic (xo + t d) = 0 for all t > 0 if and only if dEC 00; we obtain 

(IC)~ = I(Coo) • 

The next example is more interesting and extends Remark 2.2.3: 

Example 3.2.4 Let f E Conv]Rn. Take Xo E dom f and consider the convex function 
d 1-+ f(xo + d) - f(xo), whose domain contains 0, and whose perspective-function is r of 
(2.2.2). The closure of r can be computed with the help of Proposition 2.2.2: with Xo + d' 
arbitrary in ri dom f, 

(cl r)(O, d) = lima[f(xo + d' - d + d/a) - f(xo)]. 
a.j.O 

Note that the term f(xo} < +00 can be suppressed, or replaced by f(xo + d') (because 
a .j. 0); moreover, as in Remark 2.2.3, the above limit is exactly 

lim f(xo + d' + td) = lim f(xo + d' + td) - f(xo + d') = !.' (d). 
1--++00 t 1--++00 t 00 
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In summary, the function defined by 

I u[f(xo + dIu) - f(xo)] if u > 0, 
lR x]Rn 3 (u,d) ~ f~(d) ifu = 0, 

+00 elsewhere 

is in Conv(lR x ]Rn); and only its "u > O-part" depends on the reference point Xo E dom f. 
o 

Our next result assesses the importance of the asymptotic function. 

Proposition 3.2.5 Let f E Conv lRn. All the nonempty sublevel-sets of f have the 
same asymptotic cone, which is the sublevel-set of f/x; at the level 0: 

Vr E lR with Sr(f) #- 0, [Sr(f)]oo = {d E lRn : f~(d) ~ O}. 

In particular, the following statements are equivalent: 

(i) There is r for which Sr (f) is nonempty and compact; 

(ii) all the sublevel-sets of f are compact; 

(iii) f/x;(d) > Of or all nonzero dE lRn. 

PROOF. By definition (III.2.2.l), a directiond is in the asymptotic cone of the nonempty 
sublevel-set Sr (f) if and only if 

x E Sr(f) ====} [x + td E Sr(f) for all t > 0], 

which can also be written - see (1.1.4): 

(x, r) E epif ====} (x + td, r + t x 0) E epif for all t > 0; 

and this in turn just means that (d, 0) E (epi f)oo = epi f/x;. We have proved the first 
part of the theorem. 

A particular case is when the sublevel-set So(f/x;) is reduced to the singleton to}, 
which exactly means (iii). This is therefore equivalent to 

[Sr(f)]oo = to} for all r E lR with Sr(f) #- 0, 

which means that Sr (f) is compact (Proposition 111.2.2.3). The equivalence between 
(i), (ii) and (iii) is proved. 0 

Needless to say, the convexity of f is essential to ensure that all its nonempty sublevel
sets have the same asymptotic cone. In Remark 1.1.7, we have seen (closed) quasi-convex 
functions: their sublevel-sets are all convex, and as such they have asymptotic cones, which 
normally depend on the level. 

Definition 3.2.6 (Coercivity) The functions f E Conv lRn satisfying (i), (ii) or (iii) 
are called O-coercive. Equivalently, the O-coercive functions are those that "increase 
at infinity": 

f (x) ~ +00 whenever IIx II ~ +00, 
and closed convex O-coercive functions achieve their minimum over lRn. 
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An important particular case is when 160 (d) = +00 for alld =1= 0, i.e. I~ = I{o}. 
It can be Seen that this means precisely 

I(x) 
-- -+ +00 whenever IIx II -+ +00. 
IIxll 

In words: at infinity, 1 increases to infinity faster than any affine function (to establish 
this equivalence, extract a cluster point of {Xk / IIxk II} and USe the lower semi-continuity 
of I~). Such functions are called i-coercive, or sometimes just coercive. 0 

Suppose for example that 1 is quadratic: 

I(x) = ~(Qx,x) + (b,x) +c, 

with Q a positive semi-definite symmetric operator, b E IRn and C E lR. Then it is easy to 
compute 

I/x,(d) = { (b, d) if dE Ker Q, 
+00 if not. 

In this particular case, the different sorts of coercivity coincide: 

I is O-coercive {=::> I is I-coercive {=::> Q is positive definite. 

The word "coercive" alone comes from the study of bilinear forms: for our more general 
framework of non-quadratic functions, it becomes ambiguous, hence our distinction. 

Proposition 3.2.7 Afunction 1 E Conv JRn is Lipschitzian on the whole ofJRn ifand 
only if I~ is finite on the whole of lRn. The best Lipschitz constant for 1 is then 

sup {f~(d) : IIdll = l}. (3.2.5) 

PROOF. When the (convex) function 160 is finite-valued, it is continuous (§3.1) and 
therefore bounded on the compact unit sphere: 

sup {f~(d) : IIdil = I} =: L < +00, 

which implies by positive homogeneity 

I~(d) ::;; Lildll for all d E JRn . 

Now use the definition (3.2.2) of 160: 

I(x + d) - I(x) ::;; Lildll for all x E dom 1 and d E lRn; 

thus, dom 1 is the whole space (f (x + d) < +00 for all d) and we do obtain that L 
is a global Lipschitz constant for I. 

Conversely, let 1 have a global Lipschitz constant L. Pick Xo E dom I and plug 
the inequality 
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f(xo + td) - f(xo) ::;; Ltlldll for all t > 0 and dE lRn 

into the definition (3.2.3) of f~ to obtain 

f~(d) ::;; Llldll for all dE lRn . 

It follows that f~ is finite everywhere, and the value (3.2.5) does not exceed L. 0 

Concerning (3.2.5), it is worth mentioning that the index-set B can be replaced by the 
unit ball B, and/or absolute value can be inserted in the supremand; these two replacements 
are made possible thanks to convexity. 

Remark 3.2.8 We mention the following classification, of interest for minimization theory: 
let 1 E Conv jRn . 

- If 160 (d) < 0 for some d, then 1 is unbounded from below; more precisely: for all Xo E 

dom I, I(xo + td) + -00 when t ~ +00. 
- The condition 160 (d) > 0 for all d i= 0 is necessary and sufficient for 1 to have a nonempty 

bounded (hence compact) set of minimum points. 

- If 160 ~ 0, with 160 (d) = 0 for some d i= 0, existence of a minimum cannot be guaranteed 
(but if Xo is minimal, so is the half-line Xo + jR+ d). 

Observe that, if the continuous function d t-+ lbo(d) is positive for all d i= 0, then it is 
minorized by some m > 0 on the unit sphere B and this m also minorizes the speed at which 
1 increases at infinity. 0 

To close this section, we mention some calculus rules on the asymptotic function. 
They come directly either from the analytical definitions (3.2.2), (3.2.3), or from the 
geometrical definition epi f~ = (epi /)00 combined with Proposition 111.2.2.5. 

Proposition 3.2.9 

- Let f]' ... , fm be m functions ofConvlRn, and tl, ... , tm be positive numbers. 
Assume that there is Xo at which each fj isfinite. Then,for f := 'Lj=1 tj fj, 

m 

f/x; = L>j(fj)~· 
j=1 

- Let (fj ljE] be afamily offunctions in ConvlRn. Assume that there is Xo at which 
SUPjE] fj(xo) < +00. Then,for f := SUPjE] fj, 

f/x; = sup(fj)~ . 
jE] 

- Let A : lRn -+ lRm be affine with linear part Ao, and let f E Cony lRm. Assume that 
A(lRn ) n dom f =I- 0. Then 

(f 0 A)~ = f/x; 0 Ao . o 
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For an image-function (2.4.2), the corresponding formula is 

(Ag)~(d) = inf {g~(z) : Az = d} 

which can be written symbolically: (Ag)~ = A(g~). However, this formula cannot 
hold without an additional assumption, albeit to guarantee Ag E Conv IRn. One such 
assumption is 

g~(z) > 0 for all z E Ker A \ {OJ 

(appropriate coercivity is added where necessary, so that the infimum in the definition 
of (Ag)(x) is always attained). Proving this result is not simple. 

4 First- and Second-Order Differentiation 

Let C c IRn be nonempty and convex. For a function f defined on C (f(x) < +00 
for all x E C), we study here the following questions: 

- When f is convex and differentiable on C, what can be said about the gradient V f? 

- When f is differentiable on C, can we characterize its convexity in terms of V f? 

- When f is convex on C, what can be said about its first and second differentiability? 

We start with the first two questions. 

4.1 Differentiable Convex Functions 

First we assume that f is differentiable on C. Given Xo E C, the sentence "f is 
differentiable at xo" is meaningful only if f is at least defined in a neighborhood of 
Xo. Then, it is normal to assume that C is contained in an open set g on which f is 
differentiable. 

Theorem 4.1.1 Let f be a function difforentiable on an open set g C IRn, and let 
C be a convex subset of g. Then 

(i) f is convex on C if and only if 

f(x) ~ f(xo) + (V f(xo), x - Xo) for all (Xo, x) E C xC; (4.1.1) 

(ii) f is strictly convex on C if and only if strict inequality holds in (4.1.1) whenever 
x =1= Xo; 

(iii) f is strongly convex with modulus c on C if and only if, for all (xo, x) E C x C. 

f(x) ~ f(xo) + (V f(xo), x - Xo) + ~cllx - xoll 2 • (4.1.2) 

PROOF. [(i)] Let f be convex on C: for arbitrary (xo, x) E C X C and a E ]0,1[, we 
have from the definition ( 1.1.1) of convexity 

f(ax + (1 - a)xo) - f(xo) ::;; a[f(x) - f(xo)]. 
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Divide by a and let a .l, 0: observing that ax + (1 - a)xo = Xo + a(x - xo), the 
left-hand side tends to (\7 f(xo), x - xo) and (4.1.1) is established. 

Conversely, take XI andx2 inC,a e]O, l[anddefinexo:= aXI +(l-a)x2 e C. 
By assumption, 

f(Xi) ~ f(xo) + (\7 f(xo), Xi - xo) for i = 1,2 

and we obtain by convex combination 

af(xI) + (1 - a)f(x2) ~ f(xo) + (\7 f(xo), aXI + (1 - a)x2 - xo) 

which, after simplification, is just the relation of definition (1.1.1). 

[(ii)] If f is strictly convex, we have for Xo 1= x in C and a E]O, 1[, 

f(xo + a(x - xo» - f(xo) < a[f(x) - f(xo)] ; 

but f is in particular convex and we can use (i): 

(\7 f(xo), a(x - xo») :::;; f(xo + a(x - xo» - f(xo) , 

so the required strict inequality follows. 

(4.1.3) 

For the converse, proceed as for (i), starting from strict inequalities in (4.1.3). 

[(iii)] Using Proposition 1.1.2, just apply (i) to the function f - 1/2cll . 11 2 , which is 
of course differentiable. 0 

Thus, a differentiable function is convex when its graph lies above its tangent hyperplanes: 
for each Xo, f is minorized by its affine approximation x 1-+ f(xo) + (V f(xo), x - xo} 
(which coincides with f at xo). It is strictly convex when the coincidence set is reduced to 
the singleton (xo, f(xo». Finally, f is strongly convex when it is minorized by the quadratic 
convex function 

X 1-+ f(xo) + (V f(xo), x - xo} + !cllx - xoll2 , 

whose gradient at Xo is also V f(xo). These tangency properties are illustrated on Fig. 4.1.1. 

Xo slope Vf(xol Xo Xo curvature c 

Fig.4.1.1. Affine and quadratic minorizations 

Remark 4.1.2 Inequality (4.1.1) is fundamental. In case of convexity, the remainder term r 
in 

f(x) = f(xo) + (V f(xo), x - xo) + r(xo, x) 

must be well-behaved; for example, it is nonnegative for all x and xo; also, r(xo, -) is convex. 
o 
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Both f - and V f -values appear in the relations dealt with in Theorem 4.1.1; we 
now proceed to give additional relations, involving V f only. We have seen in Chap. I 
that a differentiable function is convex if and only if its derivative is monotone in
creasing (on the interval where the function is studied). Here, we need a generalization 
of the wording "monotone increasing" to our multidimensional situation. There are 
several possibilities, one is particularly well-suited to convexity: 

Definition 4.1.3 Let C c ~n be convex. The mapping F : C --+ ~n is said monotone 
[resp. strictly monotone, resp. strongly monotone with modulus c > 0] on C when, 
for all x and x' in C, 

(F(x) - F(x'), x - x'} ~ 0 
[resp. (F(x) - F(x'), x - x'} > 0 whenever x =I- x' , 

resp. (F(x) - F(x'), x - x'} ~ cllx - x'II2 ] . o 

In the univariate case, the present monotonicity thus corresponds to F being 
increasing. When particularized to a gradient mapping F = V f, our definition char
acterizes the convexity of the underlying potential function f: 

Theorem 4.1.4 Let f be afunction differentiable on an open set il C ~n, and let 
C be a convex subset of il. Then, f is convex (resp. strictly convex, resp. strongly 
convex with modulus c] on C if and only if its gradient V f is monotone [resp. strictly 
monotone, resp. strongly monotone with modulus c] on C. 

PROOF. We combine the "convex {} monotone" and "strongly convex {} strongly 
monotone" cases by accepting the value c = 0 in the relevant relations such as 
(4.1.2). 

Thus, let f be [strongly] convex on C: in view of Theorem 4.1.1, we can write 
for arbitrary Xo and x in C: 

f(x) ~ f(xo) + (V f(xo), x - Xo} + 4cllx - xoll 2 

f(xo) ~ f(x) + (V f(x), Xo - x} + 4cllxo - xll 2 , 

and mere addition shows that V f is [strongly] monotone. 
Conversely, let (Xo, x I ) be a pair of elements in C. Consider the univariate function 

t t-+ ep(t) := f(xt), where Xt := Xo + t(XI - xo); for t in an open interval containing 
[0,1], Xt Eiland ep is well-defined and differentiable; its derivative at tis ep'(t) = 
(V f(xr), XI - xo}. Thus, we have for all 0 ~ t' < t ~ I 

q/(t) - ep'(t') = (V f(xd - V f(xt,), Xl - Xo} 

= t~t,(Vf(xt)-Vf(xt,),Xt-Xt') (4.1.4) 

and the monotonicity relation for V f shows that ep' is increasing, ep is therefore convex 
(Corollary I.5.3.2). 

For strong convexity, set t' = 0 in (4.1.4) and use the strong monotonicity relation 
for V f: 

ep'(t) - ep'(O) ~ fCllxt - xoll2 = tclixi - xoll 2 . (4.1.5) 
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Because the differentiable convex function ep is the integral of its derivative, we can 
write 

ep(l) - ep(O) - ep'(O) = 11 [ep'(t) - ep'(O)]dt ~ tcllxl - xoll 2 

which, by definition of ep , is just (4.1.2) (the coefficient 1/2 is fol t dt I). 
The same technique proves the "strictly monotone <=> strictly convex" case; then, 

(4.1.5) becomes a strict inequality - with c = 0 - and remains so after integration. 
o 

The attention of the reader is drawn on the coefficient e - and not 1/2e - in the defini
tion 4.1.3 of strong monotonicity. Actually, a sensible rule is: "Use 1/2 when dealing with 
a square"; here, the scalar product (LlF, Llx) is homogeneous to a square. Alternatively, 
remember in Proposition 1.1.2 that the gradient of 1/2 ell· 112 at x is ex. 

We mention the following example: let 

f(x) := !(Ax, x) + (b, x) 

be a quadratic convex function (A is symmetric), and let An ~ 0 be its smallest eigenvalue. 
Observe that V f(x) = Ax + b and that 

(Ax - Ax',x -x') = (A(x _X/),X -x') ~ Anllx _x' 1l 2 . 

Thus V f is monotone [strongly with modulus An]. The [strong] convexity of f, in the sense 
of(1.1.2), has been already alluded to in §1.3(d); but (4.1.2) is easier to establish here: simply 
write 

f(x) - f(xo) - (V f(xo), x - xo) ~(Ax, x) - ~(Axo, xo) - (Axo, x - xo) 

= !(A(x - xo), x - xo) ~ !Anllx - xoll2 . 

Note that for this particular class of convex functions, strong and strict convexity are equivalent 
to each other, and to the positive definiteness of A. 

Remark 4.1.5 Do not infer from Theorem 4.1.4 the statement "a monotone mapping is the 
gradient ofa convex function", which is wrong. To be so, the mapping in question must first 
be a gradient, an issue that we do not study here. We just mention the following property: if 
Q is convex and F : Q -+ IRn is differentiable, then F is a gradient if and only if its Jacobian 
operator is symmetric (in 2 or 3 dimensions, curl F = 0). 0 

Example 4.1.6 Let C C ]Rn be nonempty closed convex. We have already seen in 
Example 2.1.4 that the function 

]Rn 3 X 1-+ epc(x) := t [IIx1l2 - d~(x)] 

is convex and finite everywhere. It would be so for arbitrary C, but the convexity of 
C here implies the differentiability of epc, with gradient Vepc = Pc (the projection 
operator on C). To differentiate the only delicate term d~, consider 

.tl := d~(x + h) - d~(x) . 
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Because d~ (x) ::::; IIx - pc(x + h) 11 2, we have 

L1 ;;:: IIx + h - pc(x + h)1I2 - IIx - pc(x + h)1I2 = IIhll2 + 2(h, x - pc(x + h)}. 

Inverting the role of x and x + h, we obtain likewise 

L1 ::::; IIx + h - pc(x) 112 - IIx - pc(x) 112 = IIhll 2 + 2(h, x - pc(x)}. 

Now remember from (111.3.1.6) that Pc is nonexpansive, hence 

L1 = 2(x - pc(x), h} + o(llh II) , 

and this gives the announced result. Incidentally, take x ¥ C, hence dc(x) > 0; by 
standard differential calculus, 

x -pc(x) 
Y'dc(x) = Y' K(X) = IIx - pc(x) II . 

Now we ask the question: is CPc strictly or strongly convex on some (nontrivial) 
convex set? Because of Proposition 111.3.1.3, we have for all x and x, in C: 

[(Y'cpc(x) - Y'cpc(X'), x - x') =] (pc(x) - pc(X'), X - x'} 
;;:: IIpc(x) - pc(X') 112 = IIx - x / 1l 2 , 

(4.1.6) 

so Y'cpc [resp. cpc] is strongly monotone [resp. strongly convex] with modulus 1 on 
C - but we knew it already, since CPC = 1/211 . 112 there. 

On the other hand, CPc cannot be strongly convex outside C: take P E bd C and 
two different points x, x' in the normal cone Nc(p); then pc(x) = pc(x') = p and 
the left-hand side of(4.1.6) is zero. In other words, CPc is affine on {p} + Nc(p). This 
geometrical property is illustrated by Fig. 4.1.2: apply the triangular relation 

IIpll2 + IIx - pll2 = IIxll2 - 211pllllx - pil cosO 

to observe that 

cpc(x) = ~(lIxIl2 - IIx - p1l2) = ~lIpll2 + IIpllllx - pil cosO 

is affine with respect to the single variable IIx - pil when p and the angle 0 are fixed. 
o 

~ -{pi .Nclp) 

o 

Fig. 4.1.2. Difference of squared distances 
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4.2 N ondifferentiable Convex Functions 

A convex function need not be differentiable over the whole interior of its domain; 
nevertheless, it is so at "many points" in this set. Before making this sentence math
ematically precise, we note the following nice property of convex functions. 

Proposition 4.2.1 For f E Conv IRn and x E int dom f, the three statements below 
are equivalent: 

(i) The function 

. f(x + td) - f(x) 
IRn :3 d 1-+ hm is linear in d; 

t~O t 

(ii) for some basis of IRn in which x = (~l, ... , ~n), the partial derivatives af. (x) 
a~1 

exist at x, for i = 1, ... , n; 
(iii) f is differentiable at x. 

PROOF. First of all, remember from Theorem 1.4.1.1 that the one-dimensional function 
t 1-+ f(x + td) has half-derivatives at 0: the limits considered in (i) exist for all d. 
We will denote by {bI."" bnl the basis postulated in (ii), so that x = L:1=1 ~jbj. 

Denote by d 1-+ i(d) the function defined in (i); taking d = ±bj, realize that, 
when (i) holds, 

lim fex + "(bi) - fex) = i(-bi) = -f.(bi) = -lim f(x + tbi) - f(x) . 
• to -"( t.t.o t 

This means that the two half-derivatives at t = 0 of the function t 1-+ f (x + t bi) 
coincide: the partial derivative of f at x along bi exists, (ii) holds. That (iii) implies 
(i) is clear: when f is differentiable at x, 

. f(x + td) - f(x) = (V fex), d). 
hm t 
t~O 

We do not really complete the proof here, because everything follows in a 
straightforward way from subsequent chapters. More precisely, [(ii) :::::} (i)] is Proposi
tion V 1.1.6, which states that the function f. is linear on the space generated by the bi 's, 
whenever it its linear along each bi. Finally [(i) :::::} (iii)] results from Lemma VI.2.1.1 
and the proof goes as follows. One of the possible definitions of (iii) is: 

lim f(x + td') - f(x) . . 
t ~o,d' ~d t IS hnear in d . 

Because f is locally Lipschitzian, the above limit exists whenever it exists for fixed 
d' = d - i.e. the expression in (i). 0 

The function defined in (i), called the directional derivative of f at x in the 
direction d, is denoted by 
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f'ex, d) := lim f(x + td) - f(x) 
t.!,o t 

and will be encountered many times in the sequel. 

Remark 4.2.2 The above result reveals three interesting properties enjoyed by convex func
tions: 

- First, consider the restriction ((Jd(t) := I(x +td) of I along a line x +lRd, As soon as there 
are n independent directions, say dl, ... , dn, such that each ({Jdi has a derivative at t = 0, 
then the same property holds for all the other possible directions d E lRn. 

- Second, this "radial" differentiability property of ({Jd for all d (or for many enough d) suffices 
to guarantee the "global" (i.e. Frechet) differentiability of I at x; a property which does not 
hold in general. It depends crucially on the Lipschitz property of f. 

- One can also show that, if I is convex and differentiable in a neighborhood of x, then V I 
is continuous at x. Hence, if Q is an open convex set, the following equivalence holds true 
for the convex I: 

I differentiable on Q {=::} IE CI(Q) . 

This rather surprising property will be confirmed in §VI.6.2. o 

The largest set on which a function can be differentiable is the interior of its 
domain. We are now in a position to show that a convex function is differentiable 
almost everywhere on that set. 

Theorem 4.2.3 Let f E Conv]Rn. The subset of int dom f where f fails to be 
differentiable is of zero (Lebesgue) measure. 

PROOF. Since intdom f is the union, for k = 1,2, ... , of the open sets 

!2t := {x E intdomf : IIxll < k}, 

it suffices to prove that each set 

E := {x E!h f is not differentiable at x} 

is of measure zero. In view of Proposition 4.2.1, E is also the set where some partial 
derivative does not exist. In other words 

E = EI U···UEn; 

here Ei is the subset of ilk where the partial derivative of f along bi does not exist 
({b l , ••• , bn } being some basis of ]Rn). Using the property (1.4.1.3) of increasing 
slopes, 

Ei := (x E Sh : f'ex, bi) > - f'ex, -bi)}. 

Each Ei is measurable (the functions f'(·, d) are measurable as pointwise limits of 
measurable functions), so we will be done if we prove that each Ej is of measure zero. 
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Let us establish meas El = O. First, El C Qk is bounded, so the characteristic 
function X I (Ion E I, 0 elsewhere) is integrable. According to Fubini's Theorem 
(§A.6.2), we therefore write the measure of El as 

1 Xl(~l, ... , ~n)d~l ... ~n = f .. -I [I Xl(~l, ... , ~n)d~IJ d~2 ... ~n , 
(~l, ... , ~n) being the coordinates of a point x along the given basis. The one
dimensional convex function~l f-+ I(~l, ~2, .•. , ~n) has a derivative except possibly 
at countably many points of E I (Theorem 1.4.2.1), and this implies 

1 Xl(~l, ... ,~n)~l =0 forall~2, ... ,~n. o 

It is worth mentioning that this property follows from a more general result, due 
to H. Rademacher (1919): a function which is locally Lipschitzian on an open set Q, 

for example a convex function (Theorem 3.1.2), is differentiable almost everywhere 
in Q. Our direct proof above cannot be extended to that case, though: we explicitly 
used the equivalence (ii) {} (iii) of Proposition 4.2.1, for which convexity is essential. 

4.3 Second-Order Differentiation 

We have seen in Chap. I that the most useful criterion to recognize a convex function 
uses the second derivative: a function q; which is twice differentiable on an interval I 
is convex on I if and only if q;" is nonnegative on I. In our present framework, the 
best idea is to reduce the question to the one-dimensional case: a function is convex if 
and only if its restrictions to the segments [x, x'] are also convex. These segments can 
in turn be parametrized via an origin x and a direction d: convexity of I amounts to 
the convexity of t f-+ I(x + td). Then, it suffices to apply calculus rules to compute 
the second derivative of this last function. Our first result mimics Theorem 4.1.4. 

Theorem 4.3.1 Let f be twice differentiable on an open convex set Q C ]Rn. Then 

(i) I is convex on Q ifand only if'i/2 f(xo) is positive semi-definiteforall Xo E Q; 

(ii) if V2 f(xo) is positive definite for all Xo E [2, then I is strictly convex on Q; 

(iii) f is strongly convex with modulus c on Q if and only if the smallest eigenvalue 
of v2 f(·) is minorized by c on Q:for all Xo E Q and all dE R.n, 

(V2 I(xo)d, d) ~ clldf. 

PROOF. For given Xo E Q, d E R.n and t E R. such that Xo + t d E [2, we will set 

Xt := Xo + td and q;(t):= I(Xt) = I(x + td), 

so that q/'(t) = (V2 f(xt)d, d). 

[(i)] Assume f is convex on Q; let (xo, d) be arbitrary in Q x ]Rn, with d f:. 0: <p is 
then convex on the open interval I := {t E ]R : Xo + td E Ql. It follows 
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o ~ cp" (t) = (''V2 f(x,)d, d) for all tEI:3 0 

and V 2 f (xo) is positive semi-definite. 
Conversely, take an arbitrary (xo, xd c Q, set d := XI - Xo and assume V 2 f (xt> 

positive semi-definite, i.e. cp" (t) ~ 0, for t E [0, 1]. Then Theorem 1.5.3.3 tells us that 
cp is convex on [0,1], i.e. f is convex on [xo, xd. The result follows since Xo and XI 
were arbitrary in Q. 

Wi)] To establish the strict convexity of f on Q, we prove that 'V f is strictly monotone 
on Q: Theorem 4.1.4 will apply. As above, take an arbitrary [xo, xd c Q, XI #- XO, 
d := XI - xo, and apply the mean-value theorem to the function cp', differentiable on 
[0,1]: for some r E ]0,1[, 

cp'(1) - cp'(O) = cp"(r) = ('V2 f(x-r;)d, d) > 0 

and the result follows since 

cp' (1) - cp' (0) = ('V f(xI) - V f(xo), XI - xo) . 

[(iii)] Using Proposition 1.1.2, apply (i) to the function f - 1/2CIl·1I2, whose Hessian 
operator is 'V2 f - cln and has the eigenvalues).. - c, with).. describing the eigenvalues 
ofV2 f. 0 

Some differences have appeared with respect to §4.1: 

- The sufficiency condition in (ii) is not necessary, even for univariate functions: think 
of f(x) = 1/4X4 • 

- Theorem 4.1.1 stated that the affine (first-order) approximation of f around Xo was 
actually a global minorization - more or less "comfortable". Here, we cannot say 
that the quadratic approximation (of f around xo) 

X t-+ f(xo) + ('V f(xo), X - xo) + ~('V2 f(xo)(x - xo), X - xo) 

minorizes f: think of f(x) = 1/2X2 - 1/4X\ which is convex for Ixl2 ~ 1/3. 

- The present statements do not characterize convexity on a convex subset CeQ: 
C must be open. The reason is that §4.1 was dealing with the image (through f or 
'V f) of pairs of points in C (xo and x, or X and x'). Here, 'V2 f looks at f in the 
neighborhood of a single point, say Xo. Thus, a statement like 

f is convex on CeQ ~ 'V2 fO is positive semi-definite on C 

may be wrong if C is not open: f(~, 1]) := ~2 - 1]2 is convex on C = IR x {OJ but 
its Hessian is nowhere positive semi-definite. 

Remark 4.3.2 Despite the last comment above, the convexity criterion using second 
derivatives is still the most powerful, even if positive (semi-)definiteness is not always 
easy to check. To recognize a convex function on a non-open set C, the best chance is 
therefore to use the Hessian operator on Q = int C, hopefully nonempty, and then to 
try and conclude by passing to the limit: the property C c cI(int C) = cI C is useful 
for that. 0 
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Example 4.3.3 To illustrate Theorem 4.3.1, consider the function 

a := {x = (~I •... ,~") : ~i > 0 for i = I, ...• n} . 

f: a 3 x 1-+ f(x) := _(~1$2 ... ~")I/". 

Direct computations give its second derivatives, i.e. its Hessian operator associated with the 
dot-product ofR": 

a2 f f(x) 
a~ia~/x) = n2~i~j(1-n8ij) 

where 8ij is Kronecker's symbol. We obtain, with d = (d l , ••• , d") E R": 

2 T _ f(X)[( "di )2 "(di )2] [V f(x)d] d --;;2 Li=1 F -nLi=1 F . 

The £ 1- and £2-norms are related on R" by the inequality m . II ~ v'nW . h (take a vector 
of the type (±l •...• ±l) and use the Cauchy-Schwarz inequality); because f is negative on 
a, the above expression is therefore nonnegative: f is convex. Observe in passing that we 
obtain an equality if d and x are collinear: our f is positively homogeneous. 

Observe here that f can be extended to cIa by posing f(x) = 0 if some $i is zero. 
Convexity is preserved, and this illustrates Remark 4.3.2. 0 

Having thus established a parallel with §4.1, we now consider the existence of 
second derivatives. In one dimension, the first derivative is monotone and, as such, it 
in turn has a derivative almost everywhere (Theorem 1.5.1.3). In several dimensions, 
monotonicity becomes that of Definition 4.1.3; the differentiability of such operators 
involves much more sophisticated concepts from analysis. We just mention without 
proof the main result: 

Theorem 4.3.4 (A.D. Alexandrov) Let f E Conv R". For all x E int dom f except 
in a set of zero (Lebesgue) measure, f is differentiable at x and there exists a symmetric 
positive semi-definite operator 02 f(x) such that,for h E IRn 

f(x + h) = f(x) + (V f(x), h} + ~(D2 f(x)h, h) + 0(lIhIl2). 0 

The operator D2 f (x) can hardly be called the "second derivative" of f at x 
because its existence does not even imply the existence of V f in a neighborhood of 
x. One should rather say that it gives a second-order approximation of f around x. 

Remark 4.3.5 We also mention that much can be said concerning the set E I where 
V f fails to exist; but the set E2 where 02 f fails to exist seems much more mysterious. 
Despite the analogy between Theorems 4.2.3 and 4.3.4, there is a drastic difference 
between first- and second-order approximations of a convex function. 

Also, the interesting properties mentioned in Remark 4.2.2 do not transfer to 
second order: f may be twice differentiable on {J without being twice continuously 
differentiable on {J; the (first- and) second-order partial derivatives of f may exist at 
x while f is not twice differentiable at x; and so on. 0 
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Remark 4.3.6 (The Case of Flat Domains) In all the present Section 4, dom f was 
implicitly assumed full-dimensional, in order to have a nonempty int dom f. When 
such is not the case, some kind of differentiation can still be performed. In fact, exploit 
Remark 2.1.7 and make a change of variable: 

Y H- fo(Y) := f(xo + y) , 

where Xo is fixed in dom f, y varies in V, V C JRn being the subspace parallel to 
aff dom f. Now, fo E Conv V and dom fo is full-dimensional in V. Equipping V with 
the induced scalar product (., .) and the induced Lebesgue measure, the main results 
above can be reproduced. More precisely: almost everywhere in int dom 10, i.e. for 
almost all Xo + y E ri dom I, 
- there is a vector s E V (the gradient of fo at y) which gives the first-order approxi

mation of f around Xo 

'Vh E V, f(xo + y + h) = f(xo + y) + (s, h) + o(lIhlD 

(the remainder term o(lIhll) being nonnegative); this s could be called the "relative 
gradient" of f at x := Xo + y; it exists at Xo + y if and only if the function 
t H- I(xo + y + td) has a derivative at t = 0 for all dE V; 

- there is a linear operator D : V --* V which is symmetric positive semi-definite: for 
allhandkinV, 

Dh E V and (Dh, k) = (h, Dk) , 

and which gives the second-order approximation 

'Vh E V, f(xo + y + h) = f(xo + y) + (s, h) + (Dh, h) + o(lIhIl 2). 0 



V. Sublinearity and Support Functions 

Prerequisites. Basic definitions, properties and operations of convex sets (Chap. III) and 
convex functions (Chap. IV). 

Introduction. In classical real analysis, the simplest functions are linear. In convex 
analysis, the next simplest convex functions (apart from the affine functions, widely 
used in §IY.I.2), are so-called sublinear. There are several motivations for their study; 
we give three of them, which are of particular importance in the context of convex 
analysis and optimization. 

(i) A suitable generalization a/linearity. A linear function l from JR.n to JR., or a linear 
form on JR.n, is primarily defined as a function satisfying for all (XI, Xl) E JR.n x JR.n 
and (tl, tl) E JR. x JR.: 

l(tlXI + tlXl) = tll(xl) + t21(x2). (0.1) 

A corresponding definition for a sublinear function a from JR.n into JR. is: for all 
(Xl, X2) E JR.n x JR.n and (tl, t2) E jR+ x jR+, 

a(tixi + t2X2) ::;; tla(xd + t2a(X2) . (0.2) 

A first observation is that requiring an inequality in (0.2), rather than an equality, 
allows infinite values for a without destroying the essence of the concept of sublinear
ity. Of course, (0.2) is less stringent than (0.1), but more stringent than the definition of 
a convex function: the inequality must hold in (0.2) even if tl + t2 =J I. This confirms 
that sublinear functions, which generalize linear functions, are particular instances of 
convex functions. 

Remark 0.1 Note that (0.1) and (0.2) can be made more similar by restricting tl and t2 to 
be positive in (0.1) - this leaves unchanged the definition of a linear function. 

The prefix "sub" comes from the inequality-sign " ::;; " in (0.2). It also suggests that 
sUblinearity is less demanding than linearity, but this is a big piece of luck. In fact, draw the 
graph of a convex and of a concave function and ask a non-mathematician: "which is convex?". 
He will probably give the wrong answer. Yet, if convex functions were defined the other way 
round, (0.2) should have the " ~ " sign. The associated concept would be superlinearity, an 
unfortunate wording which suggests "more than linear". 0 
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In a word, sublinear functions are reasonable candidates for "simplest non-trivial 
convex functions". Whether they are interesting candidates will be seen in (ii) and 
(iii). Here, let us just mention that their epigraph is a convex cone, the next simplest 
convex epigraph after half-spaces. 

(ii) Tangential approximation of convexfunctions. To say that a function f : R.n -+ R. 
is differentiable at x is to say that there is a linear function lx which approximates 
f (x + h) - f (x) to first order, i.e. 

f(x + h) - f(x) = lx(h) + o(lIhll). 

This fixes the rate of change of f when x is moved along a line d: with s(t) -+ 0 if 
t -+ 0, 

f(x + td) - f(x) 
.:..----~- = lx(d) + s(t) for all t =j:. O. 

t 

Geometrically, the graph of f has a tangent hyperplane at (x, f (x)) E R.n x R.; 
and this hyperplane is the graph gr lx of the affine function h ~ f (x) + lx (h). 

When f is merely convex, its graph may have no tangent hyperplane at a given 
(x, f(x)). Nevertheless, under reasonable assumptions, f(x + h) - f(x) can still be 
approximated to first order by a function which is sublinear: there exists a sublinear 
function h ~ ax (h) such that 

f(x + h) - f(x) = ax (h) + o(lIhlD . 

This will be seen in Chap. VI. 
Geometrically, gr a x is no longer a hyperplane but rather a cone, which is therefore 

tangent to gr f (the word "tangent" should be understood here in its intuitive meaning 
of a tangent surface, as opposed to tangent cones of Chap. III; neither gr a x nor gr f 
are convex). Thus, one can say that differentiable functions are "tangentially linear", 
while convex functions are "tangentially sublinear". See Fig. 0.1, which displays the 
graph of a differentiable and of a convex function. The graph of ex is the thick line 
L, while the graph of ax is made up of the two thick half-lines Sl and S2. 

",~g" 

I I Rn 

"I 
S1 Rn 

x+h x x+h x 

tangential linearity tangential sublinearity 

Fig.O.l. Two concepts of tangency 

(iii) Nice correspondence with nonempty closed convex sets. In the Euclidean space 
(R.n , (" .)), a linear form l can be represented by a vector: there is a unique s E R.n 
such that 
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lex) = (s, x) for all x E ]Rn . (0.3) 

The definition (0.3) of a linear function is more geometric than (0.1), and just as 
accurate. A large part of the present chapter will be devoted to generalizing the above 
representation theorem to sublinear functions. 

First observe that, given a nonempty set S C ]Rn, the function as : ]Rn -+ 
]R U {+oo} defined by 

as(x):= sup{(s,x) : s E S} (0.4) 

is sublinear. It is called the supportfimction of S, already encountered in Sects I1IA.l 
and IY.l.3(a). When S is bounded, its support function is finite everywhere; otherwise, 
as can take on the value +00 but it remains lower semi-continuous. Furthermore, it 
is easy to check that as is also the support function of the closure of S, and even of 
the closed convex hull of S. It is therefore logical to consider support functions of 
nonempty closed convex sets only. 

Now, a key result is that the mapping S 1-+ as is then bijective: a lower semi
continuous (i.e. closed) sublinear function is the support function of a uniquely de
termined nonempty closed convex set. Thus, (OA) establishes the announced repre
sentation, just as (0.3) does in the linear case. Note that the linear case is covered: it 
corresponds to S being a singleton {s} in (OA). 

This correspondence between nonempty closed convex sets of]Rn and closed 
sublinear functions allows fruitful and enlightening geometric interpretations when 
studying these functions. Vice versa, it provides powerful analytical tools for the 
study of these sets. In particular, when closed convex sets are combined (intersected, 
added, etc.) to form new convex sets, we will show how their support functions are 
correspondingly combined: the mapping (OA) is an isomorphism, with respect to a 
number of structures. 

1 Sublinear Functions 

1.1 Definitions and First Properties 

Definition 1.1.1 A function a : lI~n -+ lR U {+oo} is said to be sublinear if it is 
convex and positively homogeneous (of degree 1): a E Conv]Rn and 

a(tx) = ta(x) for all x E ]Rn and t > o. (1.1.1) 
o 

Remark 1.1.2 Inequality in (1.1.1) would be enough to define positive homogeneity: 
a function a is positively homogeneous if and only if it satisfies 

a(tx) ~ ta(x) for all x E ]Rn and t > O. (1.1.2) 

In fact, (1.1.2) implies (tx E]Rn andt- I > O!) 

a(x) = a(t-1tx) ~ t-1a(tx) 

which, together with (1.1.2), shows that a is positively homogeneous. o 
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We deduce from (1.1.1) that 0'(0) = taCO) for all t > O. This leaves only two 
possible values for 0'(0): 0 and +00. However, most of the sublinear functions to be 
encountered in the sequel do satisfy 0'(0) = O. According to our Definition IV. 1. 1.3 
of convex functions, a should be finite somewhere; otherwise dom a would be empty. 
Now, if a(x) < +00, (1.1.1) shows that a(tx) < +00 for all t > O. In other words, 
dom a is a cone, convex because a is itself convex. Note that, being convex, a is 
continuous relatively to ri dom a, but discontinuities may occur on the boundary-rays 
of dom a, including at O. 

The following result is a geometrical characterization of sublinear functions. 

Proposition 1.1.3 A function a : ]R.n -+ ]R. U {+oo} is sublinear if and only if its 
epigraph epi a is a nonempty convex cone in ]R.n x R 

PROOF. We know that a is a convex function if and only if epi a is a nonempty convex 
set in IRn x IR (Proposition IV.l.1.6). Therefore, we just have to prove the equivalence 
between positive homogeneity and epi a being a cone. 

Let a be positively homogeneous. For (x, r) E epi a, the relation a (x) ::;;; r gives 

a(tx) = ta(x) ::;;; tr for all t > 0, 

so epi a is a cone. Conversely, if epi a is a cone in JRn x JR, the property (x, a (x)) E 

epia implies (tx, ta(x)) E epia, i.e. 

a(tx) ::;;; ta(x) for all t > O. 

From Remark 1.1.2, this is just positive homogeneity. o 

Another important concept in analysis is subadditivity: a function a is subadditive 
when it satisfies 

a(xI + X2) ::;;; a(xI) + a (X2) for all (XI, X2) E IRn x IRn . (1.1.3) 

Here again, the inequality is understood in IR U {+oo}. Together with positive ho
mogeneity, the above axiom gives another characterization (analytical, rather than 
geometrical) of sublinear functions. 

Proposition 1.1.4 Afunction a : JRn -+ IR U {+oo}, not identically equal to +00, 
is sublinear if and only if one of the following two properties holds: 

a(tlxl + t2X2) ::;;; tla(xl) + t2a(X2) for all Xl, X2 E ]R.n and tt. t2 > 0, (1.1.4) 

or 
a is positively homogeneous and subadditive . (1.1.5) 

PROOF. [sublinearity => (l.l.4)] For XI, X2 E ]Rn and tl, t2 > 0, set t := tl + t2 > 0; 
we have 

a(tlxl + t2X2) = a (t[%XI + ¥X2J) 
= to' (%Xl + ¥X2) 
::;;; t[%a(xI)+¥a(x2)] ' 

[positive homogeneity] 

[convexity] 
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and (1.1.4) is proved. 

[(1.1.4) => (1.1.5)] A function satisfYing (1.1.4) is obviously subadditive (take fl = 
t2 = I) and satisfies (take XI = X2 = X, tl = t2 = 1/2t) 

a(fX) ~ fa(x) for all X E IRn and t > 0, 

which is just positive homogeneity because of Remark 1.1.2. 

[(1.1.5) => sublinearity] Take fl, f2 > 0 with fl + t2 = 1 and apply successively 
subadditivity and positive homogeneity: 

a(tlxl + t2X2) ~ a(tlxd + a (t2X2) = tla(xl) + t2a(x2)' 

hence a is convex. o 

Corollary 1.1.5 If a is sublinear, then 

a(x)+a(-x)~O forallxElRn . (1.1.6) 

PROOF. Takex2 = -XI in (1.1.3) and remember that a (0) ~O. o 

It is worth mentioning that, to become sublinear, a positively homogeneous func
tion just needs to be subadditive as well (rather than convex, as suggested by Def
inition 1.1.1); then, of course, it becomes convex at the same time. Figure 1.1.1 
summarizes the connections between the classes of functions given so far. Note for 
completeness that a convex and subadditive function need not be sublinear: think of 

I(x) == I. 
,..------------ ...... 
I I 
I positively homogeneous I 
I I 1::0:: su~inear 

l_. _____________ --::..-___ ..L 

Fig. 1.1.1. Various classes of functions 

convex 

Similarly, one can ask when a sublinear function becomes linear. For a linear 
function, (1.1.6) holds as an equality, and the next result implies that this is exactly 
what makes the difference. 

Proposition 1.1.6 Let a be sublinear and suppose that there exist XI, ... , Xm in 
dom a such that 

a (Xj) + a(-xj) = 0 for j = 1, ... , m. (1.1. 7) 

Then a is linear on the subspace spanned by Xl, •.. , Xm. 
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PROOF. With XI, ... , Xm as stated, each -Xj is in doma. Let X := 'L}=I tjXj be an 
arbitrary linear combination ofxh ... , Xm; we must prove that a(x) = 'Ll=1 tja(xj). 
Set 

11 := {j : tj > O} , 12 := {j : tj < O} 

and obtain (as usual, L0 = 0): 

a(x) = a(LJ, tjXj + LJz(-tj)(-Xj») 

~ "J t·a(x·) + "J (-t')a(-x') '" L.....,J J L.....2 J J 

= LJ, tja(xj) + Llz tja(xj) = L}=I tp(Xj) 

= - "l t'a(-x') - "J (-t')a{x') L.....,J J L..... z J J 

:::; -a ( - Lj=1 tjXj) 

= -a (-x) :::; a{x). 

In summary, we have proved 

m 

a{x):::; I>ja(xj):::; - a(-x):::; a(x). 
j=1 

Thanks to this result, we are entitled to define 

U := {x E IRn : a{x) + a{-x) = O} 

[from (1.1.4)] 

[from (1.1. 7)] 

[from (1.1.7)] 

[from (1.1.4)] 

[from (1.1.6)] 

o 

(1.1.8) 

which is a subspace oflRn : the subspace in which a is linear. Note that U nonempty 
corresponds to a(O) = 0 (even if U reduces to {On. 

-:::::::' '78Pia ) \ 

Fig.l.l.2. Subspace of linearity of a sublinear function 

What is interesting in this concept is its geometric interpretation. If V is another subspace 
such that U n V = {O}, there holds by definition 

a(x) + a( -x) > 0 for all 0 =f. x E V. 

This means that, if 0 =f. d E V, a is "V-shaped" along d: for t > 0, 

a(td) = at and a(-td) = f3t 

for some a and f3 in lR U {+oo} such that a + f3 > 0; whereas a and f3 would be 0 if d were 
in U. See Fig. 1.1.2 for an illustration. For d of norm 1, the number a + f3 above could be 
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called the "lack oflinearity" of a along d: when restricted to the line d, the graph of a makes 
an angle; when finite, the number a + fJ measures how acute this angle is. 

Figure 1.1.2 suggests that gr a is a hyperplane not only in U, but also in the 
translations of U: the restriction of a to {y} + U is affine, for any fixed y. This comes 
from the next result. 

Proposition 1.1.7 Let a be sublinear. If x E U, i.e. if 

a(x)+a(-x) =0, (1.1.9) 

then there holds 

a(x + y) = a(x) + a(y) for all Y E ]Rn . (1.1.10) 

PROOF. In view of subadditivity, we just have to prove " ~ " in (1.1.10). Start from 
the identity y = x + y - x; apply successively subadditivity and (1.1.9) to obtain 

a(y) ~ a(x + y) + a(-x) = a(x + y) - a(x). o 

1.2 Some Examples 

We start with some simple situations. If K is a nonempty convex cone, its indicator 
function 

I (x):= { 0 ~f x E K, 
K +00 If not 

is clearly sublinear. In]Rn x ]R, the epigraph epi I K is made up of all the copies of K, 
shifted upwards. Likewise, a distance function 

dK(X) := inf {lIlY - xIII : y E K} 

is also sublinear: nothing in the picture is essentially changed when both x and y are 
multiplied by t > O. Another example is the function from ]R2 to ]R U {+oo} 

()_ (~ )'_{ -2v'f1i if ~,17~O 
a x - a ,17·- +00 if not. 

Its positive homogeneity is clear, its convexity is not particularly difficult to check 
(see Example IV.4.3.3), it is therefore sublinear. A good exercise is to try to visualize 
its epigraph. 

Example 1.2.1 Let f E Conv]Rn; its perspective J of §1V.2.2, which is convex, is 
clearly positively homogeneous (from ]Rn+ 1 to]R U {+oo}); it is an important instance 
of sublinear function. For example, in ]R2 

J(u 0:= { H2ju ~fu > 0, 
, +00 If not (1.2.1) 

is the perspective of ~ 1-+ f (~) = 1 /2 ~ 2 . 
Note that J(O,O) = +00. The closure of J can be computed with the help 

of Example IV.3.2.4: clearly enough, the asymptotic function of f is I{oj. Hence 

(cl J)(O, 0) = 0, while j coincides with its closure everywhere else. 0 
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Example 1.2.2 (Norms) We recall that a norm m . lion lRn is a function from lRn to 
[0, +oo[ satisfYing the following properties: 

(i) Ilx II = 0 if and only if x = 0; 

(ii) Iltx II = It I IIIx III for all x E lRn and t E lR; 
(iii) Ilxl + x2111 ~ Illxllll + Illx21~ for all (Xl, X2) E lRn x lRn. 

Clearly, HI . ~I is a positive (except at 0) and finite sublinear function which, more
over, is symmetric i.e. II - xUI = Ilxlll for all x. It is linear on no line: the subspace U 
of(1.1.8) is reduced to {OJ. 

Conversely, if a is a sublinear function from lRn into [0, +oo[ which is linear on 
no line, i.e. such that 

a(x)+a(-x»O forallx;6:0, 

then III x III := max{a(x), a (-x)} is a norm on lRn. o 

Example 1.2.3 (Quadratic Semi-Norms) Take a symmetric positive semi-definite 
operator Q from lRn to lRn and define 

f(x):= J(Qx,x} for all x E lRn. 

Convexity of f (i.e. its subadditivity, i.e. the Cauchy-Schwarz inequality) is not so 
easy to prove directly. Consider, however, the convex set 

EQ := {x E lRn (Qx, x) ~ I}. 

Then f can be obtained as follows: 

f(x) = inf {A> 0 : (Qx, x) ~ A2} 

= inf {A > 0 : (QX' X) ~ 1} 
= inf{J.. > 0 : X E Eo} 

and we will see below that this establishes convexity - hence sublinearity - of f. 
Observe in passing that E Q is the sublevel-set at level I of both f and f2 = (Q., .). 

Decompose the space as lRn = Ker Q EB 1m Q: the intersection of E Q with 1m Q is an 
ellipsoid centered at the origin, say E Q. The entire E Q is the cylinder E Q + Ker Q, 
whose asymptotic cone is just the subspace Ker Q. If and only if Ker Q = {O}, i.e. Q 
is positive definite, is E Q compact, namely an ellipsoid. On the other hand, f is finite, 
nonnegative, symmetric because E Q has center 0; and f is zero on the asymptotic 
cone Ker Q of EQ. Theorem 1.2.5 below establishe's the convexity of f, which is 
therefore a semi-norm, actually a norm if Q is positive definite. 0 

The mapping E Q ~ f, introduced in Example 1.2.3, is important in the context 
of sublinear functions; let us put it in perspective. 

Definition 1.2.4 Let C be a closed convex set containing the origin. The function 
YC defined by 

yc(x) := inf{A > 0 : x E AC} (1.2.2) 

is called the gauge of C. As usual, we set yc(x) := +00 if x E AC for no A > O. 0 
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Geometrically, YC can be obtained as follows: shift C (c IRn) in the hyperplane 
IRn x {I} of the graph-space IRn x IR (by contrast to a perspective-function, the present 
shift is vertical, along the axis of function-values). Then the epigraph of YC is the 
cone generated by this shifted copy of C; see Fig. 1.2.1. 

Fig. 1.2.1. The epigraph of a gauge 

The next result summarizes the main properties of a gauge. Each statement should 
be read with Fig. 1.2.1 in mind, even though the picture is slightly misleading, due to 
closure problems. 

Theorem 1.2.5 Let C be a closed convex set containing the origin. Then 

(i) its gauge YC is a nonnegative closed sublinear jUnction; 
(ii) YC is finite everywhere if and only if 0 lies in the interior oj C; 

(iii) Coo being the asymptotic cone ojC, 

{XElRn : yc(x):::;r}=rC jorallr>O, 
{x E IRn : yc(x) = OJ = Coo . 

PROOF. [(i) and (iii)] Nonnegativity and positive homogeneity are obvious from the 
definition of YC; also, YC (0) = 0 because 0 E C. We prove convexity via a geometric 
interpretation of (1.2.2). Let 

KC := cone(C x {I}) = {(Ac, A) E IRn x IR : C E C, A;;:: O} 

be the convex conical hull of C x {I} c IRn x R It is convex (beware that K C need 
not be closed) and YC is clearly given by 

yc(x) = inf {A : (x, A) E Kc}. 

Thus, YC is the lower-bound functionof§IY.I.3(g), constructed on the convex set Kc; 
this establishes the convexity of YC, hence its sublinearity. 

Now we prove 
{x E IRn : yc(x):::; I} = C . (1.2.3) 
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This will imply the first part in (iii), thanks to positive homogeneity. Then the second 
part will follow because of (111.2.2.2): 

Coo = n{rC : r > O} 

and closedness of Ye will also result from (iii) via Proposition IY.l.2.2. 
So, to prove (1.2.3), observe first that x E C implies from (1.2.2) that certainly 

yc(x) ~ 1. Conversely, let x be such that yc(x) ~ 1; we must prove that x E C. For 
this we prove that Xk := (1 - II k)x E C for k = 1,2, ... (and then, the desired 
property will come from the closedness of C). By positive homogeneity, Yc(Xk) = 
(1 - l/k)yc(x) < 1, so there is Ak E]O, 1[ such that Xk E AkC, or equivalently 
Xt/Ak E C. Because C is convex and contains the origin,Ak(xkIAk)+(l-Ak)O = Xk 
is in C, which is what we want. 

[(iO] Assume 0 E int C. There is e > 0 such that for all x =f. 0, Xt: := ex I IIx II E C; 
hence Ye (xt:) ~ 1 because of (1.2.3). We deduce by positive homogeneity 

IIxll IIxll 
yc(x) = -yc(xt:) ~ -; 

e e 

this inequality actually holds for all x E IRn (Ye (0) = 0) and Ye is a finite function. 
Conversely, suppose Ye is finite everywhere. By continuity (Theorem IV.3.1.2), 

Ye has an upper bound L > 0 on the unit ball: 

IIxll~1 ==> yc(x)~L ==> xELC, 

where the last implication comes from (iii). In other words, B(O, 1/ L) c c. 0 

Since Ye is the lower-bound function of the cone Ke (= Ke + {OJ x 1R+) of 
Fig. 1.2.1, we know from (IV. 1.3.6) that 

Ke c epi Ye C cl Ke ; 

but Ye has a closed epigraph, therefore 

epi Ye = cl Ke = cone(C x {ID. (1.2.4) 

Since Coo = {OJ if and only if C is compact (Proposition III.2.2.3), we obtain 
another consequence of (iii): 

Corollary 1.2.6 C is compact if and only if Ye (x) > 0 for all x =f. O. o 

Example 1.2.7 The quadratic semi-norms of Example 1.2.3 can be generalized: let 
f E Conv IRn have nonnegative values and be positively homogeneous of degree 2, 
i.e. 

o ~ f(tx) = t 2 f(x) for all x E IRn and all t > O. 

Then, ../1 is convex; in fact 



1 Sublinear Functions 205 

..jJ(x) = inf {A> 0 : J I(x) ~ A} 
= infrA > 0: I(x) ~A2} 
= inf{A>O: x ESl(f)}, 

which displays the sublevel-set 

SI(f) = {x E]Rn : I(x) ~ I} =: C. 

In other words, ..jJ is the gauge of a closed convex set C containing the origin. 0 

Gauges are examples of sublinear functions which are closed. This is not the case 
of all sublinear functions: see the function j of (1.2.1); another example in ]R2 is 

h(~, TJ) := 1 ~~I 
+00 

if'1>O, 
if '1 = 0, 
if17<O. 

By taking the closure, or lower semi-continuous hull, of a sublinear function a, 
we get a new function defined by 

cl a (x) := lim inf a (x') 
X/~X 

(1.2.5) 

which is (i) closed by construction, (ii) convex (Proposition IV. 1.2.6) and (iii) posi
tively homogeneous, as is immediately seen from (1.2.5). For example, to close the 
above h, one must set h(~, 0) = 0 for all;. We retain from this observation that, when 
we close a sublinear function, we obtain a new function which is closed, of course, but 
which inherits sublinearity. The subclass of sublinear functions that are also closed is 
extremely important, particularly for minimization; in fact most of our study will be 
restricted to these. 

Note that, for a closed sublinear function a, 

a(O) ~ lima(tx) = 0 for all x E doma , 
t.j,o 

so certainly a (0) = 0; otherwise, dom a would be empty, a situation that we re
ject from our definitions. Another observation is that a closed sublinear function a 
coincides with its asymptotic function: 

a~ = a if a is closed and sublinear 

(take Xo = 0 in the definition of Proposition IV.3.2.2). In partiCUlar, if a is finite 
everywhere, then Proposition Iv.3.2.7 tells us that it is Lipschitzian, and its best 
Lipschitz constant is 

sup {a(d) : IIdll = I}. (l.2.6) 



206 V. Sublinearity and Support Functions 

1.3 The Convex Cone of All Closed Sublinear Functions 

Similarly to convex functions, sublinear functions, closed or not, can be combined to 
give new sublinear functions. 

Proposition 1.3.1 

(i) If al and a2 are [closed] sublinear and tl, t2 are positive numbers, then a 
tlal + tza2 is [closed] sublinear, ifnot identically +00. 

(ii) If {aj }jEJ is a family of [closed] sublinear functions, then a := SUPjEJ aj is 
[closed] sublinear, if not identically +00. 

PROOF. Concerning convexity and closedness, everything is known from §IY.2. Note 
in passing that a closed sublinear function is zero (hence finite) at zero. As for positive 
homogeneity, it is straightforward. 0 

Proposition 1.3.2 Let {aj} j E J be a family of sublinear functions all minorized by 
some linear function. Then 

(i) a := co(infjEJ aj) is sublinear. 

(ii) If J = {1, ... , m} is a finite set, we obtain the infimal convolution 

comin{al,"" am} = al t··· tam. 

PROOF. [(i)] Once again, the only thing to prove for (i) is positive homogeneity. Actu
ally, it suffices to multiply x and each Xj by t > 0 in a formula giving co(infj aj)(x), 
say (IY.2.5.4). 

[(ii)] By definition, computing co(minj aj)(x) amounts to solving the minimization 
problem in the m couples of variables (Xj, Olj) E domaj x lR 

I inf I:j=1 Oljaj (Xj) Olj ~ 0 
",m 1 ",m (l.3.1) 
L..j=IOlj = 'L..j=1 OljXj = X . 

In view of positive homogeneity, the variables Olj play no role by themselves: the 
relevant variables are actually the products OljXj and (1.3.1) can be written - denoting 
OljXj again by Xj: 

inf {I:J!=I aj(xj) : I:j=1 Xj = x} . 

We recognize the infimal convolution of the aj's. o 

From Proposition 1.3.1(i), the collection of all closed sublinear functions has an 
algebraic structure: it is a convex cone contained in Conv]Rn. It contains another 
convex cone, namely the collection of finite sublinear functions. 

A topological structure can be defined on the latter cone. In linear analysis, one 
defines the Euclidean distance between two linear forms .f I = (Sl, .) and.f2 = (S2, .): 

1I.f1 - .f2 11 := IIsl - szll = max l.fl(x) - .fz(x)l. 
IIxll~1 

A distance can also be defined on the convex cone of everywhere finite sublinear 
functions (the extended-valued case is somewhat more delicate), which of course 
contains the vector space of linear forms. 
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Theorem 1.3.3 For at and a2 in the set cP of sublinear jUnctions that are finite 
eve~her~ define 

L1(a(, a2):= max lat (x) - a2(x)l. 
IIxll~1 

(1.3.2) 

Then L1 is a distance on CP. 

PROOF. Clearly L1(al, a2) < +00 and L1(al, a2) = L1(a2, al)' Now positive homo
geneity of at and a2 gives for all x =f. 0 

lal (x) - a2(x) I = IIxlllat (fxlr) - a2(fxlr) I 
:;:; IIxllmaxllull=tlal(u) -a2(u)1 
:;:; IIx II L1(aJ, a2) . 

In addition, al (0) = a2(0) = 0, so 

lat (x) - a2(x) I :;:; IIxll L1(aJ, a2) for all x E ]Rn 

and L1 (at, a2) = 0 if and only if al = a2. 
As for the triangle inequality, we have for arbitrary aJ, a2, a3 in cP 

lat (x) - a3(x)1 :;:; lat (x) - a2(x)1 + la2(x) - a3(x)1 for all x E ]Rn , 

so there holds 

L1 (ai, a3) :;:; max II x II ~ I [Ial (x) - a2(x) I + la2(x) - a3(x)l] 
:;:; maxllxll ~ I lal (x) - a2(x) I + max II x II ~ I la2(x) - a3(x)1 

which is the required inequality. o 

The index-set in (1.3.2) can be replaced by the unit sphere IIxll = 1, just as in 
(1.2.6); and the distance between an arbitrary a E cP and the zero-function (which 
is in CP) is just the value (1.2.6). The function L1 (', 0) acts like a norm on the convex 
cone CP. 

Example 1.3.4 Consider m . ml and m . moo, the tl- and too-norms on lR.n . They are finite 
sublinear (Example 1.2.2) and there holds 

n-l 
L1 (m . ml, II· 100) = .;n . 

To accept this formula, consider that, for symmetry reasons, the maximum in the definition 
(1.3.2) of L1 is achieved at x = (I/..jii, ... , I/.,fo). 0 

The convergence associated with this new distance function turns out to be the 
natural one: 

Theorem 1.3.5 Let {ak} be a sequence of finite sublinear jUnctions and let a be a 
finite jUnction. Then the following are equivalent when k -+ +00: 

(i) {ak} converges pointwise to a; 
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(ii) {ad converges to a uniformly on each compact set of[{n; 

(iii) Ll(ab a) -+ O. 

PROOF. First, the (finite) function a is of course sublinear whenever it is the pointwise 
limit of sublinear functions. The equivalence between (i) and (ii) comes from the 
general Theorem IV. 3 .1.5 on the convergence of convex functions. 

Now, (ii) clearly implies (iii). Conversely Ll(ak' a) -+ 0 is the uniform conver
gence on the unit ball, hence on any ball of radius L > 0 (the maximand in (1.3.2) is 
positively homogeneous), hence on any compact set. 0 

2 The Support Function of a Nonempty Set 

2.1 Definitions, Interpretations 

Definition 2.1.1 Let S be a nonempty set in [{n. The function as : [{n -+ [{U {+oo} 
defined by 

[{n3Xt-7as(x):=sup{(s,x}: SES} 

is called the support jUnction of S. 

(2.1.1) 

o 

For a given S, the support function is therefore attached to the scalar product (', .): in 
(2.1.1), the space where s runs and the space where as acts are dual to each other. It follows, 
for example, that if the scalar product is changed, S remaining the same, as is changed. 

The supremum in (2.1.1) may be finite or infinite, achieved on S or not. In this 
context, S can be interpreted as an index set: asO is the supremum of the collection 
of linear forms (s, .) over S. We obtain immediately: 

Proposition 2.1.2 A support jUnction is closed and sublinear. 

PROOF. This results from Proposition 1.3.1(ii) (a linear form is closed and convex!). 
Observe in particular that a support function is null (hence < +(0) at the origin. 0 

The domain of as is a convex cone, closed or not. Actually, x E dom as means 
that, for some r := as(x): 

S c {s E [{n : (s, x) ~ r} (2.1.2) 

i.e. S is contained in a closed half-space "opposite" to x. 

Proposition 2.1.3 The support function of S is finite everywhere if and only if S is 
bounded. 

PROOF. Let S be bounded, say S c B(O, L) for some L > O. Then 

(s, x} ~ IIsll IIxll ~ Lllxll for all s E S, 

which implies as (x) ~ LUx II for all x E [{n. 



2 The Support Function of a Nonempty Set 209 

Conversely, finiteness of the convex as implies its continuity on the whole space 
(Theorem IV.3.1.2), hence its local boundedness: for some L, 

(s, x) :::; as(x) :::; L for all (s, x) E S x B(O, I). 

If s =1= 0, we can take x = slllsil in the above relation, which implies IIsll :::; L. 0 

Observing that 

-as(-x) = - sup [-(s, x)] = inf (s, x), 
SES SES 

the number as(x) + as( -x) of (1. 1.6) is particularly interesting here: 

Definition 2.1.4 The breadth of the nonempty set S along x =1= 0 is 

as(x) + as( -x) = sup (s, x) - inf (s, x) , 
SES SES 

a number in [0, +00]. It is 0 if and only if S lies entirely in some affine hyperplane 
orthogonal to x; such a hyperplane is expressed as 

{Y E]Rn : (y, x) = asex)} , 

which in particular contains S. The intersection of all these hyperplanes is just the 
affine hull of S. 0 

If x has norm 1 and is interpreted as a direction, the breadth of S measures how 
"thick" S is along x: it is the distance between the two hyperplanes orthogonal to x 
and "squeezing" S. This observation calls for a more general comment: a sublinear 
function x f--+ a (x) being positively homogeneous, the norm of its argument x has 
little importance. This argument should always be thought of as an oriented direction, 
i.e. a normalized vector of ]Rn. Accordingly, we will generally use from now on the 
notation a(d), more suggestive for a support function than a(x). 

Here, we give two geometric constructions which help interpreting a support 
function. 

Interpretation 2.1.5 (Construction in ]Rn) Given S C ]Rn and d =1= 0, consider for 
each r E ]R the closed half-space alluded to in (2.1.2): 

Hir := {Z E]Rn : (z, d) :::; r} . (2.1.3) 

If (2.1.2) holds, we can find r large enough so that S C Hd- . The value as(d) is the ,r 

smallest of those r: decreasing r as much as possible while keeping S in Hd- means ,r 
"leaning" onto S the affine hyperplane 

Hd,r:={ZE]Rn: (z,d)=r}. 

See Fig. 2.1.1 for an illustration. 
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Hd•r 

Fig. 2.1.1. Supporting hyperplanes and support functions 

If (2.1.2) does not hold, however, this operation is impossible: S is "unbounded 
in the oriented direction" d and as (d) = +00. Take for example in JR2 

S := {(g, 0) : g ~ O} . 

For d = 0,1) say (and assuming that (.,.) is the usual dot-product), no closed 
half-space of the form (2.1.3) can contain S, even ifr is increased to +00. 

If S is compact, the supremum ofthe linear form (., d) is achieved on S, no matter 
how d is chosen. This means that, somewhere on the hyperplane Hd,CJs(d) there is 
some Sd which is also in S, actually a boundary point of S. 0 

Figure 2.1.1 suggests (and Proposition 2.2.1 below confirms) that the support 
functions of S and of co S coincide. Note also that the distance from the origin 0 to 
the "optimal" hyperplane Hd,CJs(d) is las(d/lldl!)l. This is easily confirmed: project 
the origin onto Hd,CJs(d) to obtain the vector t*d such that (d, t*d) = as(d). Then 
the distance from 0 to Hd,CJs(d) is IIt*dll. 

Interpretation 2.1.6 (Construction in JRn+l) In the graph-space JRn x JR, we shift 
S down to JRn x {-I} and consider the convex conical hull K S of this shifted copy of 
S. Then the polar cone (Ks)O of Ks is nothing else than the epigraph of as. Indeed 

so that 

KS =JR+co(Sx (-I}) = co [JR+(S x (-I})], 

(Ks)O = {Cd, r): t(s, d) - tr ~ 0 for all S E Sand t > O} 
= {(d,r): (s,d) ~rforalls E S} 
= {(d, r) : SUPSES(S, d) ~ r} = epi as. 

This is illustrated on Fig. 2.1.2. We have intentionally chosen a case with 0 E S. It 
implies as (d) ~ 0 for all d, as is obvious just from its definition (2.1.1). This property 
is fundamental in optimization (and frankly, the picture is then a lot easier to draw!). 

o 
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Fig. 2.1.2. The epigraph of a support function 

2.2 Basic Properties 

First, we list some properties of support functions that are directly derived from their 
definition. 

Proposition 2.2.1 For S C ]Rn nonempty, there holds as = acl S = a co s; whence 

as=aoos· (2.2.1) 

PROOF. The continuity [resp. linearity, hence convexity] of the function (s, .), which 
is maximized over S, implies that as = acl S [resp. as = aco s]. Knowing that 
co S = cl co S (Proposition II1.1.4.2), (2.2.1) follows immediately. 0 

This result is of utmost importance: it says that the concept of support function 
does not distinguish a set S from its closed convex hull. Thus, when dealing with 
support functions, it makes no difference if we restrict ourselves to the case of closed 
convex sets. 

As a result of (2.1.1) and (2.2.1), we can write 

s E co S ==> [(s, d) ~ as(d) for all dE ]Rn] . 

Now, what about the converse? Can it be that the above (infinite) set of inequalities 
still holds if s is not in co S? The answer is no: 

Theorem 2.2.2 For the nonempty S C ]Rn and its supportfunction as, there holds 

SECOS ¢=::::} [(s,d)~as(d) foralldEX], (2.2.2) 

where the set X !:pn be indifferently taken as: the whole of ]Rn, the unit ball B(O, 1) 
or its boundary B, or dom as. 
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PROOF. First, the equivalence between all the choices for X is clear enough; in partic
ular due to positive homogeneity. Because "=}" is Proposition 2.2.1, we have to prove 
",¢=" only, with X = ]Rn say. 

Suppose that s f/. co S. Then Is} and co S can be strictly separated (Theo
rem 111.4.1.1): there exists do E ]Rn such that 

{s, do} > sup {{s', do} : s' E co S} = as(do), 

where the last equality is (2.2.1). Our result is proved by contradiction. o 

As a result, a closed convex set is completely determined by its support func
tion: between the classes of closed convex sets and of support functions, there is a 
correspondence which is bijective, as illustrated on Fig. 2.2.1. 

take the SUD of <s .> over C 
closed support 
convex function 
set C (J 

filter x with "<5,.> .. (J?" 

Fig.2.2.1. Correspondence between closed convex sets and support functions 

Thus, whether a given point s belongs to a given closed convex set S can be 
checked with the help of (2.2.2), which holds as an equivalence. Actually, more can 
be said: the support functionfilters the interior, the relative interior and the affine hull 
of a closed convex set. 

This property is best understood with Fig. 1.1.2 in mind. Let V be the subspace 
parallel to aff S, and U := Vi.. Indeed, U is just given in (1.1.8) with a = as: U 
[resp. V] can be viewed either as the subspace where the sublinear as is linear [resp. 
kinky], or where the supported set S is flat [ resp. thick]. When drawn in the geometric 
space of convex sets, Fig. 1.1.2 becomes Fig. 2.2.2, which is very helpful to follow 
the next proof. 

Theorem 2.2.3 Let S be a nonempty closed convex set in ]Rn. Then 

(i) s E aff S if and only if 

{s, d} = as(d) for all d with as(d) + as( -d) = 0; 

(ii) s E ri S if and only if 

(s, d) < as(d) for all d with as(d) + as(-d) > 0; 

(iii) in particular, s E int S if and only if 

(s, d) < as(d) for all d =1= o. 

PROOF. [(i)] Let first s E S. We have already seen in Definition 2.1.4 that 

-as( -d) ~ (s, d} ~ as(d) for all dE ]Rn . 

(2.2.3) 

(2.2.4) 

(2.2.5) 
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altS 

v 

Fig. 2.2.2. Affine hulls and orthogonal spaces 

If the breadth of S along d is zero, we obtain a pair of equalities: for such d, there 
holds 

(s, d) = as(d) , 

an equality which extends by affine combination to any element s E aff S. 
Conversely, let s satisfy (2.2.3). A first case is when the only d described in (2.2.3) 

is d = 0; as a consequence of our observations in Definition 2.1.4, there is no affine 
hyperplane containing S, i.e. aff S = lRn and there is nothing to prove. Otherwise, 
there does exist a hyperplane H containing S; it is defined by 

H:= {p E lRn : (P,dH) = as(dH)} , (2.2.6) 

for some dH =1= O. We proceed to prove (s,·) ~ aH. 
In fact, the breadth of S along dH is certainly 0, hence (s, dH) = as(dH ) because 

of (2.2.3), while (2.2.6) shows that as(dH) = aH(dH). On the other hand, it is 
obvious that aH(d) = +00 if d is not collinear to dH. In summary, we have proved 
(s, d) ~ aH (d) for all d, i.e. s E H. We conclude that our s is in any affine manifold 
containing S: S E aff S. 

[(iii)] In view of positive homogeneity, we can normalize d in (2.2.5); accordingly, 
denote b2' jj the unit sphere. For s E int S, there exists c > 0 such that s + cd E S for 
all dEB . Then, from the very definition (2.1.1), 

as(d) ~ (s + cd, d) = (s, d) + c for all dE jj . 

Conversely, let s E lRn be such that 

as(d) - (s,d) > 0 for all d E B 

which implies, because as is closed and the unit sphere is compact: 

0< c := inf{as(d) - (s, d) : dEB} ~ + 00. 
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Thus 
(s, d) + s ~ used) for all d E jj . 

Now take u with lIu II < s. From the CauchY-Schwarz inequality, we have for all 
dEB 

(s + u, d) = (s, d) + (u, d) ~ (s, d) + s ~ used) 

and this implies s + u E S because of Theorem 2.2.2: s E int S and (iii) is proved. 

[(ii)] Look at Fig. 2.2.2 again: decompose IRn = V $ U, where V is the subspace 
parallel to aff Sand U = V.1. In the decomposition d = dv + du, (', du) is constant 
over S, so S has O-breadth along du and 

used) = sup(s,dv +du} = (s,du) + sup(s, dv) 
SES SES 

for any s E S. With these notations, a direction described as in (2.2.4) is a d such that 

used) + us( -d) = us(dv) + us( -dv) > O. 

Then, (ii) is just (iii) written in the subspace V. o 

We already know that the effective domain of us is a convex cone, which consists 
of all oriented directions "in which S is bounded" (remember Interpretation 2.1.5). 
This can be made more explicit. 

Proposition 2.2.4 Let S be a nonempty closed convex set in IRn. Then cl dom Us and 
the asymptotic cone Soo of S are mutually polar cones. 

PROOF. Recall from §I11.3.2 that, if KI and K2 are two closed convex cones, then 
KI C K2 ifandonlyif(K1)o:::> (K2)o. 

Let p E Soo. Fix So arbitrary in S and use the fact that Soo = nt>ot(S - so) 
(§III.2.2): for all t > 0, we can find St E S such that p = teSt - so). Now, for 
q E domus, there holds 

(p, q) = t(St - so, q) ~ t [us(q) - (so, q)] < +00 

and letting t '" 0 shows that (p, q) ~ O. In other words, domus c (Soo)O; then 
cldomus c (Soo)O since the latter is closed. 

Conversely, let q E (domus)O, which is a cone, hence tq E (domus)O for any 
t > O. Thus, given So E S, we have for arbitrary p E domus 

(so + tq, p) = (so, p) + t(q, p} ~ (so, p) ~ us(p), 

so So + tq E S by virtue of Theorem 2.2.2. In other words 

S -so 
q E -- for all t > 0 

t 

andq E Soo. o 
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2.3 Examples 

Let us start with elementary situations. The simplest example of a support function 
is that of a singleton {s}. Then a{s} is merely (s, .), we have a first illustration of the 
introduction (iii) to this chapter: the concept of a linear form (s, .) can be generalized to 
s not being a singleton, which amounts to generalizing linearity to closed sublinearity 
(more details will be given in §3). The case when S is the unit ball R(O, 1) is also 
rather simple: 

aB(O.I)(d) ~ (II~II ' d) = IIdil (if d # 0) 

and, for s E R(O, 1), the Cauchy-Schwarz inequality implies (s, d) ~ IIdli. Altogether, 

aB(O.I)(d) = IIdil . (2.3.1) 

Our next example is the simplest possible illustration of Proposition 2.2.4, namely 
when Soo is S itself. 

Example 2.3.1 (Cones, Half-Spaces, Subspaces) Let K be a closed convex cone 
of]Rn. Then 

a (d)={ 0 if(s,d~~OforallsEK, 
K +00 otherwIse. 

In other words, aK is the indicator function of the polar cone KO. Note the symmetry: 
since KOO = K, the support function of KO is the indicator of K. 

Two particular cases are of interest. One is when K is a half-space: 

K := {s E]Rn : (s, v) ~ O} ; 

then it is clear enough that 

aK(d) = { 0 if d = tv with t ~ O. 
+00 otherwise. 

(2.3.2) 

Needless to say, the support function of the half-line ]R+v (the polar of K) is in turn 
the indicator of K. 

The other interesting case is that of a subspace. Let A : ]Rn -+ ]Rm be a linear 
operator and H be defined by 

H := Ker A = {s E]Rn : As = O} . 

Then the support function of H is the indicator of the orthogonal subspace H.L: 

aH(d) = IH.L(d) = { 0 if (s. d) = 0 for all s E H. 
+00 otherwise. 

The subspace H.L can be defined with the help of the adjoint of A: 

H.L = (Ker A)l. = ImA* = {A*A : A E ]Rm} . 
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If A or H are defined in terms of linear constraints 

H:= {s E]Rn : (s.aj) =Ofor j = 1 • ...• m} • 

then 
H.L = {EJ!=1 Ajaj : A E ]Rm} . 

All these calculations are useful in constrained optimization, where one often 
deals with closed convex polyhedra expressed as intersections of half-spaces and 
subspaces. 

Figure 2.3.1 illustrates a modification in which our cone K is modified to K' := 
K n B(O. 1). The calculus rules of §3.3 will prove what is suggested by the picture: 
the support function of K' is the distance function to KO (check the similarity of the 
appropriate triangles, and note that aK,(d) = 0 when d E KO). 0 

Fig. 2.3.1. Support function of a truncated cone 

Example 2.3.2 Set 

S := {s = (P. r) E]R2 : P > O. r ~ 1/ p} . 

Its asymptotic cone is 

Soo = {(Po r) E]R2 : p ~ O. i ~ O} 

and, from Proposition 2.2.4: 

domas C {(~. 1]) : ~ ~ O. TJ ~ O}. 

(p) 

(2.3.3) 

The exact status of the boundary of domas (i.e. when ~TJ = 0) is not specified 
by Proposition 2.2.4: is as finite there? The computation of as can be done directly 
from the definitions (2.1.1) and (2.3.3). The following geometrical argument yields 
simpler calculations, however (see Fig. 2.3.2): for given d = (~. TJ) =f:. (0.0). consider 
the hyperplane 

Hd,as(d) = {(a. fJ) : ~a + TJfJ = as(d)}. 



2 The Support Function of a Nonempty Set 217 

dom as 

d 

Fig.2.3.2. A support function 

It has to be tangent to the boundary of S, defined by the equation afJ = 1. So, the 
discriminant a1(d) - 4~1} of the equation in a 

1 
~a + 1}- = as(d) 

a 

must be O. We obtain directly as(~, 1}) = -2Jfii for ~ < 0, 1} < 0 (the sign is "-" 
because 0 ¢ S; remember Theorem 2.2.2). Finally, Proposition 2.1.2 tells us that the 
closed function as(~, 1}) has to be 0 when ~1} = O. All this is confirmed by Fig. 2.3.2. 

o 

Remark 2.3.3 Two features concerning the boundary of domas are worth mentioning on 
the above example: the supremum in (2.1.1) is not attained when d E bddomas (the point 
Sd of Fig. 2.1.1 is sent to infinity when d approaches bddomas), and domaS is closed. 

These are not the only possible cases: Example 2.3.1 shows that the supremum in (2.1.1) 
can well be attained for all dE domas; and in the example 

S:={(p,-r): -r~!p2}, 

dom as is not closed. The difference is that, now, S has no asymptote "at finite distance". 0 

Example 2.3.4 (cf. Example 1.2.3) Let Q be a symmetric positive definite operator 
from ]Rn to ]Rn and consider the sublevel-set 

EQ:= {s E]Rn : (Qs,s) ~ I} . 

The support function of E Q is defined by 

dt--+aEQ(d):=max{(s,d): (Qs,s)~l}. (2.3.4) 

Calling QI/2 the square root of Q, the change of variable p = QI/2s in (2.3.4) gives 

aEQ(d) = max {(p, Q-I/2d) : IIpll2 ~ I} 

whose unique solution for d =I 0 (again Cauchy-Schwarz!) is p = " {r:~~~, and 

finally 
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aEQ(d) = IIQ-I/2dll = J(d, Q-1d}. (2.3.5) 

Observe in this example the "duality" between the gauge x f-+ .j (Qx, x) of E Q and 
its support function (2.3.5). 

When Q is merely symmetric positive semi-definite, E Q becomes an elliptic 
cylinder, whose asymptotic cone is Ker Q (remember Example 1.2.3). Then Proposi
tion 2.2.4 tells us that 

cldomaEQ = (Ker Q)O = (Ker Q).L = 1m Q. 

When dE 1m Q, aEQ(d) is finite indeed and (2.3.5) does hold, Q-1d denoting now 
any element p such that Qp = d. We leave this as an exercise. 0 

3 The Isomorphism Between Closed Convex Sets 
and Closed Sublinear Functions 

3.1 The Fundamental Correspondence 

We have seen in Proposition 2.1.2 that a support function is closed and sublinear. What 
about the converse? Are there closed sublinear functions which support no set in ]Rn? 

The answer is no: any closed sublinear function can be viewed as a support function. 
The key lies in the representation of a closed convex function f via affine functions 
minorizing it: when the starting f is also positively homogeneous, the underlying 
affine functions can be assumed linear. 

Theorem 3.1.1 Let a be a closed sublinear function; then there is a linear jUnction 
minorizing a. In fact, a is the supremum of the linear jUnctions minorizing it. In other 
words, a is the support jUnction of the nonempty closed convex set 

so':= {s E JRn : (s, d) ~ a (d) for all d E JRn} . (3.1.1) 

PROOF. Being convex, a is minorized by some affine function (Proposition IV1.2.1): 
for some (s, r) E JRn x JR, 

(s, d) - r ~ a(d) for all dE JRn . (3.1.2) 

Because a (0) = 0, the above r is nonnegative. Also, by positive homogeneity, 

(s, d) -,tr ~ a(d) for all dE IRn and all t > O. 

Letting t ~ +00, we see that a is actually minorized by a linear function: 

(s, d) ~ a (d) for all d E IRn . (3.1.3) 

Now observe that the minorization (3.1.3) is sharper than (3.1.2): when express
ing the closed convex a as the supremum of all the affine functions minorizing it 
(Proposition IV 1.2.8), we can restrict ourselves to linear functions. In other words 
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a (d) = sup { (s, d) the linear (s, .) minorizes a} ; 

in the above index-set, we just recognize Sa. o 

One of the important points in this result is the nonemptiness of Sa in (3.1.1); we have 
here the analytical form of Hahn-Banach theorem: there exists a linear function minorizing 
the closed sublinear function a. 

Another way of expressing Theorem 3.1.1 is that the closed convex set epi a is the 
intersection ofthe closed half-spaces containing it; but since epi a is actually a cone, these half
spaces can be assumed to have linear hyperplanes as boundaries (remember Remark III.4.2.8). 
A connectionbetweenSa andtheconepolartoepi a isthusintroduced;Chap. VI willexploit 
this remark. 

The main consequence of this important theorem is an assessment of closed 
sublinear functions. Section 2.2 has established a bijection from closed convex sets 
onto support functions. Thanks to Theorem 3.1.1, this bijection is actually onto closed 
sublinear functions, which is of course much more satisfactory: the latter class of 
functions is defined in abstracto, while the former class was ad hoc, as far as this 
bijection was concerned. 

Thus, the wording "support function" in Fig. 2.2.1 can everywhere be replaced 
by "closed sublinear". This replacement can be done in Theorem 2.2.2 as well: 

Corollary 3.1.2 For a nonempty closed convex set S and a closed sublinear function 
a, the following are equivalent: 

(i) a is the support function of S , 
(ii) S = {s : (s, d) ~ a (d) for all d E X}, where the set X can be indifferently 

taken as: the whole of ]Rn, the unit ball B(O, I) or its boundary, or doma. 

PROOF. The case X =]Rn is just Theorem 3.1.1. The other cases are then clear. 0 

Remember §III.4.2(b): a closed convex set S is geometrically characterized as an inter
section of half-spaces, which in tum can be characterized in terms of the support function of 
S. Each (d, r) E lRn x lR defines (for d =j:. 0) the half-space Hi,r via (2.1.3). This half-space 
contains S if and only if r ;::: a (d), and Corollary 3.1.2 expresses that 

S = n{s : (s, d) ::;; r for all dE lRn and r ;::: a(d)} , 

in which the couple (d, r) plays the role of an index, running in the index-set epi a C lRn x lR 
(compare with the discussion after Definition 2.1.1). Of course, this index-set can be reduced 
down to lRn : the above formula can be simplified to 

S = n{s : (s, d) ::;; a (d) for all d E X} 

where X can be taken as in Corollary 3.1.2. 

Recall from §III.2.4 that an exposed face of a convex set S is defined as the set 
of points of S which maximize some (nonzero) linear form. This concept appears as 
particularly welcome in the context of support functions: 



220 V. Sublinearity and Support Functions 

Definition 3.1.3 Let S be a nonempty closed convex set, with support function a. 
For given d =1= 0, the set 

Fs(d) := {s E S : (s, d) = a(d)} 

is called the exposed face of S associated with d, or the face exposed by d. 0 

For a unified notation, the entire S can be considered as the face exposed by O. 
On the other hand, a given d may expose no face at all (when S is unbounded). 

Symmetrically to Definition 3.1.3, one can ask what are those d E R.n such that 
(', d) is maximized at a given s E S. We obtain nothing other than the normal cone 
Ns(s) to Sat s, as is obvious from its Definition III.5.2.3. The following result is 
simply a restatement of Proposition 111.5.3.3. 

Proposition 3.1.4 For s in a nonempty closed convex set S, it holds 

S E Fs(d) ¢=> dE Ns(s). o 

When d describes the set of normalized directions, the corresponding exposed 
faces exactly describe the boundary of S: 

Proposition 3.1.5 For a nonempty closed convex set S, it holds 

bdS=U{Fs(d): dEX} 

where X can be indifferently taken as: R.n\{O}, the unit sphere ii, or domas\{O}. 

PROOF. Observe from Definition 3.1.3 that the face exposed by d =1= 0 does not depend 
on II d II. This establishes the equivalence between the first two choices for X. As for 
the third choice, it is due to the fact that F Sed) = 0 if d ¢ dom as. 

Now, if s is interior to S and d =1= 0, then s + ed E Sand s cannot be a maximizer 
of (-, d): s is not in the face exposed by d. Conversely, take s on the boundary of S. 
Then Ns(s) contains a nonzero vector d; by Proposition 3.1.4, s E F sed). 0 

3.2 Example: Norms and Their Duals, Polarity 

Let IU . III be an arbitrary norm on R.n. It is a positive (except at 0) closed sublinear 
function and its sublevel-set 

B := {x E R.n : Ilxlll :( I} (3.2.1) 

is particularly interesting. It is the unit ball associated with the norm, a symmetric, 
convex, compact set containing the origin as an interior point; III • III is the gauge of 
B (§ 1.2). On the other hand, why not take the set whose support function is III . III? In 
view of Corollary 3.1.2, it is defined by 

{s E R.n : (s,x):( IIlxlD for all x E R.n} =: B*. (3.2.2) 
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It is an easy exercise to check that B* is also symmetric, convex, compact; and it 
contains the origin as an interior point (Theorem 2.2.3(iii». 

Now, we have two closed convex sets B and B*. We can generate two more closed 
sublinear functions: take the support function aB of B and the gauge YB* of B*. It 
turns out that we then obtain the same function, which actually is a norm, denoted 
III . III *: the so-called dual norm of III . III. The game finishes there: the two sets that III . III * 
supports and is the gauge of, respectively, are B and B*. 

Proposition 3.2.1 Let Band B* be defined by (3.2.1) and (3.2.2), where III . III is a 
norm on ]Rn. The supportfonction of B and the gauge of B* are the same function 
III . III * defined by 

Illslll*:=max{(s,x): IlIxlll~I}. (3.2.3) 

Furthermore, III· m* is a norm on ]Rn. The supportfunction of its unit ball B* and 
the gauge of its supported set B are the same function III . III: there holds 

III x III = max {(s, x) : mslll*~l}. (3.2.4) 

PROOF. It is a particular case of the results 3.2.4 and 3.2.5 below. D 

Note the following symmetric relation ("Cauchy-Schwarz") 

(s, x) ~ Illslll* III x III for all (s, x) E ]Rn x ]Rn , (3.2.5) 

which comes directly from (3.2.3), using positive homogeneity. It expresses the du
ality correspondence between the two Banach spaces (]Rn, III . III) and (]Rn, III . 111*). 
Furthermore, equality holds in (3.2.5) when s =J:. 0 and x =J:. 0 form an associated pair 
via Proposition 3.1.4: 

s . x 
IIIslll* E FB*(x) oreqUlvalently Illxlll E FB(S). 

Thus, a norm automatically defines another norm (its dual); and the operation is 
symmetric: the dual of the dual norm is the norm itself. 

Remark 3.2.2 The operation (3 .2.3) - (3.2.4) establishes a "duality" correspondence 
within a subclass of closed sublinear functions: those that are symmetric, finite ev
erywhere, and positive (except at 0) - in short, norms. 

This analytic operation has its counterpart in the geometric world: starting from 
a closed convex set which is symmetric, bounded and contains the origin as an in
terior point - in a word, a "unit ball" - such as B, one constructs via gauges and 
support functions another closed convex set B* which has the same properties. This 
correspondence is called polarity, demonstrated by Fig. 3.2.1: the polar (set) of B is 

B*:= {s : (s,x)::::; 1 for all x E B} 

and symmetrically, the polar of B* is 

(B*)* := {x : (s, x) ::::; 1 for all s E B*} = B. 

(3.2.6) 

(3.2.7) 
D 
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Norm 
as a closed sublinear 
nonnegative function 

unit ball S* 
as a closed convex set 

containing 0 

take the 
L sublevel-set ---

at level 1 

/~ 
take the 

--sublevel-set --
at level 1 

Fig.3.2.1. Dual norms and polar sets 

unit ball S 
as closed convex set 

containing 0 

dual norm 
as a closed sublinear 
nonnegative function 

We leave it as an exercise to draw the unit balls of the ll- and loo-norms on ]R.n: 

n 

IllxlliI := ~)xil and ~Ixilloo:= max {Ix 1 I. ... , Ixnl} 
i=1 

(proceed as in Interpretation 2.1.5: a picture in ]R.n will do). Observe on the picture 
thus obtained that they are in polarity correspondence ifthe scalar product is the usual 
dot-product (x, y) = x T y. 

A more complicated situation is illustrated by the "hexagonal norm" of Fig. 3.2.2. 
Observe how elongation in one direction corresponds to contraction for the polar. Also: 
a facet of one of the sets is exposed by a vertex in the polar. 

Fig.3.2.2. Hexagonal unit-balls 

Example 3.2.3 Other important norms are the quadratic norms, defined by 

IIxllQ := ..j(Qx, x) 

where Q is a symmetric positive definite linear operator. They are important because 
they derive from a scalar product on ]R.n, namely: 

(x, Y)Q := (Qx, y). 

We refer to Example 2.3.4, more precisely formula (2.3.5), to compute the corre
sponding dual norm 
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(lIsIlQ)* = ../(s, Q-1s) = IIsIlQ-1 . 

When Q = In, we get back the Euclidean norm (., .) 1/2. A comparison of (2.3.1) 
and (3.2.3) shows that it is self-dual: II . 11* = II . II. Among all the possible norms on 
]Rn, it is the only one having this property (once the scalar product is chosen!). 0 

Actually, polarity neither relies upon symmetry, nor boundedness, nor on having 
o as an interior point. To take gauges and support functions resulting in (3.2.6) -
(3.2.7), the only important property is after all that 0 be in the closed convex set under 
consideration (B or B*). In other words, the polarity relations (3.2.6), (3.2.7) establish 
an involution between sets that are merely closed convex, and contain the origin. More 
precisely, we have the following result: 

Proposition 3.2.4 Let C be a closed convex set containing the origin. Its gauge Ye 
is the support function of a closed convex set containing the origin, namely 

CO := {s E]Rn : (s, d) ~ 1 for all dEC}, (3.2.8) 

which defines the polar (set) of C. 

PROOF. We know that Ye (which, by Theorem 1.2.5(i), is closed, sublinear and non
negative) is the support function of some closed convex set containing the origin, say 
D; from (3.1.1), 

D = {s E]Rn : (s, d) ~ r for all (d, r) E epi yc}. 

As seen in (1.2.4), epi Ye is the closed convex conical hull of C x {I}; we can use 
positive homogeneity to write 

D = {s E]Rn : (s, d) ~ 1 for all d such that yc(d) ~ I}. 

In view of Theorem 1.2.5(iii), the above index-set is just C; in other words, D = Co. 

o 

Geometrically, the above proof is illustrated by Fig. 3.2.3, in which dual elements 
are drawn in dashed lines: D = Co is obtained by cutting the polar cone (epi ye)O at 
the level -1. Turn the picture upside down: cutting the polar cone (epi yeo) ° at the 
level which has now become -1, we obtain (CO)o. But the polarity between closed 
convex cones is involutive: the picture shows that (epi Yeo)O is our original cone 
epi Ye. In other words, Coo = C, Proposition 3.2.4 has its dual version: 

Corollary 3.2.5 Let C be a closed convex set containing the origin. Its support 
function ae is the gauge of CO. 0 

Remark 3.2.6 The elementary operation making up polarity is a one-to-one mapping be
tween nonzero vectors and affine hyperplanes not containing the origin, via the equation 
inspired from (3.2.8): 
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epi 'Yc = epi O"c· 

··~o Ida = .~). Ida 

Fig. 3.2.3. Gauges and supports 

s r+ H(s) := HS.l = {y E JRn : (s. y) = l}. (3.2.9) 

Direct calculations show for example that the polar of the half-space 

H- := {y = (~, 1/) E JR2 : ~ ~ 2} 

is the segment 
(H-)O = {(p, 0) : 0 ~ p ~ 1/2}. 

This simple example suggests the following comment: if (j is a given nonnegative closed 
sublinear function, it is the gauge of a set G which can be immediately constructed: along 
o # s E lRn, plot the point g(s) = s la (s) E [0, +oo]s. Then G is the union of the segments 
[0, g(s)], with s describing the unit sphere. If, along the same s, we plot the point a(s)s, we 
likewise get a description of the set S supported by a, but in a much less direct way: G is 
now enveloped by the affine hyperplane orthogonal to s and containing the point (j (s)s; now, 
differentiation is involved. 

..fIl"·~- -.••.•• 
/··c t~ ..... \ 
: ~: 
: \6: 

\. " .. f 
'. . .... . ... ..... ..... 

o 
Fig.3.2.4. Description of mutually polar sets 

An expert in geometry will for example see on Fig. 3.2.4 that the polar of the circle 

c = {(p,.) : p2 + (. -1/2)2 ~ 1/4} 
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has a parabolic boundary. We leave it as an exercise to compute the gauge of C, and to realize 
that it is the support function of 

P={(~,IJ): ~2~1-1J}. 

Constructing a set from its gauge thus appears to be substantially easier than it is from its 
support function. Furthermore, to make a support function, we need a scalar product, while a 
gauge just needs an origin in ~n. These advantages, however, are balanced by the rich calculus 
which can be developed with support functions, and which will be the subject of §3.3. 0 

It is clear from (3.2.8) that, for all (d, s) E C X Co, (s, d) :::;; 1; this implies in 
particular that no nonzero s E Co can be in the asymptotic cone of C. Furthermore, 
the property (s, d) = 1 means thatd exposes in Co a face Fco(d) containings; ands 
exposes likewise in Coo = C a face Fe(s) containing d. Because the boundary of a 
closed convex set is described by its exposed faces (Proposition 3.1.5), the following 
result is then natural; compare it with Fig. 3.2.2. 

Proposition 3.2.7 Let C he a nonempty compact convex set haVing 0 in its interior, 
so that Co enjoys the same properties. Then, for all d and s in ]Rn, the following 
statements are equivalent (the notation (3.2.9) is used) 

(i) H(s) is a supporting hyperplane to C at d; 

(ii) H(d) is a supporting hyperplane to Co at s; 

(iii) dE bdC, s E bdCo and (s, d) = 1; 
(iv) dEC, S E Co and (s, d) = 1 . 

PROOF. Left as an exercise; the assumptions are present to make sure that every nonzero 
vector in ]Rn does expose a face in each set. 0 

Finally, suppose that C in (3.2.8) is a cone. By positive homogeneity, the number 
"1" can be replaced by any positive number, and even by "0" (remember the proof of 
Theorem 3.1.1). We recognize the definition of polarity between closed convex cones. 

3.3 Calculus with Support Functions 

From § 1.3, the set of sublinear functions has a structure allowing calculus. Likewise, 
a calculus exists with subsets of IRn. Then a natural question is: to what extent are 
these structures in correspondence via the supporting operation? In other words, to 
what extent is the supporting operation an isomorphism? The answer turns out to be 
very rich indeed. 

We start with the order relation 

Theorem 3.3.1 Let SI and S2 be nonempty closed convex sets; call CTI and CT2 their 
support functions. Then 

SI C S2 ~ CTI (d) :::;; CT2 (d) for all d E ]Rn . 
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PROOF. Apply the equivalence stated in Corollary 3.1.2: 

SI C S2 ¢=> s E S2 for all s E SI 
¢=> a2(d) ~ (s, d) for all s E SI and all dE R n 

¢=> a2(d).~ SUPSES\ (s, d) for all d ERn. o 

In a way, the above result generalizes Theorem 2.2.2. It can be supplemented with 
a partial ordering rule: 

Corollary 3.3.2 Let Pv(S) denote the projection ofa set S onto ajixed subspace V. 
If S I and S2 are nonempty closed and convex. 

cl(Pv(SI» c cl(Pv(S2» ¢=> as\:::; aS2 on V. 

PROOF. Theorem 3.3.1 tells us that the first inclusion is equivalent to 

apv(s\)(d) :::; aPV(S2) (d) for all d ERn, 

which actually means 

aPv(s\)(d) :::; apV(S2) (d) for all dE V. 

(3.3.1) 

(3.3.2) 

The reason is that, in terms of the decomposition d = dv + dv-L, we have (s, d) = 
(s, dv) for all s E V. This equality is transmitted to the supremum over SI or S2, both 
sets being included in V. 

Now write any Sv E PV(Si) as Sv = s - Sv-L with S E Si: 

apv(sj)(d) = asj(d) for i = 1,2 andd E V. 

Using these equalities in (3.3.2), the equivalence (3.3.1) is established. o 

The next statement goes with Propositions 1.3.1 and 1.3.2. 

Theorem 3.3.3 

(i) Let 0'1 and 0'2 be the supportfunctions of the nonempty closed convex sets SI and 
S2. Iftl and t2 are positive. then 

tlal + t2a2 is the supportjimction of cl(tISI + t2S2)' 

(ii) Let {aj }jEJ be the support functions of the family of nonempty closed convex 
sets {Sj}jEJ. Then 

SUPjEJ aj is the supportfonction of co {USj : j E J} . 

(iii) Let {aj }jEJ be the support functions of the family of closed convex sets {Sj }jEJ. 
If 

then 

S := n Sj =1= I?J , 
jEJ 

as = co {inf aj : j E J} . 
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PROOF. [(i)] Call S the closed convex set clUISI + t2S2). By definition, its support 
function is 

(is(d) = sup {(tISI + t2S2, d) : SI E SI, S2 E S2} . 

In the above expression, SI and S2 run independently in their index sets SI and S2, tl 

and 12 are positive, so 

(is(d) = 11 sup (s, d) + 12 sup (s, d) . 
SES, SES2 

[(ii)] The support function of S := UjEJSj is 

sup (s, d) = sup [SUPS.ES. (Sj' d)] = sup (ij(d). 
SEUSj jEJ) J JEJ 

This implies (ii) since (is = (iCfJS. 

[(iii)] The set S := nSj being nonempty, it has a support function (is. Now, from 
Corollary 3.1.2, 

S E S ¢:::::::> S E Sj for all j E J 
¢:::::::> (s,·) ~ (ij for all j E J 
¢:::::::> (s,·) ~ infjEJ (ij ¢:::::::> (s,·) ~ co(infjEJ (ij) 

where the last equivalence comes directly from the Definition IY.2.5.3 of a closed con
vex hull. Again Corollary 3.1.2 tells us that the closed sublinear function co(infj E J (ij) 

is just the support function of S. 0 

-It is important to observe in (i) that, if S2 is bounded, then tl SI + t2S2 is automatically 
closed. This addition rule can be used to complete Corollary 3.3.2: the right-hand 
side in (3.3.1) exactly means 

(is, + IV ~ (iS2 + Iv; 

now use Example 2.3.1: I V = (i V J. and finally, (3.3.1) is further equivalent to 

cl(SI + VJ.) C c1(S2 + VJ.). (3.3.3) 

- As for (iii), we have seen in Proposition 1.3.2(ii) that, if J = {I, ... , m} is a finite set, then 
the "co" operation can be replaced by the infimal convolution: there holds 

as,n ... nsm = cl(al t ... tam) . (3.3.4) 

This last formula is a simplification of (iii), but the closure operation should not be forgotten, 
and it is something really complicated; these issues will be addressed more thoroughly in 
§X.2.3. 



228 V. Sublinearity and Support Functions 

- Let K be a closed convex cone and, as in the end of Example 2.3.1, take K' := K nB(O, 1). 
In view ofthe above observation, the support function of K' is given by an inf-convolution: 

UK,(d) = cl{infy[uK(Y) + uB(d - y)l} . 

Since UK = IKo, the infimum forces Y to be in KO, in which case UK vanishes; knowing 
that UB(O,I) = II· II, the infimum is 

inf {lid - yll : Y E KO}. 

Here, we are in a favourable case: this infimum is actually a minimum - achieved at the 
projection p KO (d) - and the result is a finite convex function, hence continuous; the closure 
operation is useless and can be omitted. In a word, 

UKnB(O,1) = dKo . (3.3.5) 

- Positive homogeneity can also be exploited in Theorem 3.3.3(i) to write 

ats(d) = as(td) for all d E IRn and t > 0, 

a formula which also holds for negative t Gust write the definition). More generally: 

Proposition 3.3.4 Let A : IRn -+ IRm be a linear operator, IRm being equipped with 
a scalar product ((', .)) for which A * is the adjoint of A. For S c IRn nonempty, we 
have 

aclA(S)(Y) = as(A*y) for all Y E IRm . 

PROOF. Just write the definitions 

aA(S)(Y) = sup ((As, y)) = sup (s, A*y) 
SES SES 

and use Proposition 2.2.1 to obtain the result. o 

Taking an image-function (see §IY.2.4) is another operation involving a linear 
operator. Its status is slightly more delicate. 

Proposition 3.3.5 Let A : IRm -+ IRn be a linear operator, IRm being equipped with 
a scalar product ((', .)) for which A * is the adjoint of A. Let a be the support function 
of a nonempty closed convex set S c IRm. If a is minorized on the inverse image 

-I 

A (d) = {p E IRm : Ap = d} (3.3.6) 

-I 

of each d E IRn, then the support function of the set (A *)(S) is the closure of the 
image-function Aa. 
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PROOF. Our assumption is tailored to make sure that Aa E Conv]Rn (see Theo
rem IV2.4.2). The positive homogeneity of Aa is clear: for d E ]Rn and t > 0, 

(Aa)(td) = inf a(p) = inf ta(pft) = t inf a(q) = t(Aa)(d). 
Ap=td A(p/t)=d Aq=d 

Thus, the closed sublinear function cl(Aa) supports some set S'; by definition, S E S' 
if and only if 

(s, d) ~ inf {a(p) : Ap = d} for all dE ]Rn; 

but this just means 
(s, Ap) ~ a(p) for all p E ]Rm , 

i.e. A*s E S, because (s, Ap) = ((A*s, p)). 

-\ 

D 

Note that (A *)(S), the inverse image ofthe closed set S under the continuous mapping 
A *, is closed. By contrast, Aa need not be a closed function. As a particular case, suppose that 
S is bounded (as is finite everywhere) and that A is surjective; then Aa is finite everywhere 

-\ 

as well, which means that (A *)(S) is compact. 

Remark 3.3.6 The assumption made in Proposition 3.3.5 means exactly that the function 
Aa is nowhere -00; in other words, its closure cl(Aa) is the support function of a nonempty 

-\ 

set: (A*)(S) =f 0. This last property can be rewritten as 

S n ImA* =f 0 or 0 E S - ImA* = S + (Ker A)-L. (3.3.7) 

On the other hand, the same starting assumption implies that (3.3 .6) must hold in particular 
for d = O. Then a is bounded from below on the subspace Ker A; by positive homogeneity, 
its lower bound is 0 on that subspace. Applying Corollary 3.3.2 and (3.3.3), this means 

o E cl(PKerAS) or 0 E cl[S + (Ker A)-L]. (3.3.8) 

Yet, the stronger property (3.3.7) is really necessary for Proposition 3.3.5 to hold. For a 
counter-example, define A : ]R2 --+ ]R by A(~, TJ) = ~ and S of (2.3.3). Then (3.3.8) holds 
but not (3.3.7); as seen in Example 2.3.2, we have here 

which is -00 if ~ < O. 

(Aas)(~) = inf -2,,;r;] 
1)";;0 

for all ~:( 0, 

o 

It has already been mentioned that taking an image-function is an important oper
ation, from which several other operations can be constructed. We give two examples 
inspired from those at the end of §IV2.4: 

- Let S, and S2 be two nonempty closed convex sets of]Rn, with support functions a, 
and a2 respectively. With]Rm = ]Rn x ]Rn, take A (x, y) = x + y and a (d" d2) = 
a, (dd + a2(d2); observe that a is the support function of S = S, X S2, associated 
with the scalar product 
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(((SI,S2), (dh d2))) = (sl,dl ) + (s2,d2). 

Then we obtain Aa = al t a2' On the other hand, the adjoint of A is clearly given 
by 

A*x = (x,x) E]Rn x]Rn for all x E]Rn, 

so that the inverse image of S under A * is nothing but SI n S2: we recover (3.3.4). 

- Let a be the support function of some nonempty closed convex set S C ]Rn x ]RP 

and let A (x, y) = x, so that the image of a under A is defined by 

]Rn 3 X 1-+ (Aa)(x) = inf {a(x, y) : y E ]RP} . 

Now A* is 
]Rn 3 x 1-+ A*x = (x, 0) E]Rn x ]RP 

and we obtain that cl(Aa) is the support function of the "slice" 

{x E]Rn : (x,O) E S}. 

This last set must not be confused with the projection of S onto ]Rn, whose support 
function is x 1-+ as (x , 0) (Proposition 3.3.4). 

Remark 3.3.7 Let us mention some more rules dealing with the operations reviewed 
in §IY.2.3: 

- The closure of a perspective-function j is the support function of a (nonempty 
closed convex) set in ]R x ]Rn. A good exercise is to try and figure out what it looks 
like; it will be extensively studied in Chap. XI (see §XI.1.2). 

- The support function of a star-difference is obtained as follows. Let SI and S2 be 
two nonempty closed convex sets, with S2 bounded; assuming S := SI .:!: S2 =1= 0, 

as = coCas, - as2 ) • 

- On the other hand, the deconvolution yields an interesting exercise, even though the 
result is of little value. Let al and a2 be two closed sublinear functions. One can 
prove that their deconvolution al Va2 is closed, convex and positively homogeneous. 
Most of the time, it is identically +00; a non-degenerate situation corresponds to 
(al V a2)(0) = 0; it is obtained if and only if al ~ a2, and then al Va2 = al. 0 

Having studied the isomorphism with respect to order and algebraic structures, we 
pass to topologies. Theorem 1.3.3 has defined a distance Ll on the set of finite sublinear 
functions. Likewise, the Hausdorff distance Ll H can be defined for nonempty closed 
sets (see §A.5). When restricted to nonempty compact convex sets, Ll H plays the role 
of the distance introduced in Theorem 1.3.3: 

Theorem 3.3.8 If S and Sf are two nonempty compact convex sets of ]Rn, 

Ll(as, as'):= max las(d) - as' (d) I = LlH(S, S'). 
IIdll';;;l 

(3.3.9) 
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PROOF. As already mentioned, for all r ) 0, the property 

max {ds(d) : d E Sf} ~ r (3.3.10) 

simply means 
Sf C S + B(D, r). 

Now, the support function of BCO, 1) is II . II - see (2.3.1). Calculus rules on support 
functions therefore tell us that (3.3.10) is also equivalent to 

aSfCd) ~ as(d) + rlldll for all dE ]Rn {==> max [as,Cd) - as Cd)] ~ r. 
IIdll";;l 

In summary, we have proved 

max dsCd) = max [aSfCd) - as Cd) ] 
dES' IIdll,,;; 1 

and symmetrically 

maxdS,Cd) = max [as Cd) - as,Cd)] ; 
dES IIdll";;l 

the result follows. o 

d 

Fig. 3.3.1. Hausdorff distances 

Naturally, the max in (3.3.9) is attained at some do: for Sand S' convex compact, there 
exists do of norm 1 such that 

11H(S, S') = 11 (as, as/) = las(do) - as,(do) I . 

Figure 3.3.1 illustrates a typical situation. When S' = to}, we obtain the number 

11H({O}, S) = max lis II = max as (d) , 
SES IIdll=l 

already seen in (1.2.6); it is simply the distance from 0 to the most remote hyperplane Hd,as(d) 

touching S (see again the end ofInterpretation 2.1.5). 
Using (3.3.9), it becomes rather easy to compute the distance in Example 1.3.4, which 

becomes the Hausdorff-distance (in fact an excess) between the corresponding unit balls. 

When speaking oflimits of nonempty convex compact sets to a nonempty convex 
compact set, the following result is a further illustration of our isomorphism. 



232 V. Sublinearity and Support Functions 

Proposition 3.3.9 A convex-com pact-valued and locally bounded multifunction F : 
]Rn ---7 ]Rn is outer [resp. inner] semi-continuous at Xo E int dom F if and only if 
its support function x ~ aF(x)(d) is upper [resp. lower] semi-continuous at xofor 
all d of norm 1. 

PROOF. Calculus with support functions tells us that our definition (A.5.2) of outer 
semi-continuity is equivalent to 

'11£ > 0,38 > ° : y E B(xo, 8) ===> aF(y)(d) ~ aF(xo) (d) + £lIdll for all d E ]Rn 

and division by IIdll shows that this is exactly upper semi-continuity ofthe support 
function for IIdll = 1. Same proof for inner/lower semi-continuity. 0 

Thus, a convex-compact-valued, locally bounded mapping F is both outer and 
inner semi-continuous at Xo if and only if its support function aF(.) (d) is continuous 
at Xo for all d. In view of Theorem 1.3.5, aF(.) (d) is then continuous at Xo uniformly 
for d E B(O, 1); and Theorem 3.3.8 tells us that this property in turn means: 

.t1H (F(x), F(xo» ~ ° when x ~ Xo. 

The following interpretation in terms of sequences is useful. 

Corollary 3.3.10 Let {Sk} be a sequence of non empty convex compact sets and S a 
nonempty convex compact set. When k ~ +00, the following are equivalent 

(i) Sk ~ S in the Hausdorffsense, i.e . .t1H(Sk, S) ~ 0; 
(ii) aSk ~ as pointwise; 

(iii) aSk ~ as uniformly on each compact set of ]Rn. o 

Let us sum up this Section 3.3: when combining/comparing closed convex sets, 
one knows what happens to their support functions (apply the results 3.3.1 - 3.3.4). 
Conversely, when closed sublinear functions are combined/compared, one knows what 
happens to the sets they support. The various rules involved are summarized in Ta
ble 3.3.1. Each Si is a nonempty closed convex set, with support function ai. 

This table deserves some comments. 

- Generally speaking, it helps to remember that when a set increases, its support 
function increases (first line); hence the "crossing" of closed convex hulls in the last 
two lines. 

- The rule of the last line comes directly from the definition (2.1.1) if each Si is 
thought of as a singleton. 

- Most of these rules are still applicable without closed convexity of each Si (remem
bering that as = ace; s). For example, the equivalence in the first line requires closed 
convexity of S2 only. We mention one trap, however: when intersecting sets, each 
set must be closed and convex. A counter-example in one dimension is Sl := to, I}, 
S2 := to, 2}; the support functions do not see the difference between Sl n S2 and 
COSl nCOS2' 
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Table 3.3.1. Calculus rules for support functions 

Closed convex sets 
SI C S2 

LlH(SI, S2) (Si bounded) 

Hausdorff convergence 
(on bounded sets) 

IS (t > 0) 

cl(SI + S2) 

cl A(S) (A linear) 
-I 

(A*)(S) (A linear) 

niEISi (nonempty) 

OO(UjE1Sj} 

Closed sublinear functions 
U) ::;;U2 

Ll(u), U2) (ai finite) 

uniform/compact or 
pointwise convergence 

(on finite functions) 

tu 

U) +u2 

U oA* 

cl(Au) 

co infiEI ui (minorized) 

SUPiEI Uj 

Example 3.3.11 (Maximal Eigenvalues) Recall from §Iy'1.3(e) that, if the eigen
values ofa symmetric matrix A are denoted by Al (A) ~ ... ~ An(A), the function 

m 
Sn(JR) 3 A t-+ im{A) := L Aj{A) 

j=1 

is convex - and finite everywhere. Its positive homogeneity is obvious, therefore it is 
the support function of a certain convex compact set Cm of symmetric matrices. Let 
us compute the set C) when the scalar product in Sn (JR) is the standard dot-product 
ofJRnxn: 

n 

((A, B)} := tr AB = L Aij Bij . 
i,j=1 

Indeed, we know that 

A)(A)= sup xTAx= sup ((xxT,A}). 
xTx=) xTx=1 

Hence C) is the closed convex hull of the set of matrices 

{xx T : x T x = I} , 

which is clearly compact. Actually, its Hausdorff distance to {OJ is 

LiH({O},CI ) = max J((xxT,xxT}}=l. 
xTx=1 

Incidentally, AI 0 is therefore nonexpansive in Sn(JR). 
We leave it as an exercise to demonstrate the following nicer representation of 

CI : 

C I =co {xx T : xTx=l}={MESn(lR): A.ll(M)~O,trM=l}. 0 
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3.4 Example: Support Functions of Closed Convex Polyhedra 

In optimization, polyhedral sets are encountered all the time, and thus deserve special 
study. They are often defined by finitely many affine constraints, i.e. obtained as 
intersections of closed half-spaces; in view of Table 3 .3.1, this explains that the infimal 
convolution encountered in Proposition 1.3.2 is fairly important. 

Example 3.4.1 (Compact Convex Polyhedra) First of all, the support function of 
a polyhedron defined as 

P := cO{PJ, ... , Pm} (3.4.1) 

is trivially 
d~ap(d)=max{(pi,d): i=I, ... ,m}. 

There is no need to invoke Theorem 3.3.3 for this: a linear function (., d) attains its 
maximum on an extreme point of P (Proposition 111.2.4.6), even if this extreme point 
is not the entire face exposed by d. 0 

Example 3.4.2 (Closed Convex Polyhedral Cones) Going back to Example 2.3.1, 
suppose that the cone K is given as a finite intersection of half-spaces: 

K=n{Kj: j=I, ... ,m}, 

where 
Kj := H~.o := {s E lRn : (aj, s) ~ O} 

(the a/s are assumed nonzero). We use Proposition 1.3.2: 

aK(d) = clinf{I:.7!=J aKj(dj) : I:j=Jdj=d}. 

(3.4.2) 

(3.4.3) 

Only those dj in KJ -namely nonnegative multiples of aj, see (2.3.2) - count to yield 
the infimum; their corresponding support vanishes and we obtain 

aK(d) = { 0 if d = I:j=J tjaj, tj ~ 0 for j = 1, ... , m, 
+00 otherwise. 

Here, we are lucky: the closure operation is useless because the right-hand side 
is already a closed convex function. Note that we recognize Farkas' Lemma 111.4.3.3: 
K ° = dom a K is the conical hull of the a /s, which is closed thanks to the fact that 
there are finitely many generators. 0 

Example 3.4.3 (Extreme Points and Directions) Suppose our polyhedron is de
fined in the spirit of3.4.1, but unbounded: 

S := CO{Ph ... , Pm} + cone{aJ, ... , ad . 

Then it suffices to observe that S = P + K O , with P of (3.4.1) and K of (3.4.2), 
(3.4.3). Using Table 3.3.1 and knowing that K OO = K -hence aKa = IK: 

a (d) = { maxi=J ..... m(Pi, d) if (aj,~) ~ 0 for j = 1, ... , e, 
s +00 otherwIse. 0 
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The representations of Examples 304.1 and 304.3 are not encountered so frequently. 
Our next examples, dealing with intersections, represent the vast majority of situations. 

Example 3.4.4 (Inequality Constraints) Perturb Example 304.2 to express the sup
port function of S := nHa-' b.' with 

l' J 

H;b := {s E]Rn : (s, a) ~ b} (a # 0). 

Here, we deal with translations of the Kj's: 

b· 
H;;;,bj = lIajll2 aj + Kj 

so, with the help of Table 3.3.1: 

a H-. (d) = {tbj if d = ~aj, t ~ 0, 
aJ ,bj +00 otherwlse. 

Provided that S # 0, our support function as is therefore the closure of the function 

inf{I:>jbj : 'Ltjaj = d, tj ~ o} if dE cone(al, ... , am), 
d I-+ j=l j=1 

{ 

m m 

+00 otherwise. 0 

Now we have a sudden complication: the domain of a is still the closed convex 
cone KO, but the status of the closure operation is no longer quite clear. Also, it is 
not even clear whether the above infimum is attained. Actually, all this results from 
Farkas' Lemma of §I1IA.3; before giving the details, let us adopt different notations. 

Example 3.4.5 (Closed Convex Polyhedra in Standard Form) Equalities can be 
formulated as pairs of reversed inequalities, thus enabling Example 30404 to treat any 
kind of constraints. A "standard" description of closed convex polyhedra, however, 
is as follows. Let A be a linear operator from ]Rn to ]Rm, b E 1m A C ]Rm, K C ]Rn 

a closed convex polyhedral cone (K is usually characterized as in Example 304.2). 
Then S is given by 

S := {s E]Rn : As = b, s E K} = {{so} + H) n K , (304.4) 

where So is some point in]Rn satisfying Aso = b, and H := Ker A. 
In view of the expression of a H in Example 2.3.1, the support function of {so} + H 

is finite only on 1m A *, where it is equal to 

a{so}(d) + aH(d) = (so, d) = ((b, z)) for d = A*z, z E]Rm 

(here, ((', .)) denotes the scalar product in ]Rm). Thus, as is the closure of the infimal 
convolution 

(a{so} + aH) t aK = (a{so} + aH) t IKo , (3.4.5) 
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which can be explicited as the function 

dl--+ inf {({b,z)) : (z,y)ERmxKo, A*z+y=d}. 

Of course, this formula clearly displays 

domas = domaH + domIKo = ImA* + KO. 

In the pure standard/orm, Rn and R m are both equipped with the standard dot
product - A being a matrix with m rows and n columns - and K is the nonnegative 
orthant; KO is therefore the non positive orthant. Our "standard" S of (3.4.4) is now 

{s E Rn : As = b, s ~ O} , (3.4.6) 

assumed nonempty. Then (3.4.5) becomes 

inf {b T Z : AT z ~ d} , (3.4.7) 

a function of d which is by no means simpler than in 3.4.4 - only the notation is 
different. In summary, the support function 

as(d) = sup {s T d : As = b, s ~ o} (3.4.8) 

of the set (3.4.6) is the closure of (3.4.7), considered as a function of d E Rn. 
Now, invoke Farkas' Lemma: write the equivalent statements (i)" and (ii)" from 

the end of §III.4, with (x, p, a, r) changed to (-z, -d, s, -a): 

{zERn: ATz~d}C{ZERn: bTz~a} (3.4.9) 

is equivalent to 
3s ~ 0 such that As = b, s T d ~ a . (3.4.10) 

In other words: the largest a for which (3.4.9) holds - i.e. the value (3.4.7) - is also the 
largest a for which (3.4.10) holds - i.e. as(d). The closure operation can be omitted 
and we do have 

as(d) = inf {b T Z : AT z ~ d} for all dE Rn . 

Another interesting consequence can also be noted. Take d such that as (d) < 
+00: if we put a = as(d) in (3.4.9), we obtain a true statement, i.e. (3.4.10) is also 
true. This means that the supremum in (3.4.8) is attained when it is finite. 0 

It is worth noting that Example 3.4.5 describes general polyhedral functions, up 
to notational changes. As such, it discloses results of general interest, namely: 

- A linear function which is bounded from above on a closed convex polyhedron 
attains its maximum on this polyhedron. 

- The infimum of a linear function under affine constraints is a closed sublinear 
function of the right-hand side; said otherwise, an image of a polyhedral function 
is closed: in Example 3.4.5, the polyhedral function in question is 

Rm x Rn 3 (y, z) 1--+ bTz + IK(Y) , 

and (3.4.7) gives its image under the linear mapping [AT 10 ]' 
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Prerequisites. First-order differentiation of convex functions of one real variable (Chap. I); 
basic definitions, properties and operations concerning finite convex functions (Chap. IV); 
finite sublinear functions and support functions of compact convex sets (Chap. V). 

Introduction. We have mentioned in our preamble to Chap. V that sublinearity per
mits the approximation of convex functions to first order around a given point. In 
fact, we will show here that, if f : IRn ~ IR is convex and x E IRn is fixed, then the 
function 

d r-r f' (x, d) := lim .:....f...:..(x_+_td...:..)_--=-f...:..(x...:..) 
q,o t 

exists and is finite sublinear. Furthermore, f' approximates f around x in the sense 
that 

f(x + h) = f(x) + f'ex, h) + o(lIhll). (0.1) 

In view of the correspondence between finite sublinear functions and compact 
convex sets (which formed a large part of Chap. V), f' (x, .) can be expressed for all 
dE IRn as 

f'(X, d) = as (d) = max {(s, d) : SES} 

for some nonempty compact convex set S. This S is called the subdifferential of 
f at x and is traditionally denoted by af(x). When f is differentiable at x, with 
gradient V f(x), (0.1) shows that f'(X,·) becomes linear and S contains only the 
element V f (x). Thus, the concept of subdifferential generalizes that of gradient, just 
as sublinearity generalizes linearity. 

This subdifferential has already been encountered in the one-dimensional case 
where x E IR. In that context, af(x) was a closed interval, interpreted as a set of 
slopes. Its properties developed there will be reconsidered here, using the powerful 
apparatus of support functions studied in Chap. V. 

The subdifferentiation thus introduced is supposed to generalize the ordinary dif
ferentiation; one should therefore not be surprised to find counterparts of most of 
the results encountered in differential calculus: first-order Taylor expansions, mean
value theorems, calculus rules, etc. The importance of calculus rules increases in the 
framework of convex analysis: some operations on convex functions destroy differ
entiability (and thereby find no place in differential calculus) but preserve convexity. 
An important example is the max-operation; indeed, we will give a detailed account 
of the calculus rules for the subdifferential of max-functions. 
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This chapter deals withfinite-valued convex functions exclusively: it is essential 
for practitioners to have a good command of subdifferential calculus, and this frame
work is good enough. Furthermore, its generalization to the extended-valued case 
(Chap. XI) will be easier to assimilate. Unless otherwise specified, therefore: 

rT: in ~-i is convex .J 

This implies the continuity and local Lipschitz continuity of f. We note from (0.1), 
however, that the concept of sub differential is essentially local; for an extended-valued 
f, most results in this chapter remain true at a point x E int dom f (assumed non
empty). It can be considered as an exercise to check those results in this generalized 
setting - with answers given in Chap. XI. 

1 The Subdifferential: Definitions and Interpretations 

1.1 First Definition: Directional Derivatives 

Let x and d be fixed in IRn and consider the difference quotient of f at x in the 
direction d: 

f(x + td) - f(x) for t > O. q(t) := (1.1.1) 

We have seen already that the function t f-+ q (t) is increasing (criterion 1.1.1.4 of 
increasing slopes) and bounded near 0 (local Lipschitz property of f, §IV.3.I); so the 
following definition makes sense. 

Definition 1.1.1 The directional derivative of f at x in the direction d is 

f' (x, d) := lim {q(t) : t ,j, O} = inf {q(t) : t > OJ. 

If qJ denotes the one-dimensional function t f-+ qJ(t) := f(x + td), then 

f' (x, d) = D+qJ(O) 

(1.1.2) 
o 

(1.1.3) 

is nothing other than the right-derivative of qJ at 0 (see §1.4.I). Changing d to -d in 
(1.1.1), one obtains 

f'(x, -d) = lim f(x - td) - f(x) = lim f(x + rd) - f(x) 
tto t .to -r 

which is not the left-derivative of qJ at 0 but rather its negative counterpart: 

f'(x, -d) = -D_qJ(O). (1.1.4) 

Proposition 1.1.2 For fixed x, the function f' (x, .) is finite sublinear. 
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PROOF. Let d], d2 in]Rn, and positive a], az with a] + a2 = 1. From the convexity of 
f: 

f(x + t(a]d] + a2d2» - f(x) = 
f(a] (x + td]) + az(x + td2» - ad(x) - ad(x) :C 

:C a] [f(x + td]) - f(x)] + a2[f(x + td2) - f(x)] 

for all t. Dividing by t > 0 and letting t t 0, we obtain 

f'(x, aId] + a2dZ) :C ad' (x, d]) + ad' (x, dz) 

which establishes the convexity of f' with respect to d. Its positive homogeneity is 
clear: for A > 0 

f'(x, Ad) = limA f(x + Atd) - f(x) = A lim f(x + rd) - f(x) = Aj'(x, d). 
t.J,o At r.J,o r 

Finally suppose lid II = 1. As a finite convex function, f is Lipschitz continuous 
around x (Theorem Iy'3.1.2); in particular there exist B > 0 and L > 0 such that 

If(x + td) - f(x)l:C Lt for O:C t:C B. 

Hence, I f' (x, d) I :C L and we conclude with positive homogeneity: 

If'(x,d)I:CLlldll foralldE]Rn. (1.1.5) 
o 

Remark 1.1.3 From the end of the above proof, a local Lipschitz constant L of j around 
x is transferred to j' (x, .) via (1.1.5). In view of (V. 1.2.6), this same L is a global Lipschitz 
constant for j'(x, .). This is even true of j'(y, .) for y close to x: with 8 and L such that j 
has the Lipschitz constant Lon B(x, 8), 

lIy-xll<8 ====> Ij'(y,d])-j'(y,d2)I";Llld]-d211 foralld],d2ElRn . 0 

A consequence of Proposition 1.1.2 is that I' (x, .) is a support function, so the 
following suggests itself: 

Definition 1.1.4 (Subdifferential I) The subdifferential a f (x) of f at x is the non
empty compact convex set of]Rn whose support function is f'(x, .), i.e. 

af(x):= {s E IRn : (s,d}:C i'(x, d) foralld E ]Rn}. (1.1.6) 

A vector SEa I (x) is called a subgradient of I at x. o 

A first observation is therefore that the concept of subdifferential is attached 
to a scalar product, just because the concept of support is so. All the properties 
of the correspondence between compact convex sets and finite sublinear functions 
can be reformulated for af(x) and f'(x, .). For example, the breadth of af(x) (cf. 
Definition Y.2.1.4) along a normalized direction d is 

f'(x, d) + f'(x, -d) = D+cp(O) - D_cp(O) ~ 0 

and represents the "lack of differentiability" of the function cp alluded to in (1.1.3), 
(1.1.4); remember Proposition IY.4.2.1. 
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Remark 1.1.5 In particular, for d in the subspace U of linearity of f' (x, .) - see 
(Y.1.1.8) - the corresponding f{J is differentiable at O. The restriction of f' (x, .) to U 
is linear (Proposition Y.l.l.6) and equals (s, .), no matter how s is chosen in a f (x). In 
words, U is the set of h for which h ~ f (x + h) behaves as a function differentiable 
at h = O. See Fig. 1.1.1: af(x) is entirely contained in a hyperplane parallel to U; 
said otherwise, U is the set of directions along which af(x) has O-breadth. 

We also recall from Definition Y.2.1.4 that 

- f'ex, -d) :::;; (s, d) :::;; f'ex, d) for all (s, d) E af(x) x ]Rn. 0 

u 

v '"-..... u Of(x) 

, ........ // _v 
Fig.1.1.1. Linearity-space of the directional derivative 

It results directly from Chap. V that Definition 1.1.4 can also be looked at from the other 
side: (1.1.6) is equivalent to 

f'ex, d) = sup{(s, d) : s E af(x)}. 

Remembering that a f (x) is compact, this supremum is attained at some s - which depends 
on d! In other words: for any d E IRn , there is some Sd E af(x) such that 

f(x + td) = f(x) + t(Sd, d) + tSd(t) for t ;:3 o. (1.1.7) 

Here Sd(t) -+ 0 for t t 0, and we will see later that Sd can actually be made independent 
of the normalized d; as for Sd, it is a subgradient giving the largest (s, d). Thus, from its 
very construction, the subdifferential contains all the necessary information for a first-order 
description of f. 

As a finite convex function, d ~ f' (x, d) has itself directional derivatives and 
subdifferentials. These objects at d = 0 are of particular interest; the case d =1= 0 will 
be considered later. 

Proposition 1.1.6 The finite sublinear function d ~ a (d) := f' (x, d) satisfies 

a'(O, 0) = f'(x, 8) 

a (8) = a (0) + a' (0, 8) = a' (0, 8) 

aa(O) = af(x) . 

for all 8 E]Rn; 

for all 8 E ]Rn ; 

(1.1.8) 

(1.1.9) 

(1.1.10) 
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PROOF. Because a is positively homogeneous and a (0) = 0, 

_a...:..(t...:..8)_-_a...:..(0....:..) = a(8) = f'ex, 8) forall t > O. 
t 

This implies immediately (1.1.8) and (1.1.9). Then (1.1.10) follows from uniqueness 
of the supported set. 0 

One should not be astonished by (1.1.8): tangency is a self-reproducing operation. 
Since the graph of f'ex, .) is made up of the (half-)lines tangent to gr f at (x, f(x)), 

the same set must be obtained when taking the (half-)lines tangent to gr f'ex, .). As 
for (1.1.9), it simply expresses that, when developing a sublinear function to first order 
at 0, there is no error oflinearization: (1.1.7) holds with Bd == 0 in that case. 

1.2 Second Definition: Minorization by Affine Functions 

The previous Definition 1.1.4 of the subdifferential involved two steps: first, calcu
lating the directional derivative, and then determining the set that it supports. It is 
however possible to give a direct definition, with no reference to differentiation. 

Definition 1.2.1 (Subdifferential II) The subdifferential of f at x is the set ofvec
tors S E ]Rn satisfying 

fey) ~ f(x) + (s, y - x) for all y E ]Rn . (1.2.1) 
o 

Of course, we have to prove that our new definition coincides with 1.1.4. This 
will be done in Theorem 1.2.2 below. First, we make a few remarks illustrating the 
difference between Definitions 1.1.4 and 1.2.1. 

- The present definition is unilateral: an inequality is required in (1.2.1), expressing 
the fact that the affine function Y H- f (x) + (s, Y - x) minorizes f and coincides 
with f for y = x. 

- It is a global definition, in the sense that (1.2.1) involves all y in ]Rn. 

- These two observations do suggest that 1.2.1 deviates from the concept of differen-
tiation, namely: 

(i) no remainder term shows up in (1.2.1), and 
(ii) every y counts, not only those close to x. 

Actually, the proof below will show that nothing changes if: 

(i') an extra o(lIy - xII) is added in (1.2.1), or 
(ii') (1.2.1) is required to hold for y close to x only. 

Of course, these two properties (i') and (ii') rely on convexity of f; more precisely 
on monotonicity of the difference quotient. 

- All subgradients are described by (1.2.1) at the same time. By contrast, f' (x, d) = 
(Sd' d) plots, for d I- 0, only the boundary of af(x), one exposed face at a time. 
The whole subdifferential is then obtained by convexification - remember Proposi
tion Y.3.l.S. 
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Theorem 1.2.2 The definitions 1.1.4 and 1.2.1 are equivalent. 

PROOF. Let s satisfy (1.1.6), i.e. 

{s, d} ~ I' (x, d) for all d e Rn • 

The second equality in (1.1.2) makes it clear that (1.2.2) is equivalent to 

(s, d) ~ I(x + td) - I(x) for all d e Rn and t > O. 
t 

(1.2.2) 

(1.2.3) 

When d describes Rn and t describes R;t, y := x + td describes Rn and we 
realize that (1.2.3) is just (1.2.1). 0 

The above proof is deeper than it looks: because of the monotonicity of slopes, the 
inequality of (1.2.3) holds whenever it holds for all (d, t) E B(O, l)x]O, e]. Alternatively, 
this means that nothing is changed in (1.2.1) if y is restricted to a neighborhood of x. 

It is interesting to note that, in terms of first-order approximation of f, (1.2.1) brings 
some additional information to (1.1.7): it says that the remainder term ed(t) is nonnegative 
for all t ~ O. On the other hand, (1.1.7) says that, for some specific s (depending on y), (1.2.1) 
holds almost as an equality for y close to x. 

Now, the path "directional derivative ~ subdifferential" adopted in § 1.1 can be 
reproduced backwards: the set defined in (1.2.1) is 

- nonempty (Proposition IY.I.2.1), 
- closed and convex (immediate from the definitions), 
- bounded, due to a simple Lipschitz argument: for given 0 :f:. s e af(x), take in 

(1.2.1) y = x + 8sllls11 (8 > 0 arbitrary) to obtain 

f(x) + L8 ~ I(y) ~ I(x) + 811811, 

where the first inequality comes from the Lipschitz property IY.3 .1.2, written on the 
compact set B(x, 8). 

As a result, this set of (1.2.1) has a finite-valued support function. Theorem 1.2.2 
simply tells us that this support function is precisely the directional derivative If (x, .) 
of(I.I.2). 

Remark 1.2.3 A (finite) sublinear function a has a subdifferential,just as any other 
convex function. Its subdifferential at 0 is defined by 

aa(O) = {s : (d, s) ~ a (d) for all d eRn}, 

in which we recognize Theorem Y.2.2.2. This permits a more compact way than 
(Y.2.2.2) to construct a set from its support function: a (finite) sublinear function is 
the support of its subdifferential at O. 

In Fig. Y.2.2.1, for example, the wording "filter with (s, .) ~ a?" can be replaced 
by the more elegant "take the subdifferential of a at 0". 0 
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1.3 Geometric Constructions and Interpretations 

Definition 1.2.1 means that the elements of af(x) are the slopes of the hyperplanes 
supporting the epigraph of f at (x, f(x)) E ]Rn x R In terms of tangent and normal 
cones, this is expressed by the following result, which could serve as a third definition 
of the subdifferential and directional derivative. 

Proposition 1.3.1 

(i) A vector S E ]Rn is a subgradient of f at x if and only if (s, -1) E ]Rn x ]R is 
normal to epi f at (x, f (x)). In other words: 

Nepij(x, f(x» = {(AS, -A) : S E af(x), A;;:: O}. 

(ii) The tangent cone to the set epi f at (x, f (x» is the epigraph of the directional
derivative function d t--+ f' (x, d): 

Tepij(x, f(x» = {(d, r) : r;;:: f'ex, d)}. 

PROOF. [(i)] Apply Definition 111.5.2.3 to see that (s, -1) E Nepij(x, f(x» means 

(s, y - x) + (-l)[r - f(x)] ::::; 0 for all y E .]Rn and r ;;:: fey) 

and the equivalence with (1.2.1) is clear. The formula follows since the set of normals 
forms a cone containing the origin. 

[(a)] The tangent cone to epi f is the polar of the above normal cone, i.e. the set of 
(d, r) E ]Rn x ]R such that 

(AS, d) + (-A)r::::; 0 for all s E af(x) and A;;:: O. 

Barring the trivial case A = 0, we divide by A > 0 to obtain 

r;;:: max{(s,d): sEaf(x)}=f'(x,d). 

x 

Fig. 1.3.1. Tangents and normals to the epigraph 

o 

Figure 1.3.1 illustrates this result. The right part of the picture represents the 
normal cone N and tangent cone T to epi f at (x, f(x». The intersection of N with 
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the space ]Rn at level -1 is just a f (x) x {-I}. On the left part of the picture, the 
origin is translated to (x, f(x» and the translated T is tangent to epif. Note that 
the boundary of T + (x, f(x» is also a (nonconvex) cone, "tangent", in the intuitive 
sense of the term, to the graph of f; it is the graph of f'ex, .), translated at (x, f(x». 

Proposition 1.3.1 and its associated Fig. 1.3.1 refer to Interpretation V.2.1.6, with 
a supported set drawn in]Rn x R One can also use Interpretation V.2.I.5, in which the 
supported set was drawn in ]Rn. In this framework, the sublevel-set passing through x 

Sf(x) := Sf(x)(f) = {y E]Rn : fey) ~ f(x)} (1.3.1) 

is particularly interesting: it is important for minimization, and it is closely related to 
af(x). 

Lemma 1.3.2 For the convex function f: ]Rn -+ ]R and the sublevel-set (1.3.1), we 
have 

TSf(x)(x) c {d : f'ex, d) ~ O}. (1.3.2) 

PROOF. Take arbitrary y E Sf(x), t > 0, and set d := t(y - x). Then, using the 
second equality in (1.1.2), 

o ~ t[f(y) - f(x)] = f(x + d!~) - f(x) ~ f'ex, d). 

So we have proved 

]R+[Sf(x) - x] c {d : f'ex, d) ~ O} (1.3.3) 

(note: the case d = 0 is covered since 0 E Sf(x) - x). 

Because f' (x, .) is a closed function, the right-hand set in (1.3.3) is closed. Know
ing that T Sf(x)(x ) is the closure of the left-hand side in (1.3.3) (Proposition III.5.2.l), 
we deduce the result by taking the closure of both sides in (1.3.3). 0 

The reader should be warned that the converse inclusion in (1.3.2) need not 
hold: for a counter-example, take f(x) = 1/2I1xIl2• The sublevel-set Sf(O) is then 
{OJ and f'CO, d) = 0 for all d. In this case, (1.3.2) reads {OJ C ]Rn! To prove the 
converse inclusion, an additional assumption is definitely needed - for example the 
one considered in the following technical result. 

Proposition 1.3.3 Let g : Rn -+ lR be convex and suppose that g(xo) < Ofor some 
Xo E R.n. Then 

Itfollows 

c1 {z : g(z) < O} = {z : g(z) ~ O} , 

{z : g(z) < O} = int {z : g(z) ~ O} . 

bd {z : g(z) ~ O} = {z : g(z) = O} . 

(1.3.4) 

(1.3.5) 

(1.3.6) 
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PROOF. Because g is (lower semi-) continuous, the inclusion "e" automatically holds 
in (1.3.4). Conversely, let z be arbitrary with g(z) ~ 0 and, for k > 0, set 

Zk := txo + (l - t)z . 

By convexity of g, g(Zk) < 0, so (1.3.4) is established by letting k -+ +00. 
Now, take the interior of both sides in (1.3.4). The "intcl" on the left is actually 

an "int" (Proposition 111.2.1.8), and this "int" -operation is useless because g is (upper 
semi-) continuous: (1.3.5) is established. 0 

The existence of Xo in this result is often called a Slater assumption, and will be useful in 
the next chapters. When this Xo exists, taking closures, interiors and boundaries of sublevel
sets amounts to imposing " ~ ", "<" and "=" in their definitions. Needless to say, convexity 
is essential for such an equivalence: with n = 1, think of g(z) := min{O, Izl- I}. 

We are now in a position to characterize the tangential elements to a sublevel-set. 

Theorem 1.3.4 Let f : IRn -+ IR be convex and suppose 0 f/ af(x). Then, Sf(x) 
being the sublevel-set (1.3.1), 

TSf(x)(x) = {d E IRn : f'(x, d) ~ O} (1.3.7) 

int[TSf(x)(x)] = {d E IRn : f'(x, d) < O} "# "'. (1.3.8) 

PROOF. From the very definition (1.1.6), our assumption means that f' (x, d) < 0 for 
some d, and (1.1.2) then implies that f (x + t d) < f (x) for t > 0 small enough: our 
dis of the form (x + td - x)/t with x + td E Sf(x) and we have proved 

{d : f'(x, d) < O} e 1R+[Sf(x) - x] e TSf(x) (x) . (1.3.9) 

Now, we can apply (1.3.4) with g = f'(x, .): 

cl{d: f'(x,d) < O} = {d : f'(x,d) ~O}, 

so (1.3.7) is proved by closing the sets in (1.3.9) and using (1.3.2). Finally, take the 
interior of both sides in (1.3.7) and apply (1.3.5) with g = f'(x, .) to prove (1.3.8). 

o 

The above result can be formulated in terms of normal cones. 

Theorem 1.3.5 Let f : IRn -+ IRbeconvexandsupposeO f/ af(x). Then a direction 
d is normal to Sf (x) at x if and only if there is some t ~ 0 and some SEa f (x) such 
that d = Is: 

NSf(x)(x) = lR+af(x) . 

PROOF. Write (1.3.7) as 

TSf(x)(x) = {d E IRn : (s,d) ~ 0 for all s E af(x)} 
= {d E IRn : (As, d) ~ 0 for all A ~ 0 and S E af(x)} = [1R+af(xW . 

The result follows by taking the polar cone of both sides, and observing that, by 
assumption, IR+ af (x) is closed (Proposition III. 1.4. 7): 

NSf(x)(x) = cl [1R+af(x)] = lR+af(x). o 
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Remark 1.3.6 The assumption 0 ¢ af(x), required by the above two results, can be formu
lated in a number of equivalent ways: 

- In view of Definition 1.1.4, it means f' (x, do) < 0 for some do. 

- Using the other definition (1.2.1), there is some Xo such that f(xo) < f(x). 

- The latter implies that the same assumption holds everywhere on the level-set fO = f(x). 

As a result, the existence of one point x with 0 ¢ af(x) allows the computation of 
the tangent and normal cone to the corresponding sublevel-set Sf (x) at all its points: on its 
boundary - which, thanks to (1.3.6), is the level-set fO = f(x) - and on its interior (trivial 
case). 0 

Figure 1.3.2 illustrates these results. It is similar to Fig. 1.3.1, except that it is 
drawn in IRn. Its left part represents the horizontal cut of Fig. 1.3.1 at level f(x), i.e. 

Tepif(x, f(x» n {(d, r) E lRn x lR : r = O} 

which is T S j (x) (x) x {O}; considered as a set in lRn , it is the tangent cone to the sublevel
set Sf(x). In the right part of the picture, we have also drawn the subdifferential, 
neglecting its vertical component drawn in Fig. 1.3.1. The cone NSf(x)(x) generated 
by this subdifferential appears to be the projection (onto the same horizontal space) 
of the normal cone Nepij(X, f(x». 

x + T Sf(x)(X) 
T Sf(x)(X) 

x 
Sf(x) 

NSf(x)(X) 

Fig.l.3.2. Tangent and normal cones to a sublevel-set 

All this confirms how a subdifferential generalizes a gradient: if 8f(x) is the 
singleton (V f(x)}, the level-set fO = f(x) has a tangent hyperplane at (x, f(x»; 

the cone TSf(x) (x) is the half-space opposite to V f(x); the cone NSj(x) (x) is the half
line lR+V f(x). When 8f(x) becomes "fatter", Sf(x) becomes "narrower" aroundx. 

Drawing the normal cone to the sublevel-set, i.e. considering only nonnegative multiples 
of the subgradients, does describe the sublevel-set locally around x; but it also destroys 
some information, namely the magnitudes of these gradients. This information contains the 
magnitudes of the directional derivatives, and Fig. 1.3.3 shows how to recover it, even in IRn. 
It is similar to Fig. 1.3.2 and should be compared to Fig. y'2.1.1: the supporting hyperplane 

H:= {s E lRn : (d,s -x) = j'(x,d)} 

is orthogonal to d; its (algebraic) distance to x is f'ex, d), if d is normalized. The half
line x + R+d would cut the sublevel-set S!(X)-I (f) at the (algebraic) distance f'ex, d) if 
t H- f(x + td) were an affine function oft ~ O. 
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Fig. 1.3.3. Rate of decrease along a direction 

1.4 A Constructive Approach to the Existence of a Subgradient 

The existence of a subgradient of f at x results from Lemma V3 .1.1: a f (x) of Defi
nition 1.1.4 is nonempty just because the closed sublinear function f' (x, .) supports a 
nonempty set. Alternatively, such a subgradient can be singled out in Definition 1.2.1 
because f is minorized by some affine function (Proposition IVl.2.1). In both cases, 
the seminal argument is the separation Theorem I1I.4.1.1. 

We mention here an interesting alternative construction of a linear function mi
norizing a (finite) sublinear function a - standing for f'ex, .). The key idea will be as 
follows: take the directional derivative of a at some d i= o. It is easy to realize from 
positive homogeneity that 

al(d, d) + a'(d, -d) = o. 

In other words, the sublinear function a'(d, .) is linear at least on the I-dimensional 
subspace generated by d (remember Theorem Vl.l.6). Furthermore, the following 
result ensures that the subspace where a was already linear is not spoiled when passing 
to a'(d, .). 

Lemma 1.4.1 Let a subspace U C lRn and two jUnctions al and a2 satisfy the 
following properties: al is linear on U, a2 is sublinear on U, and 

a2(x) :::;; al(x) for all x E u. 

Then there actually holds 

a2(x) = al (x) for all x E u. 

PROOF. For all x E U, we have 

0:::;; a2(X) + a2( -x) :::;; al (x) + al (-x) = 0, 

so we conclude 
a2(x) = -a2(-X) ~ - al(-x) = al(x). o 

Then, given our sublinear function a, let {el, ... ,en} be a basis oflRn and define 
recursively the following sublinear functions: 
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ao:=a and ak:=ak_l(et,.)for k=l, ... ,n. (1.4.1) 

By now, it should be clear that the subspace on which ak is linear increases by at least 
one more dimension at each k: we must end up with a linear function. 

Theorem 1.4.2 In the process (1.4.1), we have 

an :;;; ... :;;; ak :;;; ... :;;; ao = a . (1.4.2) 

Itfollows that an is linear and minorizes a. Moreover, an(el) = a(el)· 

PROOF. From the definition of ak and sublinearity: 

ak-I (ek + td) - ak-I (ek) 
ak(d) = inf :;;; ak-I (d) for all d E ]Rn , 

t>o t 

which proves (1.4.2). 
Now, by definition of at, for k = 1, ... , n 

1. (1 + t)ak-I (ek) - ak-I (ek) ( ) 
ak(ek) = 1m = ak-I ek 

t+o t 
(1.4.3) 

where we have used positive homogeneity of ak-I; likewise 

( ) 1. (1 - t)ak-I (ek) - ak-I (ek) ( ) 
ak -ek = 1m = -ak-I ek . 

t+o t 

We deduce simply by addition 

ak(ek) + ak(-ek) = ak-I (ek) - ak-I (ek) = 0 for k = 1, .. , n. 

In view of Theorem V. 1. 1.6, each ak is linear on the I-dimensional subspace 
generated by ek. Recursively, Lemma 1.4.1 together with (1.4.2) implies that each ak 
is linear on the subspace generated by {ej}j ,,;,k: an is linear on the whole space. 

Finally, observe from (1.4.3) that al(el) = a(el). Since al is linear on the sub
space generated by ej, Lemma 1.4.1 again implies recursively 

a(el) = al(el) = ... = an(ed. o 

In summary, any sublinear function such as f' (x, .) is rninorized by a linear 
function.e. This is essentially the so-called Hahn-Banach Theorem in analytical form; 
indeed,.e supports a singleton {s}, which is a subgradient of f at x, and there holds 
for all y E ]Rn 

f(y) ~ f(x) + f'(x, y - x) ~ f(x) + (s, y - x), 

i.e . .e discloses a hyperplane supporting the convex set epi f at (x, f(x» (Hahn
Banach Theorem in geometric form). 

The following example shows how the process (1.4.1) works in practice. 
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Example 1.4.3 For d = (8 1, ••• ,8n ), suppose that our initial sublinear function is 

U'(x,d)=] ao(d):=max{8 1, ... ,8n }, 

and take el := (1, 1, ... ,1), e2 := (0,1, ... ,1), ... , en := (0, ... ,0,1) forming a 
basis of]Rn. It is not too difficult to see that 

. max{t81, ... ,t8k-I,I+t8k, ... ,I+t8n}-1 k n 
ak(d) = 11m = max {8 , ... ,8 } 

tto t 

so an = (en,·) (we take the standard dot-product for (., .)). 
This example is interesting because no ak is linear for k < n: the process does 

take n steps, although ao is already linear along el. The reason is that al = ao: the 
first step is useless. Figure 6.3.2 will clearly show that 

- if iterated in the order e2, ... , en, el, the process takes n - 1 steps: an-I is linear; 
- if started on en, the linear (en, .) is already produced at the first iteration. 0 

2 Local Properties of the Subdifferential 

In this section, we study some properties of af(x), considered as a generalization of 
the concept of gradient, at a given fixed x. 

2.1 First-Order Developments 

As already mentioned, a finite convex function enjoys a "directional first-order ap
proximation" (1.1. 7), and an important result is that the convergence in (1.1.7) is 
uniform in d on any bounded set: Sd can be taken independent of the normalized d. 

Lemma 2.1.1 Let f : ]Rn ~ ]R be convex and x E ]Rn. For any S > 0, there exists 

8 > ° such that IIhll ~ 8 implies 

If(x + h) - f(x) - f'ex, h)1 ~ ellhll· (2.l.l) 

PROOF. Suppose for contradiction that there is S > ° and a sequence (hd with 
IIhkll =: tk ~ 11k such that 

If(x + hk) - f(x) - f'ex, hk)1 > etk for k = 1,2, ... 

Extracting a subsequence if necessary, assume that hkltk ~ d for some d of norm 
1. Then take a local Lipschitz constant L of f (see Remark 1.1.3) and expand: 

etk < If(x + hk) - f(x) - f'ex, hk)1 
~ If(x + hk) - f(x + tkd)l+ 

+If(x + tkd) - f(x) - f'ex, tkd)1 + If'(X, tkd) - f'ex, hk)1 
~ 2Lllhk - tkdll + If(x + tkd) - f(x) - tkf'(X, d)l· 
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Divide by tk > 0 and pass to the limit to obtain the contradiction e ~ O. 0 

Another way of writing (2.1.1) is the first-order expansion 

f(x + h) = f(x) + f'(x, h) + o(lIhID, (2.1.2) 

or also 
lim f(x+td')-f(x) =f'(x,d). 

q.o, d'--+d t 

Remark 2.1.2 Convexity plays a little role for Lemma 2.1.1. Apart from the existence of a 
directional derivative, the proof uses only Lipschitz properties of f and I' (x, .). 

This remark is of general interest. When defining a concept of "derivative" D : lRn --+ lR 
attached to some function I : lRn --+ lR at x e lRn, one considers the property 

I(x + h) - I(x) - D(h) 
IIhll --+ 0, (2.1.3) 

with h tending to O. Even without specifying the class of functions that D belongs to, several 
sorts of derivatives can be defined, depending on the type of convergence allowed for h: 

(i) the point of view of Gateaux: (2.1.3) holds for h = td, d fixed in lRn , t --+ 0 in lR; 
(ii) the point of view ofFrechet: (2.1.3) holds for h --+ 0; 

(i') the directional point of view: as in (i), but with t > 0; 

(ii') the directional point of view ofDini: h = td', with t -l- 0 and d' --+ din lRn. 

It should be clear from the proof of Lemma 2.1.1 that, once the approximating function D 
is specified, these four types of convergence are equivalent when I is Lipschitzian around x. 

o 

Compare (2.1.2) with the radial development (1.1.7), which can be written with 
any subgradient sd maximizing (s, d). Such an Sd is an arbitrary element in the face of 
of (x) exposed by d (remember Definition Y.3.1.3). Equivalently, d lies in the normal 
cone to of (x) atsd; or also (Proposition 111.5.3.3), Sd is the projection of Sd + d onto 
of (x). Thus, the following is just a restatement of Lemma 2.1.1. 

Corollary 2.1.3 Let f : R,n -+ R, be convex. At any x, 

f(x + h) = I(x) + (s, h) + o(lIhlD 

whenever one of the following equivalent properties holds: 

S E Fa!(x)(h) <==> h E Na!(x)(s) <==> S = pa!(x)(s + h). 0 

In words: as long as the increment h varies in a portion ofR,n that is in some fixed 
normal cone to fJf(x), I looks differentiable; any subgradient in the corresponding 
exposed face can be considered as a "local gradient", active only on that cone; see 
Fig. 2.1.1. When h moves to another normal cone, it is another "local gradient" that 
prevails. 

Because fJf(x) is compact, any nonzero hE R,n exposes anonempty face. When 
h describes R,n\{O}, the corresponding exposed faces cover the boundary of ol(x): 
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f(x+h) - f(x) ::: <s1,h> 
for h E Naf(x)(S1) 

(2) 

x 
Naf(x)(S1 ) 

\ (2)=Naf(X)(S2) 
S21 .... ~... . ..... 

51 .... , .. 

~.r:........ , of (x) 
•• •• IIt ••••••• : . 

Fig.2.1.1. Apparent differentiability in normal cones 

this is Proposition y'3.1.5. An important special case is of course that of al(x) with 
only one exposed face, i.e. only one element. This means that there is some fixed 
s E IRn such that 

. I(x + td) - I(x) 
hm = (s, d) for all d E IRn • 
tto t 

which expresses precisely the Gateaux differentiability of I at x . From Corollary 2.1.3 
(see again Remark 2.1.2), this is further equivalent to 

I(x + h) - I(x) = (s. h) + o(lIhlD for all h E IRn , 

i.e. I is Frechet differentiable at x. We will simply say that our function is differentiable 
at x, a non-ambiguous terminology. 

We summarize our observations: 

Corollary 2.1.4 If the convex I is (Gateaux) differentiable at x, its only subgradient 
at x is its gradient V I(x). Conversely, ifal(x) contains only one element s, then I 
is (Fnkhet) differentiable at x, with V I(x) = s. 0 

Note the following consequence of Proposition Y.1.1.6: if {d), ... , dk} is a set of 
vectors generating the whole space and if I' (x, d;) = -I' (x, -dj) for i = 1, ... , k, 
then I is differentiable at x. In particular (take {dj} as the canonical basis oflRn), the 
existence alone of the partial derivatives 

al I I . 
- . (x) = I (x,ej) = -I (x , -ej) fOf! = 1, ... ,n 
a~1 

guarantees the differentiability of the convex I at x = (~), ... , ~n) . See again Propo
sition IY.4.2.1. 

For the general case where al(x) is not a singleton, we mention here another way 
of defining faces: the function I' (x, .) being convex, it has subdifferentials in its own 
right (Proposition 1.1.6 studied the subdifferential at 0 only). These subdifferentials 
are precisely the exposed faces of al(x). 

Proposition 2.1.5 Let I : ]Rn ~ IR be convex. For all x and d in ]Rn, we have 

Faf(x)(d) = au'(x, ·)J(d) . 
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PROOF. If S E af(x) then 

f' (x, d') ~ (s, d') for all d' E lRn 

simply because f'(x,') is the support function of af(x). If, in addition, {s, d} = 
f' (x, d), we get 

f' (x, d') ~ f' (x, d) + {s, d' - d} for all d' E lRn (2.1.4) 

which proves the inclusion Faf(x) (d) C a[f'(x, ·)J(d). 
Conversely, let s satisfy (2.1.4). Set d" := d' - d and deduce from subadditivity 

f' (x, d) + f' (x, d") ~ f' (x, d') ~ f' (x, d) + (s, d") for all d" E lRn 

which implies f'(x,·) ~ (s, .), hence s E af(x). Also, putting d' = 0 in (2.1.4) 
shows that (s, d) ~ f'(x, d). Altogether, we have s E Faf(x)(d). 0 

This result is illustrated in Fig. 2.1.2. Observe in particular that the subdifferential 
of f'(x,') at the point td does not depend on t > 0; but when t reaches 0, this 
subdifferential explodes to the entire af(x). 

epi f(x,.) 

0"= -

-1 

Nepi f'(x, .)(O,O) 

Fig.2.1.2. Faces of subdifferentials 

Definition 2.1.6 A point x at which af(x) has more than one element- i.e. at which 
f is not differentiable - is called a kink (or corner-point) of f. 0 

We know that f is differentiable almost everywhere (Theorem IV.4.2.3). The set of kinks 
is therefore of zero-measure. In most examples in practice, this set is the union of a finite 
number of algebraic surfaces in Rn. 
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Example 2.1.7 Let ql, ... , qm be m convex quadratic functions and take I as the max of 
the qj 'So Given x E jRn, let 

lex) := {j ~ m : qj(X) = I(x)} 

denote the set of active qj'S at X. 

It is clear that I is differentiable at each x such that 1 (x) reduces to a singleton {j (x)}: by 
continuity, 1 (y) is still this singleton {j (x)} for all y close enough to x, so I and its gradient 
coincide around this x with the smooth qj(x) and its gradient. Thus, our I has all its kinks in 
the union of the 1/2 m(m - 1) surfaces 

Eij := {x E jRn : qi(X) = qj(x)} for i =f:. j. 

Figure 2.1.3 gives an idea of what this case could look like, in jR2. The dashed lines represent 
portions of Eij at which qi = qj < I. 0 

\ 
'-.. 

Q1 = Q3 

f = Q1 

Q 1 = Q2 

Fig.2.1.3. A maximum of convex quadratic functions 

2.2 Minimality Conditions 

We start with a fundamental result, coming directly from the definitions of the sub
differential. 

Theorem 2.2.1 For f : R.n ~ R. convex, the following three properties are equiva
lent: 

(i) I is minimized at x over R.n, i.e.: fey) ~ f(x) for all y E R.n; 

(ii) 0 E af(x); 

(iii) f'ex, d) ~ Ofor all dE R.n. 

PROOF. The equivalence (i) ~ (ii) [resp. (ii) ~ (iii)] is obvious from (1.2.1) [resp. 
(1.1.6)]. D 

Naturally, x can be called "stationary" if 0 E af(x). Observe that the equivalence 
(i) ~ (iii) says: f is minimal at x if and only if its tangential approximation f'ex, .) 
is minimal at 0; a statement which makes sense, and which calls for two remarks. 

- When x is a local minimum of f (in the sense of Definition II. 1. 1.2), (iii) holds; 
thus, convexity implies that a local minimum is automatically global. 
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- In the smooth case, the corresponding statement would be "the tangential approx
imation (V f(x), .} of fO - f(x), which is linear, is identically 0". Here, the 
tangential approximation f' (x, .) need not be 0; but there does exist a minorizing 
linear function, usually not tangential, which is identically O. 

Remark 2.2.2 The property "0 E a f (x)" is a generalization of the usual stationarity con
dition "V f (x) = 0" of the smooth case. Even though the gradient exists at almost every x, 
one should not think that a convex function has almost certainly a O-gradient at a minimum 
point. As a matter of fact, the "probability" that a given x is a kink is 0; but this probability 
may not stay 0 ifsome more information is known about x, for example that it is a stationary 
point. As a rule, the minimum points of a convex function are indeed kinks. 0 

The position of 0 in af (x) is useful for determining the nature of x as a minimum 
point: it tells us how f increases in the neighborhood of x. In the smooth case, f is 
stationary at x ifand only if af(x) is the singleton {oJ. This means that the first-order 
approximation of f at x is constant. In addition, convexity implies that f is really 
minimal at x - and not maximal, say. If we ask more about the behaviour of f around 
x, not much can be extracted from the property "V f (x) = 0" alone. It cannot be 
ascertained, for example, whether x is a unique minimum. In the nonsmooth case, 
the possible existence of additional nonzero subgradients makes the geometry of the 
graph of f much more versatile. The essential result is the following. 

Proposition 2.2.3 Let x minimize the convex f : Rn --+ R and let Nal(x) (0) denote 
the normal cone to af(x) at O. 

For all s > 0 there exists 8 > 0 such that 

h E Nal(x)(O) n B(O, 8) ==} f(x + h) ~ f(x) + sllhll. (2.2.1) 

On the other hand, 

h ¢ Nal(x) (0) ===> f(x + h) > f(x). (2.2.2) 

PROOF. By definition, h E Nal(x)(O) if and only if 

(s, h) ~ 0 for all S E af(x) (2.2.3) 

and, knowing that x minimizes f, this is equivalent to f' (x, h) = O. Then (2.2.1) is 
a consequence of the first-order development (2.1.2). 

When h ¢ Nal(x)(O), the negation of (2.2.3) is f'(x, h) > 0, whence (2.2.2) 
follows immediately. 0 

Remark 2.2.4 A somewhat more accurate statement than (2.2.2) can be given, taking into 
account the direction of h =F 0: for all d rt Naf(x) (0), there is e > 0 such that 

f(x + td) ~ I(x) + et for all t ~ O. (2.2.4) 

Of course, e certainly depends on d: it is nothing but I' (x , d), which is positive since 
d ¢ Naf(x) (0). 0 
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Proposition 2.2.3 is important for optimization theory, because it divides the space around 
a minimum point x in two parts: 

- The first part is the normal cone Na[(x) (0) to J/(x) at O. For a direction d in this normal 
cone, I' (x, d) = 0 and the function <p : 0 ~ t 1-+ I (x + t d) is constant to first order at 
t = o. For such a d, it might be the case, for example, that <p(t) = <p(0) for small t ~ o. To 
check whether or not rp is strictly increasing, and at what speed it does so, requires more 
work; the situation is similar in the smooth case, where a second-order analysis is required. 

- When d is out of this normal cone, I(x + td) increases with a nonzero linear rate: if only 
this part of the space were concerned, x would be a guaranteed unique minimum. 

Remark 2.2.5 The normal cone Na[(x) (0) can thus be called the critical cone, its nonzero 
elements being the critical directions. In classical (smooth) optimization, the space around a 
local minimum x is divided analogously into two regions: 

- One is a subspace: the kernel ofV2 I(x), sometimes called the set of critical directions. For 
all e > 0, there exists 8 > 0 such that 

hE KerV2/(x) n B(O, 8) ::=:} I(x + h) ~ I(x) + ellhll 2 . (2.2.5) 

- In the complement of this subspace, I increases as fast as a strongly convex quadratic 
function: for all d fI Ker V2 I (x ), there is e > 0 such that 

I(x + td) ~ I(x) + et2 for t close enough to O. (2.2.6) 

The present nonsmooth situation is fairly similar, if we replace subspaces by cones and 
t2 by t: compare (2.2.5) with (2.2.1) on the one hand, (2.2.6) with (2.2.4) on the other. A 
substantial difference, however, is that the existence of critical directions is now the rule; by 
contrast, in smooth optimization, the assumption Ker V 2 /(x) = {O} - i.e. V 2 /(x) is positive 
definite - is well-accepted. 

As mentioned earlier, the possible property Na[(x) (0) =I ]Rn is a privilege of non smooth 
functions. It brings some definite advantages, one being that a first-order analysis may some-
times suffice to guarantee uniqueness of a minimum point. o 

There are various interesting special cases of Proposition 2.2.3. For example, the 
property "0 E ri al(x)" is equivalent to 

f' (x, d) > 0 for all d with f' (x, d) + f' (x, -d) > 0 

(remember Theorem V2.2.3). In the language of Remark 1.1.5, this last property 
means that x is a strict minimum in all directions along which f is not smooth. A 
"super-special" case arises when, in addition, af(x) is full-dimensional, i.e. 

o E ri af(x) = int af(x) =1= 0. 

Then there are no critical directions. 

Proposition 2.2.6 A necessary and sufficient condition for the existence of e > 0 
such that 

f(x + h) ~ f(x) + e/lhll for all hE ]Rn (2.2.7) 

is 0 E intaf(x). 
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PROOF. The condition 0 E intal(x) means that B(O, e) c al(x) for some e > 0 
which, in terms of support functions, can be written as I'(x, .) ~ ell . II. From the 
definition of the directional derivative, this last property is equivalent to (2.2.7). 0 

With the above results in mind, it is instructive to look once more at Fig. 1.1.1. 
Take x to be a minimum point (on the right part of the picture, translate al (x) down 
to V). Then the critical cone is just the subspace U, in which I' (x, .) is linear - and 
identically zero. 

The case illustrated by this figure is rather typical: the subdifferential at a minimum 
point is often not full-dimensional; it has therefore an empty interior, and Proposi
tion 2.2.6 does not apply. In this case, the critical cone is definitely nontrivial: it is 
U. 

On the other hand, this cone often coincides with this subspace, which means that 
o E ri al(x). Still in the same Fig. 1.1.1, translate al(x) further to the right so as to 
place 0 at its left endpoint. Then the critical cone becomes the left half-space. This is 
not a typical situation. 

Let us sum up: 

-A minimum point x is characterized by: 0 E al(x), or I'(x, d) ~ 0 for all d E JRn. 

- A critical direction is a d 1= 0 such that I' (x, d) = O. Existence of a critical 
direction is equivalent to 0 E bd a I (x ) . 

- If there is a critical d with -d non-critical, x can be considered as degenerate. This 
is equivalent to 0 E rbd al(x). 

To finish, we mention that a non-minimal x is characterized by the existence of a 
d with I' (x, d) < O. Such a d is called a descent direction, a concept which plays an 
important role for minimization algorithms. The set of descent directions was shown 
in Theorem 1.3.4 to be the interior of the tangent cone to S/(x), the sublevel-set 
passing at x. 

2.3 Mean-Value Theorems 

Given two distinct points x and y, and knowing the subdifferential of I on the whole 
line-segment ]x, y[ , can we evaluate I (y) - I (x)? Or also, is it possible to express 
I as the integral of its subdifferential? This is the aim of mean-value theorems. 

Of course, the problem reduces to that of one-dimensional convex functions 
(Chap. I), since 

I(y) - I(x) = qI(1) - qI(O) 
where 

qI(t) := I(ty + (1 - t)x) for all t E [0,1] (2.3.1) 

is the trace of I on the line-segment [x, y]. The key question, however, is to express 
the subdifferential of qI at t in terms of the subdifferential of I at ty + (1- t)x in the 
surrounding space JRn. The next lemma anticipates the calculus rules to be given in 
§4. Here and below, we use the follOwing notation: 

Xt := ty + (1 - t)x 

where x and y are considered as fixed in JRn . 
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Lemma 2.3.1 The subdifJerential of cp defined by (2.3.1) is 

ocp(t) = {(s, y -x) : s E of (x,)} 

or, more symbolically: 
ocp(t) = (ol(x,), y - x) . 

PROOF. Apply the definitions from §I.4: 

D (t) - l' f(Xt + 'l'(Y - x)) - f(x,) - f'( _) 
+cp - 1Ill - Xt, Y x 

,to 'l' 

D_cp(t) = lim f(xt + 'l'(Y - x)) - f(Xt) = _ f'(Xt, _(y _ x)) 
,to 'l' 

so, knowing that 

we obtain 

f' (Xt, Y - X) = max (s, y - X) , 
SEO/(Xt) 

-f'(Xt,-(Y-X))= min (s,y-x), 
SEO/(Xt) 

ocp(t) := [D_cp(t), D+cp(t)] = {(s, Y - x) : s E af(x)}. o 

Remark 2.3.2 The derivative of f{J exists except possibly on a countable set in R One should 
not think that, with this pretext, / is differentiable except possibly at countably many points 
of lx, yr. For example, with f(~, 1/) := I~I, x := (0,0), y := (0,1), f is differentiable 
nowhere on [x, y). What Lemma 2.3.1 ensures, however, is that for almost all t, af(Xt) has a 
zero breadth in the direction y - x: f'(xt, Y - x) + f'(xt, x - y) = O. 

Note, on the other hand - and this is a consequence of Fubini's theorem - that almost 
all the lines parallel to [x, y) have an intersection of zero-measure with the set of kinks of f. 

o 

With the calculus rule given in Lemma 2.3.1, the one-dimensional mean-value 
Theorem 1.4.2.4 applied to the function cp of(2.3.I) becomes the following result: 

Theorem 2.3.3 Let f : lR,n -+ lR, be convex. Given two points x =I y in lR,n, there 
exist t E ]0, 1[ and s E af(x,) such that 

In other words, 

fey) - f(x) = (s, y - x) . 

fey) - f(x) E U {(af(Xt), y - x)}. 
tE ]O,l[ 

The mean-value theorem can also be given in integral form. 

(2.3.2) 

o 
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Theorem 2.3.4 Let f : ]Rn ~ ]R be convex. For x, y E ]Rn, 

fey) - f(x) = 11 (a!(Xt) , y - x) dt. (2.3.3) 
o 

The meaning of (2.3.3) is as follows: if {St : t E [0, I]} is any selection of 
subgradients of f on the line-segment [x, y], i.e. St E af(xt) for all t E [0,1], then 
fo1 (St, y - x)dt is independent of the selection and its value is fey) - f(x). 

Example 2.3.5 Mean-value theorems can be applied to nondifferentiable functions 
in the same way as they are in (ordinary) differential calculus. As an example, let 
f, g be two convex functions such that f(x) = g(x) and fey) ~ g(y) for all y in a 
neighborhood of x. It follows from the definitions that af(x) c ag(x). 

Conversely, suppose that f, g are such that af(x) c ag(x) for all x E ]Rn; can 
we compare f and g? Same question if a f (x) nag (x) =1= 0 for all x. The answer lies 
in (2.3.3): the difference f - g is a constant function (take the same selection in the 
integral (2.3.3)!). 

An amusing particular case is that where f and g are (finite) sublinear functions: 
then, f ~ g if and only if af (0) c ag(O) (f and g are the support functions of af (0) 
and ag(O) respectively!). 0 

3 First Examples 

Example 3.1 (Support Functions) Let C be a nonempty convex compact set, with support 
function ac. The first-order differential elements of ac at the origin are obtained immediately 
from the definitions: 

aac(O) = C and (ac)'(O,.) = ac. 

Read this with Proposition 1.1.6 in mind: any convex compact set C can be considered as 
the subdifferential of some finite convex function f at some point x. The simplest instance 
is f = ac, x = O. 

On the other hand, the first-order differential elements of a support function ac at x :f. 0 
are given in Proposition 2.1.5: 

aac{x) = Fc{x) and (ac)'(x,.) = aFc(x)' (3.1) 

The expression of (ac)'(x, d) above is a bit tricky: it is the optimal value of the following 
optimization problem (s is the variable, x and d are fixed, the objective function is linear, 
there is one linear constraint in addition to those describing C): 

I max(d,s) SEC 

(s, x) = ac{x). 

As a particular case, take a norm •.•. As seen already in §V.3.2, it is the gauge of its 
unit ball B, and it is the support function of the unit ball B* associated with the dual norm 
II . 111*· Hence 

am· R(O) = B* = {s E]Rn : max.d." 1 (s, d) ::; 1} . 
More generally, for x not necessarily zero, (3.1) can be rewritten as 
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all·ll(x) = {s E B* : (s,x) = maxuEB*(U,X) = lixUl} . (3.2) 

All the points sin (3.2) have dual norm 1; they form the face of B* exposed by x. 0 

Example 3.2 (Gauges) Suppose now that, rather than being compact, the C of Example 3.1 
is closed and contains the origin as an interior point. Then, another example of a convex finite 
function is its gauge YC (Theorem V. 1.2.5). Taking into account the correspondence between 
supports and gauges - see Proposition V.3.2.4 and Corollary V.3.2.5 - (3.1) can be copied if 
we replace C by its polar set 

CO := {x : (s, x) ~ I forall SEC}. 

So we obtain 
ayc(o) = Co, (yc)'(O,·) = YC, 

and of course, Proposition 2.1.5 appliedto Co gives at x "# 0 

ayc(x) = Fco(x) and (yc)/(X,.) = O"Fco(x). 

Gauges and support functions of elliptic sets deserve a more detailed study. Given a 
symmetric positive semi-definite operator Q, define 

IRn 3 x 1--+ f(x) := J(Qx, x) 

which is just the gauge ofthe sublevel-set (x : f (x) ~ l}. From elementary calculus, 

af(x) = (V' f(x)} = { QX} for x rt Ker Q 
f(x) 

while, for x E Ker Q, S E of (x) if and only if, for all y E IRn 

(s, y - x) ~ J(Qy, y) = J(Q(y - x), y - x) = II QI/2(y - x)ll· 

From the Cauchy-Schwarz inequality (remember Example V.2.3.4), we see that af(x) is 
the image by QI/2 of the unit ball B(O, I). 0 

Example 3.3 (Distance Functions) Let again C be closed and convex. Another finite con
vex function is the distance to C: 

dc(x):= min{lIy -xII: y E C}, 

in which the min is attained at the projection Pc (x) of x onto C. The subdifferential of de is 

{ 
Nc(x) n B(O, 1) if x E C, 

adc(x) = {x-Pc(X)} if x rt C , 
IIx pc(x) II 

(3.3) 

a formula illustrated by Fig. V.2.3.1 when C is a closed convex cone. The case x rt C was 
already proved in Example N.4. 1.6; let us complete the proof. Thus,forx E C,lets E adc(x), 

i.e. 
dc(x') ;::. (s, x' - x) for all x' E ~ . 

This implies in particular (s, x' - x) ~ ° for all x' E C, hence s E Nc(x); and taking 
x, = x + s, we obtain 
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IIsII2 ~ dc(x +s) ~ IIx +s -xII = IIsli. 

Conversely, let S E Nc(x) n B(O, 1) and, for all x' E lRn , write 

(s, x' - x) = (s, x' - pc(x'») + (s, pc(x') - x) . 

The last scalar product is nonpositive because S E Nc(x) and, with the Cauchy-Schwarz 
inequality, the property lis II ~ 1 gives 

(s, x' - pc(x'») ~ IIx' - pc(x') II = dc(x'). 

Altogether, S E 8dc(x). Note that the set of kinks of de is exactly the boundary of C. This 
proves once more that the boundary of a convex set is of zero-measure. 

Consider the closed convex cone K := Nc(x), whose polar cone is KO = Te(x). As 
seen in Chap. V, more particularly in (Y.3.3.5), the support function of K' = K n B(O, 1) is 
the distance to T c(x). From (3.3), we see that 

d'e(x, .) = dTc(x) for all x E C. 

Compare also this formula with Proposition III.S.3.5. o 

Example 3.4 (piecewise Affine Functions) Consider the function 

lRn3x~f(x):=max{fj(x): j=I, ... ,m} (3.4) 

where each fj is affine: 

fj(x):= rj + (Sj, x) for j = 1, ... ,m. 

To compute the first-order differential elements of f at a given x, it is convenient to 
translate the origin at this x. Thus, we rewrite (3.4) as 

f(y) = f(x) + max {-ej + (Sj, y -x) : j = 1, ... ,m} 

where we have set, for j = 1, ... ,m 

ej := f(x) - rj - (Sj, x) = f(x) - fj(x) ~ 0 

(look at the left part of Fig. 3.1 to visualize ej). 

r1 

r2 

x 

11 = 12 

1 = f2 

(3.5) 

(3.6) 

d 

f = f1 

Fig.3.1. Piecewise affine functions: translation of the origin and directional derivative 

Now consider f (x + t d), as illustrated on the right part of Fig. 3.1, representing the space 
lRn around x. For t > 0 small enough, those j such that ej > 0 do not count. Accordingly, 
set 
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lex) := {j : ej = O} = {j : hex) = I(x)}. 

Rewriting (3.5) again as 

l(x+td)=/(x)+tmax{(sj,d): jEl(x)} forsmallt>O, 

it becomes obvious that 

I' (x, d) = max { (Sj ,d) : j E 1 (x)} . 

From the calculus rule Y.3.3.3(ii) and Definition 1.1.4, this means exactly that 

a/(x) = co {Sj : j E l(x)}. (3.7) 

This result will be confirmed in §4.4. We have demonstrated it here nevertheless in 
intuitive terms, because piecewise affine functions are of utmost importance. In particular, 
the notation (3.6) and Fig. 3.1 will be widely used in some of the subsequent chapters, devoted 
to minimization algorithms. 0 

4 Calculus Rules with Subdifferentials 

Calculus with subdifferentials of convex functions is important for the theory, just as 
in ordinary differential calculus. Its role is illustrated in Fig. 4.0.1: if f is constructed 
from some other convex functions fj, the problem is to compute of in terms of the 
of/so 

Convex functions 

Their 
subdifferentials 

Fig.4.0.1. Subdifferential calculus 

Anew 
convex function f 

To develop our calculus rules, the two definitions 1.104 and 1.2.1 will be used. 
Calculus with support functions (§y'3.3) will therefore be an essential tool. 

4.1 Positive Combinations of Functions 

Theorem 4.1.1 Let II, h be fWo convexfunctionsfrom 'If,.n fo 'If,. and fl' t2 be positive. 
Then 

a(tdl + f2h)(x) = tl all (x) + t2ah(x) for all x E 'If,.n . (4.1.1) 



262 VI. Subdifferentials of Finite Convex Functions 

PROOF. Apply Theorem y'3.3.3(i): t I 811(x) +t28h(x) is a compact convex set whose 
support function is 

td(x,.) + t2l{(x,.). (4.1.2) 

On the other hand, the support function of 8(tl II + t2l2) (x) is by definition the 
directional derivative (tdl + t2ld(x,·) which, from elementary calculus, is just 
(4.1.2). Therefore the two (compact convex) sets in (4.1.1) coincide, since they have 
the same support function. 0 

Remark 4.1.2 Needless to say, the sign of tl and t2 in (4.1.1) is important to obtain a resulting 
function which is convex. There is a deeper reason, though: take fl(x) = hex) = IIxlI, 

tl = -t2 = 1. We obtain fl - 12 == 0, yet 

tl afl (0) + t2ah(0) = B(O, 2) , 

a gross over-estimate of {OJ! o 

To illustrate this calculus rule, consider f : IRP x IRq --+ IR defined by 

f(XI, X2) = fl (XI) + 12 (X2) , 

with fl and 12 convex on lIV and IRq respectively. First, call 

IRP x IRq 3 (XI, X2) ~ iI (XI , X2) = fl(XI) 

the extension of fl and observe that its subdifferential is obviously 

a iI (XI, X2) = afl (XI) x {OJ . 

Then Theorem 4.1.1 gives, after the same extension is made with 12, 

af(XI,X2) = atI(XI) x {O}+ to} x ah(x2) = afl(XI) x ah(x2). (4.1.3) 

Remark 4.1.3 Given a convex function f : IRn --+ IR, an interesting trick is to view its 
epigraph as a sublevel-set of a certain convex function, namely: 

IRn x R 3 (X, r) ~ g(x, r) := f(x) - r. 

Clearly enough, epi f is the sublevel-set So(g). The directional derivatives of g are easy to 
compute: 

g'(X, f(x); d, p) = f'ex, d) - p for all (d, p) E IRn x IR 

and (4.1.3) gives for all X ERn 

ag(X, f(x» = af(x) x {-I} ~ o. 

We can therefore apply Theorems 1.3.4 and 1.3.5 to g, which gives back the formulae of 
Proposition 1.3.1: 

Tepi /(x, f(x» 
intTepi/(X, f(x» 

Nepi/(X, f(x» 

{Cd, p) : f'ex, d) ::::;; p}, 
{(d, p) : f'ex, d) < p} =/; 0, 
JR+[af(x) x {-I}]. o 
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4.2 Pre-Composition with an Affine Mapping 

Theorem 4.2.1 Let A : ]Rn -+ ]Rm be an affine mapping (Ax = Aox + b, with Ao 
linear and b E ]Rm) and let g be a finite convex function on ]Rm. Then 

a(g 0 A)(x) = A~ag(Ax) for all x E ]Rn . (4.2.1) 

PROOF. Form the difference quotient giving rise to (g 0 A)'(x, d) and use the relation 
A(x + td) = Ax + tAnd to obtain 

(g 0 A)' (x, d) = g' (Ax, Aod) for all d E ]Rn . 

From Proposition Y.3.3.4, the right-hand side in the above equality is the support 
function of the convex compact set A~ag(Ax). 0 

This result is illustrated by Lemma 2.3.1: with fixed x, y E lRn , consider the affine 
mapping A : lR -+ lRn 

At:= x + t(y - x). 

Then Aot = t (y - x), and the adjoint of Ao is defined by 

A~(s) = (y - x, s) for all s E lRn . 

Twisting the notation, replace (n, m, x, g) in Theorem 4.2.1 by (1, n, t, f): this gives .the 
subdifferential a({J of Lemma 2.3.1. 

As another illustration, let us come back to the example of §4.1. Needless to say, the 
validity of (4.1.3) relies crucially on the "decomposed" form of I. Indeed, take a convex 
function I : lRP x lRq -+ lR and the affine mapping 

lRP 3 XI t-+ AXI = (XI, X2) E lRP x lRq . 

Its linear part is XI t-+ Aoxi = (XI, 0) and A~(SI' S2) = si. Then consider the partial function 

loA: lRP 3 XIl-+ IR)(xI) = I(XI, X2)· 

According to Theorem 4.2.1, 

alx~) (XI) = {SI E lRP : 3S2 E ]Rq such that (SI, S2) E al(xI, X2)} 

is the projection of al(xI, X2) onto ]RP. Naturally, we can construct likewise the projection 
of al (XI, X2) onto lRq , which yields the inclusion 

(I) (2) 
al(XI,X2) c alX2 (xt> x alxl (X2). (4.2.2) 

Remark 4.2.2 Beware that equality in (4.2.2) need not hold, except in special cases; for 
example in the decomposable case (4.1.3), or also when one of the projections is a singleton, i.e. 

when the partial function Ix~), say, is differentiable. For a counter-example, take p = q = 1 
and 

I(XI, X2) = IXI - x21 + !(XI + 1)2 + !(X2 + 1)2. 

This function has a unique minimum at (-1, -I) but, at (0, 0), we have 

a/~i)(O) = [0, 2] for i = 1,2, 

hence the right-hand side of (4.2.2) contains (0,0). Yet, I is certainly not minimal there, 
al(O, 0) is actually the line-segment 

{2(a, 1 - a) : a E [0, I]} . o 
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4.3 Post-Composition with an Increasing Convex Function of Several Variables 

As seen in §IV.2.l(d), post-composition with an increasing one-dimensional convex 
function preserves convexity. A relevant object is the subdifferential of the result; 
we somewhat generalize the problem, by considering a vector-valued version of this 
operation. 

Let fl' ... , f m be m convex functions from lRn to lR; they define a mapping F by 

lRn '3 X t-+ F(x) := (f1(X), ... , fm(x» E lRm. 

Equip lRm with the dot-product and let g lRm --+ lR be convex and increasing 
componentwise, i.e 

yi~zifori=l, ... ,m ===} g(y)~g(z). 

Establishing the convexity of the function 

lRn '3 X t-+ (g 0 F)(x):= g(fI(X), ... , fm(x» 

is an elementary exercise. Another easy observation is that, if (pI, ... , pm) E 3g(y), 

then each pi is nonnegative: indeed, {e], ... , em} being the canonical basis in lRm , 

m 
g(y) ~ g(y - ej) ~ g(y) + L pi (_ej)i = g(y) - pi . 

i=1 

Theorem 4.3.1 Let f, F and g be defined as above. For all x E lRn, 

3(g 0 F)(x) = {L:i!:1 pi si : (pI, ... , pm) E 3g(F(x», 

si E 3fi(x)for i = 1, ... , m} . (4.3.1) 

PROOF. [Preamble] Our aim is to show the formula via support functions, hence we 
need to establish the convexity and compactness of the right-hand side in (4.3.1) - call 
it S. Boundedness and closedness are easy, coming from the fact that a subdifferential 
(be it 3 g or 3 fi) is bounded and closed. As for convexity, pick two points in Sand 
form their convex combination 

m m m 

S = a ?:piSi + (1 - a) ?:p'is; = ?: [apisi + (1- a)plis;] • 
1=1 1=1 1=1 

where a E ]0, 1 [ . Remember that each pi and pli is nonnegative and the above sum 
can be restricted to those terms such that pili := api + (1 _a)pli > O. Then we write 
each such term as 

IIi [api . (1 - a)pli ,] 
P,' Sl + . si' P II pili 

It suffices to observe that pili E 3g(F(x», so the bracketed expression is in 3fi(X); 
thus S E S. 
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[Step 1] Now let us compute the support function as of S. For d E ]R.n, we denote by 
F' (x, d) E ]R.m the vector whose components are ff (x, d) and we proceed to prove 

as(d) = g'(F(x), F'(x, d») . (4.3.2) 

For any S = L?!:I pi si E S, we write (s, d) as 

m m 

I>i (Si' d) ~ Lpi ff(x, d) ~ l(F(x), F'(x, d») ; (4.3.3) 
i=1 i=1 

the first inequality uses pi ~ ° and the definition of ff (x, .) = aafi (x); the second 
uses the definition g'(F(x), .) = aag(F(x)). 

On the other hand, the compactness of ag(F(x)) implies the existence of an 
m-tuple (pi) E ag(F(x)) such that 

m 
g'(F(x), F'(x, d») = L pi ff(x, d), 

i=l 

and the compactness of each afi(X) yields likewise an Si E afi(X) such that 

ff (x, d) = (Si' d) for i = 1, ... , m . 

Altogether, we have exhibited an S = Ll=, pi Si E S such that equality holds in 
(4.3.3), so (4.3.2) is established. 

[Step 2] It remains to prove that the support function (4.3.2) is really the directional 
derivative (g 0 F)' (x, d). For t > 0, expand F(x + td), use the fact that g is locally 
Lipschitzian, and then expand g(F(x + td)): 

g(F(x + td» = g(F(x) + tF'(x, d) + o(t») = g(F(x) + tF'(x, d») + o(t) 
= g(F(x)) + tg'(F(x), F'(x,d)) + o(t). 

From there, it follows 

(g 0 F)'(x, d) :=limg(F(x+td»-g(F(x» =l(F(x),F'(x,d»). 
t.).o t 

Let us give some illustrations: 

- When g is differentiable at F(x), (4.3.1) has a classical flavour: 

m ag 
a(g 0 F)(x) = L -. (F(x»afi(X). 

i=l ayl 

o 

In particular, with g(yl, ... , ym) = 1/2 Ll=, (yi+)2 (r+ denoting max{O, rD, we 
obtain 

a H L:?!:I Cf/)2] = L?!:I f/afi . 
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- Take g(y I, ... , ym) = L7'=1 (yi)+ and use the following notation: 

Io(x) := {i : li(X) = OJ, I+(x):= {i : f;(x) > O}. 

Then 

IJ [L7'=1 it] (x) = LiEI+(x) IJ/i(X) + LiE1o(X)[O, I]IJ/i(X). 

- Finally, we give once more our fundamental example for optimization (generalizing 
Example 3.4, and to be generalized in §4.4): 

Corollary 4.3.2 Let II, ... , 1m be m convex functions from JRn to JR and define 

1:= max{f ..... , 1m}. 

Denoting by 
I(x) := {i : li(X) = I(x)} 

the active index-set, we have 

IJ/(x) = co {Ua/i(X) : iEI(x)}. (4.3.4) 

PROOF. Take g(y) = max{yl, ... , ym}, whose subdifferential was computed in (3.7): 
{ei} denoting the canonical basis ofJRm, 

IJg(y) = co{ei : i such that yi = g(y)}. 

Then, using the notation of Theorem 4.3.1, we write IJg(F(x» as 

{(pl, ... ,pm): pi =OforiflI(x), pi~OforiEI(x), L~lpi=l}, 

and (4.3.1) gives 

ol(x) = {LiEl(X) piIJf;(x) : pi ~ 0 for i E I(x), LiEI(x) pi = I}. 
Remembering Example III.l.3'.5, it suffices to recognize in the above expression 

the convex hull announced in (4.3.4) 0 

4.4 Supremum of Convex Functions 

We come now to an extremely important calculus rule, generalizing Corollary 4.3.2. It 
has no equivalent in classical differential calculus, and is of constant use in optimiza
tion. In this subsection, we study the following situation: J is an arbitrary index-set, 
{ij }jE] is a collection of convex functions from JRn to JR, and we assume that 

I(x) := sup (fj(x) : j E J} < +00 for all x E JRn . (4.4.1) 

We already know that I is convex (Proposition N.2.1.2) and we are interested in 
computing its subdifferential. At a given x, call 

J(X) := (j E J : Jj(x) = I(x)} 

the active index-set (possibly empty). 
Let us start with an elementary result. 

(4.4.2) 
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Lemma 4.4.1 With the notation (4.4.1), (4.4.2), 

af(x) :) co{uafj(x) : j E J(x)}. (4.4.3) 

PROOF. Take j E J(x) and s E a.(;(x); from the definition (1.2.1) of the subdifferen
tial, 

fey) ~ fj(Y) ~ .(;(x) + (s, Y - x) for all Y E ]Rn, 

so a f (x) contains a.(; (x). Being closed and convex, it also contains the closed convex 
hull appearing in (4.4.3). 0 

Conversely, when is it true that the subdifferentials a.(;(x) at the active indices j 
"fill up" the whole of af (x)? This question is much more delicate, and requires some 
additional assumption, for example as follows: 

Theorem 4.4.2 With the notation (4.4.1), (4.4.2), assume that J is a compact set (in 
some metric space), on which the functions j 1--+ .(; (x) are upper semi-continuous 
for each x E ]Rn. Then 

af(x) = co {ua.(; (x) : j E J(x)}. (4.4.4) 

PROOF. [Step 0] Our assumptions make J (x) nonempty and compact. Denote by S the 
curly bracketed set in (4.4.4); because of (4.4.3), S is bounded, let us check that it is 
closed. Take a sequence {Sk} e S, with {Sk} converging to s; to each Sk> we associate 
some A E J(x) such that Sk E a.(;k(x), i.e . 

.(;k (y) ~ .(;k (x) + (Sk> Y - x) for all Y E ]Rn . 

Let k -+ 00; extract a subsequence so that jk -+ j E J (x); we have .(;k (x) == f (x) = 
fj(x); and by upper semi-continuity of the function fo(Y), we obtain 

.(;(y) ~ lim sup .(;k(y) ~ .(;(x) + (s, y - x) for all y E]Rn, 

which shows s E a.(;(x) e S. Altogether, S is compact and its convex hull is also 
compact (Theorem 111.1.4.3). 

In view of Lemma 4.4.1, it suffices to prove the "e"-inclusion in (4.4.4); for this, 
we will establish the corresponding inequality between support functions which, in 
view of the calculus rule V.3.3.3(ii), says: for all d E ]Rn, 

f'(x,d)~as(d)=sup{f;(x,d): jEJ(X)}. 

[Step 1] Let £ > 0; from the definition (1.1.2) of f' (x, d), 

f(x + td) - f(x) I 
------'--- > f (x, d) - £ for all t > o. 

t 

For t > 0, set 

Jt := {j E J .(;(x + td) - f(x) ~ f'ex, d) _ £}. 
t 

(4.4.5) 

(4.4.6) 



268 VI. Subdifferentials of Finite Convex Functions 

The definition of f(x + td) shows with (4.4.6) that Jt is nonempty. Because J is 
compact and fo (x + td) is upper semi-continuous, Jt is visibly compact. Observe 
that Jt is a superlevel-set of the function 

Jj(x + td) - Jj(x) Jj(x) - f(x) 
O<t~ + , 

t t 

which is nondecreasing: the first fraction is the slope of a convex function, and the 
second fraction has a nonpositive numerator. Thus, Jtl C it2 for 0 < t, ~ t2' 

[Step 2] By compactness, we deduce the existence of some j* E nt>oJt (for each 
r E ]0, t], pick some jT E 1r: c Jt ; take a cluster point for r .!, 0: it is in Jt ). We 
therefore have 

fj*(x + td) - f(x) ~ t[f'(x, d) - s] for all t > 0, 

hence j* E J (x) (continuity of the convex function fj* for t .!, 0). In this inequality, 
we can replace f(x) by fj*(x), divide by t and let t .!, 0 to obtain 

as(d) ~ fJ*(x, d) ~ f'(x, d) - s. 

Since d E ]Rn and s > 0 were arbitrary, (4.4.5) is established. o 

Some comments on the additional assumption are worth mentioning. First, the result 
concerns af(x), for which it is sufficient to know f only around x. It therefore applies if we 
have some neighborhood V of x, in which f is representable as 

f(y) = sup {.fj(y) : jEJ(V)} forallyEV, 

where J (V) is a compact set on which j 1-+ /j (y) is upper semi-continuous whenever y E V. 
Secondly, this assumption deals with j only but this is somewhat misleading. The convexity 
of each /j actually implies that f is jointly upper semi-continuous on J x IRn. 

Finally, the set J is usually a subset of some IRP and our assumption then implies three 
properties: J is closed, bounded, and the fo are upper semi-continuous. Let us examine what 
happens when one of these properties does not hold. If J is not closed, we may first have 
J(x) = 0, in which case the formula is of no help. This case does not cause much trouble, 
though: nothing is changed if J is replaced by its closure, setting 

h(x):= limsup/j/(x) 
j'-+j 

for j E (cl J)\1. A simple example is 

IR 3 X 1-+ /j(x) = x - j with j E J = ]0,1]. (4.4.7) 

Closing J places us in a situation in which applying Theorem 4.4.2 is trivial. The other two 
properties (upper semi-continuity and boundedness) are more fundamental. 

Example 4.4.3 [Upper Semi-Continuity] Complete (4.4.7) by appending 0 to J and set 
fo(x) == 0; then f(x) = x+ and 
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J(x) = { {O} ifx~O, 
'" ifx>O. 

Here, j ~ f}(x) is upper semi-continuous at x = 0 only; J(O) yields afo(O) = {O} c 
af(O) = [0, I] and nothing more. 

Observe that, introducing the upper semi-continuous hull io(x) of fo(x) does not 
change f (and hence a f), but it changes the data, since the family now contains the additional 
function io(x) = x+. With the functions h instead of f}, formula (4.4.4) works. 

[Boundedness] Take essentially the same functions as in the previous example, but with other 
notation: 

fo(x) =0, f}(x)=x-t forj=I,2, ... 

Now J = N is closed, and upper semi-continuity of fo(x) is automatic; f(x) and J(x) are 
as before and the same discrepancy occurs at x = o. 0 

A special case of Theorem 404.2 is when each Ii is differentiable (see Corol
lary 2.104 to remember what it means exactly). 

Corollary 4.4.4 The notation and assumptions are those of Theorem 404.2. Assume 
also that each Ii is differentiable; then 

a/(x) = co {V Ij(x) : j E l(x)}. o 

A geometric proof of this result was given in Example 3 A, in the simpler situation 
of finitely many affine functions Ii. Thus, in the framework of Corollary 40404, and 
whenever there are only finitely many active indices at x, a/(x) is a compact convex 
polyhedron, generated by the active gradients at x. 

The case of 1 (x) being a singleton deserves further comments. We rewrite Corol
lary 40404 in this case, using a different notation reflecting a situation frequently 
encountered in optimization. 

Corollary 4.4.5 For some compact set Y C 1l~.P, let g : lR,n X Y --+ lR, be afunction 
satisfying the following properties: 

-for each x E lR,n, g(x,') is upper semi-continuous; 
-for each y E Y, g(., y) is convex and differentiable; 

- the function I := SUPYEY g(., y) isfinite-valued on lR,n; 
- at some x E lR,n, g(x,·) is maximized at a unique y(x) E Y. 

Then I is differentiable at this x, and its gradient is 

V I(x) = Vxg(x, y(x» (4.4.8) 

(where Vxg(x, y) denotes the gradient of the function g(., y) at x). o 

Computing f at a given x amounts to solving a certain maximization problem, to obtain 
a solution y*, say (which depends on x I). Then a practical rule is: to obtain the gradient of 
f, simply differentiate g with respect to x, the variable y being set to this value y*. If, by 
any chance, no other y E Y maximizes g at this x, one does get V f (x). If not, at least a 
subgradient is obtained (Lemma 4.4.1). 
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Remark 4.4.6 When Y is a finite set, Corollary 4.4.5 can be easily accepted (see Corol
lary 4.3.2): when x varies, y* stays locally the same,just because each g(', y) is continuous. 

When Y is infinite, however, a really baffling phenomenon occurs: although I is a fairly 
complicated function, its gradient exists (!), and is given by the very simple formula (4.4.8) (! I). 
It is perhaps easier to accept this result after looking at the following naive calculation. 

Suppose that we are in a very favourable situation: Y is some space in which differentiation 
is possible; g(', .) is a smooth function; the problem maxg(x + h, .) has a unique solution for 
h close to 0; and finally, this unique solution yO is a smooth function. Then write formally 

v I(x) = Vxg(x, y(x» + Vyg(x, y(x»Vy(x) 

and here comes the trickery: because y(x) is a maximal point, g(x, -) is stationary at y(x); 
the second term is therefore zero. 0 

Because of the importance of sup-functions, we give one more result, valid without 
any assumption, in which case (4.4.4) breaks down from the very beginning. When 
the crucial property J(x) =1= (21 does not hold, a natural cure is to enlarge J(x), so as 
to take into account the indices that are almost active; we therefore set, for given x 
and 8 > 0, 

J8(X) := {j E J : Jj(x) ~ f(x) - 8}. (4.4.9) 

This is not enough, however, as shown by the following counter-example with 
n = 1: 

Jj(x) = Ixl j for j E J =]1,2]. (4.4.10) 

Then f(x) = Ixl for x E [-1, +1] (and x 2 elsewhere). At x = 0, every j E J 
is active, and considering the almost active indices brings just nothing; but every 
aJj(O) is reduced to {OJ! Some further idea is wanted; this idea is to collect also 
the subgradients around the given point - which we will now call Xo. Thus, we are 
interested in the set 

S8 := U{aJj(x) : j E J8(Xo), x E B(xo, 8)}. (4.4.11) 

To recover af(x), we will simply let 8 -J.. 0; everything is now set to obtain 
the most possible general formula in the present framework of a finite-valued sup
function. First, we need a technical lemma. 

Lemma 4.4.7 For given Xo E lRn and 8 > 0, consider the following index-set: 

J* := U{J8(X) : x E B(xo, 28)}. 

There exists a common Lipschitz constant L for the functions {lj }jEJ* on the ball 
B(xo, 8), andfor f on B(xo, 28). 

As a result, the set S8 of (4.4.11) is bounded and, for s E S8, there holds 

fey) ~ f(xo) + (s, y - Xo) - (4L + 2)8 for all y E IRn. (4.4.12) 
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PROOF. Because f is finite-valued, there are m and M such that 

m ~ f(x) ~ M for all x E B(xo, 48) 

and therefore 

m - 8 ~ Jj(x) ~ M for all (j, x) E J* x B(xo, 28) . 

Then the Lipschitz properties stated follow from Lemma IV, 3 .1.1. 
In particular, take S E S8: there are j E J8(XO) c J* and x E B(xo, 8) such that 

S E aJj(x); write the following chain of inequalities: 

(s, y - x) ~ Jj(y) - fj(x) ~ fey) - Jj(x) ~ 
~ fey) - Jj(xo) + L8 ~ fey) - f(xo) + (L + 1)8. 

(4.4.13) 

This is true for all y; if S #- 0, take y = x + 8s / lis II E B(xo, 28) and use the Lipschitz 
property of f to obtain 

811s11 ~ 2L8 + (L + 1)8. 

A bound is thus established for s. Use it in (4.4.13): 

(s, y - xo) ~ fey) - f(xo) + (L + 1)8 + lis 118 ~ fey) - f(xo) + (4L + 2)8. 0 

Theorem 4.4.8 With the notation (4.4.1), (4.4.9), (4.4.11) and given Xo E ]Rn, 

af(xo) = n co S8· 
8>0 

(4.4.14) 

PROOF. [:::)] If s E S8, we know that (4.4.12) holds; it holds also for all convex 
combinations, and for all limits of such. If s E co S8 for all 8 > 0, s therefore satisfies 
(4.4.12) for all 8 > 0, and is thus in af(xo). 

[C] The right-hand side in (4.4.14) is nonempty, being an intersection of nested 
nonempty compact sets. We use support functions: from the calculus rule Y.3.3.3(iii), 
we need to show that f'(x,·) ~ inf8>0D'So' Choose 8 > 0, € > 0, andd of norm 1. 
Since 

D'So(d) = sup {fj(x, d) : j E J8(XO), x E B(xo,8)}, 

we will be done if we single out j* E Jli(XO) and x* E B(xo, 8) such that 

f'(xo, d) ~ fj*(x*, d) + €. 

With the notations of Lemma 4.4.7, we choose first ° < t* ~ min{c, 8} such that 
2Lt* + t*2 ~ 8. Then we choose j* E J such that 

f(xo + t*d) ~ Jj*(xo + t*d) + t*2 . 

Because t*2 ~ 8 and Xo + t*d E B(xo, 8), j* E J* and the Lipschitz properties allow 
us to write 

f(xo) - Lt* ~ fj*(xo + t*d) + t*2 ~ Jj*(xo) + Lt* + t*2; 

we do have j* E h(xo)· 
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On the other hand, 

f'(xo, d) ~ 

~ 

~ 

f(xo + t*d) - f(xo) 

t* 

fj*(xo + t*d) + t*2 - f(xo) 

t* 

fj*(xo + t*d) - fj*(xo) * , * -----''---- + t ~ fj* (x ,d) + B , 

where we have used the mean-value Theorem 2.3.3: x* E ]xo, Xo + t*d[ C B(xo, 8). 
In summary, our j* and x* do satisfy the required properties, the theorem is proved. 

o 

Apart from its ability to describe af(xo) accurately, this result gives a practical 
alternative to Lemma 4.4.1: given Xo, first compute some j solving approximately 
the optimization problem (4.4.1); then compute a subgradient of Ij, possibly at some 
neighboring point x; this subgradient is reasonably close to af(xo) - remember in 
particular (4.4.12). 

4.5 Image of a Function Under a Linear Mapping 

Let g : jRm --+ jR be a convex function and A : jRm --+ jRn a surjective linear operator. 
We recall from §IY.2.4 that the associated function 

jRn :3 x H- (Ag)(x) := inf {g(y) : Ay = x} (4.5.1) 

-I 

is convex, provided that, for all x, g is bounded from below on A (x). Analogously to 
(4.4.2), we denote by 

Y(x) := {y E jRm : Ay = x, g(y) = (Ag)(x)} (4.5.2) 

the set of minimizers in (4.5.1). 

Theorem 4.5.1 With the notation (4.5.1), (4.5.2), let x be such that Y(x) is nonempty. 
Then, for arbitrary y E Y (x), 

-I 

a(Ag)(x) = {s E IRn : A*s E ag(y)} = (A*)[ag(y)] (4.5.3) 

(and this set is thus independent of the particular optimal y). 

PROOF. By definition, s E a(Ag)(x) if and only if 

(Ag)(x') ;;:: (Ag)(x) + (s, x' - x) for all x' E jRn , 

which can be rewritten 

(Ag)(X') ;;:: g(y) + (s, x' - Ay) for all x' E jRn 
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where y is arbitrary in Y(x). Furthermore, because A is surjective and by definition 
of Ag, this last relation is equivalent to 

g(y') ~ g(y) + (s, Ay' - Ay) = g(y) + (A*s, y' - y) for all y' E IRm 

which means that A*s E og(y). 0 

The surjectivity of A implies first that (Ag)(x) < +00 for all x, but it has a more 
interesting consequence: 

Corollary 4.5.2 In (4.5.1), (4.5.2), if g is differentiable at some y E Y(x), then Ag 
is differentiable at x. 

PROOF. Surjectivity of A is equivalent to injectivity of A *: in (4.5.3), we have an 
equation in s: A*s = Vg(y), whose solution is unique, and is therefore V(Ag)(x). 

o 

A first example of image-function is when A is a restriction in a product space: 
g being a convex function on IRn x IRm, consider the marginal function, obtained by 
partial minimization of g: 

IRn 3 x ~ I(x) := inf {g(x, y) : y E IRm}. (4.5.4) 

This I is put under the form Ag, if we choose A : IRn x R m --+ Rn defined by 
A(x, y) = x. 

Corollary 4.5.3 Suppose that the subdif.forential of g in (4.5.4) is associated with a 
scalar product ((', .)) preserving the structure of a product space: for all x, x' E IRn 

and y, y' E R m, 
(((x, y), (x', y'))) = (x, x')n + (y, y')m. 

At a given x E IRn, take an arbitrary y solving (4.5.4). Then 

ol(x) = {s E IRn : (s,O) E O(x,y)g(x, y)} . 

PROOF. With our notation, A * s = (s, 0) for all s E IRn. It suffices to apply The
orem 4.5.1 (the symbol O(x,y)g is used as a reminder that we are dealing with the 
subdifferential of g with respect to the variable (', .) E IRn x IRm). 0 

If g is differentiable on Rn x Rm and is minimized "at finite distance" in (4.5.4), then 
the resulting I is differentiable (see Remark 4.5.2). In fact, 

V(x.y)g(x, y) = (Vxg(x, y), Vyg(x, y)) ERn x Rm 

and the second component is 0 just because y is a minimizer. We do obtain 

v I(x) = Vxg(x, y) with y solving (4.5.4). 

A geometric explanation of this differentiability property appears on Fig. 4.5.1: the shadow 
of a smooth convex epigraph is normally a smooth convex epigraph. 
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-
-
-

Fig. 4.5.1. The gmdient of a marginal function 

Remark 4.5.4 The following counter-example emphasizes the necessity of a minimizer y 
to apply Theorem 4.5.1: in R2, the function 

g(x, y) := .jx2 + e2y 

is convex (check it), perfectly smooth (COO), but "minimal at infinity" (for all x). The resulting 
marginal function I (x) = Ix I is not a smooth function. 0 

Another important instance of an image-function was seen in § IY.2.3: the infimal 
convolution of two functions, defined by 

(fl t h)(x) := inf {f1(YI) + h(Y2) : YI, Y2 E lRn, YI + Y2 = x}. (4.5.5) 

Recall from the end of §IY.2.4 that this operation can be put in the form (4.5.1), 
by considering 

lRn x lRn 3 (Yh Y2) 1-* g(YI, Y2) := II (yd + h(Y2) E lR, 
lRn x lRn 3 (Yh Y2) 1-* A(Yh Y2) := YI + Y2 E lRn . 

Corollary 4.5.5 Let II and h : lRn -+ lR be two convex functions minorized by a 
common affine function. For given x, let (YI, Y2) be such that the inf-convolution is 
exact at x = YI + Y2, i.e.: (fl t h)(x) = II (YI) + h(Y2). Then 

a(fl t h)(x) = all (YI) n ah(Y2). (4.5.6) 

PROOF. First observe that A*s = (s, s). Also, apply Definition 1.2.1 to see that 
(SJ,S2) E ag(YI' Y2) if and only ifsl E all (YI) ands2 E ah(Y2)' Then (4.5.6) is just 
the copy of (4.5.3) in the present context. 0 

Once again, we obtain a regularity result (among others): "il(fl t h)(x) exists 
whenever there is an optimal (YI, Y2) in (4.5.5) for which either II or h is differen
tiable. For an illustration, see again Example Iy'2.3.8, more precisely (IY.2.3.6). 

Remark 4.5.6 In conclusion, let us give a warning: the max-operation (§4.4) does not destroy 
differentiability if uniqueness of the argmax holds. By contmst, the differentiability of a min
function (§4.5) has nothing to do with uniqueness ofthe argmin. 
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This may seem paradoxical, since maximization and minimization are just the same 
operation, as far as differentiability of the result f is concerned. Observe, however, that 
the differentiability obtained in §4.5 relies heavily on the joint convexity of the underlying 
function g of Theorem 4.5.1 and Corollary 4.5.3. This last property has little relevance in 
§4.4. 0 

5 Further Examples 

With the help of the calculus rules developed in §4, we can study more sophisticated 
examples than those of §3. They will reveal, in particular, the important role of §4.4: 
max-functions appear all the time. 

5.1 Largest Eigenvalue of a Symmetric Matrix 

We adopt the notation of §IY.1.3( e): in the space Sn (1R) of symmetric n x n matrices 
equipped with ((., .)), the function 

Sn(lR) 3 M t-+ Al (M) E IR 

is convex and can be represented as 

AI(M) = max {uTMu : uElRn , uTu=l}. (5.1.1) 

Furthermore, the set of optimal u in (5.l.l) is the set of normalized eigenvectors 
associated with the resulting A I . 

Thus, Corollary 4.4.4 will give the subdifferential of Al if the gradient of the 
function M t-+ u T M u can be computed. This is easy: by direct calculation, we have 

U T M u = ((uu T, M)) (5.1.2) 

so the linear function u t-+ u T Mu supports the singleton {u T u}, a rank-one matrix 
of Sn(lR) (its kernel is the subspace orthogonal to u). The subdifferential of Al at M 
is therefore the convex hull of all these matrices: 

aAI(M) = co {uuT : uTu=l, MU=AI(M)u}. (5.1.3) 

Naturally, this is the face of aAI (0) exposed by M, where aAI (0) was given in Exam
ple y'3.3.ll. It is the singleton {VAl (M)} ifand only if the maximal eigenvalue Al of 
M is simple. 

The directional derivatives of A I can of course be computed: the support function 
of(5.1.3) is, using (5.1.2) to reduce superfluous notation, 

P t-+ A~ (M, P) = max {u T P u : u normalized eigenvector for A I (M) } . 

Remark 5.1.1 It is tempting to think ofthe problem as follows. There are a finite number of 
eigenvalues; each one is a root of the characteristic polynomial of M, whose coefficients are 
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smooth functions of M; therefore, each eigenvalue is a smooth function of M: A I is a max of 
finitely many smooth functions. 

If this reasoning were correct, Corollary 4.4.4 would tell us that aAI (M) is a compact 
convex polyhedron; this is certainly not the case of the set (5.1.3)! The flaw is that the roots 
of a polynomial cannot be enumerated. When they are all distinct, each can be followed by 
continuity; but when two roots coincide, this continuity argument vanishes. 0 

As an example, let us study the cone of symmetric negative semi-definite matrices, 
i.e. the sublevel-set 

K- := {M : Al (M) ~ O} . 

Its boundary is the set of matrices M E K- that are singular (-In has Al (-In) < 0, 
so Proposition 1.3.3 applies). For such M, Proposition 1.3.4 characterizes the tangent 
and normal cones to K - at M: 

T K-(M) = {P: u T Pu ~ 0 for all u E Ker M}, 
NK-(M) = co {uu T : u E Ker M}. 

If M =f:. 0, Example 111.5.2.6 gives a more handy expression for the normal cone: 

NK-(M) = {P symmetric positive semi-definite: ((M, P)) = O}. 

In problems involving largest eigenvalues, the variable matrix M is often im
posed a certain pattern. For example, one considers matrices with fixed off-diagonal 
elements, only their diagonal being free. In that case, a symmetric matrix Mo is given 
and the function to be studied is Al (Mo + D), where D is an arbitrary diagonal n x n 
matrix. Identifying the set of such diagonals with R.n , we thus obtain the function 

f(x) = f(~I, ... , ~n) := A} (Mo + diag(~I, ... , ~n»). 

This f is A I pre-composed with an affine mapping whose linear part is Ao : R.n ~ 

Sn (R.) defined by 

We have 

R.n :3 x = (~I, ... , ~n) 1-+ Ao(x) := diag(~I, ... , ~n) E Sn(R.). 

n 

((Aox, M)) = L ~i Mjj for all x E R.n and M E Sn (R.) . 
i=1 

Knowing that R.n is equipped with the usual dot-product, the adjoint of Ao is therefore 
defined by 

n 
X T A~M = L ~i Mjj for all x E R.n and ME Sn(R.). 

i=1 

Thus, At : Sn (lR.) ~ lR.n appears as the operator that takes an n x n matrix and makes 
an n -vector with its diagonal elements. Because the (i, j) th element of the matrix u u T 

is u i u j , (5.1.3) gives with the calculus rule (4.2.1) 

af(x) = co {«U I)2, ... , (un )2) : u normalized eigenvector at f(x)} . 
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5.2 Nested Optimization 

In optimization, convex functions that are themselves the result of some other opti
mization problem are encountered fairly often. Let us mention, among others, prob
lems issuing from game theory, all kinds of decomposition schemes, semi-infinite 
programming, optimal control problems in which the state equation is replaced by an 
inclusion, etc. We consider two examples below, which are still within the framework 
of this book: partially linear least-squares problems, and Lagrangian relaxation. 

(a) Partially Linear Least-Squares Problems In our first example, there are three 
vector spaces: IRn, IRm and IRP, each equipped with its dot-product. A matrix A(x) : 
IRm --+ IRP is given, depending on the parameter x E IRn, as well as a vector b(x) E 

IRP. Then one considers the function 

IRn x IRm 3 (x, Y) f-+ g(x, y) := !IIA(x)y - b(x) 112 . (5.2.1) 

The problem is to minimize g, assumed for simplicity to be convex. 
It makes good sense to minimize g hierarchically: first with respect to y (x being 

fixed), and then minimize the result with respect to x. In other words, defining 

f(x) := rnin{g(x, y) : y E IRm }, 

(5.2.1) is replaced by the problem of minimizing f with respect to x. In theory, nothing 
is changed; in practice, a lot is changed. 

For one thing, f has less variables than g. More importantly, however, it is usually 
the case in the model (5.2.1) that x and y have nothing to do with each other. For 
example, y may be a set of weights, measured in kilograms; and x may be interest 
rates, i.e. dimensionless numbers. Under these conditions, any numerical method to 
minimize g directly will run into trouble because an appropriate scaling is hard to 
find. To cut a long story short, f is likely to be more easily minimized than g. 

Now, y is given by a linear least-squares system 

AT (x)[A(x)y - b(x)] = 0 (5.2.2) 

which has always a solution (not necessarily unique): we are right in the framework 
of Corollary 4.5.3. Without any assumption on the rank of A (x), 

v f(x) = [A'(y) - b'](Ay - b). (5.2.3) 

Here y is any solution of (5.2.2); b' is the matrix whose klh row is the derivative of 
b with respect to the klh component 1/ of x; A'(y) is the matrix whose klh row is 
y T (Ak) T; Ak is the derivative of A with respect to ~k. Then, f can be minimized 
numerically by any ofthe available algorithms of Chap. II, having (5.2.3) as the black 
box (Ul) of Fig. 11.1.2.1. It is most probable that a very efficient method will thus be 
obtained. 
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(b) Lagrangian Relaxation Our second example is of utmost practical importance 
and will motivate the full Chapter XII. Here, we content ourselves with a brief de
scription of the problem. Given a set U and n + 1 functions Co, Cl, ••• , Cn from U to 
JR, consider the problem 

I supco(u) u E u, 
Ci(U)=O fori=l, ... ,n. 

(5.2.4) 

Associated with this problem is the Lagrange junction, which depends on x = 
(~l, ... , ~n) E JRn and U E U, and is defined by 

n 
g(x, u) := co(u) + L~iC;(u). 

i=l 

We will see in Chap. XII that another function is important for solving (5.2.4), namely 

I(x) := sup (g(x, u) : u E U} , (5.2.5) 

which must be minimized. Needless to say, I is convex, as the supremum of the linear 
functions g(., u). In the good cases, when the hypotheses of Theorem 4.4.2 bring no 
trouble, its subdifferential is given by Corollary 4.4.4 

a/(x) = co (c(u) : u E U(x)} (5.2.6) 

where c(u) E lRn denotes the vector whose coordinates are C;(u), and U(x) is the 
optimal set in (5.2.5). 

According to (5.2.6), the subgradients of I are obtained from the constraint
values at those U solving (5.2.5); at least, the inclusion "~" always holds in (5.2.6), 
and approximations are possible if Theorem 4.4.8 must be invoked. An x minimizing 
I is characterized by the following condition: for some positive integer p :;;; n + 1, 
there existuJ, ... ,up in U(X) and a set of convex multipliers a = (aJ, ... , ap) E Lip 
such that 

p 

g(x, Uk) = I(x) and Lakc(Uk) = 0 E JRn . 
k=l 

In particular, if g(x,·) happens to have a unique maximum it, then p = 1, which 
means that c(il) = O. 

At a non-optimal x, the descent directions for I are described by Theorem 1.3.4: 

intTSf(x)(X) = {d E lRn : dT c(u) < 0 for all u E U(x)}. 

5.3 Best Approximation of a Continuous Function on a Compact Interval 

Let T be a compact interval of R. and flJo a real-valued continuous function defined 
on T. Furthermore, n functions fIJI, ... , flJn are given in the space qT) of real-valued 
continuous functions on T; usually, they are linearly independent. We are interested 
in finding a linear combination of the fIJi'S which best approximates flJo, in the sense 
of the max-norm. In other words, we want to minimize over JRn the error-function 
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I(x):= max {Ig(x, t)1 : t E T} (5.3.1) 

where g denotes the function (affine in x) 

n 
g(x, t) := I)i 'Pi (t) - 'Po(t) = ['P(t)] T x - 'Po(t) . (5.3.2) 

i=1 

Minimizing I is one of the simplest instances of semi-infinite programming: opti
mization problems with finitely many variables but infinitely many constraints. 

The error-function is convex and, once more, enters the framework of Corol
lary 4.4.4 (observe in particular that Ig I = max{g, - g}). We neglect the case of an x 
with I (x) = 0, which is not particularly interesting: g(x, .) == 0, x is optimal anyway. 
Denoting by H the (usually n-dimensional) subspace of C(T) generated by the 'Pi'S, 
we therefore assume 'Po fj. H. 

Fix an x with I (x) > 0, and call T (x) C T the set of t yielding the max 
in (5.3.1); T(x) is nonempty from our assumptions. At each such t, we can define 
s(t) E {-I, +1} by 

s(t)g(x, t) = I(x) for all t E T(x). 

Then, al(x) is the convex combination of all the n-vectors s(t)'P(t), where t 
describes T(x). Deriving an optimality condition is then easy with Corollary 4.4.4 
and Theorem 4.1.1 : 

Theorem 5.3.1 With the notations (5.3.1), (5.3.2), suppose 'Po f/. H. A necessary 
and sufficient condition for i = W, ... , ~n) E ]Rn to minimize I of (5.3.1) is that, 
for some positive integer p ~ n + 1, there exist p points tl, ... , tp in T, p integers 
SI, •.• , sp in {-1, + 1} and p positive numbers ai, ... , a p such that 

n 

L ~i'Pi (tk) - 'Po(tk) = skl(x) for k = 1, ... , p, 
i=1 

p 

Laksk'Pi(tk) = 0 for i = 1, ... , n 
k=1 

(or equivalently: 'Lk=1 aksk1/!(tk) = 0 forall1/! E H). o 

Indeed, this example is formally identical to Lagrangian relaxation; the possible 
differences are usually in the assumptions on T, which plays the role of U. 

6 The Subdifferential as a Multifunction 

Section 2 was mainly concerned with properties of the "static" set al(x). Here, we 
study the properties of this set varying with x, and also with I. 
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6.1 Monotonicity Properties of the SubditIerential 

We have seen in §IV4.1 that the gradient mapping of a differentiable convex function 
is monotone, a concept generalizing to several dimensions that of a nondecreasing 
function. Now, this monotonicity has its formulation even in the absence of differen
tiability. 

Proposition 6.1.1 The subdifferential mapping is monotone in the sense that,for all 
XI and X2 in lRn, 

(S2-ShX2-XI)~0 forall Sj Ea!(Xj), i=I,2. 

PROOF. The subgradient inequalities 

!(X2) ~ 

!(XI) ~ 

!(XI) + (Sl' X2 - XI) for all Sl E a!(Xl) 
!(X2) + (S2, XI - X2) for all S2 E a!(X2) 

give the result simply by addition. 

(6.1.1) 

o 

A convex function can be "more or less non-affine", according to how much its 
graph deviates from a hyperplane. We recall, for example, that! is strongly convex 
on a convex set C when, for some modulus of strong convexity c > 0, all Xl, X2 in C, 
and all a E ]0, I [, it holds 

!(ax2 + (1 - a)xl) ~ a!(x2) + (1 - a)!(xl) - tca(l - a)lIx2 - XI 112 • (6.1.2) 

It turns out that this "degree of non-affinity" is also measured by how much (6.1.1) 
deviates from equality: the next result is to be compared to Theorems IV4.1.1(ii)
(iii) and IV4.1.4, in a slightly different setting: ! is now assumed convex but not 
differentiable. 

Theorem 6.1.2 A necessary and sufficient conditionfor a convexfunction ! : lRn ~ 

lR to be strongly convex (with modulus c > 0) on a convex set C is that, for all 
XhX2 E C, 

!(X2) ~ !(XI) + (s, X2 - xd + 4cllx2 - XIU 2 for all s E a!(Xl) 

or equivalently 

(S2 - Sh X2 - Xl) ~ cllx2 - Xd\2 for all Si E a!(Xi), i = 1,2. 

PROOF. For XI. X2 given in C and a E ]0, 1 [, we will use the notation 

xCl! := aX2 + (I - a)xl = Xl + a(x2 - XI) 

and we will prove (6.1.3) => (6.1.2) => (6.1.4)=> (6.1.3). 

(6.1.3) 

(6.1.4) 

[(6.1.3) => (6.1.2)] Write (6.1.3) with Xl replaced by xCl! E C: for S E a!(xCl!), 

!(X2) ~ !(xCl!) + (s, X2 - xCl!) + te ll x2 _ XCl!1I2 
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or equivalently 

!(X2) ~ !(xa ) + (1 - a)(s, X2 - xIl + 4c(1 - a)2Ux2 - XIU 2 • 

Likewise, 
!(XI) ~ !(xa ) + a(s, XI - X2) + !ca2UxI - X2U 2 • 

Multiply these last two inequalities by a and (1 - a) respectively, and add to 
obtain 

a!(X2) + (1 - a)!(x]) ~ !(xa ) + 4CUX2 - XIU 2 [a(1 - a)2 + (l - a)a2]. 

Then realize after simplification that this is just (6.1.2). 

[(6.1.2):::} (6.1.4)] Write (6.1.2) as 

!(xa ) - lex]) I 2 -'------''--- + 2c(1 - a)UX2 - XIU :%; !(X2) - !(XI) 
a 

and let a tOto obtain 

!'(XI' X2 - XI) + 4CUX2 - xII12:%; !(X2) - !(XI) 

which implies (6.1.3). Then, copying (6.1.3) with XI and X2 interchanged and adding 
yields (6.1.4) directly. 

[(6.1.4) :::} (6.1.3)] Apply Theorem 2.3.4 to the one-dimensional convex function 
IR :3 a t-+ ({J(a) := !(xa ): 

!(X2) - !(XI) = ({J(l) - ({J(O) = 11 (sa, X2 - XI) dO! (6.1.5) 

where sa E a!(Xa ) fora E [0, 1]. Thentakesl arbitraryina!(xdandapply(6.1.4): 

(sa - Sl, x a - xIl ~ cUxa - xIll2 

i.e., using the value of xa , 

a(sa, X2 - xIl ~ a(sJ, X2 - xIl + ca2Ux2 - XIU 2. 

The result follows by using this inequality to minorize the integral in (6.1.5). 0 

Monotonicity properties of a! characterize strictly convex functions in just the 
same way as they do for strongly convex functions. 

Proposition 6.1.3 A necessary and sufficient condition for a convex function ! : 
IRn -+ IR to be strictly convex on a convex set C C IRn is that, for all XI ,X2 E C with 

X2 =1= XI, 
!(X2) > !(xd + (s, X2 - xIl for all s E a!(XI) 

or equivalently 

(S2 - Sl, X2 - xIl > 0 forall Si E a!(Xi), i = 1,2. 

PROOF. Copy the proof of Theorem 6.1.2 with c = 0 and the relevant " ~ "-signs 
replaced by strict inequalities. The only delicate point is in the [(6.1.2) :::} (6.1.4)]
stage: use monotonicity of the difference quotient. 0 
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6.2 Continuity Properties of the SubditTerential 

When 1 is a differentiable convex function, its gradient V 1 is continuous, as a map
ping from ]R.n to ]R.n. In the nondifferentiable case, this gradient becomes a set a 1 and 
our aim here is to study continuity properties of this set: to what extent can we say 
that al(x) "varies continuously" with x, or with I? We are therefore dealing with 
continuity properties of multifunctions, and we refer to § A. 5 for the basic terminology. 

We already know that a 1 (x) is compact convex for each x, and the next two results 
concern "global" properties. 

Proposition 6.2.1 Let 1 : ]R.n ~ ]R. be convex. The graph of its subdifJerential 
mapping is closed in ]R.n x ]R.n. 

PROOF. Let {(XtoSk)} be a sequence in gral converging to (x,s) E]R.n x ]R.n. We 
must prove that (x, s) E gr ai, which is easy. We have for all k 

I(y) ~ I(Xk) + (Sk' y - Xk) for all y E ]R.n ; 

pass to the limit on k, using continuity of 1 and of the scalar product. o 

Proposition 6.2.2 The mapping al is locally bounded, i.e. the image al(B) of a 
bounded set B C ]R.n is a bounded set in ]R.n. 

PROOF. For arbitrary x in Band s =1= 0 in a/(x), the subgradient inequality implies 
in particular 

I(x + s/lIsll) ~ I(x) + IIsll· 
On the other hand, 1 is Lipschitz-continuous on the bounded set B + B(O, I) (Theo
rem IV3.1.2). Hence IIsll ~ L for some L. 0 

Remark 6.2.3 Combining these two results, we obtain a bit more than compact
valuedness of ai, namely: the image by al of a compact set is compact. In fact, 
for {xd in a compact set, with a subsequence {xk'}, say, converging to x, take Sk E 
a/(Xk) and extract the subsequence {skI}. From Proposition 6.2.2, a subsequence of 
{skI} converges to some s E ]R.n; from Proposition 6.2.1, s E a/(x). As another 
consequence, we obtain for example: the image by al of a compact connected set is 
compact connected. 

On the other hand, the image by a 1 of a convex set is certainly not convex (except 
for n = I, where convexity and connectedness coincide): take for 1 the ii-norm on 
]R.2; the image by al of the unit simplex Ll2 is the union of two segments which are 
not collinear. 

Concerning the graph of ai, the same type of results hold: if K C]R.n is compact 
connected, the set 

{(x,s) E]R.n x]R.n : x E K, S E a/(x)} 

is compact connected in]R.n x ]R.n. Also, it is a "skinny" set (see again Fig. 1.4.1.1 ) 
because al(x) is a singleton almost everywhere (Theorem IV4.2.3). 0 
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Thanks to local boundedness, our mapping 8f takes its values in a compact set 
when the argument x itself varies in a compact set; the "nice" form (A.S.2) of outer 
and inner semi-continuity can then be used. 

Theorem 6.2.4 The subdifJerential mapping of a convex function f : ]Rn ---+ ]R is 
outer semi-continuous at any x E ]Rn, i.e. 

"Ie > 0,38 > 0: y E B(x, 8) ===? 8f(y) C 8f(x) + B(O, e) . (6.2.1) 

PROOF. Assume for contradiction that, at some x, there are e > 0 and a sequence 
{(Xb Sk)} with 

xk ---+ x for k ---+ 00 and 
sk E 8f(Xk), Sk ¢ 8f(x) + B(O, e) for k = 1,2, ... 

(6.2.2) 

The bounded {sd (Proposition 6.2.2) has a subsequence converging to s, which is in 
8f(x) (Proposition 6.2.1). This is a contradiction since (6.2.2) implies 

s ¢ 8f(x) + B(O, ~e). o 

In terms of directional derivatives, we recover a natural result, if we remember 
that f' (., d) is an infimum of continuous functions [f (. + t d) - f 0]1 t over t > 0: 

Corollary 6.2.5 For f : ]Rn ---+ ]R convex, the function f' (., d) is upper semi
continuous: at all x E ]Rn, 

f' (x, d) = lim sup f' (y, d) for all d E ]Rn. 
y-->-x 

PROOF. Use Theorem 6.2.4, in conjunction with Proposition V3.3.9. o 

Remark 6.2.6 If f is differentiable at x, then Theorem 6.2.4 reads as follows: all the 
subgradients at y tend to V f (x) when y tends to x. The inner semi-continuity then 
follows: 8f is actually continuous at x. In particular, if f is differentiable on an open 
set Q, then it is continuously differentiable on Q. 

In the general case, however, inner semi-continuity is hopeless: for n = 1 and 
f(x) := lxi, 8f is not inner semi-continuous at 0: 8f(0) = [-1, +1] is much larger 
than, say, 8f(x) = {I} when x > 0. 0 

All the previous results concerned the behaviour of 8 f (x) as varying with x. This 
behaviour is essentially the same when f varies as well. 

Theorem 6.2.7 Let {!k} be a sequence of (finite) convex functions converging point
wise to f : ]Rn ---+ lR and let {Xk} converge to x E ]Rn. For any e > 0, 

8!k(Xk) c 8f(x) + B(O, e) for k large enough. 
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PROOF. Let e > 0 be given. Recall (TheoremIY.3.1.5) that the pointwise convergence 
of Uk} to f implies its uniform convergence on every compact set of IRn . 

First, we establish boundedness: for Sk =1= 0 arbitrary in afk(Xk), we have 

fk(Xk + ski USk II) ~ !k(Xk) + USkU· 

The uniform convergence of {!k} to f on B(x, 2) implies for k large enough 

USkU ~ f(Xk + skiUskl1) - f(Xk) + e, 

and the Lipschitz property of f on B(x, 2) ensures that {sd is bounded. 
Now suppose for contradiction that, for some infinite subsequence, there is some 

Sk E a!k(Xk) which is not in af(x) + B(O, e). Any cluster point of this {sd - and 
there is at least one - is out of af(x) + B(O, 1/2 e). Yet, with y arbitrary in]RlI, write 

!key) ~ fk(Xk) + {Sko y - Xk} 

and pass to the limit (on a further subsequence such that Sk --+ s): pointwise [resp. 
uniform] convergence of {!k} to f at y [resp. around x], and continuity of the scalar 
product give 

f (y) ~ f{x) + (s, y - x) . 

Because y was arbitrary, we obtain the contradiction S E af(x). o 

The differentiable case is worth mentioning: 

Corollary 6.2.8 Let {!k} be a sequence of (finite) differentiable convex fonctions 
converging pointwise to the differentiable f : ]RII --+ lR. Then V fk converges to V f 
uniformly on every compact set ofJRII. 

PROOF. Take S compact and suppose for contradiction that there exist e > 0, {Xk} c S 
such that 

IIV fk(Xk) - V f(Xk) II > e for k = 1,2, ... 

Extracting a subsequence if necessary, we may suppose Xk --+ XES; Theorem 6.2.7 
assures that {V!k(Xk)} and {V f(Xk)} both converge to V f(x), implying 0 ~ e. 0 

6.3 Sub differentials and Limits of Gradients 

One of the main results of the previous section was the outer semi-continuity of the 
subdifferential: (6.2.1) just means that this latter set contains all the possible limits of 
subgradients calculated at all neighboring points. 

The question that we consider in this section is in a sense the converse: to what 
extent can the whole subdifferential be built up from limits of subgradients at neighbor
ing points? In other words: we are given x E ]RII and we want to construct sequences 
{(Yk. Sk)} C gr af so that the limits of {sd make up the entire af(x). Of course, we 
are not too interested in the trivial case where Yk == x; we will actually consider two 
special kinds of sequences {Yk}. 
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(a) Sequences of Differentiability Points First, consider sequences {Yk} such that 
f is differentiable at each Yk. Recall from Theorem IY.4.2.3 that f is differentiable 
except possibly on a set of measure zero; call it ..1c, i.e. 

Y E..1 <==> af(y) = {V f(y)}· 

Thus, even if our given x is not in ..1, we can construct a sequence {Ykl C ..1 with 
Yk -+ x. The corresponding sequence {V f(Yk)} is bounded (by a Lipschitz constant 
of f around x), so we can extract some cluster point; according to §6.2, any such 
cluster point is in a f (x). Then we ask the question: how much of a f (x) do we cover 
with all the possible subgradients obtained with this limiting process? 

Example 3.4 can be used to illustrate the construction above: with the x of the 
right part of Fig. 3.1, we let {Yk} be any sequence tending to x and keeping away from 
the kinky line where fl = h. For example, with the d of the picture, we can take 

( I)k 
Yk := x + ..::r-d , 

in which case the corresponding sequence {V f (Yk)} has two cluster points SI and S2 -

and our set of limits is complete: no other sequence of gradients can produce another 
limit. Observe in this example that af(x) is the convex hull of the cluster points SI 

and S2 thus obtained. We will show that this is always the case. 
So we set 

yf(x) := {s : 3{Yk} C ..1 with Yk -+ x, V f(Yk) -+ s}. (6.3.1) 

It is rather clear that y f (x) is bounded, and also that it is closed (as a "limit oflim
its"); its convex hull is therefore compact (Theorem III.l.4.3) and, by Theorem 6.2.4, 

y f(x) C co y f(x) c af(x) . 

The next result establishes the converse inclusion. 

Theorem 6.3.1 Let f : lRn -+ lR be convex. With the notation (6.3.1), 

af(x) = co y f(x) for all x E lRn . 

PROOF. In view of (6.3.2), we only have to prove that 

f'(x,d)~aYf(x)(d) foralldElRn , 

where the support function of y f(x) is obtained from (6.3.1): 

aYf(x)(d) = lim sup {(V f(y), d} : Y -+ x, Y E ..1} . 

Suppose that, for some 8 > 0 and (normalized) d, it holds that 

aYf(x)(d) ~ f'(x, d) - 8. 

In view of the formulation (6.3.4), this means that, for some 8 > 0, 

(6.3.2) 

(6.3.3) 

(6.3.4) 
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(V f(x' ), d) ~ f'(X, d) - te for all x' E B(x, 8) n.1. 

Consider the following set (see Fig. 6.3.1): 

Bd(X,8) := {y E B(x, 8) : (d, y) = O} 

and, for each y E Bd(X, 8), denote by Ly := y + IRd the line passing through y and 
parallel to d. According to Fubini's Theorem, the I-dimensional measure of Ly n .1 c 

is zero for almost all y E Bd(X, 8) (equipped with its (n - I)-dimensional measure). 
Take such a y, so that f is differentiable at almost all points of the form y + td; then 
write 

f'(y, d) ~ f(y + td) - f(y) = ! it (V f(y + ad), d)da ~ f'(x, d) - :., 
t t 0 2 

which contradicts the upper semi-continuity of f' (., d) at x (Corollary 6.2.5). 0 

ly 

/d 
Fig.6.3.1. Meeting the set of kinks of a convex function 

In summary, the subdifferential can be reconstructed as the convex hull of all 
possible limits of gradients at points Yk tending to x. In addition to 1.1.4, 1.2.1 and 
1.3.1, a fourth possible definition of af(x) is (6.3.3). 

Remark 6.3.2 As a consequence of the above characterization, we indicate a practical trick 
to compute subgradients: pretend that the function is differentiable and proceed as usual in 
differential calculus. This "rule of thumb" can be quite useful in some situations. 

For an illustration, consider the example of §5.1. Once the largest eigenvalue A is com
puted, together with an associated eigenvector u, just pretend that A has multiplicity 1 and 
differentiate formally the equation Mu = AU. A differential dM induces the differentials dA 
and du satisfying 

Mdu +dMu = Adu +dAU. 

We need to eliminate du; for this, premultiplyby u T and use symmetry of M, i.e. u T M = AUT: 

AuTdu +uTdMu = AuTdu +dAuTu. 

Observing that u T dM u = UU T dM, dA is obtained as a linear form of dM: 

uuT 
dA=-dM=SdM. uTu 

Moral: if A is differentiable at M, its gradient is the matrix S; ifnot, we find the expression 
of a subgradient (depending on the particular u). 
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This trick is only heuristic, however, and Remark 4.1.2 warns us against it: for n = 1, 
take I = I. - h with II (x) = h (x) = Ix I; if we "differentiate" naively I. and h at 0 
and subtract the "derivatives" thus obtained, there are 2 chances out of 3 of ending up with a 
wrong result. 0 

Example 6.3.3 Let de be the distance-function to a nonempty closed convex set C. From 
Example 3.3, we know several things: the kinks ofdc form the set..1c = bdC; for x E intC, 
Y' dc(x) = 0; and 

x - pc(x) for x Ii!' C . 
Y'dc(x) = IIx - pc(x) II (6.3.5) 

Now take Xo E bd C; we give some indications to construct adc(xo) via (6.3.3) (draw a 
picture). 

- First, ydc(xo) contains all the limits of vectors of the form (6.3.5), for x --+ Xo, x Ii!' C. 
These can be seen to make up the intersection of the normal cone Nc(xo) with the unit 
sphere (technically, the multifunction x ~ adc(x) is outer semi-continuous). 

- If int C t= 0, append {O} to this set; the description of ydc (xo) is now complete. 
- As seen in Example 3.3, the convex hull of the result must be the truncated cone Nc(xo) n 

B(O, 1). This is rather clear in the second case, when 0 E ydc(xo); but it is also true even 
if int C = 0: in fact Ne(xo) contains the subspace orthogonal to aff C, which in this case 
contains two opposite vectors of norm 1. 0 

(b) Directional Sequences We consider now a second type of sequences: those of 
the form x + tkd, for fixed normalized d and tk ..t- O. We start with a fairly easy but 
important lemma, which supplements the closedness result 6.2.1. 

Lemma 6.3.4 Letx andd with lid II = 1 be given in !R.n. For any sequence {(tk> Sk)} C 
!R.t X !R.n satisfying 

tk ..t- 0 and Sk E af(x + tkd) for k = 1,2, ... 

and any cluster point s of {Sk}, there holds 

S E af(x) and (s, d) = ff(X, d). 

PROOF. The first property comes from the results in §6.2. For the second, use the 
monotonicity of af: 

o ~ (Sk - Sf, x + tkd - x) = tk(Sk - Sf, d} for all Sf E al(x) . 

Divide by tk > 0 and pass to the limit to get ff (x, d) ~ (s, d). The converse inequality 
being trivial, the proof is complete. 0 

In other words, taking a limit of subgradients from a directional sequence amounts 
to taking a subgradient which is not arbitrary, but which lies in a designated face of 
al(x): the face F8/(x) (d) exposed by the direction d in question. When this direction 
describes the unit sphere, each exposed face of a I (x) is visited (Proposition Y.3 .1.5). 
We thus obtain a second set of subgradients, analogously to the way y f (x) was 
constructed by (6.3.1). 

More precisely, suppose that we have a process (call it fl) which, given x and the 
normalized d, does the following: 
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- form a directional sequence Yk = x + tkd tending to x; 

- for each k, select a subgradient Sk E af(Yk); 

- take a cluster point S of {Sk}. 

We call sed) E af(x) the subgradient thus obtained - a notation sIl(d) would be 
more correct, to emphasize the dependence of sed) on the particular process used. 

Remark 6.3.5 In view of Lemma 6.3.4, another process would do the same kind of job, 
namely: 

- Maximize (s, d) over s E of (x) to obtain some solution s(d) - or S[](d). 

We took the trouble to describe the more complicated process n above because the 
concept of directional sequences is important for minimization algorithms to be studied later, 
starting from Chap. IX. 0 

Now we form the set of all outputs of the above process n (whatever it may be), 
for all directions d: 

af(x) := {sed) : d E ]Rn, IIdll = I} [or all f(x) := ulldll=ISIl(d)]. 

Once again, all f(x) is a compact set included in af(x) and there holds 

all f(x) c co all f(x) c af(x) . 

It turns out that Theorem 6.3.1 can be reproduced: 

Theorem 6.3.6 No matter how the process n is chosen to generate each cluster 
point sIl(d), it holds that 

af(x) = coaIlf(x). (6.3.6) 

PROOF. We have to prove only the "c"-inclusion in (6.3.6). Use Lemma 6.3.4: for 
each d of norm I, the sed) generated by the process satisfies 

afJf(x)(d) = f'ex, d) = (s(d), d) ~ aonf(x)(d). o 

A fifth possible definition of the subdifferential of f at x is thus given by (6.3.6). 

Remark 6.3.7 As an application, consider the following problem: given a (finite) sublinear 
function a, how can we construct its supported set aa (O)? Answer: differentiate a wherever 
possible; aa (0) is then the closed convex hull of the collection of gradients thus obtained. 

In fact, if the gradient Va(d) exists, it exists (and stays the same) all along the ray lR;d: 
we are therefore constructing 8a(0); and we can limit ourselves to computing Va on the unit 
sphere. 

For example, theil-norm Ix Ii = L:i=l I;i 1 can be differentiated wheneverno;i isO; the 
resulting gradients are the vectors whose components are ±l. Their convex hull is al . Ii (0) 
and we refer to §Y.3.2 for the various interpretations that this set can be given, in terms of 
polarity, duality, sublevel-sets, gauges, etc. 

The linear function (., d) being maximized in aa (0) on the face exposed by d, we write 

a(d) = (aa(d), d) . 
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When oa(d) is the singleton {Va(d)}, this is known as Euler's relation associated with 
the positively homogeneous function a. Remember also the geometric construction: d#-O 
defines the hyperplane 

Hd.a(d) = {s E]Rn : (s, d) = a(d)} , 

which remains fixed when d is replaced by Kd, K > 0, and which envelops oa(O) when d 
describes jin\{O}. 0 

To conclude this chapter, we point out a rather important property of convex 
functions revealed by Lemma 6.3.4: to expose a face in some subdifferential alex) 
along a direction d, it suffices to know the trace of / along x + ]R+d. By contrast, 
exposing a face in an abstract closed convex set C requires the maximization of a 
linear function over C - which somehow implies a full knowledge of C. 

With this in mind, a geometric interpretation of the process in § 1.4 can be given. 
When we compute at = a~(et, .), we simply expose by et a face of aao(O) = alex): 

cpt := aat(O) = Faao(o) (el) = Fa!(x) (el) . 

Needless to say, the breadth (in the sense of Definition Y.2.l.4) of cpl along el is zero 
- another way of saying that ao is differentiable at el in the subspace ]Rei. As a result, 
the dimension of cpt is at most n - 1. Then, we extract recursively from cpk-I the 
face exposed by ek: 

cpk := aak(O) = Faak_,(O)(ek) = Fcpk-,(ek). 

At each stage, dim cpk thus loses one unit. We end up with a face of cpn-I which is 
certainly of dimension O. 

Remembering Remark 111.2.4.4, we see that the subgradient cpn is not quite ar
bitrary: it is a subface (more precisely a vertex) of each cpk, in particular of the 
original set alex). Figure 6.3.2 illustrates the process applied to Example 1.4.3 (use 
Remark 6.3.7 to realize that aao(O) is the unit simplex). 

Stage 1 
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Fig. 6.3.2. Exposing a vertex in a subdifferential 



VII. Constrained Convex Minimization Problems: 
Minimality Conditions, Elements of Duality Theory 

Prerequisites. Subdifferentials of finite convex functions (Chap. VI); tangent and 
normal cones to convex sets (Chap. III). 

Introduction. The basic convex minimization problem is that of finding some X E C 
such that 

I(x) = inf {f(x) : x E C} , (0.1) 

where C c IRn and I : IRn ~ IR are a closed convex set and a (finite-valued) convex 
function respectively; the points in C are calledfeasible; a solution x must therefore 
satisfy two properties: feasibility, and optimality. 

In this chapter, we are mainly interested in characterizing a solution in terms of 
the data of the problem: the constraint-set C and the objective function I. This study 
is indeed preliminary to an actual resolution of (0.1), possibly an approximate one via 
the construction of a minimizing sequence. An exact solution can be constructed in 
simple cases, such as quadratic programming, where I is quadratic (convex) and C 
is a closed convex polyhedron. 

The question of conditions for a candidate i to be a solution was already evoked in 
§ II.l.!: starting just from the definition of a minimum, 

I(x) ~ I(x) for all x E C (and of course: x E C), 

we want to derive more useful conditions, using the "tangential elements" of the data, namely 
the directional derivative of I and the tangent cone to C. Dually, we will also use the subdif
ferential of f and the normal cone to C. The situation is here more involved than in Chap. II 
because we have constraints, but on the other hand convexity makes it simpler to some extent. 
In particular, necessary and sufficient conditions are available, while sufficiency is usually 
out of reach in the nonconvex case. 

Depending on the properties and information concerning the data, various approaches 
can be relevant, each based on appropriate techniques. 

- When C is not specified, no wonder that the only available conditions are "abstract", or 
"formal": they involve the tangent cone T c and normal cone Nc and nothing more. This 
will be the subject of § 1. 

- When C is described more explicitly (§2), these cones can themselves be characterized 
more explicitly. The most important case is a representation of the closed convex C by 
constraints: 



292 VII. Minimality Conditions and Elements of Duality Theory 

I (aj,x)=bj fori.=I, ... ,m, 
Cj(x)~O forJ=I, ... ,p. 

(0.2) 

where the cj's are finite-valued convex functions, so as to make C convex (equality con
straints are taken to be affine for the same reason). When expressing the minimality condi
tions, the subdifferentials aCj and the gradients aj will certainly show up, as will al. This 
can be done in two different ways: one is to expand the expression ofTc and Nc in the 
"formal" minimality conditions of § 1; the other is to tackle the problem directly, linearizing 
the functions (f and) Cj. 

We limit our study to finite-valued functions. One reason is that we make extensive use 
of subdifferentials, studied in Chap. VI in this framework only; and also, this is sufficient to 
capture the essential features of any convex minimization problem. Just as in Chap. VI, it 
would of course suffice to assume that the candidate x to minimality is interior to the domain 
of the functions involved. 

In the case of a description by (0.2), a solution x of (0.1) is essentially characterized by 
the existence of m + p numbers AI , ... , Am, III , ••. , 11 P - the multipliers - satisfying 

DE al(x) + L~=I Ajaj + L)=I IljaCj(x) and 
for j = 1, ... , p, Ilj ~ 0 and Ilj = 0 if Cj(x) < o. (0.3) 

There are infinitely many ways of representing a set via constraints as in (0.2), and it turns 
out that a characterization like (0.3) cannot be expected to hold in all cases. Indeed, the data 
have to satisfy some assumption: a constraint qualification condition. 

In view ofthe calculus rule VIA. 1. 1, (0.3) displays the subdifferential of a certain func
tion: the Lagrange function 

m P 
L(x, A, /-t) := I(x) + I:>j«aj, x) - hj) + L:/-tjCj(X) 

j=1 j=1 

which is central in all this theory. Its role will be the subject of §3. Indeed, x minimizes 
L(·, A, 11) for some (A, /-t) E JRm x (JR+)P and we will see that the couple (1..,11) maximizes 
L (x, ., .). This observation motivates our Section 4, in which we give some account of duality 
and saddle-point problems. 

Unless otherwise specified, we postulate that our original constrained minimization prob
lem (0.1) does have an optimal solution. Thus, the general framework throughout this chapter 
is as follows: we have a convex function I : JR" ~ JR, a nonempty closed convex set C C JR", 
and I assumes its minimum over C at some X E c. We will sometimes denote by 

S := (x E C : I(x) ~ I(x) for all x E C} =F 10 

the solution-set of (0.1). 

1 Abstract Minimality Conditions 

We start with the "abstract" convex minimization problem 

inf {f(x) : x E C}, (1.0.1) 
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for which we characterize a solution (assumed to exist) in terms of the data (C, f) 
alone and their "first-order elements" (T C, f'; N c, a f). 

First of all, we make sure that, just as in the unconstrained case, there can be no 
ambiguity in the definition of a minimum: 

Lemma 1.0.1 Any local minimum off on C is a global minimum. Furthermore, the 
set of minima is a closed convex subset of C. 

PROOF. Suppose that, for some r > 0, 

f(x) ~ f(x) for all x E B(x, r) n C . 

Take x E C, x f/. B(x, r) and set t := r/llx - xII, Xt := (1 - t)x + tx. Clearly, 
o < t < 1 and Xt E B (x, r) n C; by assumption and using the convexity of f, 

f(x) ~ f(Xt) ~ (1- t)f(x) + tf(x). 

Hence, tf(x) ~ tf(x), so x is a global minimum of f on C. 
On the other hand, the solution-set 

C n {x E]Rn : f(x) ~ f(x)} 

is the intersection of two closed convex sets, and is therefore closed and convex. 0 

1.1 A Geometric Characterization 

Theorem 1.1.1 With f andC as above, thefollowingstatementsareequivalentwhen 
x E C: 

(i) x minimizes f over C; 
(ii) f'ex, y - x);?; o for all y E C; 

(ii') f' (x, d) ;?; 0 for all d E T c(x); 
(iii) 0 E af(x) + Nc(x). 

PROOF. [(i) ~ (ii) ~ (ii j] Pick an arbitrary y E C: by convexity, x + t(y - x) E C 
for all t E [0, 1]. If (i) holds, (ii) follows by letting t i 0 in 

f(x + t(y - x» - f(x) . 
-=-:..----.::....---.:..:.....:...-=-.:.....:... ;?; 0, vahd for all t E ]0, 1]. 

t 

Setting d := y - x and using positive homogeneity, we thus have f' (x, d) ;?; 0 for all 
d in the cone ]R+(C - x), whose closure is Tc(x) (Proposition III.S.2.!). Then (ii') 
follows from the continuity of the finite convex function f'(X,·) (Remark VI. 1. 1.3). 

[(iij ~ (i)] For arbitrary y E C, we certainly have y-x E Tc(x), hence (ii') implies 

o ~ f'ex, y - x) ~ fey) - f(x) 
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(where the second inequality comes from the Definition Vl.l.l.l of the directional 
derivative of f) and (i) is established. 

[(U') {:} (Uij] Because f'(x, .) is finite everywhere, (ii') can be rewritten as follows: 

f'(x, d) + ITc(i)(d) ~ 0 for all dE IRn. 

The indicator I of the closed convex cone T c (x) is the support a of its polar cone 
(see Example V.2.3.l), which is Nc(x) (by Proposition 111.5.2.4); also, f'(x, .) is the 
support of af(x) (by Definition Vl.1.1.4); using the calculus rule V.3.3.3(i) on the 
sum of support functions, we therefore obtain 

(ii') {:=:} 0 ~ aaj(i) + aNc(i) = aaj(i)+Nc(i) . 

Recall that the sum of the compact set af(i) and of the closed convex set Nc(i) is 
a closed convex set: the above inequality is just (iii) in terms of support functions, 
thanks to Theorem V.2.2.2. 0 

When (1.0.1) is unconstrained, C = ]Rn and, for all x, Tc(x) = ]Rn, Nc(x) = {O}; 
the above minimality conditions reduce to those of Theorem VI.2.2.1. The other extreme 
case C = {x} presents no interest! Of course, it is a privilege of convexity that (ii) - (iii) 
are sufficient for minimality, just because I'(x, .) underestimates I(x + .) - I(x) [i.e. 
epi I'(x,·) contains epi I - {(x, I(x»)}] and Tc(x) overestimates [contains] C - {x}. This 
confirms Lemma 1.0.1: a local minimality condition is actually global. 

Remark 1.1.2 While I' (x, .) is the tangential approximation of I near x, T c(x) is the set 
of tangent directions to C at x. The minimization problem 

inf (f'(i, d) : dE Tc(i)} 
d 

(1.1.1) 

is the "tangent problem to (1.0.1)" at i and (ii') says that its infimal value is nonnegative (in 
fact exactly 0, achieved at d = 0). The negation of (ii') is that the infimal value is -00. 

The tangent problem can be rephrased via the change of variable d = Y - i: consider 
the first-order approximation of I near i 

Y t-* flJi(Y) := I(i) + I'(i, Y - i) [= I(y) + o(lIy - ill)] 

and plug the translation (0, 0) t-* (i, I(i» E ]Rn into (1.1.1), which becomes 

inf {flJi(Y) : Y - i E Tc(i)}. 
y 

(1.1.2) 

If i minimizes f over C, then Y = i solves (1.1.2) - possibly together with other solutions. 
Conversely, if i does not minimize lover C, then (1.1.2) has no solution "at finite distance". 
Observe that fIJi, and also {i} + T c(i), could be replaced by more accurate approximations 
of I and C, using a second-order approximation of I, for example. The essence ofthe result 
would not be changed: a solution of (1.0.1) would again be characterized as solving (1.1.2), 
modified accordingly. The equivalent condition (ii) does just this, replacing {i} + T c(i) by 
C itself, i.e. no approximation at all. 

Still another way of reading (ii') is that I is locally increasing along each element of the 
set ]R+(C - i) offeasible directions for Cat i; and this property is conserved when taking 
limits of such feasible directions, i.e. passing to T c(i). 0 
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Condition (iii) appears as a dual formulation of (ii '), insofar as subgradients and 
normals are in the dual ofJR.n . It can also be written 

- a/(x) n NcCx) =10, (1.1.3) 

which lends itself to a translation in plain words: there is some subgradient of f at x 
whose opposite is normal to C atx. If f is differentiableatx, this means that - V f(x) 
points inside the normal cone: -V / (x) makes an obtuse angle [or V / (x) makes an 
acute angle] with all feasible directions for C at x; see Fig. 1.1.1. When a/(x) is not 
a singleton, the above property has to be satisfied just by some of its elements: this 
one element, call it Sl, suffices to rule out any feasible descent direction. Indeed, 

/(x + td) - f(x) ~ t(s/> d) for all t ~ 0; 

if Sl satisfies the above angle property, these terms are nonnegative for all feasible d. 

/en -
Fig.1.1.1. The dual minimality condition 

Remark 1.1.3 Ifthe problem were to maximize f over C, the (then local and not sufficient) 
optimality condition (ii) = (ii') would become 

f' (x, y - x) ~ 0 for all Y E C , 
f'(x, d) ~ 0 for all dE Tc(x). 

This would mean that all subgradients should make an acute angle with the feasible directions 
for C at x, i.e. (iii) = (1.1.3) should at least be replaced by 

of (i) c Nc(x) (1.1.4) 

- which would still be insufficient (because local no longer implies global), but at least more 
accurate. 

Thus, maximizing a convex function over a convex set is a totally different problem, even 
though the data still enjoy the same properties. 0 

For an illustration of Theorem 1.1.1, suppose that f happens to be differentiable at x, 
and let 

C:= CO{Vl •.••• vml 
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be a compact convex polyhedron characterized as a convex hull. In this case, it is condition 
(ii) that is the most useful: indeed, it reads 

(V f(x), y -x) ~ 0 for all y E C. 

It is immediately seen that this is true if and only if 

(V f(x), Vj - x) ~ 0 for j = 1, ... , m. 

a set of conditions very easy to check. 

Example 1.1.4 (Affine Manifolds) Let e = {xo} + H be an affine manifold in R.n, 
H being a subspace. The tangent and normal cones at x to e are also the tangent and 
normal cone at x - Xo to H, namely H itself and its orthogonal H.l respectively. In 
this case, the primal minimality condition (ii ') is: I' (i, d) ~ 0 for all d E H; the dual 
minimality condition is: 

1 there is a sub gradient of I that is orthogonal to H .1 

Depending on the analytic description of H, this condition may take several forms. 
If H is characterized as a linear hull, say: for given Xo and el, ... , em, 

e = {xo + "Lj=l ~jej : ~ = (~t. ... , ~m) E R.m} , 

then (iii) is: 

[thereIS S E aj(i) such tilat (s~ ij)~. 0 for j = 1, ... , m .1 

On the other hand, H can be characterized as an intersection of hyperplanes: A being 
a linear operator from R.n to R.m, and b E R.m, 

e = {x E R.n Ax = b} (here Axo = b). (1.1.5) 

Then H.l is the subspace ImA* and (iii) becomes: A*>" E a/(i) for some>.. E R.m, 
or 

1 there are S E a/(i) and>.. E R.m such that S + A*~YJ (1.1.6) 

Note in this last expression that, even if s is fixed in al (i), there are as many possible 
>.. 's as elements in Ker A *. 0 

Example 1.1.5 As a follow-up of the previous example, suppose again that e is 
characterized by (1.1.5), with A surjective, and take a quadratic objective function: 

I(x) = ~(Qx, x) + (c. x). 

with Q : R.n ~ R.n symmetric positive definite and c E R.n. Clearly enough, e is 
nonempty and the minimization problem has a unique solution i; also, (l.1.6) has a 
unique solution (s, >..), withs = Qi + c. Let us compute x and >..: they solve 

Qi + c + A * >.. = 0, 
Ai =b. 
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Since Q is invertible, this is equivalent to 

X+Q-IC+Q-IA*)"=O, 
AQ-IA*)" + AQ-Ic + b = O. 

The linear operator AQ-IA* : JR.m ~ JR.m is clearly symmetric and we claim 
that it is positive definite: indeed, with ((', .)) denoting the scalar product in JR.m, 

((AQ-l A*y, y)) = (Q-I A*y, A*y) 

is always nonnegative (Q -I is positive definite), and it is positive if y =1= ° (A * is 
injective). We therefore obtain the explicit expression 

).. = -B(AQ-1c+b), x = Q-1A*B(AQ-1c+b) - Q-1c, 

where we have set B := (AQ-l A*)-I. o 

Example 1.1.6 (Nonnegativity Constraints) Suppose that (.,.) is the usual dot
product and that 

C={X=(~I, ... ,~n): ~i~Ofori=I, ... ,n} 

is the nonnegative orthant in JR.n. The expression of the normal cone to this C at a 
given x was given in Examples I1I.3.2.2(b) and III.5.2.6(a). We find that x minimizes 
Ion C if and only if there exists s = (sl, ... ,sn) E al(x) such that 

for i = 1, ... , n, si ~ 0 and si = 0 if € i > O. 

A slightly more complicated example is when 

C = Lin = {(~I, ... , ~n) : I:i=l ~i = 1, ~j ;;:: 0 for i = 1, ... , n} 

is the unit simplex of JR.n; its normal cones were given in Example 1II.5.2.6(c). We 
obtain: x minimizes I on C if and only if there exist s = (Sl, ... ,sn) E al(x) and 
).. E JR. such that 

Si ~ _).. if €i = 0 and si = -).. if €i > o. o 

Example 1.1.7 ("Oblique" Projections) Let m· m be a norm on IRn and consider the problem 
of projecting a given x onto C: to find i E C (not necessarily unique!) such that 

Denote by 

mi - xm = min my - xm . 
yeC 

B* := {s : (s, y) ~ IHYm for all y E JRn } 

(1.1.7) 

the unit ball of the dual norm (see §Y.3.2). We have seen in Example VI.3.1 that the subdif
ferential of IU . IU at z is the optimal set in B*: 

am· RI(z) = {s E B* : (s, z) = mzw} = Argmax (s, z) . 
seB* 
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Setting z = y - x in this formula, we can apply Theorem 1.1.1(iii): x is a projection of 
x onto C, in the sense of the norm W ,1, if and only if 

3s E B* such that (s, x - x) = Ix - xl and s E Nc(x). 

Another way of expressing the same thing is that the problem 

max{(s,x -x) : s E B*} (1.1.8) 

has a solution in Nc(x). Note that, if x E C, then x = x is itself a projection - unique because 
the minimal value in (1.1.7) is zero! In this case, the solution-set of (1.1.8) is the whole of 
B*, which contains 0 E Nc(x). 

Figure 1.1.2 illustrates a situation in which C is the lower half-space in R2 and W . W is 
the ioo-norm. The projections of x are those x = (~, 0) that see x under an angle () of at least 
:rr I 4, so that the optimal s in (1.1.7) is the vertical (0, I). The projection-set is also Boo n C, 
where Boo is the ioo-ball around x having radius just equal to the ioo-distance from x to C. 

x 

. . . - . 
" x " '. . . . . 

'110,.... ", 8 
...... , .. 

c 

Fig.l.l.2. Solutions to a projection problem 

If III . In concides with the Euclidean norm II . II, then B = B* and 

{ 
B ifz = 0, 

811·II(z) = hhz} ifz i= O. 

Using this value in (iii) shows that the projection onto C is the point pc(x) E C (known to 
be unique) such that x - pc(x) E Nc(x). This can also be seen from (1.1.8), which has the 
unique solution (x - x)/lIx - xII (assuming x ¢ C). We thus come back to results seen in 
§III.3.1. 0 

1.2 Conceptual Exact Penalty 

The constrained minimization problem (1.0.1) can be viewed as the unconstrained 
minimization of f + Ie, where Ie is the indicator function of C. The new objective 
becomes extended-valued, however; we will not study the subdifferentials of such 
functions until Chap. X; furthermore, minimizing such a function is not a computa
tionally tractable task (cf. Chap. II). On the other hand, Ie can be viewed as an infinite 
penalty imposed to the points outside C. A relevant idea is therefore to approximate 
it by an external penalty function, i.e. a function p satisfying 
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{ 0 if x E C, 
p(x) = p(x) > 0 if x ¢ C . (1.2.1) 

An example of such a function is the distance-function de. When p is on hand, the 
original problem can be replaced by the unconstrained one 

inf {f(x) + p(x) : x E ]Rn} . (1.2.2) 

Now, a first natural question is: to what extent can we replace (1.0.1) by the simpler 
(1.2.2)? We start with elementary properties of external penalty functions, which are 
actually independent of any assumption on C and f. 

Lemma 1.2.1 Let f : ]Rn ~ ]R, C c ]Rn, and p : ]Rn ~ ]R satisfy (1.2.1); call S 
and Sp the solution-sets (possibly empty) of (1.0.l) and (1.2.2) respectively. 

(i) Any xp E Sp which belongs to C is also a solution of (1.0.1). 

(ii) Sp :::> S whenever Sp n S t- 0. 
(iii) If Sp n S t- 0 and if the penalty function q is such that q(x) > p(x) for all 

x ¢ C, then Sq = S. 

PROOF. Let xp solve (1.2.2): in particular, for all x E C, 

f(xp) + p(xp) ~ f(x) + p{x) = f{x) . 

If Xp E C, the first term is f{xp); (i) is proved. 
To prove (ii), take xp E Sp n S and let XES; xp and x are both in C and 

f{x) + p{x) = f{x) ~ f{xp) = f{xp) + p(xp) ~ f(x) + p(x) 

for all x E ]Rn. Hence x ESp. 
Finally, let p and q be as stated in (iii) and take xp E Sp n S; it is easily seen 

that xp E Sq, hence S C Sq by virtue of(ii). Conversely, let Xq E Sq; if we can show 
Xq E C, the proof will be finished thanks to (i). Indeed, we have 

f(xq) + q{Xq) ~ f(xp) + q(xp) = f(xp) = f{xp) + p(xp) ; (1.2.3) 

and ifxq ¢ C, 

f(xq) + q(Xq) > f(xq) + p(Xq) ~ f{xp) + p{xp) , 

which contradicts (1.2.3). o 

Thus, feasibility is the only possibly missing property for solutions of the penal
ized problem (1.2.2) to solve the original problem (1.0.1); and to recover feasibility, 
the best is to increase the penalty function. To do so, the usual technique is to choose 
it of the form np, with a fixed "basic" penalty function p, and a possibly increasing 
penalty coefficient n ~ O. 

Having chosen p, one solves 

. inf (f(x) + np(x) : x E ]Rn} . (1.2.4) 

It may happen that, no matter how n is chosen, (1.2.4) has no solution in C - or 
even no solution at all. By contrast, the favourable case is described by the following 
property: 
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Definition 1.2.2 (Exact Penalty) Let the constrained minimization problem (1.0.1) 
have a nonempty solution-set. A penalty function p satisfying (1.2.1) is said to have 
the exact penalty property if there is iT ~ 0 such that (1.2.4) has a solution belonging 
to C. 

An equivalent definition (Lemma 1.2.1) is that the solution-sets of (1.0.1) and 
(1.2.4) coincide for iT large enough. 0 

This property does hold for at least one basic penalty function, namely the 
distance-function: 

Theorem 1.2.3 Let C C ]Rn be nonempty closed convex and f : ]Rn -+ ]R be convex. 
Then the following statements are equivalent when x E C: 

(i) x minimizes f over C; 
(ii) there exists iT > 0 such that x minimizes f + iTdc over ]Rn. 

PROOF. It is clear that (ii) =}(i) sincedc = 0 overC. Now, taker> 0 and let iT > 0 be 
a Lipschitz constant of f over B(x, r) (§IV.3.1); we claim that x minimizes f +iTdc. 
Because the projection operator PC over the convex set Cis nonexpansive (§III.3.1), 

IIx - yll ~ IIpc(x) - pc(y) II = IIx - pc(y) II . 

Thus, for y E B(x, r), pc(y) is also in B(x, r) and we can use the local Lipschitz 
property of f: 

fey) - f(pc(y)) ~ - iTlly - pc(y) II = -iTdc(y) (1.2.5) 

and we deduce, if (i) holds: 

fey) + iTdc(y) ~ f(Pc(y)) ~ f(x) = f(x) + iTdc(x) . 

We have thus proved that x minimizes the convex function f + iTdc on B(x, r), 
hence on the whole of]Rn . 0 

The above proof uses direct arguments only; with some more refined results from convex 
analysis, it can be substantially shortened. Indeed, x minimizes the convex function f + iTdc 
over]Rn if and only if (use the calculus rule VIA. I. 1 and Example VI.3.3) 

o E au + Jrdc)(x) = af(x) + Jr[Nc(x) n B(O, 1)] = af(i) + Nc(i) n B(O, Jr). 

To say that this holds for some Jr is really to say that 

o E af(x) + Nc(x) , 

i.e. the properties stated in Theorem I.2.3(ii) and Theorem I.l.l(iii) are equivalent when 
i E C. However, our proof is preferable, because it lends itself to generalizations: 

Remark 1.2.4 It is interesting to extract the essential assumptions in Theorem 1.2.3: 

- The only useful property from the projection operation Pc is its local boundedness, i.e. all 
the projections pc(y) must be in some B(x, R) ify E B(i, r): then take for Jr in the proof 
a Lipschitz constant of f on B(i, max{r, R}). 
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- Apart from the local vs. global problem, convexity of f is of little use; what really matters 
for f is to be locally Lipschitzian. 

Even under these weaker assumptions, the key inequality (1.2.5) still holds. The result is 
therefore valid under more general assumptions: for example, the projection can be made 
under some other metric; or de may be replaced by some other function behaving similarly; 
and convexity of f and C is secondary. 

Observe that the exact penalty property is normally a concept attached to a particular 
f. The distance function, however, depends only on C; it has therefore an "intrinsic exact 
penalty" property, which holds for arbitrary f (within a certain class, say f convex). 0 

C 

.' .... 

f+ ltdC 

••• /' f+ ltd8 

Fig.l.2.l. The property of exact penalty 

x 

The property of exact penalty is illustrated by Fig. 1.2.1. We see that it is essential for the 
penalizing function (here de) to "break" the derivative of f when x crosses the boundary of 
C. In fact, another usual penalty technique replaces (1.0.1) by 

inf {j(x) + !;rrd~(x) : x E ]Rn} . 

Here the property of exact penalty cannot hold in general, and ;rr must really go to infinity: 
more precisely, 

a (f + !;rrd~) (x) = af(x) + !;rrVd~(x) = af(x) for all x E C. 

Hence, an x* E C minimizing the above penalized function should already satisfy 0 E 

af(x*); an uninteresting situation, in which (1.0.1) is an essentially unconstrained problem. 
Basically, the trouble is that the function d~ is smooth and its gradient is 0 for x E C: when 
x leaves C, Vd~(x) is small and d~(x) does not increase fast enough. 

2 Minimality Conditions Involving Constraints Explicitly 

Now, we suppose that the constraint~set of § 1 has a representation via equalities and 
inequalities: C is the set of x E ]Rn such that 

(aj, x) = bj for i = 1, ... , m, Cj (x) ~ 0 for j = 1, ... , p . (2.0.1) 

Here each (aj, bi) E JRn x JR, Cj : JRn ~ JR is a convex function; altogether, they 
form the data (a, b, c). 

The two groups of constraints in (2.0.1) really represent a classification "equalities 
vs. inequalities" - rather than "affine vs. general nonlinear". In a way, it is by chance 
that the first group contains only affine functions: as far as equality constraints are 



302 VII. Minimality Conditions and Elements of Duality Theory 

concerned to characterize a convex set, only affine functions are relevant; but nota
tionally, we could just write the equalities as dj (x) = 0, say. Note also that an equality 
could as well be written as a pair of affine inequalities. Similarly, some inequalities 
Cj may be affine, they still appear in the second group. 

The following conventions will be useful: 

- m = 0 means that the representation (2.0.1) has no equalities, while p = 0 means 
that there are no inequalities. 

- Since this last case has already been dealt with in Example 1.1.4, the present section 
will be essentially limited to two cases: [m = 0, p ;;:: 1] (only inequalities) and 
[m ;;:: 1, p ;;:: 1] (both types of constraints present). 

- In either case, an expression like E? =1 means a summation on the empty set, whose 
result is by convention O. 

We find it convenient to equip ]Rm, the space of equality-constraints values, with 
the standard dot-product: for (A, b) E ]Rm x ]Rm, 

m 

ATb= LAjbj. (2.0.2) 
j=1 

Also, A : ]Rn -+ ]Rm is the linear operator which, to x E ]Rn, associates the vector of 
coordinates (aj, x), i = 1, ... , m. Thus we can write 

Ax=b insteadof [(aj,x)=bjfori=I, ... ,m] 

and 
C={XE]Rn: Ax=b, Cj(x):::;;Oforj=I, ... ,p}. 

The adjoint A* of A is then the operator which, to A = (AI, ... , Am) E ]Rm, associates 
the vector A*A = 2:1=1 Ajaj E ]Rn. 

Thus, our basic convex minimization problem (1.0.1) is now written as 

min I(x) x E ]Rn, 

(aj,x)=bj fori=l, ... ,m, [or Ax = bE ]Rm], (2.0.3) 
Cj (x) :::;; 0 for j = 1, ... , p . 

Of course, the same set C can be represented by equalities and inequalities in many 
different ways. Just to give an example, there holds in terms of the distance-function 
de: 

C = {x E]Rn : dc(x) :::;;O}, (2.0.4) 

or also 
C = {x E]Rn : ~d~(x):::;; O}. 

Thus, if de is known, we have already two possible representations in the form (2.0.1). 
As another example, which will be of fundamental importance below, consider the 
following summarization of the data in (2.0.1): 

]Rn 3 x f-+ rex) := 

(I (at. x) - btl,· .. , I(am, x) - bml; ct(x), ... , ct(x)) E ]Rm+p (2.0.5) 
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(recall thatt+ := max{O, t}).ltallows the description ofC with the help of the unique 
vector-equation r(x) = O. Taking an arbitrary norm ~I . III in jRm+p, this can then be 
expressed as 

C = {x E jRn : y(x)::;;; O}, (2.0.6) 

where y(x) := mr(x)lll. 
We will see that the relevant object associated with the representation (2.0.6) is 

actually independent of the particular noml; we can for example choose 

Yoo := max {I(a".) - bI!, ... , I(am,·) - bml; ct, ... , c;}, (2.0.7) 

or 
m p 

YI := L I (ai, .) - bi I + L cj. (2.0.8) 
i=1 j=1 

In both cases Y is a (convex) "global constraint-function" characterizing C. 
There are two ways (at least) of deriving minimality conditions in (2.0.3): one, 

which will be the subject of §2.l - 2.3, is to use §1.1 after a characterization ofTc 
and Nc in terms of the data (a, b, c); the other, tackling the minimization problem 
(2.0.3) directly, will come in §2.4. 

2.1 Expressing the Normal and Tangent Cones 
in Terms of the Constraint-Functions 

When representing the convex set C by (2.0.6), it is desirable that Y be convex; for 
this, we choose a norm in jRm+p satisfying: for all pairs (z, z') E jRm+p x jRm+p, 

~Izill ::;;; IIIz'l~ whenever 0::;;; zi ::;;; z,i for all i = 1, ... , m + p (2.1.1) 

See § VI.4.3 for the convexity of the resulting function Y; observe also that the e p

norms, 1 ::;;; p ::;;; 00, satisfy this property. The subdifferential ay(x) is then a convex 
compact set in jRn which contains 0 if x E C. Of course, this set depends on the norm 
III . 11\ chosen but its conical hull cone ay(x) = jR+ay(x) does not: 

Lemma 2.1.1 For i = 1,2, let III . Illi be two norms in jRm+p, satisfYing the mono
tonicity property (2.1.1), and let Yi = IIWllli be the corresponding convex/unctions 
used in (2.0.5), (2.0.6). For any x E C, 

jR+aYI(x) = jR+aY2(X). 

PROOF. The two norms are equivalent: there exist 0 < e ::;;; L such that .e III . 1111 ::;;; 11\ • 

1112 ::;;; L III . ~". As a result, for all x E C (i.e. Yi (x) = 0), d E jRn and t > 0, 

o YI (x + td) - YI (x) Y2(X + td) - Y2(X) YI (x + td) - YI (x) 
-L ::;;; ::;;; L . 

t t 

Let t tOto obtain 
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ly{ (x, d) :::; y; (x, d) :::; Ly{ (x, d) for all d E lRn . 

According to the definition of a subdifferential, for example VI.I.I.4, this just means 

laYI (x) C aY2(X) C LaYI (x) . o 

It so happens that the conical hull considered in the above lemma is the useful 
object for our purpose. Its calculation turns out to be simplest if II . m is taken as the 
ii-norm; we therefore set 

m p 

lRn :3 x ~ y(x) := L I(ai, x} - bi! + L ct(x) , 
i=1 j=1 

but once again, any other norm would result in the same expression (2.1.3) below. We 
also recall the notation A * A. for Li Ajaj. 

In what follows, we will denote by 

J(x) := (j = 1, ... , P : Cj(x) = O} 

the set of active inequality constraints at x E C (or active set for short). 

Proposition 2.1.2 For x E C, the conical hull ofay(x) is 

N(a,b,c)(x) := {A*A + LjEJ(X) /1-jSj : A E lRm, 

/1-j ~ 0, Sj E aCj(x)for j E J(x)} . 

(2.1.2) 

(2.1.3) 

PROOF. Use the various relevant calculus rules in §VI.4 to obtain successively: 

a (I(ai,') - bi!) (x) = [-1, +I]aj for i = 1, ... , m; 

I [O,1]aCj(x) if j E J(x) , 
acT(x) = 

J to} ifj¢J(x); 

m 

ay(x) = L[-I, +1]ai + L [0, l]aCj(x) , 
j=1 jEJ(X) 

and (2.1.3) follows. 

(2.1.4) 

o 

The important point in (2.1.3) is that it involves only the data (a, b, c) of the 
problem: the cone N(a,b,c)(x) presents itself as a natural substitute for the normal 

cone Nc (x). Now consider the polar of N(a,b,c) (x), which is by definition 

{dElRn: (s,d}:::;OforallsElR+ay(X)} = 
{d E lRn : (s,d}:::;O foralls E ay(x)} = 

{d E lRn : y'(x, d) :::; O} =: T(a,b,c) (x) . 
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To alleviate notation, we will often write N'(x) and T'(x), or even N' and T', instead 
of N(a,b,c) (x) and T{a,b,c) (x). Using for example (2.1.4), we can compute 

n 

y'(x,d) = Ll{ai,d)l+ L cj(x,d) , 
i=1 jEJ(X) 

so that, not unexpectedly, T' also has an expression in terms of the data of the problem 
only: 

[N'(x)]o=T'(x)={delR.n : Ad=O, cj(x,d)::;;OforjeJ(x)}. (2.1.5) 

Being a polar cone, T' is closed and convex; geometrically, it is obtained by 
linearizing - or sublinearizing - the constraints at x, a rather natural operation. When 
passing to the dual, the next natural operation is to take the polar of T', but be aware 
that this is does not give N', simply because N' is not closed. 

In § I we used (Tc, Nc, de) only; here the corresponding triple is (T', N', y), 
attached to the data (a, b, c). Our duty is now to make the connection between these two 
triples. The form (2.0.6) expresses C as a sublevel-set, so the problem of calculating 
its normal and tangent cones has already been addressed in §VI.1.3. 

Lemma 2.1.3 For all x e C, there holds 

Tc(x) C T{a,b,c) (x) . (2.1.6) 

Furthermore, [T{a,b,c)(x)r = clN(a,b,c)(x) and 

Nc(x) ::) cIN(a,b,c)(x) ::) N(a,b,c)(x). (2.1.7) 

PROOF. (2.1.6) is just a rewriting of Lemma VI. 1.3.2. Because T' = (N')O, we have 
(T')O = (N')OO = cl N' and (2.1.7) is obtained by taking the polar of both sides in 
(2.1.6). 0 

We know from Theorem 1.1.1 that a solution i of our minimization problem 
(2.0.3) is characterized by 

f'(i, d) ;;<: 0 for all de Tc(i), or 0 e af(i) + Nc(i); 

but we wish to use the data (a, b, c). This amounts to writing 

f'(i,d);;<:O foralldeT'(i), or Oeaf(i)+N'(i) 

(with an extra technical detail: N' is not the polar cone of T'). We therefore need the 
property N'(i) = Nc(i), which may not hold in general. Nevertheless, Lemma 2.1.3 
enables us to prove the following fundamental result: 

Theorem 2.1.4 For i e C, consider the following statements: 

(i) i solves the constrained minimization problem (2.0.3); 
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(ii) f'(x, d) ~ Ofor all dE T[a,b,c)(x); 

(iii) 0 E af(x) + clN(a,b,c)(x); 

(iv) there exist A = (AJ, ... , Am) E ]Rm and f-L = (f-LI> ... , f-Lp) E ]RP such that 

o E af(x) + L:l=l Ajaj + L:f=l f-LjaCj(x) , 

f-Lj ~ 0 and f-LjCj(x) = 0 for j = 1, ... , p. 

(2.1.8) 

(2.1.9) 

Then we have the following relations: (iv) :::} (iii) ~ (ii) :::} (i). If the equality N' = 
NcCx) holds, we have thefull equivalence (i) ~ (ii) ~ (iii) ~ (iv). 

PROOF. [(ii) ~ (iii)] Because T' and cl N' are mutually polar cones, this is the same 
as the equivalence between (ii ') and (iii) in Theorem 1.1.1. 
[(ivY :::} (iii)] Using the definition (2.1.3) of N', (iv) means 0 E af(x) + N', which 
itself implies (iii). 
[(iii) :::} (i)] In view of (2. 1.7), (iii) implies 0 E af(x) + NcCx) which, according to 
Theorem 1.1.1, means that x minimizes f over C. 

Finally, the equality N' = NcCx) implies in particular N' = clN', and also 
T' = TcCx); the four statements become equivalent,just as in Theorem 1.1.1. 0 

The statements (i), (ii), (iii) in this result play the role of those in Theorem 1.1.1; as for 
(iv), it does nothing other than develop the expression of N', thereby giving a computable way 
of checking the condition 0 E at + N'. In Theorem 2.1.4, the difference between (ii) = (iii) 
and (iv) is slim: only the boundary of N' is involved (see Example 2.1.7 below, though). The 
real question is whether (i) implies (ii) = (iii) ~ (iv): then, a computable necessary condition 
is obtained to eliminate a candidate i which would not be optimal. If this implication does 
not hold, our computable condition (iv) [~(iii) = (ii)] is only sufficient for optimality. 

The equivalence between (i) and (ii) = (iii) is given by the property N' (x) = Nc(x), 
which yields the closedness of N' at the same time - hence (iv). This property thus appears 
as a cornerstone to derive conditions equivalent to rninimality; it will motivate Sections 2.2, 
2.3 by itself. 

The existence of coefficients satisfying (2.1.8), (2.1.9) in Theorem 2.1.4 is called 
Lagrange, or Karush-Kuhn-Tucker (KKT) conditions; actually, Lagrange derived 
them in the case of equality constraints only, and for differentiable data. The cor
responding coefficients (A, f-L) E ]Rm x (JR+)P are called the (Lagrange) multipliers. 

Remark 2.1.5 Call C := (CI> .•• , cp) E JRP. For feasible x, the vector -c(x) is in 
(JR+)P and there are different ways of expressing (2.1.9): 

- one is f-L E (JR+)P and f-Lj = 0 whenever Cj(x) < 0 (but the converse is not true: 
one may have f-L j and Cj (x) both zero); 

- another one is f-L E (II~+)P and f.-L T c(x) = O. 

This equivalence, together with the notation (2.1.2), allows the following abbre
viation of (2.1.8) and (2.1.9): 

o E af(x) + A*A + L f-Lj aCj (x), 
jEJ(i) 

f-Lj ~O for j E J(x). (2.1.10) 
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The condition f.J, T C = 0 is called transversality, or complementarity slackness; 
when Cj(.x) = 0 does imply f.J,j > 0, we say that strict complementarity slackness 
holds. 0 

We finish this subsection with some illustrations. 

Example 2.1.6 If c = de, the condition N' = Ne obviously holds, since ode (x) = 
Nc(x) n B(O, 1) for feasible x (see Example VI.3.3). By contrast, representing C 
with the single inequality 1/2 d~(x) ~ 0 results in N' = {OJ, probably a gross under
estimate of the true normal cone N e. This remark has a general interest: replacing a 
representation 

C = {x E]Rn : c(x) ~ O} 

by 
C = {x E]Rn : !(C+)2(X) ~ O} 

kills the possibility of having N' = Ne on the boundary ofC. See again the quadratic 
penalty mentioned at the end of § 1.2. 0 

Example 2.1.7 (Nonclosed N') Take the dot-product for (., .) in]R2 and 

C = {x = (;,7]) : c(x):=; + 11(;, 7])11 ~O} =]R- x {OJ. 

At x = 0, straightforward calculations give 

T' (0) = {d E]R2 : c' (0, d) ~ O} = C = T c(0) . 

Then, a function f (whatever it is) is minimized on C atx = 0 if and only if (ii) holds 
in Theorem 2.1.4. Yet, oc(O) = {(I, O)} + B(O, 1) and 

N'(O) = ]R+ac(O) = {s = (p, T) : p > O} U {(O, O)} 

is not closed: it is only cl N' that coincides with Nc(O). Indeed, take the objective 
function f(;, 7]) = 7] (which is constant on C, hence minimal at 0). Its gradient 
V f (0) = (0, 1) is not in - N'; (iv) does not hold in Theorem 2.1.4. 

This phenomenon is entirely due to nonsmoothness: if the constraints Cj were 
smooth, N' would have finitely many generators, and as such would be closed (Farkas 
Lemma 111.4.3.3). 0 

2.2 Constraint Qualification Conditions 

In the previous section, we have seen that the relevant minimality condition in terms of 
the data (a, h, c) was the KKT conditions (2.1.8), (2.1.9), which needed the property 

I N(a,b,c) (x) = Nc(x) ·1 (2.2.1) 

This property will be called the basic constraint qualification condition (BeQ). It is 
of fundamental use in optimization theory and deserves additional comments. 
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- As shown in Example 2.1.6, it is a property to be enjoyed not by C itself, but by 
the constraints defining it: BCQ depends on the representation of C; and also, it 
depends on the particular x E C. Take for example n = 1, C = [0, 1] defined by a 
single inequality constraint with 

c(x) = {max{O,-I+X} ~fx~O 
4x2 lfx::;;; 0; 

BCQ is satisfied at x = 1 but not at x = O. 
- In the representation (2.0.1) of C, N' remains unchanged if we change Cj to c t, 

and/or to tjCj (tj > 0) and/or (ai, bi) to (-ai, -bi), and/or (ai, x) - bi = 0 to the 
pair (ai, x) - bi ::;;; 0, (ai, x) - bi ~ O. At least, BCQ enjoys some coherence, since 
these changes do not affect C. 

- The basic constraint qualification does not depend on f. When it holds at some 
x, it therefore allows the derivation of the KKT conditions (2.1.8), (2.1.9) for any 
objective function that is minimized at the given x. The following result shows that 
the converse is also true: in some sense, BCQ is a "minimal" condition. 

Proposition 2.2.1 Let C have the representation (2.0.1). For any x E C, the following 
statements are equivalent: 

(i) For any convex function f : lRn -+ lR minimized on C at x, there exist A E ]Rm 

and J.L E lRP such that the KKT conditions (2.1.8), (2.1.9) hold at x. 
(ii) The basic constraint qualification condition N(a.b.c) (x) = Nc(x) holds. 

PROOF. It suffices to prove that (i) implies (ii), i.e. Nc(x) C N'(x). Let s E Nc(x) 
and consider the affine function x ~ f(x) = (-s. x -i). By definition of the normal 
cone, f is minimized on C at x; then (i) applies, which means that 0 E -s + N'(x). 

D 

We mention some situations where BCQ holds at every x E C. 

- When C is represented by de (x) ~ 0: Example 2.1.6 tells us that we recover Theorem 1.1.1. 
- When m = 0 (inequalities only) and there exists Xo such that Cj(xo) < 0 for j = 1 •...• p: 

then, using Theorem VI.U.5 and the calculus rule VIA.3.2 directly gives (for J (x) =F 0) 

Nc(x) = lR+o(maxj Cj)(x) = cone{Uikj(x) : J E J(x)} = 

{LjEJ(X) JLjSj : JLj ~ O. Sj E OCj(x) for j E J(x)} = N'(x). 

- When C is represented by affine equalities and inequalities. This is indeed an important 
result: 

Proposition 2.2.2 Let the constraint-set C have the representation 

C = {x ElRn : Ax =b. (Sj.x) -rj ~Ofor j = 1 • ...• p}. 

If J (x) denotes again the active set (2.1.2) at x E C. we have 

Nc(x) = ImA* +cone{sj : j E J(x)} = N'(x) 

and BCQ holds at every x E C. 
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PROOF. Use Example IlI.S.2.6(b) to obtain the above expression for the normal cone. 0 

The next problem will be to check the basic constraint qualification condition 
easily, in terms of the data (a, b, c). A natural question is therefore: can BCQ be 
replaced by more practical (and possibly more restrictive) conditions? One such is 
the condition mentioned above in the context of inequalities, whose importance will 
be clear later. To state it, the affine constraints in (2.0.1) must be particularized: 

Ja := {j = 1, ... ,p : Cj is an affine function} 

will denote the set (possibly empty) of affine inequality constraints. 

Definition 2.2.3 We say that the constraint-set (2.0.1) satisfies the weak Slater as
sumption (WSA for short) if there is a point at which all the non-affine constraints are 
strictly satisfied, i.e.: 

3xo E C such that I Axo = b , 
Cj (xo) ~ 0 for j E Ja , 

Cj(xo) < 0 for j f/ Ja· 

Proposition 2.2.4 An equivalent formulation of (2.2.2) is: 

"Ix E C, 3d E]Rn such that I Ad = 0, 
cj (x, d) ~ 0 for j E J (x) n Ja , 

cj (x, d) < 0 for j E J (x) Va . 

(2.2.2) 
o 

(2.2.3) 

PROOF. [(2.2.2) => (2.2.3)] Consider x E C with J(x) "1= 0 (otherwise there is nothing 
to prove) and take d = Xo - x ("1= 0). Then Ad = Ax - Axo = 0; the inequality 
cj(x, d) ~ Cj(xo) - Cj(x) = Cj(xo), true for all j E J(x), does the rest. 

[(2.2.3) => (2.2.2)] Consider x E C with J(x) "1= 0 (ifno such x exists, (2.2.2) just 
expresses C =1= 0) and compute Cj (x + td) for small t > O. Since 

C'(x + td) 
Cl'·(x, d) = inf 1 for j E J(x)Va 

1>0 t 

and 
C'(x + td) 

cj (x, d) = 1 t for j E J (x) n Ja , 

there exists to > 0 such that Xo = x + tod satisfies (2.2.2). o 

It is interesting to note that (2.2.2) holds as soon as the conditions in (2.2.3) are 
satisfied by some x E C. In such a case, these conditions are therefore satisfied for all 
x E C; this "propagation effect", typical of convex constraint-sets, was already seen 
in Remark VI.I.3.6. 

Thus, we have partitioned the inequality constraints into two sets: 

(i) the non-affine constraints Cj (x) ~ 0 for all j E {I, ... , p} Va, which could be 
summarized in a single inequality constraint 

Co(x):=max{Cj(x): jf/Ja}~O; (2.2.4) 
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(ii) the affine inequality constraints, to which could actually be added the "two-sided 
inequality versions" of the affine equality constraints: 

(aj, x) - bj ~ 0 and (-aj, x) + bj ~ 0 for i = I, ... , m . 

It is worth noting that the weak Slater assumption (2.2.2) remains unchanged 
under these transformations. So, infine, the constraints describing C in (2.0.1) could 
be replaced by 

(i) a single (non-affine) inequality constraint co(x) ~ 0 ,and 

(ii) affine inequalities, say (Sk' x) - rk ~ 0 for k = I, ... ,q. 

With these new notations, WSA is formulated as 

3xo E C such that I (Sko xo) - rk ~ 0 for k = I, ... , q , 
and co(xo) < o. (2.2.5) 

Theorem 2.2.5 Let the weak Slater assumption hold. At any i E C. the KKT condi
tions (2.1.8), (2.1.9) are (sufficient and) necessary for i to minimize a convexfunction 
f onC. 

PROOF. Let i minimize f on C, we have to show that the KKT conditions hold. Using 
the notation (2.2.5), consider the auxiliary function 

IRn 3 x 1-+ F(x):= max {f(x) - f(i), co(x)} , 

the closed convex polyhedron 

P := {x E]Rn {sk, x} - rk ~ 0 for k = 1, ... , q}, 

and the set of affine constraints 

K(i) := {k = 1, ... , q : (Sko i) - rk = O}. 

Clearly enough, F(x) ;;:: F(i) = 0 for all x E P. By virtue of Proposition 2.2.2, 
there exist nonnegative multipliers ILko k E K (i), such that 

o E aF(i) + L ILksk· 
kEK(i) 

Let us compute aF(i): if co(i) < 0, then 

aF(i) = a[f - f(i)](i) = af(i) ; 

if co(i) = 0, use the calculus rule VI.4.3.2 to obtain 

aF(i) = co[af(i) U aco(i)] . 

In both cases, we deduce from (2.2.6) the existence of a E [0, 1] such that 

o E aaf(i) + (1 - a)aco(i) + L ILkSk. 
keK(i) 

(2.2.6) 

(2.2.7) 
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We prove a > 0 (which is automatically true if Co (i) < 0). Indeed, if a were 0, 
we would have from (2.2.7) 

o E 8co(i) + L t-tkSk· 
kEK(i) 

This would imply that i minimize Co on P (Theorem 2.104). Because we are in the 
case co(i) = 0, this would contradict (2.2.5). 

In summary, dividing (2.2.7) by a > 0 ifnecessary, we have exhibited nonnegative 
multipliers Vo and Vb k E K (i), such that 

o E 8/(i) + vo 8co(i) + L VkSk· 
kEK(i) 

Finally, referring back to the original data (a, b, c) of our problem (2.0.3), we just 
remark that 

- any S E 8co(i) can be written as a convex combination of elements in 8cj (i), 

j E J(i)\la; 
- pairs of nonnegative multipliers, say (Vb vk'), representing an original affine equal-

ity, say the ilh, can be condensed in one unsigned multiplier Ai := vk - vk" 0 

Thus, WSA is a practical property ensuring the existence of Lagrange multipliers 
for any pair (i, f) satisfying 

f is convex from JRn to JR, and i E C minimizes / on C. (2.2.8) 

Remembering Proposition 2.2.1, we see that this implies the BCQ condition (2.2.1). 

2.3 The Strong Slater Assumption 

For given optimal i E C, denote by M (i) the set of multipliers. So far, we have 
concentrated our attention on conditions to guarantee nonemptiness of M (i); namely 
BCQ of (2.2.1), and WSA of (2.2.2). Now, M (i) is a closed set in JRm+ P, as can be 
checked from its definition; furthermore, it is convex: to see this, look again at the 
KKT conditions and remember that, because each 8cj(i) is convex, 

at-tj8cj(i) + (l - a)t-tj 8cj (i) = [at-tj + (l - a)t-tj]8cj(i) for a E [0, I]. 

To say more about M(i), we need to restrict our qualification conditions; the 
following practical strengthening ofWSA will imply among others that M(i) is also 
bounded. 

Definition 2.3.1 We say that the constraint-set (2.0.1) satisfies the strong Slater as
sumption (SSA for short) if: 

the vectors ai, i = I, ... , m, are linearly independent, I (i) 

3xo such that Axo = band Cj(xo) < 0 for j = 1, ... , p. I (ii) 
(2.3.1) 

o 



312 VII. Minimality Conditions and Elements of Duality Theory 

Thus the affine inequality constraints are no longer particularized. As a result, SSA 
would be killed if equalities were split into pairs of inequalities! The (i)-part, stating 
that A is surjective, is not too restrictive: it expresses the fact that the system Ax = b 
is not redundant. Needless to say, M (i) would certainly be unbounded otherwise: for 
(A, IL) E M(i), the whole affine manifold (A + Ker A *, IL) would be in M(i). 

Just as in Proposition 2.2.4, the (ii)-part of SSA can be replaced by 

For all x E C, there exists d E IRn such that } ( .. 
n') Ad=O and cj(x,d) <OforalljEJ(x); (2.3.1) 

and here again, the required relations hold for all x E C as soon as they hold at some 
x E C. 

As before, SSA is exclusively concerned with the description (2.0.1) of C. It will 
implythatM(i) is nonempty compact and convex for all pairs (i, f) satistying(2.2.8). 
Furthermore, the condition is necessary: one cannot have a pair (i, f) satistying 
(2.2.8) with M(i) nonempty compact and convex if SSA does not hold. This is 
summarized in the next statement: 

Theorem 2.3.2 Consider i minimizing lover the constraint-set C described in 
(2.0.1). A necessary and sufficient condition for the set of multipliers M (i) to be 
nonempty compact and convex is the strong Slater assumption (2.3.1). 

PROOF. [Sufficiency] Let SSA hold. We already know that M(i) is nonempty, closed 
and convex, we have to prove that it is bounded. For this, (2.3.1)(ii') allows us to take 
d E IRn such that 

Ad = 0 and cj (x, d)::;; - e < 0 for j E J (x) . 

Compute at this d the support function of the right-hand side in (2.1.8) - a non
negative number. Using various results from Chap. VI and knowing that Ad = 0, it 
has the value 

I'(i,d)+ L ILjcj(i,d)~O. 
jeJ(i) 

Because each IL j is nonnegative, we obtain the bound for IL 

p I'(i, d) 
LIILjl= L ILj~--
j=1 jeJ(i) e 

(2.3.2) 

Let us now show the boundedness of the A-contribution in M(x). Consider the 
subspace E := lin(al' ... ,am) generated by the rows ai of A. We write the KKT 
conditions as 

m 

L Aiai E -al(i) - L ILjaCj(x). 
i=1 jeJ(i) 

Because a I (i), the aCj (i)'s and the IL /s are bounded, the right-hand side is a bounded 
set of the finite-dimensional space E, in which {a I, ... , am} is a basis by assumption. 
This implies that the corresponding coordinates Ai are bounded. 
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[Necessity] Suppose that SSA does not hold: we have to prove that M (x) is unbounded 
if nonempty. 

In case (2.3.l)(i) does not hold, we have already observed after Definition 2.3.1 
that M(x) is either empty or unbounded. So suppose it is (2.3.l)(ii) which does not 
hold: for all x satisfying Ax = b, we have 

co(x):=max{cj(x): j=l, ... ,p}~O [=co(x»). 

This implies that i minimizes Co over the affine manifold Ax = b. From Example 1.1.4 
and the calculus rule VI.4.3.2, there exist),,' E ]Rm and convex multipliers I-I-j, j E 

lei), such that 
m 

o E I>iaj + L I-I-jrJcj(x». 
;=1 jEl(i) 

Thus, if (A, 1-1-) E M(i), any element of the form (A + tA', 1-1- + tl-l-') is again in 
M(i) for t ~ o. Since 1-1-' i= 0, this implies that M(i) is unbounded. 0 

Remark 2.3.3 An effective bound for the /L-part of the KKT multipliers can be derived: to 
obtain (2.3.2), we can take d = Xo - i, in which case 

hence 

f'(i, d) ~ f(xo) - f(i) , 

cj(i, d) ~ Cj(xo) for all j E l(i) , 

p f(xo) - f 
L /Lj ~ min{-cj(xo) : j _ 1, ... , p} . 
j=l 

Remark 2.3.4 It is interesting to note that, under SSA, we have 

ri C = {x E]Rn : Ax = band Cj (x) < 0 for j = 1, ... , m} 

rbdC = {x ERn: Ax = band Cj(x) = 0 for some j} . 

o 

In the above expressions, the word "relative" can be dropped ifthere are no equality constraints, 
cf. Proposition VL1.3.3. 0 

Example 2.3.5 Consider the problem of finding a steepest-descent direction, which was the 
subject of §1I.2.1. More precisely, let Q be a symmetric positive definite operator and take 
IlIdf := (Qd, d) for the normalization constraint in (11.2.1.3). With Remark 11.2.1.4 in mind, 
we choose a normalization factor K > 0 and we want to find d solving 

min {(s,d) : !(Qd, d) = !K} (2.3.3) 

(here s = sex) of. 0 is the gradient of f at the given current iterate x). 

Consider the following relaxation of (2.3.3): 

min {(s,d) : !(Qd, d) ~ !K} . (2.3.4) 
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Now we have a convex minimization problem, obviously satisfying SSA - take do = O. 
According to Theorem 2.2.5, d solves (2.3.4) if and only ifthere is IJ.. such that 

s +IJ..Qd =0, IJ..~O, and 1J..«Qd,d)-K) =0. 

Because s =f: 0, this IJ.. cannot be zero: (Qd, d) = K and we can write 

- I -I - - I -I d=-/iQ s and (Qd,d)=Ji,!(s,Q S)=K. 

The last equation gives IJ.. as a function of K (remember IJ.. > 0), and d is then obtained 
from the first equation. This d solves (2.3.4) and is a posteriori feasible in (2.3.3); hence it 
solves (2.3.3) as well. 

Observe in passing the confirmation of Remark II.2.l.4: as a direction, the optimal d 
does not depend on K > 0; changing K amounts to changing IJ.., and just multiplies d by some 
positive factor. 0 

2.4 Tackling the Minimization Problem with its Data Directly 

So far, we have studied sufficient conditions only, namely the KKT conditions of 
Theorem 2.1.4; they became necessary under some qualification condition: BCQ of 
(2.2.1), or a practical property guaranteeing it, say some Slater assumption. All these 
qualification conditions involved the data (a, b, c) defining C in (2.0.1), but not f. 

On the other hand, all the data (j, a, b, c) appearing in the minimization problem 
(2.0.3) can be collected into a set ofminirnality conditions, which are always nec
essary, without any assumption. The price to pay for this generality is that they are 
usually not too informative. Our basic tool for this will be the function (seen already 
in the proof of Theorem 2.2.5): 

IRn :3 x ~ F(x) := max {I(x) - j; CI (x), ... , cp(x)} . (2.4.1) 

Proposition 2.4.1 Let j in (2.4.1) be the optimal value of (2.0.3). Then the problem 

inf {F(x) : Ax = b} 

has optimal value 0 and the same solution-set as (2.0.3). 

PROOF. Straightforward: by definition, F(x) ~ 0 for all x satisfying Ax = b, and to 
say that such an x satisfies F(x) = 0 is to say that it solves (2.0.3). 0 

Thus, it suffices to write the minimality conditions of our new problem, from 
which all nonlinear constraints have been removed: 

Theorem 2.4.2 !fi solves (2.0.3), there exist A = (AI, ... ,Am) E IRm and (/-to, /-t) = 
(/-to, /-tl, ... , /-tp) E IR x IRP, with /-to and /-t not both zero, such that 

o E /-toaf(i) + LI=I Aiai + L)=I /-tjacj(i) , (2.4.2) 

/-tj ~ Ofor j = 0,1, ... , p and /-tjcj(i) = Ofor j = 1, ... , p. (2.4.3) 
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PROOF. We know that x minimizes F on the affine manifold of equation Ax = b. 
Use Example 1.1.4 and the calculus rule VI.4.3.2 to compute aF(x) and obtain the 
required result, in which 

fLo + L fLj = 1. 
jEJ(X) 

o 

The set of necessary conditions for minimality introduced by this result is called 
John s conditions; we will call the associated multipliers (A, fLo, fL) E IRm+l+p the 
positively homogeneous (or John's) multipliers; and we will call Mo(x) the (nonempty) 
set of such multipliers. Just as M (x), it is a convex set; and it is obviously also a cone, 
which explains our wording "positively homogeneous". On the other hand, Mo(x) is 
not closed because 0 has been excluded from it; but to} U Mo(x) is indeed closed: 
proceed as with M(x). 

Remark 2.4.3 Let x E C; then a F (x) is not the convex hull of a I (x) and ofthe aCj (x)'s for 
active indices j: for this, we should have I (x) = j. As a result, the minimality conditions 
in Theorem 2.4.2 do not state that i minimizes F on the affine manifold Ax = b. These 
conditions are not sufficient: if, for example, there is some index jo such that Cjo == 0 on C, 
then any point in C satisfies John's conditions: set each Ai and /-tj to 0 except /-tjo = 1. 

The trick is that the unknown j does not appear in (2.4.2), (2.4.3), even though this value 
has its importance. Naturally, John's conditions become useful in two cases: 

- When a posteriori I (x) = j: for example, j was known beforehand. Then the minimization 
of F is easy, see Example 1.1.4. Note, however, that (2.0.3) is no longer a constrained 
minimization problem, but rather a system of equations and inequations, namely 

Ax = b, I(x) ::;; j, Cj(x) ::;; 0 for j = 1, ... , p. 

- When a posteriori a point has been found satisfYing John's conditions with /-to > 0: by 
positive homogeneity, we can take /-to = 1. In other words, 

M(x) = {(A, /-t) : (A, 1, /-t) E Mo(x)}. 

Here, we have gained nothing with respect to the standard KKT conditions. o 

Example 2.4.4 Take the constraint-set of Example 2.1.7: 

C = {x = (~, I) Ene: c(x) := ~ + II(~, 1)11 ::;; o} = R- x {oJ 

with the objective function 

la(~, I) = I) - a~ (a;;::: 0 being a parameter). 

In all cases, i = 0 minimizes la over C. 
If a > 0, there are positively homogeneous multipliers with /-to > 0, hence Lagrange 

multipliers: in fact, M(O) = [1/2 (a + l/a), +00[. If a = 0, Mo(O) = {OJ x R;. Naturally, 
and as predicted by Theorem 2.2.5, no Slater assumption holds in this example. 0 

Consider the minimization of f on an affine manifold of equation Ax = b, as in 
Example 1.1.4. There are Lagrange multipliers (WSA automatically holds); but there 
may exist "exotic" positively homogeneous multipliers, having fLo = 0: those of the 
form (A, 0), with A E (Ker A*)\{O} (which implies A* non-injective, and therefore 
precludes SSA). This explains the following result: generally speaking, to guarantee 
that all positively homogeneous multipliers have fLo > 0 precisely amounts to SSA. 
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Theorem 2.4.5 Let a pair (x, f) satisfy (2.2.8). The strong Slater assumption (2.3.1) 
is equivalent to the property 

J.lo > 0 for all ().., J.lo, J.l) E Mo(x) . (2.4.4) 

PROOF. Using Theorem 2.3.2, we replace SSA by nonemptiness and boundedness of 
M(x). Consider the sets (Fig. 2.4.1 is helpful) 

H := JRm x {I} x JRP 

and 
K := {OJ U Mo(x) C JRm x JR x JRP . 

As observed already in Remark 2.4.3, their intersection 

H n K = {().., I, J.l) : (A, J.l) E M(x)} 

is a shift of M (i), and it is clear enough that M (x) is nonempty and bounded if and 
only if H n K is nonempty and bounded. From Proposition III.2.2.3, the latter holds 
if and only ifthe asymptotic cone (H n K)oo is the zero vector (ofJRm+t+P). Using 
the calculus rule m.2.2.5, we see in summary that M(x) is nonempty and bounded if 
and only if 

Hoo n Koo = {OJ . (2.4.5) 

We have Hoo = JRm x {OJ x R.P, while Koo = K (we have seen that K is a nonempty 
closed convex cone). In other words, (2.4.5) means 

[JRm x {OJ x ]RP] n [{OJ U Mo(x)] = {OJ , 

and this is exactly (2.4.4). 

1-10 

Mo Rm+p 

"Degenerate" case: 
1-10=0 for aU 

pos. hom. mult. 

M 

"Normal" case: 
1-10>0 for some 
pos. hom. mult. 

Rm+p 

M 

" Comfortable" case: 
ILQ>O for all 

pos. hom. mult. 

Fig.2.4.1. Different possibilities for the multipliers 

o 

Note that (2.4.4) can be expressed in the following equivalent form: the only 
(A, J.l) E JRm x (JR+)P satisfying 
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m 

o E LAjaj + L f.ljc)cjCi) 
i=1 jEJ(X) 

is the zero vector. Naturally, this is only another form of strong Slater assumption: 
take f.l = 0 to obtain the linear independence of the ai's; and realize that x cannot 
minimize the function maxj Cj under the constraint Ax = b. Thus, if the property 
holds at some x E C, it holds throughout C. 

Figure 2.4.1 displays the various possibilities concerning the sets of multipliers; 
it also illustrates the proof of Theorem 2.4.5. Finally, Fig. 2.4.2 summarizes the main 
results of §2. 

x solves the constrained 
minimization problem 

lJ 

(with BCQ at x) 

I There are pos.hom. mult. i.e. Mo{x) ~ 0J 

There are Lagrange mult. 
i.e. M{x) * 0 

ISSA I ~ 
n 

IWSA I ~ BCQ 
at all x 

M(x) nonempty compact 
for all minimization problems 

n 
M(x) nonempty 

for all minimization problems 

Fig. 2.4.2. Connection between minimality conditions and Qualification Conditions 

3 Properties and Interpretations of the Multipliers 

3.1 Multipliers as a Means to Eliminate Constraints: the Lagrange Function 

From their very definition in §2, the multipliers seem to depend on the data (f, a, b, c) 
of the constrained minimization problem (2.0.3), and also on the particular solution 
x considered. Actually, they do not depend on the latter. 

Proposition 3.1.1 Let x and x' be two solutions of the constrained minimization 
problem (2.0.3), M (x) and M (x') being their associated sets of Lagrange multipliers. 
Then M(x) = M(x' ). 

PROOF. By definition, (A, f.l) E M(x) means 

o E of (x) + A*A + Lf=1 f.ljOCj(x) , (*) 

f.lj ~ 0 and f.ljCj(x) = 0 for i = 1, ... , p. (**) 
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Consider the convex function 
p 

jRn "x 1-+ f)..,j.L(x) := f(x) + AT (Ax - b) + L JLjCj(x) 
j=l 

and observe that (*) just expresses the fact that x is an unconstrained minimum of 
f)..,w Thus, we can write f)..,j.L(.:i") ?: f)..,j.L(x). Straightforward calculations using (**) 
yield 

p 

f(x') + L JLjCj(x') ?: f(x) = j = f(x'). 
j=l 

Because of the signs of JL j and Cj (x'), this implies 

JLjCj(x') = 0 for all j = I, ... , p. (3.1.1) 

It follows 
f)..,j.L(x') = f(x') = f(x) = f)..,j.L(x) , 

i.e. x' is an unconstrainedminimumof.e)..,j.L: (*) holds with x replaced by x'. Together 
with (3.1.1), we finally have (A, JL) E M(x'). 

Thus, we have proved M(x) c M(x'); the converse inclusion follows by sym-
metry. 0 

The same proof could have been used to establish Mo(x) = Mo(x'). However, 
from now on, we will pay attention to the Lagrange multipliers exclusively. 

Remark 3.1.2 As a result of Proposition 3.1.1, we are entitled to use the notation M 
for the set M(x) of Lagrange multiplier. This notation is symmetric to the notation S 
for the solution-set of (2.0.3). 

In particular, the J.L-part of the Lagrange multipliers does not depend on the solution 
i; and because of the complementarity slackness (see Remark 2.1.5), J.Lj has to be zero for 
j = 1, ... , p, as soon as there is a solution i with cj(i) < O. Expressed otherwise, 

{j = 1, ... , P : J.Lj > O} c n{J(i) : XES}. 

Because the set J (i) of active constraints does depend on i, we say: when S increases, the 
chances of having the strict complementarity slackness decrease. 0 

A by-product of the proof of Proposition 3.1.1 is a function f).., j.L' which is minimal 
at i. This function is in fact fundamental in optimization and deserves a formal 
definition: 

Definition 3.1.3 The Lagrange junction, or Lagrangian, associated with the con
strained minimization problem (2.0.3) is the function L : jRn X jRm+p -+ jR defined 
by 

m p 

(x, A, J.L) 1-+ L(x, A, JL) := f(x) + LAi«(ai, x) - hi) + LJLjCj(x). 
i=l j=l 

Using the notation from (2.0.2), we will also write more simply 

L(x, A, JL) = f(x) + AT (Ax - b) + JL T c(x) . o 
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It is important to understand that L is a "bivariate" function: it depends on the two 
groups of variables x E JRn and (A, J-L) E JRm+ P, which play quite distinct roles. For 
fixed (A, J-L), L(·, A, J-L) is a convex function from JRn to JR; and the "interesting" values 
of the variable x form the set S. Alternatively, for fixed x, L(x, " .) is affine on JRm+p; 
and the "interesting" values of the variable (A, J-L) form the set M c JRm x (JR+)P. 

From Proposition 3.1.1, M is an intrinsic object, attached to the data (j, a, b, c) 
of our constrained minimization problem (2.0.3). The next result goes along the same 
lines: by contrast to the definition (2.1.8), (2.1.9) of M (which implies to have x 
first), it establishes the ability of M to produce optimal solutions via an unconstrained 
minimization problem. 

Proposition 3.1.4 For (A, J-L) E M, the two statements below are equivalent: 

(i) x E C minimizes L(·, A, J-L) over JRn and J-LjCj(x) = Of or j = 1, ... , p; 

(ii) x solves the original problem (2.0.3). 

PROOF. It suffices to observe that (i) is just the KKT conditions (2.1.8), (2.1.9), with 
an equivalent formulation of (2.1.8). 0 

As a first illustration, let us return to the steepest-descent problem of Example 2:3.5. To 
obtain a solution, we could minimize on ]Rn the convex function 

d t-+ L(d, J-L) := (s, d) + !J-L(Qd, d) - !J-LK 

for some multiplier J-L, which turned out to be positive. The constant term 1/2 J-LK plays no role 
and can be dropped; if, furthermore, J-LQ = V 2/(x) (assuming existence of the Hessian), 
we recognize in the minimand the second-order approximation of I(x + d) - I(x). This 
confirms that Newtonian methods can be considered as steepest-descent methods with a 
suitable norming of]Rn . 

The end of Remark 11.2.1.4 can also be illustmted: as an alternative to (2.3.3), consider 

min {!(Qd, d) : (s, d) = 8} . 

It has just one affine constraint, so it is equivalent to minimizing for some J... the function 

d t-+ !(Qd, d) + J...(s, d) , 

which gives d = -J...Q-I s . The multiplier is then obtained from the feasibility condition: 
J... = -8/(s, Q-1s). Once again, d depends multiplicatively on J..., i.e. on 8, and equivalence 
with (2.3.3) follows if J... < 0, i.e. if 8 < 0 (a sensible requirement, since a positive value of 8 
would result in an uphill direction). 

Let us sum up the information furnished by a multiplier (A, J-L) E M: 

- The values in two minimization problems are equal, namely: 

inf {f(x) : x E C} = inf {L(x, A, 11) : x E JRn} 

(as can be seen from the proof of Proposition 3.1.1). 

- The solutions of the first problem are those x solving the second problem which are 
in C and satisfY the complementarity slackness: Cj(x) = 0 if J-Lj > O. 

This aspect will be further developed in §4 below. 



320 VII. Minimality Conditions and Elements of Duality Theory 

3.2 Multipliers and Exact Penalty 

In § 1.2, we introduced another way of eliminating constraints, through penalty. Our 
study there was based on the distance-function de; but this function can usually n?t be 
computed with the help oftheproblem-data (a, b, c) of(2.0.1). On the other hand, we 
saw that de satisfied the nice exact penalty property of Definition 1.2.2: it reproduced 
a solution of the original problem, provided that it was amplified by a large enough 
penalty coefficient 1f • 

Here let us introduce more formally a penalty function, depending explicitly on 
the data (a, b, c). For i = I, ... , m and j = I, ... , p, we choose individual penalty 
functions Pi, qj, all convex from JR to JR+, satisfying the following properties: 

Pi(O) = 0 and Pi(t) > 0 for t#-O; 
qj(t) = 0 for t ~ 0 and qj(t) > 0 for t > O. 

Then we construct 

m p 

JRn 3 x t-+ P(x):= LPi«(ai,x} -bi)+ Lqj(Cj(x)); 
i=l j=l 

this P is a penalty function: it satisfies (1.2.1). 
Recall our substitute unconstrained problem: 

inf {f(x) + P(x) : x E JRn} . 

(3.2.1) 

(3.2.2) 

(3.2.3) 

We know from Lemma 1.2.1 that a solution of (3.2.3) solves the original constrained 
problem as soon as it is feasible; and to force this feasibility, each Pi(t) and qj(t) 
should increase fast enough when t leaves 0: remember Fig. 1.2.1. The wording "fast 
enough" is precisely made clear by the corresponding Lagrange multiplier: 

Lemma 3.2.1 Let (A, f.-L) E M.lfthe penalty functions (3.2.1) are chosen so that 

Ai E 0Pi (0) for i = 1, ... , m , 

J.Lj E oqj(O) for j = 1, ... , p, 

(3.2.4) 

(3.2.5) 

then any solution of the original problem (2.0.3) solves the penalized problem (3.2.3). 

PROOF. For each i = I, ... ,m, the subgradient inequality (3.2.4) gives: 

[Pi (0) + Ai t =] Ai t ~ Pi (t) for all t E JR. 

Taking successively t = (ai, x) - bi for i = 1, ... , m and summing up, we obtain 

m 

AT(Ax-b)~ LPi«(ai,x}-bi) forallxEJRn . 

i=l 

Starting from (3.2.5), we similarly arrive at 
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p 

IL Tc(x) ~ Lqj(Cj(x» for all x E]Rn 

j=1 

and we deduce by summation: 

A T (Ax - b) + IL T c(x) ~ P(x) for all x E ]Rn . (3.2.6) 

Now let x solve (2.0.3) and write 

f(x) + P(i) = f(i) 
= f(i) + AT (Ax - b) + IL T c(i) 

~ f(x) +AT (Ax - b) + IL Tc(x) for all x 
~ f(x) + P(x) for all x . 

In a word, x solves (3.2.3). 

[feasibility of i] 

[with transversality] 
[Proposition 3.1.4] 

[using (3.2.6)] 

o 

Remark 3.2.2 It is instructive to note that the above proof is almost identical to that of 
Proposition 3.1.4. Indeed, with (A. tL) E M, the Lagrange function L(·, A, tL) resembles, but 
is not, a penalized function, in which each of the individual Pi and qj would be linear, with 
slopes Ai and tLj respectively. The geometrical meaning of A, tL appears in Fig. 3.2.1. 0 

,fTC .... 

Fig.3.2.1. Behaviour of a penalty term near zero 

Now, remembering Lemma 1.2.1, the above result makes it easy to find an imp le
mentable exact penalty function: 

Corollary 3.2.3 Let the constrained minimization problem (2.0.3) have a nonempty 
(solution-set and) set of Lagrange multipliers. Then the jUnction YI of (2.0.8) satisfies 
the exact penalty property of Definition 1.2.2. More preCisely, if 

rr > rr* := max {IAIi •... ,IAml; ILl.···, ILp}, 

then the solutions of (2.0.3) are the unconstrained minima of f + rrYI. 

PROOF. The function q := rrYI has the form described via (3.2.1), (3.2.2), with 
Pi(t) = rrltl and qj(t) = rrt+. Ifrr is as stated, we see from Lemma 3.2.1 that q 
satisfies the conditions of Lemma 1.2.1(iii). 0 

Having thus singled out an exact penalty function, we can obtain many others; a simple 
variant has one penalty coefficient for each constraint: 
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Pi(t) = 1filtl for i = 1, ... , m and qj(t) = 1fm+jt+ for j = 1, ... , P, 

where 1fi > P'j I, 1fm+ j > /-tj. Actually, consider the vector-function r of (2.0.5): because 
all norms are equivalent, any function of the type Mr. is an exact penalty when M i= 0. 
Another useful example is (with 1f > 0) 

Pj(t) = 1f1 expt -li. qj(t) = 1f max{expt - 1, O}. 

These functions tend to +00 rapidly when t -+ +00; therefore, they increase the chances of 
having compact sublevel-sets in (3.2.3). 

Thus, the property M =1= 0 suffices to provide a convenient exact penalty func
tion. This condition turns out to be necessary, which is not surprising in view of 
Remark 3.2.2. 

Theorem 3.2.4 For the constrained minimization problem (2.0.3) (assumed to have 
a solution), the three statements below are equivalent: 

(i) M =1= 0 ; 
(ii) there is a penalty function P of the form (3.2.2) such that any solution of the 

original problem (2.0.3) solves the penalized problem (3.2.3); 
(iii) there is a penalty function P of the form (3.2.2) such that the original problem 

(2.0.3) and the penalized problem (3.2.3) have the same solution-set. 

PROOF. (i) ~ (ii) is Lemma 3.2.1; (ii) -¢> (iii) is Corollary 3.2.3, the only thing to 
prove is (ii)~ (i). 

Let x solve (2.0.3) - hence (3.2.3) - and write the minimality condition 0 E 

au + p)(x): from the appropriate calculus rules of §VIA, 

m P 
o E a/(x) + L api(O)ai + L aqj (Cj (.x))aCj (x) . 

i=l j=l 

This displays Ai E api(O), i = 1, ... , m and ILj E aqj (Cj (x)), j = 1, ... , P such 
that (2.1.8) holds. It remains only to check (2.1.9), which follows easily from the 
properties (3.2.1) of qr [ILj E] 8qj(t) C jR+ for all t and [{ILj} =] aqj(t) = {OJ if 
t < O. 0 

So far, we have seen three possibilities to remove the constraints from the original 
problem (2.0.3): 

(i) A penalty function can be added to I; in practice, it depends on a penalty coef
ficient 7r, which is increased until the penalized problem (hopefully) produces. a 
feasible solution. 

(ii) Linear functions of the constraints can be added to I, thus forming the La
grange function; the coefficients A, IL ofthese linear functions must be adjusted 
so that a minimum is (hopefully) obtained, which is feasible and satisfies the 
complementarity slackness. 
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(iii) A shift j can be subtracted from f, to form the max-function F of (2.4.1), 
which must be minimized on the affine manifold of equation Ax = h. The value 
1 (here viewed as an unknown parameter) must be adjusted so that a minimizer 
x* of F is obtained, (hopefully) satisfying F(x*) = f(x*) -1 = o. 

None of these approaches is straightforward, in the sense that they all contain 
some unknown parameter: 11:, (A, f.1,), or f. The techniques (i) and (ii) require the 
existence of a multiplier, i.e. in practice the weak Slater assumption; by contrast, (iii) 
is satisfied merely with the existence of a solution. On the other hand, (i) appears as 
the most tractable: 11: just has to be large enough; while (ii) and (iii) require an accurate 
value of their respective parameters. 

At any rate, most methods for constrained minimization possess an interpretation 
in terms of at least one of the techniques (i), (ii), (iii). 

3.3 Multipliers as Sensitivity Parameters with Respect to Perturbations 

For many applications, it is important to study the behaviour of the optimal value of 
a minimization problem such as (2.0.3), when the data (f, a, h, c) vary. We consider 
here perturbations in the right-hand sides of the constraints only: other perturbations 
result in much more involved studies, which would go beyond the scope of this book; 
incidentally, the behaviour of the optimal solutions is likewise a delicate subject. 

Thus, for (u, v) = (uj, ... , Um; VI, ... , vp) E ]Rm x ]RP, we consider 

inf f(x) 

(ai, x} - hi = Ui for i = 1, ... , m 

Cj(x) ~ Vj for j = 1, ... , p. 
[or Ax = h + U E ]Rm] 
[or v - c(x) E (]R+)P] 

(3.3.1)u,v 

Of course, (3.3.1 )0,0 is simply our original problem (2.0.3). We call C (u, v) the feasible 
set in (3.3.I)u,v and P(u, v) the optimal value: 

P(u, v) := inf {f(x) : x E C(u, v)} . 

We still assume that the original problem does have a solution i, i.e. 

P(O,O) = inf {f(x) : x E C(O, O)} = f(i), with i E C(O, 0); 

but anything can happen for (u, v) =I (0,0), even close to (0,0): C(u, v) may be 
empty (then P(u, v) = +00 by convention), or f may not be bounded from below on 
C(u, v), i.e. P(u, v) = -00. Thus P assumes its values a priori in]R U {±oo}. Note, 
however, the following property of P: 

v ~ Vi componentwise in]RP ==> P(u, v) ~ P(u, Vi) . (3.3.2) 

In this section, we consider the following questions: 

- When is the value -00 excluded for P(u, v) ? (from §IY.2.4, P will then be in 
Conv]Rm+P). 
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- When is P finite in a neighborhood of (O,O)? (from Theorem IV3.l.2, P will then 
be Lipschitzian near the origin). 

- At what speed does P(u, v) tend to P(O, O)? (this depends on the subdifferential of 
P at the origin). 

- What are the constraints provoking the largest perturbation on P? 

The answers to all these questions lie in the set of multipliers at (3.3.1)0,0' To get 
an idea of what can be expected and what is hopeless, we start with an example. 

Example 3.3.1 Consider again Example 2.4.4: 

C(v) = {x = (~, 17) E l~.z : ~ + II(~, 17)11 :s; v}. 

If v < 0, C(v) = 0. If v > 0, direct calculations give the parabolic set of Fig. 3.3.1: 

C(v) = {(~, 17) : 2~:S; v -172 Iv}. 

c ~ tV --.. ~ 

Fig.3.3.1. A parabolic constraint-set 

With the objective function fa(~, 1/) = 1/ - ex~ (ex ~ 0), we have P(O) = 0, 
P (v) = +00 if v < 0; as for v > 0, there are two cases: 

- if ex = 0, then P(v) = -00. 

- if ex > 0, solving the perturbed problem is a good exercise to apply §2; we find 

xCv) = Gv - ~v, -kv) , P(v) = -!v (ex + k). 
In this example, we recall that there is no Lagrange multiplier if ex = 0; and for 

ex > 0, the set of multipliers is nonempty but unbounded. 0 

Clearly enough, if P is finite in a neighborhood of (0,0), then the strong Slater 
assumption has to hold: indeed, 

- if A is not surjective, then a perturbation (u, 0) with u close to 0 but out of 1m A 
will make C(u, 0) empty; 

- if max) C) (x) ~ 0 for all x satisfYing Ax = b, a perturbation (0, v) with all compo
nents of v negative will again make C(O, v) empty. 

Theorem 3.3.2 The set M (possibly empty) of multipliers associated with the original 
minimization problem (3.3.1)0,0 is the set of (A, J-t)for which it holds that 

P(u, v) ~ P(O, 0) - AT u - J-t Tv for all (u, v) E IRm x IRP . (3.3.3) 

Itfollows that, if M =1= 0, then P assumes nowhere the value -00 and is therefore in 
ConvlRm+p. 
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PROOF. Let (A, {L) E M. We know from Proposition 3.1.4 that 

P(O, 0) ~ L(x, A, {L) for all x E jRn. 

In particular, we deduce for all x E C(u, v): 

P(O,O) - AT u - {LTV ~ L(x, A, {L) - AT u - {LTV 
= l(x)+AT(Ax-b-u)+{LT[c(x)-v] 
= I(x) + {L T[c(x) - v] ~ I(x) , 

and (3.3.3) follows since x was arbitrary in C(u, v). Existence of such a (A, {L) 
therefore implies P(u, v) > -00 for all (u, v): by virtue of Corollary IY.2.4.3, 
P E Conv jRm+p (remember that we have assumed P(O, 0) = I(i) < +00 from the 
very beginning). 

Conversely, suppose (3.3.3) holds and let x be arbitrary in jRn; taking u = Ax - b 
and v = c(x), we have 

I(x) ~ P(Ax - b, c(x» ~ P(O, 0) - AT (Ax - b) - {L T c(x) , (3.3.4) 

where the first inequality holds because x is certainly in C(Ax - b, c(x». This can 
be written 

P(O, 0) ~ I(x) + AT (Ax - b) + {L T c(x) = L(x, A, {L), 

hence P(O, 0) = I(i) = minL(·, A, {L). 
Now set x = i in (3.3.4) to get 

I(i) = P(O, 0) ~ P(O, 0) - {L T c(i). 

It remains only to establish nonnegativity of {L, but this results from the monotonicity 
property (3.3.2): take in (3.3.3) u = 0 and v = ej, the /h vector of the canonical 
basis in jRP). 0 

Note the illustration of(3.3.3) given by Example 3.3.1 (the set of multipliers was com
puted in Example 2.4.4). In the same example, take the objective function f (~, TJ) = e'l - l. 
When v ~ 0, nothing is changed; but now, P(v) = -1 > -00 for v > 0: existence of 
multipliers is not necessary to exclude the value -00 for P. Needless to say, M is still empty 
and the new P has no slope at o. 

We now tum to the property P(u, v) < +00 near (0,0). Once again, remember 
that we postulate the existence of an optimal solution to the unperturbed problem. 

Theorem 3.3.3 The strong Slater assumption is necessary and sufficient for P to be 
finite in a neighborhood of (0,0). 

PROOF. [Sufficiency] Because SSA implies M =1= 0, we already know that the value 
-00 is excluded. Let Xo satisfy 

Axo = band Cj (xo) ~ - e for j = 1, ... , p 

for some e > O. Take a perturbation v such that 

Ivloo:=max{lvjl: j=1, ... ,p}~e/2. 
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- Because each Cj is continuous, there is a ball B(xo. r) around Xo such that, for all 
x E B(xo. r) and} = I •...• p 

Cj(x)~Cj(xo)+e/2~ -e/2~ -Ivjl~vj. 

- Because A is surjective, AA* is invertible (see Example 1.1.5). For a perturbation 
u E IRm,thevectorxu := A*(AA*)-lu+xosatisfiesAxu = b+uandfurthermore, 
Xu E B(xo, r) if u is close enough to O. 

Thus, for (u, v) close enough to 0, C(u, v) is nonempty, hence P(u, v) < +00. 

[Necessity] This property was already alluded to after Example 3.3.1, we give one 
more proof. When P is finite in a neighborhood of(O, 0), i.e. when (0, 0) E intdom P, 
we know from §VI.1 that the subdifferential ap(O, 0) is a nonempty compact convex 
set oflRm+p. On the other hand, Theorem 3.3.2 tells us that this set is exactly -M; 
the rest follows from Theorem 2.3.2. 0 

Thus, under SSA, the equality -M = ap(O, 0) allows the following refinement 
of(3.3.3): 

P(u, v) = P(O, 0) + GM(-U, -v) + o(lI(u, v) II) . (3.3.5) 

It follows that P is differentiable at (0,0) if and only ifthere is exactly one multiplier. 
In this case, when some Uj becomes nonzero, the optimal cost is perturbed to 

P(O,O) - AjUj, up to first order. Thus, Aj represents a "value" of the i th constraint: 
to keep satisfying it, one is ready to pay a price AjUj balancing the above perturba
tion. This interpretation also explains that, to find an optimal solution of the original 
problem, this i th constraint must be assigned a price Aj; we recover Proposition 3.1.4. 

Example 3.3.4 Take again the example of minimizing a quadratic function over an 
affine manifold: 

P(b+u) = min {!{Qx,x)+{c,x) : Ax=b+u}, (3.3.6)u 

where Q is symmetric positive definite and A is surjective. Using from Example 1.1.5 
the expression of x solving (3.3.6)0, straightforward computations give 

P(b + u) = P(b) + (BAQ-I C + Bb, u) + !(Bu, u). 

The optimal value is thus a quadratic function of the right-hand side; its gradient at 
u = Ois B(AQ-IC+b), in which we recognize the expression of-A in Example 1.1.5. 

o 

Example 3.3.5 Consider an infimal convolution: using the notation of §VI.4.5, we 
solve the constrained minimization problem in 1R2n 

(/1 t h)(x) := inf {fI(YI) + h(Y2) : YI + Y2 = xl 

for given x E IRn. Recalling that we write the constraint as A(YI, Y2) = x, A is 
surjective from 1R2n to IRn : SSA is satisfied. If the infimal convolution is exact at 
x = YI + Y2, i.e. if the above problem has a solution (YI, Y2), we know that there is 
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a nonempty bounded set of multipliers, whose opposite is exactly the subdifferential 
of II that x. Indeed the minimality conditions give the multipliers, namely those ')., 
satisfying 

o E all (yd x ah(yz) + (')." ').,) ; 
this is Corollary VI.4.S.S. o 

4 Minimality Conditions and Saddle-Points 

The study of our basic convex minimization problem (2.0.3) has revealed two sets 
which play different roles: one is the set S C JR.n of solutions to (2.0.3) (assumed 
nonempty in our development); and the second is the set M C JR.m x (JR.+)P of 
multipliers (whose nonemptiness is guaranteed under appropriate assumptions). All 
our work of §2 has consisted in associating to any i E S the elements (')." /1) of M. 
Conversely, for given (')." /1) E M, we have seen in §3.1 how to obtain the solution-set 
S. The two groups of variables, x E JR.n and (')." /1) E JR.m x (JR.+)P, are gathered in a 
"bivariate" function, the Lagrangian. 

In the present section, the multipliers (')." JL) will be shown to solve a concave 
maximization problem associated with (2.0.3): the dual problem. The product S x M 
will appear as something new: the set of saddle-points, forming the solutions of a 
"mixed" problem of mini-maximization. 

We make an elementary study, directly inspired from the previous section: here 
are our first steps in duality theory. Deeper and more detailed analysis will come in 
Chap. XII, which is entirely devoted to the subject; in particular, the role of convexity 
will be demonstrated there, as well as the consequences of this theory on decompo
sition aspects. 

We start with general considerations on the extremization of bivariate functions. 

4.1 Saddle-Points: Definitions and First Properties 

Given a function I : X C jRn --+ JR., we know the meaning of expressions like 
"minimize I on X", "minimal value of Ion X", "minimum-set of Ion X"; and 
symmetric concepts are obtained if "min" is replaced by "max". We now consider 
optimization problems of another type, concerning a "bivariate" function l, which 
depends on two distinct groups of variables x and y. 

Let X and Y be two nonempty sets and consider a given function l 

X x Y 3 (x, y) f-+ l(x, y) E JR.. 

Suppose that we want to minimize l with respect to x, and maximize it with respect 
to y. For each value of one variable, the set (possibly empty) of extremizers in the 
other variable is then relevant, say: 

T(x) := {y E Y : l(x, y) = SUPyeY l(x, y)}, 
S(y) := {i EX: l(i, y) = infxexl(x, y)}. 
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This defines two multifunctions, T : X -+ Y and S : Y -+ X, whose graphs 
are subsets of X x Y and Y x X respectively. 

Definition 4.1.1 A couple (i, ji) E X X Y is said to be a saddle-point of l on X x Y 
when 

ji E T(i) and i E S(ji) . (4.1.1) 
o 

Just from the definition of upper and lower bounds, a saddle-point is a couple 
(i, ji) such that 

sup lei, y) = lei, ji) = inf lex, ji), 
yeY xeX 

(4.1.2) 

where the sup and inf must actually be a min and a max; this in turn can be written 

lei, y) ~ lei, ji) ~ lex, ji) for all (x, y) E X x Y. (4.1.3) 

A further definition is 

lei, y) ~ lex, ji) for all (x, y) E X x Y. (4.1.4) 

Indeed, (4.1.4) is clearly implied by (4.1.3); conversely, if (4. 1.4) holds, take succes
sively y = ji and x = i to obtain (4.1.3). As we continue, we will use indifferently 
one of the possible definitions (4.1.1) - (4.1.4) - and even several others, to be seen 
below. 

For a saddle-point (i, ji), we have in particular i E dom T and ji E dom S; 
indeed, (4.1.1) can also be written (i, ji) E gr T and (ji, i) E gr S. In a set-theoretic 
language, the (possibly empty) set of saddle-points is gr T n gr T S, where 

grT S:= {(x, y) E X X Y : (y,x) E grS} 

is the "symmetrized" version of gr S. 
Let us start with simple examples. 

Example 4.1.2 With X = Y = R., the graph of the quadratic form defined by 

lex, y) = x 2 _ y2 

resembles a saddle, depicted on Fig. 4.1.1. Another comparison is topographical: we have two 
mountains on the x-axis, separated by a pass at the point (0, 0). When moving from (0,0) in 
the x-direction [y-direction], l increases [decreases]; (0,0) appears as the only saddle-point 
oft. 

A more subtle example is the quadratic form 

R. x R.+ 3 (x, y) ~ lex, y) = xy - x . 

Here, the multifunctions T and S are given by 

10 ifx>O, 
T(x) = R.+ if x = 0, 

{OJ if x < 0, 
{ 0 ify ¥ 1, 

S(y)= R. ify=l, 

(4.1.5) 

and (0, 1) is the saddle-point of l on R. x R.+. We will see in §4.4 that this example is typical 
in the framework of the present chapter. 0 
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Fig.4.1.1. A saddle-shaped function 

Saddle-points form a set in X x Y which is not quite arbitrary. It has the structure 
of a Cartesian product, say S x f with SeX and feY: 

Proposition 4.1.3 The value t(i. y) is constant over all saddle-points (i, y). If 
(ilo Yl) and (X2. Y2) are two saddle-points oft on X x Y, then so are (ilo Y2) and 
(X2, YI). 

PROOF. We have by the definition (4.1.3) of saddle-points: 

fi ll( ) X Y It(iIoY)~l(iIoYI)~l(X'YI)' (*) 
or a x. y EX. l(i2• y) ~ l(i2, Y2) ~ lex, Y2). (**) 

Set x = X2 and y = Y2 in (*). x = i l and y = Yl in (**) to see that the four values 
l(ij. Yj) are equal for i and j in {I. 2}. 

Then use successively (*) and (**): for all (x. y) E X X Y, 

l(i lo y) ~ l(i lo ji) = t(i2 , Y2) ~ lex, Y2) , 

hence (i l • Y2) is a saddle-point; play the same trick for (i2• Yl). o 

The real number i := l (i, y) singled out by this result is called the saddle-value. 
In our topographical interpretation of Fig.4. 1.1 , i is the altitude of the pass. The 
following is then one more possible definition: (i, y) is a saddle-point when there is 
a number i such that 

t(i, y) ~ i ~ teXt y) for all (x. y) E X X Y. (4.1.6) 

Remark 4.1.4 If (x, y) is a saddle-point, we have by definition (4.1.1) x E S(T(x», i.e. 
x E (S 0 T)(x); and likewise y E (T 0 S)(Y). We can say that x and y arefixed points of the 
multifunctions SoT: X ~ X and T 0 S: Y ~ Y respectively. 

Conversely suppose x is a fixed point of SoT: there is YET (x) such that XES (y). By 
definition. (x, y) is a saddle-point: x is in the S-part of the set of saddle-points; symmetrically. 
a fixed point y of To S is in the T-part of this same set. In view of the Cartesian structure 
assessed in Proposition 4.1.3, we therefore obtain a further characterization of saddle-points: 
they are those pairs (x, ji) whose components are fixed points of SoT and T 0 S respectively. 

o 
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4.2 Mini-Maximization Problems 

The definition (4.1.1) of a saddle-point involved the pair of (set-valued) mappings 
T="Argmax" and S="Argmin". To reach the equivalent definition (4.1.2), we could 
directly use function-values. Following this idea, we define to functions: 

X:3 x 1-+ cp(x):= sUPyEyl(x, y), 
y " y 1-+ 1{!(y) := infxEx lex, y); 

(4.2.1) 

note that cp can take on the value +00, and 1{! the value -00, even in very simple 
situations: see (4.1.5) for example. 

Lemma 4.2.1 For cp and 1{! defined by (4.2.1), there holds 

1{!(y) ~ lex, y) ~ cp(x) for all (x, y) E X x Y. (4.2.2) 

PROOF. Take x and y in X and Y respectively. By definition of an inf: 

1{!(y) ~ lex, y), 

and ofa Sup: 
l(x, y) ~ cp(x) . o 

This result reveals an important general property: all1{!-values minorize all cp
values; to memorize it, think that when one minimizes, one obtains something smaller 
than when one maximizes. The whole business in finding a saddle-point is then to 
invert the inequalities in (4.2.2): 

Proposition 4.2.2 With cp and 1{! defined by (4.2.1), (i, ji) is a saddle-point of l on 
X x Y if and only if 

1{! (ji) ~ cp(i) . (4.2.3) 

Then we actually have 1{!(ji) = cp(i) = lei, ji) =: i. 

PROOF. Because of Lemma 4.2.1, (4.2.3) means exactly 

1{!(ji) = lei, ji) = cp(i) , 

i.e., by definition of cp and 1{!: 

inf lex, ji) = lei, ji) = sup lei, y), 
XEX yEY 

which is just (4.1.2). o 

See Fig.4.2.1, where both T(·) and SO are assumed single-valued throughout; 
a saddle-point is obtained when the points A, A_ and A+ coincide (we are then on 
the intersection of the curves gr S and gr T). In Fig. 4.1.1, gr Sand gr T are the two 
coordinate-axes. 
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I 
. I 

gr T' __ L.l---.-
, 1 ___ .... _, 
i A = (x,y) 

Fig.4.2.1. Mini-maximization 

Compare (4.2.2) with (4.2.3) to realize that finding a saddle-point implies maximizing 
the inf-function 1/1, and minimizing the sup-function cp. Geometrically, embed Fig.4.2.1 in 
~3, with the extra component z = l(x, y): we must find a point on the curve gr T[gr S] with 
highest [lowest] altitude z. Naturally, (4.2.2) extends to the extremal values: 

sup inf l(x, y) ~ inf sup l(x, y), (4.2.4) 
yeY xeX xeX yeY 

a relation which holds for all (X, Y, l). Proposition 4.2.2 implies that, when there is a saddle
point, equality holds in (4.2.4): both sides are then equal to the saddle-value i. Such an 
equality need not hold in general, however: 

Example 4.2.3 For x = (~, I) E X = ~2 and Y E Y = ~+, take 

l(X,y)=I)+y[~+J~2+1)2] . 

This function is convex in x. Observe that axl never contains 0: no matter how y is chosen, 
l (', y) has no minimum; as a result, there cannot be any saddle-point: S (y) = 0 for all y. 

Indeed, we have 1/I(y) == -00 (take for example ~ = yl) and I) _ -00); the left-hand 
side in (4.2.4) is therefore -00. On the other hand, 

(~, )={ 0 if~+!~2+1)2=0, 
cp I) +00 otherwIse. 

In summary, (4.2.4) gives -00 ~ O. o 

The trouble illustrated by this example is that the operators "min" and "max" do not 
commute in general. This means in Fig. 4.2.1 that the two curves gr Sand gr T have no reason 
a priori to meet each other. Existence of a saddle-point implies above all that the order of 
extremizations of l does not matter: one can start equivalently with x, or with y. 

Remark 4.2.4 When (4.2.4) holds as an equality, we can say that l has a saddle-value. 
Beware that this property does not imply the existence of a saddle-point: each of the outer 
extremizations must still have a solution. A simple counter-example is 

1 1 
[I, +oo[ x [I, +oo[~ (x, y) t-+ lex, y) = - - -. 

x Y 
This example illustrates another interesting point: suppose that, instead of X Y = 

[1, +00[, we take 
X=[I,L] and Y=[I,L'] 

for some real numbers Land L' (larger than I). On these new sets, l has the saddle-point 
(L, L'), with its saddle-value 1/ L - 1/ L'. When Land L' tend to infinity, this saddle-point 
has no limit, but the saddle-value tends to O. 0 
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Knowing that the function 'P [resp. 1fr] of (4.2.1) must be minimized [maximized], 
how about the converse? To obtain a saddle-point, does it suffice to extremize these 
functions? Consider their respective sets (possibly empty) of extremizers: 

4J := {x* EX: 'P(x*) = inf 'P}, 1/1:= {y* E Y : 1fr(y*) = sup 1fr} . 

Computing 4J is a mini-maximization problem: l is first maximized (with respect to 
y), and then minimized (with respectto x) - and the other way round for 1/1. The precise 
connection between saddle-points and this type of hierarchical problems lies in the 
following result, which also specifies the sets Sand f appearing in Proposition 4.1.3. 

Theorem 4.2.5 With the above notation, a necessary and sufficient condition Jor l 
to have a saddle-point on X x Y is 

minxex 'P(x) = maxyef 1fr(y); (4.2.5) 

in this case, the set oJsaddle-points is 4J x 1/1 (¥= 0). 

PROOF. If (i, ji) is a saddle-point, it is obvious from (4.1.2) that (i, ji) E 4J x 1/1, and 
that 'P(i) = lei, ji) = 1fr(ji): (4.2.5) holds. 

Conversely, assume (4.2.5) and take (i, ji) E cP x 1/1: we have 1fr(ji) = 'P(i). 
Then, by definition of'P and 1fr, 

lei, y) ~ 'P(i) = 1fr(ji) ~ lex, ji) for all (x, y) E X X Y; 

by virtue of (4. 1.4), (x, ji) is a saddle-point. o 

Note the following implication of this (fundamental) result: when (4.2.5) holds, 
not only do 'P and 1fr attain their extrema; but also, at any of these extrema, say i and 
ji, the functions l(i,·) and l(·, ji) also attain their extrema. Because nothing else is 
presupposed from (X, Y, l), we conclude that (4.2.5) must be a very strong property, 
indeed. 

Remark 4.2.6 Let us sum up this subsection: at least conceptually, the computation 
of a saddle-point can be done as follows: 

(i) For each x E X, the function'P(x) of(4.2.1) must be computed; 

(ii) minimize 'P to obtain a minimum point i (if none exists, there is no saddle
point); 

(iii) having i, maximize lei, .) to obtain a maximum y* (if none exists, there is no 
saddle-point). 

(i') Likewise, for each y E Y, the function 1fr(y) of (4.2.1) must be computed; 
(ii') maximize 1fr to obtain a maximum point ji (if none exists, there is no saddle

point); 

(iii') having ji, minimize l(·, ji) to obtain a minimum x* (if none exists, there is no 
saddle-point). 
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When these computations are completed, compare lei, y*) with l(x*, ji) [i.e. 
<p(i) with 1/I(ji)]. If they are equal, (i, ji) is a saddle-point; otherwise, there is no 
saddle-point. 

Beware that the points x* E S(ji) and y* E T(i) obtained in (iii') and (iii) may have 
nothing to do with what we are looking for. It is only when x* and y* are uniquely determined 
that they form a saddle-point; this will be shown in the existence Theorem 4.3.1 below. 0 

Thus, three problems can be considered, associated with (X, Y, l): the saddle-point prob
lem of Definition 4.1.1, the minimax problem 

rninrp(x) i.e. min (maxyeyl(x, y) x E Xl, 
xeX 

and the maximin problem 

max 1/I(y) i.e. max {minxex l(x, y) : y E Y}. 
yeY 

(4.2.6) 

They are related, but they can coincide only if (X, Y, l) enjoys rather strong properties. Finally, 
we introduce the abbreviated notation for (4.2.6): 

minxeX maxyeY l(x, y) . (4.2.7) 

4.3 An Existence Result 

The previous sections have given some general properties of saddle-points and mini
maximization problems in an abstract setting; but we still know nothing about exis
tence of a solution. Theorem 4.2.5, however, gives an idea of the type of assumptions 
needed: 

(i) First, equality must hold in (4.2.4), and this property is far from automatic. Take 
for example the case illustrated by Fig.4.3.1: X = Y = to, I}, and £(0, 0) = 1, 
lO,1) = 2, lO,O) = 3, leO, 1) = 4. We have <p(O) = 4, <pO) = 3, whose 
minimal value is 3; and 1/1(0) = 1,1/10) = 2; thus (4.2.4) gives here 2 ~ 3. 

l = 4 ~.---------.--., t = 2 

I I 
I It = 3 

l = 1 L ___ ._._._ . .J-_ 

(O,T(O)) t----------rS(1), 1) 

(S(O),O) L---h,) 
Fig.4.3.1. No saddle-value 

Not surprisingly, since we are dealing with extremization problems, convexity 
must come into play. Convenient assumptions are: 

X c IRn and Y C IRm are nonempty closed convex sets 

l is convex-concave on X x Y in the following sense: } 
for each Y E Y, the function l(·, y) : X -+ IR is convex, 
for each x EX, the function £ (x, .) : Y -+ IR is concave. 

(HI) 

(H2) 
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(ii) Second, when minimizing l with respectto x (for some specific Y), we must obtain 
a solution; remembering Remark Iy'3.2.6, what is needed here is O-coercivity of 
the function l(·, y) + Ix; and likewise for y. Thus, we also assume 

X is bounded, or there exists Yo E Y such that } (H3) 
lex, Yo) ~ +00 when IIxll ~ +00, x EX; 

Y is bounded, or there exists Xo E X such that } (H4) 
l(xo, y) ~ -00 when lIyll ~ +00, y E Y. 

All these assumptions are symmetric and natural; they imply in particular the 
continuity of l with respect to each of its two arguments. We mention here that the 
convexity Assumptions (HI), (H2) do not suffice to ensure equality in (4.2.4): see 
Example 4.2.3. Some compactness is still missing, and (H3), (H4) do the job. 

Theorem 4.3.1 Under Assumptions (H 1) - (H4). l has a nonempty convex compact 
set of saddle-pOints on X x Y. 

PROOF. First of all, we know from Proposition 4.1.3 that the set of saddle-points, when 
nonempty, has the form S x T; from (4.1.6), S is an intersection of sublevel-sets of a 
convex function; it is closed and convex. From (H3), either all these sublevel-sets are 
bounded, or at least one of them is bounded (the one corresponding to Yo). In both 
cases, their intersection S is bounded. The same argument establishes convexity and 
compactness of T. 

For non-emptiness, we proceed in three steps: first, we prove existence under 
additional assumptions; then we remove these assumptions one after the other. 

[Step 1] In addition to (HI) - (H4), assume that 

X and Y are bounded, l(x, .) is strictly concave for each x EX. 

Consider the family of functions indexed by y E Y: 

lRn 3 x ~ lex, y) + Ix (x) ; 

They are in Conv lRn, and our assumptions imply the following properties: 

- they attain their maximum for each x EX, at a unique y = T (x); 

- by Theorem IY.2.l.2, the resulting max-function ({J of (4.2.1) is in ConvlRn; 

(4.3.1) 

- the domain of ({J is the compact set X, and ({J attains its minimum at some i EX. 

Now let x be arbitrary in X and, for k = 1,2, ... , define 

Xk := ix + (1 - i)i and Yk:= T(Xk)· 

Applying successively the definition of i and of Ykt and the convexity of l (., Yk), we 
have 

({J(i) ~ ((J(Xk) = l(xkt Yk) ~ il(x, Yk) + (1 - i)l(i, Yk). (4.3.2) 
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Let k -+ +00; because of(4.3.1), {Yk} has a cluster point, say y. Passing to the limit 
in (4.3.2), 

fP(i) :;:;; 0 + l(i, Y), 

so Y = T(i) is independentofx. 
We claim that (i, y) is a saddle-point of i. We already have 

l(i, y) = fP(i) ~ l(i, y) for all Y E Y, 

which is the first half of (4. 1.3). On the other hand, use the definition of fP in (4.3.2) 
to obtain 

fP(i) :;:;; i1(x, Yk) + (1 - i)fP(i) ; 

multiply by k: 
fP(i) :;:;; l(x, Yk) 

and let Yk -+ Y to obtain the second half of (4.1.3): we do have a saddle-point of i. 

[Step 2] Now, in addition to (HI)-(H4), assume only that X and Y are bounded. For 
k = 1. 2 •... consider the function 

X x Y 3 (x, y) t-+ lk(X, y) := l(x, y) - illYII 2 

which is strictly concave in y. From the first step above, lk has a saddle-point, say 
(ik, Yk): for all (x, y) E X x Y, 

l(ik. y) - t1lY1!2:;:;; l(x, Yk) - tllYkll 2 • 

Let k -+ +00, extract a subsequence if necessary so that (iko Yk) -+ (i, y) E'X X Y 
and pass to the limit: 

l(i. y) :;:;; l(x. y) for all (x. y) E X X Y. 

which is (4.1.4): (i. y) is a saddle-point of i. 

[Step 3] Finally. just assume (HI) - (H4) and, for k = 1.2 •... , define the two convex 
compact sets Xk := X n B(O. k), Yk := Y n B(O. k). Then, from Step 2, l has a 
saddle-point (ik. Yk) on Xk x Yk: 

l(ik. y) :;:;; l(x. Yk) for all (x. y) E Xk x Yk. (4.3.3) 

Let k -+ +00 and suppose that {Yk} is unbounded; then Y is unbounded as well 
so, for k large enough, Xk contains the point Xo of (H4); using it in (4.3.3), 

l(ik. y) :;:;; l(xo, Yk) -+ -00. 

Thus, l(iko y) -+ -00, which can happen only for an unbounded {ik}; this, however, 
is impossible: reasoning as above, we exhibit Yo E Yk from (H3) and use it in (4.3.3) 
to obtain the contradiction 

+00 +- l(ik. Yo) :;:;; l(xo. Yk) -+ -00. 
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The same proof establishes boundedness of {ik}. Then, we take a cluster-point of 
{(ik, jik)}; to show that it is a saddle-point of l on X x Y, we proceed as in Step 2, 
passing to the limit in (4.3.3). 0 

It goes without saying that, if i(·, y) is strictly convex for all y E Y [resp.l(x,·) 
is strictly concave for all x E X], then the set of saddle-points has the form {i} x T 
[resp. S x (jill. 

Remark 4.3.2 Use the results of § 1.1: under the convexity assumptions (HI), (H2), a saddle
point (x, ji) is characterized by the existence of S E axi(x, ji) and p E ay ( -i)(x, ji) such 
that 

(S,X -x) ~ 0 for all X E X, 
(p, Y - ji) ~ 0 forall Y E Y . 

A consequence of Theorem 4.3.1 is that this system has a solution when (H3), (H4) hold 0 

4.4 Saddle-Points of Lagrange Functions 

After the general study of Sections 4.1 to 4.3, let us consider the particular case where 
l is the Lagrange function of Definition 3.1.3, associated with the basic minimization 
problem (2.0.3). Thus, the context is now the following: 

X = JRn with variable x as before, 

Y = JRm x (JR+)P with variable y = (A, IL) , 

l = L : JRn x JRm x (JR+)P ~ JR is defined by 
L(x, A, IL) := f(x) + AT (Ax - b) + IL T c(x) , 

and we are interested in saddle-points of L. With respect to the previous subsections, 
the essential simplification concerns the (A, IL )-variable: L is affine, and its maximiza
tion is made over a closed convex cone. We know (Example 1.1.6) the characterization 
of such maxima; the definition (4.1.1) of a saddle-point can be reformulated accord
ingly: 

Proposition 4.4.1 With the system of notation as above, the saddle-points of L on 
IRn x [lRm x (1R+)P] are those (i, (i, ji») such that 

(i) i minimizes L(·, i, ji) on JRn; 
(ii) Ai = band cj(i) ~ Of or j = 1, ... , p [i isfeasible in (2.0.3)J; 

(iii) jijcj(i) = Of or j = 1, ... , p [transversality condition]. 

PROOF. (i) is nothing but the second half of (4.1.2). 
As for the first half of (4.1.2), it expresses that (i, ji.) solves the optimization 

problem 
max (L(i, A, IL) : (A, IL) E Rm x (1R+)P}. 

The optimality condition of Theorem 1.1.1 can be worked out; but the situation is 
actually much simpler, since L(i,·,·) can be maximized separately with respect to 
each Aj and each ILj. A solution (i, ji) is then clearly characterized as follows: 
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- for i = I, ... , m, the slope (ai, x) - bi is zero; 

- for j = 1, ... , p, the slope Cj(x) isl zero if jlj > 0, 
nonpositive if jlj = O. 

Altogether, we recover (ii), (iii). 0 

The above proof illustrates the difficulty mentioned after Remark 4.2.6. If x 
answers the question, L (x, " .) is maximized on a huge set: for example, any A. E JRm 
is optimal. Only a small part of this set, however, is likely to answer the question. 

Corollary 4.4.2 If (i, (X, jl») is a saddle-point of Lover JRn x [JRm x (JR+)P], then 
i solves the basic minimization problem (2.0.3). 

PROOF. If (x, (X, jl») is a saddle-point, (i), (ii), (iii) hold in Proposition 4.4.1; x is 
feasible. Furthermore, (iii), (i) give 

f(x) = L(x, j., jl) ::;; L(x, X, jl) for all x E JRn; 

then, it suffices to observe that jl E (JR+)P implies 

L(x, X, jl) ::;; f(x) for all feasible x. o 

The sufficiency condition thus obtained makes the link between the present Sec
tion 4 and the general scope of this chapter. It is worth noting that the above two 
results are very general: no assumption whatsoever is needed on the data (f, a, b, c); 
the equality constraints could even be non-affine. However, as mentioned already, 
existence of a saddle-point of L is a very restrictive property; as indicated by §4.3, 
convexity plays its role for that: 

Theorem 4.4.3 In the basic minimization problem (2.0.3), assume that the data f 
and Cj, j = I, ... , P are convex/unctions/rom JRn to R Then the two statements 
below are equivalent: 

(i) (x, (j., jl») is a saddle-point 0/ Lover JRn x [JRm x (JR+)P]; 

(ii) x solves (2.0.3) and (j., jl) is a Lagrange multiplier. 

PROOF. Use Proposition 4.4.1 and the minimality condition 0 E 8x L(x, j., jl). 
Then recognize in (j., jl) the definition of Lagrange multipliers, as given by The
orem 2.1.4(iv). 0 

Remember Proposition 3.1.1, and also Proposition 4.1.3 establishing that the saddle
points form a Cartesian product: the saddle-points of the Lagrange function form the set S x M, 
where S is the solution-set and M the set of multipliers. The example of (4.1.5), precisely, is 
the Lagrange function associated with the following naive constrained minimization problem: 

min -x subject to c(x):= x ~ o. (4.4.1) 

Assuming convexity, existence of saddle-points of L thus amounts to some qualification 
condition (remember Proposition 2.2.1). The "abnormal" problem studied in Examples 2.1.7 
and 2.4.4 just gives Example 4.2.3: no multiplier, hence no saddle-point. 
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Remark 4.4.4 Given that our basic constrained minimization problem (2.0.3) is assumed to 
have a solution X, the existence of Lagrange multipliers is thus equivalent to the existence of 
a saddle-point of L. It is then interesting to interpret in this framework the assumptions used 
by Theorem 4.3.1 to ensure this existence. 

Here, (HI) and (H2) are automatic; when (H3) and (H4) hold, the sets Sand M of 
solutions and multipliers are both nonempty and bounded. For (2.0.3) to have a nonempty 
and bounded set of solutions, a classical assumption is the O-coercivity of f + Ie: 

f(x) -+ +00 if IIxll-+ +00 with x E C. (4.4.2) 

Because L(·, A, p..) ~ f on C for any (A, p..) E JRm x (JR+)P, (H3) clearly implies (4.4.2). 
The converse is not true: with x = (~, 71) E JR2, the problem 

min 1711 subject to ~ = 0 

does satisfy (4.4.2); but there is no real number A such that 

L(x, A) = 1711 + A~ -+ +00 when II(~, 71)11 -+ +00. 

(4.4.3) 

Now consider (H4); it is incompatible with any equality constraint: use again the counter
example of (4.4.3), with (~, 71) and A exchanged. On the other hand, if the problem contains 
only inequality constraints, (H4) becomes: there exists Xo E JRn such that 

[p.. E (JR+)P, 1Ip..1I -+ +00] ==> L(xo, p..) -+ -00 . (4.4.4) 

Thisxo is strictly feasible: otherwise, i.e. ifcjo(xo) ~ 0 for some io, we have L(xo, p..) ~ f(xo) 
for p.. = tejo' t -+ +00 (ejo being the i6h vector of the canonical basis in JRP); (4.4.4) is 
contradicted. 

Thus, (H4) implies the strong Slater assumption. Conversely, if there is Xo such that 
Cj(xo) < 0 for i = I, ... , p, we certainly have (4.4.4). In summary: when there are no 
equality constraints, (H4) is equivalent to SSA. 0 

4.5 A First Step into Duality Theory 

The previous subsection has connected the optimality conditions of § 2 with the saddle
theory of §4.1; let us now apply the results of §4.2 to our Lagrange function. To make 
it simple, we assume existence of a saddle-point, i.e. (2.0.3) has a solution and the set 
M of multipliers is nonempty. 

Because L(x, " .) is affine, the functioncp of(4.2.1) is easy to compute: we obtain 

(x) = { f (x) if Ax. = 0 and Cj (x) ~ 0 for j = I, ... , p 
cp +00 otherwlse ; 

in other words, cp = f + Ie: minimizing cp amounts to finding a solution x of (2.0.3). 
At such a solution, the set T (x) of (4.1.1) is 

JRm x {JL E (JR+)P : JLj = 0 if Cj(x) > o} 
(which does not help much to compute a multiplier). 

On the other hand, the function t/t is now defined by 

(A, JL) 1-+ t/t(A, JL) := { infXElRn L(x, A, JL) ~ff(A' JL) E JRm x (JR+)P 
-00 1 not. 

(4.5.1) 
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Theorem 4.5.1 Let the convex minimization problem (2.0.3) have a solution and a 
nonempty set of Lagrange multipliers. With 1{1 defined by (4.5.1), we have 

-1{1 E Conv(Rm x RP) , 

and the maxima of 1{1 are the Lagrange multipliers. 

PROOF. First of all, 1{1 is an infimum of affine functions; Theorem 4.2.5 tells us that, 
by assumption, its maximal value is f(i) > -00. It is therefore closed and convex 
(Proposition IY.2.1.2). Then combine Theorem 4.2.5 with Theorem 4.4.3. 0 

In the present context of a Lagrangian, the maximization of 1{1 is called the dual 
problem; to complete the terminology, (2.0.3) is then the primal problem; and the 
variables (A, 11-) are then called the dual variables. Here again, 1{1 can take the value 
-00: in (4.4.1), -1{1 is the indicator of {I}. 

Because of Theorem 2.3.2, the strong Slater assumption is thus equivalent to 1/1 having 
a nonempty compact set of maximizers. Remembering Remark IV.3.2.6, this in turn means 
O-coercivity of -1/1: 

1/1()..., J-L) -+ -00 for II()..., J-L)II -+ +00 with J-L E (l~+)P . 

In relation with Remark 4.4.4, assume that (2.0.3) has only inequality constraints: O-coercivity 
of -1/1 is equivalent to the existence ofxo such that -L(xo, .) is O-coercive on (JR+)P. 

Another remark concerns §3.3: consider the perturbed minimization problem (3.3.1)u.v. 
We have seen that its optimal value P (u, v) was convex; that SSA was necessary and sufficent 
for P to be finite in a neighborhood of (0,0); and also that M was then the subdifferential 
ap(O, 0). Theorem 4.5.1 can be used as an explanation of this last result: call1/lu.v the dual 
function associated with the perturbed problem (3.3.1)u,v. In a neighborhood of (u, v) = 
(0, 0), SSA still holds and Theorem 4.5.1 tells us that 

P(u, v) = max Vru.v()'" J-L) = max [Vro.o().., J-L) - u T).. - V T J-L] ; 
A,~ A,~ 

then a P(O, 0) is given by the calculus rule of §VI.4.4. 

Let us sum up the results of this Section 4: the convex minimization problem 
(2.0.3) can be viewed as a two-stage minimization problem of the type seen in §4.2. 
To find a multiplier, we must perform the steps (i'), (ii') of Remark 4.2.6. Then, with 
(X, jj,) E M, minimize L(·, X, jj,) (on the whole oflRn); what is needed is a minimum 
point which is feasible and satisfies the complementarity slackness. This last step is 
facilitated when the Lagrange function is strictly convex in x: we obtain a unique 
minimizer, which has to solve the original problem (2.0.3). 

We conclude with two examples: 

(a) Linear Programming Suppose that lRn is equipped with the standard dot-product, 
and that (2.0.3) is 

I infqTx 

aJ x + bj ~ 0 for j = 1, ... , P [Ax + b ~ 0 for short], 
(4.5.2) 
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where q and each aj are in JR.n, b = (bJ, ••• ,bp) E JR.p. The Lagrange function 

L(x, J-L) := (q T + J-L T A) x + J-L Tb 

is easy to minimize in x. Of course, 1{I(J-L) = -00 if q + AT J-L =1= 0; the dual problem 
is then 

sup {b T J-L : J-L E (JR+)P, AT J-L + q = o} , (4.5.3) 

another linear program. 
Assuming the feasible domain C nonempty in (4.5.2), WSA holds. Assuming 

in addition that the objective function is bounded from below on C, (4.5.2) has a 
solution (Example V,3 .4.5). Under these conditions, there are multipliers, which form 
the (therefore nonempty) solution-set of(4.5.3); and the two optimal values are equal. 

Now we proceed to show that, conversely, existence of a solution in (4.5.3) implies 
existence of a solution in (4.5.2). For this, we form the Lagrange function associated 
with (4.5.3): 

L(J-L, u, v) = -b T J-L + u T (AT J-L + q) - V T J-L = (Au - b - v) T J-L + u T q , 

which must be minimized for J-L E JRP and maximized for (u, v) E JRn x (JR.+)P. The 
resulting dual function 1{I(u, v) is -00 if (Au - b - v) =1= 0, and u T q otherwise: the 
dual problem associated with (4.5.3) is therefore 

sup {q T u : Au - b = v, V E (JR+)P}. 

Setting x = -u, we obtain exactly (4.5.2). 
In summary, a linear program is its own "bidual"; and it has an optimal solution if 

and only if its dual has an optimal solution as well; in this case, the optimal obj ective
values coincide in the primal and dual problems. 

Remark 4.5.2 Non-existence of a solution happens in two cases: 

- when the objective function is unbounded; then the general result 4.2.1 implies that 
the dual feasible set has to be empty; 

- when the feasible set is empty; then the dual problem cannot have an optimal solu
tion: either its objective function is unbounded, or its feasible set is empty (think of 
an example with A = 0). 0 

(b) Quadratic Programming. Equip JRn again with the dot-product (for simplicity) 
and modify (4.5.2) to 

inf Ox T Qx + q T X : Ax + b ~ o}. (4.5.4) 

Here the n x n matrix Q is symmetric positive definite - another simplifying as
sumption. This problem has a unique solution if the feasible domain is nonempty. The 
Lagrange function is 

L(x, J-L) =!x T Qx + (q T + J-L T A)x + J-L Tb; 
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by assumption, its minimum is attained at the unique 

XJ1- = _Q-l (q + AT JL) . 

Plugging this value into L, we obtain the dual problem: 

max [-4(q+AT JL)T Q-l(q+ATJL)+bTJL]. 
J1-E(a+)P 

(4.5.5) 

This is another concave quadratic maximization problem, with a very simple 
feasible set, but with a possibly degenerate matrix A Q-l AT. 

As in the case of linear programming, (4.5.4) satisfies WSA, and has therefore 
a nonempty set of multipliers: the dual problem (4.5.5) does have a solution. If, 
in addition, A is surjective, this solution is unique: A Q-l AT is positive definite 
(uniqueness can be also seen from the optimality conditions: AT JL = - Qi - q has 
a unique solution for given i). Finally, if the constraints in (4.5.4) were equalities, 
there would be no dual constraints, the dual problem would just be a system oflinear 
equations, an explicit solution would be available; this solution was actually given in 
Example 1.1.5. 



VIII. Descent Theory for Convex Minimization: 
The Case of Complete Information 

Prerequisites. Chapters II, VI; and to a lesser extent: Chap.V (dual norms), Chap. VII 
(minimality conditions and saddle points). 

Introduction. In this chapter we begin to study the problem of computing a point x min
imizing a convex function f - as opposed to characterizing it, which was the subject of 
Chap. VII. This computation will be done by an iterative algorithm, of the type exposed in 
Chap. II. The new feature, of course, is that f is not supposed to have a gradient 'Il f(x) 
varying continuously with x. 

We assume throughout 

[J : ]Rn=;-]R is conve,z.1 
This allows us to use the machinery of Chap. VI, expressing the first-order behaviour 
of a finite-valued convex function, via subdifferentials and directional derivatives. 

1 Descent Directions and Steepest-Descent Schemes 

1.1 Basic Definitions 

Just as in Chap. II, the methods to be studied here define the next iterate Xk+l from 
the present one Xk in two stages: they compute first a direction of move dk E ]Rn, then 
a stepsize tk > 0, and Xk+ I is set to Xk + tkdk. They are descent methods, in the sense 
that 

f(Xk+l) < f(Xk) 

at each iteration; the following is therefore natural: 

Definition 1.1.1 A descent direction of the convex function f at x is a d E ]Rn 

satisfying: 
3t > 0 such that f(x + td) < f(x) . 

First, we make sure that this definition is consistent with Definition 11.2.1.1 (below, 
OA is the support function of the set A). 
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Theorem 1.1.2 A descent direction is equivalently defined by anyone of the following 
properties 

f' (x, d) < 0; I 
aal(x)(d) < 0; 

{s, d} < 0 for all s E af(x) . 
(1.1.1) 

PROOF. Everything is easily seen from the various definitions (Vl.l.l.l and Vl.l.l.4) 
of the directional derivative, and from the compactness of of (x). 0 

Figure 1.1.1 provides an illustration, showing a sublevel-set of f and the set of descent 
directions (the interior of the dashed angle) at a non-optimal x. This set is convex because 
I'(x, .) isconvex,openbecause I'(x, .) is continuous; itisacone because I' (x, .) is positively 
homogeneous. It is the interior ofTSf(x)(x), the tangent cone of the sublevel-set of I at level 
f(x). Unless x is optimal, this cone is the polar of the cone generated by the subgradients. All 
this results from §Vl.l.3, see in particular Remark VI.1.3.6; the notation Sf (x) is introduced 
in (VI. 1.3 .1). 

to < f(x) 

Fig. 1.1.1. The cone of descent directions 

When the gradient V f (x) happens to exist, the subdifferential reduces to the singleton 
{V f(x)}, which generates a half-line, and the set of descent directions expands to the (open) 
half-space opposite to V f(x). This, in a sense, is the most favourable situation, in which the 
set of descent directions is as large as possible, just because its polar cone JR+V I(x) is as 
small as possible. 

d 

Fig.l.l.2. Descent directions and separating hyperplanes 

Geometrically, a descent direction corresponds to a hyperplane separating the two 
closed convex sets of (x) and to} strictly. Denote by 



1 Descent Directions and Steepest-Descent Schemes 345 

dl.. := Hd,o = {Z E IRn : (z, d) = O} 

the subspace orthogonal to a given 0 "# d E IRn. Then this d defines a descent direction 
when a/ex) lies entirely in the open half-space limited by dl.. and opposite to d. See 
Fig. 1.1.2 (and compare it with Fig. V.2.1.1); the dashed line, which passes between 0 
and a/ex), is such a separating hyperplane. More precisely: 

Theorem 1.1.3 A descent direction is a d such that, if ex E [I' (x, d), O[ (nonempty 
by virtue of (1.1.1»), the hyperplane 

{z E IRn : (z, d) = ex} 

separates a/ex) and to} strictly, i.e. 

(s,d) ~ex < 0 foralls E a/ex). (1.1.2) 

PROOF. This is a mere restatement of Theorem 1.1.2. The separation property becomes 
more obvious if (1.1.2) is rewritten as 

(s, d) ~ ex < (S', d) for all s E a/ex) and s' E to} c IRn. 0 

To compute the direction, it is attractive to consider a "best" one, having a direc
tional derivative "as negative as possible". This concept was already made precise in 
Definition 11.2.1.3, which reads here: 

Definition 1.1.4 Let III· III be a norm on IRn. A normalized steepest-descent direction 
of / at x, associated with m . ~I, is a solution of the problem 

min{f'(x,d) : ~Idl~ = I} (1.1.3) 

or equivalently, using the min-max notation (VII.4.2.7), 

min max (s, d) . 
Illdm=J sEof(x) 

(1.1.4) 

A non-normalized steepest-descent direction is ad "# 0 such that d/illdill is a 
normalized steepest-descent direction. 0 

It has already been explained in §II.2.1 that a normalization is necessary, but 
that the particular value "1" in (1.1.3) is of little importance (see more specifically 
Fig. II.2.I.I, Remark II.2.I.4). We confirm this fact in the present more general situ
ation where /' (x, .) is nonlinear: in the following result, N plays the role of]Rn, cp 
and v play the role of /' (x, .) and III . III respectively. 

Proposition 1.1.5 Let N C IRn be a cone, let cp and v be two positively homogeneous 
fimctionsfrom IRn to R For given K > 0, call D" the set (possibly empty) of solutions 
of 

min{cp(d) : dEN, v(d) = K}. (1.1.5)" 

Then D" = K DJ for all K > o. 
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PROOF. Take)... > 0 arbitrary, and suppose that d solves (1.1.5}}... Then dEN, 
v(d) =)... and 

({J(d') ~ ((J(d) for all d' E N with v(d') = )..., 
which can be written (multiply by K > 0 and use positive homogeneity): 

({J(Kd') ~ ((J(Kd) for all d' E N with v(Kd') = KA. 

Take d" E N arbitrary with v(d") = K)... and set d' := d" IK E N to deduce 

({J(d") ~ ((J(Kd) for all d" E N with v(d") = K).... 

In other words, we have proved 

KDJ... C DKJ... forallK > o and)... > 0 ( 1.1.6) 

(and this holds vacuously if DJ... = 0). Because 11K> 0, there also holds 

~ DJ... C DJ.../K for all K > 0 and )... > O. (1.1. 7) 

The result then follows by taking successively)... = 1 in (1.1.6), and)", = K in (1.1. 7). 
o 

Remark 1.1.6 Note thatthe result is independent of any convexity assumption. It still holds if 
the equality constraint is replaced by an inequality v(d) ~ K. In this case, append a nonnegative 
slack variable r and use the trick 

v(d) ~ K *=> v(d) + r = K with r ~ 0 . 

Then the feasible domain is changed to (d, r) EN x R+ =: N' (another cone), and we set 

q/(d, r) == lP(r), v'(d, r) := v(d) + r = K. o 

In other words, the set DI of solutions of (1.1.3) is just multiplied by K if K > 0 
replaces I in (1.1.3). If D I is considered as a set of directions, it can then be considered 
as invariant under this operation. 

Note also that, here again, (1.1.3) has at least one optimal solution because it 
consists of minimizing the continuous I' (x, .) on the compact unit sphere. With this 
in mind, we can specifY more accurately our algorithmic scheme: 

Algorithm 1.1.7 (Steepest-Descent Scheme) Start from some XI E ]Rn. Set k = 1. 

STEP 1 (stopping criterion). If 0 E 81(Xk) stop. 
STEP 2 (direction-finding). For some norm ~I .• take dk solving (1.1.3) or (1.1.4). 
STEP 3 (line-search). Find a stepsize tk > 0 and a new iterate xk+ I = Xk + tkdk such 

that I(Xk + tkdk) < I(Xk). 

STEP 4 (loop). Replace k by k + I and loop to Step I. 0 
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Clearly enough, a stop in Step 1 means that Xk is optimal. At Step 2, dk is a descent 
direction indeed, because 8 f (Xk) and {O} are separated, precisely by this dk =1= O. Note 
also that m . m might be either chosen at each iteration, or fixed a priori before starting 
the algorithm. We could take, say 

IdW 2 := (Qkd, d) . 

With Qk := V2 f(Xk) if f were C2, we would obtain Newton's method (remember 
§II.2.3). 

Before proceeding any further, the reader must be warned that the steepest-<iescent al
gorithm 1.1.7 is usually not convergent, in that the sequence {Xk} need not converge to a 
minimizer of f. This will be the subject of §2. Anyway, its behaviour suffers the same defi
ciencies as any other steepest-descent scheme (remember the end of §II.2.2). In spite of these 
serious problems, we will study the steepest-descent scheme thoroughly, mainly because it 
serves as a basis for virtually all the minimization methods, certainly for all those in the 
framework of this book. 

Another drawback of Algorithm 1.1.7 is that its implementation requires knowing the 
full subdifferential. This is even true for any descent scheme, which requires separating the 
subdifferential from the origin (see Theorems 1.1.2, 1.1.3). Such an operation is trivial when 
the gradient exists and is available (take the negative gradientl), but becomes a problem by 
itself if of (x) is not fully known. For example, observe in Fig. 1.1.1 that not every negative 
subgradient is a descent direction. This difficulty is actually the key issue; it will be developed 
in §3, and will motivate Chap. IX. 

1.2 Solving the Direction-Finding Problem 

In this subsection, we consider the question of solving the steepest-descent problem 
(1.1.3). With its nonlinear and nonconvex constraint, this problem looks rather im
practical, even tough it must be solved at each execution of Step 2 in Algorithm 1.1.7. 
Thus, we place ourselves at one given iteration, and we can drop the iteration index 
k, which is fixed. In fact we simply ask how to find a steepest-descent direction at a 
given x E IRn. In order to suggest that 8f(x) is just an arbitrary (nonempty) convex 
compact set, we will use the notation 

S:= 8f(x); 

the support function of S will be indifferently denoted by f'(x, .) or as. 
As an alternative to (1.1.3), consider the nicer, "convexified", problem 

min{f'(x,d) : Iidm ~ I} 

or equivalently 
min max (s, d). 

Wdl"l seS 
(1.2.1) 

The next result makes precise the difference between (1.2.1) and (1.1.3). 

Theorem 1.2.1 The (nonempty) solution-sets 0/(1.1.3) and (1.2.1) have the/ollowing 
properties: 
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- Either the minimal objective-value in (1.2.1) is 0, which means that 0 E S, or 
equivalently that x minimizes I. 

- Or 0 ¢ S; then the solution-sets of(1.1.3) and (1.2.1) coincide (and thus do not 
contain 0). 

PROOF. The first assertion is almost trivial. First note that the minimal objective-value 
in (1.2.1) is never strictly positive since it cannot be larger than I'(x, 0) = O. To say 
that this minimal value is 0 is to say that I' (x, d) ~ 0 for any d of norm less than 1, 
hence for any d E ]Rn because of positive homogeneity. This in tum is to say that there 
exists no descent direction, i.e. that x minimizes I, which means 0 E S = al(x). 

Suppose now 0 ¢ S,sothereexistsdwithl~d. ~ 1 and I'(x, d) < 0; by positive 
homogeneity, we may just assume mdll = 1. Thus, the minimal objective-value is 
negative in (1.2.1) - as well as in (1.1.3) - and d = 0 cannot be optimal in any of 
these problems. 

Then consider an arbitrary d with I' (x, d) < 0 and IUd W < 1. Set d' = d / IUd m. It 
holds IUd' III = 1 and 

I' (x, d') = I' (;' d) < I' (x, d) . 
m IH 

In other words, d' is feasible in (1.2.1 ), and strictly better than d, which therefore cannot 
be optimal. This means that (1.2.1) is not changed if its feasible set is restricted to 
Illdlll = 1, which is the feasible set in (1.1.3). 0 

As a result, suppose that we solve the convexified problem (1.2.1) instead of (1.1.3) or 
(1.1.4) in Step 3 of the steepest-descent Algorithm 1.1.7. There are two cases: 

- If the minimal value in (1.2.1) is 0, then Xk is optimal and the algorithm can be stopped 
(note that dk mayor may not be 0 in this case). The stopping criterion is thus obtained as a 
by-product, after (1.2.1) is solved; so Step 1 can be incorporated into Step 2. 

- Or (1.2.1) gives a negative minimal value, hence a normalized optimal d, which we are 
entitled to call dk because it is a steepest-descent direction. 

Although (1.2.1) is better posed than (1.1.3) (at least it is convex) it is still not 
so manageable in that it has a nonlinear constraint. Fortunately, the following results 
shows that (1.2.1) is actually nicer than it appears. We recall the definition ofthe norm 
HI • 11*, dual to IU . HI (see §Y.3.2): 

_sUI* := max {(d, s) : WdlH ~ I} . 

Theorem 1.2.2 Call S the solution-set of 

min Ulsm* : s E S} (1.2.2) 

and take an arbitrary s E S. The solutions of (1.2.1) are those solutions of 

min{(s,d) : HldlH ~ I} (1.2.3) 

that lie in the normal cone Ns(s) to Sat S. 
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PROOF. The pro<i is largely based on §VII.4, see in particular Theorem VII.4.2.S. 
Consider the set S x D of saddle-points of the bilinear function (s, d) f-+ (s, d), over 
the product of compact convex sets Sand B = {d : md~1 ::::; I}: 

S ESC Sand d E DeB if and only if 

(s, d) ::::; (s, d) ::::; (s, d) for all s E Sand dEB. 

We know that S is exactly the solution-set of 

maxSES miIldEB (s, d) {:=:::? maxSES{ - maxdEB (-s, d)} 

{:=:::? maxsEs{-111 - sm*} {:=:::? maxsEs{-lllslll*} 

which is just (1.2.2); so we conclude that S = S. 

(1.2.4) 

We know also that D is exactly the solution-set of (1.2.1); but from (1.2.4), d E D 
if and only if, given s E S, the following two properties hold: 

(s, d) ::::; (s, d) for all s E S 

(s, d) ::::; (s, d) for all dEB. 
[tf E Ns(s)] 

[tf solves (1.2.3)] o 

This result indicates how to solve the convexified steepest-descent problem 
(1.2.1); now, we show how to recognize a solution. 

Corollary 1.2.3 The follOWing statements are equivalent: 

(i) d solves (l.2.1) and s solves (l.2.2); 

(ii) IIIdlil ::::; 1, s E S and there holds 

(s,d) = -lllslll* = as (d) [= f'(x,d)]. 

PROOF. Theorem 1.2.2 tells us that (i) holds if and only if: 

(1.2.5) 

d solves (1.2.3), hence (-s, d) = III - slll* [by definition of the dual norm] 

and 
dE Ns(s) i.e. (s, d) ::::; (s, d) for all s E S. 

Altogether, this is just (ii). 0 

In the language of Proposition V3.1.4, we have the correspondence s E Fs(d), 
d E Ns(s), associating normal cones and exposed faces. 

The computation of an s E S in Theorem 1.2.2 is a familiar enough problem: 
project (in the III . III * -sense) the origin onto a compact convex set, and obtain a solution 
s. From Corollary 1.2.3, the solutions of(1.2.l) are then the solutions of the system 

IIIdlli ::::; 1, 
(s, d) = -lIIslll* , (1.2.6) 
(s, d) ::::; (s, d) for all s E S . 
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The following problem may be considered as more handy than (1.2.6): 

min.dl, 
(s, d) = -ms.* , (1.2.7) 
(s, d) :::;; (s, d) forall s E S [i.e. dE NS(s»), 

a convex minimization problem with one affine equality constraint and a possibly 
infinite number of linear inequality constraints. Once again, this latter problem is 
"almost" equivalent to the convexified steepest-descent problem (1.2.1): 

Proposition 1.2.4 Let $solve the projection problem (1.2.2). The solutions of(1.2.7) 
solve (1.2.1). Conversely, (1.2.1) and (1.2.7) have the same solution-set ifs -:f:. O. 

PROOF. Because (1.2.1) has a solution, (1.2.6) does have a solution. The optimal value 
in (1.2.7) is therefore not greater than 1, and any optimal solution of (1.2.7) solves 
(1.2.1): this is Corollary 1.2.3. 

Irs -:f:. 0, all the solutions of(1.2.1) have norm 1 (this is Theorem 1.2.1); hence all 
the solutions of the equivalent problems (1.2.3) and (1.2.6) have norm 1. We conclude 
that the minimal value in (1.2.7) is exactly 1 and (1.2.7) is really equivalent to (1.2.6) 
= (1.2.1). 0 

If 8 = 0, observe that (1.2.7) has the unique solution d = O. Yet, (1.2.1) or 
(1.2.6) may have nonzero solutions, unless Ns(O) = {OJ, i.e. 0 E intof(x). This 
confirms that (1.2.7) is not exactly equivalent to (1.2.1). Another observation comes 
from Proposition 1.1.5: the solutions of (1.2.7) depend multiplicatively on W8W* (the 
only non-homogeneity in the problem). When 8 -:f:. 0, the steepest-descent directions 
are, up to a normalization, the solutions of 

minmdM 
(8, d) = -1, (1.2.8) 
(s - 8, d) :::;; 0 for all s E S. 

Let us sum up this section: to perform Steps 1 and 2 in the steepest-descent 
Algorithm 1.1.7, one has to 

- solve (1.2.2), a projection problem, 
- check that it has a nonzero solution 8 (otherwise stop), 
- solve (1.2.6), (1.2.7), or (1.2.8), according to one's own taste. 

Remark 1.2.5 The constraint dEN s(s) in (1.2.7) may be really troublesome if S is compli
cated enough (but the very possibility of solving (1.2.2) can then be questioned). We mention 
a situation when it does not bring any trouble, however: suppose the problem 

minUdl : (s,d) = -I} 
has a unique solution d. Then, this d has to lie in NS(s) and solve (1.2.7) (otherwise (1.2.7), 
hence (1.2.1), would have no solution!). In this case, the last line of constraints in (1.2.7) or 
(1.2.8) can be neglected. 0 

It is convenient to call (1.2.2) the problem dual to that of finding a steepest-descent 
direction, since it is posed in the space of subgradients, the dual space - and as such, it 
involves the dual norm. As for (1.2.1), or (1.2.8), it is of course the primal problem. 
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1.3 Some Particular Cases 

The previous section was rather technical, let us see now the practical implications of 
its results. 

Example 1.3.1 For a first illustration, take in the two-dimensional space R.2 

8f(x) = co{(O, 3/2), (3, O)} 

and, with d = (dl , d2 ) E ]R2, 

WdW = ~/dml := /dd + /d2/. 

(1.3.1) 

Assuming that the usual dot-product (s, d) := s T d is used, we obtain for s = (Sl, S2) 

Ws/I* = I/s/Ioo := max {sJ, S2}. 

Direct calculations show that (1.2.2) has the unique solution s = (1,1) (see 
Fig. 1.3.1, to be compared with Figs. 11.2.1.1, 11.2.2.1, VII. 1. 1.2). Then (1.2.3) reads 

min {dl + d2 : /dd + /d2 / ~ I}, 
d 

whose solution-set is the segment co{-(1, 0), -(0, I)}. Among these solutions, we 
have in particular -(1/3, 2/3): the tl-unitary normal to 8f(x) at (1, 1). According 
to Theorem 1.2.2, it is the unique steepest-descent direction. 

'.. I ••• ! • .r A. 

--+~~s -(1,1) 
,/ .,., ... . .. / // I ... . 

/~,," .... 
I, - • •• 

'-
'1 

•• •• . , 

Fig.l.J.l. The steepest-descent problem with a non-Euclidean norm 

Instead of (1.2.3), a could be computed via (1.2.8), which takes the form 

mind [/dl / + /d2 /] 

dl +d2 = -1, 
-2dl +d2 ~ 0, 
dl - id2 ~O. 

It is another good exercise to see (graphically or algebraically) that the unique solution 
of this problem is again -(1/3, 2/3) - which is tl-unitary by chance,just because s 
is too-unitary. 0 
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Example 1.3.2 The above example can be transformed in a pernicious way by taking 
af(x) = {(1, 1)}. Because f is differentiable at x, the situation seems to become sim
pler; but this is somewhat misleading. In fact, (1.2.2) still has the unique solution (1,1); the 
segment co{-(l, 0), -(0, l)l is still the solution-set of (1.2.3). Now, however, this whole 
segment forms the set of steepest-descent directions because it is entirely contained in the 
normal cone to (1,1), namely the whole oflR2. We have a confirmation that uniqueness ofa 
steepest-descent direction has nothing to do with differentiability of f. 

Rather, this uniqueness is related with the selected norm. Take again a f (x) from (1.3.1) 
but now with the Euclidean norm: I· • = II . II. Then it becomes obvious that (1.2.2) has the 
unique solution s = (3/5,6/5) and that (1.2.7) has the unique solution J = -(1/3,2/3). 

It is interesting to observe that this last steepest-descent direction, obtained with the £2 
norm, is the same as the first one, obtained with the £1 norm. Yet, the dual solution s of(1.2.2) 
does depend on the norming. The real explanation of this paradox is that we are in JR2: for 
"most" S E af(x), the normal cone Na/(x)(s) is the same straight line (1, 2)JR. 0 

Example 1.3.3 Take now a case without uniqueness in the dual problem (1.2.2): 
af(x) being still (1.3.1), let the normingbe 

mslll* := Isd + 21s21 

which is the dual of 
I~dll := max {Idd, 41d21} . 

In this case, all the subgradients have the same dual norm. If, when solving (1.2.2), 
we obtain 8 E ri af(x) - for exampleS = (1, 1) -then (1.2.7) has the unique solution 
d = -(1/3,2/3) as before. 

Suppose, on the other hand, that it is 8 = (3, 0) that crops up from (1.2.2). Then 
N S (8) becomes a half-space and uniqueness in the primal problem is less obvious. In 
this case, (1.2.3) reads 

I miIld 3dl 

max {Idd, 41d21} ~ I, 

whose solution-set is the whole segment [(-I, -2), (-1,2)]. Its intersection with 
Ns(3, 0) is, as by chance, the singleton -(I, 2)! Likewise, (1.2.7) is 

rniIld max {Idd, ~ld21} 
3dl = -3, 
3dl - ~d2;;:: 0, 

which, another "chance", has the unique solution -(1/3, 2/3)! We leave it to the 
reader to draw the appropriate pictures and to work out the complete calculations. 

o 

These examples show that the concept of steepest-descent direction is more intu
itive when the norm used is the Euclidean norm II . II = (', .) 1/2: it yields uniqueness, 
and it suggests pictures agreeing with classical geometry. Closely related is the im
portant case of a general quadratic normalization: take 

IIdm2 := (Qd, d) (1.3.2) 
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where Q is a symmetric positive definite linear operator. Then (see Example Y.3.2.3), 
for s -=1= 0, the problem 

max { (s, d) : (Qd, d) ~ l} 

has the unique solution des) = 1_ ;r,I~\I" and the dual norm of HI • W is 

IiIsm* = J(s, Q-1s). 

In this framework, the results of § 1.2 can be copied. As a by-product, we obtain 
first the following classical projection theorem. 

Proposition 1.3.4 Let S be a nonempty compact convex set and Q a symmetric 
positive definite linear operator. There is only one s E S satisfying 

as{-Q-I S ) = -(s, Q-IS) (l.3.3) 

and it is the unique solution of 

min {(s, Q-I S ) : s E S}. (l.3.4) 

PROOF. The constrained minimization problem (1.3.4) has a unique solution s (the 
objective function is strictly convex). From Theorem VILI.I.l, s is characterized by: 
sESand 

(-Q-IS,S-S)~O forallsES. 

This is exactly (1.3.3). o 

Then characterizing the solutions of (1.2.1) becomes trivial. 

Proposition 1.3.5 Let S be a nonempty convex compact set and Q a symmetric 
positive definite linear operator. The solution-set D of 

min {os (d) : (Qd,d) ~ I} 

is characterized as follows. 

(i) lfO ¢ s, D reduces to the unique Q-normalized vector along _Q-I S, with s -=1= 0 
solving (1.3.4); say 

Q _IA 
A - s 
d= . 

J(s, Q-1s) 

(ii) lfO E S, D is the truncated normal cone to S at 0, i.e. the set of d with Q-norm 
not exceeding l,for which as(d) = 0; 

D = (d E Ns(O) : (Qd,d) ~ I}. 

In particular, if 0 E int S, then D = {OJ. 0 
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Remark 1.3.6 We indicate a practical mnemonic to find quickly if it is Q or Q-I that is 
involved in the above formulae: directions d are in the space ]Rn considered as primal, while 
subgradients s are in its dual; Q in (1.3.2) sends a primal vector into the dual space, Q-I 
sends a dual vector back into the primal space. In this interpretation, applying Q to s, say, 
would have no meaning. 

Ifwe assume that V f(x) and V2 f(x) exist and if we take Q = V2 f(x), then we obtain 
J collinear to _[V2 f(x)r l V f(x), the Newton direction. 0 

The purely Euclidean case II . II = (', .) I /2 is of course obtained with Q = In, the identity 
operator. Switching to the notation 8f(x) and f'(x, d), the above formulae reduce to 

s = argmin! lis 112 ; 
seaf(x) 

-s 
d = IIsll; f'(x,d) = (s,d) = -lIsli. 

In this case, s can be interpreted as playing the role of "the gradient". Suppose s :f. 0 and 
let d be an arbitrary direction of norm 1. Because d is the steepest-descent direction, there 
holds 

f'(x,d) ~ f'(x,d) = -lIsll 
with equality if d = d. This displays an interpretation of the ''norm of the gradient" IIsll: it is 
the fastest possible rate of decrease of f along normalized directions issued from x. 

Remark 1.3.7 Let us comment this point: suppose that f has a gradient at x and set 8 := 
V f(x). Then for any normalized direction d, there holds 

f'(x, d) = (8, d) ~ -11811 lid II = -lIsll. (1.3.5) 

Of course, 11811 is still the maximal decrease of f around x, but note that the bound in (1.3.5) 
is solely due to the Cauchy-Schwarz inequality. The "loss in optimality" of a direction is 
directly driven by its angle with the optimal J. 

Suppose, on the contrary, that 8f(x) is not a singleton and reconstruct the calculation 
(1.3.5) above (seeagainFig.l.l.2).Assumingthatthemaximum f'(x, d) of(·, d) over8f(x) 
is attained at some s(d), we obtain 

f'(x, d) = (s(d), d) ~ (8, d) ~ -11811 lid II = -lIsll. 

An additional inequality has come into play, to account for the fact that s (d) may be different 
from 8. It ''worsens'' d, seen as a descent direction; f' (x, d) may even become positive for d 
rather close to d (see Fig. 1.3.2) - one more nasty feature of non-differentiability. 0 

Remark 1.3.8 Case (ii) of Proposition 1.3.5 suggests the following observation. As already 
mentioned in Remark VI.2.2.5, an important object associated with an optimal point is the 
normal cone N s (0): it is the cone of critical directions, along which f looks constant. 

When solving (1.2.1) instead of (1.1.3), we may get 8 = 0: then we learn that the current 
x is optimal. The mere knowledge of 8 = 0, however, means a loss of information concerning 
a parametric study of the optimal x. The place of s = 0 in S may not be known; for example, 
the important property: "is 0 in int S?" may not be answered. We may not know the set Ns(O) 
of "dangerous" directions either. 

On the other hand, an optimal solution d of (1.1.3) is never zero. If its optimal value 
f' (x , d) is positive, we obtain the minimal rate of increase of f around x, i.e. the worst 8 in 
(VI.2.2A) of Remark VI.2.2A. If f'(x, d) = 0, this d is a critical direction. 0 
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Fig. 1.3.2. Discontinuity of an exposed face 

We have shown in this Section 1 that computing the direction in the steepest-descent 
Algorithm 1.1.7 amounts to solving two optimization problems: first the projection 
(1.2.2) and then (1.2.8). It is now necessary to ask the question: is this a constructive 
way of computing a steepest-descent direction? 

Both problems (1.2.2) and (1.2.8) involve the structure of the norming and of the 
subdifferential. However, (1.2.8) can be considered as the easier problem, because 
its complexity depends less on alex). For example, suppose we solve (1.2.3), which 
does not involve the subdifferential, and obtain a unique solution - as is the case with 
a quadratic norming. Then this solution is the required steepest-descent direction (re
member Remark 1.2.5). Finally note that, without a strong motivation for the contrary, 
the norm should simply be the Euclidean one: the analysis in §II.2.2(c) suggests that 
any other "offline" norm should perform more poorly. 

On the other hand, (1.2.2) is usually impossible to solve, unless there is some 
structure in / (which is not under our control!). We mention three instances inwhich 
such a manageable structure exists. For the sake of simplicity, we assume the norming 
to be 111.111 == II. II = (., .)1/2. 

Case 1. The subdifferential is a compact convex polyhedron characterized as a convex 
hull: Sl, S2, ... , Sm are given in lR.n and, L1m being the unit simplex, 

alex) := CO{SI, ... , Sm} = {s = Lj=1 ajSj : a E L1m}. 

Then (1.2.2) is the convex quadratic minimization problem with m variables aj 

min ~IILj=1 ajsjl12. 
aELim 

Case 2. The subdifferential is a convex polyhedron (assumed compact) characterized 
by its supporting hyperplanes: m nonzero vectors VI, V2, ... , Vm are given in IRn, 
together with m numbers rl, r2, ... , rm and 

a/(x):= {s : (s, Vj) ~rj for j = 1,2, ... ,m}. 

Then (1.2.2) is again a convex quadratic minimization problem, but this time with 
n variables and m inequality constraints 

min{4l1sI12: (s,vj}~rjforj=I,2, ... ,m}. 
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Case 3. The subdifferential is an ellipsoid: 

af(x) := {s = Rz + c : IIzll ~ I} 

where R : ~m --+ ~n is a given linear mapping. Then (1.2.2) reads 

min BIIRz + cll 2 : !lIzll2 ~ 1/2} . (1.4.1) 

It is a good exercise to study this problem. Taking a Lagrange multiplier 11, set Q = 
Q(I1) := R* R + I1In and write the minimality conditions 

Qz + R*c = 0, IIzll ~ 1, 11 ~ 0, 11 = 0 if liz II < I. 

Because R* R is symmetric positive semi-definite, Q(I1) is invertible for all 11 > 0, but Q(O) 
may be singular. 

Let Zo be the solution of the convex quadratic minimization problem 

min {!lIzll2 : Q(O)z + R*c = O} . 

-Ifllzoll ~ 1, then Zo solves (1.4.1) and our requested projection iss = Rzo + c. 
- If IIzoll > 1, no z with norm less than 1 can solve the minimality conditions: we must have 

11 > 0, so the nonlinear equation 

IIzll = II [Q(I1)]-1 R*cll = 1 

has a solution [L > O. Then we obtain s = -R[Q([L)]-I R*c + c. 
In this second situation, finding the exact il is of course not possible but approximating 

it is an easy task via, for example, a univariate Newton method. 

Let us conclude this section: 

- a steepest-descent algorithm is associated with a particular norm; 

- it is a non-convergent algorithm (see §2 below); 

- to implement it, one needs to characterize the full subdifferential (see §3 below); 
- the direction is computed essentially by projecting the origin onto this subdifferen-

tial, in the sense of the dual of the norm considered; 

- this can be conveniently done only when the subdifferential is a closed convex 
polyhedron, or also an ellipsoid. 

The next section, precisely, will study the case when the subdifferential is a com
putable polyhedron. 

2 Illustration. The Finite Minimax Problem 

In this section, we address the problem of minimizing a function having the special 
form 

f(x):=max{.fj(x): j=l, ... ,p} (2.0.1) 
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where each Jj : lRn -+ lR is convex and (continuously) differentiable, and p is some 
given positive number. To minimize such an f is what we call afinite minimax problem 
(whereas, in a general minimax problem, j could range over an infinite set). 

We assume throughout that all the functions Jj are available, together with their 
gradients. In the terminology of Chap. II (and more particularly Fig. 11.1.2.1), this 
means that the black box (U1) is much more elaborate than usual: instead of one 
number f(x) and one vector sex), it computes p numbers Jj(x) and p vectors V Jj(x). 

2.1 The Steepest-Descent Method for Finite Minimax Problems 

For each x E lRn , we denote by 

lex) := {j : Jj(x) = f(x)} (2.1.1) 

the active index-set at x. The functions Jj and gradients V fj for j E lex) will be 
called respectively the active functions and active gradients (at x). 

The fundamental Corollary VI.4.3.2 then gives: 

Theorem 2.1.1 Thefunction f of(2.0.1) is convex. For given x, its subdifferential 
is the convex hull of the active gradients at x: 

af(x) = co {V Jj(x) : j E l(x)}. o 

Thus, the subdifferential of such an f is a compact convex polyhedron, having at 
most p extreme points. An actual computation of this polyhedron exactly amounts to 
performing the following operations, which can be done by a computer program: 

- find all the active indices j at the given x; 

- do some ordinary differential calculus to compute the corresponding gradients; 

- the subdifferential is then the set of all convex combinations of these gradients: 

af(x) = {LjEJ(X)ajvJj(x) : LjEJ(X)aj=1 aj~OforjEl(x)}. (2.1.2) 

It is now purely mechanical to obtain the minimality conditions from Theo
rem 2.1.1: 

Proposition 2.1.2 A necessary and sufficient condition for x to minimize f defined 
by (2.0.1) is that there exist coefficients aj, j E lex), satisfYing: 

aj ~ 0 for j E lex), L aj = I, 
jEJ(X) 

L ajV fj(X) = O. 
jEJ(X) 

PROOF. Trivial from (2.1.2): x minimizes f if and only if 0 E af(x). o 
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Remark 2.1.3 As already observed in §VI.2.1, a/(x) is a singleton whenever J(x) is a 
singleton, say j(x); then a/(x) = {V I(x)} = {V /; Cx) (x)}. This may serve as an intuitive 
explanation of Theorem IV.4.2.3, stating that a convex function is differentiable almost ev
erywhere: equality between two real numbers (here: Ii (x) and /;(x) for some i =f:. j) is an 
"extraordinary" event. 

It would be dangerous, however, to minimize I of (2.0.1) by means of mere "smooth 
tools", under the pretext that "it should work almost surely". Remark VI.2.2.2 has mentioned 
that, as a rule, a convex function is not differentiable at a minimum point. Such is the case, for 
example, if each Ij = (Sj' .) + rj of (2.0.1) is affine but not constant: then a differentiability 
point cannot be a minimum, since the gradient of I has to be some Sj #- O. In words, a 
"smooth tool" is almost never appropriate in nonsmooth optimization. 

Another consequence of the above remark concerns the algorithmic scheme of § 1. It has 
been already mentioned that steepest descent may not converge to an optimal point. Here is 
a first explanation: assuming the Euclidean norming, the sequence {Xk} is generated by 

xk+1 = Xk - tksk ; 

Sk is some subgradient of I at Xk (having the shortest norm) and tk is given by some line
search, say inspired from §II.3. Now, Theorem IV.4.2.3 tells us that Sk is "likely" to be simply 
the gradient V I(Xk). Thus, in practice, we have gained nothing when defining the steepest
descent Algorithm 1.1.7: it trivially reduces to the gradient method of Definition 11.2.2.2 and 
becomes highly suspect! 0 

The next direct consequence of Theorem 2.1.1 is that a descent direction is rela
tively easy to construct: 

Proposition 2.1.4 A descent direction is a d satisfYing the finite set of inequalities 

(d, V /j(x)} < 0 for all j E J(x). (2.1.3) 

Actually, there holds 

f'(x,d) =max{(V/j(x),d} : j E J(x)}. (2.1.4) 

PROOF. This result is fairly trivial from §VI.l: the linear function (d,·) attains its 
maximum f' (x, d) over some extreme point of the convex polyhedron (2.1.2). Nev
ertheless, we sketch an elementary proof of (2.1.4) to explain this important result 
once again: the following proof can be read without knowing anything from Chap. VI. 

In what follows, t > 0 is small enough. By continuity of each fj, those indices 
not in J (x) do not count at x + td, i.e. 

f(x+td) > /j(x+td) forallj ¢ J(x). 

This means that J(x + td) c J(x), so we can replace (2.0.1) by 

f(x + td) = max {/j(x + td) : j E J(x)}, (2.1.5) 

valid around x. Now a first-order development of /j yields 
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f(x + td) = max (fj(x) + t(V fj(x), d) + tSj(t) : j E lex)} 
= f(x)+tmax{(Vfj(x),d}+Sj(t): j E lex)} 

where Sj(t) ~ 0 for t + O. Letting t + 0 proves (2.1.4). As for the descent property 
(2.1.3), it is a consequence of(2.1.4). 0 

Of course, the above "proof" hardly generalizes to the case of an infinite set of indices. 
Then, there are two difficult points: (2.1.5) must be replaced by an asymptotic property, 
namely all the indices in J(x + td) cluster to J (x) when t .\.- 0; and the convergence of each 
B j ( .) towards 0 must be uniform in j. 

We are now in a position to specify the algorithmic scheme of § 1 in some detail. 

Algorithm 2.1.5 (Steepest-Descent, Finite Minimax Problems) The initial point 
Xl E ]Rn and the tolerance 8 > 0 are given, together with the black box (Ul) which, 
given x, computes f(x), lex) and the gradients V fj(x), j E lex). Set k = 1. 

STEP 1 (projection and stopping criterion). For some norm III . ~I solve the projection 
problem 

min m LjEJ(Xk)(XjV fj(Xk) 111* 

LjEJ(Xk) (Xj = I, 
(Xj ~ 0 for j E l(Xk), 

and call Sk := LjEJ(Xk) (XjV fj(Xk) the result. If IKskKI* :( I) stop. 
STEP 2 (direction finding). Solve 

min lid III 
(Sk,d) = -1, 
(V fj(Xk), d}:( - 1 for j E l(Xk) 

with respect to d, and obtain a solution dk =f: O. 

(2.1.6) 

(2.1.7) 

STEP 3 (line-search). Find a stepsize tk > 0 and a new iterate Xk+l = Xk + tkdk such 
that f(Xk + tkdk) < f(Xk)· 

STEP 4 (loop). Replace k by k + 1 and loop to Step 1. 0 

Of course, Step 2 is a disguised form ofthe convexified steepest-descent problem 
(1.2.8): the inequality-constraints of the d-problem are really 

(V fj(Xk) - Sk, d) :( 0 for j E l(Xk), 

i.e. dE Na!(Xk) (Sk)· 

Let us recall again that the above algorithm is not convergent; we skip therefore the 
problem of finding tk in Step 3. It is a detail to be reserved for subsequent chapters, when we 
study more reasonable (but closely related) algorithms for nonsmooth optimization. For the 
moment, it suffices to say that a line-search can be implemented according to the principles 
of §II.3. 
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Remark 2.1.6 Our primary problem was to minimize the function x ~ lex) of (2.0.1) 
over the primal space lRn. After linearization around some given x = Xk, it became that of 
minimizing the function d ~ /' (x, d), and this was the (primal) minimax problem coming 
from (1.2.1): 

min max ('" ) Idl,,; I aeLi L.jeJ(x) a/'V /j(x), d . (2.1.8) 

Here .£1 denotes the set of convex multipliers indexed in J (x). 
Dually, we have the associated maximin problem coming from (1.2.2): 

max min (LjeJ(x)aj''V/j(x),d), 
aeLi Idl,,; I 

which is just (2.1.6) (barring the sign). Needless to say, our primal-dual terminology comes 
from the theory of saddle-points in §VIIA: d and a are primal and dual variables respectively, 
(Lj eJ (x) aj Sj , d) being a Lagrangian. For j E J (x), a j is the Lagrange multiplier associated 

with the i h linear constraint in the primal problem (2.1.8) = (1.2.1): 

min r (d, r) e lRn x lR, 
(V /j(x), d) ~ r for j e J(x) , 

Idl ~ 1. 

Indeed, the r-part of the minimality conditions readily gives a e .£1. 

(2.1.9) 

For a general convex function /, alex) is no longer a compact convex polyhedron; the 
linear constraints of (2.1.9) become 

(s,d) ~r foralls e a/(x) , 

with an infinite "index set" alex). It is now harder to speak of Lagrange multipliers. Nev
ertheless, the message coming from Theorems VIIA.3.1 and VII.4.5.1 is that a Lagrangian 
and a dual problem can still be defined. The trick is that the would-be a e .£1 gives birth 
to S = Lj ajsj, describing all convex combinations of points Sj E alex). It is now S that 
becomes the set of multipliers. 

A last remark, in anticipation to subsequent chapters: after all, the saddle-point theory of 
§VIIA is not restricted to functions i which are affine with respect to one argument. As far as 
saddle-points are concerned, affinity of the Lagrangian L (x, .) is not compulsory. The present 
dualization business could therefore be done before linearization: it could be applied directly 
to the problem min/ex), instead of the problem of minimizing the function d ~ f'ex, d). 
For this, it should suffice to express / as a max-function, say 

min/ex) {::::::> minmaxh(x,y); 
x y 

the dualization would then consist in interchanging the min and max operations. 0 

When I~ . m is chosen as the Euclidean norm II . II = {', .}1/2, the calculations 
can be worked out more completely. At a given x (assumed non-optimal), we know 
from Corollary 1.3.4 the steepest-descent direction J.: it is unique and opposite to the 
Euclidean projection s of the origin onto a f (x). Consider the problem (L1 being the 
unit simplex introduced in Remark 2.1.6) 

~4I1LjEJ(X)ajV.f;(X)r . (2.1.10) 
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It may have several solutions, but they all make up the same vector: 

L ajV f}(x) = s for any solution a of(2.1.10), 
jEJ(X) 

which is of course the Euclidean projection of 0 onto the convex hull of the active 
gradients at x. Note the following characterization of s: 

Proposition 2.1.7 The above projection s is the unique convex combination s E 

co{V f} (x) : j E 1 (x)} satisfying 

(s, V fj(x») ~ IIsll2 Jorall j E l(x). (2.1.11) 

Equality holds in (2.1.11) Jor all j such that there is some a solving (2.1.1 0) and 
having aj > O. 

PROOF. Just apply Proposition 1.3.4 with Q = I to the convex hull S of the active 
gradients. Observe that the inequality 

(s', d) ~ r for all s' E S 

is equivalent to 

(V f}(x), d) ~ r for all j E l(x). 

This establishes (2.1.11). Now take a solving (2.1.10); if we had some jo with ajo > 0 
and strict inequality holding in (2.1.11), then we would have for this jo 

(s,ajoVfjo(x») >ajollsIl2. 

Multiplying the other inequalities by aj and summing, we would obtain the contra
diction 

(s,s) > IIs1l2. o 

Call 11 (x) the set of indices alluded to in Proposition 2.1.7: 

ll(x):= {j E lex) : 3a solving (2.1.10) withaj > OJ. 

All the gradients V f}(x) with jEll (x) lie in the face of af(x) exposed by s. The 
property that (V ij(x), s) is independent of jEll (x) can be written 

ij(x) + (V ij(x), s) is constant for any jEll (x) . 

Its geometric meaning (see Fig. 2.1.1) is that s is tangent to the surface defined by 

{h E ]Rn : ij (x + h) = fj (x + h) for any i and j in 11 (x)} . 
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'1 "'2 

Fig.2.1.1. Steepest descent is tangent to the kinky surface 

Remark 2.1.8 If JI (x) were known a priori, s could be computed as the projection of the 
origin onto the affine hull ofthe corresponding gradients. Instead of (2.1.1 0), one could solve 
a problem with variables indexed in J) (x) only: 

min U II LjeJ\ (x) ajv,f;(x)f : LjeJ\(x) aj = I}. (2.1.12) 

and set to 0 all the otheraj for j E J\J). Thens would be equal to LJ\(x)ajV ,f;(x). The 
reason appears in Fig. 2.1.2, in which JI (x) = {I. 2. 3}: if JI (x) has really been correctly 
chosen. (2.1.12) gives a point in the convex hull 

co {V ,f;(x) : j E J) (x)) c co (V,f;(x) : j E J(x)). 

Note that (2.1.12) does not involve any inequality constraint. It can therefore be solved 
as a linear system of equations in a, say 

L aj(V f;(x), V fj(x») = A for all i E J) (x) 
jelt(x) 

(2.1.13) 

where A (the Lagrange multiplier, which is a posteriori I/sl/2 ) is adjusted so that the aj's sum 
up to 1. Then (2.1.11) is automatically satisfied for j E JI(X). If-some other constraint in 
(2.1.11) appears to be violated, J\ (x) was wrong; so would be the case in Fig. 2.1.2 if we had 
taken J\ (x) = {I. 4}. Likewise, if no solution of (2.1.13) is nonnegative (we do not assume 
here that (2.1.13) has a unique solution), this indicates that J\(x) was wrong as well; take 
JI (x) = {I. 2} in Fig. 2.1.2. 0 

o 

1 

2 

Fig.2.1.2. Guessing the correct exposed face 
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2.2 Non-Convergence of the Steepest-Descent Method 

We now study a counter-example to support the claim, made on several occasions, 
that the steepest-descent scheme may not be convergent. Our counter-example shows 
that such is the case even if the function is as simple as piecewise affine. 

Consider the following five functions of x = (;,17) E JR2: 

lo(x) := -100; I±I (x) := ±2; + 31]; 1±2(X):= ±5; + 21] (2.2.1) 

and set, as in (2.0.1) 

I(x) := max {fo(x), I-I (x), 1-2(X), II (x), hex)} . 

Let us concentrate on the region 1] ~ 0, in which I is nonnegative and 10 does 
not count. There, V'I fails to exist on the three half-lines 

L± := {x : 0:::;; 1] = ±3;}, where I±I = 1±2 

and 
La := {x : ; = O}, where I-I = II. 

This is illustrated by Fig. 2.2.1, which shows a level-set of I, the three critical 
lines La and L±, and the four possible values for V'/. In the region 1] :::;; 0, I±I do 
not count and La becomes the only critical line; L_ and L+ coalesce at O. Finally, the 
minimal value of I is clearly -100, attained for sufficiently negative values of 1]. 

1] 

L. \ 
\ f = f 1 y' 

~\/~5~1 
/ \ I \ f =f2 
, \ . \ 

\ .I \ ' , 
(0,0) ~ 

Fig.2.2.1. A counter-example for steepest descent 

Let the current point x of Algorithm 2.1.5 be in the first quadrant and such that 
II is active: suppose for example that x E L+. Then the steepest-descent direction is 
-(2,3); and it is important to observe that it is still -(2, 3) even if x fj. L+. This is 
due to the property 

16 = (V' II (x), V' hex») > IIV' II (x) 112 = 13, 

implying that the projection of the origin onto the line-segment [V'/I (x), V' h (x)] is 
just V'/I (x). Figure 2.2.2 shows this directiond. Observe that the straight line x + JRd 
passes above the origin; the reason is that 3/2, the slope of V'/I (x), is smaller than 3, 
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11 
L_ 

" T \ • ~ 

Fig.2.2.2. Non-convergence of steepest descent 

the slope of L+. The one-dimensional function t 1--+ f(x + td) is piecewise affine 
with two kinks A and B. 

Now take a "reasonable" stepsize along this direction; for example the optimal 
stepsize. Figure 2.2.3 shows that f is decreasing along the segment AB, and that the 
optimal stepsize leads x to B, i.e. on L _; this can be confirmed by simple calculations. 
By symmetry, the same algorithm starting from this new x E L _ will end up with 
a next iterate on L+. Clearly enough, the resulting sequence will oscillate forever 
between L+ and L_, and converge to the nonoptimal point (0,0). The algorithm is 
subject to zigzags. 

f(x+Id) - f(x) N 8 

(0.0) i J: 

Fig.2.2.3. Objective-values along steepest descent 

Remark 2.2.1 The whole idea of our construction is that, for each iterate, the direction of 
search passes above the origin; the next iterate, given by the line-search, will then have 11 > O. 
For the direction issued from x = (~, 11) to pass above the origin, it suffices to have 11 not too 
small, namely 

511 > 21~ I > 0 . (2.2.2) 

Up to now, we have required that f±l be active at each iterate, i.e. 

11 ~ 31~1 (> 0) (2.2.3) 

which implies (2.2.2). If(2.2.3) did not hold, the direction would become (5, -2) or (-5, -2). 
Redrawing Fig. 2.2.2 accordingly, we see that the optimal stepsize would lead the next iterate 
to A. The next direction would be vertical, pointing directly down to the optimal set; the 
counter-example would disappear. 

It is important to check that the counter-example is not affected by perturbations: other
wise, one could object that it is too much adhoc. 
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- Suppose first that Step 3 in Algorithm 2.1.5 produces an optimal step size at each iteration. 
Then the first iterate XI does not have to lie exactly on L± but simply above L±: it suffices to 
have (2.2.3) at the first iteration. Then we have seen that X2, X3, ••• are all on L±, implying 
a fortiori (2.2.2) at all iterations k ~ 2. The situation has not really changed with respect to 
Fig. 2.2.2. 

- Still assuming that (2.2.2) holds at the first iteration, consider now a line-search designed 
according to the principles of §1I.3: for example Wolfe's line-search 11.3.3.1. Look again at 
Fig. 2.2.3, and visualize on it the two tests (11.3.2.3) and (11.3.2.4); at least if m' is small, the 
line-search produces a point slightly beyond B. Then the reader can convince himself that 
the counter-example still works, providing that tk deviates from optimality by an amount 
small enough, but strictly positive when the direction happens to be V f±2(xk). In other 
words, the next iterate must never be on A, and must not be too far beyond B. 

- Finally, observe that non-convergence still occurs under perturbations of the direction, 
which does not have to be steepest. For example, as long as (2.2.2) holds, we can take any 
subgradient in af(~, 1/): its opposite is downhill and does not suppress the zigzag problem. 

o 

Our counter-example is worth meditating, because it suggests the profound causes 
for non-convergence of the steepest-descent method. 

(i) In our present case of the Euclidean norming, the steepest-descent direction at 
x is a well-defined function of x; call it d(x). Clearly enough, x 1-+ d(x) is not 
continuous. In our example, when x varies, d (x) jumps between the five values 
(neglecting the normalization) 

(±5, -2), (±2, -3), (0, -3). (2.2.4) 

When proving convergence of a steepest-descent method, such as in §II.2.2, 
it is usually crucial to establish a continuity property: if Xk -+ x*, we need dk 

to converge to d*, the steepest-descent direction at x*. This cannot hold here: 
observe for example that, in our construction, Xk -+ 0; but dk certainly does 
not tend to (0, -3), which is d(O). This gives a mathematical explanation of the 
zigzags. 

(ii) Another explanation is "infinite short-sightedness", which is just the same word 
as discontinuity, but more intuitive. Among the five possibilities of (2.2.4), only 
the direction (0, -3) is able to drive an iterate to the optimal set (unless one 
starts from an x = (~, TJ) with fairly large IW. This (0, -3) prevails only if 
~ = 0: in order to get it, one must "see" a pair of opposite functions in J (x), 
say 11 and 1-1 (or hand 1-2)' Unfortunately, no matter how close ~ is to zero, 
this simultaneous view is impossible: 11 and 1-1, say, cannot be both active at 
(~, TJ) unless ~ = O. 

Take for example an iterate Xk = (~k' TJk) with ~k > 0, and J(Xk) = {l, 2}, 
say. We know that 1-1 will be active at the next iterate (which can be fairly close 
to Xk). Nevertheless, the algorithm does not have our higher view of the situation 
and does not guess that 1-1 should somehow be taken into account already when 
computing the direction at Xk. The trouble is that the steepest-descent mechanism 
does not anticipate at Xk what is going to happen at Xk+ I' 
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(iii) We have mentioned in §I1.2 that in classical optimization of smooth functions, 
steepest-descent schemes, and any kind of first-order methods, are bad because 
of their slow convergence. When the objective function becomes more and more 
ill-conditioned - i.e. when V I(x) varies more and more rapidly with x - this 
slowness becomes worse and worse. At the limit, when V I (x) varies "infinitely 
rapidly" - i.e. when it becomes frankly discontinuous, as in the present context 
- the method becomes frankly non-convergent. This point will be illustrated in 
§3.3. 

(iv) Chances to obtain convergence for the function of (2.2.1) could be recovered, 
provided that the step size were adequately chosen (while keeping the steepest
descent direction). In Fig. 2.2.4, such an adequate tk is the "shortest significant" 
one, i.e. the smallest t > 0 for which l(x + td) ct lex). Starting from Xl with 
l(XI) = {2}, we go to X2 = A where the active set is {I, 2}; one more similar 
iteration and the active set becomes {-I, + I} yielding a vertical steepest-descent 
direction and ending the game. This trick is a key to the development of pivoting 
algorithms for the minimization of piecewise affine functions, see §3.4 below. 

TJ 

. \ . ~ 
Fig. 2.2.4. With shorter steps, steepest descent should converge 

2.3 Connection with Nonlinear Programming 

Let us come back to our original minimax problem (2.0.1), written as 

I min r (x, r) E lRn x lR, 
Jj (x) ~ r for j = 1, ... , p . (2.3.1) 

Both problems are "equivalent", in the sense that x solves (2.0.1) if and only if the 
pair (x, I(x) =: r) solves (2.3.1). Now, (2.3.1) is an ordinary convex constrained 
minimization problem with smooth data, which we can write in the more general 
form 

min{F(z): Cj(z)~Oforj=l, ... ,p}. (2.3.2) 
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Here z, standing for (x, r), is a variable in some space Z, standing for ]Rn+ 1; the 
function F stands for r = zn+l and 

Cj(z) = Jj(x) - r = Jj(ZI, ... , zn) - zn+l for j = 1, ... , p. (2.3.3) 

Under these conditions, a natural question is: what if we apply to (2.0.1) the 
methods of ordinary nonlinear programming via (2.3.1) - (2.3.3)? This question has 
several aspects. 

(a) Minimality Conditions Take an arbitrary Xo E ]Rn; then the associated point 
Zo := (xo, I(xo) + 1) E epi I clearly indicates that (2.3.1) - (2.3.2) satisfies the 
strong Slater assumption (VII.2.3.l). Forming the Lagrange function 

p 

L(x, r, Il) := r + L Ilj(fj(x) - r], 
j=l 

we can then apply the minimality conditions of §VIII.2 ... and they turn out to be 
nothing but 0 E al(x), the minimality condition of Proposition 2.1.2. In fact, these 
conditions are: z = (i, r) solves (2.3.1) if and only ifthere are multipliers f-L j satisfying 

f-Lj ~ 0 for j = 1, ... , p 

Jj(i)~r forj=I, ... ,p 

(0 E ]Rn, 1) + L)=l Iljevl/i), 1) = (0 E ]Rn,O) 

f-Lj[Jj(i)-r]=O forj=I, ... ,p. 

(2.3.4) 

(2.3.5) 

(2.3.6) 

(2.3.7) 

Furthermore, common sense tells us that r is actually I(i): a larger value could 
certainly not be minimal in (2.3.1). Then (2.3.7) implies that the event f-Lj > 0 can 
occur only for j E J (i). From (2.3.4) and the r-part of (2.3 .6), we deduce that the 
Il j 's actually form a set of convex multipliers. Finally, the x-part of (2.3 .6) means that 
the corresponding combination of gradients is O. Altogether, we just obtain Proposi
tion 2.1.2. 

(b) Projected Gradients in Nonlinear Programming For our constrained mini
mization problem with smooth data (2.3.2), call 

C := {z E Z : Cj(z) ~ 0 for j = 1, ... , p} 

the feasible set and let ((., .)) be a scalar product in Z. A central numerical tool is then 
the linearization of (2.3.2) around a given z E C: 

min ((V F(z), ~)) 
~ E Tc(z), 
v(O = 1, 

(2.3.8) 

where T c(z) is the tangent cone to C at z, and v is a norm on Z. The motivation 
comes directly from §II.2.2 and Definition 2.1.2: the solutions of (2.3.8) are the 
tangent (normalized) directions that are most downhill with respect to the objective 
function F. 
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In practice, the only interesting case here is as follows: a Slater assumption holds 
for C, z is not optimal in (2.3.2), and v is a "quadratic norm" associated with some 
symmetric positive definite operator Q : Z ~ Z. In terms of the set 1 (z) of active 
constraints at z, (2.3.8) is written (we use positive homogeneity, K is a positive number 
as in §1) 

min «'\1 F(z), ~}} 
«'\1Cj(z), S)} ::;:; 0 for j E 1(z), 
4«Qs, s}} ::;:; K. 

(2.3.9) 

Proposition 2.3.1 With the notations and assumptions introduced above, call s the 
projection of -'\1 F(z) onto Nc(z) for the quadratic norm associated with Q-I; in 
other words, s is the unique solution of 

minH'\1F(z) +s, Q-I['\1F(z) +sl) : s E Nc(z)} . (2.3.10) 

The unique solution f of(2.3.9) is then collinear to _Q-I['\1 F(z) +s]. IfQ = I, this 
is the projection of - '\1 F (z) onto T c(z). 

PROOF. The proof goes as in Case 3 of § 1.4. Using ~o = 0 shows that the weak Slater 
assumption holds in (2.3.9) and we take the Lagrange function 

L(~, J-L) = «'\1 F(z) + LjEJ(Z) J-Lj '\1Cj (z), ~)) + 4J-Lo«Q~, S)). 

Here J-Lo is going to be positive and the J-L j 's are nonnegative for j E 1 (z). We set 

s(J-L):= L J-Lj'\1c/z) , 
jEJ(z) 

which describes Nc(z) when the J-Lj's describe R+. 
The Lagrangian L must be minimal with respect to ~ (Proposition VII.3.1.4), 

which gives 
f = - ~o Q-I['\1 F(z) + s(J-L)]; 

the precise value of J-Lo is absorbed by K. As for the dual problem, which gives the 
multipliers - i.e. s -, straightforward calculations show that it is just (2.3.10). 

When Q is the identity operator of Z, i.e. when the projection is done for the 
Euclidean norm «., .))1/2, we apply §1II.3.2 to obtain the stated property: 

-'\1 F(z) = s + J-Lof and «s, f)) = o. o 

The above result explains the terminology of projected gradient for the optimal 
solution of (2.3.9). It also gives another motivation for (2.3.8): the direction is taken 
tangent to C, but as close as possible to the desired direction -'\1 F(z). Observe that 
the projected gradient is 0 if and only if z solves (2.3.2): this is (ii') and (iii) in 
Theorem VII. I. 1. 1. 

Remark 2.3.2 When the solution ~ of (2.3.9) is nonzero, it can be used for a line-search 
yielding the next iterate under the form z + t ~. However, the resulting method is delicate for 
two reasons: 
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- Ifthere is an active constraint at L i.e. if «V'Cj(z). ~)) = 0 for some j E J (z). the direction 
of search may not be feasible in case the corresponding constraint-function Cj is non-affine: 

z + t~ f/. C whenever t > O. 
Then there will be some difficulty to find a next iterate in C. This explains that the use of 

the projected gradient for minimization algorithms is generally limited to affine constraints 
only. 

- If all the constraints Cj are affine. the line-search can be devised according to the principles 

of §II.3; the only modification being to force the step size t to satisfy z + t~ E C. The 
resulting method is however non-convergent. It suffers the short-sightedness evoked in (ii), 
at the end of §2.2: the next active set J (z + t ~) is ignored by the direction computed at the 
present iterate z. 0 

(c) Projected Gradients and Steepest-Descent Directions Now let us transcribe the 
projected-gradient problem (2.3 .8) in our present minimax context of (2.3.1). Towards 
this end, we need to specify the scalar product and the norming in Z. Because Z is 
the product space JRn x JR, it is natural to take 

((Z, t;)) = (((x, r), (d, p»)) := (x, d) + Aorp, (2.3.11) 

where (' •. ) is our scalar product in JRn, and AO > 0 is arbitrary. Observing that the 
objective function in (2.3.2) has the gradient V F(z) = (0, 1) E JRn+1, the linearized 
objective function in (2.3.8) is then AOP, or more simply p: AO is irrelevant. Likewise, 
we take as norming 

v(d, p) := mdlll + Alpl, (2.3.12) 

where III . III is a norm on JRn and A > 0 is arbitrary. In summary, the "steepest-descent 
tangent directions" associated with (2.3.1) are the solutions of 

min p 
(V Jj(x), d} ~ p for j E lex), 
IIId~1 +Alpl = 1; 

or, in a more formal writing (allowing more general than max-functions) 

min p 
f'(x, d) ~ p, 

IIIdlll + Alp I = 1 . 

This last problem is right in the framework of § 1. 

(2.3.13) 

Proposition 2.3.3 No matter how A > 0 is chosen in the norming (2.3.12). the 
solution-set 0/(1.1.3) and the d-part o/the solution-set 0/(2.3.13) are collinear. 

PROOF. Call p).. the optimal objective-value in (2.3.13) and set 

K := 1 - Alp).. I ~ O. 

We claim K > 0: indeed, p).. = 1/).. would imply d = 0 for any feasible (d, P)...), and a 
better objective-value could be obtained with a small enough perturbation of d = O. 
A posteriori, we can replace (2.3.13) by 
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minp 
f'(x, d) ~ p, 

IldW = K, 

(2.3.14) 

whose solution-set clearly coincides with the d-part of the solution-set of (2.3.13). 
Then apply Proposition 1.1.5: if (2.3.14) has a wrong K, its solution-set is just multi
plied by a positive factor. 0 

Let us conclude: the steepest-descent directions for (2.0.1) are the "steepest
descent tangent directions" for (2.3.1); and this holds for any scalar product and 
norming in]Rn , and any corresponding scalar product and norming satisfying (2.3 .11), 
(2.3.12). As a result, the steepest-descent Algorithm 2.1.5 is just a special form of 
projected-gradient algorithm, applicable when (2.3.2) has the special form (2.3.1). 

To interpret the line-search, take an optimal solution (d, p) = f of (2.3.13) at 
the point (x, r) = z. In a "pure" projected-gradient method, one would take the next 
iterate along the half-line 

x(t) = x + td, r(t) = r + tp, t ~ O. 

Rather, Algorithm 2.1.5 takes the next iterate along the "vertical" curve 

x(t) = x + td, r(t) = f(x(t)) . 

Remark 2.3.4 Some mechanism has to be invented to force convergence of steepest-descent 
schemes - or equivalently projected gradients. This will the object of subsequent chapters 
(starting from Chap. XIII). The basis for such mechanisms is, one way or another, a redefinition 
ofthe tangent cone, for example via a modification of the index-set J(x) from (2.1.1). 

As already mentioned, J (x) is for most x a singleton. For a reader familiar with numerical 
calculations, the definition of J (x), based on equality in (2.1.1), does not make real sense. 
For one thing, finite arithmetic is usually used: one should at least take those j satisfying 
something like 

fj(x) ~ f(x) - 1], 

where 1] > 0 accounts for the computing accuracy. This aspect should be kept in mind when 
speaking of active sets and cones of tangent directions. 0 

Another interesting consequence of Proposition 2.3.3 is that the two fields of non smooth 
optimization and nonlinear programming are closely related, via the equivalence between 
(2.0.1) and (2.3.1). Each of these two fields can thus benefit from improvements in the other. 

For example, it has already been mentioned on several occasions (§II.2, and also at 
the end of § 1.1) that steepest-descent schemes are most inefficient. Now, there are known 
improvements of (2.3.8) to solve (2.3.1); they involve: (i) redefinitions of the concept of 
tangency (cf. Remark 2.3.4), and (ii) a clever choice of the norm m . IU (remember the begin
ning of §II.2.2). These improvements can serve as basis for solving nonsmooth optimization 
problems more efficiently. We will see that (i) can be readily transcribed to the context of 
nonsmooth optimization; as for (ii), it is unfortunately much more delicate. 
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3 The Practical Value of Descent Schemes 

Section 2 was mainly devoted to the zigzagging phenomenon, common to all steepest
descent methods. Another problem was mentioned at the end of § 1.1, namely that the 
practical implementation of such methods could be difficult. The full subdifferential 
had to be computed, and one had to hope that it was a closed convex polyhedron, or an 
ellipsoid; see § 1.4. The aim of the present section is to show that, in many situations, 
such a computation is not convenient. 

3.1 Large Minimax Problems 

Take again the max-function (2.0.l) but suppose p is a large integer, say in the 106_ 

range. Then the mere task of computing the active set 1 (x) is unreasonable, not 
even mentioning the projection problem (2.1.6). We illustrate instances of such large 
minimax problems with the exact penalty technique: consider an ordinary nonlinear 
programming problem 

I min F(x) 
Cj (x) ~ 0 for j = 1, ... , p , 

(3.1.1) 

with smooth objective- and constraint-functions F and Cj, but an extremely large 
number p of constraints. Known methods for constrained optimization become im
practical in this situation; accordingly, the penalty idea is to transform the problem by 
aggregating the constraints into the objective function; see Chap. VII if necessary. 

The approach with an loo-penalty is standard: the penalty coefficient Jr is chosen 
("large enough") and the following function is minimized without constraints: 

]Rn 3 X H- F(x) + Jrmax{O, CI(X), C2(X), ... , cp(x)}. (3.1.2) 

Thus, one has a genuine minimax problem to solve, with a max operation involving 
p + 1 terms. 

Remark 3.1.1 Among the many other exact penalties, we rather considered in 
§VII.3.2 the ii-approach in which, instead of (3.1.2), it is the function 

p 

]Rn 3 X H- F:rr(x) := F(x) + Jr L:max to, Cj(x)} 
j=1 

(3.1.3) 

that was minimized. This function can be put in the minimax framework of §2: 

F:rr (x) = F(x) + Jr max {SICI (x) + ... + spcp(x) : Sj E to, I}}, 

so F:rr is a max of2P functions. To characterize aF:rr from this last expression, denote 
by 

l(x) := {j : Cj(x) = O} 

the set of active indices at a given x, and by 
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sO(x):=VF(x)+1f L VCj(x) 
{j: Cj(x»O} 

the "smooth part" of the differentiation. The subdifferential of F rr at x is therefore 
the convex hull of2IJ (x)1 points: 

aFrr(x) = so(x) +1fCOn:::jEJ(x)E'jVCj(X) : Bj E to, Ill. 
Because a F rr (x) has exponentially many extreme points, it is more conveniently 
characterized directly from (3.1.3): applying the calculus rules of §VI.4 gives 

aFrr(x) = {so(x)} + 1f L [0, I]Vcj(x), 
jEJ(X) 

which places oneself in Case 2 of § 1.4. Computing a steepest-descent direction is now 
a convex minimization problem with I J (x) I variables aj: 

I min II! So (x) +1f ~jEJ(X)ajVcj(x)!II* 
O~aj ~ 1 for] E J(x). 

Another observation concerns the constrained minimization problem playing the 
role of (2.3.1): to minimize F rr is equivalent to 

Imin[F(X)+1fLJ=lrj] x ElRn, rElRP , 

rj~O, rj~cj(x) forj=l, ... ,p. 
(3.l.4) 

We leave it as an exercise to reproduce on (3.1.4) the development of §2.3: work out 
the projected-gradient problem, and interpret it in terms of § 1, via a result playing the 
role of Proposition 2.3.3. 0 

Whether the chosen variant is (3.l.2) or (3.1.3), one must admit that J(x) is 
potentially an untractably large set when p is really large in (3.1.1) (the argument 
that lex) is for most x a singleton should not be taken too seriously, remember 
Remark 2.3.4). We have here a first example suggesting that effective computation of 
the whole subdifferential may not be a reasonable task. 

The dimensionality argument becomes really critical when the max operation 
in (2.0.1) has itself a combinatorial aspect. Consider the problem of minimizing the 
convex function whose value at x is 

I(x):= max {Lf=1 ydi(X) : Ay = b, Yi ~ Ofori = 1, ... , q}, (3.l.5) 

where each Ii is smooth and convex, A is some m x q matrix, and b E lRm. 
Despite the appearances, minimizing this I is a finite minimax problem: the under

lying max-operation consists of maximizing a linear function (in y) over a closed con
vex polyhedron. Assuming I finite everywhere and remembering the end of Chap. V, 
this maximization can be restricted to the (finitely many) extreme points of the same 
polyhedron. In a word, I has just the form (2.0.1), with j indexing these extreme 
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points. But who can characterize all of them, or even count them? The only thing that 
can be done in practice is to compute just one maximal y, but certainly not all. 

In this situation, a numerical process (a computer program, implementing a suit
able linear programming algorithm) is usually at hand which, given x, computes a 
maximal y, say ji; remember the black box (Ul) of Fig.H.1.2.1. Then the vector 
s := '£[=1 Yi V hex) is in al(x). There is no hope to compute the others, and there is 
no hope to compute a steepest-descent direction. We do not even mention the larger 
set alluded to in Remark 2.3.4. 

3.2 Infinite Minimax Problems 

A function like (3.1.5) is on the fringe between the finite minimax problem (2.0.1) 
and the case with infinitely many indices: 

I(x) := max {hex, y) : y E Y} (3.2.1) 

where h is convex in x, and smooth on the compact set Y. 
Among such problems, are the frequently encountered semi-infinite programs (see 

§VI.5.3): 

I min F(x) 
g(x, t) ~ 0 for all t E T, 

(3.2.2) 

where T is a compact interval of R.. The latter does not fit exactly in (3.2.1) but 
the reader should observe that minimizing a function - as in (3.2.1) - and imposing 
an inequality constraint - as in (3.2.2) - are twin brothers. To satisfY g(., .) ~ 0 is 
usually achieved by means of decreasing g! In fact, the constraint-function of interest 
in (3.2.2) is 

X H- c(x) := maxg(x, t). 
tET 

Observe also that (3.2.1) and (3.2.2) become fully equivalent if the semi-infinite 
program is attacked via a penalty technique such as in §3.1: the function 

F(x) + 7r maxg(x, t) 
tET 

has undoubtedly the form (3.2.1) (note that the £1 penalty - or rather LI - is not so 
convenient here, as it would involve an integration in the space T). 

Clearly enough, it is even "more impossible" in (3.2.1) than in (3.1.5) to compute 
the whole subdifferential a/(x), which amounts to computing the whole, potentially 
infinite, set of maximal y's at x. On the other hand, computing some subgradient - of 
I in (3.2.1), of c in (3.2.2) - can also be hard enough: the underlying maximization 
has no reason to be easy. We simply observe, however, that it has to be performed 
anyway, just to compute the objective- or the constraint-values. Once this is done, a 
subgradient is available "for free": differentiate h(·, y) or g(., t) for the y or t just 
obtained (Lemma VI.4.4.1). 



374 VIII. Descent Theory: Complete Information 

At any rate, problems of the type (3.2.1) or (3.2.2), with f or c relatively easy to 
compute, cover an extremely large range of practical applications. It will be seen in 
Chap. XII that such is the case in the (very important) field of decomposition. 

Other instances of infinite minimax problems are the (also important) cases of 
maximal eigenvalues. It has been seen in §VI.5.1 thatthe maximal eigenvalue A I (M) of 
a varying symmetric matrix M is convex and that its subdifferential, in an appropriate 
Euclidean space, is 

aAI (M) = co {uu T : u normalized eigenvector associated with AI} . 

To compute the full subdifferential, one must first know the mUltiplicity of the 
largest eigenvalue. In practice, this implies the computation of the full spectrum of 
M. Let m > I be the multiplicity of Al (the case m = I is easy) and suppose that 
an orthonormal system of corresponding eigenvectors VI, V2, ••• , Vrn is known; such 
is usually the case after the spectral decomposition of M has been performed. Then, 
setting for a E IRrn 

we have 

rn 

w(a) := Lakvk, 
k=1 

aAI (M) = co {w(a)w T (a) : aT a = 1} . 
We refer to §VI.5.1 for a characterization of this set, and the computation of the 
directional derivative A~ (M, P). Computing one subgradient at a given M amounts 
to computing the maximal eigenvalue of M - without caring whether it is multiple -
and one associated eigenvector. This is usually a simpler task. 

3.3 Smooth but Stiff Functions 

The previous sections dealt with problems in which computing the subdifferential 
was difficult, or even impossible. In another field of applications, computing it is 
simply meaningless. This concerns objective functions whose gradient varies rapidly, 
although continuously. 

In theory, there are excellent algorithms to minimize such functions; in particular 
of Newton-type, see §II.2.3. Unfortunately, there is no clear-cut between functions 
that are smooth (whence in the field of application of such algorithms) and functions 
that are not (whence requiring methods from nonsmooth optimization). Between these 
two classes, there is a rather fuzzy boundary of stiff jUnctions, for which it is not clear 
what class of methods is better suited. 

A nonsmooth function f can be regarded as the limiting case of a C2 function, 
say g, whose second derivatives grow unboundedly at some points (the kinks of f). 
In intuitive words, the Hessian matrix of g at such a point x has some very large 
eigenvalues: those corresponding to eigenvectors parallel to aff af(x). On the other 
hand, the gradient of g stays bounded: the limiting function f satisfies a Lipschitz 
property. For 8 > 0, think of the example 

1R2 :3 X = (~, 17) 1-+ g(x) := J~2 + 8 + 17 :::::: I~I + 17 =: f(x). 
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We have ~(O) = £-1/2 and V2g(0) has the eigenvalue £-1/2, with the associated 

eigenspace R. x {OJ, parallel to [-1, + 1] x {1} = af(O). 

Remark 3.3.1 A popular example of stiff functions comes from the quadratic pen
alty. To solve (3.1.1), consider instead of (3.1.3) the following variant: 

p 

F(x) + rr ~:]ct(x)r, 
j=1 

which is definitely smooth (although not C2). It is reasonable to believe that its minima 
approach solutions of (3.1.1) when rr -+ 00. Functions of this type do not illustrate 
the kind of stiffness that we have in mind, though: when rr -+ 00, their gradients are 
unbounded at all nonfeasible points. By contrast, observe that our function g above 

has the gradient V g(;, 1]) = (~2le)I/2' 1), which stays in [-1, + 1] x {1}. 0 

Then the question is: when is a (finite) eigenvalue so large that it looks infinite 
to an optimization algorithm? In other words: when is a smooth function so stiff that 
an algorithm tailored for smooth functions will become inefficient? Answering this 
question is quite complex. The following experiment illustrates how vague the class 
of stiff functions is; at the same time, it presents a possible technique of regularization 
for finite minimax problems. The objective function in (2.0.1) can be written 

p 

f(x) = max Laj/j(x) , 
aELlp j=1 

where l1p is the unit simplex. Now, take rr > 0 and set 

p p 

IRn x (IRt)P 3 (x, a) H- qJ7r (x, a) := L ajfj(x) + rr L logaj . 
j=1 j=1 

(3.3.3) 

For small rr > 0, qJ7r approximates the maximand in (3.3.3), and the function 

x t---+ f7r (x) := max{qJ7r (x, a) : L:)=I aj = 1} (3.3.4) 

approximates f: it can indeed be proved that, for all x, 

f7r (x) t f(x) when rr i O. (3.3.5) 

Remark 3.3.2 The computation of rr (x) for fixed x is not difficult; observe in particular 
that rplr (x, .) is strictly concave. Call A lr (x) the Lagrange multiplier associated with the 
constraint L]=I aj = 1 in (3.3.4); the maximality conditions for a readily give 

aj 

fj(x) + Alr(X) 

]'( 

p 

L:>j = l. 
j=1 

The multiplier A lr (x) can therefore be computed via a Newton method to solve the equation 
inA 

P]'( 0 
'" +1= . ~ fj(x) +A 

(3.3.6) 
o 
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In contrast with (3.3 .3), the a-problem (3.3.4) making up f7r has a unique maximal 
solution, so the resulting f7r is now differentiable. This can be seen directly: applying 
the implicit function theorem to (3.3.6), we see that )..7r(-) is indeed Coo if the /j's 
are such. In the present context, we now have to minimize with respect to x a smooth 
function rr: (x), instead of the nonsmooth f(x). 

For an illustration, we take the following minimax problem: 

Test-problem 3.3.3 (MAXQUAD) Equip IRn with the usual dot-product and take in 
(2.0.1) 

/j(x):= txT Ajx+bJx+c for j = 1 •...• p 

where each Aj is a symmetric positive definite n x n matrix and bj an n-vector; c is 
a real number. Then V /j(x) = Ajx + bj and each /j is strongly convex. 

Ina specific example calledMAXQuAD,n = lO,p = 5,c = 0.8414 and the minimal 
value is j = O. At the (unique) minimum i. the five underlying functions have the 
characteristics listed in Table 3.3.1: 

Table 3.3.1. Bad scaling in the example MAXQUAD 

j 1 2 3 4 5 

h(i) o. o. o. o. -298. 
IIV h(i)1I 6. 14. 40. 500. 104 

It will be confirmed below that the fifth function is really special: it is supposedly 
inactive at i but becomes active at i + tV f5(i) very quickly when t increases; then 
f = f5 becomes very steep. On the other hand, f behaves much more gently when t 
decreases. 0 

Now, the objective function of MAX QUAD can be approximated by the smooth f7r of 
(3.3 .4), which in tum can be minimized by any "ordinary" method. Table 3.3.2 displays 
the behaviour of various algorithms. for different values of 1r: Euclidean steepest 
descent (§II.2.2), one among the best known implementations of conjugate gradient 
(§II.2.4) and of quasi-Newton (§II.2.3), and a typical method for convex (nonsmooth) 
optimization (Algorithm XlY.3.4.2). Each entry of Table 3.3.2 contains the number 
of iterations to reach three exact digits and, between parentheses, the corresponding 
number of f7r - and V f7r -evaluations. The last two rows indicate the value of f7r at 
its minimum x7r and the corresponding value of f. Note: f7r (x7r) :s 0 = j :s f (x7r) 
because of(3.3.5). All methods were started from the same initial iterate and used the 
same line-search. The computer had about six exact digits. 

This table makes clear enough the danger of believing that a "smooth method" is 
automatically appropriate for a smooth function. 

One may wonder if the range of values of 1r that are displayed in Table 3.3.2 
is significant: for example, could it be that the value 1r = 100 say. is already "very 
small". taking into account the regularity properties of f7r? Actually. some indica
tion is obtained by comparing the optimal values: knowing that the three numbers 
f(x 7r ). f7r (x7r) and f(i) = 0 should be close together, we see that 1r = 10-3 is not 
unreasonably small. In fact. 1r is homogeneous to f -values. 



3 The Practical Value of Descent Schemes 377 

Table 3.3.2. What is a smooth function? 

:n: 100 10 10 10 ~ 1O-j O. 

st. desc. 2(6) 21(35) 30(57) 59(97) 358(487) oo(oo!) failed 
conj. grad. 5(15) 10(23) 13(33) 20(50) 77(222) 69(194) failed 
q. Newton 3(8) 15(25) 27(33) 50(73) 91(130) lO4(186) failed 

Nonsmooth 3(16) 6(10) 12(20) 15(22) 24(46) 24(54) 17(44) 

r(x'l) -1117. -121. -14. -1.68 -.207 -.024 O. 
f(x 7r ) 184. 8.7 1.6 .17 .014 .001 O. 

Remark 3.3.4 The collapse of the conjugate gradient method and, even more notably, of 
quasi-Newton methods, can be explained. Both methods construct a quadratic approximation 
based on observations from the objective function. In view ofthe nasty behaviour of fs alluded 
to in Table 3.3.1, the present f is highly unsymmetric. Therefore, the quadratic model cannot 
approximate well f7r nor f, apparently even for fairly large values of:n:. This is confirmed 
by Table 3.3.3, which reports the same experiments with p = 4 (thus eliminating fs from 
Example 3.3.3), and requiring 4 exact digits instead oD. The behaviour ofthe various classical 
methods is now much more in accordance with their usual behaviour. 

Observe in passing the relatively good performance of the "nonsmooth method", even 
in smooth cases. 0 

Table 3.3.3. What is a smooth function? (cont'd) 

:n: lO 1 10 1 1O-~ lO-j lO-4 O. 

st.desc. 6(14) 15(22) 66(95) 894(1014) 00 00 failed 
c~nj.grad. 4(9) 7(15) 21(44) 44(lO7) 94(242) 147(430) failed 
q.Newton 4(6) 7(10) 13(24) 16(27) 23(50) 26(73) 41(163) 

Nonsmooth 5(10) 16(31) 19(35) 19(42) 25(57) 22(58) 25(52) 
r (x7r) -62.88 -7.183 -.8337 -.0947 -.0150 -.0011 O. 
f(x 7r ) 6.5 1.3 .16 .015 .0016 .0002 O. 

In summary, even for smooth functions, there is room for methods based on 
convex analysis, which do not assume smoothness. Needless to say, the concept of 
subdifferential is then irrelevant, and a steepest-descent direction brings nothing with 
respect to §II.2: the whole theory in § I becomes useless in this framework. 

3.4 The Steepest-Descent Trajectory 

There is something offensive in the counter-example of §2.2. Imagine that the graph 
of f is (a portion of) the surface of the earth and imagine a drop of water rolling 
very slowly on that surface. If x (1') E ]R2 denotes the position of the drop at time 1', 
the steepest-descent direction -SeT) is "tangent" to the curve x(·). Now, it is hard to 
imagine that x ( 1') converges to anything else than a minimal point, especially if the 
surface is as simple as polyhedral. 
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(a) Continuous Time Consider first the differential inclusion 

XCi) E -af(X(i)), X(O) = XI given. (3.4.1) 

We will call "solution" to (3.4.1) an absolutely continuous function i ~ XCi) (see 
§A.6.l) such that, for almost all i ~ 0, the derivative of X at i is opposite to some 
sub gradient of f at x (i). Admitting that a solution exists in this sense, how about its 
behaviour for i -+ +oo? Does it converge to a minimum point of f (if any)? We start 
with a list of fundamental properties. 

Theorem 3.4.1 With f: ]Rn -+ ]R convex, the differential inclusion (3.4.1) has a 
unique solution x(·): [0, +00[-+ ]Rn. Furthermore: 

(i) Thefunction i ~ XCi) is Lipschitzianfrom [0, +oo[ to ]Rn; it admits a right
derivative D+X(i) at all i ~ 0, given by 

D+X(i) = -SCi) for all i ~ 0, (3.4.2) 

where SCi) = S(X(i)) is the orthogonal projection of the origin onto af(X(i)). 

(ii) Thefonction i ~ f(X(i» is convex decreasingfrom [0, +oo[ to lR.; its right
derivative at i ~ ° is -IID+x(i)1I 2 = -lIs(i)1I2. 

(iii) For all nonnegative il and i2, and all y E ]Rn, 

1"'2 
~lIx(i2) - yf:::;; ~lIx(il) - yll2 - [f(X(i» - f(y)]di. 

"'I 
(3.4.3) 

(iv) For all T > 0, 

f(x(T» - f(xt) = -iT IIs(r)1I 2dr. o 

The proof goes beyond the scope of this book. In a classical Cauchy problem, 
the continuity of the right-hand side with respect to x ensures existence of a solution, 
on some interval ]0, T[. Here, it is essentially the outer semi-continuity of of (see 
§VI.6.2) that does the job for existence; and the monotonicity of of helps making 
T = +00. Uniqueness, as well as (i) - (iv), come rather easily, via multiplication of 
both sides of(3.4.l) by appropriate vectors. 

We stress an important point in (3.4.2): the equality holds at all (rather than almost all) 
r ;;;, O. From a mechanical viewpoint, the dynamics is governed by -s(r) at each time r; the 
system is "lazy": it tends to minimize its speed. Thus, (3.4.1) is equivalent to the ordinary 
differential equation 

x(r) = -s(r), x(O) = XI given; (3.4.4) 

the derivative x ( "') of our absolutely continuous function X (.) is, for almost all "' ;;;, 0, opposite 
to the (unique) element of af(x(r» having minimal Euclidean norm. All these properties 
depend crucially on monotonicity of af; they would not be enjoyed by the solutions of 
X(i) E a!(x(r», say. Indeed, differential inclusions hardly tolerate backward integration. 

In a word, our differential inclusion (3.4.1) does model the movement of our drop 
of water: its solution is just the steepest-descent trajectory described by (3.4.4). Note 
also that (ii) implies: 
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• t-+ IIs(.)1I is decreasing. (3.4.5) 

An important consequence of Theorem 304.1 is (as always, j denotes the infimum 
of f over ]R.n): 

Corollary 3.4.2 Let xO solve (304.1) = (30404). When • ~ +00, 

(i) the trajectory is minimizing: f(x(.» ~ j; 
(ii) some subgradient tends to 0 if j > -00: s(.) ~ 0; 

(iii) the trajectory converges to a minimum of f if there is at least one: x(.) ~ x. 

PROOF. Suppose there are y E ]R.n and £ > 0 such that 

f(x(.» - fey) ;;:: £ for all. ;;:: o. 

Then (3.4.3) used with .1 = 0 implies the contradiction: IIx(.2) - yll ~ -00 when 
.2 ~ +00. As for (ii), it follows directly from Theorem 3.4. 1 (iv) and (3.4.5). 

Now let x minimize f. To prove (iii), take y = x in (3.4.3): f(x) - f(x(.» :::;; 0 
for all. ;;:: 0 and IIx(.) - xf is a decreasing function of •. Thus, {x(·)} is bounded; a 
cluster point exists, which is optimal in view of (i) and can be called x. Given £ > 0, 
we can find .1 such that 

IIx(.I) - x1l2:::;; e 

so, using again (3.4.3), 

IIx(.2) - X 112 ~ e for all .2 ;;::.1. o 

Note the special property expressed by (ii): when a curve {x(·)} tends to a mini
mum of a convex function f, the subdifferential of (x (.» may stay away from 0 ( of is 
not inner semi-continuous!). Here, some subgradient at x(.) tends to 0, which implies 
first that the convergence of the objective function is fast: 

f(x(.» - j:::;; IIs(.)1I IIi - x(.)11 = o(lIi - x(.)ID. 

It also implies that, for large. , x (.) stays in a definite region of the space; and this is 
a result of general interest: 

Proposition 3.4.3 Let a curve • t-+ X ( .) have a limit x for • ~ +00 and suppose 
that there exists s(.) E of(x(.» tending to O. For each. ;;:: 0, set 

x(.) - x 
d(.) := I IIx(.) _ xII if x(.) =1= x, (3.4.6) 

o if x(.) = x. 

When • ~ +00, all nonzero cluster-points of {d (.)} are critical directions in the 
sense of Remark VI.2.2.5: 

limext{d(.)} C Naf(x) (0) . 
r~+oo 
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PROOF. Let d be the limit of {de!})} for some sequence Irk} tending to +00 with k. 
If d = 0, we have nothing to prove; otherwise, dk =1= 0 for k large enough. 

With Sk E af(Xk) tending to 0, take s E af(i) and apply monotonicity of af in 
(3.4.6): 

(Sk - s, x(rk) - i} 
(d(rk), Sk - s} = _ ~ o. 

IIx(t'k) -xII 

Letting k ~ +00 shows that -(d, s) ~ 0; hence d E Naf(i)(O) since s was arbitrary 
in af(x). 0 

(b) Piecewise Affine Trajectories As long as (3.4.4) cannot be solved explicitly, the 
above development remains dry theory. For a numerical approximation, we have the 
classical Euler method, in which {xk+tl approximates {x (k..1r)} for k = 1,2, ... : 

Xk+1 = Xk - ..1r Sk with Sk E af(Xk)· 

To really approximate the trajectory, ..1r must be "small"; and to really approximate 
a limit, k..1r must be "large". Convergence to a minimum will be established if we 
can mimic Theorem 3.4.1 in a discretized setting, so as to reproduce Corollary 3.4.2. 
This is the basis for methods of subgradient optimization, to be seen later in §XII.4.1. 

Here, we content ourselves with the simple situation of a piecewise affine objective 
function: 

f(x) =max{(sj,x} -bj : j = 1 •... ,m}. (3.4.7) 

The steepest-descent trajectory can now be explicitly constructed, without calling for 
the machinery implied by Theorem 3.4.1: the key is that s(·) is "piecewise constant", 
and the trajectory is made up ofline-segments on successive time-intervals [rk, rk+ I]; 
see Fig. 2.2.4. This places us back in the framework of a minimization algorithm, with 
stepsizes tk playing the role of time-differences rk+I - rk. 

Lemma 3.4.4 For given x and d =1= 0 in Rn, define 

J+ := (j ¢ J (x) : (Sj' d) > f' (x, d)}, 

where J (x) is the active index-set of(2.1.1). For each j E J+, the equation in t 

f(x) + tf'(x, d) = (Sj, x + td) - bj 

has a positive solution, and call i > 0 the smallest of these solutions (i = +00 if 
J+ = 0). Then, for all t E [0, i[, 

f(x + td) = f(x) + tf' (x, d) , 

J(x + td) c J(x) hence af(x + td) C af(x). 

(3.4.8) 

(3.4.9) 

PROOF. Just look at Fig. 3.4.1, drawn with a downhill d; J+ appears as the "dangerous" 
index-set: j ¢ J+ means 

- either j E J (x); then (Sj. d) ::;; f' (x, d) because a directional derivative is a max; 
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j i!J(x): unimportant slope 

x 

slope f'(x,d) 

j E J(x): slope .. f'(x,d) 

Fig.3.4.1. Piecewise affine functions and "dangerous" indices 

- or (Sj, d) ::;; f' (x, d), from the very definition of J+. 

In both cases, the graph of f certainly does not meet the ph affine piece in the 
direction d. 

Finally, remember that subdifferentials are convex hulls of active gradients. 0 

This result is valid for any direction d. When d is actually the steepest-descent 
direction, we get something more: d remains steepest on the whole of [x, x + id[, but 
not atx + id. 

Lemma 3.4.5 For given non-optimal x, take d = -sex) in Lemma 3.4.4. Then: 

(i) sex + td) = sex) for all t E [O,i[; 
(ii) assuming i < +00, there holds IIs(x + id)1I < IIs(x) II. 

PROOF. [(i)] For all t E [0, i[ and y E ]Rn, we can write 

fey) ;:?; f(x) + (s(x), y - x) = 
= f(x) + (s(x), y - x - td) - tlls(x) 112 
= f(x) + (s(x), y - x - td) + tf'(X, d) 
= f(x + td) + (s(x), y - x - td) ; 

[because s(x) E ilf(x)] 

[Remark 1.3.7] 

[because of (3.4.8)] 

thus sex) E af(x + td). Now we use Proposition 2.1.7: sex) satisfies 

(Sj, sex»~ ;:?; IIs(x)1I 2 for all j E J(x). 

Because of (3.4.9), this inequality holds in particular for j E J (x + td). 
In summary, we see that sex) satisfies the characterization of the orthogonal 

projection sex + td). 
[(ii)] Since the graph of af is closed (Proposition VI.6.2.1), the property sex) E 

af(x + td) extends to t = i, hence llsex + id)1I ::;; IIs(x)lI. Equality holds if and only 
if sex + id) = sex), but this is impossible: in Lemma 3.4.4, the definition oft implies 
the existence of some index j E J+, hence 

(Sj's(x» < IIs(x) 112 , 

which is by construction in J(x + id). In view of Proposition 2.1.7, sex) cannot be 
the projection of the origin onto af(x + id). 0 

The steepest-descent trajectory can now be constructed with the help of this result 
and Lemma 3.4.S(i). 
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Algorithm 3.4.6 (Steepest-Descent Trajectory, Piecewise Affine Case) Thefunc
tion to minimize is f of (3.4.7); the initial point XI is given. Set k = 1. 

STEP 1. Compute the active index-set Jk = J(Xk) and let Sk solve the projection 
problem 

min 4 lis 112 subjectto s E co {Sj : j E It} . 

If Sk = 0 stop: Xk is optimal. 
STEP 2. Setdk = -Sk andcomputethestepsizetk = t as in Lemma 3.4.4. 1ft = +00 

stop: the infimal value j is -00. 

STEP 3. Set Xk+1 = Xk + tkdk, replace k by k + 1 and loop to Step 1. 0 

Remark 3.4.7 For the record, we mention again that a proper definition of h is numerically 
delicate (remember Remark 2.3.4). Our present algorithm actually belongs to the realm of 
linear algebra, and an incremental technique is convenient. Normally, the quadratic program
ming algorithm used in Step 1 computes the set JI (Xk) alluded to in Remark 2.1.8. Then 
h+1 = JI (Xk) U {j}, where j is the index furnishing the step size t from Lemma 3.4.4. 

When using this technique, t may become zero, hence the need for some other provision. 
We omit the details, which have little interest for our purpose. 0 

In the continuous case, convergence of the trajectory was established on the ba
sis of (iii), (iv) from Theorem 3.4.1. The same arguments cannot be used here: the 
"abstract continuous time" • has nothing to do with the actual computing time spent 
by the algorithm. By contrast, Theorem 3.4.1 (ii) seemed minor but it is now the key 
argument, via its discrete translation in Lemma 3.4.5(ii). 

Theorem 3.4.8 Algorithm 3.4.6 stops after finitely many iterations. 

PROOF. The list of all possible active sets lt's has at most 2m elements, and each such 
set characterizes its Sk. In view of Lemma 3.4.5(ii), they are all different from each 
other; the algorithm stops after at most 2m iterations. 0 

Let us mention two interesting by-products: 

- If a piecewise affine function is bounded from below, it has a minimum point; we knew it 
before (§\1.3.4) but we have here a constructive and natural proof. 

- If a piecewise affine function is unbounded from below, there are fixed x and d =F 0 such 
that 

f(x + td) .j.. -00 when t ~ +00. 

Actually, this last property holds for all x (and some d), the reason being as follows: for 
all x, there are two constants land L such that, for all d and t ~ 0, 

l + t 111!lx{Sj, d) ~ f(x + td) ~ L + t 111!lX{Sj, d) 
) ) 

(3.4.10) 

(take for land L respectively the min and max of ({Sj'x) - bj}). Therefore, (3.4.10) is 
equivalent to maxj (Sj, d) < 0, a property independent of x. 



3 The Practical Value of Descent Schemes 383 

3.5 Conclusion 

The purpose of this Section 3 was mainly to show that the concept of steepest descent 
is not always the right one: even though it can be considered in some special situations 
(§3.4), sometimes it yields non-implementable algorithms (§3.1-2), sometimes it is 
irrelevant (§3.3) or intolerably slow (remember the very end of §II.2.2). Two more 
arguments may also be mentioned against it. 

- First, it can be said that the whole idea is nothing but variations around known 
themes in ordinary nonlinear programming. When steepest-descent directions of 
a convex function can be computed in practice, it is usually because there is a 
formulation involving only smooth objective functions and constraints. See §2.3 
and §3.1, including Remark 3.1.1. This does not imply that the approach is totally 
fruitless, though. It does have the merit of bringing new views on known fields. 

- A second argument was alluded to in the beginning of § 2: the user of any optimization 
algorithm must do his duty and provide the algorithm with the black box (UI) of 
Fig. 11.1.2.1. In the present context, this duty is definitely more complicated than in 
classical optimization: the user must now compute the full subdifferential. 

By contrast, all the optimization algorithms considered in the second volume of 
this book will request from the black box (U I) to compute only the value f (x) of the 
objective function and the value s(x) of a subgradient of f (an arbitrary subgradient) 
at every given x. Thus, we let s (x) denote the particular subgradient computed by the 
black box. The notation is slightly misleading, because it suggests that af is always a 
singleton. It actually means that (U I) is assumed to be deterministic and answers two 
times the same s if called two times with the same x. Of course, s (.) is a discontinuous 
mapping from jRn to jRn. 

Remark 3.5.1 This point was already seen in §3.l, more precisely in (3.1.3): denot
ing by sex) the computed subgradient amounts to denoting by y(x) the optimal y. It 
implies that the operations involved during the y-maximization depend only on x, and 
not on the time of the day, say. A more concrete illustration is the following: consider 
the one-dimensional convex function 

x ~ f(x) := max {O, x 2 - I} 

which is kinky at x = ± I. For this f, the computation of s (x) in (U I) could be done 
as follows: 

if Ix I ::;; I then s = 0 else s = 2x . 

Another programmer might prefer 

if Ix I ? I then s = 2x else s = 0 . 

Of course, the only possible variations concern the value of s at ± I, which are only 
bound to lie in [-2,0] and [0,2] respectively; but after (UI) is definitely loaded in 
the computer, we are entitled to call sex) its output. 

Actually, the difficulty from the point of view of minimizing this f is not that 
s(±I) is ambiguously defined. The real difficulty is that s(±1 + e) has no relation 
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whatsoever with s(±l - 8). In between, when x crosses ±l, some nasty event must 
happen (some call it a catastrophe). It is inherent to the nature of I'and does happen 
no matter how (Ul) is written, i.e. whichever choice is made for s(±l). Also, §3.3 
suggests that a smoothened version of I may not be an efficient way of eliminating 
this nasty event. 0 

Let us sum up: from the point of view of the user, our minimization methods will 
present themselves just as "classical" methods, of the same type as in Chap. II. The 
user will have to compute I and s, without caring whether the latter is continuous. 
Very often, this makes his life much easier. 

In this framework, our aim will be to develop minimization methods which per
form reasonably well if s (.) happens to be continuous, but which still converge in any 
case. Tables 3.3.2 and 3.3.3 are rather representative of what we have in mind. 



A. Appendix: Notations 

We list in this appendix some basic concepts which are, or should be, well-known -
but it is good sometimes to return to basics. This gives us the opportunity of making 
precise the system of notation used in this book. For example, some readers may have 
forgotten that "i.e." means id est, the litteral translation of "that is (to say)". Ifwe get 
closer to mathematics, S\ {x) denotes the set obtained by depriving a set S of a point 

-1 

XES. We also mention that, if I is a function, I (y) is the inverse image of y, i.e. the 
set of all points x such that I(x) = y. When I is invertible, this set is the singleton 
U-l(y)}. 

1 Some Facts About Optimization 

1.1 In the totally ordered set JR, inf E and sup E are respectively the greatest lower 
bound - the infimum - and least upper bound - the supremum - of a nonempty subset 
E, when they exist (as real numbers). Then, they mayor may not belong to E; when 
they do, a more accurate notation is min E and max E. Whenever the relevant infima 
exist, the following relations are clear enough: 

inf(E U F) = min {inf E, inf F}, } 
FeE ==> infF~infE, 

inf(E n F) ~ max {inf E, inf F}. 

If E is characterized by a certain property P, we use the notation 

E = {r E JR : r satisfies P} . 

(Ll) 

Defining (in JR considered as a real vector space) the standard operations on 
nonempty sets 

E + F:= {r = e + I : e E E, I E F}, 
t E := {tr : r E E} for t E JR 

(the sign ":=" means "equals by definition"), it is also clear that 

inf(E + F) = inf E + inf F, } 
inf t E = t inf E if t > 0 , 

inf(-E) = - sup E, 

whenever the relevant extrema exist. 

(1.2) 
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The word positive means "> 0", and non positive therefore means " ~ 0"; same 
conventions with negative and nonnegative. The set of nonnegative numbers is denoted 
by jR+ and, generally speaking, a substar deprives a set of the point O. Thus, for 
example, 

N* = {I, 2, ... } and JRt = {t E JR : t > O}. 

Squared brackets are used to denote the intervals ofR: for example, 

JR ~ la, b] = {t E JR : a < t ~ b}. 

The symbol" .,j.." means convergence from the right, the limit being excluded; thus, 
t .,j.. 0 means t ~ 0 in JRt. The words "increasing" and "decreasing" are taken in a 
broad sense: a sequence {tk} is increasing when k > k' :::} tk ;;::: tic'. 

1.2 Now, to denote a real-valued function f defined on a nonempty set X, we write 

X 3 x ~ f(x) E JR 

and the sublevel-set of f at level r E JR is defined by 

Sr(f) := (x EX: f(x) ~ r}. 

If two functions f and g from X to JR satisfy 

f(x) ~ g(x) for all x EX, 

we say that f minorizes g (on X), or that g majorizes f. 
Computing the number 

inf{f(x) : x E X} =: 1 (1.3) 

represents a minimization problem posed in X: namely that of finding a so-called 
minimizing sequence, i.e. {Xk} C X such that f(Xk) -+ 1 when k ~ +00 (note 
that no structure is assumed on X). In other words, 1 is the largest lower bound of 
the subset f(X) c JR, and will often be called the infimal value, or more simply the 
infimum of f on X. Another notation for (1.3) is infxex f(x), or also infx f. The 
function f is usually called the objective function, or also infimand. We can also meet 
supremands, minimands, etc. 

From the relations (1.1), (1.2), we deduce (hereafter, li denotes the infimum of 
f over Xi for i = 1,2): 

inf (f(x) : x E Xl U X 2} = min Lli .h} . 

Xl C X 2 =:::} li;;::: h , 
inf (f(x) : x E Xl n X 2} ;;::: max {li, h} , 

inf (f(XI) + f(X2) : Xl E Xl and X2 E X 2} = li + h. (1.4) 
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inf{tj(x): XEX}=tj, for t;;::O, 

inf{-j(x) : x E X} = -sup (f(x) : x E X}, 

whenever the relevant extrema exist. The last relation is used very often. 
The attention ofthe reader is drawn upon (1.4), perhaps the only non-totally trivial 

among the above relations. Calling EI := j(XI) and E2 := j(X2) the images of XI 
and X2 under j, (1.4) represents the sum of the infima inf EI and inf E2• There could 
just as well be two different infimands, i.e. (1.4) could be written more suggestively 

inf (f(XI) + g(X2) : XI E XI and X2 E X2} = li + g2 

(g being another real-valued function). This last relation must not be confused with 

inf (f(x) + g(x) : x EX};;:: j + g; 

here, in the language of(1.4), XI = X2 = X, but only the image by j of the diagonal 
of X x X is considered. 

Another relation requiring some attention is the decoupling, or transitivity, of 
infima: if g sends the Cartesian product X x Y to R, then 

inf {g(x, y) : x E X and y E Y} = 
= infxEx[infyEY g(x, y)] = infYEy[infxExg(x, y)]. 

1.3 An optimal solution of (1.3) is an i E X such that 

j(i) = j ~ j(x) for all x EX; 

(1.5) 

such an i is often called a minimizer, a minimum point, or more simply a minimum 
of j on X. We will also speak of global minimum. To say that there exists a minimum 
is to say that the inf in (1.3) is a min; the infimum j = j(i) can then be called the 
minimal value. The notation 

min (f(x) : x E X} 

is the same as (1.3), and says that there does exist a solution; we stress the fact that both 
notations represent at the same time a number and a problem to solve. It is sometimes 
convenient to denote by 

Argmin (f(x) : x E X} 

the set of optimal solutions of (1.3), and to use "argmin" if the solution is unique. 
It is worth mentioning that the decoupling property (1.5) has a translation in terms 

of Argmin's. More precisely, the following properties are easy to see: 

- If (i, ji) minimizes g over X x Y, then ji minimizes g(i, .) over Y and i minimizes 
over X the function 

qJ(x) := inf {g(x, y) : y E Y}. 

- Conversely, if i minimizes qJ over X and if ji minimizes g(i, .) over Y, then (i, ji) 
minimizes g over X x Y. 

Needless to say, symmetric properties are established, interchanging the roles of x 
andy. 
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1.4 In our context, X is equipped with a topology; actually X is a subset of some 
finite-dimensional real vector space, call it JRn; the topology is then that induced by a 
norm. The interior and closure of X are denoted int X and cl X respectively. 

The concept of limit is assumed familiar. We recall that the limes inferior (in the 
ordered set JR) is the smallest cluster point. 

Remark 1.1 The standard terminology is lower limit ("abbreviated" as lim inf!). This ter
minology is unfortunate, however: a limit must be a well-defined unique element; otherwise, 
expressions such as "/(x) has a limit" are ambiguous. D 

Thus, to say thaU = liminfx-+x* f(x), withx* E cl X, means: for aIls> 0, 

there is a neighborhoodN(x*) such that f(x) ;;:: l- s for all x E N(x*) 
and 

in any neighborhood N(x*), there is anx E N(x*) such that f(x) :::;; l + s; 

in particular, if x* E X, we certainly have l :::;; f(x*). 
Letx* E x. Iff(x*) :::;; liminfx-+x* f(x),fissaidtobe[owersemi-continuous 

(l.s.c) atx*; and upper semi-continuous when f(x*) ;;:: limsupx-+x* f(x). It is well
known that, if X is a compact set on which f is continuous, then the lower bound 
j exists and (1.3) has a solution. Actually, lower semi-continuity (of f on the whole 
compact X) suffices: if {Xk} is a minimizing sequence, with some cluster point x* E X, 
we have 

f(x*) :::;; lim inf f(Xk) = lim f(Xk) = j. 
k-+oo k-+oo 

Another observation is: let E be such that cl E C X; if f is continuous on cl E, 
then 

inf{f(x) : x E E} = inf{f(x) : x E clE}. 

This relation is wrong if f is only l.s.c, though: then, only (1.1) gives useful relations. 
Related with (1.3), another problem is whether a given minimizing sequence {Xk} 

converges to an optimal solution when k _ +00. This problem is really distinct from 
(1.3): for example, with 

X:= JR, f(O):= 0, f(x):= Ijlxl for x :;6 0 

the sequence defined by Xk = k is minimizing but does not converge to the minimum 
o when k _ +00. 

2 The Set of Extended Real Numbers 

In convex analysis and optimization, there are serious reasons to give a meaning to 
(1.3), for arbitrary f and X. For this, two additional elements are appended to JR: +00 
and -00. 

If E c JR is nonempty but unbounded from above, we set sup E = +00; similarly, 
inf E = -00 if E is unbounded from below. Then consider the case of an empty set: 
to maintain a relation such as (1.1) 
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inf(E U 0)[= inf E] = min {inf E, inf0} for all 0 =1= E C 1R, 

we have no choice and we set 
inf0 = +00; 

naturally, sup 0 = -00, and this maintains the relation inf( - E) = - sup E in (1.2). 
It should be noted that the world of convex analysis and minimization, which starts 

at (1.3), is not symmetric: +00 and -00 do not play the same role, and it suffices for 
our purpose to consider the set lR U {+oo}. Extending the notation of the intervals of 
lR, this set will also be denoted by] - 00, +00]. 

To extend the structure oflR to this new set, the natural rules are adopted: 

order: x::::; + 00 for all x E lR U {+oo} ; 
addition: (+00) + x = x + (+00) = +00 for all x E lR U {+oo}; 

multiplication: t . (+00) = +00 for all 0 < t E lR U {+oo} . 

Thus, we see that 

- the structured set (lR U {+oo}, + ) is not a group, just because +00 has no opposite; 
- it is a fortiori not a field, a second reason being that we avoid writing t x (+00) for 

t::::; O. 

On the other hand, we leave it to the reader to check that the other axioms are preserved 
(for the order, the addition and the multiplication); so some calculus can at least be 
done in lR U {+oo}. 

Actually, IR U {+oo} is nothing more than an ordered convex cone, analogous 
to the set lRt of positive numbers. In particular, observe the following continuity 
properties: 

(Xko Yk) -+ (x, y) in[lR U {+00}]2 ===} Xk + Yk -+ x + Y inlR U {+oo}; 
(tk, Xk) -+ (t, x) inlRt x [lR U {+oo}] ===} tkxk -+ tx inlR U {+oo}. 

In this book, the minimization problems of § I - and in particular (1.3) - will 
be understood as posed in lR U {+oo}. The advantage of this is to give a systematic 
meaning to all the relations of § 1. On the other hand, the reader should not feel too 
encumbered by this new set, which takes the place of the familiar set of real numbers 
where algebra is "easy". First of all, lR U {+oo} is relevant only as far as images 
of functions are concerned: any algebraic manipulations involving no term f(x) is 
"safe" and requires no special attention. When some f(x) is involved, the following 
pragmatic attitude can be adopted: 

- comparison and addition: no problems in lR U {+oo}, just as in lR; 
- subtraction: before subtracting f(x), make sure that f(x) < +00; 
- multiplication: think of a term like t f(x) as the multiplication of the vector f(x) 

by the scalar t; ift ::::; 0, make sure that f(x) < +00 (note: in convex analysis and 
optimization, the product of functions f(x )g(x) is rarely used, and multiplication 
by -1 puts (1.3) in a different world); 

- division: same problems as in lR, namely avoid division by 0; 
- convergence: same problems as in lR, namely pay attention to 00 - 00 and 0 . (+00); 

- in general, do not abuse expressions like tf(x) with t ::::; 0, or r - f(x), etc.: they 
do not fit well with the conical structure of lR U {+oo}. 
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3 Linear and Bilinear Algebra 

3.0 Let us start with the model-situation of]Rn, the real n-dimensional vector space 
of n-uples x = (; I, ... , ;n). In this space, the vectors el, ... , en, where each ei has 
coordinates (0, ... , 0, 1, 0, ... , 0) (the "1" in jlh position) form a basis, called the 
canonical basis. The linear mappings from JR.m to JR.n are identified with the n x m 
matrices which represent them in the canonical bases; vectors ofJR.n are thus naturally 
identified with n x 1 matrices. 

The space JR.n is equipped with the canonical, or standard, Euclidean structure 
with the help of the scalar product 

n 
(el en) ( I n) T . '" ei i x = ., , ... ,., ,y = 1/ , ••. , 1/ ~ x y.= ~., 1/ 

i=1 

(also denoted by x . y). Then we can speak of the Euclidean space (JR.n, T). 

3.1 More generally, a Euclidean space is a real vector space, say X, ofjinite dimension, 
say n, equipped with a scalar product denoted by (., .). Recall that a scalar ( or inner) 
product is a bilinear symmetric mapping (., .) from X x X to JR., satisfying (x, x) > 0 
for x =1= o. 

(a) If a basis {b l , •.. , bn 1 has been chosen in X, along which two vectors x and y 
have the coordinates (;1, ... , ;n) and (1/1, ... ,1/n), we have 

n 

(x, y) = L ;i1/ j (bi, bj ). 

i,j=1 

This can be written (x, y) = X T Qy, where Q is a symmetric positive definite n x n 
matrix. In this situation, to equip X with a scalar product is actually to take a symmetric 
positive definite matrix. 

The simplest matrix Q is the identity matrix I, or In, which corresponds to the 
scalar product 

n 

(x,y) =xTy= 2)i1/i , 
i=1 

called the dot-product. For this particular product, one has (b;, bj) = oij (oij is the 
symbol of Kronecker: oij = 0 if i =/:. j,o;; = I). The basis {bit ... , bnl is said 
orthonormal for this scalar product; and this scalar product is of course the only one 
for which the given basis is orthonormal. 

Thus, whenever we have a basis in X, we know all the possible ways of equipping 
X with a Euclidean structure. 

(b) Reasoning the other direction, let us start from a Euclidean space (X, (., .}) of 
dimension n. It is possible to find a basis {bit ... ,bnl of X, which is orthonormal for 
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the given scalar product (i.e. which satisfies (hi, hj ) = oij for i, j = 1, ... , n). If two 
vectors x and y are expressed in terms of this basis, (x, y) can be written x T y. 

Use the space ]Rn of §3.0 and denote by f{J : ]Rn ~ X the unique linear mapping 
(isomorphism of vector spaces) satisfying f{J(ei) = hi for i = 1, ... , n. Then 

x T y = (f{J(x), f{J(y») for all x andy in]Rn , 

so the Euclidean structure is also carried over by f{J, which is therefore an isomorphism 
of Euclidean spaces as well. Thus, any Euclidean space (X, (., .) of dimension n is 
isomorphic to (]Rn, T ), which explains the importance of this last space. However, 
given a Euclidean space, an orthonormal basis need not be easy to construct; said 
otherwise, one must sometimes content oneself with a scalar product imposed by the 
problem considered. 

Examples 3.1 (i) An important space for applications is the Sobolev space HI (.Q), 

with for example .Q = ]0, 1[, in which the scalar product of two functions x and y is 

11 [x(t)y(t) + x (t)y(t)]dt . (3.1) 

For a simple discretization of this function space, set h = lin and, for i = 1, ... , n, 
let ~i, I'/i approximate the mean value of x, yon](i - I)h, ih[; we have now a vector 
space ofn-uples (note, however, that more sophisticated discretizations can be used). 
To take into account the derivatives in (3.1), append to any vector (~I, ... , ~n) E ]Rn 
the two dummy coordinates ~o = ~n+1 = O. Then the following scalar product is 
natural: 

n 
h ?:~il'/i + h t ~i+1 - ~i l'/i+1 - I'/i 

1=1 i=o h h 

(ii) Vector spaces of matrices form a rich field of applications for the techniques and 
results of convex analysis and optimization. The set of p x q matrices forms a vector 
space of dimension p + q, in which the scalar product of two matrices M and N 
defined by 

(M, N) := tr MT N [= trace of MT N] 

is a natural one. o 

(c) A subspace V of (X, (', .) can be equipped with the Euclidean structure defined 
by 

V x V :3 (x, y) H- (x, y) . 

Unless otherwise specified, we will generally use this induced structure, with the same 
notation for the scalar product in V and in X. 

More importantly, let (XIo (', ')1) and (X2 , (., .)z) be two Euclidean spaces. Their 
Cartesian product X = XI X X2 can be made Euclidean via the scalar product 

«XI, X2), (YI, .Y2» = (x, y) H- «x, y)) := (XI, ydl + (x2,.Y2h. 

This is not compulsory: cases may occur in which the product-space X has its own 
Euclidean structure, not possessing this "decomposability" property. 
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3.2 Let (X, (', .») and (Y, ((', .») be two Euclidean spaces, knowing that we could 
write just as well X = IRn and Y = JRm • 

(a) If A is a linear operator from Xto Y, the adjoint of A is the unique operator A* 
from Y to X, defined by 

(A*y, x) = ((y, Ax» for all (x, y) E X X Y. 

There holds (A*)* = A. When both X and Y have orthonormal bases (as is the 
case with canonical bases for the dot-product in the respective spaces), the matrix 
representing A* in these bases is the transpose of the matrix representing A. 

Consider the case (Y, ((., .)}) = (X, (-, .». When A is invertible, so is A*, and 
(A*)-I = (A- 1)*. When A* = A, we say that A is self-adjoint, or symmetric. If, in 
addition, 

(Ax,x»O [resp.~O] forall0i=xEX, 

then A is positive definite [resp. positive semi-definite]. When X = Y is equipped with 
an orthonormal basis, symmetric operators can be characterized in terms of matrices: 
A is symmetric [resp. symmetric positive (semi)-definite] if and only if the matrix 
representing A (in the orthonormal basis) is symmetric [resp. symmetric positive 
(semi)-definite ]. 

(b) When the image-space Y is JR, an operator is rather called aform. If.e is a linear 
form on (X, (', .»), there exists a unique SEX such that.e(x) = (s, x) for all x E X. 
If q is a quadratic form on (X, (', .»), there exists a unique symmetric operator Q such 
that 

q(x) := !(Qx, x) for all x E X 

(the coefficient 112 is useful to simplify most algebraic manipulations). 

Remark 3.2 The correspondence .e ~ s is a triviality in (JRn , T) (just transpose 
the 1 x n matrices to vectors) but this is deceiving. Indeed, it is the correspondence 
X ~ X* between a space and its dual that is being considered. For two vectors s and 
x of X, it is good practice to think of the scalar product (s, x) as the action of the first 
argument s (a slope, representing an element in the dual) on the second argument x; 
this helps one to understand what one is doing. Likewise, the operator Q associated 
with a quadratic form sends Xto X*; and an adjoint A* is from Y* to X*. 0 

3.3 Two subspaces U and V of (X, (', .») are mutually orthogonal if 

(u, v) = 0 for all u E U and v E V , 

a relation denoted by U .1.. V. On the other hand, U and V are generators of X if 
U + V = X. For given U, we denote by U..L the orthogonal supplement of U, i.e. the 
unique subspace orthogonal to U such that U and U..L form a generator of X. 

Let A : X ~ Y be an arbitrary linear operator, X and Y having arbitrary scalar 
products. As can easily be seen, 
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Ker A := {x EX: Ax = 0 E Y} 

and 
ImA* := {x EX: x = A*s for somes E Y} 

are orthogonal generators of X. In other words, 

Ker A = (1m A*).L . 

This is a very important relation; one must learn to use it quasi-mechanically, remem
bering that A** = A and U.L.L = U. For example, if A is symmetric, ImA is the 
orthogonal supplement ofKer A. 

Important examples oflinear operators from (X, (', .)) to itself are orthogonal 
projections: if H is a subspace of X, the operator PH: X ---+ X of orthogonal 
projection onto H is defined by: 

PHx = 0 for x E H.L, 
PHx = x for x E H, 
PHis completed by linearity in between. 

This PHis symmetric and idempotent (i.e. PH 0 PH = PH). Conversely, a linear 
operator p which is symmetric and idempotent is an orthogonal projection; of course, 
it is the projection onto the subspace 1m p. 

3.4 If A is a symmetric linear operator on X, remember that (lmA).L = Ker A. Then 
consider the operator Plm A of orthogonal projection onto 1m A. For given Y E X, 
there is a unique x = x(y) in 1m A such that Ax = Plm AY; furthermore, the mapping 
Y ~ x (y) is linear. This mapping is called the pseudo-inverse, or generalized inverse, 
of A (more specifically, it the pseudo-inverse of Moore and Penrose). We denote it by 
A -; other notations are A +, A#, etc. 

We recall some useful properties of the pseudo-inverse: 1m A - = 1m A; A - A = 
A A - = PIm A; and if A is positive semi-definite, so is A - . 

4 Differentiation in a Euclidean Space 

A Euclidean space (X, (., .}) is a normed vector space (certainly complete) thanks to 
the norm 

X3X~ IIxll :=J(x,x}, 

called the Euclidean norm associated with (', .). We denote by 

B(x,r):= lYE X: lIy-xll ~r} 

the ball of center x E X and radius r > O. In particular, B(O, I) is called the unit ball, 
whose boundary is the unit sphere 

B(O, 1) := {y EX: lIyll = I} . 
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The norm and scalar product are related by the fundamental Cauchy-Schwarz inequal
ity (no "t", please) 

l(s,x)1 ~ IIsllllxll for all (s,x) E Xx X. 

Remember that all norms are equivalent in our finite-dimensional space X: if III . m is 
another norm, there are positive numbers l and L such that 

lUlxl1 ~ IIxll ~ LI~x~1 for all x EX. 

However, the Euclidean norm II . II plays a special role. 

4.1 We will denote by e(·) a generic function (from some normed space to another) 
which tends to 0 when its argument tends to O. For example, the continuity of I at x 
can be expressed by 

I(x + h) = I(x) + e(h). 

When we need to distinguish speeds of convergence, multiplicative factors can be 
used. For example, 

IIhllil.s(h) fora = 1,2,··· 

denotes the functions tending to 0 faster than II h II, II h 11 2 , • •• A more handy notation 
for IIhllile(h) is o(lIhllil) (pronounce "little oh of ... "). 

Beware that these are only notations, and algebraic manipulation with them should 
be done very carefully. For example e(·) == reO for all r =f. 0, hence in particular 
eO - eO = eO! Always keep the definitions in mind; for example, to say that a 
function h ~ (()(h) is o(lIhll) means: 

Ve > 0 38> 0 such that IIhll ~ 8 ==> 1I({)(h)1I ~ ellhll. 

With this last notation, a function I : Q ~ JR, defined on an open set Q C X, 
is said to be differentiable at x E [} if there exists a linear form e on X such that 

I(x + h) = I(x) + e(h) + o(lIhID. 

This linear form e, denoted by /,(x), D/(x) or d/(x), is called the differential of 
I at x. According to §3.2(b), it can be represented by a unique element of X; this 
element is called the gradient of I at x, denoted by V I(x), and is therefore defined 
by 

If (x)(h) = (V I(x), h) for all hEX. 

Example 4.1 Let HeX be a subspace, equipped with the Euclidean structure 
induced by (X, (.,.» as in §3.1(c). If lis differentiable atx E H, its gradient V I(x) 
is obtained from 

I(x + h) = I(x) + (V I(x), h) + o(lIhID. (4.1) 

Then define the function I H : H ~ JR to be the restriction of I to H. This I H 
is differentiable at x and its gradient V I H(X) is the vector (of HI) satisfying 
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I(x + h) = I(x) + (V IH(X), h} + o(lIhlD for all h E H. 

Its computation is simple: in view of the properties of an orthogonal projection, 

(V I(x) , h} = (PHV I(x), h} for all hE H; 

Plugging this into (4.1), we see that V IH(X) = PHV I(x). o 

It is important to realize that the representation of I' (x) by V I(x) changes if 
( ., .) is changed. The gradient depends on the scalar product; but the differential does 
not. 

If the space is equipped with an orthonormal basis, along which x has the coor
dinates ~ I , ... , ~n , then f' (x) is represented by the row-matrix 

[ al a/ ] 
a~1 (x), ... , a~n (x) 

and V I(x) is the vector ofll~n whose coordinates are (al/a~i)(x) for i = I, ... , n. 

4.2 More generally, a function F from il C X to some other Euclidean space, say 
Y = IRm, is differentiable at x E il if there exists a linear operator L from X to Y 
such that 

F(x + h) = F(x) + L(h) + o(lIhID. 

The differential L of F at x is also called the Jacobian operator of F at x, again 
denoted by F'(x), DF(x), or also JF(x). Nothing is really new with respect to the 
scalar case of §4.1; denoting by fi, ... , 1m the component-functions of F along some 
basis of Y, F is differentiable at x if and only if each Jj is such and 

JF(x)(h) = U{(x)(h), ... , f",(x)(h») for all hEX. 

The matrix representation of JF(x) along the bases of X and Y is an m x n matrix, 
whose (i, j)tb element is (afi/a~j)(x). 

Given a scalar-valued function I, differentiable on il, consider the function y ~ 
I' (y), sending il to the space of linear forms on X. If this new function is in turn 
differentiable at x, we obtain the second-order differential (of I at x). This defines a 
bilinear lorm via 

X x X 3 (h, k) ~ [(/)'(x)(h)](k) =: I"(x)(h, k), 

which is also symmetric; as such, it induces a quadratic form on X (for which we will 
use the same notation). 

If X is equipped with a scalar product (., .), §3.2(b) tells us that the quadratic 
form I" (x) defines a symmetric operator: the Hessian of I at x, denoted by V2 I(x), 
or H/(x). Just as the gradient, the Hessian depends on the scalar product; and there 
holds the second-order approximation of I at x: 

I(x + h) = I(x) + (V I(x), h} + !(V2/(x)h, h) + o(lIhIl2). 

With an orthonormal basis and x = (~I, ... , ~n), V 2 /(x) is represented by 
a symmetric matrix whose (i, j)tb element is (a 2 I/a~i a~j)(x), called the Hessian 
matrix of I at x. 
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4.3 For an illustration, consider the space X of n x n matrices, equipped with the 
scalar product ((M, N)) = tr(MTN) of Example 3.1(ii). On this space, take the 
determinant-function: 

X 3 M 1-+ f(M) = detM. 

Develop det M along the i th column of M = [m ij] to obtain 

detM = milci) + mi2ci2 + ... + minCin, 

Cij denoting the (i, j)th cofactor of M. Thus, calling cof M = [cij] the matrix of 
cofactors of M, we have 

hence 

adet 
-!l-(M)=Cij fori,j=l, ... ,n, 
umij 

n 

X3 P = [Pij] 1-+ (det)'(M)(P) = L CijPij = tr(cof M)T p). 
i,j=) 

This shows that V (det) (M) = cof M [= (det M) [M-)] T if M is invertible]. 
Now, with K+ denoting the set of symmetric positive definite n x n matrices (an 

open set in X), consider the function 

K+ 3 M 1-+ log(det M) . 

This new function is of interest because maximizing the determinant in a subset of 
K+ is equivalent to maximizing its logarithm, and cannot produce a singular matrix: 
log det acts as a ba"ier in K+. Using standard calculus rules, we obtain 

V(logdet)(M) = M-); 

to memorize this formula, think of the derivative of log on IRt! 

5 Set-Valued Analysis 

5.1 If S is a nonempty closed subset oflRn , we denote by 

dS(x) := min lIy - xII 
yES 

the distance from x to S. Given two nonempty closed sets S) and S2, consider 

eH(S)/~) :=sup{ds2(x): x E Sd, 

called the excess of S) over ~: geometrically, 

eH(SJ/S2) ~ 8 means S) C S2 + B(O, 8). 
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The Hausdor:ff-distance ..1 H between SI and ~ is then the symmetrization of the 
above concept: 

..1H(SJ, S2) := max (eH(SII S2), eH(S2I SI)} . 

One checks immediately that ..1H(SJ, S2) E lR+ U {+oo}, but..1H is a finite-valued 
function when restricted to bounded closed sets. Also 

..1H(SJ, S2) = 0 ¢:::::} SI = S2, 

..1H(SI, S2) = ..1H(S2, SI), 
..1H(SI, S3) ~ ..1H(SI, S2) + ..1H(~, S3). 

In other words, ..1 H does define a distance on the family of nonempty compact subsets 
oflRn. 

5.2 A mapping F which, to x E X, associates a subset oflRn , is called a multi-valued, 
or set-valued mapping, or more simply a multifonction; we use the notation 

X:3 x 1---+ F(x) c lRn . 

The domain dom F of F is the set of x E X such that F (x) =1= 10. Its image (or range) 
F(X) and graph gr Fare the unions of the sets F(x) c lRn and {x} x F(x) c Xx IRn 
respectively, when x describes X (or, more precisely, dom F). A selection of F is a 
particular function I: dom F -+ lRn with I(x) E F(x) for all x. 

The concept of convergence is here much more tricky than in the single-valued 
case. First of all, since a limit is going to be a set anyway, the following concept is 
relevant: the limes exterior of F(x) for x -+ x* is the set of all cluster points of all 
selections(here,x* E cl domF).Inotherwords,y E limextx-+x* F(x) means: there 
exists a sequence (Xk, yklk such that 

Yk E F(Xk) , Xk -+ x* and Yk -+ Y when k -+ +00. 

Note that this does not depend on multi-valuedness: each F(x) might well be a sin
gleton for all x. For example, 

limext{sin(llt)} = [-1, +1]. 
t,j,o 

The limes interior of F(x) for x -+ x* is the set of limits of all convergent 
selections: Y E lim intx-+x* F(x) means that there exists a function x ~ I(x) such 
that 

I(x) E F(x) for all x and I(x) -+ Y when x -+ x* . 

Clearly enough, one always has lim int F(x) C lim ext F(x); when these two sets are 
equal, the common set is the limit of F(x) when x -+ x*. 

Remark 5.1 The above concepts are classical but one usually speaks oflim sup and lim info 
The reason is that the lim ext Crespo limint] is the largest Crespo smallest] cluster set for the 
order "c". Such a terminology is however misleading, since this order does not generalize 
"~". 

For example, with X = {I, 1/2, ... , II k, ... } (and x* = 0) what are the lim sup and 
lim inf of the sequence {(_I)k} for k -+ +oo? With the classical terminology, there are two 
contradictory answers: 
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- If {( _l)k) is considered as a sequence of numbers in the ordered set (JR, ~), then 

limsup(-ll = 1 and liminf(-ll = -1. 

- If {( -1 )k) is considered as a sequence of singletons in the ordered set (ZR, c), then 

limsup{(-l)k} = {-I, +1} and liminf{(-I)k} = 0. o 

Beware that the above limes may cover somewhat pathological behaviours. Take 
for example the multifunction 

]0, +00[:3 t 1---+ F(t):= {O, lit} c lR. 

Then limextt~O F(t) = {OJ, a set which does not reflect the intuitive idea that a 
lim ext should connote. Note: in this example, LlH[F(t), {O}] = e[F(t)/{On ~ +00 
when t -I- O. The same pathological behaviour of the Hausdorff distance occurs in the 
following example: 

F(t) := [0, lit] for t > 0 and F(O) = [0, +00[. 

Then F(O) = limt~o F(t) but LlH[F(t), F(O)] == +00. 

5.3 The multifunction F is said to be bounded-valued, closed-valued, convex-valued 
etc. when the sets F(x) are bounded, closed, convex etc. In order to avoid the nasty 
situations mentioned above, a convenient property is local boundedness: we say that 
the multifunction F is locally bounded near x * when: 

For some neighborhood N of x* and bounded set B C IRn , 

N C dom F and F(N) C B . 
(5.1) 

If F is locally bounded near every x* in a set S, we say that F is locally bounded on 
S. Then a multifunction F satisfying (5.1) is 

- outer semi-continuous at x* when 

limextF(x) C F(x*) , 
x-+x* 

- inner semi-continuous at x* when 

F(x*) C lim int F(x) . 
x-+x* 

- continuous when it is both outer and inner semi-continuous. 

When F is closed-valued, these definitions can be made more handy thanks to 
(5.1), namely: for all s > 0, there is a neighborhood N(x*) such that x E N(x*) 
implies 

F(x) c F(x*) + B(O, s) 
F(x*) c F(x) + B(O, s). 

[outer semi-continuity] 
[inner semi-continuity] 

It is straightforward to check that (5.2) has an equivalent in terms of excesses: 

(5.Z) 
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e[F(x)/ F(x*)] ~ e 
e[F(x*)/ F(x)] ~ e. 

[ outer semi-continuity] 
[inner semi-continuity] 

In words, outer semi-continuity at x* means: all the points in F(x) are close 
to F (x *) if the varying x is close to the fixed x *. When moving away from x *, F 
does not expand suddenly. Inner semi-continuity is the other way round: F(x) does 
not explode when the varying x reaches x*. If the mapping is actually single-valued, 
both definitions coincide with that of a continuous function at x*. In practice, outer 
semi-continuity is frequently encountered, while inner semi-continuity is less natural. 

5.4 Finally, we mention a situation in which limits and continuity have a natural 
definition: when X is an ordered set, and x ~ F(x) is nested. For example, take 
X = lR+ and let t ~ F(t) satisfy 

Then the set 

t ~ t ' > 0 ===} F(t) c F(t') . 

lim F(t) := cl U{F(t) : t > O} 
t,j,.o 

coincides with the limit of F defined in §5.2. 

6 A Bird's Eye View of Measure Theory and Integration 

We equip lRn with the Lebesgue measure, denoted by J./." or J./.,n if necessary. The 
integrability (with respect to J./.,) ofa function f is always understood in Lebesgue's 
sense; the integral of f is denoted by J f dJ./." but we also use the more familiar notation 

( f(x) dx or 
Jan 

( f(I;I, ... , I;n) dl;l ... dl;n. 
Jan 

For example, if a measurable set S C lRn is bounded, and if its characteristic function 
is xs (1 on S, 0 elsewhere), we have Jan xs(x)dx = J./.,(S). 

6.1 For univariate functions, Lebesgue s differentiation theorem is as follows. If f : 
[a, b] -+ lR is increasing, then f is differentiable almost everywhere (i.e. the set 
where f has no derivative is of zero measure). Recall that a function as above need 
not be continuous, but has only countably many discontinuities. 

A function J : [a, b] -+ lR is absolutely continuous when it satisfies the following 
property. For any e > 0, there exists 8 such that, for any countable collection of disjoint 
subintervals [ako bk[C [a, b] with Lk(bk-ak) ~ 8,onehas Lk IJ(bk)- J(ak) I ~ e. 

The fundamental property of absolutely continuous functions is that, except pos
sibly on a set of measure zero, they have a (finite) derivative and 

J(b) - J(a) = lab !'(t)dt. 
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In words, an absolutely continuous function is the integral of its derivative, which 
exists at sufficiently many points. Another way of saying the same thing: a function 
I is absolutely continuous (on [a, b]) if, and only if, it is the indefinite integral of an 
integrable function; there is g integrable such that 

I(y) = I(x) + iY get) dt (a ~ x < y ~ b) . 

6.2 Fatou s Lemma. Let {Ik} be a sequence of nonnegative measurable functions on 
IRn and define the function x ~ I(x) := liminfk-++oo fk(X). Then the following 
inequality holds: 

[ I(x)dx ~ liminf [ Ik(X)dx; 
Jan k-++oo JRn 

"integrating nonnegative functions is a lower semi-continuous operation". 

Fubini s Theorem of successive integrations. Let I : IRP x IRq ~ IR be a measurable 
function and assume that one of the integrals 

fap+q I/(x, y)1 dx dy, fap (faq I/(x, Y)ldy] dx, faq (fRP I/(x, y)ldx] dy 

is finite (this is therefore an integrability assumption). Then 

[ I(x, y) dx dy = [ [[ I(x, Y)dY] dx = [ [[ I(x, Y)dx] dy. 
Jap+q Jap Jaq Jaq JRP 

We retain in particular that, for an integrable function, the above formula of successive 
integrations is true. 

A frequent use of this theorem is when f is the characteristic function of some 
set S c IRP x IRq (and this is precisely what is needed in this book). Then I(x, .) is 
the characteristic function of the "slice" of S along x; this is the set 

Sx := {y E IRq : (x, y) E S} . 

For example, Fubini's Theorem tells us that, if S is bounded and measurable, the 
measure of S (in IRp+q) can be computed by integrating the measure of Sx (in IRq): 

J..Lp+q(S) = [ J..Lq(Sx)dx. 
JRP 

Thus: 
- If Sx is of zero measure for (almost) all x, then S is of zero measure; this is a 

common way of showing that a set is of zero measure. 
- If S is of zero measure, then almost all its slices are of zero measure (draw pictures 

in ]R2 to be convinced that the word "almost" is essential). 
Finally, the integrable character of a function I : IRn ~ IR, as well as the value 

of its integral, are independent of any system of coordinates in IRn. 
A good reference for this Section 6 is for example [172, Chap. 13]; we also suggest 

[181] more particularly for §6.l. 
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Some notion of convexity appeared already in Archimedes' works. Closer to us, 
modem convexity theory resulted in several branches, using often the same tools or 
basic concepts, but with problems to solve of diverse nature: geometric convexity is 
one example. In the present book, it is the variational aspect, or the relationship with 
continuous optimization that we have stressed. 

The development of convexity during the last half-century owes much to W. Fen
chel (1905-1988), 1-1 Moreau (1923-), R.T.Rockafellar (1935-). Fenchel was very 
"geometrical"; Moreau, according to his own words, did applied mechanics: he "ap
plied Mechanics to Mathematics"; while the concept of "dual problem" is a constant 
leading thread for Rockafellar. Besides mechanics, one should not forget that convex
ity comes naturally into play in another branch of science: thermodynamics. There, 
"convexifying" a function (passing from f to co f) is a common operation. The 
works of the physicist IW. Gibbs (1839-1903) were a benchmark in this respect: read 
A.S. Wightman'S introduction to [82]: "Convexity and the notion of equilibrium state 
in thermodynamics and statistical mechanics". 

For the reader wanting to start a library, here are some suggested books: 

- First of all, the reference book to keep on the shelf, as far as convex analysis in finite 
dimension is concerned, is [159]. 

- Convex sets and functions in infinite dimension: [131], [49, Chaps I-III], [160], 
[12], [8, Part I], [33], [78], [97, Chaps VI-VII], [143], [27]. 

- Convexity and mathematical economics: [132], [7], [8]. 
- Convexity in variational problems: [3], [49], [81], [177], [184]. 

- Convexity and approximation theory: [77], [97]. 
- Convexity in statistics, in statistical mechanics: [13], [51]. 
- Use of convexity in nonsmooth analysis [164], [37], [166]. 

We now give some comments for more detail on subjects treated in the present 
volume. 

Chapter I. Convex functions of one real variable have a fairly old history, which 
followed that of modem analysis. These functions play a role in fields as different 
as: functional analysis (construction of Bimbaum-Orlicz spaces), probability theory 
(when using Young functions in martingale theory), graph theory (optimization of 
flows in a network). The introduction of the contemporary presentation, with functions 
assuming the value +00 (§1.3), was influenced by [158, §2]. 
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For an illustration of the function 0 < x H- xf(l/x), with f convex (Theorem 
1.1.6), see [15]. The convergence result announced in Proposition 2.2.3 can be found 
for example in [172, Chap. 13, § 12]. See [58, p.23] for the mean-value theorem in 
inequality form, used in the proof of Theorem 5.3.1. 

Let u : 1R+ --+ 1R+ be continuous, strictly increasing, satisfying u(O) = 0, and 
call v its inverse function. Then 

sx :::;; lox u(a) da + los v(f3) df3 for all x ~ 0 and s ~ O. 

This inequality, due to W.H. Young (1912), is a particular case ofFenchel's inequal
ity: take f(x) = g u(a)da, so that /*(s) = los v(f3)df3. Besides, it contains the 
essential part of it (the "functions" of and 0/* are increasing, so to speak); hence 
the name Young-Fenchel for inequality (6.1.1.). This inequality will be seen in a 
multi-dimensional context in the second volume of this book, Chap. X. 

For a numerical calculation of the conjugate /*, or rather (f + I[a,b])*, in one 
dimension, and via an algorithm connoting the fast Fourier transform, see [28]. Iterated 
convolutions of probability laws playa central role in probability calculus, for which 
the Fourier transform is the main tool. Likewise, inf-convolutions of the objective 
function are fundamental for dynamic programming, and there it is the transformation 
of Fenchel (conjugacy) that comes into play. This analogy is explained and used in 
[156]. 

Finally, we mention a peculiarity of the univariate inf-convolution: even when f 
and g are Coo (or even polynomials), f t g is of class C6 but need not be of class C7 • 

This is due to [87], where the following example can be found: 

f(x) = ~X4 and g(x) = ~X6 • 

Then 
(ft g)(x) = kX 6 - ~lx120/3 + h(x) , 

with h E C7 (1R). Note that 20/3 < 7! 

Chapter II. Our exposition is quite close in spirit to [46], an excellent textbook with a 
large part devoted to the important field ofleast squares. See also [56], which contains 
a treatment of the constrained case. 

The steepest-descent method is traditionally attributed to A. Cauchy [34]. To solve 
a system of equations, say F(x) = 0, he designed the gradient method minimizing 
the squared norm F(x) T F(x). It is interesting to mention that he was worried by 
the speed of convergence, and proposed to graft Newton's method at the end of the 
algorithm. Another interesting remark is that he claimed convergence, based on the 
following argument: we have a sequence {8k} of positive numbers which is decreasing; 
hence Ok --+ 0 (needless to say, the property was nonetheless true; we mention here 
that Cauchy is considered as one of the most rigorous mathematicians of his time). 
Theorem 2.2.4 comes from [144, §6.1]. 

For Newton's method, a classical designation is "Newton-Raphson-Kantoro
vitch". Conjugate gradients are due to the fundamental paper [69], which should 
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still be carefully read by anyone working in numerical analysis. As for quasi-Newton 
methods, the seminal paper is [41] by W.C.Davidon, a physicist who was not so 
concerned by Hessian operators, but rather by covariance matrices. His work was 
not published in an international journal until 1991: see [42] and its lively "belated 
preface". However [41] was quickly popularized in the mathematical community by 
[57]; then, for a decade or two, the vast majority of papers in nonlinear numerical 
optimization dealt with quasi-Newton methods. 

For views ofline-searches close to those exposed here, see for example the little
known [186], [105], [128], and also the first edition of [56]. It should be mentioned 
that the modem tendency goes towards the so-called trust-region technique, surveyed 
in [127]. In Chap. XV of the present book, a few words will be said on the connection 
between this technique, line-searches, and nonsmooth optimization. The counter
example alluded to in Remark 2.4.4 is due to [150]; but it uses an exact line-search, 
and it is not clear whether a descent test resembling (3.2.1) is satisfied by that counter
example. For some more views on safe programming of a numerical algorithm (§3.4) 
see also [126]. 

Chapter HI. The first systematic study of convexity (in finite dimension) is due to 
H. Minkowski (1864-1909); most ideas on the subject can be found in his works, at 
least in seminal form. Theorem 1.3.6 ofCaratheodory (1873-1950) goes back also to 
the very beginning of the XXtb Century. A proof of the Fenchel-Bunt Theorem 1.3.7 
can be found in [50, Thm 18(ii)], or [83, Lemma B.2.2]. Along the lines of these 
results, we mention the following theorem (of Shapley-Folkman). Let S), ... , Sk be 
subsets of an and S := SI + ... + Sk (we know that co S = co SI + ... + co Sk). 

Any x E co S can be expressed as XI + ... + Xk, with Xi E co Si, and the set of i 
such that Xi ¢ Si having at most n elements. This theorem and Caratheodory's can 
be viewed as particular cases of a more general result ([5, Lemma I]), relating the 
dimension of a face of C exposed by s and that of A(C) (A being affine) exposed 
by As. Minkowski's Theorem 2.3.4 has a generalization to infinite dimension, due 
to Krein and Milman: a compact convex set C in a Hausdorff locally convex vector 
space is the closed convex hull of its extreme points. This explains that Minkowski's 
theorem often appears under the banner ''theorem of Krein-Milman". 

Moreau's Theorem 3.2.5 goes back to 1962: [129]. For developments around 
the Minkowski-Farkas lemma and the associated historical context, consult for ex
ample [151], [169]. The use of separation theorems to obtain multipliers in nonlin
ear programming, and their development through the ages, are recorded in [149]. 
The directional differentiability Property 5.3.5 of Pc at X E C and the formula 
pc(x, .) = PTc(x)O are found in [189, p. 300] or [121, Prop. 2]. Note that Pc need 
not have a directional derivative at an X ¢ C. For this, additional properties on C are 
required. 

We have totally neglected here combinatorial aspects in the study of convex sets, 
and convex geometry. These subjects are treated in [98], [169], [66]. To know more 
on closed convex polyhedra, we recommend [29J. 
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Chapter Iv. The variational formulation of the sum of the m largest eigenvalues of 
a symmetric matrix A, as the support function of n = {Q : QT Q = 1m} (§1.3(e», 
is due to Ky Fan (1949). Incidentally, it can be shown that co n is nothing more than 
the set of positive semi-definite matrices A satisfying tr A = m and AI (A) ::; 1. 

The function CPS of Example 2.1.4 was introduced and studied towards the end 
of the sixties by E. Asplund, see for example [6]. The operator (A;-I + A;-I)-I, 
constructed in Example 2.3.8, is called the parallel sum of AI and A2 ; this parallel 
addition appeared for the first time in [4]. For more on the variational approach of this 
operation, see [120]. 

The Lipschitzian extension described in Proposition 3.1.4 uses essentially the 
Lipschitz property of f on C, convexity of f being present just to ensure the convexity 
of the extension ([70)). Actually, such a procedure goes back at least to Baire and 
Hausdorff. It must not be confused with the regularization-approximation technique 
based on the inf-convolution with the norm, alluded to in Proposition 1.2.2.4(j), and 
which will also appear in our §XI.3.4. This last technique (comparable to the Moreau
Yosida regularization of Proposition 1.2.2.4(i), using the squared norm) was pointed 
out and studied in the convex case in [71, §2]. 

The proof of Theorem 4.2.3 is that of [157, §44]. This last work contains in
teresting complements on convex functions. We recall that univariate second-order 
differentiation of convex functions is studied in our §I.5, where we prove (the univari
ate version of) Alexandroff's Theorem 4.3.4. For the multi-dimensional case, a proof 
somewhat technical but pedagogical and readable, can be found in the Appendix of 
[38]. 

Chapter V. The concept of support function has its roots in the works of Minkowski, 
who considered the three-dimensional case. However, the note [79] ofL. Hormander, 
written in a general context of locally convex topological spaces, was extremely in
fluential in modem developments. 

Let H be the set of positively homogeneous functions from jRn to R. This is a 
vector space, which can be equipped with the norm (assumed finite for simplicity) 

H 3 h H- mhlU:= sup Ih(x)l. 
IIxll=1 

In H, we find the convex cone K of (finite-valued) sublinear functions (1 : Rn ~ R 
Besides, consider the set C of non empty compact convex sets in lRn • The isomorphism 
of§3 

C 3 C H- (1C EKe H 

is sometimes called Radstrom's embedding. 
Formula (3.3.9), expressing the Hausdorff distance /J.H between two sets Sand 

S' with the help of their support functions, appears in [79]. We mention that distance 
functions can also be used: in fact, 

/J.H(S, S') = sup Ids(x) - ds,(x)l. 
XERn 

Both formulae are applicable to some extent to unbounded sets Sand S'. 



Bibliographical Comments 405 

Chapter VI. Various names appear in 1963 to denote a vector s satisfying (1.2.1): 
R.T. Rockafellar in his thesis (1963) calls s "a differential of I at x"; it is J.-J. Mo
reau who, in a Note aux Comptes-Rendus de l'Academie des Sciences (Paris, 1963), 
introduces for s the word "sous-gradient". Our existence proof in (§I.4) of such a 
subgradient is due to [26]. This is one of the possible arguments for proving the 
Hahn-Banach Theorem (see [114] for example), which can also be used in a more 
general context of Lipschitzian functions, as in [85]. 

In the years 1965-70, various calculus rules concerning sup-functions (§4.4) 
started to emerge. The time was ripe and several authors contributed to the sub
ject: B.N. Pschenichnyi, v.L. Levin, R.T. Rockafellar, A. Sotskov, ... who worked in 
the field and used various assumptions. However, the most elaborated results are 
due to M. Valadier. In particular, the idea of considering almost active indices ap
peared in [178]; the counter-example of (4.4.10) is extracted from [179]. Speaking 
of counter-examples, K.C. Kiwiel found (4.4.7) and Remark 4.5.4 comes from [86]. 
Generally speaking, our assumptions in this Section 4.4 (finite-dimensional context, 
finite-valued functions) are more restrictive than those used by most of the above
mentioned authors; however, they allow more refined statements and less technical 
proofs. 

The work presented in §5.1 on the maximal eigenvalue has a complete extension 
to the sum 1m (M) of the m largest eigenvalues of a symmetric matrix M. As indicated 
in our preceding comments on Chap. IV, 81m (0) is the set of positive semi-definite 
matrices A such that tr A = m and A I (A) ~ 1. A general formula for the subdifferential 
is then: 

8Im(M) = (A E 81m (0) : «A, M)) = Im(M)}, 

i.e. 81m (M) is the face of 81m (0) exposed by M. More explicit formulae can be given; 
see [76], [140], and the references therein. 

Theorem 6.3.1 (statement and proof) is a convex adaptation of a more general 
result ([36] or [37, §2.5]): if I is locally Lipschitzian, co y I(x) is called by EH. Clarke 
the generalized gradient of I at x, whose support function happens to be 

. { I(x' + td) - I(x' ) I } 
d ~ .r (x, d) := hm sup t : x ~ x, t .} 0 . 

Note the (crucial) perturbation "x' ~ x" in the above difference quotient: it makes 
r (x, .) convex. When I is itself convex, r is just the ordinary f'. 

Chapter VII. The work ofH.W. Kuhn and A.w. Tucker, published in 1951, as well 
as W. Karush's M.Sc. thesis (1939), can be viewed as the historical roots of what are 
called the KKT conditions. Naturally, these authors worked in a differentiable context, 
though; and they did not consider the constraint-qualifications condition presented in 
this chapter. The assumption of M. Slater goes back to the same period (1950). 

The Lagrange multipliers, their uses and interpretations, constraint-qualification 
assumptions such as BCQ, the concept of exact penalty, all these themes are en
countered in non-convex analysis (smooth or not). On the other hand, the connection 
between Lagrange multipliers and saddle-points of the Lagrangian, the (global) sen
sitivity of a problem with respect to perturbations, the mini-maximization approach 
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rely crucially on convexity. Mathematical economists contributed a lot to these, and 
use them eagerly. For an analysis of the historical developments, consult [93], [149], 
[151], [165], [169]. 

The link between exact penalty and multipliers, with the non-differentiable view 
adopted here, is inspired by [19]; see also [25]. Numerical approaches based on the 
John condition (see. (iii) at the end of §3.2) is not so common, we mention [99]. Exis
tence results for saddle-points of convex-concave functions on a product of compact 
convex sets go back to S. Kakutani (1941) and M. Sion (1957-58). 

Chapter VIII. The finite minimax problem has its champion: v.F. Demjanov ([44]). 
He devised in [45, Chap. Ill, §5] the first known counter-example to convergence, 
which involved nonlinear functions fj, so we preferred to borrow from [187] our 
piecewise affine function of §2.2. 

The steepest-descent method considered in this chapter corresponds to the gra
dient projection method for constrained optimization problems, coming from [167], 
[144]. As explained in [104], a second general class of algorithms is also convenient: 
the so-called sequential quadratic programming approach, due to B.N. Pshenichnyi 
[155], [154]. Nowadays the near totality of software for nonlinear programming is 
based on it, in conjunction with quasi-Newton techniques. For an exhaustive study of 
differential inclusions (§3.4) and their applications in economics, see the monograph 
[9]. 
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active (set), 27, 138,253,266,304,357 
addition, see sum 
adjoint, 228, 263, 392 
affine 
- combination, 94 
- function, 19,37,201,234,309 
- hyperplane, 88, 223, 243, 289, 344 
- manifold, 88, 94, 102, 117, 296 
- mapping, 91, 159 
- minorant, 23, 148, 150,241 
affine hull, see hull 
affinely independent, 95 
Alexandrov's theorem, 192 
angle, 59,117,137 
asymptotic 
- cone, 109, 136, 179,203,214 
- function, 179,205 

barycentric, 95 
biconjugate, 38 
Bouligand's cone, see tangent cone 
breadth, 209, 239 

Caratheodory, 98, 112, 125, 171 
catastrophe, 384 
closed 
- convex cone, 130, 133, 134 
- convex function, 17, 38, 44 
- function, 149, 164 
- graph (mapping), 282 
- multifunction, 398 
- set, 92,110,111,218 
closure 
-ofacone, 128 
- ofa function, 19, 38, 149, 150, 171 
- ofa set, 93,100,103, 127 
coercive, 15 
- (0-), 180, 338, 339 

- (1-), 41, 181 
compact, compactness, 109,282 
- and convergence of functions, 177 
- and convergence of gradients, 284 
- and extreme points, 111 
- and Hausdorff topology, 230 
- criterion for, 204 
- criterion for convex-, 109, 180 
- of a conical hull, 102 
- of a convex hull, 100 
- of an Argmin, 182, 334 
- of multipliers, 312 
complementarity slackness, 307 
complexity theory, 138 
computer, computing, 51, 52, 74, 78, 85, 98 
concave, 145 
cone,89,198,304 
conical combination, 101 
conical hull, see hull 
conjugate function, 159 
conjugate gradient, 376 
constrained optimization problem, 166, 366 
constraint, 138, 234, 279 
contingent cone, see tangent cone 
continuous 
- (absolutely), 26, 378, 399 
- (uniformly), 80 
convergence, 250 
- (global), 49 
- (of functions), 177, 207 
- (of gradients and subgradients), 284 
- (of sets), 232 
- (speed ot), 59, 60, 65, 69, 394 
- (uniform), 12, 177, 208, 284 
convex combination, 6, 95, 102, Ill, 146, 

361 
convex hull, see hull 
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convex multiplier, 6, 89 
convexification,44, 171,347 
comer point, see kink 
critical 
- cone, 255, 256 
- direction, 255, 256, 354, 379 
- point, see stationary 

decomposition, 121,263,277 
deconvolution, 166, 178, 230 
degenerate, 256 
derivative, 22, 133 
- (directional), 22, 55, 188,238,243,250 

of a projection, 141 
- (one-sided), 21, 238, 378 . 
- (second), 34,192 
descent, 52, 71, 343 
- direction, 54, 256, 343 
difference quotient, 17, 161 
- of second order, 33 
- of sets, 110, 135 
differential, 394 
differential inclusion, 277, 378 
dimension, 88, 97, 105 
- of a convex set, 103 
direction subspace, 88 
distance, 135, 153, 159,300,396 
- (subdifferential of), 259 
- between functions, 206 
- between sets, 209, 230, 232, 233, 397 
domain, 8, 23, 144 
- of a multifunction, 397 
dot-product, 390 
dual, duality, 88, 208, 327, 392 
- variable, 339 
-norm, 221 
- problem, 350 

edge, 112 
eigenvalue, 155,233,374 
electrical circuit, 165 
ellipsoid, 154, 155, 356 
epigraph, 2, 8, 15,145,156 
- (strict), 2,10,145,156,163,169 
epigraphic hull, see hull 
Euclidean norm, 393 
Euclidean space, 390 
Euler relation, 289 
excess, 396 

exposed (face, point), 114, 140, 220, 241, 
250,287 

extended-valued, 8, 144, 388 
extreme point, 110, 111, 175,372 

face, 112, 114 
face (exposed), see exposed face 
facet, 112, 115,222 
Farkas, 234 
feasible direction, 135, 369 
Fenchel 
- duality theorem, 43 
- transformation, 38 
Fenchel-Bunt's theorem, 99 
fixed point, 329 
form, 392 
- (linear), 22,115, 195,215 
- (quadratic), 66, 154, 165 

(square root of), 202 
Frechet, 189,250,251 
Fubini,190,257,286,400 

Gateaux, 250, 251 
gauge, 202,220, 224,258 
Gauss-Seidel, 57, 59 
gradient, 51, 185, 193,394 
gradient method, 58 
graph, 2, 184,282,397 

Hahn-Banach, 122,219,248 
hal~space,88,91, 113, 126, 127, 147, 150 
Hausdorff, see distance between sets 
Hessian, 395 
hull 
-(affine), 94, 103, 105, 193,209,212,362 
- (closed conical), 102,131 
- (closed convex), 43,100, 171, 197,211, 

288 
- (conical), 101, 119, 129,303 
- (convex), 70, 96, Ill, 115, 116,286,357 

of a function, 171, 172 
- (epigraphic), 156, 168 
hyperplane, see affine and also supporting 

image-function, 167, 228 
indicator function, 18, 152 
inf-convolution, 10,12,163,168,175,206, 

235,326 
- (exact), 28,163, 164,274 



infimand, 386 
infimum, 385 
- of a function, 386 

Jacobian, 395 
Jensen's inequality, 6, 146 

Karush-Kuhn-Tucker, 306, 314 
kink, 24, 212, 252,254, 260 

Lagrange, Lagrangian, 278, 318, 360, 367 
- multiplier, 306, 337, 356 
Lebesgue measure, 189,399 
Legendre, 38 
level-set, 246 
lim ext, limes exterior, 28, 135,379,397 
lim int, limes interior, 397 
line-search, 53, 159,346 
linear programming, 339 
Lipschitz, 12, 16, 173, 181,239,378 
locally bounded, 16, 232, 282, 300, 398 
log-convex, 160 
lower-bound function, 156, 163,203 

majorize, majorization, 386 
manifold, see affine manifold 
marginal function, 45,167,168,273 
mean-value theorem, 4, 26,165 
minimax, maximin, 333, 357, 360 
minimum, minimum point, 46, 148, 182, 

379,382,387 
- (global), 253, 293, 387 
- (local), 48, 253, 293 
Minkowski, 92, III 
minorize, minorization, 386 
monotone operator, 118,185,280,378 
- (strongly), 185 
Moreau's decomposition theorem, 121, 133 
Moreau-Yosida, 13,28 
multifunction, 23, 30, 232, 397 

Newton, quasi-Newton, 63,69,319,347, 
376 

nonexpansive, 116, 1l8, 233 
normal cone, 136,220,245,255,295,348 
normalization, norming, 345 

objective function, 9, 47, 167,386 
orthant, 90, 119 
orthogonal, 119, 121, 133,215 
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penalty, 298 
- (exact), 300, 371 
perspective-function, 160, 179, 20 I, 230 
perturbation function, 45, 167 
piecewise affine, 32, 153, 260, 380 
pivot, pivoting, 366 
polar 
- cone, 119, 137,214,304,344 
- set, 221, 223 
polyhedral 
- cone, 127 
- function, 153, 172 
polyhedron (closed convex), 127, 138,234, 

355 
positive (semi-)definite, 392 
positively homogeneous, 14,56, 179, 197, 

289,315,345 
primal function, 45, 167 
primal problem, 339, 350 
projection, 70,116, 141,350,353 
- (non-orthogonal), 297 
proper convex function, 144 

quadratic estimate, 33, 36, 184, 193 
quadratic function, see form (quadratic) 
quadratic programming, 296, 326, 340, 355 
qualification, 307, 314 
quasi-convex, 145,180 

Rademacher, 190 
rate of convergence, see convergence (speed 

of) 
recession (cone, function), see asymptotic 
regularization, 11,375 
relative 
- boundary, 103 
-interior, 103,150,212 

saddle-point, 328, 334 
saddle-value, 329 
safeguard-reduction property, 73 
secant method, see Newton, quasi-Newton 
selection, 26, 258, 397 
semi-continuous 
- (inner), 232, 283, 398 
- (lower), 17, 148, 232, 388 
- (outer), 232, 283, 398 
- (upper), 177,232, 283, 388 
semi-infinite programming, 279, 373 
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separation, 247, 344 
- (proper), 124 
set-valued mapping, see multifunction 
shadow, 92, 273 
simplex, see unit simplex 
slack variable, 346 
Slater, 245, 309, 311, 338 
slice, 92, 230, 400 
slope, 38, 179,243,321,392 
- (increasing), 4 
star-difference, 93, 109, 166,230 
star-shaped, 87 
stationary point, 49, 253 
steepest descent, 347 
- direction, 55, 313,345 
stepsize, 53, 61, 62, 98, 343 
strictly convex, 3, 40, 48,143,185,281 
strongly convex, 13, 143, 154, 183, 185, 

255,280 
strongly monotone, see monotone 
subadditive, 198 
subderivative, 22 
subdifferential, subgradient, 239, 241, 243, 

286,288 
sublevel-set, 18, 145, 148, 149, 180, 244, 

386 
sublinear function, 197, 238, 247 
sum 
- of epigraphs, 164 
- of functions, 43 
- of infima, 387 

-of sets, 92 
supplement (orthogonal), 392 
support function, 122, 127,208, 242, 258 
support, supporting, 37, 248 
- hyperplane, 113, 225, 355 
supremum, 385 

tangency, 133, 184, 196,241 
tangent cone, 133, 136,243,245 
tangent direction, 134,361 
tangent hyperplane, 184, 196, 246 
trace 
- of a function, 256, 289 
- ofa matrix, 155,391 
transversality condition, 120,307 
trust-region, 403 

uniform convergence, see convergence 
unit baJJ, 393 
unit simplex, 6, 88 
unit sphere, 393 

value function, 45, 167 
variational, 116, 165 
vertex, see exposed point 

Wolfe, 77, 79 

Yosida, see Moreau-Yosida 

zigzag, 364 
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