

Advances in Algorithms,
Theory, and Applications

Constrained Clustering

C9969_FM.indd 1 7/11/08 11:47:01 AM

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

UNDERSTANDING COMPLEX DATASETS: Data Mining with Matrix
Decompositions
David Skillicorn

COMPUTATIONAL METHODS OF FEATURE SELECTION
Huan Liu and Hiroshi Motoda

CONSTRAINED CLUSTERING: Advances in Algorithms, Theory,
and Applications

Sugato Basu, Ian Davidson, and Kiri L. Wagsta�

PUBLISHED TITLES

SERIES EDITOR

Vipin Kumar
University of Minnesota

Department of Computer Science and Engineering
Minneapolis, Minnesota, U.S.A

AIMS AND SCOPE

This series aims to capture new developments and applications in data mining and knowledge
discovery, while summarizing the computational tools and techniques useful in data analysis. This
series encourages the integration of mathematical, statistical, and computational methods and
techniques through the publication of a broad range of textbooks, reference works, and hand-
books. The inclusion of concrete examples and applications is highly encouraged. The scope of the
series includes, but is not limited to, titles in the areas of data mining and knowledge discovery
methods and applications, modeling, algorithms, theory and foundations, data and knowledge
visualization, data mining systems and tools, and privacy and security issues.

C9969_FM.indd 2 7/11/08 11:47:01 AM

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

Advances in Algorithms,
Theory, and Applications

Edited by

Kiri L. Wagstaff

Constrained Clustering

C9969_FM.indd 3 7/11/08 11:47:01 AM

Cover image shows the result of clustering a hyperspectral image of Mars using soft constraints to
impose spatial contiguity on cluster assignments. The data set was collected by the Space Telescope
Imaging Spectrograph (STIS) on the Hubble Space Telescope. This image was reproduced with permis-
sion from Intelligent Clustering with Instance-Level Constraints by Kiri Wagstaff.

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-58488-996-0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or here-
after invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides
licenses and registration for a variety of users. For organizations that have been granted a photocopy
license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Constrained clustering : advances in algorithms, theory, and applications / editors,
Sugato Basu, Ian Davidson, Kiri Wagstaff.

p. cm. -- (Chapman & Hall/CRC data mining and knowledge discovery series)
Includes bibliographical references and index.
ISBN 978-1-58488-996-0 (hardback : alk. paper)
1. Cluster analysis--Data processing. 2. Data mining. 3. Computer algorithms. I.

Basu, Sugato. II. Davidson, Ian, 1971- III. Wagstaff, Kiri. IV. Title. V. Series.

QA278.C63 2008
519.5’3--dc22 2008014590

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

C9969_FM.indd 4 7/11/08 11:47:01 AM

Thanks to my family, friends and colleagues especially Joulia, Constance
and Ravi. – Ian

I would like to dedicate this book to all of the friends and colleagues who’ve
encouraged me and engaged in idea-swapping sessions, both about

constrained clustering and other topics. Thank you for all of your feedback
and insights! – Kiri

Dedicated to my family for their love and encouragement, with special thanks
to my wife Shalini for her constant love and support. – Sugato

Foreword

In 1962 Richard Hamming wrote, “The purpose of computation is insight,
not numbers.” But it was not until 1977 that John Tukey formalized the
field of exploratory data analysis. Since then, analysts have been seeking
techniques that give them better understanding of their data. For one- and
two-dimensional data, we can start with a simple histogram or scatter plot.
Our eyes are good at spotting patterns in a two-dimensional plot. But for
more complex data we fall victim to the curse of dimensionality; we need more
complex tools because our unaided eyes can’t pick out patterns in thousand-
dimensional data.

Clustering algorithms pick up where our eyes leave off: they can take data
with any number of dimensions and cluster them into subsets such that each
member of a subset is near the other members in some sense. For example, if
we are attempting to cluster movies, everyone would agree that Sleepless in
Seattle should be placed near (and therefore in the same cluster as) You’ve Got
Mail. They’re both romantic comedies, they’ve got the same director (Nora
Ephron), the same stars (Tom Hanks and Meg Ryan), they both involve falling
in love over a vast electronic communication network. They’re practically the
same movie. But what about comparing Charlie and the Chocolate Factory
with A Nightmare on Elm Street? On most dimensions, these films are near
opposites, and thus should not appear in the same cluster. But if you’re a
Johnny Depp completist, you know he appears in both, and this one factor
will cause you to cluster them together.

Other books have covered the vast array of algorithms for fully-automatic
clustering of multi-dimensional data. This book explains how the Johnny
Depp completist, or any analyst, can communicate his or her preferences to
an automatic clustering algorithm, so that the patterns that emerge make
sense to the analyst; so that they yield insight, not just clusters. How can the
analyst communicate with the algorithm? In the first five chapters, it is by
specifying constraints of the form “these two examples should (or should not)
go together.” In the chapters that follow, the analyst gains vocabulary, and
can talk about a taxonomy of categories (such as romantic comedy or Johnny
Depp movie), can talk about the size of the desired clusters, can talk about
how examples are related to each other, and can ask for a clustering that is
different from the last one.

Of course, there is a lot of theory in the basics of clustering, and in the
refinements of constrained clustering, and this book covers the theory well.
But theory would have no purpose without practice, and this book shows how

constrained clustering can be used to tackle large problems involving textual,
relational, and even video data. After reading this book, you will have the
tools to be a better analyst, to gain more insight from your data, whether it
be textual, audio, video, relational, genomic, or anything else.

Dr. Peter Norvig
Director of Research

Google, Inc.
December 2007

Editor Biographies

Sugato Basu is a senior research scientist at Google, Inc. His areas of re-
search expertise include machine learning, data mining, information retrieval,
statistical pattern recognition and optimization, with special emphasis on scal-
able algorithm design and analysis for large text corpora and social networks.
He obtained his Ph.D. in machine learning from the computer science depart-
ment of the University of Texas at Austin. His Ph.D. work on designing novel
constrained clustering algorithms, using probabilistic models for incorporat-
ing prior domain knowledge into clustering, won him the Best Research Paper
Award at KDD in 2004 and the Distinguished Student Paper award at ICML
in 2005. He has served on multiple conference program committees, journal
review committees and NSF panels in machine learning and data mining, and
has given several invited tutorials and talks on constrained clustering. He has
written conference papers, journal papers, book chapters, and encyclopedia
articles in a variety of research areas including clustering, semi-supervised
learning, record linkage, social search and routing, rule mining and optimiza-
tion.

Ian Davidson is an assistant professor of computer science at the Uni-
versity of California at Davis. His research areas are data mining, artificial
intelligence and machine learning, in particular focusing on formulating novel
problems and applying rigorous mathematical techniques to address them.
His contributions to the area of clustering with constraints include proofs of
intractability for both batch and incremental versions of the problem and
the use of constraints with both agglomerative and non-hierarchical cluster-
ing algorithms. He is the recipient of an NSF CAREER Award on Knowledge
Enhanced Clustering and has won Best Paper Awards at the SIAM and IEEE
data mining conferences. Along with Dr. Basu he has given tutorials on clus-
tering with constraints at several leading data mining conferences and has
served on over 30 program committees for conferences in his research fields.

Kiri L. Wagstaff is a senior researcher at the Jet Propulsion Laboratory
in Pasadena, CA. Her focus is on developing new machine learning methods,
particularly those that can be used for data analysis onboard spacecraft, en-
abling missions with higher capability and autonomy. Her Ph.D. dissertation,
“Intelligent Clustering with Instance-Level Constraints,” initiated work in the
machine learning community on constrained clustering methods. She has de-
veloped additional techniques for analyzing data collected by instruments on
the EO-1 Earth Orbiter, Mars Pathfinder, and Mars Odyssey. The applica-
tions range from detecting dust storms on Mars to predicting crop yield on

Earth. She is currently working in a variety of machine learning areas in-
cluding multiple-instance learning, change detection in images, and ensemble
learning. She is also pursuing a Master’s degree in Geology at the University
of Southern California, and she teaches computer science classes at California
State University, Los Angeles.

Contributors

Charu Aggarwal
IBM T. J. Watson Research Center
Hawthorne, New York, USA

Arindam Banerjee
Dept. of Computer Science and Eng.
University of Minnesota Twin Cities
Minneapolis, Minnesota, USA

Aharon Bar-Hillel
Intel Research
Haifa, Israel

Boaz Ben-moshe
Dept. of Computer Science
Simon Fraser University
Burnaby, Vancouver, Canada

Kristin P. Bennett
Dept. of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, New York, USA

Indrajit Bhattacharya
IBM India Research Laboratory
New Delhi, India

Jean-Francois Boulicaut
INSA-Lyon
Villeurbanne Cedex, France

Paul S. Bradley
Apollo Data Technologies
Bellevue, Washington, USA

Joachim M. Buhmann
ETH Zurich
Zurich, Switzerland

Rich Caruana
Dept. of Computer Science
Cornell University
Ithaca, New York, USA

David Cohn
Google, Inc.
Mountain View, California, USA

Ayhan Demiriz
Dept. of Industrial Eng.
Sakarya University
Sakarya, Turkey

Marie desJardins
Dept. of Computer Science and EE
University of Maryland Baltimore County
Baltimore, Maryland, USA

Martin Ester
Dept. of Computer Science
Simon Fraser University
Burnaby, Vancouver, Canada

Julia Ferraioli
Bryn Mawr College
Bryn Mawr, Pennsylvania, USA

Byron J. Gao
Dept. of Computer Science
Simon Fraser University
Burnaby, Vancouver, Canada

Stephen C. Gates
IBM T. J. Watson Research Center
Hawthorne, New York, USA

Rong Ge
Dept. of Computer Science
Simon Fraser University
Burnaby, Vancouver, Canada

Lise Getoor
Dept. of Computer Science and
UMIACS
University of Maryland
College Park, Maryland, USA

Joydeep Ghosh
Dept. of Elec. and Computer Eng.
University of Texas at Austin
Austin, Texas, USA

David Gondek
IBM T. J. Watson Research Center
Hawthorne, New York, USA

Jiawei Han
Dept. of Computer Science
University of Illinois
Urbana-Champaign, Illinois, USA

Alexander G. Hauptmann
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Tomer Hertz
Microsoft Research
Redmond, Washington, USA

Zengjian Hu
Dept. of Computer Science
Simon Fraser University
Burnaby, Vancouver, Canada

Nicole Immorlica
Dept. of Computer Science
Northwestern University
Evanston, Illinois, USA

Anil K. Jain
Dept. of Computer Science and Eng.
Michigan State University
East Lansing, Michigan, USA

Laks V. S. Lakshmanan
Dept. of Computer Science
University of British Columbia
Vancouver, Canada

Tilman Lange
ETH Zurich
Zurich, Switzerland

Martin H. Law
Dept. of Computer Science and Eng.
Michigan State University
East Lansing, Michigan, USA

Todd K. Leen
Dept. of Computer Science and Eng.
Oregon Graduate Institute
Beaverton, Oregon, USA

Zhengdong Lu
Dept. of Computer Science and Eng.
Oregon Graduate Institute
Beaverton, Oregon, USA

James MacGlashan
Dept. of Computer Science and EE
University of Maryland Baltimore County
Baltimore, Maryland, USA

Andrew Kachites McCallum
Dept. of Computer Science
University of Massachusetts Amherst
Amherst, Massachusetts, USA

Raymond T. Ng
Dept. of Computer Science
University of British Columbia
Vancouver, Canada

Satoshi Oyama
Dept. of Social Informatics
Kyoto University
Kyoto, Japan

Ruggero G. Pensa
ISTI-CNR
Pisa, Italy

Céline Robardet
INSA-Lyon
Villeurbanne Cedex, France

Noam Shental
Dept. of Physics of Complex Systems
Weizmann Institute of Science
Rehovot, Israel

Katsumi Tanaka
Dept. of Social Informatics
Kyoto University
Kyoto, Japan

Anthony K. H. Tung
Dept. of Computer Science
National University of Singapore
Singapore

Daphna Weinshall
School of Computer Science and Eng.
and the Center for Neural Comp.

The Hebrew University of Jerusalem
Jerusalem, Israel

Anthony Wirth
Dept. of Computer Science
and Software Eng.

The University of Melbourne
Melbourne, Victoria, Australia

Rong Yan
IBM T. J. Watson Research Center
Hawthorne, New York, USA

Jie Yang
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Philip Yu
IBM T. J. Watson Research Center
Hawthorne, New York, USA

Jian Zhang
Dept. of Statistics
Purdue University
West Lafayette, Indiana, USA

List of Tables

1.1 Constrained k-means algorithm for hard constraints 4

5.1 F-scores on the toy data set. 114
5.2 Ethnicity classification results 115
5.3 Newsgroup data classification results 117
5.4 Segmentation results . 117

6.1 A Boolean matrix and its associated co-clustering 125
6.2 CDK-Means pseudo-code 130
6.3 Constrained CDK-Means pseudo-code 133
6.4 Co-clustering without constraints 139
6.5 Co-clustering (1 pairwise constraint) 140
6.6 Co-clustering (2 pairwise constraints) 140
6.7 Co-clustering without interval constraints 140
6.8 Clustering adult drosophila individuals 144

8.1 Samples needed for a given confidence level 176

9.1 Web data set k-Means and constrained k-Means results . . . 212
9.2 Web data set k-Median and constrained k-Median results . . 212

10.1 Performance of different algorithms on real data sets 236
10.2 Resolution accuracy for queries for different algorithms . . . 237
10.3 Execution time of different algorithms 238

11.1 Confusion matrices for face data 270
11.2 Synthetic successive clustering results 278
11.3 Comparison of non-redundant clustering algorithms 281

12.1 Summaries of the real data set 306
12.2 Comparison of NetScan and k-Means 306

14.1 The five approaches that we tested empirically 338

15.1 DBLP data set . 368
15.2 Maximum F-measure values 369
15.3 Results with the correct cluster numbers 370

List of Figures

1.1 Constraints for improved clustering results 5
1.2 Constraints for metric learning 6

2.1 Illustration of semi-supervised clustering 22
2.2 Learning curves for different clustering approaches 25
2.3 Overlap of top terms by γ-weighting and information gain . 26

3.1 Examples of the benefits of incorporating equivalence con-
straints into EM . 35

3.2 A Markov network representation of cannot-link constraints 43
3.3 A Markov network representation of both must-link and cannot-

link constraints . 45
3.4 Results: UCI repository data sets 47
3.5 Results: Yale database . 49
3.6 A Markov network for calculating the normalization factor Z. 53

4.1 The influence of constraint weight on model fitting 66
4.2 The density model fit with different weight 67
4.3 Three artificial data sets, with class denoted by symbols. . . 74
4.4 Classification accuracy with noisy pairwise relations 75
4.5 Clustering with hard constraints derived from partial labeling 77
4.6 Clustering on the Brodatz texture data 79

5.1 Spectrum between supervised and unsupervised learning . . 93
5.2 Segmentation example and constraint-induced graph struc-

ture . 94
5.3 Hidden MRF on labels . 103
5.4 Synthetic data used in the experiments 114
5.5 Sample face images for the ethnicity classification task . . . 115
5.6 Segmentation results . 118

6.1 A synthetic data set . 137
6.2 Two co-clusterings . 138
6.3 Results on the malaria data set 141
6.4 Results on the drosophila data set 143

7.1 The clustering algorithm . 154

7.2 Assigning documents to pseudo-centroids 154
7.3 Projecting out the less important terms 155
7.4 Merging very closely related clusters 155
7.5 Removal of poorly defined clusters 155
7.6 The classification algorithm 158
7.7 Some examples of constituent documents in each cluster . . 162
7.8 Some examples of classifier performance 165
7.9 Survey results . 165

8.1 Balanced clustering of news20 data set 180
8.2 Balanced clustering of yahoo data set 181
8.3 Frequency sensitive spherical k-means on news20 187
8.4 Frequency sensitive spherical k-means on yahoo 188
8.5 Static and streaming algorithms on news20 190
8.6 Static and streaming algorithms on yahoo 191

9.1 Equivalent minimum cost flow formulation 207
9.2 Average number of clusters with fewer than τ for small data

sets . 209
9.3 Average ratio of objective function (9.1) 211

10.1 Bibliographic example of references and hyper-edges 224
10.2 The relational clustering algorithm 231
10.3 Illustrations of identifying and ambiguous relations 234
10.4 Precision-recall and F1 plots 237
10.5 Performance of different algorithms on synthetic data 239
10.6 Effect of different relationships on collective clustering . . . 240
10.7 Effect of expansion levels on collective clustering 240

11.1 CondEns algorithm . 253
11.2 Multivariate IB: Bayesian networks 259
11.3 Multivariate IB: alternate output network 260
11.4 Multinomial update equations 264
11.5 Gaussian update equations 265
11.6 GLM update equations . 266
11.7 Sequential method . 268
11.8 Deterministic annealing algorithm 269
11.9 Face images: clustering . 270
11.10 Face images: non-redundant clustering 270
11.11 Text results . 272
11.12 Synthetic results . 273
11.13 Orthogonality relaxation: example sets 276
11.14 Orthogonality relaxation: results 277
11.15 Synthetic successive clustering results: varying generation . 279

12.1 Constructed graph g . 294
12.2 Deployment of nodes on the line 294
12.3 Polynomial exact algorithm for CkC ′ 297
12.4 Converting a solution of CkC ′ to a solution of CkC 298
12.5 Illustration of Algorithm 2 299
12.6 Step II of NetScan . 301
12.7 Radius increment . 303
12.8 Outlier elimination by radius histogram 304

13.1 A correlation clustering example 315

14.1 Initial display of the overlapping circles data set 335
14.2 Layout after two instances have been moved 335
14.3 Layout after three instances have been moved 336
14.4 Layout after four instances have been moved 336
14.5 Layout after 14 instances have been moved 337
14.6 2D view of the Overlapping Circles data set 341
14.7 Experimental results on the Circles data set 343
14.8 Effect of edge types on the Circles data set 344
14.9 Experimental results on the Overlapping Circles data set . . 345
14.10 Effect of edge types on the Overlapping Circles data set . . 346
14.11 Experimental results on the Iris data set 347
14.12 Effect of edge types on the Iris data set 348
14.13 Experimental results on the IMDB data set 349
14.14 Experimental results on the music data set 350
14.15 Effect of edge types on the music data set 351
14.16 Experimental results on the Amino Acid Indices data set . . 352
14.17 Experimental results on the Amino Acid data set 353

15.1 Using dissimilar example pairs in learning a metric 359
15.2 Results of author identification for DBLP data set. 374

16.1 A pivot movement graph . 383
16.2 The actual situation . 383
16.3 An example of a deadlock cycle 385
16.4 An example of micro-cluster sharing 388
16.5 Transforming DHP to PM 393

17.1 Examples of various pairwise constraints 398
17.2 A comparison of loss functions 406
17.3 An illustration of the pairwise learning algorithms applied to

the synthetic data . 413
17.4 Examples of images from a geriatric nursing home 418
17.5 The flowchart of the learning process 420
17.6 Summary of the experimental results 422

17.7 The classification error of various algorithms against the num-
ber of constraints . 423

17.8 The classification error of the CPKLR algorithm against the
number of constraints . 424

17.9 The labeling interface for the user study 425
17.10 The classification errors against the number of noisy con-

straints . 426

Contents

1 Introduction 1
Sugato Basu, Ian Davidson, and Kiri L. Wagstaff
1.1 Background and Motivation 1
1.2 Initial Work: Instance-Level Constraints 2

1.2.1 Enforcing Pairwise Constraints 3
1.2.2 Learning a Distance Metric from Pairwise Constraints 5

1.3 Advances Contained in This Book 6
1.3.1 Constrained Partitional Clustering 7
1.3.2 Beyond Pairwise Constraints 8
1.3.3 Theory . 9
1.3.4 Applications . 9

1.4 Conclusion . 10
1.5 Notation and Symbols . 12

2 Semi-Supervised Clustering with User Feedback 17
David Cohn, Rich Caruana, and Andrew Kachites McCallum
2.1 Introduction . 17

2.1.1 Relation to Active Learning 19
2.2 Clustering . 20
2.3 Semi-Supervised Clustering 21

2.3.1 Implementing Pairwise Document Constraints 22
2.3.2 Other Constraints . 23

2.4 Experiments . 24
2.4.1 Clustering Performance 24
2.4.2 Learning Term Weightings 26

2.5 Discussion . 27
2.5.1 Constraints vs. Labels 27
2.5.2 Types of User Feedback 27
2.5.3 Other Applications . 28
2.5.4 Related Work . 28

3 Gaussian Mixture Models with Equivalence Constraints 33
Noam Shental, Aharon Bar-Hillel, Tomer Hertz, and Daphna
Weinshall
3.1 Introduction . 34
3.2 Constrained EM: The Update Rules 36

3.2.1 Notations . 37

3.2.2 Incorporating Must-Link Constraints 38
3.2.3 Incorporating Cannot-Link Constraints 41
3.2.4 Combining Must-Link and Cannot-Link Constraints . 44

3.3 Experimental Results . 45
3.3.1 UCI Data Sets . 46
3.3.2 Facial Image Database 48

3.4 Obtaining Equivalence Constraints 49
3.5 Related Work . 50
3.6 Summary and Discussion . 51
3.7 Appendix: Calculating the Normalizing Factor Z and its Deriva-

tives when Introducing Cannot-Link Constraints 52
3.7.1 Exact Calculation of Z and ∂Z

∂αl
. 53

3.7.2 Approximating Z Using the Pseudo-Likelihood Assump-
tion . 54

4 Pairwise Constraints as Priors in Probabilistic Clustering 59
Zhengdong Lu and Todd K. Leen
4.1 Introduction . 60
4.2 Model . 61

4.2.1 Prior Distribution on Cluster Assignments 61
4.2.2 Pairwise Relations . 62
4.2.3 Model Fitting . 63
4.2.4 Selecting the Constraint Weights 65

4.3 Computing the Cluster Posterior 68
4.3.1 Two Special Cases with Easy Inference 68
4.3.2 Estimation with Gibbs Sampling 69
4.3.3 Estimation with Mean Field Approximation 70

4.4 Related Models . 70
4.5 Experiments . 72

4.5.1 Artificial Constraints 73
4.5.2 Real-World Problems 75

4.6 Discussion . 78
4.7 Appendix A . 80
4.8 Appendix B . 81
4.9 Appendix C . 83

5 Clustering with Constraints: A Mean-Field Approximation
Perspective 91
Tilman Lange, Martin H. Law, Anil K. Jain, and Joachim M.
Buhmann
5.1 Introduction . 92

5.1.1 Related Work . 93
5.2 Model-Based Clustering . 96
5.3 A Maximum Entropy Approach to Constraint Integration . . 98

5.3.1 Integration of Partial Label Information 99

5.3.2 Maximum-Entropy Label Prior 100
5.3.3 Markov Random Fields and the Gibbs Distribution . . 102
5.3.4 Parameter Estimation 104
5.3.5 Mean-Field Approximation for Posterior Inference . . 105
5.3.6 A Detour: Pairwise Clustering, Constraints, and Mean

Fields . 107
5.3.7 The Need for Weighting 108
5.3.8 Selecting η . 110

5.4 Experiments . 112
5.5 Summary . 116

6 Constraint-Driven Co-Clustering of 0/1 Data 123
Ruggero G. Pensa, Céline Robardet, and Jean-François Bouli-
caut
6.1 Introduction . 124
6.2 Problem Setting . 126
6.3 A Constrained Co-Clustering Algorithm Based on a Local-to-

Global Approach . 127
6.3.1 A Local-to-Global Approach 128
6.3.2 The CDK-Means Proposal 128
6.3.3 Constraint-Driven Co-Clustering 130
6.3.4 Discussion on Constraint Processing 132

6.4 Experimental Validation . 134
6.4.1 Evaluation Method . 135
6.4.2 Using Extended Must-Link and Cannot-Link

Constraints . 136
6.4.3 Time Interval Cluster Discovery 139

6.5 Conclusion . 144

7 On Supervised Clustering for Creating Categorization Seg-
mentations 149
Charu Aggarwal, Stephen C. Gates, and Philip Yu
7.1 Introduction . 150
7.2 A Description of the Categorization System 151

7.2.1 Some Definitions and Notations 151
7.2.2 Feature Selection . 152
7.2.3 Supervised Cluster Generation 153
7.2.4 Categorization Algorithm 157

7.3 Performance of the Categorization System 160
7.3.1 Categorization . 164
7.3.2 An Empirical Survey of Categorization Effectiveness . 166

7.4 Conclusions and Summary . 168

8 Clustering with Balancing Constraints 171
Arindam Banerjee and Joydeep Ghosh
8.1 Introduction . 171
8.2 A Scalable Framework for Balanced Clustering 174

8.2.1 Formulation and Analysis 174
8.2.2 Experimental Results 177

8.3 Frequency Sensitive Approaches for Balanced Clustering . . . 182
8.3.1 Frequency Sensitive Competitive Learning 182
8.3.2 Case Study: Balanced Clustering of Directional Data . 183
8.3.3 Experimental Results 186

8.4 Other Balanced Clustering Approaches 191
8.4.1 Balanced Clustering by Graph Partitioning 192
8.4.2 Model-Based Clustering with Soft Balancing 194

8.5 Concluding Remarks . 195

9 Using Assignment Constraints to Avoid Empty Clusters in
k-Means Clustering 201
Ayhan Demiriz, Kristin P. Bennett, and Paul S. Bradley
9.1 Introduction . 202
9.2 Constrained Clustering Problem and Algorithm 203
9.3 Cluster Assignment Sub-Problem 206
9.4 Numerical Evaluation . 208
9.5 Extensions . 213
9.6 Conclusion . 217

10 Collective Relational Clustering 221
Indrajit Bhattacharya and Lise Getoor
10.1 Introduction . 222
10.2 Entity Resolution: Problem Formulation 223

10.2.1 Pairwise Resolution 224
10.2.2 Collective Resolution 225
10.2.3 Entity Resolution Using Relationships 226
10.2.4 Pairwise Decisions Using Relationships 226
10.2.5 Collective Relational Entity Resolution 227

10.3 An Algorithm for Collective Relational Clustering 230
10.4 Correctness of Collective Relational Clustering 233
10.5 Experimental Evaluation . 235

10.5.1 Experiments on Synthetic Data 238
10.6 Conclusions . 241

11 Non-Redundant Data Clustering 245
David Gondek
11.1 Introduction . 245
11.2 Problem Setting . 246

11.2.1 Background Concepts 247

11.2.2 Multiple Clusterings 249
11.2.3 Information Orthogonality 250
11.2.4 Non-Redundant Clustering 251

11.3 Conditional Ensembles . 252
11.3.1 Complexity . 254
11.3.2 Conditions for Correctness 254

11.4 Constrained Conditional Information Bottleneck 257
11.4.1 Coordinated Conditional Information Bottleneck . . . 258
11.4.2 Derivation from Multivariate IB 258
11.4.3 Coordinated CIB . 260
11.4.4 Update Equations . 261
11.4.5 Algorithms . 265

11.5 Experimental Evaluation . 267
11.5.1 Image Data Set . 269
11.5.2 Text Data Sets . 269
11.5.3 Evaluation Using Synthetic Data 273
11.5.4 Summary of Experimental Results 279

11.6 Conclusion . 280

12 Joint Cluster Analysis of Attribute Data and Relationship
Data 285
Martin Ester, Rong Ge, Byron J. Gao, Zengjian Hu, and Boaz
Ben-moshe
12.1 Introduction . 285
12.2 Related Work . 287
12.3 Problem Definition and Complexity Analysis 291

12.3.1 Preliminaries and Problem Definition 291
12.3.2 Complexity Analysis 292

12.4 Approximation Algorithms 295
12.4.1 Inapproximability Results for CkC 295
12.4.2 Approximation Results for Metric CkC 296

12.5 Heuristic Algorithm . 300
12.5.1 Overview of NetScan 300
12.5.2 More Details on NetScan 302
12.5.3 Adaptation of NetScan to the Connected k-Means Prob-

lem . 305
12.6 Experimental Results . 305
12.7 Discussion . 307

13 Correlation Clustering 313
Nicole Immorlica and Anthony Wirth
13.1 Definition and Model . 313
13.2 Motivation and Background 314

13.2.1 Maximizing Agreements 315
13.2.2 Minimizing Disagreements 316

13.2.3 Maximizing Correlation 317
13.3 Techniques . 317

13.3.1 Region Growing . 318
13.3.2 Combinatorial Approach 321

13.4 Applications . 323
13.4.1 Location Area Planning 323
13.4.2 Co-Reference . 323
13.4.3 Constrained Clustering 324
13.4.4 Cluster Editing . 324
13.4.5 Consensus Clustering 324

14 Interactive Visual Clustering for Relational Data 329
Marie desJardins, James MacGlashan, and Julia Ferraioli
14.1 Introduction . 329
14.2 Background . 331
14.3 Approach . 332

14.3.1 Interpreting User Actions 332
14.3.2 Constrained Clustering 332
14.3.3 Updating the Display 333
14.3.4 Simulating the User 334

14.4 System Operation . 334
14.5 Methodology . 337

14.5.1 Data Sets . 339
14.5.2 Circles . 340
14.5.3 Overlapping Circles 340
14.5.4 Iris . 340
14.5.5 Internet Movie Data Base 341
14.5.6 Classical and Rock Music 342
14.5.7 Amino Acid Indices 342
14.5.8 Amino Acid . 342

14.6 Results and Discussion . 343
14.6.1 Circles . 343
14.6.2 Overlapping Circles 345
14.6.3 Iris . 346
14.6.4 IMDB . 346
14.6.5 Classical and Rock Music 347
14.6.6 Amino Acid Indices 348
14.6.7 Amino Acid . 349

14.7 Related Work . 350
14.8 Future Work and Conclusions 351

15 Distance Metric Learning from Cannot-be-Linked Example
Pairs, with Application to Name Disambiguation 357
Satoshi Oyama and Katsumi Tanaka
15.1 Background and Motivation 357
15.2 Preliminaries . 359
15.3 Problem Formalization . 361
15.4 Positive Semi-Definiteness of Learned Matrix 362
15.5 Relationship to Support Vector Machine Learning 363
15.6 Handling Noisy Data . 364
15.7 Relationship to Single-Class Learning 365
15.8 Relationship to Online Learning 365
15.9 Application to Name Disambiguation 366

15.9.1 Name Disambiguation 366
15.9.2 Data Set and Software 367
15.9.3 Results . 369

15.10 Conclusion . 370

16 Privacy-Preserving Data Publishing: A Constraint-Based Clus-
tering Approach 375
Anthony K. H. Tung, Jiawei Han, Laks V. S. Lakshmanan, and
Raymond T. Ng
16.1 Introduction . 375
16.2 The Constrained Clustering Problem 377
16.3 Clustering without the Nearest Representative Property . . . 380

16.3.1 Cluster Refinement under Constraints 381
16.3.2 Handling Tight Existential Constraints 384
16.3.3 Local Optimality and Termination 385

16.4 Scaling the Algorithm for Large Databases 387
16.4.1 Micro-Clustering and Its Complication 387
16.4.2 Micro-Cluster Sharing 388

16.5 Privacy Preserving Data Publishing as a Constrained Cluster-
ing Problem . 389
16.5.1 Determining C from P 390
16.5.2 Determining c . 391

16.6 Conclusion . 392

17 Learning with Pairwise Constraints for Video Object Classi-
fication 397
Rong Yan, Jian Zhang, Jie Yang, and Alexander G. Hauptmann
17.1 Introduction . 398
17.2 Related Work . 400
17.3 Discriminative Learning with Pairwise Constraints 401

17.3.1 Regularized Loss Function with Pairwise Information . 402
17.3.2 Non-Convex Pairwise Loss Functions 404
17.3.3 Convex Pairwise Loss Functions 404

17.4 Algorithms . 406
17.4.1 Convex Pairwise Kernel Logistic Regression 407
17.4.2 Convex Pairwise Support Vector Machines 408
17.4.3 Non-Convex Pairwise Kernel Logistic Regression . . . 410
17.4.4 An Illustrative Example 414

17.5 Multi-Class Classification with Pairwise Constraints 414
17.6 Noisy Pairwise Constraints 415
17.7 Experiments . 416

17.7.1 Data Collections and Preprocessing 417
17.7.2 Selecting Informative Pairwise Constrains from Video 417
17.7.3 Experimental Setting 420
17.7.4 Performance Evaluation 421
17.7.5 Results for Noisy Pairwise Constraints 424

17.8 Conclusion . 426

Index 431

Chapter 1

Introduction

Sugato Basu

Google, Inc., sugato@google.com

Ian Davidson

University of California, Davis, davidson@cs.ucdavis.edu

Kiri L. Wagstaff
Jet Propulsion Laboratory, California Institute of Technology
kiri.wagstaff@jpl.nasa.gov

1.1 Background and Motivation

Clustering is an important tool for data mining, since it can identify major
patterns or trends without any supervisory information such as data labels. It
can be broadly defined as the process of dividing a set of objects into clusters,
each of which represents a meaningful sub-population. The objects may be
database records, nodes in a graph, words, images, or any collection in which
individuals are described by a set of features or distinguishing relationships.
Clustering algorithms identify coherent groups based on a combination of the
assumed cluster structure (e.g., Gaussian distribution) and the observed data
distribution. These methods have led to new insights into large data sets
from a host of scientific fields, including astronomy [5], bioinformatics [13],
meteorology [11], and others.

However, in many cases we have access to additional information or do-
main knowledge about the types of clusters that are sought in the data. This
supplemental information may occur at the object level, such as class labels
for a subset of the objects, complementary information about “true” similar-
ity between pairs of objects, or user preferences about how items should be
grouped; or it may encode knowledge about the clusters themselves, such as
their position, identity, minimum or maximum size, distribution, etc.

The field of semi-supervised or constrained clustering grew out of the need
to find ways to accommodate this information when it is available. While it
is possible that a fully unsupervised clustering algorithm might naturally find

1

2 Constrained Clustering: Advances in Algorithms, Theory, and Applications

a solution that is consistent with the domain knowledge, the most interesting
cases are those in which the domain knowledge suggests that the default so-
lution is not the one that is sought. Therefore, researchers began exploring
principled methods of enforcing desirable clustering properties.

Initial work in this area proposed clustering algorithms that can incorporate
pairwise constraints on cluster membership or learn problem-specific distance
metrics that produce desirable clustering output. Subsequently, the research
area has greatly expanded to include algorithms that leverage many additional
kinds of domain knowledge for the purpose of clustering. In this book, we aim
to provide a current account of the innovations and discoveries, ranging from
theoretical developments to novel applications, associated with constrained
clustering methods.

1.2 Initial Work: Instance-Level Constraints

A clustering problem can be thought of as a scenario in which a user wishes
to obtain a partition ΠX of a data set X, containing n items, into k clusters
(ΠX = π1 ∪ π2 . . . ∪ πk,

⋂
πi = ∅). A constrained clustering problem is

one in which the user has some pre-existing knowledge about their desired
ΠX . The first introduction of constrained clustering to the machine learning
and data mining communities [16, 17] focused on the use of instance-level
constraints. A set of instance-level constraints, C, consists of statements
about pairs of instances (objects). If two instances should be placed into the
same cluster, a must-link constraint between them is expressed as c=(i, j).
Likewise, if two instances should not be placed into the same cluster, c�=(i, j)
expresses a cannot-link constraint. When constraints are available, rather
than returning partition ΠX that best satisfies the (generic) objective function
used by the clustering algorithm, we require that the algorithm adapt its
solution to accommodate C.

These instance-level constraints have several interesting properties. A col-
lection of must-link constraints encodes an equivalence relation (symmetric,
reflexive, and transitive) on the instances involved. The transitivity prop-
erty permits additional must-link constraints to be inferred from the base
set [4, 17]. More generally, if we produce a graph in which nodes represent
instances and edges represent must-link relationships, then any must-link con-
straint that joins two connected components will entail an additional must-link
constraint between all pairs of items in those components. Formally:

Observation 1 Transitive Inference of Must-Link Constraints. Let
GM be the must-link graph for data set X, with a node for each xi ∈ X and
an edge between nodes i and j for each c=(i, j) in C. Let CC1 and CC2 be
two connected components in this graph. If there exists a must-link constraint

Introduction 3

c=(x, y), where x ∈ CC1 and y ∈ CC2, then we can infer c=(a, b) for all
a ∈ CC1, b ∈ CC2.

In contrast, the cannot-link constraints do not encode an equivalence rela-
tion; it is not the case that c �=(i, j) and c�=(j, k) implies c�=(i, k). However,
when must-link and cannot-link constraints are combined, we can infer addi-
tional cannot-link constraints from the must-link relation.

Observation 2 Transitive Inference of Cannot-Link Constraints. Let
GM be the must-link graph for data set X, with a node for each xi ∈ X and
an edge between nodes i and j for each c=(i, j) in C. Let CC1 and CC2 be two
connected components in this graph. If there exists a cannot-link constraint
c�=(x, y), where x ∈ CC1 and y ∈ CC2, then we can infer c�=(a, b) for all
a ∈ CC1, b ∈ CC2.

The full set of constraints can be used in a variety of ways, including enforc-
ing individual constraints and using them to learn a problem-specific distance
metric.

1.2.1 Enforcing Pairwise Constraints

As noted above, the most interesting cases occur when the constraints are
not consistent with the default partition obtained in the absence of any super-
visory information. The first work in this area proposed a modified version of
COBWEB [10] that strictly enforced pairwise constraints [16]. It was followed
by an enhanced version of the widely used k-means algorithm [14] that could
also accommodate constraints, called cop-kmeans [17]. Table 1.1 reproduces
the details of this algorithm. cop-kmeans takes in a set of must-link (C=)
and cannot-link (C�=) constraints. The essential change from the basic k-
means algorithm occurs in step (2), where the decision about where to assign
a given item xi is constrained so that no constraints in C are violated. The
satisfying condition is checked by the violate-constraints function. Note
that it is possible for there to be no solutions that satisfy all constraints, in
which case the algorithm exits prematurely.

When clustering with hard constraints, the goal is to minimize the objective
function subject to satisfying the constraints. Here, the objective function is
the vector quantization error, or variance, of the partition.

Problem 1 Clustering with Hard Constraints to Minimize Variance.
Given a set of data X, a distance function D(x, y), a set of must-link con-
straints C=, a set of cannot-link constraints C�=, and the desired number of
clusters k, find ΠX (represented as a collection of k cluster centers μi) that
minimizes

V =
∑

i=1...k

∑

x∈πi

D(x, μi),

4 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 1.1: Constrained k-means algorithm for hard constraints
cop-kmeans (data setX, number of clusters k, must-link constraints C= ⊂
X ×X, cannot-link constraints C�= ⊂ X ×X)

1. Let μ1 . . . μk be the k initial cluster centers.
2. For each instance xi ∈ X, assign it to the closest cluster c such that

violate-constraints(xi, c, C=, C�=) is false. If no such cluster ex-
ists, fail (return {}).

3. Update each cluster center μi by averaging all of the instances xj that
have been assigned to it.

4. Iterate between (2) and (3) until convergence.
5. Return {μ1 . . . μk}.

violate-constraints (instance xi, cluster c, must-link constraints C=,
cannot-link constraints C�=)

1. For each c=(i, j) ∈ C=: If xj /∈ c, return true.
2. For each c�=(i, j) ∈ C�=: If xj ∈ c, return true.
3. Otherwise, return false.

subject to the constraints ∀c=(x, y) ∈ C=,∃i : x, y ∈ πi and ∀c�=(x, y) ∈ C�=, �
∃i : x, y ∈ πi.

Note that there is no assumption that the constraints help improve the
objective function value obtained by the algorithm. That is, if Π∗

X is the
partition that minimizes the objective function of the clustering algorithm,
the constraints may be violated by Π∗

X . The algorithm’s objective function
provides a bias toward good clusterings, while the constraints bias the algo-
rithm toward a smaller subset of good clusterings with an additional desirable
property.

Consider the illustrative example shown in Figure 1.1. There are two rea-
sonable ways to partition the data into two clusters: by weight or by height.
An unsupervised clustering algorithm will ideally select one of these as the
result, such as the weight-clustering in Figure 1.1a. However, we may prefer
clusters that are separated by height. Figure 1.1b shows the result of clus-
tering with two must-link constraints between instances with similar heights,
and one cannot-link constraint between two individuals with different heights.

A drawback of the cop-kmeans approach is that it may fail to find a
satisfying solution even when one exists. This happens because of the greedy
fashion in which items are assigned; early assignments can constrain later
ones due to potential conflicts, and there is no mechanism for backtracking.
Further, the constraints must be 100% accurate, since they will all be strictly

Introduction 5

(a) No constraints: Clusters by weight (b) 3 constraints: Clusters by height

FIGURE 1.1: Illustrative example: Clustering (k = 2) with hard pairwise
constraints. Must-link constraints are indicated with solid lines, and cannot-
link constraints are indicated with dashed lines.

enforced. Later work explored a constrained version of the EM clustering
algorithm [15]. To accommodate noise or uncertainty in the constraints, other
methods seek to satisfy as many constraints as possible, but not necessarily all
of them [2, 6, 18]. Methods such as the MPCK-means algorithm permit the
specification of an individual weight for each constraint, addressing the issue
of variable per-constraint confidences [4]. MPCK-means imposes a penalty for
constraint violations that is proportional to the violated constraint’s weight.

1.2.2 Learning a Distance Metric from Pairwise Constraints

Another fruitful approach to incorporating constraints has arisen from view-
ing them as statements about the “true” distance (or similarity) between in-
stances. In this view, a must-link constraint c=(i, j) implies that xi and xj

should be close together, and a cannot-link constraint c�=(i, j) implies that
they should be sufficiently far apart to never be clustered together. This
distance may or may not be consistent with the distance implied by the fea-
ture space in which those instances reside. This can happen when some of
the features are irrelevant or misleading with respect to the clustering goal.
Therefore, several researchers have investigated how a better distance met-
ric can be learned from the constraints, specific to the problem and data at
hand. Several such metric learning approaches have been developed; some
are restricted to learning from must-link constraints only [1], while others
can also accommodate cannot-link constraints [12, 19]. The HMRF-KMeans
algorithm fuses both of these approaches (direct constraint satisfaction and
metric learning) into a single probabilistic framework [2].

This problem can be stated as follows:

Problem 2 Learning a Distance Metric from Constraints. Given a

6 Constrained Clustering: Advances in Algorithms, Theory, and Applications

FIGURE 1.2: Illustrative example: Data shown in the modified feature space
implied by the distance metric learned from two constraints.

set of data X, a set of must-link constraints C=, and a set of cannot-link
constraints C�=, find a distance metric D that minimizes

∑

c=(x,y)

D(x, y)

and maximizes
∑

c �=(x,y)

D(x, y).

Figure 1.2 shows an example of using two constraints to learn a modified
distance metric for the same data as shown in Figure 1.1. There is a must-link
constraint between two items of different height and a cannot-link constraint
between two items of different weight. The new distance metric compresses
distance in the “height” direction and extends distance in the “weight” di-
rection. A regular, unsupervised, clustering algorithm can be applied to the
data with this new distance metric, and it will with high probability find a
clustering that groups items of similar weight together.

1.3 Advances Contained in This Book

Since the initial work on constrained clustering, there have been numerous
advances in methods, applications, and our understanding of the theoretical
properties of constraints and constrained clustering algorithms. This book
brings together several of these contributions and provides a snapshot of the
current state of the field.

Introduction 7

1.3.1 Constrained Partitional Clustering

The first five chapters of the book investigate ways in which instance-level,
pairwise constraints can be used in ways that extend their original use in
COBWEB and k-means clustering.

In “Semi-supervised Clustering with User Feedback,” David Cohn, Rich
Caruana, and Andrew K. McCallum propose an interactive approach to con-
strained clustering in which the user can iteratively provide constraints as
feedback to refine the clusters towards the desired concept. Like active learn-
ing, this approach permits human effort to be focused on only those rela-
tionships that the algorithm cannot correctly deduce on its own. The results
indicate that significant improvements can be made with only a few well cho-
sen constraints. There has been further work on active learning for constraint
selection in semi-supervised clustering [3], which is not included in this book.

Several methods have been proposed for incorporating pairwise constraints
into EM clustering algorithms. In “Gaussian Mixture Models with Equiv-
alence Constraints,” Noam Shental, Aharon Bar-Hillel, Tomer Hertz, and
Daphna Weinshall present two such algorithms, one for must-link and one
for cannot-link constraints. In each case, the specified constraints restrict the
possible updates made at each iteration of the EM algorithm, aiding it to con-
verge to a solution consistent with the constraints. In “Pairwise Constraints
as Priors in Probabilistic Clustering,” Zhengdong Lu and Todd K. Leen de-
scribe an EM algorithm, penalized probabilistic clustering, that interprets
pairwise constraints as prior probabilities that two items should, or should
not, be assigned to the same cluster. This formulation permits both hard and
soft constraints, allowing users to specify background knowledge even when
it is uncertain or noisy. In “Clustering with Constraints: A Mean-Field Ap-
proximation Perspective,” Tilman Lange, Martin H. Law, Anil K. Jain, and
J. M. Buhmann extend this approach by introducing a weighting factor, η,
that permits direct control over the relative influence of the constraints and
the original data. This parameter can be estimated heuristically or specified
by the user.

In “Constraint-Driven Co-Clustering of 0/1 Data,” Ruggero G. Pensa, Ce-
line Robardet, and Jean-Francois Boulicaut describe how pairwise constraints
can be incorporated into co-clustering problems, where the goal is to identify
clusters of items and features simultaneously. Co-clustering is often applied
to “0/1” data, in which the features are binary (or Boolean) and denote the
presence or absence of a given property. The authors also introduce interval
constraints, which specify that a given cluster should include items with values
within a given interval (for a feature with real-valued or otherwise rankable
values).

8 Constrained Clustering: Advances in Algorithms, Theory, and Applications

1.3.2 Beyond Pairwise Constraints

The next five chapters of the book consider other types of constraints for
clustering, distinct from pairwise must-link and cannot-link constraints.

In “On Supervised Clustering for Creating Categorization Segmentations,”
authors Charu Aggarwal, Stephen C. Gates, and Philip Yu consider the prob-
lem of using a pre-existing taxonomy of text documents as supervision in
improving the clustering algorithm, which is subsequently used for classifying
text documents into categories. In their experiments, they use the Yahoo!
hierarchy as prior knowledge in the supervised clustering scheme, and demon-
strate that the automated categorization system built by their technique can
achieve equivalent (and sometimes better) performance compared to manually
built categorization taxonomies at a fraction of the cost.

The chapter “Clustering with Balancing Constraints” by Arindam Baner-
jee and Joydeep Ghosh considers a scalable algorithm for creating balanced
clusters, i.e., clusters of comparable sizes. This is important in applications
like direct marketing, grouping sensor network nodes, etc. The cluster size
balancing constraints in their formulation can be used for clustering both
offline/batch data and online/streaming data. In “Using Assignment Con-
straints to Avoid Empty Clusters in k-Means Clustering,” Ayhan Demiriz,
Kristin P. Bennett, and Paul S. Bradley discuss a related formulation, where
they consider constraints to prevent empty clusters. They incorporate explicit
minimum cluster size constraints in the clustering objective function to ensure
that every cluster contains at least a pre-specified number of points.

The chapter “Collective Relational Clustering” by Indrajit Bhattacharya
and Lise Getoor discusses constrained clustering in the context of the problem
of entity resolution (e.g., de-duplicating similar reference entries in the bibli-
ographic database of a library). In their formulation, the similarity function
between two clusters in the algorithm considers both the average attribute-
level similarity between data instances in the clusters and cluster-level rela-
tional constraints (i.e., aggregate pairwise relational constraints between the
constituent points of the clusters).

Finally, in “Non-Redundant Data Clustering,” David Gondek considers a
problem setting where one possible clustering of a data set is provided as an
input constraint, and the task is to cluster the data set into groups that are
different from the given partitioning. This is useful in cases where it is easy
to find the dominant partitioning of the input data (e.g., grouping images
in a face database by face orientation), but the user may be interested in
biasing the clustering algorithm toward explicitly avoiding that partitioning
and focusing on a non-dominant partitioning instead (e.g., grouping faces by
gender).

Introduction 9

1.3.3 Theory

The use of instance level constraints and clustering poses many compu-
tational challenges. It was recently proven that clustering with constraints
raised an intractable feasibility problem [6, 8] for simply finding any clus-
tering that satisfies all constraints via a reduction from graph coloring. It
was later shown that attempts to side-step this feasibility problem by pruning
constraint sets, or exactly or even approximately calculating k and trying to
repair infeasible solutions, also lead to intractable problems [9]. Some progress
has been made on generating easy to satisfy constraint sets [7] for k-means
style clustering. The two chapters in this section have taken an alternative
approach of carefully crafting useful variations of the clustering under the
traditional constraints problem, and they provide approximation algorithms
with useful performance guarantees.

In “Joint Cluster Analysis of Attribute Data and Relationship Data,” Mar-
tin Ester, Rong Ge, Byron Gao, Zengjian Hu, and Boaz Ben-moshe introduce
the Connected k-Center (CkC) problem, a variation of the k-Center problem
with the internal connectedness constraint that any two entities in a cluster
must be connected by an internal path. Their problem formulation offers the
distinct advantage of taking into account attribute and relationship data. In
addition, the k-Center problem is more amenable to theoretical analysis than
k-means problems. After showing that the CkC problem is intractable, they
derive a constant factor approximation algorithm, develop the heuristically
inspired NetScan algorithm, and empirically show its scalability.

In “Correlation Clustering,” Nicole Immorlica and Anthony Wirth explore
the problem of clustering data with only constraints (advice) and no de-
scription of the data. Their problem formulation studies agreement with the
possibly inconsistent advice in both a minimization and maximization con-
text. In this formulation, k need not be specified a priori but instead can
be directly calculated. The authors present combinatorial optimization and
linear programming approximation algorithms that have O(log n) and factor
3 approximation guarantees. They conclude their chapter by showing several
applications for correlation clustering including consensus clustering.

1.3.4 Applications

The initial applications of clustering with constraints were successful exam-
ples of the benefits of using constraints typically generated from labeled data.
Wagstaff et al. illustrated their use for noun phrase coreference resolution and
GPS lane finding [16, 17]. Basu et al. illustrated their use for text data [2, 4].
The authors in this section have greatly extended the application of clustering
with constraints to relational, bibliographic, and even video data.

In “Interactive Visual Clustering for Relational Data,” Marie desJardins,
James MacGlashan, and Julia Ferraioli use constraints to interactively cluster
relational data. Their interactive visual clustering (IVC) approach presents

10 Constrained Clustering: Advances in Algorithms, Theory, and Applications

the data using a spring-embedded graph layout. Users can move groups of
instance to form initial clusters after which constrained clustering algorithms
are used to complete the clustering of the data set.

Two chapters focus on important problems relating to publication data.
In “Distance Metric Learning from Cannot-be-linked Example Pairs, with
Application to Name Disambiguation,” Satoshi Oyama and Katsumi Tanaka
provide a distance metric learning approach that makes use of cannot-link con-
straints to disambiguate author names in the DBLP database. They propose
a problem formulation and a subsequent algorithm that is similar to support
vector machines. They conclude their chapter by providing experimental re-
sults from the DBLP database. In “Privacy-Preserving Data Publishing: A
Constraint-Based Clustering Approach,” Anthony K. H. Tung, Jiawei Han,
Laks V. S. Lakshmanan, and Raymond T. Ng build on their earlier published
work on using existential constraints to control cluster size and aggregation
level constraints to bound the maximum/minimum/average/sum of an at-
tribute. Here, they apply this approach to privacy-preserving data publishing
by using the existential and aggregation constraints to express privacy re-
quirements.

Finally, in “Learning with Pairwise Constraints for Video Object Classifica-
tion,” Rong Yan, Jian Zhang, Jie Yang, and Alexander G. Hauptmann illus-
trate discriminative learners with constraints and their application to video
surveillance data. They propose a discriminatory learning with constraints
problem that falls under the rubric of regularized empirical risk minimiza-
tion. They provide non-convex and convex loss functions that make use of
constraints and derive several algorithms for these loss functions such as logis-
tic regression and support vector machines. They provide a striking example
of using constraints in streaming video by illustrating that automatically gen-
erated constraints can be easily created from the data in the absence of human
labeling.

1.4 Conclusion

In the years since constrained clustering was first introduced as a useful
way to integrate background knowledge when using the k-means clustering
algorithm, the field has grown to embrace new types of constraints, use other
clustering methods, and increase our understanding of the capabilities and
limitations of this approach to data analysis. We are pleased to present so
many of these advances in this volume, and we thank all of the contributors
for putting in a tremendous amount of work. We hope readers will find this
collection both interesting and useful.

There are many directions for additional work to extend the utility of con-

Introduction 11

strained clustering methods. A persistent underlying question is the issue of
where constraint information comes from, how it can be collected, and how
much it should be trusted; the answer likely varies with the problem domain,
and constrained clustering methods should accommodate constraints of dif-
fering provenance, value, and confidence. Like other semi-supervised learning
methods, constrained clustering also raises interesting questions about the
roles of the user and the algorithm; how much responsibility belongs to each?
We look forward to the next innovations in this arena.

Acknowledgments

We thank Douglas Fisher for his thoughtful and thought-provoking com-
ments, which contributed to the content of this chapter. We also thank the
National Science Foundation for the support of our own work on constrained
clustering via grants IIS-0325329 and IIS-0801528. The first author would
additionally like to thank Google, IBM, and DARPA for supporting some
of his work through their research grant, fellowship program, and contract
#NBCHD030010 (Order-T310), respectively.

12 Constrained Clustering: Advances in Algorithms, Theory, and Applications

1.5 Notation and Symbols

The following table summarizes the notation that we shall use throughout
this book.

Sets of Numbers
N the set of natural numbers, N = {1, 2, . . . }
R the set of reals
[n] compact notation for {1, . . . , n}
x ∈ [a, b] interval a ≤ x ≤ b
x ∈ (a, b] interval a < x ≤ b
x ∈ (a, b) interval a < x < b
|C| cardinality of a set C

Data
X the input domain
d (used if X is a vector space) dimension of X
m number of underlying classes in the labeled data
k number of clusters (can be different from m)
l, u number of labeled, unlabeled training examples
n total number of examples, n = l + u
i, j indices, often running over [n] or [k]
xi input data point xi ∈ X
yj output cluster label yj ∈ [K]
X a sample of input data points, X = {Xl ∪Xu}
Y output cluster labels, Y = (y1, . . . , yn) and Y = {Yl ∪ Yu}
ΠX k block clustering (set partition) on X: {π1, π2 . . . πk}
μi the center of cluster πi

D(x, y) distance between points x and y
Xl labeled part of X, Xl = (x1, . . . , xl)
Yl part of Y where labels are specified, Yl = (y1, . . . , yl)
Xu unlabeled part of X, Xu = (xl+1, . . . , xl+u)
Yu part of Y without labels, Yu = (yl+1, . . . , yl+u)
C set of constraints
W weights on constraints
C= conjunction of must-link constraints
C�= conjunction of cannot-link constraints
c=(i, j) must-link constraint between xi and xj

c�=(i, j) cannot-link constraint between xi and xj

w=(i, j) weight on must-link constraint c=(i, j)
w�=(i, j) weight on cannot-link constraint c�=(i, j)

Kernels
H feature space induced by a kernel
Φ feature map, Φ : X → H
K kernel matrix or Gram matrix, Kij = k(xi, xj)

Introduction 13

Vectors, Matrices, and Norms
1 vector with all entries equal to one
I identity matrix
A� transposed matrix (or vector)
A−1 inverse matrix (in some cases, pseudo-inverse)
tr (A) trace of a matrix
det (A) determinant of a matrix
〈x,x′〉 dot product between x and x′

‖·‖ 2-norm, ‖x‖ :=
√
〈x,x〉

‖·‖p p-norm , ‖x‖p :=
(∑N

i=1 |xi|p
)1/p

, N ∈ N ∪ {∞}
‖·‖∞ ∞-norm , ‖x‖∞ := supN

i=1 |xi|, N ∈ N ∪ {∞}
Functions

ln logarithm to base e
log2 logarithm to base 2
f a function, often from X or [n] to R, R

M or [M]
F a family of functions
Lp(X) function spaces, 1 ≤ p ≤ ∞

Probability
P{·} probability of a logical formula
P(C) probability of a set (event) C
p(x) density evaluated at x ∈ X
E [·] expectation of a random variable
Var [·] variance of a random variable
N (μ, σ2) normal distribution with mean μ and variance σ2

Graphs
g graph g = (V,E) with nodes V and edges E
G set of graphs
W weighted adjacency matrix (Wij �= 0⇔ (i, j) ∈ E)
D (diagonal) degree matrix of a graph, Dii =

∑
j Wij

L normalized graph Laplacian, L = D−1/2WD−1/2

L un-normalized graph Laplacian, L = D−W
Miscellaneous

IA characteristic (or indicator) function on a set A
i.e., IA(x) = 1 if x ∈ A and 0 otherwise

δij Kronecker δ (δij = 1 if i = j, 0 otherwise)
δx Dirac δ, satisfying

∫
δx(y)f(y)dy = f(x)

O(g(n)) a function f(n) is said to be O(g(n)) if there exist constants
C > 0 and n0 ∈ N such that |f(n)| ≤ Cg(n) for all n ≥ n0

o(g(n)) a function f(n) is said to be o(g(n)) if there exist constants
c > 0 and n0 ∈ N such that |f(n)| ≥ cg(n) for all n ≥ n0

rhs/lhs shorthand for “right/left hand side”
w.r.t. with regard to

the end of a proof

14 Constrained Clustering: Advances in Algorithms, Theory, and Applications

References

[1] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning a Maha-
lanobis metric from equivalence constraints. Journal of Machine Learn-
ing Research, 6:937–965, 2005.

[2] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for
semi-supervised clustering. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 59–68, Seattle, WA, 2004.

[3] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active
semi-supervision for pairwise constrained clustering. In Proceedings of
the Fourth SIAM International Conference on Data Mining (SDM-04),
pages 333–344, April 2004.

[4] M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and met-
ric learning in semi-supervised clustering. In Proceedings of the Twenty-
First International Conference on Machine Learning, pages 11–18, 2004.

[5] P. Cheeseman and J. Stutz. Bayesian classification (autoclass): Theory
and results. In Advances in Knowledge Discovery and Data Mining,
pages 153–180. Morgan Kaufmann, 1996.

[6] I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues
and the k-means algorithm. In Proceedings of the 2005 SIAM Interna-
tional Conference on Data Mining, pages 138–149, Newport Beach, CA,
2005.

[7] I. Davidson and S. S. Ravi. Generating easy sets of constraints for
clustering. In Proceedings of the 2006 AAAI Conference, Boston, MA,
2006.

[8] I. Davidson and S. S. Ravi. The complexity of non-hierarchical clustering
with instance and cluster level constraints. Data Mining and Knowledge
Discovery, 14:25–61, 2007.

[9] I. Davidson and S. S. Ravi. Intractability and clustering with constraints.
In Proceedings of the 2007 ICML Conference, Corvallis, OR, 2007.

[10] D. Fisher. Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2:139–172, 1987.

Introduction 15

[11] S. J. Gaffney, A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil.
Probabilistic clustering of extratropical cyclones using regression mix-
ture models. Technical Report UCI-ICS 06-02, Bren School of Informa-
tion and Computer Sciences, University of California, Irvine, January
2006.

[12] D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level con-
straints to space-level constraints: Making the most of prior knowledge
in data clustering. In Proceedings of the Nineteenth International Con-
ference on Machine Learning, pages 307–313, 2002.

[13] N. Ling and Q. Yang. Special issue on machine learning and
bioinformatics-part 1. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics, 2(2), 2005.

[14] J. B. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of the Fifth Symposium on Math,
Statistics, and Probability, volume 1, pages 281–297, Berkeley, CA, 1967.
University of California Press.

[15] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing Gaus-
sian mixture models with EM using equivalence constraints. In Advances
in Neural Information Processing Systems 16, 2004.

[16] K. Wagstaff and C. Cardie. Clustering with instance-level constraints.
In Proceedings of the Seventeenth International Conference on Machine
Learning, pages 1103–1110, 2000.

[17] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means
clustering with background knowledge. In Proceedings of the Eighteenth
International Conference on Machine Learning, pages 577–584, 2001.

[18] K. L. Wagstaff. Intelligent Clustering with Instance-Level Constraints.
PhD thesis, Cornell University, August 2002.

[19] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learn-
ing, with application to clustering with side-information. In Advances
in Neural Information Processing Systems 15, 2003.

Chapter 2

Semi-Supervised Clustering with
User Feedback

David Cohn

Google, Inc., cohn@google.com

Rich Caruana

Cornell University, caruana@cs.cornell.edu

Andrew Kachites McCallum

University of Massachusetts, Amherst, mccallum@cs.umass.edu

Abstract We present an approach to clustering based on the observa-
tion that “it is easier to criticize than to construct.” Our approach of semi-
supervised clustering allows a user to iteratively provide feedback to a clus-
tering algorithm. The feedback is incorporated in the form of constraints,
which the clustering algorithm attempts to satisfy on future iterations. These
constraints allow the user to guide the clusterer toward clusterings of the data
that the user finds more useful. We demonstrate semi-supervised clustering
with a system that learns to cluster news stories from a Reuters data set.1

2.1 Introduction

Consider the following problem: you are given 100,000 text documents (e.g.,
papers, newsgroup articles, or web pages) and asked to group them into classes
or into a hierarchy such that related documents are grouped together. You
are not told what classes or hierarchy to use or what documents are related.
Your job is simply to create this taxonomy so that the documents can be
browsed and accessed efficiently, either by yourself or by other people. While

1This work was originally circulated as an unpublished manuscript [4] when all the authors
were at Justsystem Pittsburgh Research Center.

17

18 Constrained Clustering: Advances in Algorithms, Theory, and Applications

you may have some criterion in mind, you would probably be hard-pressed to
express it algorithmically.

This problem is ubiquitous. The web has created a number of new examples
of it, but it can be found in many fields that don’t involve the web, as well as
with many different types of “documents.” Librarians, astronomers, biologists
— practically everyone tasked with creating a taxonomy from data faces this
problem in one form or another.

We propose the following iterative solution to this problem:

1. Give the 100,000 documents to an unsupervised clustering algorithm
and have it cluster them.

2. Browse the resulting clusters and tell the system which clusters you like,
and which clusters you don’t like. Don’t do this for all the clusters, just
for some of the ones you browsed. Provide feedback to the system by
saying “This document doesn’t belong in here,” “Move this document to
that cluster,” or “These two documents shouldn’t be (or should be) in
the same cluster.”

Don’t do this for all, or even many, of the documents; only for the few
that look most out of place.

3. After your critique, re-cluster the documents, allowing the clustering
algorithm to modify the the distance metric parameters to try to find a
new clustering that satisfies the constraints you provided in the critique.

4. Repeat this until you are happy with the clustering.

This solution is distinct from both traditional supervised and unsupervised
learning. Unsupervised clustering takes an unlabeled collection of data and,
without intervention or additional knowledge, partitions it into sets of ex-
amples such that examples within clusters are more “similar” than examples
between clusters. Much work in unsupervised clustering is dedicated to the
problem of manually engineering similarity criteria that yield good partition-
ing of data for a given domain.

Supervised learning, on the other hand, assumes that the class structure or
hierarchy already is known. It takes a set of examples with class labels, and
returns a function that maps examples to class labels. The goal of supervised
learning is to learn mappings that are accurate enough to be useful when
classifying new examples, and perhaps to learn mappings that allow users to
understand the relationships between the data and the labels, such as which
features are important.

Semi-supervised clustering falls between the extremes of totally unsuper-
vised clustering and totally supervised learning. The main goal of our ap-
proach to semi-supervised clustering is to allow a human to “steer” the clus-
tering process so that examples can be partitioned into a useful set of clusters
with minimum time and human effort. A secondary goal of semi-supervised

Semi-Supervised Clustering with User Feedback 19

clustering is to give the user a way to interact and play with the data so that
they can understand it better.2

Our approach to semi-supervised clustering assumes that the human user
has in their mind criteria that enable them to evaluate the quality of a cluster-
ing. It does not assume that the user is conscious of what they think defines
a good clustering but that, as with art, they will “know it when they see it.”
Most importantly, semi-supervised clustering never expects a user to write a
function that defines the clustering criterion. Instead, the user interacts with
the clustering system, which attempts to learn a criterion that yields clusters
the user is satisfied with. As such, one of the primary challenges of semi-
supervised clustering is finding ways to elicit and make use of user feedback
during clustering.

The remainder of this chapter describes one simple, illustrative way in which
this may be accomplished. Other challenges that need to be addressed by
future research on semi-supervised clustering are briefly described in the dis-
cussion section.

2.1.1 Relation to Active Learning

Semi-supervised clustering with user feedback is closely related to active
learning [5]. In the most common form of active learning, a learning system
attempts to identify which data points, if labeled by a human, would be most
informative. In semi-supervised clustering, the human selects the data points,
and puts on them a wide array of possible constraints instead of labels. These
two key differences point toward some situations in which the semi-supervised
approach is preferable.

1. In some clustering problems the desired similarity metric may be so dif-
ferent from the default that traditional active learning would make many
inefficient queries. This problem also arises when there are many differ-
ent plausible clusterings. Although less automated, a human browsing
the data would do less work by selecting the feedback data points them-
self.

2. The intuitive array of possible constraints are easier to apply than labels,
especially when the final clusters are not known in advance.

3. The very act of human browsing can lead to the discovery of what
clusters are desired. Semi-supervised learning can thus be seen as a
method of data exploration and pattern discovery, efficiently aided by
cluster-based summarization.

2Demiriz et al. [7] independently introduced a semi-supervised clustering model similar to
the one we describe here. The main distinction between our work and theirs is our use of
iterative feedback to acquire labelings; Demiriz et al. assume that all available labels are
given a priori.

20 Constrained Clustering: Advances in Algorithms, Theory, and Applications

However, the distinction with active learning is subjective. As we will see
in Section 2.5.1, our system could easily be viewed as a practical application
of learning by counterexamples [1] – one of the earliest and most powerful
forms of active learning studied in the theory community.

Hybrid active-semi-supervised systems are also plausible. In situations with
a large number of data points and data types that are difficult to browse, one
could imagine a system that combines some of the automated selection of
active learning with the human browsing of semi-supervised clustering. The
active learner could make many disparate hypotheses about the underlying
labels and present the examples that would be most indicative of each.

2.2 Clustering

Formally, clustering is the process of partitioning a data set into subsets
such that all members of a given subset are “similar” according to some dis-
tance measure D. We will denote the distance between two examples x1 and
x2 as D(x1, x2). We can generalize this to refer to D(y1, y2), the distance be-
tween two cluster centers, or D(y1, x1), the distance between a cluster center
and an example.

The two most popular approaches to clustering are agglomerative cluster-
ing and prototype-based clustering. In agglomerative clustering, each datum
is initially placed in its own cluster. The clusters that are most similar (ac-
cording to D) are iteratively merged, until the desired number of clusters
is reached, or some limit on data likelihood or distortion is exceeded (see
Hofmann and Buhmann [14] for an in-depth treatment of agglomerative clus-
tering).

In prototype-based clustering, the final number of clusters is usually set a
priori, and the corresponding prototypes are found using some form of Expec-
tation Maximization (EM) [8]. Each prototype is initialized to some position
(in our case, a randomly weighted sample of the training points). Examples
are assigned to prototypes according to their similarity to each prototype (the
assignment may be 0-1 or fractional, depending on the algorithm). Prototypes
are then adjusted to maximize the data likelihood, or, equivalently, minimize
the data distortion. The assignment/adjustment process is repeated until no
significant changes result (see Meilă and Heckerman [17] for concise review of
prototype-based clustering).

In the present chapter, we adopt a statistical prototype-based approach,
resulting from the naive Bayes model of document generation [16].3 Given a

3We reiterate that the approach described in this chapter is only for the point of exploration
and illustration; the approach is, in theory, applicable to almost any clustering algorithm.

Semi-Supervised Clustering with User Feedback 21

vocabulary V , a document is assumed to be a “bag of words” generated from
a multinomial distribution θ. In this model, the probability of document x is

P (x) =
∏

tj∈V

P (tj |θ)N(tj ,x),

where P (tj |θ) is the parameterized probability of term tj being generated, and
N(tj , x) is the number of times tj appears in the document. Each document
x forms an estimate of a multinomial distribution θx; likewise, each cluster of
documents π forms an estimate θπ composed from the θx of its constituent
documents.4

For clustering we assume that, instead of being produced by a single multi-
nomial distribution, each of the observed documents was drawn from one of
distributions θπ1 , θπ2 , . . . , θπk

, corresponding to the unknown distribution of
clusters π1, π2, . . . , πk:

P (x) =
∑

i

P (πi)P (x|πi) =
∑

i

P (πi)
∏

tj∈V

P (tj |θπi
)N(tj ,x).

Our task is to estimate values for P (πi) and θπi
, which will in turn allow us

to estimate cluster memberships P (πi|x) by Bayes rule:

P (πi|x) = P (x|πi)P (πi)/P (x). (2.1)

We find estimates for P (πi) and θπi
via the standard procedure for EM,

beginning with randomized estimates of θπi
drawn as a weighted sample from

the observations. Then, for each cluster πi and document x, we compute
P (x|θπi

) and apply Equation 2.1 to compute P (πi|x). Each cluster is given
partial ownership of a document proportional to P (πi|x). The parameters
θπi

are recomputed as the weighted sum of their component documents, and
the process is repeated. The algorithm is guaranteed to converge to a locally
optimal clustering (see, e.g., MacKay [15] or Meilă and Heckerman [17] for
details).

2.3 Semi-Supervised Clustering

The goodness of any clustering depends on how well the metric D matches
the user’s (perhaps unknown) internal model of the target domain. We pro-
pose allowing the user to impose their model on the metric via the clustering

4The estimates for term probabilities are derived from the relative term frequencies in the
documents. Following McCallum and Nigam [16], we smooth with a LaPlacean prior to
avoid zero term probabilities.

22 Constrained Clustering: Advances in Algorithms, Theory, and Applications

o
oo

o o

o

o

o
o

o
o

o

o

o
oo

o

o

o

o

o

o

oo

o
o

o
oo

o o

o

o

o
o

o
o

o

o

o
oo

o

o

o

o

o

o

oo

o
o

o
oo

o o

o

o

o
o

o
o

o

o

o
oo

o

o

o

o

o

o

oo

o
o

FIGURE 2.1: Illustration of semi-supervised clustering. Given an initial clus-
tering, the user specifies two points that should not have been placed in the
same cluster. The system warps its metric, allowing it to find a clustering
that respects the constraint.

algorithm, by having the user provide the algorithm with feedback, and al-
lowing it to alter the metric so as to accommodate that feedback. Not only
is it easier to critique than to construct, but the user’s criticism can take
many forms — specifying that a particular example does/doesn’t belong in a
particular cluster, that two examples do/don’t belong in the same cluster, or
that a particular cluster is good (and should be preserved) or bad (and should
be split up).

Feedback may be incorporated into the metric as constraints to be respected
by the clustering algorithm. Consider two examples, x1 and x2, that are con-
strained by the user feedback to be in separate clusters. When the clustering
algorithm attempts a partitioning which places x1 and x2 in the same cluster,
the metric may be altered to increase the distance between x1 and x2 until
one or the other of them falls in a different cluster (Figure 2.1). Other con-
straints may be implemented similarly, shrinking the distance between some
example and a cluster prototype, or increasing the distance between a cluster
prototype and all the examples assigned to it.

2.3.1 Implementing Pairwise Document Constraints

In this probabilistic setting, the natural measure of dissimilarity between
two documents, x1 and x2, is the probability that they were generated by the
same multinomial. From Pereira et al. [19], this is proportional to the KL
divergence to the mean of their multinomial distributions:

DKLM (x1, x2) = |x1|DKL(θx1 , θx1,x2) + |x2|DKL(θx2 , θx1,x2),

where |x| is the length of document x, DKL(θ1, θ2) is the standard Kullback-
Leibler divergence of θ1 to θ2, and θx1,x2 is a distribution such that

P (tj |θx1,x2) = (P (tj |θx1) + P (tj |θx2)) /2.

Semi-Supervised Clustering with User Feedback 23

The advantage of this measure is that it is symmetric, unlike standard KL
divergence.

To implement our constraints, we augment the standard KL divergence
D(θx1 , θx2) with a weighting function

D′
KL(θx1 , θx2) =

∑

tj∈V

γj · P (tj |θx1) log
(
P (tj |θx2)
P (tj |θx1)

)

where γj may be interpreted as indicating the importance of tj for distinguish-
ing x1 and x2. Then, given a constraint that x1 and x2 must be in separate
clusters, we can warp the metric by computing

∂D′
KLM (x1, x2)
∂γj

= |x1|P (tj |θx1) log
(
P (tj |θx1x2)
P (tj |θx1)

)

+

|x2|P (tj |θx2) log
(
P (tj |θx1x2)
P (tj |θx2)

)

and hillclimbing over γ to increase the effective distance between the two.
This gradient tells us the direction to move the γ’s in order to increase (or
decrease) the separation between two documents. (In the current experiments
we constrain the γ’s to be positive, but it might be interesting to relax this
and allow some γ’s to become negative.)

These γ’s are incorporated back into the E-step of clustering algorithm as
weights attached to the individual term frequencies:

P (x|πi) =
∏

tj∈V

P (tj |θπi
)γjN(tj ,x).

Intuitively, a small γj reduces the effect of tj ’s presence or absence on doc-
ument likelihood, effectively scaling its effect on the document’s divergence
from its cluster center. As such, we are able to inject a learned distance metric
directly into the clustering algorithm.

2.3.2 Other Constraints

Other constraints described in the previous section may be similarly im-
plemented by hillclimbing over the example-to-cluster and cluster-to-cluster
distance. Note that the linear warping we describe will not guarantee that
all constraints can be satisfied; some clusterings desired by the user may be
non-convex and unrealizable in the space of models supported by naive Bayes.
In this case, the hillclimbing will converge to a weighting that provides a local
minimum of constraint violations. Local or nonlinear warpings of the distance
metric, such as the ones described by Friedman [11] and Yianilos [21] may be
of use in these situations.

24 Constrained Clustering: Advances in Algorithms, Theory, and Applications

2.4 Experiments

In this section, we illustrate the semi-supervised approach on a small docu-
ment clustering problem. We use a set of 25 documents each from five Reuters
topic areas: business, health, politics, sports, and tech. Starting from five ran-
domly initialized prototypes, the EM-based clustering algorithm described in
the previous sections finds clusters that maximize data likelihood.

Each time clustering converges, we add a constraint. We simulate a human
user by identifying two documents from the same cluster whose sources are
different Reuters topics, and constrain them to be in different clusters.5 For
each unsatisfied constraint, we reweight the divergence by a fixed number
of hillclimbing steps, re-initialize the cluster prototypes, and repeat the EM
training.

2.4.1 Clustering Performance

Figure 2.2 compares the performance of supervised, unsupervised, and semi-
supervised learning. For unsupervised and semi-supervised learners, we plot
cluster purity: the fraction of examples that would be classified correctly
if all examples were assigned the majority label in each cluster. For the
supervised learner, we plot both cluster purity and classification accuracy
(generalization).

After only a few constraints have been added, cluster purity increases
sharply over that of unsupervised clustering. It is not clear, however, how
to fairly compare the performance of semi-supervised clustering with that of
fully supervised clustering: constraints do not exactly correspond to labeled
examples, and it is uncertain what constitutes a proper test set. In super-
vised learning, documents used for training are traditionally excluded from
the test set, since their labels are already known. But the semi-supervised
model clusters (and is tested on) the entire corpus, so it is also reasonable to
gauge it against a supervised learner tested the same way. In the figure we
show the cluster purity of supervised learning on the training set as well as
its generalization to an independent test set.

The semi-supervised learner reaches its asymptotic performance after about
10 constraints have been added; the supervised learners require between 3 and
6 times more labeled examples to reach that level of performance.6 It is in-

5A fully-operational semi-supervised clustering system would benefit from a graphical user
interface that permits efficient browsing of the current clusters and supports easy specifi-
cation of user constraints. See the discussion of Scatter/Gather later in this chapter.
6To assure ourselves that metric-warping alone wasn’t responsible for the performance dis-
parity, we also incorporated metric warping into the supervised clusterer, shrinking the
divergence between a document and its assigned cluster. The addition resulted in no sig-
nificant performance improvement.

Semi-Supervised Clustering with User Feedback 25

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of constraints (or labeled examples)

cl
us

te
r p

ur
ity

 (o
r f

ra
ct

io
n

co
rr

ec
t)

supervised (purity)
supervised (generalization)
unsupervised (purity)
semi−supervised (purity)

FIGURE 2.2: Learning curves for supervised, unsupervised, and semi-
supervised clustering. For supervised clustering, cluster purity (measured
on the train set) and generalization (measured on an independent test set)
are plotted against the number of labeled examples; for semi-supervised clus-
tering, purity is plotted against the number of constraints. Averages over 10
runs each, with the upper and lower lines indicating error bars at one standard
deviation. See text for details.

teresting to note that the performance of the semi-supervised learner actually
begins to decrease after roughly 20 constraints have been added. The Reuters
data set contains many documents that appear under more than one topic
(an identical article on Microsoft, for example, appears under both business
and tech). We hypothesize that, in an attempt to separate these unseparable
documents, the learner is pushing its term weightings to unhealthy extremes.

Experiments on a larger data set consisting of 20,000 USENET articles sug-
gest that semi-supervised clustering is just as effective with large data sets.
More importantly, these experiments show that semi-supervised clustering is
able to cluster the same data according to different orthogonal criteria. This
data set contains articles on four subjects: aviation simulators, real aviation,
auto simulators, and real autos. Semi-supervised clustering can cluster the
simulators and real groups together (e.g., aviation simulators and real avia-
tion) or the auto and aviation groups together (e.g., aviation simulators and
auto simulators) depending on the feedback provided by the user. In both
cases it does so at about 80% accuracy with 10 constraints. When the dis-
tance metric is not adjusted, the same constraints give an average of only 64%
accuracy. (Purely unsupervised clustering achieves only about 50% accuracy.)

26 Constrained Clustering: Advances in Algorithms, Theory, and Applications

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of constraints

fra
ct

io
n

ov
el

ap
 w

ith
 m

ax
 c

ro
ss

−e
nt

ro
py

 w
or

ds

top 1200 words (20%)
top 750 words (11%)
top 150 words (2.2%)
top 50 words (0.7%)

FIGURE 2.3: Fraction overlap of the top n weighted terms with top n terms
ranked by information gain on fully-supervised data. As the number of con-
straints increases, there is increasing correlation with terms that strongly
affect class conditional probabilities. Note that this overlap is achieved with
far fewer constraints than the number of labels in the fully-supervised data.

2.4.2 Learning Term Weightings

Adjusting γj warps the metric by adjusting the resolving power of term
tj , essentially identifying which terms are most useful for distinguishing docu-
ments. If γj is large, small disparities in the frequency of tj become important
and will tend to separate documents; if γj is small, large disparities in fre-
quency will be ignored.

Empirically, this behavior is borne out on the Reuters experiments. Terms
that subjectively appear highly relevant for distinguishing topics, such as Iraq,
economy, weapons and council are given large weightings. We computed the
information gain of tj using all document labels [18], and compared it with
γj . Figure 2.3 shows the overlap between the top-weighted n% terms in the
vocabulary with the same terms ranked by information gain. After about
a dozen constraints, semi-supervised clustering learns term weightings with
moderate overlap to the term weightings learned by supervised learning from
all 125 document labels.

Semi-Supervised Clustering with User Feedback 27

2.5 Discussion

This chapter only scratches the surface of semi-supervised clustering with
user feedback. There are still many issues to be addressed; we touch on a few
of these next.

2.5.1 Constraints vs. Labels

When applying supervised learning to classification problems, it is assumed
that the users know the target classes and have labeled examples from each
target class. In many interesting problems, this is an unrealistic assump-
tion. A semi-supervised system allows users to give label-like information to
the learner without having to know labels. Although user feedback in semi-
supervised clustering serves a similar role as class labels serve in supervised
learning, comparing supervised learning with semi-supervised clustering is an
apples–to–oranges comparison. Semi-supervised clustering usually will be ap-
plied to problems where labels are not readily available. However, evaluating
clustering systems is difficult and usually subjective. We compare the per-
formance of semi-supervised clustering to supervised learning using a labeled
data set principally to avoid this subjectivity.

The performance disparity between supervised and semi-supervised cluster-
ing is surprising. While we have argued that it is easier to provide constraints
than labels, constraints also provide less information than labels. Constraints
don’t require the user to know the correct label (or even what labels exist!) —
only the relationship among pairs or sets of labels. There are only 125 possible
labels in the small Reuters data set, but thousands of possible separation con-
straints. Yet empirically, even with very few constraints, the semi-supervised
learner is able to perform surprisingly well.

One explanation is in the connection to active learning. As a means of
user feedback, the addition of a constraint indicates a problem and effectively
acts as a counterexample for the present clustering. Counterexamples are a
powerful tool for doing active learning, which, in some situations, are much
more efficient than learning from randomly labeled examples [1]. As such,
the user, by iteratively directing the clusterer’s attention toward points that
are incorrectly clustered, gives a semi-supervised clustering system the many
advantages of an active learning system.

2.5.2 Types of User Feedback

As we have discussed, there are many different types of feedback that users
might provide to a semi-supervised clustering system. One type of feedback
is the constraints on individual data points and clusters we used earlier. But
many other forms of feedback might prove useful as well. For example, a user

28 Constrained Clustering: Advances in Algorithms, Theory, and Applications

might tell the system that the current clustering is too coarse or too fine. Or
the user might point to a cluster and indicate that the cluster is bad without
saying how it is bad. Similarly, a user might indicate that a cluster is good,
suggesting that future re-clusterings of the data should attempt to maintain
this cluster. Users might also give feedback that is not cluster specific, such
as telling the system that the entire clustering looks bad and that the next
clustering should be very different.

Some types of user feedback may require adaptive clustering that cannot be
easily handled by the γ weighting scheme we used above. For example, we con-
sidered an approach to finding good—but qualitatively different—clusterings
of the same data by exploiting EM’s weakness for getting trapped in local
minima. Different local minima may capture qualitatively different ways of
clustering the data, one of which may better match the user’s internal prefer-
ence function than the deepest minima the system can find. In the long run
we hope to develop a general framework for representing user feedback about
clusters.

2.5.3 Other Applications

We believe there are many applications of feedback-driven semi-supervised
clustering. Imagine a Yahoo! hierarchy for web pages that allows the user to
tailor the hierarchy to better match their own interests by providing feedback
while browsing. Similarly, consider an automatic e-mail system in which a user
allows the system to cluster e-mail into related mailboxes instead of manually
specifying the mailboxes. Semi-supervised feedback would allow the user to
tailor mailbox clusters to fit their (possibly changing) needs. As a different
example, consider a user clustering proteins into homology groups (groups of
proteins with similar structures). Large proteins have complex structures and
could be clustered many different ways. A feedback-driven semi-supervised
clustering system would allow the user to explore many different ways the
proteins might be clustered and to find clusterings most suitable to their
purposes.

2.5.4 Related Work

The core operation of semi-supervised clustering involves learning a distance
metric, of which a great deal of work has been done for classification problems
(see Hastie and Tibshirani [13] for an overview); more recently, researchers
have begun applying these techniques to clustering and other forms of machine
learning (see, e.g., Xing et al. [20]).

As indicated earlier, our model is most similar to the work of Demiriz et
al. They report how a fixed set of labeled examples may be used to bias a
clustering algorithm; we investigate how a user, interacting with the system,
may efficiently guide the learner to a desired clustering.

In the time since this work was first presented, there has been a great deal

Semi-Supervised Clustering with User Feedback 29

of research in improving clusterings by the (semi-supervised) learning of a
distance measure. Instead of attempting a complete list of references here,
we refer the reader the references in Chapter 1 and to the other, more recent
contributions in this volume.

Our technique of incorporating user feedback is a cousin to relevance feed-
back, a technique for information retrieval [2]. Given a query and initial set
of retrieved documents, relevance feedback asks the user to tag documents
as being more or less relevant to the query being pursued. As the process is
iterated, the retrieval system builds an increasingly accurate model of what
the user is searching for.

The question of how a user (or teacher) may best select examples to help a
learner identify a target concept is the focus of much work in computational
learning theory. See Goldman and Kearns [12] for a detailed treatment of the
problem.

The Scatter/Gather algorithm [6] is an interactive clustering algorithm de-
signed for information retrieval. The system provides an initial clustering of
data. When the user selects a subset of the clusters for further examina-
tion, the system gathers their components and regroups them to form new
clusters. Scatter/Gather aims at pursuing and finding structure in a small
part of a corpus. This makes it an interesting complement to our approach:
Scatter/Gather may provide an effective means for browsing and focusing on
clusters of interest, and semi-supervised learning may be an effective means
of improving the quality of those clusters.

Note that we do not compare our performance to that of other purely unsu-
pervised clustering systems such as AutoClass [3], COBWEB [9], or Iterative
Optimization [10]. The contribution of our work is not to introduce a new
clustering algorithm, but an approach that allows user feedback to guide the
clustering. While we have illustrated our approach on a relatively simple
system, we believe it is equally applicable to more sophisticated algorithms,
and expect that it will provide similar improvements over the unsupervised
variants.

References

[1] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[2] Chris Buckley and Gerard Salton. Optimization of relevance feedback
weights. In Proceedings of the 18th Annual International Association
for Computing Machinery (ACM) Special Interest Group on Informa-

30 Constrained Clustering: Advances in Algorithms, Theory, and Applications

tion Retrieval Conference on Research and Development in Information
Retrieval, pages 351–357. ACM Press, 1995.

[3] Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will Tay-
lor, and Don Freeman. Autoclass: A Bayesian classification system. In
Readings in Knowledge Acquisition and Learning: Automating the Con-
struction and Improvement of Expert Systems, pages 431–441. Morgan
Kaufmann, 1993.

[4] David Cohn, Rich Caruana, and Andrew McCallum. Semi-supervised
clustering with user feedback. Unpublished manuscript (later released
as Cornell University Technical Report TR2003-1892), 1999.

[5] David Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learn-
ing with statistical models. Journal of Artificial Intelligence Research,
4:129–145, 1996.

[6] Douglass R. Cutting, Jan O. Pedersen, David Karger, and John W.
Tukey. Scatter/gather: A cluster-based approach to browsing large doc-
ument collections. In Proceedings of the 15th Annual International As-
sociation for Computing Machinery (ACM) Special Interest Group on
Information Retrieval Conference on Research and Development in In-
formation Retrieval, pages 318–329, 1992.

[7] A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised clus-
tering using genetic algorithms. In Proceedings of Artificial Neural Net-
works in Engineering, 1999.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Sta-
tistical Society Series B (Methodological), 39(1):1–38, 1977.

[9] Doug H. Fisher. Knowledge acquisition via incremental conceptual clus-
tering. Machine Learning, 2:139–172, 1987.

[10] Doug H. Fisher. Iterative optimization and simplification of hierarchical
clusterings. Journal of Artificial Intelligence Research, 4:147–180, 1996.

[11] Jerome Friedman. Flexible metric nearest neighbor classication. Tech-
nical Report 113, Stanford University, Department of Statistics, 1994.

[12] Sally A. Goldman and Michael J. Kearns. On the complexity of teaching.
Journal of Computer and System Sciences, 50(1):20–31, 1995.

[13] Trevor Hastie and Rob Tibshirani. Discriminant adaptive nearest neigh-
bor classification. Institute of Electrical and Electronics Engineers
(IEEE) Transactions on Pattern Analysis and Machine Intelligence,
18:607–616, 1996.

[14] Thomas Hofmann and Joachim M. Buhmann. Pairwise data cluster-
ing by deterministic annealing. Institute of Electrical and Electronics

Semi-Supervised Clustering with User Feedback 31

Engineers (IEEE) Transactions on Pattern Analysis and Machine In-
telligence, 19(1):1–14, 1997.

[15] David J.C. MacKay. Information Theory, Inference and Learning Algo-
rithms. Cambridge University Press, 2003.

[16] Andrew McCallum and Kamal Nigam. A comparison of event models
for naive Bayes text classification. In Workshop on Learning for Text
Categorization at the 15th Conference of the American Association for
Artificial Intelligence, 1998.

[17] Marina Meilă and David Heckerman. An experimental comparison of
several clustering and initialization methods. In Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence (UAI 98, pages 386–
395. Morgan Kaufmann, 1998.

[18] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[19] Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clus-
tering of English words. In Proceedings of the 31st Annual Meeting on
Association for Computational Linguistics, pages 183–190. Association
for Computational Linguistics, 1993.

[20] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Rus-
sell. Distance metric learning with application to clustering with side-
information. In S. Becker, S. Thrun, and K. Obermayer, editors, Ad-
vances in Neural Information Processing Systems 15, pages 505–512.
MIT Press, 2003.

[21] Peter N. Yianilos. Metric learning via normal mixtures. Technical report,
NEC Research Institute, 1995.

Chapter 3

Gaussian Mixture Models with
Equivalence Constraints

Noam Shental

Weizmann Institute of Science, noam.shental@weizmann.ac.il

Aharon Bar-Hillel

Intel Research, aharon.bar-hillel@intel.com

Tomer Hertz

Microsoft Research, hertz@microsoft.com

Daphna Weinshall

The Hebrew University of Jerusalem Israel, daphna@cs.huji.ac.il

Abstract Gaussian Mixture Models (GMMs) have been widely used to
cluster data in an unsupervised manner via the Expectation Maximization
(EM) algorithm. In this chapter we suggest a semi-supervised EM algo-
rithm that incorporates equivalence constraints into a GMM. Equivalence
constraints provide information about pairs of data points, indicating whether
the points arise from the same source (a must-link constraint) or from different
sources (a cannot-link constraint). These constraints allow the EM algorithm
to converge to solutions that better reflect the class structure of the data.
Moreover, in some learning scenarios equivalence constraints can be gathered
automatically while they are a natural form of supervision in others. We
present a closed form EM algorithm for handling must-link constraints, and a
generalized EM algorithm using a Markov network for incorporating cannot-
link constraints. Using publicly available data sets, we demonstrate that
incorporating equivalence constraints leads to a considerable improvement in
clustering performance. Our GMM-based clustering algorithm significantly
outperforms two other available clustering methods that use equivalence con-
straints.

33

34 Constrained Clustering: Advances in Algorithms, Theory, and Applications

3.1 Introduction

Mixture models are a powerful tool for probabilistic modelling of data,
which have been widely used in various research areas such as pattern recog-
nition, machine learning, computer vision, and signal processing [13, 14, 18].
Such models provide a principled probabilistic approach to cluster data in an
unsupervised manner [24, 25, 30, 31]. In addition, their ability to represent
complex density functions has also made them an excellent choice in density
estimation problems [20, 23].

Mixture models are usually estimated using the efficient Expectation Max-
imization (EM) algorithm [12, 31], which converges to a local maximum of
the likelihood function. When the component densities arise from the expo-
nential family, the EM algorithm has closed form update rules, which make it
very efficient. For this reason it is not surprising that most of the literature
on mixture models has focused on Gaussian mixtures (GMMs). When such
mixtures are used to cluster data, it is usually assumed that each class is
represented as a single Gaussian component within the mixture.1

Since GMMs can be estimated in unsupervised and supervised settings,
they have also been adapted to semi-supervised scenarios. In these scenarios,
we are provided with an unlabeled data set and with some additional side-
information. The two most common types of side-information considered in
the literature are partial labels and equivalence constraints (see Section 3.5
for more details).

The additional side-information provided can help the algorithm to un-
cover the underlying class structure in the data. Furthermore, when the data
originates from the assumed mixture model, side-information can be used to
alleviate local maxima problems, often encountered in EM, by constraining
the search space of the algorithm. More interestingly, in cases where the
data distribution does not correspond to class labels, equivalence constraints
may help steer the EM algorithm toward the required solution. Incorporating
equivalence constraints modifies the likelihood objective function, which EM
seeks to maximize, thus allowing the algorithm to choose clustering solutions
that would have been rejected by an unconstrained EM algorithm due to their
relatively low likelihood score. Two illustrative examples of this advantage are
shown in Fig. 3.1.

In this chapter we suggest a semi-supervised EM algorithm for a GMM that
incorporates equivalence constraints. An equivalence constraint determines
whether a pair of data points were generated by the same source (must-link
constraint) or by different sources (cannot link constraint). Equivalence con-
straints carry less information than explicit labels of the original data points.

1When this assumption does not hold, it is possible to model the data using a hierarchical
mixture model in which each class is represented using a set of models within the mixture.

Gaussian Mixture Models with Equivalence Constraints 35

(a)

(b)

FIGURE 3.1: Two illustrative examples that demonstrate the benefits of in-
corporating equivalence constraints into the EM algorithm. (a) The data set
consists of two vertically aligned non-Gaussian classes (each consisting of two
halves of a Gaussian distribution). Left: Given no additional information,
the unconstrained EM algorithm identifies two horizontal Gaussian classes,
and this can be shown to be the maximum likelihood solution (with log like-
lihood of −3500 vs. log likelihood of −2800 for the solution shown on the
right). Right: Using additional side-information in the form of equivalence
constraints between the right and left halves of the Gaussians modifies the like-
lihood function, and the constrained EM algorithm obtains a vertical partition
as the most likely solution. (b) The data set consists of two Gaussian classes
(horizontal and vertical) with partial overlap. Left: Without constraints the
most likely solution consists of two non-overlapping sources. Right: Using
class relevant constraints the correct model with overlapping classes was ob-
tained as the most likely solution. In all plots only the class assignments of
unconstrained points are shown.

This can be seen by observing that a set of labeled points can be easily used
to extract a set of equivalence constraints: any pair of points with identi-

36 Constrained Clustering: Advances in Algorithms, Theory, and Applications

cal labels form a must-link constraint, while any pair of points with different
labels form a cannot-link constraint. The opposite is not true. Transform-
ing equivalence constrains into labels can only be done when the entire set of
pairwise constraints are provided, a requirement that is usually far from being
fulfilled. However, unlike labels, in some scenarios equivalence constraints can
be extracted automatically or with a minimal amount of supervision (see Sec-
tion 3.4 for more details). In such cases, we show that equivalence constraints
may provide significantly better data clustering.

Our semi-supervised EM algorithm uses an unlabeled data set augmented
by equivalence constraints. The formulation allows to incorporate both must-
link and cannot-link constraints. As we will show, the equivalence constraints
are used to limit the space of possible assignments of the hidden variables in
the E step of the algorithm. An important advantage of this approach is that
the probabilistic semantics of the EM procedure allows for the introduction of
equivalence constraints in a principled manner, unlike several other heuristic
approaches to this problem.

While introducing must-link constraints is fairly straightforward, the in-
troduction of cannot-link constraints is more complex and may require some
approximations. We therefore begin by presenting the case of must-link con-
straints (Section 3.2.2) and then proceed to the case of cannot-link constraints
(Section 3.2.3). We then discuss the case in which both types of constraints are
provided (Section 3.2.4). Experimental results of our algorithm are presented
in Section 3.3 using a number of data sets from the UCI repository and a large
database of facial images [15]. The algorithm’s performance is compared with
two previously suggested constrained clustering algorithms: constrained k-
means (COP k-means) [37] and constrained complete linkage [28]. Our exper-
iments show that the constrained EM algorithm provides significantly better
clustering results when compared with these two algorithms. Section 3.4 pro-
vides some important motivations for semi-supervised learning using equiva-
lence constraints and briefly discusses its relation to semi-supervised learning
from partial labels. Section 3.5 discusses some related work on constrained
clustering. Finally, Section 3.6 provides a short discussion of the method’s
advantages and limitations and the relation between constrained clustering
and distance learning algorithms.2

3.2 Constrained EM: The Update Rules

A Gaussian mixture model (GMM) is a parametric statistical model that
assumes the data originates from a weighted sum of several Gaussian sources.

2A Matlab implementation of the algorithm can be obtained from http://www.cs.huji.

ac.il/∼daphna.

Gaussian Mixture Models with Equivalence Constraints 37

More formally, a GMM is given by: p(x|Θ) = ΣM
l=1αlp(x|θl) where M denotes

the number of Gaussian sources in the GMM, αl denotes the weight of each
Gaussian, and θl denotes its respective parameters.

EM is often the method of choice for estimating the parameter set of the
model (Θ) using unlabeled data [12]. The algorithm iterates between two
steps:

• E-step: Calculate the expectation of the log-likelihood over all possible
assignments of data points to sources.

• M-step: Maximize the expectation by differentiating w.r.t the current
parameters.

Equivalence constraints modify the E-step in the following way: Instead
of summing over all possible assignments of data points to sources, we sum
only over assignments that comply with the given constraints. For example,
if points xi and xj form a must-link constraint, we only consider assignments
in which both points are assigned to the same Gaussian source. On the
other hand, if these points form a cannot-link constraint, we only consider
assignments in which each of the points is assigned to a different Gaussian
source.

It is important to note that there is a basic difference between must-link
and cannot-link constraints: While must-link constraints are transitive (i.e., a
group of pairwise must-link constraints can be merged using transitive clo-
sure), cannot-link constraints are not transitive. The outcome of this differ-
ence is expressed in the complexity of incorporating each type of constraints
into the EM formulation. Therefore, we begin by presenting a formulation for
must-link constraints (Section 3.2.2) and then move on to cannot-link con-
straints (Section 3.2.3). We conclude by presenting a unified formulation for
both types of constraints (Section 3.2.4).

3.2.1 Notations

The following notations are used:

• p(x) =
∑M

l=1 αl p(x|θl) denotes our GMM. Each p(x|θl) is a Gaussian
parameterized by θl = (μl,Σl), where μl is the distribution’s center and
Σl its covariance matrix. {αl} are the mixing coefficients and

∑M
l=1 αl =

1.

• X denotes the set of all points, X = {xi}n
i=1.

• Y denotes the assignment of all points to sources.

• EC denotes the event {Y complies with the constraints}.

• A chunklet denotes a small subset of constrained points that originate
from the same source (i.e., that are must-linked to one another).

38 Constrained Clustering: Advances in Algorithms, Theory, and Applications

3.2.2 Incorporating Must-Link Constraints

In this setting we are given a set of unlabeled data points and a set of must-
link constraints. Since must-link constraints may be grouped using transitive
closure, we obtain a set of chunklets. Hence the data set is initially partitioned
into chunklets. Note that unconstrained points can be described as chunklets
of size one.

• Let {Xj}L
j=1 denote the set of all chunklets, and {Yj}L

j=1 denote the set
of assignments of chunklet points to sources.

• The points that belong to a certain chunklet are denoted
Xj = {x1

j , . . . , x
|Xj |
j }, where X =

⋃
j Xj .

In order to write down the likelihood of a given assignment of points to
classes, a probabilistic model of how chunklets are obtained must be specified.
We consider two such models:

1. A source is sampled i.i.d according to the prior distribution over sources,
and then points are sampled i.i.d from that source to form a chunklet.

2. Data points are first sampled i.i.d from the full probability distribution.
From this sample, pairs of points are randomly chosen according to a
uniform distribution. In case both points in a pair belong to the same
source a must-link constraint is formed (and a cannot-link if formed
when they belong to different sources). Chunklets are then obtained
using transitive closure over the sampled must-link constraints.

The first assumption is justified when chunklets are automatically obtained
from sequential data with the Markovian property. The second sampling as-
sumption is justified when equivalence constraints are obtained via distributed
learning. (For more details regarding these two scenarios see Section 3.4.)
When incorporating these sampling assumptions into the EM algorithm, dif-
ferent algorithms emerge: With the first assumption we obtain closed-form
update rules for all of the GMM parameters. When the second sampling as-
sumption is used there is no closed-form solution for the sources’ weights. We
therefore derive the update rules under the first sampling assumption, and
then briefly discuss the second sampling assumption.

3.2.2.1 Update Equations When Chunklets are Sampled i.i.d.

In order to derive the update equations of our constrained GMM model, we
must compute the expectation of the log likelihood, which is defined as:

E
[
log(p(X,Y |Θnew, EC))|X,Θold, EC

]

=
∑

Y

log(p(X,Y |Θnew, EC)) · p(Y |X,Θold, EC) (3.1)

Gaussian Mixture Models with Equivalence Constraints 39

In (3.1)
∑

Y denotes the summation over all assignments of points to sources:
∑

Y ≡
∑M

y1=1 · · ·
∑M

yn=1. In the following discussion we shall also reorder
the sum according to chunklets:

∑
Y ≡

∑
Y1
· · ·
∑

YL
, where

∑
Yj

stands for
∑

yj
1
· · ·
∑

yj
|Xj |

.

Calculating the Posterior probability p(Y |X,Θold, EC): Using Bayes
rule we can write

p(Y |X,Θold, EC) =
p(EC |Y,X,Θold) p(Y |X,Θold)

∑
Y p(EC |Y,X,Θold) p(Y |X,Θold)

(3.2)

From the definition of EC it follows that

p(EC |Y,X,Θold) =
L∏

j=1

δYj

where δYj
≡ δyj

1,...,yj
|Xj |

equals 1 if all the points in chunklet i have the same

source, and 0 otherwise.
Using the assumption of chunklet independence we have:

p(Y |X,Θold) =
L∏

j=1

p(Yj |Xj ,Θold)

Therefore (3.2) can be rewritten as:

p(Y |X,Θold, EC) =

∏L
j=1 δYj

p(Yj |Xj ,Θold)
∑

Y1
· · ·
∑

YL

∏L
j=1 δYj

p(Yj |Xj ,Θold)
(3.3)

The complete data likelihood p(X,Y |Θnew, EC): This likelihood can be
written as:

p(X,Y |Θnew, EC) = p(Y |Θnew, EC) p(X|Y,Θnew, EC)

= p(Y |Θnew, EC)
n∏

i=1

p(xi|yi,Θnew)

where the last equality is due to the independence of data points, given the
assignment to sources. Using Bayes rule and the assumption of chunklet
independence, we can write:

p(Y |Θnew, EC) =

∏L
j=1 δYj

p(Yj |Θnew)
∑

Y1
· · ·
∑

YL

∏L
j=1 δYj

p(Yj |Θnew)

40 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Using the notation Z ≡
∑

Y1
· · ·
∑

YL

∏L
j=1 δYj

p(Yj |Θnew), the likelihood can
be rewritten as:

p(X,Y |Θnew, EC) =
1
Z

L∏

j=1

δYj
p(Yj |Θnew)

n∏

i=1

p(xi|yi,Θnew) (3.4)

The first sampling assumption introduced means that a chunklet’s source is
sampled once for all the chunklet’s points, i.e., p(Yj |Θnew) = αYj . Under this
sampling assumption, Z—the normalizing constant—equals 1. Therefore, the
resulting log likelihood is

log p(X,Y |Θnew, EC) =
L∑

j=1

∑

xi∈Xj

log p(xi|yi,Θnew) +
L∑

j=1

log(αYj
) +

L∑

j=1

log(δYJ
)

Maximizing the expected log likelihood: We substitute (3.3) and (3.4)
into (3.1) to obtain (after some manipulations) the following expression:

E
[
log(p(X,Y |Θnew, EC))|X,Θold, EC

]
=

M∑

l=1

L∑

j=1

p(Yj = l|Xj ,Θold)
∑

xi∈Xj

log p(xi|l,Θnew) +
M∑

l=1

L∑

j=1

p(Yj = l|Xj ,Θold) log αl

(3.5)

where the chunklet posterior probability is:

p(Yj = l|Xj ,Θold) =
αold

l

∏
xi∈Xj

p(xi|yj
i = l,Θold)

∑M
m=1 α

old
m

∏
xi∈Xj

p(xi|yj
i = m,Θold)

In order to find the update rule for each parameter, we differentiate (3.5)
with respect to μl, Σl, and αl, to get the following update equations:

αnew
l =

1
L

L∑

j=1

p(Yj = l|Xj ,Θold)

μnew
l =

∑L
j=1 X̄jp(Yj = l|Xj ,Θold)|Xj |
∑L

j=1 p(Yj = l|Xj ,Θold)|Xj |

Σnew
l =

∑L
j=1 Σnew

jl p(Yj = l|Xj ,Θold)|Xj |
∑L

j=1 p(Yj = l|Xj ,Θold)|Xj |

for Σnew
jl =

∑
xi∈Xj

(xi − μnew
l)(xi − μnew

l)T

|Xj |

Gaussian Mixture Models with Equivalence Constraints 41

where X̄j denotes the sample mean of the points in chunklet j, |Xj | denotes
the number of points in chunklet j, and Σnew

jl denotes the sample covariance
matrix of the jth chunklet of the lth class.

As can be readily seen, the update rules above effectively treat each chunklet
as a single data point weighted according to the number of elements in it.

3.2.2.2 Update Equations When Constrained Points are Sampled
i.i.d.

We now derive the update equations under the assumption that the data
points are sampled i.i.d. and that chunklets are selected only afterward.

The difference between the two sampling assumptions first appears in the
prior probabilities, which must be changed to p(Yj |Θnew) =

∏|Xj |
i=1 p(y

i
j =

l|Θnew) = α
|Xj |
Yj

. We therefore have:

p(Y |Θnew, EC) =

∏L
j=1 α

|Xj |
Yj

∏L
j=1

∑M
m=1 α

|Xj |
m

(3.6)

and the expected log likelihood becomes:

M∑

l=1

L∑

j=1

p(Yj = l|Xj ,Θold)
∑

xi∈Xj

log p(xi|l,Θnew)

+
M∑

l=1

L∑

j=1

p(Yj = l|Xj ,Θold) |Xj | log αl −
L∑

j=1

log(
M∑

m=1

α|Xj |
m) (3.7)

The main difference between (3.5) and (3.7) lies in the last term, which can
be interpreted as a “normalization” term. Differentiating (3.7) with respect
to μl and Σl readily provides the same update equations as before, but now
the posterior takes a slightly different form:

p(Yj = l|Xj ,Θold) =
(αold

l)|Xj |∏
xi∈Xj

p(xi|yj
i = l,Θold)

∑M
m=1(αold

m)|Xj |
∏

xi∈Xj
p(xi|yj

i = m,Θold)

A problem arises with the derivation of the update equations for the sources’
weights αl. In order to calculate αnew

l , we need to differentiate (3.7) subject
to the constraint

∑M
l=1 αl = 1. Due to the “normalization” term we cannot

obtain a closed-form solution, and we must resort to using a Generalized EM
(GEM) scheme where the maximum is found numerically.

3.2.3 Incorporating Cannot-Link Constraints

As mentioned earlier, incorporating cannot-link constraints is inherently dif-
ferent and much more complicated than incorporating must-link constraints.

42 Constrained Clustering: Advances in Algorithms, Theory, and Applications

This difficulty can be related to the fact that unlike must-link constraints,
cannot-link constraints are not transitive. For example if points xi and xj are
known to belong to different classes and points xj and xk are also known to
belong to different classes, points xi and xk may or may not belong to the same
class. Hence cannot-link constraints are given as a set C�= = {c�=(a1

i , a
2
i)}P

i=1

of index pairs corresponding to P negatively constrained pairs.
Similarly to the case of must-link constraints (in Equation (3.4)), the com-

plete data likelihood is

p(X,Y |Θ, EC �=) =
1
Z

∏

c �=(a1
i ,a2

i)

(1− δy
a1

i
,y

a2
i

)
n∏

i=1

p(yi|Θ)p(xi|yi,Θ) (3.8)

The product over δ in (3.4) is replaced by the product over (1− δ) here, and
the normalizing constant is now given by

Z ≡
∑

y1

· · ·
∑

yn

∏

C �=

(1− δy
a1

j
,a2

j

)
n∏

i=1

p(yi|Θ).

In the following derivations we start with the update rules of μl and Σl, and
then discuss how to update αl, which once again poses additional difficulties.

Deriving the update equations for μl and Σl

Following exactly the same derivation as in the case of must-link constraints,
we can write down the update equations of μl and Σl:

μnew
l =

∑n
i=1 xip(yi = l|X,Θold, EC �=)
∑n

i=1 p(yi = l|X,Θold, EC �=)

Σnew
l =

∑n
i=1 Σ̂ilp(yi = l|X,Θold, EC �=)
∑n

i=1 p(yi = l|X,Θold, EC �=)

where Σ̂il = (xi − μnew
l)(xi − μnew

l)T denotes the sample covariance matrix.
The difficulty lies in estimating the probabilities p(yi = l|X,Θold, EC �=),

which are calculated by marginalizing the following expression:

p(Y |X,Θold, EC �=) = (3.9)
Q

c�=(a1
i

,a2
i
)(1−δy

a1
i

,y
a2

i

)
Qn

i=1 p(yi|xi,Θ
old)

P
y1

···
P

yn

Q
c�=(a1

i
,a2

i
)(1−δy

a1
i

,y
a2

i

)
Qn

i=1 p(yi|xi,Θold)

It is not feasible to write down an explicit derivation of this expression for
a general constraints graph, since the probability of a certain assignment of
point xi to source l depends on the assignment of all other points sharing a
cannot-link constraint with xi. However, since the dependencies enforced by
the constraints are local, we can describe (3.8) as a product of local compo-
nents, and therefore it can be readily described using a Markov network.

Gaussian Mixture Models with Equivalence Constraints 43

2=3

old)P(x
1
|y

1
,

Data
Point 1

Data
Point 2

Data
Point 3

Hidden1

Hidden2

Hidden3

θ old)P(x
2
|y

2
, θ old)P(x

3
|y

3
,

P(y
1
|θ old) P(y

3
|θ old)

P(y
2
|θ old)

1=2

1� , y21yδ 1� , y32yδ

θ

FIGURE 3.2: An illustration of the Markov network required for incorporat-
ing cannot-link constraints. Data points 1 and 2 have a cannot-link constraint,
and so do points 2 and 3.

A Markov network is a graphical model defined by a graph g = (V,E),
whose nodes v ∈ V represent a random variable and whose edges E represent
the dependencies between the different nodes. In our case the graph contains
observable nodes which correspond to the observed data points {xi}n

i=1, and
discrete hidden nodes {yi}n

i=1 (see Fig. 3.2). The variable yi describes the
index of the Gaussian source of point xi. Each observable node xi is connected
to its hidden node yi by a directed edge, holding the potential p(xi|yi,Θ).
Each hidden node yi also has a local prior potential of the form of p(yi|Θ).
A cannot-link constraint between data points xi and xj is represented by an
undirected edge between their corresponding hidden nodes yi and yj , having
a potential of (1 − δyi,yj

). These edges prevent both hidden variables from
having the same value.

The mapping of our problem into the language of graphical models makes
it possible to use efficient inference algorithms. We use Pearl’s junction tree
algorithm [34] to compute the posterior probabilities. The complexity of the
junction tree algorithm is exponential in the induced-width of the graph, hence
for practical considerations the number of cannot-link constraints should be
limited to O(n).3 Therefore, in order to achieve scalability to large sets of con-
straints, we must resort to approximations; in our implementation we specif-
ically replaced the graph by its minimal spanning tree.

3The general case with O(n2) constraints is NP-hard, as the graph coloring problem can
be reduced to it.

44 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Deriving the update equations for αl

The derivation of the update rule of αl = p(yi = l|Θnew, EC �=) is more
intricate due to the normalization factor Z. In order to understand the dif-
ficulties, note that maximizing the expected log-likelihood with respect to αl

is equivalent to maximizing:

I = − log(Z) +
M∑

m=1

[
n∑

i=1

p(yi = m|X,Θ, EC �=)] log(αm)

where the normalization factor Z is:

Z = p(EC �= |Θ) =
∑

Y

p(Y |Θ)p(EC �= |Y) (3.10)

=
∑

y1

...
∑

yn

n∏

i=1

αyi

∏

c �=(a1
i ,a2

i)

(1− δy
a1

i
,y

a2
i

)

The gradient of this expression w.r.t. αl is given by

∂I
∂αl

= − 1
Z

∂Z

∂αl
+
∑n

i=1 p(yi = l|X,Θ, EC �=)
αl

(3.11)

Equating (3.11) to zero (subject to the constraint
∑M

l=1 αl = 1) does not
have a closed form solution, and once again we must use the numerical GEM
procedure. The new difficulty, however, lies in estimating (3.11) itself; al-
though the posterior probabilities have already been estimated using the
Markov network, we still need to calculate Z and its derivatives.

We considered three different approaches for computing Z and its deriva-
tives. The first, naive approach is to ignore the first term in (3.11). Thus we
are left only with the second term, which is a simple function of the expected
counts. This function is identical to the usual EM case, and the update has
the regular closed form:

αnew
l =

∑n
i=1 p(yi = l|X,Θold)

n

Our second approach is to perform an exact computation of Z and ∂Z
∂α using

additional Markov networks. A third approach is to use a pseudo-likelihood
approximation. The description of the last two approaches is left to the ap-
pendix.

3.2.4 Combining Must-Link and Cannot-Link Constraints

Both types of constraints can be incorporated into the EM algorithm using
a single Markov network by a rather simple extension of the network described

Gaussian Mixture Models with Equivalence Constraints 45

4=5=6

Point 4
Data

Point 5
Data

Point 6
Data

Point 2
Data

Point 3
Data

Point 1

1=2

Hidden1 Hidden3

Hidden2

2=3

2=3

Data

FIGURE 3.3: An illustration of the Markov network required for incorporat-
ing both cannot-link and must-link constraints. Data points 1 and 2 have a
cannot-link constraint, and so do points 2 and 4. Data points 2 and 3 have a
must-link constraint, and so do points 4, 5, and 6.

in the previous section. Assume we have, in addition to the cannot-link con-
straints, a set {Xj}L

j=1 of chunklets containing points known to share the same
label.4 The likelihood becomes

p(X,Y |Θ, EC) =
1
Z

∏

j

δYj

∏

c �=(a1
i ,a2

i)

(1− δy
a1

i
,y

a2
i

)
n∏

i=1

p(yi|Θ)p(xi|yi,Θ)

where δYj
is 1 iff all the points in chunklet Xj have the same label, as defined

in Section 3.2.2.1. Since the probability is non-zero only when the hidden
variables in the chunklet are identical, we can replace the hidden variables of
each chunklet hi1 · · ·hi|ci|

with a single hidden variable. Hence in the Markov
network implementation points in a must-link constraint share a hidden father
node (see Fig. 3.3). The EM procedure derived from this distribution is similar
to the one presented earlier, with a slightly modified Markov network and
normalizing constant.

3.3 Experimental Results

In order to evaluate the performance of our constrained EM algorithms, we
compared them to two alternative clustering algorithms that use equivalence

4In this section, must-link constraints are sampled in accordance with the second sampling
assumption described in Section 3.2.2.

46 Constrained Clustering: Advances in Algorithms, Theory, and Applications

constraints: the constrained k-means algorithm (COP k-means) [37] and the
constrained complete-linkage algorithm [28]. We tested all three algorithms
using several data sets from the UCI repository and a facial database.

In our experiments we simulated a “distributed learning” scenario in order
to obtain side-information. In this scenario, we obtain equivalence constraints
using the help of n teachers. Each teacher is given a random selection of K
data points from the data set, and is then asked to partition this set of points
into equivalence classes. The constraints provided by the teachers are gathered
and used as equivalence constraints.

Each algorithm was tested in three modes: basic—using no side-information;
must-link—using only must-link constraints; and combined—using both must-
link and cannot-link constraints. Specifically we compared the performance
of the following variants:

(a) k-means—basic mode.

(b) k-means—must-link mode [37].

(b) k-means—combined mode [37].

(d) complete-linkage—basic mode.

(e) complete-linkage—must-link mode [28].

(f) complete-linkage—combined mode [28].

(g) constrained-EM —basic mode.

(h) constrained-EM—must-link mode.

(i) constrained-EM—combined mode.

The number of constrained points was determined by the number of teachers
n and the size of the subset K that was given to each teacher. By controlling
the product nK we modified the total amount of side-information available.
For a fair comparison, all of the algorithms that require initial conditions,
were given the same initial conditions, which were randomly sampled without
using the available equivalence constraints. Clustering solutions were evalu-
ated using a combined measure of precision P and recall R scores given by
f 1

2
= 2PR

R+P .

3.3.1 UCI Data Sets

The results over several UCI data sets are shown in Fig. 3.4. We exper-
imented with two conditions: using “little” side-information (approximately
15% of the data points are constrained), and using “much” side-information
(approximately 30% of the points are constrained).5

5With the protein and ionosphere data sets we used more side-information: protein: 80%
and 50%, ionosphere: 75% and 50%.

Gaussian Mixture Models with Equivalence Constraints 47

FIGURE 3.4: Combined precision and recall scores (f 1
2
) of several cluster-

ing algorithms over 6 data sets from the UCI repository. Results are pre-
sented for the following algorithms: (a) k-means, (b) constrained k-means
using only must-link constraints, (c) constrained k-means using both must-
link and cannot-link constraints, (d) complete linkage, (e) complete linkage
using must-link constraints, (f) complete linkage using both must-link and
cannot-link constraints, (g) regular EM, (h) EM using must-link constraints,
and (i) EM using both must-link and cannot-link constraints. In each panel
results are shown for two cases, using 15% of the data points in constraints
(left bars) and 30% of the points in constraints (right bars). The results were
averaged over 100 realizations of constraints. Also shown are the names of
the data sets used and some of their parameters: N—the size of the data set;
C—the number of classes; d—the dimensionality of the data.

48 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Several effects can be clearly seen:

• The performance of the EM algorithms is generally better than the
performance of the respective k-means and complete-linkage algorithms.
In fact, our constrained EM outperforms the constrained k-means and
the constrained complete-linkage algorithms on all databases.

• As expected, introducing side-information in the form of equivalence
constraints improves the results of both k-means and the EM algo-
rithms, though curiously this is not always the case with the constrained
complete-linkage algorithm. As the amount of side-information increases,
the algorithms that make use of it tend to improve.

• Most of the improvement can be attributed to the must-link constraints,
and can be achieved using our closed form EM version. In most cases
adding the cannot-link constraints contributes a small but significant im-
provement over results obtained when using only must-link constraints.

It should be noted that most of the UCI data sets considered so far contain
only two or three classes. Thus in the distributed learning setting a relatively
large fraction of the constraints were must-link constraints. In a more realistic
situation, with a large number of classes, we are likely to gather more cannot-
link constraints than must-link constraints. This is an important point in
light of the results in Fig. 3.4, where the major boost in performance was due
to the use of must-link constraints.

3.3.2 Facial Image Database

In order to consider the multi-class case, we conducted the same experi-
ment using a subset of the Yale facial image data set [15], which contains a
total of 640 images, including 64 frontal pose images of 10 different subjects.
Some example images from the data set are shown Fig. 3.5. In this database
the variability between images of the same person is due mainly to different
lighting conditions. We automatically centered all the images using optical
flow. Images were then converted to vectors, and each image was represented
using the first 60 principal components coefficients. The task was to cluster
the facial images belonging to these 10 subjects.

Our results are summarized in Fig. 3.5. As before, our constrained EM
algorithms substantially outperform the regular EM algorithms and the other
constrained clustering algorithms used. Due to the random selection of images
given to each of the n teachers, mostly cannot-link constraints were obtained.
However, even though there was only a small number of must-link constraints,
most of the boost in performance was obtained using these constraints.

Gaussian Mixture Models with Equivalence Constraints 49

FIGURE 3.5: Left: Examples from the subset of pictures we used from the
Yale database, which contains 640 frontal face images of 10 individuals taken
under different lighting conditions. Right: Combined precision and recall
scores of several clustering algorithms over the Yale facial data set. The
results are presented using the same format as in Fig. 3.4, representing an
average of more than 1000 realizations of constraints. Percentage of data in
constraints was 50% (left bars) and 75% (right bars). It should be noted that
when using 75% of the data in constraints, the constrained k-means algorithm
failed to converge in more than half of its runs.

3.4 Obtaining Equivalence Constraints

In contrast to explicit labels that are usually provided by a human instruc-
tor, in some scenarios equivalence constraints may be extracted with minimal
effort or even automatically. Two examples of such scenarios are described
below:

• Temporal continuity—In this scenario, we consider cases where the
data are inherently sequential and can be modeled by a Markovian pro-
cess. In these cases we can automatically obtain must-link constraints
by considering a set of samples that are temporally close to one another.
In some cases, we can also use this scenario to obtain cannot-link con-
straints. For example, in a movie segmentation task, the objective may
be to find all the frames in which the same actor appears [9]. Due to
the continuous nature of most movies, faces extracted from successive
frames in roughly the same location can be assumed to come from the

50 Constrained Clustering: Advances in Algorithms, Theory, and Applications

same person, and thus provide a set of must-link constraints.6 Yan et
al. [40] have presented an interesting application of video object classi-
fication using this approach.

• Distributed learning—Anonymous users of a retrieval system can be
asked to help annotate the data by providing information about small
portions of the data that they see.7 We can use these user annotations
to define equivalence constraints. For example, we can ask the users
of an image retrieval engine to annotate the set of images retrieved as
an answer to their query [3]. Thus, each of these cooperative users will
provide a collection of small sets of images that belong to the same
category. Moreover, different sets provided by the same user are known
to belong to different categories. Note however that we cannot use the
explicit labels provided by the different users because we cannot assume
that the subjective labels of each user are consistent with one another:
A certain user may label a set of images as “F-16” images, and another
user may label another set of F-16 images as “Airplane” images.

3.5 Related Work

As noted in the introduction, two types of semi-supervised clustering al-
gorithms have been considered in the literature: algorithms that incorporate
some additional labeled data and algorithms that incorporate equivalence con-
straints. Miller and Uyar [32] and Nigam et al. [33] have both suggested en-
hancements of the EM algorithm for a GMM that incorporates labeled data.
Several other works have proposed augmentations of other classical clustering
algorithms to incorporate labeled data [8, 10, 11, 16, 26, 29, 41].

Incorporating equivalence constraints has been suggested for almost all clas-
sical clustering algorithms. Cohn et al. (see Chapter 2) were perhaps the first
to suggest a semi-supervised technique trained using equivalence constraints
for clustering of text documents. The suggested method applies equivalence
constraints in order to learn a distance metric based on a weighted Jensen-
Shannon divergence. The latter is then used in the EM algorithm.

Klein et al. [28] introduced equivalence constraints into the complete-linkage
algorithm by a simple modification of the similarity matrix provided as input
to the algorithm. Wagstaff et al. [37] suggested the COP k-means algorithm,
which is a heuristic approach for incorporating both types of equivalence con-
straints into the k-means algorithm (see Chapter 1, Table 1.1). Basu et al. [5]

6This is true as long as there is no scene change, which can be robustly detected [9].
7This scenario may also be called generalized relevance feedback.

Gaussian Mixture Models with Equivalence Constraints 51

suggested a constrained clustering approach based on a Hidden Markov Ran-
dom Field (HMRF) and can incorporate various distortion measures. An
additional approach was suggested by Bilenko et al. [7] who introduced the
MPCK-means algorithm that includes a metric learning step in each clustering
iteration.

Kamvar et al. [27] introduced pairwise constraints into spectral cluster-
ing by modifying the similarity matrix in a similar way to that suggested in
Klein et al. [28]. This work is also closely related to the work of Yu and
Shi [41]. An alternative formulation was presented by De Bie et al. [6] who
incorporated a separate label constraint matrix into the objective function of
a spectral clustering algorithm such as the normalized-cut [36]. Motivated by
the connection between spectral clustering and graph-cut algorithms, Bansal
et al. [1] have suggested a general graph-based algorithm incorporating both
must-link and cannot-link constraints. Finally, the constrained EM algorithm
has been successfully used as a building block of the DistBoost algorithm,
which learns a non-linear distance function using a semi-supervised boosting
approach [21, 22].

3.6 Summary and Discussion

In this chapter we have shown how equivalence constraints can be incorpo-
rated into the computation of a Gaussian Mixture Model (GMM). When using
must-link constraints, we provided an efficient closed form solution for the up-
date rules and demonstrated that using must-link constraints can significantly
boost clustering performance. When cannot-link constraints are added, the
computational cost increases since a Markov network is used as an inference
tool, and we must defer to approximation methods. Our experiments show
that although most of the improvement in performance is obtained from the
must-link constraints alone, the contribution of the cannot-link constraints is
still significant.

We conjecture that must-link constraints may be more valuable than cannot-
link constraints for two reasons. First, from an information related perspective
must-link constraints are more informative than cannot-link constraints. To
see this, note that if the number of classes in the data is m, then a must-link
constraint c=(i, j) allows only m possible assignments of points i and j (out of
m2 assignments for an unconstrained pair of points), while a cannot-link con-
straint allows m(m−1)/2 such assignments. Hence for m > 2 the reduction in
uncertainty due to a must-link constraint is much larger than for a cannot-link
one. A second (and probably more important) reason concerns the estimation
of the d×d covariance matrix of the Gaussian sources. In many cases a source
that is represented in a d-dimensional input space actually lies in a lower k-

52 Constrained Clustering: Advances in Algorithms, Theory, and Applications

dimensional manifold where k � d. In these cases, estimating the covariance
matrix of the source boils down to identifying these k dimensions. Must-link
constraints are better suited for this task, since they directly provide infor-
mation regarding the k relevant dimensions, whereas cannot-link constraints
can only be used to identify non-relevant dimensions, whose number is much
larger (since k � d). This may also explain why the superiority of must-link
constraints over cannot-link constraints is more pronounced for data sets with
a large number of classes that are represented in a high-dimensional space, as
in the Yale facial image data set.

While this work has focused on incorporating equivalence constraints into a
clustering algorithm, there are other possible ways in which these constraints
may be used to improve clustering performance. Many clustering algorithms
are distance based, i.e., their only input are pairwise distances between data
points. Therefore, another approach that has recently received growing at-
tention is to use the constraints to learn a distance function over the input
space [2, 4, 6, 7, 17, 19, 21, 35, 38, 39]. While both constrained clustering
algorithms and distance learning algorithms have been shown to significantly
improve clustering performance, the question of whether these approaches
are interchangeable or whether combining them would provide an additional
advantage remains open.

3.7 Appendix: Calculating the Normalizing Factor Z
and its Derivatives when Introducing Cannot-Link
Constraints

Recall that when cannot-link constraints are introduced, the update rule
for αl does not have a closed form solution. This follows from the fact that
maximizing the expected log-likelihood with respect to αl requires maximizing

I = − log(Z) +
M∑

m=1

[
n∑

i=1

p(yi = m|X,Θ, EC �=)] log(αm)

where the normalization factor Z is:

Z = p(EC �= |Θ) =
∑

Y

p(Y |Θ)p(EC �= |Y)

=
∑

y1

...
∑

yn

n∏

i=1

αyi

∏

c �=(a1
i ,a2

i)

(1− δy
a1

i
,y

a2
i

)

The gradient of this expression w.r.t. αl is given by

∂I
∂αl

= − 1
Z

∂Z

∂αl
+
∑n

i=1 p(yi = l|X,Θ, EC �=)
αl

Gaussian Mixture Models with Equivalence Constraints 53

2=3

1
|θ old) P(y

3
|θ old)

P(y
2
|θ old)

1=2

1� , y21yδ 1� , y32yδ

Hidden1 Hidden3

Hidden2

P(y

FIGURE 3.6: An illustration of the Markov network required for calculating
Z for the case where data points 1 and 2 have a cannot-link constraint, as do
points 2 and 3.

which requires the computation of Z and its derivatives. We now present an
exact solution and an approximate solution for these computations.

3.7.1 Exact Calculation of Z and ∂Z
∂αl

When comparing (3.10) and (3.8), we can see that Z can be calculated as
the evidence in a Markov network. This network has a similar structure to the
former network: it contains the same hidden nodes and local potentials, but
lacks the observable nodes (see Fig 3.6). Computing Z now amounts to the
elimination of all the variables in this “prior” network. In order to calculate
∂Z
∂αl

we have to differentiate the distribution represented by the prior network
with respect to αl and sum over all possible network states. This gradient
calculation can be done simultaneously with the calculation of Z as described
below.

The prior network contains two types of factors: edge factors of the form
δyi1 ,yi2

and node factors of the form (α1, . . . , αM). In the gradient calculation
process, we calculate M gradient factors (one for each gradient component)
for every factor in the prior network. Thus in effect we have M + 1 replicas
of the original prior network: the original network and M gradient networks.

The l-th gradient factor holds the gradient ∂
∂αl

f(xi1 , .., xim
) for the various

values of xi1 , .., xim
. These factors are initialized as follows:

• Edge gradient factors are initialized to zero, since δyi1 ,yi2
does not de-

pend on αl.

• Node factors take the form of el = (0, .., 1, .., 0) with 1 in the lth entry
and 0 otherwise.

54 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Using this data structure, variables are eliminated according to a predefined
(heuristically determined) elimination order. In the elimination step of vari-
able x the factors and gradient factors containing that variable are eliminated,
resulting in a prior network factor over x’s neighbors and the M gradient fac-
tors of this factor. If we denote the factors containing x as {fj(x)}k

j=1, the
resulting prior network factor is computed by standard variable elimination,
i.e., by summing out x from

∏k
j=1 fj(x). The l-th gradient factor is computed

by summing out x from ∂
∂αl

∏k
j=1 fj(x). This last expression can be computed

from already known factors (regular and gradient factors of {fj(x)}k
j=1) since

∂

∂αk

k∏

j=1

fj(x) =
k∑

i=1

[
∂

∂αk
fi(x)]

∏

j �=i

fj(x)

The computation of a new gradient factor requires only the usual operations
of factor product and marginalization, as well as factor summation. Since we
compute M gradient elements, the cost of the above procedure is O(Md+1),
where d is the induced width of the network. We project the gradient to the
weights plane

∑
l αl = 1 and use it in a gradient ascent process. The step

size is determined using a line search. Since the gradient computation is done
many times in each EM round, this method can be very slow for complicated
constraint graphs.

3.7.2 Approximating Z Using the Pseudo-Likelihood Assump-
tion

Z can be approximated under the assumption that the cannot-link con-
straints are mutually exclusive. Denote the number of cannot-link constraints
by c. If we now assume that all pairs of constrained points are disjoint, the
number of unconstrained points is u = n − 2c. Assume, without loss of gen-
erality, that the unconstrained data points are indexed by 1 . . . u, and the
remaining points are ordered so that constrained points are given successive
indices (e.g., points u+ 1 and u+ 2 are in a cannot-link constraint). Now Z
can be decomposed as follows:

Z =
∑

y1

...
∑

yn

n∏

i=1

αyi

∏

c �=(a1
i ,a2

i)

(1− δy
a1

i
,y

a2
i

)

=
∑

y1

αy1 ...
∑

yu

αyu

·
∑

yu+1

∑

yu+2

αyu+1αyu+2(1− δyu+1,yu+2)...
∑

yn−1

∑

yn

αyn−1αyn
(1− δyn−1,yn

)

= (1−
M∑

i=1

α2
i)

c (3.12)

Gaussian Mixture Models with Equivalence Constraints 55

This expression for Z may be easily differentiated and can be used in a
GEM scheme. Although the assumption is not valid in most cases, it seems
to yield a good approximation for sparse networks. We empirically compared
the three approaches presented. As can be expected, the results show a trade-
off between speed and accuracy. However, the average accuracy loss caused
by ignoring or approximating Z seems to be small. The pseudo-likelihood
approximation seems to give good accuracy at a minimal speed cost, and so
we used it in our experiments.

References

[1] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.
In 43rd Symposium on Foundations of Computer Science (FOCS 2002),
pages 238–247, 2002.

[2] Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall.
Learning distance functions using equivalence relations. In Proceedings
of the International Conference on Machine Learning (ICML), pages
11–18, 2003.

[3] Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall.
Learning a mahalanobis metric from equivalence constraints. Journal of
Machine Learning Research, 6:937–965, 2005.

[4] Aharon Bar-Hillel and Daphna Weinshall. Learning distance function
by coding similarity. In Proceedings of the International Conference on
Machine Learning (ICML), pages 65–72, 2006.

[5] Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. A probabilistic
framework for semi-supervised clustering. In Proceedings of the Inter-
national Conference on Knowledge Discovery and Data Mining (KDD),
pages 59–68, 2004.

[6] T. De Bie, J. Suykens, and B. De Moor. Learning from general label
constraints. In Proceedings of the Joint IAPR International Workshops
on Syntactical and Structural Pattern Recognition (SSPR 2004) and Sta-
tistical Pattern Recognition (SPR 2004), pages 671–679, Lisbon, August
2003.

[7] M. Bilenko, S. Basu, and R. Mooney. Integrating constraints and metric
learning in semi-supervised clustering. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML), pages 81–88, 2004.

56 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[8] A. Blum and S. Chawla. Learning from labeled and unlabeled data
using graph mincuts. In Proceedings of the International Conference
on Machine Learning (ICML), pages 19–26. Morgan Kaufmann, San
Francisco, CA, 2001.

[9] J. S. Boreczky and L. A. Rowe. Comparison of video shot boundary
detection techniques. SPIE Storage and Retrieval for Still Images and
Video Databases IV, 2664:170–179, 1996.

[10] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-
mization via graph cuts. In Proceedings of the International Conference
on Computer Vision (ICCV), pages 377–384, 1999.

[11] Ayhan Demiriz, Mark Embrechts, and Kristin P. Bennet. Semi-
supervised clustering using genetic algorithms. In Artificial Neural Net-
works in Engineering (ANNIE’99), pages 809–814, 1999.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Sta-
tistical Society (B), 39:1–38, 1977.

[13] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-
Interscience Publication, 2000.

[14] K. Fukunaga. Statistical Pattern Recognition. Academic Press, San
Diego, 2nd edition, 1990.

[15] A. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to
many: Generative models for recognition under variable pose and illumi-
nation. IEEE International Conference on Automatic Face and Gesture
Recognition, pages 277–284, 2000.

[16] G. Getz, N. Shental, and E. Domany. Semi-supervised learning—a statis-
tical physics approach. In Proceedings of the Workshop on Learning with
Partially Classified Training Data, International Conference on Machine
Learning (ICML), pages 37–44, 2005.

[17] Amir Globerson and Sam Roweis. Metric learning by collapsing classes.
In Advances in Neural Information Processing Systems (NIPS), pages
451–458, 2005.

[18] Ben Gold and Nelson Morgan. Speech and Audio Signal Processing. John
Wiley and Sons, Inc, 2000.

[19] Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhutdi-
nov. Neighbourhood component analysis. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 513–520, 2004.

[20] T. Hastie and R. Tibshirani. Discriminant analysis by gaussian mixtures.
Journal of the Royal Statistical Society (B), 58:155–176, 1996.

Gaussian Mixture Models with Equivalence Constraints 57

[21] Tomer Hertz, Aharon Bar-Hillel, and Daphna Weinshall. Boosting mar-
gin based distance functions for clustering. In Proceedings of the In-
ternational Conference on Machine Learning (ICML), pages 393–400,
2004.

[22] Tomer Hertz, Aharon Bar Hillel, and Daphna Weinshall. Learning a
kernel function for classification with small training samples. In Pro-
ceedings of the International Conference on Machine Learning (ICML),
pages 401–408, 2006.

[23] G. Hinton, P. Dayan, and M. Revow. Modelling the manifolds of images
of handwritten digits. IEEE Transactions on Neural Networks, 8:65–74,
1997.

[24] A. K. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, N.J., 1988.

[25] A. K. Jain, R. Duin, and J. Mao. Statistical pattern recognition: A re-
view. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 22:4–38, January 2000.

[26] T. Joachims. Transductive learning via spectral graph partitioning.
In Proceedings of the International Conference on Machine Learning
(ICML), pages 290–297, 2003.

[27] Sepandar D. Kamvar, Dan Klein, and Christopher D. Manning. Spectral
learning. In Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, pages 561–566, 2003.

[28] D. Klein, S. Kamvar, and C. Manning. From instance-level constraints
to space-level constraints: Making the most of prior knowledge in data
clustering. In Proceedings of the International Conference on Machine
Learning (ICML), pages 307–314, 2002.

[29] Tilman Lange, Martin H. Law, Anil K. Jain, and Joachim Buhmann.
Learning with constrained and unlabelled data. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR),
pages 20–25, 2005.

[30] G. McLachlan and K. Basford. Mixture Models: Inference and Applica-
tion to Clustering. Marcel Dekker, New York, 1988.

[31] G. McLachlan and D. Peel. Finite Mixture Models. John Wiley and
Sons, 2000.

[32] D. Miller and S. Uyar. A mixture of experts classifier with learning based
on both labelled and unlabelled data. In M. C. Mozer, M. I. Jordan, and
T. Petsche, editors, Advances in Neural Information Processing Systems
(NIPS), pages 571–578. MIT Press, 1997.

58 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[33] K. Nigam, A. K. McCallum, S. Thrun, and T. M. Mitchell. Learning
to classify text from labeled and unlabeled documents. In Proceedings
of Association for the Advancement of Artificial Intelligence (AAAI),
pages 792–799, Madison, US, 1998. AAAI Press, Menlo Park, US.

[34] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, Inc., 1988.

[35] N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning
and relevant component analysis. In A. Heyden, G. Sparr, M. Nielsen,
and P. Johansen, editors, Proceedings of the European Conference on
Computer Vision (ECCV), volume 4, pages 776–792, 2002.

[36] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
22(8):888–905, 2000.

[37] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-
means clustering with background knowledge. In Proceedings of the
International Conference on Machine Learning (ICML), pages 577–584.
Morgan Kaufmann, San Francisco, CA, 2001.

[38] Kilian Weinberger, John Blitzer, and Lawrence Saul. Distance metric
learning for large margin nearest neighbor classification. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neural Information
Processing Systems (NIPS), pages 1473–1480, Cambridge, MA, 2006.
MIT Press.

[39] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learn-
ing with application to clustering with side-information. In Advances in
Neural Information Processing Systems, volume 15, pages 521–528. MIT
Press, 2002.

[40] Rong Yan, Jian Zhang, Jie Yang, and Alexander Hauptmann. A dis-
criminative learning framework with pairwise constraints for video ob-
ject classification. In Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), volume 2, pages 284–291, 2004.

[41] S. X. Yu and J. Shi. Grouping with bias. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 1327–1334, 2001.

Chapter 4

Pairwise Constraints as Priors in
Probabilistic Clustering

Zhengdong Lu

Oregon Graduate Institute, zhengdon@csee.ogi.edu

Todd K. Leen

Oregon Graduate Institute, tleen@csee.ogi.edu

Abstract We extend Gaussian mixture models (GMM) in a simple and
natural way to accommodate prior belief that pairs of items should, or should
not, be assigned to the same cluster. We incorporate beliefs about pairwise
cluster assignments into the GMM by expressing those beliefs as Bayesian
priors over the assignment of data points to clusters. The priors can express
either hard constraints (items A and B must, or must not, be assigned to the
same cluster), or merely preferences for certain assignments. The strengths
of the preferences are under user control. The priors penalize each cluster
assignment according to both the number and the strength of assignments
preferences it violates. We provide an expectation-maximization (EM) al-
gorithm for parameter fitting. Experiments on artificial and real problems
show that cluster assignment preferences expressed in the training data are
effectively incorporated into the GMM parameters; clustering on test data is
improved with respect to the standard GMM.

59

60 Constrained Clustering: Advances in Algorithms, Theory, and Applications

4.1 Introduction

While clustering is usually executed completely unsupervised, there are
circumstances in which we have prior belief (with varying degrees of certainty)
that pairs of samples should (or should not) be assigned to the same cluster.
More specifically, we specify the must-link (C=) and cannot-link (C�=), as
defined in Chapter 1.

Our interest in such problems was kindled when we tried to manually seg-
ment a satellite image by grouping small image clips from the image. One
finds that it is often hard to assign the image clips to different “groups” since
we do not know clearly the characteristic of each group, or even how many
classes we should have. In contrast, it is much easier to compare two image
clips and to decide how much they look alike and thus how likely they should
be in one cluster. Another example is in information retrieval. Cohn et al. [6]
suggested that in creating a document taxonomy, the expert critique is often
in the form “these two documents shouldn’t be in the same cluster.” The last
example is continuity, which suggests that neighboring pairs of samples in a
time series or in an image are likely to belong to the same class of object,
is also a source of clustering preferences [1, 19]. We would like these prefer-
ences to be incorporated into the cluster structure so that the assignment of
out-of-sample data to clusters captures the concept(s) that give rise to the
preferences expressed in the training data.

Some work has been done on adapting traditional clustering methods, such
as k-means, to incorporate pairwise relations [2, 9, 21]. These models are based
on hard clustering, and the clustering preferences are expressed as hard pair-
wise constraints that must be satisfied. Some other authors [3, 20] extended
their models to deal with soft pairwise constraints, where each constraint is
assigned a weight. The performance of those constrained k-means algorithms
is often not satisfactory, largely due to the incapability of k-means to model
non-spherical data distribution in each class.

Shental et al. [16] proposed a Gaussian mixture model (GMM) for cluster-
ing that incorporates hard pairwise constraints. However, the model cannot
be naturally generalized to soft constraints, which are appropriate when our
knowledge is only clustering preferences or carries significant uncertainty. Mo-
tivated in part to remedy this deficiency, Law et al. [11, 12] proposed another
GMM-based model to incorporate soft constraints. In their model, virtual
groups are created for samples that are supposed to be in one class. The
uncertainty information in pairwise relations is there expressed as the soft
membership of samples to the virtual group. This modeling strategy is cum-
bersome to model samples shared by different virtual groups. Moreover, it
cannot handle the prior knowledge that two samples are in different clusters.
Other efforts to make use of the pairwise relations include changing the met-
ric in feature space in favor of the specified relations [6, 22] or combining the

Pairwise Constraints as Priors in Probabilistic Clustering 61

metric learning with constrained clustering [4].
In this chapter, we describe a soft clustering algorithm based on GMM that

expresses clustering preferences (in the form of pairwise relations) in the prior
probability on assignments of data points to clusters. Our algorithm naturally
accommodates both hard constraints and soft preferences in a framework in
which the preferences are expressed as a Bayesian prior probability that pairs
of points should (or should not) be assigned to the same cluster. After train-
ing with the expectation-maximization (EM) algorithm, the information ex-
pressed as a prior on the cluster assignment of the training data is successfully
encoded in the means, covariances, and cluster priors in the GMM. Hence the
model generalizes in a way consistent with the prior knowledge. We call the
algorithm penalized probabilistic clustering (PPC). Experiments on artificial
and real-world data sets demonstrate that PPC can consistently improve the
clustering result by incorporating reliable prior knowledge.

4.2 Model

Penalized probabilistic clustering (PPC) begins with a standardM -component
GMM

P (x|Θ) =
M∑

k=1

πk P (x| θk)

with the parameter vector Θ = {π1, . . . , πM , θ1, . . . , θM}. Here, πk and θk

are, respectively, the prior probability and parameters of the kth Gaussian
component. We augment the data set X = {xi}, i = 1 . . . N with (latent)
cluster assignments Z = {z(xi)}, i = 1, . . . , N to form the familiar complete
data (X,Z). The complete data likelihood is

P (X,Z|Θ) = P (X|Z,Θ)P (Z|Θ),

where P (X|Z,Θ) is the probability of X conditioned on Z

P (X|Z,Θ) =
N∏

i=1

P (xi|θzi
). (4.1)

4.2.1 Prior Distribution on Cluster Assignments

We incorporate our clustering preferences by manipulating the prior proba-
bility P (Z|Θ). In the standard Gaussian mixture model, the prior distribution
on cluster assignments Z is trivial:

P (Z|Θ) =
N∏

i=1

πzi
.

62 Constrained Clustering: Advances in Algorithms, Theory, and Applications

We incorporate our clustering preferences through a weighting function g(Z)
that has large values when the assignment of data points to clusters Z con-
forms to our preferences and low values when Z conflicts with our preferences.
We can thus define the penalized prior as proportional to the product of the
original prior and the weighting factor:

Pp(Z|Θ, G) ≡ (
∏

i πzi
)g(Z)

∑
Z(
∏

j πzj
)g(Z)

=
1
Ω

(
∏

i

πzi
)g(Z), (4.2)

where Ω =
∑

Z(
∏

j πzj
)g(Z) is the normalization constant. Note that in

equation (4.2), we use Pp(·) for the penalized prior, thus we can distinguish
it from the standard one. This notation convention will be used throughout
this chapter.

The likelihood of the data, given a specific cluster assignment Z, is inde-
pendent of the cluster assignment preferences:

P (X,Z|Θ, G) = P (X|Z,Θ)P (Z|Θ, G). (4.3)

From equations (4.1), (4.2), and (4.3), the complete data likelihood is

Pp(X,Z|Θ, G) = P (X|Z,Θ)
1
Ω

∏

i

πzi
g(Z) =

1
Ω
P (X,Z|Θ)g(Z),

where P (X,Z|Θ) is the complete data likelihood for a standard GMM. The
data likelihood is the sum of complete data likelihood over all possible Z, that
is, L(X|Θ) = Pp(X|Θ, G) =

∑
Z Pp(X,Z|Θ, G), which can be maximized with

the EM algorithm. Once the model parameters are fit, we do soft clustering
according to the posterior probabilities for new data P (k|x,Θ). (Note that
cluster assignment preferences are not expressed for the new data, only for
the training data.)

4.2.2 Pairwise Relations

Pairwise relations provide a special case of the framework discussed above.
The weighting factor given to the cluster assignment Z is:

g(Z) =
∏

i�=j

exp(w(i, j) δzizj
), (4.4)

where w(i, j) is the weight associated with sample pair (xi, xj), with

w(i, j) ∈ [−∞,∞], w(i, j) = w(j, i).

The weight w(i, j) reflects our preference for assigning xi and xj into one
cluster: We use w(i, j) > 0 if (i, j) ∈ C=, w(i, j) < 0 when (i, j) ∈ C�=, and
w(i, j) = 0 if no constraint is specified for xi and xj . The absolute value

Pairwise Constraints as Priors in Probabilistic Clustering 63

|w(i, j)| reflects the strength of the preference. The prior probability with the
pairwise relations is

P (Z|Θ, G) =
1
Ω

∏

i

πzi

∏

i�=j

exp(w(i, j) δzizj
). (4.5)

From equations (4.4) and (4.5), the weighting factor g(Z) is large when the
pairwise constraints expressed through W = {w(i, j)} are satisfied by the
cluster assignment Z.

The model described above provides a fairly flexible framework that en-
compasses standard GMM and several other constrained clustering models as
special cases. Most obviously, when we let w(i, j) = 0 for all i and j, we have
g(Z) = 1 for all Z, hence the complete likelihood reduces to the standard one:

Pp(X,Z|Θ, G) =
1
Ω
P (X,Z|Θ)g(Z) = P (X,Z|Θ).

In the other extreme with |w(i, j)| → ∞, assignments Z that violate constraint
between xi and xj have zero prior probability, since for those assignments

Pp(Z|Θ, G) =

∏
k πzk

∏
i�=j exp(w(i, j) δzizj

)
∑

Z

∏
l πzl

∏
m�=n exp(w(m,n) δzmzn

)
→ 0.

Then the relations become hard constraints, while the relations with |w(i, j)| <
∞ are called soft preferences. When all the specified pairwise relations are
hard constraints, the data likelihood becomes

Pp(X,Z|Θ, G) =
1
Ω

∏

ij∈C=

δzizj

∏

ij∈C �=

(1− δzizj
)

N∏

i=1

πzi
P (xi| θzi

). (4.6)

It is straightforward to verify that equation (4.6) is essentially the same with
the complete data likelihood given by [16]. In Appendix A, we give a detailed
derivation of equation (4.6) and hence the equivalence of two models. When
only hard constraints are available, we simply implement PPC based on equa-
tion (4.6). In the remainder of this chapter, we will use W to denote the prior
knowledge on pairwise relations, that is,

Pp(X,Z|Θ, G) ≡ Pp(X,Z|Θ,W) =
1
Ω
P (X,Z|Θ)

∏

i�=j

exp(w(i, j) δzizj
). (4.7)

4.2.3 Model Fitting

We use the EM algorithm [7] to fit the model parameters Θ:

Θ∗ = arg max
Θ

L(X|Θ,W).

64 Constrained Clustering: Advances in Algorithms, Theory, and Applications

The expectation step (E-step) and maximization step (M-step) are

E-step: Q(Θ,Θ(t−1)) = EZ|X(logPp(X,Z|Θ,W)|X,Θ(t−1),W)

M-step: Θ(t) = arg max
Θ

Q(Θ,Θ(t−1)).

In the M-step, the optimal mean and covariance matrix of each component is:

μk =

∑N
j=1 xjPp(k|xj ,Θ(t−1),W)
∑N

j=1 Pp(k|xj ,Θ(t−1),W)

Σk =

∑N
j=1 Pp(k|xj ,Θ(t−1),W)(xj − μk)(xj − μk)T

∑N
j=1 Pp(k|xj ,Θ(t−1),W)

.

The update of the prior probability of each component is more difficult due
to the normalizing constant Ω in the data likelihood

Ω =
∑

Z

⎛

⎝
N∏

k=1

πzk

∏

i�=j

exp(w(i, j) δzizj
)

⎞

⎠ .

We need to find

π≡{π1, . . . , πm}= arg max
π

M∑

l=1

N∑

i=1

log πlPp(l|xi,Θ(t−1),W)− log Ω(π), (4.8)

which, unfortunately, does not have a closed-form solution in general.1 In this
chapter, we use a rather crude approximation of the optimal π instead. First,
we estimate the values of log Ω(π) on a grid H = {π̂n} on the simplex defined
by

M∑

k=1

πk = 1, πk ≥ 0.

Then in each M-step, we calculate the value of
∑M

l=1

∑N
i=1 log π̂n

l Pp(l|xi,Θ(t−1),W)
for each node π̂n ∈ H and find the node π̂∗ that maximizes the function de-
fined in equation (4.8):

π̂∗ = arg max
π̂n∈H

M∑

l=1

N∑

i=1

log π̂n
l Pp(l|xi,Θ(t−1),W)− log Ω(π̂n).

We use π̂∗ as the approximate solution of equation (4.8). In this chapter,
the resolution of the grid is set to be 0.01. Although it works very well for
all experiments in this chapter, we notice that the search over grid will be

1[16] pointed out that with a different sampling assumption, a closed-form solution for
equation (4.8) exists when only hard must-links are available. See Section 4.4.

Pairwise Constraints as Priors in Probabilistic Clustering 65

fairly slow for M > 5. Shental et al. [17] proposed to find optimal π using
gradient descent and approximate Ω(π) by pretending all specified relations
are disjoint (see Section 4.3.1). Although this method is originally designed
for hard constraints, it can be easily adapted for PPC. This will not be covered
in this chapter.

It is important to note that with a non-trivial w, the cluster assignment of
samples are no longer independent of each other, consequently the posterior
estimation of each sample cannot be done separately. This fact brings extra
computational problem and will be discussed later in Section 4.3.

4.2.4 Selecting the Constraint Weights

4.2.4.1 Example: How the Weight Affects Clustering

The weight matrix W is crucial to the performance of the PPC. Here we
give an example demonstrating how the weight of pairwise relations affects
the clustering process. Figure 4.1 (a) shows the two-dimensional data sampled
from four spherical Gaussians centered at (-1,-1), (-1,1), (1,-1), and (1,1).
We intend to group the data into two classes, as indicated by the symbols.
Besides the data set, we also have 20 pairs correctly labeled as must-links and
cannot-links, as shown in Figure 4.1 (b). We try to fit the data set with a two-
component GMM. Figure 4.1 (c) and (d) give the density contour of the two
possible models on the data. Without any pairwise relations specified, we have
an approximately equal chance to get each GMM model. After incorporating
pairwise relations, the EM optimization process is biased toward the intended
one. The weights of pairwise relations are given as follows

w(i, j) =

⎧
⎪⎨

⎪⎩

w (xi, xj) ∈ C=

−w (xi, xj) ∈ C�=

0 otherwise,

where w ≥ 0 measures the certainty of all specified pairwise constraints. In
Figure 4.2, we give three runs with the same initial model parameters but
different weight for constraints.

For each run, we give snapshots of the model after 1, 3, 5, and 20 EM
iterations. The first row is the run with w = 0 (standard GMM). The search
ends up with a model that violates our prior knowledge of class membership.
The middle row is the run with w set to 1.3, with the same poor initial
condition; the model fitting process still goes to the wrong one again, although
at a slower pace. In the bottom row, we increase w to 3; this time the model
converges to the one we intend.

4.2.4.2 Choosing Weight w Based on Prior Knowledge

There are some occasions we can translate our prior belief on the relations
into the weight W . Here we assume that the pairwise relations are labeled

66 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) (b) (c) (d)

FIGURE 4.1: The influence of constraint weight on model fitting. (a) Artifi-
cial data set. (b) Must-links (solid lines) and cannot-links (dotted line). (c)
and (d) The probability density contour of two possible fitted models.

by an oracle but contaminated by flipping noise before they are delivered to
us. For each labeled pair (xi, xj), there is thus a certainty value 0.5 ≤ γij ≤ 1
equal to the probability that pairwise relation is not flipped.2 Our prior
knowledge would include those specified pairwise relations and their certainty
values Γ = {γij}.

This prior knowledge can be approximately encoded into the weight w by
letting

w(i, j) =

⎧
⎪⎨

⎪⎩

1
2 log(γij

1−γij
) (xi, xj) is specified as must-linked

− 1
2 log(γij

1−γij
) (xi, xj) is specified as cannot-linked

0 otherwise.

(4.9)

The details of the derivation are in Appendix B. It is obvious from equation
(4.9) that for a specified pairwise relation (xi, xj), the greater the certainty
value γij , the greater the absolute value of weight w(i, j).

Note that the weight designed this way is not necessarily optimal in terms of
classification accuracy, as will be demonstrated by experiment in Section 4.5.1.
The reason is twofold. First, equation (4.9) is derived based on a (possibly
crude) approximation. Second, Gaussian mixture models, as classifiers, are
often considerably biased from true class distribution of data. As a result, even
if the PPC prior P (Z|Θ,W) faithfully reflects the truth, it does not necessarily
lead to the best classification accuracy. Nevertheless, equation (4.9) gives a
good initial guidance for choosing the weight. Our experiments in Section 4.5.1
show that this design often yields superior classification accuracy than simply
using the hard constraints or ignoring the pairwise relations (standard GMM).

This weight design scheme is directly applicable when pairwise relations
are labeled by domain experts and the certainty values are given at the same

2We only consider the certainty value > 0.5, because a pairwise relation with certainty
γij < 0.5 can be equivalently treated as its opposite relation with certainty 1 − γij .

Pairwise Constraints as Priors in Probabilistic Clustering 67

FIGURE 4.2: The contour of probability density fit on data with different
weight given to pairwise relations. Top row: w = 0; Middle row: w = 1.3;
Bottom row: w = 3.

time. We might also estimate the flipping noise parameters from historical
data or from available statistics. For example, we can derive soft pairwise
relations based on spatial or temporal continuity among samples. That is,
we add soft must-links to all adjacent pairs of samples, assuming the flipping
noise explaining all the adjacent pairs that are actually not in one class. We
further assume that the flipping noise each pair follows the same distribution.
Accordingly we assign the same weight to all adjacent pairs. Let q denote
the probability that the label on an adjacent pair is flipped. We might be
able to estimate q from labeled instances of a similar problem, for example,
segmented images or time series. The maximum likelihood (ML) estimation
of q is given by simple statistics:

q̃ =
the number of adjacent pairs that are not in the same class

the number of all adjacent pairs
.

We give an application of this idea in Section 4.5.2.

68 Constrained Clustering: Advances in Algorithms, Theory, and Applications

4.3 Computing the Cluster Posterior

Both the M-step and the final clustering require the cluster membership
posterior. Computing this posterior is simple for the standard GMM since
each data point xi is assigned to a cluster independently. The pairwise con-
straints bring extra relevancy in assignment among samples involved. From
equation (4.7), if w(i, j) �= 0,

Pp(zi, zj |xi, xj ,Θ,W) �= Pp(zi|xi,Θ,W)Pp(zj |xj ,Θ,W).

This relevancy can be further extended to any two pair xi and xj that are
connected by a path of nonzero weights. Clearly Pp(X,Z|θ,W) can be best
described as a undirected graphical model, and the exact inference of the
posterior must be based on the maximal connected subgraphs (MCS). The
inference of sample xi in a MCS T based on a brute force marginalization is

Pp(zi = k|X,Θ,W) =
∑

ZT |zi=k

Pp(ZT |XT ,Θ,W),

which requires time complexityO(M |T |). This calculation can get prohibitively
expensive if |T | is very big.

We will first give some special cases with easy inference, then we will discuss
Gibbs sampling and mean field approximation as two approximate inference
models used for estimating the posterior. Other methods for complicated
graphical model inference, such as (loopy) belief propagation, are also pro-
posed to solve this kind of problem [15].

4.3.1 Two Special Cases with Easy Inference

Apparently the inference is easy when we limit ourselves to small MCS.
Specifically, when |T | ≤ 2, the pairwise relations are disjoint. With disjoint
constraints, the posterior probability for the whole data set can be given
in closed-form with O(N) time complexity. Moreover, the evaluation of the
normalization factor Ω(π) is simple:

Ω(π) = (1−
M∑

k=1

π2
k)|C=|(

M∑

k=1

π2
k)|C �=|.

The optimization of π in M-step can thus be achieved with little cost. Some-
times disjoint relations are a natural choice: they can be generated by picking
up sample pairs from the sample set and labeling the relations without replace-
ment. More generally, we can avoid the expensive computation in posterior
inference by breaking large MCS into small ones. To do this, we need to de-
liberately ignore some pairwise constraints. In Section 4.5.2, Experiment 2 is
an application of this idea.

Pairwise Constraints as Priors in Probabilistic Clustering 69

The second simplifying situation is when we have only hard must-links
(w(i, j) = +∞ or 0). Since must-link is an equivalence relation, we group the
data set into several equivalence classes (called chunklets). Each chunklet can
be treated as a single sample. That is, assume xi is in chunklet T , we then
have

Pp(zi = k|xi,Θ,W) = Pp(ZT = k|xT ,Θ,W) =

∏
j∈T πkP (xj |θk)

∑
k′(
∏

j∈T πk′P (xj |θk′))
.

Similar ideas have been proposed independently in [4, 16, 21]. This case is
useful when we are sure that a group of samples are from one source [16].

For more general cases where the exact inference is computationally pro-
hibitive, we propose to use Gibbs sampling [14] and the mean field approx-
imation [8] to estimate the posterior probability. This will be discussed in
Section 4.3.2 and Section 4.3.3.

4.3.2 Estimation with Gibbs Sampling

In Gibbs sampling, we estimate Pp(zi|X,Θ,W) as a sample mean

Pp(zi = k|X,Θ,W) = E(δzik|X,Θ,W) ≈ 1
S

S∑

t=1

δ
z
(t)
i k

,

where the sum is over a sequence of S samples from P (Z|X,Θ, G) generated
by the Gibbs MCMC. The tth sample in the sequence is generated by the
usual Gibbs sampling technique:

• Pick z(t)
1 from distribution Pp(z1|z(t−1)

2 , z
(t−1)
3 , ..., z

(t−1)
N ,X,w,Θ)

• Pick z(t)
2 from distribution Pp(z2|z(t)

1 , z
(t−1)
3 , ..., z

(t−1)
N ,X,w,Θ)

· · ·

• Pick z(t)
N from distribution Pp(zN |z(t)

1 , z
(t)
2 , ..., z

(t)
N−1,X,w,Θ)

For pairwise relations it is helpful to introduce some notation. Let Z−i denote
an assignment of data points to clusters that leave out the assignment of xi.
Let U(i) be the indices of the set of samples that participate in a pairwise
relation with sample xi, U(i) = {j : w(i, j) �= 0}. Then we have

Pp(zi|Z−i,X,Θ,W) ∝ P (xi, zi|Θ)
∏

j∈U(i)

exp(2w(i, j) δzizj
). (4.10)

The time complexity of each Gibbs sampling pass is O(NnM), where n is the
maximum number of pairwise relations a sample can be involved in. When W
is sparse, the size of U(i) is small, thus calculating Pp(zi|Z−i,X,Θ,W) is fairly
cheap and Gibbs sampling can effectively estimate the posterior probability.

70 Constrained Clustering: Advances in Algorithms, Theory, and Applications

4.3.3 Estimation with Mean Field Approximation

Another approach to posterior estimation is to use mean field theory [8, 10].
Instead of directly evaluating the intractable Pp(Z|X,Θ,W), we try to find
a tractable mean field approximation Q(Z). To find a Q(Z) close to the
true posterior probability Pp(Z|X,Θ,W), we minimize the Kullback-Leibler
divergence between them, i.e.,

min
Q

KL(Q(Z)|Pp(Z|X,Θ,W)),

which can be recast into:

max
Q

[H(Q) +EQ{logPp(Z|X,Θ,W)}], (4.11)

where EQ{·} denotes the expectation with respect to Q. The simplest fam-
ily of variational distribution is one where all the latent variables {zi} are
independent of each other:

Q(Z) =
N∏

i=1

Qi(zi).

With this Q(Z), the optimization problem in equation (4.11) does not have a
closed-form solution, nor is it a convex problem. Instead, a locally optimal Q
can be found iteratively with the following update equations

Qi(zi) ←
1
Ωi

exp(EQ{logPp(Z|X,Θ,W)|zi}) (4.12)

for all i and zi ∈ {1, 2, · · · ,M}. Here Ωi =
∑

zi
exp(EQ{logPp(Z|X,Θ,W)|zi})

is the local normalization constant. For the PPC model, we have

exp(EQ{logPp(Z|X,Θ,W)|zi}) = P (zi|xi,Θ) exp(
∑

j �=i

w(i, j)Qj(zi)).

Equation (4.12), collectively for all i, are the mean field equations. Evaluation
of mean field equations requires at most O(NnM) time complexity, which
is the same as the time complexity of one Gibbs sampling pass. Successive
updates of equation (4.12) will converge to a local optimum of equation (4.11).
In our experiments, the convergence usually occurs after about 20 iterations,
which is much less than the number of passes required for Gibbs sampling.

4.4 Related Models

Prior to our work, different authors have proposed several constrained clus-
tering models based on k-means, including the seminal work by Wagstaff and

Pairwise Constraints as Priors in Probabilistic Clustering 71

colleagues [20, 21], and its successor [2, 3, 4]. These models generally fall into
two classes. The first class of algorithms [2, 21] keep the original k-means
cost function (reconstruction error) but confine the cluster assignments to be
consistent with the specified pairwise relations. The problem can be casted
into the following constrained optimization problem

min
Z,μ

N∑

i=1

||xi − μzi
||2

subject to zi = zj , if (xi, xj) ∈ C=

zi �= zj , if (xi, xj) ∈ C�=,

where μ = {μ1, · · · , μM} is the cluster centers. In the second class of algo-
rithms, cluster assignments that violate the pairwise relations are allowed, but
will be penalized. They employ a modified cost function [3]:

J(μ,Z) =
1
2

N∑

i=1

||xi − μzi
||2 +

∑

(i,j)∈C=

aij(zi �= zj) +
∑

(i,j)∈C �=

bij(zi = zj),

(4.13)
where aij is the penalty for violating the must-link between (xi, xj) and bij
is the penalty when the violated pairwise relation is a cannot-link. It can be
shown that both classes of algorithms are special cases of PPC with spherical
Gaussian components and proper setting of radius and w (see Appendix C).

There are two weaknesses shared by the constrained k-means model. The
first is their limited modeling capability inherited from the standard k-means.
This weakness can be alleviated with the extra information from the pairwise
constraints [20], but it often takes a lot of pairwise constraints to really achieve
decent results when the distribution of class cannot be naturally modeled by
k-means. As the second weakness, the hard clustering nature of constrained k-
means often requires a combinatorial optimization of the cluster assignments,
which is usually not trivial and often intractable. To cope with that, various
ways have been proposed to obtain a suboptimal solution [2, 3, 21].

To overcome the limitation of constrained k-means, several authors pro-
posed probabilistic constrained clustering models based on Gaussian mixture.
The models proposed by Shental et al. [16, 17] address the situation where
pairwise relations are hard constraints. The authors partition the whole data
set into a number of chunklets consisting of samples that are (hard) must-
linked to each other.3 They discuss two sampling assumptions:

• Assumption 1: Chunklet Xi is generated i.i.d from component k with
prior πk [17], and the complete data likelihood is

P (X,Y |Θ, EΩ) =
1
Ω

∏

ij∈C �=

(1− δzizj
) ·

L∏

l=1

{πzl

∏

xi∈Xl

P (xi| θzl
)},

3If a sample is not must-linked to any other samples, it comprises a chunklet by itself.

72 Constrained Clustering: Advances in Algorithms, Theory, and Applications

where EΩ denotes the specified constraints.

• Assumption 2: Chunklet Xi is generated from component k with prior
∝ π

|Xi|
k , where |Xi| is the number of samples in Xi [17]. The complete

data likelihood is:

P (X,Y |Θ, EΩ) =
1
Ω

∏

ij∈C �=

(1− δzizj
) ·

L∏

l=1

{π|Xl|
zl

∏

xi∈Xl

P (xi| θzl
)} (4.14)

=
1
Ω

∏

ij∈C=

δzizj

∏

ij∈C �=

(1− δzizj
)

N∏

i=1

πzi
P (xi| θzi

).(4.15)

In Appendix A we show that when using Assumption 2, the model expressed
in equations (4.14)-(4.15) is equivalent to PPC with only hard constraints (as
expressed in equation (4.6)). It is suggested in [17] that Assumption 1 might
be appropriate, for example, when chunklets are generated from temporal
continuity. When pairwise relations are generated by labeling sample pairs
picked from the data set, Assumption 2 might be more reasonable. Assump-
tion 1 allows a closed-form solution in the M-step, including a solution for π,
in each EM iteration [17].

To incorporate the uncertainty associated with pairwise relations, Law et al.
[11, 12] proposed to use soft group constraints. To model a must-link between
any sample pair (xi, xj), they create a group l and express the strength of the
must-link as the membership of xi and xj to group l. This strategy works
well for some simple situations, for example, when the pairwise relations are
disjoint (as defined in Section 4.3.1). However, it is awkward if samples are
shared by multiple groups, which is unavoidable when samples are commonly
involved in multiple relations. Another serious drawback of the group con-
straints model is its inability to model cannot-links. Due to these obvious
limitations, we omit the empirical comparison of this model to PPC in the
following experiments section.

4.5 Experiments

The experiments section consists of two parts. In Section 4.5.1, we empir-
ically evaluate the influence of randomly generated constraints on the clus-
tering result when using PPC and compare it with other constrained clus-
tering algorithms. In Section 4.5.2, we address real-world problems, where
the constraints are derived from our prior knowledge. Also in this section, we
demonstrate the approaches to reduce computational complexity, as described
in Section 4.3.

Pairwise Constraints as Priors in Probabilistic Clustering 73

Following are some abbreviations we will use throughout this section: soft-
PPC for PPC with soft constraints, hard-PPC for PPC with hard constraints
(implemented based on equation (4.6)), soft-CKmeans for the k-means with
soft constraints [3] and hard-CKmeans for the k-means with hard constraints
[21]. The Gaussian mixture model with hard constraints [16, 17] will be
referred to as constrained-EM.

4.5.1 Artificial Constraints

In this section, we discuss the influence of pairwise relations on PPC’s
clustering. Due to the equivalence between hard-PPC and constrained-EM
algorithm [17], we will not repeat the experiments with correct constraints
and hard constraints in Chapter 3. Instead, we consider the more general
situation where pairwise constraints are noisy, and thus justify the use of soft-
PPC. The weights of soft-PPC are designed based on the strategy described in
Section 4.2.4. The result is compared to hard-PPC and other semi-supervised
clustering models.

Constraint Selection: We chose to limit our discussion to the disjoint
pairwise relations, and leave the more complicated cases to Section 4.5.2. As
discussed in Section 4.3.1, the disjoint pairwise relations, hard or soft, allow
fast solution in the maximization step in each EM iteration. The pairwise
relations are generated as follows – we randomly pick two samples from the
data set without replacement. If the two have the same class label, we then
add a must-link constraint between them; otherwise, we add a cannot-link
constraint. After the constraints are chosen, we add noise to all the constraints
by randomly flipping each pairwise relation with a certain probability q ≤ 0.5.
For the soft-PPC model, the weight w(i, j) to each specified pairwise relation
is given as follows:

w(i, j) =

{
1
2 log(1−q

q) (xi, xj) specified as must-link
− 1

2 log(1−q
q) (xi, xj) specified as cannot-link.

(4.16)

For soft-CKmeans, we give equal weights to all the specified constraints. Be-
cause there is no guiding rule in literature on how to choose weight for soft-
CKmeans model, we simply use the weight that yields the highest classification
accuracy.

Performance Evaluation: We try PPC (with the number of com-
ponents equal to the number of classes) with various numbers of pairwise
relations. For comparison, we also give results of standard GMM, standard
k-means, hard-CKmeans [21], and hard-PPC. For each clustering result, a
confusion matrix is built to compare it to the true labeling. The classification
accuracy is calculated as the ratio of the sum of diagonal elements to the
number of all samples. The reported classification accuracy is averaged over
100 different realizations of pairwise relations.

74 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Experiment 1: Artificial Constraints

In this experiment, we evaluate the performance of soft-PPC with noisy
constraints on three two-dimensional artificial data sets and three UCI data
sets. The three two-dimensional artificial data sets (Figure 4.3) are designed
to highlight PPC’s superior modeling flexibility over constrained k-means.4

In each example, there are 200 samples in each class. We perform the same
experiments on three UCI data sets: the Iris data set has 150 samples and three
classes, 50 samples in each class; the Waveform data set has 5000 samples and
three classes, around 1700 samples in each class; the Pendigits data set includes
four classes (digits 0, 6, 8, 9), each with 750 samples.

(a) (b) (c)

FIGURE 4.3: Three artificial data sets, with class denoted by symbols.

On each data set, we randomly generate a number of disjoint pairwise
relations to have 50% of the data involved. In this experiment, we try two
different noise levels with q set to 0.15 and 0.3. Figure 4.4 compares the
classification accuracies given by the maximum likelihood (ML) solutions5 of
different models. The accuracy for each model is averaged over 20 random
realizations of pairwise relations. On all data sets except artificial data set 3,
soft-PPC with the designed weight gives higher accuracy than hard-PPC and
standard GMM on both noise levels. On artificial data set 3, when q = 0.3
hard-PPC gives the best classification accuracy.6 Soft-PPC apparently gives
superior classification accuracy to the k-means models on all six data sets,
even though the weight of soft-CKmeans is optimized. Figure 4.4 also shows

4Some authors [4, 6, 22] combined standard or constrained k-means with metric learning
based on pairwise relations, and reported improvement on classification accuracy. This will
not be discussed in this chapter.
5We choose the one with the highest data likelihood among 100 runs with different random
initialization. For k-means models, including soft-CKmeans and hard-CKmeans, we use the
solutions with the smallest cost.
6Further experiment shows that on this data, soft-PPC with the optimal w (> the one
suggested by equation (4.16)) is still slightly better than hard-PPC.

Pairwise Constraints as Priors in Probabilistic Clustering 75

that it can be harmful to use hard constraints when pairwise relations are
noisy, especially when the noise is significant. Indeed, as shown by Figure 4.4
(d) and (f), hard-PPC can yield accuracy even worse than standard GMM.

(a) (b) (c)

(d) (e) (f)

FIGURE 4.4: Classification accuracy with noisy pairwise relations. We use
all the data in clustering. In each panel, A: standard GMM; B: soft-PPC; C:
hard-PPC; D: standard k-means; E: soft-CKmeans with optimal weight; F:
hard-CKmeans.

4.5.2 Real-World Problems

In this section, we present two examples where pairwise constraints are from
domain experts or common sense. Both examples are about image segmen-
tation based on Gaussian mixture models. In the first problem (Experiment
2), hard pairwise relations are derived from image labeling done by a domain
expert. In the second problem, soft pairwise relations are generated based on
spatial continuity.

Experiment 2: Hard Cannot-Links from Partial Class Information

The experiment in this subsection shows the application of pairwise con-
straints on partial class information. For example, consider a problem with
six classes A,B, ..., F . The classes are grouped into several class sets: C1 =
{A,B,C}, C2 = {D,E}, C3 = {F}. The samples are partially labeled in the
sense that we are told which class set a sample is from, but not which specific

76 Constrained Clustering: Advances in Algorithms, Theory, and Applications

class it is from. We can logically derive a cannot-link constraint between any
pair of samples known to belong to different class sets, while no must-link
constraint can be derived if each class set has more than one class in it.

Figure 4.5 (a) is a 120x400 region from a Greenland ice sheet from NASA
Langley DAAC 7 [18]. Each pixel has intensities from seven spectrum bands.
This region is labeled into snow areas and non-snow areas, as indicated in
Figure 4.5 (b). The snow areas may contain samples from several classes of
interest: ice, melting snow, and dry snow, while the non-snow areas can be
bare land, water, or cloud. The labeling from an expert contains incomplete
but useful information for further segmentation of the image. To segment
the image, we first divide it into 5x5x7 blocks (175 dim vectors). We use the
first 50 principal components as feature vectors. Our goal is then to segment
the image into (typically > 2) areas by clustering those feature vectors. With
PPC, we can encode the partial class information into cannot-link constraints.

For hard-PPC, we use half of the data samples for training and the rest
for test. Hard cannot-link constraints (only on training set) are generated as
follows: for each block in the non-snow area, we randomly choose (without
replacement) six blocks from the snow area to build cannot-link constraints.
By doing this, we achieve cliques with size seven (1 non-snow block + 6
snow blocks). As in Section 4.5.1, we apply the model fit with hard-PPC
to the test set and combine the clustering results on both data sets into a
complete picture. Clearly, the clustering task is non-trivial for any M > 2.
A typical clustering result of 3-component standard GMM and 3-component
PPC are shown as Figure 4.5 (c) and (d) respectively. Standard GMM gives
a clustering that is clearly in disagreement with the human labeling in Figure
4.5 (b). The hard-PPC segmentation makes far fewer mis-assignments of snow
areas (tagged white and gray) to non-snow (black) than does the GMM. The
hard-PPC segmentation properly labels almost all of the non-snow regions
as non-snow. Furthermore, the segmentation of the snow areas into the two
classes (not labeled) tagged white and gray in Figure 4.5 (d) reflects subtle
differences in the snow regions captured by the gray-scale image from spectral
channel 1, as shown in Figure 4.5 (a).

Experiment 3: Soft Links from Continuity

In this subsection, we will present an example where soft constraints come
from continuity. As in the previous experiment, we try to do image segmen-
tation based on clustering. The image is divided into blocks and rearranged
into feature vectors. We use a GMM to model those feature vectors, with
each Gaussian component representing one texture. However, standard GMM

7We use the first seven MoDerate Resolution Imaging Spectroradiometer (MODIS) Chan-
nels with bandwidths as follows (in nm): Channel 1: 620-670, Channel 2: 841-876, Channel
3: 459-479, Channel 4: 545-565, Channel 5: 1230-1250, Channel 6: 1628-1652, Channel 7:
2105-2155.

Pairwise Constraints as Priors in Probabilistic Clustering 77

FIGURE 4.5: Clustering with hard constraints derived from partial labeling.
(a) Gray-scale image from the first spectral channel 1. (b) Partial label given
by an expert; black pixels denote non-snow areas and white pixels denote
snow areas. Clustering result of standard GMM (c) and PPC (d). (c) and (d)
are colored according to image blocks’ assignment.

often fails to give good segmentations because it cannot make use of the spa-
tial continuity of the image, which is essential in many image segmentation
models, such as random field [5]. In our algorithm, the spatial continuity is
incorporated as the soft must-link preferences with uniform weight between
each block and its neighbors. As described in Section 4.2.4, the weight w of
the soft must-link can be given as

w =
1
2

log(
1− q
q

), (4.17)

where q is the ratio of softly-linked adjacent pairs that are not in the same
class. Usually q is given by an expert or estimated from segmentation results
of similar images. In this experiment, we assume we already know the ratio
q, which is calculated from the label of the image.

The complete data likelihood is

Pp(X,Z|Θ,W) =
1
Ω
P (X,Z|Θ)

∏

i

∏

j∈U(i)

exp(w δzizj
),

where U(i) means the neighbors of the ith block. The EM algorithm can
be roughly interpreted as iterating on two steps: (1) estimating the texture

78 Constrained Clustering: Advances in Algorithms, Theory, and Applications

description (parameters of mixture model) based on segmentation, and (2)
segmenting the image based on the texture description given by step 1. Since
exact calculation of the posterior probability is intractable due to the large
clique containing all samples, we have to resort to approximation methods.
In this experiment, both the Gibbs sampling (see Section 4.3.2) and the mean
field approximation (see Section 4.3.3) are used for posterior estimation. For
Gibbs sampling, equation (4.10) is reduced to

Pp(zi|Z−i,X,Θ,W) ∝ P (xi, zi|Θ)
∏

j∈U(i)

exp(2w δzizj
).

The mean field equation (4.12) is reduced to

Qi(zi) ←
1
Ωi
P (xi, zi|Θ)

∏

j∈U(i)

exp(2w Qj(zi)).

The image shown in Figure 4.6 (a) is built from four Brodatz textures.8

This image is divided into 7x7 blocks and then rearranged to 49-dim vectors.
We use those vectors’ first five principal components as the associated feature
vectors. A typical clustering result of 4-component standard GMM is shown
in Figure 4.6 (b). For soft-PPC, the soft must-links with weight w calculated
from equation (4.17) are added between each block and its four neighbors.
Figure 4.6 (c) and (d) are the clustering result of 4-component soft-PPC
with Gibbs sampling and mean field approximation, respectively. One run
with Gibbs sampling takes around 160 minutes on a PC with Pentium 4, 2.0
G HZ processor whereas the algorithm using the mean field approximation
takes only 3.1 minutes. Although mean field approximation is about 50 times
faster than Gibbs sampling, the clustering results are comparable according
to Figure 4.6. Comparing to the result given by standard GMM, soft-PPC
with both approximation methods achieves significantly better segmentation
after incorporating spatial continuity.

4.6 Discussion

Despite its success shown above, PPC has its limitations. First, PPC often
needs a substantial proportion of samples involved in pairwise relations to give
good results. Indeed, if we have the number of relations fixed and keep adding
samples without any new relations, the algorithm will finally degenerate into
unsupervised learning (clustering). To overcome this, one can instead design
semi-supervised clustering algorithms based on discriminative models. Efforts

8Downloaded from http://sipi.usc.edu/services/database/Database.html, April 2004.

Pairwise Constraints as Priors in Probabilistic Clustering 79

FIGURE 4.6: Clustering on the Brodatz texture data. (a) Texture com-
bination. (b) Clustering result of standard GMM. (c) Clustering result of
soft-PPC with Gibbs sampling. (d) Clustering result of soft-PPC with mean
field approximation. (b)-(d) are shaded according to the blocks assignments
to clusters.

in that direction include using support vector machines (see Chapter 17) or
Gaussian process classifiers [13] while considering the pairwise constraints
some kind of observation or labeling. Second, since PPC is based on the
Gaussian mixture model, it works well in the situation where the data in each
class can be approximated by a Gaussian distribution. When this condition
is not satisfied, PPC could lead to poor results. One way to alleviate this
weakness is to use multiple clusters to model one class [23]. Third, in choosing
the weight matrix W , although our design works well in some situations, it is
not clear how to set the weight for a more general situation.

To address the computational difficulty caused by large cliques, we propose
two approximation methods: Gibbs sampling and mean field approximation.
We also observe Gibbs sampling can be fairly slow for large cliques. One
way to address this problem is to use fewer sampling passes (and thus a
cruder approximate inference) in the early phase of EM training, and gradually
increase the number of sampling passes (and a finer approximation) when EM
is close to convergence. By doing this, we may be able to achieve a much
faster algorithm without sacrificing too much precision. For the mean field
approximation, the bias brought by the independence assumption amongQi(·)
could be severe for some problems. We can ameliorate this, as suggested by
[8], by retaining more sub-structure of the original graphical model (for PPC,
it is expressed in W), while still keeping the computation tractable.

Acknowledgments

Portions of this work were variously supported by NASA Collaborative
Agreement NCC 2-1264, and NSF grants ITR CCF-0082736 and ITR OCI-

80 Constrained Clustering: Advances in Algorithms, Theory, and Applications

0121475 to T. Leen.

4.7 Appendix A

In this part of appendix, we prove that when |w(i, j)| → ∞ for each specified
pair (xi, xj), the complete likelihood of PPC can be written as in equation
(4.6), and thus equivalent to the model proposed by [16].

In the model proposed by [16], the complete likelihood is written as:

P (X,Z|Θ, EΩ) =
1
Ω

∏

ci

δyci

∏

a1
i �=a2

i

(1− δy
a1

i
,y

a2
i

)
N∏

i=1

P (zi|Θ)P (xi|zi,Θ)

=
1
Ω

∏

ci

δyci

∏

a1
i �=a2

i

(1− δy
a1

i
y

a2
i

)P (X,Z|Θ)

where EΩ stands for the pairwise constraints, δyci
is 1 iff all the points in the

chunklet ci have the same label, and (a1
i , a

2
i) is the index of the sample pair

with hard cannot-link between them. This is equivalent to

P (X,Z|Θ, EΩ) =

{
1
ΩP (X,Z|Θ) Z satisfies all the constraints;
0 otherwise.

(4.18)

In the corresponding PPC model with hard constraints, we have

w(i, j) =

⎧
⎪⎨

⎪⎩

+∞ (i, j) ∈ C=

−∞ (i, j) ∈ C�=

0 otherwise.

According to equations (4.3) and (4.18), to prove P (X,Z|Θ, EΩ) = Pp(X,Z|Θ,W),
we only need to prove Pp(Z|Θ,W) = 0 for all the Z that violate the con-
straints, that is

Pp(Z|Θ,W) =

∏
k πzk

∏
i�=j exp(w(i, j) δzizj

)
∑

Z

∏
l πzl

∏
m�=n exp(w(m,n) δzmzn)

= 0.

First let us assume Z violates one must-link between pair (α, β) (w(α, β) =
+∞), we have

zα �= zβ ⇒ δzαzβ
= 0⇒ exp(w(α, β) δzαzβ) = 1.

We assume the constraints are consistent. In other words, there is at least one
Z that satisfies all the constraints. We can denote one such Z by Z∗. We also

Pairwise Constraints as Priors in Probabilistic Clustering 81

assume each component has a positive prior probability. It is straightforward
to show that

Pp(Z∗|Θ,W) > 0.

Then it is easy to show

Pp(Z|Θ,W) =

∏
k πzk

∏
i�=j exp(w(i, j) δzizj

)
∑

Z

∏
l πzl

∏
m�=n exp(w(m,n) δzm,zn

)

≤
∏

k πzk

∏
i�=j exp(w(i, j) δzizj

)
∏

k πz∗
k

∏
i�=j exp(w(m,n) δz∗

i z∗
j
)

= (
∏

k

πzk

πz∗
k

∏

(i,j)�=(α,β)

exp(w(i, j) δzizj
)

exp(w(i, j) δz∗
i z∗

j
)
)
exp(2w(α, β) δzαzβ

)
exp(2w(α, β) δz∗

αz∗
β
)

= (
∏

k

πzk

πz∗
k

∏

(i,j)�=(α,β)

exp(w(i, j) δzizj
)

exp(w(i, j) δz∗
i z∗

j
)
)

1
exp(2w(α, β) δz∗

αz∗
β
)
.

Since Z∗ satisfies all the constraints, we must have

∏

(i,j)�=(α,β)

exp(w(i, j) δzizj
)

exp(w(i, j) δz∗
i z∗

j
)
≤ 1.

So we have

Pp(Z|Θ,W) ≤ (
∏

k

πzk

πz∗
k

)
1

exp(2w(α, β) δz∗
αz∗

β
)
.

When w(α, β) → +∞, we have

1
exp(2w(α, β) δz∗

αz∗
β
)
→ 0

and then Pp(Z|Θ,W) ≤ (
∏

k

πzk

πz∗
k

) 1
exp(2w(α,β) δz∗

αz∗
β
) → 0. The cannot-link case

can be proven in a similar way.

4.8 Appendix B

In this appendix, we show how to derive weight w from the certainty value
γij for each pair (xi, xj). Let E denote those original (noise-free) labeled
pairwise relations and Ẽ the noisy version delivered to us. If we know the
original pairwise relations E, we only have to consider the cluster assignments

82 Constrained Clustering: Advances in Algorithms, Theory, and Applications

that are consistent with E and neglect the others, that is, the prior probability
of Z is

P (Z|Θ, E) =

{
1

ΩE
P (Z|Θ) Z is consistent with E

0 otherwise,

where ΩE is the normalization constant forE: ΩE =
∑

Z: consistent with E P (Z|Θ).
Since we know Ẽ and the associated certainty values Γ = {γij}, we know

P (Z|Θ, Ẽ,Γ) =
∑

E

P (Z|Θ, E, Ẽ,Γ)P (E|Ẽ,Γ) (4.19)

=
∑

E

P (Z|Θ, E)P (E|Ẽ,Γ). (4.20)

Let E(Z) ≡ the unique E that is consistent with Z, from equation (4.20) we
know

P (Z|Θ, Ẽ,Γ) = Pp(Z|Θ, E(Z))P (E(Z)|Ẽ,Γ)

=
1

ΩE
P (Z|Θ)P (E(Z)|Ẽ,Γ) =

1
ΩE

P (E(Z)|Ẽ,Γ)P (Z|Θ).

If we ignore the variation of ΩE over E, we can get an approximation of
P (Z|Θ, Ẽ,Γ), denoted as Pa(Z|Θ, Ẽ,Γ):

Pa(Z|Θ, Ẽ,Γ) =
1

Ωa
P (Z|Θ)P (E(Z)|Ẽ,Γ)

=
1

Ωa
P (Z|Θ)

∏

i<j

γ
Hij(Ẽ,zi,zj)
ij (1− γij)1−Hij(Ẽ,zi,zj)

where Ωa is the new normalization constant: Ωa =
∑

Z P (Z|Θ)P (E(Z)|Ẽ,Γ)
and

Hij(Ẽ, zi, zj) =

{
1 (zi, zj) is consistent with Ẽ
0 otherwise

.

We argue that Pa(Z|Θ, Ẽ,Γ) is equal to a PPC prior probability Pp(Z|Θ,W)
with

w(i, j) =

⎧
⎪⎨

⎪⎩

1
2 log(γij

1−γij
) (zi, zj) is specified as must-linked in Ẽ

−1
2 log(γij

1−γij
) (zi, zj) is specified as cannot-linked in Ẽ

0 otherwise.

This can be easily proven by verifying

Pp(Z|Θ,W)
Pa(Z|Θ, Ẽ,Γ)

=
Ωa

Ωw

∏

i<j,w(i,j)�=0

γ
sign(w(i,j))−1
ij (1− γij)−sign(w(i,j)) = constant.

Since both Pa(Z|Θ, Ẽ,Γ) and Pp(Z|Θ,W) are normalized, we know

Pa(Z|Θ, Ẽ,Γ) = Pp(Z|Θ,W).

Pairwise Constraints as Priors in Probabilistic Clustering 83

4.9 Appendix C

In this appendix, we show how to derive the k-means model with soft and
hard constraints from PPC.

C.1 From PPC to K-means with Soft Constraints

The adapted cost function for k-means with soft constraints is:

J(μ,Z) =
1
2

N∑

i=1

||xi−μzi
||2+

∑

(i,j)∈C=

aij(zi �= zj)+
∑

(i,j)∈C �=

bij(zi = zj) (4.21)

where μk is the center of the kth cluster. Equation (4.13) can be rewritten as

J(μ,Z) =
1
2

N∑

i=1

||xi − μzi
||2 −

∑

ij

w(i, j)δzizj
+ C, (4.22)

with C = −
∑

(i,j)∈C=
aij is a constant and

w(i, j) =

⎧
⎪⎨

⎪⎩

aij (i, j) ∈ C=

−bij (i, j) ∈ C�=

0 otherwise.

The clustering process includes minimizing the cost function J(μ,Z) over
both the model parameters μ = {μ1, μ2, ..., μM} and cluster assignment Z =
{z1, z2, ..., zN}. The optimization is usually done iteratively with modified
Linde-Buzo-Gray (LBG) algorithm. Assume we have the PPC model, where
the matrix w is the same as in equation (4.22). We further constrain each
Gaussian component to be spherical with radius σ. The complete data likeli-
hood for the PPC model is

P (X,Z|Θ,W) =
1
Ω

N∏

i=1

{πzi
exp(−

N∑

i=1

||xi − μzi
||2

2σ2
)}
∏

mn

exp(w(m,n)δzmzn
),

(4.23)
where Ω is the normalizing constant and μk is the mean of the kth Gaussian
component. To build its connection to the cost function in equation (4.22),
we consider the following scaling:

σ → ασ, w(i, j) → w(i, j)/α2. (4.24)

The complete data likelihood with the scaling parameters α is

Pα(X,Z|Θ,W) =
1

Ω(α)

N∏

i=1

{πzi
exp(−

N∑

i=1

||xi − μzi
||2

2α2σ2
)}
∏

mn

exp(
w(m,n)
α2

δzmzn
).

(4.25)

84 Constrained Clustering: Advances in Algorithms, Theory, and Applications

It can be shown that when α → 0, the maximum data likelihood will
dominate the data likelihood

lim
α→0

maxZ Pα(X,Z|Θ,W)
∑

Z Pα(X,Z|Θ,W)
= 1. (4.26)

To prove equation (4.26), we first show that when α is small enough, we have

arg max
Z

Pα(X,Z|Θ,W) = Z∗ ≡ arg min
Z
{

N∑

i=1

||xi − μz∗
i
||2

2
−
∑

mn

w(m,n)δz∗
mz∗

n
}.

(4.27)
Proof of equation (4.27): Assume Z ′ is any cluster assignment different
than Z∗. We only need to show that when α is small enough,

Pα(X,Z∗|Θ,W) > Pα(X,Z ′|Θ,W). (4.28)

To prove equation (4.28), we notice that

logPα(X,Z∗|Θ,W)− logPα(X,Z ′|Θ,W)

=
N∑

i=1

(log πz∗
i
− log πz′

i
) +

1
α2
{

N∑

i=1

(
||xi − μz′

i
||2

2
−
||xi − μz∗

i
||2

2
)−

∑

mn

w(m,n)(δz′
mz′

n
− δz∗

mz∗
n
)}.

Since Z∗ = arg minZ{
∑N

i=1

||xi−μz∗
i
||2

2 −
∑

mn w(m,n)δz∗
mz∗

n
}, we have

N∑

i=1

(
||xi − μz′

i
||2

2
−
||xi − μz∗

i
||2

2
)−

∑

mn

w(m,n)(δz′
mz′

n
− δz∗

mz∗
n
) > 0.

Let ε =
∑N

i=1(
||xi−μz′

i
||2

2 −
||xi−μz∗

i
||2

2)−
∑

mn w(m,n)(δz′
mz′

n
− δz∗

mz∗
n
), we can

see that when α is small enough

logPα(X,Z∗|Θ,W)− logPα(X,Z ′|Θ,W) =
N∑

i=1

(log πz∗
i
− log πz′

i
) +

ε

α2
0.

(4.29)

It is obvious from equation (4.29) that for any Z ′ different than Z∗

lim
α→0

logPα(X,Z∗|Θ,W)− logPα(X,Z ′|Θ,W)

= lim
α→0

N∑

i=1

(log πz∗
i
− log πz′

i
) +

ε

α2

= +∞,

Pairwise Constraints as Priors in Probabilistic Clustering 85

or equivalently

lim
α→0

Pα(X,Z ′|Θ,W)
Pα(X,Z∗|Θ,W)

= 0,

which proves equation (4.26). As the result of equation (4.26), when optimiz-
ing the model parameters we can equivalently maximize maxZ Pα(X,Z|Θ,W)
over Θ. It is then a joint optimization problem

max
Θ,Z

Pα(X,Z|Θ,W).

Following the same thought, we find the soft posterior probability of each
sample (as in conventional mixture model) becomes hard membership (as in
k-means). This fact can be simply proved as follows. The posterior probability
of sample xi to component k is

Pα(zi = k|X,Θ,W) =

∑
Z|zi=k Pα(X,Z|Θ,W)
∑

Z Pα(X,Z|Θ,W)
.

From equation (4.26), it is easy to see

lim
α→0

Pα(zi = k|X,Θ,W) =

{
1 z∗i = k

0 otherwise.

The negative logarithm of the complete likelihood Pα is then:

Jα(Θ, Z) = − logPα(X,Z|Θ,W)

= −
N∑

i=1

log πzi
+

N∑

i=1

||xi − μzi
||2

2α2
−
∑

mn

w(m,n)
α2

δzmzn
+ log(Ω(α))

= −
N∑

i=1

log πzi
+

1
α2

(
N∑

i=1

||xi − μzi
||2

2
−
∑

mn

w(m,n)δzmzn
) + C,

where C = log Ω(α) is a constant. It is obvious that when α → 0, we can
neglect the term −

∑N
i=1 log πzi

. Hence the only model parameters left for
adjusting are the Gaussian means μ. We only have to consider the new cost
function

J̃α(μ,Z) =
1
α2

(
N∑

i=1

||xi − μzi
||2

2
−
∑

mn

w(m,n)δzmzn
),

the optimization of which is obviously equivalent to equation (4.21). So we
can conclude that when α → 0 in equation (4.24), the PPC model shown in
equation (4.23) becomes a k-means model with soft constraints.

86 Constrained Clustering: Advances in Algorithms, Theory, and Applications

C.2 From PPC to K-means with Hard Constraints (cop-kmeans)

cop-kmeans is a hard clustering algorithm with hard constraints. The goal
is to find a set of cluster centers μ and clustering result Z that minimizes the
cost function

N∑

i=1

||xi − μzi
||2, (4.30)

while subject to the constraints

zi = zj , if (xi, xj) ∈ C= (4.31)
zi �= zj , if (xi, xj) ∈ C�=. (4.32)

Assume we have the PPC model with soft relations represented with the
matrix w such that:

w(i, j) =

⎧
⎪⎨

⎪⎩

w (xi, xj) ∈ C=

−w (xi, xj) ∈ C�=

0 otherwise

where w > 0. We further constrain each Gaussian component to be spherical
with radius σ. The complete data likelihood for the PPC model is

P (X,Z|Θ,W) =
1
Ω

N∏

i=1

{πzi
exp(−

N∑

i=1

||xi − μzi
||2

2σ2
)}

∏

(m,n)∈C=

exp(wδzmzn
)

∏

(m′,n′)∈C �=

exp(−wδzm′zn′), (4.33)

where μk is the mean of the kth Gaussian component. There are infinite
ways to get equations (4.30)-(4.32) from equation (4.33), but we consider the
following scaling with factor β:

σ → βσ, w(i, j) → w(i, j)/β3. (4.34)

The complete data likelihood with the scaled parameters is

Pβ(X,Z|Θ,W) =
1

Ω(β)

N∏

i=1

{πzi
exp(−

N∑

i=1

||xi − μzi
||2

2β2σ2
)}

∏

(m,n)∈C=

exp(
w

β3
δzmzn

)
∏

(m′,n′)∈C �=

exp(− w

β3
δzm′zn′). (4.35)

As established in C.1, when β → 0, the maximum data likelihood will domi-
nate the data likelihood

lim
β→0

maxZ Pβ(X,Z|Θ,W)
∑

Z Pβ(X,Z|Θ,W)
= 1.

Pairwise Constraints as Priors in Probabilistic Clustering 87

As a result, when optimizing the model parameters Θ we can equivalently
maximize maxZ Pβ(X,Z|Θ,W). Also, the soft posterior probability (as in
conventional mixture model) becomes hard membership (as in k-means).

The negative logarithm of the complete likelihood Pβ is then:

Jβ(Θ, Z) = −
N∑

i=1

log πzi
+ C+

1
β2

(
N∑

i=1

||xi − μzi
||2

2
+

1
β

(
∑

(m′,n′)∈C �=

wδzm′zn′ −
∑

(m,n)∈C=

wδzmzn
)),

where C = log Ω(β) is a constant. It is obvious that when β → 0, we can
neglect the term −

∑N
i=1 log πzi

. Hence we only have to consider the new cost
function

J̃β(μ,Z) =
1
β2

(
N∑

i=1

||xi − μzi
||2

2
+

1
β

(
∑

(m′,n′)∈C �=

wδzm′zn′ −
∑

(m,n)∈C=

wδzj ,zk
)),

the minimization of which is obviously equivalent to the following equation
since we can neglect the constant factor 1

β2 :

˜̃Jβ(μ,Z) =
N∑

i=1

||xi − μzi
||2

2
+
w

β
Jc(Z),

where Jc(Z) =
∑

(m′,n′)∈C �= δzm′zn′ −
∑

(m,n)∈C=
δzmzn

is the cost function
term from pairwise constraints.

Let SZ = {Z|zi = zj if w(i, j) > 0; zi �= zj if w(i, j) < 0; }. We assume
the pairwise relations are consistent, that is, SZ �= ∅. Obviously, all Z in SZ

achieve the same minimum value of the term Jc(Z). That is

∀Z ∈ SZ , Z
′ ∈ SZ Jc(Z) = Jc(Z ′)

∀Z ∈ SZ , Z
′′ ∈/ SZ Jc(Z) < Jc(Z ′′).

It is obvious that when β → 0, any Z that minimizes ˜̃Jβ(μ,Z) must be in SZ .
So the minimization of equation (4.35) can be finally cast into the following
form:

min
Z,μ

N∑

i=1

||xi − μzi
||2

subject to Z ∈ SZ ,

which is apparently equivalent to equations (4.30)-(4.32). So we can conclude
that β → 0 in equation (4.34), the PPC model shown in equation (4.33)
becomes a k-means model with hard constraints.

88 Constrained Clustering: Advances in Algorithms, Theory, and Applications

References

[1] C. Ambroise, M. Dang, and G. Govaert. Clustering of spatial data by
the EM algorithm. In A. Soares, J. Gmez-Hernndez, and R. Froidevaux,
editors, Geostatistics for Environmental Applications, volume 3, pages
493–504. Kluwer, 1997.

[2] S. Basu, A. Bannerjee, and R. Mooney. Semi-supervised clustering by
seeding. In C. Sammut and A. Hoffmann, editors, Proceedings of the
Nineteenth International Conference on Machine Learning, pages 19–
26. Morgan Kaufmann, 2002.

[3] S. Basu, M. Bilenko, and R. Mooney. A probabilistic framework for semi-
supervised clustering. In W. Kim, R. Kohavi, J. Gehrke, and W. Du-
Mouchel, editors, Proceedings of the Tenth Association of Computing
Machinery SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 59–68. Association of Computing Machinery,
2004.

[4] M. Bilenko, S. Basu, and R. Mooney. Integrating constraints and metric
learning in semi-supervised clustering. In C. Brodley, editor, Proceed-
ings of the Twenty-first International Conference on Machine Learning,
pages 11–18. Association of Computing Machinery, 2004.

[5] C. Bouman and M. Shapiro. A multiscale random field model for
Bayesian image segmentation. IEEE Transaction on Image Processing,
3:162–177, March 1994.

[6] D. Cohn, R. Caruana, and A. McCallum. Semi-supervised Clustering
with User Feedback. Technical Report TR2003-1892, Cornell University,
2003.

[7] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39:1–38, 1977.

[8] T. Jaakkola. Tutorial on variational approximation methods. In C. Brod-
ley, editor, Proceedings of the Twenty-first International Conference on
Machine Learning, pages 11–18. Association of Computing Machinery,
2004.

[9] D. Klein, S. Kamvar, and C. Manning. From instance level to space-
level constraints: Making the most of prior knowledge in data clustering.

Pairwise Constraints as Priors in Probabilistic Clustering 89

In C. Sammut and A. Hoffmann, editors, Proceedings of the Nineteenth
International Conference on Machine Learning, pages 307–313. Morgan
Kaufmann, 2002.

[10] T. Lange, M. Law, A. Jain, and J. Buhmann. Learning with constrained
and unlabelled data. In Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pages 730–737,
2005.

[11] M. Law, A. Topchy, and A. Jain. Clustering with soft and group con-
straints. In A. Fred, T. Caelli, R. Duin, A. Campilho, and D. Ridder,
editors, Joint International Association for Pattern Recognition Interna-
tional Workshop on Syntactical and Structural Pattern Recognition and
Statistical Pattern Recognition, pages 662–670. Springer-Verlag, 2004.

[12] M. Law, A. Topchy, and A. Jain. Model-based clustering with proba-
bilistic constraints. In Proceedings of Society for Industrial and Applied
Mathematics Data Mining, pages 641–645, 2005.

[13] Z. Lu and T. Leen. Semi-supervised clustering with pairwise constraints:
A discriminative approach. In Eleventh International Conference on
Artificial Intelligence and Statistics, 2007.

[14] R. Neal. Probabilistic inference using Markov Chain Monte Carlo meth-
ods. Technical Report CRG-TR-93-1, Computer Science Department,
Toronto University, 1993.

[15] E. Segal, H. Wang, and D Koller. Discovering molecular pathways from
protein interaction and gene expression data. Bioinformatics, 19:i264–
i272, 2003.

[16] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing Gaus-
sian mixture models with EM using side-information. Technical Report
2003-43, Leibniz Center for Research in Computer Science, 2003.

[17] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing Gaus-
sian mixture models with EM using equivalence constraints. In L. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural Information Pro-
cessing System, volume 16, pages 505–512. Cambridge, MA: MIT Press,
2004.

[18] A. Srivastava and J. Stroeve. Onboard detection of snow, ice and other
geophysical processes using kernel methods. In International Conference
on Machine Learning 2003 Workshop on Machine Learning Technologies
for Autonomous Space Sciences, 2003.

[19] J. Theiler and G. Gisler. A contiguity-enhanced K-means clustering algo-
rithm for unsupervised multispectral image segementation. In B. Javidi
and D. Psaltis, editors, Proceedings of Society of Photographic Instru-

90 Constrained Clustering: Advances in Algorithms, Theory, and Applications

mentation Engineers, volume 3159, pages 108–118. Society of Photo-
graphic Instrumentation Engineers, 1997.

[20] K. Wagstaff. Intelligent clustering with instance-level constraints. PhD
thesis, Cornell University, 2002.

[21] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained
K-means clustering with background knowledge. In C. Brodley and
A. Danyluk, editors, Proceedings of the Eighteenth International Con-
ference on Machine Learning, pages 577–584. Morgan Kaufmann, 2001.

[22] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with
applications to clustering with side information. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural Information Processing
System, volume 15, pages 505–512. Cambridge, MA: MIT Press, 2003.

[23] Q. Zhao and D. Miller. Mixture modeling with pairwise, instance-level
class constraints. Neural Computation, 17:2482–2507, 2005.

Chapter 5

Clustering with Constraints: A
Mean-Field Approximation
Perspective

Tilman Lange

ETH Zurich, tilman.lange@gmail.com

Martin H. Law

Michigan State University, lawhiu@cse.msu.edu

Anil K. Jain

Michigan State University, jain@cse.msu.edu

Joachim M. Buhmann

ETH Zurich, jbuhmann@inf.ethz.ch

Abstract Data clustering, the quest for natural group structure in data
sets, is commonly addressed by modeling the expected class structure, where
different models reflect different preferences (or lack thereof) for certain types
of structures. The inclusion of instance-level label constraints in the infer-
ence allows the user to vaguely phrase what should belong to the same class
and what should not, without the need to explicitly state what these classes
are. Such constraint information can be regarded as a special type of side
information whose integration in the inference and, thereby, fusion with the
measurements can be beneficial for the finally discovered group structure.

We discuss an integration strategy for instance-level constraints by utiliz-
ing a hidden Markov Random Field formulation. The wide applicability of
this model is mainly demonstrated for vectorial, parametric and outlined for
pairwise, non-parametric clustering models. The computational complexity
induced by the constraints in such models is addressed by way of a mean-
field approximation. Furthermore, a weighting mechanism is introduced that
controls the trade-off between constrained and unlabelled data. A model se-
lection heuristic is employed to actually pick a sensible value of this trade-off
parameter. Experiments shed light on the usefulness of this proposal—in

91

92 Constrained Clustering: Advances in Algorithms, Theory, and Applications

the model-based setting—on various data sets. Most of the material in this
chapter is based on the previous work in [20].

5.1 Introduction

Classification and grouping problems are abundant in many areas, such
as computer vision (e.g., object categorization or low-level segmentation),
data mining (e.g., document classification), or bio-informatics (e.g., protein
function prediction). Often, a clear distinction is made between problems
that are (i) supervised or (ii) unsupervised, the first involving only labelled,
the latter only unlabelled data in the process of learning. Semi-supervised
classification problems represent a hybrid setting where the labels of only a
portion of the data set are available for training, and the unlabelled data,
i.e., p(x), is hoped to convey meaningful information about the joint data
and label density p(x, y). Therefore, the unlabelled data is, instead of being
discarded, integrated in the learning process.

Instance-level constraints represent a “weaker”form of a priori knowledge
about the desired grouping. A must-link constraint corresponds to the re-
quirement that a specified set of objects should be assigned the same la-
bel, whereas the labels of objects participating in a must-not-link constraint
should be different. Figure 5.1 illustrates the spectrum of different types of
prior knowledge that can be included in the process of classifying data. The
problem that is discussed here, grouping with instance-level constraints (see
figure 5.1(c)), has also been termed semi-supervised clustering by some au-
thors (see, e.g., [4]) in the literature. Must-link constraints are generally easier
to model because they usually represent an equivalence relation – at least as
long as such constraints are supposed to be strictly obeyed. Hence, they can
be augmented, e.g., by constructing the transitive closure of constraints. This
is illustrated in figure 5.2 and further discussed in chapter 1. Instance-level
constraints are often simply called “constraints” if the context is clear. Con-
straints naturally arise in several settings, e.g., in interactive learning, where
a potential non-expert user provides feedback about the success of learning in
the form of constraints (an example for this is shown in figures 5.2(a) – 5.2(c),
where the user input guides the image segmentation).

In this chapter, we adopt the perspective that constraints act on the latent
label variables and, thereby, shall affect the probability of observing a certain
label. This assumption leads to a Markov Random Field model acting on
the latent variables. Computational intractability in this model is addressed
by resorting to the mean-field approximation for approximate inference. We

Clustering with Constraints: A Mean-Field Approximation Perspective 93

−2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

(a) Supervised

−2 0 2 4 6 8 10

−8

−6

−4

−2

0

2

(b) Partially labelled

−2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

(c) Partially con-
strained

−2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

(d) Unsupervised

FIGURE 5.1: Spectrum between supervised and unsupervised learning.
Points with labels have +, x or * shape while those without labels have circle
shape. In (c), the must-link and must-not-link constraints are displayed as
solid and dotted lines, respectively.

demonstrate the wide applicability of this approach ranging from exponential
family mixtures to pairwise clustering approaches. As the inference of labels,
in particular in an inductive context, is governed by the parameter θ of the
underlying model, the approach taken here attempts to ensure that the con-
straints also affect the parameter estimation process by the introduction of
an appropriate weighting mechanism. Experimental results demonstrate the
effectiveness and robustness of our approach.

5.1.1 Related Work

A lot of work has already been devoted to semi-supervised learning (see,
e.g., the recent surveys in [35, 43]) and its cousin learning with grouping
constraints. We proceed with a brief overview. Work on semi-supervised
learning is also covered here since the problems of learning with partial labels
and with partial label constraints are strongly related and ideas for addressing
one problem are often borrowed from approaches addressing the other.

A classical approach to semi-supervised learning assumes a generative model
p(x, y) = p(y)p(x|y), where the class-conditional density p(x|y) is for example
a Gaussian. An often employed method for fitting the model with labelled
and unlabelled data ([27], p. 75) is to apply the Expectation-Maximization
(EM) algorithm ([12], see also chapter 5.2), where the known labels enter the
E-step update of the class posteriors: Instead of estimating an assignment
probability, all probability mass is put on the actually observed class in the
E-step. This type of technique has, e.g., been used for document classification
[30]. In the approach to grouping with constraints presented in this work, a
similar strategy is applied. In graph-based approaches (see, e.g., [3] or [44]),
label-smoothness is enforced by utilizing a graph whose nodes are the labelled

94 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) (b)

(c) (d)

FIGURE 5.2: Pairwise instance-level constraints may arise from user input
indicating what types of objects are supposed to be similar and which are
not: (a) gives an example for the case of image segmentation; dashed lines
indicate that the endpoints should not be grouped together, while solid lines
indicate the opposite. Note that there is a misspecified not-link constraint.
(b) The unconstrained segmentation of the image arbitrarily splits the image.
(c) Already the few constraints specified in (a) help to improve the result and
to render the segmentation more meaningful. In particular, the method of
this chapter turns out to be robust w.r.t. errorneous constraints. (d) Sketches
of the graph structure induced by pairwise constraints: the circles indicate
connected components and, thereby, the possible augmentation to group level
constraints.

Clustering with Constraints: A Mean-Field Approximation Perspective 95

and unlabelled examples and the edge weights reflect the similarity of pairs
of objects. Approaches adopting this perspective usually rely on the so-called
cluster assumption, which essentially states that highly similar points share
the same label; thus, differently labelled but highly similar points will induce a
high penalty. It should be clear that graph-based methods are non-parametric,
discriminative, and transductive1 in nature as they rely on a graph structure
(solely) defined for nu + nl objects.

Recently, there has been growing interest in the integration of link/not-link
side information into the inference. Generally, one can distinguish between
distance (editing)-based and constraint-based approaches. In [41], smoothness
of the cluster labels is enforced, which utilizes a graph-based approach similar
to those employed for transductive inference. In [19], the distance metric is
modified in view of the constraints to propagate the effect of a constraint to
the neighboring objects, which is also along the lines of connectivity-based
regularization known from semi-supervised learning. However, this particular
approach is not very robust, since a single constraint can provide a short-
cut, which leads to significant changes in the distance matrix. In the worst,
objects belonging to different classes are artificially made highly similar or
even indistinguishable this way. A similar problem arises in ISOMAP-based
embedding procedures when an erroneous “short-cut” is present. A slightly
different constraint-based metric editing procedure has been proposed in [18].
Combining graph-based regularization with grouping models is one particular
form of phrasing a hybrid criterion that integrates aspects of the (marginal)
data density p(x) and the assignment probabilities p(y|x). [40] described a
method that learns a Mahalanobis metric based on instance level constraints.
In [36, 38, 39], for example, the subjects of inference are the labels of the
objects. Hence, the setting bears a close similarity to the transductive learn-
ing setting as introduced by Vapnik [37]. From a probabilistic point of view,
one specifies a prior on the class labels for points participating in constraints
or for labelled points. Combinations of labels that violate the constraints
or prior label information are either forbidden by having zero prior proba-
bility, or they are penalized by having small prior probability values (e.g.,
in [36] constraints are strictly enforced). Labels of originally unlabelled or
unconstrained points are affected by the prior knowledge only indirectly by
the parameter estimates. This, however, can lead to “discontinuous” label
assignments: two points at exactly the same location, one endowed with con-
straint and one without, can be assigned different labels! A possible work-
around for this problem represents the use of a constraint propagation mech-
anism, similar to graph Laplacian-based label propagation methods known
from semi-supervised learning. In section 5.3.7, we adopt a different strategy
to circumvent this problem. The approaches in [21, 22, 36] attempt to pro-

1Some work has been devoted to extend graph-based approaches to inductive settings, e.g.,
by way of nearest neighbor extension or the Nystrm approximation [11, 45].

96 Constrained Clustering: Advances in Algorithms, Theory, and Applications

vide a sampling model for constraints, which is fitted in an EM framework.
The approach in [2], which can be regarded as an extension of the early work
in [38, 39], phrases the problem of integrating pairwise constraints as a con-
strained k-means problem that integrates the metric learning ideas from the
work by [40]. Inference for this approach is based on the iterated conditional
mode (ICM) and, therefore, gets easily stuck in poor local minima. Markov
Random Field (MRF) approaches have been independently developed in [24],
[42], and [20] and are closely related to each other. In particular, the work in
[42] relies on the same inference technique, the mean field approximation [31],
as our approach in [20], which is described in the following sections.

5.2 Model-Based Clustering

Let X ⊆ R
l be the space of measurements under consideration. A common

strategy in clustering is to explain the group structure by a so-called mixture
model [27]: the basic idea is to model the data density p(x) as marginalized
joint density

∑
ν p(x, ν) where the marginalization is with respect to the so-

called latent class variable Y . Viewed differently, the marginal density of x
may be written as p(x) =

∑k
ν=1 γνpν(x), where γν ,

∑
ν∈[k] γν = 1, denotes

mixing proportions and pν(x) class conditional densities.

Usually, a parametric family is fixed, of which the true (but unknown)
class conditional density is assumed to be a member. We denote by θν the
parameter vectors that index models p(x; θν) for pν(x) in the chosen family.
Given an unlabelled sample, Xu = (xi)i∈[n], the unknown parameters γ and
θ = (θν)ν∈[k] have to be estimated. The maximum likelihood (ML) [10]
strategy minimizes the negative log-likelihood of the data as a function of the
parameters

min
γ,θ

L(γ,θ) := −
∑

i∈[n]

log

⎛

⎝
∑

ν∈[k]

γνp(xi; θν)

⎞

⎠ . (5.1)

The Expectation-Maximization (EM) algorithm ([12]) is a commonly em-
ployed heuristic for determining the ML estimate. Some details on the ra-
tionale underlying EM are required in the following: Let X be the observed
random variable and Y the unobserved (label) variable. By Bayes rule

log
∑

ν

γνp(xi; θν) = log γyi
p(xi; θyi

)− log p(yi|xi; γ,θ) (5.2)

Clustering with Constraints: A Mean-Field Approximation Perspective 97

w.r.t. the unobserved yi. Hence,

L(γ,θ) = −
∑

i

log γyi
p(xi; θyi

) +
∑

i

log p(yi|xi;γ,θ).

Let {pi} be a set of n distributions defined on the range of Y (in the clustering
case on [k]). Now, taking expectations w.r.t. pi in equation (5.2) gives

− log p(xi;γ,θ) = −Epi
log p(xi, Y ;γ,θ) + Epi

log p(Y |xi;γ,θ)
≤ −Epi

log p(xi, Y ;γ,θ) + Epi
log pi(Y), (5.3)

where equality is obtained iff pi = p(·|xi;γ,θ). Taking sums on both sides,
one gets

L(γ,θ) ≤ L(γ,θ) +
∑

i∈[n]

dKL(pi‖p(·|xi;γ,θ) (5.4)

and, thus, one has obtained an upper bound L̃ on L:

L̃(γ,θ; {pi}) = −
∑

i∈[n]

∑

ν∈[k]

(pi(ν) log p(xi; θν)γν − pi(ν) log pi(ν)) .

The EM algorithm is a minimization-minimization algorithm: For fixed γ(m),
θ(m), find the p(m)

i minimizing the bound in equation (5.3). This Estimation
step (E-step) is Bayes’ rule, i.e.,

p(m)
i (ν) ← p(xi; θ

(m)
ν)γ(m)

ν
∑

a∈[k] p(xi; θ
(m)
a)γ(m)

a

,

since this choice minimizes the KL-divergence dKL(p(m)
i ‖p(·|xi;γ(m),θ(m))

and turns the inequality into an equality. In the M-step (Maximization
step) one re-estimates the parameters γ and θ by minimizing the bound L̃,
for fixed p(m)

i , i ∈ [n]. Interesting terms are −
∑

i

∑
ν p

(m)
i (ν) log(γν) and

−
∑

i

∑
ν p

(m)
i (ν) log(p(xi; θν)). The solution for γ is

γ(m+1) =
1
n

∑

i

p(m)
i . (5.5)

Determining θ(m+1) on the basis of the L̃ also leads to a convex minimization,
if the densities p(x; θν) are log-concave, which is the case for the exponential
family (c.f. [1]).

REMARK 5.1 Many model classes used in practice for pν(x) are elements
of the so-called exponential family [1]:

p(x; θ) = h(x) exp
(
χ(θ)�T (x)−A(θ)

)
. (5.6)

98 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Here, η := χ(θ) is called natural parameter, T (·) is the sufficient statistic,
and A(θ) is known as the cumulant generating or log-partition function. The
function T can be defined on any domain as long as it maps the input to
a vector of fixed, finite dimension. An important aspect of the exponential
family is its (strict) log-concavity in its parameter. Therefore, maximum
likelihood parameter estimation is feasible. In particular, there is a unique
minimizer for strictly convex − log p(x; θ). Many parametric distributions
belong to the exponential family, e.g., the multivariate Gaussian, the Dirichlet,
the multinomial, the Poisson distribution, and so forth.

Solving ∇θL̃ != 0 yields optimal parameter estimates for fixed assignment
probabilities.

In Gaussian mixture models, the class conditional density follows a Gaussian
distribution with mean μμμν and co-variance matrix Σν :

p(x;μν ,Σν) =
1

(2π)(d/2)|Σν |1/2
exp

(

−1
2
(x−μμμν)�Σ−1

ν (x−μμμν)
)

.

Since, the Gaussian density, as a member of the exponential family, is (strictly)
log-concave, it is sufficient to look for the zero crossings of the gradient,
i.e. ∇θL̃ != 0. For the Gaussian case, the derivation has been performed,
e.g., in [5]. The algorithm as well as the parameter estimates are summa-
rized in algorithm 1. The k-means cost function [25] can be derived from the
negative log-likelihood of Gaussian mixture model with vanishing covariance
Σν = εIl for ε→ 0 and equal class priors γν = 1

k .

Iterating the EM two-step procedure until convergence will yield locally
optimal parameter estimates γ̃ and θ̃ with respect to the original cost function
L ([28]). Once the parameter estimates have been obtained, the maximum
a-posteriori class assignments can be computed in order to arrive at a k-
clustering.

5.3 A Maximum Entropy Approach to Constraint
Integration

In the following, we focus on model-based, generative grouping methods as
briefly described in the previous section. For the biggest part of this section,
we assume that the data generation process can be explained sufficiently well
by a mixture of class-conditional densities, which are members of the exponen-
tial family. The ME strategy adopted here can also be applied to the pairwise

Clustering with Constraints: A Mean-Field Approximation Perspective 99

Algorithm 1 The EM algorithm for Gaussian mixture models
.
1: Initialize γ(0), θ(0).
2: m← 0;
3: while not converged do
4: Determine class posteriors p(m)

i (ν) := p(ν|xi;γ(m),θ(m)) by Bayes rule.
5: Update parameters: γ(m+1) according to eq. (5.5). For mean and co-

variance:

μ(m+1)
ν =

∑
i pi(ν)xi∑
i pi(ν)

(5.7)

Σ(m+1)
ν =

∑
i pi(ν)(xi − μ

(m+1)
ν)(xi − μ

(m+1)
ν)�

∑
i pi(ν)

(5.8)

6: m← m+ 1;
7: end while

grouping models to integrate constraints into the inference. We sketch this
option as well.

5.3.1 Integration of Partial Label Information

In model-based classification, a classical approach to combining labelled
and unlabelled data consists of integrating the labelled data into the E-step,
where class assignment probabilities are estimated. The underlying rationale
requires that the estimated parameters yield high likelihood for both labelled
and unlabelled data [7]. In supervised model-based classification, the ML
principle applied to the labelled data Xl tells us to choose the parameters γ
and θ that minimize LXl

(γ,θ) = −
∑

(xi,yi)∈Xl
log p(xi, yi; γyi

, θyi
), where

p(xi, yi; γyi
, θyi

) = γyi
p(xi; θyi

). The integration of partially labelled and
unlabelled data can be achieved by considering the hybrid objective function

min
γ,θ

[LXu
(γ,θ) + LXl

(γ,θ)] . (5.9)

According to Section 5.2, an EM-based procedure can be used to optimize
the relaxed cost function L̃Xu

(γ,θ; {pi}) + LXl
(γ,θ). Here, L̃Xu

is used
to denote the usual EM relaxation for the unlabelled data known from the
previous section. For the labelled data, no posterior probability needs to be
estimated since the label was actually observed. The label information enters
the inference in the E-step updates where the class posteriors for labelled
objects xi are set to I{yi = ν}. The observed labels may, hence, be viewed as
constraints on the class assignment probability p(ν|x;γ,θ).

100 Constrained Clustering: Advances in Algorithms, Theory, and Applications

5.3.2 Maximum-Entropy Label Prior

The maximum entropy approach described in this section attempts to in-
tegrate pairwise instance-level constraints into the inference in a way similar
to the integration of partially labelled data just described. Our perspective
is that specifying constraints amounts to specifying a partially object-specific
prior model for the assignment of constrained data to different classes. This
contrasts the sampling paradigm underlying a standard mixture model. For
constraints, the first step of the sampling process (i.e., the label sampling) is
no longer object independent but depends also on the labels of other objects
participating in constraints.

LetXc be the set of all data points that participate in at least one constraint.
The class labels y are regarded as latent variables; the constraints are supposed
to act on the probabilities characterizing the latent variable. For a given
labelling y, a constraint violation occurs whenever the latent variables in a
constraint have a different (the same) value while they are supposed to be the
same (different). In mathematical terms, a must-link constraint is violated,
whenever c=(i, j)I{yi �= yj} = 1; similarly, a must-not-link is not satisfied
if c �=(i, j)I{yi = yj} = 1. Both quantities can be used in order to penalize
constraint violations.

By specifying constraints, a preference for or against certain labellings of
the constrained data is expressed. However, we have to take the possibility
of faulty grouping constraints into account. Hence, strictly enforcing con-
straints may render the learning problem infeasible (which actually happens
for one of the approaches discussed in [36]). In order to turn the constraint
information into a prior on the assignment variables for the data in Xc, we
apply Jaynes’ maximum entropy (ME) principle: Find the prior distribution
p(y) = p(y1, . . . , yn) for the group labels of the data points xi ∈ Xc such that
the entropy H(p) = −

∑
y∈[k]n p(y) log p(y) is maximized while the expected

number of constraint violations,

EPY n

⎡

⎣
∑

i,j∈[n]

c=(i, j)I{Yi �= Yj}

⎤

⎦ =

k∑

y1=1

· · ·
k∑

yn=1

p(y)
∑

i,j∈[n]

(c=(i, j)I{yi �= yj}) ≤ κ+,

EPY n

⎡

⎣
∑

i,j∈[n]

c�=(i, j)I{Yi = Yj}

⎤

⎦ =

k∑

y1=1

· · ·
k∑

yn=1

p(y)
∑

i,j∈[n]

(c�=(i, j)I{yi = yj}) ≤ κ−,

Clustering with Constraints: A Mean-Field Approximation Perspective 101

is bounded by κ+ for positive and κ− for negative constraints. Instead of
working with the constraints κ+ and κ−, we consider the Lagrangian, yielding
the modified problem:

minp∈Pkn −H(p)
+λ+Ep[

∑
i,j∈[n] c=(i, j)I{Yi �= Yj}]

+λ−Ep[
∑

i,j∈[n] c�=(i, j)I{Yi = Yj}]
s.t.

∑k
y1=1 · · ·

∑k
yn=1 p(y) = 1 p(y) ≥ 0 ∀y ∈ [k]n.

(5.10)

The regularization parameters λ+ and λ− control how strongly a constraint vi-
olation is actually penalized. The maximum entropy (minimum neg. entropy)
problem just phrased is convex in the discrete distribution p since −H(p) is a
convex function of p ([9]), expectations are linear in p and the normalization
constraint is affine. The solution to this inference problem can in fact be
found by analytical means: Taking derivatives yields the stationary equation

log p(y) + 1 + λ+
∑

i,j∈[n]

c=(i, j)I{yi �= yj}+ λ−
∑

i,j∈[n]

c�=(i, j)I{yi = yj}+ ξ
!= 0,

where ξ ∈ R is the Lagrange multiplier belonging to the normalization con-
straint. The solution to the stationary equations is the so-called Gibbs dis-
tribution (e.g., [9]) known from statistical physics. In this case, it is given
by

p(y) =
1
Z

∏

i,j∈[n]

exp
(
−λ+c=(i, j)I{yi �= yj} − λ−c�=(i, j)I{yi = yj}

)
, (5.11)

where Z is the normalization constant – also known as partition function – in
which ξ was absorbed. This prior is intuitive: Depending on the choice of λ+

and λ−, constraint violations are more or less likely. For λ+ →∞, λ− →∞,
the prior strictly enforces the constraints for the data in Xc. It is, therefore,
reasonable to use a large value for λ+ and λ− whenever constraints correspond
to true label information in product space. Generally, the prior puts low
probability mass on labellings that violate instance-level grouping constraints:
the more constraints are violated, the less likely is the labelling. The ME prior
can be regarded as maximally non-committal with respect to fluctuations in
the input (here: the constraint information!) since the ME principle assumes
the least about the label information apart from the information derived from
the constraints. It is this property that renders this approach to integrating
constraints robust w.r.t. erroneously specified link/not-link information.

REMARK 5.2 In order to penalize constraint violations, we have chosen
the 0-1 loss on pairs of labels. However, other loss functions, e.g., with a

102 Constrained Clustering: Advances in Algorithms, Theory, and Applications

constraint-specific weighting, also fit into this framework: a loss of the form
(here for violations of positive constraints)

c=(i, j)wij�(yi, yj)

will also lead to a Gibbs distribution. A reasonable choice for wij represents,
for example, a similarity-based penalty: the smaller ‖xi − xj‖2A, the higher
the penalty induced by a link constraint violation, for example. Note, that
A may be any positive semi-definite matrix A � 0, which defines a bilinear
form. In particular, A could also be learned from the data. The loss function
� can be any loss function of the labels yi and yj , i.e., � : [k]2 → R. For the
sake of simplicity, however, we focus on the 0-1-loss here.

Note that we have not integrated classical class priors γν as they arise in
the standard mixture modelling setting so far. For problems, where uniform
class priors are assumed, the prior in equation (5.11) is appropriate. In [20],
different label sampling mechanisms have been assumed for unlabelled and
constrained data, such that γν is only estimated using the unlabelled data. In
some cases, it may be, however, worthwhile to integrate global class priors γ
also for the constrained objects (in the experiments uniform γν are assumed,
however). There are several ways with which this can be achieved: In theory,
class priors, that act on both constrained and unconstrained objects, can be
added without much effort. The additional term

−
∑

i∈[n]

Ep [log γYi
]

which quantifies the cross-entropy between class priors γν and per-object
marginal class probability for class ν and object i as obtained from

∑
y:yi=ν p(y)

for each (fixed) i ∈ [n]. Adding this constraint to the maximum entropy prob-
lem in equation (5.10), yields the modified Gibbs distribution

p(y;γ) =
1

Z(γ)

∏

i

γyi

∏

i,j

exp
(
−λ+c=(i, j)I{yi �= yj} − λ−c�=(i, j)I{yi = yj}

)
,

(5.12)
which is parametrized now by γ and breaks down to the usual class priors if no
constraints are given. That type of integration leads to the model used in [24].
The integration differs, however, from the model in [42], where constraints
are artificially added to the already relaxed cost function, which implies a
departure from the originally assumed probabilistic model.

5.3.3 Markov Random Fields and the Gibbs Distribution

The Gibbs labelling prior derived in the last section has an illuminating
interpretation in terms of a Markov Random Field (MRF) (cf., e.g., [6]). So

Clustering with Constraints: A Mean-Field Approximation Perspective 103

far measurements x have not been taken into account. The MRF perspective
provides a sound way to integrate the actual measurements (xi) into the
model. This perspective covers also the approaches in [2, 24, 36].

In MRF terminology, the set of objects V = [n] is also called a set of sites.
A state is associated with each site being an element of a state or phase space.
As we work with labels, the state space is simply [k]. The set of label random
variables {Yi}i∈[n] with domain [k] defines a random field on [n]. Interesting
random fields are equipped with a graph structure that reflects conditional
(in-) dependencies and is encoded in what is commonly termed a neighborhood
system: A neighborhood system is a family of subsets Ni, i ∈ [n], of [n] such
that i �∈ Ni and j ∈ Ni ⇒ i ∈ Nj . In the case considered here, the
neighborhood structure is induced by the constraint indicators c=(i, j) and
c�=(i, j): In terms of the underlying graph structure, there is a link between
nodes i and j, if c=(i, j) + c�=(i, j) = 1 assuming c=(i, i) = c�=(i, i) = 0 and
non-conflicting constraints, i.e., Ni = {j ∈ [n] | c=(i, j) + c�=(i, j) = 1}. A
random field is a Markov random field if

P{Yi = yi | Y[n]\i = y[n]\i} = P{Yi = yi | YNi
= yNi

}, (5.13)

FIGURE 5.3: Hidden
MRF on the labels: Ob-
servations made (data
(xi) and the constraints)
are employed to make in-
ferences about y.

where we have used the notation YA for a set A ⊆
[n] to denote the tuple (Yi)i∈A. In words, equa-
tion (5.13) means that the probability of node i be-
ing in state yi is independent of the state of the
nodes not being in the neighborhood Ni of node i.
Now, the Gibbs distribution in equation (5.12) de-
fines a Gibbs potential on the neighborhood system
{Ni}i∈[n]. The celebrated Gibbs-Markov equivalence
(e.g., [6], p. 260) states that Gibbs fields are Markov
fields.2 Hence, the joint distribution in the MRF is
the Gibbs distribution given in equation (5.12).

In our case, the labels are hidden variables. The
data itself, i.e., the measurements xi, can be natu-
rally integrated into the hidden MRF model. They
provide what is often termed evidence in the litera-
ture, resulting in a term ψ̃i(xi, yi) (see fig. 5.3). In
fact, the latter can absorb everything that only de-
pends on a single object alone. In our context, this concerns the likelihood
as well as the global class prior term. The pairwise couplings additionally
lead to what is commonly referred to as compatibility terms ψij(yi, yj). The

2The converse direction can be obtained from the Hammersley-Clifford theorem, e.g., [6],
p. 262.

104 Constrained Clustering: Advances in Algorithms, Theory, and Applications

graphical depiction in fig. 5.3 already indicates that independence of the mea-
surements given their labels is assumed, i.e., p(xi, xj |yi, yj) = p(xj |yj)p(xi|yi).
More precisely, for the pairwise Markov random field, one gets for the joint
distribution of data and labels

p(y,X;γ,θ) =
1

Z(γ)

∏

i∈[n]

ψ̃i(xi, yi)
∏

i,j∈[n]

ψij(yi, yj)

where ψij(yi, yj) = exp(−(λ+c=(i, j)−λ−c�=(i, j))I{yi �= yj}) and ψ̃i(xi, yi) =
p(xi; θyi

)γyi
. Starting from the ME prior, we have arrived at a model for

measurements and latent label variables that integrates the constraints.

5.3.4 Parameter Estimation

We assume that the class-conditional densities p(xi|ν) ≡ p(xi; θν) are mem-
bers of the (same class within the) exponential family. Following the rationale
in Section 5.2, the parameters of the class priors and class-conditional den-
sities need to be learned, where we follow the maximum likelihood principle
here, i.e., (γ∗,θ∗) = arg minγ,θ − log

∑
y p(y,X;γ,θ) are to be identified. An

EM perspective can be naturally adopted – similar to the case of partially
labelled data sketched earlier. The standard EM relaxation still applies here,
however, with respect to label vectors y in contrast to individual labels, i.e.,

L(γ;θ) = − log
∑

y∈[k]n

p(y;γ)
∏

i

p(xi; θyi
)

≤ −
∑

y∈[k]n

q(y)

(

log p(y;γ)
∏

i

p(xi; θyi
)− log q(y)

)

=: L̃(γ,θ; q),

where q ∈ Pkn is any distribution on [k]n and p(y;γ) is the Gibbs distribu-
tion from equation (5.12). Clearly, equality holds iff q(y) = p(y|X;γ,θ) ∝
p(y;γ)

∏
i p(xi; θyi

). Hence, standard EM amounts to iterating the steps

1. E-step: minq∈Pkn dKL(q‖p(·|X;γ,θ)) for fixed γ and θ.

2. M-step: minγ,θ L̃(γ,θ; q) for fixed q.

Obviously, the constraints only implicitly influence the estimation of the pa-
rameters θν in the second step, since the constraints enter the E-step. There
are, however, two technical difficulties. In order to arrive at a proper proba-
bility distribution, the label posterior and, thereby, q needs to be normalized.
The normalization constant, however, involves a sum over all possible (ex-
ponentially many) labellings in [k]n, which does not factorize over individual

Clustering with Constraints: A Mean-Field Approximation Perspective 105

objects as in the standard mixture model case due to the pairwise couplings
introduced by the constraints. In [2], the authors avoid the need to compute
the partition function by resorting to a different, more greedy hill climbing
heuristic, the iterative conditional mode (ICM). As the results in the experi-
mental section indicate, such a procedure gets very easily stuck in poor local
minima, which is particularly dangerous in the context of clustering with
instance-level constraints. In order to use more sophisticated optimization
techniques such as EM or DA, the label posteriors need to be marginalized in
order to apply the standard estimates, which is costly due to the couplings.

The second problem arises in the M-step, once the parameters γ of the global
class prior probability have to be estimated (cf., equation 5.12). In principle, a
numerical minimization technique could be used for determining γ. However,
such an approach also requires the gradient∇γL̃, which unfortunately involves
expensive marginalization over p(y;γ). A different, heuristic yet more efficient
strategy is sketched below. For uniform γν , as used in the experiments, the
parameter cancels out in the partition function and the prior from equation
(5.11) is recovered. Similarly, the problem does not arise, if the constrained
data is assumed to be independent of γ (as in [20]).

In order to keep the optimization tractable, we approximate the per-object
posteriors in the E-step by the mean-field approximation [31] as described in
the following section.

5.3.5 Mean-Field Approximation for Posterior Inference

By Bayes rule, the posterior probability of a labelling y can be written as

p(y|X;γ,θ) ∝ p(y;γ)
∏

i

p(xi; θyi
).

In the mean-field approximation, one tries to identify a factorial approxi-
mation, the mean-field approximation q(y) =

∏
i qi(yi) of the true posterior

p(y|X;γ,θ) such that the Kullback-Leibler divergence between the approxi-
mate and true posterior distributions is minimized, i.e.,

min
q
dKL(q‖p(·|X;γ,θ)) = min

q

∑

y

q(y) log
(

q(y)
p(y|X;γ,θ)

)

, (5.14)

such that
∑

ν qi(ν) = 1, for all i ∈ [n]. Note that this is exactly the first step
of the EM scheme sketched in the last section; however, q is constrained to
the set of factorial distributions. Because the approximation is factorial, the
computation of the marginalized posterior probabilities becomes feasible, and,
hence, the partition function for q can be evaluated efficiently. The latter is
a prerequisite for the tractable optimization of the model. Note that the KL

106 Constrained Clustering: Advances in Algorithms, Theory, and Applications

divergence can be decomposed as

dKL(q‖p(·|X;γ,θ)) = −H(q)−Eq [log p(Y n|X;γ,θ)]

where H(q) denotes the entropy of the mean-field approximation, Y n is the
the random variable of k-labellings of n objects, and Eq denotes the expec-
tation w.r.t. q. Here, the negative entropy term decomposes into a sum over
individual negative entropies −H(qi). We seek to minimize the expression
in equation (5.14) by looking for stationary points w.r.t. each qi(ν). Let
ρij = λ+c=(i, j)− λ−c�=(i, j) and Δνμ = 1− δνμ, where δνμ is the Kronecker
delta function. Using this convention, one can summarize the exponents in
equation (5.12) by ρijΔνμ if yi = ν and yj = μ. It should be emphasized that
this approximation is only required for the constrained data, i.e., for (uncon-
strained) objects in Xu the approximation is exact. In the following, we use
hi(ν) as a shortcut for − log γνp(xi; θν).

Taking the derivative of equation (5.14) w.r.t. the approximate posteriors
qi(ν) and setting it to zero leads to the equation(s)

qi(ν) =
1
Zi

exp

⎛

⎝−hi(ν)−
∑

j �=i

∑

μ

qj(μ)ρijΔνμ

⎞

⎠ ,

where

Zi =
∑

ν∈[k]

exp

⎛

⎝−hi(ν)−
∑

j �=i

∑

μ

qj(μ)ρijΔνμ

⎞

⎠ .

Since Δνμ = 1 iff μ �= ν and by taking cancellation into account, one can
further simplify the expression for qi(ν) to

qi(ν) =
1
Zi

exp

⎛

⎝−hi(ν) +
∑

j �=i

qj(ν)ρij

⎞

⎠ .

Eventually, a factorial approximation of the marginal posterior probabilities
has been derived. For the constrained data, these update equations can be
used in the E-step for posterior probability estimation. These are fixed-point
equations, that need to be iterated in order to arrive at meaningful estimates.
Following [17], a sequential update scheme is employed in practice to ensure
convergence.

Recall that the estimates for the class priors in the standard EM setting are
the averages over class posterior probabilities as computed in the E-step. This
suggests to heuristically estimate γν as in equation (5.5), where mean-field
estimates replace the standard per-object E-step posteriors. This amounts
to dropping the term logZ(γ) in −

∑
y q(y) log p(y;γ). This heuristic is not

required if the perspective of [20] is adopted.

Clustering with Constraints: A Mean-Field Approximation Perspective 107

5.3.6 A Detour: Pairwise Clustering, Constraints, and Mean
Fields

Pairwise clustering algorithms expect data as input that characterize the
mutual (dis-)similarity of the objects under consideration. (Dis-)Similarity
data consists of pairwise proximity measurements dij , in the case of dissim-
ilarities, between objects i and j, i, j ∈ [n]. d : X 2 → R≥0 is a dissimilarity
measure on X , if d is symmetric and for all x, z ∈ X : x = z ⇒ d(x, z) = 0
where the converse is not necessarily true. In particular, d is not required to
be a metric. For a sample X = (xi), the dissimilarities between xi and xj are
typically summarized in a dissimilarity matrix D = (d(xi, xj))i,j∈[n] ∈ R

n×n.
From vectorial data, one can easily derive both similarities and dissimilarities,
e.g., by utilizing squared Euclidean distances in the feature space:

dij = κ(xi, xi) + κ(xj , xj)− 2κ(xi, xj) = ‖φ(xi)− φ(xj)‖2, (5.15)

where κ denotes a kernel function and φ the corresponding feature map. The
pairwise clustering cost function ([17]) can be motivated from the kernel k-
means cost function. The latter may be written as

Hkkm(K; y) =
1
2

∑

ν∈[k]

∑

i:yi=ν

∑

j:yj=ν

1
nν

(κ(xi, xi) + κ(xj , xj)− 2κ(xi, xj));

generalizing this definition to arbitrary dissimilarity matrices D leads to the
definition of the pairwise clustering cost function

Hpw(D; y) =
1
2

∑

ν∈[k]

∑

i:yi=ν

∑

j:yj=ν

dij

nν
.

In graph-theoretic terms, each cluster forms a clique whose cost contribution
is weighted by the sum over all edge weights normalized by the number of
nodes in the clique. Adopting a ME perspective (as in [17]), one obtains a
Gibbs label posterior

p(y|D) =
1
Z

exp (−βHpw(D; y)) ,

where β is the inverse temperature. Integration of constraints is straightfor-
ward in this model. It yields the modified Gibbs posterior:

p(y|D) =
1
Z

exp (−βHpw(D; y))
∏

i,j

exp
(
−λ+c=(i, j)I{yi �= yj} − λ−c�=(i, j)I{yi = yj}

)
.

Applying the mean-field approximation to this problem (cf. [17] on details of
the derivation and [33] for reasons why equation (26) in [17] is exact), results

108 Constrained Clustering: Advances in Algorithms, Theory, and Applications

into approximate marginal posteriors

qi(ν) =
1
Zi

exp

⎛

⎝
∑

j �=i

qj(ν)ρij

⎞

⎠

exp

⎛

⎝−β 1
∑

j �=i qj(ν) + 1

∑

j

qj(ν)dij

⎞

⎠

exp

⎛

⎝β
1

2
∑

j �=i qj(ν)

∑

j,j′
qj(ν)qj′(ν)djj′

⎞

⎠ .

These fixed point equation can again be iteratively solved using the update
strategy in [17]. The equivalence of k-means and pairwise clustering prob-
lems, as established using constant-shift embeddings in [33], implies that the
k-means covers already the pairwise case, so that we stick with vectorial rep-
resentation at the moment.

5.3.7 The Need for Weighting

So far, the pairwise grouping constraints have been embedded into the EM-
based fitting of a mixture model. Analogous to the semi-supervised problem
in equation (5.9), the overall negative log-likelihood LX(γ,θ), X = Xu ∪Xc,
can be (roughly) decomposed into two cost terms:

LXu∪Xc
(γ,θ) = LXu

(γ,θ) + LXc
(γ,θ),

which are the costs induced by the unlabelled data LXu
(γ,θ) and those by the

data in Xc, LXc
(γ,θ), i.e., induced by objects participating in ≥ 1 constraint.

It is apparent that the constrained objects will have vanishingly small influence
on the parameter estimates because LXu

dominates the objective whenever
|Xc| � |Xu|. This problem has already been noted in [7, 8, 20, 30] in the
context of both semi-supervised and learning with constraints. Without mod-
ifying the model, one has the choice to either allow the decision of the model
and the side information to de-couple or to simply ignore the side information
about the labels, since the E-step estimate and the MAP estimate based on
the parameters γ and θ alone may be different. This effect can be cured,
however, by more strongly emphasizing the points for which constraints are
given: Technically, this can be achieved by modifying the objective function
to

min
γ,θ

Lη(γ,θ) := LXu
(γ,θ) + ηLXc

(γ,θ),

where η ∈ [0,∞) controls the influence of the objects participating in a con-
straint. For η = 0 the constrained objects do not play a role at all while

Clustering with Constraints: A Mean-Field Approximation Perspective 109

for η → ∞, the unlabelled data is not taken into consideration at all. For
η ∈ N, this corresponds to replicating objects participating in a constraint
η times. For η = 1, the original formulation is recovered. The parameter η
enters the EM relaxation in a straightforward way. The E-step remains, how-
ever, unaffected from this modification, since the mean-field approximation is
not required for unlabelled (and unconstrained) objects. However, parameter
estimates will be affected.

It is now natural to ask what is exactly the influence of the data replica-
tion on the parameter estimates and, thereby, of the data participating in
constraints. To this end, the class-conditional density is restricted to the ex-
ponential family briefly discussed in section 5.2. Recall, that an exponential
family density has the form

p(x; θν) = p0(x) exp
(
θ�ν T (x)−A(θν)

)
,

where θν is the natural parameter, p0 some appropriate (parameter indepen-
dent) measure, and A(θν) the log-partition function. In addition to that, T (x)
is a minimal sufficient statistic. In the parameter estimation step of the EM
procedure given above, the bound L̃η on Lη introduced by the EM relaxation
becomes (while taking into account that for xi ∈ Xu factorial marginals are
exact)

L̃η(γ,θ; q) = −
∑

ν∈[k]

∑

xi∈Xu

qi(ν) log p(xi; θν)γν

−η
∑

ν∈[k]

∑

xi∈Xc

qi(ν) log p(xi; θν)γν

−η
∑

y∈[k]n

q(y) log

∏
ij ψij(yi, yj)
Z(γ)

+
∑

y∈[k]n

q(y) log q(y). (5.16)

Taking derivatives w.r.t. the natural parameter θν and solving the stationary
equations yields

∑
xi∈Xu

qi(ν)T (xi) + η
∑

xi∈Xc
qi(ν)T (xi) =

∑
xi∈Xu

qi(ν)∇θν
A(θν) + η

∑
xi∈Xc

qi(ν)∇θν
A(θν).

Since A(θν) is the cumulant generating function, ∇θν
A is the moment param-

eter. For minimal sufficient statistics T (·) and strictly convex A(θ), there is a
bijection between the mean parameters of an exponential family density and
the natural parameters. Thus, the mean parameter determines the density.
In this context, the class-conditional densities are determined by a linear com-
bination of maximum likelihood parameter estimates due to constrained and

110 Constrained Clustering: Advances in Algorithms, Theory, and Applications

unconstrained data, since ML parameter estimation in exponential families
amounts to matching the moment and natural parameters.

For a mixture of Gaussian class-conditional densities N (μν ,Σν) (compare
Section 5.2) that is used for the experimental evaluation, one, therefore,
straightforwardly arrives at the parameter estimates

μν =

∑
xi∈Xu

qi(ν)xi + η
∑

xi∈Xc
qi(ν)xi

∑
xi∈Xu

qi(ν) + η
∑

xi∈Xc
qi(ν)

Σν =

∑
xi∈Xu

qi(ν)(xi − μν)(xi − μν)� + η
∑

xi∈Xc
qi(ν)(xi − μν)(xi − μν)�

∑
xi∈Xu

qi(ν) + η
∑

xi∈Xc
qi(ν)

.

By dropping the log-partition function logZ(γ) in equation (5.16), the class
priors can be estimated via the approximate marginal posteriors qi by looking
for the zero-crossings of ∇γL̃η(γ,θ). This yields for the global class priors
again a linear combination due to unlabelled and constrained data, namely:

γν =

∑
xi∈Xu

qi(ν) + η
∑

xi∈Xc
qi(ν)

|Xu|+ η|Xc|
.

The role of the weighting parameter η becomes now obvious: η linearly scales
the influence of the constrained data on the parameter estimates. Due to the
normalization, the influence of the unlabelled data is scaled down at the same
time.

REMARK 5.3 The mechanism for constraint integration introduced in
this chapter can be easily extended to more complex models by means of
kernel functions. A particularly elegant and, at the same time, straightforward
extension is the following: Consider a Gaussian mixture model in feature space
where the co-variance matrix Σ is common to all classes. According to [14, 15],
the M-step of EM for estimating the mixture parameters can be rephrased
as equivalent linear discriminant analysis (LDA) (cf. [13]) problem. For the
latter, a kernel-based variant, termed non-linear kernel discriminant analysis
has been proposed in [34], which turns the LDA problem into a sequence of
regression problems. By means of this step, the mixture estimation can be
straightforwardly kernelized. In particular, the maximum entropy label priors
as well as the mean-field approximation remain applicable in this context as
they rely on the unchanged E-step.

5.3.8 Selecting η

Introducing the weighting mechanism comes at the expense of an additional
parameter, η, which has to be selected. The appropriate choice of η largely

Clustering with Constraints: A Mean-Field Approximation Perspective 111

depends on what the user wants to achieve. Setting η = 1, one assigns equal
importance to all data points. Departing from this puts more or less empha-
sis on the unlabelled or the constrained data. Such a weighting parameter is
commonly encountered in semi-supervised learning. Unfortunately, no strat-
egy is often devised on how to pick the appropriate parameter values. We
briefly mention a heuristic procedure for determining η that is applicable if
constrained data are not too scarce.3

In principle, one may think of applying a pure K-fold cross-validation
(cf. [16]), which attempts to assess the error for various settings of η: Par-
tition the data participating in at least one constraint into K blocks. For
each block b and fixed η, apply the algorithm to the data in all blocks b′ �= b
and evaluate the number of constraint violations (i.e., the 0-1 loss in product
space) on the held-out block b. The K estimates obtained in this way can
be combined into a single estimate by averaging. Model selection could now
be based on the corresponding error estimate obtained by cross-validation.
However, as it is assumed that |Xc| � |Xu|, the estimate will be relatively
unreliable as it has high variance. This has already been noted in [35] in
the context of semi-supervised learning. Still, a reasonable estimate for η is
required. The strategy that may be adopted is essentially a biased version of
cross-validation: For hold-out sets of constrained data, one can identify the
smallest η that minimizes the classification error on the withheld data. By
means of this, the approach puts the most emphasis on the unlabelled data
while attempting to maintain consistency (in a predictive sense) with the ac-
tually given constraints. If the constrained data is too scarce, one may switch
to the (optimistically biased) in-sample estimate of the error. Intuitively, this
method makes sense because not much is known about the label source ex-
cept for the few samples participating in instance-level constraints. Clearly,
the procedure lacks a thorough theoretical justification and, thus, remains a
heuristic.

3Note that the coupling parameter η plays a different role compared to the Lagrange pa-
rameters λ+ and λ−: η controls the importance of constrained objects in Xc as opposed
to objects in Xu, while the Lagrange parameters λ+ and λ− only affect the data in Xc.
Whenever constraints are supposed to reflect real class information, λ+ and λ− should be
large and kept constant – as done in the experimental section. Strictly speaking, the model
selection strategy sketched here, does not apply in other cases.

112 Constrained Clustering: Advances in Algorithms, Theory, and Applications

5.4 Experiments

The approach described in the last section is applied to deterministic an-
nealing (DA) [32] for Gaussian mixture models and squared error clustering,
leading to a DA clustering algorithm with constraints. Class priors were cho-
sen to be uniform in conjunction with the ME approach. This algorithm is
tested on different synthetic and real-world data sets. The “clustering with
constraints” algorithms4 from [36] (abbreviated here by GMM-Sh), the hard-
constraint version of penalized probabilistic clustering (PPC) from [24] (see
below) and [2] are also run on all the data sets for comparison. For the algo-
rithm in [2], both PCKMEANS and MPCKMEANS have been tested giving
nearly identical results for all data sets. Thirteen different constraint penalty
values ranging from 1 to 4000 are used for the algorithm in [2]; only the best
result of their algorithms is reported. Note that for hard-constraint PPC
(cf. [24]), the maximum clique size in the hMRF was assumed to be 2 in
order to relate the quality of the MF approximation to a method of similar
time complexity.5 The version of PPC used in this chapter follows a different
strategy of complexity reduction and is not to be confused with the Gibbs
sampling approach also described in [24]. The latter was already related to
our proposal in a recent study (cf. [29]).

To evaluate the results of the different methods, we use F-scores, i.e., the
harmonic mean of precision and recall, to compare two classifications. The
measure is briefly described since several authors use different F-measures in
order to compare their results with a ground-truth solution. The F-measure
employed here is based on a greedy matching (not a perfect matching) of the
clusters in the two solutions under comparison. For a target labelling t ∈ [k]n

and computed labelling y ∈ [k′]n, the assessment is based on the k×k′ matrix
with (ν, ν′)-entry

aνν′ = |{i | ti = ν}| ∩ |{i | yi = ν′}|, (5.17)

i.e., the number of objects that are in cluster ν of the target solution and
at the same time in cluster ν′ of the computed one. From this matrix, the
cluster sizes are easily obtained by

∑
ν aνν′ = |{i | yi = ν′}| =: mν′ and

4Thanks to the authors for putting the implementation of their algorithms online: http://

www.cs.huji.ac.il/∼tomboy/code/ConstrainedEM plusBNT.zip for [36] and http://www.

cs.utexas.edu/users/ml/risc/code/ for [2].
5By the Hammersley-Clifford theorem, this leads to an efficient factorization of the class
posterior distribution depending at most on pairs of objects but may come at the expense
of losing accuracy.

Clustering with Constraints: A Mean-Field Approximation Perspective 113

∑
ν′ aνν′ = |{i | ti = ν}| =: nν . The precision pνν′ and recall rνν′ per class-

pair (ν, ν′) are then simply

pνν′ =
aνν′

mν′
and rνν′ =

aνν′

nν
. (5.18)

The harmonic mean gives a local, per-cluster-pair score, i.e., fνν′ = 2pνν′rνν′
pνν′+rνν′ .

In order to obtain a global, overall score, clusters in t and y are greedily
matched. Hence, the total score becomes

F =
1
n

∑

ν∈[k]

nν

(

max
ν′∈[k′]

fνν′

)

, (5.19)

which amounts to a greedy matching of clusters on the two solutions under
comparison. Note that an F-score of one amounts to perfect agreement of two
solutions.

Figure 5.4 shows a 2D synthetic data set with 200 points, together with an
example set of constraints. Since the horizontal separation between the point
clouds is smaller than the vertical separation, the two-cluster unsupervised
solution is to group the data into “upper” and “lower” clusters. The structural
bias provided here in the form of constraints, however, states that the data
points should be grouped into “left” and “right” clusters. The constraints are
generated by first sampling point pairs randomly and then converting each
pair to either a link or not-link constraint according to its location. Due to the
random sampling, the proportion of link and not-link constraints may vary.
Different levels of constraint information are taken into account: 1%, 5%, 10%,
15%, 30%, or 50% of constraints are considered relative to the total number of
samples in the data set in order to account for the construction of the transitive
closure on constraint graphs. We run the proposed algorithm with λ+ = λ− =
1000 (since constraints presumably correspond to true label information here)
and recover the desired boundary almost exactly (with at most one erroneous
point) for all amounts of constraint information. In contrast to that, the
desired boundary is recovered by the algorithms in [36], [24], and [2] only
when 50% of constraints are present. The F-scores are shown in table 5.1.
Note that a random grouping would have obtained a F-score of 0.5 on average
in this case. In order to demonstrate the effect of misspecified constraints, we
have randomly flipped 20% of the constraints for the 50% data set. The best
result for the method in [36] is an F-score of 0.835. In contrast, the method
proposed here behaves favorably: the misspecified constraints have hardly
any effect on the decision boundary learnt and, hence, an F-score of 0.995 is
obtained again. One may conclude that the proposal is more robust toward
erroneous constraints in this case, thanks to the use of maximum entropy label
priors.

The second experiment is about an ethnicity classification problem [23],
where the goal is to decide whether a face image belongs to an Asian or not.

114 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Unsupervised
boundary

desired
separation

not−link
constraints

must−link
constraints

FIGURE 5.4: Synthetic data set. Solid lines: must-link constraints. Dashed
lines: must-not-link constraints.

TABLE 5.1: F-scores on the toy data set.
1% 5% 10% 15% 30% 50%

GMM-Sh 0.540 0.560 0.560 0.580 0.535 1.0
(M)PCKMEANS 0.540 0.545 0.535 0.590 0.535 1.0

hard PPC (|T | ≤ 2) 0.535 0.545 0.55 0.53 0.535 1.0
Proposed 1.0 1.0 0.995 0.995 0.995 0.995

Clustering with Constraints: A Mean-Field Approximation Perspective 115

(a) Asians

(b) Non-Asians

FIGURE 5.5: Example face images in the face classification problem (from
[20], c©2005 IEEE).

TABLE 5.2: F-scores on the ethnicity
classification problem for different
clustering-with-constraints algorithms.

1% 10% 15% 30%
GMM-Sh 0.925 0.946 0.891 0.973

(M)PCKMEANS 0.568 0.565 0.570 0.809
hard PPC (|T | ≤ 2) 0.653 0.59 0.570 0.811

Proposed 0.923 0.915 0.922 0.963

The data set consists of 2630 images with size 64×64 which were compiled
from different databases, including the PF01 database,6 the Yale database,7

the AR database [26], and the non-public NLPR database.8 Some example
images are shown in Figure 5.5. A face image is represented by its first 30
eigenface coefficients. Again, different levels (1%, 10%, 15%, and 30%) of
constraint information (derived from the known ground-truth labelling) are
considered. The resulting F-scores of the algorithms under comparison are
shown in table 5.2. The proposed algorithm significantly outperforms hard
PPC variant taken from Lu et al. and the algorithm Basu et al. (the latter
similarly perform), and is competitive with the algorithm by Shental et al.

The third experiment is based on three newsgroup data sets9 used in [2]. To
improve readability, the description of the data is briefly repeated. It consists
of three data sets, each of which contains roughly 300 documents from three
different topics. The topics are regarded as the classes to be recovered. Latent
semantic indexing is used to transform the term frequency (TF) and inverse

6http://nova.postech.ac.kr/archives/imdb.html.
7http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
8Provided by Dr. Yunhong Wang, National Laboratory for Pattern Recognition, Beijing.
9http://www.cs.utexas.edu/users/ml/risc/.

116 Constrained Clustering: Advances in Algorithms, Theory, and Applications

document frequency (IDF) normalized document vectors to a 20-dimensional
feature vector. Again, we have access to a ground-truth labelling of the data,
which we used to derive varying numbers of constraints. The F-scores are
shown in table 5.3. The proposed algorithm is again very competitive: the
method in [2] as well as the hard PPC version are clearly outperformed on
most problem instances. Similar behavior can be observed on two of the three
data sets in comparison with the approach in [36].

The final comparison experiment considers an artificial image segmenta-
tion problem. A Mondrian image (figure 5.6(a)) consisting of five regions is
employed: three regions with strong texture and two regions of very noisy
gray-level segments are to be identified. This 512-by-512 image is divided
into a 101-by-101 grid. A 24-dimensional feature vector is extracted for each
site: 12 features originate from a 12-bin histogram of gray-level values, while
the remaining 12 correspond to the averages of Gabor filter responses for four
orientations at three different scales (2, 4, and 8 pixels wavelength) at each
site. The segment labels of different sites are generated from a ground-truth
image. Since the texture information dominates the gray-value information,
clustering with unlabelled data fails to recover the ground-truth information.
This also holds true for the data set with 1% and 5% of the data in constraints
(see figure 5.6(c)). The segmented image with 10% of sites in constraints is
shown in figure 5.6(d). Here, the proposal almost perfectly identifies the
ground-truth information, since the algorithm is able to distinguish between
the gray-level segments. The F-scores for various algorithms are listed in ta-
ble 5.4. The proposed method holds an edge when at least 10% of the data
points are in constraints, and it can discover a good approximation to the
desired segmentation with the least amount of constraint information. The
quality gap is particularly large in this case. Furthermore, the approach in
[36] had a very high running time, in particular for examples with a large
number of constraints.

5.5 Summary

In this chapter, a model-based framework for integrating side information
in the form of instance-level constraints into the inference was proposed. A
similar integration strategy can, in principle, be applied to partially labelled
data, so that partially labelled, partially constrained, and unlabelled data can
be embedded in the learning process within a common framework. By intro-
ducing a weighting mechanism, inconsistent labelling rules can be avoided:
Instead of only considering the posterior assignment probabilities, the infer-

Clustering with Constraints: A Mean-Field Approximation Perspective 117

TABLE 5.3: F-scores obtained for the newsgroup data sets
(taken from [2]) with different numbers of constraints.

Data set 1% 10% 15% 30%

same-
300

GMM-Sh 0.412 0.429 0.516 0.487
(M)PCKMEANS 0.515 0.459 0.472 0.552

hard PPC (|T | ≤ 2) 0.481 0.468 0.47 0.483
Proposed 0.491 0.588 0.527 0.507

similar-
300

GMM-Sh 0.560 0.553 0.531 0.532
(M)PCKMEANS 0.515 0.492 0.549 0.530

hard PPC (|T | ≤ 2) 0.48 0.474 0.492 0.509
Proposed 0.54 0.54 0.53 0.514

diff-300
GMM-Sh 0.877 0.554 0.907 0.871

(M)PCKMEANS 0.677 0.582 0.558 0.608
hard PPC (|T | ≤ 2) 0.485 0.476 0.498 0.520

Proposed 0.533 0.658 0.571 0.594

TABLE 5.4: F-scores on the image segmentation
task.

1% 5% 10% 15%
GMM-Sh 0.830 0.831 0.840 0.829

(M)PCKMEANS 0.761 0.801 0.821 0.776
hard PPC (|T | ≤ 2) 0.799 0.785 0.772 0.8165

Proposed 0.772 0.829 0.972 0.98

ence strategy systematically affects parameter estimates by allowing to control
the influence of the constraint information. The combination approach also
decouples the learning task; instead of worrying about how different types
of information interact with each other, one can focus on building the most
appropriate model for a single source of information (constraints in our case).
To this end, we adopt the maximum entropy principle to derive a prior distri-
bution for the assignment labels. This principle assumes the least about the
label information apart from the information derived from the constraints and
is, thereby, robust to erroneously specified constraint information. The mean-
field approximation technique is adopted to keep the computation tractable, as
the computation requirement in each iteration is similar to that of a standard
EM iteration. This approach can be much more efficient than the algorithm in
[36] in the case where the constraints lead to a large clique in the correspond-
ing MRF on the set of label random variables. At the same time it yields
superior inference results in comparison with standard ICM as employed in
[2]. The factorial distribution due to mean-field approximation is a station-
ary point of the variational free energy and, thereby, aims at finding the best
factorial distribution in terms of the Kullback-Leibler divergence to the true
distribution. The use of deterministic annealing in our approach helps to avoid

118 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) Original Image (b) Segmentation, no con-
straints

(c) Segmentation, 1% and 5%
pixels in constraints

(d) Segmentation, 10% pixels in
constraints

FIGURE 5.6: Results of image segmentation. (a): source image. (b) to (d):
segmentation results with different numbers of constraints (from [20], c©2005
IEEE).

poor local minima; the latter can be the case for the ICM technique used in
[2]. This feature of our proposal is particularly valuable in clustering with
constraints, where the energy landscape may lack the smoothness of standard
clustering problems. Finally, it should be underscored that the approach has
wide applicability covering many (also pairwise) grouping models as already
indicated in the technical exposition.

Clustering with Constraints: A Mean-Field Approximation Perspective 119

References

[1] O. E. Barndorff-Nielsen. Information and Exponential Families. Wiley,
New York, 1978.

[2] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for
semi-supervised clustering. In Proceedings of the 10th ACM SIGKDD,
International Conference on Knowledge Discovery and Data Mining
(KDD), pages 59–68. ACM Press, 2004.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality re-
duction and data representation. Neural Computation, 15:1373–1396,
2003.

[4] M. Bilenko and S. Basu. A comparison of inference techniques for semi-
supervised clustering with hidden Markov random fields. In Proceedings
of the ICML-2004 Workshop on Statistical Relational Learning and Its
Connections to Other Fields (SRL-2004), Banff, Canada, pages 17–22,
2004.

[5] J. A. Bilmes. A gentle tutorial of the em algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models.
Technical Report TR-97-021, International Computer Science Institute
and Computer Science Division, Department of Electrical Engineering
and Computer Science, U.C. Berkeley, April 1998.

[6] P. Bremaud. Markov Chains – Gibbs Fields, Monte Carlo Simulation,
and Queues. Number 31 in Texts in Applied Mathematics. Springer,
1999.

[7] I. Cohen, F. G. Cozman, N. Sebe, M. C. Cirelo, and T. S. Huang. Semisu-
pervised learning of classifiers: Theory, algorithms, and their application
to human-computer interaction. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(12):1553–1567, December 2004.

[8] A. Corduneanu and T. Jaakkola. Continuation methods for mixing het-
erogeneous sources. In Proceedings of the 18th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-02), San Francisco, CA, 2002.
Morgan Kaufmann.

[9] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley
Series in Telecommunications. John Wiley & Sons, New York, 1991.

120 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[10] H. Cramer. Mathematical Methods of Statistics. Princeton University
Press, 1946.

[11] O. Delalleau, Y. Bengio, and N. L. Roux. Efficient non-parametric
function induction in semi-supervised learning. In R. G. Cowell and
Z. Ghahramani, editors, Proceedings of the Tenth International Work-
shop on Artificial Intelligence and Statistics (AISTAT), pages 96–103.
Society for Artificial Intelligence and Statistics, 2005.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Sta-
tistical Society, Series B, 39(1):1–38, 1977.

[13] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John
Wiley & Sons, 2000.

[14] T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mix-
tures. Journal of the Royal Statistical Society, Series B, 58:158–176,
1996.

[15] T. Hastie, R. Tibshirani, and A. Buja. Flexible discriminant and mixture
models. In J. Kay and D. Titterington, editors, Neural Networks and
Statistics. Oxford University Press, 1995.

[16] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer Series in
Statistics. Springer-Verlag, New York, 2001.

[17] T. Hofmann and J. M. Buhmann. Pairwise data clustering by determin-
istic annealing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(1):1–14, January 1997.

[18] S. Kamvar, D. Klein, and C. D. Manning. Spectral learning. In Pro-
ceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI), pages 561–566, 2003.

[19] D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level con-
straints to space-level constraints: Making the most of prior knowledge
in data clustering. In Proceedings of the Nineteenth International Con-
ference on Machine Learning (ICML), pages 307–314, San Francisco,
CA, 2002. Morgan Kaufmann Publishers Inc.

[20] T. Lange, M. H. C. Law, A. K. Jain, and J. M. Buhmann. Learning
with constrained and unlabelled data. In 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2005),
20-26 June 2005, San Diego, CA, USA, pages 731–738. IEEE Computer
Society, 2005.

[21] M. H. Law, A. Topchy, and A. K. Jain. Clustering with soft and group
constraints. In Proceedings of the Joint IAPR International Workshops

Clustering with Constraints: A Mean-Field Approximation Perspective 121

on Structural, Syntactic, and Statistical Pattern Recognition, pages 662–
670, Lisbon, Portugal, August 2004.

[22] M. H. Law, A. Topchy, and A. K. Jain. Model-based clustering with
probabilistic constraints. In 2005 Society for Industrial and Applied
Mathematics (SIAM) International Conference on Data Mining (SDM),
pages 641–645. SIAM, 2005.

[23] X. Lu and A. K. Jain. Ethnicity identification from face images. In
Proceedings of the Society of Photographic Instrumentation Engineers
(SPIE), volume 5404, pages 114–123, 2004.

[24] Z. Lu and T. Leen. Semi-supervised learning with penalized probabilis-
tic clustering. In Advances in Neural Information Processing Systems
(NIPS) 17, pages 849–856. MIT Press, Cambridge, MA, 2005.

[25] J. MacQueen. Some methods for classification and analysis of multivari-
ate observations. In L. M. LeCam and J. Neyman, editors, Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Proba-
bility, volume 1, pages 281–297. University of California Press, 1967.

[26] A. Martinez and R. Benavente. The AR face database. Techni-
cal Report 24, CVC, 1998. http://rvl1.ecn.purdue.edu/∼aleix/
aleix face DB.html.

[27] G. McLachlan and D. Peel. Finite Mixture Models. John Wiley and
Sons Inc., 2000.

[28] R. Neal and G. Hinton. A view of the em algorithm that justifies incre-
mental, sparse, and other variants. In M. Jordan, editor, Learning in
Graphical Models, pages 355–368. Kluwer Academic Publishers, 1998.

[29] B. Nelson and I. Cohen. Revisiting probabilistic models for clustering
with pairwise constraints. Technical report, HP Laboratories, Palo Alto,
2007.

[30] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classifica-
tion from labeled and unlabeled documents using em. Machine Learning,
39:103–134, 2000.

[31] G. Parisi. Statistical Field Theory. Addison-Wesley, 1988.

[32] K. Rose, E. Gurewitz, and G. Fox. Vector quantization and deterministic
annealing. IEEE Transactions on Information Theory, 38(4):1249–1257,
1992.

[33] V. Roth, J. Laub, M. Kawanabe, and J. M. Buhmann. Optimal cluster
preserving embedding of nonmetric proximity data. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(12):1540–1551, De-
cember 2003.

122 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[34] V. Roth and V. Steinhage. Nonlinear discriminant analysis using kernel
functions. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Advances
in Neural Information Processing Systems (NIPS) 12, pages 568–574.
MIT Press, 1999.

[35] M. Seeger. Learning with labelled and unlabelled data. Technical re-
port, Institute for Adaptive and Neural Computation, University of Ed-
inburgh, UK, 2001.

[36] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing Gaus-
sian mixture models with EM using equivalence constraints. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information Pro-
cessing Systems (NIPS) 16, Cambridge, MA, 2004. MIT Press.

[37] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
2nd edition, 1999.

[38] K. Wagstaff and C. Cardie. Clustering with instance-level constraints.
In P. Langley, editor, Proceedings of the Seventeenth International Con-
ference on Machine Learning (ICML), pages 1103–1110. Morgan Kauf-
mann, 2000.

[39] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-
means clustering with background knowledge. In C. E. Brodley and A. P.
Danyluk, editors, Proceedings of the Eighteenth International Conference
on Machine Learning (ICML), pages 577–584. Morgan Kaufmann, 2001.

[40] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learn-
ing, with application to clustering with side-information. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems (NIPS) 15, pages 505–512, Cambridge, MA, 2003.
MIT Press.

[41] S. X. Yu and J. Shi. Segmentation given partial grouping con-
straints. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 26(2):173–183, 2004.

[42] Q. Zhao and D. J. Miller. Mixture modelling with pairwise, instance-
level class constraints. Neural Computation, 17(11):2482–2507, Novem-
ber 2005.

[43] X. Zhu. Semi-supervised learning literature survey. Technical Re-
port 1530, Computer Sciences, University of Wisconsin-Madison,
http://www.cs.wisc.edu/∼jerryzhu/pub/ssl survey.pdf, 2005.

[44] X. Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie
Mellon University, 2005. CMU-LTI-05-192.

[45] X. Zhu, J. Lafferty, and Z. Gharamani. Semi-supervised learning: From
Gaussian fields to Gaussian processes. Technical Report CMU-CS-03-
175, Carnegie Mellon University, 2003.

Chapter 6

Constraint-Driven Co-Clustering of
0/1 Data

Ruggero G. Pensa

ISTI-CNR, ruggero.pensa@isti.cnr.it

Céline Robardet

INSA-Lyon, celine.robardet@insa-lyon.fr

Jean-François Boulicaut

INSA-Lyon, jean-francois.boulicaut@insa-lyon.fr

Abstract We investigate a co-clustering framework (i.e., a method that
provides a partition of objects and a linked partition of features) for bi-
nary data sets. So far, constrained co-clustering has been seldomly explored.
First, we consider straightforward extensions of the classical instance level
constraints (must-link, cannot-link) to express relationships on both objects
and features. Furthermore, we study constraints that exploit sequential or-
ders on objects and/or features. The idea is that we can specify whether the
extracted co-clusters should involve or not contiguous elements (interval and
non-interval constraints). Instead of designing constraint processing integra-
tion within a co-clustering scheme, we propose a local-to-global (L2G) frame-
work. It consists of postprocessing a collection of (constrained) local patterns
that have been computed beforehand (e.g., closed feature sets and their sup-
porting sets of objects) to build a global pattern like a co-clustering. Roughly
speaking, the algorithmic scheme is a k-means-like approach that groups the
local patterns. We show that it is possible to push local counterparts of the
global constraints on the co-clusters during the local pattern mining phase it-
self. A large part of the chapter is dedicated to experiments that demonstrate
the added-value of our approach. Considering both synthetic data and real
gene expression data sets, we discuss the use of constraints to get not only
more stable but also more relevant co-clusters.

123

124 Constrained Clustering: Advances in Algorithms, Theory, and Applications

6.1 Introduction

Many data mining techniques have been proposed to support knowledge
discovery from large 0/1 data sets, i.e., Boolean matrices whose rows denote
objects and columns denote Boolean attributes recording object properties.
Table 6.1(a) gives an example of such a matrix where, for instance, object t2
only satisfies properties g2 and g5. In fact, many application domains provide
such data sets: besides data sets that are intrinsically Boolean, they can be
applied on categorical or numerical data sets as well. Indeed, a categorical
feature that can have n different values can be transformed into n Boolean
attributes, and continuous attributes can also be transformed into a set of
Boolean attributes using discretization methods [14]. Just to name a few
interesting application domains, objects can denote commercial transactions,
WWW sessions, digital documents, or biological samples. Properties could
then denote purchased items (i.e., a product belongs to the transaction or
not), WWW resources (i.e., a resource has been uploaded or not during a
session), keywords (i.e., a keyword is considered as a descriptor or not for the
content of a document), or gene expression properties (e.g., a given gene has
been found over-expressed or not in a biological sample).

Exploratory data analysis processes often make use of clustering techniques.
This can be used to look for groups of similar objects according to some
metrics. Properties can be considered as well. Many methods can pro-
vide relevant partitions on one dimension (say objects or properties) but
they suffer from the lack of explicit cluster characterization, i.e., what are
the properties that are shared by the objects of a same cluster. This has
motivated the research on conceptual clustering and, among others, the de-
sign of co-clustering algorithms [24, 13, 9, 3]. The goal of a co-clustering
task is to cluster simultaneously the rows and columns of the data matrix
such that there is a one-to-one mapping that associates to a cluster of ob-
jects the cluster of properties that are mostly supported by these objects.
An example of a co-clustering result on the data of Table 6.1(a) would be
{{{t1, t3, t4}, {g1, g3, g4}}, {{t2, t5, t6, t7}, {g2, g5}}}. The first co-cluster indi-
cates that the objects from cluster {t1, t3, t4} almost always share properties
from cluster {g1, g3, g4}. Also, properties in {g2, g5} are characteristic of ob-
jects in {t2, t5, t6, t7} (see Table 6.1(b)).

In the context of, for instance, WWW usage mining, this kind of pattern
may help to identify communities, i.e., groups of users whose sessions give
rise to almost the same uploading behavior. This is also useful in the context
of gene expression data analysis where such co-clusters may provide putative
synexpression groups of genes [5].

As clustering algorithms, co-clustering methods heuristically optimize an
objective function (e.g., Goodman-Kruskal’s τ coefficient [24] or the loss of
mutual information [13]), the search space being too large to enable exhaustive

Constraint-Driven Co-Clustering of 0/1 Data 125

TABLE 6.1: A Boolean matrix r (a) and its associated
co-clustering (b).

g1 g2 g3 g4 g5 g1 g3 g4 g2 g5
t1 1 0 1 1 0 t1 1 1 1 0 0
t2 0 1 0 0 1 t3 1 1 1 0 0
t3 1 0 1 1 0 t4 0 1 1 0 0
t4 0 0 1 1 0 t2 0 0 0 1 1
t5 1 1 0 0 1 t5 1 0 0 1 1
t6 0 1 0 0 1 t6 0 0 0 1 1
t7 0 0 0 0 1 t7 0 0 0 0 1

(a) (b)

computation. In such a context, it is mandatory to take advantage of any
available information to guide the search. Thus, a timely challenge is to
support constrained co-clustering, where user-defined constraints can be used
to reduce the search space.

Our contribution is twofold. First, we are not aware of previous work re-
lated to constrained co-clustering. Not only we extend the use of must-link
and cannot-link constraints [27, 16, 4, 11, 10, 26] within a co-clustering task,
but also we introduce new constraints that are useful when the object and/or
property dimensions are ordered (e.g., when properties are measured at sev-
eral time steps giving rise to objects that are ordered w.r.t. time). Thanks
to our interval and non-interval constraints, it is possible to specify whether
a collection of co-clusters has to be consistent w.r.t. as such a priori order.
In this chapter, we will briefly describe an application of such constraints for
gene expression data analysis. Our second contribution concerns the frame-
work for computing the co-clusters. We recently proposed a generic method
to compute co-clusters based on collections of local patterns which capture
locally strong associations [21]. Such local patterns are obtained thanks to
exhaustive search algorithms. Then, co-clustering is performed as an heuris-
tic combination of these patterns using a k-means approach. We have shown
that using this two-phases process leads to more robust co-clusters. We now
exploit this idea within a constrained co-clustering setting, and we show that
the local pattern identification step can guide the computation of constrained
co-clusters. This chapter extends the preliminary results from [22]. Not only
do we provide more technical details on constraint processing but also the
experimental validation has been considerably extended.

The rest of the paper is organized as follows. Section 6.2 provides the
problem setting, including the definition of the considered constraints. Sec-
tion 6.3 recalls the framework from [21] and it introduces its extension toward
constrained co-clustering. Section 6.4 concerns our experimental validation,
including applications on real gene expression data sets. Section 6.5 concludes.

126 Constrained Clustering: Advances in Algorithms, Theory, and Applications

6.2 Problem Setting

The Boolean context to be mined is r ⊆ T ×G, where T = {t1, . . . , tm} is a
set of objects and G = {g1, . . . , gn} is a set of Boolean properties. We assume
that rij = 1 if property gj is satisfied by object ti. For the sake of clarity, D
will denote either T or G. Let us now define the co-clustering task.

DEFINITION 6.1 Co-clustering task A co-clustering task delivers
a partition ΠT of k clusters of objects {πT 1, . . . , πT k} and a partition ΠG
of k clusters of properties {πG1, . . . , πGk} with a bijective mapping denoted σ
between both partitions:

σ : ΠT → ΠG

The computed co-clustering, denoted Π, is composed of k co-clusters {π1, . . . , πk}
with πi = (πT i, σ(πT i)).

Example 6.1
An example of co-clustering is presented in Table 6.1(b). It is composed of
the two partitions:

ΠT = {{t1, t3, t4}, {t2, t5, t6, t7}}
ΠG = {{g1, g3, g4}, {g2, g5}}

The associated function σ is defined as:

σ ({t1, t3, t4}) = {g1, g3, g4}
σ ({t2, t5, t6, t7}) = {g2, g5}

In such a framework, it makes sense to apply the standard must-link and
cannot-link constraints on both object and property sets.

DEFINITION 6.2 Extended must-link and cannot-link constraints
An extended must-link constraint, denoted ce=(xi, xj ,Π,D), specifies that two
elements xi and xj of D have to belong to a same co-cluster from Π. An
extended cannot-link constraint, denoted ce�=(xi, xj ,Π,D), specifies that xi and
xj cannot belong to the same co-cluster of Π.

Assume now there exists a function s : D → R that associates a real value
s(xi) to each element xi ∈ D. For instance, s(xi) can be a temporal or spatial
measure related to xi. For instance, in microarray data, where T is a set of
DNA chips corresponding to biological experiments, and G is a set of genes,

Constraint-Driven Co-Clustering of 0/1 Data 127

s(ti) might be the time stamp for the experiment ti. Such a function s enables
us to define an order � on dimension D where xi � xj iff s(xi) ≤ s(xj). For
the sake of simplicity, we consider that if a function s exists on dimension D,
then all its elements xi are ordered. We can now introduce constraints that
exploit an ordered set D.

DEFINITION 6.3 Interval and non-interval constraints Given an
order (�) on D, an interval constraint on this dimension, denoted cint(D,Π),
enforces each cluster on D to be an interval: ∀� = 1 . . . k, if xi, xj ∈ πD�

then ∀x s.t. xi � x � xj, x ∈ πD�. A non-interval constraint denoted
cnon−int(D,Π) specifies that clusters on D should not be intervals: ∀� = 1 . . . k,
∃xi, xj ∈ πD�, ∃x ∈ D s.t. xi � x � xj, x �∈ πD�.

An interval constraint can be used to find clusters that are continuous
intervals, while a non-interval constraint can be used to find clusters that are
not intervals.

Example 6.2

Suppose that G is ordered such that g1 � g2 � g3 � g4 � g5. Partition ΠG =
{{g1, g3, g4}, {g2, g5}} does not satisfy cint(D,ΠG) since g2 and g5 belongs to
πG2 but g3 (g2 � g3 � g5) does not belong to πG2.
cnon−int(D,ΠG) is an example of a satisfied constraint.

One of the typical application domains that motivates the use of these
constraints is temporal gene expression data analysis: objects are a given
organism considered at several developmental steps and properties encode,
for instance, the over-expression of genes. In such a context (see, e.g., [2, 8]),
using interval constraints enables us to capture conjunctions of properties that
characterize any single developmental period, while the use of non-interval
constraints might point out interactions that are somehow time-independent.

6.3 A Constrained Co-Clustering Algorithm Based on a
Local-to-Global Approach

In [21], we have proposed a generic co-clustering framework. The main idea
is to compute a co-clustering not starting from the raw data but from local
patterns that capture locally strong associations between sets of objects and
sets of properties. Let us first consider the local-to-global (L2G) aspect of our
proposal. We use the simple formalization introduced in [12] to support the
discussion.

128 Constrained Clustering: Advances in Algorithms, Theory, and Applications

6.3.1 A Local-to-Global Approach

Many local pattern mining techniques (e.g., looking for frequent patterns,
data dependencies) have been studied extensively the last decade (see, e.g.,
[20] for a recent survey on local pattern detection issues). Many mining tasks
can be formalized as the computation of the theory Th(L, r, q) = {φ ∈ L |
q(φ, r) is true} where r is the data, L is a language of patterns, and q(φ, r)
denotes the selection predicate of interesting patterns [19]. One crucial obser-
vation with this simple formalization is that the interestingness of a pattern
can be tested independently of the other patterns (e.g., testing that a pattern
is frequent enough can be done without looking at other solution patterns).
For us, in such a context, it justifies that instances of this framework are called
local pattern mining tasks.

However, many useful mining tasks are looking for models or global patterns
(e.g., classifiers, clusterings) and can be formalized as the computation of sets
of patterns that satisfy constraints. Let us assume that lower case letters such
as φ denote individual patterns and that upper case ones such as Φ denote sets
of patterns, a local-to-global mining task can be defined by the two following
steps:

1. L = Th(L, r, q)

2. M = Th(f(L), r, p) where f(L) is a transformation of L,

Th(f(L), r, p) = {Φ ⊆ f(L) | p(Φ, r) is true}

In this context, the constraint q is said to be local as it applies on an
individual pattern, whereas the constraint p is said global as it has to hold for
a set of patterns. The popular association-based classification approach [17]
is an obvious example of a L2G scheme: standard association rules are the
local patterns (i.e., local constraints are the minimal frequency and minimal
confidence constraints). The various proposals for building classifiers from
them are then based on different global constraints on these collections of
association rules. Clustering can be considered within a L2G framework as
well.

6.3.2 The CDK-Means Proposal

The CDK-Means algorithm is our L2G proposal for co-clustering 0/1 data.
It is closely related to subspace clustering and it exploits the many results that
are available for local pattern extraction from large Boolean matrices.

Our language of patterns is the language of bi-sets and it is denoted B:

B ≡ {(T,G) | T ⊆ T and G ⊆ G}

A bi-set b = (T,G) is thus a couple made of a set of objects and a set of
properties. Clearly, many interesting classes of bi-sets can be computed from a

Constraint-Driven Co-Clustering of 0/1 Data 129

data set r given a selection predicate q. For instance, the selection predicate
can enforce that the set of properties is a frequent itemset because the set
of objects that share these properties has a size greater than a user-defined
threshold [1]. We can use a more selective predicate and, for instance, restrict
the bi-sets to the ones whose sets of properties are closed sets. In that case,
we are looking for the well-known formal concepts (see, e.g., [7]). Many other
interesting types of bi-sets could be considered, e.g., support envelopes [25]
or the dense and relevant bi-sets [6]. Discussing the pros and cons of each
type of local pattern is out of the scope of this chapter. Let us notice that
we find in the literature (see the survey in [18]) various local pattern mining
tasks that are named bi-clustering tasks as soon as both dimensions (objects
and properties) are involved. In our case, we prefer to talk about a clustering
only in the context of unsupervised classification and thus the computation of
collections of clusters, not collections of local patterns whose interestingness
can be evaluated based on individuals only.

The CDK-Means algorithm introduced in [21] computes

Th(B, r, pCDK) = {Φ ⊆ B | pCDK(Φ, r) is true}

with Φ being a partition ΠB of a bi-set collection B (ΠB : B → {1 · · · k}) and

pCDK(ΠB , r) ≡ ΠB = argmin
∑

bj∈B

d(bj , μΠB(bj))

The constraint pCDK is the one used in the K-Means algorithm with d being
a distance and μΠB(bj) being the centroid of the cluster that contains the bi-set
bj . Let us now introduce some notations to formally define these quantities.

First, we describe each bi-set bj by its characteristic vector as follows:

< tj >,< gj >=< tj1, . . . , tjm >,< gj1, . . . , gjn >

where tji = 1 if ti ∈ Tj (0 otherwise) and gji = 1 if gi ∈ Gj (0 otherwise).
We are looking for k clusters of bi-sets {πB1, . . . , πBk} (πB� ⊆ B). Let

us define the centroid of a cluster of bi-sets πB� as μ� =< τ� >,< γ� >=<
τ�1, . . . , τ�m >, < γ�1, . . . , γ�n > where τ and γ are the usual centroid compo-
nents:

τ�i =
1

|πB�|
∑

bj∈πB�

tji, γ�i =
1

|πB�|
∑

bj∈πB�

gji

We now define the distance used between a bi-set bj and a centroid μ�:

d(bj , μ�) =
1
2

(
|tj ∪ τ �| − |tj ∩ τ �|

|tj ∪ τ �|
+
|gj ∪ γ�| − |gj ∩ γ�|

|gj ∪ γ�|

)

It is the mean of the weighted symmetrical differences of the set components.
We assume |tj ∩ τ �| =

∑m
i=1 ai

tji+τ�i

2 and |tj ∪ τ �| =
∑m

i=1
tji+τ�i

2 where
ai = 1 if tji · τ�i �= 0, 0 otherwise. Intuitively, the intersection is equal to the

130 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 6.2: CDK-Means pseudo-code
CDK-Means (r is a Boolean context, B is a collection of bi-sets in r, k is
the number of clusters, MI is the maximal iteration number.)

1. Let μ1 . . . μk be the initial cluster centroids. it := 0.

2. Repeat

(a) For each bi-set bj ∈ B, assign it to cluster πB� s.t. d(bj , μ�) is
minimal.

(b) For each cluster πB�, compute τ� and γ�.

(c) it := it+ 1.

3. Until centroids are unchanged or it = MI.

4. For each ti ∈ T (resp. gi ∈ G), assign it to the first cluster πT � (resp.
πG�) s.t. τ�i = 1

|πB�|
∑

bj∈πB�
tji (resp. γ�i = 1

|πB�|
∑

bj∈πB�
gji) is

maximum.

5. Return {πT 1 . . . πT k} and {πG1 . . . πGk}

mean between the number of common objects and the sum of their centroid
weights. The union is the mean between the number of objects and the sum
of their centroid weights. These measures are defined similarly on properties.

Objects ti (resp. properties gi) are assigned to one of the k clusters (say
cluster �) for which τ�i (resp. γ�i) is maximum. We can enable that a number
of objects and/or properties belong to more than one cluster by controlling
the size of the overlapping part of each cluster. Thanks to our definition of
cluster membership determined by the values of τ � and γ�, we just need to
adapt the cluster assignment step given some user-defined thresholds.

A simplified algorithm CDK-Means is given in Table 6.2: for the sake of
brevity, we do not consider further cluster overlapping. It computes a co-
clustering of r given a collection of bi-sets B extracted from r beforehand
(e.g., collections of formal concepts). CDK-Means can provide the example
co-clustering given in Section 6.1.

6.3.3 Constraint-Driven Co-Clustering

Let us now consider the L2G framework when some of the co-clustering
constraints defined in Section 6.2 have been specified (i.e., besides the speci-
fication of the number of co-clusters and the implicit optimization constraint
on the objective function, the global constraint might also contain must-link,
cannot-link, interval, or non-interval constraints).

The key idea is that, to compute a co-clustering that satisfies the specified

Constraint-Driven Co-Clustering of 0/1 Data 131

global constraints, we can exploit local counterparts of them, i.e., constraints
that apply on local patterns (here, bi-sets) to select only part of them. For
some constraints (e.g., must-link), the satisfaction of the local counterpart is
sufficient to guarantee that the co-clusters satisfy the global constraint. In
such cases, we say that the local constraint is automatically propagated to
the global level. For other constraints, it happens that a new global con-
straint must be used in addition to the local counterpart. In such cases how-
ever, we consider new global constraints that are easier to check. Notice also
that, given the state-of-the-art, evaluating local constraints can be extremely
more efficient than checking for global ones, and quite efficient algorithms are
available to compute bi-sets that satisfy, e.g., monotonic constraints (see Sec-
tion 6.3.4). For instance, we use here D-Miner [7] to computate collections of
formal concepts that satisfy size constraints on both object and property sets.
Let us now provide more details on how we manage to process the different
constraints.

• The local counterpart of a must-link constraint ce=(xi, xj ,Π,D) consists
in selecting bi-sets that contain either both xi and xj or none of them:

qmust−link(b, r) ≡ (xi ∈ b ∧ xj ∈ b) ∨ ((xi /∈ b ∧ xj /∈ b)

As the coefficients of each object/property in each centroid μ� depends
on the number of bi-sets containing this object/property, the coefficients
corresponding to xi and xj are equal in each centroid. Consequently, xi

and xj are assigned to the same cluster and thus the local counterpart of
the must-link constraint is automatically propagated to the computed
co-clusters.

• A necessary condition for the extended cannot-link constraint, is that
B does not contain any bi-set violating the constraint. Indeed, the
local counterpart of a cannot-link constraint ce�=(xi, xj ,Π,D) consists in
selecting bi-sets that do not contain both xi and xj :

qcannot−link(b, r) ≡ ¬(xi ∈ b ∧ xj ∈ b)

This condition does not ensure that the global cannot-link constraint is
satisfied in the final co-clustering (it is not automatically propagated)
and a further control is needed. In particular, in Step 2(a) of CDK-
Means algorithm (see Table 6.2), before adding a bi-set containing xi

(resp. xj) to a cluster, we should ensure that no bi-set containing xj

(resp. xi) has been assigned to it earlier.

• For the interval and non-interval constraints, it is possible to directly use
these constraints on each bi-set independently, i.e., as a local constraint.
However, for the interval constraint, it might be too stringent in prac-
tice (i.e., too few bi-sets would satisfy the constraint), whereas for the
non-interval one, it will not be selective enough (almost all the bi-sets

132 Constrained Clustering: Advances in Algorithms, Theory, and Applications

would satisfy the constraint). For these reasons, we propose to relax
the interval constraint and to strengthen the non-interval constraints as
local counterparts of the global ones. These two new local constraints,
respectively called max-gap and min-gap, are now defined.

DEFINITION 6.4 Max-gap and min-gap constraints Given an
order on D, a max-gap constraint on D, denoted cmaxgap(D, σ, b), is satisfied
by b w.r.t threshold σ iff, for each pair of consecutive elements xi, xj ∈ b
s.t. xi ≺ xj, |{xh �∈ b, with xi ≺ xh ≺ xj}| ≤ σ. A min-gap constraint,
denoted cmingap(D, σ, b), is satisfied by b w.r.t threshold σ iff, for each pair of
consecutive elements xi, xj ∈ b s.t. xi ≺ xj, |{xh �∈ b, with xi ≺ xh ≺ xj}| ≥
σ.

Max-gap is used as a local counterpart of the interval constraint and min-
gap as the non-interval one. Clearly, these local constraints do not ensure
the satisfaction of cint and cnon−int, but it supports the computation of more
relevant co-clusters (see the experimental section).

Example 6.3
Suppose that G is ordered such that g1 � g2 � g3 � g4 � g5. The bi-set
b = {{t1, t3, t4}, {g1, g3, g4}} satisfies cmaxgap(G, 1, b) but not cmaxgap(G, 0, b).
It does not satisfy cmingap(G, 1, b).

The modified version of the algorithm is sketched in Table 6.3 (modifications
in bold). It uses the same greedy strategy as COP-KMeans [27]. A slight
difference is that, as we process local patterns (bi-sets), then it concerns only
the sets of objects and properties that belong to the local patterns.

6.3.4 Discussion on Constraint Processing

To summarize, we can classify the constraints w.r.t. propagation issues.

1. Constraints that are automatically propagated from the local level to
the global one (extended must-link).

2. Constraints that need a control to be propagated from the local level to
the global one (extended cannot-link).

3. Constraints whose propagation to the local level to the global one is not
ensured (interval and non-interval constraints).

Even if we cannot ensure the ultimate satisfaction for the interval and non-
interval constraints, we show in our experimental validation (see Section 6.4)
that using max-gap and min-gap local constraints enables us to produce clus-
ters that tend to be intervals. One of the perspectives of this work is clearly

Constraint-Driven Co-Clustering of 0/1 Data 133

TABLE 6.3: Constrained CDK-Means pseudo-code
CDK-Means (r is a Boolean context, B is a collection of local patterns in
r, k is the number of clusters, MI is the maximal iteration number, C a
set of constraints.)

1. Let B′ ⊆ B be the sub-collection satisfying all the local coun-
terparts of the constraints in C (extended must-link and
cannot-link, max-gap and min-gap).

2. Let μ1 . . . μk be the initial cluster centroids. it := 0.

3. Repeat

(a) For each local pattern bj ∈ B′, assign it to cluster πB� s.t.
d(bj , μ�) is minimum and no cannot-link constraint is vi-
olated.

(b) For each cluster πB�, compute τ� and γ�.

(c) it := it+ 1.

4. Until centroids are unchanged or it = MI.

5. For each ti ∈ T (resp. gi ∈ G), assign it to the first cluster πT � (resp.
πG�) s.t. τ�i (resp. γ�i) is maximum.

6. Return {πT 1 . . . πT k} and {πG1 . . . πGk}

to enforce the propagation of these two constraints by introducing a control
step in the iterative part of the algorithm (as for the extended cannot-link
constraint).

When a constraint is too selective (too many bi-sets violate such a con-
straint), some objects and/or properties could not be represented in the col-
lection used by our algorithm. The solution of a garbage cluster for each
unclustered object/property is not always possible, specially when they are
involved in cannot-link constraints. In fact, if a cannot-link constraint involv-
ing xi and xj is not satisfied by any bi-set (i.e., each time a bi-set contains xi,
it also contains xj), the two objects/properties will not be contained in the
final co-clustering. But they cannot be assigned to a garbage co-cluster, since
a cannot-link constraint prevents this situation. If such a situation happens,
our approach returns no solution. We say that the co-clustering is unfeasible.
Notice that in this work we do not address the problem of the feasibility of
conjunctions of must-link and cannot-link constraints (see [11] for a complete
overview of the constraint feasibility problem).

As discussed earlier, the local counterpart of a global constraint is easier
to check, especially when the local constraint is monotonic w.r.t. some spe-

134 Constrained Clustering: Advances in Algorithms, Theory, and Applications

cialization relation. In such cases, we can use efficient local pattern mining
algorithms. For bi-set mining, we use D-Miner [7] that exploit such con-
straints.

DEFINITION 6.5 D-Miner specialization and monotonicity The
specialization on bi-sets from B used by D-Miner is defined by (T1, G1) ≤
(T2, G2) iff T1 ⊆ T2 and G1 ⊆ G2. A constraint C is said anti-monotonic
w.r.t. ≤ iff ∀α, β ∈ B such that α ≤ β, C(β) ⇒ C(α). C is said monotonic
w.r.t. ≤ iff ∀α, β ∈ B such that α ≤ β, C(α) ⇒ C(β).

D-Miner efficiently exploits both monotonic and anti-monotonic constraints.
Consequently, if the local constraints used are conjunctions or disjunctions of
monotonic constraints, they can be directly pushed during the local pattern
mining step.

Let us now summarize how the local counterparts of the co-clustering con-
straints can be directly used during our bi-set mining step.

• The local counterparts of the extended must-link and cannot-link con-
straints require that some elements are included or not in bi-sets (see
qmust−link(b, r) and qcannot−link(b, r) constraints). Such constraints are
monotonic while considering the specialization relation of Definition 6.5.
Consequently, the local counterparts of these constraints can be repre-
sented by a conjunction and/or a disjunction of monotonic constraints
that can be exploited by D-Miner.

• The min-gap constraint is anti-monotonic. Let b1 = (X1, Y1) and b2 =
(X2, Y2) be two bi-sets s.t. X1 ⊆ X2. If we define Si = {xh �∈
Xi|xi ≺ xh ≺ xj}, we have S2 ⊆ S1. Consequently, if |S2| ≥ σ,
i.e., cmaxgap(D, σ, b2) is satisfied, then |S1| ≥ σ and cmaxgap(D, σ, b1)
is satisfied as well.

• The max-gap constraint has no monotonicity properties. Let us con-
sider the max-gap constraint cmaxgap(D, 1, b) with D = {x1, x2, . . . , xn}.
It is not satisfied by X1 = {x2, x3, x7} but it is satisfied by X2 =
{x2, x3, x5, x7} and one of its subset X0 = {x2, x3}. Therefore, it is nei-
ther monotonic nor anti-monotonic. This constraint is thus checked after
the execution of the bi-set mining algorithm, i.e., in a post-processing
phase.

6.4 Experimental Validation

Let us first introduce some measures that are to be used in our experi-
ments to evaluate the quality of co-clustering results. In the first batch of

Constraint-Driven Co-Clustering of 0/1 Data 135

experiments, we show the interest in using pairwise constraints on both di-
mensions thanks to an application to a synthetic data set for which standard
and unconstrained co-clustering approaches produce unstable results. Then
we apply our framework on two real temporal gene expression data sets to
illustrate the added-value of interval constraints. Finally, we discuss another
application to another gene expression data set to illustrate how the interval
and non-interval constraints can be used to supervise a co-clustering task to
discover more stable co-clusters, which are more relevant as well.

6.4.1 Evaluation Method

A general criterion to evaluate clustering results consists of comparing the
computed partition with a “correct” one. It means that data instances are
already associated to some correct labels and that we want to quantify the
agreement between computed labels and correct ones. A popular measure is
the Rand index, which measures the agreement between two partitions of m
elements. If C = {C1 . . . Cs} is our clustering structure and P = {P1 . . . Pt} is
a predefined partition, each pair of data points is either assigned to the same
cluster in both partitions or to different ones. Let a be the number of pairs
belonging to the same cluster of C and to the same cluster of P. Let b be the
number of pairs whose points belong to different clusters of C and to different
clusters of P. The agreement between C and P can be estimated using

Rand(C,P) =
a+ b

m · (m− 1)/2

It takes values between 0 and 1 and it is maximized when s = t [23].
To evaluate the added-value of the interval constraint, we propose to mea-

sure the number of jumps within a partition.

DEFINITION 6.6 Jump number Given D = {x1, . . . , xn} a set of
ordered points and a cluster πD� on these points, we have a jump given a
number ν > 1, if xi ∈ πD�, xi+ν ∈ πD� and ∀h s.t. i < h < i + ν, xh �∈ πD�.
Let J� be the number of jumps within a cluster πD�. Given a partition ΠD =
{πD1, . . . , πDk}, the jump number measure denoted NJ is then

NJ =
∑

πD�∈ΠD

J�

.

If NJ = 0, clusters are intervals. As the interval constraint is processed as
a soft constraint, we average the NJ measure on a set of clustering instances
(with random initialization) to measure the efficiency of the approach.

We also want to evaluate co-clustering quality by means of an internal cri-
terion. An interesting measure for this purpose is the symmetrical Goodman

136 Constrained Clustering: Advances in Algorithms, Theory, and Applications

and Kruskal’s τ coefficient [15], which evaluates the proportional reduction in
error given by the knowledge of ΠT on the prediction of ΠG and vice versa.
Another measure is the loss in mutual information [13], which is the objective
function that Cocluster tries to minimize. Both coefficients are evaluated
on a contingency table p. Let pij be the frequency of relations between an
object of a cluster πT i and a property of a cluster πGj . Furthermore, we have
pi. =

∑
j pij and p.j =

∑
i pij . The Goodman-Kruskal’s τ coefficient is defined

as follows:

τ =
1
2

∑
i

∑
j (pij − pi.p.j)

2 pi.+p.j

pi.p.j

1− 1
2

∑
i p

2
i. − 1

2

∑
j p

2
.j

The mutual information, which computes the amount of information ΠT
contains about ΠG is:

I(ΠT ,ΠG) =
∑

i

∑

j

pij log
pij

pi.p.j

Then, given two different co-clusterings (ΠT ,ΠG) and (Π̂T , Π̂G), the loss in
mutual information is given by:

I(ΠT ,ΠG)− I(Π̂T , Π̂G)

Finally, to evaluate the performances of our method, we use a comparison
coefficient, which is the mean of the products between the number of needed
iterations and the number of processed bi-sets, i.e.:

CC =
∑N

i |B| ·NIi
N

where, N is the number of executions, |B| is the size of the local pattern
collection computed beforehand, and NIi is the number of iterations for the
i-th execution.

6.4.2 Using Extended Must-Link and Cannot-Link
Constraints

Let us use a synthetic data set, which intrinsically leads to unstable cluster-
ing. The goal is here to show how using must-link and cannot-link constraints
can support the discovery of different co-clustering structures. This synthetic
data set is some kind of idealized abstraction of temporal gene expression data
(see Fig. 6.1 where the gray zones denote true values in the matrix). In this
data set, the expression level of 20 genes changes during the 105 time points
of the sampling period. It is easy to capture some cyclic behavior, since the
first and the last time periods gives rise to similar patterns. Such a situation
should produce quite unstable clustering results.

We have extracted a collection of formal concepts using D-Miner [7]. This
collection (containing 85 formal concepts) has been used for all the exper-
iments described in this section. When using the unconstrained version of

Constraint-Driven Co-Clustering of 0/1 Data 137

FIGURE 6.1: A synthetic data set.

CDK-Means or Cocluster [13] (with k = 3), the results clearly point
out two kinds of co-clustering results (see Fig. 6.2(a) and Fig. 6.2(b) for
co-clusterings a and b). The second co-clustering (Fig. 6.2(b)) emphasizes
some cyclic behavior, since the first and the last groups of samples are in the
same co-cluster. Such a structure is clearly missing in the first co-clustering
(Fig. 6.2(a)). Notice that all the results produced by the random instances of
the two algorithms are similar to one of these two co-clusterings. Table 6.4
provides the various results concerning the τ and I values, and the Rand co-
efficient values computed w.r.t. the two co-clusterings for both objects and
properties.

Let us assume that we want to supervise the co-clustering process to dis-
cover co-clustering a or co-clustering b. For this purpose, we can use some
extended must-link or/and cannot-link constraints to control the search. If we
look at the two targeted co-clusterings, there are objects that always belong
to the same cluster, while other objects and properties “change” clusters when
moving from co-clustering a to co-clustering b. For instance, objects 1 to 21
are always in the same cluster (we say they are “stable”), while objects 22 to
35 change clusters in the second co-clustering (we say they are “unstable”).
We list all possible pairs that are composed by one object belonging to the
“stable” set and one object belonging to the “unstable” set. We construct a
similar list for properties. Then, we pick a fixed number of pairs randomly and
we compare the class labels (which are inferred from co-clusterings a and a)
of each object (resp. property) inside the co-clustering we want to discover.

138 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) (b)

FIGURE 6.2: Two co-clusterings for the synthetic data from Fig. 6.1.

If the objects (resp. properties) share the same class label, we construct a
must-link constraint. Otherwise, we construct a cannot-link constraint. In
our experiments, we have computed the results for 100 randomly generated
sets of 1 and 2 constraints for both objects and properties. For each set of
constraints, we executed 25 randomly initialized instances of CDK-Means.
Results are in Table 6.5 (for sets of 1 constraint) and Table 6.6 (for sets of 2
constraints). All the average Rand indexes are 1% to 9% better than the same
indexes obtained by the unconstrained versions, for both our CDK-Means
algorithm or Cocluster. It works for generated constraints over both the
set of objects and the set of properties. Results are also slightly more stable
w.r.t. unconstrained instances. It shows that even a few number of constraints
enables us to obtain a co-clustering that is more stable w.r.t. initialization
but also more relevant w.r.t. user expectation.

User-defined constraints can be derived from domain knowledge. Looking
at the two co-clusterings (see Fig. 6.2(a) and Fig. 6.2(b), we see that the
first object is clustered together with the first property in b but not in a.
Then, we can introduce an extended cannot-link constraint between the first
object and the first property to drive CDK-Means toward the first type of
co-clustering. In this case, the average Rand indexes w.r.t. to a, computed on
both objects and properties, are both equal to 0.83 (i.e., 8% better than the
one obtained by unconstrained co-clustering). Now, if we add an extended
cannot-link constraint between the last object and the last property, then the

Constraint-Driven Co-Clustering of 0/1 Data 139

TABLE 6.4: Co-clustering synthetic
data without constraints (25 trials).

Cocluster CDK-Means

τ 0.29±0.03 0.34±0.02
I 0.90±0.07 0.96±0.02
a-Rand(T) 0.74±0.07 0.78±0.11
a-Rand(G) 0.74±0.08 0.77±0.11
b-Rand(T) 0.75±0.07 0.77±0.10
b-Rand(G) 0.74±0.08 0.78±0.11

two scores rise respectively to 0.87 and 0.88.
Notice however that our framework has to be considered as an unsupervised

method that is useful when we lack from detailed information about the data.
When a large number of constraints is introduced, some conjunctions can
remove an important number of local patterns. In this case, some objects and
properties might disappear from the co-clustering process.

6.4.3 Time Interval Cluster Discovery

We have studied the impact of the interval constraint in two microarray data
sets called malaria and drosophila. The first one [8] concerns the transcriptome
of the intraerythrocytic developmental cycle of Plasmodium Falciparum, i.e.,
a causative agent of human malaria. The data provide the expression profile
of 3719 genes in 46 biological samples. Each sample corresponds to a time
point of the developmental cycle: it begins with merozoite invasion of the red
blood cells, and it is divided into three main phases: the ring, trophozoite and
schizont stages. The second data set is described in [2]. It concerns the gene
expression of the Drosophila melanogaster during its life cycle. The expression
levels of 3944 genes are evaluated for 57 sequential time periods divided into
embryonic, larval, and pupal stages. The numerical gene expression data from
[8] has been discretized by using one of the encoding methods described in
[5]: for each gene g, we assigned the Boolean value 1 to those samples whose
expression level was greater than X% of its max expression level. X was set
to 25% for malaria and 35% for drosophila. The two matrices have been mined
for formal concepts by using D-Miner [7].

We applied Cocluster algorithm [13] and the unconstrained version of
CDK-Means with k = 3 to identify the three developmental stages. Since the
initialization of both algorithms is randomized, we average all the measures
obtained after 100 executions. We have measured the NJ coefficient, the Rand
index w.r.t. to the correct partition that has been inferred from the literature,
and the Goodman-Kruskal’s coefficient to evaluate the co-clustering quality.
Results are in Table 6.7.

There is a significant difference between the two data sets. In malaria, the
average number of jumps (NJ) is already small with both algorithms. In

140 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 6.5: Co-clustering synthetic data (1 pairwise
constraint, 100 random constraint sets, 25 trials).

A B

T G T G
τ 0.32±0.03 0.33±0.03 0.33±0.03 0.30±0.02
I 0.97±0.04 0.96±0.03 0.97±0.03 0.96±0.03
Rand(T) 0.81±0.10 0.80±0.10 0.83±0.10 0.80±0.09
Rand(G) 0.78±0.10 0.78±0.10 0.84±0.11 0.80±0.08

TABLE 6.6: Co-clustering synthetic data (2 pairwise
constraints, 100 random constraint sets, 25 trials).

A B

T G T G
τ 0.31±0.05 0.31±0.04 0.31±0.05 0.29±0.02
I 0.98±0.05 0.98±0.05 0.99±0.06 0.96±0.03
Rand(T) 0.82±0.10 0.80±0.10 0.83±0.10 0.80±0.08
Rand(G) 0.78±0.10 0.77±0.10 0.82±0.11 0.81±0.06

particular, if Cocluster enables us to get a good Goodman-Kruskal’s coeffi-
cient, the co-clusters obtained by CDK-Means are more consistent with the
biological knowledge (i.e., the partition has a higher Rand index). We notice
that the number of comparisons is rather high. What we expect here, is that
a constrained approach can obtain the same clustering results by using less
computing resources. Instead, for drosophila, both algorithms fail in finding
the correct partitioning w.r.t. the available biological knowledge. The num-
ber of jumps is in both cases high, while the Rand index is relatively low. In
this case we expect to obtain better results with our constrained co-clustering
approach.

We have defined the interval constraint on the biological condition dimen-
sion. Different levels of the max-gap constraint have been applied and we have
studied the impact on the final partition by measuring the NJ coefficient, the
Rand index, the Goodman-Kruskal’s coefficient, and the average number of
comparisons. Results are in Fig. 6.3 and Fig. 6.4, respectively for malaria and
drosophila.

For malaria, the best results in terms of number of jumps (see Fig. 6.3(a))

TABLE 6.7: Co-clustering without interval constraints (100
trials).

Cocluster CDK-Means
Data Set NJ Rand τS NJ Rand τS CC

malaria 0.85 0.761 0.494 0.3 0.877 0.438 3.063M
drosophila 6.39 0.692 0.513 4.29 0.601 0.424 1.652M

Constraint-Driven Co-Clustering of 0/1 Data 141

(a) (b)

(c) (d)

FIGURE 6.3: Jump number (a), Rand index (b), Goodman-Kruskal’s coeffi-
cient (c) and comparison coefficient (d) on malaria.

are for a max-gap constraint of 1 and 2. When max-gap = 2, the Rand index
(Fig. 6.3(b)) is higher, and the Goodman-Kruskal’s coefficient (Fig. 6.3(c))
is maximum (and similar to the one obtained without constraint, see Ta-
ble 6.7). An important observation is that the average comparison numbers
(Fig. 6.3(d)) for these values of the max-gap constraint are sensibly reduced
(by a factor of 8, for max-gap = 3, up to 28 for max-gap = 2). When max-
gap is set to 1, the average comparison number is about 1/1000 of the one
obtained without specifying any constraint. When max-gap is 5, we obtain
a rather bad NJ index, but the Rand coefficient is max (and similar to the
one obtained without constraint). An optimal choice in this context seems to
be max-gap = 2: it sensibly reduces the computational time, and it produces
good clustering results. We notice also that our definition of the max-gap
constraint works for open time intervals. By setting an open time interval
constraint, we are always able to obtain a circular sequence of intervals, i.e.,
capturing typical developmental life cycles.

142 Constrained Clustering: Advances in Algorithms, Theory, and Applications

For drosophila, the improvements are more obvious. Unconstrained cluster-
ing results have shown that good partitions (with a high Goodman-Kruskal’s
coefficient) contain a lot of jumps. With a max-gap constraint of 2 or 3, we
can sensibly reduce the number of jumps (Fig. 6.4(a)) and it increases the
quality of the partition (Fig. 6.4(b)) w.r.t. the available biological knowledge.
The fact that for these max-gap values, the Goodman-Kruskal’s coefficient is
minimum (Fig. 6.4(c)), indicates that the partition that better satisfies the
constraints is not necessarily the “best” one. Moreover, the average number
of comparisons (Fig. 6.4(d)) is reduced by 60 (max-gap = 2) and 30 (max-
gap = 3).

6.4.3.1 Using Non-Interval Constraints

We have shown how interval constraints can support the discovery of time
interval clusters. Within some data (e.g., malaria), an unconstrained approach
already gives perfect intervals, and then the question is: is it possible to
discover different gene associations that hold between time points belonging
to different intervals? To answer this question, we applied the non-interval
constraint to the gene expression data concerning adult time samples of the
drosophila melanogaster life cycle. Indeed, time samples from t1 to t10 concern
the first days of male adult individual life cycle while time samples from t11
to t20 concern female individuals.

When we apply CDK-Means (with k = 2) without specifying any con-
straint, the two intervals t1, . . . , t10 and t11, . . . , t20 are well identified in the
100 executions. Then, we obtain almost exactly a co-cluster of males and
a co-cluster of females and the average jump number is low. Moreover, the
Goodman-Kruskal’s coefficient and the loss in mutual information appears
rather stable (see cdk:unconst result on Table 6.8). We computed these coef-
ficients on the 100 co-clusterings returned by Cocluster and we noticed a
significant instability (see Table 6.8). It seems that there are two optimum
points for which the two measures are distant. For 56 runs, we got a high τ
coefficient (mean 0.5605), for the other 44 ones the τ coefficient was sensibly
smaller (mean 0.1156). If we consider each group of results separately, the
standard deviation is significantly smaller. It means that these two results
are two local optima for the Cocluster heuristics. Furthermore, the first
group of solutions reflects the male and female repartition of the individuals,
while in the second group each cluster contains both male and female indi-
viduals. The average Rand value is 0.69 and the standard deviation is 23%
of the mean. Also the jump number has a high and unstable value. Then,
we tried to specify a min-gap constraint on the collection of formal concepts
to enforce the discovery of non interval clusters. Even for small values of
the min-gap constraint, the average Rand value is high, while the standard
deviation is lower (12% of the mean for min-gap = 2, 4% for min-gap = 3)
w.r.t. Cocluster results. The cdk:nonint row in Table 6.8 summarizes the
more stable (w.r.t. the τ coefficient) results obtained with min-gap = 10. We

Constraint-Driven Co-Clustering of 0/1 Data 143

(a) (b)

(c) (d)

FIGURE 6.4: Jump number (a), Rand index (b), Goodman-Kruskal’s coeffi-
cient (c) and comparison coefficient (d) on drosophila.

also tested whether an interval constraint could influence the stability of the
co-clustering. Setting max-gap = 5 enables to get more stable co-clusterings
where the Rand index is always equal to one (see cdk:int results in Table 6.8).
These results show that, by specifying an interval or a non-interval constraint,
the user gets some control on the shape of the co-clusters. An algorithm like
Cocluster has sometimes found co-clusters where the sex of the individual
is the major discriminative parameter. At some moment, it has captured
something else. Our thesis is that a biologist might be able to have a kind of
supervision on such a process. Moreover, using constraints also speeds up the
co-clustering construction because we have to process a reduced collection of
local patterns.

When using a co-clustering approach, it seems natural to consider both
constraints on objects and on properties. In this section we have shown that
even a few number of must-link and cannot-link constraints can support the
computation of more stable co-clusterings. When a bijection exists between

144 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 6.8: Clustering adult drosophila individuals.
τ Rand NJ

bi-part. inst. mean std.dev mean std.dev mean std.dev

co:MF 56 0.5605 0.0381 0.82 0.06 0.25 0.61
co:mixed 44 0.1156 0.0166 0.51 0.02 7.52 2.07
co:overall 100 0.3648 0.2240 0.69 0.16 3.45 3.90
cdk:unconst 100 0.4819 0.0594 0.88 0.04 1.00 0.20
cdk:int 100 0.4609 0.0347 1.00 0.00 0.00 0.00
cdk:nonint 100 0.1262 0.0761 0.53 0.04 6.94 1.93

a partition of objects and a partition of properties (as for CDK-Means), it
makes sense to set constraints that involve both objects and properties. In
our framework, this extension is quite natural, and it opens new possibilities
in popular applications such as document analysis and gene expression data
analysis. We have also illustrated the added-value of interval constraints.
In gene expression data analysis, we often have temporal information about
data. With standard (co-)clustering algorithms, there are no simple possi-
bilities to exploit this temporal information. With a systematic approach in
two different gene expression data, we were able to improve clustering results
and to propose ways to control the clustering results based on domain know-
ledge. Here again, we can exploit such facilities across many other application
domains.

6.5 Conclusion

Co-clustering is an interesting conceptual clustering approach. Improving
co-cluster relevancy remains a difficult task in real-life exploratory data anal-
ysis processes. First, it is hard to capture subjective interestingness aspects,
e.g., the analyst’s expectation given her/his domain knowledge. Next, when
these expectations can be declaratively specified, using them during the com-
putational process is challenging. We have shown that it was possible to use a
simple but powerful generic co-clustering framework based on local patterns.
Several types of constraints on co-clusters have been considered, including
new constraints when at least one of the dimensions is ordered. Applications
on temporal gene expression data analysis have been sketched. Many other
applications rely on ordered data analysis and might benefit from such con-
strained co-clustering approaches. Notice also that extended must-link and
cannot-link constraints can be handled efficiently by our framework. A short-
term perspective is to formalize the properties of the global constraints (i.e.,
constraints on co-clusterings), which can be, more or less automatically, trans-
formed into local level constraints. Looking for propagation strategies that

Constraint-Driven Co-Clustering of 0/1 Data 145

might enable to enforce interval constraints on every computed co-cluster is
also on our research agenda.

Acknowledgments

This work was performed when Ruggero G. Pensa was a research fellow at
University of Saint-Etienne (France). This research is partially funded by EU
contract IQ FP6-516169 (FET arm of the IST program).

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo.
Fast discovery of association rules. In Advances in Knowledge Discovery
and Data Mining, pages 307–328. AAAI Press, 1996.

[2] M. N. Arbeitman, E. E. Furlong, F. Imam, E. Johnson, B. H. Null, B. S.
Baker, M. A. Krasnow, M. P. Scott, R. W. Davis, and K. P. White. Gene
expression during the life cycle of drosophila melanogaster. Science,
297:2270–2275, 2002.

[3] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugua, and D. Modha. A gener-
alized maximum entropy approach to bregman co-clustering and matrix
approximation. Journal of Machine Learning Research, 8:1919–1986,
2007.

[4] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for
semi-supervised clustering. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 59–68, Seattle, USA, 2004.

[5] C. Becquet, S. Blachon, B. Jeudy, J.-F. Boulicaut, and O. Gandrillon.
Strong association rule mining for large gene expression data analysis:
A case study on human SAGE data. Genome Biology, 12:1–16, 2002.

[6] J. Besson, C. Robardet, and J-F. Boulicaut. Mining a new fault-tolerant
pattern type as an alternative to formal concept discovery. In Proceedings
of the Fourteenth International Conference on Conceptual Structures,
volume 4068 of Lecture Notes in Computer Science, pages 144–157, Aal-
borg, Denmark, July 2006. Springer.

146 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[7] J. Besson, C. Robardet, J.-F. Boulicaut, and S. Rome. Constraint-
based concept mining and its application to microarray data analysis.
Intelligent Data Analysis, 9(1):59–82, 2005.

[8] Z. Bozdech, M. Llinás, B. Lee Pulliam, E. D. Wong, J. Zhu, and J. L.
DeRisi. The transcriptome of the intraerythrocytic developmental cycle
of plasmodium falciparum. Public Library of Science Biology, 1(1):1–16,
2003.

[9] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared
residue co-clustering of gene expression data. In Proceedings of the 2004
SIAM International Conference on Data Mining, pages 114–125, Lake
Buena Vista, USA, 2004.

[10] I. Davidson and S. S. Ravi. Agglomerative hierarchical clustering with
constraints: Theoretical and empirical results. In Proceedings of the
Ninth European Conference on Principles and Practice of Knowledge
Discovery in Databases, volume 3721 of Lecture Notes in Computer Sci-
ence, pages 59–70, Porto, Portugal, 2005. Springer.

[11] I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility
issues and the k-means algorithm. In Proceedings of the 2005 SIAM In-
ternational Conference on Data Mining, pages 138–149, Newport Beach,
USA, 2005.

[12] L. De Raedt and A. Zimmermann. Constraint-based pattern set min-
ing. In Proceedings of the 2007 SIAM International Conference on Data
Mining, Minneapolis, USA, 2007.

[13] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-
clustering. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 89–98,
Washington, USA, 2003.

[14] W. D. Fisher. On grouping for maximum homogeneity. Journal of the
American Statistical Association, 53:789–798, 1958.

[15] L. A. Goodman and W. H. Kruskal. Measures of association for cross
classification. Journal of the American Statistical Association, 49:732–
764, 1954.

[16] D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level con-
straints to space-level constraints: Making the most of prior knowledge
in data clustering. In Proceedings of the Nineteenth International Con-
ference on Machine Learning, pages 307–314, Sydney, Australia, 2002.
Morgan Kaufmann.

[17] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association
rule mining. In Proceedings of the Fourth ACM SIGKDD International

Constraint-Driven Co-Clustering of 0/1 Data 147

Conference on Knowledge Discovery and Data Mining, pages 80–86.
AAAI Press, 1998.

[18] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological
data analysis: A survey. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 1(1):24–45, 2004.

[19] H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–
258, 1997.

[20] K. Morik, J-F. Boulicaut, and A. Siebes, editors. Local Pattern De-
tection, International Seminar, Dagstuhl Castle, Germany, April 12-16,
2004, Revised Selected Papers, volume 3539 of Lecture Notes in Com-
puter Science. Springer, 2005.

[21] R. G. Pensa, C. Robardet, and J.-F. Boulicaut. A bi-clustering frame-
work for categorical data. In Proceedings of the Ninth European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases,
volume 3721 of Lecture Notes in Artificial Intelligence, pages 643–650,
Porto, Portugal, October 2005. Springer.

[22] R. G. Pensa, C. Robardet, and J-F. Boulicaut. Towards constrained
co-clustering in ordered 0/1 data sets. In Proceedings of the Sixteenth
International Symposium on Methodologies for Intelligent Systems, vol-
ume 4203 of Lecture Notes in Computer Science, pages 425–434, Bari,
Italy, 2006. Springer.

[23] W. M. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66(336):846–850, 1971.

[24] C. Robardet and F. Feschet. Efficient local search in conceptual clus-
tering. In Discovery Science: Proceedings of the Fourth International
Conference DS 2001, volume 2226 of Lecture Notes in Computer Sci-
ence, pages 323–335, Washington, USA, November 2001. Springer.

[25] M. Steinbach, P-N. Tan, and V. Kumar. Support envelopes: A technique
for exploring the structure of association patterns. In Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 296–305, Seattle, USA, 2004.

[26] K. Wagstaff. Value, cost, and sharing: Open issues in constrained clus-
tering. In Knowledge Discovery in Inductive Databases: the Fifth Inter-
national Workshop, KDID 2006 Berlin, Germany, September 18, 2006
Revised Selected and Invited Papers, volume 4747 of Lecture Notes in
Computer Science, pages 1–10. Springer, 2007.

[27] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-
means clustering with background knowledge. In Proceedings of the

148 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Eighteenth International Conference on Machine Learning, pages 577–
584, Williamstown, USA, 2001. Morgan Kaufmann.

Chapter 7

On Supervised Clustering for
Creating Categorization
Segmentations

Charu Aggarwal
IBM T. J. Watson Research Center, charu@us.ibm.com

Stephen C. Gates
IBM T. J. Watson Research Center, scgates@us.ibm.com

Philip Yu
IBM T. J. Watson Research Center, psyu@us.ibm.com

Abstract In this paper, we discuss the merits of using supervised cluster-
ing for coherent categorization modeling. Traditional approaches for docu-
ment classification on a predefined set of classes are often unable to provide
sufficient accuracy because of the difficulty of fitting a manually categorized
collection of records in a given classification model. This is especially the case
for domains such as text in which heterogeneous collections of Web documents
have varying styles, vocabulary, and authorship. Hence, this paper investi-
gates the use of clustering in order to create the set of categories and its use
for classification. We will examine this problem from the perspective of text
data. Completely unsupervised clustering has the disadvantage that it has
difficulty in isolating sufficiently fine-grained classes of documents relating to
a coherent subject matter. In this chapter, we use the information from a
pre-existing taxonomy in order to supervise the creation of a set of related
clusters, though with some freedom in defining and creating the classes. We
show that the advantage of using supervised clustering is that it is possible
to have some control over the range of subjects that one would like the cat-
egorization system to address, but with a precise mathematical definition of
how each category is defined. An extremely effective way then to categorize
documents is to use this a priori knowledge of the definition of each category.
We also discuss a new technique to help the classifier distinguish better among

149

150 Constrained Clustering: Advances in Algorithms, Theory, and Applications

closely related clusters.

7.1 Introduction

In this chapter, we consider the problem of supervised clustering and its
relationship to automated categorization. Such a system has several applica-
tions, such as the construction of recommendation systems or providing the
ability to categorize very large libraries of text collections on the Web in an
automated way. We assume that a pre-existing sample of records with the
associated classes is available in order to provide the supervision to the cate-
gorization system. We will examine the problem from the perspective of text
categorization.

Several text classifiers have recently been proposed, such as those discussed
in [3, 4, 5, 13, 14]. These classifiers have shown excellent results on document
collections such as the Reuters dataset or the US patent database [4] and to a
somewhat lesser extent on the Web with the Y ahoo! taxonomy. Categorization
of Web documents has proven to be especially difficult because of the widely
varying style, authorship and vocabulary in different documents.

Most of the above-mentioned categorizations are created using manual cat-
egorizations by subject experts. The apparent inaccuracy of classification
methods on large document collections is a result of the fact that a large het-
erogeneous collection of manually categorized documents is usually a poor fit
for any given classification model. Thus, it is interesting to investigate the
construction of categorization systems which relax the restriction imposed by
predefined sets of classes. We study the use of clustering in order to create
the categories. Once such a set of categories has been obtained, it is easy to
perform the categorization by using the same distance measures as were used
to perform the clustering. The initially available document taxonomy can
provide sufficient supervision in creating a set of categories which can handle
similar subjects as the original, but with some freedom in choosing exactly
how to define and create the classes. As long as the final application of the
categorization system does not restrict us to the use of a fixed set of class
labels, this approach may provide considerable advantage because of the tight
integration of the measures which are used for clustering and classification.

The fact that we actually know the model used to construct each partition
in the clustering ensures that we can theoretically obtain a perfect accuracy
on this categorization. Therefore the quality of categorization depends com-
pletely on the quality and coherence of each cluster in the new taxonomy,
rather than the accuracy of a training procedure on the original taxonomy.
Thus, if the supervised clustering procedure can create a new set of classes
which are qualitatively comparable to the original taxonomy (in terms of hu-

On Supervised Clustering for Creating Categorization Segmentations 151

man perception and judgment), the accuracy of the overall categorization
system is substantially improved.

The use of clustering for providing browsing capabilities has been espoused
in earlier work by Cutting et. al [6, 7]. Other work on clustering algorithms
for text data may be found in [2, 8, 11, 19, 20, 21]. These methods do not use
any kind of supervision from a pre-existing set of classes, and are attractive for
creation of a small number of clusters such as fifty or so, though the clustering
rapidly degrades in quality when there is a need to find more fine-grained
partitions. Typically, when categories are related sufficiently such that some
documents can be considered to be related to both, unsupervised clustering
methods are unable to create distinct sets of classes for such categories. The
use of a pre-existing manual categorization helps in the creation of a new set
of clusters, so that we have some control over the range of subjects that we
would like the categorization system to address. The resulting set of clusters
may contain additional, new or similar classes to the original taxonomy, and
may be quite different in terms of the distribution of the documents among
the different classes.

In this chapter, we will use an earlier scan of the Y ahoo! taxonomy in order
to study our categorization system. This is one of many hierarchical organiza-
tions of documents which are built by manual categorizations of documents.
This is also one of the larger categorizations of documents which are currently
available, and hence was a good choice for our study.

This paper is organized as follows. In section 7.2, we will discuss the details
of the cluster generation and categorization. In section 7.3, we provide an
intuitive discussion of the observed behavior of the engine. A conclusion and
summary is provided in section 7.4.

7.2 A Description of the Categorization System

In this section, we will provide a description of our categorization system
including feature selection, clustering, and classification. We will first begin
with the definitions and notations which we will need for further development
of our ideas.

7.2.1 Some Definitions and Notations

In order to represent the documents, we used the vector space model [17]. In
the vector space model, it is assumed that each document can be represented
as as term vector of the form a = (a1, a2, . . . an). Each of the terms ai has a
weight wi associated with it, where wi denotes the normalized frequency of
the word in the vector space. A well-known normalization technique is the

152 Constrained Clustering: Advances in Algorithms, Theory, and Applications

cosine normalization. In cosine normalization, the weight wi of the term i is
computed as follows:

wi =
tfi · idfi√∑n

i=1(tfi · idfi)2
(7.1)

Here the value of tfi denotes the term frequency of ai, whereas the value of
idfi denotes the inverse document frequency. The inverse document frequency
is the inverse of the number of documents in which a word is present in the
training data set. Thus, less weight is given to words which occur in larger
number of documents, ensuring that the commonly occurring words are not
given undue importance.

The similarity between two documents may be measured by calculating the
cosine similarity between the documents. A centroid of a set of documents is
defined by a concatenation of the documents in the set. Thus a centroid of a
set of documents is a meta document which contains all the terms in that set
with the appropriate term frequencies added. A damped centroid (or pseudo-
centroid) of a set of documents is defined in the same way as the centroid,
except that in this case a damping function is applied to the frequencies of the
terms in each document before adding them together. The damping function
ensures that the repeated presence of a word in a single document does not
affect the pseudo-centroid of the entire cluster excessively. Thus, the pseudo-
centroid is often a much more stable representation of a central point in a
cluster of documents as compared to the centroid.

A projection of a document is defined by setting the term frequencies (or
weights) of some of the terms in the vector representation of the document
to zero. These are the terms which are said to be projected out. We will use
the process of projection frequently in the course of the supervised clustering
algorithm. Each cluster is represented by a seed vector containing only a
certain maximum number of projected words. The aim in projection is to
isolate a relatively small vocabulary which describes the subject matter of a
cluster well, while filtering out the non-relevant features for that class. We use
an incremental process of gradually finding the best set of projected words,
while simultaneously refining the clusters, so as to gradually converge to an
optimum feature set for each cluster.

7.2.2 Feature Selection

Our first phase was to perform the feature selection in such a way so that
only the more differentiating words are used in order to perform the clustering.
Note that in unsupervised clustering methods, where a pre-existing taxonomy
is not used, the feature selection is somewhat rudimentary in which only stop
words (very commonly occurring words in the English language) are removed.
In this case, since more information is available, we use it in order to prune
the feature set further and bias the clustering process to use words which are
discriminatory with respect to the original class labels. We use a number

On Supervised Clustering for Creating Categorization Segmentations 153

called the normalized gini index of a word in order to calculate its importance
in the clustering process.

Let there be K classes C1, C2 . . . CK at the lowest level in the original
taxonomy. Let f1, f2 . . . fK be the number of occurrences of that word in each
of the K classes, and let n1 . . . nK be the total word count for the documents
in each of the K classes. Thus, the fractional presence of a word in a particular
class is given by fi/ni. We define the skew fraction of a word for class i by

fi/niPK
i=1 fi/ni

. We shall denote this skew fraction by pi. Note that if the word
is very noisy, and is very evenly distributed among the different classes, then
the skew fraction for the word is likely to be approximately 1/K for many
classes.

The normalized gini index of a word with skew fractions p1 . . . pK is given

by 1−
√∑K

i=1 p
2
i . If the word is distributed evenly across the different classes,

then the gini index is 1−1/
√
K. This is the maximum possible value of the gini

index. On the other hand, when the word is highly correlated with particular
categories and is very skewed in its distribution, then the normalized gini
index is much lower.

For our feature selection phase, we calculated the normalized gini index of
each word in the lexicon in order to calculate its significance to the lexicon.
All those words whose gini index was higher than a predefined value were re-
moved from contention. Thus, the removal of these words ensures the use of a
much better set of features than the simple stopword removal of unsupervised
clustering techniques. In subsequent phases of clustering and categorization,
only the reduced feature set was used for all analysis.

7.2.3 Supervised Cluster Generation

The clustering algorithm uses a seed-based technique in order to create
the clusters. Traditional clustering methods have often used seed-based algo-
rithms in order to serve as an anchor point for the creation of the clusters. In
other words, seeds form an implicit representation of the cluster partitioning
in which each item to be categorized is assigned to its closest seed based on
some distance (or similarity) measure. In the context of information retrieval,
a seed is a meta-document which can be considered as a pseudo-representation
of a central point in a given cluster. Most of the current clustering algorithms
discussed in [2, 6, 7, 11] are based on finding a set of seeds in order to define
the implicit partitions.

Since the focus of the algorithm is on supervised clustering, we started off
with a set of seeds which are representative of the classes in the original tax-
onomy. Thus, the supervision is derived with the choice of a particular set
of seeds. These representative seeds are constructed by finding the damped
centroids (or pseudo-centroids) of the corresponding classes. This choice of
starting point (and features picked) ensures the inclusion of supervision in-
formation from the old taxonomy, but the subsequent clustering process is

154 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Algorithm TClus(D)
begin

S = Initial set of seed meta-documents;
iteration := 0;
words = Initial V alue1;
threshold = Initial V alue2;
minimum = Initial V alue3;
while not(termination-criterion)
do begin

(S, D) =Assign(S, D);
S =Project(S, words);
S =Merge(S, threshold);
S =Kill(S, minimum);
iteration := iteration + 1;
words = words ∗ θ;
{ θ is a number which is less than 1, and
indicates the rate at which the number of
projected dimensions in each seed reduces }

end
end

FIGURE 7.1: The clustering algorithm

Algorithm Assign(Pseudo-centroids: S, Documents: D)
begin

Initialize each of the clusters C1 . . . CK to null;
{ Note that the clusters C1 . . . CK correspond to the pseudo-centroids s1 . . . sK in S }
for each document d ∈ D do
begin

Calculate the cosine of d to each pseudo-centroid in S;
Find the pseudocentroid si, which is most similar to d;
if cosine(si, d) < OutlierThreshold then

begin
{ d is removed from D as an outlier }
D = D − {d};
end

else
Add d to cluster Ci;

end
for each si ∈ S do

redefine si ∈ S to the pseudo-centroid of cluster Ci;
return(S, D);

end

FIGURE 7.2: Assigning documents to pseudo-centroids

On Supervised Clustering for Creating Categorization Segmentations 155

Algorithm Project(Pseudo-centroids: S, Words: l)
begin

for each si ∈ S do
begin

Retain the l terms in the pseudo-centroid si with
maximum weight, setting the weight of all other terms to 0;

end
end

FIGURE 7.3: Projecting out the less important terms

Algorithm Merge(PseudoCentroids: S, MergingThreshold: t)
begin

for each pair of pseudo-centroids si, sj ∈ S do
calculate cos[ij] = cosine(si, sj);

Construct a graph with one node for each pseudo-centroid;
for each pair si, sj of pseudo-centroids do

if cos[ij] > t then add an edge between the nodes for si and sj ;
for each connected component of the graph, concatenate the

metadocuments for the corresponding pseudo-centroids in order
to create a new pseudo-centroid. Let S be the new set of
pseudo-centroids formed out of these connected components;

return(S)
end

FIGURE 7.4: Merging very closely related clusters

Algorithm Kill(Pseudo-centroids: S, MinimumLimit: l)
begin

for each pseudo-centroid si ∈ S such that the
associated cluster Ci has less than l documents, discard the
corresponding pseudo-centroids from S (S = S − {si});
return(S);

end

FIGURE 7.5: Removal of poorly defined clusters

156 Constrained Clustering: Advances in Algorithms, Theory, and Applications

independent of any further supervision. Providing this level of independence
is critical in the construction of a much more refined set of classes, which
are based purely upon content. One of the aspects of the algorithm is that it
projects out some of the words in order to represent the seeds. Thus, each seed
consists of a vector in which the number of words with a non-zero weight is
restricted to a predefined maximum. This vector of words is indicative of the
subject material which is most relevant to that cluster. The algorithm starts
with a projected dimensionality of about 500 words, and gradually reduces
it in each iteration as the clusters get more refined, and a smaller number of
words are required in order to isolate the subject of the documents in that
cluster. This technique of representing clusters by using both the documents
and the projected dimensions in order to represent a cluster is referred to as
projected clustering [1], and is an effective technique for the creation of clus-
ters for very high dimensional data. The idea of using truncation for speeding
up document clustering has been discussed in [19], though our focus for using
projections is different, and is designed in order to improve the quality of
the clustering by iteratively refining the dimensions and clusters. Thus, the
projected clustering technique merges the problem of finding the best set of
documents and features for a cluster into one framework. More details on the
advantages of using projected clustering for very high dimensional data may
be found in [1]. The basic framework of the clustering algorithm is illustrated
in Figure 7.1. The following four steps (detailed in Figures 7.2-7.5) are applied
iteratively in order to converge to the final set of clusters in the taxonomy.
We assume that the set of seeds available to the algorithm at any stage is
denoted by S and the documents which are being clustered by the algorithm
are denoted by D.

(1) Document Assignment: (Figure 7.2) In each iteration, we assign the
documents to their closest seed in S. The similarity of each document
to its closest seed is calculated using the cosine measure. Thus, a new
partition of the documents in D is created by the set of seeds S. After
the assignment process, the old set of seeds S are discarded, and the new
pseudo-centroid of each partition is added to S as a seed. The procedure
returns the new set of seeds S after the assignment of documents to
seeds. Those documents which are not close enough to any of the seeds
may be permanently discarded as outliers. Thus the document set D is
pruned in conjunction with the formation of clusters, so that documents
which do not fit well in any category are quickly removed.

(2) Project: (Figure 7.3) In each iteration, we project out the words with
the least weight from the pseudo-centroids of the previous iteration.
This ensures that only the terms which are frequently occurring within
a cluster of documents are used for the assignment process. The num-
ber of terms which are projected out in each iteration is such that the
number of non-zero weight terms reduces by a geometric factor in each
iteration. We denote this geometric factor by θ. The use of an iterative

On Supervised Clustering for Creating Categorization Segmentations 157

projection technique is useful in finding the words which are most repre-
sentative of the subject material of a cluster. This is because in the first
few iterations, when the clusters are not too refined, a larger number
of dimensions need to be retained in the projection in order to avoid
premature loss of information. In later iterations, the clusters become
more refined and it is possible to project down to a fewer number of
words.

(3) Merge: (Figure 7.4) In each iteration, we merge all the clusters where
the similarity of the seeds in the corresponding partitions is higher than
a predefined value (denoted by threshold). The merging process is im-
plemented using a simple single linkage method [18]. Each cluster is
represented by a node in an undirected graph, and an edge is added
between the two nodes if the similarity of the seeds of the corresponding
clusters is larger than the predefined threshold value. Each connected
component in this graph is then treated as a supercluster. In other
words, the documents in each connected component are assigned to a
single cluster. The set of pseudo-centroids of this reduced set of clus-
ters is returned by the procedure. Although the simple linkage process
is somewhat naive, it is very fast and effective for high values of the
threshold similarity.

(4) Kill: (Figure 7.5) In each iteration, we discard all those seeds from S
such that the number of documents in the corresponding clusters is less
than a predefined number. This predefined parameter is denoted by
minimum in Figure 7.1. These documents either get re-distributed to
other clusters or get classified as outliers in later iterations.

These procedures are applied iteratively in order to create the clusters. In
the initialization process we started off with a projected dimensionality of 500
words, and reduced the number of words by a factor of 70% (θ = 0.7) in
each iteration. When the number of projected dimensions in the seed of each
cluster was 200, we terminated the clustering process.

7.2.4 Categorization Algorithm

The definition of each cluster ensures that it is possible to categorize any test
document very easily by assigning it to the class for which the corresponding
seed is the closest. As in the case of the clustering, the cosine measure is used
in order to perform the classification.

An important feature which we added to our categorization process was a
method for distinguishing between very closely related subjects. This issue
has been discussed earlier by Chakrabarti et. al [4] for building hierarchical
categorization models. Here, we discuss this issue in the context of a flat set
of clusters which are defined in terms of their seed vectors.

158 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Algorithm Classify(TestDocument: T)
begin
Use cosine measure to find the k closest seeds {S1 . . . Sk}

to the test document T ;
for i = 1 to k domination[i] = 0;
for i = 1 to k do
for j = (i + 1) to k do
begin
if (cosine(Si − Sj , T) > cosine(Sj − Si, T)) then
domination[i] = domination[i] + 1;
else
domination[j] = domination[j] + 1;
end

end
Rank order the k categorizations in decreasing order of domination[i];

end

FIGURE 7.6: The classification algorithm

This is required because even a supervised clustering technique may not
provide perfect subject isolation, and a small percentage1 of the documents
do get clustered with documents from a closely related (though slightly inac-
curate) category. Even though a theoretical accuracy of 100% can be obtained
by reporting the cluster label for the most similar seed, it may sometimes be
desirable to correct for the errors in the clustering process by using a context-
sensitive comparison method.

We build a domination matrix on a subset of the universe of categories,
such that we know that all of these categories are good candidates for being
the best match. As we will see, the simplicity of this process ensures that
speed is not compromised by the use of the flat organization of clusters.

The first step in the algorithm is to find the k closest cluster seeds to the test
document. The similarity of each cluster to the test document is calculated
by using the cosine measure of the test document to the seed corresponding
to each cluster. The value of k is a user-chosen parameter, and is typically a
small number compared to the total number of nodes in the taxonomy. These
k categories are the candidates for the best match and may often contain a set
of closely related subjects. This ranking process is designed to re-rank these
categories more appropriately.

In order to understand the importance of distinguishing among closely re-
lated subjects, let us consider the seeds for two nodes in the taxonomy: Busi-
ness Schools and Law Schools. Recall that our process of projection limits
the number of words in each seed to only words which are relevant to the
corresponding categories. Some examples of words (with non-zero weights)

1See empirical section for details.

On Supervised Clustering for Creating Categorization Segmentations 159

which could be represented in the seed vector of each of these categories are
as follows:

(1) Business Schools: business (35), management (31), school (22), uni-
versity (11), campus (15), presentation (12), student (17), market (11),
operations (10) ...

(2) Law Schools: law (22), university (11), school (13), examination (15),
justice (17), campus (10), courts (15), prosecutor (22), student (15) ...

A document in the generic category of schools is likely to contain all of the
words such as university and school. Thus both these categories may be
among the k closest seeds for the document. In order to establish the relative
closeness of two categories to a given document more accurately, we need to
ignore the contributions of the words common to both categories to the cosine
measure. In other words, we need to compare the closeness based on the words
which are not common in the seed vector of both categories. This is done by
performing a relative seed subtraction operation on the seed vectors of each
of the categories. The seed subtraction operation is defined as follows: Let
S1 and S2 be two seed vectors. Then, the seed S1 − S2 is obtained by taking
the seed S1 and setting the weight of all those words which are common to
S1 and S2 to 0.

We say that the seed S1 dominates the seed S2 under the following condi-
tions:
• The (cosine) similarity of S1 to the test document T is larger than the
similarity of S2 to T by at least a predefined threshold referred to as the dom-
ination threshold.
• The (cosine) similarity of S1 to T is not larger than the similarity of S2 to
T by the predefined threshold, but the similarity of (S1 − S2) to T is larger
than the similarity of (S2 − S1) to T .

The use of a domination threshold ensures that it is only possible to reorder
seeds whose similarity to the test document are very close together. This is
because it is primarily in these cases that the differences in the contributions
of the common words tends to be a result of noise, rather than any actual
pattern of difference in the frequencies of the (common) words in the seeds for
the two categories. For each pair of the closest k seeds to the test document,
we compute the domination matrix, which is the pairwise domination of each
seed over the other. In order to rank order the k candidate seeds, we compute
the domination number of each seed. The domination number of a seed is equal
to the number of seeds (among the remaining (k−1) seeds) that it dominates.
The k seeds are ranked in closeness based on their domination number; ties
are broken in favor of the original ordering based on cosine measure. The
algorithm for returning the ranked set of k categorizations is illustrated in
Figure 7.6.

160 Constrained Clustering: Advances in Algorithms, Theory, and Applications

It is obvious that the best matching category is more likely to be contained
among the top k categories based on cosine measure, than only the closest
category based on this measure. (If the clustering is perfect then it suffices
to use k = 1.) The re-ranking process is then expected to rank this cate-
gory highly among the k choices. If there are a total of K classes created by
the clustering algorithm, then the categorization algorithm needs to perform
O(K + k2) cosine similarity calculations. Further, since the projected dimen-
sionality of each seed is restricted to a few hundred words, each similarity
calculation can be implemented efficiently. Thus, the categorization system
is extremely fast because of its simplicity, and scales almost linearly with the
number of classes. This feature is critical for its use in performing automated
categorization of large libraries of documents.

7.3 Performance of the Categorization System

The assessment of the performance of a categorization system based on
supervised clustering presents new challenges. Existing benchmarks, such as
the well-known Reuters set, are designed principally to test the performance
of a new classifier against an predefined set of classes; i.e., the class label for
each document is defined externally, and the goal is to measure the accuracy
in terms of this “expert” classification. However, when a new set of classes
are created, such as by our clustering, these categories may not have a precise
correspondence to the original set of classes, and an accuracy measurement
with respect to this new set is meaningless.

We know that since the classifier uses the same similarity model as the
clustering system does, the key issues are clustering quality and classifier
speed. Another point to understand is that the use of supervised clustering
to create the new set of categories makes it difficult to apply the standard
synthetic data models and techniques [15, 16] which are used for evaluating
unsupervised clustering; therefore, our discussion of the performance of the
system is primarily an intuitive one based on real data.

As indicated earlier, we used a scan of the Y ahoo! taxonomy from Novem-
ber 1996. This taxonomy contained a total of 167,193 Web documents, over
a lexicon of approximately 700,000 words. The unusually large size of this
lexicon is a result of the fact that many of the words in Web document collec-
tions tend to be non-standard words which could be misspellings or creative
variations on standard words. Such words are so sparse, that they do not have
much of a role to play in the clustering process. Only 87,000 words occurred
in 7 or more documents in the entire collection. We truncated the Y ahoo!
tree taxonomy to obtain a set of 1500 classes corresponding to higher level
nodes. The purpose was to use the lowest level nodes in the taxonomy which

On Supervised Clustering for Creating Categorization Segmentations 161

contained at least 50 or more documents. (Otherwise, it is difficult to use
such sparsely populated nodes for any kind of reasonable categorization or
clustering.) The slight shortening and variation of names illustrated in Figure
7.7 from the actual Y ahoo! names is because of this truncation. The total
number of categories at the leaf level of this truncated Y ahoo! taxonomy was
about 1500.

We first performed unsupervised clustering of the data by using an im-
proved variation of the algorithm discussed in [19].2 We found about 1000
clusters from the original set of documents. Although unsupervised cluster-
ing was able to group together similar documents in each cluster, it was unable
to perform the fine-grained level of subject isolation that one would expect
from such a large number of clusters. For example, a cluster was formed
such that it contained constituent documents were drawn from Y ahoo! cate-
gories related to computer-generated art, hand-crafted arts, artists, painting,
sculpture, museums, and architecture. Although these documents shared con-
siderable similarity in the subject material and vocabulary, the overall subject
material in the documents was relatively generic (art), and it was difficult to
find the level of fine-grained subject isolation that is available in the Y ahoo!
taxonomy. Almost all the clusters found using the unsupervised clustering
technique provided categories in which the overall subject was as generic as a
top level category of the hierarchical Y ahoo! organization. This is consistent
with our earlier observation that unsupervised methods are often unable to
create a sufficiently fine-grained subject isolation.

In our implementation of the supervised clustering algorithm we first calcu-
lated the gini index of the different words in the clusters and removed about
10,000 words with the highest gini index. We also removed the very infre-
quently occurring words in order to remove misspellings and creative varia-
tions on ordinary words. Specifically, we removed all those words which oc-
curred in less than 7 documents out of the original training data set of 167,193
Web documents. At this stage, we were left with a lexicon of about 77,000
words. We found that the use of the idf normalization actually decreased the
quality of the clustering, and therefore we used only the term frequencies in
order to represent the weights of the terms in the vector-space representation
of the documents.3 We restricted the number of words in the pseudo-centroid
of each cluster to about 200. The algorithm started with about 500 projected
words in each seed, and successively removed words from the seed, until a
maximum of about 200 words was obtained in each seed. The value of the
seed reduction factor θ was 0.7. The value of the parameter minimum used
to decide when to kill a cluster was 8. The value of the merging threshold (the
parameter threshold in Figure 7.1) was 0.95. The algorithm required a total

2We omit the exact details of the implementation of this algorithm, since it is beyond the
scope of this paper.
3The fact that idf normalizations reduce cluster quality has also been observed in earlier
work [19].

162 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Category Y ahoo! Categories of constituent documents

1. Wine @Entertainment@Drinks and ...@Wine (28)
@Business ...@Companies@Drinks@...@Wine@Wineries (9)
@Business ...@Companies@Drinks@...@Wine@Other (2)
@Entertainment@Magazines@Other (2)

2. Fitness @Health@Fitness (29)
@Business ...@Companies@Health@Fitness (7)
@Recreation@Sports@Other (3)
@Business ...@Companies@Sports@Other (3)
@Business ...@Products Services@Magazines@Sports (3)

3. Health @Health@Medicine@Organizations (39)
Org. @Health@Medicine@Other (16)

@Health@Other (4)
@Education@Other (3)
@Business ...@Organizations@Public Interest Groups@Other (3)
@Business ...@Companies@Health@Other (3)
@Business ...@Companies@Books@Titles@Other (2)

4. N. Parks @Recreation@...@Parks@National Parks... (37)
@Recreation@Outdoors@Other (8)
@Recreation@Travel@Regional@US States@Other (7)
@Business ...@Travel@Tour Operators@Adventure (7)
@Recreation@Travel@Regional@Countries@Other (2)
@Business ...@Travel@Lodging@Regional@...@Canada (2)

5. S. Trek @News And Media@...@Science FF&H@Star Trek@Other (120)
@Entertainment@Movies And Films@Actors And Actresses (13)
@Entertainment@Science FF&H (4)
@Entertainment@....@Science FF&H@Other (4)
@Entertainment@Humor Jokes And Fun@Other (3)
@Recreation@Hobbies And Crafts@Collecting (3)

FIGURE 7.7: Some examples of constituent documents in each cluster

On Supervised Clustering for Creating Categorization Segmentations 163

of 3 hours to complete on a 233 MHz AIX machine with 100 MB of memory.
We obtained a total of 1167 categories in a flat taxonomy.

We labeled the nodes by examining the constituent Y ahoo! categories in
this set of newly created clusters. Typically, the clustering did a very excel-
lent job in grouping together documents from very closely related categories
in the Y ahoo! taxonomy in a creative way, so as to result in a coherent subject
for each cluster. This kind of grouping differs from the case of unsupervised
clustering in terms of providing much cleaner subject isolation. We have illus-
trated some examples of the clusters obtained in Figure 7.7. In the right hand
column of the table, we have illustrated the constituent documents in each
Y ahoo! category in the cluster. In order to give a flavor of how well the clus-
tering performed, we provide some interesting observations for these examples:

1. Wine: The cluster for wine was constructed by picking out documents
from the wine segment of the @Entertainment and @Business And Economy
subcategories of Y ahoo!. Two of the documents in the category were also
drawn from a Y ahoo! category on magazines, but in both the cases, we found
that the documents were magazine articles related to wine. Although the
original Y ahoo! categorization was accurate, the actual content of the page
cannot be directly related to the topic of magazines, without prior knowledge
of the meta-information that the document is a magazine article. Thus, the
training phase of a classifier on the Y ahoo! taxonomy would not be helped by
the presence of such a document in the category on magazines.
2. Fitness: Most of the documents in the Fitness category were drawn from
either fitness, health or sports related categories from the Y ahoo! taxonomy.
Again, these categories occurred in widely separated branches of the Y ahoo!
hierarchy. This is an example of a case where the clustering was able to pick
out specific documents from interrelated categories which were more general
than the topic of fitness. The presence of very closely related documents in
many widely separated branches of a hierarchy is somewhat detrimental to
the performance of a hierarchical classifier because it becomes more difficult
to distinguish nodes at the higher levels of the taxonomy.
3. Health Organizations: This cluster consisted of documents from com-
mercial health related categories, non-commercial health related categories,
and education related categories, which were related to the general topic of
health organizations.
4. National Parks: In the original Y ahoo! categorization, many of the doc-
uments on parks fall under the travel, tourism, and outdoors category. Cor-
respondingly, the clustering grouped together Web pages which were closely
related to the subject material of parks but drawn from these very distinct
Y ahoo! categories. Again, the presence of documents on parks in travel re-
lated categories of Y ahoo! may often confuse classifiers, since this subject is
only peripherally related to the topic of travel and tourism in general.
5. Star Trek: The clustering was able to pick out documents from various
Y ahoo! categories, which dealt with different aspects of Star Trek including

164 Constrained Clustering: Advances in Algorithms, Theory, and Applications

the categories on television shows, motion pictures, actors and actresses, and
collectibles. Two documents were also drawn from the Humor category of
Y ahoo! which had Star Trek related material in them.

In many cases, we found a correspondence between some original Y ahoo!
class and the final class which was created by the supervised clustering tech-
nique. However, the documents in these categories were often quite different
and more directly related to the actual content of the page. Manual catego-
rizations take into account factors which are not reflected in the content of
a given document. Although this is often desirable to effectively index docu-
ments, it does not help provide the ability to train classifiers accurately. The
redistribution of such documents to clusters which are more related on con-
tent provides a cleaner set of classes from the perspective of a content-based
classification engine. (See, for example, the case for the category of Wine
above.) In all cases, we found that the projected set of words for a cluster
corresponded very closely with its subject.

7.3.1 Categorization

We ran the classifier and reported the three best categories as the results.
The domination threshold used for 0.025. We found that the use of the domi-
nation matrix approach caused a different ranking (from the original ranking
of the categories based on cosine measure) in about 8% to 9% of the cases.
In order to provide a flavor of the performance of categorization, we provide
some examples of the classifications which were reported in Figure 7.8. One
interesting observation was that when we tested documents which were re-
lated to multiple subjects in the taxonomy, the classifier was able to get the
different related subjects as the first, second, and third categories. As an ex-
ample (see Figure 7.8), when we tested a Web page containing a compilation
of lawyer jokes, the classifier was able to pick out both the closely related sub-
jects (lawyer and jokes) among its different choices. Another similar example
was (3) in Figure 7.8, where a humorous narrative on the Web was categorized
to belong to both fiction and humor related categories.

When we tested the classifier on the homepage of the 1999 Conference on
Knowledge Discovery and Data Mining, we found that the top three categories
provided some interesting information: (1) The document was related to a
computer conference. (2) The document was related to computer science.
(3) The document was related to artificial intelligence. Since there is no
category on data mining conferences, the classifier finds the closest set of
general categories which are related to data mining conferences. Thus, each
of the first, second, and third categories provide different pieces of relevant
information about this document.

We observed this kind of behavior by the categorization system on a very
regular basis. Another example was a page of documentation on the Winsock
Protocol, in which case it provided the categories of Internet Software Proto-

On Supervised Clustering for Creating Categorization Segmentations 165

Example Comments

www.wpi.edu/t̃anis/lawyer.html: Since there is no category
Title: Canonical List of Lawyer Jokes on lawyer jokes, the
First Category: Jokes classifier finds the categories
Second Category: Individual Attorneys most closely related to
Third Category: Misc. Humor, Jokes and Fun both attorneys and jokes.
www.doubleclick.com/advertisers: Can distinguish pages about
Title: Solutions for Advertisers advertising from pages
First Category: Misc. Advertising (Commercial) containing advertising
Second Category: Misc. Marketing (Commercial)
Third Category: Direct Marketing (Commercial)
www.pliant.org/personal/
TomErickson/hawaii.html: This is a humorous
Title: The Key narrative on the Web
First Category: Web Science, Fantasy, Horror by a scientist.
Second Category: Misc. Humor Jokes and Fun
Third Category: Jokes
www.crstat.com/default.htm: Charles River Strategies is
Title: Charles River Strategies Inc. “the industry’s prominent
First Category: Management Consulting firm focussed on
Second Category: Market Research integrated end-user channel
Third Category: Infor. Tech. Consulting marketing strategy”
research.microsoft.com/datamine/kdd99: Finds all topics in
Title: Conference on Data Mining computer science and
First Category: Computer Conferences artificial intelligence which)
Second Category: Misc. Computer Science are related to data mining
Third Category: Artificial Intelligence and knowledge discovery
users.neca.com/vmis/wsockexp.htm: A page of documentation
Title: Getting back to the basics on the Winsock Protocol
First Category: Misc. Internet Software Protocols
Second Category: Microsoft Windows 95
Third Category: Internet Documentation
www.software.ibm.com/ad/vajava: The word object-oriented
Title: IBM Visual Age for Java is not mentioned on
First Category: Object-Oriented Prog. Tools the page
Second Category: Prog. Languages (Commercial)
Third Category: Software Consulting (Commercial)

FIGURE 7.8: Some examples of classifier performance

Case Percentage of Instances
Better than Y ahoo! 9%

Not as good as Y ahoo! 10%
Both were equally correct 77%

Neither is correct 4%
Unknown 1%

FIGURE 7.9: Survey results

166 Constrained Clustering: Advances in Algorithms, Theory, and Applications

cols, Windows 95, and Internet Information and Documentation as relevant
categories. Again, we see that although there is no category in the taxon-
omy which relates to documentation on the Winsock Protocol, the classifier
is able to find categories, all of which are closely related to some aspect of
the document. The other property which we noted about the classifier was
that it was often able to infer peripherally related subjects as its second and
third choices. For example, the first choice for the page on IBM Visual Age
for Java was on Object Oriented Programming Tools, the second choice was
on Programming Languages, and the third choice was on software consulting.
Clearly, the first choice was a very exact match, whereas the second and third
choices were peripherally related. It was very rare that the classifier reported
totally unrelated choices for any subject.

The simplicity of the classifier ensured that it was extremely fast in spite
of the very large number of classes used. The classifier required about two
hours to categorize about 160,000 documents. This averaged at about 45
milliseconds per categorization. This does not include the time for parsing
and tokenizing the document. In fact, the parsing procedure dominated the
overall time for categorization (0.1 seconds for parsing). Since most text
categorization techniques would need to parse the document anyway, this
indicates that our categorization system is within a reasonable factor of the
best possible overall speed of parsing and subsequent classification.

7.3.2 An Empirical Survey of Categorization Effectiveness

It is hard to provide a direct comparison of our technique to any other
classification method by using a measure such as classification accuracy. This
is because our algorithm does not use the original set of classes, but it actually
defines the categories on its own. Therefore, the accuracy of such a classifier
is high, whereas the actual quality of categorization is defined by clustering
quality. Therefore, we need to provide some way to measure the clustering
effectiveness.

Since the entire thrust of our supervised clustering algorithm was to facil-
itate the generation of a set of good clusters (in terms of human judgment)
from a manually created taxonomy of real web pages, it is also impossible to
use the traditional synthetic data techniques (used for unsupervised clustering
algorithms) in order to test the effectiveness of our technique. Thus, we need
to find some way of quantifying the results of our clustering technique on a
real data set such as Y ahoo!.

We used a survey technique by using input from external survey respondents
in order to measure the quality of the clustering. We sampled 141 documents
from the clusters obtained by our algorithm, and asked respondents to indicate
how well the corresponding subject labels defined it with respect to the original
Y ahoo! categorization. Specifically, for each document, we asked respondents
to indicate one of the following five choices: (1) Y ahoo! categorization was
better, (2) Our categorization was better, (3) Both were similar, (4) Neither

On Supervised Clustering for Creating Categorization Segmentations 167

were correct, (5) Do not know. The results of our survey are indicated in
Figure 7.9.

One of the interesting aspects of the results in Figure 7.9 is that the quality
of our categorization was as good as Y ahoo! for 77% of the documents. Out
of this 77%, the two categorizations reported the same label in 88% of the
cases, while the remaining were judged to be qualitatively similar. Among the
remaining documents, the opinions were almost evenly split (10%:9%) as to
whether Y ahoo! or our scheme provided a better categorization. For the 10%
of the cases in which our clustering algorithm provided a categorization which
was not as good as Y ahoo!, we found that most of these instances belonged
to one of two kinds:
(1) Neither categorization was particularly well suited, though the page was
better categorized in Y ahoo!. Typically, the content of the page did not re-
flect either category well, though some more meta-understanding of the page
was required in order to accurately classify it. An example of such a page
was http://nii.nist.gov, which discusses the United States Information Infras-
tructure Virtual Library. The web page discusses the National Information
Infrastructure (“information superhighway”), which is an interconnection of
computers and telecommunication networks, services, and applications. The
document was present in the Y ahoo! category on Government, though we
clustered it along with telecommunication documents. The fact that the doc-
ument is government related is meta-information, which cannot be automat-
ically derived from its content. We assert that the effective categorization
of such documents may be difficult for any system which is based purely on
content.
(2) Our algorithm inserted the document in a closely related cluster, though
the original Y ahoo! categorization was slightly more accurate. This was a
more common event than case (1). For example, a URL (http://www.i-
channel.com) from the Y ahoo! category on Cable Networks was grouped with
miscellaneous documents on television by our clustering algorithm. Another
URL (http://fluxnet.com) from the Y ahoo! category on Rock Music CDS and
Tapes was categorized by our algorithm in the general Rock Music topic. Most
of these categorizations (though less accurate) were good enough to not be
considered unreasonable.

Another way of interpreting the survey results is that that our automated
(supervised) scheme provided clusters which were as good as or better than
the Y ahoo! partitions in 77 + 9 = 86% of the cases, whereas the vice versa
was true for 77 + 10 = 87% of the cases. Among the 10% of the documents,
in which Y ahoo! was judged better, a substantial fraction belonged to case
(2) above, in which the documents were inserted in a reasonably good cluster
although not quite as accurately as its classification in Y ahoo!. To summarize,
the respondents found little or no quality difference in the (manual) catego-
rization of Y ahoo! versus our supervised cluster creation. At the same time,
an ability of express each category in a structured way is a key advantage
from the perspective of a classifier. Thus, the perceived accuracy of the over-

168 Constrained Clustering: Advances in Algorithms, Theory, and Applications

all categorization system is expected to be much higher, and the benefits of
the use of supervised clustering are apparent.

7.4 Conclusions and Summary

In this chapter, we proposed methods for building categorization systems by
using supervised clustering. We also discussed techniques for distinguishing
closely related classes in the taxonomy. We built such a categorization system
using a set of classes from the Y ahoo! taxonomy, and using them as a base
in order to create the supervised clusters. We showed that the supervised
clustering created a new set of classes which were surveyed to be as good as the
original set of classes in the Y ahoo! taxonomy, but which are naturally suited
to automated categorization. The result is a system which has much higher
overall quality of categorization. Combined with the low cost of an automated
categorization scheme compared to a manual scheme, such a system is likely
to have wide applicability to large document repositories.

References

[1] Aggarwal C. C., Procopiuc C., Wolf J. L., Yu P. S., Park J.-S. A frame-
work for finding projected clusters in high dimensional spaces. Proceed-
ings of the ACM SIGMOD Conference on Management of Data, pp.
61–72, 1999.

[2] Anick P., Vaithyanathan S. Exploiting clustering and phrases for
context-based information retrieval. Proceedings of the ACM SIGIR
Conference on Research and Development in Information Retrieval, pp.
314–323, 1997.

[3] Apte C., Damerau F., Weiss S. M. Automated learning of decision rules
for text categorization. IBM Research Report RC 18879.

[4] Chakrabarti S., Dom B., Agrawal R., Raghavan P. Using taxonomy,
discriminants, and signatures for navigating in text databases. Proceed-
ings of the Very Large Databases Conference, pp. 446–455, August 1997,
Athens, Greece. Extended Version: Scalable feature selection, classifica-
tion and signature generation for organizing text databases into hierar-

On Supervised Clustering for Creating Categorization Segmentations 169

chical topic taxonomies. Very Large Databases Journal, 7: pp. 163–178,
1998.

[5] Chakrabarti S., Dom B., Indyk P. Enhanced hypertext categorization
using hyperlinks. Proceedings of the ACM SIGMOD Conference on Man-
agement of Data, pp. 307–318, 1998.

[6] Cutting D. R., Karger D. R., Pedersen J. O., Tukey J. W. Scat-
ter/Gather: A cluster-based approach to browsing large document col-
lections. Proceedings of the ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 318–329, 1992.

[7] Cutting D. R., Karger D. R., Pedersen J. O. Constant interaction-time
Scatter/Gather browsing of very large document collections. Proceed-
ings of the ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 318–329, 1993.

[8] Douglas Baker L., McCallum A. K. Distributional clustering of words
for text classification. Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 96–103, 1998.

[9] Frakes W. B., Baeza-Yates R. Information Retrieval: Data Structures
and Algorithms. Prentice Hall, Englewood Cliffs, New Jersey.

[10] Jain A. K., Dubes R. C. Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, New Jersey.

[11] Hearst M. A., Pedersen J. O. Re-examining the cluster hypothesis: Scat-
ter/Gather on retrieval results. Proceedings of the ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 76–84,
1996.

[12] Ji X., Xu W. Document clustering with prior knowledge. Proceedings of
the ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 405–412, 2006.

[13] Koller D., Sahami M. Hierarchically classifying documents using very
few words. International Conference on Machine Learning, pp. 170–178,
1997.

[14] Lam W., Ho C. Y. Using a generalized instance set for automatic text
categorization. Proceedings of the ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 81–88, 1998.

[15] Lewis D. D. Naive (Bayes) at forty: The independence assumption in in-
formation retrieval. Proceedings of the European Conference on Machine
Learning, pp. 4–15, 1998.

[16] Nigam K., McCallum A., Thrun S., Mitchell T. Learning to classify
text from labeled and unlabeled documents. Proceedings of the Fifteenth

170 Constrained Clustering: Advances in Algorithms, Theory, and Applications

National Conference on Artificial Intelligence and Tenth Innovative Ap-
plications of Artificial Intelligence Conference, pp. 792–299, 1998.

[17] Salton G., McGill M. J. Introduction to Modern Information Retrieval.
McGraw Hill, New York, 1983.

[18] Sibson R. SLINK: An optimally efficient algorithm for the single link
cluster method. Computer Journal, 16:30–34, 1973.

[19] Schutze H., Silverstein C. Projections for efficient document clustering.
Proceedings of the ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 74–81, 1997.

[20] Silverstein C., Pedersen J. O. Almost-constant time clustering of arbi-
trary corpus sets. Proceedings of the ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pp. 60–66, 1997.

[21] Zamir O., Etzioni O. Web document clustering: A feasibility demon-
stration. Proceedings of the ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 46–53, 1998.

Chapter 8

Clustering with Balancing
Constraints

Arindam Banerjee
University of Minnesota, Twin Cities, banerjee@cs.umn.edu

Joydeep Ghosh
University of Texas at Austin, ghosh@ece.utexas.edu

Abstract In many applications of clustering, solutions that are balanced,
i.e., where the clusters obtained are of comparable sizes, are preferred. This
chapter describes several approaches to obtaining balanced clustering results
that also scale well to large data sets. First, we describe a general scalable
framework for obtaining balanced clustering that first clusters only a small
subset of the data and then efficiently allocates the rest of the data to these
initial clusters while simultaneously refining the clustering. Next, we discuss
how frequency sensitive competitive learning can be used for balanced clus-
tering in both batch and on-line scenarios, and illustrate the mechanism with
a case study of clustering directional data such as text documents. Finally,
we briefly outline balanced clustering based on other methods such as graph
partitioning and mixture modeling.

8.1 Introduction

Several chapters in this book describe how to incorporate constraints stem-
ming from additional information about the data into the clustering process.
For example, prior information about known labels or about the knowledge
that certain pairs of points have or do not have the same label, are translated
into “must-link” and “cannot-link” constraints (see Chapter 1). In contrast,
in this chapter we deal with a constraint that typically comes from the desider-
ata or needs of the end-application. This constraint is that the clusters be

171

172 Constrained Clustering: Advances in Algorithms, Theory, and Applications

all of comparable sizes, i.e., the solution be balanced. Here “size” of a cluster
typically refers to the number of data points in that cluster. In cases where
each point may have a weight/value attached to it, for example the points rep-
resent customers and a point’s weight is the monetary value of that customer,
size can alternatively refer to the net weight of all points in a cluster.

In general, the natural clusters in the data may be of widely varying sizes.
Moreover, this variation may not be known beforehand and balanced solutions
may not be important. However, for several real-life applications, having a
balancing requirement helps in making the clusters actually useful and action-
able. Thus this imposition comes from the associated application/business
needs rather than from the inherent properties of the data. Indeed, it may
be specified simply based on the end-goals even without examining the actual
data.

Let us now look at some specific applications where a balanced solution is
desired:

• Direct Marketing [48, 52]: A direct marketing campaign often starts
with segmenting customers into groups of roughly equal size or equal
estimated revenue generation, (based on, say, market basket analysis,
demographics, or purchasing behavior at a web site), so that the same
number of sales teams, marketing dollars, etc., can be allocated to each
segment.

• Category Management [39]: Category management is a process that in-
volves managing product categories as business units and customizing
them on a store-by-store basis to satisfy customer needs. A core op-
eration in category management, with important applications for large
retailers, is to group products into categories of specified sizes such that
they match units of shelf space or floor space. Another operation key
to large consumer product companies such as Procter & Gamble, is
to group related stock keeping units (SKUs) in bundles of comparable
revenues or profits. In both operations the clusters need to be refined
on an on-going basis because of seasonal difference in sales of different
products, consumer trends, etc. [26].

• Clustering of Documents [3, 32]: In clustering of a large corpus of docu-
ments to generate topic hierarchies, balancing greatly facilitates brows-
ing/navigation by avoiding the generation of hierarchies that are highly
skewed, with uneven depth in different parts of the hierarchy “tree” or
having widely varying number of documents at the leaf nodes. Similar
principles apply when grouping articles in a web site [32], portal design,
and creation of domain specific ontologies by hierarchically grouping
concepts.

• Balanced Clustering in Energy Aware Sensor Networks [20, 25]: In dis-
tributed sensor networks, sensors are clustered into groups, each repre-
sented by a sensor “head,” based on attributes such as spatial location,

Clustering with Balancing Constraints 173

protocol characteristics, etc. An additional desirable property, often
imposed as an external soft constraint on clustering, is that each group
consume comparable amounts of power, as this makes the overall net-
work more reliable and scalable.

In all the examples the balancing constraint is soft. It is not important to
have clusters of exactly the same size but rather to avoid very small or very
large clusters. A cluster that is too small may not be useful, e.g., a group of
otherwise very similar customers that is too small to provide customized so-
lutions for. Similarly a very large cluster may not be differentiated enough to
be readily actionable. Thus balancing may be sought even though the “natu-
ral” clusters in the data are quite imbalanced. Additionally, even the desired
range of the number of clusters sought, say 5 to 10 in a direct marketing ap-
plication, may come from high level “business” requirements rather than from
data properties. For these reasons, the most appropriate number and nature
of clusters determined from a purely data-driven perspective may not match
the number obtained from a need-driven one. In such cases, constrained
clustering can yield solutions that are of poorer quality when measured by
a data-centric criterion such as “average dispersion from cluster representa-
tive” (kmeans objective function), even though these same solutions are more
preferable from the application viewpoint. Nevertheless, a positive, seemingly
surprising result, empirically illustrated later in this chapter, is that even for
fairly imbalanced data, a versatile approach to balanced clustering provides
comparable, and sometimes better, results as judged by the unconstrained
clustering objective function. Thus such balanced solutions are then clearly
superior if the benefit of meeting the constraints is also factored in. The ad-
vantage is largely because balancing provides a form of regularization that
seems to avoid low-quality local minima stemming from poor initialization.

A variety of approaches to obtaining balanced clusters have been proposed.
These include (i) techniques such as clustering via graph partitioning where
balance is an integral part of the clustering formulation [30, 48]; (ii) for-
mulations where balancing is encouraged by adding a constraint within an
optimization framework [51, 54], and (iii) hierarchical approaches that en-
courage balanced results while progressively merging or splitting clusters [46].
Given the space constraints in this chapter, we shall focus on a general frame-
work for scaling up balanced clustering algorithms capable of working with
any representative-based clustering algorithm, such as KMeans (Section 8.2).
Other methods are briefly described in Section 8.4, which also provides refer-
ences for further details.

The framework presented in Section 8.2 can provably guarantee a pre-
specified minimum number of points per cluster, which can be valuable in
several application domains, especially when the number of clusters is large
and it is desirable to avoid very small or empty clusters. The framework first
clusters a representative sample of the data, and then allocates the rest of the
points to these initial clusters by solving a generalization of the stable mar-

174 Constrained Clustering: Advances in Algorithms, Theory, and Applications

riage problem, followed by refinements that satisfy the balancing constraints.
Several practical applications can benefit from a soft balancing approach

that produces approximately balanced clusters, but does not necessarily have
provable balancing guarantees. Further, since several applications accumulate
data over time, it is important to be able to generate online balanced cluster-
ing based on a sequence of data points. Section 8.3 describes a family of such
methods based on frequency sensitive competitive learning, applicable to both
batch and online settings, along with a case study of balanced text clustering.
In Section 8.4, we briefly outline other methods for balanced clustering, with
particular emphasis on graph partitioning and mixture modeling-based meth-
ods. Sections 8.2 and 8.3 are largely adapted from [6] and [5], respectively,
and these works can be referenced by the interested reader for details. We
conclude in Section 8.5 with a brief discussion on future directions.

8.2 A Scalable Framework for Balanced Clustering

In this section we describe a general framework for partitional clustering
with a user-specified degree of balancing, which can be provably guaranteed.
The proposed method can be broken down into three steps: (1) sampling,
(2) clustering of the sampled set, and (3) populating and refining the clusters
while satisfying the balancing constraints. For N points and k clusters, the
overall complexity of the method is O(kN logN).

8.2.1 Formulation and Analysis

Let X = {x1,x2, · · · ,xN},xi ∈ R
d,∀i be a set of N data points to be

clustered. Let d : R
d × R

d "→ R+ be a given distance function between any
two points in R

d. The goal is to find a disjoint k-partitioning {Sh}k
h=1 of X

and a corresponding set of k cluster representatives M = {μh}k
h=1 in R

d for
a given k such that the clustering objective function1

L({μh, Sh}k
h=1) =

k∑

h=1

∑

x∈Sh

d(x,μh) (8.1)

is minimized under the constraint that |Sh| ≥ m,∀h, for a given m with mk ≤
N . The sampling-based method assumes that for the (unknown) optimal

1Weighted objects can be simply catered to by incorporating these weights in both the cost
and the size constraint expressions. Weights have not been shown to keep the exposition
simple.

Clustering with Balancing Constraints 175

partitioning {S∗
h}k

h=1,

min
h

|S∗
h|
N

≥ 1
l

(8.2)

for some integer l ≥ k. In other words, if samples are drawn uniformly
at random from the set X , the probability of picking a sample from any
particular optimal partition is at least 1

l . l = k if and only if |S∗
h| = N/k,∀h,

so that the optimal partitions are all of the same size. Further, the distance
function d is assumed to be well-behaved in the following sense: Given a set
of points xi, · · · ,xn, there is an efficient way of finding the representative
μ = arg minc

∑n
i=1 d(xi, c). For a very large class of “distance” measures

called Bregman divergences, which includes the squared Euclidean distance as
well as KL-divergence as special cases, the optimal representative is simply the
mean of the cluster and hence can be readily computed [7]. For cosine distance,
the representative is again the mean, but scaled to unit length [4]. Therefore
the assumption regarding the distance function is not very restrictive.

The above balanced clustering formulation can be efficiently solved in three
steps, as outlined below:
Step 1: Sampling of the given data: The given data is first sampled in
order to get a small representative subset of the data. The idea is to exploit
(8.2) and compute the number of samples one must must draw from the
original data in order to get a good representation from each of the optimal
partitions in the sampled set with high probability. By extending the analysis
of the so-called Coupon Collector’s problem [37] one can show the following [6]:
If X is the random variable for the number of samples to be drawn from X
to get at least s points from each partition, E[X] ≤ sl ln k + O(sl), where
E[X] is the expectation of X. Further, if n = csl ln k ≈ cE[X] samples are
drawn from X (where c is an appropriately chosen constant), then at least
s samples are obtained from each optimal partition with probability at least
(1− 1

kc). To better understand the result, consider the case where l = k = 10,
and say we want at least s = 50 points from each of the partitions. Table 8.1
shows the total number of points that need to be sampled for different levels
of confidence.

Note that if the k optimal partitions are of equal size and csk ln k points are
sampled uniformly at random, the expected number of points from each par-
tition is cs ln k. Thus the underlying structure is expected to be preserved in
this smaller sampled set and the chances of wide variations from this behavior
is very small. For example, for the 99.99% confidence level in Table 8.1, the
average number of samples per partition is 127, which is only about 2.5 times
the minimum sample size that is desired, irrespective of the total number of
points in X , which could be in the millions for example.
Step 2: Clustering of the sampled data: The second step involves clus-
tering the set of n sampled points, Xs. The only requirement from this stage
is to obtain a k-partitioning of Xs and have a representative μh, h = 1, · · · , k
corresponding to each partition. There are several clustering formulations

176 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 8.1: Number of samples required to achieve a given
confidence level for k = 10 and s = 50.

d 1 2 3 4 5
Confidence, 100(1− 1

kc)% 90.000 99.000 99.900 99.990 99.999
Number of Samples, n 1160 1200 1239 1277 1315

that satisfy this requirement, e.g., clustering using Bregman divergences [7]
for which the optimal representatives are given by the centroids, clustering
using cosine-type similarities [4, 17] for which the optimal representatives are
given by the �2-normalized centroids, convex clustering [36] for which the op-
timal representatives are given by generalized centroids, etc. Since the size of
the sampled set is much less than that of the original data, one can use slightly
involved algorithms as well, without much blow-up in overall complexity.
Step 3: Populating and refining the clusters: After clustering the n
point sample from the original data X , the remaining (N − n) points need
to be assigned to the clusters, satisfying the balancing constraint. This can
be achieved in two phases: Populate, where the points that were not sam-
pled, and hence do not currently belong to any cluster, are assigned to the
existing clusters in a manner that satisfies the balancing constraints while en-
suring good quality clusters; and Refine, where iterative refinements are done
to improve on the clustering objective function while satisfying the balancing
constraints all along. Both phases can be applied irrespective of what clus-
tering algorithm was used in the second step, as long as there is a way to
represent the clusters. In fact, the third step is the most critical step and the
first two steps can be considered a good way to initialize the populate-refine
step.

Let nh be the number of points in cluster h, so that
∑k

h=1 nh = n. Let Xu

be the set of (N − n) non-sampled points. The final clustering needs to have
at least m points per cluster to be feasible. Let b = mk

N , where 0 ≤ b ≤ 1
since m ≤ N/k, be the balancing fraction. For any assignment of the members
of X to the clusters, let �i ∈ {1, . . . , k} denote the cluster assignment of xi.
Further, let Sh = {xi ∈ X |�i = h}.

In Populate, we just want a reasonably good feasible solution so that |Sh| ≥
m,∀h. Hence, since there are already nh points in Sh, we need to assign
[m − nh]+ more points to Sh, where [x]+ = max(x, 0). Ideally, each point
in Xu should be assigned to the nearest cluster so that ∀xi, d(xi, μ�i

) ≤
d(xi,μh),∀h. Such assignments will be called greedy assignments. However,
this need not satisfy the balancing constraint. So, we do the assignment of
all the points as follows: (i) Exactly [m− nh]+ points are assigned to cluster
h,∀h, such that for each xi that has been assigned to a cluster, either it has
been assigned to its nearest cluster, or all clusters h′ whose representatives
μh′ are nearer to xi than its own representative μ�i

already have the required

Clustering with Balancing Constraints 177

number of points [m − nh′]+, all of which are nearer to μh′ than xi; and
(ii) the remaining points are greedily assigned to their nearest clusters. The
assignment condition in (i) is motivated by the stable marriage problem that
tries to get a stable match of nmen and n women, each with his/her preference
list for marriage over the other set [27]. The populate step can be viewed as
a generalization of the standard stable marriage setting in that there are k
clusters that want to “get married,” and cluster h wants to “marry” at least
[m − nh]+ points. Hence, an assignment of points to clusters that satisfies
condition in (i) is called a stable assignment and the resulting clustering is
called stable.

In Refine, feasible iterative refinements are done starting from the clustering
obtained from the first part until convergence. Note that at this stage, each
point xi ∈ X is in one of the clusters and the balancing constraints are
satisfied, i.e., |Sh| ≥ m,∀h. There are two ways in which a refinement can be
done, and we iterate between these two steps and the updating of the cluster
representative: (i) Points that can be moved to a cluster whose representative
is nearer than their current representative, without violating the balancing
constraint, are all safely re-assigned; and (ii) groups of points in different
clusters, which can only be simultaneously re-assigned in conjunction with
other re-assignments to reduce the cost without violating the constraints, are
obtained based on strongly connected components of the possible assignment
graph, and all such group re-assignments are done.

After all the individual and group reassignments are made, the cluster rep-
resentatives are re-estimated. Using the re-estimated means, a new set of re-
assignments are possible and the above two steps are performed again. The
process is repeated until no further updates can be done, and the refinement
algorithm terminates.

8.2.2 Experimental Results

We now present results on two high-dimensional text data sets to judge both
clustering quality and balancing. The Newsgroup data set (news20) is a widely
used compilation of documents from 20 usenet newsgroups, having naturally
balanced clusters with approximately 1000 documents per newsgroup. We
tested our algorithms on not only the original data set, but on a variety of
subsets with differing characteristics to explore and understand the behavior of
the balanced clustering algorithms. The Yahoo data set (yahoo) is a collection
of 2340 Yahoo news articles belonging one of 20 different Yahoo categories,
with cluster sizes ranging from 9 to 494. The data set helps in studying the
effect of forcing balanced clustering in naturally unbalanced data.

Six algorithms are compared:

• Standard KMeans applied to the L2 normalized version of the data, which
makes a fairer comparison for text (applying KMeans on the original
sparse high-dimensional data gives very poor results [17].)

178 Constrained Clustering: Advances in Algorithms, Theory, and Applications

• SPKMeans, the spherical kmeans algorithm [17] (see Section 8.3) that
uses cosine similarity between data points and cluster representatives
and has been shown to give good results on several benchmark text
data sets [4, 17].

• SPKpr, a balanced clustering method that uses SPKMeans as the base
clustering algorithm and uses both the populate (p) and refine (r) steps.

For lesion studies, three variants are considered in which one or more compo-
nents of the proposed framework are missing.

• SPKpnr uses SPKMeans as the base clustering algorithm. It uses the
populate (p) step, but does not refine (nr) the resulting clusters. The
algorithm satisfies any given balancing constraints but need not give
good results since the feasible solution is not refined.

• SPKgpnr also uses SPKMeans for clustering. It uses a greedy popu-
late (gp) scheme where every point is assigned to the nearest cluster.
Further, no refinements (nr) are done after the greedy populate step.
Clearly, this algorithm is not guaranteed to satisfy balancing constraints.

• SPKgpr uses SPKmeans as the base clustering algorithm. It uses greedy
populate (gp) to put points into clusters, but performs a full refinement
(r) after that. The algorithm is not guaranteed to satisfy the balancing
constraints since the populate step is greedy and the refinements do not
start from a feasible clustering.

In a tabular form, the four algorithms can be presented as follows:

No Refine Refine Balancing
Greedy Populate SPKgpnr SPKgpr No Guarantee

Populate SPKpnr SPKpr Guaranteed

Performance of the algorithms are evaluated using one measure for the
quality of clustering and two measures for balance of cluster sizes. Since
class labels are available for both data sets, a suitable indicator quality of
clustering (without regard for balancing) is normalized mutual information
(NMI) [47], which measures the agreement of the assigned cluster labels and
the true class labels from the confusion matrix of the assignments. A value
of 1 for NMI indicates perfect agreement. Quality of balancing is evaluated
using two measures: (i) the standard deviation in cluster sizes (SDCS) and
(ii) the ratio between the minimum to expected (RME) cluster sizes. The
second measure highlights situations where some very small or empty clusters
are obtained. All reported results have been averaged over 10 runs. All
algorithms were started with the same random initialization for a given run
to ensure fairness of comparison. Moreover, each run was started with a
different random initialization.

Clustering with Balancing Constraints 179

Figure 8.1 shows the results on news20. Recollect that this is a typical
high-dimensional text clustering problem where the true clusters are balanced.
As shown in Figure 8.1(a), the balanced algorithms SPKpr and SPKpnr per-
form as good as SPKMeans, whereas the unconstrained algorithms SPKgpr and
SPKgpnr do not perform as well. Clearly, the balancing constraints resulted
in better results. KMeans does not perform as well as the other algorithms.
Under a stricter balancing requirement in Figure 8.1(b), as before, SPKgpr
performs marginally better than SPKpr, but the latter satisfies the balancing
constraints. The same behavior is observed for SPKgpnr and its corresponding
SPKpnr. Note that among the two balancing algorithms, SPKpr performs much
better than SPKpnr, thereby showing the value of the refinement step. The
same is observed for the unbalanced algorithms as well. Figure 8.1(c) shows
the variation in NMI across balancing constraints for the right number of
clusters. We note that the refined algorithms perform much better, although
the constraints do decrease the performance by a little amount. Interestingly,
both KMeans and SPKmeans achieve very low minimum balancing fraction.
Figure 8.1(d) shows the standard deviation in cluster sizes. The balancing al-
gorithms achieve the lowest standard deviations, as expected. Figures 8.1(e)
and 8.1(f) show the minimum-to-average ratio of cluster sizes. Clearly, the
balancing algorithms respect the constraints whereas the ratio gets really low
for the other algorithms. For a large number of clusters, almost all the un-
constrained algorithms start giving zero-sized clusters.

Figure 8.2 shows the results on yahoo. This is a very different data set from
the previous data sets since the natural clusters are highly unbalanced with
cluster sizes ranging from 9 to 494. The comparison on most measures of
performance look similar to that of other data sets. The major difference is in
the minimum-to-average ratio shown in Figures 8.2(e) and (f). As expected,
the balanced algorithms SPKpr and SPKpnr respect the constraints. The other
algorithms (except KMeans) start getting zero-sized clusters for quite low val-
ues of clusters. Also, as the balancing requirement becomes more strict (as
in Figure 8.2(f)), the disparity between the balanced and other algorithms
become more pronounced. Surprisingly, even for such an unbalanced data,
the balanced algorithms, particularly SPKpr, perform almost as good as the
unconstrained algorithms (Figure 8.2(c)).

Overall, the results show that the sampling based balanced clustering method
is able to guarantee balancing properties with little or no compromise in
matching cluster to class labels.

180 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) (b)

(c) (d)

(e) (f)

FIGURE 8.1: Results of applying the sampling based scalable balanced clus-
tering framework on the news20 data set.

Clustering with Balancing Constraints 181

(a) (b)

(c) (d)

(e) (f)

FIGURE 8.2: Results of applying the sampling based scalable balanced clus-
tering framework on the yahoo data set.

182 Constrained Clustering: Advances in Algorithms, Theory, and Applications

8.3 Frequency Sensitive Approaches for Balanced
Clustering

An alternative approach to obtain balanced clustering is via frequency sen-
sitive competitive learning (FSCL) methods for clustering [1], where clusters
of larger sizes are penalized so that points are less likely to get assigned to
them. Such an approach can be applied both in the batch as well as in the
online settings [5]. Although frequency sensitive assignments can give fairly
balanced clusters in practice, there is no obvious way to guarantee that every
cluster will have at least a pre-specified number of points. In this section, we
first outline the basic idea in FSCL, and then discuss a case study in balanced
clustering of directional data, with applications in text clustering.

8.3.1 Frequency Sensitive Competitive Learning

Competitive learning techniques employ winner-take-all mechanisms to de-
termine the most responsive cell to a given input [22, 23, 44]. If this cell or
exemplar then adjusts its afferent weights to respond even more strongly to
the given input, the resultant system can be shown to perform unsupervised
clustering. For example, the non-normalized competitive learning version of
Rumelhart and Zipser [44], essentially yields an on-line analogue of the popular
KMeans clustering algorithm. In its simplest form, one initializes k cluster pro-
totypes or representatives, then visits the data points in arbitrary sequence.
Each point is assigned to the nearest prototype (the “winner”) which in turn
moves a bit in the direction of the new point to get even closer to its most
recent member. The kinship to KMeans is obvious. There are also soft com-
petitive learning methods with multiple winners per input [53], that can be
viewed as on-line analogues of soft batch-iterative clustering algorithms such
as fuzzy c-means [10] as well as the expectation-maximization (EM)-based
approach to clustering data modeled as a mixture of Gaussians [11].

To address the problem of obtaining clusters of widely varying sizes, a “con-
science” mechanism was proposed for competitive learning [14] that made
frequently winning representatives less likely to win in the future because of
their heavier conscience. This work was followed by the notable frequency
sensitive competitive learning (FSCL) method [1, 18]. FSCL was originally
formulated to remedy the problem of under-utilization of parts of a codebook
in vector quantization. In FSCL, the competitive computing units are penal-
ized in proportion to the frequency of their winning, so that eventually all
units participate in the quantization of the data space. Specifically, [1] pro-
posed that each newly examined point x be assigned to the cluster h∗ where
h∗ = arg minh

{
nh‖x− μh‖2

}
, and nh is the number of points currently in

the hth cluster with representative μh. Thus highly winning clusters, which
have higher values of nh, are discouraged from attracting new inputs. This

Clustering with Balancing Constraints 183

also has the benefit of making the algorithm less susceptible to poor initializa-
tion. Convergence properties of the FSCL algorithm to a local minima have
been studied by approximating the final phase of the FSCL by a diffusion
process described by a Fokker-Plank equation [19].

Alternatively, suppose we initially start with a data model that is a mixture
of identity co-variance Gaussians. Points are now sequentially examined. Each
considered point is assigned to the most likely Gaussian (hard assignments),
and simultaneously shrink the covariance of this Gaussian in proportion to
the number of points that have been assigned to it so far. In this case one
can show that the assignment rule will be [5]:

h∗ = arg min
h

{
nh‖x− μh‖2 + d lnnh

}
. (8.3)

Note that the empirically proposed FSCL method [1] only considers nh‖x −
μh‖2 while a more formal treatment of the idea results in an extra second
term, namely d lnnh.

8.3.2 Case Study: Balanced Clustering of Directional Data

In this section we show how the FSCL principle can applied to problems
for which the domain knowledge indicates that data is directional [33]. For
example, existing literature on document clustering often normalize the docu-
ment vectors to unit length after all other preprocessing have been carried out.
The cosine of the angle between two such normalized vectors then serves as
the similarity measure between the two documents that they represent. Nor-
malization prevents larger documents from dominating the clustering results.
Normalization of high-dimensional vectors before clustering is also fruitful for
market basket data analysis if one is interested in, say, grouping customers
based on the similarities between the percentages of their money spent on the
various products.

A suitable generative model for directional data sets is a mixture of von
Mises-Fisher (vMF) distributions [33]. The vMF is an analogue of the Gaus-
sian distribution on a hypersphere [4, 33] in that it is the maximum entropy
distribution on the hypersphere when the first moment is fixed [29] under
the constraint that the points are on a unit hypersphere. The density of a
d-dimensional vMF distribution is given by

f(x;μ, κ) =
1

Zd(κ)
exp

(
κxT μ

)
, (8.4)

where μ represents the mean direction vector of unit L2 norm and κ is the
concentration around the mean, analogous to the mean and covariance for the
multivariate Gaussian distribution. The normalizing coefficient is

Zd(κ) = (2π)d/2Id/2−1(κ)/κd/2−1, (8.5)

184 Constrained Clustering: Advances in Algorithms, Theory, and Applications

where Ir(y) is the modified Bessel function of the first kind and order r [35].
Suppose one applies expectation maximization (EM) to maximize the likeli-

hood of fitting a mixture of vMF distributions to the data, assuming the same
κ for each mixture component. Consider a special case where the E-step as-
signs each data point to the most likely vMF distribution to have generated it.
This results in the simple assignment rule: h∗ = arg maxh xT μh. The M-step,
which involves computing the μh, h = 1, · · · , k using the current assignments
of the data, results in updating the cluster means according to:

μh =

∑
x∈Sh

x
‖
∑

x∈Sh
x‖ . (8.6)

Hence the EM iterations become identical to the spherical kmeans (SPKMeans)
algorithm, introduced by Dhillon et al. [17], and shown to be far superior
to regular KMeans for document clustering. One can further show that the
objective function to be minimized by this algorithm can be expressed as:

L({μh, Sh}k
h=1) =

1
n

k∑

h=1

∑

x∈Sh

xT μh. (8.7)

L can be interpreted as the average cosine similarity (cosine of the angle)
between any vector x and its cluster representative μh. It serves as an intrinsic
measure of cluster quality and will be called the SPKMeans objective function.

A frequency sensitive version of the above method can be constructed by
making κ inversely proportional to the number of points assigned to the cor-
responding distribution rather than keeping it constant. Thus, if nh is the
number of points assigned to Sh, then we set κh ∝ 1/nh. Thus, if a point
x is such that xT μ1 = xT μ2 but nh1 < nh2 , then x has a higher likelihood
of having been generated from Sh1 than Sh2 in the frequency sensitive set-
ting. Hence, the likelihood of points going to clusters having fewer number
of points increases and this implicitly discourages poor local solutions having
empty clusters or clusters having a very small number of points. In [5] a hard
assignment variant of EM was applied to such a frequency sensitive version
of mixture of vMF distributions to obtain three algorithms:

• fs-SPKMeans, which is a direct extension of SPKMeans using frequency
sensitive assignments;

• pifs-SPKMeans, a partially incremental version of fs-SPKMeans where
the effective number of points per cluster are updated incrementally
after processing every point and the mean of every cluster is updated in
batch once in every iteration (after processing all the points); and

• fifs-SPKMeans, which is a fully incremental version of fs-SPKMeans
where both the effective number of points per cluster and the cluster
means are updated after processing every point.

Clustering with Balancing Constraints 185

All these algorithms need to know the number of points to be processed up-
front and hence are applicable to static batch data. But suppose we are faced
with streaming data and have limited storage available. Such situations are
typical of non-stationary environments requiring continuous on-line adapta-
tion [41]. The need for clustering streaming, normalized data is encountered,
for example, for real-time incremental grouping of news stories or message
alerts that are received on-line. For constructing a balanced, online variant
of SPKMeans, we first note that a non-normalized mean μ(t+1) of (t+ 1) data
points can be written as a recursion in terms of μ(t) [50] as follows:

μ(t+1) = μ(t) +
1

t+ 1
(xt+1 − μ(t)) . (8.8)

If the data is obtained from a stationary process, i.e., the parameters of the
underlying generative model do not change with time, then μ(t), as computed
by the above recursion will converge, and do not need updating after suffi-
ciently large t. However, typical streaming data is non-stationary. There are
two popular approaches taken in such cases: (i) If the data characteristics
change abruptly, then such breakpoints can be detected, and a model is fit-
ted for each segment (regime) between two successive breakpoints, assuming
stationarity within such segments. Piecewise autoregressive modeling is an
example of such an approach. (ii) If the data characteristics vary slowly over
time, the problem may be addressed by discounting the past. In particular, a
recursion can be used that keeps an exponentially decaying window over the
history of observations and maintains the effective count ct+1 of the history
rather than the exact (t + 1). More precisely, the approximate recursion for
the mean [50] is given by:

μ̃(t+1) = μ̃(t) +
1
ct+1

(xt+1 − μ̃(t)),

where ct+1 = (1− 1/L)ct + 1 and L is a large number [38, 42, 50]. Note that
this exponential decay factor of (1 − 1/L) ensures that ct+1 converges from
below to L. Thus, after the “cold start” period is over, the history maintained
in the computation has an effective length L. The choice of L depends on the
degree of non-stationarity, and a fundamental trade-off between resolution
and memory depth is encountered [40]. One can take a similar approach for
approximating the normalized mean. Now, to make the frequency sensitive
version of SPKMeans applicable to streaming data, as before, we want to make
κh ∝ 1/nh. However, the number of points to be processed, nh is unknown
and may be unbounded. Using an exponential decay recursion for nh so that
ñ

(t+1)
h = (1− 1/L)ñ(t)

h + 1 and ñ(0)
h = 0, one obtains [5]:

μ̃
(t+1)
h =

μ̃
(t)
h + 1

ñ
(t+1)
h

(xt+1 − μ̃
(t)
h)

‖μ̃(t)
h + 1

ñ
(t+1)
h

(xt+1 − μ̃
(t)
h)‖

, (8.9)

186 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Also, the most likely distribution to have generated a particular point xi is
given by

h∗ = arg max
h

1

ñ
(t)
h

{

xT μ̃
(t)
h + 1− ñ

(t)
h

Ld
log ñ(t)

h

}

. (8.10)

Using these results, algorithm sfs-SPKMeans, a variant of frequency sensitive
SPKMeans applicable to streaming data, can be constructed.

8.3.3 Experimental Results

Let us now look at how the balanced variants of SPKMeans compare with
the original version, using the same two data sets as in Section 8.2.2. In
addition to the metrics used to gauge cluster quality and balancing in Sec-
tion 8.2.2, we use an additional intrinsic measure of cluster quality, namely the
SPKMeans objective function (SOF) value (8.7). Note that using this measure
favors SPKMeans which optimizes this measure, while all the proposed meth-
ods attempt to optimize modified versions of this objective that also weave in
balancing constraints. As before, all the results presented are averaged over
10 runs. The initial k means of the SPKMeans were generated by computing
the mean of the entire data and making k small random perturbations to this
mean [16]. For stability and repeatability, the frequency sensitive algorithms
were initialized at points of local minima of the SPKMeans objective function.

8.3.3.1 Experiments with Batch Algorithms

For news20, fs-SPKMeans and fifs-SPKMeans show very similar behav-
ior (Figure 8.3). pifs-SPKMeans has a high bias toward balancing, whereas
SPKMeans has no explicit mechanism for balancing. All the algorithms achieve
their individual highest values of the NMI at k = 20, which is the correct num-
ber of clusters (Figure 8.3(a)). At k = 20, fifs-SPKMeans and fs-SPKMeans
perform better than the other two in terms of the NMI, and also show good
balancing. For lower values of k, pifs-SPKMeans performs worse than the
other three, which have quite similar behavior. For much higher values of k,
SPKMeans has significantly higher values of NMI compared to the three pro-
posed approaches, since it starts generating zero-sized clusters (Figure 8.3(d))
thereby maintaining the objective as well as NMI at a reasonable value. On the
other hand, since none of the proposed algorithms generate zero-sized clusters,
their performance in terms of NMI suffers. As seen from Figures 8.3(c),(d),
pifs-SPKMeans has the most bias toward balancing, thereby achieving the
lowest SDCS and the highest RME values for the entire range of k over which
experiments were performed. It is interesting to note that fs-SPKMeans and
fifs-SPKMeans seem to follow a middle ground in terms of cluster balancing
and quality biases. Surprisingly, the SOF values for the proposed algorithms
are equal or greater than those achieved by SPKMeans.

As mentioned earlier, yahoo is highly imbalanced in the true class sizes.

Clustering with Balancing Constraints 187

(a) (b)

(c) (d)

FIGURE 8.3: Comparison between the static frequency sensitive versions of
spherical k-means on the News20 data: (a) the normalized mutual information
values, (b) the SPKMeans objective function values, (c) the standard deviation
in cluster sizes, and (d) the ratio of the minimum to expected cluster size
values.

Hence, results on this data set show how the proposed algorithms handle the
data when their balancing bias is not going to help. It is interesting to see
that the performance of the algorithms in terms of the NMI is quite similar to
what was observed for news20. As before fs-SPKMeans and fifs-SPKMeans
perform very similarly and the NMI values they achieve deteriorate for val-
ues of k greater than 20, the correct number of clusters (Figure 8.4(a)).
pifs-SPKMeans performs poorly in terms on the NMI because of its high
bias toward balancing that does not help in this particular data set. It also
performs slightly worse than the other algorithms in terms of the SOF values
(Figure 8.4(b)). However, as before, it consistently gives the lowest SDCS
(Figure 8.4(c)) and highest RME values (Figure 8.4(d)). SPKMeans maintains
a reasonable value of the NMI even for large values of k by generating empty

188 Constrained Clustering: Advances in Algorithms, Theory, and Applications

clusters. It is interesting to note that due to the fact that the natural clus-
ters are not at all balanced, fs-SPKMeans and fifs-SPKMeans give quite low
values of RME, but never actually give a zero-sized cluster in the range of k
over which experiments were performed. Again, these two algorithms seem
to have a good balance between the biases and can respond quite well to the
underlying nature of the data set.

(a) (b)

(c) (d)

FIGURE 8.4: Comparison between the static frequency sensitive versions of
spherical k-means on the Yahoo20 data: (a) the normalized mutual informa-
tion values, (b) the SPKMeans objective function values, (c) standard deviation
in cluster sizes, and (d) the ratio of the minimum to expected cluster size val-
ues.

Summary of Results: Both fs-SPKMeans and fifs-SPKMeans perform ad-
mirably when the value of k chosen is in the neighborhood of the number of
classes in the data. They are comparable to or superior than SPKMeans in

Clustering with Balancing Constraints 189

terms of cluster quality, and superior in terms of balancing. This result is
particularly remarkable for yahoo, where the underlying classes have widely
varying priors. This is indicative of the beneficial effect of the regularization
provided by the soft balancing constraint. However, if k is chosen to be much
larger than the number of natural clusters, SPKMeans has an advantage since
it starts generating zero-sized clusters, while the others are now hampered by
their proclivity to balance cluster sizes. On the other hand, if balancing is
very critical, then pifs-SPKMeans is the best choice, but it has to compromise
to some extent on cluster quality in order to achieve its superior balancing.
So the choice of algorithm clearly depends on the nature of the data set and
the clustering goals, but, in general, both fs-SPKMeans and fifs-SPKMeans
are attractive even when balancing is not an objective.

8.3.3.2 Experiments with the Streaming Algorithm

The experiments with streaming algorithms were done by artificially “stream-
ing” the static data sets. The data points are presented sequentially to the
sfs-SPKMeans algorithm, repeating the process as many times as necessary
in order to simulate streaming data. We call a sequence of showing every
document in the selected data set once as an epoch, and the algorithm is
run over multiple epochs until it converges or some preset maxEpoch value
is reached. We now present results corresponding to two choices of L—100
and 1000. The corresponding algorithms are referred to as sfs100-SPKMeans
and sfs1000-SPKMeans, respectively. Note that both of these values of L are
less than the data set sizes. This means that sfs-SPKMeans has less effec-
tive memory than the static algorithms. In fact, such a low effective memory
handicaps the streaming algorithm as compared to the static ones which use
all the data to update their parameters. As we shall see, the streaming algo-
rithm actually performs reasonably well even with this handicap. Additional
results with other values of L are given in [5].

In news20, the streaming algorithms perform significantly better than the
static ones in terms of the NMI (Figure 8.5(a)). The reason for this surprising
result appears to be that since the natural clusters in the data are perfectly
balanced and the streaming algorithms are biased toward balanced cluster-
ing, they get the correct structure in the data due to their bias. Further,
the streaming approach is possibly avoiding bad local minima that affects
the performance of KMeans and variants. Among the streaming algorithms,
infs100-SPKMeans performs marginally better than infs1000-SPKMeans though
the differences are not always significant. The SOF values for the static algo-
rithms are significantly better than those achieved by the streaming algorithms
(Figure 8.5(b)). There is no significant difference in the SDCS for the various
algorithms (Figure 8.5(c)). The frequency sensitive algorithms perform bet-
ter than SPKMeans in terms of the RME values, and the streaming algorithms
give higher values of RME than fs-SPKMeans (Figure 8.5(d)).

In yahoo, the static algorithms seem to achieve higher values of NMI than

190 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) (b)

(c) (d)

FIGURE 8.5: Comparison between streaming and static algorithms on the
News20 data: (a) the normalized mutual information values, (b) the SPKMeans
objective function values, (c) the standard deviation in cluster sizes, and (d)
the ratio of the minimum to the expected cluster size values.

the streaming ones (Figure 8.6(a)). In the trade-off between balancing and
cluster quality, the streaming algorithms seem to give more importance to
the balancing aspect whereas the static ones seem to give higher priority
to the cluster quality. The streaming algorithms, being biased toward the
balancing criterion, perform poorly in terms of the NMI in this data set that
has highly unbalanced natural clusters. Due to this bias, they give significantly
better RME values as compared to the static algorithms (Figure 8.6(d)). Like
news20, the SOF values achieved by the static algorithms are significantly
better than those by the streaming ones (Figure 8.6(b)). Also, similar to
news20, there is not much difference in the SDCS across all the algorithms
(Figure 8.6(c)).

Clustering with Balancing Constraints 191

(a) (b)

(c) (d)

FIGURE 8.6: Comparison between streaming and static algorithms on the Ya-
hoo20 data: (a) the normalized mutual information values, (b) the SPKMeans
objective function values, (c) the standard deviation in cluster sizes, and (d)
the ratio of minimum to the expected cluster size values.

8.4 Other Balanced Clustering Approaches

In this section, we first briefly comment on the balancing properties of
commonly used clustering approaches and then discuss alternative approaches
for balanced clustering.

We begin by noting that widely used clustering algorithms based on KMeans,
expectation maximization (EM), and variants do not have any explicit way to
guarantee that there is at least a certain minimum number of points per clus-
ter, though, in theory, they have an implicit way of preventing highly skewed
clusters [31]. For extreme situations when both the input dimensionality and
the number of clusters is high, several researchers [9, 17, 24] have observed

192 Constrained Clustering: Advances in Algorithms, Theory, and Applications

that KMeans and related variants quite often generate some clusters that are
extremely small or even empty. Note that such imbalances arise in the assign-
ment step, since the step of updating means does not directly govern cluster
size. The cluster assignment step can be modified by solving a minimum cost
flow problem satisfying constraints [9] on the cluster sizes, as was done in [20]
to obtained balanced groupings in energy-aware sensor networks. However
this approach is O(N3) and thus has poor scaling properties.

Agglomerative clustering methods also do not provide any guarantees on
balancing. Complete link agglomerative clustering as well as Ward’s method
produce more compact clusters as compared to the single link or nearest neigh-
bor agglomerative methods, but these clusters could be of widely varying sizes.
Note that any agglomerative clustering method can be readily adapted so that
once a cluster reaches a certain size in the bottom-up agglomeration process,
it can be removed from further consideration. However, this may significantly
impact cluster quality. Moreover, agglomerative clustering methods have a
complexity of Ω(N2) and hence do not scale well.

In contrast, certain top-down or divisive clustering methods tend to pro-
vide more balanced solutions. Most notable in this category is bisecting
kmeans [46] which recursively partitions the current largest cluster into two
clusters by solving a 2-means problem. If one ensures that the final split
results in two clusters of the same size, then one can show that the largest
cluster is no more than twice the size of the second largest one. However, no
statement can be made of the smallest cluster size.

A pioneering study of constrained clustering in large databases was pre-
sented by Tung et al. [51]. They describe a variety of constraints that may
be imposed on a clustering solution, but subsequently focus solely on a bal-
ancing constraint on certain key objects called pivot objects. They start with
any clustering (involving all the objects) that satisfies the given constraints.
This solution is then refined so as to reduce the clustering cost, measured as
net dispersion from nearest representatives, while maintaining the constraint
satisfaction. The refinement proceeds in two steps: pivot movement and
deadlock resolution, both of which are shown to be NP-hard. They propose
to scale their approach by compressing the objects into several tight “micro-
clusters”[12] where possible, in a pre-clustering stage, and subsequently doing
clustering at the micro-cluster level. Since this is a coarse grain solution, an
option of finer grain resolution needs to be provided by allowing pivot points
to be shared among multiple micro-clusters. This last facility helps to im-
prove solution quality, but negates some of the computational savings in the
process.

8.4.1 Balanced Clustering by Graph Partitioning

Of the very wide variety of approaches that have been proposed for clus-
tering [21, 28], methods based on graph partitioning form the only general
category that provides soft balancing. A clustering problem can be converted

Clustering with Balancing Constraints 193

into a problem of graph partitioning as follows [30, 48]: A weighted graph
is constructed whose vertices are the data points. An edge connecting two
vertices has a weight proportional to the similarity between the correspond-
ing data points. Thus vertices that represent very similar points are more
strongly connected. The choice of the similarity measure quite often depends
on the problem domain, e.g., Jaccard coefficient for market-baskets, normal-
ized dot products for text, etc. If a pairwise distance value, d, is available
instead of similarity, s, then it can be converted into a similarity value using
a suitable inverse, monotonic relationship such as: s = e−d2

or s = 1
1+d [49].

Alternatively one can apply multi-dimensional scaling to the data to get an
embedding into a low-dimensional vector space from which the distances can
be obtained.

The weighted graph is then partitioned into k disjoint subgraphs by remov-
ing a set of edges, known as the “cut.” The basic objective function is to
minimize the size of this cut, which is calculated as the sum of the weights
of all edges belonging to the cut. This tends to retain highly similar points
in the same partition, which is also the objective of clustering. The simple
min-cut objective has no balancing constraint, and may produce cuts that
isolate a very small subset of the points from the rest, but are not of high
quality from a clustering viewpoint. The balanced clustering objective func-
tions based on graph partitioning are typically a normalized variant of the
simple min-cut objective that ensures that the different partitions are compa-
rable in size. Several ways of normalizing the cut using this added penalty are
surveyed in [15], which also shows how graph clustering methods are related
to kernel k-means. Note that the penalty term incorporated into the min-cut
problem in order to obtain useful solutions explicitly provides a soft balancing
constraint.

A case study of applying graph partitioning to balanced clustering of market
baskets is given in [48]. In this work, the need for balancing came from a do-
main requirement of obtaining groups of customers so that (i) each group has
about the same number of customers, or (ii) each group represents comparable
revenue amounts. Both types of constraints were obtained through a suitable
formulation of the efficient hierarchical “min-cut” algorithm, METIS [30], and
a simple visualization scheme was used to show the balanced nature of the
clusterings obtained.

Overall, graph partitioning or spectral clustering methods often give very
good results, but they involve Ω(N2) complexity in both memory requirements
and computational complexity, since the size of the similarity matrix itself is
N2. In some situations, a similarity threshold can be used, so entries with
similarity values less than the threshold are zeroed out. If the resultant graph
is highly sparse, then more efficient storage and computational methods are
available.

194 Constrained Clustering: Advances in Algorithms, Theory, and Applications

8.4.2 Model-Based Clustering with Soft Balancing

In model-based clustering, one estimates k probabilistic models from the N
objects to be clustered, with each model representing a cluster. Perhaps the
most well-known model-based technique is to fit a mixture of k multivariate
Gaussians to a set of vectors using the EM algorithm. Here each Gaussian
represents a cluster. But model-based clustering is a very general and versa-
tile framework, catering to a wide variety of data types/datasets so long as
reasonable probabilistic models are known for them [8, 13, 34, 54, 55]. For ex-
ample, certain sets of strings are well-characterized using a mixture of hidden
Markov models. For this reason, this section uses the term “objects” rather
than “data points” for the entities being clustered.

When assigning object x to cluster y, the goal is to maximize the expected
log-likelihood

L =
∑

x

P (x)
∑

y

P (y|x) log p(x|λy), (8.11)

where λy represents (the parameters of) model y [31]. Directly maximizing
(8.11) over P (y|x) and λy leads to a generic model-based k-means algorithm
which iterates between the following two steps:

P (y|x) =
{

1, y = arg maxy′ log p(x|λy′);
0, otherwise, (8.12)

and
λy = arg max

λ

∑

x

P (y|x) log p(x|λy) . (8.13)

To make the data assignment step soft, one adds entropy terms to (8.11) [43],
to get a modified objective: L1 = L+T ·H(Y |X)−T ·H(Y) = L−T ·I(X;Y),
where I(X;Y) is the mutual information between the set X of all objects and
the set Y of all cluster indices. The parameter T is a Lagrange multiplier
used to trade-off between maximizing the average log-likelihood L and mini-
mizing the mutual information between X and Y , and can be interpreted as
“temperature” using an analogy with deterministic annealing [43]. The net
effect of the added term is to modify the assignment update to:

P (y|x) =
P (y)p(x|λy)

1
T

∑
y′ P (y)p(x|λy′)

1
T

, (8.14)

which now fractionally assigns each object to each cluster.
In [55], a simple but effective and efficient soft balancing strategy was pro-

posed for the general soft model-based clustering framework described above.
The key idea was to add another penalty that constrains the expected number
of data objects in each cluster to be equal, rather than constraining the actual
number of data objects in each cluster to be equal. In the resulting algorithm,
the temperature parameter controls both the softness of clustering as well as

Clustering with Balancing Constraints 195

that of balancing, and provides a useful knob for users to adjust the level of
balancing.

The soft balancing constraints are expressed as:

∑

x

P (y|x) =
N

K
, ∀y , (8.15)

and the modified Lagrangian is

L2 = L1 +
∑

x

ξx(
∑

y

P (y|x)− 1) +
∑

y

ηy

(
∑

x

P (y|x)−M
)

, (8.16)

where ξx and ηy are Lagrange multipliers. The resulting assignment step is
now:

P (y|x) =
P (y) [eηyp(x|λy)]

1
T

∑
y′ P (y′) [eηy′p(x|λy′)]

1
T

. (8.17)

For balanced clustering, it makes sense to set P (y) to be 1/K, which eliminates
P (y) from (8.17). Substituting (8.17) into (8.15) and some algebra results in
an iterative formula for βy = eηy [55]:

log β(t+1)
y = T · log

(
N

K

)

−T · log

⎛

⎝
∑

x

e
1
T log p(x|λy)

∑
y′ e

1
T

“
log β

(t)
y′ +log p(x|λy′)

”

⎞

⎠, (8.18)

where t is the iteration number, and log() is taken to avoid possible prob-
lems with very small likelihood values. For speedier computation, an anneal-
ing approach can be taken for computing log βy. That is, one starts from a
high temperature (e.g., T = 0.1) and quickly lowers the temperature toward
T = 0.01. At every temperature a small number of iterations are run after
initializing log βy’s using the values computed from the previous temperature.

Compared to hard balancing, soft balancing for model-based clustering can
be solved exactly and efficiently using the iterative strategy described above. If
we fix the maximum number of iterations, the time complexity for computing
log β’s is O(KN). Detailed derivations and experimental results that show
the impact of temperature on balancing as well as on cluster quality can be
found in [55].

8.5 Concluding Remarks

Obtaining a balanced solution is an explicit goal in certain clustering appli-
cations, irrespective of the underlying structure of the data. In other cases,

196 Constrained Clustering: Advances in Algorithms, Theory, and Applications

obtaining clusters of comparable sizes is not a stated objective, but some
amount of balancing helps in countering poor initializations in iterative clus-
tering algorithms that converge only to a local optimum. In this chapter we
covered a variety of methods for achieving scalable, balanced clustering. It
will be instructive to carry out a detailed empirical comparison of the dif-
ferent approaches across different types data sets to further understand the
strengths of each approach.

Another important issue that was not covered, however, is how to determine
the appropriate number of clusters. This model selection issue in clustering
has been extensively studied. Techniques range from information theoretic
criteria [2, 45] for model comparison to purely Bayesian approaches such as
reversible jump MCMC. But there is no universally accepted solution [28].
Moreover, not much work is available on model selection within a balanced
clustering framework. One promising approach is to adapt competitive learn-
ing variants that add new clusters if need be as more data is encountered (see
[53] and references cited therein). Alternatively, one can first obtain solutions
for different values of k and then select a suitable one based on an appropriate
model selection criterion that is modified to include a balancing criterion.

Acknowledgments

This research was supported in part by the Digital Technology Center Data
Mining Consortium (DDMC) at the University of Minnesota, Twin Cities,
and NSF grants IIS-0307792 and III-0713142.

References

[1] S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton. Com-
petitive learning algorithms for vector quantization. Neural Networks,
3(3):277–290, 1990.

[2] H. Akaike. A new look at statistical model identification. IEEE Trans-
actions on Automatic Control, AU-19:716–722, 1974.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison Wesley, New York, 1999.

[4] A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra. Clustering on the unit

Clustering with Balancing Constraints 197

hypersphere using von Mises-Fisher distributions. Journal of Machine
Learning Research, 6:1345–1382, 2005.

[5] A. Banerjee and J. Ghosh. Frequency sensitive competitive learning for
balanced clustering on high-dimensional hyperspheres. IEEE Transac-
tions on Neural Networks, 15(3):702–719, May 2004.

[6] A. Banerjee and J. Ghosh. Scalable clustering algorithms with balancing
constraints. Data Mining and Knowledge Discovery, 13:265–295, Nov
2006.

[7] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Breg-
man divergences. Journal of Machine Learning Research, 6:1705–1749,
2005.

[8] J. D. Banfield and A. E. Raftery. Model-based Gaussian and non-
Gaussian clustering. Biometrics, 49:803–821, 1993.

[9] K. Bennet and E. Bredensteiner. Duality and geometry in svm classi-
fiers. In Proceedings of the 17th International Conference on Machine
Learning, 2000.

[10] J. C. Bezdek and S. K. Pal. Fuzzy Models for Pattern Recognition. IEEE
Press, Piscataway, NJ, 1992.

[11] J. A. Blimes. A gentle tutorial of the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models.
Technical report, UC Berkeley, April 1998.

[12] P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling clustering algo-
rithms to large databases. In Proceedings of the 4th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
9–15, 1998.

[13] I. V. Cadez, S. Gaffney, and P. Smyth. A general probabilistic framework
for clustering individuals and objects. In Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 140–149, Aug 2000.

[14] D. deSieno. Adding conscience to competitive learning. In IEEE Annual
International Conference on Neural Networks, pages 1117–1124, 1988.

[15] I. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means,
spectral clustering and graph clustering. In UTCS Technical Report
TR-04-05, 2005.

[16] I. S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large
document collections. In R. Grossman, C. Kamath, V. Kumar, and
R. Namburu, editors, Data Mining for Scientific and Engineering Ap-
plications. Kluwer Academic Publishers, 2001.

198 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[17] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse
text data using clustering. Machine Learning, 42(1):143–175, 2001.

[18] A. S. Galanopoulos and S. C. Ahalt. Codeword distribution for frequency
sensitive competitive learning with one-dimensional input data. IEEE
Transactions on Neural Networks, 7(3):752–756, 1996.

[19] A. S. Galanopoulos, R. L. Moses, and S. C. Ahalt. Diffusion approxi-
mation of frequency sensitive competitive learning. IEEE Transactions
on Neural Networks, 8(5):1026–1030, Sept 1997.

[20] S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh. Optimal energy
aware clustering in sensor networks. Sensors, 2:258–269, 2002.

[21] J. Ghosh. Scalable clustering. In N. Ye, editor, The Handbook of Data
Mining, pages 247–277. Lawrence Erlbaum, 2003.

[22] S. Grossberg. Adaptive pattern classification and universal recoding: 1.
Parallel development and coding of neural feature detectors. Biological
Cybernetics, 23:121–134, 1976.

[23] S. Grossberg. Competitive learning: From interactive action to adaptive
resonance. Cognitive Science, 11:23–63, 1987.

[24] Y. Guan, A. Ghorbani, and N. Belacel. Y-means: A clustering method
for intrusion detection. In Proceedings Canadian Conference on Electri-
cal and Computer Engineering, pages 1083–1086, May 2003.

[25] G. Gupta and M. Younis. Load-balanced clustering of wireless networks.
In Proceedings IEEE International Conference on Communications, vol-
ume 3, pages 1848–1852, May 2003.

[26] G. K. Gupta and J. Ghosh. Detecting seasonal trends and cluster motion
visualization for very high dimensional transactional data. In Proceed-
ings First SIAM Conference on Data Mining, pages 115–129, 2001.

[27] D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure
and Algorithms. MIT Press, Cambridge, MA, 1989.

[28] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice
Hall, New Jersey, 1988.

[29] J. N. Kapur and H. K. Kesavan. Entropy Optimization Principles with
Applications. Academic Press, 1992.

[30] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing,
20(1):359–392, 1998.

[31] M. Kearns, Y. Mansour, and A. Ng. An information-theoretic analysis
of hard and soft assignment methods for clustering. In Proceedings of the

Clustering with Balancing Constraints 199

13th Annual Conference on Uncertainty in Artificial Intelligence (UAI),
pages 282–293, 1997.

[32] P. J. Lynch and S. Horton. Web Style Guide: Basic Design Principles
for Creating Web Sites. Yale University Press, 2002.

[33] K. V. Mardia. Statistics of directional data. Journal of the Royal Sta-
tistical Society, Series B (Methodological), 37(3):349–393, 1975.

[34] G. McLachlan and K. Basford. Mixture Models: Inference and Applica-
tions to Clustering. Marcel Dekker, New York, 1988.

[35] N. W. McLachlan. Bessel Functions for Engineers. Oxford University
Press, 1955.

[36] D. Modha and S. Spangler. Feature weighting in k-means clustering.
Machine Learning, 52(3):217–237, 2003.

[37] R. Motwani and P. Raghavan. Randmized Algorithms. Cambridge Uni-
versity Press, 1995.

[38] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In M. I. Jordan, editor, Learning
in Graphical Models, pages 355–368. MIT Press, 1998.

[39] Neilson Marketing Research. Category Management: Positioning Your
Organization to Win. McGraw-Hill, 1993.

[40] J. C. Principe, J.-M. Kuo, and S. Celebi. An analysis of the gamma
memory in dynamic neural networks. IEEE Transactions on Neural
Networks, 5:331–337, March 1994.

[41] V. Ramamurti and J. Ghosh. On the use of localized gating in mixtures
of experts networks. In (invited paper), SPIE Conference on Applications
and Science of Computational Intelligence, SPIE Proceedings, Volume
3390, pages 24–35, Orlando, FL, April 1998.

[42] V. Ramamurti and J. Ghosh. Structurally adaptive modular networks
for nonstationary environments. IEEE Transactions on Neural Net-
works, 10(1):152–160, 1999.

[43] K. Rose. Deterministic annealing for clustering, compression, classifica-
tion, regression, and related optimization problems. Proceedings of the
IEEE, 86(11):2210–39, 1998.

[44] D. E. Rumelhart and D. Zipser. Feature discovery by competive learning.
Cognitive Science, 9:75–112, 1985.

[45] G. Schwatz. Estimating the dimension of a model. The Annals of Statis-
tics, 6(2):461–464, 1978.

[46] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document
clustering techniques. In KDD Workshop on Text Mining, 2000.

200 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[47] A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse frame-
work for combining partitionings. Journal of Machine Learning Re-
search, 3(3):583–617, 2002.

[48] A. Strehl and J. Ghosh. Relationship-based clustering and visualization
for high-dimensional data mining. INFORMS Journal on Computing,
15(2):208–230, 2003.

[49] A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures on
web-page clustering. In Proceedings of the 7th National Conference on
Artificial Intelligence: Workshop of AI for Web Search, pages 58–64.
AAAI, July 2000.

[50] H. G. C. Traven. A neural network approach to statistical pattern classi-
fication by “semiparametric” estimation of probability density functions.
IEEE Transactions on Neural Networks, 2(3):366–377, 1991.

[51] A. K. H. Tung, R. T. Ng, L. V. S. Laksmanan, and J. Han. Constraint-
based clustering in large databses. In Proceedings of the International
Conference on Database Theory (ICDT’01), Jan 2001.

[52] Y. Yang and B. Padmanabhan. Segmenting customer transactions using
a pattern-based clustering approach. In Proceedings of the Third IEEE
International Conference on Data Mining, pages 411–419, Nov 2003.

[53] Y. J. Zhang and Z. Q. Liu. Self-splitting competitive learning: A new
on-line clustering paradigm. IEEE Transactions on Neural Networks,
13(2):369–380, March 2002.

[54] S. Zhong and J. Ghosh. Scalable, balanced, model-based clustering. In
Proceedings of the 3rd SIAM Conference on Data Mining, pages 71–82,
April 2003.

[55] S. Zhong and J. Ghosh. A unified framework for model-based clustering.
Journal of Machine Learning Research, 4:1001–1037, 2003.

Chapter 9

Using Assignment Constraints to
Avoid Empty Clusters in k-Means
Clustering

Ayhan Demiriz
Sakarya University, ademiriz@gmail.com

Kristin P. Bennett
Rensselaer Polytechnic Inst., bennek@rpi.edu

Paul S. Bradley
Apollo Data Technologies, paul@apollodatatech.com

Abstract We consider practical methods for adding constraints to the
k-means clustering algorithm in order to avoid local solutions with empty
clusters or clusters having very few points. We often observe this phenom-
ena when applying k-means to data sets where the number of dimensions is
d ≥ 10 and the number of desired clusters is k ≥ 20. Moreover, recent stud-
ies have shown successful formulations of various other types of constraints.
Particularly, must-link and cannot-link types constraints have been studied in
several papers. An appropriate objective function needs to be constructed to
find clusters that satisfy minimum capacity, must-link and cannot-link pair-
wise constraints at the same time. Obviously, it requires an analysis of the
applicability and the level of complexity of the constraint types.

We propose explicitly adding k constraints to the underlying clustering
optimization problem requiring that each cluster have at least a minimum
number of points in it, i.e., minimum capacity. We then investigate the re-
sulting cluster assignment step. Numerical tests on real data sets indicate
that the constrained approach is less prone to poor local solutions, produc-
ing a better summary of the underlying data. We also successfully formulate
extended optimization models to cover other types of assignment constraints,
specifically pairwise assignment constraints as well.

201

202 Constrained Clustering: Advances in Algorithms, Theory, and Applications

9.1 Introduction

The k-means clustering algorithm [16] has become a workhorse for the data
analyst in many diverse fields. One drawback to the algorithm occurs when it
is applied to data sets with n data points in d ≥ 10 dimensional real space R

d

and the number of desired clusters is k ≥ 20. In this situation, the k-means
algorithm often converges with one or more clusters which are either empty
or summarize very few data points (i.e., one data point). Preliminary tests on
clustering sparse 300-dimensional web-browsing data indicate that k-means
frequently converges with truly empty clusters. For k = 50 and k = 100, on
average 4.1 and 12.1 clusters are empty.

Incorporating prior knowledge, whether in the form of firmly defining the
number of non-empty clusters or pairwise relationships, is very essential in
partially supervised clustering. Like the general clustering problem, the par-
tially supervised clustering problem can also be posed as an optimization
problem. With partial supervision, the underlying clustering model can be
used to prevent poor local solutions.

We propose explicitly adding k constraints to the underlying clustering op-
timization problem requiring that cluster h contain at least τh points. We
focus on the resulting changes to the k-means algorithm and compare the
results from standard k-means and the proposed constrained k-means algo-
rithms. Empirically, for modest values of τh, solutions are obtained that better
summarize the underlying data.

Since clusters with very few or no data points may be artifacts of poor lo-
cal minima, typical approaches to handling them within the standard k-means
framework include re-running the algorithm with new initial cluster centers or
checking the cluster model at algorithm termination, resetting empty clusters,
and re-running the algorithm. Our approach avoids the additional computa-
tion of these heuristics which may still produce clusters with too few points. In
addition to providing a well-posed mathematical way to avoid small clusters,
this work can be generalized to other constraints ensuring desirable clustering
solutions (e.g., outlier removal or specified groupings) and to expectation-
maximization probabilistic clustering.

Alternatively, empty clusters can be regarded as desirable “natural” regu-
larizers of the cluster model. This heuristic argument states that if the data
does not “support” k clusters, then allowing clusters to go empty, and hence
reducing the value of k, is a desirable side effect. But there are applications
in which, given a value of k, one desires to have a cluster model with k non-
empty clusters. These include the situation when the value of k is known a
priori and applications in which the cluster model is utilized as a compressed
version of a specific data set [5, 19].

A significant part of this chapter is based on our earlier work in [8]. How-
ever we extend our formulations in this chapter to cover pairwise assignment

Cluster Size Constraints in k-Means Clustering 203

constraints and a new constraint on minimum capacity on labeled points as-
signed to each cluster. The remaining portion of the chapter is organized as
follows. Section 9.2 formalizes the constrained clustering optimization prob-
lem and outlines the algorithm computing a locally optimal solution. The
sub-problem of computing cluster assignments so that cluster h contains at
least τh points is discussed in Section 9.3. Section 9.4 presents numerical
evaluation of the algorithm in comparison with the standard k-means imple-
mentation on real data sets. We report results on both small and large data
sets in Section 9.4. In addition to constrained k-means results, we report also
constrained k-median results and compare them. In Section 9.5, we provide
a wide variety of extensions to our base model to incorporate new types of
assignment constraints and Section 9.6 concludes the chapter.

9.2 Constrained Clustering Problem and Algorithm

Given a data set X = {xi}n
i=1 of n points in R

d and a number k of desired
clusters, the k-means clustering problem is as follows. Find cluster centers
μ1, μ2, . . . , μk in R

d such that the sum of the 2-norm distance squared between
each point xi and its nearest cluster center μh is minimized. Specifically:

min
μ1,...,μk

n∑

i=1

min
h=1,...,k

(
1
2
‖xi − μh‖2

)

. (9.1)

By [10, Lemma 2.1], Problem (9.1) is equivalent to the following problem
where the min operation in the summation is removed by introducing “selec-
tion” variables Ti,h:

minimize
μ,T

n∑

i=1

k∑

h=1

Ti,h ·
(

1
2
‖xi − μh‖2

)

s.t.

k∑

h=1

Ti,h = 1, i = 1, . . . , n,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.2)

Note that Ti,h = 1 if data point xi is closest to center μh and zero otherwise.
Problem (9.2), or equivalently (9.1), is solved by the k-means algorithm

iteratively. In each iteration, Problem (9.2) is solved first for Ti,h with the
cluster centers μh fixed. Then, (9.2) is solved for μh with the assignment
variables Ti,h fixed. The stationary point computed satisfies the Karush-
Kuhn-Tucker (KKT) conditions [17] for Problem (9.2), which are necessary
for optimality.

204 Constrained Clustering: Advances in Algorithms, Theory, and Applications

k-Means Clustering Algorithm Given a database X of n points
in R

d and cluster centers μ1,t, μ2,t, . . . , μk,t at iteration t, compute
μ1,t+1, μ2,t+1, . . . , μk,t+1 at iteration t+ 1 in the following 2 steps:

1. Cluster Assignment. For each data record xi ∈ X , assign xi to cluster
h(i) such that center μh(i),t is nearest to xi in the 2-norm.

2. Cluster Update. Compute μh,t+1 as the mean of all points assigned
to cluster h.

Stop when μh,t+1 = μh,t, h = 1, . . . , k, else increment t by 1 and go to step 1.

Suppose cluster h is empty when Algorithm 9.2 terminates, i.e.,
n∑

i=1

Ti,h =

0. The solution computed by Algorithm 9.2 in this case satisfies the KKT
conditions for Problem (9.2). Hence, it is plausible that the standard k-
means algorithm may converge with empty clusters. In practice, we observe
this phenomenon when clustering high-dimensional data sets with a large
number of clusters.

The KKT conditions [17] for Problem (9.2) are:

k∑

h=1

Ti,h = 1∀i, Ti,h ≥ 0∀i, h,

‖xi − μh‖2 = min
h̃=1,...,k

‖xi − μh̃‖2 ⇔ Ti,h ≥ 0,

n∑

i=1

Ti,h > 0 ⇒ μh =

n∑

i=1

Ti,hxi

n∑

i=1

Ti,h

n∑

i=1

Ti,h = 0 ⇒ μh arbitrary.

To avoid solutions with empty clusters, we propose explicitly adding con-
straints to Problem (9.2) requiring that cluster h contain at least τh data

points, where
k∑

h=1

τh ≤ n. This yields the following constrained k-means

Cluster Size Constraints in k-Means Clustering 205

problem:

minimize
μ,T

n∑

i=1

k∑

h=1

Ti,h ·
(

1
2
‖xi − μh‖2

)

s.t.

n∑

i=1

Ti,h ≥ τh, h = 1, . . . , k

k∑

h=1

Ti,h = 1, i = 1, . . . , n,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.3)

Like the classic k-means algorithm, we propose an iterative algorithm to solve
(9.3).

Constrained k-Means Clustering Algorithm Given a database X
of n points in R

d, minimum cluster membership values τh ≥ 0, h =
1, . . . , k and cluster centers μ1,t, μ2,t, . . . , μk,t at iteration t, compute
μ1,t+1, μ2,t+1, . . . , μk,t+1 at iteration t+ 1 in the following 2 steps:

1. Cluster Assignment. Let T t
i,h be a solution to the following linear

program with μh,t fixed:

minimize
T

n∑

i=1

k∑

h=1

Ti,h ·
(

1
2
‖xi − μh,t‖2

)

s.t.

n∑

i=1

Ti,h ≥ τh, h = 1, . . . , k

k∑

h=1

Ti,h = 1, i = 1, . . . , n,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.4)

2. Cluster Update. Update μh,t+1 as follows:

μh,t+1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

T t
i,hxi

n∑

i=1

T t
i,h

if
n∑

i=1

T t
i,h > 0,

μh,t otherwise.

Stop when μh,t+1 = μh,t, h = 1, . . . , k, else increment t by 1 and go to step 1.

Like the traditional k-means approach, the constrained k-means algorithm

206 Constrained Clustering: Advances in Algorithms, Theory, and Applications

iterates between solving (9.3) in Ti,h for fixed μh, then solving (9.3) in μh for
fixed Ti,h. We end this section by with a finite termination result similar to
[9, Theorem 7].

PROPOSITION 9.1

The constrained k-means algorithm 9.2 terminates in a finite number of itera-
tions at a cluster assignment that is locally optimal. Specifically, the objective
function of (9.3) cannot be decreased by either reassignment of a point to a

different cluster, while maintaining
n∑

i=1

Ti,h ≥ τh, h = 1, . . . , k, or by defining

a new cluster center for any of the clusters.

PROOF At each iteration, the cluster assignment step cannot increase
the objective function of (9.3). The cluster update step will either strictly
decrease the value of the objective function of (9.3) or the algorithm will
terminate since

μh,t+1 = arg min
μ

n∑

i=1

k∑

h=1

T t
i,h ·

(
1
2
‖xi − μh‖2

)

is a strictly convex optimization problem with a unique global solution. Since
there are a finite number of ways to assign n points to k clusters so that cluster
h has at least τh points, since Algorithm 9.2 does not permit repeated assign-
ments, and since the objective of (9.3) is strictly non-increasing and bounded
below by zero, the algorithm must terminate at some cluster assignment that
is locally optimal.

Although our problem formulation is given for the constrained k-means
algorithm, by utilizing a 1-norm cost function and using a 1-norm distance
metric for the cluster assignment and update steps we can readily extend our
formulation to run the constrained k-median algorithm. In the next section
we discuss solving the linear program sub-problem in the cluster assignment
step of Algorithm 9.2 as a minimum cost network flow problem.

9.3 Cluster Assignment Sub-Problem

The form of the constraints in the cluster assignment sub-problem (9.4)
make it equivalent to a minimum cost flow (MCF) linear network optimization
problem [6]. This is used to show that the optimal cluster assignment will
place each point in exactly one cluster and can be found using fast network

Cluster Size Constraints in k-Means Clustering 207

x1

x2

xn

xn -1

C1

C2

Ck

x3

Artificial
demand node

FIGURE 9.1: Equivalent minimum cost flow formulation of (9.4).

simplex algorithms. In general, a MCF problem has an underlying graph
structure. Let N be the set of nodes. Each node i ∈ N has associated with
it a value bi indicating whether it is a supply node (bi > 0), a demand node
(bi < 0), or a transshipment node (bi = 0). If

∑

i∈N
bi = 0, the problem is

feasible (i.e., the sum of the supplies equals the sum of the demands). Let A
be the set of directed arcs. For each arc (i, j) ∈ A, the variable yi,j indicates
the amount of flow on the arc. Additionally, for each arc (i, j), the constant
ci,j indicates the cost of shipping one unit flow on the arc. The MCF problem
is to minimize

∑

(i,j)∈A
ci,j · yi,j subject to the sum of the flow leaving node i

minus the sum of flow incoming is equal to bi. Specifically, the general MCF
is:

minimize
y

∑

(i,j)∈A
ci,h · yi,j

s.t.

∑

j

yi,j −
∑

j

yj,i = bi,∀i ∈ N

0 ≤ yi,j ≤ ui,j , ∀(i, j) ∈ A.
Let each data point xi correspond to a supply node with supply = 1 (bxi

=
1). Let each cluster μh correspond to a demand node with demand bμh

= −τh.
Let there be an arc in A for each (xi, μh) pair. The cost on arc (xi, μh) is
‖xi − μh‖2. To satisfy the constraint that the sum of the supplies equals the
sum of the demands, we need to add an artificial demand node a with demand

ba = −n +
k∑

h=1

τh. There are arcs from each cluster node μh to a with zero

cost. There are no arcs to or from the data point nodes xi to the artificial
node a. See Figure 9.1. Specifically, let N = {xi, i = 1, . . . , n} ∪ {μh, h =
1, . . . , k} ∪ {a}. Let A = {(xi, μh), xi, μh ∈ N} ∪ {(μh, a), μh ∈ N}. With

208 Constrained Clustering: Advances in Algorithms, Theory, and Applications

these identifications and the costs, supplies, and demands above, (9.4) has an
equivalent MCF formulation. This equivalence allows us to state the following
proposition that integer values of Ti,h are optimal for (9.4).

PROPOSITION 9.2
If each τh, h = 1, . . . , k is an integer, then there exists an optimal solution of
(9.4) such that Ti,h ∈ {0, 1}.

PROOF Consider the equivalent MCF formulation of (9.4). Since bxi
=

1, ∀xi ∈ N , bμh
= −τh, and ba = −n +

k∑

h=1

τh are all integers, it follows

from [6, Proposition 2.3] that an optimal flow vector y is integer-valued. The
optimal cluster assignment values Ti,h correspond yxi,μh

and, since each node
xi has 1 unit of supply, the maximum value of Ti,h at a solution is 1.

Hence, we are able to obtain optimal {0, 1} assignments without having
to solve a much more difficult integer programming problem. In addition to
deriving the integrality result of Proposition 9.2, the MCF formulation allows
one to solve (9.4) via codes specifically tailored to network optimization [6].
These codes usually run 1 or 2 orders of magnitude faster than general linear
programming (LP) codes.

9.4 Numerical Evaluation

We conducted two different sets of experiments on machine learning bench-
mark data sets provided in [1]. In the first set of experiments, we report
results using two real data sets: the Johns Hopkins Ionosphere data set and
the Wisconsin Diagnostic Breast Cancer data set (WDBC) [1]. The results
from the first set of experiments are also reported in [8].

The Ionosphere data set contains 351 data points in R
33 and values along

each dimension were normalized to have mean 0 and standard deviation 1.
The WDBC data set subset consists of 683 normalized data points in R

9. The
values of τh (denoted by τ) were set equally across all clusters. The ILOG
CPLEX 6.5 LP solver was used for cluster assignment. For initial cluster
centers sampled uniformly on the range of the data, k-means produced at
least 1 empty cluster in 10 random trials on WDBC for k ≥ 30 and on Ion for
k ≥ 20. Figures 9.2 and 9.3 give the results for initial clusters chosen randomly
from the data set. This simple technique can eliminate many empty clusters.
Figure 9.2 shows the frequency with which the standard k-means algorithm
9.2 converges to clusters having fewer than τ points.

Cluster Size Constraints in k-Means Clustering 209

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

τ

A
ve

. N
um

be
r

of
 C

lu
st

er
s

w
ith

 <
 ~

τ
P

oi
nt

s

Clusters with fewer than τ points [Ionosphere]

k=20

k=10

k=50

(a) Ionosphere, K = 10, 20, 50

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

τ

A
ve

. N
um

be
r

of
 C

lu
st

er
s

w
ith

 <
 ~

τ
P

oi
nt

s

Clusters with fewer than τ points [WDBC]

k=50

k=20

k=10

(b) WDBC, K = 10, 20, 50

FIGURE 9.2: Average number of clusters with fewer than τ data points
computed by the standard k-means algorithm 9.2.

210 Constrained Clustering: Advances in Algorithms, Theory, and Applications

The effect on the quality of the clustering by the constraints imposed by the
constrained k-means Algorithm 9.2 is quantified by the ratio of the average
objective function of (9.1) computed at the constrained k-means solution over
that of the standard k-means solution. Adding constraints to any minimiza-
tion problem can never decrease the globally optimal objective value. Thus
we would expect this ratio to be greater than 1. Surprisingly the constrained
k-means algorithm frequently found better local minima (ratios less than 1)
than did the standard k-means approach. This might be due to a local solution
with a large cluster, some other clusters with few points, and/or even empty
clusters. Note that the same starting points were used for both algorithms.
Results are summarized in Figure 9.3. Notice that for a fixed k, solutions com-
puted by constrained k-means are equivalent to standard k-means for small
τ -values. For large τ -values, the constrained k-means solution is often inferior
to those of standard k-means. In this case, to satisfy the τ -constraints, the
algorithm must group together points which are far apart resulting in a higher
objective value. For a given data set, superior clustering solutions are com-
puted by the constrained k-means algorithm when τ is chosen in conjunction
with k. For small values of k (e.g., k = 5) we observe ratios < 1 up to τ = 50
(maximum tested) on Ionosphere. For k = 20, we begin to see ratios > 1 for
τ = 10. Similar results are observed on WDBC.

For given values of k and τh, h = 1, . . . , k, an effort is made so that the
τh constraints are satisfied by the initial cluster centers and the final cluster
centers computed by k-means. Initial cluster centers where chosen by ran-
domly selecting k data points. If the number of points in cluster h is < τh,
then a new set of initial cluster centers are chosen. This is repeated until the
thresholds τh, h = 1, . . . , k are satisfied or until 50 sets of initial centers have
been tried. The k-means Algorithm 9.2 is applied. If, at convergence, the τh
thresholds are not satisfied, and the entire initialization procedure is repeated
(at most 10 times). The initial centers used for k-means are then also used to
initialize constrained k-means. With this initialization strategy, for all values
of k and τh > 1 tested, k-means often converges with clusters violating the τh
constraints.

The second set of experiments was run over a higher-dimensional data set
derived from web-browsing behavior to a large internet portal. The browsing
history for a group of 10,144 randomly selected users to 300 of the most
popular news category stories was generated. This data set can be viewed as
10,144 data points in R

300. We refer to this data set as the “Web Data Set.”
In order to handle this larger data set, we modify our original MATLAB code
and utilize MOSEK 4.0 as the linear programming solver [18], which can be
seamlessly integrated with MATLAB.

In addition to running k-means and constrained k-means algorithms, we
also report results from k-median [10] and constrained k-median algorithms by
using the 1-norm distance metric as mentioned in Section 9.2. The k-median
clustering algorithm uses the median value in updating the cluster centers
instead of using the average in the case of the k-means algorithm. Since we

Cluster Size Constraints in k-Means Clustering 211

0 5 10 15 20 25 30 35
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

τ

O
bj

ec
tiv

e
Fu

nc
tio

n
R

at
io

: C
on

st
ra

in
ed

/S
ta

nd
ar

d

Objective Function Ratio vs. τ [Ionosphere]

k=20 k=10

k=50

(a) Ionosphere, K = 10, 20, 50

0 5 10 15 20 25 30 35 40
0.99

1

1.01

1.02

1.03

1.04

1.05

τ

O
bj

ec
tiv

e
Fu

nc
tio

n
R

at
io

: C
on

st
ra

in
ed

/S
ta

nd
ar

d

Objective Function Ratio vs. τ [WDBC]

k=50

k=20

k=10

(b) WDBC, K = 10, 20, 50

FIGURE 9.3: Average ratio of objective function (9.1) computed at the con-
strained k-means solution over that of the standard k-means solution versus
τ .

212 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 9.1: k-Means and Constrained k-means Results on Web Data
Set for k=20

k-means Constrained k-means
τ Objective Time No. of Empty Objective Time

(± σ) (Sec.) Clusters (± σ) (± σ) (Sec.)
10 396037 ± 59297 104.9 8.7 ± 1.89 574555 ± 13209 154.2
20 424178 ± 31575 102.1 8.5 ± 1.72 661215 ± 6367 140.5
30 377261 ± 59321 90.1 9.3 ± 2.31 710156 ± 8086 154.9

TABLE 9.2: k-Median and Constrained k-median Results on
Web Data Set for k=20

k-median Constrained k-median
τ Objective Time No. of Empty Objective Time

(± σ) (Sec.) Clusters (± σ) (± σ) (Sec.)
10 37783 ± 539 77.2 2.8 ± 1.48 38091 ± 1166 137.62
20 37989 ± 709 69.2 1.9 ± 1.79 38389 ± 1258 135.90
30 38140 ± 748 70.6 2.0 ± 1.49 38811 ± 878 133.46

used a larger data set, we modified the definition of the empty cluster to be
one with 5 or fewer points. We ran the experiments on a Pentium M 1.60 GHz
notebook with 768 MB of memory running under the Windows XP operating
system. For brevity, we only set k equal to 20. We set τ to be 10, 20, and
30. Initial cluster centers were randomly picked from the data set. Thus,
the initial starting point consists of clusters that contain at least 1 point. At
algorithm termination, clusters containing 5 or fewer points are considered
“empty” per the modified definition. For each τ value, we ran 10 random
realizations of the data set. We report average values over these 10 runs in
Tables 9.1 and 9.2.

Average objective values and times in seconds for both regular and con-
strained clustering methods and also the number of empty clusters are re-
ported for k-means and k-median clustering in Tables 9.1 and 9.2, respec-
tively. Corresponding standard deviations are reported after the ± operator.
Notice that the k-means clustering algorithm ends up with approximately 9
empty clusters on average out of 20 initial clusters. On the other hand, k-
median clustering algorithm results in around 2 empty clusters on average.
Changing τ does not seriously affect the running time for both constrained
clustering methods. Although the objective values of both constrained and
regular k-median methods do not differ, we see a significant change in con-
strained k-means probably due to the empty or near empty clusters found in
regular k-means methods. From the comparisons of standard deviations of
the objective values from both regular and constrained k-means algorithms,
we can conclude that although the standard k-means algorithm has lower av-
erage objective values, it has higher variations. This result directly indicates
the volatility of the local solutions of the regular k-means algorithm.

Cluster Size Constraints in k-Means Clustering 213

These results may be a result of the following observations: (i) a data
point might be closer to any other data point as the dimensionality of the
space becomes very large; (ii) the k-means algorithm is more prone to be
affected by “outliers” in the data set than the k-median algorithm since k-
means minimizes the 2-norm squared distance, whereas k-median minimizes
the 1-norm distance [7].

9.5 Extensions

Around the same time that our earlier work [8] was published, Wagstaff
and Cardie proposed using pairwise constraints in clustering problems [20].
More specifically they proposed the usage of must-link and cannot-link types
of constraints in a clustering framework. From an optimization point of view,
it might be more challenging to add pairwise constraints into clustering prob-
lems in general since it might jeopardize convexity and the smoothness of the
solution. The work of Wagstaff and Cardie was later applied to the GPS
lane finding problem [21]. Another constraint type was first studied in [2].
The aim in [2] was to utilize a sampling based scalable clustering algorithm
with balancing constraints to produce balanced clusters, which is important
in some commercial applications. Chapter 8 of this book is also on balancing
constraints. In this section, we basically review some prior work and develop
certain optimization models to tackle new types of constraints.

Kleinberg and Tardos proposed some linear programming relaxations of
the metric labeling problem in [14, 15]. Specifically they used pairwise rela-
tionships in assigning k labels (classes) to each of n objects. In their
approach to metric labeling problem, they utilized a Markov random fields
framework [14, 15].

We can easily extend their uniform metric labeling formulation to a 2-norm
cost function as follows in the following optimization model. Approximations
to Kleinberg and Tardos’ model for the general metrics are studied in [11].

minimize
T

n∑

i=1

k∑

h=1

Ti,h ·
(

1
2
‖xi − μh‖2

)

+
∑

(u,v)∈X
w(u, v) · 1

2

k∑

h=1

|Tu,h − Tv,h|

s.t.

k∑

h=1

Ti,h = 1, i = 1, . . . , n,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.
(9.5)

The major difference in Problem 9.5 with the original clustering problem
defined in Problem 9.2 is the fact that there is a cost w associated with pairing
two objects u and v. Technically, we can easily incorporate both must-link

214 Constrained Clustering: Advances in Algorithms, Theory, and Applications

and cannot-link pairwise constraints with an appropriate cost structure with
this formulation. Intuitively, appropriate positive terms should be assigned
to w(u, v)’s. Assigning a negative value would make the objective non-convex
and more difficult to solve with ordinary linear programming approach. Since

each point is assigned exactly to one cluster, the term w(u, v)· 12
k∑

h=1

|Tu,h−Tv,h|

will be equal to 0 when both points are assigned to the same cluster and non-
zero otherwise.

Although a minimum might exist, an algorithm like Algorithm 9.2 may not
be sufficient to find a solution and the convergence of such an algorithm may
not be guaranteed. Therefore a near zero cost value should be assigned to w for
a cannot-link pairwise relationship (constraint). We can assign prohibitively
large cost values for the must-link constraints. In this case, we can argue that
there exists an extreme point solution, yet we need to show that Algorithm 9.2
converges. However, a more elegant way of introducing constraints is needed.
In the following model, we first introduce our constraints on the number of
points assigned to each cluster to Kleinberg and Tardos’ model proposed in
[14, 15].

minimize
T

n∑

i=1

k∑

h=1

Ti,h ·
(

1
2
‖xi − μh‖2

)

+
∑

(u,v)∈X
w(u, v) · 1

2

k∑

h=1

|Tu,h − Tv,h|

s.t.

k∑

h=1

Ti,h = 1, i = 1, . . . , n,

n∑

i=1

Ti,h ≥ τh, h = 1, . . . , k,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

Certainly, pairwise relationships can be introduced to Markov random fields
models in various ways. Basu et al. used hidden Markov models in [3, 4] in
a probabilistic way to introduce such constraints. In the following model,
we introduce such pairwise assignment constraints in our mathematical pro-
gramming model. Notice that cannot-link constraints can be added without
violating the convexity. However care is needed for the must-link type con-
straints since they are in the form of absolute value that is non-convex.

Cluster Size Constraints in k-Means Clustering 215

minimize
T,ε

n∑

i=1

k∑

h=1

Ti,h ·
(

1
2
‖xi − μh‖2

)

+
∑

(u,v)∈X
w(u, v) · 1

2

k∑

h=1

|Tu,h − Tv,h|

s.t.

k∑

h=1

Ti,h = 1, i = 1, . . . , n,

n∑

i=1

Ti,h ≥ τh, h = 1, . . . , k,

Ti,h + Tj,h ≤ 1, ∀ i, j ∈ C�=, h = 1, . . . , k,
−εi,j,h ≤ Ti,h − Tj,h ≤ εi,j,h, ∀ i, j ∈ C=,

k∑

h=1

εi,j,h = 0, ∀ i, j ∈ C=,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.
(9.6)

In Problem 9.6, we basically introduce a new variable, ε, for the each must-
link constraint. From a practical point of view, Problem 9.6 needs to be
solved by introducing a regularizer as given below. Our aim in introducing
the regularizer, ρ, is just to simplify the objective function and speedup the
solution. By doing this, we basically soften the must-link constraints. They
are no longer hard constraints meaning that some violations of this type of
constraints are permitted given that they are below certain associated costs.

minimize
T,ε

n∑

i=1

k∑

h=1

Ti,h ·
(

1
2
‖xi − μh‖2

)

+ ρ
∑

(i,j)∈C=

k∑

h=1

εi,j,h

s.t.

k∑

h=1

Ti,h = 1, i = 1, . . . , n,

n∑

i=1

Ti,h ≥ τh, h = 1, . . . , k,

Ti,h + Tj,h ≤ 1, ∀ i, j ∈ C�=, h = 1, . . . , k,
−εi,j,h ≤ Ti,h − Tj,h ≤ εi,j,h, ∀ i, j ∈ C=,
Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.7)

After removing the cost function associated with w(u, v) from Problem
9.6 and introducing a regularizer in Problem 9.7, the resulting mathematical
programming model has become numerically more stable and an algorithm,
such as Algorithm 9.2, can be devised to solve this problem. Considering the
cannot-link constraints, such an algorithm will converge. By adding trans-
shipment nodes, we can show that the problem is equivalent to MCF. Thus
we will have an integer solution, i.e., the integrality constraints are satisfied
too. On the other hand, considering the must-link constraints, we can show
that the algorithm will converge but we no more have the integrality.

216 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Our proposed framework in this section enables us to introduce new con-
straints to the clustering problem in general. Assume that we face a situation
that point xi must be in the same cluster with point xj or in the same cluster
with point xg but not in the same cluster with both points xj and xg. This
situation might arise in analyzing social networks data. Imagine one chooses
to be a friend of another person from among two persons but cannot be a
friend of both persons at the same time. We call this type of constraint OR
type constraints and denote it by COR. We show in the following model how
to represent such constraints.

minimize
T,ε

n∑

i=1

k∑

h=1

Ti,h ·
(

1
2
‖xi − μh‖2

)

+ ρ
∑

(i,j)∈C=

k∑

h=1

εi,j,h

s.t.

k∑

h=1

Ti,h = 1, i = 1, . . . , n,

n∑

i=1

Ti,h ≥ τh, h = 1, . . . , k,

Ti,h + Tj,h ≤ 1, ∀ i, j ∈ C�=, h = 1, . . . , k,
−εi,j,h ≤ Ti,h − Tj,h ≤ εi,j,h, ∀ i, j ∈ C=,

k∑

h=1

|Ti,h − Tj,h|+ |Ti,h − Tg,h| ≤ 1, ∀ i, j, g ∈ COR,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.8)

In Problem 9.8, COR constraints are convex. However, we can still propose
a relaxed form. Since COR constraints are also convex, the algorithm to find
a solution for this problem will converge but we will not have the integrality.

Adding must-link and cannot-link types of constraints into the clustering
model may decrease the quality of solution. Unexpected or even unwanted re-
sults may occur. In [12], two measures, namely informativeness and coherence,
are proposed to understand the underlying effects of adding constraints to the
clustering problem. Such measures surely help to evaluate the importance of
the semi-supervised approach through constrained clustering. Certain types
of clustering approaches can be deployed for the transduction problem as well
such as graph cut methods. However, it is reported that after deploying such
methods for the two-class transduction problem, the algorithm might very
well result in one very small cluster [13]. Such results may require a new type
of constraint, precisely the minimum number of labeled points falling into
each cluster. We can readily add such constraints to Problem 9.8 as in the
following formulation.

Cluster Size Constraints in k-Means Clustering 217

minimize
T,ε

n∑

i=1

k∑

h=1

Ti,h ·
(

1
2
‖xi − μh‖2

)

+ ρ
∑

(i,j)∈C=

k∑

h=1

εi,j,h

s.t.

k∑

h=1

Ti,h = 1, i = 1, . . . , n,

n∑

i=1

Ti,h ≥ τh, h = 1, . . . , k,
∑

i∈l

Ti,h ≥ πh, h = 1, . . . , k,

Ti,h + Tj,h ≤ 1, ∀ i, j ∈ C�=, h = 1, . . . , k,
−εi,j,h ≤ Ti,h − Tj,h ≤ εi,j,h, ∀ i, j ∈ C=,
Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

To simplify the model, we can just omit the other types of constraints and
just focus on the minimum number of points (minimum capacity) for each
cluster whether labeled or unlabeled. The following formulation is provided
for that reason.

minimize
T

n∑

i=1

k∑

h=1

Ti,h ·
(

1
2
‖xi − μh‖2

)

s.t.

k∑

h=1

Ti,h = 1, i = 1, . . . , n,

n∑

i=1

Ti,h ≥ τh, h = 1, . . . , k,
∑

i∈l

Ti,h ≥ πh, h = 1, . . . , k,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.9)

We can easily show that Problem 9.9 is equivalent to MCF by adding trans-
shipment nodes. Therefore, the solution will converge and we will have the
integrality constraints satisfied. From a practical point of view, Problem 9.9
is simple, yet has the potential to be very useful in the area of semi-supervised
learning.

9.6 Conclusion

The k-means algorithm can be extended to insure that every cluster contains
at least a given number of points. Using a cluster assignment step with
constraints, solvable by linear programming or network simplex methods, can
guarantee a sufficient population within each cluster. A surprising result was

218 Constrained Clustering: Advances in Algorithms, Theory, and Applications

that constrained k-means was less prone to local minima than traditional
k-means. Thus adding constraints may be beneficial to avoid local minima
even when empty clusters are permissible. Constrained clustering suggests
many research directions. Robust clustering can be done by simply adding
an “outlier” cluster with high fixed distance that gathers “outliers” far from
true clusters. Constraints forcing selected data into the same cluster could be
used to incorporate domain knowledge or to enforce consistency of successive
cluster solutions on related data.

We show in this chapter that it is feasible to solve constrained clustering
problems by using efficient linear programming based algorithms even for the
large data sets. We extend our solution to solve the constrained k-median
algorithm. Results from real data sets are reported.

In addition to our original constraints on the number of points assigned
to each cluster, we propose some extensions to represent pairwise assignment
constraints via mathematical programming models in this chapter. Further
investigations are still needed for these extensions to prove that they converge
and the results satisfy the integrality constraints. Notice that such integrality
constraints are expected to be satisfied without using more complex mixed-
integer models. Our aim in this chapter was to show that linear programming
and network simplex models can be efficiently used in solving constrained
clustering problems.

Acknowledgments

Some parts of the work for this chapter were completed when Ayhan Dem-
iriz was visiting University College of London through funding from EU PAS-
CAL Network of Excellence.

References

[1] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.
University of California, Irvine, School of Information and Computer
Sciences. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[2] A. Banerjee and J. Ghosh. Scalable clustering algorithms with bal-
ancing constraints. Journal of Data Mining and Knowledge Discovery,
13(3):365–395, 2006.

Cluster Size Constraints in k-Means Clustering 219

[3] S. Basu, A. Banerjee, and R. J. Mooney. Active semi-supervision for
pairwise constrained clustering. In Proceedings of the SIAM Interna-
tional Conference on Data Mining (SDM-2004), pages 333–344, Lake
Buena Vista, FL, April 2004.

[4] S. Basu, M. Bilenko, A. Banerjee, and R. J. Mooney. Probabilistic semi-
supervised clustering with constraints. In O. Chapelle, B. Schölkopf, and
A. Zien, editors, Semi-Supervised Learning, pages 73–102. MIT Press,
2006.

[5] K. P. Bennett, U. M. Fayyad, and D. Geiger. Density-based indexing
for approximate nearest neighbor queries. In Proceedings of 5th Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD99),
pages 233–243, New York, 1999. ACM Press.

[6] D. P. Bertsekas. Linear Network Optimization. MIT Press, Cambridge,
MA, 1991.

[7] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is
“nearest neighbor” meaningful? In Database Theory - ICDT ’99, 7th
International Conference, volume 1540 of Lecture Notes in Computer
Science, pages 217–235, Jerusalem, Israel, January 1999. Springer.

[8] P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained k-means clus-
tering. Technical Report MSR-TR-2000-65, Microsoft Research, May
2000.

[9] P. S. Bradley and O. L. Mangasarian. k-Plane clustering. Journal of
Global Optimization, 16(1):23–32, 2000.

[10] P. S. Bradley, O. L. Mangasarian, and W. N. Street. Clustering via
concave minimization. In M. C. Mozer, M. I. Jordan, and T. Petsche,
editors, Advances in Neural Information Processing Systems 9, pages
368–374, Cambridge, MA, 1997. MIT Press.

[11] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear programming
formulation and approximation algorithms for metric labeling problem.
SIAM Journal of Discrete Mathematics, 18(3):608–625, 2005.

[12] I. Davidson, K. L. Wagstaff, and S. Basu. Measuring constraint-set
utility for partitional clustering algorithms. In Proceedings of the Tenth
European Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD), pages 115–126, September 2006.

[13] T. De Bie and N. Cristianini. Fast sdp relaxations of graph cut clus-
tering, transduction, and other combinatorial problems. Journal of Ma-
chine Learning Research, 7:1409–1436, 2006.

[14] J. Kleinberg and É. Tardos. Approximation algorithms for classifica-
tion problems with pairwise relationships: Metric labeling and Markov

220 Constrained Clustering: Advances in Algorithms, Theory, and Applications

random fields. In Proceedings of the 40th Annual IEEE Symposium on
the Foundations of Computer Science, Los Alamitos, CA, October 1999.
IEEE Computer Society Press.

[15] J. Kleinberg and É. Tardos. Approximation algorithms for classifica-
tion problems with pairwise relationships: Metric labeling and Markov
random fields. Journal of the ACM, 49(5):616–639, September 2002.

[16] J. B. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of the Fifth Symposium on Math,
Statistics, and Probability, volume 1, pages 281–297, Berkeley, CA, 1967.
University of California Press.

[17] O. L. Mangasarian. Nonlinear Programming. McGraw–Hill, New York,
1969. Reprint: SIAM Classic in Applied Mathematics 10, 1994, Philadel-
phia.

[18] MOSEK, 2007. http://www.mosek.com.

[19] J. Shanmugusundaram, U. M. Fayyad, and P. S. Bradley. Compressed
data cubes for olap aggregate query approximation on continuous di-
mensions. In Proceedings of 5th International Conference on Knowledge
Discovery and Data Mining (KDD99), pages 223–232, New York, 1999.
ACM Press.

[20] K. Wagstaff and C. Cardie. Clustering with instance-level constraints.
In Proceedings of the International Conference on Machine Learning
(ICML), pages 1103–1110, 2000.

[21] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-
means clustering with background knowledge. In Proceedings of the
International Conference on Machine Learning (ICML), pages 577–584,
2001.

Chapter 10

Collective Relational Clustering

Indrajit Bhattacharya
IBM India Research Laboratory, indrajbh@in.ibm.com

Lise Getoor
University of Maryland, getoor@cs.umd.edu

Abstract In many clustering problems, in addition to attribute data, we
have relational information, linking different data points. In this chapter,
we focus on the problem of collective relational clustering that makes use
of both attribute and relational information. The approach is collective in
that clustering decisions are not taken in an independent fashion for each
pair of data points. Instead, the different pairwise decisions depend on each
other. The first set of dependencies is among multiple decisions involving the
same data point. The other set of dependencies come from the relationships.
Decisions for any two references that are related in the data are also dependent
on each other. Hence, the approach is collective as well as relational. We focus
on the entity resolution problem as an application of the clustering problem,
and we survey different proposed approaches that are collective or make use
of relationships. One of the approaches is an agglomerative greedy clustering
algorithm where the cluster similarity measure combines both attributes and
relationships in a collective way. We discuss the algorithmic details of this
approach and identifying data characteristics that influence its correctness.
We also present experimental results on multiple real-world and synthetic
data sets.

221

222 Constrained Clustering: Advances in Algorithms, Theory, and Applications

10.1 Introduction

Often in clustering problems, in addition to the attributes describing the
data items to be clustered, there are links among the items. These links
are co-occurrence links indicating that the data items were observed together
in, for example, a market basket, a text document, or some other relational
context. Relational clustering approaches make use of both the attributes of
the instances and the observed co-occurrences to do a better job at clustering.

In this chapter, we will describe a relational clustering approach to entity
resolution. The goal of the entity resolution problem is to eliminate dupli-
cates, by identifying database records that correspond to the same underlying
entity. A significant amount of research has gone into this problem and it
goes by many different names in different research fields — record linkage,
merge/purge, reference reconciliation, object consolidation, and others. Let
us illustrate the problem using a bibliographic example. Consider the follow-
ing four papers from a digital repository of papers such as CiteSeer, DBLP,
or PubMed:

1. W. Wang, C. Chen, A. Ansari, “A mouse immunity model”

2. W. Wang, A. Ansari, “A better mouse immunity model”

3. L. Li, C. Chen, W. Wang,“Measuring protein-bound fluxetine”

4. W. W. Wang, A. Ansari, “Autoimmunity in biliary cirrhosis”

There are many author references that look very similar. For example, it may
not be clear if the three “Wang” names map to the same real-world author.
The goal the entity resolution process is to correctly resolve which references
correspond to the same real world entities and which ones do not.

In this chapter, we will motivate entity resolution as a clustering problem,
where the goal is to partition the references in a database according to their
underlying entities. What makes the setting different from the standard clus-
tering problem is the presence of relationships between the references in the
database. In our example, the different author references are not observed in
isolation, but as part of co-author lists in papers. Such relationships between
references occur in many different scenarios, such as person names occurring
in the same email, names of people in the same household in census or survey
data, names of products purchased by the same customer, etc. These rela-
tionships can be used as valuable information in the clustering process. Our
focus is on collective relational clustering, where the references are assigned
to clusters based on the cluster memberships of their related references. In
our example, whether or not “W. Wang” in the first paper corresponds to the
same author as “W. Wang” in the second paper depends on whether their

Collective Relational Clustering 223

co-author references named “A. Ansari” refer to the same author. So the
clustering has to be done collectively over related references.

The rest of this chapter is structured as follows. First in Section 10.2 we for-
malize entity resolution as a clustering problem and survey various approaches
that perform collective resolution and those that make use of relationships
between references. Next, in Section 10.3, we present a greedy algorithm for
collective relational clustering. We discuss the computational bottlenecks of
the process and explain the different components that are integrated into an
efficient algorithm. A question that arises naturally is whether relational clus-
tering improves clustering accuracy over traditional approaches. We address
this question in Section 10.4: identify the data characteristics that influence
the accuracy of collective relational clustering. We present an experimental
evaluation in Section 10.5, and finally conclude in Section 10.6.

10.2 Entity Resolution: Problem Formulation

In this section, we first describe the notation we use for describing the entity
resolution problem. We are given a set of references R = {ri}, where each
reference r has attributes r.A1, r.A2, . . . , r.Ak. The references correspond to
some set of unknown entities E = {ei}. We introduce the notation r.E to re-
fer to the entity to which reference r corresponds. The problem is to recover
the hidden set of entities E = {ei} and the entity labels r.E for individual
references given the observed attributes of the references. Let us now illus-
trate how our running example is represented in this notation. Figure 10.1
shows the different author references in the data. Each observed author name
corresponds to a reference, so there are ten references r1 through r10. In
this case, the names are the only attributes of the references, so for example
r1.A is “W. Wang,” r2.A is “C. Chen,” and r3.A is “A. Ansari.” The set of
true entities E is {Ansari, Wang1, Wang2, Chen1, Chen2, Li} as shown using
different colors for references corresponding to different entities. References
r1, r4 and r9 correspond to Wang1, so that r1.E = r4.E = r9.E = Wang1.
Similarly, r3.E = r5.E = r10.E = Ansari, and r2.E = Chen1, and so on. In
the rest of this chapter, we will say two references r and r′ are co-referent to
mean that they correspond to the same entity, i.e., r.E = r′.E.

The problem has a long history and goes back to [15]. Recently, Koudas
et al. [20] presented an excellent tutorial on entity resolution approaches.
Winkler [30] and Gu et al. [17] have also written extensive surveys. Entity
resolution can be viewed as a pairwise decision problem over references, or,
alternatively, as a clustering problem where an entity label (or, a cluster label)
needs to be assigned to each reference. We discuss this is more detail in the
rest of this section. We will focus on collective entity resolution approaches,

224 Constrained Clustering: Advances in Algorithms, Theory, and Applications

A Ansari A Ansari

C Chen A Ansari

A Mouse Immunity Model A Better Mouse Immunity Mode

Measuring Protien−bound Fluxetine Autoimmunity in Biliary Cirrhosis

L Li W Wang

C ChenW Wang W Wang

W W Wang

r 2r 3r 4r 5r

9r 10r8r7r6r

1h

3h

2h

4h

1

FIGURE 10.1: An example set of papers represented as references connected
by hyper-edges. References are represented as ovals shaded according to their
entities. Each paper is represented as a hyper-edge (shown as a rectangle)
spanning multiple references.

and take a closer look at approaches that make use of relationships available
in the data for entity resolution.

10.2.1 Pairwise Resolution

Entity resolution is often posed as a pairwise decision problem, where each
pair of references is decided to be either a match or a non-match. The tradi-
tional focus has been on the design of similarity measures between attributes
of references [11]. When references have multiple attributes, such as name,
address, telephone number, etc., for person references, then the individual
similarities may be combined to get the aggregated similarity simA(ri, rj) is
computed for each pair of references ri, rj . Then those pairs that have similar-
ity above some threshold are considered co-referent. We use the abbreviation
A to refer to this attribute-based approach to entity resolution. Considerable
effort has gone into learning similarity measures between references [8]. Dif-
ferent aspects of the similarity measures, such as the parameters of individual
measures (e.g., insert, delete, replace costs for edit-distance based measures)
[26], the relevance of different attributes and the similarity threshold for de-
tecting duplicates may be learned given sufficient labeled data. However,
obtaining and preparing training data is often a problem. One way to address
this issue is using active learning [27, 29].

In our example, the attribute-based pairwise approach A may allow us to
decide that the “W. Wang” references (r1, r4) are co-referent. We may also
decide using A that “W. Wang” and “W. W. Wang” (r1, r9) are co-referent,
but not as confidently. However, pairwise decisions using attributes are often
insufficient for entity resolution. In our example, A is almost certain to mark
the two “W. Wang” references (r1, r8) as co-referent, which is incorrect.

Collective Relational Clustering 225

10.2.2 Collective Resolution

The pairwise resolution approach does not directly address the entity res-
olution problem as we have described it. It does not aim to discover the
underlying entities or the mapping from references to entities. Instead it de-
termines whether or not two references map to the same underlying entity.
One shortcoming of this approach is that it makes the pairwise decisions in-
dependently. An alternative approach to directly address the problem is to
partition or cluster the references according to the underlying entities. We
call this approach collective entity resolution since each pairwise decision takes
into consideration other pairwise decisions. For example, two references “Jon
Smith” and “J. H. Smith” are more likely to be co-referent if there exists
a third reference “Jonathan H. Smith” that is co-referent with both of the
first two references. The simplest approach is to take the transitive closure
over the pairwise decisions. We refer to this naive attribute-based collective
approach as A*. This helps to improve recall, but often adversely affects pre-
cision. This can be illustrated using the following noun co-reference problem
[23]. Imagine a segment of text that mentions “Mr. Powell,” “Powell,” and
“she.” Pairwise decisions may be able to resolve correctly that the first two
mentions are co-referent, but they may wrongly decide because of proxim-
ity in the document that “Powell” and “she” are also co-referent. This may
be avoided by considering that “Powell” has already been matched to “Mr.
Powell,” and that “Mr.” and “she” are not consistent.

One possibility for collective resolution is to perform clustering on the pair-
wise decisions. In the correlation clustering approach [2, 10], the goal is to
cluster the references by minimizing disagreement over the pairwise decisions.
McCallum et al. [23] have proposed a model based on conditional random
fields (CRF) for taking pairwise decisions collectively. The model leverages
labeled data to learn edge-weights, and then the inference stage looks to par-
tition the similarity graph into entity clusters based on edge-weights. Parag
and Domingos [28] extend the CRF model by considering and leveraging de-
pendencies across multiple attribute types. For example, we may be able to
infer using author names and paper title that two paper citations correspond
to the same underlying paper entity, even though their venue fields do not
match significantly. For instance, one paper may have “SIGKDD 03” as the
venue, while the other may have “Proc 9th ACM KDD.” Since the two cita-
tions are co-referent, we know that their different-looking venue strings have
to match. This information can now be used to match two other citations
that have this same venue pair, but do not exactly match on the title field, for
example. Such collective approaches have been shown to be superior to in-
dependent pairwise approaches in terms of resolution accuracy. However, the
price paid is in terms of computational complexity. The joint decision problem
cannot be solved exactly and approximate solutions are resorted to. Approxi-
mation schemes have been proposed for the correlation clustering problem [2],
and the inference problem for the CRF-based models can be reduced to the

226 Constrained Clustering: Advances in Algorithms, Theory, and Applications

correlation clustering problem [23] so that the same approximation algorithms
can be utilized. Alternatively, approximate inference can be performed using
the voted perceptron algorithm [12], as done in [28].

10.2.3 Entity Resolution Using Relationships

The attribute-based approaches that we have discussed so far assume that
the different references in the data have been observed in isolation. However,
in many scenarios, the references are not observed independently of each other.
Many references are observed in the same context, or, in other words, co-
occur with other references. Quite often, there is meaningful information in
the co-occurrence relations. As examples, we can think of names of people
and places occurring in the same document, names of products bought by the
same customer, etc. We represent the co-occurrences in the data with a set
of hyper-edges H = {hi}. Each hyper-edge h may have attributes as well,
which we denote as h.A1, h.A2, . . . , h.Al, and we use h.R to denote the set of
references that it connects. A reference r can belong to zero or more hyper-
edges and we use r.H to denote the set of hyper-edges in which r participates.
It is possible for multiple hyper-edges to share references. For example, if
we have paper, author, and venue references, then a paper reference may be
connected to multiple author references and also to a venue reference.

In our bibliographic example, there are four hyper-edgesH = {h1, h2, h3, h4},
one for each paper. The attributes of the hyper-edges in this domain are the
paper titles; for example, h1.A1=“A Mouse Immunity Model.” The references
r1 through r3 are associated with hyper-edge h1, since they are the observed
author references in the first paper. This is represented as h1.R = {r1, r2, r3}.
Also, this is the only hyper-edge in which each of these references participate.
So r1.H = r2.H = r3.H = {h1}. We can similarly represent the hyper-edge
associations of the other references.

10.2.4 Pairwise Decisions Using Relationships

In most cases, the co-occurrences between references are not random, but
are manifestations of meaningful relationships between entities in the under-
lying domain. For example, names of academic colleagues co-occur as author
names in academic papers, and names of friends and acquaintances co-occur
in bodies of emails. When reference co-occurrences occur as a result of mean-
ingful relationships between underlying entities, they can be used to improve
entity resolution performance in different ways. The simplest way to use
co-occurrence relationships for entity resolution is to augment the pairwise
similarity measures by considering the attributes of co-occurring references
as well. For instance, to determine if two author references in two different
papers are co-referent, we can additionally compare the names of their co-
authors. In our running example, the naive use of relations for the references
“W. Wang” and “W. W. Wang” would consider that both have co-authors

Collective Relational Clustering 227

with the name “A. Ansari.” We refer to this approach as naive relational
entity resolution NR.

A similar idea has been used in the context of matching in dimensional
hierarchies [1]. To explain using an example from the paper, if two different
country records with names “United States of America” and “US” have com-
mon names of states, such as “MO,” “VA,” and “PA,” associated with them,
then they are more likely to be the same country. On the other hand, though
“UK” and “US” may be textually more similar, but they have no similarity
in the names of the states that they are associated with. More formally, the
dimensional hierarchy allows comparison of the children sets of two different
records using co-occurrence. This structural similarity can then be combined
with textual or attribute similarity to have a combined measure of similarity
between records.

In the presence of a dimensional hierarchy, the co-occurrence relationships
can be viewed as an ordered relationship. The same idea can be generalized for
unordered relationships to define hyper-edge similarity simH(hi, hj) between
two hyper-edges hi and hj as the best pairwise attribute match between their
references. Since the references in any hyper-edge are not ordered, each ref-
erence r ∈ hi can be matched to any reference r′ ∈ hj . Then, a simple linear
combination of the attribute match simA(ri, rj) and the hyper-edge match
simH(ri, rj) can be taken to get naive relational similarity for two references
ri and rj :

simNR(ri, rj) = (1−α)×simA(ri, rj)+α×simH(ri, rj), 0 ≤ α ≤ 1 (10.1)

A more sophisticated way of incorporating relationships into the similarity
measure has been explored by the RelDC algorithm [19]. It exploits path-
based similarity over the connection graph between different entities in the
database to determine the relational match between a reference and the mul-
tiple candidate possibilities for it. Consider an author reference with name
“D. White” in a citation database that needs to be cleaned. The potential
match candidates in the database for this reference are “Don White” at CMU
and “Dave White” at Intel. Of these two, “Don White” has a paper with a
researcher at MIT, while “Dave White” has no connection to MIT at all. On
the other hand, the co-author of “D. White” is affiliated with MIT. This sug-
gests that “D. Smith” is more likely to match with “Don White” than “Dave
White.” So, essentially, the RelDC approach goes beyond directly connected
entities to define path-based similarity between an entity and a reference.

10.2.5 Collective Relational Entity Resolution

The naive relational approach NR takes relational information into ac-
count, but it still makes pairwise resolution decisions over references, inde-
pendently of decisions for other pairs. For the two “Wang” references in the
first two papers in our example, the two “C. Chen” co-author names match

228 Constrained Clustering: Advances in Algorithms, Theory, and Applications

regardless of whether they refer to Chen1 or Chen2. The correct evidence
to use here is that the “Chen”s are not co-referent. In such a setting, in
order to resolve the “W. Wang” references, it is necessary to resolve the “C.
Chen” references as well, and not just consider their name similarity. As with
the attribute-based approach, an improvement is to take transitive closure
over the pairwise decisions in NR. We represent this as NR*. However, this
clearly does not address our current problem adequately, since it does not
capture dependency across hyper-edges. What we require here is collective
relational entity resolution (CR), where resolution decisions for related refer-
ences are not made independently, but instead one resolution decision affects
other resolutions via hyper-edges.

We have proposed a probabilistic generative model for collective relational
entity resolution based on LDA (latent Dirichlet allocation) [4] that identi-
fies groups of related entities from the co-occurrences between the references,
and then this group evidence is combined with the attribute evidence to par-
tition the references into entities. Pasula et al. [25] have proposed a gen-
erative model for entity resolution over multiple types of entities. Culotta
and McCallum [13] use a CRF-based model to capture dependency of resolu-
tion decisions for multiple types of entities connected by hyper-edges. While
the attribute-based CRF models capture dependence using identical attribute
values for different references, this model captures dependence over related ref-
erences. The strength of the dependencies may be different for different types
of records. For example, if two paper references are marked as co-referent,
then their corresponding venue references are certain to be duplicates. On
the other hand, if two venue references are marked as duplicates, then their
corresponding paper references are more likely to be duplicates than before,
but it is not a certainty. The CRF model can learn these different dependency
patterns given sufficient training data. Dong et al. [14] make use of a similar
dependency graph over multiple types of references. Instead of performing
probabilistic inference, their algorithm propagates evidence from any resolu-
tion decision by iteratively updating the similarities of related references over
the dependency network.

A very different approach to the collective relational clustering problem has
been proposed by Long et al. [21]. They consider a matrix representation for
multi-type relational data, which has one matrix to represent the attribute
features for data of each type and one matrix for each pairwise relationship
between types. They take a spectral view of the problem, where the goal is
to find low dimensional embeddings over all data types simultaneously. The
objective function to minimize is the distortion of the embedding aggregated
over all attribute and relationship matrices. They show that this can be
reduced to an eigen decomposition problem, which is solved using iterative
techniques. Just as the cluster assignment for one reference propagates over
relationships to influence the cluster assignment of other references in the
earlier approaches, the spectral approach benefits from interactions between
different types in the low dimensional subspaces.

Collective Relational Clustering 229

Instead of computing and updating similarities between pairwise references,
an alternative approach for performing collective resolution using relationships
is to define a similarity measure between clusters of references that takes re-
lated clusters into account. We call this approach collective relational cluster-
ing [3, 6]. Assume a partitioning of references into entity clusters such that
yi denotes the cluster label of reference ri, and yi ∈ [K]. Then we may define
the similarity of two cluster labels (or, clusters, in short) i and j as:

sim(i, j) = (1− α)× simA(i, j) + α× simR(i, j), 0 ≤ α ≤ 1 (10.2)

where i, j ∈ [K], simA() is the similarity of the attributes and simR() is
the relational similarity between the references in the two entity clusters.
Note that the references in cluster j are those references ri for which yi = j.
This similarity is dynamic in nature, which is one of the most important and
interesting aspects of the collective approach. The similarity of two clusters
depends on the current cluster labels of their neighbors, and therefore changes
as their labels are updated. In our example, the similarity between “W. Wang”
and “W. W. Wang” increases once the Ansari references are given the same
cluster label.

The references in cluster j are connected to other references via hyper-edges.
For collective clustering over hyper-edges, relational similarity considers the
cluster labels of all these connected references. Recall that each reference
ri is associated with one or more hyper-edges in H. Therefore, the set of
hyper-edges H(j) that we need to consider for a cluster label j is defined as

H(j) =
⋃

ri∈R, yi=j

{h ∈ H | ri ∈ h.R}

These hyper-edges connect j to other clusters j′. The relational similarity for
two clusters needs to compare their connectivity patterns to other clusters.

For any cluster j, the set of other clusters to which j is connected via its
hyper-edge set H(j) form the neighborhood Nbr(j) of cluster j:

Nbr(j) =
⋃

h∈H(j)

{j′ | j′ = yi ∧ ri ∈ h.R}

This defines the neighborhood as a set of related clusters. In our example in
Figure 10.1, the neighborhood of the cluster for Wang1 consists of the clusters
for Ansari and Chen1. For the relational similarity between two clusters, we
look for commonness in their neighborhoods. This can be done in many
different ways [6]. An option that works very well is Jaccard’s co-efficient.
For two sets A and B, the Jaccard’s co-efficient is defined as

Jaccard(A,B) =
|A ∩B|
|A ∪B|

Given the relational similarity measure between clusters, collective relational
clustering can be performed efficiently in a greedy agglomerative fashion, as
we describe in the next section.

230 Constrained Clustering: Advances in Algorithms, Theory, and Applications

The downside of using relational information for collective resolution is of
course computational complexity. Collective resolution is already a hard prob-
lem, as we have discussed earlier. Here, we have significantly larger number
of dependencies due to the hyper-edges. Clearly, finding the best partition
into clusters is intractable, and approximate strategies are employed. For
the CRF model, approximate inference is performed using either loopy be-
lief propagation or relational agglomerative clustering [13]. In the LDA-ER
model [4], we use a structured variant of Gibbs sampling, while Pasula et
al. use Metropolis-Hastings sampling for inference in their generative model,
with techniques to generate efficient proposals. Even approximate inference
in joint probability models can be very slow in the presence of dependency
over hyper-edges. Also, it is typically hard to put a bound on the number of
iterations that the inference algorithms can take before converging. For our
collective relational clustering algorithm, in contrast, it is possible to put a
worst case complexity bound on performance, as we explain after describing
the algorithm in the next section.

10.3 An Algorithm for Collective Relational Clustering

For the collective relational clustering problem, we can use a greedy ag-
glomerative clustering algorithm that uses the similarity measure in (10.2) to
find the closest cluster pair at each step and then merges them. The com-
plexity of the algorithm arises from dependency of cluster similarities on the
current neighbor clusters. As clusters evolve, the relevant similarity changes
need to be efficiently computed and propagated over the hyper-edges. High
level pseudo-code for the algorithm is provided in Figure 10.2. Next, we de-
scribe the different components that form the building blocks of the greedy
algorithm, and then look at the overall computational complexity of the pro-
cess.

Blocking to Find Potential Resolution Candidates: Unless the data
sets are small, it is impractical to consider all possible pairs as potential
candidates for merging. Apart from the scaling issue, most pairs checked by
an O(n2) approach will be rejected since usually only about 1% of all pairs
are true matches. Blocking techniques [18, 22, 24] are usually employed to
rule out pairs which are certain to be non-matches. The goal is to separate
references into possibly overlapping buckets and only pairs of references within
each bucket are considered as potential matches. The relational clustering
algorithm uses the blocking method as a black-box and any method that can
quickly identify potential matches minimizing false negatives can be used. For
n references, the bucketing algorithm runs in O(nf) time, where a reference
is assigned to at most f buckets.

Collective Relational Clustering 231

1. Find similar references using blocking
2. Initialize clusters using bootstrapping

3. For clusters i, j such that similar(i, j)
4. Insert 〈sim(i, j), i, j〉 into priority queue

5. While priority queue not empty
6. Extract 〈sim(i, j), i, j〉 from queue
7. If sim(i, j) less than threshold, then stop

8. Merge i and j to new cluster bij
9. Remove entries for i and j from queue

10. For each cluster i′ such that similar(bij, i′)
11. Insert 〈sim(bij, i′), bij, i′〉 into queue

12. For each cluster j′ neighbor of bij
13. For i′ such that similar(j′, i′)
14. Update sim(j′, i′) in queue

FIGURE 10.2: High-level description of the relational clustering algorithm.

Cluster Initialization: Each iteration of the relational clustering algo-
rithm makes use of clustering decisions made in previous iterations. But if
we begin with each reference in a distinct cluster, then initially there are no
shared neighbors for references that belong to different hyper-edges. So the
initial iterations of the algorithm have no relational evidence to depend on.
To avoid this, we need to bootstrap the clustering algorithm such that each
reference is not assigned to a distinct cluster. Specifically, if we are confident
that some reference pair is co-referent, then they should be assigned to the
same initial cluster. However, precision is crucial for the bootstrap process,
since our algorithm cannot undo any of these initial merge operations. We
use a bootstrap scheme that considers both attributes and relationships to
determine bootstrap candidates. The bootstrapping scheme can be param-
eterized to account for different levels of ambiguity in data sets. After the
bootstrap candidates are identified, the initial clusters are created using the
union-find approach so that any two references that are bootstrap candidates
are assigned to the same initial cluster.

Handling Cannot-Link Constraints: So far, we have considered shared
relational neighborhoods between clusters as positive evidence that increases
the similarity for a cluster pair. Additionally, the clustering setting can have
negative or cannot-link constraints as well arising from relationships. For
example, in many relational domains, two references appearing in the same
hyper-edge cannot refer to the same entity. As a real bibliographic example,
consider a paper with co-authors “M. Faloutsos,” “P. Faloutsos,” and “C.
Faloutsos.” Despite the similarity of the uncommon last name, in reality these
references correspond to distinct author entities. In general, we can have a

232 Constrained Clustering: Advances in Algorithms, Theory, and Applications

set of cannot-link constraints C�= that the clusters need to satisfy. These can
be taken into account by setting the similarity between two cluster pairs in
(10.2) to zero if merging them violates any cannot-link constraint c �=(i, j).

Merging Clusters and Updating Similarities: Once the similar clusters
have been identified and bootstrapping has been performed, the algorithm
iteratively merges the most similar cluster pair and updates similarities until
the similarity drops below some specified threshold. This is shown in lines
5–14 of Figure 10.2. The similarity update steps for related clusters in lines
12–14 are the key steps that distinguish collective relational clustering from
a traditional agglomerative clustering algorithm. In order to perform the
update steps efficiently, indexes need to maintained for each cluster to record
the list of all similar clusters and all neighboring clusters. All of the update
operations from lines 9–14 can be performed efficiently using these lists. For
example, updates for related clusters are done by first accessing the neighbor
list and then traversing the similar list for each of them.

Complexity Analysis: As we have mentioned earlier, the computational
challenge is a big issue for collective clustering with relationships. Now, we
will briefly analyze how the different components handle the computational
bottlenecks of the process. First, we look at how the number of similarity
computations required in lines 3–4 of Figure 10.2 is reduced by the blocking
method. We consider the worst case scenario where the bootstrapping ap-
proach does not reduce the number of clusters at all. We need to compare
every pair of references within each bucket. But when n references are split
over O(n) buckets, using an optimistic estimate, we can show that only O(n)
similarity computations are required. However, it should be noted that a bad
bucketing algorithm that assigns O(n) references to any bucket will always
lead to O(n2) comparisons.

Now, let us look at the time taken by each iteration of the algorithm.
This depends on how the hyper-edges connect references in different buckets.
When references in each bucket are connected to references in many other
buckets, many update operations are required after every merge. In general,
if any bucket is connected to b other buckets, each merge operation leads
to O(b) update/insert operations. Using a binary-heap implementation for
the priority queue, the extract-max and each insert and update operation
take O(log q) time, where q is the number of entries in the queue. So the
total cost of each iteration of the algorithm is O(b log q). The total number
of iterations that the algorithm may require is O(q) in the worst case when
the priority queue has q entries to start with. With each merge operation
requiring O(b log q) time, the total cost of the iterative process is O(qb log q).
A good initial bucketing leads to O(n) entries in the queue to start with, so
that the total cost of the algorithm can be bounded by O(nb log n). So we
can see that it is possible to have an efficient implementation for the greedy
agglomerative approach. Note that this does not lead to an optimal cluster

Collective Relational Clustering 233

assignment. But as we will see in the experimental section, it results in very
good performance in practice.

To see how this compares against the attribute and naive relational base-
lines, observe that they need to take a decision for each pair of references in
a bucket. This leads to a worst case analysis of O(n) using the same assump-
tions as before. However, each similarity computation is more expensive for
the naive relational approach (10.1) than the attribute-based approach, since
the former requires a pairwise match to be computed between two hyper-
edges.

10.4 Correctness of Collective Relational Clustering

So far, we have discussed approaches and algorithms for collective relational
clustering assuming that the use of relationships between references improves
clustering accuracy. But is this a valid assumption? We now briefly discuss
and analyze different scenarios to observe that clustering using relationships
is beneficial when the data has certain characteristics.

For collective entity resolution using relational clustering, we have seen that
the resolution performance of any entity becomes dependent on the resolution
performance of related entities. The exact nature of this dependence hinges
on both the attributes of the references in the data and the relationships be-
tween them. Let us first illustrate how the resolution accuracy of approaches
that only use attributes depends on data characteristics. Consider a cluster-
ing algorithm that assigns two references to the same cluster if their attribute
similarity is above some threshold δ, and to different clusters otherwise. The
accuracy of this algorithm depends on the separation of references from dif-
ferent entities in terms of their attributes. More specifically, the recall for any
entity will be high if its references are easily identifiable in terms of attributes,
or, in other words, are at least as similar as the threshold δ. For instance, the
multiple recorded names for any person should not be very different from each
other. The other metric to consider is precision. The precision will be low if
there is ambiguity across entities in terms of attributes, or, in other words,
references from different entities have similarity larger than δ. For example,
if different people have very similar names, this approach will not work well.

The collective relational clustering algorithm uses relational similarity in
addition to attribute similarity for merging clusters. As a result, two clus-
ters with low attribute similarity can still be merged if they have shared
cluster neighborhoods. How this affects resolution accuracy depends on the
nature of the relationships across entities in the underlying data. We may
consider two different situations involving two related pairs of references. In
Figure 10.3(a), we have two hyper-edges h4 (Paper 4) and h1 (Paper 1) con-

234 Constrained Clustering: Advances in Algorithms, Theory, and Applications

h4

h1W. Wang

A. Ansari
A. Ansari

W.W. Wang
h1

h3

C. Chen
C. Chen

W. Wang
W. Wang

FIGURE 10.3: Illustration of (a) identifying relation and (b) ambiguous re-
lation. Dashed lines represent co-occurrence relations.

necting the two “Wang-Ansari” pairs. Assume without loss of generality that
the two “Ansari”s get clustered together first. As a result, the relational
similarity between the “Wang”s increases leading to those getting clustered
together subsequently. In this case, both the “Wang” and “Ansari” pairs are
actually co-referent. So the relationships play an identifying role and propa-
gate “good evidence,” so that one correct clustering decision leads to another
correct clustering decision. Here, recall for both the “Wang” and “Ansari”
clusters increases as a result of using relationships collectively. However, in
an alternative scenario, neither pair may be co-referent. In Figure 10.3(b),
the “Wang” references map to different people, as do the two “Chen” refer-
ences, but hyper-edge h1 (Paper 1) connects the first “Wang-Chen” pair and
h3 (Paper 3) connects the other pair. In this case, the relational similarity
of the two “Wang”s goes up as a result of the first incorrect merge of the
two “Chen”s, and subsequently leads to a second incorrect merge. Here the
relationships are ambiguous and propagate bad evidence from one incorrect
clustering decision leading to another.

In general, we can show that recall increases in a geometric progression
as a result of relational clustering, while precision goes down in a geometric
progression, as higher neighborhood levels are considered [7]. How quickly
the two progressions converge depend on the identifying and ambiguous na-
ture of the attributes and relationships. Notably, whether or not there is an
overall performance improvement depends on the fraction of attributes and re-
lationships are ambiguous or play an identifying role. If the relationships and
attributes are more of an identifying nature, then recall increases at a faster
rate than the fall in precision, and performance increases overall. On the other
hand, in the adverse situation, where a large fraction of the attributes and
relationships are ambiguous, then clustering accuracy can actually degrade as
a result of using relationships collectively.

Collective Relational Clustering 235

10.5 Experimental Evaluation

We have evaluated the collective relational clustering algorithm for entity
resolution on several real-world and synthetic data sets. Here, we present a
snapshot of the results. The details are available elsewhere [6, 7]. Our real-
world data sets involve publication information from several different scientific
research areas. As in our running example, the goal is to use co-author rela-
tionships in the papers for author entity resolution. The CiteSeer data set
contains 1,504 machine learning documents with 2,892 author references to
1,165 author entities. The data set was originally created by [16] and the ver-
sion which we use includes the author entity ground truth provided by Aron
Culotta and Andrew McCallum, University of Massachusetts, Amherst. The
arXiv data set describes high energy physics publications. It was originally
used in KDD Cup 2003.1 It contains 29,555 papers with 58,515 references
to 9,200 authors. The author entity ground truth for this data set was pro-
vided by David Jensen, University of Massachusetts, Amherst. Our third data
set, describing biology publications, is the Elsevier BioBase data set2 which
was used in the IBM KDD-Challenge competition, 2005. It was created by
selecting all Elsevier publications on “Immunology and Infectious Diseases”
between years 1998 and 2001. It contains 156,156 publications with 831,991
author references. Unlike arXiv and CiteSeer that have complete as well as
initialed author names, in BioBase all of the first names and middle names
are abbreviated. In addition, the BioBase data set has other attributes which
we use for resolution such as keywords, topic classification, language, country
of correspondence, and affiliation of the corresponding author. There is a
wide variety in the data with 20 languages, 136 countries, 1,282 topic classi-
fications, and 7,798 keywords. For evaluating entity resolution accuracy on
BioBase, we used 10,595 references having any one of 100 names that were
hand labeled.

We compare attribute-based entity resolution (A), naive relational entity
resolution (NR) that uses attributes of related references, and collective re-
lational entity resolution (CR). For the first two algorithms, we also consider
variants which perform transitive closures over the pairwise decisions (A* and
NR*).

In order to measure the performance of our algorithms, we consider the cor-
rectness of the pairwise co-reference decisions over all references. We evaluate
the pairwise decisions using the F1 measure, which is the harmonic mean of
precision and recall. For a fair comparison, we consider the best F1 for each
of these algorithms over all possible thresholds for determining matches.

1http://www.cs.cornell.edu/projects/kddcup/index.html
2http://help.sciencedirect.com/robo/projects/sdhelp/about biobase.htm

236 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 10.1: Performance of
different algorithms on the CiteSeer,
arXiv, and BioBase data sets

CiteSeer arXiv BioBase

A 0.980 0.974 0.568
A* 0.990 0.967 0.559
NR 0.981 0.975 0.710
NR* 0.991 0.972 0.753
CR 0.995 0.985 0.819

For comparing attributes, which is required for all of the algorithms, we use
the Soft TF-IDF coupled with Jaro-Winkler similarity for names [9, 11] since
it has been shown to perform well for name-based entity resolution. In the
case of BioBase, where we had other multi-valued attributes to make use of
besides names, we used TF-IDF similarity.

Table 10.1 gives an overview of the F1 results of the various algorithms on
our three data sets. The numbers show that the attribute baselines perform
remarkably well for CiteSeer and arXiv, but not as well for BioBase. The
reason lies in the intrinsic hardness of the data sets. The number of ambigu-
ous names in the first two data sets is very small. BioBase, in contrast, has
many entities with identical or similar names, which are hard to resolve using
attributes alone. The table shows that the effect of transitive closure on entity
resolution performance also varies over the data sets. While it improves per-
formance for both A and NR for CiteSeer and arXiv, in the case of BioBase,
it helps NR but not A.

Most importantly, across all three data sets, the collective relational entity
resolution algorithm (CR) performs the best. The gains for the less ambigu-
ous domains are more modest, while in the most ambiguous domain, the gain
is quite significant. In Figure 10.4(a), we show the precision-recall curves for
the three algorithms on BioBase. The plots confirm that the benefits of CR
are large in domains with high ambiguity such as BioBase. The performance
improvements of CR over NR highlights the importance over considering the
identities of related references rather than just their attributes.

Recall that CR, NR, and NR* involve a weighting parameter α for com-
bining attribute and relational similarity. As mentioned earlier, the numbers
in Table 10.1 record the best performance over different values of α for each
of these algorithms. In Figure 10.4(b) we see how the performance of the
different algorithms changes over different values of α for BioBase.

In our next experiment, we evaluate entity resolution performance over spe-
cific names. The goal is to evaluate how collective resolution accuracy changes
as larger neighborhoods are considered for resolving the set of references in
the database that have a particular name. For arXiv, we selected all 75 am-

Collective Relational Clustering 237

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

BioBase

CR
A
NR

(a)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.2 0.4 0.6 0.8 1

F1

alpha

BioBase

A
A*
NR
NR*
CR

(b)

FIGURE 10.4: (a) Precision vs Recall and (b) F1 vs α for BioBase.

TABLE 10.2: Average entity
resolution accuracy (F1) for
different algorithms over 75 arXiv
names and 100 BioBase names

arXiv BioBase

A 0.721 0.701
A* 0.778 0.687
NR 0.956 0.710
NR* 0.952 0.753
CR Level-1 0.964 0.813
CR Level-3 0.970 0.820

biguous names that correspond to more than one author entity. The number
of true entities for the selected names varying from 2 to 11 (average 2.4). For
BioBase, we selected the top 100 author names with the highest number of
references. The average number of references for each of these 100 names is
106, and the number of entities for the selected names ranges from 1 to 100
(average 32). The average F1 scores over all names are shown in Table 10.2
for each algorithm in the two data sets. In BioBase, the improvement using
CR is 21% over A and NR, 25% over A*, and 13% over NR*. As predicted
by our analysis, most of the accuracy improvement comes from references
that are directly connected. For 56 out of the 100 BioBase names, accuracy
does not improve beyond directly connected references. For the remaining 44
names, the average improvement is 2%. However, for 8 of the most ambiguous
names, accuracy improves by more than 5%, the biggest improvement being
as high as 27% (from 0.67 to 0.85 F1). Such instances are fewer for arXiv,
but the biggest improvement is 37.5% (from 0.727 to 1.0). On one hand, this
shows that considering related records and resolving them collectively leads to

238 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 10.3: Execution time of
different algorithms in CPU seconds

CiteSeer arXiv BioBase

A 0.1 11.3 3.9
NR 0.1 11.5 19.1
CR 2.7 299.0 45.6

significant improvement in accuracy. On the other hand, it also demonstrates
that while there are potential benefits to considering higher order neighbors,
they fall off quickly beyond level 1. This is in keeping with the analysis of
collective resolution in Section 10.4 where we mentioned that accuracy levels
off in a geometric progression as we consider larger neighborhoods.

As we have seen, collective relational clustering improves entity resolution
performance over attribute-based baselines. However it is more expensive
computationally. Table 10.3 records the execution times in CPU seconds of
the baseline algorithms and CR on the three data sets. All execution times
are reported on a Dell Precision 870 server with 3.2 GHz Intel Xeon processor
and 3 GB of memory. As expected, CR takes more time than the baseline
but it is still quite fast. It takes less than 3 seconds for the 2,982 references
in CiteSeer and less than 5 minutes for the 58,515 references in arXiv. The
time recorded for BioBase in Table 10.3 is not for cleaning the entire data set.
Rather, it is the average time for collectively resolving references with each
of the 100 labeled names. The average number of “neighborhood” references
for each of the 100 instances in 5,510. Table 10.3 shows that the difference in
execution time between CR and the baselines is much smaller for BioBase.
One reason for this is that BioBase has many attributes in addition to author
name that the attribute-only baseline also need to take into account. Also,
the average number of authors per publication is 5.3 for BioBase as compared
to 1.9 for the other two data sets. This makes the naive relational approach
significantly more expensive than the attribute-only baseline.

10.5.1 Experiments on Synthetic Data

We have performed extensive experiments on synthetic data as well. They
allow us to focus on specific properties of the attributes and relations of the
references and the underlying domain entities, and to better understand how
different data characteristics affect the performance of our collective relational
clustering. We wrote a synthetic generator for reference data that allows us
to control different properties such as the number of entities and relation-
ships, the size of relationships, the ambiguity of attributes and relationships

Collective Relational Clustering 239

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 1 2 3 4 5 6 7 8

F1

Avg #neighbors / entity

A
A*
NR
NR*
CR

FIGURE 10.5: Performance of different entity resolution algorithms on data
synthetically generated by varying the average number of neighbors per entity.
Standard deviations are shown using error bars.

across entitie, etc.3 The synthetic data generator is not tailored solely to
bibliographic data, but can model general relationships between entities, as
in social network data or email data.

Our experiments on synthetic data showed quite a few interesting trends.
For example, we found that for the varying number of references in each
hyper-edge, the performances of the attribute baselines (A and A*) do not
change, but the performance of CR improves with the increasing number
of references per hyper-edge. In another experiment, we varied the percent-
age of ambiguous references in the data. The performances of all algorithms
drop with increasing percentage of ambiguous references. However, the per-
formance drop for CR is significantly slower than those for the attribute and
naive relational baselines since the entity relationships help to make the al-
gorithm more robust. As a result, the gap between CR and the baselines
increases as the percentage of ambiguous references in the data increases.

Another interesting trend is shown in Figure 10.5. Here, we explored the
impact of varying the number of relationships between the underlying entities.
As expected, the performances of the attribute baselines (A and A*) do not
change significantly since they do not depend on the relationships. The per-
formance of CR increases initially as the number of relationships increases.
However it peaks when the average number of neighbors per entity is around
2 and then it starts falling off. In fact, it falls below the attribute-baseline
when the neighborhood size increases to 8. This is an interesting result that
shows that an increasing number of relationships does not always help col-
lective entity resolution. As more relationships get added between entities,

3Available at http://www.cs.umd.edu/users/indrajit/ER

240 Constrained Clustering: Advances in Algorithms, Theory, and Applications

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0.4 0.5 0.6 0.7

R
ec

al
l

Sim. Threshold

pR=0.2
pR=0.5
pR=1.0

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.45 0.5 0.55 0.6 0.65 0.7

P
re

ci
si

on

Sim. Threshold

pRa=0.0
pRa=0.3
pRa=0.6

FIGURE 10.6: Effect of (a) identifying relations on recall and (b) ambigu-
ous relations on precision for collective clustering. Error bars show standard
deviation.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3

R
ec

al
l

Level

t=0.9
t=0.6
t=0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 1 2 3

P
re

ci
si

on

Level

t=0.9
t=0.6
t=0.5

FIGURE 10.7: Change in (a) precision and (b) recall for increasing expansion
levels in collective clustering. Error bars show standard deviation.

relationship patterns between entities are less informative, and may actually
hurt performance.

Next, in Figure 10.6(a), we investigate the influence of identifying rela-
tionships on collective relational clustering using relational clustering. The
plot shows recall at different similarity thresholds for three different levels
of identifying relationships. The results confirm that recall increases pro-
gressively with more identifying relationships at all thresholds. The curves
flatten out only when no further recall is achievable. Next, we observe the
effect of ambiguous relations on precision of collective relational clustering.
In Figure 10.6(b), we plot precision at different similarity thresholds for three
different levels of ambiguous relationships. The plots confirm the progressive
decrease in precision for all thresholds with higher ambiguity. This shows that
more relations are not always helpful for collective relational clustering, but
that the nature of the relationships is important.

Finally, we move on to the dependence of collective relational clustering

Collective Relational Clustering 241

on resolving related references. For this experiment, we performed localized
collective clustering, focusing on the most ambiguous attribute value (that
corresponds to the highest number of underlying entities) in the generated
data. In Figure 10.7(a) and (b), we show how recall and precision change as
neighbors that are farther away are considered and resolved. Recall improves
with increasing neighborhood level, while precision decreases overall, as was
predicted by our analysis. Importantly, recall increases at a significantly faster
rate than the decrease in precision. In general, the rate of increase/decrease
depends on the structural properties of the data, as we have shown in our
analysis. In other experiments, we have seen different rates of change, but
the overall trend remains the same. Our analysis also showed that precision
and recall converge quickly over increasing neighborhood levels. This too is
confirmed by the two plots where the curves flatten out by level 3.

10.6 Conclusions

In summary, we have discussed the collective relational clustering prob-
lem, where data points are partitioned into clusters such that the cluster
assignment of any data point depends on the cluster assignments of all data
points related to it. We considered entity resolution as the application area
and, after reviewing different collective and relational approaches, presented
a more detailed overview of one approach for collective relational clustering,
where the similarity measure between clusters combines both attributes and
relational evidence in a collective fashion. Given this similarity measure, we
showed how it can be used by a greedy agglomerative algorithm for collective
relational clustering. One of the challenges of using relationships collectively
for clustering is computational complexity. We identified the computational
bottlenecks, and looked at how these can be addressed efficiently. We also
considered the issue of correctness of collective relational clustering, which
has not received much attention in the literature, and showed how clustering
accuracy, in terms of precision and recall, depends on specific characteristics
of the data. We showed that while some relationships are good for recall,
others hurt precision, and overall performance depends on the fraction of at-
tributes and relationships that lead to ambiguity between clusters. We also
showed how the impact of collective decisions on any cluster falls off as neigh-
boring clusters at increasingly higher distances are considered. We evaluated
the performance of collective relational clustering over multiple real-world and
synthetic data sets and demonstrated that significant performance gains are
achievable over traditional attribute-based and naive relational baselines. As
expected, the price for improved performance is paid in terms of increased ex-
ecution time over non-relational approaches, but the greedy approach scales

242 Constrained Clustering: Advances in Algorithms, Theory, and Applications

well with increasing database size. Making use of relationships adaptively and
efficiently is an ongoing challenge [5, 6]. In practical scenarios where accuracy
is paramount, the improved performance can sufficiently compensate for the
increase in execution time.

References

[1] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Elim-
inating fuzzy duplicates in data warehouses. In The International Con-
ference on Very Large Databases (VLDB), pages 586–597, Hong Kong,
China, 2002.

[2] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.
Machine Learning, 56(1-3):89–113, 2004.

[3] Indrajit Bhattacharya and Lise Getoor. Iterative record linkage for
cleaning and integration. In The ACM SIGMOD Workshop on Research
Issues on Data Mining and Knowledge Discovery (DMKD), pages 11–18,
Paris, France, June 2004.

[4] Indrajit Bhattacharya and Lise Getoor. A latent dirichlet model for un-
supervised entity resolution. In The SIAM Conference on Data Mining
(SIAM-SDM), pages 47–58, Bethesda, USA, 2006.

[5] Indrajit Bhattacharya and Lise Getoor. Query-time entity resolution. In
The ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD), pages 529–534, Philadelphia, USA, 2006.

[6] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in
relational data. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(1):5, March 2007.

[7] Indrajit Bhattacharya and Lise Getoor. Query-time entity resolution.
Journal of Artificial Intelligence Research (JAIR), 30:621–657, Decem-
ber 2007.

[8] Mikhail Bilenko and Raymond Mooney. Adaptive duplicate detection
using learnable string similarity measures. In The ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD), pages
39–48, Washington, DC, USA, 2003.

[9] Mikhail Bilenko, Raymond Mooney, William Cohen, Pradeep Raviku-
mar, and Stephen Fienberg. Adaptive name matching in information
integration. IEEE Intelligent Systems, 18(5):16–23, 2003.

Collective Relational Clustering 243

[10] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Cluster-
ing with qualitative information. In Proceedings of the Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 524–
533, 2003.

[11] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A compar-
ison of string distance metrics for name-matching tasks. In The IJCAI
Workshop on Information Integration on the Web (IIWeb), pages 73–78,
Acapulco, Mexico, August 2003.

[12] Michael Collins. Discriminative training methods for hidden Markov
models: Theory and experiments with perceptron algorithms. In Pro-
ceedings of the ACL-02 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1–8, 2002.

[13] Aron Culotta and Andrew McCallum. Joint deduplication of multi-
ple record types in relational data. In Conference on Information and
Knowledge Management (CIKM), pages 257–258, 2005.

[14] Xin Dong, Alon Halevy, and Jayant Madhavan. Reference reconcilia-
tion in complex information spaces. In The ACM International Con-
ference on Management of Data (SIGMOD), pages 85–96, Baltimore,
USA, 2005.

[15] I. Fellegi and A. Sunter. A theory for record linkage. Journal of the
American Statistical Association, 64:1183–1210, 1969.

[16] C. Lee Giles, Kurt Bollacker, and Steve Lawrence. CiteSeer: An au-
tomatic citation indexing system. In The ACM Conference on Digital
Libraries, pages 89–98, Pittsburgh, USA, 1998.

[17] Lifang Gu, Rohan Baxter, Deanne Vickers, and Chris Rainsford. Record
linkage: Current practice and future directions. Technical Report 03-83,
CSIRO Mathematical and Information Sciences, Canberra, Australia,
April 2003.

[18] Mauricio Hernández and Salvatore Stolfo. The merge/purge problem for
large databases. In The ACM International Conference on Management
of Data (SIGMOD), pages 127–138, San Jose, USA, May 1995.

[19] Dmitri Kalashnikov, Sharad Mehrotra, and Zhaoqi Chen. Exploiting
relationships for domain-independent data cleaning. In The SIAM In-
ternational Conference on Data Mining (SIAM SDM), pages 262–273,
Newport Beach, USA, 2005.

[20] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record link-
age: Similarity measures and algorithms (tutorial). In Proceedings of
the ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 802–803, 2006.

244 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[21] Bo Long, Zhongfei (Mark) Zhang, Xiaoyun Wú, and Philip S. Yu. Spec-
tral clustering for multi-type relational data. In Proceedings of the In-
ternational Conference on Machine Learning (ICML), pages 585–592,
2006.

[22] Andrew McCallum, Kamal Nigam, and Lyle Ungar. Efficient clustering
of high-dimensional data sets with application to reference matching. In
The International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pages 169–178, Boston, USA, August 2000.

[23] Andrew McCallum and Ben Wellner. Conditional models of identity un-
certainty with application to noun coreference. In The Annual Confer-
ence on Neural Information Processing Systems (NIPS), pages 905–912,
Vancouver, Canada, 2004.

[24] Alvaro Monge and Charles Elkan. An efficient domain-independent al-
gorithm for detecting approximately duplicate database records. In The
SIGMOD Workshop on Research Issues on Data Mining and Knowledge
Discovery (DMKD), pages 23–29, Tuscon, USA, May 1997.

[25] Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart Russell, and Ilya
Shpitser. Identity uncertainty and citation matching. In The Annual
Conference on Neural Information Processing Systems (NIPS), pages
1401–1408, Vancouver, Canada, 2003.

[26] Eric Ristad and Peter Yianilos. Learning string edit distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
20(5):522–532, 1998.

[27] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication
using active learning. In The ACM International Conference on Know-
ledge Discovery and Data Mining (SIGKDD), pages 269–278, Edmonton,
Canada, 2002.

[28] Parag Singla and Pedro Domingos. Object identification with attribute-
mediated dependences. In Proceedings of the European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD),
pages 297–308, Porto, Portugal, 2005.

[29] Sheila Tejada, Craig Knoblock, and Steven Minton. Learning object
identification rules for information integration. Information Systems
Journal, 26(8):635–656, 2001.

[30] William Winkler. The state of record linkage and current research prob-
lems. Technical report, Statistical Research Division, U.S. Census Bu-
reau, Washington, DC, USA, 1999.

Chapter 11

Non-Redundant Data Clustering

David Gondek

IBM Watson Research Center, dgondek@us.ibm.com

Abstract As a discovery technique, clustering should avoid redundancies
with existing knowledge about class structures or groupings and reveal novel,
previously unknown aspects of the data. This setting is formally defined as
a constrained clustering problem, referred to as “non-redundant clustering.”
A family of algorithms is derived which obtain high-quality clusterings while
ensuring these clusterings are novel with respect to the existing knowledge.
The algorithms are shown to allow for a range of data characteristics and
may be used both when existing knowledge is available or in an exploratory
manner to obtain successive novel clusterings. Experimental evaluations are
used to evaluate and compare the algorithmic approaches on image, text, and
synthetic data.

11.1 Introduction

Data contains multiple plausible clusterings. Constrained clustering tech-
niques are used to control which of these multiple clusterings will be returned.
While there are a range of techniques for guiding searches toward those solu-
tions that bear certain characteristics known to be desired in advance, here
we consider the problem of guiding searches away from known structures.
In such a setting, an analyst specifies model-level characteristics of what is
not desired. This is particularly useful in true exploratory settings where
characteristics of the desired solution are not known in advance.

There are a range of settings in which non-redundant clustering is par-
ticularly useful. There is the straightforward application for domains where
multiple clusterings exist. For instance, in document clustering of news sto-
ries, the documents may naturally cluster by topic, region, or source. Existing
clustering techniques, even with random initializations, will typically return
only one of these solutions. Non-redundant clustering allows an analyst to

245

246 Constrained Clustering: Advances in Algorithms, Theory, and Applications

specify one or more of these clusterings which are not desired and should be
avoided in the clustering solution. Importantly, it does this without charac-
terizing the target solution. Under another setting we consider, the analyst
may identify features (here, terms) which ought not be associated with the
clustering. A successful non-redundant clustering algorithm should obtain a
clustering which does not closely associate with this known structure. Another
interesting application is when the known structure is the result of a previ-
ously run algorithm. This is particularly intriguing as it suggests a program
of successive non-redundant clusterings, which would enumerate a number of
plausible clusterings for the data. In a true exploratory setting where charac-
teristics of the desired solution is not known in advance, enumeration is the
only means by which one can explore the possible clusterings available. Fi-
nally, if supervision is available, as the approaches discussed here are based on
well-known techniques, they may be easily combined to enhance performance
on semi-supervised tasks. That is if one were classifying a set of news stories
according to topic in a semi-supervised setting, by introducing the newsfeed
source as known structure, topic classification performance can actually be
improved.

11.2 Problem Setting

In this section, the non-redundant clustering problem is formally described,
as first suggested in [24]. We begin by identifying the forms of known structure
which may be used, briefly review some necessary concepts from information
theory and cluster analysis, and then formally define the non-redundant clus-
tering problem.

Known Structure

In the first case, a known categorization (Z = ΠX
1) is given as known

structure. This categorization may be the result of hand-labeled classifica-
tion, it may be derived from the collection process (e.g., source websites of
webpages), or it could be a classification obtained from supervised or unsu-
pervised learning algorithms. The goal is to find a clustering which is novel
with respect to this known categorization. Supervised information may be
available in addition to known structure.

Noise Features

In the second case, a set of features are given as irrelevant, or “noise”
features (Z = NF). A clustering ΠX

∗ is desired with which the features NF
are not correlated. Note that this notion of noise features differs from that

Non-Redundant Data Clustering 247

presented in work such as [23] and [13]. In these works, noise features are
defined as irrelevant features resulting from the learned structure. Instead,
our use of the term noise features refers to features desired to appear noisy
such that in any solution obtained, the NF features ought to appear as noise.

One setting in which this formulation is particularly relevant is those cases
in which features bear semantic content. An obvious example would be that of
text mining, where individual features (terms) contain semantic information
about the document. An analyst could then select terms associated with the
undesired structure (e.g., news source names). This approach is also useful in
more specialized settings, in which it is known a priori that certain features
dominate the structure of the data but this structure is not desired.

11.2.1 Background Concepts

The definition of non-redundant clustering and algorithms derived will make
extensive use of several concepts from information theory. These are briefly
reviewed here. For a full discussion of these concepts, see [3]. A crucial
concept is that of entropy, which is a measure of the uncertainty of a random
variable.

11.2.1.1 Shannon Information Entropy and Conditional Entropy

DEFINITION 11.1 The Shannon entropy, H(X), of a discrete random
variable X is:

H(X) = −
∑

x∈X
P (x) log2 P (x).

Entropy has several properties which will be of use: entropy is non-negative,
bounded [H(X) ≤ log |X |], and concave. The bound on entropy is reached
when the distribution X is uniform. As a distribution becomes more peaked,
the entropy decreases. The definition of entropy can be extended to address
conditional distributions via the conditional entropy.

DEFINITION 11.2 The conditional entropy of variable X conditioned
on Y is given by:

H(Y |X) =
∑

x∈X

∑

y∈Y
P (x, y) logP (y|x).

The conditional entropy expresses the uncertainty of variable X given that
the value of Y is known. For instance, in the soft-clustering case where
items are assigned to multiple clusters in probability, one may represent clus-
ter membership as a probability P (Y|X). The conditional entropy H(Y|X)

248 Constrained Clustering: Advances in Algorithms, Theory, and Applications

measures how soft the clustering is, with higher values meaning a “fuzzier”
clustering.

11.2.1.2 Mutual Information and Relative Entropy

Mutual information describes how much information two variables convey
about each other. Variables that are more dependent on each other have
higher mutual information.

DEFINITION 11.3 The mutual information of variables X and Y is
given by:

I(X;Y) =
∑

x∈X

∑

y∈Y
P (x, y) log

P (x, y)
P (x)P (y)

.

Often, mutual information is given in terms of the conditional probability:

I(X;Y) =
∑

x∈X

∑

y∈Y
P (x, y) log

P (x|y)
P (x)

=
∑

y∈Y

∑

x∈X
P (x, y) log

P (y|x)
P (y)

.

Mutual information may be written in terms of entropies:

I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X).

A number of useful properties follow: Mutual information is symmetric,
[I(X;Y) = I(Y ;X)], non-negative, and bounded [I(X;Y) ≤ min(H(X),H(Y))].

The definition of mutual information may be extended to any number of
variables. Of particular use in non-redundant clustering will be the conditional
mutual information, which is the mutual information of X and Y conditioned
on Z. This measures how much incremental knowledge X offers about Y
assuming that Z is already known.

DEFINITION 11.4 The conditional mutual information of variables X
and Y given Z is:

I(X;Y |Z) =
∑

x∈X

∑

y∈Y

∑

z∈Z
P (x, y, z) log

P (x, y|z)
P (x|z)P (y|z) .

Another useful quantity is the Kullback-Leibler (KL) divergence, also known
as the relative entropy which measures the divergence between two probability
distributions:

DEFINITION 11.5 The Kullback-Leibler (KL) divergence for distribu-
tions P (x) and Q(x) is:

DKL[p||q] =
∑

x∈X
P (x) log

P (x)
Q(x)

.

Non-Redundant Data Clustering 249

The KL divergence is always non-negative and is equal to 0 if and only if
p = q. Note that it is not a true metric as it is not symmetric and does not
satisfy the triangle equality.

11.2.2 Multiple Clusterings

It is often the case that there exists multiple clusterings which are of high
quality, i.e., obtain high values in the objective function. These may consist
of minor variations on a single clustering or may include clusterings which
are substantially dissimilar. Distinguishing between these two cases requires
some notion of clustering similarity. Multiple techniques exist for determining
the similarity or dissimilarity of clusterings. Many of these approaches were
originally developed for use as external criteria for the cluster validation task,
which seeks to measure the effectiveness of a clustering algorithm by compar-
ing the results against a known clustering. Overviews of these methods are
provided in [12] and [15] of which we review here the information-theoretic
metric known as “variation of information,” due to [15]. This is a true metric
designed to measure the “distance” between two clusters, and will be used to
justify our definition of “information-orthogonality.”

11.2.2.1 Variation of Information

DEFINITION 11.6 The variation of information between two clusterings
ΠX

1 and ΠX
2, V I(ΠX

1,ΠX
2) is defined as:

V I(ΠX
1,ΠX

2) = H(ΠX
1) +H(ΠX

2)− 2I(ΠX
1,ΠX

2). (11.1)

The definition in 11.1 can be rewritten as:

V I(ΠX
1,ΠX

2) = [H(ΠX
1)− I(ΠX

1; ΠX
2)] + [H(ΠX

2)− I(ΠX
1; ΠX

2)]
= H(ΠX

1|ΠX
2) +H(ΠX

2|ΠX
1),

which expresses the quantity as the sum of the conditional entropies. It can
be shown that VI is a true metric, as it obeys the following three properties:

(i.) Non-negativity V I(ΠX
1,ΠX

2) ≥ 0 with equality if and only if ΠX
1 =

ΠX
2.

(ii.) Symmetry V I(ΠX
1,ΠX

2) = V I(ΠX
2,ΠX

1).

(iii.) Triangle Inequality For clusterings ΠX
1,ΠX

2,ΠX
3,

V I(ΠX
1,ΠX

2) + V I(ΠX
2,ΠX

3) ≥ V I(ΠX
1,ΠX

3).

Further, VI is bounded, that is,

250 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Boundedness

V I(ΠX
1,ΠX

2) ≤ H(ΠX
1) +H(ΠX

2).

Boundedness follows by non-negativity of mutual information and is a conse-
quence of the fact that the space of all clusterings is bounded.

11.2.3 Information Orthogonality

Now it is possible to formally define information-orthogonality for clusters.
Note that this is intended to capture the orthogonality of clusterings and is
not to be confused with the parameter information-orthogonality of [4]. In
particular, we define:

DEFINITION 11.7 Clusterings ΠX
1 and ΠX

2 are information-orthogonal
with regard to X if and only if any of the following equivalent definitions:

(i.) Original definition:

I(ΠX
1,ΠX

2;X) = I(ΠX
1;X) + I(ΠX

2;X). (11.2)

(ii.) Entropy formulation:

H(ΠX
1,ΠX

2) = H(ΠX
1) +H(ΠX

2).

(iii.) ΠX
1 and ΠX

2 are independent:

P (ΠX
1,ΠX

2) = P (ΠX
1)P (ΠX

2).

(iv.) The variation of information metric, V I(ΠX
1,ΠX

2), is maximal:

V I(ΠX
1,ΠX

2) = H(ΠX
1) +H(ΠX

2).

Definition (i.) is the original definition and captures the idea of “orthogonal-
ity” in terms of mutual information. Definition (ii.) is an entropy formulation
which has uses in developing objective functions for clustering algorithms.
Definition (iii.) is a justification in terms of the cluster probabilities, which
intuitively captures the notion of “information-orthogonality.” And finally,
in Definition (iv.), information-orthogonality implies the VI metric is maxi-
mal. By appeal to VI, it is clear that information-orthogonality satisfies our
requirement for non-redundant clustering: informational-orthogonal clusters
are as “distant” from one another as possible.

Non-Redundant Data Clustering 251

11.2.4 Non-Redundant Clustering

It is now possible to formally define the problem of non-redundant cluster-
ing. In the ideal case, non-redundant clustering seeks to find a high-quality
clustering which is informational-orthogonal with respect to known structure.

DEFINITION 11.8 The non-redundant clustering problem is given
for data X , known structure Z, and objective function L as:

maxΠX
∗ L(ΠX

∗,X)
s.t. ΠX

∗ is a valid clustering,
ΠX

∗ and Z are information-orthogonal.

This definition is simply the general clustering problem with the addition
of an information-orthogonality constraint. One way to intuitively explain
the information-orthogonality constraint is using Definition 11.7(iii.), which
implies

P (yi|zj) = P (yi|zk) ∀i, j, k.

This means that knowing the value of Z does not affect the probability of
the cluster assignments in ΠX

∗. Thus, in the categorical case, possessing the
known cluster assignment for an instance does not influence the solution clus-
ter to which it is assigned. In that sense, the two clusterings are independent.

In practice, it may be the case that the information-orthogonality con-
straint is too strict. Informed by Definition 11.7(iv.) one may relax the
non-redundant clustering problem by simply requiring that the VI be greater
than some threshold δ.

DEFINITION 11.9 The relaxed non-redundant clustering prob-
lem is given for data X, known structure Z, and objective function L as:

maxΠX
∗ L(ΠX

∗,X)
s.t. ΠX

∗ is a valid clustering,
V I(ΠX

∗, Z) ≥ δ

This definition will be used to motivate two approaches for non-redundant
clustering: conditional ensembles and the coordinated conditional information
bottleneck.

252 Constrained Clustering: Advances in Algorithms, Theory, and Applications

11.3 Conditional Ensembles

Conditional ensembles [11] is a technique for obtaining non-redundant clus-
terings by independently clustering data conditioned on the known structure,
and then combining the results. It can be motivated as follows. Suppose that
there exists two strong orthogonal clusterings of data ΠX

1 and ΠX
2. Because

ΠX
1 and ΠX

2 are informational-orthogonal, that means that ΠX
2’s structure

must be replicated within each of the k clusters ΠX
1 clusters. Suppose ΠX

1

is known side information and ΠX
2 is not known. A straightforward method

for accomplishing non-redundant clustering and discovering ΠX
2 would be to

perform clustering within each of the ΠX
1clusters. As the clustering structure

of ΠX
1 will not be significant within a single cluster of ΠX

1, and the ΠX
2

is the next most prominent structure, application of a clustering algorithm
should produce a local version of ΠX

2. Once local versions of ΠX
2 are pro-

duced for each of the ΠX
1clusters, all that remains is to combine them into

a coherent global solution. As it will turn out, this can be accomplished by
using existing ensemble clustering methods which will be reviewed in the next
section.

The framework is described in Figure 11.1, and consists of three stages:
In the first stage, local clustering solutions are computed for all data points
belonging to the same cluster of the given clustering. This results in one local
clustering for every known cluster of the original clustering. The second stage
extends these local solutions to create global clustering solutions. Note that in
this stage, the characteristics of the clusters do not change. That is, in model-
based or centroid-based approaches one would keep the model parameters
or cluster centroids constant. For instance, with Expectation Maximization
(EM), this stage corresponds to application of the E-step over all instances.
With k-means, this stage corresponds to application of the assignment step
over all instances. Finally, the global clustering solutions obtained from the
local seeds are combined using an ensemble clustering method to produce the
final coordinated clustering as explained in the next section.

Ensemble Clustering

Ensemble clustering deals with the problem of combining multiple cluster-
ings to produce a combined clustering solution. This problem has received
substantial attention (cf. [20, 22]) as a practical way of combining results
from different clustering algorithms as well as a method to avoid overfitting
by data resampling [16]. The goal is, given l clusterings {ΠX

1, . . . ,Yl} where
each clustering ΠX

i partitions the data into ki clusters, to find a combined
clustering Y of k clusters. In our case, we are concerned with the combination
step and not with the problem of how to generate the different clustering so-
lutions as those are obtained via the first two steps of the CondEns algorithm.

Non-Redundant Data Clustering 253

Input: Data X = {x1, . . . ,xn}, clustering ΠX
1 : {πX

1
1, . . . , πX

1
k}, number

of clusters in target k in number of clusters kj for each local clustering

Output: Clustering ΠX
∗ : {πX

∗
1, . . . , πX

∗
k}

1. Clustering

Partition data set into local sets:
Xj ≡ {xi : i ∈ yj)}, j = 1 . . . , l.

Apply base clustering method to each Xj to find a local clustering
Π̃X

j
: j = 1, . . . k1.

2. Extension

Extend each Π̃X
j

to a global clustering Yj by assigning training in-
stances in X�=j , m �= j to one of the existing clusters
ΠX

j : {x1, . . . ,xn} → {πX1, . . . , πXkj
}, j = 1 . . . , l

3. Combination

Combine clustering solutions ΠX
j to form a consensus clustering:

ΠX
∗ = Consens(Y1, . . . ,ΠX

l), where ΠX
∗ is a global clustering:

ΠX
∗ : {x1, . . . ,xn} → {πX1, . . . , πXk}

FIGURE 11.1: CondEns algorithm.

In [22], several techniques for obtaining a combined clustering solution are
compared. The median partition technique, in particular, has the most attrac-
tive time complexity while achieving results on par with the other techniques
studied. It can be motivated by the objective presented in [20]:

ΠX
∗ = arg max

ΠX

l∑

j=1

I(ΠX; ΠX
j) .

Instead of optimizing the objective directly, [22] solves for a related quantity,
the generalized mutual information. Generalized mutual information follows
from the definition of generalized entropy for degree s:

Hs(ΠX) = (21−s − 1)−1

⎛

⎝
l∑

j=1

P (πXj)
s − 1

⎞

⎠ ,

where s > 0 and s �= 1. The generalized mutual information would then be:

Is(ΠX; ΠX
′) = Hs(ΠX

′)−Hs(ΠX
′|ΠX) . (11.3)

254 Constrained Clustering: Advances in Algorithms, Theory, and Applications

One may consider the quadratic mutual information, where s = 2. This cri-
terion is up to a factor of 2 equivalent to the category utility function U pre-
sented in [8]. Moreover, it was shown in [17] that maximization of Eq. (11.3)
for a fixed number of target clusters is equivalent to the minimization of a
squared-error criterion. The latter can be solved using standard approxima-
tion techniques such as k-means clustering. Following [22] we have obtained
good results using the quadratic mutual information criterion and k-means
clustering.

11.3.1 Complexity

The technique presented has attractive overall time complexity. For in-
stance, in the case where k-means is used for the base clustering method,
CondEns is typically faster than running simple k-means over the data set.
This surprising result is due to the fact that CondEns first partitions the data
set into smaller local sets. As the complexity of k-means clustering is typi-
cally superlinear in the number of instances [1, 6], the clustering step is more
efficient. Further, the extension step consists of a single assignment iteration,
and the combination step is a clustering over a dramatically smaller problem.
Thus, the divide-and-conquer approach of CondEns achieves significant time
savings over traditional k-means.

11.3.2 Conditions for Correctness

In this section, a theoretical analysis of sufficient conditions is provided for
when a target clustering embedded in the data set can be recovered by the
above algorithm. The analysis requires making a number of assumptions on
the base clustering algorithm, the cluster combination scheme, and the relative
dominance of the target clustering. These requirements are strong and may
not be met in most realistic settings. However, they provide motivation for
the proposed method and the analysis is valuable in explaining what factors
impact the approach.

A crucial quantity to review in the current setting is the conditional mutual
information, defined as

I(A;B|C) = H(A|C)−H(A|B,C) ,

where A, B, and C are random variables. We state a few useful facts about
conditional mutual information that directly follow from this definition.

PROPOSITION 11.1

(a) I(A;B|C) = I(B;A|C).
(b) I(A;B|C) = I(A;B,C)− I(A;C).

Non-Redundant Data Clustering 255

(c) I(A;B|C)− I(A;B) = I(A;C|B)− I(A;C).
(d) A is independent of C|B if and only if I(A;C|B) = 0.

We will quantify the quality of a clustering as the mutual information be-
tween the feature representation and the cluster membership variable, i.e.,

Q(Y) ≡ I(Y;X) = H(X)−H(X|Y) ,

where H denotes the (conditional) entropy or the differential (conditional) en-
tropy, dependent on the type of feature representation. An important property
is that ΠX

2 will be conditionally independent of any other random variable,
given the input. In particular ΠX

2 is independent of any given partitioning
ΠX

1, i.e., ΠX
2 is independent of ΠX

1|X or, equivalently I(ΠX
1; ΠX

2|X) = 0,
∀ΠX

1. Using the concept of information-orthogonality as defined, the follow-
ing lemma results:

LEMMA 11.1
If ΠX

2 and ΠX
1 are information-orthogonal, then I(ΠX

1;X) = I(ΠX
1;X|ΠX

2)
and I(ΠX

2;X) = I(ΠX
2;X|ΠX

1).

Using the chain rule for mutual information,

I(ΠX
2,ΠX

1;X) =I(ΠX
2;X|ΠX

1) + I(ΠX
1;X)

=I(ΠX
1;X|ΠX

2) + I(ΠX
2;X),

which when combined with (11.2) establishes that I(ΠX
2;X) = I(ΠX

2;X|ΠX
1)

and I(ΠX
1;X) = I(ΠX

1;X|ΠX
2).

For arbitrary clusterings C, Lemma 11.1 may not hold, however, the con-
ditional independence from ΠX

1 given X guarantees the following:

LEMMA 11.2
I(ΠX

2;X|ΠX
1) ≤ I(ΠX

2;X)

Since I(ΠX
2; ΠX

1|X) = 0, one obtains I(ΠX
2;X|ΠX

1) = I(ΠX
2; ΠX

1|X)+
I(ΠX

2;X) −I(ΠX
2; ΠX

1) = I(ΠX
2;X)− I(ΠX

2; ΠX
1) ≤ I(ΠX

2;X).
An immediate implication of the two lemmata is the following corollary.

COROLLARY 11.1
If ΠX

2∗ = arg maxΠX
2 I(ΠX

2;X) and ΠX
2∗ is information-orthogonal to

ΠX
1, then ΠX

2∗ = arg maxΠX
2 I(ΠX

2;X|ΠX
1).

I(ΠX
2∗;X|ΠX

1) = I(ΠX
2∗;X) ≥ I(ΠX

2;X) ≥ I(ΠX
2;X|ΠX

1) for all ΠX
2.

256 Constrained Clustering: Advances in Algorithms, Theory, and Applications

The main problem is that the bound in Lemma 11.2 holds only on the
average. Namely, one may have a situation where I(ΠX

2′;X|ΠX
1 = πX

1
j) >

I(ΠX
2;X|ΠX

1 = πX
1
j), despite the fact that I(ΠX

2′;X|ΠX
1) ≤ I(ΠX

2;X|ΠX
1).

As a relaxed condition, we can prove that a dominant, information-orthogonal
clustering will also dominate all other clusterings in at least one group of ΠX

1.
We will require the following lemma:

LEMMA 11.3
There exists a ΠX

2 where:

I(ΠX
2;X|ΠX

1) =
∑

j

P (πX
1
j)I(ΠX

2j
;X|ΠX

1 = πX
1
j).

This lemma is proven by using the fact that ΠX
1 is a partition, only the Xj

participate in I(ΠX
2j

;X|ΠX
1 = πX

1
j) and so in ΠX

2 each Xj may be handled
separately.

PROPOSITION 11.2
If ΠX

2∗ is information-orthogonal to ΠX
1 and I(ΠX

2∗;X) > I(ΠX
2;X) for

all ΠX
2 ∈ Y − {ΠX

2∗}, where #X∈ is chosen such that for all
ΠX

2j ≡ arg maxΠX
2 I(ΠX

2;X|ΠX
1 = πX

1
j), ΠX

2j ∈ Y, then there exists at
least one group j∗ such that I(ΠX

2∗;X|ΠX
1 = πX

1
j∗) ≥ I(ΠX

2;X|ΠX
1 =

πX
1
j∗) for all ΠX

2.

We first point out that there exists some ΠX
2 such that I(ΠX

2;X|ΠX
1) =

∑
j P (πX

1
j)I(ΠX

2j
;X|ΠX

1 = πX
1
j). Such a ΠX

2 is constructed such that the

restriction of ΠX
2 to the pre-images Xj of ΠX

1 equals ΠX
2j

. Using the fact
that ΠX

1 is a partition, only those Xj participate in I(ΠX
2j

;X|ΠX
1 = πX

1
j)

and so in ΠX
2 each Xj may be separately assigned to its ΠX

2j
. In conjunction

with Lemma 11.2 this yields:

l∑

j=1

P (πX
1
j)I(ΠX

2j
;X|ΠX

1 = πX
1
j) = I(ΠX

2;X|ΠX
1) ≤ I(ΠX

2;X).

By assumption I(ΠX
2;X) < I(ΠX

2∗;X) and with Lemma 11.1 one arrives at

I(ΠX
2;X) < I(ΠX

2∗;X) = I(ΠX
2∗;X|ΠX

1)

=
l∑

j=1

P (πX
1
j)I(ΠX

2∗;X|ΠX
1 = πX

1
j).

Non-Redundant Data Clustering 257

If one now assumes that all ΠX
2j �= ΠX

2∗, then by the local optimality of
ΠX

2j
one would get I(ΠX

2j
;X|ΠX

1 = πX
1
j) ≥ I(ΠX

2∗;X|ΠX
1 = πX

1
j) which

contradicts the fact that

l∑

j=1

P (πX
1
j)I(ΠX

2j
;X|ΠX

1 = πX
1
j) <

l∑

j=1

P (πX
1
j)I(ΠX

2∗;X|ΠX
1 = πX

1
j)

because of the non-negativity of the individual terms in the sum. Hence there
has to be at least one index j∗ so that ΠX

2∗ is optimal for ΠX
1 = πX

1
j∗ .

Thus, if the base clustering method uses a criterion analogous to the mutual
information criterion to derive local clustering solutions and the target clus-
tering is dominant and information-orthogonal to the given clustering, then
the target clustering will be among the clustering solutions participating in
the combination stage.

11.3.2.1 Summary

The CondEns approach provides a straightforward way of generating a non-
redundant clustering given any of a number of common clustering techniques.
It can accommodate a wide range of existing base clustering methods, and is
straightforward to implement. Furthermore, as will be shown in the experi-
ments section, the approach is quite effective in practice and shows remarkably
good time complexity.

One drawback to the algorithm is that it requires categorical side informa-
tion and so does not directly apply to situations where the side information is
continuous. Another issue is that the optimization is broken into two stages
so that in situations where there are multiple significant structures, the first
stage may produce local solutions which are uncoordinated and difficult to
combine.

11.4 Constrained Conditional Information Bottleneck

In the previous section the CondEns approach was introduced, which in
its first step obtains local solutions and then combines the local solutions
to produce a global solution. As mentioned, a drawback is that in practice,
these local solutions may significantly disagree and result in a poor combined
solution. To address this issue, one might wonder if it is possible to combine
the two stages within a single-stage optimization. In such an approach, a
single objective function would be offered wherein coherence is maintained
among the local solutions while the search proceeds.

The coordinated conditional information bottleneck (CCIB) is designed to
that purpose, featuring a single objective function which, when optimized,

258 Constrained Clustering: Advances in Algorithms, Theory, and Applications

will produce non-redundant clusterings. The objective function must reward
high quality clusterings and novelty with respect to the known clusterings
while maintaining global coordination.

11.4.1 Coordinated Conditional Information Bottleneck

The CCIB formulation is an extension of the seminal work [21] on the in-
formation bottleneck (IB) framework and, among the different generalizations
of IB proposed, is most closely related by motivation with the IB with side
information [2] and by formulation with the parallel IB [7].

We desire an objective function which favors solutions that provide clus-
terings that describe the data, but are dissimilar with known structure. To
avoid confusion, we will use F as a random variable over the feature space
and X as a random variable over the set of instances. A natural quantity
to consider is the conditional mutual information I(ΠX

∗;F |Z). It describes
how much information ΠX

∗, Z convey jointly about relevant features F com-
pared to the information provided by Z alone. Finding an optimal clustering
solution should involve maximizing I(ΠX

∗;F |Z).
In addition, we would like to avoid over-confidence in grouping objects to-

gether. Cluster assignment probabilities should reflect the uncertainty with
which objects are assigned to clusters. One way to accomplish this is to ex-
plicitly control the fuzziness of the stochastic mapping PΠX

∗|X . The latter
can be measured by the mutual information I(ΠX

∗;X) between cluster and
object identities. Here we would expect I(ΠX

∗;X) = 0, if objects are assigned
to clusters with uniform probability, whereas I(ΠX

∗;X) becomes maximal for
non-stochastic mappings PΠX

∗|X . I(ΠX
∗;X) also can be given a well-known

interpretation in terms of the channel capacity required for transmitting prob-
abilistic cluster assignments over a communication channel [21].

Combining both aspects, we define the optimal clustering as the solution to
the following constrained optimization problem, the conditional information
bottleneck (CIB), first introduced in [9]:

(CIB) P ∗
ΠX

∗|X = arg max
PΠX

∗|X∈P
I(ΠX

∗;Y |Z), where (11.4)

P ≡ {PΠX
∗|X : I(ΠX

∗;X) ≤ cmax}. (11.5)

This objective function captures that we are looking for probabilistic clus-
ter assignments with a minimal fuzziness such that the relevant information
jointly encoded in ΠX

∗, Z is maximal.

11.4.2 Derivation from Multivariate IB

The conditional information bottleneck objective may also be derived us-
ing the multivariate information bottleneck framework presented in [7]. The
multivariate information bottleneck is a technique for characterizing solutions

Non-Redundant Data Clustering 259

for problems in which there are multiple partitions of the features (observed
variables) or parameters (compression variables). Using Bayesian networks
specifying the dependencies between these variables, information bottleneck-
like objectives may be derived.

Two Bayesian networks, gin and gout, must be given, where gin specifies the
relation between the observed variables and the compression variables and gin

specifies the “relevant” information which is to be preserved. In our problem,
which is of a form similar to the parallel information bottleneck described
in [7], we obtain the gin pictured in Figure 11.2(a) and the gout pictured in
Figure 11.2(b). The network gin specifies that both ΠX

∗ and Z compress
information about X. The network gout specifies that ΠX

∗ and Z should
preserve information about F .

(a) gin (b) gout

FIGURE 11.2: Multivariate information bottleneck: Bayesian networks.

Given networks gin and gout, and using the multi-information bottleneck
principle presented in [7], a Lagrangian which enforces the dependencies spec-
ified by gin and gout may be derived. In particular, for our problem this
Lagrangian, L(1), would be

L(1) = I(X; ΠX
∗) + I(X;Z)− βI(F ; ΠX

∗, Z).

This can be simplified, first using the fact that I(X;Z) is constant and then
expanding the information term:

arg minL(1) = arg min I(X; ΠX
∗) + I(X;Z)− βI(F ; ΠX

∗, Z)
= arg min I(X; ΠX

∗)− βI(F ; ΠX
∗|Z).

Thus, the final result obtained from application of the multivariate infor-
mation bottleneck recovers our proposed conditional information bottleneck
formulation.

As a side note, there are two methods proposed in [7] for obtaining La-
grangians. We have used the first method to derive the conditional informa-
tion bottleneck formulation from L(1) as above. The two methods differ in
the form of input network gout as well as the focus of the objectives produced.

260 Constrained Clustering: Advances in Algorithms, Theory, and Applications

The first, which produces L(1), focuses on preserving the information in the
dependencies of gout, whereas the second, which produces L(2), focuses on
preserving information of independencies of gout. The g

(b)
out, which would be

used in the second method is pictured in Figure 11.3. This network specifies
that X and F are independent given ΠX

∗, X and F are independent given Z,
and Z and ΠX

∗ are independent. The corresponding Lagrangian, L(2), would
be:

L(2) = I(X; ΠX
∗) + I(X;Z) + γ (I(ΠX

∗;Z)− I(F ; ΠX
∗, Z)) ,

which simplifies as before to yield:

arg minL(2) = arg min I(X; ΠX
∗)− γ (I(F ; ΠX

∗|Z)− I(ΠX
∗;Z)) .

We note that this second formulation L(2) directly penalizes I(ΠX
∗;Z) whereas

the initial formulation L(1) does not. The L(1) formulation indirectly penal-
izes I(ΠX

∗;Z) through F as it selects for ΠX
∗ which adds information about

F that is not present in Z.

FIGURE 11.3: Alternate output network: g
(b)
out.

11.4.3 Coordinated CIB

While the conditional information reflects much of the intuition behind non-
redundant data clustering, there still is a potential caveat in using Eq. (11.5):
the solution of ΠX

∗ may lack global coordination. That is, clustering solutions
obtained for different values z may not be in correspondence. The meaning
of each cluster yk is relative to a particular value zi. The reason for this
is that I(ΠX

∗;F |Z) only measures the information conveyed by ΠX
∗ and

Z in conjunction, but does not reflect how much relevant information ΠX
∗

provides on its own, i.e., without knowing Z. We call this problem the cluster
coordination problem. One way to formally illustrate that the CIB does not
address the coordination problem is via the following proposition:

PROPOSITION 11.3
Suppose ΠX

∗ and Z are finite random variables and define pre-image sets of
ΠX

∗ by z−1
r = {x : ΠX

∗(x) = zr}. Assume that P ∗
ΠX

2|X has been obtained

Non-Redundant Data Clustering 261

according to Eq. (11.5). Then one can chose arbitrary permutations πzr over
ΠX

2, one for every value zr of ΠX
∗, and define permuted cluster assignments

Pπ
ΠX

2|X(c|x) ≡ P ∗
ΠX

2|X(πΠX
∗(xi)(πX

∗
j)|xi) such that Pπ

ΠX
2|X is also optimal

for CIB.

Intuitively this proposition states that by independently permuting cluster
labels within each set z−1

r , the optimality of the solution is not affected.
A solution to the CIB problem will effectively correspond to a subcategoriza-

tion or a local refinement of the partition induced by Z. Generally, however,
one is more interested in concepts or annotations ΠX

∗ that are consistent
across the whole domain of objects. We propose to address this problem by
introducing an additional constraint involving I(ΠX

∗; f). This yields the fol-
lowing coordinated conditional information bottleneck (CCIB) formulation as
introduced in [10]:

(CCIB) P ∗
ΠX

∗|X = arg max
PΠX

∗|X∈P
I(ΠX

∗;Y |Z), where

P ≡ {PΠX
∗|X : I(ΠX

∗;X) ≤ cmax, I(ΠX
∗;F) ≥ dmin}.

With dmin > 0 the CCIB favors clustering solutions that obey some global
consistency across the sets z−1

r .

11.4.4 Update Equations

11.4.4.1 Alternating Optimization

The formal derivation of an alternation scheme to compute an approximate
solution for the CCIB is somewhat involved, but leads to very intuitive re-
estimation equations [10]. One can compute probabilistic cluster assignments
according to the following formula:

P (πX
∗
j |xi) ∝ P (πX

∗
j) exp

⎡

⎣λ
ρ

∑

f

P (f |xi) logP (f |πX
∗
j)

⎤

⎦ (11.6)

× exp

⎡

⎣ 1
ρ

∑

z

P (z|xi)
∑

f

P (f |xi, z) logP (f |πX
∗
j , z)

⎤

⎦ ,

where we have dropped all subscripts, since the meaning of the probability
mass functions is clear from the naming convention for the arguments. The
scalars ρ ≥ 0 and λ ≥ 0 are Lagrange multipliers enforcing the two inequality
constraints; their values depend on ΠX

∗
max and Imin. Notice that P (f |πX

∗
j)

and P (f |πX
∗
j , z) appearing on the right-hand side of Eq. (11.6) implicitly

depend on P (πX
∗
j |xi). Iterating this equation is guaranteed to reach a fixed

point corresponding to a local maximum of the CCIB criterion.

262 Constrained Clustering: Advances in Algorithms, Theory, and Applications

11.4.4.2 Finite Sample Considerations

So far we have tacitly assumed that the joint distribution PXFZ is given.
However, since this will rarely be the case in practice, it is crucial to be able
to effectively deal with the finite sample case. Let us denote a sample set
drawn i.i.d. by Xn = {(xi, fi, zi) : i = 1, . . . , n}. We will first clarify the
relationship between CCIB and likelihood maximization and then investigate
particular parametric forms for the approximating distribution, leading to
specific instantiations of the general scheme presented in the previous section.

11.4.4.3 Likelihood Maximization

A natural measure for the predictive performance of a model is the average
conditional log-likelihood function

L(X) =
1
n

n∑

i=1

∑

c

PΠX
∗|X(πX

∗(xi)|xi) log P̂F |ΠX
∗,Z(f(xi)|πX

∗(xi), z(xi)) .

(11.7)

Here P̂F |ΠX
∗,Z is some approximation to the true distribution. This amounts

to a two-stage prediction process, where xi is first assigned to one of the clus-
ters according to PΠX

∗|X and then features are predicted using the distribution
P̂F |ΠX

∗,Z(fi|πX
∗, zi). Asymptotically one gets

L(X) n→∞−−−−→
∑

s,r

PΠX
∗,F,Z(πX

∗, fs, zr) log P̂F |ΠX
∗,Z(fs|πX

∗, zr)

= −H(F |ΠX
∗, Z)−EΠX

∗,Z

[
KL(PF |ΠX

∗,Z ||P̂F |ΠX
∗,Z)

]
.

Provided that the estimation error (represented by the expected Kullback-
Leibler divergence) vanishes as n→∞, maximizing the log-likelihood with re-
spect to PΠX

∗|X will asymptotically be equivalent to minimizingH(F |ΠX
∗, Z)

and thus to maximizing the conditional information I(ΠX
∗;F |Z).

The practical relevance of the above considerations is that one can use the
likelihood function Eq. (11.7) as the basis for computing a suitable approxima-
tion P̂F |ΠX

∗,Z . For instance, if the latter is parameterized by some parameter
θ, then one may compute the optimal parameter θ∗ as the one that maximizes
L(X).

11.4.4.4 Categorical Background Knowledge

Considering the simplest case first, where Z is finite and its cardinality is
small enough to allow estimating separate conditional feature distributions
PF |ΠX

∗,Z and PF |Z for every combination (πX
∗, z) and every z, respectively.

As discussed before, the above probabilities may be estimated by conditional
maximum likelihood estimation. For concreteness, we present and discuss the

Non-Redundant Data Clustering 263

resulting update equations and algorithm for the special case of a multinomial
sampling model for F , which is of importance in the context of text clustering
applications. It is simple to derive similar algorithms for other sampling
models such as Bernoulli, normal, or Poisson.

Denote by xis observed feature frequencies for the i-th object and the j-th
possible F -value and by ||x||1 the total number of observations for xi. For
instance, xis may denote the number of times the j-th term occurs in the i-th
document in the context of text clustering. Then we can define the relevant
empirical distributions by

P (fj |xi) = P (fj |xi, zr) ≡
xis

||x||1
, P (z|xi) ≡ δ(z, z(xi)).

The maximum likelihood estimates for given probabilistic cluster assignments
can be computed according to

P (fs|πX
∗
j) =

∑n
i=1 P (πX

∗
j |xi)xis

∑n
i=1 P (πX

∗
j |xi)||x||1

,

P (fs|πX
∗
j , zr) =

∑n
i=1 P (zr|xi)P (πX

∗
j |xi)xis

∑n
i=1 P (zr|xi)P (πX

∗
j |xi)||x||1

,

P (πX
∗
j) =

1
n

n∑

i=1

P (πX
∗
j |xi) .

These equations need to be iterated in alternation with the re-estimation
equation in Eq. (11.6), where the sum over f is replaced by a sum over the
feature index s. We now discuss two special cases to illustrate the usefulness
of the non-redundant data clustering algorithm.

11.4.4.5 Multinomial Features

We consider the case where features F are distributed according to a multi-
nomial distribution. We propose to use the empirical feature counts or max-
imum likelihood estimates as a plug-in estimator for P (F |X) and a uniform
distribution over documents, which produces the iterative update equations
of Figure 11.4.

11.4.4.6 Gaussian Features

We also consider the case that F is generated by Gaussians. In particular,
assume F is vector-valued, distributed according to a multivariate Gaussian
distribution with covariance matrix σ2I. The resulting update equations are
shown in Figure 11.5.

11.4.4.7 Continuous-Valued Background Knowledge

A more general case involves background knowledge consisting of a vector
z ∈ R

d. This includes situations where Z might be a function of F or might

264 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Initialized data probabilities

P (xi) = 1/n
P (zr|xi) = δzrπX

1
j

P (fs|xi, zj) = P (fs|xi) =
xis

||x||1

Iterative update equations
Auxiliary equations:

Q(πX
∗
j) =

1
n

∑

xi

P (πX
2
j |xi)

Q(πX
∗
j , zr) =

1
n

∑

xi:πX
1
i =zr

P (πX
∗
j |xi)

Q(πX
∗
j , fs) =

1
||x||1

∑

xi

xisP (πX
∗
j |xi)

Q(πX
∗
j , fs, zr) =

1
||x||1

∑

xi:πX
1
i =zr

xisP (zr|xi)

Membership equation:

P (πX
∗
j |xi) ∝ Q(πX

∗
j)e

1
ρ

Pd
s=1

xis
||x||1 log

Q(πX
∗

j ,fs,Zj)

Q(Zi,πX
∗

j)

FIGURE 11.4: Update equations for multinomial F , categorical Z = ΠX
1.

consists of a subset of the features (so-called noise features). In order to obtain
an estimate for P (f |πX

∗, z) one has to fit a regression model that predicts the
relevant features F from the background knowledge Z for every cluster. If the
response variable F is itself vector-valued, then we propose to fit regression
models for every feature dimension separately.

The parametric form of the parametric regression function depends on the
type and sampling model of the feature variable F . For instance, F may be a
multivariate normal, a multinomial variable, or a vector of Bernoulli variables.
In order to cover most cases of interest in a generic way, we propose to use of
the framework of generalized linear models (GLMs) [14]. For a brief outline of
what is involved in this process: We assume that the conditional mean of F can
be written as a function of ΠX

∗ and Z in the following way E[F |ΠX
∗, Z] =

μ(ΠX
∗, Z) = h(〈θ, φ(ΠX

∗, Z)〉), where h is the inverse link function and φ
is a vector of predictor variables. Taking h = id results in standard linear
regression based on the independent variables φ(ΠX

∗, Z), but a variety of

Non-Redundant Data Clustering 265

Initialized data probabilities

P (xi) = 1/n
P (zr|xi) = δ(zr, z(xi))

Iterative update equations
Auxiliary equations:

Q(πX
∗
j) =

1
n

∑

xi

P (πX
∗
j |xi)

Q(πX
∗
j , zr) =

1
n

∑

xi:z(xi)=zr

P (πX
∗
j |xi)

θπX
∗

j
=

∑
xi:πX

∗(xi)=πX
∗

j
f(xi)

∑
xi:πX

∗(xi)=πX
∗

j
1

θπX
∗

j ,zr
=

∑
xi:πX

∗(xi)=πX
∗,z(xi)=zr

f(xi)
∑

xi:πX
∗(xi)=πX

∗,z(xi)=zr
1

Q(fs|zr) = exp
[
− 1

2σ2
‖θπX

∗ − fs‖2 + const
]

Q(fs|πX
∗, zr) = exp

[
− 1

2σ2
‖θπX

∗,zr
− fs‖2 + const

]

Membership equation:

P (πX
∗|xi) ∝ Q(πX

∗)e−
1
ρ (‖θπX

∗,zr−F (xi)‖2+λ‖θπX
∗−F (xi)‖2)

FIGURE 11.5: Update equations for Gaussian f , categorical Z.

other (inverse) link functions can be used dependent on the application. The
resulting iterative algorithm is shown in Figure 11.6.

In this general case, computing the quantities P (fs|πX
∗
j) = P (fs|πX

∗
j ; η)

and P (fs|πX
∗
j , zr) = P (fs|πX

∗
j , zr; θ) requires estimating η and θ by max-

imizing the log-likelihood criterion in Eq. (11.7). The latter can be accom-
plished by standard model fitting algorithms for GLMs, which may themselves
be iterative in nature.

11.4.5 Algorithms

11.4.5.1 Deterministic Annealing and Sequential Methods

We now address the issue of how to deal with the free parameters ΠX
∗
max

and Imin of the CCIB or – equivalently – the Lagrange multipliers ρ and λ. No-

266 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Initialize data probabilities

P (xi) = 1/n

Iterative update equations
Update auxiliary equations:

Q(πX
∗
j) =

1
n

∑

xi

P (πX
∗
j |xi)

Update GLM

∀j = 1 . . . |F | :
θj =GLM-fith(Z,Fj , P (ΠX

∗|X))

Membership equation:

P (πX
∗
j |xi) ∝ Q(πX

∗)

·exp[1
ρ

∑

fs

P (fs|πX
∗
j , z(xi)) logQ(fs|πX

∗
j , z(xi); θ)

+
λ

ρ

∑

fs

P (fs|πX
∗
j) logQ(fs|πX

∗
j)]

FIGURE 11.6: Update equations for F distribution chosen via GLM link
function h, non-categorical Z.

tice that the constraint I(ΠX
∗;F) ≥ Imin leads to a Lagrangian function that

additively combines two (conditional) mutual informations I(ΠX
∗;F |Z) +

λI(ΠX
∗;F). It is often more natural to directly set λ which controls the trade-

off between conditional and unconditional information maximization. Since
the I(ΠX

∗;F) term has been added to address the coordination problem, we
will in practice typically chose λ ≤ 1. As the performance of the algorithm
is insensitive with respect to λ [10], it is reasonable to fix this parameter in
practice.

The ρ parameter in Eq. (11.6) on the other hand directly controls the fuzzi-
ness of the assignments such that hard clusterings are computed in the limit
of ρ → 0. We consider two algorithmic approaches for setting ρ so as to
obtain hard assignments: a sequential approach as discussed in [19] where ρ
is set to 0 and equations derived, as well as using a well-known continuation
method, deterministic annealing [18]. The sequential approach is shown in
Figure 11.7. The deterministic annealing approach, shown in Figure 11.8 has
two chief advantages: conceptually, non-zero values for ρ avoid over-confidence

Non-Redundant Data Clustering 267

in assigning objects to clusters and thus addresses the crucial problem of over-
fitting in learning from finite data. For instance, we may choose to select a
value for ρ that maximizes the predictive performance on some held-out data
set.

The second advantage is algorithmic in nature. The proposed alternating
scheme is sensitive with respect to the choice of initial values. As a result of
that, convergence to poor local optima may be a nuisance in practice, a prob-
lem that plagues many similar alternating schemes such as k-means, mixture
modeling, and the sequential approach. However, a simple control strategy
that starts with high entropy cluster assignments and then successively lowers
the entropy of the assignments has proven to be a simple, yet effective, tool
in practice to improve the quality of the solutions obtained (cf. [18, 21]). In
analogy of a physical system, one may think of ρ in terms of a computational
temperature.

We thus propose the following scheme: Starting with a large enough value
for ρ = ρ0, one alternates the update equations until convergence. Then one
lowers ρ according to some schedule, for instance an exponential schedule
ρ ← bρ with b < 1. The process terminates if the chosen ρ leads to a value
for I(ΠX

∗;X) that is close to the desired bound Imax or if cluster assignments
numerically reach hard assignments.

11.4.5.2 Summary

The coordinated conditional information bottleneck provides a single objec-
tive function which encourages high-quality, coordinated solutions which are
novel with respect to the known structure. From this objective, update equa-
tions were derived for a number of common settings. These update equations
may then be used in a sequential or deterministic annealing approach to ob-
tain solutions. An empirical analysis of the performance of these approaches
as well as a comparison to the CondEns techniques will be discussed in the
next section.

11.5 Experimental Evaluation

In this section, the proposed algorithms are evaluated on a range of data
sets. First, a small image set is used as a proof of concept. Next, a more
detailed analysis is performed over an ensemble of text data sets. Finally,
synthetically generated data is considered as a controlled setting in which to
compare the algorithms’ behaviors.

268 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Initialization:

• Construct ΠX
∗ ≡ X:

– ΠX
∗ ← random partition of X into K clusters

– For πX
∗
i in ΠX

∗:

∗ P (πX
∗
i) =

∑
xj∈πX

∗
i
P (xj)

∗ P (y, πX
∗
i, zr) =

∑
xj∈πX

∗
i
P (xj)P (f |xj)P (zr|xj) ∀f ∈

F, zr ∈ Z
∗ P (πX

∗
i, zr) =

∑
xj∈πX

∗
i
P (xj)P (zr|xj) ∀zr ∈ Z

∗ P (πX
∗
i|xj) = 1 if xj ∈ πX

∗
i, 0 otherwise

Loop:

• For t = 1 . . . (N − 1)

– randomly draw xj to πX
∗
from(xj)

– πX
∗′
from = πX

∗
from\{xj}

– πX
∗
to = arg minπX

∗
i
d(xj , πX

∗
i)

– πX
∗′
to = πX

∗
to ∪ {xj}

∗ P (πX
∗′
to) = P (πX

∗
to) + P (xj)

∗ P (πX
∗′
from) = P (πX

∗
from)− P (xj)

∗ P (πX
∗′
to|x) = 1

∗ P (πX
∗′
from|x) = 0

∗ P (πX
∗′
to, zr) = P (πX

∗
to|zr) + P (xj |zr) ∀f ∈ F

∗ P (πX
∗′
from, zr) = P (πX

∗
from|zr)− P (xj |zr) ∀y ∈ F

∗ P (f, πX
∗′
to, zr) = P (f, πX

∗
to, zr) + P (f, xj , zr) ∀f ∈ F, zr ∈ Z

∗ P (f, πX
∗′
from, zr) = P (f |πX

∗
from, zr) + P (f, xj , zr) ∀f ∈

F, zr ∈ Z
– Replace πX

∗
from with πX

∗′
from, πX

∗
to with πX

∗′
to

FIGURE 11.7: Sequential method.

Non-Redundant Data Clustering 269

• initialize inverse temperature β = 1
ρ = ε

• initialize P (πX
∗|xi) randomly

• Repeat:

– Repeat:

∗ iterate equations from Algorithm 11.4, 11.5, or 11.6 until con-
verged

– Until max change in PΠX
∗|X(πX

∗, xi) < ε

– increase inverse temperature: β = b · β

• no change in P (πX
∗|xi) and ∀πX

∗, xi : P (πX
∗|xi) ∈ {0, 1}

FIGURE 11.8: Deterministic annealing algorithm for non-redundant cluster-
ing.

11.5.1 Image Data Set

As a first proof-of-concept, consider a set of 369 face images with 40 × 40
grayscale pixels and gender annotations. We performed clustering with K = 2
clusters and a Gaussian noise model for the features. Initially, no background
knowledge was used. All of 20 trials converged to the same clustering, sug-
gesting that this clustering is the dominant structure in the data set. The
precision score between the discovered clustering and the gender classification
was 0.5122, i.e., the overlap is close to random. Examining the centroids of
each cluster in Figure 11.9 shows the clustering which was obtained partitions
the data into face-and-shoulder views and face-only views.

What is a non-redundant clustering with respect to this dominant cluster-
ing? The dominant clustering may be set as known structure and a non-
redundant clustering algorithm (in this case, CCIB) used to obtain a novel
clustering. Centroids for this clustering are in Figure 11.10. In this solution,
the precision score for gender is substantially higher, at 0.7805. Confusion
matrices for both clusterings are in Table 11.5.1. This confirms that the dom-
inant structure found in the previous attempt has been avoided, revealing
lower-order structure that is informative with respect to gender.

11.5.2 Text Data Sets

Textual data is a natural opportunity for applying non-redundant cluster-
ing as document sets typically have many plausible categorization schemes.
In this section, performance is evaluated on several real-world text data sets.
Each set may be partitioned according to either of two independent classifica-
tion schemes. Experiments are performed using either one of these classifica-

270 Constrained Clustering: Advances in Algorithms, Theory, and Applications

FIGURE 11.9: Centroids from initial clustering with no side information.

FIGURE 11.10: Centroids from second clustering using initial clustering as
side information.

tion schemes as background knowledge. An algorithm is considered successful
if it finds a clustering similar to the unknown classification scheme. Docu-
ments are represented by term frequency vectors that are assumed to follow
a multinomial distribution. For all experiments described, λ = 0.3 is used
(chosen based on results from evaluation on synthetic data) and k is set to
the cardinality of the target categorization.

TABLE 11.1: Confusion matrices for face data.
initial clustering nonredundant clustering

female male female male
y1 140 144 105 1
y2 45 40 80 183

Precision = 0.5122 Precision = 0.7805

Non-Redundant Data Clustering 271

11.5.2.1 The WebKB Data Set

We use the CMU 4 Universities WebKB data set as described in [5] which
consists of webpages collected from computer science departments and has a
classification scheme based on page type: (‘course,’ ‘faculty,’ ‘project,’ ‘staff,’
‘student’) as well source university: (‘Cornell,’ ‘Texas,’ ‘Washington,’ ‘Wis-
consin’). Documents belonging to the ‘misc’ and ‘other’ categories, as well as
the ‘department’ category which contained only 4 members, were removed,
leaving 1087 pages remaining. Stopwords were removed, numbers were tok-
enized, and only terms appearing in more than one document were retained,
leaving 5650 terms.

11.5.2.2 Reuters RCV-1

Additional data sets were derived from the Reuters RCV-1 news corpus
which contains multiple labels for each document. We first select a number of
topic labels Topic and region labels Region and then sample documents from
the set of documents having labels {Topic×Region}. For ease of evaluation,
those documents which contain multiple labels from Topic or multiple labels
from Region were excluded. We selected labels which would produce high
numbers of eligible documents and generated the following sets:

(i) RCV1-ec5x6: 5 of the most frequent subcategories of the ECAT (Eco-
nomics) and 6 of the most frequent country codes were chosen: 5362
documents and 4052 terms.

(ii) RCV1-top7x9: ECAT (Economics), MCAT (Markets) and the 5 most
frequent subcategories of the GCAT (General) topic and the 9 most
frequent country codes were chosen: 4345 documents and 4178 terms.

As with the WebKB set, stopwords were removed, numbers were tokenized,
and a term frequency cutoff was used to remove low-frequency terms.

11.5.2.3 Experimental Design

Tests are performed, assuming one of the categorizations is known and the
results are evaluated according to how similar the solution is to the remaining,
or target, categorization. The number of clusters, k is set to the number of
categories in the target categorization. As the number of categories may differ
between known and target categorizations, we use normalized mutual infor-
mation (NMI) [NMI(ΠX;Y) = (I(ΠX;Y)/H(Y)] which, unlike precision,
is well-defined for two clusterings with different k. We evaluate the CCIB
and CondEns algorithms. We include results for daCCIB, the deterministic
annealing version of CCIB, which is relatively fast. Results for seqCCIB, the
sequential clustering version, are not included as it has been shown to typ-
ically underperform daCCIB on synthetic sets and takes considerably more
time, rendering it impractical for data sets this large. CondEns-Kmeans and

272 Constrained Clustering: Advances in Algorithms, Theory, and Applications

FIGURE 11.11: Results on text data sets: WebKB, ec5x6, top6x9. Each
set has two known orthogonal labelings Y1 and Y2. Shaded bars show
mean NMI(ΠX;Y) for Y1 and Y2 over 20 initializations. Error bars range
from minimum to maximum score. As desired, solutions generally have that
NMII(ΠX;Y2) is higher for Z = Y2 and I(Y;Y1) is higher for Z = Y2.

CondEns-EM are considered as they show better performance on synthetic
sets and more favorable runtimes with respect to CondEns-IB. Each algo-
rithm is evaluated for 20 random initializations on each data set.

11.5.2.4 Analysis of Text Data Results

Results of the CCIB and CondEns methods on the text data sets are shown
in Figure 11.11. It is interesting to note that results generally improve as
sets with more categories are considered. In all cases, the solutions found are
more similar to the target classification than the known classification. The
performance of the CondEns algorithm is competitive with CCIB across the
data sets. We will focus on the performance of CondEns-EM which for the
most part obtains better solutions than CondEns-Kmeans. Looking across
the data sets, CondEns-EM outscores CCIB in mean performance on half of
the sessions. Notably, the range of solutions obtained due to the sensitivity
of CondEns-EM to initialization does not appear to help relative to daCCIB.
That is, if one considers maximum scores, the relative performance still falls
along the lines of mean scores. A key advantage to CondEns-EM, however, is
that daCCIB ranges between 4.57x to 44.67x slower in runtime than CondEns-
EM. So while the quality of solutions may not argue for one algorithm over
the other, CondEns-EM boasts a substantial advantage in computational ef-
ficiency.

Non-Redundant Data Clustering 273

11.5.3 Evaluation Using Synthetic Data

By further evaluation of the algorithms on synthetically generated data, it
is possible to more precisely gauge the algorithms’ behaviors with respect to
characteristics of the data. Of interest is the quality of solutions, sensitivity
to initialization, and robustness with respect to the orthogonality assumption.

11.5.3.1 Generation

Two-dimensional synthetic data sets with two clusterings A and B are gen-
erated using a two-dimensional multinomial model. For the first dimension,
which is associated with clustering A, for each of the clusters p1, . . . pk, fea-
ture probabilities θp1 . . . θpk are chosen to be equally spaced on the interval
[0,1]. The feature probabilities for B are obtained by first taking θ′q1, . . . θ

′
qk

equally spaced on the interval [0,1]. Next, these probabilities are associated
with the θpj according to an orthogonality weight, α in the following expres-
sion: θqj = αθqj + (1− α)θpj . An instance is sampled by randomly selecting
membership in {p1, . . . , pk} and {q1, . . . , qk} and sampling from the associated
distributions. At α = 1, A and B are orthogonal and as α→ 0, the clusterings
A and B become perfectly correlated.

FIGURE 11.12: Results on synthetic sets with two natural clusterings A
and B. A is assumed to be known and the algorithms are evaluated on
how successfully they find solutions similar to B. Shaded bars show mean
NMI(ΠX;A) and NMI(ΠX;B) for 10 random initializations each over 50
generated data sets. Error bars range from minimum to maximum score. As
desired, solutions are substantially closer to B than A.

274 Constrained Clustering: Advances in Algorithms, Theory, and Applications

11.5.3.2 Experimental Setup

In the experiments, it is assumed that clustering A is known and supplied
as categorical known structure, and evaluate the algorithms on their ability to
discover clustering B. As the data set is multinomial, we consider performance
of CCIB and CondEns.

In these experiments, for each of k = 2,3,4,5, 50 synthetic data sets con-
sisting of 800 instances were generated and 10 random initializations of the
algorithm were used. We evaluate results in terms of the best, mean, and
worst performance over the 10 initializations and average these quantities
over the 50 data sets. Results are presented for various settings of k in Figure
11.5.3.1.

11.5.3.3 Analysis of CCIB Algorithms

We first examine the results of the CCIB family of algorithms, focusing on
their precision with respect to target partition B. First, and most impor-
tantly, we note that the algorithms obtain solutions more similar to target
partitioning B than to known partitioning A, as desired. As a general trend,
daCCIB outperforms seqCCIB for higher k, for k = 3, 4, 5 outperforming se-
qCCIB by 28.8%, 10.0%, and 7.6%, respectively. If one examines the max
and min performance of each algorithm as indicated by the error bars in the
graph, a crucial difference between the two algorithms becomes apparent: the
deterministic annealing version is considerably less sensitive to initialization
than the sequential clustering version. In fact, for k > 2, the range of solutions
obtained by seqCCIB is at least 2x as great as that obtained by daCCIB. This
stability is a well-known phenomenon attributed to deterministic annealing
approaches which we see replicated throughout the experiments. Another im-
portant distinction between the two approaches is the runtime. For k > 2,
the larger sets with more complicated structure, the complexity advantages
of daCCIB become apparent. For k = 3, 4, 5 the seqCCIB algorithm is 10x,
19x, and 27x slower than daCCIB, respectively, a phenomenon which has been
replicated throughout many experiments. For the CCIB family of algorithms,
this set of experiments indicates that daCCIB consistently shows better mean
performance, is more stable with respect to initialization, and has consider-
ably better runtimes which are an order of magnitude better than seqCCIB.

11.5.3.4 Analysis of Condens Algorithms

Considering performance of the CondEns approaches, as with CCIB, per-
formance decreases for higher k. Comparing the various base-clustering tech-
niques, it is immediately apparent that k-means substantially underperforms
the EM and IB techniques for low k. As k increases, the performance using
k-means improves somewhat and attains the performance of IB, however, it
never rivals the performance of EM. Examining the sensitivity to initialization
as indicated by the error bars reveals that the range of precisions PrecB(C)

Non-Redundant Data Clustering 275

obtained by CondEns-EM and CondEns-IB is larger than that of CondEns-
Kmeans by approximately a factor of 2. While CondEns-Kmeans shows less
sensitivity to initialization, this comes at a cost as the precisions obtained are
substantially lower than CondEns-EM.

Across the CondEns techniques, the runtimes are of similar magnitudes. For
k = 2, 3, 4, and 5, the CondEns-IB times take on average 12.5x, 9.1x, 7.0x, and
4.1x more time than CondEns-EM which shows that as k increases, the relative
computational advantage of CondEns-EM versus CondEns-IB weakens. It is
not surprising that CondEns-IB would require a longer runtime as the base
clustering method, daIB, is a deterministic annealing technique while the
base clustering method EM used in CondEns-EM does not use deterministic
annealing and so should be considerably faster.

For the CondEns family, we conclude that CondEns-EM is the best per-
former of the three base clustering techniques considered, while also boasting
runtimes which are comparable to CondEns-Kmeans and several times faster
than CondEns-IB.

11.5.3.5 Analysis of CondEns and CCIB

Now comparing the CondEns and CCIB families, with a particular focus on
daCCIB and CondEns-EM as they show the best mean precision and runtimes
overall of their respective families. Looking at mean precision, PrecB(C),
CondEns-EM slightly outscores daCCIB for k = 2, 4, and 5. Specifically, it
outscores daCCIB by 8.0%, 5.3%, and 5.4%, respectively. For k = 3, daCCIB
outscores CondEns-EM by 8.7%. Another difference emerges if the PrecA(C)
scores are considered. These scores measure the similarity to the known, unde-
sired, solution A. It is interesting to observe that as k increases, CondEns-EM
actually finds solutions which are less like B than does daCCIB. By k = 5,
the daCCIB solutions have average precisions with respect to the known cat-
egorization that are 41.65% higher than CondEns-EM. Another important
distinction between the algorithms is the range of solutions obtained. This
range is greater for CondEns-EM than daCCIB. This greater range manifests
itself in the higher max PrecB(C) scores of CondEns-EM, which outscores
daCCIB for k = 3, 4, and 5. It also is responsible for daCCIB having higher
min PrecB(C) scores on the same values for k. Finally, examining the run-
times shows that CondEns-EM is consistently faster than daCCIB for all k
considered. The average runtime for daCCIB is 62.5x, 7.4x, 5.3x, and 2.5x
longer than CondEns-EM for k = 1, 2, 3, 4, respectively.

In conclusion, the mean performance of daCCIB and CondEns-EM are com-
petitive, with daCCIB outperforming CondEns-EM on low k and CondEns-
EM outperforming daCCIB on higher k. The range of solutions obtained by
CondEns-EM, however, is consistently greater than that of daCCIB. Whether
this is an advantage or disadvantage depends on the application being consid-
ered. On the one hand, it allows CondEns-EM to obtain some solutions which
are better than all of those obtained by daCCIB, as evidenced by the max

276 Constrained Clustering: Advances in Algorithms, Theory, and Applications

PrecB(C) scores. On the other hand, it also means that CondEns-EM will
obtain solutions worse than all of those obtained by daCCIB, as evidenced
by the min PrecB(C) scores. Another important consideration to note is the
PrecA(C) scores which favor CondEns-EM for the data sets with higher k.
Finally, we find a consistent advantage in runtime for CondEns-EM versus
daCCIB.

11.5.3.6 Orthogonality Assumption

We now evaluate the robustness of the CCIB and CondEns algorithms to
weakening of the orthogonality assumption. As discussed in the generation
procedure given in 11.5.3.1, orthogonality weight α controls the independence
of the two partitions A and B. For α = 1, partition membership is inde-
pendent whereas for α = 0 partition membership is completely dependent.
Examples of data sets generated with various α are given in Figure 11.13. We
evaluate both the CCIB and CondEns algorithms as α varies between 0 and
1.

(a) α = .25 (b) α = .5 (c) α = .75 (d) α = 1

FIGURE 11.13: Relaxation of the orthogonality assumption: sample synthetic
data sets for k = 4 with various α. n = 800 items, m = 1100 draws.

The mean precisions for the results of the algorithms for α = 1.0, 0.75, 0.50,
and 0.25 and where k = 2, 3, and 4 are shown in Figure 11.14. The results
show that CondEns-EM on average underperforms CCIB for orthogonal sets
(high α). For lower α, however, the results favor CondEns At k = 2, for
instance, with α = 0.25, the mean precision PrecB(C) of CondEns-EM is
34.36% higher than that of daCCIB and the max precision is 41.86% higher
than daCCIB. The advantage of CondEns-EM does decrease as k increases
however, with a mean increase of 29.05% at α = 0.25, k = 3 and a mean in-
crease of 26.22% at α = 0.25, k = 4. Sets with lower α share the characteristic
that the undesired clustering A is a much higher quality clustering than B
when measured over the entire set. This affects CCIB directly as it has a
coordination term that favors clusterings which are high quality with respect
to the entire set. CondEns, on the other hand, finds high quality clusterings
independently within the pre-image sets. In those cases, B is still a higher
quality clustering. This is a notable result as while rather strong orthogonal-

Non-Redundant Data Clustering 277

(a) k=2 (b) k=3

(c) k=4

FIGURE 11.14: CCIB vs. CondEns: Mean precision scores for k = 2, 3, 4
where the orthogonality constant α varies.

278 Constrained Clustering: Advances in Algorithms, Theory, and Applications

ity assumptions were made in the theoretical analysis, in these experiments
CondEns is quite robust for less orthogonal sets.

11.5.3.7 Successive Non-Redundant Clusterings

A natural problem which arises in interactive settings is, after using non-
redundant clustering to find a non-dominant clustering, what is the next non-
dominant clustering? That is, how can this technique be generalized to enu-
merate arbitrarily many clusterings where each clustering is non-redundant
with respect the clusterings that have come before? At issue is the modeling
of the known structure which in this case consists of two or more clusterings.
We consider two approaches to representing this information: the cartesian
product of the known clusterings may be taken and then supplied as cate-
gorical Z to the algorithm or the concatenated membership vectors may be
treated as a binary vector and then supplied as continuous Z to the algorithm.

One might expect the continuous approach to outperform the categorical.
This is because by taking the cartesian product, one ignores the relation
between different combinations within the cartesian product. For example,
with known cluster memberships in A and B, no information is shared in
estimating the Y distribution for an instance in combination (a1, b1) and an
instance in combination (a1, b2). This is in contrast to the GLM approach
which learns a function in Y over all (a, b) and so can share information
between combinations.

TABLE 11.2: N = 200 instances, dimensions associated
with clusterings A,B,D = [8 8 4]. We assume A and B are
known. Results are over 5 random initializations.

PrecD time
Algorithm mean best worst mean
CCIB, cartesian product 0.9300 0.9300 0.9300 0.36s
CCIB, GLM 0.7300 0.7300 0.7300 64.42s

We first evaluate both approaches on synthetic data sets with three par-
titionings, A,B, and D. Using the number of features associated with each
partitioning, mA = 8,mB = 8,mD = 4, we assume A and B are known and
evaluate the ability of the approaches to discover partitioning D. We restrict
attention to the CCIB approach as it tends to be less sensitive to initializa-
tion. Results are shown in Table 11.2. We further consider the approaches
as the data sets vary according to size and dimension. Figures 11.15(a) and
11.15(b) show performance as the number of instances and relative strength
of partitions vary. The results show for this variety of settings, the cartesian

Non-Redundant Data Clustering 279

(a) (b)

FIGURE 11.15: Obtaining successive non-redundant clusterings. For data
sets containing independent partitionings A,B,D, comparing categorical rep-
resentation (using cartesian product of A and B) versus continuous represen-
tation (concatenating A and B as binary vector). For (a), dimensions [mA

mB mD]= [8 8 4], N varies, k = 3. For (b), mD=6, N=200, k=3, mA varies.

product approach is in fact approximately as successful as the GLM approach
while coming at a fraction of the computational cost. This rough equivalence
holds up when the number of instances varies and when the relative strength
of the desired clustering is varied.

11.5.4 Summary of Experimental Results

Over all the data sets considered, the CondEns approach frequently out-
performs CCIB, while at a fraction of the computational cost. It does not,
however, strictly dominate CCIB in terms of average performance. How-
ever, on several text data sets, CCIB does outperform CondEns. A poten-
tial concern is that CondEns is motivated by rather strong demands on the
data set, namely that the structures be information-orthogonal (the so-called
“orthogonality assumption”). Notably, despite this strict theoretical require-
ment, CondEns performs robustly even as the orthogonality assumption is
challenged, outperforming CCIB on data sets where the two clusterings are
substantially correlated. A further advantage of CondEns is the lack of tun-
ing parameters, although CondEns is parameterized by the base clustering
method, which potentially may require tuning parameters. As was shown in
the experiments, typically performance was relatively consistent irregardless
of which base clustering methods was employed. A potential disadvantage to
CondEns is the sensitivity to initialization. While its mean performance is
better than CCIB, the range of solutions obtained typically contains solutions
which are of lower quality than any of those obtained by CCIB. One way to
counter this tendency would be to run CondEns multiple times and select the

280 Constrained Clustering: Advances in Algorithms, Theory, and Applications

solution which scores highest on a CCIB-like objective function.
In summary, both approaches performed well throughout the experimental

settings. Selecting the best-performing technique depends upon the data set
and the particular setting. CondEns often outperforms CCIB. CCIB, however,
is less sensitive to initialization than CondEns and so the use of CCIB promises
more consistent results.

11.6 Conclusion

We have proposed the problem of non-redundant clustering, presented three
distinct approaches to solving the problem, evaluated their performance on
synthetic and real data sets, and discussed extensions to related problems. In-
tuitively, the goal of non-redundant clustering is to obtain a clustering which
is novel, or non-redundant, with respect to some given known structure. Us-
ing relevant concepts from information theory, we introduced the notion of
information-orthogonal clusterings which is then used as a key constraint in
the formal problem definition. The definition given is sufficiently general to
apply to categorical or continuous known structure.

The first algorithm presented was CondEns, a framework which makes use
of clustering ensembles. The framework makes use of base clustering tech-
niques which are applied to a subset of the data selected according to the
known structure. A wide variety of general or domain-specific base clustering
techniques may be used, which gives this framework a broad applicability.
Furthermore, the algorithm is efficient and typically requires less computa-
tion than if the base clustering technique were applied to the entire data set.
Another benefit is that no tuning parameter is required. In practice, this ap-
proach achieves performance competitive with the other techniques, with the
only drawback that results are more sensitive to initialization.

Then an approach was derived based on maximizing a conditional mu-
tual information score. An information bottleneck approach, which we dub
conditional information bottleneck (CIB) was derived. As stated, the CIB
does not enforce coordination across the known structure and so we propose
an enhanced coordinated conditional information bottleneck (CCIB) and a
deterministic annealing approach to obtaining solutions. The resulting algo-
rithm is capable of handling categorical or continuous known structure and a
wide variety of distribution-based assumptions for the features, is insensitive
to initialization, and requires no tuning parameter to trade off between clus-
ter quality and redundancy. The approach to coordination does introduce a
tuning parameter, however, we find performance to be quite insensitive to this
parameter when the data set contains strong, highly orthogonal clusterings.

Two approaches to non-redundant clustering have been presented: condi-

Non-Redundant Data Clustering 281

TABLE 11.3: Comparison of non-redundant clustering algorithms.
CCIB CondEns

Algorithm Information Clustering
Bottleneck (IB) Ensembles

Categorical
known structure

yes yes

Continuous
known structure

yes (with GLMs) no

Distribution-based clustering yes yes
Distance-based clustering no yes
Tuning parameters yes (coordination) no
Successive non-redundant

clustering
yes (continuous) yes (cross-product)

tional ensembles (CondEns) and coordinated conditional information bottle-
neck. The experimental results show that the algorithms successfully discover
novel, non-redundant structure over a variety of synthetic and real data sets.

While it has long been a well-known complication that data often contains
multiple quality clusterings, existing work has largely concerned itself with
tailoring objective functions to, or requiring the user to specify properties
of, a desired clustering. We have formally derived non-redundant clustering
approaches which allow a user to specify only what is not desired. This lends
itself naturally to an interactive, exploratory clustering approach as well as
a systematic method to enumerate multiple clusterings in a data set. The
techniques we have presented for accomplishing this task handle a broad range
of data types and settings. Furthermore, they are based on frequently used
and well-studied clustering techniques which allow the leverage of a large body
of research and practical experience.

References

[1] Leon Bottou and Yoshua Bengio. Convergence properties of the K-
means algorithms. In G. Tesauro, D. Touretzky, and T. Leen, editors,
Advances in Neural Information Processing Systems, volume 7, pages
585–592, 1995.

[2] G. Chechik and N. Tishby. Extracting relevant structures with side
information. In Advances in Neural Information Processing Systems 15,
pages 857–864, 2002.

282 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[3] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, 1991.

[4] D. R. Cox and N. Reid. Parameter orthogonality and approximate con-
ditional inference. In Journal of the Royal Statistical Society, Series B,
volume 49, pages 1–39, 1987.

[5] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum,
Tom M. Mitchell, Kamal Nigam, and Seán Slattery. Learning to extract
symbolic knowledge from the World Wide Web. In Proceedings of the
15th Conference of the American Association for Artificial Intelligence,
pages 509–516, 1998.

[6] Ian Davidson and Ashwin Satyanarayana. Speeding up k-means clus-
tering by bootstrap averaging. In Third IEEE International Conference
on Data Mining, Workshop on Clustering Large Data Sets, pages 16–25,
2003.

[7] Nir Friedman, Ori Mosenzon, Noam Slonim, and Naftali Tishby. Mul-
tivariate information bottleneck. In Proceedings of the 17th Conference
on Uncertainty in Artificial Intelligence, pages 152–161, 2001.

[8] M. A. Gluck and J. E. Corter. Information, uncertainty, and the utility
of categories. In Proceedings of the Seventh Annual Conference of the
Cognitive Science Society, pages 283–287, 1985.

[9] David Gondek and Thomas Hofmann. Conditional information bot-
tleneck clustering. In Third IEEE International Conference on Data
Mining, Workshop on Clustering Large Data Sets, pages 36–42, 2003.

[10] David Gondek and Thomas Hofmann. Non-redundant data clustering.
In Proceedings of the Fourth IEEE International Conference on Data
Mining, pages 75–82, 2004.

[11] David Gondek and Thomas Hofmann. Non-redundant clustering with
conditional ensembles. In KDD ’05: Proceeding of the 11th ACM
SIGKDD International Conference on Knowledge Discovery in Data
Mining, pages 70–77, 2005.

[12] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, 1988.

[13] Martin H. Law, Anil K. Jain, and Mário A. T. Figueiredo. Feature
selection in mixture-based clustering. In Advances in Neural Information
Processing Systems 15, pages 609–616, 2002.

[14] P. McCullagh and J. A. Nelder, editors. Generalized Linear Models.
Chapman & Hall, 2nd edition, 1989.

[15] Marina Meilă. Comparing clusterings by the variation of information.
In 16th Annual Conference on Computational Learning Theory, pages
173–187, 2003.

Non-Redundant Data Clustering 283

[16] B. Minaei-Bidgoli, A. Topchy, and W. Punch. Ensembles of partitions
via data resampling. In Proceedings of the International Conference on
Information Technology: Coding and Computing, pages 188–192, 2004.

[17] Boris Mirkin. Reinterpreting the category utility function. Machine
Learning, 45(2):219–228, 2001.

[18] K. Rose. Deterministic annealing for clustering, compression, classifica-
tion, regression, and related optimization problems. In Proceedings of
the IEEE, volume 86, pages 2210–2239, 1998.

[19] Noam Slonim. The Information Bottleneck: Theory and Applications.
The Hebrew University, 2002.

[20] Alexander Strehl and Joydeep Ghosh. Cluster ensembles: A knowledge
reuse framework for combining partitionings. Journal of Machine Learn-
ing Research, 3:583–617, 2002.

[21] Naftali Tishby, Fernando C. Pereira, and William Bialek. The infor-
mation bottleneck method. In Proceedings of the 37th Annual Allerton
Conference on Communication, Control and Computing, pages 368–377,
1999.

[22] Alexander Topchy, Anil K. Jain, and William Punch. Combining multi-
ple weak clusterings. In Third IEEE International Conference on Data
Mining, pages 331–338, 2003.

[23] Shivakumar Vaithyanathan and Byron Dom. Model selection in unsu-
pervised learning with applications to document clustering. In The 16th
International Conference on Machine Learning, pages 433–443, 1999.

[24] Shivakumar Vaithyanathan and David Gondek. Clustering with infor-
mative priors. Technical report, IBM Almaden Research Center, 2002.

Chapter 12

Joint Cluster Analysis of Attribute
Data and Relationship Data

Martin Ester

Simon Fraser University, ester@cs.sfu.ca

Rong Ge

Simon Fraser University, rge@cs.sfu.ca

Byron J. Gao

University of Wisconsin, Madison, byron@cs.wisc.edu

Zengjian Hu

Simon Fraser University, zhu@cs.sfu.ca

Boaz Ben-moshe

Ben-Gurion University of the Negev, benmoshe@cs.bgu.ac.il

12.1 Introduction

Entities can be described by two principal types of data: attribute data
and relationship data. Attribute data describe intrinsic characteristics of en-
tities whereas relationship data represent extrinsic influences among entities.
While attribute data have been the major data source in data analysis, more
and more relationship data are becoming available. To name a few, acquain-
tance and collaboration networks are examples of social networks, and neural
and metabolic networks are examples of biological networks. Consequently,
network analysis [42, 52, 53] has been gaining popularity in the study of mar-
keting, community identification, epidemiology, molecular biology and so on.

Depending on the application and the chosen data representation, the two
types of data, attribute data and relationship data, can be more or less related.
If the dependency between attribute data and relationship data is high enough
such that one can be soundly deducted from or closely approximated by the
other, a separate analysis on either is sufficient. However, often relationship

285

286 Constrained Clustering: Advances in Algorithms, Theory, and Applications

data contains information that goes beyond the information represented in
the attributes of entities, and vice versa. For example, two persons may have
many characteristics in common but they never got to know each other; on
the other hand, even with very different demographics, they may happen to
become good acquaintances. In these cases, attribute and relationship data
are neither redundant nor independent but complementary. We argue that
in such scenarios joint cluster analysis of attribute and relationship data can
achieve more accurate results than conventional methods that consider only
one of the data types.

Given both attribute data and relationship data, it is intuitive to require
clusters to be cohesive (within clusters) and distinctive (between clusters) in
terms of attributes as well as relationships. Due to the profound differences in
nature between the two data types, it is difficult to obtain a single combined
objective measure for joint cluster analysis. Instead, we propose to optimize
some objective derived from the continuous attribute data and to constrain
the discrete relationship data. In this chapter, we introduce and study the
Connected k-Center (CkC) problem which is essentially a k-Center problem
with the constraint of internal connectedness on relationship data. The in-
ternal connectedness constraint requires that any two entities in a cluster are
connected by an internal path, i.e., a path via entities only from the same
cluster. The k-Center problem [14] is to determine k cluster centers such that
the maximum distance of any entity to its closest cluster center, the radius
of the cluster, is minimized. We base our clustering model on the k-Center
problem, since it is more appropriate from the point of view of a theoretical
analysis and since it allows the development of an approximation algorithm
with performance guarantee. From a practical point of view, the related k-
Means problem, minimizing the average distances, is more appropriate, and
the proposed NetScan algorithm can easily be adapted to the Connected k-
Means problem, the k-Means version of the CkC problem.

The CkC problem can be motivated by market segmentation, community
identification, and many other applications such as document clustering, epi-
demic control, and gene expression profile analysis. In the following, we fur-
ther discuss the first two driving applications.

Market segmentation is the process of dividing a market into distinct cus-
tomer groups with homogeneous needs, such that firms can target groups
effectively and allocate resources efficiently, as customers in the same segment
are likely to respond similarly to a given marketing strategy. Traditional
segmentation methods are based only on attribute data such as demograph-
ics (age, sex, ethnicity, income, education, religion, etc.) and psychographic
profiles (lifestyle, personality, motives, etc.). Recently, social networks have
become more and more important in marketing [26]. The relations in networks
are channels and conduits through which resources flow [26]. Customers can
hardly hear companies but they listen to their friends; customers are skeptical
but they trust their friends [53]. By word-of-mouth propagation, a group of
customers with similar attributes have much more chances to become like-

Joint Cluster Analysis of Attribute Data and Relationship Data 287

minded. The CkC problem naturally models such scenarios: a customer is
assigned to a market segment only if he has similar purchasing preferences
(attributes) to the segment representative (cluster center) and can be reached
by propagation from customers of similar interest in the segment.

Community identification is one of the major social network analysis tasks,
and graph-based clustering methods have been the standard tool for the
task [52]. In this application, clustering has generally been performed on
relationship (network) data solely. Yet it is intuitive that attribute data can
impact community formation in a significant manner [23, 42]. For exam-
ple, given a scientific collaboration network, scientists can be separated into
different research communities such that community members are not only
connected (e.g., by co-author relationships) but also share similar research
interests. As a natural assumption, a community should be at least internally
connected with possibly more constraints on the intensity of connectivity.

This chapter is based on [15]. It is organized as follows. Related work is
reviewed in Section 12.2. Section 12.3 introduces the CkC clustering problem
and analyzes its complexity. In Section 12.4, we present an approximation
algorithm for the proposed clustering problem. To provide more scalability,
we also present an efficient heuristic algorithm in Section 12.5. We report
experimental results in Section 12.6 and conclude the chapter with a discussion
of interesting directions for future research in Section 12.7.

12.2 Related Work

In this section, we review related work from the areas of theory and algo-
rithms, data mining, social network analysis and graph clustering, constrained
and semi-supervised clustering and bioinformatics.
Theory and algorithms. Theoretical approaches to cluster analysis usually
formulate clustering as optimization problems, for which rigorous complexity
studies are performed and polynomial approximation algorithms are provided.
Depending on the optimization objective, many clustering problems and their
variants have been investigated, such as the k-Center problem [1, 17, 25, 19,
14], the k-Median problem [8, 28, 29, 33], the min-diameter problem (pairwise
clustering) [6], the min-sum problem [21, 3], the min-sum of diameters (or
radii) problem [9, 13], and the k-Means problem [46, 34]. These problems
minimize the cluster radius, the cluster diameter, the sum of intra-cluster
pairwise distances, the sum of diameters (or radii), and the compactness (sum
of squared distances from data points to cluster centers), respectively.

The CkC problem we study is essentially the k-Center problem with the
constraint of internal connectedness on relationship data. It is well known
that both the k-Center and Euclidean k-Center problems are NP-Complete

288 Constrained Clustering: Advances in Algorithms, Theory, and Applications

for d (dimensionality) ≥ 2 and arbitrary k [36]. In the case of d = 1, the
Euclidean k-Center problem is polynomially solvable using dynamic program-
ming techniques [37, 18]. For d ≥ 2 and fixed k, the k-Center problem can
also be easily solved by enumerating all the k centers. However, as we will see
in Section 12.3, the CkC problem remains NP-Complete even for k = 2 and
d = 1. In this sense, the CkC problem is harder than the Euclidean k-Center
problem. It is NP-hard to approximate the k-Center problem for d ≥ 2 within
a factor smaller than 2 even under the L∞ metric [17]. Hochbaum and Shmoys
[25] gives a 2-approximation greedy algorithm for the k-Center problem in any
metric space. Feder and Greene [17] also give a 2-approximation algorithm
but improve the running time to O(n log k).

Many of the above-mentioned clustering models are closely related to the
general facility location problem [49], which has been extensively studied in
the operations research literature. Given a set of facilities and a set of cus-
tomers, the problem is to decide which facilities should be opened and which
customers should be served from which facilities so as to minimize the total
cost of serving all the customers. Note that the recently studied Connected k-
Median problem [47] is not closely related to our CkC problem. As a variant
of the facility location problem, the Connected k-Median problem additionally
considers the communication cost among facilities, whereas our CkC problem
requires within-cluster connectedness. While all of these optimization prob-
lems are related to our study in the sense that they also study clustering from
the theoretical perspective, they have no intention to perform joint cluster
analysis, and they do not require clusters to be cohesive with respect to both
attribute data and relationship data.
Data mining. In the data mining community, clustering research empha-
sizes real-life applications and development of efficient and scalable algorithms.
Existing methods roughly fall into several categories, including partitioning
methods such as k-Means [35], k-Medoids [31], and CLARANS [39]; hierar-
chical methods such as AGNES and DIANA [31]; and density-based methods
such as DBSCAN [16] and OPTICS [2]. These clustering methods, in general,
take only attribute data into consideration.

While almost all clustering algorithms assume data to be represented in a
single table, recently multi-relational clustering algorithms have been explored
which can deal with a database consisting of multiple tables related via foreign
key references. [48] presents a multi-relational clustering method based on
probabilistic relational models (PRMs). PRMs are a first-order generalization
of the well-known Bayesian networks. [54] introduces an approach to multi-
relational clustering based on user guidance in the form of the specification
of some attributes that are known to be related to the (unknown) cluster
labels. The problem addressed in this chapter, i.e., clustering a single table
with attributes and relationships, can be understood as a special case of multi-
relational clustering. However, the approach of [48] is not applicable in this
scenario since PRMs do not allow cycles which often occur in relationships
within a single table. The method of [54] requires additional user guidance

Joint Cluster Analysis of Attribute Data and Relationship Data 289

which may not be available.
Social network analysis and graph clustering. Recently, the increasing
availability of relationship data has stimulated research on network analy-
sis [52, 42, 23]. Clustering methods for network analysis are mostly graph-
based, separating sparsely connected dense subgraphs from each other as
in [5]. A good graph clustering should exhibit few between-cluster edges and
many within-cluster edges. More precisely, graph clustering refers to a set of
problems whose goal is to partition nodes of a network into groups so that
some objective function is minimized. Several popular objective functions,
e.g., normalized cut [44] and ratio cut [7], have been well studied. Those
graph clustering problems can be effectively solved by spectral methods that
make use of eigenvectors. Recently, Dhillon et al. [12] discovered the equiva-
lence between a general kernel k-means objective and a weighted graph clus-
tering objective. They further utilize the equivalence to develop an effective
multilevel algorithm, called GraClus, that optimizes several graph clustering
objectives including the normalized cut. The experiments in [12] show that
GraClus can beat the best spectral method on several clustering tasks.

Graph clustering methods can be applied to data that are originally network
data. The original network can be weighted where weights normally repre-
sent the probability that two linked nodes belong to the same cluster [44]. In
some cases, the probability is estimated by the distance between linked nodes
on attribute data. Moreover, graph clustering methods can also be applied
to similarity graphs representing similarity matrices, which are derived from
attribute data. A similarity graph can be a complete graph as in the agglom-
erative hierarchical clustering algorithms, e.g., single-link, complete link, and
average link [27], or incomplete retaining those edges whose corresponding
similarity is above a threshold [20, 24]. CHAMELEON [30] generates edges
between a vertex and its k nearest neighbors, which can be considered as
relative thresholding.

There are two major differences between graph clustering, in particular the
normalized cut, and CkC. On the one hand, the graph clustering model does
not require the generated clusters to be internally connected which makes it
somewhat more flexible than CkC. Yet, for some applications such as market
segmentation and community identification, CkC fits better than the graph
clustering model as these applications often require the generated clusters
to be internally connected. On the other hand, in graph clustering, attribute
data is used only indirectly by using distances between nodes as edges weights,
which may lose important information since it reduces the d-dimensional at-
tribute data of two connected nodes to a single, relative distance value. In
CkC, attribute data are used directly, avoiding information loss.
Constrained and semi-supervised clustering. Early research in this
direction allowed the user to guide the clustering algorithm by constrain-
ing cluster properties such as size or aggregate attribute values [50]. More
recently, several frameworks have been introduced that represent available
domain knowledge in the form of pairwise “must-links” and “cannot-links.”

290 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Objects connected by a must-link are supposed to belong to the same cluster,
those with a cannot-link should be assigned to different clusters. [4] proposes
a probabilistic framework based on hidden Markov random fields (HMRF),
incorporating supervision into k-clustering algorithms. [32] shows that the
objective function of the HMRF-based semi-supervised clustering model, as
well as some graph clustering models, can be expressed as special cases of
weighted kernel k-Means objective. Based on these theoretical connections, a
unified algorithm is proposed to perform semi-supervised clustering on data
given either as vectors or as a graph. [10] considers additional minimum
separation and minimum connectivity constraints, but they are ultimately
translated into must-link and cannot-link constraints. A k-Means-like algo-
rithm is presented using a novel distance function which penalizes violations
of both kinds of constraints. The above two papers are similar to our research
in the sense that they also adopt a k-clustering approach under the frame-
work of constrained clustering. Nevertheless, in semi-supervised clustering,
links represent specific instance-level constraints on attribute data. They are
provided by the user to capture some background knowledge. In our study,
links represent relationship data. They are not constraints themselves, but
data on which different constraints can be enforced, such as being “internally
connected.” Enforcing the connectedness constraint should lead to cohesion
of clusters with respect to relationship data, so that clusters can be cohesive
in both ways.

Bioinformatics. There have been several research efforts that consider both
attribute and relationship data in the bioinformatics literature. With the goal
of identifying functional modules, Hanisch et al. [22] propose a co-clustering
method for biological networks and gene expression data by constructing a
distance function that combines the expression distance and the network dis-
tance. However, their method cannot guarantee that the resulting clusters
are connected. Segal et al. [43] introduce a probabilistic graphical model,
combining a naive Bayes model for the expression data and a Markov random
field for the network data. While the probabilistic framework has the advan-
tage of representing the uncertainty of cluster assignments, it cannot ensure
the connectedness of the resulting clusters. Ulitsky and Shamir [51] present
an algorithmic framework for clustering gene data. Given a gene network and
expression similarity values, they seek heavy subgraphs in an edge-weighted
similarity graph. Similar to our model, this model requires the generated
clusters to be connected. Different from the CkC model, their model does
not search for a partition of the whole data set, i.e., not every gene needs to
be assigned to a cluster.

Joint Cluster Analysis of Attribute Data and Relationship Data 291

12.3 Problem Definition and Complexity Analysis

In this section, we formally define the Connected k-Center (CkC) problem.
We prove the NP-completeness of the decision version of the CkC problem
through a reduction from the 3SAT problem. The key observation in this proof
is the existence of so-called “bridge” nodes, which can be assigned to multiple
centers and are crucial to link some other nodes to their corresponding centers
within a certain radius.

12.3.1 Preliminaries and Problem Definition

Relationship data are usually modeled by networks comprised of nodes and
links, which we call entity networks. In this chapter, we concentrate on sym-
metric binary relations, thereby entity networks can be naturally represented
as simple graphs with edges (links) indicating the presence or absence of a
relation of interest such as acquaintance, collaboration, or transmission of
information or diseases.

Nodes in an entity network do not have meaningful locations. With at-
tribute data available, attributes for each entity can be represented as a co-
ordinate vector and assigned to the corresponding node, resulting in what
we call an “informative graph.” Informative graphs, with both attribute data
and relationship data embedded, are used as input for our Connected k-Center
problem.

In this chapter, the terms “vertex” and “node” are used interchangeably,
so are “edge” and “link.” In the following sections, “graph” will refer to “in-
formative graph” since we always consider the two data types simultaneously.

The Connected k-Center (CkC) problem performs a joint cluster analysis
on attribute data and relationship data, so that clusters are cohesive in both
ways. The problem is to find a disjoint k-clustering (k-partitioning) of a set
of nodes, such that each cluster satisfies the internal connectedness constraint
(defined on the relationship data), and the maximum radius (defined on the
attribute data) is minimized. The radius of a cluster is the maximum dis-
tance of any node in the cluster to the corresponding center node. A formal
definition of the CkC problem is given in the following.

DEFINITION 12.1 (CkC problem) Given an integer k, a graph g =
(V,E), a function w : V → X mapping each node in V to a d-dimensional co-
ordinate vector, and a distance function ||·||, find a k-partitioning {V1, . . . , Vk}
of V , i.e., V1 ∪ . . . ∪ Vk = V and ∀1 ≤ i < j ≤ k, Vi ∩ Vj = φ, such that the
partitions satisfy the internal connectedness constraint, i.e., the induced sub-
graphs g[V1], . . . , g[Vk] are connected, and the maximum radius defined on || · ||
is minimized.

292 Constrained Clustering: Advances in Algorithms, Theory, and Applications

In this study, we assume the given graph g is connected, which is reasonable
for many application scenarios, e.g., social networks. Even if the entire graph
is not connected, the problem and the corresponding algorithms can still be
applied to its connected components.

12.3.2 Complexity Analysis

Given the similarity of the CkC problem to the traditional k-Center prob-
lem, it is natural to ask how much the traditional k-Center problem has been
changed in terms of hardness by adding the constraint of internal connected-
ness. To answer this question, we analyze the complexity of the CkC problem.
In the following, we define the decision version of the CkC problem and prove
its NP-completeness. Note that in this subsection of complexity analysis, the
names of the problems refer to their decision versions.

DEFINITION 12.2 (CkC problem, decision version) Given an integer
k, a graph g = (V,E), a function w : V → X mapping each node in V to a d-
dimensional coordinate vector, a distance function || · ||, and a radius threshold
r ∈ R

+, decide whether there exists a k-partitioning {V1, . . . , Vk} of V , i.e.,
V1 ∪ . . . ∪ Vk = V and ∀1 ≤ i < j ≤ k, Vi ∩ Vj = φ, such that in addition
to the internal connectedness constraint, the partitions also satisfy the radius
constraint, i.e., ∀1 ≤ i ≤ k, there exists a center node ci ∈ Vi, such that
∀v ∈ Vi, ||w(v)− w(ci)|| ≤ r.

We will prove an NP-completeness result for fixed k. As the formal analysis
is rather technical, we precede it with an intuitive explanation. We say a
solution (or partitioning) is legal if all the k partitions (or clusters) are disjoint
and the corresponding induced subgraphs are connected. Since k is fixed as a
constant, a naive algorithm would enumerate all the combinations of k centers,
and for each combination assign the remaining nodes to the centers such that
both the internal connectedness and radius constraints are satisfied. However,
we note that there may exist some “bridge” node v which can connect to
multiple centers within distance r and is critical to connect some other nodes
to their corresponding centers. In a legal partitioning, every bridge node
must be assigned to a unique center. If there are many such bridge nodes, it
is difficult to assign each of them to the “right” center in order to maintain the
connection for others. Therefore, the naive algorithm may fail to determine
a legal partitioning. By intuition, the CkC problem is hard even for a fixed
k. In the following, we prove a hardness result for the CkC problem by a
reduction from 3SAT. For convenience, we state the 3SAT problem as follows:

DEFINITION 12.3 (3SAT problem) Given a set U = {u1, . . . , un} of
variables, a boolean formula I = C1 ∧ C2 ∧ . . . ∧ Cm where each clause Ci =
l1i ∨ l2i ∨ l3i contains three literals and each literal lji , j = 1, 2, 3, is a variable

Joint Cluster Analysis of Attribute Data and Relationship Data 293

or negated variable, decide whether there exists a truth assignment of U that
satisfies every clause of C.

THEOREM 12.1
For any k ≥ 2 and d ≥ 1, the CkC problem is NP-Complete.

PROOF
We only construct a proof for the case of k = 2 and d = 1, the proof can

be easily extended to any larger k and d.
First, we show C2C is in NP. We can nondeterministically guess a parti-

tioning of graph G and pick a node as center from each partition. For each
partition, we can traverse the corresponding subgraph in polynomial time to
verify whether it is a legal partitioning satisfying the radius constraint.

Next, we perform a reduction from 3SAT to show the NP-hardness of C2C.
Let L = {u1, u1, . . . , un, un} be a set of literals. For any 3SAT instance
I = C1 ∧ C2 ∧ . . . ∧ Cm, we construct a C2C instance f(I) = (g, w, r), where
g = (V,E) is the underlying graph, w : V → R is the function mapping nodes
to coordinate vectors, and r ∈ R

+ is the radius constraint, by the following
procedure:

1. Create a set of nodes V = P ∪ L ∪ C ∪ A ∪ B. P = {p0, p1} where p0

and p1 are two center nodes. L and C are the sets of literals and clauses
respectively. A = {a1, . . . , an} and B = {b1, . . . , bn} are two sets of
nodes introduced only for the purpose of the reduction.

2. Connect the nodes created in step (1). We link each literal l ∈ L to
both p0 and p1. For each literal l ∈ L and clause Ci ∈ C, we link l to Ci

if l ∈ Ci. For each i ∈ [n], we link ai and bi to both ui and ui.

3. Set r to an arbitrary positive value and assign each node v ∈ V a
coordinate as follows.

w(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if v ∈ B;
r, if v = p0;
2r, if v ∈ L;
3r, if v = p1;
4r, if v ∈ A ∪ C.

Steps (1) and (2) construct the underlying graph g. A visual explanation
of the construction method is provided in Figure 12.1. Note that every node
in A,B, C can only connect to the center nodes p0 and p1 via some nodes in
L.

Step (3) assigns each node in V a carefully chosen coordinate, such that
each node in A,B, C is within distance r to one unique center node p0 or p1.
Figure 12.2 illustrates the deployment of nodes on the line.

294 Constrained Clustering: Advances in Algorithms, Theory, and Applications

m

n un

p

...

0 1

a b1 a 2b a nb 1C C2 n

u1 u1 u2 u2 ...

...
1

p

u

FIGURE 12.1: Con-
structed graph g.

m

b

2r 3rr

......
a11

u , u

_

_

0 4r

11u , u p p C101

a Cbn n n n

FIGURE 12.2: Deployment of
nodes on the line.

In order to have a legal partitioning (partitions are disjoint and satisfy the
internal connectedness constraint), every node in L must be assigned to an
appropriate center (cluster). For the reduction, we associate a truth value
(true or false) to each cluster; accordingly, the allocations of these nodes can
then be transferred back to a truth assignment for the input 3SAT instance
I. Besides, we need to guarantee that the truth assignment for I is proper,
i.e., ∀i ∈ [n], node ui and ui belong to different clusters. Node sets A and B
are two gadgets introduced for this purpose.

Clearly the above reduction is polynomial. Next, we show I is satisfiable
if and only if f(I) = (g, w, r) has a legal partitioning satisfying the radius
constraint. We use V0 and V1 to refer to the clusters centered at p0 and p1

respectively.

If f(I) = (g, w, r) has a legal partitioning satisfying the radius constraint,
we have the following simple observations:

1. Both p0 and p1 must be selected as centers, otherwise some node cannot
be reached within distance r.

2. For the same reason, each node in A and C must be assigned to cluster
V1 and each node in B must be assigned to V0.

3. For any i ∈ [n], ui and ui cannot be in the same cluster. If ui and ui

are both assigned to cluster V0 (or V1), some node in A (or B) would
not be able to connect to p1 (or p0).

4. For each clause Ci ∈ C, there must be at least one literal assigned to
cluster V1, otherwise Ci will be disconnected from p1.

We construct a satisfying assignment for I as follows: For each variable
ui ∈ U , if ui is assigned to V1, set ui to be true, otherwise false. Note by ob-
servation (3), ui and ui are always assigned different values, hence the assign-
ment is proper. Moreover, the assignment satisfies I since by observation (4),
all the clauses are satisfied.

Joint Cluster Analysis of Attribute Data and Relationship Data 295

If I is satisfiable, we construct a partitioning {V0, V1} as follows:

V0 = B ∪ {p0} ∪ {li ∈ L | li = false}
V1 = V \ V0

It is easy to verify that the above partitioning is legal. In addition, the
radius constraint is satisfied since every node in V is within distance r from
its corresponding center node, p0 or p1.

Finally, we show that the above proof can be easily extended to any larger
k and d. When k > 2, one can always add k − 2 isolated nodes (hence each
of them must be a center) to graph g and apply the same reduction; when
d > 1, one can simply add d − 1 coordinates with identical values to the
existing coordinate for each node.

The traditional k-Center problem which is known to be NP-hard only when
k is arbitrary and the dimensionality is greater than 1, but the CkC problem
is NP-hard even for a fixed k or one dimensional data.

Theorem 12.1 implies that the optimization version of the CkC problem
defined in Definition 12.1 is NP-hard.

Similar to the CkC problem, one can define the connected k-Median and
connected k-Means problems. In fact, the proof of Theorem 12.1 can be
extended to these problems to show their NP-Completeness.

12.4 Approximation Algorithms

In this section we study the optimization version of the CkC problem de-
fined in Definition 12.1. We prove that the problem is not approximable within
2 − ε for any ε > 0 unless P = NP . When the distance function is metric,
we provide approximation algorithms with ratios of 3 and 6, respectively, for
the cases of fixed and arbitrary k. The idea is to tackle an auxiliary CkC ′

problem. Based on the solution of CkC ′, we show the gap between these
two problems is at most 3, i.e., a feasible solution of CkC ′ with radius r can
always be transferred to a feasible solution of CkC with radius at most 3r.

12.4.1 Inapproximability Results for CkC

In the following, we prove an inapproximability result for the CkC problem.

THEOREM 12.2
For any k ≥ 2, ε > 0, the CkC problem is not approximable within 2 − ε

unless P = NP .

296 Constrained Clustering: Advances in Algorithms, Theory, and Applications

PROOF (Sketch.) We can prove this theorem by applying a similar proof
to that of Theorem 12.1 and noting that the distances are multiples of r.

12.4.2 Approximation Results for Metric CkC

In the following, we study approximation algorithms for the CkC problem
in the metric space. Our approximation results rely on the triangle inequality.
However, our hardness results presented in Section 12.3 remain valid even for
non-metric spaces.

We provide approximations with ratios 3 and 6 for the cases of fixed and ar-
bitrary k. For this purpose, we introduce the CkC ′ problem, which is a relaxed
version of the CkC problem without stipulating the disjointness requirement
on the clusters. Then we show that CkC ′ can be solved in polynomial time
for fixed k and approximated within a factor of 2 for arbitrary k. We then
show the gap between these two problems is at most 3.

DEFINITION 12.4 (CkC ′ problem) Given an integer k, a graph g =
(V,E), a function w : V → X mapping each node in V to a d-dimensional
coordinate vector, and a distance function ||·||, find k node sets V1, . . . , Vk ⊆ V
with V1∪. . .∪Vk = V , such that the node sets satisfy the internal connectedness
constraint and the maximum radius defined on || · || is minimized.

Complexity of CkC ′. If k is treated as part of the input, CkC ′ is NP-
Complete as it is an extension of the traditional k-center problem. On the
contrary, if k is fixed as a constant, CkC ′ is in P (justification follows).
Solving CkC ′ for fixed k. We propose an exact algorithm to solve the CkC ′

problem for fixed k in polynomial time. We define the reachability between
any two nodes as follows:

DEFINITION 12.5 Let G = (V,E), for u, v ∈ V , v is reachable from
u w.r.t. r, r ∈ R

+, if there exists a path p : {u = s0 → s1 → . . . → sl →
sl+1 = v}, s1, . . . , sl ∈ V , such that ∀1 ≤ i ≤ l + 1, (si−1, si) ∈ E and
||w(u)− w(si)|| ≤ r.

Intuitively, v is reachable from u w.r.t. r if and only if v can be included in
the cluster with center u and radius r. Clearly it can be decided in polynomial
time by performing a breadth first search (BFS) for node v from node u. This
forms the main idea of Algorithm 1 in Figure 12.3, which returns the optimal
solution for CkC′ in polynomial time.

Runtime complexity. Algorithm 1 in Figure 12.3 performs O(nk log n)
calls of BFS since it iterates over all possible sets of k centers, and a binary
search is performed for all possible r ∈ R where |R| =

(
n
2

)
. Since every BFS

Joint Cluster Analysis of Attribute Data and Relationship Data 297

Algorithm 1

1: Calculate all the pairwise distances for the nodes in V and store them
in set R;

2: Sort R in increasing order;
3: low = 0;high = |R|;
4: while low ≤ high
5: middle = (low + high)/2;
6: r = R[middle];
7: for each set of k centers {c1, . . . , ck} ⊆ V
8: Perform BFS from each center ci and mark all the nodes that

are reachable from ci w.r.t. r;
9: if all nodes are marked
10: if low = high
11: Return r and the k clusters;
12: else
13: high = middle− 1;
14: else
15: low = middle+ 1;

FIGURE 12.3: Polynomial exact algorithm for CkC ′.

takes O(n2) steps, the total running time of Algorithm 1 in Figure 12.3 is
O(nk+2 log n).
Approximating CkC ′ for arbitrary k. For the case that k is arbitrary,
we show an approach providing a 2 approximation for the CkC ′ problem. We
define the reaching distance between any two nodes as follows:

DEFINITION 12.6 Let G, u, v, p be defined as in Definition 12.5. The
distance between u and v w.r.t p is defined as D(u, v)p = maxsi,sj∈p ||w(si)−
w(sj)||. The reaching distance between u and v is defined as D(u, v) =
minp∈P D(u, v)p, where P is the set of all paths between u and v.

Note that the reaching distance is symmetric, i.e., ∀u, v ∈ V,D(u, v) =
D(v, u). It also satisfies the triangle inequality, i.e., ∀u, v, s ∈ V,D(u, s) ≤
D(u, v)+D(v, s). We can obtain a |V |×|V | matrix, storing reaching distances
for all the nodes in V . Then, we can apply the 2-approximation algorithm
proposed in [25] on V with the reaching distance matrix replacing the pairwise
distance matrix. The maximum radius of the k clusters resulting from this
algorithm is at most twice as big as the optimal solution.
Back to CkC. In Algorithm 2 (Figure 12.4), we present a method transfer-

298 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Algorithm 2

1: for i from 1 to k
2: Vi = φ, ci ← c′i;
3: Add all the nodes reachable w.r.t. r from ci in G[V ′

i \ ∪i−1
j=1Vj] to Vi

(by performing a BFS from ci in G[V ′
i \ ∪i−1

j=1Vj]);
4: for every node v ∈

(
∪i−1

j=1Vj

)
∩ V ′

i

5: Add all the nodes connected to v in G[V ′
i] to the cluster of v

(by performing a BFS from v in G[V ′
i]);

6: Output clusters V1, . . . , Vk;

FIGURE 12.4: Converting a solution of CkC ′ to a solution of CkC.

ring a feasible solution of CkC′ with radius r to a feasible solution of CkC
with radius at most 3r. Combining the CkC ′ results and Algorithm 2 gives
approximations for the CkC problem.

Let {V ′
1 , . . . , V

′
k} be a clustering returned by Algorithm 2 or the approxi-

mation algorithm specified in Section 12.4.1 where V ′
i ⊆ V and the node sets

(clusters) V ′
1 , . . . , V

′
k may not be disjoint. Algorithm 2 determines a clustering

{V1, . . . , Vk} with disjoint node sets V1, . . . , Vk. Let c1, . . . , ck be the centers
of V1, . . . , Vk. Since the algorithm retains the cluster centers, they are also the
centers of V ′

1 , . . . , V
′
k. Algorithm 2 assigns every node in V to a unique cluster

Vi for 1 ≤ i ≤ k. For each iteration 1 ≤ i ≤ k, line 3 assigns the nodes in
V ′

i that have not been assigned to any previous clusters V1, . . . , Vi−1 and are
connected to ci to Vi. Afterwards, there may still be some unassigned nodes
in V ′

i , and line 5 assigns them to one of the clusters V1, . . . , Vi−1 to which they
are connected.

Figure 12.5 provides an illustration for Algorithm 2. The circles with dashed
lines represent the three initial (overlapping) clusters V ′

1 , V
′
2 , and V ′

3 generated
by Algorithm 1. Applying Algorithm 2, we obtain three new disjoint clusters
V1, V2, and V3. The center nodes were not changed.

LEMMA 12.1

Let r be the maximum radius associated with a feasible solution for the CkC ′

problem. Algorithm 2 is guaranteed to find a feasible solution for the CkC
problem with maximum radius at most 3r.

PROOF
First we show that Algorithm 2 assigns each node u ∈ V to a unique cluster.

There are two cases. In case 1, u can be reached via a path from center node

Joint Cluster Analysis of Attribute Data and Relationship Data 299

21

V3

c3

V2

c2

c
1

V ’

V ’

V ’
v’p

vp

1

3

V

FIGURE 12.5: Illustration of Algorithm 2.

ci without having any node previously assigned to V1, . . . , Vi−1 on the path;
then, u is assigned to Vi in line 3 of Algorithm 2. In case 2, u is connected to
ci via some node v ∈ ∪i−1

j=1Vj ; then, in line 5 of Algorithm 2, u is assigned to
the cluster that v belongs to.

Next, we bound the maximum radius of a node u to the corresponding
center node. In case 1, since u is assigned to Vi, the distance between u and ci
is at most r. In case 2, observe that the distance between u and v is at most
2r due to the triangle inequality and the fact that u and v were in the same
set V ′

i . Besides, we observe that the distance between v and its corresponding
center node cj is at most r. Therefore, again by the triangle inequality, the
distance between u and its corresponding center node is at most 3r.

Let opt and opt′ be the optimal solutions for the CkC and CkC ′ problems,
respectively. Clearly opt′ ≤ opt since opt is also a feasible solution for CkC ′.
Based on this observation, we obtain the following approximation results for
CkC:

THEOREM 12.3

Combining Algorithm 1 and Algorithm 2 gives a polynomial 3-approximation
for the CkC problem for fixed k.

THEOREM 12.4

Combining the approach proposed in 12.4.1 and Algorithm 2 gives a polyno-
mial 6-approximation for the CkC problem for arbitrary k.

300 Constrained Clustering: Advances in Algorithms, Theory, and Applications

12.5 Heuristic Algorithm

While the development of an approximation algorithm with guaranteed
clustering quality is important from the theoretical point of view, the expen-
sive enumeration operation makes the approach infeasible for application on
large data sets. Therefore, in this section, we present NetScan, a heuristic al-
gorithm that efficiently produces a “good” CkC clustering and scales to large
real-life data sets.

12.5.1 Overview of NetScan

NetScan follows a three-step approach. It starts by picking k centers ran-
domly, then assigns nodes to the best centers and refines the clusters itera-
tively.

• Step I: Randomly pick k initial cluster centers.

• Step II: Assign all nodes to clusters by traversing the input graph.

• Step III: Recalculate cluster centers.

The algorithm repeats steps II and III until no change of the cluster centers
occurs or a certain number of iterations have been performed. In step III,
finding the optimal center from a group of n nodes requires O(n2) time. For
efficiency, we select the node closest to the mean of the cluster as the new
center. Typically, the mean provides a reasonably good approximation for
the center.

The three-step framework resembles the k-Means algorithm. However, un-
like the straightforward assignment step in k-Means, given k centers, find-
ing an optimal assignment satisfying the connectedness constraint requires a
search through an exponential space, as shown in Section 12.3.2. Thus, the
major challenge of NetScan is finding a good membership assignment, i.e.,
step II.

From the design principles of the approximation algorithm, we observe that
the BFS-based approach provides an efficient way of generating clusters with-
out violating the internal connectedness constraint. Therefore, we start the
membership assignment from the centers, and neighboring nodes (directly
connected by some edge of the graph) of already assigned nodes are gradually
absorbed to the clusters. The whole step II may take multiple rounds to finish
until all the nodes are assigned, and each round i is associated with a radius
threshold Ri. For the first round, the assignment starts from cluster centers
with the initial radius threshold R0. Each node is tested and assigned to the
first cluster for which its distance to the center is no larger than R0. If all the
centers have been processed but not all nodes have been assigned, the next
assignment round tries to assign them with an incremented radius threshold

Joint Cluster Analysis of Attribute Data and Relationship Data 301

Algorithm 3

1: Empty working queue Q;
2: for every center cj of cluster Cj

3: Append all unassigned neighbors of cj to Q;
4: while Q is not empty
5: Pop the first element q from Q;
6: if ||q − cj || ≤ Ri

7: if q is a potential bridge node
8: Invoke the look-ahead routine to decide the membership

for q. If q should be assigned to Cj , append q’s unassigned
neighbors to Q; otherwise, only assign q to the right cluster
without appending q’s neighbors to Q; (Section 12.5.2 (c))

9: else
10: Assign q to Cj and append q’s unassigned neighbors to Q;
11: if all nodes are assigned to some Cj

12: Stop;
13: else
14: Increase Ri and goto 1;

FIGURE 12.6: Step II of NetScan.

302 Constrained Clustering: Advances in Algorithms, Theory, and Applications

R1. The process continues until all the nodes are assigned. The pseudocode
of step II is given in Algorithm 3 (Figure 12.6), and more details of NetScan
will be discussed shortly.

12.5.2 More Details on NetScan

(a) How to choose initial cluster centers. The initialization has a di-
rect impact on the NetScan results as in many similar algorithms. Instead
of using a naive random approach, we weight each node with its degree so
that nodes with higher degrees have higher probabilities to be chosen. Since
NetScan relies on edges to grow clusters in step II, the weighted random ap-
proach allows clusters to grow fast. More importantly, due to the improved
edge availability, true cluster contents can be absorbed during early rounds of
membership assignment, reducing the possibility that they would be assigned
to some other clusters inappropriately.
(b) How to choose Ri. In step II of NetScan, the radius threshold Ri is
gradually incremented from round to round. Ri plays an important role in
minimizing the maximum radius of the resulting clusters. Figure 12.7 gives an
example where a larger threshold Ri+1 allows node a to be assigned to cluster
1, resulting in a larger radius of cluster 1. A similar situation applies to node
b whose assignment to cluster 2 would result in a larger radius of cluster 2.
Instead, by using a smaller threshold Ri, these cases are avoided because a
and b can only be assigned to cluster 2 and cluster 3, respectively. From the
point of view of minimizing the maximum radius, we want the increment of
Ri to be as small as possible. However, a too small increment of Ri may lead
to the case that no additional node can be assigned for many rounds, which
may greatly and unnecessarily increase the runtime.

As a trade-off, we propose the increment to be the average pairwise distance
of nodes. That is, the radius threshold Ri+1 is chosen as Ri + D where D
is the average pairwise distance of nodes. This choice of increment makes it
likely that at least some further nodes can be assigned in the next round. D
can be obtained efficiently by drawing a small set of samples and calculating
the average pairwise distance of the samples.

Our complexity analysis suggests that the nodes located in the overlapping
area of two clusters w.r.t. a given radius threshold are more difficult to assign
than the others. Thus, to start with, we choose R0 to be half of the smallest
distance among all pairs of cluster centers. This choice of R0 does not create
overlap that introduces any ambiguity in the node assignment.
(c) How to assign nodes. In step II of NetScan, nodes are assigned to
clusters generally based on their distances to the cluster centers. Special
attention, however, needs to be paid to those nodes in the overlap area of two
or more clusters w.r.t. Ri. Inspired by the concept of bridge nodes introduced
in Section 12.3, we call these nodes potential bridge nodes. We assign potential
bridge nodes not only based on their distances to the different cluster centers,
but also on their neighborhood situations. For example, in Figure 12.7, a is

Joint Cluster Analysis of Attribute Data and Relationship Data 303

b

1

c3

RiRi+1 2c
a

a’

b’

Cluster 1
Cluster 2

Cluster 3

c

FIGURE 12.7: Radius increment.

a potential bridge node and its assignment has an impact on the assignment
of its neighbor a′. If node a is assigned to cluster 1, a′ has to be assigned
to cluster 1, resulting in a larger radius compared to assigning both nodes to
cluster 2. A similar situation applies to nodes b and b′.

Whether a node is a potential bridge node depends on three factors: (1) the
node has neighbors who have been assigned membership and those neighbors
are from more than one cluster, e.g., Ci and Cj , (2) the node is within Ri

distance from both centers of Ci and Cj and (3) the node has unassigned
neighbors.

We propose the following look-ahead approach for the cluster assignment
of potential bridge nodes (line 8 of Algorithm 3). For the sake of efficiency,
for each potential bridge node, we only check its unassigned neighbors (if
any) which have a degree of 1, the so-called unary neighbors. These unary
neighbors are especially critical since they can be connected to any cluster
only via the node under consideration. A potential bridge node is assigned to
its closest center unless the node has a direct unary neighbor which is closer to
some other center. In the case that more than one unary neighbor exists, the
cluster center leading to the smallest radius increase is chosen. Our algorithm
could benefit from looking into indirect neighbors of potential bridge nodes as
well, however, this would significantly increase the runtime without guarantee
of quality improvement.
(d) Postprocessing to eliminate outliers. As in the traditional k-Center
problem, the CkC problem faces the same challenge of “outliers,” which may
cause a significant increase in the radius of the resulting clusters. In many
applications such as market segmentation, it is acceptable and desirable to
give up a few customers to meet most customers’ preference. We propose an
optional step, which utilizes a graphical approach to eliminate outliers from
the NetScan results. Each node remembers the radius threshold at which
it was assigned, and all the nodes are sorted by these thresholds. We filter
out the node (and its following nodes) which causes a sudden increase of the

304 Constrained Clustering: Advances in Algorithms, Theory, and Applications

t

(b)

R0

R1

R

p
0

p
m

FIGURE 12.8: Outlier elimination by radius histogram.

radius. The “cut-off” point can be determined by automatic detection as well
as manual inspection from a chart displaying the sorted nodes, as illustrated
in Figure 12.8 (b). Only node pm would be removed as an outlier in the
example.

(e) Runtime complexity. In each iteration of step II and III, the NetScan
algorithm generates k clusters one by one. During membership assignment of
each cluster, the nodes sharing edges with the assigned nodes of that cluster
are considered. The distances between these nodes and the cluster center
are calculated. Thus, the overall runtime complexity is bounded by the total
number of nodes being visited. For the purpose of minimizing the maximum
radius, NetScan gradually increases the radius threshold Ri. Let D represent
the amount of radius increment, the total number of radius increases in one
iteration is a constant, diam

D
, where diam is the longest distance among all

pairs of nodes. In the worst case, every edge is visited k times for each Ri,
hence the total number of node visits in an iteration is O(k|E|diam

D
), where

|E| is the total number of edges. We assume the NetScan algorithm converges
after t iterations. Hence, the worst case runtime complexity of NetScan is
O(tk|E|diam

D
). However, in each iteration, we only need to consider those

edges connecting to the nodes in the frontier, i.e., a set of unassigned nodes
that are direct neighbors of the assigned nodes. The worst case rarely happens,
in which all the edges are connected to the frontier nodes. In practice, the
number of edges visited in one iteration can be reasonably assumed to be
O(|E|) on average, and the expected runtime of NetScan would be O(t|E|)
under this assumption.

Joint Cluster Analysis of Attribute Data and Relationship Data 305

12.5.3 Adaptation of NetScan to the Connected k-Means
Problem

As we have discussed in related work (Section 12.2), various clustering prob-
lems can be formulated depending on different objectives. The well-known
k-Means problem [46, 34] minimizes the compactness, i.e., the sum of squared
distances from data points to their corresponding cluster centers. The cor-
responding k-Means algorithm [35] is widely used as a practical and robust
clustering method. As an analogue for joint cluster analysis, we can define the
Connected k-Means problem, which finds a k-partitioning of nodes minimizing
the compactness under the internal connectedness constraint.

As a straightforward extension, NetScan can be adapted to the Connected
k-Means problem. We can simply use the means of clusters to replace the
center nodes. Then in step II of NetScan, the radius is computed with respect
to the means instead of the center nodes. Similarly in step III, the new cluster
means are relocated instead of the center nodes. The algorithm terminates
when there is no change in node membership or a certain number of iterations
have been performed.

12.6 Experimental Results

In this section, we demonstrate the meaningfulness and accuracy of our
joint cluster analysis model on a real-life data set (see Table 12.1 for a sum-
mary of the data set). The data set was generated based on papers published
from 2000 to 2004 in nine major conferences of three communities: theory,
databases and data mining, and machine learning. 1786 researchers were
extracted as authors of those papers. The attributes of each researcher are
vectors representing the keyword frequencies in the abstracts of his/her pa-
pers. After deleting stop words and applying stemming and word occurrence
thresholding, we obtain a data set whose attribute vectors have 603 dimen-
sions. We used term frequency inverse-document frequency [41], a state-of-
the-art method in text mining, to normalize the data set. The relationship
data is a connected subgraph extracted from the DBLP [11] coauthorship net-
work. Note that the researchers were chosen so that the relationship graph
is connected. We also removed researchers that make the true clusters un-
connected, since otherwise, due to the connectedness constraint, NetScan will
have no chance to achieve 100% accuracy. The task was to cluster researchers
with the goal of identifying research communities in an unsupervised manner.
A researcher’s true community (cluster label) was determined by the commu-
nity to which the majority of his/her papers belongs. These true labels were
then compared to the labels determined by our algorithm.

The traditional k-Means algorithm is known to work well for document

306 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 12.1: Summaries of the real data set.
Communities Conferences # of Researchers

Theory FOCS, STOC, SODA 547
Databases and Data Mining SIGMOD, VLDB, KDD 722

Machine Learning ICML, NIPS, COLT 517

clustering [45] utilizing only the attribute data. We applied our adapted
NetScan (for the Connected k-Means problem, see Section 12.5.3) to the data
set and compared the results with k-Means. We used the cosine distance as
the distance measure for the attributes, a standard measure for text data.
Table 12.2 reports the clustering results averaged over 20 runs for both al-
gorithms, recording the number of correctly identified researchers for each
community together with the overall accuracy. In order to measure the ac-
curacy, a cluster is labeled by a majority vote of its members. Compared to
k-Means, NetScan significantly improved the accuracy from 79% to 89.7%.
Note that we perform unsupervised learning, which accounts for the rela-
tively low accuracy of both algorithms compared to supervised classification
algorithms.

TABLE 12.2: Comparison of NetScan and
k-Means

Communities Size k-Means NetScan
Theory 547 417 514

Databases 722 575 691
Machine Learning 517 422 397

Sum 1786 1414 1602
Accuracy 79.2% 89.7%

The main reason why NetScan significantly outperforms k-Means is that
both relationship and attribute data make contributions in the clustering pro-
cess, and considering only one data type can mislead the clustering algorithm.
For example, Jon Kleinberg published papers in KDD, NIPS, STOC, SODA,
etc. From this attribute information, it seems reasonable to identify him as a
researcher in databases and data mining or machine learning. Nevertheless,
after taking his coauthorship information into consideration, NetScan clus-
tered him into the theory community, which is a better match for his overall
research profile. On the other hand, Rajeev Motwani has broad coauthorship
connections, which alone cannot be used to confidently identify his commu-
nity membership. However, the majority of his papers from 2000 to 2004
was published in conferences of the theory community, and NetScan correctly
clustered him into the theory community.

Joint Cluster Analysis of Attribute Data and Relationship Data 307

12.7 Discussion

The framework of joint cluster analysis of attribute and relationship data
suggests several interesting directions for future research, some of which are
discussed in this section.

There are many applications where the connectivity constraint of the CkC
model is appropriate, such as the driving applications (market segmentation
and community identification) mentioned in Section 12.1. Yet, in other ap-
plications such as molecular biology the connectivity constraint becomes in-
sufficient to capture the properties of clusters. In molecular biology, since
data is often obtained from scientific measurements the requirement of simple
connectivity of a cluster may not be strict enough and may make the result-
ing clustering too sensitive to noisy graph edges. In such scenarios, stronger
connectivity constraints are desirable. So-called quasi-cliques, which have re-
cently received a lot of attention in the literature [40], are one promising way
of specifying such constraints. A quasi-clique is a subgraph where every node
is directly connected to at least a specified percentage of the other subgraph
nodes. As a quasi-clique is not necessarily connected, the quasi-clique prop-
erty should be added on top of the simple connectivity constraint. While the
CkC model assumes input graphs without edge labels, there are applications
where it makes sense to weight the edges to indicate the strength of rela-
tionships. For example, the strength of a friendships can go from intimate
and close to just nodding acquaintanceship. In a scientific application, edges
might be labeled with probabilities of the corresponding relationship as com-
puted by some underlying model. A simple connectivity constraint, requiring
at least one path between any pair of nodes of a cluster, is not natural for
such data, since it cannot distinguish between strong and weak connections.
A joint cluster analysis model for such data has to constrain the strength of
relevant paths. This introduces a multi-objective optimization problem where
the radius in the attribute space and the diameter in the graph space have
to be simultaneously optimized. The CkC model, like many other clustering
models, assumes the number of clusters as input parameter. However, this
information may be hard to provide a priori, and joint cluster analysis without
a priori specification of the cluster number is desirable in many applications.
With increasing number of clusters, the compactness and accuracy of clus-
terings trivially increases. In order to automatically determine a model with
a good trade-off between model accuracy and complexity, a clustering qual-
ity measure is needed that is not biased toward larger numbers of clusters.
[38] presents a first clustering method of this kind using an adaption of the
silhouette coefficient as model selection criterion.

308 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Acknowledgments

We would like to thank Dr. Binay Bhattacharya and Dr. Petra Berenbrink
for the valuable discussions in the early stage of this study.

References

[1] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algo-
rithms for clustering. Algorithmica, 33(2):201–226, 2002.

[2] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander. Optics: Or-
dering points to identify the clustering structure. In Proceedings of the
ACM International Conference on Management of Data (SIGMOD),
pages 49–60, 1999.

[3] Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-
clustering in metric spaces. In Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing (STOC), pages 11–20, 2001.

[4] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework
for semi-supervised clustering. In Proceedings of the 10th ACM Interna-
tional Conference on Knowledge Discovery and Data Mining (SIGKDD),
2004.

[5] U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph cluster-
ing algorithms. In Proceedings of the 11th Annual European Symposium
(ESA), pages 568–579, 2003.

[6] P. Brucker. On the complexity of clustering problems. In R. Hehn,
B. Korte, and W. Oettli, editors, Optimization and Operations Research,
pages 45–54. Springer-Verlag, 1977.

[7] P. K. Chan, M. D. F. Schlag, and J. Y. Zien. Spectral k-way ratio-
cut partitioning and clustering. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 13(9):1088–1096, 1994.

[8] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant factor
approximation algorithm for the k-median problem. In Proceedings of
the 31st Annual ACM Symposium on Theory of Computing, pages 1–10,
1999.

Joint Cluster Analysis of Attribute Data and Relationship Data 309

[9] M. Charikar and R. Panigrahy. Clustering to minimize the sum of cluster
diameters. Journal of Computer and System Sciences, 68(2):417–441,
2004.

[10] I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues
and the k-means algorithm. In Proceedings of 2005 SIAM International
Conference on Data Mining (SDM), pages 138–149, 2005.

[11] DBLP. Computer science bibliography. http://www.informatik.uni-
trier.de/∼ley/db/index.html.

[12] I. Y. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without
eigenvectors: A multilevel approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence, To Appear, 2007.

[13] S. Doddi, M. V. Marathe, S. S. Ravi, D. S. Taylor, and P. Widmayer.
Approximation algorithms for clustering to minimize the sum of diam-
eters. In Proceedings of the 7th Scandinavian Workshop on Algorithm
Theory, pages 237–250, 2000.

[14] M. Dyer and A. M. Frieze. A simple heuristic for the p-center problem.
Operations Research Letters, 3:285–288, 1985.

[15] M. Ester, R. Ge, B. J. Gao, Z. Hu, and B. Ben-moshe. Joint cluster
analysis of attribute data and relationship data: the connected k-center
problem. In Proceedings of the 6th SIAM Conference on Data Mining
(SDM), pages 246–257, 2006.

[16] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceed-
ings of the 2nd International Conference on Knowledge Discovery and
Data Mining(ICDM), pages 226–231, 1996.

[17] T. Feder and D. H. Greene. Optimal algorithms for approximate clus-
tering. In Proceedings of the 20th annual ACM symposium on Theory
of computing, pages 434–444, 1988.

[18] G. N. Frederickson and D. B. Johnson. Optimal algorithms for generat-
ing quantile information in x+ y and matrices with sorted columns. In
Proceedings of the 13th Annual Conference on Information Science and
Systems, pages 47–52, 1979.

[19] T. Gonzalez. Clustering to minimize the maximum inter-cluster dis-
tance. Theoretical Computer Science, 38(2-3):293–306, 1985.

[20] S. Guha, R. Rastogi, and K. Shim. Rock: a robust clustering algo-
rithm for categorical attributes. In Proceedings of the 15th International
Conference on Data Engineering (ICDE), 1999.

[21] N. Guttman-Beck and R. Hassin. Approximation algorithms for min-
sum p-clustering. Discrete Applied Mathematics, 89(1-3):125–142, 1998.

310 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[22] D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer. Co-clustering of
biological networks and gene expression data. Bioinformatics, 18:S145–
S154, 2002.

[23] R. A. Hanneman and M. Riddle. Introduction to social network methods.
http://faculty.ucr.edu/∼hanneman/, 2005.

[24] E. Hartuv and R. Shamir. A clustering algorithm based on graph con-
nectivity. Information Processing Letters, 76(4-6):175–181, 2000.

[25] D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-
center problem. Mathematics of Operations Research, 10:180–184, 1985.

[26] D. Iacobucci. Networks in Marketing. Sage Publications, London, 1996.

[27] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice
Hall, 1988.

[28] K. Jain and V. Vazirani. Approximation algorithms for metric facil-
ity location and k-median problems using the primal-dual scheme and
lagrangian relaxation. Journal of the ACM, 48(2):274–296, 2001.

[29] O. Kariv and S. L. Hakimi. An algorithmic approach to network location
problems, part ii: p-medians. SIAM Journal of Applied Mathematics,
37:539–560, 1979.

[30] G. Karypis, E. H. Han, and V. Kumar. Chameleon: Hierarchical clus-
tering using dynamic modeling. IEEE Computer, 32(8):68–75, 1999.

[31] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: an Introduc-
tion to Cluster Analysis. John Wiley & Sons, 1990.

[32] B. Kulis, S. Basu, I. S. Dhillon, and R. J. Mooney. Semi-supervised graph
clustering: a kernel approach. In Proceedings of the 22nd International
Conference on Machine learning(ICML), pages 457–464, 2005.

[33] J. H. Lin and J. S. Vitter. Approximation algorithms for geometric
median problems. Information Processing Letters, 44(5):245–249, 1992.

[34] S. P. Lloyd. Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28(2):129–136, 1982.

[35] J. MacQueen. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the 5th Berkeley Symposium on
Mathematics, Statistics and Probability, pages 281–297, 1967.

[36] N. Megiddo and K. J. Supowit. On the complexity of some common
geometric location problems. SIAM Journal on Computing, 13(1):182–
196, 1984.

[37] N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran. An o(n log2 n)
algorithm for the k-th longest path in a tree with applications to location
problems. SIAM Journal on Computing, 10(2):328–337, 1981.

Joint Cluster Analysis of Attribute Data and Relationship Data 311

[38] F. Moser, R. Ge, and M. Ester. Joint cluster analysis of attribute and
relationship data without a-priori specification of the number of clusters.
In Proceedings of the 13th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pages 510–519, 2007.

[39] R. T. Ng and J. Han. Efficient and effective clustering methods for
spatial data mining. In Proceedings of the 20th International Conference
on Very Large Databases (VLDB), pages 144–155, 1994.

[40] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques.
In Proceedings of the 11th ACM International Conference on Knowledge
Discovery in Data Mining (SIGKDD), pages 228–238, 2005.

[41] G. Salton and M. J. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill, 1983.

[42] J. Scott. Social Network Analysis: A Handbook. Sage Publications,
London, 2000.

[43] E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from
protein interaction and gene expression data. In Proceedings of the 11th
International Conference on Intelligent Systems for Molecular Biology,
pages 264–272, 2003.

[44] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–
905, 2000.

[45] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document
clustering techniques. In Proceedings of the Text Mining Workshop,
KDD’00, 2000.

[46] H. Steinhaus. Sur la division des corp materiels en parties. Bulletin
L’Acadmie Polonaise des Science, C1. III, IV:801–804, 1956.

[47] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility
location problems. Algorithmica, 40(4):245–269, 2004.

[48] B. Taskar, E. Segal, and D. Koller. Probabilistic classification and clus-
tering in relational data. In Proceedings of the 17th International Joint
Conference On Artificial Intelligence (IJCAI), pages 870–878, 2001.

[49] C. Toregas, R. Swan, C. Revelle, and L. Bergman. The location of
emergency service facilities. Operations Research, 19:1363–1373, 1971.

[50] A. K. H. Tung, R. T. Ng, L. V. S. Lakshmanan, and J. Han. Constraint-
based clustering in large databases. In Proceedings of the 8th Interna-
tional Conference on Database Theory (ICDT), pages 405–419, 2001.

[51] I. Ulitsky and R. Shamir. Identification of functional modules using
network topology and high-throughput data. BMC System Biology, 1(8),
2007.

312 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[52] S. Wasserman and K. Faust. Social Network Analysis. Cambridge Uni-
versity Press, 1994.

[53] C. M. Webster and P. D. Morrison. Network analysis in marketing.
Australasian Marketing Journal, 12(2):8–18, 2004.

[54] X. Yin, J. Han, and P. S. Yu. Cross-relational clustering with user’s
guidance. In Proceedings of the 11th ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD), pages 344–353,
2005.

Chapter 13

Correlation Clustering

Nicole Immorlica

Northwestern University, nickle@eecs.northwestern.edu

Anthony Wirth

The University of Melbourne, awirth@csse.unimelb.edu.au

Abstract Correlation Clustering addresses clustering problems in
which the algorithm has access to some information regarding whether pairs
of items should be grouped together or not. Such problems arise in areas like
database consistency and natural language processing. Traditional clustering
problems such as k-means assume that there is some type of distance measure
(metric) on the data items, and often specify the number of clusters that
should be formed. In Correlation Clustering, however, the number of
clusters to be built need not be specified in advance: it can be an outcome
of the objective function. Furthermore, instead of a distance function we are
given advice as to which pairs of items are similar. This chapter formalizes
the Correlation Clustering model and presents several approximation
algorithms for various clustering objectives.

13.1 Definition and Model

In its rawest form, Correlation Clustering is the graph optimization
problem. As such, we will use graph terminology in our discussion, denoting
the input dataX with the vertex set V of the corresponding graph, and letting
n denote the cardinality of V . Consider a clustering Y to be a mapping from
the elements to be clustered, V , to a set of cluster labels, so that u and v are
in the same cluster if and only if yu = yv. Given a collection of items in which
each pair (u, v) has two weights w+

uv and w−
uv, we must find a clustering Y

that minimizes
∑

yu=yv

w−
uv +

∑

yu �=yv

w+
uv , (13.1)

313

314 Constrained Clustering: Advances in Algorithms, Theory, and Applications

or, equivalently, maximizes
∑

yu=yv

w+
uv +

∑

yu �=yv

w−
uv . (13.2)

Note that although w+
uv and w−

uv may be thought of as positive and negative
evidence toward co-association, the actual weights are nonnegative. Also, we
avoid the notation w=(u, v), as our constraints are soft.

Finding a clustering which agrees best with the inconsistent advice is an
NP-hard problem, and so work has focused on designing approximation al-
gorithms, or algorithms whose solutions are guaranteed to be close to optimal.
An α-approximation algorithm A for a minimization problem with cost func-
tion c is an algorithm such that, for every input I, the solution A(I) of the
algorithm satisfies c(A(I)) ≤ αminS c(S) for some α ≥ 1, where S is a solu-
tion to I. Similarly, if the problem is a maximization problem, we require the
algorithm’s solutions to satisfy c(A(I)) ≥ αmaxS c(S) for some α ≤ 1. The
factor α is called the approximation factor.

13.2 Motivation and Background

Bansal et al [3] introduced the Correlation Clustering problem to
the theoretical computer science and machine learning communities. They
were motivated by database consistency problems, in which the same entity
appeared in different forms in various databases. Given a collection of such
records from multiple databases, the aim is to cluster together the records
that appear to correspond to the same entity. From this viewpoint, the log
odds ratio from some classifier,

log
(

P(same)
P(different)

)

,

corresponds to a label wuv for the pair. In many applications only one of the
+ and − weights for the pair is non-zero, that is

(w+
uv, w

−
uv) =

{
(wuv, 0) for wuv ≥ 0
(0,−wuv) for wuv ≤ 0 .

In addition, if every pair has weight wuv = ±1, then the input is called
complete, otherwise it is referred to as general. Demaine et al [10] suggest the
following toy motivation. Suppose we have a set of guests at a party. Each
guest has preferences for whom he/she would like to sit with, and for whom
he/she would like to avoid. We must group the guests into tables in a way
that enhances the amicability of the party.

Correlation Clustering 315

FIGURE 13.1: Top left is a toy Correlation Clustering example show-
ing three similar pairs (solid edges) and three dissimilar pairs (dashed edges).
Bottom left is a clustering solution for this example with four singleton clus-
ters, while bottom right has one cluster. Top right is a partitioning into two
clusters that appears to best respect the advice.

The notion of producing good clusterings when given inconsistent advice
first appeared in the work of Ben-Dor et al [4]. A canonical example of
inconsistent advice is this: items u and v are similar, items v and w are
similar, but u and w are dissimilar. It is impossible to find a clustering that
satisfies all the advice. Figure 13.1 shows a very simple example of inconsistent
advice.

While the optimal solutions to the minimization objective (13.1) and maxi-
mization objective (13.2) stated in the Correlation Clustering definition
are identical, their approximability varies greatly.

13.2.1 Maximizing Agreements

In setting out the Correlation Clustering framework, Bansal et al [3]
noted that the following algorithm produces a 0.5-approximation for the max-
imization problem:

If the total of the positive weights exceeds the total of the negative weights
(i.e.,

∑
u,v w

+
uv ≥

∑
u,v w

−
uv), then place all the items in a single cluster;

otherwise, make each item a singleton cluster.

Could it be that this trivial algorithm is the best possible? A result of
Charikar et al, later extended by Tan [20], proves that this maximization
problem is APX-hard: more precisely, they show that it is NP-hard to ap-

316 Constrained Clustering: Advances in Algorithms, Theory, and Applications

proximate the problem to a factor strictly better than 79/80 ≈ 0.99. This still
leaves substantial room for improvement over Algorithm 13.2.1, and indeed
some progress has been made in this direction. The 0.5 factor was improved
to 0.7664 via semi-definite programming by Charikar et al [6]. Using the
same semi-definite program, with improved rounding techniques, Swamy [19]
showed how to solve the maximization problem within a factor of 0.7666. In-
terestingly, all known approximations for this problem operate by outputting
the best of a highly restricted class of solutions. The trivial algorithm outputs
either a single cluster or n clusters, whereas the semi-definite programming
algorithms output at most a constant number of clusters.

All these algorithms work with no restriction on the input. If the input is
known to be complete, the problem becomes significantly easier, although still
NP-hard [3]. Bansal et al provided a PTAS (polynomial time approximation
scheme) for the maximization objective in complete inputs.

13.2.2 Minimizing Disagreements

As is often the case in approximation algorithms, the minimization prob-
lem is significantly more difficult than the maximization problem. For the
minimization objective, both general [3] and complete inputs [6] are known to
be APX-hard. Designing sub-logarithmic approximations for general inputs
involves solving a well-studied open question [11, 12].

The first constant-factor algorithms for complete inputs were provided by
Bansal et al [3]. Their algorithm worked via local search, iteratively cleaning
clusters until every cluster is δ-clean, where a cluster is δ-clean (0 < δ < 1)
if, for each item, at most a δ fraction of items inside its cluster have a neg-
ative relation with it, and at most a δ fraction of items outside its cluster
have a positive relation with it. The constant for this combinatorial algo-
rithm was rather large. At the expense of solving the natural linear program
formulation of the problem, this constant can be significantly improved. Un-
fortunately, solving this linear program is very slow and has huge memory
demands [5]. Nonetheless, Charikar et al [6] were able to harness it to design
a 4-approximation for the problem via region-growing type rounding proce-
dures. This was later lowered to 2.5, by Ailon random clusters around random
items with probabilities guided by the solution to the linear program. Since
solving the linear program is highly resource hungry, Ailon et al provided a
very clever combinatorial alternative which we will sketch in the next sec-
tion. Not only is this combinatorial algorithm very fast, it is also a factor 3
approximation.

For the general case, Demaine and Immorlica [11] and Emanuel and Fiat [12]
proved that there is an approximation-preserving reduction to minimizing
disagreements from the well-studied Minimum Multicut problem. That
is, an α-approximate solution to the minimization problem in Correlation
Clustering induces an α-approximate solution to the minimum multicut
problem. The minimum multicut problem is APX-hard and has an O(log n)-

Correlation Clustering 317

approximation, and it is a long-standing open question to improve this approx-
imation factor. Hence, designing an o(log n)-approximation algorithm for min-
imizing disagreements involves solving a difficult open question. Interestingly,
Emanuel and Fiat [12] also show that minimizing disagreements is reducible
to minimum multicut. This immediately implies an O(log n)-approximation
for minimizing disagreements by simply adapting the minimum multicut algo-
rithm. Demaine and Immorlica [11] also give a direct analysis of an O(log n)
approximation algorithm for minimizing disagreements using linear program-
ming with region-growing techniques, as discussed in the following sections.
In addition, they described an O(r3)-approximation algorithm for graphs that
exclude the complete bipartite graph Kr,r as a minor.

13.2.3 Maximizing Correlation

A further variant in the Correlation Clustering family of problems
is the maximization of (13.2) − (13.1), known as maximizing correlation.
Charikar and Wirth [7] proved an Ω(1/ log n) approximation for the general
problem of maximizing

n∑

i=1

n∑

j=1

aijyiyj , s.t. yi ∈ {−1, 1} for all i , (13.3)

for a matrix A with null diagonal entries, by rounding the canonical semi-
definite program relaxation. This effectively maximized correlation with the
requirement that two clusters be formed. It is not hard to show that this is
a constant factor approximation to the problem where the number of clusters
is unspecified. The gap between the vector SDP solution and the integral
solution to maximizing the quadratic program (13.3) was in fact shown to
be Θ(1/ log n) in general [1]. However, in other inputs, such as those with
a bounded number of non-zero weights for each item, a constant factor ap-
proximation was possible. Arora et al [2] went further and showed that it
is quasi-NP-hard to approximate the maximization to a factor better than
Ω(1/ logγ n) for some γ > 0.

13.3 Techniques

We now illustrate some of the standard techniques in Correlation Clus-
tering by sketching a few of the known results. The first technique is based
on rounding a linear program (LP) using region growing, which was introduced
in the seminal paper of Leighton and Rao [16] on multicommodity max-flow
min-cut theorems. We will harness these techniques to design an O(log n)-
approximation for minimizing disagreements in Correlation Clustering.

318 Constrained Clustering: Advances in Algorithms, Theory, and Applications

The second technique is a combinatorial approach that draws upon connec-
tions to sorting to give a 3-approximation for the minimization problem in
complete inputs.

13.3.1 Region Growing

Each Correlation Clustering solution can be represented by binary
variables {xuv} where xuv = 1 implies u and v’s separation in the solution,
while xuv = 0 implies co-clustering. The cost of the solution can then be
written as ∑

uv

w+
uv · xuv + w−

uv · (1− xuv) .

In this formulation, each term w+
uv contributes to the cost exactly when xuv =

1, i.e., the corresponding items u and v are separated in the solution. Similarly,
each w−

uv contributes exactly when xuv = 0, i.e., the corresponding items u
and v are co-clustered. To be feasible, a clustering that places item u with
item v and item v with item w must also place item u with item w. That
is, for every triple of items, u, v, w, the triangle inequality, xuw ≤ xuv + xvw,
holds. Combining these observations and relaxing the xuv to be quantities in
the range [0, 1], we obtain the following linear program:

minimize
∑

uv

w+
uv · xuv + w−

uv · (1− xuv)

subject to xuw ≤ xuv + xvw for all u, v, w
xuv ∈ [0, 1] for all u, v.

(13.4)

The region-growing technique uses the optimal solution to this LP to build
its clustering. Seeing the xuv values as distances between the items, it itera-
tively grows regions or balls of, at most, some fixed radius around items until
all items are included in some cluster. Since high xuv values indicate that
items should be separated, using a fixed radius guarantees that the resulting
clustering solution does not pay much more than the optimum LP solution
for pairs u and v that have w+

uv > 0. The region-growing technique itself
guarantees that the clustering solution does not pay too much for pairs of
items that should be separated (w−

uv > 0).
To define the algorithm, we first must introduce some notation. It will be

useful to imagine the items as nodes of a graph whose edges are those (u, v)
for which w+

uv or w−
uv are positive. A ball B(u, r) of radius r around node

u consists of all nodes v such that xuv ≤ r, the subgraph induced by these
vertices, and the fraction (r−xuv)/xuv of edges (u, v) with only one endpoint
in B(u, r). The cut C(S) of a set S of nodes is the weight of the positive edges
with exactly one endpoint in S, i.e.,

C(S) =
∑

|{u,v}∩S|=1

w+
uv .

Correlation Clustering 319

The cut of a ball is the cut induced by the set of vertices included in the ball.
The volume V(S) of a set S of nodes is the weighted distance of the edges
with both endpoints in S, i.e.,

V(S) =
∑

u,v∈S

w+
uvxuv .

Finally, the volume of a ball is the volume of B(u, r) including the fractional
weighted distance of positive edges leaving B(u, r). In other words, if (v, w)
has v ∈ B(u, r) and w /∈ B(u, r), then (v, w) contributes w+

vw · (r−xuv) weight
to the volume of ball B(u, r). For technical reasons, we assign every ball an
initial volume I, so that V(B(u, 0)) = I, for every u, and

V(B(u, r)) = I +
∑

v,w∈B(u,r)

w+
vwxvw +

∑

v∈B(u,r),w/∈B(u,r)

w+
vw(r − xuv) .

We can now define the algorithm for rounding the LP. Suppose the volume
of the entire graph is F (i.e., F =

∑
uv w

+
uvxuv). Let the initial volume I of

balls be F/n and let c be a constant larger than 2.

Region Growing:

1. Pick any node u.

2. Let r = 0.

3. Repeat until C(B(u, r)) ≤ c ln(n+ 1)× V(B(u, r)):

Increase r by min{(xuv − r) > 0 : v /∈ B(u, r)}, so that B(u, r) includes
another entire edge.

4. Output the vertices in B(u, r) as one of the clusters.

5. Remove the vertices in B(u, r) from consideration.

6. Repeat Steps 1–5 until all nodes are clustered.

This algorithm is clearly feasible and efficient. To analyze the approxima-
tion factor, we will prove that the algorithm’s solution is a good approxima-
tion to the optimum termwise. We first consider pairs of items for which
the advice suggests co-clustering (w+

uv > 0), and then those that ought to
be separated (w−

uv < 0). Throughout, we refer to the rounded solution using
variables {x̄uv} and the optimal solution using variables {x∗uv}. The fractional
variables output by the LP are denoted by {xuv}. Let B be the set of balls
selected by the algorithm.

320 Constrained Clustering: Advances in Algorithms, Theory, and Applications

For pairs with w+
uv > 0, the termination condition guarantees the following

inequality:

∑

uv

w+
uvx̄uv =

1
2

∑

b∈B

C(b)

≤ c

2
ln(n+ 1)

∑

b∈B

V(b)

≤ c

2
ln(n+ 1)

(
∑

u,v

w+
uvxuv + F

)

≤ c ln(n+ 1)
∑

u,v

w+
uvxuv .

For pairs in which w−
uv > 0, the radius guarantee allows us to prove the

approximation ratio. The analysis of this ratio relies on the region-growing
lemma, which states that the balls returned by this algorithm have radius at
most 1/c.

LEMMA 13.1
For any vertex u and family of balls B(u, r), the condition C(B(u, r)) ≤
c ln(n+ 1)× V(B(u, r)) is achieved for some r ≤ 1/c.

The idea behind this lemma is that the volume grows provably faster than
the cut, and so the inequality becomes true at some fixed radius. We refer
the interested reader to the textbook by Vazirani [21] for a proof.

This radius guarantee implies that all the xuv values of items co-clustered
by our algorithm are at most 2/c, i.e., the diameter of a ball. We can use this
to bound the remaining component of our objective function:

∑

uv

w−
uv(1− xuv) ≥

∑

b∈B

∑

(u,v)∈b

w−
uv(1− xuv)

≥
∑

b∈B

∑

(u,v)∈b

w−
uv(1− 2/c)

≥ (1− 2/c)
∑

b∈B

∑

(u,v)∈b

w−
uv

=
c− 2
c

∑

uv

w−
uvx̄uv .

Combining these two inequalities, with the fact that
∑

uv

w+
uvx

∗
uv + w−

uv(1− x∗uv) ≥
∑

uv

w+
uvxuv + w−

uv(1− xuv) ,

we observe the following theorem:

Correlation Clustering 321

THEOREM 13.1

Algorithm 13.3.1 is an O(log n)-approximation for minimizing disagreements
in Correlation Clustering.

13.3.2 Combinatorial Approach

The combinatorial approach we discuss next gives a 3-approximation for
complete inputs (wuv = ±1). Simply select a random pivot item, divide the
problem into two sub-problems based on whether an items should be co-
clustered with or separated from the pivot, and recurse on the separated items.
More precisely, if V is the set of items to be clustered, then call PivotAlg(V).

PivotAlg(V) :

1. If |V | = 0, return ∅.

2. If |V | = 1, return {V }.

3. Choose u uniformly at random from V .

4. Let S = {u}, T = ∅.

5. For each v,

(a) if w+
uv = 1, S = S ∪ {v}.

(b) else, T = T ∪ {v}.

6. Return {S} ∪ PivotAlg(T).

We can charge the mistakes of this algorithm to inconsistent triples u, v, w
(i.e., w+

uv = w+
vw = w−

uw = 1, or some permutation thereof). The algorithm
makes a mistake on a pair u, v if and only if there is third item w which forms
an inconsistent triple with u, v, and it is the choice of w as the pivot that
separates u and v. Note that in this case all three items are in the input to
the recursive call that chooses w as pivot. Let I be the set of inconsistent
triples. For a triple t ∈ I, let At be the event that all three members of the
triple were in the same recursive call and one of them was chosen as the pivot,
with pt = P(At). Since these events are disjoint, the expected number of
mistakes (the cost of the algorithm’s solution) is

∑
t∈I pt.

We now compare this to the optimal cost. For any set J of disjoint inconsis-
tent triples, the cardinality of J is clearly a lower bound on the optimal cost.
The proof proceeds by using a fractional variant of this packing of inconsistent
triangles as a tighter lower bound. We create new edge-based variables so that

322 Constrained Clustering: Advances in Algorithms, Theory, and Applications

zuv = xuv if w+
uv = 1, and zuv = 1− xuv if w−

uv = 1. Therefore, LP (13.4) can
be rewritten as:

minimize
∑

uv

zuv

subject to zuv + zvw + zuw ≥ 1 for all u, v, w ∈ I
zuv ∈ [0, 1] for all u, v.

(13.5)

The dual of (13.5) is

maximize
∑

t∈I

αt

subject to
∑

t∈I:(u,v)∈t

αt ≤ 1 for all u, v

αt ∈ [0, 1] for all t ∈ I.

(13.6)

Clearly, the optimal solution to this dual LP (13.6) is a lower bound on
the optimal cost; indeed, any feasible solution to the dual program is a lower
bound on the optimal cost. We will use the probabilities pt to define a feasible
solution for the dual program.

Let t be an inconsistent triple containing u and v. Note that, conditioned
on event At, each of the three members u, v, w of the triple is equally likely
to be the pivot, and hence each of the three pairs is equally likely to be a
mistake. Thus, the probability that (u, v) is a mistake, conditioned on At, is
1/3. Let Buv be the event that (u, v) is a mistake. Then we have argued that

P(Buv and At) = P(Buv | At) P(At) = pt/3 .

Now u and v may be contained in another inconsistent triple, say t′, but
the events At and At′ are disjoint. Therefore,

∑

t∈I:(u,v)∈t

pt/3 = P(Buv) ≤ 1 .

Hence setting αt = pt/3 results in a feasible solution to the dual program (13.6),
which implies that

∑
t∈I pt/3 is a lower bound on the optimal cost. This proves

the following theorem.

THEOREM 13.2

Algorithm 13.3.2 is a 3-approximation for minimizing disagreements in com-
plete inputs of Correlation Clustering.

Correlation Clustering 323

13.4 Applications

There are many applications of Correlation Clustering, of which we
now describe a few.

13.4.1 Location Area Planning

The work of Demaine and Immorlica [11] on Correlation Clustering
is closely linked with that of Bejerano et al on Location Area Planning.
The latter problem concerns the assignment of cell towers in a cell phone
network to clusters known as location areas. There are hand-off costs asso-
ciated with traffic between the location areas (cuts between clusters). Such
traffic causes messages to be sent to a centralized database which tracks the
location area associated with each cell phone. There are further paging costs
associated with the sizes of the location areas (cluster sizes), related to pag-
ing phones within location areas to identify a particular phone’s current cell
tower upon an incoming call. These costs drive the clustering solution in op-
posite directions. The authors design an O(log n) region-growing algorithm
for Location Area Planning, which turns out to be closely related to the
algorithms for minimizing Correlation Clustering and Multicut.

13.4.2 Co-Reference

In many collections of data, there are often multiple references to the same
concept or object. Co-reference analysis, for example, examines natural lan-
guage text to find the “nouns, pronouns and general noun phrases that refer
to the same entity, enabling the extraction of relations among entities” [17].
Correlation Clustering has been directly applied to the co-reference
problem in natural language processing and other problems in which there are
multiple references to the same object [17, 8]. Assuming some sort of undi-
rected graphical model, such as a Conditional Random Field, algorithms
for Correlation Clustering are used to partition a graph whose edge
weights corresponding to log-potentials between node pairs. The machine
learning community has applied some of the algorithms for Correlation
Clustering to problems such as e-mail clustering and image segmentation.
With similar applications in mind, Finley and Joachims [13] explore the idea
of adapting the pairwise input information to fit example clusterings given
by a user. Their objective function is the same as Correlation Cluster-
ing (13.2), but their main tool is the Support Vector Machine.

324 Constrained Clustering: Advances in Algorithms, Theory, and Applications

13.4.3 Constrained Clustering

Traditional clustering problems assume a distance function between the in-
put points. Constrained clustering incorporates constraints into the problem,
usually in addition to this distance function. In this framework, the con-
straints are usually assumed to be consistent (non-contradictory) and hard.
Correlation Clustering, therefore, can be viewed as a clustering problem
with no distance function, and only soft constraints. The constraints do not
have to be obeyed, but there is a penalty for each infraction; consequently the
constraints need not be consistent.

Davidson and Ravi [9] looked at a variant of constrained clustering in which
various requirements on the distances between points in particular clusters
were enforced, in addition to the usual must- and cannot-link constraints.
They analyzed the computational feasibility of the problem of establishing
the (in)feasibility of a set of constraints for various constraint types. Their
constrained k-means algorithms were used to help a robot discover objects in
a scene.

13.4.4 Cluster Editing

The Cluster Editing problem is almost equivalent to Correlation
Clustering on complete inputs. The idea is to obtain a graph that con-
sists only of cliques: a partitioning into sets is essentially a family of cliques.
Letting the edges in the Cluster Editing problem correspond to positive-
weight edges in the Correlation Clustering problem, and non-edges in
correspond to negative-weight edges, we see that the problems are essentially
the same.

Although Cluster Deletion requires us to delete the smallest number
of edges to obtain such a graph, in Cluster Editing we are permitted to
add as well as remove edges. Another variant is Cluster Completion in
which edges can only be added. Each of these problems can be restricted to
building a specified number of cliques.

Shamir et al [18] showed that Cluster Editing and p-Cluster Editing,
in which p clusters must be formed, are NP-complete (for p ≥ 2). Guo et
al [15] took an innovative approach to solving the Clustering Editing
problem exactly. They had previously produced an O(2.27K +n3) time hand-
made search tree algorithm, where K is the number of edges that need to
be modified. This “awkward and error-prone work” was then replaced with
a computer program that itself designed a search tree algorithm, involving
automated case analysis, that ran in O(1.92K + n3) time.

13.4.5 Consensus Clustering

In Consensus Clustering, we are given several candidate clusterings
and asked to produce a clustering which combines the candidate clusterings

Correlation Clustering 325

in a reasonable way. Gionis et al [14] note several sources of motivation for
Consensus Clustering, including identifying the correct number of clusters
and improving clustering robustness.

The Consensus Clustering problem is defined as follows: we are given
a set of n objects V , and a set of m clusterings {Y (1), Y (2), ..., Y (m)} of the
objects in V . The aim is to find a single clustering Y that disagrees least with
the input clusterings, that is, Y minimizes

∑

i

d(Y, Y (i)) ,

for some metric d on clusterings of V . The Mirkin metric is the most widely
used. In this metric, d(Y, Y ′) is the number of pairs of objects (u, v) that are
clustered together in Y and apart in Y ′, or vice versa.

We can interpret each of the clusterings Y (i) in Consensus Clustering
as evidence that pairs ought be together or separated. That is, w+

uv is the
number of Y (i) in which Y

(i)
u = Y

(i)
v and w−

uv is the number of Y (i) in which
Y

(i)
u �= Y

(i)
v . It is clear that w+

uv+w−
uv = m and that Consensus Clustering

is an instance of Correlation Clustering in which the w−
uv weights obey

the triangle inequality.
Gionis et al [14] adapt the region-growing technique to create a 3-approximation

that performs reasonably well in practice, though not as well as local search
techniques. They also suggest using sampling as a tool for handling large
data sets. Bertolacci and Wirth [5] extended this study by implementing the
Ailon et al algorithms with sampling. They note that LP-based methods
perform best, but place a significant strain on resources.

References

[1] N. Alon, K. Makarychev, Y. Makarychev, and A. Naor. Quadratic forms
on graphs. Inventiones Mathematicae, 163(3):499–522, 2006.

[2] S. Arora, E. Berger, E. Hazan, G. Kindler, and S. Safra. On non-
approximability for quadratic programs. In Proceedings of 46th IEEE
Symposium on Foundations of Computer Science, pages 206–15, 2005.

[3] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Proceed-
ings of 43rd IEEE Symposium on Foundations of Computer Science,
pages 238–47, 2002.

[4] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression
patterns. Journal of Computational Biology, 6:281–97, 1999.

326 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[5] M. Bertolacci and A. Wirth. Are approximation algorithms for consensus
clustering worthwhile? In Proceedings of 7th SIAM Conference on Data
Mining, pages 437–42, 2007.

[6] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative
information. In Proceedings of 44th IEEE Symposium on Foundations
of Computer Science, pages 524–33, 2003.

[7] M. Charikar and A. Wirth. Maximizing quadratic programs: Extending
Grothendieck’s inequality. In Proceedings of 45th IEEE Symposium on
Foundations of Computer Science, pages 54–60, 2004.

[8] H. Daume. Practical Structured Learning Techniques for Natural Lan-
guage Processing. PhD thesis, University of Southern California, 2006.

[9] I. Davidson and S. Ravi. Clustering with constraints: Feasibility issues
and the k-means algorithm. In Proceedings of 5th SIAM Conference on
Data Mining, 2005.

[10] E. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation
clustering in general weighted graphs. Theoretical Computer Science,
361(2):172–87, 2006.

[11] E. Demaine and N. Immorlica. Correlation clustering with partial infor-
mation. In Proceedings of the 9th International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization Problems, pages 1–
13, 2003.

[12] D. Emanuel and A. Fiat. Correlation clustering—minimizing disagree-
ments on arbitrary weighted graphs. In Proceedings of the 11th Annual
European Symposium on Algorithms, pages 208–20, 2003.

[13] T. Finley and T. Joachims. Supervised clustering with support vector
machines. In Proceedings of the 22nd Annual International Conference
on Machine Learning, 2005.

[14] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. In
Proceedings of 21st International Conference on Data Engineering, pages
341–52, 2005.

[15] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated gen-
eration of search tree algorithms for hard graph modification problems.
Algorithmica, 39(4):321–47, 2004.

[16] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. Journal of the
ACM, 46(6):787–832, 1999.

[17] A. McCallum and B. Wellner. Conditional models of identity uncer-
tainty with application to noun coreference. In L. Saul, Y. Weiss, and

Correlation Clustering 327

L. Bottou, editors, Advances in Neural Information Processing Systems
17, pages 905–12. MIT Press, Cambridge, MA, 2005.

[18] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification prob-
lems. Discrete Applied Mathematics, 144:173–82, 2004.

[19] C. Swamy. Correlation clustering: Maximizing agreements via semidef-
inite programming. In Proceedings of the 15th ACM-SIAM Symposium
on Discrete Algorithms, pages 519–20, 2004.

[20] J. Tan. A note on the inapproximability of correlation clustering. Tech-
nical Report 0704.2092, eprint arXiv, 2007.

[21] V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.

Chapter 14

Interactive Visual Clustering for
Relational Data

Marie desJardins

University of Maryland Baltimore County, mariedj@cs.umbc.edu

James MacGlashan

University of Maryland Baltimore County, jmac1@cs.umbc.edu

Julia Ferraioli

Bryn Mawr College, jferraio@brynmawr.edu

14.1 Introduction

The goal of this research is to develop interactive clustering methods, which
allow a user to partition a data set into clusters that are appropriate for
their tasks and interests. The goal of traditional automated clustering is to
partition a data set into clusters that have high intra-cluster similarity and
low inter-cluster similarity. In general, there will be a single best clustering
(or possibly several local maxima), which depends on the similarity metric
used for clustering, the particular objective function being optimized by the
clustering algorithm, and the search method. In practice, however, the “best”
clusters may also depend on the user’s goals and interests. For example, when
performing clustering in a collection of student data, an admissions officer may
be looking for patterns in student performance, whereas a registrar might want
to track enrollment patterns for different course offerings. The appropriate
clusters will not be the same for these two users. An automated clustering
method might find one of these clusterings, but not both.

Recent work on constrained clustering addresses the issue of discovering
multiple target clusterings, using additional knowledge provided by a user.
Constrained clustering is based on the insight that although users may not be
able to explicitly state the criteria for their desired clustering, they can often
provide partial knowledge about the nature of the clusters. This additional
information is typically given in the form of pairwise constraints on cluster

329

330 Constrained Clustering: Advances in Algorithms, Theory, and Applications

membership, which are used to guide the system toward the desired solution.

Ideally, the user would provide a few initial constraints to “seed” the clus-
ters, then add constraints as necessary to adjust and improve the result-
ing clusters. The difficulty with doing this in practice is that the clusters
are not always easy to understand, particularly in high-dimensional domains,
where the “shapes” of the clusters are also high dimensional and therefore dif-
ficult to visualize clearly. As a result, the user may not be able to tell which
additional constraints would be most useful for improving the clustering.

In some domains, there may be other relational information in addition
to the pairwise constraints. For example, links might exist between students
who are in the same classes or Facebook group, scientific papers that cite the
same references, or songs that were played during the same radio segment on
a single day. This relational information, which can be represented as edges
in the data graph, provides additional similarity information. However, these
relations are generally weaker than pairwise constraints: they do not strictly
imply shared cluster membership, although they may indicate a higher cluster
correlation between the connected instances. Most clustering algorithms take
into account either the attribute information on the data instances, or the
relational information between instances, but not both.1

Our goal is to allow a user to explore a large relational data set interactively,
in order to produce a clustering that satisfies their objectives. We achieve
this goal by combining spring-embedded graph layout techniques with user
interaction and constrained clustering.

Specifically, we present a novel approach called interactive visual cluster-
ing (IVC). In this approach, the relational data is initially displayed using a
spring-embedded graph layout. The user can then move groups of instances
together in order to form initial clusters. A constrained clustering algorithm
is applied to generate clusters that combine the attribute information with the
constraints implied by the instances that have been moved. These clusters
are then used to generate additional graph edges, which are combined with
the relational edges to produce a new layout, in which instances are relocated
closer to the clusters to which they appear to belong. Based on the new
layout, the user can identify instances that are “misplaced” and move these
instances into the correct clusters.

We show experimentally, using several synthetic and real-world data sets,
that IVC converges to the target clustering significantly faster than either
manual adjustment, spring-embedded layout alone, or clustering alone.

1Note that there has been some recent work on relational clustering [4, 24, 15, 19], including
our own ongoing research in this area [1, 2]. However, to our knowledge, none of the existing
work explicitly combines relational data with pairwise constraints.

Interactive Visual Clustering for Relational Data 331

14.2 Background

Our work combines and extends standard force-directed graph layouts and
the constrained clustering framework introduced by Wagstaff and Cardie [22],
as described in Chapter 1.

Force-directed layout methods are among the most popular graph layout
techniques [12]. We use a type of force-directed layout called spring em-
bedding [9], specifically, the implementation provided by the Prefuse graph
visualization system [17].

In spring embedding, nodes in a graph act on each other with two kinds
of simulated forces, modeled on physical processes. The first force is a node
repulsion force emitted from each node, simulating an inverse gravitational
force. The repulsion force from a node exerts a “push” on every other node
in the graph, with a magnitude inversely proportional to the square of the
distance between the nodes. Consider two vertices in the graph, Vi and Vj ,
where Vi and Vj are represented as two-dimensional locations, so the vector
from i to j can be described as Vj − Vi. The vector force on Vi that results
from its interaction with Vj is:

fn
ij =

Vi − Vj

D(Vi, Vj)

2

. (14.1)

Note that Vi will exert the precise opposite of this force on Vj , so they are
pushing each other apart.

The second force is a spring force that “pulls” (or pushes, if the nodes
become too close) along the edges between the nodes. Each edge (Vi, Vj) is
modeled as a spring with an ideal spring length, lij , and a spring constant,
cij . The edge exerts a force on the nodes at either end, with magnitude
proportional to the spring constant and to the difference between the ideal
length and the current length:

fs
ij = cij(Vj − Vi)(D(Vi, Vj)− lij). (14.2)

If the edge is longer than the ideal length, the spring force is an attracting
force; if shorter than ideal, the force is a repelling force. As with the node
repulsion force, the spring force exerts an equal and opposite force on each
pair of nodes.

The spring-embedded layout is determined iteratively, by computing and
summing the forces on each node (as given in Equations 14.1 and 14.2), then
moving the nodes incrementally in the direction of the net resulting force.
This “settling” process is repeated until the layout reaches an equilibrium.
In the resulting layout, nodes with edges between them tend to be situated
near each other, whereas nodes without edges between them tend to be spread
apart.

332 Constrained Clustering: Advances in Algorithms, Theory, and Applications

14.3 Approach

Our visual clustering paradigm consists of the following steps:

1. Initializing the display. We use Prefuse’s spring-embedded graph
layout algorithm to produce the initial display.

2. Interpreting user actions. As the user moves instances, pairwise
cluster membership constraints are generated.

3. Constrained clustering. After each instance is moved, the new con-
straints are added to the constraint set, and a constrained clustering
algorithm is used to produce a new clustering of the data.

4. Updating the display. Using the clusters produced, the display is
updated so that the new clusters are visually apparent.

The following subsections describe our approach to Steps 2, 3, and 4. We
then discuss mechanisms for simulating user behavior for our experiments.

14.3.1 Interpreting User Actions

When the user moves an instance, it is “pinned” in place, and is not affected
by the spring-embedded layout. These pinned instances do, however, exert
forces on the other instances in the graph.

The constrained clustering process begins after the user has moved two
instances. To generate the constraints, the screen distance between each pair
of moved instances is computed. If the instances are less than ε units apart
(where ε is a user-adjustable parameter), then they are considered to be in
the same cluster, and a must-link constraint is added.2 The transitive closure
of these constraints results in a group of nodes that are used as seed clusters
in the next step.

14.3.2 Constrained Clustering

We use a new constrained clustering algorithm called seeded single link clus-
tering (SSLC), which is based on single-link clustering. Single-link clustering
is an iterative, agglomerative graph-based clustering technique in which each
data instance is initially treated as its own cluster. The distance between
any two clusters is given by the attribute distance3 between the instances for
singleton clusters; for clusters of more than one instance, the cluster distance

2In our experiments, ε is set to 227 pixels.
3Note that the distance metric for PCK-Means is Euclidean distance in the attribute space,
not the screen distance used to generate constraints.

Interactive Visual Clustering for Relational Data 333

is given by the shortest distance between any pair of instances in the two clus-
ters. The result is a binary tree-structured clustering. A stopping criterion
(e.g., a threshold distance or target number of clusters) is usually specified.

SSLC assumes that there is a target number of clusters, k, and that at
least one instance has been assigned to each cluster. Each of the k initially
specified instances is referred to as a seed. In IVC, these seed clusters are
the groups of nodes resulting from the transitive closure of the must-link
constraints, as described in the previous section. Single-link clustering then
proceeds as described above, except that each step must merge one of the
non-seed instances into one of the seed clusters. In effect, manually moved
nodes in groups are separated by a gap larger than ε will be treated as having
cannot-link constraints between them, since SSLC will never merge them into
the same cluster.

Using the user’s node movements to seed the clusters in this way allows
the system to adapt to the user’s goals interactively. The user may create
more clusters (by using different “screen real estate” to move nodes near each
other), and can relocate nodes from one cluster to another. In particular,
the user can easily create “disjunctive” clusters (i.e., clusters that include
non-contiguous regions of the original attribute space).

In our earlier publication on this work [8], we used MPCK-Means (metric
pairwise constrained k-means), which is a k-means variation that incorporates
metric learning [5]. However, we discovered that in several of our real-world
data sets, the target clusters did not satisfy the Gaussian distribution that
is assumed by this algorithm. SSLC does not rely solely on Euclidean spa-
tial relationships to represent clusters, so it is more flexible in its ability to
represent a wide range of target clusterings. SSLC also allows us to easily
incorporate non-Euclidean distance metrics, such as Hamming distance for
binary attributes, or cosine similarity for text data.

14.3.3 Updating the Display

Once the new constraints have been generated, and a new clustering pro-
duced, the display must be updated to reflect the groupings inherent in the
new clustering. Ideally, the relational structure of the data should also be
preserved. If the relational structure is correlated with cluster membership,
then the graph edges and the cluster membership edges will reinforce each
other, leading to rapid convergence of the interaction to the correct clusters.

To update the graph, we adapt an approach described by [6] for visualizing
clusters in graphs. First, a new “dummy” node is generated to represent the
center of each cluster. This node is located at the center of the instances
that were manually placed in that cluster (i.e., the transitive closure that was
computed in Step 2). Next, a cluster edge is added between this cluster center
and every instance assigned to that cluster. The relational edges use Prefuse’s
default spring constant (2.0 × 10−5). Cluster edges are set to have a spring
constant equal to twice the default (4.0×10−5). As a result, the cluster edges

334 Constrained Clustering: Advances in Algorithms, Theory, and Applications

have a more significant effect on the layout than the relational edges, but do
not completely dominate the layout.

The spring-embedded layout is then invoked on the combined graph (i.e.,
the graph with both the relational edges from the original data set and the
new cluster edges). The resulting graph is displayed, but only the relational
edges are shown to the user, and the cluster center nodes are not drawn. (It
would be possible to also show the cluster edges, but this makes the graph
very cluttered and obscures the relational edges.)

14.3.4 Simulating the User

We are currently running formal experiments on human users. For the
experiments reported here, we simulate user behavior using one of two heuris-
tics for instance selection: random and farthest-first. The random instance
method simply selects a random instance to move at each step. The farthest-
first method selects the instance that is farthest (on the screen) from its correct
cluster. The intuition behind the latter heuristic is that the user will be most
likely to notice anomalous instances, that is, the instances that appear far-
thest from where they should be. For both node heuristics, we use predefined
locations (near the screen corners) for the cluster centers. Instances are moved
to this location, with a small random (x, y) offset.

In the experiments with force-directed layout but no clustering, after each
instance is moved, the layout is allowed to “settle” to an equilibrium before
the next instance is moved.

14.4 System Operation

A series of screenshots is shown in Figures 14.1 to 14.5. In this sequence,
a user is moving nodes to their target clusters. Figure 14.1 shows the initial
display of the synthetic Overlapping Circles data set (described in “Data
Sets,” section 14.5.1). For the purposes of illustrating the process, the shades
of gray of the nodes and numeric labels indicate the “true” (target) cluster
membership. In order to simplify the displays for these small-scale screen
captures, the relational edges are not shown. Notice that nodes from all of
the clusters are interspersed in the display.

The circled nodes in Figure 14.1 are the first two nodes chosen by the user.
The resulting display is shown in Figure 14.2. Here, the upper left and lower
right clusters (where the first two nodes were placed) are starting to become
apparent. Figures 14.3 and 14.4 show the display after the third and fourth
nodes are moved. In Figure 14.4, all four clusters can be seen; however, there
are still a number of “ambiguous” nodes in the center of the display, which

Interactive Visual Clustering for Relational Data 335

FIGURE 14.1: Initial display of the Overlapping Circles data set. The circled
instances are the first two instances that will be moved by the user.

FIGURE 14.2: Layout of the Overlapping Circles data set, after the two
instances shown in Figure 14.1 have been moved. The circled instance will be
moved next.

336 Constrained Clustering: Advances in Algorithms, Theory, and Applications

FIGURE 14.3: Layout of the Overlapping Circles data set after three instances
have been moved. The circled instance will be moved next.

FIGURE 14.4: Layout of the Overlapping Circles data set after four instances
have been moved.

Interactive Visual Clustering for Relational Data 337

FIGURE 14.5: Layout of the Overlapping Circles data set after 14 instances
have been moved.

are not clearly associated with any one cluster.
Figure 14.5 shows the display after 14 nodes have been moved. At this

point, as seen in the results in Figure 14.9, most of the instances are grouped
correctly into their target clusters. Visually, the clusters are very distinct,
with only a few nodes scattered between the clusters.

14.5 Methodology

We compared our Interactive Visual Clustering method to several alter-
native approaches. The five approaches we tested are shown in Table 14.1.
“Layout?” indicates whether force-directed layout is used. (If not, the layout
only changes when instances are explicitly moved by the user.) “Clustering?”
indicates whether constrained clustering is used. If so, each time an instance is
moved, a new clustering is computed, and cluster edges are updated. If not,
no cluster edges are used in the layout. “Heuristic” indicates the instance
movement heuristic: either farthest-first or random.

Note that the fourth approach (clustering baseline) is equivalent to sim-
ply doing standard constrained clustering with random constraints, since the
layout position is not taken into account in selecting which instance to move.

We hypothesize that the farthest-first instance heuristic will improve per-

338 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 14.1: The five approaches that we tested empirically.
Approach Layout? Clustering? Heuristic
Manual Baseline No No Random
Layout Baseline Yes No Random
Layout + FF Yes No Farthest-First
Clustering Baseline Yes Yes Random
Interactive Visual Clustering Yes Yes Farthest-First

formance faster than moving random instances, since each instance moved
should provide the largest possible improvement in the clustering.

Clustering is expected to perform faster than without clustering because it
results in an explicit model of the user’s target clustering, incorporating the
feedback provided by the must-link and cannot-link constraints.

Force-directed layout should perform better than manual layout because
of the relational edges in the data set. These edges already tend to cluster
the instances visually, because they pull together instances that are related
to each other. Therefore, when an incorrect instance is moved to its target
cluster, it should also pull similar instances toward that cluster, resulting in
the possibility of multiple instances being moved to the correct group. Fur-
thermore, the cluster edges exert an even stronger influence (because their
spring constant is higher), so as the clustering algorithm receives more con-
straints, the layout increasingly reflects the learned clustering. Therefore,
the farthest-first heuristic primarily utilizes the relational knowledge from the
data set when there are few constraints (few instances moved), but primar-
ily utilizes the clustering structure when there are many constraints (many
instances moved). As a result, the interaction shifts from creating an initial
clustering toward repairing the learned clustering over time.

Note that the IVC paradigm relies on an assumption that the relational
edges are correlated with the cluster membership of the instances. If there is
no such correlation, then these edges may not be helpful, or could even hinder
performance.

To measure the performance of the alternative approaches, we use the Ad-
justed Rand Index (ARI) [10]. The ARI is used to evaluate how close a given
clustering is to the “correct” or target clustering. The Rand Index [18] mea-
sures the proportion of clustering matches. (A “match” is a pair of instances
that are either grouped together in both the learned and the target clustering,
or grouped separately in both the learned and the target clustering.) Using
yi to indicate the cluster labeling of instance xi in the target clustering and
y′i to indicate xi’s cluster labeling in the learned clustering, the number of
same-cluster matches is:

Msame = |{xi, xj : (yi = yj) ∧ (y′i = y′j)}|

and the number of different-cluster matches is:

Mdiff = |{xi, xj : (yi �= yj) ∧ (y′i �= y′j)}|.

Interactive Visual Clustering for Relational Data 339

Then the Rand Index is given by:

RI =
matches

pairs

=
Msame +Mdiff(

n
2

) .

The Rand Index penalizes partitions with more clusters, so the Adjusted Rand
Index is often used instead. The ARI normalizes the Rand Index to adjust
for the number of clusters, by comparing the expected number of matches to
the observed number of matches. (The derivation of the expected number of
matches is mathematically nontrivial, and is omitted here for space. Details
are given by Hubert and Arabie [10].) The ARI is bounded between 0 and 1.
An ARI of 1 means that all instances are correctly clustered. We use the ARI
implementation provided with the Weka system [21].

In the experimental results, clustering performance is always shown as a
function of the number of instances moved. Both the layout and the cluster
assignments use a random initialization step, so for each experiment, we show
the average performance over 20 runs.

14.5.1 Data Sets

We tested our hypotheses experimentally using seven data sets: two syn-
thetic data sets (Circles and Overlapping Circles); the Iris data set from the
UC Irvine Machine Learning Repository [16]; a data set from the Internet
Movie Data Base (IMDB) website; a music data set gathered from online
sources; and two different data sets involving amino acid information, re-
ferred to as Amino Acid Indices and Amino Acid. The amino acid and IMDB
data sets include relational edges already, as explained later. For the syn-
thetic, Iris, and music data sets, we tested three methods for edge generation,
resulting in three versions of each data set: one with no edges, one with edges
generated by nearest-neighbor comparisons, and another version with edges
generated probabilistically.

Nearest-neighbor edge generation creates an edge between each instance
and that instance’s nearest neighbor (using Euclidean distance in the at-
tribute space). For data sets whose cluster membership is strongly related
to the instances’ distribution in Euclidean attribute space, this will result
in edges that are well correlated with cluster membership. Nearest-neighbor
edge generation results in a number of edges equal to or less than the number
of instances (since one edge is created for each instance, but some pairs of
instances may be each others’ nearest neighbor, so only a single edge is added
for the pair).

Probabilistic edge generation uses knowledge of shared membership in the
true clusters to generate the edges. Specifically, for each pair of instances, if

340 Constrained Clustering: Advances in Algorithms, Theory, and Applications

the instances belong to the same cluster, then an edge is created between them
with probability 0.2. If the instances do not belong to the same group, then
we create an edge between them with probability 0.05. This process results in
a denser graph than nearest-neighbor edge generation: the expected number
of edges is O(N2

k), where N is the number of nodes and k is the number of
clusters. The actual expected number of edges depends on the distribution of
nodes among the clusters. For k equal-sized clusters, the expected number of
edges is approximately N2

8k .

14.5.2 Circles

The synthetic data sets are simple low-dimensional clusters that are in-
cluded as benchmarks for the different approaches.

The synthetic Circles data set includes 120 instances in two distinct clusters.
These clusters are generated by positioning circles of radius 50 at [50,50] and
[150,150] on the (x, y) plane. Fifty points are randomly selected from inside
each circle, and assigned to the corresponding cluster. Twenty additional
“outlier” instances are generated by randomly sampling between the bounding
circles. These outliers are then assigned to the nearest cluster. The two
attributes for each instance are the (x, y) positions.

Because these clusters do not overlap and are well separated, in the nearest-
neighbor version of this data set, there are no edges between instances from
different cluster origins. In other words, if two points have an edge between
them, they are in the same cluster. In the probabilistic-edge version of the
data, there are more edges, some of which join instances of different clusters.

14.5.3 Overlapping Circles

The Overlapping Circles data set includes 100 instances in four overlap-
ping clusters. This data is generated by creating random points from a uni-
form distribution within the radius of four circles—corresponding to the four
clusters—whose centers lie on another circle’s radius at each 45-degree mark.
As shown in Figure 14.6, the four clusters overlap each other. Therefore, some
of the instances’ nearest neighbors in Euclidean space can be from a different
cluster. In this data set, both the nearest-neighbor and the probabilistic edges
sometimes connect instances from different clusters.

14.5.4 Iris

The Iris data set is a widely used classification database from the UC Irvine
Machine Learning Repository [16]. The original data set consists of 150 in-
stances; we selected 99 of these instances to create our data set by choosing
33 instances randomly from each cluster. Each instance is described by four
numeric attributes (sepal length and width, petal length and width). The

Interactive Visual Clustering for Relational Data 341

FIGURE 14.6: 2D view of the Overlapping Circles data set, with the four
clusters shown in different shades of gray.

three clusters correspond to the three classes provided with the original data
set (three different species of irises: Iris Setosa, Iris Versicolour, and Iris
Virginica). This data set is known to be a difficult one for most clustering
algorithms, because two of the classes are linearly separable from each other,
but the third is not.

14.5.5 Internet Movie Data Base

In this data set, the instances represent actors retrieved from the IMDB
web-based database. Each instance is described by eight binary attributes
(has won an award, was most active in 1990s, most prevalent genre is drama,
most prevalent genre is comedy, is experienced, is male, has high stock ex-
change rate, has many movies). An edge between two actors indicates that
they have appeared in a movie together. There are four predefined classes in
the data set, corresponding to to the four clusters that the simulated user par-
titions the data into (popular male actor [male and has high stock exchange
rate], less popular male, popular female, and less popular female). Each of
these four classes contains 25 instances. Because this data set consists entirely
of binary attributes, it poses a difficult clustering problem for many clustering
algorithms. The binary attributes also make use of a Euclidean distance met-

342 Constrained Clustering: Advances in Algorithms, Theory, and Applications

ric problematic, so a Hamming distance metric is used in the SSLE clustering
algorithm.

14.5.6 Classical and Rock Music

Each instance in the Classical and Rock Music data set represents a classical
music composition or a modern rock music piece. Each piece of music has 25
associated attributes: tempo and 24 bark frequency scale values. There are no
predefined edges in the data set, so for our experiments, edges are constructed
synthetically using the methods described earlier. (One could imagine that
this edge-construction process corresponds to a temporal relationship between
pieces, e.g., indicating that the pieces were played within an hour of each other
on a particular user’s MP3 player.) This data set contains 98 total instances
in two clusters: 48 classical pieces and 50 modern rock pieces.

14.5.7 Amino Acid Indices

The amino acid data set is a subset of the AAIndex database [13, 11]. Our
data set is based on version 6.0 of the AAIndex database, which includes 494
indices, each of which measures a chemical property of amino acids. Each
instance in the AAIndex database has 20 attributes, corresponding to the
values of this index for each of the 20 amino acids used in the standard genetic
code. Tomii and Kanehisa [20] identified six clusters of indices in the original
database: A (measures of alpha and turn propensities), B (beta propensities),
C (composition), H (hydrophobicity), P (physiochemical properties), and O
(other). We use 100 of these indices, selected randomly from the A and H
classes; the A/H classification is also used as the target clustering.

The edges in this data set were determined by measuring the correlations
between the instances, then reducing the edges to a minimum spanning tree.

14.5.8 Amino Acid

In this data set, the attributes and instances are inverted from the Amino
Acid Index data set. The Amino Acid data set includes 20 instances—one for
each amino acid—whose attributes are the amino acid’s chemical properties.
Twenty-five of the 100 indices from the Amino Acid data set are used as
attributes. We first removed binary indices, which do not yield good clustering
performance. Since many of the indices are minor variations of the same
basic measurement, we then asked a domain expert to select 25 indices that
measured relatively “orthogonal” (uncorrelated) properties.

Edges were added to the data set based on three properties of amino acids:
acidic side chains, basic side chains, and cyclic hydrocarbons. Edges are placed
between pairs of instances that share one or more of these properties.

The target clustering has three clusters, also manually identified by our
domain expert: polar, non-polar, and both. Polar amino acids show asym-

Interactive Visual Clustering for Relational Data 343

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Circles

IVC
Clustering Baseline
Layout + FF
Layout Baseline
Manual

A
R

I

Nodes Moved

FIGURE 14.7: Experimental results on the Circles data set.

metrical electron charge on the amino acid side chain. Non-polar amino acids
show symmetrical electron charge. Amino acids that have long side chains
with both polar and non-polar regions are grouped into the “both” cluster.

14.6 Results and Discussion

Overall, our experimental results support our claim—that interactive visual
clustering provides improved clustering performance, compared to the alter-
native approaches we tested. However, the Amino Acid Index data set does
not yield the expected results, highlighting some of the open challenges.

14.6.1 Circles

As can be seen in Figure 14.7, the results on this data set are as predicted.
Manually moving the instances shows the slowest improvement as a function
of the number of instances moved (the lowest dashed line). The layout baseline
(middle dashed line) shows significant improvement over the manual baseline.

344 Constrained Clustering: Advances in Algorithms, Theory, and Applications

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Circles Edge Effects

A
R

I

Nodes Moved

Prob. Edges
NN Edges
No Edges

IVC
Layout + FF
Manual Baseline

FIGURE 14.8: Effect of different types of edges on the experimental results
for the Circles data set.

Adding the farthest-first heuristic provides yet more improvement (middle
solid line). IVC performs the best; however, the clustering baseline yields
nearly identical performance to IVC. We conclude that for this data set, when
using clustering, the farthest-first heuristic does not provide any additional
benefit. This is not surprising: the instances are well separated, so this a
fairly easy clustering problem.

In this data set, we are also interested in understanding the effect of edge
generation on performance (Figure 14.8). When no clustering is used, having
edges increases the speed of convergence to the correct clustering. This can be
seen in the middle, light-colored lines in the graph: The “No edges” version
of the data set results in the worst performance, with some improvement for
nearest-neighbor edges, and still more improvement for probabilistic edges.

Probabilistic edges most likely outperform nearest-neighbor edges on this
data set simply because there are more edges. As a result, more instances
are pulled toward a cluster when the user moves a single instance. However,
when clustering is used (upper, thicker lines), the data sets with no edges
or with nearest-neighbor edges perform better than the data set with proba-
bilistic edges. The probabilistic edges on this data set contain edges between
instances that do not belong to the same cluster, so the edges are only par-

Interactive Visual Clustering for Relational Data 345

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Overlapping Circles

IVC
Clustering Baseline
Layout + FF
Layout Baseline
Manual

A
R

I

Nodes Moved

FIGURE 14.9: Experimental results on the Overlapping Circles data set.

tially correlated with cluster membership. As a result, the probabilistic edges
may pull some instances into the incorrect cluster. By contrast, the nearest-
neighbor edges for this data set only connect instances that are in the same
cluster.

14.6.2 Overlapping Circles

Figure 14.9 shows the experimental results for the Overlapping Circles data
set. Again, the methods perform as expected, with interactive visual clus-
tering outperforming the other methods. In this case, IVC does provide a
noticeable improvement beyond the clustering baseline, indicating that the
farthest-first heuristic is helpful in identifying important instances for repair-
ing the clustering.

As with the Circles data set, clustering performance is worse when using
the probabilistic edges, which connect instances in different clusters (Fig-
ure 14.10). However, for IVC, the data set using nearest-neighbor edges actu-
ally results in slightly worse performance than using no edges. This happens
because the nearest-neighbor edges connect some instances that are not in the
same cluster. By contrast, for Layout + FF (i.e., without clustering), using
edges yields better performance than no edges. In this case, the edges do

346 Constrained Clustering: Advances in Algorithms, Theory, and Applications

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Overlapping Circles Edge Effects

A
R

I

Nodes Moved

Prob. Edges
NN Edges
No Edges

IVC
Layout + FF
Manual Baseline

FIGURE 14.10: Effect of different types of edges on the experimental results
for the Overlapping Circles data set.

provide some useful—if noisy—information about cluster membership.

14.6.3 Iris

As seen in Figure 14.11, the interactive visual clustering method also yields
the best performance of any of the methods we tested on the Iris data set.
The improvement provided by IVC is quite noticeable in this data set: after
only 10 instances, with IVC, the clusters are nearly perfect, with an ARI close
to 1.0. The next-best method (clustering baseline) has only reached an ARI
of 0.75 at this point.

As in the Overlapping Clusters data set, when using clustering, probabilistic
edges result in worse performance than nearest-neighbor edges (Figure 14.12).
Again, this is likely due to the fact that the probabilistic set has more edges
between instances in different clusters.

14.6.4 IMDB

As shown in Figure 14.13, all four of the methods require many instances
to be moved before the clustering is correct. However, IVC still performs

Interactive Visual Clustering for Relational Data 347

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Iris

IVC
Clustering Baseline
Layout + FF
Layout Baseline
Manual

A
R

I

Nodes Moved

FIGURE 14.11: Experimental results on the Iris data set.

noticeably better than the other methods, achieving an ARI of 1.0 after about
78 instances have been moved. The next best method (clustering baseline)
only achieves an ARI of about 0.77 at this point.

We conclude that the IMDB data set is a very difficult data set to cluster,
but can still benefit from IVC.

14.6.5 Classical and Rock Music

Figure 14.14 shows that IVC also performs noticeably better on the music
data set than the other methods. In this case, IVC achieves an ARI above
0.5 after only a handful of instances have been moved, reaching a correct
clustering with (ARI = 1.0) after around 22 instances have been moved. While
Layout + FF initially improves more slowly than the clustering baseline, it
ultimately achieves the correct clustering much sooner than the clustering
baseline, and is the next best method (after IVC) for this data set. However,
by the time IVC has achieved a correct clustering, Layout + FF has only
reached an ARI of around 0.56.

Interestingly, while the other data sets yield the best clustering when nearest-
neighbor edges are included, with the music data set, the probabilistic edges
yield better results.

348 Constrained Clustering: Advances in Algorithms, Theory, and Applications

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Iris Edge Effects

A
R

I

Nodes Moved

Prob. Edges
NN Edges
No Edges

IVC
Layout + FF
Manual Baseline

FIGURE 14.12: Effect of different types of edges on the experimental results
for the Iris data set.

14.6.6 Amino Acid Indices

Figure 14.16 shows the results for the Amino Acid Indices data set. The
results on this data set are as predicted: the best performance is given by the
IVC method. After about 24 instances have been moved with IVC, clusters are
correctly partitioned with an ARI of 1.0. The clustering baseline is the next
best; after moving 24 instances, the ARI is about 0.6. Layout + FF, the next
best method, has an ARI of only 0.3 at this point. Note also that Layout + FF
and the layout baseline do not reach optimal performance (ARI = 1.0) until
all 100 instances have been moved.

In our earlier experiments with MPCK-Means, we found that the clusters
are not well separated in Euclidean space, so the underlying assumptions of
MPCK-Means are violated. However, there is a higher statistical correla-
tion among the attribute values within clusters than is seen across clusters.
Therefore, using a different clustering method, such as SSLC, yields better
performance. Our observation about the non-Euclidean space of the Amino
Acid Indices data set also led us to develop the alternative (Amino Acid) data
set.

Interactive Visual Clustering for Relational Data 349

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

IMDB

IVC
Clustering Baseline
Layout + FF
Layout Baseline
Manual

A
R

I

Nodes Moved

FIGURE 14.13: Experimental results on the IMDB data set.

14.6.7 Amino Acid

The results for the Amino Acid data set are shown in Figure 14.17. On this
data set, many fewer instances have to be moved in order to achieve compa-
rable performance to the Amino Acid Indices data set. This highlights the
importance of choosing an appropriate representation for any given problem
domain. IVC outperforms the other methods, but the Layout + FF approach
is comparable. The latter method slightly outperforms IVC when only a few
nodes have been moved, but IVC is slightly better for more nodes. These
differences, however, are not statistically significant.

Similarly, the clustering baseline and layout baseline perform about equally,
both outperforming the manual baseline. We conclude that the force-directed
layout (taking advantage of the relational structure) and the farthest-first
heuristic (identifying significant errors) help to guide the user toward the
correct clustering. However, the clustering itself does not provide much, if
any, additional benefit.

350 Constrained Clustering: Advances in Algorithms, Theory, and Applications

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Classical and Rock Music

IVC
Clustering Baseline
Layout + FF
Layout Baseline
Manual

A
R

I

Nodes Moved

FIGURE 14.14: Experimental results on the music data set.

14.7 Related Work

Lesh, Marks, and Patrignani [14] presented an interactive graph partitioning
method using their human-guided search (HuGS) framework. Similar to IVC,
their approach used force-directed layout to create the visual representation of
the data. There are a few differences between our problem setting and theirs.
First, their underlying clustering method is purely graph-based, not attribute-
based. Second, rather than using constrained clustering, their approach uses
the modified clusters produced by the user as seeds for the local heuristic
search. However, their results show that similar interactive approaches may
be useful even for much larger data sets than we have studied.

In the constrained clustering literature, there has been some work on active
(automatic) selection of constraints [3, 23, 7]. However, we are not aware
of any previous work on interactive methods for enabling the user to select
appropriate constraints more effectively.

Interactive Visual Clustering for Relational Data 351

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Classical and Rock Music Edge Effects

A
R

I

Nodes Moved

Prob. Edges
NN Edges
No Edges

IVC
Layout + FF
Manual Baseline

FIGURE 14.15: Effect of different types of edges on the experimental results
for the music data set.

14.8 Future Work and Conclusions

We have shown that interactive visual clustering can improve clustering
performance by integrating force-directed graph layout techniques with user
interaction and constrained clustering. The methods we have described here
are only the first step toward a more user-centered approach to clustering.

We are currently designing a user study to test the hypothesis that users
will be able to identify anomalous (misplaced) instances in the display, and
therefore converge more quickly to the correct clustering than without the
force-directed layout. We also plan to analyze and test other models of user
behavior (i.e., additional instance selection and placement heuristics). Other
types of user feedback may prove to be useful, such as annotations describing
why a particular instance was moved into a given cluster. Combining the user-
guided approach of IVC with the system-guided methods of active constraint
selection methods could result in a more mixed-initiative paradigm, where the
user and the system jointly guide the clustering process.

The ultimate goal of our research is to design more integrated, interac-

352 Constrained Clustering: Advances in Algorithms, Theory, and Applications

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Amino Acid Indices

IVC
Clustering Baseline
Layout + FF
Layout Baseline
Manual

A
R

I

Nodes Moved

FIGURE 14.16: Experimental results on the Amino Acid Indices data set.

tive clustering methods for relational data sets than currently exist. The
force-directed layout used in IVC incorporates the relational edges into the
clustering process, but only indirectly. We are also developing relational con-
strained clustering algorithms, which cluster the data in attribute space and
relational space simultaneously [1, 2].

Acknowledgments

Thanks to Adam Anthony, Blaz Bulka, Donald MacGlashan, and Penny
Rheingans for their assistance and inputs. This work was partially supported
by NSF awards #0325329 and #00000923, and by the Distributed Mentor
Project (DMP) of the Computing Research Association’s Committee on the
Status of Women in Computing Research (CRA-W).

Interactive Visual Clustering for Relational Data 353

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Amino Acids

IVC
Clustering Baseline
Layout + FF
Layout Baseline
Manual

A
R

I

Nodes Moved

FIGURE 14.17: Experimental results on the Amino Acid data set.

References

[1] A. Anthony and M. desJardins. Open problems in relational clustering.
In ICML Workshop on Open Problems in Statistical Relational Learning,
2006.

[2] A. Anthony and M. desJardins. Data clustering with a relational push-
pull model (student abstract). In Proceedings of the 26th National Con-
ference on Artificial Intelligence (AAAI-2007), 2007.

[3] S. Basu, A. Banerjee, and R. Mooney. Active semi-supervision for pair-
wise constrained clustering. In Proceedings of the 2004 SIAM Interna-
tional Conference on Data Mining, pages 333–344, April 2004.

[4] I. Bhattacharya and L. Getoor. Relational clustering for multi-type en-

354 Constrained Clustering: Advances in Algorithms, Theory, and Applications

tity resolution. In Proceedings of the Fourth International KDD Work-
shop on Multi-Relational Mining, pages 3–12, 2005.

[5] M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and met-
ric learning in semi-supervised clustering. In Proceedings of the Twenty-
First International Conference on Machine Learning, pages 11–18, 2004.

[6] R. Brockenauer and S. Cornelsen. Drawing clusters and hierarchies. In
M. Kaufmann and D. Wagner, editors, Drawing Graphs: Methods and
Models, pages 193–227. Springer, 2001.

[7] N. Cebron and M. R. Berthold. Mining of cell assay images using active
semi-supervised clustering. In Proceedings of the ICDM 2005 Workshop
on Computational Intelligence in Data Mining, pages 63–69, 2005.

[8] M. desJardins, J. MacGlash, and J. Ferraioli. Interactive visual cluster-
ing. In Proceedings of the 2007 International Conference on Intelligent
User Interfaces, January 2007.

[9] P. Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[10] L. Hubert and P. Arabie. Comparing partitions. Journal of Classifica-
tion, 2:193–218, 1988.

[11] Genome Net Japan. Aaindex: Amino acid index database, 2006.

[12] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and
Models. Springer, 2001.

[13] S. Kawashima and M. Kanehisa. AAindex: Amino acid index database.
Nucleic Acids Research, 28(1):374, 2000.

[14] N. Lesh, J. Marks, and M. Patrignani. Interactive partitioning. In
International Symposium on Graph Drawing, pages 31–36, 2000.

[15] J. Neville, M. Adler, and D. Jensen. Clustering relational data using
attribute and link information. In Proceedings of the IJCAI Text Mining
and Link Analysis Workshop, 2003.

[16] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository
of machine learning databases, 1998.

[17] prefuse.org. Prefuse: Interactive information visualization toolkit, 2006.

[18] W. M. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66:846–850, 1971.

[19] B. Taskar, E. Segal, and D. Koller. Probabilistic classification and clus-
tering in relational data. In B. Nebel, editor, Proceedings of the 17th In-
ternational Joint Conference on Artificial Intelligence (IJCAI-01), pages
870–878, Seattle, 2001.

Interactive Visual Clustering for Relational Data 355

[20] K. Tomii and M. Kanehisa. Analysis of amino acid indices and mutation
matrices for sequence comparison and structure prediction of proteins.
Protein Engineering, 9:27–36, 1996.

[21] University of Waikato. Weka 3: Data mining with open source machine
learning software in Java, 2006.

[22] K. Wagstaff and C. Cardie. Clustering with instance-level constraints.
In Proceedings of the International Conference on Machine Learning
(ICML-00), pages 1103–1110, 2000.

[23] Q. Xu, M. desJardins, and K. Wagstaff. Active constrained clustering by
examining spectral eigenvectors. In Proceedings of the 2005 Discovery
Science Conference, 2005.

[24] X. Yin, J. Han, and P. Yu. Cross-relational clustering with user’s guid-
ance. In Proceedings of the Eleventh ACM SIGKDD International Con-
ference on Knowledge Discovery in Data, pages 344–353, 2005.

Chapter 15

Distance Metric Learning from
Cannot-be-Linked Example Pairs,
with Application to Name
Disambiguation

Satoshi Oyama

Kyoto University, oyama@i.kyoto-u.ac.jp

Katsumi Tanaka

Kyoto University, ktanaka@i.kyoto-u.ac.jp

Abstract Existing distance metric learning algorithms use only must-be-
linked example pairs or both must-be-linked and cannot-be-linked example
pairs. In some application problems, however, cannot-be-linked examples
are readily available while must-be-linked examples are not. We describe
a method for learning a distance metric from only cannot-be-linked example
pairs. Unlike other metric learning algorithms, it does not require eigenvalue
decompositions to enforce the positive semi-definiteness of the learned dis-
tance metric matrix. We apply the metric learning to a name disambiguation
problem, in which clustering is used to determine whether the names of ob-
jects in documents or databases refer to the same object or not. Experiments
using the DBLP data set show that the learned metric improves precision and
recall for name disambiguation.

15.1 Background and Motivation

Similarity and distance are important factors in clustering, classification,
and search. An appropriate similarity/distance measure must be used to
achieve accurate results. Several methods have been proposed for learning a
similarity measure or distance metric from humanly labeled data (e.g., Bilenko
and Mooney [6]; Xing et al. [29]). One advantage of using a distance met-
ric rather than a general similarity/dissimilarity measure is that it satisfies

357

358 Constrained Clustering: Advances in Algorithms, Theory, and Applications

mathematical properties such as the triangle inequality and can be used in
many existing algorithms.

One problem in learning a distance metric is that labeling by a person
involves costs. In previous research, labeling was usually given as pairwise
constraints, such as two data items are similar and must be in the same class
(“must-be-linked”) or dissimilar and cannot be in the same class (“cannot-
be-linked”). The metric is modified so as to shorten the distance between
must-be-linked examples and lengthen the distance between cannot-be-linked
examples.

In some application problems, however, cannot-be-linked examples are read-
ily available while must-be-linked examples are not. One case is where some
example pairs are easily predicted to belong to different classes with high con-
fidence. An example is name disambiguation, which is to determine whether
names appearing documents or database records refer to the same real-world
object. Although it is uncertain whether two J. Smiths in a bibliographic
database refer to the same person or not, J. Smith and D. Johnson cannot
be the same person. This enables us to use such example pairs as cannot-be-
linked examples in metric learning (Figure 15.1). We will revisit this problem
later in Section 15.9.

Another case is where only dissimilar items are stored in a collection. For
example, patents and trademarks are registered in official databases only if
they are significantly dissimilar to registered ones. It is helpful if a system
can retrieve possible conflicts to a proposed item from databases according
to some distance metric. However, only dissimilar example pairs are usu-
ally available from databases. This kind of problem can be considered as an
anomaly detection that identifies unusually similar items. (See Section 15.5.)

In this chapter, we describe a method to learn a distance metric from only
cannot-be-linked example pairs [16]. The metric learning method described
in this chapter can be compared with constrained-based (semi-supervised)
clustering [27, 2, 13, 3], in which pairwise constraints that specify whether two
data items should be in the same cluster or not are placed on some portion
of the data. Existing semi-supervised clustering methods use only must-be-
linked constraints or both must-be-linked and cannot-be-linked constraints.

An additional merit of using only cannot-be-linked example pairs is that the
learning process becomes much simpler than using both must-be-linked and
cannot-be-linked examples. In the following sections, we formalize distance
metric learning from cannot-be-linked examples as a quadratic programming
problem [7] and describe its application to name disambiguation.

Distance Metric Learning from Cannot-be-Linked Example Pairs 359

D. Johnson

D. Johnson

D. Johnson

J. Smith

J. Smith

A. Gupta

Ambiguous

Ambiguous

Ambiguous
Cannot-be-linked

A. Gupta

Cannot-be-linked

Cannot-be-linked

FIGURE 15.1: Using dissimilar (cannot-be-linked) example pairs in learning
a metric for clustering ambiguous data

15.2 Preliminaries

In this chapter, xi ∈ X denotes data such as documents or database records,
where the subscript i is the index for each data item. Each data item xi is
represented as a d dimensional feature vector x = (xi1, . . . , xid)�, in which
each feature corresponds to, for example, a word in a document or an attribute
in a database. The superscript % denotes the transpose of a vector or matrix.

Given vector representations of the data, we can define various distance
metrics. For the function D : X × X → R to be a (pseudo) metric, it must
satisfy the following conditions:1

D(xi, xj) ≥ 0
D(xi, xj) = D(xj , xi)
D(xi, xk) +D(xk, xj) ≥ D(xi, xj) .

1D becomes a metric in the strict sense when D(xi, xj) = 0 if and only if xi = xj .

360 Constrained Clustering: Advances in Algorithms, Theory, and Applications

One of the simplest metrics is the Euclidean distance:

DE(xi, xj) =

(
d∑

s=1

(xis − xjs)2
) 1

2

. (15.1)

In the Euclidean metric, each feature equally contributes to the distance. We
can also consider metrics in which each feature is given a weight (wi ≥ 0)
based on its importance:

Dw(xi, xj) =

(
d∑

s=1

ws(xis − xjs)2
) 1

2

. (15.2)

In information retrieval, various weighting heuristics have been proposed
[1]. Among them, the most commonly used weighting method is TF-IDF
(term frequency - inverse document frequency). When each feature represents
the number of times a particular word appears in the document (TF), IDF
weighting is

ws = (IDF)2 =
(

N

log DFs + 1

)2

, (15.3)

where N denotes the number of documents, and DFs denotes the number of
documents that contain the sth word.

The feature weighting method of Equation (15.2) treats each feature inde-
pendently and does not represent interaction among features. Using d × d
matrix A = {ast}, we can define a distance metric in a more general form:

dA(xi, xj) =
(
(xi − xj)�A(xi − xj)

) 1
2

=

(
d∑

s=1

d∑

t=1

ast(xis − xjs)(xit − xjt)

) 1
2

.

The necessary and sufficient condition for dA being a pseudo metric is that
A be a positive semi-definite matrix, in other words, a symmetric matrix in
which all eigenvalues are non-negative.

In their pioneering work on distance metric learning, Xing et al. [29] pro-
posed a method in which similar and dissimilar pairs of examples are given,
and a matrix A is found that minimizes the sum of the distances between sim-
ilar pairs while keeping the distances between dissimilar pairs greater than a
certain value. This is formalized as the following optimization problem:

min
A

∑

c=(i,j)∈C=

D2
A(xi, xj)

s.t.
∑

c �=(i,j)∈C �=

DA(xi, xj) ≥ 1

A � 0 ,

Distance Metric Learning from Cannot-be-Linked Example Pairs 361

where C= is the set of similar example pairs (must-link constraints) and C�=
is the set of dissimilar example pairs (cannot-link constraints). A � 0 is a
constraint that matrix A must be positive semi-definite. We thus have a semi-
definite programming problem [25]. To enforce this constraint, the method
involves singular value decompositions, which is computationally intensive.

15.3 Problem Formalization

In the metric learning described in this chapter, only pairs of dissimilar
(cannot-be-linked) examples c�=(i, j) ∈ C�= are given. We want examples in
such a pair to belong to different clusters. To ensure that, we use a matrix
A that enlarges the distance DA(xi, xj) between the two examples. However,
multiplying A by a large scalar makes the distance between any two points
long and thus not meaningful. Thus we divide the matrix by its norm and
normalize the distance as:

D2
A(xi, xj)
‖A‖ = (xi − xj)�

A
‖A‖ (xi − xj) .

As the matrix norm, we use the Frobenius norm:

‖A‖F =

(
d∑

s=1

d∑

t=1

a2
st

) 1
2

.

We can now formalize distance metric learning from only dissimilar example
pairs as an optimization problem:

max
A

min
c �=(i,j)∈C �=

D2
A(xi, xj)
‖A‖F

(15.4)

s.t. A � 0 . (15.5)

Objective function (15.4) requires finding the A that maximize the (normal-
ized) distance between the closest example pair. This idea is similar to large
margin principles in SVMs [26] and is justified because clustering errors most
probably occur at the cannot-be-linked points closest to each other, and keep-
ing these points far from each other reduces the risk of errors.

To simplify the subsequent calculation, we translate the above optimization
problem into an equivalent one. The following derivation is similar to that for
support vector machines [26]. We will look into the relationship between the
metric learning and SVM learning in Section 15.5.

362 Constrained Clustering: Advances in Algorithms, Theory, and Applications

First, we introduce a variable r for the minimum distance and rewrite the
original problem into the following form:

max
A

r

s.t.
D2

A(xi, xj)
‖A‖F

≥ r ∀c�=(i, j) ∈ C�=

A � 0 .

Using a variable transformation r′ = r‖A‖F , we obtain the form:

max
A

r′

‖A‖F

s.t. D2
A(xi, xj) ≥ r′ ∀c�=(i, j) ∈ C�=

A � 0 .

Varying r′ only scales the problem and its solution. Thus r′ can be fixed by
some constant, say, 1:

max
A

1
‖A‖F

s.t. D2
A(xi, xj) ≥ 1 ∀c�=(i, j) ∈ C�=

A � 0 .

Noting that maximizing 1
‖A‖F

is equivalent to minimizing 1
2‖A‖2F , we obtain

the following optimization problem,

min
A

1
2
‖A‖2F (15.6)

s.t. D2
A(xi, xj) ≥ 1 ∀c�=(i, j) ∈ C�= (15.7)

A � 0 , (15.8)

which is equivalent to the original problem consisting of (15.4) and (15.5).

15.4 Positive Semi-Definiteness of Learned Matrix

We now consider an optimization problem consisting of only (15.6) and
(15.7) without (15.8). To solve this problem, we introduce the Lagrangian

L(A, α) =
1
2
‖A‖2F +

∑

c �=(i,j)∈C �=

αij

(
1−D2

A(xi, xj)
)

=
1
2
‖A‖2F +

∑

c �=(i,j)∈C �=

αij

(
1− (xi − xj)�A(xi − xj)

)
, (15.9)

Distance Metric Learning from Cannot-be-Linked Example Pairs 363

with Lagrange multipliers αij ≥ 0.
In the solution of (15.6) and (15.7), the derivative of L(A, α) with respect

to A must vanish; that is, ∂L
∂A = 0. This leads to the following solution:

A =
∑

c �=(i,j)∈C �=

αij(xi − xj)(xi − xj)� . (15.10)

A necessary and sufficient condition for d×d matrix A being positive semi-
definite is that for all d dimensional vectors v, v�Av ≥ 0 holds. However,
this is always the case for a matrix A in the form of (15.10). Noting that
αij ≥ 0, we can confirm this as follows:

v�Av =
∑

c �=(i,j)∈C �=

αij((xi − xj)�v)2 ≥ 0 .

This means that without condition (15.8), the positive semi-definiteness of A
is automatically satisfied. In fact, the optimization problem consisting of only
(15.6) and (15.7) is a convex quadratic programming problem [7] and can be
solved without computationally intensive singular value decompositions.

15.5 Relationship to Support Vector Machine Learning

Our formalization of learning a distance metric from only dissimilar example
pairs is closely related to support vector machine learning. Actually, the
optimization problem can be translated into an SVM learning problem [26]
and can be solved by existing SVM software with certain settings.

The optimization problem for training an SVM that classifies the data into
two classes is as follows [26]:

min
w,b

1
2
‖w‖22 (15.11)

s.t. yi(〈w,xi〉+ b) ≥ 1 ∀(xi, yi) ∈ T . (15.12)

T is the set of training examples (xi, yi), where xi is a data vector and yi ∈
{−1,+1} is the class label. 〈x, z〉 is the inner product of vectors x and z.

Using the Frobenius product

〈A,B〉F =
d∑

s=1

d∑

t=1

astbst

of two d× d matrices, we can rewrite the problem of (15.6) and (15.7):

min
A

1
2
‖A‖2F (15.13)

s.t. 〈A, (xi − xj)(xi − xj)�〉F ≥ 1 ∀c�=(i, j) ∈ C�= . (15.14)

364 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Comparison of (15.13) and (15.14) with (15.11) and (15.12) reveals that our
problem corresponds to unbiased SVM learning (b = 0) from only positive
data (yi = 1), if we consider the examples and the learned weight of d × d
matrices as d2 dimensional vectors. The expansion form of the SVM solution

w =
∑

i

yiαixi

makes clear why our method can avoid semi-definite programming. We use
only positive examples (cannot-be-linked pairs), thus all the coefficients for the
examples become positive in the solution. If we also used negative examples
(must-be-linked pairs), the coefficients for these examples become negative
and the solution is not always positive semi-definite.

Substituting (15.10) into (15.9) gives us the dual form of the problem:

max
∑

c �=(i,j)∈C �=

αij

−1
2

∑

c �=(i,j)∈C �=

∑

c �=(i′,j′)∈C �=

(
αijαi′j′〈xi − xj ,xi′ − xj′〉2

)

s.t. αij ≥ 0 .

These formulas indicate that our learning problem can be solved by using
the quadratic polynomial kernel on d dimensional vectors and that we do not
need to calculate the Frobenius products between the d×d matrices. As with
standard SVMs, our method can be “kernelized” [20, 23]. By substituting a
positive semi-definite kernel function k(x, z) = 〈Φ(x),Φ(z)〉 (Φ(x) is a map
to a higher dimensional space) for the inner product 〈x, z〉, we can virtually
learn the distance metric matrix for a very high (possibly infinite) dimensional
feature space by the so-called “kernel trick.” In addition, a distance metric for
structured data, such as trees or graphs, can be learned with a kernel function
defined on the space of such data.

Schultz and Joachims [21] proposed a method for learning a distance metric
from relative comparison such as “A is closer to B than A is to C.” They also
formulated the metric learning as a constrained quadratic programming and
solved it by SVMs. In their method, the interactions between features are
fixed and optimization is applied to a diagonal matrix. The method using
only cannot-be-linked pairs can learn a full distance metric matrix.

15.6 Handling Noisy Data

In SVM learning, there is the case where training data cannot be separated
by any plane. In our setting, on the other hand, we can always find a matrix

Distance Metric Learning from Cannot-be-Linked Example Pairs 365

A that satisfies the constraints (15.7) unless a pair with xi − xj = 0 exists,
since by making the diagonal elements ass for xis− xjs �= 0 large enough, the
conditions can always be fulfilled.

However, if there exists a pair such that xi − xj is very close to the zero
vector because of noise, the learned metric can be greatly affected by such
outliers. To avoid this problem, we can introduce slack variables ξij as soft-
margin SVMs [26] and allow some constraint violations:

min
A,ξ

1
2
‖A‖2F + C

∑

c �=(i,j)∈C �=

ξij (15.15)

s.t. DA(xi, xj) ≥ 1− ξij ∀c�=(i, j) ∈ C�= . (15.16)

C is a parameter for the trade-offs between the norm of the matrix and the
constraint violations. It is straightforward to show that A is positive semi-
definite as in the case without slack variables.

15.7 Relationship to Single-Class Learning

Our formalization can also be considered as a single-class learning problem
like one-class SVM [19], which is used for detecting anomalies or outliers.
In one-class SVM, examples xi ∈ T forming only one class are given to the
learning algorithm. The optimization problem for training a one-class SVM
is as follows:

min
w,ξ,ρ

1
2
‖w‖22 + C

∑

i

ξi − ρ (15.17)

s.t. 〈w,xi〉 ≥ ρ− ξi ∀xi ∈ T . (15.18)

After training, a new example is classified as an outlier if 〈w,xi〉 < ρ.
By comparing (15.17) and (15.18) with (15.15) and (15.16), we can see

that our learning problem corresponds to one-class SVM if the offset ρ in
the latter is not a variable to be optimized but a constant. In our setting,
dissimilar example pairs and similar pairs correspond to target class examples
and outliers, respectively.

15.8 Relationship to Online Learning

The close relationship between online kernel machines [8, 9] and SVMs
based on quadratic programming suggests an interesting problem: designing
an online algorithm that learns a metric only from dissimilar examples.

366 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Shalev-Shwartz et al. [22] proposed an online learning algorithm for learning
a distance metric. Other than solving a constrained optimization problem, it
finds successive approximate solutions using an iterative procedure that com-
bines a perceptron-like update rule and the Lanczos method to find a negative
eigenvalue. While designed for learning from both similar and dissimilar pairs,
their algorithm can avoid the eigenvalue problem, if it uses only dissimilar ex-
ample pairs. Given a pair of cannot-be-linked examples (xi, xj), the algorithm
updates matrix A as:

A← A + α(xi − xj)(xi − xj)� (15.19)

α =
1− 〈A, (xi − xj)(xi − xj)�〉F
‖(xi − xj)(xi − xj)�‖2F

, (15.20)

if 〈A, (xi − xj)(xi − xj)�〉F < 1. (We eliminated the bias term from their
original formalization.)

Actually, this coincides with the update rule in online kernel AdaTron [9].
Furthermore, the equality between kernel AdaTron and sequential minimal
optimization (SMO) [17] for finding the SVM solution without the bias term
is proved [12]. Therefore, if we solve the problem consisting of (15.13) and
(15.14) by using SMO, it is identical to online learning with the update rule
(15.19) and (15.20).

15.9 Application to Name Disambiguation

15.9.1 Name Disambiguation

Name disambiguation, which is used for example to determine whether the
names of people in documents or databases refer to the same person or not,
is an important problem in information retrieval and integration. It is most
often used for personal name disambiguation, e.g., author identification in
bibliographic databases. Citation and bibliographic databases are particu-
larly troublesome because author first names are often abbreviated in cita-
tions. Resolving these ambiguities is necessary when evaluating the activity
of researchers, but major citation databases such as the ISI Citation Index2

and Citeseer’s Most Cited Authors in Computer Science3 cannot distinguish
authors with the same first name initial and last name. Personal name dis-
ambiguation on the Web is now gaining attention as well [14, 4, 28].

Name disambiguation is a special case of object identification, which has
been studied for a long time in the database community. Recently, these

2http://isiknowledge.com/
3http://citeseer.ist.psu.edu/mostcited.html

Distance Metric Learning from Cannot-be-Linked Example Pairs 367

problems have attracted the interest of machine learning researchers. Several
methods have been proposed to train a classifier for identifying data items
referring to the same object [18, 24, 6, 15]. Other conventional approaches
are summarized by Bilenko et al. [5].

Name disambiguation problems are generally solved by clustering data con-
taining the target names based on some similarity measure or distance metric
[14]. Metric learning can improve clustering accuracy but preparing train-
ing data is costly. Disambiguating two people with the same name or similar
names is a subtle and time-consuming task even for a person. However, the fol-
lowing two assumptions enable us to prepare cannot-be-linked example pairs
without manual labeling and to use the metric learning algorithm described
in the preceding sections.

Different names refer to different objects. In many name disambigua-
tion problems, pairs of different names presumably refer to different ob-
jects with few exceptions. For example, two J. Smiths are ambiguous,
while J. Smith and D. Johnson cannot be the same person (neglecting,
of course, the possibility of false names or nicknames).

Names are arbitrary. There is no reason to believe that the data for two
people with the same name are more similar than the data for two
people with different names. For example, the research papers written
by two different J. Smiths are not assumed to be more similar than
those written by J. Smith and D. Johnson. We assume that a pair of
data items for two people with different names has the same statistical
properties as a pair of data items for two people with the same name.

These two assumptions justify the use of pairs of data items collected for
different names (for example, J. Smith and D. Johnson) as cannot-be-linked
examples for learning a distance metric to be used for clustering data for
people with the same or similar names (Figure 15.1). The learned distance
metric that gives good separation of the data for people with different names
can be expected to separate the data for different people with the same name
as well. These cannot-be-linked example pairs can be formed mechanically
without manual labeling. In this setting, no similar (must-be-linked) example
pairs are used.

In the remainder of this section, we present experimental results for author
identification using a bibliographic database.

15.9.2 Data Set and Software

We describe experiments on the DBLP data set, which is a bibliography of
computer science papers.4 The data is publicly available in XML format. We

4http://dblp.uni-trier.de/

368 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 15.1: DBLP data set
Abbreviated Number of

name distinct authors

D. Johnson 17
A. Gupta 23
J. Smith 29
R. Johnson 29
L. Zhang 31
H. Zhang 26
R. Jain 10
J. Mitchell 11

used both journal papers and conference papers. The entries were made by
people, and many author names include the full first name, not only an initial.
We assume that the same first and last names refer to the same person.

From among the Most Cited Authors in Computer Science,5 we selected
eight cases of first-initial-plus-surname names, which involve a collapsing of
many distinct author names. We selected names like J. Smith rather than
ones like J. Ullman to ensure a high level of collapsing. We retrieved papers
written by authors with the same last name and the same first initial from the
DBLP data and randomly selected 100 examples for each abbreviated name.
Then we abbreviated first names into initials and removed middle names. The
number of distinct authors for each abbreviated name is shown in Table 15.1.

Training data were built by pairing examples of different abbreviated names,
for example, J. Smith and D. Johnson, and test data were built by pairing ex-
amples with the same name. Thus the experimental setting here is not purely
inductive but transductive as previous work on semi-supervised clustering
[29, 27, 13, 3, 22], where “must-be-linked” or “cannot-be-linked” constraints
are given to some portion of the (test) data. We used words in titles, jour-
nal names, and names of coauthors as features. Each feature represented the
presence or absence of each word. Since few words appear more than once in
a bibliographic entry, we used binary features. Each bibliographic entry was
represented as a feature vector using these features.

To learn a distance metric, we used SVMlight, an implementation of the
SVM learning algorithm [11]. We used the quadratic polynomial kernel for
our experiments and the parameter C in Equation (15.15) is set to 1.

5http://citeseer.ist.psu.edu/mostcited.html

Distance Metric Learning from Cannot-be-Linked Example Pairs 369

TABLE 15.2: Maximum F-measure
values

Abbreviated F-measure

name Learned IDF Euclidean

D. Johnson .644 .390 .399
A. Gupta .490 .170 .169
J. Smith .417 .270 .292
R. Johnson .508 .253 .227
L. Zhang .278 .165 .158
H. Zhang .423 .226 .226
R. Jain .709 .569 .552
J. Mitchell .640 .535 .536

15.9.3 Results

The learned metric was used in clustering the data from the same-first-
initial-and-last author names. The results of clustering were evaluated by
referring to the original full names. We used the single-linkage clustering
algorithm [10]. When S is the set of pairs of examples in the same cluster
(i.e., the clustering algorithms predict these pairs being the same person)
and T is the set of pairs that have the same full name, precision, recall and
F-measure are defined as follows:

Precision =
|S ∩ T |
|S|

Recall =
|S ∩ T |
|T |

F-measure =
2

1
Precision + 1

Recall

.

The clustering algorithm enables us to specify the number of clusters. We
measured the precision and recall for each number of clusters and drew a
recall-precision curve. The results with the learned metric were compared to
the results with two other metrics, one was the Euclidean distance of Equation
(15.1) and the other was the IDF weighting of Equation (15.3). Since each
bibliography entry is short and the same word rarely appears more than once
in the entry, we did not apply TF weighting. We neither normalized the
feature vectors because the lengths of bibliographic entries are rather uniform.
Figure 15.2 shows the recall-precision curves for the 8 abbreviated names.
The maximum F-measure for each combination of name and metric is given
in Table 15.2. Table 15.3 also presents the values of precision, recall, and
F-measure at the correct numbers of clusters, which is shown in Table 15.1.

In most cases, use of the learned metric resulted in the highest precision,
recall, and F-measure, while the values varied for different names and the ab-

370 Constrained Clustering: Advances in Algorithms, Theory, and Applications

TABLE 15.3: Results with the correct cluster numbers
Abbreviated Learned IDF Euclidean

name P R F P R F P R F

D. Johnson .381 .757 .507 .242 .770 .368 .260 .771 .389
A. Gupta .298 .620 .402 .081 .597 .142 .086 .635 .151
J. Smith .197 .754 .312 .137 .769 .232 .131 .734 .222
R. Johnson .159 .757 .263 .132 .688 .222 .136 .686 .227
L. Zhang .157 .488 .238 .093 .594 .161 .082 .509 .142
H. Zhang .195 .643 .299 .128 .575 .209 .128 .577 .128
R. Jain .354 .914 .510 .360 .932 .520 .357 .922 .514
J. Mitchell .418 .897 .570 .373 .876 .523 .373 .876 .523

breviated names with many distinct full names, for example, L. Zhang, tended
to be more difficult to disambiguate. This confirms that learning a distance
metric from dissimilar example pairs is effective and the two assumptions are
appropriate.

15.10 Conclusion

Existing distance metric learning algorithms use only must-be-linked ex-
ample pairs or both must-be-linked and cannot-be-linked example pairs. In
this chapter, we described a distance metric learning method that uses only
cannot-be-linked example pairs. We formalized the metric learning as a con-
vex quadratic programming problem. Unlike other metric learning algorithms,
it does not require eigenvalue decompositions to enforce the positive semi-
definiteness of the learned matrix. The optimization problem can be trans-
lated into an SVM learning problem and can be efficiently solved by existing
SVM software.

We applied the metric learning from cannot-be-linked examples to a name
disambiguation problem, by introducing the two assumptions: different names
refer to different objects and the data for two people with exactly the same
name are no more similar than the data for two people with different names.
The distance metric was learned from pairs of data items for different names,
which are mechanically collected without human supervision. Experiments
using the DBLP data set showed that the learned metric improves precision
and recall for name disambiguation.

Distance Metric Learning from Cannot-be-Linked Example Pairs 371

References

[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley, 1999.

[2] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Semi-
supervised clustering by seeding. In Proceedings of the Nineteenth Inter-
national Conference on Machine Learning (ICML 2002), pages 19–26,
2002.

[3] Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. A probabilistic
framework for semi-supervised clustering. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2004), pages 59–68, 2004.

[4] Ron Bekkerman and Andrew McCallum. Disambiguating web appear-
ances of people in a social network. In Proceedings of the Fourteenth
International World Wide Web Conference (WWW 2005), pages 463–
470, 2005.

[5] Mikhail Bilenko, William W. Cohen, Stephen Fienberg, Raymond J.
Mooney, and Pradeep Ravikumar. Adaptive name-matching in informa-
tion integration. IEEE Intelligent Systems, 18(5):16–23, 2003.

[6] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2003), pages 39–48, 2003.

[7] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[8] Yoav Freund and Robert E. Schapire. Large margin classification using
the perceptron algorithm. Machine Learning, 37(3):277–296, 1999.

[9] Thilo-Thomas Frieß, Nello Cristianini, and Colin Campbell. The Kernel-
Adatron algorithm: a fast and simple learning procedure for support
vector machines. In Proceedings of the Fifteenth International Confer-
ence on Machine Learning (ICML 1998), pages 188–196, 1998.

[10] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, 1988.

372 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[11] Thorsten Joachims. Making large-scale SVM learning practical. In
B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel
Methods: Support Vector Learning, pages 169–184. MIT Press, 1999.

[12] Vojislav Kecman, Michael Vogt, and Te Ming Huang. On the equality
of kernel AdaTron and sequential minimal optimization in classifica-
tion and regression tasks and alike algorithms for kernel machines. In
Proceedings of the Eleventh European Symposium on Artificial Neural
Networks (ESANN 2003), pages 215–222, 2003.

[13] Dan Klein, Sepandar D. Kamvar, and Christopher D. Manning. From
instance-level constraints to space-level constraints: Making the most of
prior knowledge in data clustering. In Proceedings of the Nineteenth In-
ternational Conference on Machine Learning (ICML 2002), pages 307–
314, 2002.

[14] Gideon S. Mann and David Yarowsky. Unsupervised personal name
disambiguation. In Proceedings of the Seventh Conference on Computa-
tional Natural Language Learning (CoNLL 2003), pages 33–40, 2003.

[15] Satoshi Oyama and Christopher D. Manning. Using feature conjunc-
tions across examples for learning pairwise classifiers. In Proceedings of
the Fifteenth European Conference on Machine Learning (ECML 2004),
pages 322–333, 2004.

[16] Satoshi Oyama and Katsumi Tanaka. Learning a distance metric for
object identification without human supervision. In Proceedings of the
Tenth European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD 2006), pages 609–616, 2006.

[17] John C. Platt. Fast training of support vector machines using sequential
minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors,
Advances in Kernel Methods: Support Vector Learning, pages 185–208.
MIT Press, 1999.

[18] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication
using active learning. In Proceedings of the Eighth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD
2002), pages 269–278, 2002.

[19] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola,
and Robert C. Williamson. Estimating the support of a high-dimensional
distribution. Neural Computation, 13(7):1443–1471, 2001.

[20] Bernhard Schölkopf and Alex Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization and Beyond. MIT Press,
2002.

Distance Metric Learning from Cannot-be-Linked Example Pairs 373

[21] Matthew Schultz and Thorsten Joachims. Learning a distance metric
from relative comparisons. In Advances in Neural Information Process-
ing Systems 16, pages 41–48. MIT Press, 2004.

[22] Shai Shalev-Shwartz, Yoram Singer, and Andrew Y. Ng. Online and
batch learning of pseudo-metrics. In Proceedings of the Twenty-First
International Conference on Machine Learning (ICML 2004), 2004.

[23] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

[24] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning domain-
independent string transformation weights for high accuracy object iden-
tification. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2002),
pages 350–359, 2002.

[25] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming.
SIAM Review, 38(1):49–95, 1996.

[26] Valdimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons,
1998.

[27] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schroedl. Con-
strained k-means clustering with background knowledge. In Proceedings
of the Eighteenth International Conference on Machine Learning (ICML
2001), pages 577–584, 2001.

[28] Xiaojun Wan, Jianfeng Gao, Mu Li, and Binggong Ding. Person reso-
lution in person search results: WebHawk. In Proceedings of the Four-
teenth ACM International Conference on Information and Knowledge
Management (CIKM 2005), pages 163–170, 2005.

[29] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart J. Rus-
sell. Distance metric learning, with application to clustering with side-
information. In Advances in Neural Information Processing Systems 15,
pages 505–512. MIT Press, 2003.

374 Constrained Clustering: Advances in Algorithms, Theory, and Applications

D. Johnson

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Pr
ec

is
io

n

Learned
IDF
Euclidean

A. Gupta

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Pr
ec

is
io

n

Learned
IDF
Euclidean

J. Smith

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Pr
ec

is
io

n

Learned
IDF
Euclidean

R. Johnson

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Pr
ec

is
io

n

Learned
IDF
Euclidean

L. Zhang

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Pr
ec

is
io

n

Learned
IDF
Euclidean

H. Zhang

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Pr
ec

is
io

n

Learned
IDF
Euclidean

R. Jain

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Pr
ec

is
io

n

Learned
IDF
Euclidean

J. Mitchell

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Pr
ec

is
io

n

Learned
IDF
Euclidean

FIGURE 15.2: Results of author identification for DBLP data set.

Chapter 16

Privacy-Preserving Data Publishing:
A Constraint-Based Clustering
Approach

Anthony K. H. Tung

National University of Singapore, anthony@comp.nus.edu.sg

Jiawei Han

University of Illinois, Urbana-Champaign, hanj@cs.uiuc.edu

Laks V. S. Lakshmanan

University of British Columbia, laks@cs.ubc.ca

Raymond T. Ng

University of British Columbia, rng@cs.ubc.edu

Abstract
Privacy-preserving data publishing has drawn much research interest re-

cently. In this chapter, we address this topic from the viewpoint of con-
strained clustering, i.e., the problem of finding clusters that satisfy certain
user-specified constraints. More specifically, we begin with the problem of
clustering under aggregate constraints (without privacy considerations) and
explain how traditional algorithms for the unconstrained problem (e.g., the
c-means algorithm) break down in the presence of constraints. From there, we
develop scalable algorithms that overcome this problem and finally illustrate
how our algorithm can also be used for privacy-preserving data publishing.

16.1 Introduction

Publishing personal data while protecting individual’s privacy has now be-
come an important and well-studied topic [14, 13, 1, 16, 11, 18, 19, 10, 12].
The input to such a problem is typically a table consisting of two types of

375

376 Constrained Clustering: Advances in Algorithms, Theory, and Applications

attributes: sensitive attributes whose values must not be associated with any
particular individual and quasi-identifier (QI) attributes which are attributes
that are publishable but that must be generalized in such a way that the
sensitive attributes of individuals cannot be inferred through a database join
operation with any external table such as a voters list that is public.

Central to the idea of privacy preserving data publishing is the concept of
k-anonymity [13] from which many other variants have been derived [16, 9,
11, 19, 10]. To compute a k-anonymous table from a raw table, the most
common approach involves an iterative, bottom-up merging of tuples until
the k-anonymity condition is satisfied [16, 9, 11, 19, 10]. During the merging,
special care is taken to ensure that information loss (defined differently in
different papers) is minimized due to the merging of tuples.

Interestingly, such an approach can also be seen as a form of clustering called
agglomerative clustering [5] where objects are iteratively merged into larger
clusters until a certain stopping condition becomes true. In the k-anonymity
case, a simple abstraction is to allow merging of tuples to continue until each
cluster contains at least k objects. A more subtle distinguishing feature of
clustering for k-anonymity compared to the classical clustering framework lies
in the fact that the QI attributes in the privacy preservation data publishing
literature [16, 9, 11, 19, 10] are typically associated with a concept hierarchy
that is used to guide the merging of the tuples. This, however, only helps sim-
plify the clustering process compared to agglomerative clustering on numerical
attributes with no given concept hierarchies.1

In this chapter, we continue to explore this analogous relationship between
clustering and k-anonymity by looking at another type of clustering called
partitioning-based clustering. A partitioning-based approach to clustering is
known to have an advantage over an agglomerative one in at least two ways
[5]:

1. Most agglomerative clustering algorithms have quadratic time complex-
ity whereas many partitioning-based algorithms like c-means2 complete
in linear time.

2. Unlike agglomerative clustering which fixes the cluster membership of
the tuples once they are merged, partitioning-based algorithms typically
adopt an iterative refinement approach which could swap cluster mem-
bership to reduce information loss when the initial assignment of cluster
membership is not optimal.

To facilitate our objective, we first introduce a constrained version of the
partitioning-based clustering problem [15] in the next section. Besides mini-

1As a side note, the use of concept hierarchies in privacy-preserving publishing is sometimes
the reason for privacy breach [19].
2We will use c to replace the k in k-means in order to avoid confusion with the k in k-
anonymity.

Privacy-Preserving Data Publishing 377

mizing the total dispersion of the clusters, the constrained version also has the
requirement that some aggregate constraints must be satisfied. The theoretical
implications of introducing such constraints to clustering are then explained.
In the next section we introduce our algorithm for clustering under aggregate
constraints and explain how such an algorithm can be made scalable through
the use of micro-clustering. We then explain how our algorithm for clustering
under aggregate constraints can in fact be adopted for privacy-preserving data
publishing. Finally, the last section concludes the chapter.

16.2 The Constrained Clustering Problem

Cluster analysis has been an active area of research in computational statis-
tics and data mining with many algorithms developed. More specifically, the
problem of clustering that many existing algorithms solve is defined as follows.

The Unconstrained Clustering (UC) Problem: Given a data set
D with n objects, a distance function df : D ×D −→ &, and a positive
integer c, find a c-clustering, i.e., a partition of D into c pairwise dis-
joint clusters (Cl1, . . . , Clc) such that DISP = (

∑c
i=1 disp(Cli, repi))

is minimized.

The “dispersion” of cluster Cli, disp(Cli, repi), measures the total distance
between each object in Cli and a representative repi of Cli, i.e., disp(Cli, repi)
defined as

∑
p∈Cli

df(p, repi). The representative of a cluster Cli is chosen
such that disp(Cli, repi) is minimized. Finding such a representative for each
cluster is generally not difficult. For example, the c-means algorithm uses
the centroid of the cluster as its representative which could be calculated in
linear time. The c-medoids algorithm, on the other hand, uses the medoid of
a cluster as its representative [8] which requires O(|Cli|2) time to compute.

In this chapter, we propose the constrained clustering (CC) problem, defined
as follows.

The Constrained Clustering (CC) Problem: Given a data set D
with n objects, a distance function df : D×D −→ &, a positive integer
c, and a set of constraints C, find a c-clustering (Cl1, . . . , Clc) such
that DISP = (

∑k
i=1 disp(Cli, repi)) is minimized, and each cluster Cli

satisfies the constraints C, denoted as Cli |= C.

Depending on the nature of the constraints, the CC problem can take on a
different flavor and interested users are referred to [15] for a list. Here, within
the theme of our study, we will focus on constraints formulated with SQL
aggregates, formalized next.

378 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Let each object Oi in the databaseD be associated with a set ofm attributes
{A1, . . . , Am}. The value of an attribute Aj for an object Oi is denoted as
Oi[Aj].

DEFINITION 16.1 SQL Aggregate Constraints Consider the ag-
gregate functions agg ∈ {max(),min(), avg(), sum()}. Let θ be a comparator
function, i.e., θ ∈ {<,≤, �=,=,≥, >}, and v be a numerical constant. Given
a cluster Cl, an SQL aggregate constraint on Cl is a constraint in one of the
following forms: (i) agg({Oi[Aj] | Oi ∈ Cl}) θ v; or (ii) count(Cl) θ v. �

Within SQL aggregate constraints, we are specially interested in a type of
constraints, called existential constraints, defined as follows.

DEFINITION 16.2 Existential Constraints Let W ⊆ D be any
subset of objects. We call them pivot objects. Let n be a positive inte-
ger. An existential constraint on a cluster Cl is a constraint of the form:
count({Oi|Oi ∈ Cl,Oi ∈W}) ≥ n. �

Pivot objects are typically specified via constraints or other predicates. For
example, in the market segmentation problem [8], frequent customers might
be the pivot objects. More precisely, W is the subset of customers who are
frequent.

Note that the definition of existential constraints is more general than it
may appear as a number of SQL aggregate constraints can be reduced to it.
Essentially, W can be seen as the extent of a predicate on individual members
of D. Thus, an existential constraint count({Oi | Oi ∈ Cl,Oi ∈ W} ≥ n
says each cluster must have at least n objects that satisfies that predicate. As
such, deriving an algorithm to solve the problem with existential constraints
is thus a central problem.

A key complication is that these algorithms find clusterings satisfying what
we call the nearest rep(resentative) property (NRP):

The Nearest Rep(resentative) Property (NRP): Let (Cl1, . . . , Clc)
be the c-clustering computed by the algorithm, and let repi denote the
representative of cluster Cli, 1 ≤ i ≤ c. Then a data object p ∈ D is
placed in a cluster Clj iff repj is the closest to p among all the repre-
sentatives. More precisely, (∀p ∈ D)(∀1 ≤ j ≤ c) [p ∈ Clj ⇔ (∀i �=
j) df(p, repj) ≤ df(p, repi)].

Before proceeding to develop an algorithm to perform constrained clus-
tering, we first examine the theoretical implication of adding constraints to
clustering w.r.t. the NRP. We pick the popular c-means algorithm as the tar-
get of our discussion, though the discussion generalizes to other algorithms,
such as the c-medoids algorithm.

Given a set of constraints C, let us begin by defining a “solution space” for
the CC problem:

Privacy-Preserving Data Publishing 379

ClSp(C, c,D) = {(Cl1, . . . , Clc) | ∀1 ≤ i, j ≤ c :
∅ ⊂ Clj ⊂ D & Clj |= C &
∪Clj = D & Cli ∩ Clj = ∅, for i �= j}

We refer to ClSp(C, c,D) as the (constrained) clustering space. Clusterings
found by the c-means algorithm satisfy the NRP. Accordingly, the constrained
mean solution space is defined as:

MeanSp(C, c,D) = {(Cl1, . . . , Clc) |
(Cl1, . . . , Clc) ∈ ClSp(C, c,D)
& ∀1 ≤ j ≤ c,∀q ∈ D :
(q ∈ Clj ⇔ (∀i �= j :
df(q, pj) ≤ df(q, pi)))}

where pj is the centroid of cluster Clj . It should be clear by definition that
the mean space MeanSp() is a strict subset of the clustering space ClSp().
To understand the role played by the NRP, let us revisit the situation when
the set of constraints C is empty. The c-means algorithm does the smart thing
by operating in the smaller MeanSp() space than in the ClSp() space. More
importantly, the following theorem says that there is no loss of quality.

We refer to the unconstrained version of clustering as the unconstrained
clustering (UC) problem.

THEOREM 16.1
A clustering UCL is an optimal solution to the UC problem in the space
ClSp(∅, k,D) iff it is an optimal solution to the UC problem in the mean
space MeanSp(∅, k,D). �

Like virtually all existing clustering algorithms, the c-means algorithm does
not attempt to find the global optimum. This is because the decision problem
corresponding to c-clustering is NP-complete even for c = 2 [4]. Thus, the
c-means algorithm focuses on finding local optima. Theorem 16.1 can be
extended from the global optimum to a local optimum.

The point here is thatMeanSp(∅, c,D) contains the “cream” of ClSp(∅, c,D),
in that the global and local optima in ClSp(∅, c,D) are also contained in the
smaller MeanSp(∅, c,D). This nice situation, however, does not generalize to
the CC problem in general. Here is a simple example. Suppose there are only
4 customers and three of them are located close to each other at one end of
a highway, and the remaining is at the other end. If the CC problem is to
find two clusters with (at least) two customers each, it is easy to see that it
is impossible to satisfy the constraint and the NRP simultaneously.

To resolve this conflict, we adopt the policy that the user-defined constraints
take precedence over the NRP. Specifically, the algorithm to be presented next
regards the set C to be hard constraints that must be satisfied. The NRP, on

380 Constrained Clustering: Advances in Algorithms, Theory, and Applications

the other hand, is treated as a “soft” constraint in the sense that it is satisfied
as much as possible by the minimization of (

∑k
i=1 disp(Cli, repi)). But there

is no guarantee that every object is in the cluster corresponding to the nearest
center.

16.3 Clustering without the Nearest Representative Prop-
erty

In this section, we will derive an algorithm to perform CC under an ex-
istential constraint. Besides making the NRP a “soft” constraint, a more
important implication of our analysis is that unlike UC, the NRP property is
not usable in CC to enhance efficiency by restricting search to the mean space
MeanSp(C, c,D). This is because MeanSp(C, c,D) consists of only solutions
that satisfy the NRP but may not satisfy the user-specified constraint. An
attempt to refine such a clustering to make it satisfy the user-specified con-
straint will subsequently invalidate the NRP, leading to the same problem as
clustering without the NRP.

Instead, our algorithm tries to find a good solution by performing cluster
refinement in the constraint space, ClSp(C, c,D), which we represent using a
clustering locality graph, G = (V, E). G is described as follows:

• The set V of nodes is the set of all c-clusterings. More precisely, it is the
unconstrained clustering space ClSp(∅, c,D), mentioned in the previous
section. Nodes which satisfy existential constraint (EC) are called valid
nodes, and those that do not are called invalid nodes.

• There is an edge between two nodes CL1, CL2 in the graph iff they
are different from one another by one pivot object, i.e., CL1 of the form
(Cl1, . . . , Cli, . . . , Clj , . . . , Clc), whereas CL2 of the form (Cl1, . . . , Cli−
{p}, . . . , Clj ∪ {p}, . . . , Clc) for some pivot object p ∈ Cli & j �= i. If a
node CL2 is connected to CL1 by an edge, then CL2 is called a neighbor
of CL1 and vice versa.

Note that the size of the above graph is huge and only part of it is material-
ized as the refinement of the clusters takes place. With such a graph, a naive
algorithm to solve the CC problem given c and EC is to first pick a valid
node in the locality graph and move to a valid neighboring node which gives
the highest decrease in DISP . Intuitively, a movement from a node of higher
DISP to a node of lower DISP is a cluster refinement process similar to the
c-means algorithm which tries to refine the clustering by moving objects to the
nearest center to reduce DISP . Our cluster refinement process terminates
when no node of lower DISP is found. The algorithm will then stop and

Privacy-Preserving Data Publishing 381

output CL as the solution. However, such an algorithm is a generate-and-test
algorithm which is very inefficient since the number of neighbors that a node
has is potentially large. To improve the efficiency of such an algorithm, the
number of nodes to be examined needs to be restricted.

16.3.1 Cluster Refinement under Constraints

To derive a more efficient algorithm for performing CC without NRP, let
us first define a set of unstable pivots given a valid node CL = (Cl1, . . . , Clc)
as follows.

DEFINITION 16.3 (Unstable Pivots)
A set of unstable pivots, S, with respect to CL is a collection of all pivots in
D such that each s ∈ S belongs to some Cli in CL but is in fact nearer to a
representative of some Clj , i �= j. �

Using S, we form an induced subgraph of G, SG = (SV,SE) as follows.
• The set SV of nodes that induces the subgraph can be defined as follows:

– (base case) the initial node CL, representing the clustering is in
SV;

– (inductive case) for any node CL in SV, if (i) there is an object s
from Cli whose nearest cluster representative is from Clj , j �= i;
and (ii) CL is of the form (Cl1, . . . , Cli, . . . , Clc), the node CL′ of
the form (Cl1, . . . , Cli − {s}, . . . , Clj ∪ {s}, . . . , Clc) is also in SV;
and

– there is no other node in SV.
Intuitively, once S is defined, the subgraph SG includes all the nodes that

are reachable from CL via the movements of some s ∈ S to their nearest
cluster. Let us denote the DISP of any node v with respect to a set of
representatives REP as DISPREP (v).

THEOREM 16.2
DISPREP ′(CL′) ≤ DISPREP (CL) for any node CL′ in SG, REP and REP ′

being the set of representatives for CL and CL′ respectively.
Proof. Let REP = (rep1, . . . , repc) and REP ′ = (rep′1, . . . , rep

′
c). The

dispersion of CL′ calculated with respect to REP will be DISPREP (CL′) =
(
∑k

i=1 disp(Cl
′
i, repi)). We first observe that

DISPREP (CL′) ≤ DISPREP (CL)
This is because the set of representatives is the same on both sides of the
inequality and since CL′ can be obtained by moving some s ∈ S to their
nearest representative in REP , the reduction in dispersion will result in the
above observation. On the other hand, since REP ′ is a set of representatives

382 Constrained Clustering: Advances in Algorithms, Theory, and Applications

for CL′, by definition they will minimize the dispersion for Cl′1, . . . , Cl′c, we
thus have the following inequality,

DISPREP ′(CL′) ≤ DISPREP (CL′)
By combining these two inequalities together, we have

DISPREP ′(CL′) ≤ DISPREP (CL′) ≤ DISPREP (CL)
�

From Theorem 16.2, we conclude that our clusters can in fact be refined
just by searching SG. There are two advantages to doing this. First, the
efficiency improves because the number of nodes to be searched is reduced,
and these nodes will have lower DISP than CL hence giving better quality
clusters. What remains to be done is to ensure that these nodes are valid.
Second, instead of considering only neighbors, SG allows us to consider nodes
that are many steps away.

Given SG, we adopt the steepest descending approach and try to plan a
path along the valid nodes of SG which leads to a new valid node CL′ with
minimized dispersion in SG. We call this problem the best path (BP) problem.
Note that in UC, the BP problem is trivially solved by an algorithm like c-
means which moves objects to their nearest representatives. In such a case,
computing the best path is easy as there are no invalid nodes to avoid. For
the CC case, however, if we want to plan a path through only valid nodes, we
can move an unstable pivot to its nearest clusters only if it is originally in a
surplus cluster, i.e., a cluster which has more pivot objects than required by
the EC. We call an unstable pivot which is in a surplus cluster, a movable
object.

To gain more insight into the BP problem and to derive an algorithm for
solving it, we introduce a concept called pivot movement graph which could
be used to represent the state of clustering in each node of SG.

DEFINITION 16.4 (Pivot Movement Graph)
A pivot movement graph is a directed graph in which each cluster is repre-
sented by a node. An edge from Cli to Clj indicates that there is at least
one unstable pivot object in Cli that has Clj as its nearest center. These
objects are represented as labels on the edge. The reduction in DISP when
an unstable object is moved to its nearest center is shown next to each of
these objects. �

Figure 16.1 shows an example of a pivot movement graph which is under
the constraint “∀i, count(Cli) ≤ 50.” As such, the surplus clusters at this
instance are Cl1, Cl3 and Cl5. Figure 16.2 shows the actual situation depicted
by the object movement graph in Figure 16.1. For clarity, only the unstable
pivots and the cluster representatives (marked by a cross) are shown. Given
a pivot movement graph, a pivot movement (PM) problem is the problem
of computing a schedule of movements for the unstable objects in the pivot
movement graph such that the total reduction in DISP is maximized.

Privacy-Preserving Data Publishing 383

Cl1
O (4)
O (11)

15

16

22
O (11)
O (11)24

23

O (11)

Cl5

count(Cl)=50

count(Cl)=51

count(Cl)=50

count(Cl)=52

Cl

Cl

Cl

2

3

4

3

2

1

O (8)
O (12)

O (7)

8

9

O (5)
O (3)

10

11

12

13

14

17

18

19

20

21

O (10)
O (9)
O (8)
O (3)
O (1)

O (5)
O (8)
O (17)
O (7)
O (3)

O (10)
O (7)
O (5)
O (2)

4

5

6

7
count(Cl)=51

2

1

3

4

5

FIGURE 16.1: A pivot movement graph
FIGURE 16.2: The actual situa-
tion

THEOREM 16.3

The BP (i.e., best path) problem is equivalent to the PM (i.e., pivot movement)
problem.
Proof. Given an optimized solution for BP, we follow the path given in
the solution and move the pivots in the corresponding pivot movement graph.
This will give a maximized reduction in dispersion. Similarly, if an optimized
schedule is give for PM, we can follow the schedule and move along a path
where each node in the path corresponds to a state of the pivot movement graph
when the schedule is followed. This will bring us to a node with minimized
dispersion in SG. �

Given their equivalence, any result which we prove to be true for the PM
problem can be applied to the BP problem. This is true also for any algorithm
derived for the PM problem. We now proceed to define a decision version of
the PM problem as follows.

DEFINITION 16.5 (The PM Decision Problem)
Given a pivot movement graph and an existential constraint EC, the PM
decision problem is to determine whether there is a schedule of movements
of objects around the clusters such that EC is satisfied at all times and the
total dispersion being reduced is ≥ B where B is a numeric constant. �

By analyzing the graph, we make two observations which hint that the PM
problem is a very difficult problem. First, the movement of an unstable pivot
object could possibly trigger a series of movements of other unstable pivot
objects. For example, by moving O3 from Cl1 to Cl2, Cl2 now has 51 pivot
objects, and thus we could move O8 from Cl2 to Cl3. We refer to such a
series of triggerings as a movement path. Second, given a surplus cluster
with more than one outgoing edge, it is not obvious which outgoing edge
should be picked so that DISP is minimized in the resultant movement path.

384 Constrained Clustering: Advances in Algorithms, Theory, and Applications

True to our observation, we prove the following theorem:

THEOREM 16.4

The PM decision problem is NP-complete.
Proof. See Appendix A.

Furthermore, by using a result given in [6], we can show that it is not
possible to compute in polynomial time a constant factor approximation for
the PM problem. In view of this, our next alternative is to use heuristics
which could work well in practice and efficient enough for handling a large
dataset. The purpose of the heuristic is to iteratively pick an edge in the
pivot movement graph and move an unstable object on the edge to its nearest
representative thus forming a schedule of movements for the unstable pivots.
It is clear that once an edge has been chosen, the unstable pivot with the
largest reduction in DISP should be moved. This is because at each iteration
of the loop, the key change is whether the surplus status of a cluster changes
as a result of the current movement. Once an edge has been selected, this
status is kept fixed; in this case, moving the object with the biggest reduction
is the appropriate action to take. We experiment with two heuristics.

The first heuristic is a random heuristic in which a random edge is se-
lected from those edges that originate from a surplus cluster. Using Figure
16.2 as an example, only edges outgoing from Cl1 and Cl3 can be picked.
Suppose that the edge from Cl3 to Cl4 is picked, and object O12 is moved.
Then, in the next iteration of the loop, Cl3 will be a non-surplus cluster, while
Cl4 will be a surplus one.

The second heuristic is a look-ahead l heuristic which looks ahead at all
possible movement paths originating from a surplus cluster of up to length
l, and selects the best among them. The selected movement path is then
activated, resulting in a movement of up to l objects depending on the length
of the path. When l = 2, the heuristic examines all outgoing paths from Cl1 or
from Cl3 of length 2. These include 〈Cl3, Cl4, Cl5〉, 〈Cl3, Cl1, Cl3〉, etc. Since
there are at most k(k− 1) edges, there are at most O(k(k− 1)l+1) movement
paths. While there exist optimization strategies that can avoid examining all
the qualifying movement paths of length l, the worst case complexity of this
heuristic remains O(k(k − 1)l+1). Thus, the value of l is designed to be a
small integer.

Using these heuristics, our corresponding movement in SG will eventually
reach a node CL′′ where future movement is no longer possible. We then
repeat the process and form a new subgraph SG for processing.

16.3.2 Handling Tight Existential Constraints

While the cluster refinement algorithm discussed earlier works well under
most constraints, problem arises when the constraint EC is tight, i.e., when it

Privacy-Preserving Data Publishing 385

Cl1 Cl

count(Cl)=50

O (11)

O (10)

O (5)
O (2)

O (7)

1

3

4

5

6

2

O (4)

2

2count(Cl)=501

FIGURE 16.3: An example of a deadlock cycle

is nearly impossible to be satisfied. For example, given k = 5, |D| = 100 and
EC = {count(Cli) ≥ 20}, 1 ≤ i ≤ 5, our algorithm will not work well because
such a tight constraint will result in what we call a deadlock cycle. A sequence
of clusters 〈Cl1, . . . , Clc, Cl1〉 is said to be in a deadlock cycle of length c if (a)
all the clusters are non-surplus; and (b) there is an edge in the pivot movement
graph from Cli to Cli+1, 1 ≤ i ≤ k− 1, and one from Clc to Cl1, respectively.
Figure 16.3 shows a deadlock cycle of length 2. It is obvious although both
Cl1 and Cl2 are non-surplus, the constrained c-means algorithm can reduce
DISP by moving O1 and O2 from Cl2 to Cl1 and moving O3 and O4 from
Cl1 to Cl2 without invalidating the constraint.

In terms of the graph, SG, a tight EC means that SG contains a large
number of invalid nodes and refining the clusters by movement through only
valid nodes is not possible. In view of this, a deadlock resolution phase is
added before computing a new subgraph SG. The objective of the deadlock
resolution phase is to provide a mechanism to jump over a set of invalid
nodes by resolving deadlock in the pivot movement graph. Similar to the PM
problem, we can prove that resolving deadlock optimally is NP hard.

The proof is rather similar to the proof for Theorem 16.4. Similarly, we can
show that there is also no constant factor approximation algorithm for the
deadlock resolution problem which runs in polynomial time. Thus, we resort
to the following heuristic based on a randomized strategy. It conducts a depth-
first search on the pivot movement graph to find any deadlock cycle. This step
is efficient and takes time linear in the number of edges. Suppose the deadlock
cycle detected is 〈Cl1, . . . , Clc, Cl1〉. Let ni denote the number of unstable
pivot objects appearing as labels on the edge from Cli to Cli+1. Then let
nmax denote the minimum ni value among the edges in the cycle, i.e., nmax =
min1≤i≤k{ni}. This marks the maximum number of unstable objects that can
be moved across the entire cycle without violating EC. Furthermore, once
this movement has taken place, those edges in the cycle with ni = nmax can be
deleted, thus breaking the cycle. Once the nmax value has been determined,
the heuristic would move the unstable pivot objects with the top-nmax highest
reduction in DISP across each edge of the cycle.

16.3.3 Local Optimality and Termination

Having introduced our algorithm, we will now look at its formal properties
by analyzing the two main phases of the algorithm. These two phases are,

386 Constrained Clustering: Advances in Algorithms, Theory, and Applications

namely, the pivot movement phase in which we try to move only through valid
nodes and the deadlock resolution phase. Our algorithm essentially iterates
through these two phases and computes a new subgraph SG at the end of
each iteration.

16.3.3.1 Local Optimality Result

Having modeled our cluster refinement algorithm as a graph search, we
would like to establish that at the end of each iteration, the clustering obtained
corresponds to a local minimum in the subgraph SG. However, one subtle fact
here is that all dispersions of nodes in SG is actually computed with respect
to the cluster representatives of CL. The critical aspect here is that when
there is a pivot movement, say object p moved from Cli to Clj , both the
representatives of Cli and that of Clj change. When this occurs, the set
of unstable pivots S can also change, which means that SG itself must be
recomputed. This process is time-consuming, especially for our look-ahead
heuristic which must recompute SG every step it looks ahead. Because of
this, we choose to freeze the representative of each cluster and avoid the re-
computation of SG. As such, the cost of each node CL in the subgraph SG
is not the true dispersion but rather the “approximated” dispersion, denoted
as d̂isp(CL), relative to the fixed representatives. Now we can establish the
following result. Intuitively, at the end of the pivot movement phase, no
surplus cluster in the pivot movement graph has an outgoing edge. Thus, it
is not possible to find a valid node neighboring to the current one that has a
lower dispersion.

LEMMA 16.1
The clustering obtained at the end of the pivot movement phase is a local
minimum in the subgraph SG, where cost is based on approximated dispersion
d̂isp(CL). �

Interestingly, a deadlock cycle of length c corresponds to a path 〈CL1, . . . , CLc+1〉
in SG, such that the first node/clustering CL1 and the last node CLc+1 are
valid, but all the other nodes are not. This is a very interesting phenomenon
because resolving a deadlock cycle amounts to jumping from one valid node
to another via a sequence of invalid nodes in SG. In particular, if deadlock
cycles are resolved after the pivot movement phase as in our algorithm, then
we jump from a valid local minimum to another valid local minimum (which
is not a neighbor) with a strictly lower value of dispersion.

LEMMA 16.2
The clustering obtained at the end of the deadlock resolution phase is a local
minimum in the subgraph SG, where cost is based on approximated dispersion
d̂isp(CL). �

Privacy-Preserving Data Publishing 387

16.3.3.2 Termination of the Algorithm

While the above analysis sheds some light on the quality of the results
computed by pivot movement and deadlock resolution, we examine another
important property, termination, below.

Since each move in the graph SG corresponds to a reduction in the number
of unstable pivot objects, and the number of unstable pivot objects is finite, we
are guaranteed that both the object movement phase and deadlock resolution
phase will terminate. Indeed, both pivot movement and deadlock resolution
take polynomial time in the size of the graph SG.

To guarantee termination of the algorithm itself, the only remaining issue is
whether the algorithm will iterate through the two phases indefinitely. Since
we move to a node of lower DISP for every iteration, and G is a finite cluster-
ing space, it is impossible to have the DISP value decreasing forever. Thus,
the algorithm will not iterate through the two phases indefinitely.

16.4 Scaling the Algorithm for Large Databases

In the previous section, we introduced a cluster refinement algorithm that
solves the CC problem under an existential constraint. While the algorithm
terminates and gives results with good quality (e.g., local minima), it may
require a huge number of object movements for large databases, resulting in
high CPU as well as I/O costs. In this section, we examine how our algorithm
can be scaled up for large, disk-resident databases.

16.4.1 Micro-Clustering and Its Complication

For clustering large, disk-resident databases, many studies have adopted
a micro-clustering methodology, e.g., [20, 17, 2, 3, 7]. Essentially, the data
objects are “compressed” into micro-clusters in a pre-clustering phase so that
the subsequent clustering activities can be accomplished at the micro-cluster
level and in main memory. Intuitively, objects which are in the same micro-
cluster are objects which are so close together that they are most likely to
be in the same cluster anyway. As such, grouping them together and moving
them as a group represents a good trade-off between quality and efficiency.
Typically, to ensure that not much quality is lost, a maximum radius on a
micro-cluster is imposed (by a predefined maximal number of micro-clusters as
a threshold or by the user). For our cluster refinement algorithm, adopting the
micro-clustering strategy means that instead of moving one unstable object
across the edges of a pivot movement graph at a time, we have to move one
micro-cluster.

However, since each micro-cluster can contain more than one pivot object,

388 Constrained Clustering: Advances in Algorithms, Theory, and Applications

mc1

mc1

mc1

mc1

mc1

mc1

mc1

mc1

Cl3

Cl 2Cl1

5 non-pivots
2 pivots2 pivots

2 pivots

Cl3

Cl 2Cl1

3 pivots

1 pivot

5 non-pivots
2 pivots MovePivot(Cl ,Cl ,mc ,1)1 3 1

FIGURE 16.4: An example of micro-cluster sharing

it may not be possible to move a micro-cluster away from a surplus cluster
without invalidating the constraint. For example, any micro-cluster that con-
tains more that 2 pivot objects cannot be moved away from Cl1 in Figure
16.1. Similar complication arises when resolving deadlock since there is no
guarantee that for each edge in a cycle, the total number of pivot objects in
the micro-clusters to be moved are added up to exactly nmax.

16.4.2 Micro-Cluster Sharing

To resolve the above problems, we introduce a novel concept called micro-
cluster sharing. Given a micro-cluster with n non-pivot objects and m pivot
objects, the n non-pivot objects will always be allocated to the nearest cluster,
while them pivot objects can be shared among multiple clusters. For example,
consider Figure 16.4 in which micro-cluster mc1 is formed from 5 non-pivot
objects and 6 pivot objects. It is shared by three clusters, Cl1, Cl2 and Cl3.
Since Cl2 is the nearest to mc1, it owns all 5 of mc1’s non-pivot objects and
also 2 pivot objects frommc1. Cl1, on the other hand, contains 3 pivot objects
from mc1, while Cl3 has 1 pivot object from mc1.

To record the sharing or “splitting” of mc1 into multiple clusters, we use
the notation Cli.mc1 to represent the part of mc1 that are in Cli. Notice that
at this stage, we only record the number of pivot objects from mc1, and are
not concerned with the exact identities of these objects. This issue will be
examined more closely at the end of this section.

During the pivot movement and deadlock resolution phases, if p objects of
Cli.mc1 are to be moved to Clj , the algorithm calls a function MovePivot(Cli,
Clj , mc1, p) which updates the numbers in Cli.mc1 and Clj .mc1 accordingly.
In Figure 16.4, MovePivot(Cl1, Cl3, mc1, 1) moves one pivot object from
Cl1.mc1 to Cl3.mc1.

Since it is possible for Cli.mc1 to consist of a single pivot object, one may
suggest that we put each pivot object into its own micro-cluster. This would
simplify bookkeeping. However, the problem is that this defeats the original
purpose of micro-clustering. Essentially, micro-cluster sharing allows a micro-
cluster to be as large as possible, and splits a micro-cluster only on-demand.
Furthermore, the MovePivot() function can cause split micro-clusters to be

Privacy-Preserving Data Publishing 389

re-united again, thereby maximizing the effect of micro-clustering.
Given the MovePivot() function, the problem of being unable to shift micro-

clusters around the clusters is effectively solved since the micro-clusters can
now be dynamically split and combined to cater to the condition for swapping.
Since the number of objects in a micro-cluster is small enough for all of them
to fit in main memory, the above heuristic requires a minimum amount of
I/O.

The remaining issue that we need to address is at the end of clustering, how
to determine the actual objects in a micro-cluster mc that are to be assigned
to Cl1, . . . , Clq, where these are all the clusters for which Cli.mc is positive.
We adopt the following greedy heuristic:
• For all the non-pivot objects in mc, they are all assigned to the nearest

center/cluster. This is to reduce DISP as much as possible.

• Consider the set of distances defined as: {df(O,Cli) | O is a pivot
object in mc, and 1 ≤ i ≤ q}. Sort this set of distances in ascend-
ing order. Based on this order, the pivot objects are assigned to the
cluster as near as possible, while satisfying the numbers recorded in
Cl1.mc, . . . , Clq.mc.

16.5 Privacy Preserving Data Publishing as a Constrained
Clustering Problem

Having developed a solution for the CC problem, we are now ready to model
the privacy preserving data publishing problem as a constrained clustering
problem. To facilitate discussion, we will first try to formalize a generic version
of the privacy preserving data publishing problem as follows.

We have a raw data table T with d QI attributes A1, . . . , Ad and one
sensitive attribute As which we assume to be categorical with domain values
s1, . . . , sv. Our aim is to compute a generalized version of T , T ′, which
contains a generalized tuple m(t) for each tuple t in T . In addition, T ′ must
satisfy two criteria:

1. Privacy Constraints
For any t′ in T ′, let us denote the set of tuples that have exactly the
same values as t′ for the QI attributes as group(t′). We will use the
term equivalence group to refer to the union of groups of tuples together
with t′. We want group(t′) to satisfy a certain set of hard constraints P,
where P is a set of privacy constraints which must be satisfied in order
to protect the privacy of people whose record is in T .

2. Minimizing Loss Function
To measure the information loss due to the generalization, we define a

390 Constrained Clustering: Advances in Algorithms, Theory, and Applications

loss function L(T, T ′) which is typically an aggregate function computed
over each t in T and the corresponding m(t) in T ′. L(T, T ′) must be
minimized subject to the condition that the privacy constraints C are
satisfied.

To reduce this generic problem to our CC problem, we will set m(t) (the
generalized version of t) to be the cluster center that t is assigned to in the
CC problem, i.e., each tuple t is represented by its cluster center in T ′. The
loss function in this case is the dispersion which measures the total amount
of information loss by representing each tuple with their cluster center. Two
important issues remain. First, depending on the privacy constraint P, the
corresponding set of constraints C on the clustering must be determined.
Second, the appropriate value of c, the number of clusters, must also be set
such that information loss is minimized (the larger value of c, the better) while
the privacy constraint can still be satisfied (the lower value of c, the better).
We next consider these two issues in detail.

16.5.1 Determining C from P
In privacy preserving data publishing, the set of constraints in P is the most

important component that determines the amount of privacy protection that
is given to the people in the database. Here, we will give two examples of P
from the privacy preserving data publishing literature and show how they can
be converted into C, a set of constraints on the clusters in our CC problem.

1. The k-anonymity model.

The k-anonymity model [14, 13] is one of the fundamental models for pro-
tecting privacy. Here, P is a single constraint which states that each tuple
in the generalized table must have at least k − 1 other tuples that share the
same QI values in all the QI attributes. In this simple case, all data objects
in the table are pivots, and the corresponding clustering constraint is to view
all data objects in the raw table as pivots and require that each cluster, Cl,
must satisfy the existence constraint that count(Cl) ≥ k.

2. The l-diversity model.

Although k-anonymity ensures that a tuple is indistinguishable from at least
k−1 other tuples based on the QI attributes, no constraints are enforced on the
sensitive values in each group. Thus, privacy breach can occur if an adversary
has certain background knowledge. For example, if an adversary knows that
a particular person must be in the table and this person happens to be in the
same group of k (or more) tuples that have the same disease, then it is still
possible for the adversary to deduce that this particular person has a certain
disease.

In view of this, the l-diversity model is introduced in [11]. The l-diversity
model imposes a constraint that each equivalent group in the generalized ta-
ble must contain at least l “well-represented” sensitive values. In [11], three

Privacy-Preserving Data Publishing 391

interpretations are given to the term “well-represented”, giving rise to three
versions of l-diversity. The first version is distinct l-diversity which sim-
ply states that there should be at least l distinct sensitive values within each
equivalence group. The second, entropy l-diversity, requires the entropy of
each equivalence group to be greater than log(l); whereas the third, recur-
sive (m, l)-diversity, has the restriction that for each equivalence group, the
number of occurrences for the most frequent sensitive domain value should
be less than m times the total number of occurrences of the l least frequent
sensitive domain values in the group.

To cater to l-diversity, the corresponding CC problem must have one class of
pivots for each sensitive domain value. Again, all objects are pivots and each
must belong to a pivot class that is associated with its corresponding sensitive
value. Let us denote the pivot class associated with a sensitive value, si, as
class(si) and that of an object Oi as class(Oi[As]). Given a cluster Cl, we
denote the number of objects with sensitive value si in Cl as count(si, Cl).
The distinct l-diversity simply means that for each cluster Cl, there must
exist l distinct sensitive values s′1, . . . , s′l such that count(s′j , Cl) > 0 for
1 ≤ j ≤ l. Likewise, the entropy l-diversity and recursive (m, l)-diversity
have corresponding aggregation constraints which can be computed based
on count(sj , Cl) and thus the swapping procedure for constrained clustering
described in the earlier section can simply be applied as long as care is taken
to ensure that these aggregation constraints are not invalidated.

As can be seen from the above examples, the set of privacy constraints P can
in fact be effectively transformed into a set of constraints in the CC problem,
thus making it possible to adopt a constrained-based clustering approach for
privacy-preserving data publishing.

16.5.2 Determining c

Next, we look at the setting of c, the number of clusters which is very
important in determining the amount of information loss. Note that unlike the
unconstrained version of clustering where information loss will be reduced with
a high value of c, the relationship between c and the amount of information
loss is not clear in the constrained clustering problem. This is because a
high value of c will make it difficult or even impossible to satisfy the privacy
constraint and thereby result in poor quality clusters with large information
loss. For example, if c is larger than n/k, then it is not possible to ensure that
every equivalence group will contain more than k tuples. Here, we propose
two solutions.

The first and straightforward solution is to adopt an existing hierarchical
algorithm which will terminate at a certain value of c when all clusters satisfy
the privacy constraint. The result can then be used as an initial clustering
for our algorithm which can help reduce information loss through iterative
clustering. The setting of c in this case can thus be automatically determined.

392 Constrained Clustering: Advances in Algorithms, Theory, and Applications

However, this means that the quality of the output is in many ways dependent
on the existence of a good hierarchical algorithm, an assumption which might
not be true all the time.

The second approach is to perform the clustering for a range of possible
values of c. Note that a single scan of the database can be used to update
multiple instances of the clustering algorithm in parallel and thus computing
the clustering result for a range of values for c will not increase the number of
scans on the database substantially. At the same time, it is also possible to
deduce an upper bound for c in the form of n/k and n/l for the k-anonymity
and distinct l-diversity models, respectively, thus reducing the range of pos-
sible values. Among the constrained clustering results with different c’s, the
clustering result with the minimum information loss can then be chosen to
compute the final generalized table.

Once the appropriate C and c have been determined, our constrained clus-
tering algorithm can then be used for privacy-preserving data publishing.

16.6 Conclusion

In this chapter, we have introduced and studied the constrained clustering
problem and linked it to an important application: privacy-preserving data
publishing. For constraint-based clustering, our focus was mainly on existen-
tial constraints, whose presence complicates traditional algorithms. We have
developed a (constrained) cluster refinement algorithm, which includes two
phases of movement in a clustering locality graph: the pivot movement phase
and the deadlock resolution phase. Experimental results, reported in [15],
clearly show that both phases are valuable. Given that the optimal searches
in both pivot movement and deadlock resolution are hard to compute, we
have proposed various heuristics. Moreover, micro-cluster sharing is proposed
as a key to scale up the algorithm for large databases. As a deep insight on
its new, potential applications, we examine the applicability of our algorithm
for privacy-preserving data publishing. As indicated in our discussion, using
constrained clustering for privacy-preserving data publishing is simply a mat-
ter of setting the correct clustering constraints and the number of clusters.
Therefore, this study builds up an important linkage between constraint-based
clustering and privacy-preserving data publishing. Applying constrained clus-
tering for other models of anonymity [19] is an interesting direction for future
work.

Privacy-Preserving Data Publishing 393

Appendix A: Proof Sketch

start

1

i

count(v)=p+1
count(v)=p, for i=1,2,3
count(v’)=p, for i=1,2,3
EC : count(v) >= m, for all v

transform

1

2

23

3

startv
1start

23

v v

v v

1v’ v

v’
v’

vv

O (1) O (1)

O (1) O (1) O (1)

O (1)

O (1)O (1)

1 2

345

6

78

FIGURE 16.5: Transforming DHP to PM

THEOREM 16.5
The PM decision problem is NP-complete.

Proof Sketch. Given a pivot movement graph, we can simply guess a sched-
ule of a set of pivots to be moved and verify that the schedule results in a
total decrease in DISP which is ≥ B without invalidating EC at any time.
As such, PM ∈ NP .

Next, we will transform a known NP-complete problem, the direct Hamil-
tonian path (DHP) problem [4] into the PM problem. In a DHP problem, a
directed graph G = (V,E) is given, and the objective is to decide whether G
contains a Hamiltonian path starting from a node vstart. Given an instance of
DHP, we transform the graph G into a pivot movement graph G′ = (V ′, E′)
by first removing all incoming edges to vstart. A dummy node v′ is then added
for each v ∈ V and all incoming edges of v are directed into v′ instead. In
addition, an edge is added from v′ into v. Each node of G′ contains p objects
except for vstart which has p + 1 objects. For each edge, only one object is
to be moved along it. Each pivot that is successfully moved through the edge
reduces DISP by 1. We set the constraint EC to be count(V ′) ≥ p, i.e., each
node must contain at least p objects. The bound B is set to 2(|V | − 1). We
illustrate this transformation with an example in Figure 16.5 which should
be self-explanatory. Note that the numeric constant p is an arbitrary positive
integer which is used to ensure that only one node is eligible to move its object

394 Constrained Clustering: Advances in Algorithms, Theory, and Applications

at any one time.
Given that a solution could be found in the transformed instance, this

implies that at least 2(|V | − 1) nodes have been triggered. Since all the edges
are between a dummy node and a non-dummy one, half of the nodes must be
non-dummy nodes, i.e., there are |V | − 1 non-dummy nodes being triggered.
There is no repeating node within these |V | − 1 non-dummy nodes as each
of them can only be triggered by their corresponding dummy nodes and each
dummy node has only one object to be moved along the edge. As such, by
following the order of triggering of these |V | − 1 from vstart, a Hamiltonian
path can be formed.

Correspondingly, if there exists a Hamiltonian path in the original instance,
the remaining |V − 1| nodes can be trigged from vstart in the transformed
instance by going through the inserted dummy nodes. As such, if we add in
the dummy nodes, 2|V − 1| nodes will have been triggered. Since each node
triggered causes a reduction of 1 in DISP , the total reduction in DISP will
be ≥ B.

Since the PM problem has a solution if and only if the DHP problem has a
solution, PM must be NP-complete. �

References

[1] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-
anonymization. In ICDE ’05: Proceedings of the 21st International
Conference on Data Engineering (ICDE’05), pages 217–228, 2005.

[2] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms
to large databases. In Proceedings of the International Conference of
Knowledge Discovery and Data Mining (KDD’98), pages 9–15, Aug.
1998.

[3] V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining very large databases.
COMPUTER, 32:38–45, 1999.

[4] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman and Company, New York, 1979.

[5] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2006.

[6] D. Karger, R. Motwani, and G. D. S. Ramkumar. On approximating
the longest path in a graph. Algorithmica, 18:99–110, 1997.

Privacy-Preserving Data Publishing 395

[7] G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A hierarchical
clustering algorithm using dynamic modeling. COMPUTER, 32:68–75,
1999.

[8] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Intro-
duction to Cluster Analysis. John Wiley & Sons, 1990.

[9] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient
full-domain k-anonymity. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 49–60, 2005.

[10] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond
k-anonymity and l-diversity. In Proceedings of the 23rd International
Conference on Data Engineering, ICDE’07, pages 106–115, 2007.

[11] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam.
l-diversity: Privacy beyond k-anonymity. In Proceedings of the 22nd In-
ternational Conference on Data Engineering (ICDE’06), page 24, 2006.

[12] D. J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J. Y.
Halpern. Worst-case background knowledge for privacy-preserving data
publishing. In Proceedings of the 23rd International Conference on Data
Engineering, ICDE’07, pages 126–135, 2007.

[13] L. Sweeney. Achieving k-anonymity privacy protection using general-
ization and suppression. International Journal of Uncertainty,Fuzziness
Knowlege-Based Systems, 10(5):571–588, 2002.

[14] L. Sweeney. k-anonymity: a model for protecting privacy. International
Journal of Uncertainty,Fuzziness Knowlege-Based Systems, 10(5):557–
570, 2002.

[15] A. K. H. Tung, R. T. Ng, L. V. S. Lakshmanan, and J. Han. Constraint-
based clustering in large databases. In ICDT, pages 405–419, 2001.

[16] K. Wang, P. S. Yu, and S. Chakraborty. Bottom-up generalization: a
data mining solution to privacy protection. In Proceedings of the 4th
IEEE International Conference on Data Mining (ICDM 2004), Novem-
ber 2004.

[17] W. Wang, J. Yang, and R. Muntz. STING: A statistical information
grid approach to spatial data mining. In Proceedings of the 1997 In-
ternational Conference on Very Large Data Bases (VLDB’97), pages
186–195, Athens, Greece, Aug. 1997.

[18] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy preservation.
In Proceedings of the 32nd International Conference on Very Large Data
Bases, pages 139–150, 2006.

[19] X. Xiao and Y. Tao. Personalized privacy preservation. In Proceedings of
the ACM SIGMOD International Conference on Management of Data,
pages 229–240, 2006.

396 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[20] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient
data clustering method for very large databases. In Proceedings 1996
ACM-SIGMOD International Conference Management of Data (SIG-
MOD’96), pages 103–114, Montreal, Canada, June 1996.

Chapter 17

Learning with Pairwise Constraints
for Video Object Classification

Rong Yan
IBM TJ Watson Research Center, yanr@us.ibm.com

Jian Zhang
Purdue University, jianzhan@stat.purdue.edu

Jie Yang
Carnegie Mellon University, yang@cs.cmu.edu

Alexander G. Hauptmann
Carnegie Mellon University, alex@cs.cmu.edu

Abstract To deal with the problem of insufficient labeled data in video ob-
ject classification, one solution is to utilize additional pairwise constraints that
indicate the relationship between two examples, i.e., whether these examples
belong to the same class or not. In this chapter, we propose a discriminative
learning approach which can incorporate pairwise constraints into a conven-
tional margin-based learning framework. Different from previous work that
usually attempts to learn better distance metrics or estimate the underly-
ing data distribution, the proposed approach can directly model the decision
boundary and thus require fewer model assumptions. Moreover, the proposed
approach can handle both labeled data and pairwise constraints in a unified
framework. In this work, we investigate two families of pairwise loss functions,
namely convex and non-convex pairwise loss functions, and then derive three
pairwise learning algorithms by plugging in the hinge loss and the logistic
loss functions. We also extend the learning framework to support multi-class
learning and noisy pairwise constraints. The proposed learning algorithms
were evaluated using a people identification task on two surveillance video
data sets. The experiments demonstrated that the proposed pairwise learning

397

398 Constrained Clustering: Advances in Algorithms, Theory, and Applications

FIGURE 17.1: Examples of various pairwise constraints: (a) Temporal con-
straints from a single tracked sequence. (b) Temporal constraints of different
regions extracted at the same time. (c) Constraints provided by comparing
faces. (d) Constraints provided by user feedback.

algorithms considerably outperform the baseline classifiers using only labeled
data and two other pairwise learning algorithms with the same amount of
pairwise constraints.

17.1 Introduction

Learning with insufficient training data in classifying or recognizing objects
or people in videos [2, 22, 25] has recently become an interesting topic for a
lot of researchers [17, 9, 27, 29, 33]. To address this problem, one solution is
to integrate new knowledge sources that are complementary to the insufficient
training data. In this chapter, we are particularly interested in how to incor-
porate additional pairwise constraints to improve classification performance
for video objects. The inherent characteristics of video streams, that is, the
sequential continuity and multi-modalities, allow us to pose different types of
constraints to boost the learning performance. Moreover, these constraints
can often be obtained automatically or only with little human effort.

Figure 17.1 illustrates several examples of pairwise constraints in a scenario
of classifying people’s identities from surveillance video. First, pairwise con-
straints can be obtained from knowledge of temporal relations. For instance,

Learning with Pairwise Constraints for Video Object Classification 399

two spatially overlapping regions extracted from temporally adjacent frames
can be assumed to share the same labels whereas two regions appearing si-
multaneously in a camera cannot be labeled as the same. Second, we can
extract constraints from various modalities such as visual (face) [19] and au-
ditory (voice) cues [10]. For example, if we want to automatically identify
a person’s face from video sequences, conventionally we need to learn from
many training examples of the same person with different head poses and un-
der different lighting conditions. However, with the representation of pairwise
constraints, we only need a face comparison algorithm to provide the pairwise
relation between examples without building statistical models for every pos-
sible subject under every possible circumstance. This provides an alternative
way to aggregate different modalities, especially when the training examples
of people of interest are limited or not available at all. Finally, constraints can
also come from human feedback. Typically the system can select and show
some pairs of video sequences to a human annotator who can judge whether
these examples depict the same subjects or not. Unlike the general relevance
feedback process which forces users to annotate with the exact labels, asking
feedback in the form of pairwise constraints does not require users to have
prior knowledge or experience with the data set and in some degree it helps
to protect the privacy of human subjects in the video.

In recent years, researchers have realized the usefulness of incorporating
pairwise constraints into different kinds of learning algorithms. As discussed
in the next section, a large amount of previous work managed to use pair-
wise constraints to achieve reasonable performance improvement in various
tasks such as clustering [35, 30, 3, 16] and distance metrics learning (e.g.
Mahalanobis, cosine distance, Bregman divergence) [24, 15, 32, 4]. However,
relatively less attention has been placed on using additional pairwise con-
straints to support the classification (supervised learning) task. In this case,
the most general method to leverage pairwise constraints is to learn a better
distance metric before applying the supervised learning algorithm. But for
classification, it is more natural to directly model the decision boundaries as
has been done in discriminative classifiers, because the decision boundaries
might be simpler to estimate even when true underlying distance metrics are
either complex or against the model assumption. Moreover, since extant work
usually focuses on the unsupervised learning problem, it does not need to pro-
vide a principled way to handle the labeled data. But in our case, we have to
consider incorporating the labeled data into the learning framework since they
are the most useful information sources available. It is infeasible to convert ev-
ery pair of labeled data into pairwise constraints because this usually leads to
a prohibitive computation with an unreasonably large number of constraints.

In this work, we propose a regularized discriminative learning framework
which naturally incorporates pairwise constraints into a conventional margin-
based learning algorithm. The proposed framework is able to use additional
pairwise constraints together with labeled data to model the decision bound-
ary directly, instead of resorting to estimating an underlying distance metric

400 Constrained Clustering: Advances in Algorithms, Theory, and Applications

which could be much more complex. We investigate two families of pairwise
loss functions, i.e., convex and non-convex pairwise loss functions under the
proposed learning framework. Analogous to kernel logistic regression (KLR)
[37] and support vector machines (SVMs)[28], we derive three pairwise learn-
ing algorithms by plugging in the hinge loss and the logistic loss functions into
this framework. These algorithms are evaluated in the context of classifying
people’s identities from surveillance video.

17.2 Related Work

The classification of visual objects is a perceptual and cognitive task which
is fundamental to human vision. Despite the fact that these objects may vary
somewhat in shape, color, texture, etc., a human can detect and recognize
a multitude of familiar and novel objects through vision without any effort.
However, it is a very challenging problem for machines. Object classification
has been an active research area in the computer vision community for last
two decades, though problems of interest have been changing over time, from
automatic target recognition (ATR) [12, 20], to optical character recognition
(OCR) [26], to face detection and recognition [7]. Visual object recognition has
made great progress in recent years because of advances in learning theories,
which is evident in several recent chapters [9, 27, 29, 17, 25, 22].

Along another research direction, efforts have been made to help both su-
pervised and unsupervised learning with pairwise constraints [35, 30, 24, 23,
3, 14, 15, 32, 34]. In the context of graph partitioning, Yu and Shi [35]
have successfully integrated pairwise constraints into a constrained grouping
framework, leading to improved segmentation results. Wagstaff et al. [30]
introduced pairwise constraints into the k-means clustering algorithm for un-
supervised learning problems. In more closely related work by Xing et al. [32],
a distance metric learning method is proposed to incorporate pairwise infor-
mation and solved by convex optimization. However, the method contains
an iterative procedure with projection and eigenvalue decomposition which is
computationally expensive and sensitive to parameter tuning. By comparison,
relevant component analysis (RCA) [24] is a simpler and more efficient ap-
proach for learning a full Mahalanobis metric. A whitening transformation of
the covariance matrix of all the center-points in the chunklets is computed as
a Mahalanobis distance. However, only positive constraints can be utilized in
this algorithm. In [23], Shental et al. propose a constrained Gaussian mixture
model which incorporates both positive and negative pairwise constraints into
a GMM model using the expectation-maximization (EM) algorithm. Basu et
al. [3] studied a new approach for semi-supervised clustering by adding ad-
ditional penalty terms into the objective function. They also proposed an

Learning with Pairwise Constraints for Video Object Classification 401

approach to actively select the most informative constraints rather than se-
lecting them at random. In [4], they also used pairwise constraints to learn
more advanced metrics such as parameterized Bregman distances or direc-
tional distances. Kumar and Hebert [14] presented a discriminative learning
framework for the classification of the image regions by incorporating inter-
actions from neighborhood nodes together with the observed examples. Pair-
wise constraints have also been found useful in the context of kernel learning.
Kwok and Tsang [15] formulated the kernel adaptation problem as a distance
metric learning problem that searches for a suitable linear transform in the
kernel-induced feature space, even if it is of infinite dimensionality.

Learning with pairwise constraints is also related to the semi-supervised
learning problem, which attempts to leverage a large number of unlabeled
data to boost the classifier built from a small number of labeled data. Work
by Nigam et al. [18] handled the unlabeled data by using a combination of the
EM algorithm [8] and a naive Bayes classifier to augment text classifiers, and
demonstrated that unlabeled data can be used to improve the accuracy of text
classification. Co-training [5] is one of the most well-known multi-view semi-
supervised learning algorithms. The idea of co-training is to incrementally
update the classifiers of multiple views which allows the redundant informa-
tion across views to improve the learning performance. Lafferty et al. [38]
represented the labeled and unlabeled data as the vertices in the weighted
graph, where the edge weights encode the similarity between instances. For
learning the part-based appearance models, Xie et al. [31] extended the GMM
model to the semi-supervised case where most of positive examples are cor-
rupted with cluster but a small fraction are uncorrupted. Compared with
these semi-supervised learning algorithms, the algorithms leveraging pairwise
constraints can utilize additional information about the relationship between
pairs of examples other than the unlabeled data itself. Recently, Zhang and
Yan [36] proposed a transformation-based learning method for learning with
pairwise constraints and showed that optimal decision boundary can be con-
sistently found as the number of pairwise constraints approaches infinity.

17.3 Discriminative Learning with Pairwise Constraints

Formally, the goal of classification is to produce a hypothesis f : X → Y ,
where X denotes the domain of possible examples and Y denotes a finite
set of classes. A learning algorithm typically takes a set of training exam-
ples (x1, y1), ..., (xn, yn) as input, where yi ∈ Y is the label assigned to the
example xi ∈ X . In this section, we mainly consider the case of binary
classes while leaving the discussions of multiple classes to Section 17.5. In
addition to the data with explicit labels, there is another set of pairwise

402 Constrained Clustering: Advances in Algorithms, Theory, and Applications

constraints (xi, xj , cij) constructed from both labeled and unlabeled data,
where cij ∈ {−1, 1} is the pairwise constraint assigned to two examples
xi, xj ∈ X . For the sake of simplicity, (xi, xj , 1) will be called the posi-
tive constraints which means the example pair (xi, xj) belongs to the same
class, and (xi, xj ,−1) the negative constraints which means the pair (xi, xj)
belongs to different classes.

17.3.1 Regularized Loss Function with Pairwise Information

In the following discussion, we pay particular attention to supervised learn-
ing algorithms that attempt to minimize a margin-based loss function, called
margin-based learning algorithms [11]. This includes a large family of well-
studied algorithms with different loss functions and minimization algorithms,
such as decision trees, logistic regression, support vector machines, and Ad-
aBoost. The margin-based learning algorithms minimize the loss function
with respect to the margin, which is,

min
f
Rreg(f) =

n∑

i=1

L̃(yi, f(xi)) + λΩ(‖f‖H), (17.1)

where L̃ is the empirical loss function, Ω(·) is some monotonically increasing
regularization function on the domain [0,+∞] which controls the complexity
of the hypothesis space, H denotes a reproducing kernel Hilbert space (RKHS)
generated by some positive definite kernel K, ‖·‖H is the corresponding norms
and λ is the regularization constant. The empirical loss function L̃(yi, f(xi)) is
usually set to a function of “margin” yf(x) [11], i.e., L̃(yi, f(xi)) = L(yif(xi)).
With different choices of loss functions and regularization terms, we can derive
a large family of well-studied algorithms from equation (17.1). For example,
the support vector machines (SVMs) can be viewed as a binary margin-based
learning algorithm with loss function L(z) = max(1− z, 0) and regularization
factor ‖w‖22 where w is the margin. To illustrate, Figure 17.2(a) shows a
comparison of four different loss functions against the margin yf(x), including
misclassification loss I(sgn(f) �= y), exponential loss exp(−yf), hinge loss
(1− yf)+, and logistic loss log(1 + exp(−yf(x)).

Under this learning framework, pairwise constraints can be introduced as
another set of empirical loss functions in an attempt to penalize the violation
of the given constraints,

O(f) =
n∑

i=1

L(yif(xi)) + μ
∑

(i,j)∈C

L′(f(xi), cijf(xj)) + λΩ(‖f‖H), (17.2)

where we call μ pairwise factors and L′(f(xi), cijf(xj)) pairwise loss functions.
In the rest of this chapter, we simplify the notation of f(xi) to be fi and thus
L′(f(xi), cijf(xj)) can be written as L′(fi, cijfj). Eqn(17.2) enjoys the nice

Learning with Pairwise Constraints for Video Object Classification 403

property that when the number of pairwise constraints n is zero, it trivially
degrades to a margin-based learning problem with only the labeled data. To
complete the definition of the learning framework in Eqn(17.2), we still need
to determine a family of appropriate pairwise loss functions for the pair of
examples. Although there are lots of ways to design the pairwise loss functions,
we want to seek a family of loss functions that satisfy the following properties:

1. L′ is commutable, i.e., L′ have the same value when fi and fj exchange
their positions, or equally L′(fi, cijfj) = L′(fj , cijfi), because the con-
straints would not change if the examples exchange their positions.

2. L′ is even, i.e., L′ have the same value when fi and fj reverse their
signs, or equally L′(fi, cijfj) = L′(−fi,−cijfj), because the constraints
would not change if the predictions reverse their signs.

3. L′ has correct decision boundaries, i.e., L′ ≥ L′(0, 0) when fi and cijfj

have different signs but L′ ≤ L′(0, 0) when they have the same signs.
This property ensures that the goal of minimizing the objective func-
tions O(f) could provide predictions consistent with most of the given
pairwise constraints.1

4. L′ is a convex function for both fi and cijfj , i.e., the value L′ at the
midpoint of every interval in [−∞,∞] does not exceed the average of
its value at the end of its interval. This property indicates the existence
of a unique global optimum and allows simpler parameter estimation
methods.

Both property 3 and 4 are important. Property 3 essentially implies that
the desired solution can be obtained by seeking the minimum expected loss,
where the expectation is taken with respect to the distribution of pairwise
constraints. On the other hand, property 4 implies that we are able to find
the optimal solution as the number of pairwise constraints approaches infinity.
Unfortunately, it can be shown that the last two properties conflict with each
other. That is to say, no matter how you design pairwise loss functions, it is
impossible for them to have correct decision boundaries and be convex at the
same time [34].2 As a trade-off, we have to determine which of these two prop-
erties is supposed to be satisfied. In the rest of this section, we describe two
possible families of pairwise loss functions and discuss their relationships: one
is the non-convex pairwise loss functions which have correct decision bound-
aries, the other is the convex pairwise loss functions with incorrect decision
boundaries.

1Note that we only consider the non-trivial case that for each inequality there is at least
one point where the inequality is strictly satisfied.
2However, in our recent work [36] we constructed a transformation-based method which
can find the optimal classification boundary consistently. This method cannot be covered
by the formulation in Eqn(17.2).

404 Constrained Clustering: Advances in Algorithms, Theory, and Applications

17.3.2 Non-Convex Pairwise Loss Functions

In order to provide a family of pairwise loss functions which are commutable,
even, and also have the correct decision boundary, the simplest case is to
choose the binary loss function analogous to the misclassification loss,

L′
binary = I(sgn[fi] �= sgn[cijfj]),

which gives a unit penalty for violation of pairwise constraints and no penal-
ties otherwise. Although minimizing this exact misclassification loss may be
worthwhile, it is generally intractable to optimize because of its discontinuity.
Even worse, it is not able to penalize large errors more heavily.

To provide a continuous family of pairwise loss functions, we introduce the
following non-convex pairwise loss functions,

L′
nonconv = L′′(fi) + L′′(cijfj)− L′′(fi + cijfj)

where L′′(x) = L′(x)+L′(−x) and L′(x) can be any convex loss function such
as the logistic loss and the hinge loss function. To ensure the empirical loss
function and pairwise loss function are comparable, we usually choose L′ in
the same form as L and thus L′′(x) = L(x) + L(−x). Therefore the primal
optimization problem has the following form,

n
X

i=1

L(yifi) + μ
X

(i,j)∈C

`

L′′(fi) + L′′(cijfj) − L′′(fi + cijfj)
´

+ λΩ(‖f‖H).(17.3)

It has been proven that L′
nonconv is commutable, even, and has correct deci-

sion boundaries under some general conditions [34]. Two additional advan-
tages make it a preferred choice compared to the binary loss function. First,
L′

nonconv is able to place more penalties on larger errors. Second, its conti-
nuity allows efficient optimization approaches to be applied such as the EM
algorithm and quadratic programming. However, the function of L′

nonconv is
no longer convex and thus it is possible for the optimization algorithm to get
trapped in a local optimum.

17.3.3 Convex Pairwise Loss Functions

This section considers the family of convex pairwise loss functions based on
the intuition that the prediction difference of two examples, i.e., fi − cijfj ,
can be a “soft” measure of how possible the pairwise constraints would be
violated. Therefore we choose loss function L′ to be a monotonic decreasing
function of prediction difference fi − cijfj , i.e., L̂′(fi − cijfj), which plays a
similar role as the residues y − f(x) in regression. Meanwhile, the pairwise
loss function should be symmetric for any example pair and therefore L̂′ could
be represented as L̂′(x) = L̂(x) + L̂(−x), where L̂ now can be any monotonic

Learning with Pairwise Constraints for Video Object Classification 405

decreasing function f : X → R. By choosing L̂ to be empirical loss function
L, we obtain the convex pairwise loss function3

L′
conv = L(fi − cijfj) + L(cijfj − fi),

and the corresponding primal optimization problem,

n∑

i=1

L(yifi) + μ
∑

(i,j)∈C

(L(fi − cijfj) + L(cijfj − fi)) + λΩ(‖f‖H). (17.4)

When L(x) is convex to x (true for most loss functions), it is not difficult
to verify that the pairwise loss function L′

conv is also convex to fi and fj ,
which allows us to apply standard convex optimization techniques to solve
the primal optimization problem. Generally speaking, minimizing a convex
pairwise loss function is much more efficient than minimizing a non-convex
pairwise loss function, which comes at the price that L′

conv cannot provide the
correct decision boundaries. But this disadvantage can be largely overcome by
the fact that L′

conv actually serves as a convex upper bound of L′
nonconv [34].

The upper bound is usually tight because L′
conv and L′

nonconv are equal if
and only if fi = −cijfj . This property guarantees the global optimum of the
corresponding convex objective functions in Eqn(17.4), although they have
incorrect decision boundaries, can still provide a reasonable approximation
for the optimum of the non-convex objective functions in Eqn(17.3).

A special case for Eqn(17.4) is to fit a linear decision boundary on the input
feature space, i.e., f(x) can be expressed in the form of wTx and ‖f‖H = ‖w‖
in the L2 space. Substituting f(x) = wTx and ‖f‖H = ‖w‖ into Eqn(17.4),
we have

n
X

i=1

L(yiw
T xi) + μ

X

(i,j)∈C

n

L(wT (xi − cijxj)) + L(wT (cijxj − xi))
o

+ λΩ(‖w‖).

It can be shown that this objective function with μ = 1 is equivalent to the
objective function of Eqn(17.1) with an expanded labeled data set, which in-
cludes 2n pseudo-labeled data (x = xi− cijxj , y = 1) and (x = xi− cijxj , y =
−1) in addition to the original labeled data. This property is intriguing be-
cause it allows an easier implementation for linear kernel classifiers by means
of adding 2n new training examples without modifying existing algorithms or
software packages.

3This function has another interpretation as follows. For a pairwise constraint (xi, xj , cij),
we would like to penalize two cases based on the predictions: 1. fi > 0 and cijfj < 0; 2.
fi < 0 and cijfj > 0. If we use L(fi − cijfj) to penalize the first case and L(cijfj − fi) for
the second case, we have exactly the pairwise loss function described above.

406 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) (b)

(c) (d)

FIGURE 17.2: A comparison of loss functions: (a) A comparison of four dif-
ferent loss functions against margin yf(x). The losses are misclassification
loss I(sgn(f) �= y), exponential loss exp(−yf), support vector loss (1− yf)+
and logistic regression loss log(1 + exp(−yf(x)). (b) The pairwise loss func-
tion in CPKLR against f(x1) and yf(x2). (c) The pairwise loss function in
CPSVM against f(x1) and yf(x2). (d) The pairwise loss function in NPKLR
against f(x1) and yf(x2).

17.4 Algorithms

In this section, we substitute two widely applied loss functions, i.e., the lo-
gistic loss function and hinge loss function, into both the non-convex pairwise
objective functions in Eqn(17.3) and the convex pairwise objective functions in
Eqn(17.4). We derive three different but closely related learning algorithms
from the proposed discriminative learning framework, i.e., convex pairwise
kernel logistic regression (CPKLR), convex pairwise support vector machines
(CPSVM) and non-convex pairwise kernel logistic regression (NPKLR). In the
following, we describe these three algorithms in more details, present their op-
timization approaches, and conclude with an illustrative example.

Learning with Pairwise Constraints for Video Object Classification 407

17.4.1 Convex Pairwise Kernel Logistic Regression (CPKLR)

We begin our discussion by considering convex pairwise objective functions
in Eqn(17.4), which can be easily solved by convex optimization techniques.
In the first algorithm, we adopt the logistic regression loss function L(x) =
log(1 + e−x) as the empirical loss function, yielding

O(f) =
n∑

i=1

log(1 + e−yif(xi)) + μ
∑

(i,j)∈C

log(1 + ef(xi)−cijf(xj))

+μ
∑

(i,j)∈C

log(1 + ecijf(xj)−f(xi)) + λΩ(‖f‖H). (17.5)

Figure 17.2(b) depicts the pairwise loss function used in Eqn(17.5). In the
following discussions, we present the kernelized representation of the primal
problem Eqn(17.5) using the representer theorem [13]. This representation
allows simple learning algorithms to construct a complex decision boundary
by projecting the original input space to a high dimensional feature space,
even infinitely dimensional in some cases. This seemingly computationally
intensive task can be easily achieved through a positive definite reproducing
kernel K and the well-known “kernel trick.” To begin, let R(·) represent the
empirical loss and Ω(‖f‖H) = ‖f‖2H. Therefore, the primal problem Eqn(17.5)
can be rewritten as,

min
f∈H

R({yi, f(xi)}, {cij , f(xi), f(xj)}) + λ‖f‖2H. (17.6)

The loss function R(·) is pointwise, which only depends on the value of f at
the data points {f(xi), f(xi), f(xj)}. Therefore by the representer theorem,
the minimizer f(x) admits a representation of the form

f(·) =
n′
∑

i=1

αiK(·, x̄i)), (17.7)

where n′ = n+ 2|C|, x̄i ∈ {xi}i=1...n ∪ {(xi, xj)}(i,j)∈C is an expanded train-
ing set including labeled examples xi and examples from every pairwise con-
straints {xi, xj}.

In the following, denote by K the n′ × n′ Gram matrix. Moreover, denote
by Kl an n × n′ matrix containing top n rows of K corresponding to xi,
i.e., Kl = [K(xi, x̄j)]n×n′ . Similarly, denote by Kl1 and Kl2 the |C| × n′

matrices containing |C| rows of K corresponding to xi and xj , respectively.
We derive the kernelized representation of logistic regression loss function by
substituting Eqn(17.7) into Eqn(17.5),

R(α) = �1T log(1 + e−Kpα) + μ · �1T log(1 + eK
′
pα)

+μ · �1T log(1 + e−K′
pα) + λαKα, (17.8)

408 Constrained Clustering: Advances in Algorithms, Theory, and Applications

where α = {α1 . . . αn+2|C|}, the regressor matrix Kp = diag(y1 . . . yn)Kl, and
the pairwise regressor matrix K′

p = Kl1 − diag(c1 . . . c|C|)Kl2.
To find the minimizer α, we derive the parameter estimation method using

the interior-reflective Newton method to iteratively solve the equation. Since
the optimization function is convex, the Newton method can guarantee the
finding of the global optimum. The gradient and Hessian of the objective
function are as follows,

∂R(α)
∂α

= KT
p p + μ(K′T

p p−K′T
p (1− p)) + 2λKTα, (17.9)

∂2R(α)
∂α2

= KT
p WKp + 2μK′T

p W′Kp + 2λKT , (17.10)

where p(x), p′(x) denote the logistic model

p(x) =
eKpα

1 + eKpα
,p′(x) =

eK
′
pα

1 + eK
′
pα
,

and W,W′ denote the corresponding weighted matrices diag(p(xi)(1−p(xi)))
and diag(p′(xi)(1− p′(xi))). It can be shown that the Newton updates are

α← α− (
∂2R(α)
∂α2

)−1 ∂R(α)
∂α

.

In practice, we solve this optimization problem with a subspace trust region
method based on the interior-reflective Newton method described in [6]. Fi-
nally, the prediction is made by,

Pred(x) = log

⎧
⎨

⎩
1 + exp(−

n′
∑

i=1

αiK(x̄i, x))

⎫
⎬

⎭
.

In the rest of this chapter, we will call this learning algorithm convex pairwise
kernel logistic regression (CPKLR).

17.4.2 Convex Pairwise Support Vector Machines (CPSVM)

The second type of convex pairwise objective functions to be discussed is
derived from the hinge loss function L(x) = (1−x)+ by analogy to the SVMs.
As the first step of construction, we plug the hinge loss into the convex pairwise
loss function, yielding

Lconv = (1 + fi − cijfj)+ + (1− fi + cijfj)+
= max(2, 1 + fi − cijfj , 1− fi + cijfj). (17.11)

It can be found that the loss function of Eqn(17.11) is invariant to the shifts
of fi, fj as long as the condition −1 ≤ fi−cijfj ≤ 1 holds. However, we prefer

Learning with Pairwise Constraints for Video Object Classification 409

the pairwise loss function to be more sensitive to the violation of constraints
even when their decision outputs are close to each other. Therefore we modify
the Lconv to be the following form,

Lconv = max((1 + fi − cijfj)+, (1− fi + cijfj)+)
= max(1 + fi − cijfj , 1− fi + cijfj) = 1 + |fi − cijfj |. (17.12)

Obviously, we can show that Lconv in Eqn(17.12) are still convex but more
sensitive to the constraint violation. Figure 17.2(c) plots the pairwise loss
function used in Eqn(17.12). By substituting this pairwise loss function into
the optimization objective function and ignoring the constant terms, we have,

O(f) =
n∑

i=1

(1− yif(xi))+ +

μ
∑

(i,j)∈C

|f(xi)− cijf(xj)|+ λΩ(‖f‖H). (17.13)

Let us first consider the family of linear prediction functions where f(x) =
wTx. In this case, by replacing the absolute and the hinge loss functions, we
can get the primal optimization form as follows,

min
n∑

i=1

ξi + μ
∑

(i,j)∈C

ηij + λwTw

s.t. ξi ≥ 1− yiw
Txi, ξi ≥ 0, i = 1..n

ηij ≥ wTxi − cijwTxj ,

ηij ≥ −wTxi + cijw
Txj , (i, j) ∈ C. (17.14)

We take the Lagrangian as usual to get the dual form,

L(w, ξ, η, α, β, γ) =

n
X

i=1

ξi + μ
X

(i,j)∈C

ηij + λwT w +

n
X

i=1

αi(1 − yiw
T xi − ξi) −

n
X

i=1

βiξi

+
X

(i,j)∈C

γ+
ij(w

T xi − cijw
T xj − ηij) +

X

(i,j)∈C

γ−
ij(−wT xi + cijw

T xj − ηij).

By setting all the derivatives of the Lagrangian with respect to the primal
variables to be zero, we have

1 = αi + βi, (17.15)
μ = γ+

ij + γ−ij , (17.16)

−2λw = −
n∑

i=1

αiyixi +
∑

(i,j)∈C

(γ+
ij − γ−ij)xi +

∑

(i,j)∈C

(−cijγ+
ij + cijγ

−
ij)xj

= −
n∑

i=1

αiyixi +
∑

(i,j)∈C

(γ+
ij − γ−ij)(xi − cijxj). (17.17)

410 Constrained Clustering: Advances in Algorithms, Theory, and Applications

According to the Karush-Kuhn-Tucker (KKT) dual-complementarity condi-
tion, we have αi, βi, γ

+
ij , γ

−
ij > 0. By plugging the above equations back into

the Lagrangian and denoting γij = γ+
ij − γ−ij , the dual form can be rewritten

as,

n∑

i=1

αi −
1
4λ

n∑

i,j=1

αiαjyiyjK(xi, xj)

+
1
4λ

∑

(i,j),(i′,j′)∈C

{γijγi′j′ [K(xi, xi′) + cijci′j′K(xj , xj′)− cijK(xj , xi′)− ci′j′K(xi, xj′)]}

− 1
2λ

n∑

i=1

∑

(i′,j′)∈C

αiyiγi′j′ [K(xi, xi′)− ci′j′K(xi, xj′)] , (17.18)

subject to the following conditions,

0 ≤ αi, αj ≤ 1, i, j = 1..n

−μ ≤ γij , γi′j′ ≤ μ, (i, j), (i′, j′) ∈ C
where the kernel function K(xi, xj) is the inner product of xi and xj , i.e.,
〈xi, xj〉. We can find that the dual objective function only relies on the inner
product of the input variables. Therefore we can place any kind of positive
definite kernel function into Eqn(17.18) and allow it to produce non-linear
predictions even in infinite dimensions. This quadratic programming problem
can be solved by modifying the sequential minimal optimization (SMO) al-
gorithm [21]. After the dual objective is optimized, w can be computed with
Eqn(17.17) and the prediction is made by,

Pred(x) =
1
2λ

⎧
⎨

⎩

n∑

i=1

αiyiK(xi, x)−
∑

(i,j)∈C

γij [K(xi, x)− cijK(xj , x)]

⎫
⎬

⎭
.

In the rest of this chapter, we will call this learning algorithm convex pairwise
support vector machines (CPSVM). This algorithm is efficient because its
dual form only contains n+ |C| number of variables.

17.4.3 Non-Convex Pairwise Kernel Logistic Regression
(NPKLR)

Until now, we mainly studied the variants of the convex pairwise loss func-
tions and their corresponding pairwise learning algorithms, i.e., the CPKLR
and CPSVM algorithms. Both algorithms are computationally efficient and
guaranteed to converge to the global optimum because of the convexity of
their loss functions. However, their classification performances are likely to

Learning with Pairwise Constraints for Video Object Classification 411

be degraded due to the drawback that they cannot provide correct decision
boundaries.

In this section, we investigate the third type of the pairwise objective func-
tions which is derived from the family of non-convex pairwise loss functions
Lnonconv with the logistic loss function L(x) = log(1 + e−x). By substituting
the logistic loss into Eqn(17.3), our optimization goal becomes minimizing the
following objective function

O(f) =
n∑

i=1

log(1 + e−yif(xi)) + λΩ(‖f‖H)

+ μ
∑

(i,j)∈C

{
log(1 + ecijf(xj)) + log(1 + ef(xi))− log(1 + ef(xi)+cijf(xj))

}
.

In contrast to convex pairwise loss functions, the non-convex pairwise loss
function above can provide correct decision boundaries and hopefully produce
more accurate predictions than its convex counterpart. With some further
manipulations for the objective function, we can derive an equivalent form as
follows,

O(f) = −
m∑

i=1

log
(

1
1 + e−yif(xi)

)

+ λΩ(‖f‖H) (17.19)

−μ
∑

(i,j)∈C

log
(

1
1 + ef(xi)

1
1 + ecijf(xj)

+
1

1 + e−f(xi)

1
1 + e−cijf(xj)

)

.

This formulation naturally provides a Bayesian interpretation for the proposed
objective function. Let P (y|x) denote the conditional probability for an exam-
ple pair (x, y), P (c|x1, x2) denote the conditional probability for a constraint
pair (x1, x2, c), and y1, y2 denote the labels of (x1, x2). The posterior mode
of the parameters θ can be written as,

arg max
θ
p(θ|x, y, c) = arg max

θ
p(θ)L(θ)

= arg max
θ

(log p(θ) + logL(θ)) . (17.20)

The first term log p(θ) is the logarithm of the prior probability for param-
eters θ. If we assume the prior probability p(θ) to be proportional to the
exponential function e−nλΩ(‖f‖H), we can recover the regularization term in
Eqn(17.19). The second term above is the log-likelihood for all examples and
constraints where,

logL(θ) =
n∑

i=1

logP (yi|xi; θ) +
∑

(i,j)∈C

logP (cij |xi, xj ; θ). (17.21)

The sample space which satisfy the constraint (x1, x2, c) can be partitioned
into two mutually exclusive events. One is the event of y1 = 1 and y2 = c, and

412 Constrained Clustering: Advances in Algorithms, Theory, and Applications

the other is the event of y1 = −1 and y2 = −c. By assuming the prediction
of x1 and x2 are independent to each other, we obtain

P (cij |xi, xj ; θ) = P (yi = 1|xi; θ)P (yj = cij |xj ; θ)
+ P (yi = −1|xi; θ)P (yj = −cij |xj ; θ). (17.22)

Similar to logistic regression, the conditional probability P (y|x) can be repre-
sented as the sigmoid function 1/(1+exp(−yf(x))). By substituting Eqn(17.22)
and Eqn(17.21) into Eqn(17.20) we can exactly recover to the formulation of
the non-convex pairwise loss function in Eqn(17.19) except the additional
weight μ in Eqn(17.19) allows more flexibility in the implementation.

The major difficulty for explicitly minimizing the optimization objectives
lies in the log-sum form of the pairwise loss function. Therefore, we apply
the expectation-maximization (EM) algorithm [8] to iteratively optimize the
objective function. For each constraint pair (xi, xj , cij) we define zi, zj as
the hidden variable where only one of them is 1 and the other is 0. So
E(zi) +E(zj) = 1 where E(z) is the expectation of z and here E(z) = P (z =
1). The EM algorithm can proceed as follows,

E-step: For each (i, j) ∈ C, set the hidden variables to be

E(zi) =
(
1 + ef(xi) · ef(zixj)

)−1

,

E(zj) =
(
1 + e−f(xi) · e−f(zixj)

)−1

.

M-step: Maximize the objective function −O(f) given hidden variables,

θ = arg max
θ

n∑

i=1

log
(

1
1 + e−yif(xi)

)

− λΩ(‖f‖H)

+ μ
∑

(i,j)∈C

[

E(zi) log
(

1
1 + ef(xi)

1
1 + ecijf(xj)

)]

+ μ
∑

(i,j)∈C

[

E(zj) log
(

1
1 + e−f(xi)

1
1 + e−cijf(xj)

)]

.

The M-step can actually be solved as a weighted logistic regression problem.
If f(x) belongs to the family of linear prediction functions the M-step can
be solved by any gradient descent method. The kernel version of the algo-
rithm can be derived by modifying the M-step to be weighted kernel logistic
regression using the same technique presented in Section 17.4.1.

In the rest of this chapter, we will call the learning algorithm above non-
convex pairwise kernel logistic regression (NPKLR). The NPKLR algorithm
is less efficient than its convex counterpart because it needs to run multiple
iterations of kernel logistic regression containing n+ 4|C| examples.

Learning with Pairwise Constraints for Video Object Classification 413

(a) (b)

(c) (d)

(e) (f)

FIGURE 17.3: An illustration of the pairwise learning algorithms applied to
the synthetic data: (a) The synthetic data set. (b) The labeled examples
and pairwise constraints. “◦” and “·” denote positive and negative examples,
“∗” denotes training data, and each pair of framed numbers denotes positive
constraints. (c) The decision boundary of KLR. (d) The decision boundary
of KLR in the metric space learned by RCA. (e) The decision boundary of
CPKLR. (f) The decision boundary of NPKLR.

414 Constrained Clustering: Advances in Algorithms, Theory, and Applications

17.4.4 An Illustrative Example

To show the advantages of incorporating pairwise constraints into the frame-
work of discriminative learning, we prepared a synthetic spiral data set shown
in Figure 17.3(a) which is non-linearly separable. There are a total of 201
positive examples and 199 negative examples. Forty training examples are
randomly sampled from each class. An additional 4 pairs of positive con-
straints are also provided on the data set as shown in 17.3(b). We use kernel
logistic regression(KLR) as the underlying learning algorithm.

As shown in Figure 17.3(c), with only the labeled data the conventional
KLR algorithm misclassifies the tails of two spirals due to insufficient labeled
data. The additional positive constraints might be useful to correct the bias.
However, applying the RCA algorithm [24] with these constraints only leads
to slight performance improvement as shown in Figure 17.3(d), since the true
distance metric cannot be simply modeled by a Mahalanobis distance. In con-
trast, the CPKLR algorithm learns a much better boundary shown in Figure
17.3(e) by using pairwise constraints to model the decision boundary directly.
The non-convex cousin, i.e., the NPKLR algorithm, further provides a slight
improvement over the CPKLR algorithm with a better decision boundary as
shown in Figure 17.3(f).

17.5 Multi-Class Classification with Pairwise Constraints

In the following discussions we extend our learning framework to the multi-
class classification. As a first step, it is worthwhile to consider how to present
pairwise constraints4 in the context of a one-against-all classifier, where it
means that the positive class is a certain object and the negative class is
less-defined anything else. Positive constraints still hold in this case because
if data pairs are considered the same object they must belong to the same
class. However, negative constraints, which means two examples are different
objects, can no longer be interpreted as that two examples are in different
classes because it might be the case they both belong to the negative class.
Therefore for negative constraints, we can only penalize the cases where they
are both labeled as positive. Thus, the modified convex pairwise loss function

4Note that in multi-class object classification, a pairwise constraint indicates whether a
pair of examples are the same object or not, instead of whether they belong to the same
positive/negative class in a one-against-all classifier.

Learning with Pairwise Constraints for Video Object Classification 415

can be defined as,

O(f) =
∑

i

L(yifi) + μ
∑

cij=−1

L(−fi − fj)

+ μ
∑

cij=1

(L(fi − fj) + L(fj − fi)) + λΩ(‖f‖H), (17.23)

where fi denotes f(xi). Similarly the modified non-convex pairwise loss func-
tion can be defined as,

O(f) =
∑

i

L(yifi) + μ
∑

cij=−1

(L(−fi) + L(−fj)−
1
2
L′′(fi − fj))

+ μ
∑

cij=1

(L′′(fi) + L′′(fj)− L′′(fi + fj)) + λΩ(‖f‖H). (17.24)

One-against-all classifiers allow the learning algorithm to handle new types
of objects in the test set by classifying every unseen object into the negative
class. This is important because in the testing phase there are always some
unseen objects to predict especially when the number of the training examples
is small.

Under this one-against-all representation, we can simply extend our al-
gorithm to multi-class classification with some output coding schemes. We
choose a loss-based output coding scheme to construct a multi-class classifier
using multiple binary classifiers [1],

ŷ = argmin
r

S∑

s=1

LM (mrsfs(x)) ,

where S is the number of binary classification problems, s is their indices,
r is the class index, mrs is the elements of coding matrix, and fs(x) is the
prediction for x using classifier s. The loss function LM we choose is the
same as L(x). M is the one-against-all coding matrix here. Note that if only
positive constraints are available, we can also use the other coding schemes as
long as there are no zero entries in the coding matrices, such as ECOC coding
schemes.

17.6 Noisy Pairwise Constraints

We extend the proposed algorithms to incorporate noisy pairwise con-
straints. This extension is important for video object classification, because
pairwise constraints can be mistakenly constructed due to automatic recog-
nition errors or manual annotation errors. To handle noisy constraints, we

416 Constrained Clustering: Advances in Algorithms, Theory, and Applications

introduce an additional noise factor, wij , to model the confidence on how
likely the constraint (xi, xj , cij) will be correctly identified. The noise factor
can simply be multiplied with the pairwise loss function in order to degrade
their influence when the pairwise constraints are not sufficiently accurate. For
example, if we plug the noise factor into CPKLR as shown in Eqn(17.5), the
modified optimization objective function can be rewritten as,

O(f) =
n∑

i=1

log(1 + e−yif(xi)) + μ
∑

(i,j)∈C

wij log(1 + ef(xi)−cijf(xj))

+μ
∑

(i,j)∈C

wij log(1 + ecijf(xj)−f(xi)) + λΩ(‖f‖H), (17.25)

The idea of noise factors can also be applied in the other forms of pairwise
learning algorithms proposed in this chapter, but we are not going to elaborate
here. These factors are usually determined before the learning process. In
practice, we can obtain the values of wij based on user studies on the manual
labeling process or performance analysis on automatic tracking algorithms.
The kernelized representation of the empirical loss function can be derived
based on the representer theorem as follows,

R(α) = �1T log(1 + e−Kpα) + μ · �wT log(1 + eK
′
pα)

+μ · �wT log(1 + e−K′
pα) + λαKα, (17.26)

where �w is the vector of all the noise factors, α = {α1 . . . αn+2|C|}, the re-
gressor matrix Kp = diag(y1 . . . yn)Kl, and the pairwise regressor matrix
K′

p = Kl1 − diag(c1 . . . c|C|)Kl2. To solve the optimization problem, we ap-
ply the interior-reflective Newton methods to obtain a global optimum. In
the rest of this chapter, we term this type of learning algorithms as weighted
pairwise kernel logistic regression (WPKLR).

17.7 Experiments

In the experiments that follow, we applied the three proposed pairwise
learning algorithms to the task of classifying people identities on two data
sets from real-world surveillance video. First, we introduce how we collect and
preprocess the data of people identities, followed by discussing the strategies
to select a limited number of pairwise constraints from the video. Finally
we describe the experimental setting and evaluate the results using various
pairwise learning algorithms.

Learning with Pairwise Constraints for Video Object Classification 417

17.7.1 Data Collections and Preprocessing

To examine the performance of the proposed algorithms, we collected two
different data sets from a geriatric nursing home surveillance video. One data
set was extracted from a 6 hour long, single-day and single view video. The
other data set was extracted from video across 6 consecutive days from the
same camera view. Both collections were sampled at a resolution of 320 ×
240 and a rate of 30 frames per second. The moving sequences of subjects
were automatically extracted using a background subtraction tracker. The
silhouette images, each of which corresponds to the extracted silhouette of a
moving subject, are sampled from the tracking sequence every half second.
In this experiment, we mainly experimented on images that did not have any
foreground segments containing two or more people. Finally, we obtain the
single-day data set with 63 tracking sequences or 363 silhouette images for 6
subjects, and the multiple-day data set with 156 tracking sequences or 1118
silhouette images for 5 subjects.

Because of the relative robustness of color histograms to appearance vari-
ations, we represent the silhouette images using a histogram of HSV color
spaces in all of our experiments, where each color channel has a fixed num-
ber of 32 bins. Thus we have a total of 96 one-dimensional features in the
histogram. Sample images from both data sets are depicted in Figure 17.4.
Taking a closer look at these examples, it can be found that the silhouette im-
ages are collected from various lighting environments and the subjects walked
in arbitrary directions. For each subject, the color representation is relatively
stable in the single-day data set, but it is much more diverse in the multiple-
day data set which makes learning more difficult. Note that the specific color
histogram representation seems to be quite simplistic from the viewpoint of
the video-based people identification problem, but we adopt these sets of fea-
tures due to their robustness to our applications and sufficiency to illustrate
the power of the proposed learning algorithms.

17.7.2 Selecting Informative Pairwise Constrains from Video

As mentioned in Section 17.1, there are several types of pairwise constraints
that can be extracted from a video stream. In this chapter, we pay particular
attention to two types of pairwise constraints:

• Temporal Constraints: This type of constraint is obtained by knowing
the temporal relation in video sequences. For example, a sequence of
extracted regions generated from tracking a single moving object can
be assumed to indicate a single person. On the other hand, two regions
extracted simultaneously from a camera cannot be the same person.

• Active Constraints: In analogy to active learning paradigms, this type
of constraint is obtained from users’ feedback. Typically, the system

418 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) (b)

FIGURE 17.4: Examples of images from the data sets collected from a geri-
atric nursing home. (a) Examples of 6 subjects in the single-day data set.
Each column refers to a different subject. (b) Examples of 5 subjects in the
multiple-day data set.

gives users the most ambiguous pairs of examples and users provide the
label of positive/negative constraints as feedback.

However, even only considering two types of constraints, there are always
too many pairwise constraints available for the video data. For example, if
there are 103 training images in the data set, all possible pairwise constraints
between them is close to 5∗105 which is unaffordable for most of the learning
algorithms. To address this, we would like to select the most informative
pairwise constraints before applying the proposed learning algorithm. One
useful observation to reduce the number of constraints is that surveillance
video data generally arrive in the form of image tracking sequences. If we want
to model all the constraints between every image pair of tracking sequences
G1 and G2 for convex pairwise loss functions, Eqn(17.3) will be expanded to
a sum of |G1||G2| terms,

L′(f(G1), cf(G2)) =
|G1|∑

i=1

|G2|∑

j=1

L′(f(xi), cijf(xj))

for every xi ∈ G1 and xj ∈ G2.5 In the case when either |G1| or |G2| is large,
the computational effort will be very prohibitive. However, it is reasonable to
assume that the images in a single sequence are similar to each other and thus
the pairwise constraints (xi, xj), xi ∈ G1, xj ∈ G2 are probably redundant.

5Note that G1 and G2 can be the same sequence G, which refers to modeling the self-
similarity of sequence G.

Learning with Pairwise Constraints for Video Object Classification 419

Given this assumption, we approximate all of the sequence constraints with
the centroids μi which is the mean color histogram of every sequence of images.
Therefore, we have the following pairwise loss function: when G1 = G2 = G,

L′(f(G1), cf(G2)) =
|G|∑

i=1

L(f(xi), f(μ)),

or when G1 �= G2,

L′(f(G1), cf(G2)) = L(f(μ1), cf(μ2)).

Another observation can help to further reduce the number of pairwise con-
straints, i.e., it is not necessary to incorporate the constraints for which the
learning algorithm already provides correct predictions. But since true con-
straints are not known for unlabeled sequence pairs, we choose the most am-
biguous sequences in analogy to the active learning algorithms and construct
the corresponding pairwise constraints based on the predictions of learning
algorithms with labeled data. Since our experiments are dealing with multi-
class classification, we adopt a sample selection strategy called best-worst case
model proposed in [33], of which the rationale is to choose the most ambiguous
sequences by maximizing the expected loss of sequence G,

G∗ = argmax
G

L(G), (17.27)

where L(G) = maxx∈G mins∈S L(fs(x)) is the loss of classification prediction
for the sequence G, and fs(x) is the sth binary classifier for the example x.
Figure 17.5 summarizes the learning process with the selection strategy for
pairwise constraints. The kernel logistic regression or support vector ma-
chines are first applied with no constraints. The top K ambiguous sequences
{G1, ..., Gi, ..., GK} are selected based on Eqn(17.27). For each sequence Gi,
we add a temporal constraint (Gi, Gi, 1) into the constraint set. For any
pairs of sequences that overlap, a negative constraint (Gi, Gj ,−1) will be
constructed.

We can also construct a number of active constraints based on the predic-
tion of the tracking sequences. Here we want to point out that until now
constructing the optimal pairwise constraints is still an open research direc-
tion without clear theoretical guidelines available. To address this problem to
some extent, we have designed three different sampling strategies as follows:

1. MIN: couple each top ambiguous example Gi with the nearest training
sequence Gj , i.e., the sequence with minimal kernel distanceK(Gi, Gi)+
K(Gj , Gj)− 2K(Gi, Gj)

2. MAX: couple each top ambiguous example Gi with the farthest training
sequenceGj , i.e., the sequence with maximal kernel distanceK(Gi, Gi)+
K(Gj , Gj)− 2K(Gi, Gj)

420 Constrained Clustering: Advances in Algorithms, Theory, and Applications

FIGURE 17.5: The flowchart of the learning process. The pairwise learning
algorithm is first applied with only labeled data. The top K ambiguous se-
quences are selected based on Eqn(17.27). For each sequence Gi, we add the
related temporal constraints and active constraints into the constraint set.
Finally, the pairwise learning algorithm is trained with both existing labeled
data and additional pairwise constraints.

3. COM: couple two testing examples Gi, Gj together that maximizes
the criterion of L(Gi) + L(Gj) − K(Gi, Gj). This criterion intends to
maximize the ambiguities of selected examples and meanwhile make
them distinguishable from each other.

For each pair of constraints provided by these above strategies, we request
the pairwise labels cij from users and use it to generate an active constraint
(Gi, Gj , cij). After all these constraints are available, the learning algorithm
can be easily re-learned using both the existing labeled data and the additional
pairwise constraints.

17.7.3 Experimental Setting

Our experiments are carried out in the following way. Each data set is
first split into two disjoint sets based on temporal order. Training images are
randomly drawn from the first set, which contains 50% of its video sequences.
The rest images are used as test images. For every specific parameter set-
ting, we increase the number of sequence constraints from 0 to N until the
classification performance is relatively stable. N was chosen to be 20 in the
single-day data set and 40 in the multiple-day data set. In terms of active
constraints, we simulated the human labeling process using true pairwise con-
straints without actually asking a human to label each iteration. The MIN
sampling strategy is applied unless stated otherwise.

For evaluation, the prediction error on testing data is reported. The base-
line performance of the CPKLR and NPKLR algorithms uses KLR with a

Learning with Pairwise Constraints for Video Object Classification 421

majority voting scheme, i.e., each image is predicted independently and then
the majority label for each sequence is predicted as true labels. Similarly,
the baseline performance of the CPSVM algorithm uses SVMs with a ma-
jority voting scheme. We used the RBF kernel K(xi, xj) = e−ρ‖xi−xj‖2

with
ρ = 0.08 in all of our experiments, which was chosen by maximizing the ac-
curacy with cross-validation in the training set. Also, we empirically set the
regularization parameters λ to be 0.01, and pairwise coefficient μ to be 1.

We also compared the proposed approaches with the following two learning
algorithms utilizing pairwise constraints. The first one is called relevant com-
ponent analysis (RCA) [24], which is an efficient algorithm for learning a full
Mahalanobis metric by linear transformation. In this work, the authors define
a chunklet as a subset of points that belong to the same class but the identity
of this class is unknown. Given the chunklets, the covariance matrix Sch of all
the center-points in the chunklets is computed. The Mahalannobis distance
is generated from the whitening transformation of Sch. In the implementa-
tion, we added an identity matrix εI to the covariance matrix Sch in order
to avoid the issue of singularity. Since RCA is a metric learning algorithm,
it cannot handle supervised learning directly. In the following experiments,
we first apply RCA to transform the feature space and then apply the same
baseline classifiers as before to predict the testing data. One drawback for
this algorithm is that it can only work with positive constraints.

The other approach we compared is a constrained Gaussian mixture model [23]
which incorporates both positive and negative pairwise constraints into a
GMM model using the EM algorithm. In the following we call this algo-
rithm pairwise Gaussian mixture model (PGMM), where more details can be
found in the work done by Shental et al. [23]. To apply PGMM for classifica-
tion, we chose 2 Gaussian mixtures to model the positive data and 3 mixtures
to model the negative data. The number of mixtures is determined by using
cross validation in the training set and picking the best configuration from 1
mixture to 5 mixtures. Similar to the RCA algorithm, an identity matrix εI
was added to the covariance matrix for the purpose of regularization. Finally,
the posterior probability for a testing example being positive P (y = 1|x) can
be computed from the data likelihoods P (x|y = +1) and P (x|y = −1).

17.7.4 Performance Evaluation

The first series of experiments compare the effectiveness of the proposed
pairwise learning algorithms using different types of pairwise constraints as
well as the baseline classifiers shown in Figure 17.6. Three different curves
are plotted in each subgraph, indicating the performance of the CPKLR,
CPSVM, and NPKLR algorithms. From Figure 17.6, we can observe that the
classification error can be considerably reduced even with a small number of
constraints. By comparing the performance of pairwise learning algorithms
in different settings, we find that NPKLR usually outperforms the algorithms
using convex loss functions (namely CPKLR and CPSVM), because the non-

422 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) (b) (c)

(d) (e) (f)

FIGURE 17.6: Summary of the experimental results: (a) The classification
error of pairwise learning algorithms against the number of constraints us-
ing temporal constraints alone in the single-day data set. The number of
constraints is growing from 0 to 20 at step 4. Three proposed algorithms
are compared including the CPKLR, CPSVM, and NPKLR algorithms. (d)
is similar to (a) except the results are from the multiple-day data set. The
number of constraints is growing from 0 to 40 at an increment of 5. (b) The
classification error learned using active constraints alone in the single-day data
set and (e) in the multiple-day data set. (c) The classification error learned
with the combination of temporal constraints and active constraints in the
single-day data set and (f) in the multiple-day data set.

convex pairwise loss functions can provide correct decision boundaries which
cannot be done by the convex pairwise loss functions. However, the perfor-
mance improvement comes at a price of higher computational intensity. Since
the computational time of each iteration in solving NPKLR is similar to that
of solving CPKLR, the overall computational time of NPKLR is NEM times
higher than the time of CPKLR if NEM denotes the number of EM iterations
in NPKLR. Moreover, it shows that sometimes NPKLR tends to degrade its
performance especially when a large number of constraints are incorporated.
This can be explained by the fact that as more constraints are introduced, the
surface of the non-convex objective function becomes more “bumpy” and thus
NPKLR is more likely to get trapped in a local minimum instead of reaching
the global optimum. In contrast, both the CPKLR and CPSVM algorithms
achieve a relatively smaller performance boost than NPKLR. However, the
improvement is usually more stable than NPKLR. Among these two learning
algorithms with convex pairwise loss functions, their performances are close
to each other but on average the CPKLR algorithm is slightly superior to the

Learning with Pairwise Constraints for Video Object Classification 423

(a) (b)

FIGURE 17.7: The classification error of various algorithms against the num-
ber of temporal constraints and active constraints. We compare CPKLR with
all constraints, CPKLR with positive constraints, KLR with RCA algorithms,
and PGMM with all constraints. (a) is reported in the single-day data set
and (b) is reported in the multiple day data set.

CPSVM algorithm.
Along another direction, it is also useful to compare the classification per-

formances across various constraint types. As can be seen, learning with
temporal constraints is effective in the single-day data set but unable to get
any improvement in the multiple day data set. This is partially due to the
diverse color representation in the multi-day video sequences. It degrades the
effectiveness of temporal constraints which cannot capture long term relations
between image examples. However, active constraints, if available from users,
can be more effective to reduce the error in both data sets. Moreover, the
combination of both constraints often produces a higher performance. For the
first data set when using NPKLR, it reduces the error rate from 18% down
to 6% with 20 pairs of both types of constraints. For the second data set,
it again reduces the error rate from 22% down to 12% with 40 pairs of both
type of constraints.

In Figure 17.7, we compare the performance of the CPKLR algorithm with
two baseline algorithms as mentioned before, i.e., the RCA algorithm and
PGMM using the same amounts of pairwise constraints. In this experiment,
we adopted kernel logistic regression (KLR) as the underlying classifier except
for PGMM. A combination of temporal and active constraints is applied for
each learning algorithm. Because RCA can only take the positive constraints
as input, another curve is depicted for PKLR algorithm with the presence
of only positive constraints. The results show that our algorithm achieves a
superior performance to both the RCA algorithm and the PGMM even with-
out negative constraints. The degrading performance of PGMM suggests that
our data might violate the model assumption of the Gaussian mixture model.

424 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) (b)

FIGURE 17.8: The classification error of the CPKLR algorithm against the
number of temporal constraints and active constraints using three different
sampling strategies as described in Section 17.7.2. (a) is reported in the
single-day data set and (b) is reported in the multiple-day data set.

Also, it corroborates the advantage of the proposed discriminative framework
which requires fewer assumptions about the underlying distributions. On the
other hand, the results also demonstrate the usefulness of incorporating neg-
ative constraints.

Finally, Figure 17.8 analyzes the performance of using three different sam-
pling strategies described in Section 17.7.2, i.e., MIN, MAX, and COM. We
can observe that all these sampling strategies can boost the classification per-
formance over the baseline by using additional pairwise constraints. Specif-
ically, the MAX and MIN sampling strategies provide more significant im-
provement than the COM strategy. This might be related to the fact that
MAX/MIN strategies impose constraints between training examples and test-
ing examples, while the COM strategy only considers the coupling between
testing examples.

17.7.5 Results for Noisy Pairwise Constraints

In order to show how noisy pairwise constraints can be obtained in prac-
tice, we describe a user study that attempts to manually collect constraints
between human subjects. Different from the traditional labeling process, we
intentionally masked the faces of each subject before presenting them to the
users so as to protect their privacy, but this also increased the difficulty of
manually judging the correctness of given constraints.

A screen shot of the interface is shown in Figure 17.9. The image on the
top left side is the sample image, while the other images are all candidates to
be compared with. In the experiments, the volunteers were requested to label
whether the candidate images were of the same person with the sample image.

Learning with Pairwise Constraints for Video Object Classification 425

FIGURE 17.9: The labeling interface for the user study for noisy pairwise
constraints.

All images were randomly selected from pre-extracted silhouette images and
all candidate images do not belong to the same sequence as to the sample
image. In more detail, these images were randomly selected from a pool
of 102 images, each of which was sampled from a different sequence of video.
Nine human subjects took a total of 180 runs to label the pairwise constraints.
In all 160 labeled pairwise constraints, 140 constraints correctly correspond
to the identities of the subjects and 20 of them are errors, which achieved
an overall accuracy around 88.89%. The result shows that human annotators
could label the pairwise constraints with a reasonable accuracy from face-
obscured video data. But it also indicates that these pairwise constraints are
not perfect, which can pose a challenge for the learning algorithm.

Therefore we applied the weighted pairwise kernel logistic regression (WP-
KLR) algorithm to identify the human subject from video. The parameter
setting is similar to the previous experiments. Our first experiment is to
examine the effectiveness of noisy pairwise constraints for labeling identities
as shown in Figure 17.10(a). The learning curve of “Noisy Constraint” is
completely based on the labeling result from the user study, but weighted all
the constraints with 1. “Weighted Noisy Constraint” uses different weights
for each constraint. In current experiments, we simulated and smoothed the
weights based on the user study. Therefore, the noise factor wi is set to the
labeling accuracy for each human subject. “True Constraint” assumes the
ground truth is available and thus the correct constraints are always weighted
as 1 while wrong constraints are ignored. Although the true constraints is
unknown in practice, we intentionally show its performance to serve as an
upper bound of incorporating noisy constraints.

Figure 17.10(a) demonstrated the performance with three types of con-
straint learning approaches. In contrast to the accuracy of 0.7375 without
using any constraints, the accuracy of “Weighted Noisy Constraint” grows
to 0.8125 with 140 weighted constraints, achieving a significant performance

426 Constrained Clustering: Advances in Algorithms, Theory, and Applications

(a) (b)

FIGURE 17.10: (a) The classification errors with different numbers of pairwise
constraints. We compare CPKLR with noisy constraints, WPKLR with noisy
constraints, and CPKLR with true constraints. (b) The classification errors
with different numbers of labeled examples. We compare KLR without any
constraints and WPKLR with noisy constraints.

improvement of 10.17%. Also, “Weighted Noisy Constraint” substantially
outperforms “Noisy Constraint,” and it can achieve performance close to
“True Constraint.” Note that, when given only 20 constraints, the accuracy is
slightly degraded in each setting. A possible explanation is that the decision
boundary does not change stably with a small number of constraints. But
the performance always goes up after a sufficient number of constraints are
introduced. Our next experiment explores the effect of varying the number of
labeled examples with 140 additional pairwise constraints. In general, we hope
to minimize the labeling effort without severely affecting the overall accuracy.
Figure 17.10(b) illustrates the learning performance with different numbers of
training examples. For all the settings, introducing more constraints could al-
ways improve classification accuracy. More importantly, pairwise constraints
could even make more noticeable improvements when fewer training examples
are present.

17.8 Conclusion

We have presented a discriminative classification framework which can di-
rectly model the decision boundary with labeled data as well as additional
pairwise constraints without explicitly estimating the underlying data distri-
bution. Two families of pairwise loss functions, i.e., convex and non-convex
pairwise loss functions, were investigated and three pairwise learning algo-

Learning with Pairwise Constraints for Video Object Classification 427

rithms were derived by plugging in the hinge loss and the logistic loss func-
tions. The experiments with two surveillance video data sets demonstrated the
proposed pairwise learning algorithms could achieve considerable improved
performance with pairwise constraints, compared to the baseline classifier
which uses labeled data alone and a majority voting scheme. The proposed
algorithms also outperformed the RCA algorithm and the Gaussian mixture
model with constraints when the same number of pairwise constraints are
used. A comparison among the proposed algorithms showed that the algo-
rithms with non-convex loss functions could achieve a higher classification
accuracy but the algorithms with convex loss functions are more efficient and
robust. Finally, we also evaluated the performance of weighted pairwise ker-
nel logistic regression algorithms using noisy pairwise constraints provided by
human feedback. It showed that the weighted algorithms can achieve higher
accuracy than the non-weighted counterpart.

In this work, we mainly focused on developing new pairwise learning algo-
rithms and leave the exploration of more advanced visual features to future
research. We also want to point out that although our learning framework
and previous work on learning distance metric exploit the pairwise constraints
in different ways, they can be complementary to each other. For example, it
is possible to apply the proposed learning framework in a new distance metric
learned from other algorithms.

References

[1] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to
binary: A unifying approach for margin classifiers. In Proceedings of the
17th International Conference on Machine Learning, pages 9–16, 2000.

[2] S. Antania, R. Kasturi, and R. Jain. A survey on the use of pattern
recognition methods for abstraction, indexing and retrieval of images
and video. Pattern Recognition, 4:945–65, April 2002.

[3] S. Basu, A. Banerjee, and R. J. Mooney. Active semi-supervision for
pairwise constrained clustering. In Proceedings of the 20th International
Conference on Machine Learning, Washington, DC, Aug 2003.

[4] S. Basu, M. Bilenko, and R. Mooney. A probabilistic framework for
semi-supervised clustering. In Proceedings of SIGKDD, pages 59–68,
2004.

[5] A. Blum and T. Mitchell. Combining labeled and unlabeled data with

428 Constrained Clustering: Advances in Algorithms, Theory, and Applications

co-training. In Proceedings of the Workshop on Computational Learning
Theory, 1998.

[6] T. F. Coleman and Y. Li. An interior, trust region approach for nonlinear
minimization subject to bounds. SIAM Journal on Optimization, 6:418–
445, 1996.

[7] A. J. Comenarez and T. S. Huang. Face detection with information-
based maximum discrimination. In Proceedings of CVPR, 1997.

[8] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

[9] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by
unsupervised scale-invariant learning. In Proceedings of CVPR, 2003.

[10] H. Gish and M. Schmidt. Text-independent speaker identification. IEEE
Signal Proceedingsssing Magazine, 11(4):18–32, 1994.

[11] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer Verlag, Basel, 2001.

[12] M. Hewish. Automatic target recognition. International Defense Review,
24(10), 1991.

[13] G. Kimeldorf and G. Wahba. Some results on tchebycheffian spline
functions. Journal of Mathematical Analysis and Applications, 33:82–
95, 1971.

[14] S. Kumar and M. Hebert. Discriminative random fields: A discrimi-
native framework for contextual interaction in classification. In IEEE
International Conference on Computer Vision (ICCV), 2003.

[15] J. T. Kwok and I. W. Tsang. Learning with idealized kernel. In Proceed-
ings of the 20th International Conference on Machine Learning, Wash-
ington, DC, Aug 2003.

[16] T. Lange, M. H. Law, A. K. Jain, and J. Buhmann. Learning with
constrained and unlabeled data. In Proceedings of CVPR, 2005.

[17] F. Li, R. Fergus, and P. Perona. A bayesian approach to unsupervised
one-shot learning of object categories. In Proceedings of the International
Conference on Computer Vision, Oct 2003.

[18] K. Nigam, A. K. McCallum, S. Thrun, and T. M. Mitchell. Text clas-
sification from labeled and unlabeled documents using EM. Machine
Learning, 39:103–134, 2000.

[19] A. Pentland, B. Moghaddam, and T. Starner. View-based and modular
eigenspaces for face recognition. In Proceedings of IEEE Conference on

Learning with Pairwise Constraints for Video Object Classification 429

Computer Vision and Pattern Recognition 94 (CVPR’94), pages 568–
574, Seattle, WA, June 1994.

[20] W. E. Pierson and T. D. Ross. Automatic target recognition (atr) eval-
uation theory: a survey. In Proceedings of the SPIE - The International
Society for Optical Engineering 4053, 2000.

[21] J. Platt. Fast training of support vector machines using sequential mini-
mal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Ad-
vances in Kernel Methods - Support Vector Learning. MIT Press, 1998.

[22] G. Shakhnarovich, L. Lee, and T. Darrell. Integrated face and gait
recognition from multiple views. In Proceedings IEEE Conference on
Computer Vision and Pattern Recognition, 2001.

[23] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing gaus-
sian mixture models with em using side information. In Workshop on
’The Continuum from Labeled to Unlabeled Data in Machine Learning
and Data Mining,’ ICML 2003, Washington, DC, Aug 2003.

[24] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Enhancing image
and video retrieval: Learning via equivalence constraints. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition,
Madison, WI, June 2003.

[25] J. Sivic and A. Zisserman. Video google: A text retrieval approach to ob-
ject matching in videos. In Proceedings of the International Conference
on Computer Vision, Oct 2003.

[26] O. Trier, A. Jain, and T. Taxt. Feature extraction methods for character
recognition - a survey. Pattern Recognition, 29, 1993.

[27] Z. Tu, X. Chen, A. L. Yuille, and S. Zhu. Image parsing. unifying
segmentation, detection and recognition. In Proceedings of ICCV, 2003.

[28] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer,
1995.

[29] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns
of motion and appearance. In Proceedings of ICCV, 2003.

[30] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-
means clustering with background knowledge. In Proceedings of the 18th
International Conference on Machine Learning, pages 577–584. Morgan
Kaufmann Publishers Inc., 2001.

[31] L. Xie and P. Pérez. Slightly supervised learning of part-based appear-
ance models. In IEEE Workshop on Learning in Computer Vision and
Pattern Recognition, in conjunction with CVPR 2004, June 2004.

430 Constrained Clustering: Advances in Algorithms, Theory, and Applications

[32] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russel. Distance metric learn-
ing with applications to clustering with side information. In Advances
in Neural Information Proceedings Systems, 2002.

[33] R. Yan, J. Yang, and A. G. Hauptmann. Automatically labeling data
using multi-class active learning. In Proceedings of the International
Conference on Computer Vision, pages 516–523, 2003.

[34] R. Yan, J. Zhang, J. Yang, and A. G. Hauptmann. A discriminative
learning framework with pairwise constraints for video object classifi-
cation. IEEE Transactions on Pattern Analysis Machine Intelligence,
28(4):578–593, 2006.

[35] S. X. Yu and J. Shi. Grouping with directed relationships. Lecture Notes
in Computer Science, 2134:283–291, 2001.

[36] J. Zhang and R. Yan. On the value of pairwise constraints in classifica-
tion and consistency. In Proceedings of the 24th International Conference
on Machine Learning, Corvallis, OR, June 2007.

[37] J. Zhu and T. Hastie. Kernel logistic regression and the import vector
machine. In Advances in Neural Information Proceedingsssing Systems,
2001.

[38] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In Proceedings of 20th Interna-
tional Conference on Machine Learning, 2003.

Index 431

Index

Acquaintance network, 285
Active constraints, 417–418
Active learning, 19–20, 27
AdaTron, 366
Adjusted Rand Index, 338
Agglomerative clustering, 20, 192, 376
AGNES, 288
Algorithms

CDK-MEANS, 128–130
collective relational clustering, 230–

233
CondEns, 253–254, 272
convex pairwise kernel logistic re-

gression, 407–408, 420–423, 426
convex pairwise support vector ma-

chine, 408–410, 422, 426
Expectation Maximization. See Ex-

pectation Maximization algorithm
heuristic, 300–305
margin-based learning, 399, 402
non-convex pairwise kernel logistic

regression, 410–413, 420–422
non-redundant clustering, 281
RelDC, 227
static, 189–190
streaming, 189–191
weighted pairwise kernel logistic re-

gression, 416, 425
Annealing, deterministic, 112, 265–

267
Applications

correlation clustering, 323–325
description of, 9–10
interactive visual clustering, 330
semi-supervised clustering, 28

3-approximation, 321–322
Approximation algorithms

connected k-center problem, 295–
299

correlation clustering, 314
Artificial constraints, soft-penalized

probabilistic clustering with, 73–75
Attribute-based entity resolution, 235
Attribute data

description of, 285
joint cluster analysis of, 285–307

AutoClass, 29
Automatic target recognition, 400

Balanced constraints, 171–173
Balancing clustering

batch algorithms, 186–189
case study of, 183–186
clusters

populating and refining, 176–177
size of, 173

experimental results, 177–181, 186–
191

frequency sensitive approaches for,
182–191

graph partitioning for, 192–193
overview of, 171–174
scalable framework for, 174–181
summary of, 195–196

Batch algorithms, 186–189
Bayesian networks, 259
Bayes model, 20
Bayes rule, 39, 97
Best path problem, 382
Bias, 4
Bibliographic databases, 366
Bioinformatics, 290
Biological networks, 285
Blocking, 230

432 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Boolean matrices, 124–125

Cannot-be-linked example pairs, 358
Cannot-link constraints

in collective relational clustering, 231–
232

constrained co-clustering, 125
description of, 3, 289–290
in Expectation Maximization algo-

rithm, 41–45
extended, 126–127, 136–139
formation of, 36
hard, 75–76
intransitive nature of, 42
local counterparts of, 131
must-link constraints and, 37, 51
normalization factor Z calculations,

52–55
transitive inference of, 3

Categorization algorithm, 157–160
Categorization modeling, supervised

clustering for
categorization algorithm, 157–160
categorization system performance,

160–168
definitions, 151–152
feature selection, 152–153
notations, 151–152
overview of, 149–150
supervised cluster, 153–157

Category management, 172
CDK-MEANS, 128–130, 133, 137, 139
Centroid, 152, 270
CHAMELEON, 289
Chunklets

definition of, 37–38, 69
in must-link constraint incorpora-

tion, 38–41
posterior probability, 39–40

Citation databases, 366
CLARANS, 288
Cleaning clusters, 316
Cluster(s)

cleaning, 316

information orthogonality for, 250
initialization of, 231
merging of, 232

Cluster analysis, 287–288
Cluster assumption, 95
Cluster editing, 324
Clustering

agglomerative, 20, 192, 376
balancing. See Balancing cluster-

ing
browsing capabilities using, 151
consensus. See Consensus cluster-

ing
correlation. See Correlation clus-

tering
data mining uses of, 1
definition of, 1, 20
description of, 91
ensemble, 252–254
goals of, 329
goodness of, 21
interactive visual. See Interactive

visual clustering
micro-, 377, 387–389
model-based, 96–98
partitioning-based, 376
penalized probabilistic. See Penal-

ized probabilistic clustering
projected, 156
prototype-based, 20
redundancies in, 245
relational. See Relational cluster-

ing
seeded single link, 332–333
spectral, 51, 193
supervised. See Supervised cluster-

ing
without nearest representative prop-

erty, 380–387
Clustering algorithms

description of, 1
equivalence constraints incorporated

into, 50
Expectation Maximization. See Ex-

pectation Maximization algorithm

Index 433

k-means. See k-means clustering
algorithm

Scatter/Gather, 29
Clustering locality graph, 380
Cluster labels. See Labels
Cluster posterior, 68–70
Cluster refinement algorithm, 387
Cluster validation, 249
COBWEB, 3, 29
Co-clustering

constraint. See Constraint co-clustering
summary of, 144–145

Co-clustering task, 126
Collaboration network, 285
Collective relational clustering

algorithm for, 230–233
correctness of, 233–234
definition of, 229
description of, 222–223
entity clusters, 229
experimental evaluation, 235–241
relational similarity, 233
summary of, 241–242
synthetic data experiments, 238–241

Community identification, 287
Complete data likelihood, 39, 42, 77
Complexity analysis, 292–295
CondEns, 253–254, 272, 274–275, 280
Conditional ensembles, 252–257. See

also CondEns
Conditional entropy, 247–248, 255
Conditional information bottleneck,

257–267, 280
Conditional random fields, 225
Connected k-center problem

approximation algorithms, 295–299
definition, 291
description of, 286–288
inapproximability results for, 295–

296
joint cluster analysis, 291
NetScan adaptation to, 305

Connected k-median problem, 288
Connectivity constraint, 307
Consensus clustering, 324–325

Constrained clustering
basis of, 329
correlation clustering uses of, 324
description of, 1–2
under existential constraint, 380
interactive visual clustering, 332–

333
privacy-preserving data publishing,

377–380, 389–392
problem involving, 203–206
study of, 192
uses of, 245

Constrained complete-linkage algorithm,
45–49

Constrained EM algorithm. See Ex-
pectation Maximization algorithm

Constrained k-means algorithm. See
also k-means clustering algorithm
description of, 3, 50
Expectation Maximization algorithm

vs., 45–49
limitations of, 71
problems involving, 205
weaknesses of, 71

Constrained k-median algorithm, 210,
212

Constrained partitional clustering, 7
Constraint(s)

active selection of, 350
balanced, 171–173
cannot-link. See Cannot-link con-

straints
equivalence. See Equivalence con-

straints
existential, 378
maximum entropy approach to in-

tegration of, 98–111
must-link. See Must-link constraints
settings for, 92

Constraint co-clustering
cannot-link constraints, 125
CDK-MEANS algorithm, 128–130
co-clustering task, 126
definition of, 123
experimental validation, 134–144

434 Constrained Clustering: Advances in Algorithms, Theory, and Applications

internal criterion used to evaluate,
135–136

local-to-global approach, 123, 127–
134

must-link constraints, 125
non-interval constraint, 142–144
overview of, 124–125
problem setting for, 126–127
time interval cluster discovery, 139–

144
user-defined constraints, 138

Constraint weights, 65–67, 81–82
Continuity

soft links from, 76–78
temporal, 49–50

Continuous-valued background know-
ledge, 263–265

Convex pairwise kernel logistic regres-
sion, 407–408, 420–423, 426

Convex pairwise loss functions, 404–
406

Convex pairwise support vector ma-
chines, 408–410, 422, 426

Coordinated conditional information
bottleneck, 257–267, 274–276, 280

COP-KMEANS, 3–4, 86–87
Co-reference analysis, 323
Correlation clustering

applications of, 323–325
approximation algorithms, 314
background on, 314–317
combinatorial approach, 321–322
constrained clustering uses of, 324
co-reference, 323
definition of, 313
description of, 313
location area planning using, 323
maximizing agreements, 315–316
maximizing correlation, 317
minimizing disagreements, 316–317
region growing, 317–321
techniques, 317–322

Cosine normalization, 152
Cosine similarity, 184
Co-training, 401

Cumulant generating function, 98

Damped centroid, 152
Data clustering, 91
Data mining, 1, 124, 288–289
Data sets

interactive visual clustering, 339–
342

semi-supervised clustering, 25
UCI, 46–48
WebKB, 271

DBSCAN, 288
Deterministic annealing, 112, 265–267
DIANA, 288
Differential entropy, 255
Direct marketing, 172
Discontinuous label assignments, 95
Discriminative learning with pairwise

constraints, 401–406
Disjointed pairwise relations, 68, 73
DISP, 380
Dissimilarity, 22
Dissimilarity data, 107
Dissimilarity matrix, 107
Distance metric

description of, 95
general similarity/dissimilarity mea-

sure vs., 357
from pairwise constraints, 5–6

Distance metric learning
background, 357–358
cannot-be-linked example pairs, 358
dissimilar example pairs in, 359
name disambiguation application of,

366–370
noisy data, 364–365
online learning, 365–366
pairwise constraints in, 399
positive semi-definiteness of learned

matrix, 362–363
preliminaries, 359–361
problem formalization, 361–362
problems associated with, 358
single-class learning, 365

Index 435

summary of, 370
support vector machine learning, 361,

363–364
Distributed learning, 50
Distributed sensor networks, 172
Divisive clustering, 192
D-MINER, 131, 134
Document

clustering of, 172
cosine similarity between, 152
projection of, 152

Dominant clustering, 269
Domination matrix, 158
Domination number, 159
Domination threshold, 159

Edge factors, 53
Ensemble clustering, 252–254
Entity networks, 291
Entropy

conditional, 247–248
maximum, 98–111
relative, 248–249
Shannon information, 247–248

Equivalence constraints
description of, 33
Expectation Maximization algorithm

with, 33, 35, 37, 49–50
labels and, 34–36
likelihood objective function modi-

fied by, 34
obtaining of, 49–50
purpose of, 34
summary of, 50

Equivalent linear discriminant anal-
ysis, 110

E-step, 37, 64
Existential constraints, 378, 380, 384–

385
Expectation Maximization algorithm

cannot-link constraints in, 41–45
constrained complete-linkage algo-

rithm vs., 45–49

constrained k-means algorithm vs.,
45–49

description of, 20, 33, 96, 191–192,
412

equivalence constraints added to, 33,
35, 37, 49–50

E-step, 37, 64, 93
experimental results with, 45–49
facial image database results, 48–

49
Gaussian mixture models used with,

33, 99
M-step, 37, 64, 412
must-link constraints in, 38–41, 44–

45
UCI data sets, 46–48

Expected log likelihood, 40–41
Experiments

balancing clustering, 177–181, 186–
191

collective relational clustering, 235–
241

Expectation Maximization algorithm,
45–49

mean field approximation, 112–116
penalized probabilistic clustering, 72–

79
semi-supervised clustering, 24–26
video object classification using pair-

wise constraints, 416–426
Extended cannot-link constraints, 126–

127, 136–139
Extended must-link constraints, 126–

127, 136–139

Factorial approximation, 105
Feedback

relevance, 29
user, 17–29

F-measure, 369
Fokker-Plank equation, 183
Force-directed layout, 331, 338
Frequency sensitive competitive learn-

ing, 182–183

436 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Frobenius norm, 361
F-scores, 112–113, 115, 117

Gabor filter, 116
Gaussian mixture models

definition of, 36–37
description of, 60–61
deterministic annealing with, 112
equivalence constraints incorporated

into. See Equivalence constraints
with Expectation Maximization al-

gorithm. See Expectation Maxi-
mization algorithm

with hard constraints, 60–87
M-component, 61
pairwise constraints, 400
with soft constraints, 60
in supervised settings, 34
in unsupervised settings, 34
uses of, 33

General facility location problem, 288
Generalized linear models, 264
Generalized mutual information, 253
Gibbs distribution, 102–103
Gibbs-Markov equivalence, 103
Gibbs posterior, 107
Gibbs potential, 103
Gibbs sampling, 69
Goodman-Kruskal’s pi coefficient, 124,

135–136, 140
GraClus, 289
Graph clustering, 289
Graph-cut algorithms, 51
Graph partitioning, 192–193
Group constraints model, 72

Hard cannot-link constraints, 75–76
Hard pairwise constraints

definition of, 60
Gaussian mixture model with, 60–

87
Hard penalized probabilistic cluster-

ing, 73, 112
Heuristic algorithm, 300–305

Hidden Markov Random Field, 51,
91, 290

Hinge loss function, 406
HMRF-KMeans algorithm, 5
Human-guided search framework, 350

Information orthogonality, 250
Informative graphs, 291
Instance-level constraints

definition of, 92
elements of, 2
pairwise, 94
properties of, 2

Instance-level label constraints, 91
Interactive visual clustering

Amino Acid indices, 342–343, 348–
349, 352–353

background on, 331
Circles data set, 340, 343–345
Classical and Rock Music data set,

342, 347, 350
comparisons with other approaches,

337–338
constrained clustering, 332–333
data sets, 339–342
definition of, 330
display, 333–334
experimental application of, 330
future work, 351–352
Internet Movie Data Base data set,

341–342, 346–347, 349
Iris data set, 340–341, 346–348
methodology, 337–343
Overlapping Circles data set, 334–

337, 340, 345–346
overview of, 329–330
Rand Index, 338–339
results of, 343–351
seeded single link clustering, 332–

333
steps involved in, 332–334
system operation, 334–337
user actions, 332

Interval constraints, 125

Index 437

Inverse document frequency, 115–116
ISOMAP-based embedding procedures,

95
Iterative conditional mode, 105
Iterative optimization, 29

Jaccard’s co-efficient, 229
Jaynes’ maximum entropy principle,

100
Joint cluster analysis, 285–307
Jump number, 135

k-anonymity model, 390
Karush-Kuhn-Tucker conditions, 203–

204, 410
Kernel logistic regression, 400
k-means clustering algorithm

cluster assignment, 206–208
constrained. See Constrained k-means

algorithm
document clustering applications of,

305–306
drawbacks of, 202
empty clusters, 202
extensions, 213–217
NetScan vs., 306
numerical evaluation, 208–213
overview of, 201–202
problems involving, 204
summary of, 217–218

k-means model
constrained algorithm. See Con-

strained k-means algorithm
from penalized probabilistic cluster-

ing, 83–87
k-median algorithm, 210, 212
k-Medoids, 288
Kullback-Leibler divergence, 22, 248

Labels
description of, 27
discontinuous assignments, 95
equivalence constraints and, 34–36
maximum-entropy, 100–102

partial, 99
smoothness of, 95

Lagrange multipliers, 265–266
Latent Dirichlet allocation, 228
Latent semantic indexing, 115–116
l-diversity model, 390–391
Learning

active, 19–20, 27
discriminative, 401–406
distance metric. See Distance met-

ric learning
distributed, 50
frequency sensitive competitive, 182–

183
online, 365–366
with pairwise constraints, 400–401
semi-supervised, 24–25
single-class, 365
supervised. See Supervised learn-

ing
support vector machine, 361, 363–

364
term weightings, 26
unsupervised. See Unsupervised learn-

ing
Likelihood maximization, 262
Likelihood objective function, 34
Linear discriminant analysis, 110
Linear warping, 23
Logistic loss function, 406
Log-partition function, 98
Loss functions

hinge, 406
logistic, 406
pairwise, 404–406

Mahalanobis metric, 95
Margin-based learning algorithms, 399,

402
Market segmentation, 286–287
Markov network, 43–45, 53
Markov Random Field, 92, 96, 102–

103, 214
Max-gap, 132

438 Constrained Clustering: Advances in Algorithms, Theory, and Applications

Maximum entropy approach to con-
straint integration, 98–111

Maximum likelihood, 67, 96
Mean field approximation

description of, 70
experiments, 112–116
for posterior inference, 105–106

Mean field equations, 70
Median partition technique, 253
Micro-clustering, 377, 387–389
Micro-cluster sharing, 388–389
Min-cut algorithm, 193
Min-gap, 132
Minimum cost flow linear network op-

timization problem, 206–207, 215
Mixture models

description of, 96
estimating of, 34
Gaussian. See Gaussian mixture

models
uses of, 34

Model-based clustering
description of, 96–98
with soft balancing, 194–195

Modified cost function, 71
Modified Gibbs posterior, 107
Molecular biology, 307
Movement path, 383
M-step, 37, 64
Multi-relational clustering, 288
Multivariate information bottleneck,

258–259
Must-link constraints

cannot-link constraints and, 37, 51
constrained co-clustering, 125
definition of, 92
description of, 289–290
in Expectation Maximization algo-

rithm, 38–41, 44–45
extended, 126–127, 136–139
formation of, 36
local counterparts of, 131
modeling of, 92
transitive inference of, 2–3
update equations, 38–41

Must-not-link constraint, 92

Naive relational entity resolution, 235
Name disambiguation, 366–370
Nearest representative property

clustering without, 380–387
description of, 378–379

NetScan, 300–302, 305–306
Network analysis, 285, 289
Node factors, 53
Noisy pairwise constraints, 415–416,

424–426
Non-convex pairwise kernel logistic

regression, 410–413, 420–422
Non-convex pairwise loss functions,

404
Non-interval constraints, 125, 142–

144
Non-linear kernel discriminant anal-

ysis, 110
Non-redundant clustering

algorithms for, 281
background concepts, 247–249
CondEns, 253–254, 272, 274–275,

280
conditional ensembles, 252–257
conditional entropy, 247–248
coordinated conditional information

bottleneck, 257–267, 274–276, 280
dominant clustering, 269
experimental evaluation, 267–280
information orthogonality, 250
multiple clusterings, 249–250
mutual information, 248–249
orthogonality assumption, 276, 278
problem

conditions for correctness, 254–257
defining of, 251
setting for, 246–251

relative entropy, 248–249
settings for, 245–246
successive, 278–279
summary of, 280–281
synthetic data evaluation, 273–279

Index 439

text data sets, 269–270
update equations, 261–265

Normalized gini index, 153
Normalized mutual information, 178,

189–190
NP-Complete, 287–288, 393

Object identification, 366
Objects, 1
Online learning, 365–366
Optical character recognition, 400
OPTICS, 288
Orthogonality assumption, 276, 278
Outliers, 303–304

Pairwise clustering, 107–108
Pairwise constraints

description of, 397–398
discriminative learning with, 401–

406
distance metric from, 5–6
in distance metric learning, 399
enforcing, 3–5
hard. See Hard pairwise constraints
implementing of, 22–23
instance-level, 94
introduction of, 51
multi-class classification with, 414–

415
noisy, 415–416, 424–426
supervised learning with, 400
unsupervised learning with, 400
video object classification using. See

Video object classification using
pairwise constraints

Pairwise Gaussian mixture model, 421,
423

Pairwise loss functions
convex, 411
description of, 404–406
non-convex, 411

Pairwise relations
disjointed, 68, 73

penalized probabilistic clustering, 62–
63, 65

weight of, 65
Partial labels, 99
Partition function, 101
Partitioning-based clustering, 376
Pearl’s junction tree algorithm, 43
Penalized probabilistic clustering

with artificial constraints, 73–75
cluster posterior, 68–70
constraint weights, 65–67, 81–82
description of, 61
experiments, 72–79
hard, 73, 112
k-means model from, 83–87
limitations of, 78–79
model fitting, 63–65
pairwise relations, 62–63, 65, 73
prior distribution on cluster assign-

ments, 61–62
real-world problems, 75–78
related models, 70–72
soft, 73
soft links from continuity, 76–78
summary of, 78–79

Pivot movement graph, 382–383
Positive semi-definiteness of learned

matrix, 362–363
Posterior probability, 39–40, 69, 105
Potential bridge nodes, 302
Prior distribution on cluster assign-

ments, 61–62
Prior probability with pairwise rela-

tions, 63
Privacy-preserving data publishing

constrained clustering, 377–380, 389–
392

existential constraints, 378, 380, 384–
385

local optimality of algorithm, 385–
386

nearest representative property, 378–
387

overview of, 375–377
summary of, 392–394

440 Constrained Clustering: Advances in Algorithms, Theory, and Applications

termination of algorithm, 387
Probabilistic clustering

models of, 71
penalized. See Penalized probabilis-

tic clustering
Probabilistic edges, 339, 344
Probabilistic relational models, 288
Projected clustering, 156
Projected out, 152
Projection of document, 152
Prototype-based clustering, 20
Pseudo-centroids, 152, 156
Pseudo-likelihood assumption, Z ap-

proximations using, 54–55

Quasi-cliques, 307
Quasi-identifier, 376

Rand coefficient, 141
Rand Index, 338–339
Ratio between the minimum to ex-

pected cluster sizes, 178
Region growing, 317–321
Relational clustering

collective. See Collective relational
clustering

collective resolution, 225–230, 233,
235

entity resolution, 222–230
overview of, 221–223
pairwise decisions using relationships,

226–227
pairwise resolution, 224

Relationship data
description of, 285
elements of, 285–286
joint cluster analysis of, 285–307
modeling of, 291

Relative entropy, 248–249
Relative seed subtraction, 159
RelDC algorithm, 227
Relevance feedback, 29
Relevant component analysis, 400, 427
Reproducing kernal Hilbert space, 402

Reversible jump MCMC, 196
Runtime complexity, 296–297

Scatter/Gather algorithm, 29
Seeded single link clustering, 332–333
Semi-supervised clustering

active learning and, 19–20
applications of, 28
data sets, 25
definition of, 92
description of, 1–2, 17–19, 21–22
experiments using, 24–26
goal of, 18–19
HMRF-based, 290
illustration of, 22
performance of, 24–25
supervised clustering vs., 27
with user feedback, 17–29

Semi-supervised clustering algorithms
description of, 34, 36
Expectation Maximization. See Ex-

pectation Maximization algorithm
types of, 50

Semi-supervised learning, 93
Sensor networks, 172
Sequential minimal optimization, 366
Shannon information entropy, 247–

248
Single-class learning, 365
Skew fraction, 153
Social network, 285–286
Social network analysis, 289
Soft balanced constraint, 173
Soft balancing, model-based cluster-

ing with, 194–195
Soft constraints, 60
Soft penalized probabilistic cluster-

ing, 73
Soft preferences, 63
Spectral clustering, 51, 193
Spring embedding, 331
Spring force, 331
Stable clustering, 177

Index 441

Standard deviation in cluster sizes,
178

Static algorithm, 189–190
Stop words, 152
Streaming algorithms, 189–191
Supervised clustering

for categorization modeling
categorization algorithm, 157–160
categorization system performance,

160–168
definitions, 151–152
feature selection, 152–153
notations, 151–152
overview of, 149–150
supervised cluster, 153–157

performance of, 27
semi-supervised clustering vs., 27

Supervised learning
class labels in, 27
description of, 18, 93
with pairwise constraints, 400

Support vector machines
convex pairwise, 408–410
learning, 361, 363–364, 402

Temporal constraints, 417
Temporal continuity, 49–50
Term frequency, 152
Term vector, 151
Term weightings, 26
Threshold, 157
Time interval cluster discovery, 139–

144
Top-down clustering, 192
Transitive inference

of cannot-link constraints, 3
of must-link constraints, 2–3

Triangle inequality, 249

UCI data sets, 46–48
Unary neighbors, 303
Unconstrained clustering, 377, 379
Unconstrained co-clustering, 138
Unstable pivots, 381

Unsupervised clustering, 149
Unsupervised learning

description of, 24–25, 93
with pairwise constraints, 400

Update equations
for cannot-link constraints, 42–44
for must-link constraints, 38–41
for non-redundant clustering, 261–

265
User feedback, semi-supervised clus-

tering with, 17–29

Video object classification using pair-
wise constraints
algorithms

convex pairwise kernel logistic re-
gression, 407–408, 420–423, 426

convex pairwise support vector ma-
chines, 408–410

description of, 406
non-convex pairwise kernel logis-

tic regression, 410–413, 420–422
experiments, 416–426
overview of, 397–400
pairwise constraints

discriminative learning with, 401–
406

multi-class classification with, 414–
415

noisy, 415–416, 424–426
performance evaluations, 421–424
related work, 400–401
summary of, 426–427

VIOLATE-CONSTRAINTS, 3
von Mises-Fisher distribution, 183–

184

Ward’s method, 192
WebKB data set, 271
Weighted objects, 174
Weighted pairwise kernel logistic re-

gression, 416, 425
Weighting, 108–110
Weights, constraint, 65–67, 81–82

	cover.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_r19.pdf
	page_r20.pdf
	page_r21.pdf
	page_r22.pdf
	page_r23.pdf
	page_r24.pdf
	page_r25.pdf
	page_r26.pdf
	page_r27.pdf
	page_r28.pdf
	page_z0001.pdf
	page_z0002.pdf
	page_z0003.pdf
	page_z0004.pdf
	page_z0005.pdf
	page_z0006.pdf
	page_z0007.pdf
	page_z0008.pdf
	page_z0009.pdf
	page_z0010.pdf
	page_z0011.pdf
	page_z0012.pdf
	page_z0013.pdf
	page_z0014.pdf
	page_z0015.pdf
	page_z0016.pdf
	page_z0017.pdf
	page_z0018.pdf
	page_z0019.pdf
	page_z0020.pdf
	page_z0021.pdf
	page_z0022.pdf
	page_z0023.pdf
	page_z0024.pdf
	page_z0025.pdf
	page_z0026.pdf
	page_z0027.pdf
	page_z0028.pdf
	page_z0029.pdf
	page_z0030.pdf
	page_z0031.pdf
	page_z0032.pdf
	page_z0033.pdf
	page_z0034.pdf
	page_z0035.pdf
	page_z0036.pdf
	page_z0037.pdf
	page_z0038.pdf
	page_z0039.pdf
	page_z0040.pdf
	page_z0041.pdf
	page_z0042.pdf
	page_z0043.pdf
	page_z0044.pdf
	page_z0045.pdf
	page_z0046.pdf
	page_z0047.pdf
	page_z0048.pdf
	page_z0049.pdf
	page_z0050.pdf
	page_z0051.pdf
	page_z0052.pdf
	page_z0053.pdf
	page_z0054.pdf
	page_z0055.pdf
	page_z0056.pdf
	page_z0057.pdf
	page_z0058.pdf
	page_z0059.pdf
	page_z0060.pdf
	page_z0061.pdf
	page_z0062.pdf
	page_z0063.pdf
	page_z0064.pdf
	page_z0065.pdf
	page_z0066.pdf
	page_z0067.pdf
	page_z0068.pdf
	page_z0069.pdf
	page_z0070.pdf
	page_z0071.pdf
	page_z0072.pdf
	page_z0073.pdf
	page_z0074.pdf
	page_z0075.pdf
	page_z0076.pdf
	page_z0077.pdf
	page_z0078.pdf
	page_z0079.pdf
	page_z0080.pdf
	page_z0081.pdf
	page_z0082.pdf
	page_z0083.pdf
	page_z0084.pdf
	page_z0085.pdf
	page_z0086.pdf
	page_z0087.pdf
	page_z0088.pdf
	page_z0089.pdf
	page_z0090.pdf
	page_z0091.pdf
	page_z0092.pdf
	page_z0093.pdf
	page_z0094.pdf
	page_z0095.pdf
	page_z0096.pdf
	page_z0097.pdf
	page_z0098.pdf
	page_z0099.pdf
	page_z0100.pdf
	page_z0101.pdf
	page_z0102.pdf
	page_z0103.pdf
	page_z0104.pdf
	page_z0105.pdf
	page_z0106.pdf
	page_z0107.pdf
	page_z0108.pdf
	page_z0109.pdf
	page_z0110.pdf
	page_z0111.pdf
	page_z0112.pdf
	page_z0113.pdf
	page_z0114.pdf
	page_z0115.pdf
	page_z0116.pdf
	page_z0117.pdf
	page_z0118.pdf
	page_z0119.pdf
	page_z0120.pdf
	page_z0121.pdf
	page_z0122.pdf
	page_z0123.pdf
	page_z0124.pdf
	page_z0125.pdf
	page_z0126.pdf
	page_z0127.pdf
	page_z0128.pdf
	page_z0129.pdf
	page_z0130.pdf
	page_z0131.pdf
	page_z0132.pdf
	page_z0133.pdf
	page_z0134.pdf
	page_z0135.pdf
	page_z0136.pdf
	page_z0137.pdf
	page_z0138.pdf
	page_z0139.pdf
	page_z0140.pdf
	page_z0141.pdf
	page_z0142.pdf
	page_z0143.pdf
	page_z0144.pdf
	page_z0145.pdf
	page_z0146.pdf
	page_z0147.pdf
	page_z0148.pdf
	page_z0149.pdf
	page_z0150.pdf
	page_z0151.pdf
	page_z0152.pdf
	page_z0153.pdf
	page_z0154.pdf
	page_z0155.pdf
	page_z0156.pdf
	page_z0157.pdf
	page_z0158.pdf
	page_z0159.pdf
	page_z0160.pdf
	page_z0161.pdf
	page_z0162.pdf
	page_z0163.pdf
	page_z0164.pdf
	page_z0165.pdf
	page_z0166.pdf
	page_z0167.pdf
	page_z0168.pdf
	page_z0169.pdf
	page_z0170.pdf
	page_z0171.pdf
	page_z0172.pdf
	page_z0173.pdf
	page_z0174.pdf
	page_z0175.pdf
	page_z0176.pdf
	page_z0177.pdf
	page_z0178.pdf
	page_z0179.pdf
	page_z0180.pdf
	page_z0181.pdf
	page_z0182.pdf
	page_z0183.pdf
	page_z0184.pdf
	page_z0185.pdf
	page_z0186.pdf
	page_z0187.pdf
	page_z0188.pdf
	page_z0189.pdf
	page_z0190.pdf
	page_z0191.pdf
	page_z0192.pdf
	page_z0193.pdf
	page_z0194.pdf
	page_z0195.pdf
	page_z0196.pdf
	page_z0197.pdf
	page_z0198.pdf
	page_z0199.pdf
	page_z0200.pdf
	page_z0201.pdf
	page_z0202.pdf
	page_z0203.pdf
	page_z0204.pdf
	page_z0205.pdf
	page_z0206.pdf
	page_z0207.pdf
	page_z0208.pdf
	page_z0209.pdf
	page_z0210.pdf
	page_z0211.pdf
	page_z0212.pdf
	page_z0213.pdf
	page_z0214.pdf
	page_z0215.pdf
	page_z0216.pdf
	page_z0217.pdf
	page_z0218.pdf
	page_z0219.pdf
	page_z0220.pdf
	page_z0221.pdf
	page_z0222.pdf
	page_z0223.pdf
	page_z0224.pdf
	page_z0225.pdf
	page_z0226.pdf
	page_z0227.pdf
	page_z0228.pdf
	page_z0229.pdf
	page_z0230.pdf
	page_z0231.pdf
	page_z0232.pdf
	page_z0233.pdf
	page_z0234.pdf
	page_z0235.pdf
	page_z0236.pdf
	page_z0237.pdf
	page_z0238.pdf
	page_z0239.pdf
	page_z0240.pdf
	page_z0241.pdf
	page_z0242.pdf
	page_z0243.pdf
	page_z0244.pdf
	page_z0245.pdf
	page_z0246.pdf
	page_z0247.pdf
	page_z0248.pdf
	page_z0249.pdf
	page_z0250.pdf
	page_z0251.pdf
	page_z0252.pdf
	page_z0253.pdf
	page_z0254.pdf
	page_z0255.pdf
	page_z0256.pdf
	page_z0257.pdf
	page_z0258.pdf
	page_z0259.pdf
	page_z0260.pdf
	page_z0261.pdf
	page_z0262.pdf
	page_z0263.pdf
	page_z0264.pdf
	page_z0265.pdf
	page_z0266.pdf
	page_z0267.pdf
	page_z0268.pdf
	page_z0269.pdf
	page_z0270.pdf
	page_z0271.pdf
	page_z0272.pdf
	page_z0273.pdf
	page_z0274.pdf
	page_z0275.pdf
	page_z0276.pdf
	page_z0277.pdf
	page_z0278.pdf
	page_z0279.pdf
	page_z0280.pdf
	page_z0281.pdf
	page_z0282.pdf
	page_z0283.pdf
	page_z0284.pdf
	page_z0285.pdf
	page_z0286.pdf
	page_z0287.pdf
	page_z0288.pdf
	page_z0289.pdf
	page_z0290.pdf
	page_z0291.pdf
	page_z0292.pdf
	page_z0293.pdf
	page_z0294.pdf
	page_z0295.pdf
	page_z0296.pdf
	page_z0297.pdf
	page_z0298.pdf
	page_z0299.pdf
	page_z0300.pdf
	page_z0301.pdf
	page_z0302.pdf
	page_z0303.pdf
	page_z0304.pdf
	page_z0305.pdf
	page_z0306.pdf
	page_z0307.pdf
	page_z0308.pdf
	page_z0309.pdf
	page_z0310.pdf
	page_z0311.pdf
	page_z0312.pdf
	page_z0313.pdf
	page_z0314.pdf
	page_z0315.pdf
	page_z0316.pdf
	page_z0317.pdf
	page_z0318.pdf
	page_z0319.pdf
	page_z0320.pdf
	page_z0321.pdf
	page_z0322.pdf
	page_z0323.pdf
	page_z0324.pdf
	page_z0325.pdf
	page_z0326.pdf
	page_z0327.pdf
	page_z0328.pdf
	page_z0329.pdf
	page_z0330.pdf
	page_z0331.pdf
	page_z0332.pdf
	page_z0333.pdf
	page_z0334.pdf
	page_z0335.pdf
	page_z0336.pdf
	page_z0337.pdf
	page_z0338.pdf
	page_z0339.pdf
	page_z0340.pdf
	page_z0341.pdf
	page_z0342.pdf
	page_z0343.pdf
	page_z0344.pdf
	page_z0345.pdf
	page_z0346.pdf
	page_z0347.pdf
	page_z0348.pdf
	page_z0349.pdf
	page_z0350.pdf
	page_z0351.pdf
	page_z0352.pdf
	page_z0353.pdf
	page_z0354.pdf
	page_z0355.pdf
	page_z0356.pdf
	page_z0357.pdf
	page_z0358.pdf
	page_z0359.pdf
	page_z0360.pdf
	page_z0361.pdf
	page_z0362.pdf
	page_z0363.pdf
	page_z0364.pdf
	page_z0365.pdf
	page_z0366.pdf
	page_z0367.pdf
	page_z0368.pdf
	page_z0369.pdf
	page_z0370.pdf
	page_z0371.pdf
	page_z0372.pdf
	page_z0373.pdf
	page_z0374.pdf
	page_z0375.pdf
	page_z0376.pdf
	page_z0377.pdf
	page_z0378.pdf
	page_z0379.pdf
	page_z0380.pdf
	page_z0381.pdf
	page_z0382.pdf
	page_z0383.pdf
	page_z0384.pdf
	page_z0385.pdf
	page_z0386.pdf
	page_z0387.pdf
	page_z0388.pdf
	page_z0389.pdf
	page_z0390.pdf
	page_z0391.pdf
	page_z0392.pdf
	page_z0393.pdf
	page_z0394.pdf
	page_z0395.pdf
	page_z0396.pdf
	page_z0397.pdf
	page_z0398.pdf
	page_z0399.pdf
	page_z0400.pdf
	page_z0401.pdf
	page_z0402.pdf
	page_z0403.pdf
	page_z0404.pdf
	page_z0405.pdf
	page_z0406.pdf
	page_z0407.pdf
	page_z0408.pdf
	page_z0409.pdf
	page_z0410.pdf
	page_z0411.pdf
	page_z0412.pdf
	page_z0413.pdf
	page_z0414.pdf
	page_z0415.pdf
	page_z0416.pdf
	page_z0417.pdf
	page_z0418.pdf
	page_z0419.pdf
	page_z0420.pdf
	page_z0421.pdf
	page_z0422.pdf
	page_z0423.pdf
	page_z0424.pdf
	page_z0425.pdf
	page_z0426.pdf
	page_z0427.pdf
	page_z0428.pdf
	page_z0429.pdf
	page_z0430.pdf
	page_z0431.pdf
	page_z0432.pdf
	page_z0433.pdf
	page_z0434.pdf
	page_z0435.pdf
	page_z0436.pdf
	page_z0437.pdf
	page_z0438.pdf
	page_z0439.pdf
	page_z0440.pdf
	page_z0441.pdf

