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Preface

Motivation A combined search at Mathscinet and Zentralblatt shows
more than 800 articles with the expression “condition number” in their title. It is
reasonable to assume that the number of articles dealing with conditioning, in one
way or another, is a substantial multiple of this quantity. This is not surprising. The
occurrence of condition numbers in the accuracy analysis of numerical algorithms
is pervasive, and its origins are tied to those of the digital computer. Indeed, the
expression “condition number” itself was first introduced in 1948, in a paper by Alan
M. Turing in which he studied the propagation of errors for linear equation solving
with the then nascent computing machinery [221]. The same subject occupied John
von Neumann and Herman H. Goldstine, who independently found results similar
to those of Turing [226]. Ever since then, condition numbers have played a leading
role in the study of both accuracy and complexity of numerical algorithms.

To the best of our knowledge, and in stark contrast to this prominence, there is no
book on the subject of conditioning. Admittedly, most books on numerical analysis
have a section or chapter devoted to it. But their emphasis is on algorithms, and the
links between these algorithms and the condition of their data are not pursued be-
yond some basic level (for instance, they contain almost no instances of probabilistic
analysis of algorithms via such analysis for the relevant condition numbers).

Our goal in writing this book has been to fill this gap. We have attempted to
provide a unified view of conditioning by making condition numbers the primary
object of study and by emphasizing the many aspects of condition numbers in their
relation to numerical algorithms.

Structure The book is divided into three parts, which approximately correspond
to themes of conditioning in linear algebra, linear programming, and polynomial
equation solving, respectively. The increase in technical requirements for these sub-
jects is reflected in the different paces for their expositions. Part I proceeds leisurely
and can be used for a semester course at the undergraduate level. The tempo in-
creases in Part II and reaches its peak in Part III with the exposition of the recent
advances in and partial solutions to the 17th of the problems proposed by Steve
Smale for the mathematicians of the 21st century, a set of results in which condi-
tioning plays a paramount role [27, 28, 46].
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viii Preface

As in a symphonic poem, these changes in cadence underlie a narration in which,
as mentioned above, condition numbers are the main character. We introduce them,
along with the cast of secondary characters making up the dramatis personae of this
narration, in the Overture preceding Part 1.

We mentioned above that Part I can be used for a semester course at the under-
graduate level. Part II (with some minimal background from Part I) can be used as
an undergraduate course as well (though a notch more advanced). Briefly stated, it is
a “condition-based” exposition of linear programming that, unlike more elementary
accounts based on the simplex algorithm, sets the grounds for similar expositions of
convex programming. Part III is also a course on its own, now on computation with
polynomial systems, but it is rather at the graduate level.

Overlapping with the primary division of the book into its three parts there is
another taxonomy. Most of the results in this book deal with condition numbers of
specific problems. Yet there are also a few discussions and general results applying
either to condition numbers in general or to large classes of them. These discussions
are in most of the Overture, the two Intermezzi between parts, Sects. 6.1, 6.8, 9.5,
and 14.3, and Chaps. 20 and 21. Even though few, these pages draft a general theory
of condition, and most of the remainder of the book can be seen as worked examples
and applications of this theory.

The last structural attribute we want to mention derives from the technical char-
acteristics of our subject, which prominently features probability estimates and, in
Part III, demands some nonelementary geometry. A possible course of action in our
writing could have been to act like Plato and deny access to our edifice to all those
not familiar with geometry (and, in our case, probabilistic analysis). We proceeded
differently. Most of the involved work in probability takes the form of estimates—
of either distributions’ tails or expectations—for random variables in a very specific
context. We therefore included within the book a Crash Course on Probability pro-
viding a description of this context and the tools we use to compute these estimates.
It goes without saying that probability theory is vast, and alternative choices in its
toolkit could have been used as well. A penchant for brevity, however, prevented
us to include these alternatives. The course is supplied in installments, six in to-
tal, and contains the proofs of most of its results. Geometry requirements are of a
more heterogeneous nature, and consequently, we have dealt with them differently.
Some subjects, such as Euclidean and spherical convexity, and the basic properties
of projective spaces, are described in detail within the text. But we could not do so
with the basic notions of algebraic, differential, and integral geometry. We therefore
collected these notions in an appendix, providing only a few proofs.

Paderborn, Germany Peter Biirgisser
Hong Kong, Hong Kong SAR Felipe Cucker
May 2013
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Overture: On the Condition of Numerical
Problems

0.1 The Size of Errors

Since none of the numbers we take out from logarithmic or trigonometric ta-
bles admit of absolute precision, but are all to a certain extent approximate
only, the results of all calculations performed by the aid of these numbers
can only be approximately true. [...] It may happen, that in special cases
the effect of the errors of the tables is so augmented that we may be obliged
to reject a method, otherwise the best, and substitute another in its place.

Carl Friedrich Gauss, Theoria Motus

The heroes of numerical mathematics (Euler, Gauss, Lagrange, ...) developed a
good number of the algorithmic procedures which constitute the essence of numer-
ical analysis. At the core of these advances was the invention of calculus. And un-
derlying the latter, the field of real numbers.

The dawn of the digital computer, in the decade of the 1940s, allowed the execu-
tion of these procedures on increasingly large data, an advance that, however, made
even more patent the fact that real numbers cannot be encoded with a finite number
of bits and therefore that computers had to work with approximations only. With the
increased length of computations, the systematic rounding of all occurring quanti-
ties could now accumulate to a greater extent. Occasionally, as already remarked by
Gauss, the errors affecting the outcome of a computation were so big as to make it
irrelevant.

Expressions like “the error is big” lead to the question, how does one measure
an error? To approach this question, let us first assume that the object whose error
we are considering is a single number x encoding a quantity that may take values
on an open real interval. An error of magnitude 1 may yield another real number
x with value either x — 1 or x + 1. Intuitively, this will be harmless or devastating
depending on the magnitude of x itself. Thus, for x = 10°, the error above is hardly
noticeable, but for x = 1073, it certainly is (and may even change basic features of

Xvii
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x such as being positive). A relative measure of the error appears to convey more
meaning. We therefore define!

X — x|
RelError(x) =

x|

Note that this expression is well defined only when x # 0.
How does this measure extend to elements x € R™? We want to consider relative
errors as well, but how does one relativize? There are essentially two ways:

Componentwise: Here we look at the relative error in each component, taking as
error for x the maximum of them. That is, for x € R™ such that x; # 0 for i =
1,...,m, we define

RelError(x) = max RelError(x;).
i<m

Normwise: Endowing R” with a norm allows one to mimic, for x # 0, the defini-
tion for the scalar case. We obtain

X — x|

[lxl

Needless to say, the normwise measure depends on the choice of the norm.

RelError(x) =

0.2 The Cost of Erring

How do round-off errors affect computations? The answer to this question depends
on a number of factors: the problem being solved, the data at hand, the algorithm
used, the machine precision (as well as other features of the computer’s arithmetic).
While it is possible to consider all these factors together, a number of idealiza-
tions leading to the consideration of simpler versions of our question appears as a
reasonable—if not necessary—course of action. The notion of condition is the re-
sult of some of these idealizations. More specifically, assume that the problem being
solved can be described by a function

¢:DCR" — RY,

where D is an open subset of R™. Assume as well that the computation of ¢ is per-
formed by an algorithm with infinite precision (that is, there are no round-off errors
during the execution of this algorithm). All errors in the computed value arise as a
consequence of possible errors in reading the input (which we will call perturba-
tions). Our question above then takes the following form:

How large is the output error with respect to the input perturbation?

1To be completely precise, we should write RelError(x, %). In all what follows, however, to simplify
notation, we will omit the perturbation X and write simply RelError(x).
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The condition number of input a € D (with respect to problem ¢) is, roughly speak-
ing, the worst possible magnification of the output error with respect to a small input
perturbation. More formally,

RelError
cond(a) = lim  sup w' ©.1)
8—>0 RelError(a)<s RelError(a)

This expression defines the condition number as a limit. For small values of § we
can consider the approximation

RelError(¢(a
cond’(a) ~  sup RelError(p(a))
RelEror(a)<s RelError(a)

and, for practical purposes, the approximate bound
RelError(¢(a)) < cond” (a)RelError(a), (0.2)
or yet, using “little oh” notation? for RelError(a) — 0,
RelError(¢(a)) < cond? (a)RelError(a) + o(RelError(a)). (0.3)

Expression (O.1) defines a family of condition numbers for the pair (¢, a). Errors
can be measured either componentwise or normwise, and in the latter case, there is a
good number of norms to choose from. The choice of normwise or componentwise
measures for the errors has given rise to three kinds of condition numbers (condi-
tion numbers for normwise perturbations and componentwise output errors are not
considered in the literature).

PERTURBATION
normwise | componentwise

OUTPUT normwise normwise mized
ERROR |componentwise componentwise

We will generically denote normwise condition numbers by cond? (), mixed con-
dition numbers by M#(a), and componentwise condition numbers by Cw¥ (a). We
may skip the superscript ¢ if it is clear from the context. In the case of component-
wise condition numbers one may be interested in considering the relative error for
each of the output components separately. Thus, for j < g one defines

RelError(¢(a) ;
Cw¥(a)=lim  sup RelError(p(a) ;)
§—0 RelError(a)<s  RelError(a)

and one has Cw¥ (a) = max <, CW? (@).

2 A short description of the little oh and other asymptotic notations is in the Appendix, Sect. A.1.
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The consideration of a normwise, mixed, or componentwise condition number
will be determined by the characteristics of the situation at hand. To illustrate this,
let’s look at data perturbation. The two main reasons to consider such perturbations
are inaccurate data reading and backward-error analysis.

In the first case the idea is simple. We are given data that we know to be inac-
curate. This may be because we obtained it by measurements with finite precision
(e.g., when an object is weighed, the weight is displayed with a few digits only) or
because our data are the result of an inaccurate computation.

The idea of backward-error analysis is less simple (but very elegant). For a prob-
lem ¢ we may have many algorithms that solve it. While all of them ideally compute
¢ when endowed with infinite precision, under the presence of errors they will com-
pute only approximations of this function. At times, for a problem ¢ and a finite-
precision algorithm A solving it, it is possible to show that for all a € D there
exists e € R" with a + e € D satistying

(*) A% @) =¢(a+e), and

(xx) e is small with respect to a.

In this situation—to which we refer by saying that A% is backward-stable—
information on how small exactly e is (i.e., how large RelError(a) is) together with
the condition number of a directly yields bounds on the error of the computed quan-
tity 4% (a). For instance, if (xx) above takes the form

llell <m®107%]all,
we will deduce, using (0O.2), that
|49 (@) — p(@)|| S cond?(@)m>107°|p(a)|. (0.4)

No matter whether due to inaccurate data reading or because of a backward-
error analysis, we will measure the perturbation of a in accordance with the situ-
ation at hand. If, for instance, we are reading data in a way that each component
a; satisfies RelError(a;) <5 x 1078, we will measure perturbations in a compo-
nentwise manner. If, in contrast, a backward-error analysis yields an e satisfying
llell < m3 [|al]| 10~°, we will have to measure perturbations in a normwise manner.

While we may have more freedom in the way we measure the output error, there
are situations in which a given choice seems to impose itself. Such a situation could
arise when the outcome of the computation at hand is going to be the data of an-
other computation. If perturbations of the latter are measured, say, componentwise,
we will be interested in doing the same with the output error of the former. A striking
example in which error analysis can be only appropriately explained using compo-
nentwise conditioning is the solution of triangular systems of equations. We will
return to this issue in Chap. 3.

At this point it is perhaps convenient to emphasize a distinction between condi-
tion and (backward) stability. Given a problem ¢, the former is a property of the
input only. That is, it is independent on the possible algorithms used to compute .
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In contrast, backward stability, at least in the sense defined above, is a property of
an algorithm A? computing ¢ that holds for all data a € D (and is therefore inde-
pendent of particular data instances).

Expressions like (0.4) are known as forward-error analyses, and algorithms A%
yielding a small value of W are said to be forward-stable. 1t is impor-
tant to mention that while backward-error analyses immediately yield forward-error
bounds, some problems do not admit backward-error analysis, and therefore, their
error analysis must be carried forward.

It is time to have a closer look at the way errors are produced in a computer.

0.3 Finite-Precision Arithmetic and Loss of Precision

0.3.1 Precision ...

Although the details of computer arithmetic may vary with computers and software
implementations, the basic idea was agreed upon shortly after the dawn of digital
computers. It consisted in fixing positive integers 8 > 2 (the basis of the representa-
tion), ¢ (its precision), and e, and approximating nonzero real numbers by rational

numbers of the form

m e
Z:iﬁﬂ

withm € {1,..., B} and e € {—ey, ..., ey}. The fraction % is called the mantissa
of z and the integer e its exponent. The condition |e| < e sets limits on how big (and
how small) z may be. Although these limits may give rise to situations in which (the
absolute value of) the number to be represented is too large (overflow) or too small
(underflow) for the possible values of z, the value of ey in most implementations is
large enough to make these phenomena rare in practice. Idealizing a bit, we may
assume eg = 00.
As an example, taking 8 = 10 and ¢t = 12, we can approximate

782 0.948853101607 x 10*.

The relative error in this approximation is bounded by 1.1 x 10712, Note that 7 is
the number of correct digits of the approximation. Actually, for any real number x,
by appropriately rounding and truncating an expansion of x we can obtain a number

X as above satisfying X = x (1 4 §) with |§] < ’S_Tm That is,

—t+1

RelError(x) <

More generally, whenever a real number x is approximated by x satisfying an in-
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equality like the one above, we say that X approximates x with t correct digits.>

Leaving aside the details such as the choice of basis and the particular way a
real number is truncated to obtain a number as described above, we may summa-
rize the main features of computer arithmetic (recall that we assume ey = o0) by
stating the existence of a subset F C R containing 0 (the floating-point numbers),
a rounding map round : R — T, and a round-off unit (also called machine epsilon)
0 < €mach < 1, satisfying the following properties:

(a) For any x € IF, round(x) = x. In particular round(0) = 0.
(b) For any x € R, round(x) = x(1 + 8) with [§| < €mach-

—1+1
Furthermore, one can take €mach = ﬂT and therefore |logﬁ €mach| =1 — logﬁg.

Arithmetic operations on [F are defined following the scheme
x 6y =round(x o y)
for any x, y € F and o € {+, —, X, /} and therefore
0:FxF—F.
It follows from (b) above that for any x, y € F we have
xoy=(xoy)(1+08), [8]=<€mach.

Other operations may also be considered. Thus, a floating-point version ] of the
square root would similarly satisfy

Vx=y/x(1+38), 8] < emach-

When combining many operations in floating-point arithmetic, expressions such as
(14 6) above naturally appear. To simplify round-off analyses it is useful to consider
the quantities, for k > 1 and keémach < 1,

k€mach

= (0.5)
1 — kémach

Vi *

and to denote by 6; any number satisfying |0x| < yx. In this sense, 6; represents
a set of numbers, and different occurrences of 6y in a proof may denote different
numbers. Note that

Vi < (k+ Deémach  ifk(k+1) <e ) (0.6)

mach*

The proof of the following proposition can be found in Chap. 3 of [121].

Proposition O.1 The following relations hold (assuming all quantities are well de-

fined):

3This notion reflects the intuitive idea of significant figures modulo carry differences. The number
0.9999 approximates 1 with a precision = 10™*. Yet their first significant digits are different.
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@ (1+6)(1+6) =1+ 6,

(b)
1+6c  [1+6; ifj<k,
1+6; |1+ ifJ>k,
(© VkVj = Ymin{k, j} if max{kemach, j€mach} < 1/2,
(d) iyk < Vit
() vk + €mach =< Vk+1,
O v +vi+ vy < Virj- O

0.3.2 ... and the Way We Lose It

In computing an arithmetic expression ¢ with a round-off algorithm, errors will
accumulate, and we will obtain another quantity, which we denote by fl(g). We will
also write Error(g) = |¢g — fl(g)|, so that RelError(g) = %.

Assume now that g is computed with a real-number algorithm 4 executed using
floating-point arithmetic from data a (a formal model for real-number algorithms
was given in [37]). No matter how precise the representation we are given of the
entries of a, these entries will be rounded to ¢ digits. Hence ¢ (or, being roughly the
same, |logﬂ €mach|) 1s the precision of our data. On the other hand, the number of
correct digits in fl(¢) is approximately —loggRelError(q). Therefore, the value

RelError
LoP(g) :=1ogg —(q)

= |10gg €macn| — [logg RelError(q)|

quantifies the loss of precision in the computation of g. To extend this notion to

the computation of vectors v = (vy, ..., vy) € R?, we need to fix a measure for the

precision of the computed fl(e) = (fl(v1), ..., fl(vy)): componentwise or normwise.
In the componentwise case, we have

fl(vi) — v; ) fl(v;) — v;
—loggRelError(e) = —logg max ) = vil _ r.mn(—log/3 M),
i<q vi i=q vi
so that the precision of v is the smallest of the precisions of its components.
For the normwise measure, we take the precision of v to be

[Ifi(e) — vl
ol

This choice has both the pros and cons of viewing v as a whole and not as the
aggregation of its components.

For both the componentwise and the normwise measures we can consider €mach
as a measure of the worst possible relative error RelError(a) when we read data a
with round-off unit €mach, Since in both cases

—loggRelError(e) = —logg

_ max RelError(a) = €mach-
|G —ai|<€macnla;|
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Hence, |logg €macn| represents in both cases the precision of the data. We therefore
define the loss of precision in the computation of ¢(a) to be

RelError(¢(a))

LoP(¢(a)) :=logg = |logg €macn| + logg RelError(¢(a)). (0.7)

€mach

Remark 0.2 By associating RelError(a) ~ €mach, we may view the logarithm of a
condition number logg cond? (a) as a measure of the worst possible loss of precision
in a computation of ¢(a) in which the only error occurs in reading the data.

To close this section we prove a result putting together—and making precise—a
number of issues dealt with so far. For data a € D € R™ we call m the size of a
and we write size(a) = m. Occasionally, this size is a function of a few integers,
the dimensions of a, the set of which we denote by dims(a). For instance, a p x g
matrix has dimensions p and g and size pgq.

Theorem O.3 Let A be a finite-precision algorithm with round-off unit émach com-
puting a function ¢ : D C R"™ — RY. Assume A? satisfies the following backward
bound: for all a € D there exists a € D such that

AY(a) = p(a)
and

RelError(a) < f(dims(a))emach + 0(€mach)

for some positive function f, and where the “little oh” is for €mach — 0. Then the
computed A% (a) satisfies the forward bound

RelError(¢(a)) < f(dims(a))cond? (a)€emach + 0(€mach),
and the loss of precision in the computation (in base B) is bounded as
LoP(¢(a)) <logg f(dims(a)) 4 logg cond’ (a) 4 o(1).

Here cond? refers to the condition number defined in (O.1) with the same measures
(normwise or componentwise) for RelError(a) and RelError(p(a)) as those in the
backward and forward bounds above, respectively.

Proof The forward bound immediately follows from the backward bound and (O.3).
For the loss of precision we have

logg RelError(¢(a)) < logg f(dims(a))cond’ (a)emacn (1 + o(1))
<logg f (dims(a)) +logg cond’ (a) — | logg €macn| + o(1),

from which the statement follows. O
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0.4 An Example: Matrix—Vector Multiplication

It is perhaps time to illustrate the notions introduced so far by analyzing a simple
problem, namely, matrix—vector multiplication. We begin with a (componentwise)
backward stability analysis.

Proposition Q.4 There is a finite-precision algorithm A that with input A € R™*"
and x € R", computes the product Ax. If €macn([log, n] + 2)2 < 1, then the com-
puted vector fl(Ax) satisfies fl(Ax) = Ax with

|aij — aij| < ([logyn] + 2)€macnlaij|.
Proof Letb= Ax.Fori=1,...,m we have
bi = ai1x1 +aipxz2 + -+ + GinXxn.

For the first product on the right-hand side we have fl(a;1x;) = aj1x1(1 + §)
with |8] < €mach < 16’2““ = y1. That is, fl(a;1x1) = a;1x1(1 + 61) and similarly
fl(ajoxz) = ajrxo(1 + 91) Note that the two occurrences of 6 here denote two dif-

ferent quantities. Hence, using Proposition O.1,

fl(ai1x1 4+ aizx2) = (aix1 (14 61) + aipx2(1+61)) (1 +6;)
=aj1x1(1 +62) +ajax2(1 + 62).

By the same reasoning, fl(a;3x3 + ajaxa) = ajz3x3(1 +62) +ajax4(1 +6>), and there-
fore

fl(ai1x1 + ajax2 + ai3x3 + ajaxa)
= (anx1(1+62) + ainxa2 (1 + 62) + a;3x3(1 + 62) + ajaxa(l 4+ 62)) (1 + 61)
=aj1x1(1 +603) +ainx2(1 +603) + aizxz(1 + 603) + ajaxa(l + 63).
Continuing in this way, we obtain
fl(b;) = aj1x1 + Ginx2 + -+ + dinXn
with d;; = a;; (1 + O10g, n1+1)- The result follows from the estimate (O.6), setting

k=Tlog,n]+ 1. O

Remark 0.5 Note that the algorithm computing Ax is implicitly given in the proof
of Proposition O.4. This algorithm uses a balanced treelike structure for the sums.
The order of the sums cannot be arbitrarily altered: the operations + and ~ are
nonassociative.

We next estimate the componentwise condition number of matrix—vector mul-
tiplication. In doing so, we note that in the backward analysis of Proposition O.4,
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only the entries of A are perturbed. Those of x are not. This feature allows one to
consider the condition of data (A, x) for perturbations of A only. Such a situation is
common and also arises when data are structured (e.g., unit upper-triangular matri-
ces have zeros below the diagonal and ones on the diagonal) or contain entries that
are known to be integers.

Proposition O.6 The componentwise condition numbers Cw;(A, x) of matrix—
vector multiplication, for perturbations of A only, satisfy

Cw; (A, x) < |sec(a;, x)

’

where a; denotes the ith row of A and sec(a;, x) =
the angle it makes with x (we assume a;j, x # 0).

1
S CT) denotes the secant of

Proof Let A=A+Ebea perturbation of A with E = (¢;;). By definition,
leij| < RelError(A)|a;;| for all i, j, whence ||¢;|| < RelError(A)||a;|| for all i (here
|| || denotes the Euclidean norm in R"). We obtain

T
e x ; ;
RelError((Ax);) = | . | < lei QHXH < RelError(A) lailllxl QHXH
|aix| |a,’x| Iaix|
This implies that
RelError((Ax);
Cw; (A, x) =lim sup M
§—0 RelError(A) <4 ReIError(A)
llai llllx I 1
< = = [sec(a;j, x)|.
lalx| ~ |cos(a;, x)| jseetar. )] O
A bound for the loss of precision in the componentwise context follows.
Corollary O.7 In the componentwise setting, for all i such that b; = (Ax); # 0,
RelError(b;) < [sec(a;, x)|(Mogy 1] + 2) €mach + 0(€mach).
LoP(b;) < logg|sec(a;, x)| +logg([logy n] +2) + o(1),
. —1/2
provided logyn < €.+ 3.
Proof Immediate from Propositions O.4 and O.6 and Theorem O.3. U

The corollary above states that if we are working with |logg €macn| bits of pre-
cision, we compute a vector fl(Ax) whose nonzero entries have, approximately, at
least

|1ogg €mach| — logg |sec(a,', x)| —logglog, n
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bits of precision. (The required bound on # is extremely weak and will be satisfied
in all cases of interest.) This is a satisfying result. One may, nevertheless, wonder
about the (absolute) error for the zero components of Ax. In this case, a normwise
analysis may be more appropriate.

To proceed with a normwise analysis we first need to choose a norm in the space
of m x n matrices. For simplicity, we choose

[Alloo = rﬁlaXIIIAXIloo-

It is well known that
|Alloo = max |la; |- (0.8)
i1<n

Now note that it follows from Proposition O.4 that the perturbation A inits statement
satisfies, for n not too large,

A — Allos < ([ogy 17 + 2) €mach- (0.9)

Therefore, we do have a normwise backward-error analysis. In addition, a normwise
version of Proposition O.6 can be easily obtained.

Proposition 0.8 The normwise condition number cond(A, x) of matrix—vector
multiplication, for perturbations on A only, satisfies, for Ax # 0,

[ Alloo llxl oo

cond(A, x) =
lAx]loc
Proof We have

RelError(Ax
cond(A, x) = lim sup #
§—0RelError(a)<s RelError(A)

i IAx — Axlloo _[1Alloo
= lim sup =
=0 i Aozt 1A%To0 JA = Al

A X
_ I1Allsollxlloo
| Ax oo

Actually, equality holds. In order to see this, assume, without loss of generality, that
lx]lco = |x1]|. Set A=A + E, where e;; =6 and e;; = 0 otherwise. Then we have

1Ax — Ax[loo = | Exlloo = 8x1] = [ Elloollx oo = A — Allool|X loo- O
Again, a bound for the loss of precision immediately follows.

Corollary 0.9 In the normwise setting, when Ax # 0,

[ Allooll* lloo

LoP(Ax) <logg ( 1Axl
o

) + logﬂ(f10g2 n]+2)+o(D),

provided log, n < er;;c/ﬁ + 3.
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Proof It is an immediate consequence of (0.9), Proposition O.8, and Theo-
rem O.3. O

Remark O.10 If m = n and A is invertible, it is possible to give a bound on the
normwise condition that is independent of x. Using that x = A~!Ax, we de-
duce [[x]loo < [[A™loollAX|loo and therefore, by Proposition 0.8, cond(A, x) <

A" ool Alloo- A number of readers may find this expression familiar.

0.5 The Many Faces of Condition

The previous sections attempted to introduce condition numbers by retracing the
way these numbers were introduced: as a way of measuring the effect of data per-
turbations. The expression “condition number” was first used by Turing [221] to
denote a condition number for linear equation solving, independently introduced by
him and by von Neumann and Goldstine [226] in the late 1940s. Expressions like
“ill-conditioned set [of equations]” to denote systems with a large condition number
were also introduced in [221].

Conditioning, however, was eventually related to issues in computation other
than error-propagation analysis and this fact—together with the original role of con-
ditioning in error analysis—triggered research on different aspects of the subject.
We briefly describe some of them in what follows.

0.5.1 Condition and Complexity

In contrast with direct methods (such as Gaussian elimination), the number of
times that a certain basic procedure is repeated in iterative methods is not data-
independent. In the analysis of this dependence on the data at hand it was early
realized that, quite often, one could express it using its condition number. That is,
the number of iterations the algorithm A% would perform with data a € R™ could
be bounded by a function of m, cond? (a), and—in the case of an algorithm comput-
ing an g-approximation of the desired solution—the accuracy ¢. A very satisfying
bound for the number of iterations # iterations(A? (a)) of algorithm A% would have
the form

O(a)

1

# iterations (A% (a)) < (m +logcond” (a) + 10g<—>> , (0.10)
s

and a less satisfying (but often still acceptable) bound would have logcond? (a)
replaced by cond? (a) and/or log(%) replaced by % We will encounter several in-
stances of this condition-based complexity analysis in the coming chapters.
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0.5.2 Computing Condition Numbers

Irrespective of whether relative errors are measured normwise or componentwise,
the expression (O.1) defining the condition number of a (for the problem ¢) is hardly
usable. Not surprisingly then, one of the main lines of research regarding condition
numbers has focused on finding equivalent expressions for cond? (a) that would
be directly computable or, if this appears to be out of reach, tight enough bounds
with this property. We have done so for the problem of matrix—vector multiplication
in Propositions 0.6 and O.8 (for the componentwise and normwise cases, respec-
tively). In fact, in many examples the condition number can be succinctly expressed
in terms of the norm of a derivative, which facilitates its analysis (cf. Sect. 14.1).

0.5.3 Condition of Random Data

How many iterations does an iterative algorithm need to perform to compute ¢ (a)?
To answer this question we need cond?(a). And to compute cond? (a) we would
like a simple expression like those in Propositions 0.6 and O.8. A second look
at these expressions, however, shows that they seem to require ¢(a), the quantity
in which we were interested in the first place. For in the componentwise case, we
need to compute sec(a;, x)—and hence al.Tx—for i=1,...,n,and in the normwise
case the expression ||Ax|so speaks for itself. Worst of all, this is not an isolated
situation. We will see that the condition number of a matrix A with respect to matrix
inversion is expressed in terms of A~! (or some norm of this inverse) and that a
similar phenomenon occurs for each of the problems we consider. So, even though
we do not formalize this situation as a mathematical statement, we can informally
describe it by saying that the computation of a condition number cond? (a) is never
easier than the computation of ¢ (a). The most elaborate reasoning around this issue
was done by Renegar [164].

A similar problem appears with perturbation considerations. If we are given only
a perturbation a of data a, how can we know how accurate ¢(a) is? Even assuming
that we can compute cond? accurately and fast, the most we could do is to compute
cond?(a), not cond? (a).

There are a number of ways in which this seemingly circular situation can be
broken. Instead of attempting to make a list of them (an exercise that can only result
in boredom), we next describe a way out pioneered by John von Neumann (e.g.,
in [108]) and strongly advocated by Steve Smale in [201]. It consists in randomizing
the data (i.e., in assuming a probabilistic distribution & in R") and considering the
tail

Prob{cond?(a) >t}
a~D
or the expected value (for g > 1)

E (logq cond? (a)).
D

a~
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The former, together with a bound as in (0.10), would allow one to bound the prob-
ability that A% needs more than a given number of iterations. The latter, taking g to
be the constant in the O(a) notation, would make it possible to estimate the expected
number of iterations. Furthermore, the latter again, now with ¢ = 1, can be used to
obtain an estimate of the average loss of precision for a problem ¢ (together with a
backward stable algorithm A% if we are working with finite-precision arithmetic).

For instance, for the example that formed the substance of Sect. 0.4, we will
prove for a matrix A € R™*" with standard Gaussian entries that

E(logg Cw;(A)) < ~loggn +2.

| =

In light of Corollary O.7, this bound implies that the expected loss of precision in
the computation of (Ax); is at most % loggn +logglogyn+ O(1).

The probabilistic analysis proposed by von Neumann and Smale relies on the
assumption of “evenly spread random data.” A different approach was recently pro-
posed that relies instead on the assumption of “nonrandom data affected by random
noise.” We will develop both approaches in this book.

0.5.4 Ill-posedness and Condition

Let us return once more to the example of matrix—vector multiplication. If A and
x are such that Ax = 0, then the denominator in % is zero, and we can
define cond(A, x) = oco. This reflects the fact that no mattg; how small the absolute
error in computing Ax, the relative error will be infinite. The quest for any relative
precision is, in this case, a battle lost in advance. It is only fair to refer to instances
like this with a name that betrays this hopelessness. We say that a is ill-posed for
¢ when cond? (a) = co. Again, one omits the reference to ¢ when the problem is
clear from the context, but it goes without saying that the notion of ill-posedness,
like that of condition, is with respect to a problem. It also depends on the way we
measure errors. For instance, in our example, Cw(A, x) = oo if and only if there
exists i < n such that aiTx = 0, while for cond(A, x) to be infinity, it is necessary
(and sufficient) that Ax = 0.

The subset of R of ill-posed inputs is denoted by X'¢ (or simply by X'), and
it has played a distinguished role in many developments in conditioning. To see
why, let us return (yes, once again) to matrix—vector multiplication, say in the com-
ponentwise setting. Recall that we are considering x as fixed (i.e., not subject to
perturbations). In this situation we take X C R"*" to be the set of matrices A such
that Cw(A, x) = co. We have X = J,,, X; with

i<n

i ={AeR™™"|Cw;(A,x) =00} ={A eR"™ |alx =0}.
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Now recall Cw; (A, x) < If we denote by a; the orthogonal projection of

[cos(a;,x)]
a; on the space x- = {y e R" | yTx =0}, then

L il
cos(ai, 0 llai —aill’

and it follows that
lla:
(A, X)) < ———.
dist(A, X))

That is, componentwise, the condition number of (A, x) is bounded by the inverse
of the relativized distance from A to ill-posedness.

This is not an isolated phenomenon. On the contrary, it is a common occurrence
that condition numbers can be expressed as, or at least bounded by, the inverse of a
relativized distance to ill-posedness. We will actually meet this theme repeatedly in
this book.

Cw; (0.11)
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Chapter 1
Normwise Condition of Linear Equation Solving

Every invertible matrix A € R"*” can be uniquely factored as A = QR, where Q is

an orthogonal matrix and R is upper triangular with positive diagonal entries. This
is called the QR factorization of A, and in numerical linear algebra, different ways
for computing it are studied. From the QR factorization one obtains the solution of
the system Ax =b by y = QTh and x = R~y where the latter is easily computed
by back substitution.

The Householder QR factorization method is an algorithm for computing the
QR-decomposition of a given matrix (compare Sect. 4.1.2). It is one of the main
engines in numerical linear algebra. The following result states a backward analysis
for this algorithm.

Theorem 1.1 Let A € R™" be invertible and b € R". If the system Ax = b is solved
using the Householder QR factorization method, then the computed solution X sat-
isfies

Ax =b,
where A and b satisfy the relative error bounds
1A= Alp <nyeallAlp and |Ib— bl <nye bl

for a small constant ¢ and with v, as defined in (O.5). O

This yields |A — A|| < n3/2y,, | A|| when the Frobenius norm is replaced by the
spectral norm. It follows from this backward stability result, (O.6), and Theorem O.3
that the relative error for the computed solution X satisfies

1# —xll _

cn5/2

€machCONd(A,, b) 4 0(€mach). (1.1)

llxl

and the loss of precision is bounded by
5
LoP(A™'p) < 5 loggn +logg cond(4, b) +logg ¢ + o(1). (1.2)

P. Biirgisser, F. Cucker, Condition, 3
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4 1 Normwise Condition of Linear Equation Solving

Table 1.1 Equivalence of

vector norms 1 2 o0
1 = Jn n
2 1 = Jn
o0 1 1 =

Here cond(A, b) is the normwise condition number for linear equation solving,

d(A.B) = I RelError(A~!b)
con s = lIim sup s
8—0 max{RelError(A),RelError(b)} <8 max{RelError(A), RelError(b)}

where RelError(A) is defined with respect to the spectral norm and RelError(b) with
respect to the Euclidean norm. Inequality (1.1) calls for a deeper understanding of
what cond(A, b) is than the equality above. The pursuit of this understanding is the
goal of this chapter.

1.1 Vector and Matrix Norms

The condition number cond(A, b) in the introduction is a normwise one. For this
reason, we begin by providing a brief review of norms.

The three most useful norms in error analysis on the real vector space R” are the
following:

n n 1/2
. . 2 .
lxli = E lxil,  llxll2 == (5 |xi | ) o lxlloo := max |x;].
1<i<n

i=1 i=1

Any two of them are equivalent, and the equivalence constants are given in Table 1.1,
whose (7, j)th entry shows the smallest constant k for which || ||; < k|| ||;.
These norms are special cases of the Holder r-norm

n 1/r
lxll = (Z |xl-|’>

i=1

defined for a real number r > 1. Even though we will need only the cases r €
{1, 2, oo}, stating the results for general Holder norms avoids case distinctions and
thus saves space.

For a given r > 1 there is exactly one r* > 1 such that 1/r + 1/r* = 1. The
well-known Hélder inequality states that for x, z € R”, we have

Tz < lxlly 2l
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Moreover, equality holds if (|x;|") and (|z;|” *) are linearly dependent. This easily
implies that for any x € R",

max x1z=|x|. (1.3)
Nzl «=1

For this reason, one calls || ||+ the dual norm of || ||,. In particular, for each x € R"
with ||x]|, = 1 there exists z € R” such that ||z« = 1 and zTx = 1.

We will adopt the notational convention || || := || ||2 for the Euclidean vector
norm. Note that this norm is dual to itself. Note as well that || ||; and || || are dual
to each other.

To the vector norms || ||, on a domain space R" and || || on a range space R™, one
associates the subordinate matrix norm || || s on the vector space of linear operators

A: R*" — R™ defined by

_ lAx]|s
| Allrs := sup = sup |[[Ax|s. (1.4)
xeR?P “x”r [lx|l,=1
x7£0

By compactness of the unit sphere, the supremum is a minimum. In case r = s,
we write || || instead of || ||,-. (We recall that we already met || || in Sect. O.4.)
Furthermore, when r =2, || ||2 is called the spectral norm, and it is written simply
as || [I.

We note that the following submultiplicativity property of matrix norms holds:
for r,s,t > 1 and matrices A, B we have

IABIlrs < | Alles [| Bl (1.5)

provided the matrix product is defined.
Most of what we will need about operator norms is stated in the following simple
lemma.
Lemma 1.2
(a) Fory € R™ and v € R" we have ||yv"|lys = |y lls v+

(b) Suppose that x € R" and y € R™ satisfy ||x|l, = ||ylls = 1. Then there exists
B € R™*" such that |B||;s = 1 and Bx = y.

©) AT lrs = | Allgp=.
Proof (a) We have

T T T
= ma = ma = .
0"l = max [yo"e], =yl max [o"x| = 1ylslvll
where the last equality holds due to (1.3).

(b) By (1.3) there exists z € R” such that ||z|,« = 1 and zTx = 1. For B := yzT
we have Bx =y, and by part (a) || Bll;s = llylls 2l =1.
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(c) We have

||AT|| = max ||AT ||Y(l—;3) max max x'Az
llcll= S xll =1 Izl =1

(1.3)
= max |[Azll;» = [|Allsxr=. 0
llzllgx=1

Lemma 1.2 allows one to provide friendly characterizations of some operator
norms.

Corollary 1.3 For all r, ||Allrec = max;<p ||a; ||+, where a; is the ith row of A. In
particular:

@ l|All1oo = max;<m, j<n laijl,

(b) All200 = max; < lla;ll,

(©) lAlloc =max;<m ), laijl,

(d) 1Al =maxj<, D ;- laijl,

(©) lAlli2 =max <, lla.j| (a.; denoting the jth column of A).

Proof Using (1.3) we obtain

|All;00 = max ||Ax|leco = max max |a x| max||a; ||+
lxll-=1 m ||x|ly= i<m
The particular cases follow from the definition of vector norms || ||1, || |2, and || ||co
and the use of Lemma 1.2(c). O

Considering a matrix A = (a;;) € R™*" as an element in R™" yields at least
two more matrix norms (corresponding to the 1-norm and 2-norm in this space). Of
them, the most frequently used is the Frobenius norm,

m n 1/2
1AlIF = (ZZa?j) :

i=1 j=I

which corresponds to the Euclidean norm of A as an element of R”". The advantage
of the Frobenius norm is that it is induced by an inner product on R”*".

Just like the vector norms, all matrix norms are equivalent. A table showing
equivalence constants for the matrix norms we have described above is shown next
as Table 1.2. Most of these bounds follow from those in Table 1.1, while a few will
be shown below (Proposition 1.15(h)).

1.2 Turing’s Condition Number

We now proceed to exhibit a characterization of the normwise condition number for
linear equation solving, pursuing the theme described in Sect. O.5.2.
Let m =n and fix norms || ||, and || ||y on R”. Also, let

¥ :={AeR"" | det(A) =0}
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Table 1.2 Equivalence of matrix norms

1 2 00 12 loo 21 200 ool 002 F
1 = Jm m Jmo om 1 m 1 Jm Jm
2 i o= NNV N B i1 i
0o n N = n n Jn Jn 1 1 NG
2 1 1 Ji o=  Jm 1 N 1
loo 1 1 1 1 = 1 1 1 1 1
21 J/n Jm m Jmn myn = m 1 Jm Jm
200 i 1 1 s - 11 1
ool n Jmn m nym mn Jn myn = Jm Jmn
002 n Jn Jmoon nym Jn Jmno 1 = n
F oo Jrank(A) Jm o Jn mno Jrank(A)  Jmo ] rank(4) =

denote the set of ill-posed matrices and put D := R"*" \ X. We define the map
krs : D — Rby

krs(A) == || Allrs ”A_l Hsr'

Note that ks (A) > 1, since 1= |I||; < |Allrs A7 l5r = krs (A).

Theorem 1.4 Let ¢ : D x R" — R” be given by (A, b) = A~'b. We measure the
relative error in D x R" by

A=Al |Ib—b|s
RelError(A, b) = max{ I llrs |l Ils }’

IAl-s 11l

and we measure the relative error in the solution space normwise with respect
to || ||y. Then

A~ s 1115

cond?(A, b) = A
( ) =krs(A) + ||A_lb||r

In particular, we have
krs(A) < cond?(A, b) < 2k,5(A).

Proof Let A=A — E and b = b + f. By definition, || E||,s < R||All,s and || f||s <
R||b||s, where for simplicity, R = RelError(A, b). We have, for R — 0,

A—E)'=Aa"'1—EA™) ' = a1+ EA" +o(R))
=A""+AT'EAT +o(R).
This implies, writing x := A~!b and ¥ := A~ 1p,

F—x=A-E7'b0+f)—x=AT"Ex+ A7 f +0o(R). (1.6)
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Taking norms and using (1.5), we conclude that

1% = xllr < JAT L NEDrslx e+ JAT ] 1]l + o(R)
< AT NAlslxl-R+ AT, 1B1sR + o(R),

and hence

F—x A7 1B

Il Il < ko (A) + Il lls ”s’
Rilx |l flx 1l

which shows the upper bound in the claimed equality.

For the corresponding lower bound we choose y € R” such that ||y||y =1 and
|A= y|l, = A~ lsr. Further, we choose v € R” such that |[v]|,« =1 and vTx =
lx1l,, which is possible by (1.3). Now we put

E:=R[A]yv", fi==%RIbls y. 1.7

‘We note that
IEl:s = RIIAlls, I flls =Rllblls,

the first equality holding since by Lemma 1.2(a), |yv|l,s = [ylsllvl,+ = 1. We
have

AT VEx =R||All,s A7y v x = RIIAllsllx ], A7y

and hence |A"'Ex|, = kry(A)|lx|,R. Similarly, A~!'f = £R|b| A"y and
IA= £, = IA s IblIsR. Since A~'Ex and A~!f are both proportional to
A_ly, we obtain from (1.6),

1% = xlr = ks ()X R+ [ A7 1511R,

if we choose the sign for f in (1.7) appropriately. This proves the claimed lower
bound. O

The next result shows that «,; actually coincides with the condition number for
the problem of matrix inversion.

Theorem 1.5 Let v : D — R™ " be given by ¥ (A) = A~'. We measure the rel-
ative error on the data space and solution space with respect to || |ls and || |lsr,
respectively. Then we have

cond? (A) = k5 (A).

Proof Let E € R™*" be such that A=A — E. Then RelError(A) = Hi”:: . As in the
proof of Theorem 1.4, we have for | E| — 0, ’

[A7 =A™, = A7 EATY, +o(IEN). (18)
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Hence, |[A"'EA Yy < |A" Y5 I E|l,s A7 |s. Consequently, we obtain

AT = AT,

RelError(A~") = AT <A NEs +o(IEN).
Sr

We conclude that

RelError(A~1)

moEmorcny = 1Al |A=",, +o(1)
and hence cond? (A) < k,s(A).

To prove the reverse inequality it is enough to find arbitrarily small matrices E
suchthat [A~'EA~ Y, = |A7! ||§r lE||;s, since then we can proceed from (1.8) as
we did in Theorem 1.4 from (1.6).

To do so, let y € R” be such that || y|l; = 1 and |[A~y||, = |A~"|l,,. Define x :=
”AJI - A7 ly, sothat A=ly = |A~!||;,x and ||x||, = || y|ls = 1. For any B € R"*"
we have

[a7 BaTH, = a7 BAT |, = a7, - A" Bx],.

By Lemma 1.2(b) there exists B € R"*" such that Bx = y and || B||,s = 1. There-
fore,

B _ _ _ 12
”A IBA l”rrZHA 1||sr.||A ly”r:”A 1””.

Taking E = § B with arbitrarily small § finishes the proof. 0

The most often considered case is r = s = 2, that is, when the error in both
the input and the output space is measured with the Euclidean norm. The resulting
condition number « (A) := k22(A) is so pervasive in numerical linear algebra that
it is commonly referred to as “the condition number of A”—without mention of
the function of A whose condition we want to measure. We remark that « (A) was
originally introduced by Turing [221] and by von Neumann and Goldstine [226]
(Turing actually considered norms other than the spectral).

Theorem 1.4—together with (1.2)—immediately yields a bound for the loss of
precision in linear equation solving.

Corollary 1.6 Let A € R™ " be invertible and b € R". If the system Ax = b is
solved using the Householder QR factorization method, then the computed solution
X satisfies, for a small constant c,

LoP(A~'p) < 2loggn +logg k (A) +1logg ¢ + o(1),

where o(1) is for €mach — 0. Il
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1.3 Condition and Distance to Ill-posedness

A goal of this section, now revisiting the discussion in Sect. O.5.4, is to show that the
condition number «,5(A) can be expressed as the relativized inverse of the distance
from the square matrix A to the set X' of singular matrices: a large «,5(A) means
that A is close to a singular matrix. In order to make this precise, we introduce the
distance of A € R"*" to the set X of singular matrices,

dys(A, ¥) :=min{||A - Bl | B € X}, (1.9)

defined with respect to the norm | |,s. For the spectral norm we just write
d(A,X):=dn(A,Y).

Theorem 1.7 Let A € R"™" be nonsingular. Then

dig(A, X)) = ——.
" A=

Proof Let A be nonsingular and let A + E be singular. Then there exists an x €
R \ {0} such that (A + E)x = 0. This means that x = —A~! Ex and hence

Ixly < JATYE|,, - Ixll < JA7Y],, - HE ks - Ix]lr,

which implies [|E|; > [|A~"||;;!. Therefore d,(A, X) > ||A7Y;!.

To prove the other inequality, it suffices to find a singular matrix A with
dys(A, A) < A7V Let y € R” be such that [A™" || = |A™" [, and [|y]l; = 1.
Writing x := A~'y, we have |x|, = [[A7'|, in particular x # 0. By
Lemma 1.2(b), there exists B € R"*" such that || B||,s = 1 and

X

llxl-

Hence E = ||x||le satisfies Ex = —y, and hence (A + E)x = 0. So the matrix
A := A + E must be singular. In addition, we have

drg (A, B) = Ellrs = I1xl; 1Bl = A7t 1Bls = A7),
which finishes the proof. O

Defining 4 (A) := oo for a singular matrix, we immediately obtain the following
result, which is known as the “condition number theorem.”

Corollary 1.8 For nonzero A € R"*" we have

1 Allrs

RV 0
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Thus the condition number «,¢4(A) can be seen as the inverse of a normalized
distance of A to the set of ill-posed inputs X

Notation 1.9 In this book we will consider matrices given by their columns or by
their rows. In order to emphasize this distinction and avoid ambiguities, given vec-
tors ay, ...,a, € R™, we write (ay, ..., a,) for the matrix in R™™ whose rows are
ai,...,ay, and [ay, ..., ay] for the matrix in R™*" whose columns are these vec-
tors. Note that this notation relieves us from having to transpose (x1, ..., Xx,) when
we want to emphasize that this is a column vector.

For a matrix A € R"™™, a vector ¢ € R", and an index j € [m], we denote by
A(j : ¢) the matrix obtained by replacing the jth row of A by c. The meaning of
Alj : c] is defined similarly.

We draw now a consequence of Theorem 1.7 that will be used in several varia-
tions throughout the book.

Proposition 1.10 For A € R"*" and r,s > 1 there exist j € [n] and ¢ € R" such
that A[j:cle ¥ and |laj — c|ly <n'/" d,s(A, X).

Proof Theorem 1.7 states that | A~!||s, = e, where ¢ :=d,(A, X). There exists
b € R” such that ||b|l; =1 and |A™'b], = |A~"|l,. So if we put v := A~ b, then
|lv]l, > e~!. This implies ||v]loo =n"""|Jv]l, = n~1/"e~!. Without loss of general-
ity we may assume that |v,| = ||v]|co-

Since Av = b, we can express v, by Cramer’s rule as follows:

_ det([ay, ..., an—1,b])
- det(A) '

Uy
This implies

0 =det(A) — v, det([ai, ..., an—1,b]) =det([ar, ..., an—1.an — v;lb]).
Thus if we put ¢ :=a,, — vn’]b, we have A[i : c] € X' and

—1 —1 1
lan = clls = lva| " 1lls = [val ™' <n/"e. O

1.4 An Alternative Characterization of Condition

Theorem 1.7 characterizes ||A~!||;,—and hence k,;(A)—as the inverse of the dis-
tance from A to X'. The underlying geometry is on the space R"*" of matrices. The
following result characterizes |A~!||s, in different terms, with underlying geom-
etry on R". Even though its proof is very simple, the idea behind this alternative
characterization can (and will) be useful in more complex settings.

For a € R" and § > 0 denote by B, (a, §) the closed ball with center a and radius
§ in R" with the norm || ||,.
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Proposition 1.11 For A e R"*"\ X,
_1p—1
|A=,, =sup{s | Bs(0,8) € A(B-(0,1))}.

Proof 1Tt is immediate from the fact that

i 1
By(0.8) CA(B0,1) = AT (B0, D)< B(0,5).

1.5 The Singular Value Decomposition

The singular value decomposition of a matrix is the numerically appropriate way to
discuss matrix rank. It also leads to a natural generalization of Theorem 1.7.

In this section we mainly work with the spectral and the Frobenius norms. Both
of them are invariant under orthogonal transformations.

Lemma 1.12 For A € R™*" and orthogonal matrices U € R™*™ and V € R™*"
we have |[lUAV ||p = ||Allp and |UAV || = || A]l.

Proof For the first assertion, let sq, .. ., s, denote the columns of A. Then U's; is the
ith column of U A. Since U is orthogonal, we have ||Us; || = ||s;|| and therefore
WUAIE =Y Uil =) llsil* = [ All7.
i<n i<n

In the same way, one shows that ||[AV||r = ||A||r. The second assertion is proved
as follows:

IUAV| = sup [[UAVx| = sup |[U(AVx)]|
Ixl=1 lxl=1

= sup |AVx| = sup [|[A(Vx)]|
lxl=1 lxf=1

= sup [AX| = |A].
M:lu | -

For conveniently stating the singular value decomposition, we extend the usual
notation for diagonal matrices from square to rectangular m x n matrices. We put
p :=min{n, m} and define, for ay, ..., a, € R,

ai ifi=j,

diag,, ,(ai, ..., ap) == (bij) € R™*"  with bij = {O otherwise

For notational convenience we usually drop the index, the format being clear from
the context.

The next result is known as the “singular value decomposition theorem” (or, for
short, the “SVD theorem”).
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Theorem 1.13 For A € R™*" there exist orthogonal matrices U € R™"*™ and V €
R™" such that

UTAV =diag(o1, ...,0,),
with p=min{m,n}and oy > 02> --- >0, > 0.
Proof Let x € R", ||x|| = 1 be such that ¢ := |A|| = ||Ax|| and define y :=
o 'Ax e R™, so that ||y|| = 1 and Ax = o'y. There exist matrices V, € R**~D

and U, € R™*=1D guch that V := [x, V5] and U := [y, U,] are orthogonal.
We have for some w € R*~! and B € R"~Dx=1) that

T T T
UTAV = [ly]T]A[x, Vol = [lyﬂ] [0y, AV] = [g “1’9 } = AL
2 2

Note that || A1 || = ||A|| by the orthogonal invariance of the spectral norm. Moreover,
we have for v € R*~1,

kKRN

whence || B|| < ||A]l.
We claim that w = 0. To see this, note that

HE N
[7]

<A1 % + Iwl?)? =0 (0 + w]?)

B = <|utav |l <ALl

and therefore

> o+ [lw|?.

On the other hand,

o2

It follows that w = 0. The argument can now be completed by induction. 0

172

The nonnegative numbers o; in Theorem 1.13 are called the singular values of
A and are sometimes written o; (A). We will see soon enough (Corollary 1.18) that
they are uniquely determined by A. Sometimes one writes oyax and oy, for o7 and
op, respectively. The ith columns u; and v; of U and V in Theorem 1.13 are called
ith left singular vector and ith right singular vector of A, respectively (in general,
those are not uniquely determined).

Remark 1.14 If A € R™™" is symmetric, then there exists V € R"*" orthogonal
such that VT AV = diag(rq, ..., Ay), where Aq, ..., A, € R are the eigenvalues of
A (spectral theorem). Hence |11/, ..., |A,| are the singular values of A.
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The following result summarizes the main properties of the singular value de-
composition.

Proposition 1.15 Suppose that 61 > 02 > -+ > 0, > 0p41 =--- =0, =0 are the
singular values of A € R™*" and u;, v; are left and right singular vectors of A.
Then:

(a) A= Z?:l a,-uiviT (singular value decomposition of A),

(b) rank(A) =r,

(c) ker(A) =span{vy+1,..., v}, Im(A) =span{uy, ..., u,},

@ lAll=o1, A} =07+ +07,

(€) minyy =1 |Ax|| =0y if m > n,

) k(A)=o1/0,ifm=n,A#0,

(g) A and AT have the same singular values; in particular, | A|| = | AT]|,

() Al = lAllF = «/rank(A) Al

Proof In the case p =m < n, we have

T
0’11)1 m
A=U-di VT =1 1 = vt
= iagy, n (01, ..., 0m) =lur ... up : = oiu;v; .
omvy i=1

(1.10)
The case n > m 1is treated similarly, which proves the first assertion. The second
assertion is immediate from the diagonal form of UTAV.
For showing (c), note that

(Avi, ..., Avy) = AV = Udiag(o1, . .., 0,,0,...,0)

= (o1uy,...,00us,0,...,0)

implies the inclusions span{v,1, ..., v,} € ker(A) and span{uy, ..., u,} S Im(A).
Equality follows by comparing the dimensions.

Assertion (d) is an immediate consequence of the orthogonal invariance of the
spectral norm and the Frobenius norm; cf. Lemma 1.12. For (e) note that

o, ifm>n,

min ||Ax| = min | dia O1,...,0p)X|| = .
4] Hx||=1|| 9. (01 ») H {O otherwise.

llxll=1
For proving (f), suppose m = n and A € R"*" invertible. Then

VTA~'U = diag(o; ', ..., 0,7 ).

*Yn

-1 1

Hence O’”_l >0, >-->o0 arethe singular values of A~L. Assertion (d) im-

plies [|[A~!]| = an_l. Hence

k(A =A]-[A7Y| =?.
n
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The first part of assertion (g) is trivial; the second easily follows from (d). Finally,
assertion (h) follows from (d) by noting that 012 4+ 4 0,2 < ralz. O

We draw now some conclusions from the singular value decomposition. For a
square matrix we always have x(A) > 1. So the best condition one can hope for is
k(A) = 1. Orthogonal matrices A satisfy this property, since |A|| =1 (and A~ is
orthogonal as well). Of course, any nonzero multiple AA of an orthogonal matrix A
also satisfies

K(A) = Al - |A7TAT | = hAl = 1.
Proposition 1.15(f) implies that these are all matrices with x (A) = 1.

Corollary 1.16 If k(A) =1, then o = --- = 0,,. This implies that UTAV =gy,
and hence o YA is orthogonal. O

The following results extend Theorem 1.7 in the case of spectral norms.

Theorem 1.17 Ler A =)";_, o,-uiv;r be a singular value decomposition of A €
R™*" gnd 0 < k < r =rank(A). Then we have

min _[|[A — B|| = ||A — Akll = 0k+1,
rank(B)<k

where Ay 1= Z{;] a,-uivl.T.

Proof Asin (1.10) we get UTAkV =diag(o1,...,0%,0,...,0), which implies that
rank(Ay) = k. Moreover, UT(A — Ap)V =diag(0,...,0,0%+1,...,0p), which im-
plies that ||A — Ay || = ok+1-

Let now B € R™*" with rank(B) < k. Then dim(ker B) > n — k and there-
fore span{vy, ..., vg+1} Nker B # 0. Let z be an element of this intersection with
lIz]l = 1. Then

r r
T
Az = Zdiuivi z= ZUi<Ui, ),
i=1 i=1

and hence

r k+1 k+1
2 2 2 2 2 2 2 2
1AzI* =) ol (vi.2)? =Y ol (i 2)> = ol Y (vi.2)? =0
i=1 i=1 i=l1

Therefore,

14 = BI? = (A= B)z|* = 4z = o,

completing the proof of the theorem. U

Corollary 1.18 The singular values o; of A are uniquely determined. O
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We can now extend some of the discussion in Sect. 1.2 from square to rectangular
matrices. Put p := min{m, n} and consider the set of ill-posed matrices

2 :={AeR"™" |rank(A) < p}.

We may measure the distance to ill-posedness from a matrix A € R”*", similarly
as in (1.9), by the spectral norm, resulting in d(A, X'). Alternatively, we may also
measure the distance from A to X' with respect to the Frobenius norm and define

dp(A, X):=min{|A—B|lp|Be X}.
It turns out that this gives the same distance as that given by the spectral norm.

Corollary 1.19 For A € R™*" we have d(A, ¥) =dr(A, X) = omin(A).

Proof 1Tt is sufficient to show that dr(A, X') <d(A, X), since the other inequality
is obvious. Theorem 1.7 with k = p — 1 tells us that d(A, X') equals the smallest
singular value o, of A. Let now A = Zle crl-u,-viT be a singular value decomposi-
tion of A. Then B = Zf:ll aiuiviT liesin ¥, and A — B = o,u, v} has Frobenius
norm oy. Therefore dr(A, X) < o), completing the proof. 0

Remark 1.20 The singular value decomposition has a natural extension to complex
matrices, and so have all the results in this and the previous sections. More specif-
ically, for A € C™*" there exist unitary matrices U € C"*™_ |V € C"*" as well as
real numbers oy > 07 > -+ >0, > 0 such that U*AV = diag,, ,(o1,...,0p). Here
A* = AT is the conjugate transpose of A, and p = min{m, n}.

We finish this section with two results that will be needed in Chap. 9. Recall that
omin(A) denotes the smallest singular value of A.

Lemma 1.21 Let A € R™*" with n > m and oyin(A) > 0. Denote by By, and B,
the closed unit balls in R™ and R", respectively. Then we have

Omin(A) = sup{k >0|AB, C A(B,,)}.

Proof By Theorem 1.13 we assume without loss of generality that A =
diag(o1, ..., o,). It follows that

i Vo
A(Bn)z{yeR’” —12+---+—";§1},
oj (ot

which is a hyperellipsoid with semiaxes o;. This proves the assertion (see
Fig. 1.1). 0

Remark 1.22 Tt is sometimes useful to visualize the singular values of A as the
lengths of the semiaxes of the hyperellipsoid {Ax | [|x|| = 1}.
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o1 Y1

Fig. 1.1 Ball of maximal radius o7 contained in an ellipse

We will also need the following perturbation result.

Lemma 1.23 For A, B € R™*" we have

|Umin(A +B) — Umin(A)‘ < Bl

Proof Since A and AT have the same singular values, we assume without loss of
generality that n > m. According to the characterization of oy, in Proposition 1.15,
there exists x € R” with ||x|| = 1 such that ||Ax| = omin(A). Then

omin(A + B) < [|(A+ B)x|| < | Ax|l + [ Bx|| < omin(A) + || B].
Since A, B were arbitrary, we also get
Omin(A) = O'min((A + B) + (_B)) < Omin(A+ B) + || BJ|.

This proves the assertion. U

1.6 Least Squares and the Moore-Penrose Inverse

In Sect. 1.2 we studied the condition of solving a square system of linear equations.
If instead, there are more equations than variables (overdetermined case) or fewer
equations than variables (underdetermined case), the Moore—Penrose inverse and its
condition naturally enter the game.

Let A € R™*" be of maximal rank p = min{m, n} with a singular value decom-
position

UTAV = diag,, ,(01,...,0p),

where o1 > 02 > --- > 0}, > 0. We define the Moore—Penrose inverse of A to be the
matrix

AT =vdiag, ,(o7".....0, Y UT.

From the geometric description of AT given below, it follows that AT is in fact
independent of the choice of the orthogonal matrices U and V.
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Fig. 1.2 The spaces Im(A),
Im(A)* and the points » and
cin R™

Lemma 1.24

(a) Suppose that m > n and A € R™*" has rank n. Then the matrix A defines a
linear isomorphism A1 of R" onto Im(A), and we have AT = Al_1 o 1, where
7: R™ — Im(A) denotes the orthogonal projection. In particular, ATA = 1.
Moreover, AT A is invertible and At = (ATA)*IAT.

(b) Suppose that n > m and A € R™*" has rank m. Then the matrix A de-
fines an isomorphism Ay : (kerA)J- — R™, and we have AT =10 A;l, where
t: (ker A)L — R”" denotes the embedding. In particular, AAT = 1. Moreover,
AAT is invertible and AT = AT(AAT)~1.

Proof The claims are obvious for the diagonal matrix A = diag,, , (o1, ...,0p) and
easily extend to the general case by orthogonal invariance. g

The following is obvious from the definition of AT,

Corollary 1.25 We have |AT|| = O

1
Omin(A) *

Suppose we are given a matrix A € R"*" with m > n and rank(A) = n, as well
as b € R™. Since A, as a linear map, is not surjective, the system Ax = b may have
no solutions. We might therefore attempt to find the point x € R” with Ax closest
to b, that is, to solve the linear least squares problem

min || Ax — b]|%. (1.11)
xeR®

Since A is injective, there is a unique minimizer x for (1.11), namely the preimage
of the projection ¢ of b onto Im(A). From Lemma 1.24(a) it follows immediately
that the minimizer can be expressed as x = ATh (see Fig. 1.2).

For the case of underdetermined systems, we consider instead the case m < n and
rank(A) = m. For each b € R™, the set of solutions of Ax = b is an affine subspace
of R" of dimension n — m and therefore contains a unique point of minimal norm.
We want to find this point, i.e., to solve

. 2
) 1.12
xﬁlilib llx I (1.12)

Lemma 1.24(b) implies that the solution of (1.12) again satisfies x = ATb.
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So the Moore—Penrose inverse naturally yields the solution of linear least squares
problems and of underdetermined systems. What is the condition of computing
the Moore—Penrose inverse? Theorem 1.5 has a natural extension showing that the
quantity

krs(A) = | Alls | AT,

equals the normwise condition for the computation of the Moore—Penrose inverse.

Theorem 1.26 Consider
¥ {A e R™" | rank(A) = min{m, n}} - R™", A A"

Then we have cond? (A) = ks (A) when errors are measured on the data space with
respect to || ||s and on the solution space with respect to || ||sr-

Proof Let A = A — E. We claim that for [|E| — 0, we have
AT — AT =ATEAT +o(| E).

For proving this we may assume without loss of generality that m > n, hence AT =
(ATA)~1 AT, and perform a computation similar to that in the proof of Theorem 1.5.
We leave the straightforward details to the reader. The remaining arguments then
follm;v in exactly the same way as in the proof of Theorem 1.5, just by replacing A~!
by A'. d

We note that the solution of linear least squares problems and underdetermined
systems has, in contrast to Moore—Penrose inversion, a normwise condition that is
only loosely approximated by « (A). Indeed, in 1973, P-A. Wedin gave tight upper
bounds for the normwise condition numbers cond-*S and cond"S for these prob-
lems. It follows from these bounds that

2(k(A)) < cond™S, cond”™S < O(k(4)?). (1.13)

Interestingly, in contrast to Theorem 1.4, the normwise condition for solving
min || Ax — b|| depends on b as well as on A.

We finally note that Theorem 1.7 has a natural extension: « (A) is again the rel-
ativized inverse of the distance to ill-posedness, where the latter now amounts to
rank-deficiency. The following is an immediate consequence of Corollary 1.19.

Corollary 1.27 For A € R™*" we have

AL Al
Kk(A) = = )
d(A,X) dr(A,X)

where X = {A € R™*" | rank(A) < min{m, n}}. U

Remark 1.28 The extension of Corollary 1.27 to more general norms as in Corol-
lary 1.8 is false in general.



Chapter 2
Probabilistic Analysis

Recall Corollary 1.6. It tells us that the loss of precision in linear equation solving
(via QR Householder factorization) is bounded as

LoP(A™'b) < (2 + Crs) logg n + logg ks (A) + logg ¢ + o(1),

where ¢, C,s are small constants. While the terms (2 4+ C,) log g+ log 8C point to
a loss of approximately (2 + Cy) loggn figures of precision independently of the
data (A, b), the quantity logg ks (A), i.e., logg | A5 + logg A= lsr, depends on
A and does not appear to be a priori estimable.

We already discussed this problem in Sect. O.5.3, where we pointed to a way out
consisting in randomizing the data and analyzing the effects of such randomization
on the condition number at hand (which now becomes a random variable). In this
chapter we become more explicit and actually perform such an analysis for x5 (A).

A cursory look at the current literature shows two different ideas of randomiza-
tion for the underlying data. In the first one, which lacking a better name we will
call classical or average, data are supposed to be drawn from “evenly spread” dis-
tributions. If the space M where data live is compact, a uniform measure is usually
assumed. If instead, data are taken from R”, the most common choice is the multi-
variate isotropic Gaussian centered at the origin. In the case of condition numbers
(which are almost invariably scale-invariant), this choice is essentially equivalent
to the uniform measure on the sphere S"~! of dimension n — 1. We will make this
precise in Sect. 2.2. Data randomly drawn from these evenly spread distributions
are meant to be “average” (whence the name), and the analysis performed for such
a randomization is meant to describe the behavior of the analyzed quantity for such
an “average Joe” inhabitant of M.

The second idea for randomization, known as smoothed analysis, replaces this
average data by a small random perturbation of worst-case data. That is, it consid-
ers an arbitrary element X in M (and thus, in particular, the instance at hand) and
assumes that X is affected by random noise. The distribution for this perturbed input
is usually taken to be centered and isotropic around X, and with a small variance.

An immediate advantage of smoothed analysis is its robustness with respect to
the distribution governing the random noise (see Sect. 2.2 below). This is in con-
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trast to the most common critique of average-case analysis: “A bound on the per-
formance of an algorithm under one distribution says little about its performance
under another distribution, and may say little about the inputs that occur in prac-
tice” [207].

The main results of this chapter show bounds for both the classical and smoothed
analysis of logﬂ krs(A), for all choices of r,s € {1,2,...,00}. In the first case

we obtain E(logg krs(A)) = O(logﬂ n). In the second, that for all A € R"*",
E(logﬁ krs(A)) = O(loglg n) + logﬁ é where A is randomly drawn from a distri-

bution centered at A with dispersion o (we will be more explicit in Sect. 2.4.3).
Therefore, the first result implies that for random data (A, b) we have

E(LoP(A™'b)) = O(loggn),

and the second that for all data (A, b) and random perturbations (A, b) of it,

E(LoP(A™'b)) = O(logg n) + logg é.

2.1 A Crash Course on Integration

Our use of probabilities in the first two parts in this book is limited to the following
situation. We endow a space (of data) with a probability distribution and consider
a certain real-valued function g(x) of a point x in this space (the running time of
a given algorithm with input x, a condition number of x, ...) as a random variable.
The goal is to estimate some quantities (the probability that g(x) is at least K for a
given K, the expected value of g, ...) that provide some picture of the behavior of
g (what is the probability that the algorithm just mentioned will need more than a
certain number of iterations, which condition should we expect for a random input
X,...).

Data Spaces and Measures A first step towards a formal setting for this back-
ground is the description of our spaces of data. For a time to come we will confine
these spaces to being of a precise form, which, lacking some established name, we
will call by one to suit our development.

We give the name data space to any open subset M in a product of Euclidean
spaces and spheres. That is, there exist m,ny, na, ..., nx € N such that

MCR" x Sl xgm=l . x gl

is an open subset. In a second step we will endow the data space M with a probability
measure describing the law governing data sampling from M.

Before doing so, we briefly recall some basic concepts of integration, tailored to
our purposes. It is not our goal to dwell on the subtleties of measure theory. Rather,
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we intend to collect here in a coherent (and correct) way the basic facts of integration
that are needed in the later developments of the book.

Before defining measures on our data space M, we need to introduce the abstract
notion of measurability. By a measurable (or Borel-measurable) set A in a data
space M we understand a subset A C M that can be obtained from open and closed
subsets of M by countably many operations of taking unions and intersections. In
particular, open and closed subsets of M are measurable.

Let N be a further data space. A function f: M — N is called measurable if
f~Y(B) is measurable for all measurable sets B in N. In particular, continuous
functions are measurable. The indicator function 14 of a subset A € M is defined
by

1 ifxeA,
0 otherwise.

Talx)= {

Clearly, 14 is measurable iff A is measurable.

A measure on the data space M is a function p assigning a value 1 (A) € [0, oo]
to each measurable set A of M such that u(#) = 0 and countable additivity holds,
that is,

u(U A,-> =D (A
i=0 i=0

for each sequence A; of pairwise disjoint measurable sets in M.

On the data space M we have a natural measure voly, that can be interpreted as
the volume in a higher-dimensional sense. In the case M = R!, the measure voly,
is characterized by giving the length of intervals [a, b], that is, by the requirement
volys([a, b]) =b — a for all a < b. In the case M = St voly, is similarly character-
ized as measuring angles.

Products of Data Spaces, Fubini’s Theorem One can build up voly; from sim-
pler components by the product measure construction. Assume that w; is a measure
on a data space M; for i = 1,2. It can be shown that there exists a uniquely de-
termined measure u on M| x M>, called the product measure, with the property
that

n(Ar x Az) = (Ay) - n(Az) 2.1

for all measurable sets A; in M;. One can formally define volg» as the m-fold prod-
uct of the measures volg. The measure volg.—1 on the sphere can be defined by setting
Volgi-1 (A) :=nvolgn (B4), where By :={tx |x € A, 0 <t <1}. (Inthe case n =2
this gives the angle, as mentioned above.) Altogether, by the product construction,
we have a well-defined measure voly; on M. We say that a property of elements
of M holds almost everywhere if it holds for all elements except those in a set of
measure zero (with respect to volyy).
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We turn now to the topic of integration. One can assign to any measurable func-
tion f: M — [0, o], in a unique way, a value

/Mf=/xer(X)dx,

the integral of f over M, by some limit process along with the basic requirement
that

n n
/Mzﬂ _ 2 vol(Ay)
= 1=

for measurable sets A; and ¢; > 0. The function f is called integrable if | uf s
finite. One can show that in this case, {x € M | f(x) = oo} has measure zero and
thus is irrelevant for the integration. A measurable function f: M — R is called
integrable if it can be written as the difference of two integrable functions with non-
negative values. The map f > [, 1 J can be shown to be linear and continuous with
respect to the Li-norm given by || 1|1 := /; | f1. We note that changing the value
of a function f on a set of measure zero does not alter the value of the integral. We
will therefore write || e J even when f is only defined almost everywhere. We also
write [, f := [}, f1a if the set A € M and the function f on M are measurable.

How can one possibly compute such integrals? An important tool is Fubini’s
theorem, which allows one to reduce the computation of integrals over a prod-
uct M x N to integrals over the factor spaces M, N. Suppose that A S M x N
is measurable. For x € M we define the set A, :={y € N | (x,y) € A} (which can
be shown to be measurable). Then Fubini’s theorem states that for an integrable
function f: M x N — R, the map x — fy ca, J(x,y)dy is integrable for almost
all x € M, and we have

/ f(x,y)d(x,y)=/ ( f(x,y)dy)dm (2.2)
(x,y)€A xeM \Jyea,

By this theorem one can in principle reduce the computation of integrals over R™
to integrals over the real line R, a good number of which are known to us from
elementary calculus. Tonelli’s theorem is a subtle variant of Fubini’s theorem. It says
that (2.2) holds for any nonnegative measurable function f: M x N — R (without
the assumption of f being integrable).

The Transformation Formula Another important tool to compute integrals is
the change of variables or transformation formula. Suppose we have a linear iso-
morphism A: R” — R™. It is a well-known fact that the determinant of A is the
volume-stretching factor of the map A. More precisely, we have volgn (A(A)) =
|det A| - volgm (A) for a measurable subset A of M.

The transformation formula extends this finding to the nonlinear case. Suppose
that M and N are open subsets of R, and ¢: M — N is a diffeomorphism (here
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and in what follows we will assume that diffeomorphisms have continuous deriva-
tives). This means that v is bijective and both v and its inverse ! are differen-
tiable. The derivative of Y at x € M is the linearization of { given by the Jacobian
matrix Dy (x) = [0x; ¥ (x)] € R™>*™M The absolute value of its determinant,

Iy (x) == |det DY (x)|,

is called the Jacobian of ¥ at x. The transformation formula for R” states that for
any integrable function f: N — R we have

f)dy= / F(¥ @) Iy (x)dx. (2.3)

yEN xeM

Data spaces are more general than open subsets of Euclidean spaces. Fortunately,
formula (2.3) carries over to this more general situation. The only thing we need to
clarify is the notion of the Jacobian in this more general setting.

Suppose first that M = S"~! and p € M. The orthogonal projection

y: " TS Rpt, x> x—(x, p)p, 2.4)

defines a bijection of the hemisphere given by |x| =1, (x, p) > 0, to the open
unit ball in the orthogonal complement R p* ~ R"~! of Rp. We call the map y the
standard chart of S"~! at p. Note that in the special case p =¢, = (0,...,0, 1),
writing B = {x € R | > xl.z < 1}, the inverse of this map reads as

B— S (x1,... xu1) (xl,---,xn—ls\/l _xlz _"'_xr%—l)' (2.5)

The standard chart of R is defined to be the identity map on R”. By taking
products, we arrive at a notion of a standard chart at a point p of a data space M,
which is a bijection yp,, of a certain open neighborhood of p in M to an open
subset of R”, where n is the dimension of M.

Suppose now we have a bijection ¥ : M — N between data spaces such that
n=dim M = dim N. For any p € M we can form the composition 1%, =VYN,y(p) ©

Yo ylg]p of v with the standard charts. Then, &p :U € R" — R” for some open
subset U. We say that ¢ is differentiable at p if 1},, is. In this case, we define the
Jacobian of Y at p by I (p) := Jlﬁp(p/), where yy p(p') = p.

Theorem 2.1 (Transformation formula) Let ¢v: M — N be a diffeomorphism be-
tween data spaces and let f: N — R be an integrable function. Then we have

f(y)dy=/ F(¥ () - Ty (x)dx. O
yeN xeM

An important application of this formula is integration in polar coordinates (in
Euclidean space). Consider the diffeomorphism

Ype: "1 x (0, 00) = RPN\ {0}, (u,r) > ru, (2.6)
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describing polar coordinates u, 7 on R"”. The next result shows the usefulness of
polar coordinates in integration. Before stating it, let us point out a remarkable sym-
metry property of this map.

Let GL, (R) denote the general linear group over R, i.e., the group of invertible
n X n real matrices. Also, let &(n) :={g € GL,(R) | ggT =I,,} denote the orthog-
onal group (i.e., the group of orthogonal linear endomorphisms of R"). This group
acts on R” via g - x := gx, and the induced action on the sphere $"~! is transi-
tive. We may also let &'(n) act on S"~! x (0, o0) by setting g - (u, r) := (gu, r).
Then the map ¥, is &'(n)-equivariant, that is, Vpc(g - (4, 7)) =g - ¥pc(u, r) for
all g € O(n) and (u,r) € S"~! x (0, 00). From this property, it is straightforward
to derive that the Jacobian of v, is invariant under the action of O'(n), that is,
JYpe(g - (u, 7)) =Jrpe(u, r). This observation often allows us to simplify the writ-
ing of proofs considerably. In fact, the use of orthogonal (or some other group)
invariance will be pervasive in this book.

Corollary 2.2 For any integrable function f: R"* — R we have

FOrdy = f Pt ) - " dudr.

yeR? (u,r)eS"1 % (0,00)

Proof By Theorem 2.1 it is sufficient to show that Jyr . (u, r) = r"~1. By orthogonal
invariance it suffices to prove this at u = ¢,, = (0,0, ..., 0, 1). From (2.5) it follows
that the inverse of the standard chart of S*~! x (0, 00) at (e,, r) is the map B(0, 1) x
(0, 00) — S~ x (0, 00) given by

2 2
(Ui, ...,up—1,r)— (Lt],...,un_],\/l—u1—~-~—un_1,r).

By composing with 1, this gives the map 1/~fpc : B(0, 1) x (0, 00) — R",

(Ui, ..., up—1,1r)— (rul,...,ru,,_l,r\/l —u% — ~~-—u2_1).

It is clear that D‘/prc(O, r) = diag(r,...,r, 1). Hence we obtain Ji/,c(e,,r) =
I pe (0, ) = r"~ ! as claimed. 0

A second application of the transformation formula is integration in polar co-
ordinates on a sphere. Let p = e,41 be the “north pole” of S” and consider the
diffeomorphism

Ypes S x (0,7) = S"\ {xens1), (u,0) ((sin@)u, cos@). 2.7

Note that we may interpret u, 6 as polar coordinates on the sphere S"” with respect
to (the center) e, +1.



2.2 A Crash Course on Probability: I 27

Corollary 2.3 For any integrable function f: S" — R we have

rody=[ F (W pes @1.9)) - (sin0)" " du do.

yesn (1,0)eS"1x(0,7)

Proof By Theorem 2.1 it is sufficient to show that Jyrpcs(u, 0) = (sing)"~ 1, By
orthogonal invariance it suffices to prove this at u = ¢,,. We fix 6 and put

Y :=Vpes(en, 0) = (0, ...,0,sinb, cosh).

Equation (2.4) and a short calculation imply that the standard chart of S” at y is
given by

S" >Ry, y y— (VY= (¥1s--es Yue1, Yn 0870 — ypi1cosBsind).
To get coordinates for Ry~, we use the orthogonal map
Rxt — R",
(V15 o5 Va1 Vs Y1) B> (V15 o5 Y1, Y/ €08 0).
This gives the standard chart
S" >Ry (Vs Va1, Yn €08 — Yy sind),

of S™ at y. Recall that the inverse of the standard chart of S*~! at e,, is given by (2.5).
By composing v, with these standard charts we obtain the map s given by

(ul""’uVLf]’ey)

n—1 1/2
= <u1 sinf, ..., u,_1sin6, (1 — Zu?) sinf cosO — cos b sin?).

i=1

A calculation Ehows tha_t DIZPCS (en,0) = diag(sin@, ...,sin@, 1), which implies
that Jyr e (e, 0) = (sin 8)"~1 and completes the proof. O

2.2 A Crash Course on Probability: I

We develop here some basics of probability theory and show how to apply them in
our cases of interest, which are mainly Gaussian distributions in Euclidean spaces,
uniform distributions on spheres, and their products on data spaces.
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2.2.1 Basic Facts

Densities and Probabilities By a probability measure on a data space M one un-
derstands a measure p on M such that (M) = 1. All the measures we are interested
in can be defined in terms of a probability density, defined as follows.

Definition 2.4 A (probability) density on a data space M is a measurable function
f:M — [0, 00] such that [, f =1.

A density f on M defines a probability measure © on M by

w(A) :=/ 1,.
M

The additivity properties of the integral readily imply that p is indeed a probability
measure. Up to changes on a set of measure zero, the density f is uniquely deter-
mined by u.

Example 2.5 Let M be a data space of finite volume. Then the constant function
on M with value voly (M)~! is a density on M. The corresponding probability
measure is called the uniform distribution U (M) on M. More generally, let A be a
measurable subset of a data space M such that voly (A) is finite. Then voly (A) " '14
is a density on M, and one calls the corresponding probability measure the uniform
distribution on A.

It is common to say that via the density f, we endow M with a probability dis-
tribution, or simply a distribution. Even though we will sometimes use interchange-
ably the terms “probability distribution” and “probability measure” induced by f,
we tend to denote them differently (and use expressions such as U (M) to denote a
uniform distribution on M and N (0, I,,) to denote the standard normal distribution
on R”; see below). In this context, it is also common to call any measurable subset
of M an event.

Let M and N be two data spaces and let f : M x N — [0, oc] be a density on
the product M x N. We can associate with f its marginal densities on M and N
defined as follows:

fM(X):=/ f(x,y)dy and fN(y)=/ fx, y)dx. (2.8)
yeN xeM

It follows from Fubini’s theorem (2.2) that these are indeed probability densities.
One says that M and N are independent if f(x,y)= fy(x) fy(y) forallx e M
and y € N. We note that in this case, we have (A X B) = upy(A) - un(B), where
W, up, and py denote the measures associated with the densities f, fys, and fy,
respectively, and A € M and B C N are measurable sets. In other words, p is the
product measure of s and wy. We also note that if we start with any densities
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fm and fy on M and N, respectively, and endow M x N with the product density
S x) fn(y), then M and N become independent by construction.

In the situation where M and N are not independent with respect to the density
f on M x N, it is convenient to introduce conditional densities. The conditional
density of x, given y, is defined as

ACIR))
R Y6))

(we assume here fi(y) # 0). It is clear from the definition that M — R, x > f(x |
y) is actually a density on M. Note that f(x | y) = fy(x) if M and N are indepen-
dent. When we happen to know (or we can bound) the conditional density, then we
can derive information on f by means of the equation

f&xly)

(2.9)

fE, =1y fnG), (2.10)

which is just a rewriting of (2.9).

Remark 2.6 Equation (2.10) can be interpreted in the following operational way
in terms of random sampling. First we sample y € N according to the marginal
density fy.In a second step, we sample x € M according to the conditional density
f(1y). Then the obtained pair (x, y) is random according to the density f.

Random Variables One of the most fundamental notions in probability is that of
a random variable.

Definition 2.7 Let M be endowed with the probability density f. A random vari-
able defined on M is a measurable function Z: M — R (defined almost every-
where). The expected value or expectation of Z is defined by

E(Z) :=/ Z(x)f(x)dx
xeM
if the integral is well defined. The variance of Z is defined as
Var(Z) :=E((Z - E(2))°).

Example 2.5 (continued) Let Z be the map (0, 1) — R, x > x. The expected
value of Z for the uniform distribution on (0, 1) is %, and its variance is 11—2 The

expected value of the function Z(x) = e* is fol efdx=e—1.

A few words on notation. If D denotes a probability distribution on M associated
with the probability measure w, and R is a (measurable) predicate on M, we will
write

51%){1%@)} =u({x e M| RX}).
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Also, for a random variable Z on M, we define the measure ©z on R given by
wz(A) = u{Z~1(A)}. This is a probability measure on the data space R. It is com-
mon to use the shorthand notation Prob{Z >t} := uz{[t, 00)}.

In case the random variable takes only nonnegative values, we can express its

expectation differently.

Proposition 2.8 Let Z: M — [0, 00) be integrable. Then
o
E(Z) =/ Prob{Z > t}dt.
0

Proof We apply Fubini’s theorem (2.2) to the set A := {(x,1) € M x [0, 00) |
Z(x) > t}, obtaining

/ f(x)d(x,t) =foo( f(x)dx) dt =/OO Prob{Z > t}dt.
(x,1)eA 0 X€EA,; 0

Applying Fubini again (and thus interchanging the order of integration) yields

/ f(x)d(x,t):/ (/ f(x)dt) dx:/ fF(X)Z(x)=E(2).
(x,1)eA xeM teAyx xeM

O

The following simple corollary is at the core of numerous probability tail esti-
mates.

Corollary 2.9 (Markov’s inequality) Let Z: M — [0, 00) be integrable. Then for
all t > 0, we have

1
Prob{Z >t} < ;IE(Z).
Proof Proposition 2.8 implies that
t
E(Z) > / Prob{Z > t}dt <tProb{Z > t}. 0
0

Here is a general result relating expectation and variance of a random variable.

Proposition 2.10 Let Z be a random variable on a data space M endowed with a

density f.Then E(Z) < /E(Z?).

Proof The functional (Y, Z) — f vem Y (X)) Z(x) f (x) dx defines an inner product on
the linear space of random variables X on M satisfying E(X?) < co. When ¥ =1,
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the Cauchy—Schwarz inequality yields

E(Z) =/M Z(x) f(x)dx 5\//M Z(x)zf(x)dx\//M f(x)dx =/E(Z?). -

Pushforward Measures Suppose that {v: M — N is any measurable map be-
tween data spaces. In general, a probability measure w1 on M induces a probability
measure on N via ¥ defined by

un(B) = puu (v~ (B))

for measurable sets B C N. One calls uy the pushforward measure of Ly .

For instance, a random variable Z: M — R has an associated probability dis-
tribution on R, sometimes called the distribution of Z, which is nothing but the
pushforward of ), with respect to Z. We already met this distribution when we
were introducing the notation Prob{Z >t} := u({x e M | Z(x) > t}).

In our situations of interest, p s is given by a density fj. If 1 happens to be
a diffeomorphism, then the pushforward of pjs has a density as well that can be
explicitly calculated with the transformation formula.

Proposition 2.11 Let : M — N be a diffeomorphism of data spaces and let
be a probability measure on M with the density fu. Then the pushforward mea-
sure un of 1y has the density

v = % where x =y~ (y).

Moreover, for any random variable Z: N — R, we have

Euy(Z) =Ky, (Z o), (2.11)

where the expectations refer to iy and |1y respectively.

Proof Let B C N be measurable and set A := vy ~!(B). Applying Theorem 2.1 to
the function fy1p implies

In(y)dy =/ fm(x)dx.
B X€A

ye

Hence py has the density fy. The second assertion follows by applying Theo-
rem 2.1to Zfy. O

Remark 2.12 Equation (2.11) also holds when v is not a diffeomorphism, but we
will not prove this here. Instead, we will see a general result extending both Propo-
sitions 2.14 and 2.11 in Sect. 17.3.
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Independence Suppose that Z and W are random variables on the data space M,
endowed with the density f. Let us denote by ©z and ww their probability mea-
sures on R. The map M — RZ, x > (Z(x), W(x)), induces a pushforward puz w
on RZ. One calls the random variables Z and W independent if pz w is the product
measure of iz and pw; compare (2.1). This means that for all s, € R we have

Prob{Z > s and W >t} = Prob{Z > s} - Prob{W > t}.

Proposition 2.13 Suppose that Z and W are independent random variables on M.
Then E(ZW) =E(Z)E(W), provided Z and W are integrable.

Sketch of proof Suppose first that Z = 14 and W = 1p are indicator func-
tions of A, B € M. The independence of Z and W means that Prob(A N B) =
Prob(A) Prob(B). Since ZW = 1 4np, we have

E(ZW) = Prob(A N B) = Prob(A) Prob(B) = E(Z)E(W).

By the linearity of expectation this immediately extends to random variables that
are a finite linear combination of indicator functions. Finally, the assertion follows
by a limit argument (compare the definition of the integral in Sect. 2.1). O

Conditional Expectations Let M, N be data spaces and let f be a density in
M x N.Let fy and fy be the marginal densities on M and N, respectively. Finally,
let ¢ : M x N — R be a random variable.

An element xo € M determines a random variable ¢,, : N — R given by
©¥xy(¥) = @(x0, y). The conditional expectation of ¢ (with respect to the event
X = xo), which we denote by ENXO @x, Or sometimes by EyeNxO (p(x,¥) | x =xp), is
the expectation of ¢, with respect to the conditional density f(y | xo), i.e.,

E ¢y = f oG | x0)dy,
yeN

0

with the left-hand side defined only if both f(y | xo) and the integral on the right-
hand side exist. Here we wrote Ny, at the left to emphasize that the distribution on
N is the one given by the conditional density f(y | xo). By construction, this is a
random variable on M,
X0 E @x-
x0

The following result ties the expectation of this random variable to that of ¢. It will
be helpful in many computations in which conditional expectations are easier to
estimate than unrestricted ones.

Proposition 2.14 For all integrable ¢ : M x N — R we have

E 9= E E (¢, ) |x=xo).

MxN xoeEM yeNXO
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In particular, ifENXO ¢xy < K for almost all xo € M, then Eyxne < K, and the
same is true for lower bounds.

Proof We have

E fﬂ:/ p(x,y) f(x,y)dydx
MxN MxN

:/ @x,y) f(y1x) fmu(x)dydx
MxN

@ / ( / o) F (o |x>dy)fM<x>dx
M N

= E E ¢x.
x0€M Ny, Pro O

We next describe the basic probability distributions occurring in this book.

2.2.2 Gaussian Distributions

Take M = R” for some n. The most important example of a density in this context
is the isotropic multivariate Gaussian. For a point a € R" and o > 0, we consider
the density ¢’ : R” — (0, 00) given by

@0 (1) 1 ,nx—azuz
Y X)=—F7e
" (2ro?):

Using Fubini’s theorem and the well-known fact that

1 0o a2
—_— / e 22dx=1,

V2m0? J-o
one sees that ¢’ is indeed a density on R”.

We denote the distribution associated with ¢5® by N(a, o%1,), and its induced
measure on R” by y;"?. When a =0 and o = 1, it is commonly referred to as
the standard normal (or standard Gaussian) distribution in R”, and its density and
measure are denoted by ¢, and y;,.

Lemma 2.15 We have E(x;) = a; and E((x; — a;)(xj —aj)) = 028,-j.
Proof Since the density ¢;,’° is invariant under the map x > 2a — x (reflection
at a), we have E(x;) = 2a; — E(x;) and hence E(x;) = a;. For the second property

we may assume without loss of generality that a = 0 and o = 1. A direct calculation
shows that

1 o0 2
— / e Tdt=1
A/ 27 —00 ’
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which implies E(xiz) = 1. Suppose now i # j. Since the density (p,(,)‘l is invari-
ant under x; — —x;, leaving the other coordinates of x fixed, we have E(x;x;) =
E(—x;x;) and hence E(x;x;) =0. Il

We may interpret x = (x1,...,X,) as a random vector on R". The expecta-
tion E(x) of x is componentwise defined and thus equals a, which is called the
center of the Gaussian distribution. The distribution is called centered if a = 0.

Furthermore, one calls Cov(x) := [E((x; —a;)(x; — a;j))]1<i, j<n the covariance
matrix of the random vector x. Thus we have Cov(x) = ¢21, in our situation. We
call o2 the variance of the isotropic Gaussian distribution. Note also that if x has
the distribution N (a, azln), then x — v has the distribution N(a — v, 021,1), for
any v € R".

It is common to denote the distribution function of the one-dimensional standard
Gaussian distribution y; by

1 ! 2
D(t) = — e 2dt

A/ 27 J—oco

and to set ¥ (¢) := 1 — @(¢) for t € R. This function can be bounded as follows.

2
Lemma 2.16 We have ¥ (t) < e 2 fort>0.

1
21
Proof Making the substitution x = t2/2, we obtain

()= /oo T4 L B LI
= — e T=— —e X
2w Je V2 Ji2p T N

e 7.
1t/ 21 O

The Gaussian distribution has several properties that together with its common
occurrence in practice and its role in the central limit theorem, explain why it is so
frequently used.

A first such property is orthogonal invariance when a = 0. If g € O'(n) is an
orthogonal linear map of R, then ¢2*° (x) = ¢ (gx). This is obvious from the
fact that go,?’a(x) depends on ||x|| only. Using Theorem 2.1, it follows that for all
measurable subsets B € R”, 327 (¢(B)) = y>"% (B).

A second such property is that the isotropic Gaussian density decomposes as
a product of lower-dimensional standard Gaussians in the following sense. Take
ni, ny such that n = n + n, and consider the decomposition R" = R x R"2. For
a point x € R" we thus write x = (x1, x2). Then

1 lx=a)? 1 lxp—ag 1P 1 _xp—ay?
(pg’a(x) = — = e 202 = —"l e 252 —”2 e 252
(2no?)2 Qro2)7 Qro2) 7T

= @17 (x1) 9327 (x2), (2.12)
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and it is clear that ¢, " and ;2" are the marginals of ¢;,;"° . Hence the distributions
induced by ¢5° on R"! and R™ are also isotropic Gaussians, and x; and x; are
independent (compare Sect. 2.2.1).

A third property of Gaussians is that they are preserved by linear combinations
in the following sense.

Proposition 2.17 Suppose that x € R" and y € R" are independent isotropic Gaus-
sian vectors with centers a € R" and b € R" and variance o> and t?, respectively.
Then the distribution of ax + By is isotropic Gaussian with center aa + Bb and
variance o*c* + B212.

Proof Without loss of generality we assume that a = b = 0. We first consider the
case n = 1. When we write x = ox’ and y = t)/, then (x’, ') is standard Gaussian
distributed. We put

ri= /o202 +B2t2, c:=ao/r, d:=Bt/r.

Then z := ax + By = r(cx’ +dy’) and ¢ + d? = 1. We look at the distribution of

(#)=(5 ) 6)

Since this is a transformation with an orthogonal matrix of the standard Gaussian
(x’,y"), the resulting (z’, w’) is standard Gaussian as well. Hence the marginal
distribution of z’ is standard Gaussian. It follows that z = rz’ has the distribution
N (O, r2), which was to be shown.

This shows that in the general case, n > 1, z; = ax; + By; has the distribution
N(0, r%), for all i. Since the z; are independent, the assertion follows. Il

A last property is that standard Gaussians are preserved by pushforwards under
norm-preserving diffeomorphisms with Jacobian identically one.

Corollary 2.18 Ler v : R" — R”" be a diffeomorphism satisfying ||V (x)|| = ||x]|
and Iy (x) = 1 for all x. Then the pushforward of the standard Gaussian distribution
under the map  is again the standard Gaussian distribution.

Proof This is an immediate consequence of Proposition 2.11. d

2.2.3 The x? Distribution

Suppose that x € R” is standard Gaussian distributed. The induced distribution of
g :=|lx||> = xl2 +-- 4 x,% is called the x? distribution with n degrees of freedom.
It is also denoted 2. We note that

E(q) =E(Ix?) =E(x{) +--- + E(x;) =n,
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so that n equals the expectation of a y2-distributed random variable with n degrees
of freedom.

In the following we are going to derive a formula for the density of ¢ as well as
for the volume O, _; of the sphere S*~! in terms of the gamma function, which is
defined as

o
I (x) ::/ *le7tdr forx > 0. (2.13)
0

This is an extension of the factorial in the sense that it satisfies I'(x + 1) = x1I"(x)
for all x > 0. In particular, we have I"(n 4+ 1) = n! for n € N. It can be tightly
approximated by the well-known Stirling bounds

VIrxtie ™ < D(x+1) < V2rx et forallx > 0. (2.14)
Proposition 2.19
(a) The volume of the sphere S"~! is given by the formula
2 n/2
Op_y=vols" 1=
I'(3)

(b) The x>2-distribution with n degrees of freedom has the density, for g > 0,

|
S —
25r (%)

4
2 e 2

p(q) =
(¢) The pushforward density of the standard Gaussian distribution on R with re-
spect to the map
R\ {0} — S"7! x (0, 00), x> (u,q):= (x/||x||, ||x||2),

has the density p(u, q) = Ol,l - p(q). In particular, u and g are independent.

Proof Recall the diffeomorphism v, from (2.6) introducing polar coordinates
in R". The inverse of this map is given by

Se TR0} > 8" x (0,00), x> (ur) = (x/llxl, [x]).
Making the further change of variable ¢ = 2, we arrive at the diffeomorphism ¥
defined above. By Corollary 2.2 we know that Jy,¢(u,r) = r"~1 1t follows that

2 2
2r =

JU(x) = P =2 g1

Hence, by Proposition 2.11, the pushforward density p on §"~! x (0, 00) of the
standard Gaussian induced via ¥ equals

71/27167(1/2'

P(M,Q)qu
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Integrating over S"~! x (0, co) yields, using Fubini,

1=/ p:OLz.fooqn/z—le—q/quz On—12F<E>7
=% (0,00) 22m)n/ 0 Y 5

where we have used the definition (2.13) for the last equality (and made the change
of variable t = ¢g/2). The stated formula for the volume O,_; of the sphere is an
immediate consequence.

Using this formula for O,_1, we can rewrite the density p as

On—l n/2—le—q/2: 1 1 )1/2—le—q/2

pu,q) = qu On_1 2"/21“(n/2)q

and arrive at the second assertion of the proposition. The third assertion is now
obvious. 0

Corollary 2.20 The n-dimensional unit ball B, := {x € R" | |x| = 1} has the vol-
ume vol B, = O, /n.

Proof The diffeomorphism v, from (2.6) maps S"=! x [0, 1] to B,,. Using polar
coordinates and Fubini, we obtain

! @)
vol B, =/ 1 =/ mdw, =0, | rmlar==2"2L
By, (u,r)eS"1x(0,1) 0 n O

The following result will be needed later on.

Proposition 2.21 For alln >2, E(In x2) > 0.

Proof 1Tt is enough to prove the statement for n = 2. In this case we have

2 1 2, oy, -
E(lnxn)zg'ézln(x +y)e 2 dxdy

1 2w 00 2
= . / Inr2e”Zrdrdb
T Jo 0

o0 rz
=/ Inrle” T rdr = —y +1n2~0.115932,
0

where the last equality is obtained using software for symbolic integration and y is
the Euler—-Mascheroni constant, which is approximately 0.577. g

In Part III of this book we will need the following fact (which we state without
proof; see the notes for a reference to a proof). A median median(X) of a random
variable X is any value m € R for which

1 1
Prob{X <m} =2 and Prob{X zm} = 7.
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Gaussian random variables have a unique median, which equals its expectation. For
the X,% distribution the following inequality holds.

Proposition 2.22 For all n > 1, median(x?2) < E(x?) = n. O

2.2.4 Uniform Distributions on Spheres

Take now M =S""! := {x e R" | | x| = 1} for some n. The simplest (and again,
the most important) example of a probability distribution in this case is the uniform
distribution, which we denote by U (S"~!). Its density is given by 1/0,_1.

A function g : R" — R is scale-invariant when for all a € R" and all A > 0,
g(ra) = g(a). We noted in the introduction to this chapter that the behavior of such
a function over random points from a standard Gaussian distribution is essentially
equivalent to the behavior of its restriction to S"~! when points are drawn from
the uniform distribution on this sphere. This was formally proved in Sect. 2.2.3,
where we showed that U (S"~!) arises as the pushforward distribution of the stan-
dard Gaussian on R” under the map R” \ {0} — "1, x — x/| x].

Proposition 2.11 immediately implies the following.

Corollary 2.23 Let g: R" — R be a scale-invariant, integrable function and de-
note by gsn-1 its restriction to S"=L. Then we have, for all t € R,

Prob {g >t} = Prob {ge-1 >t}
No)'® v o

and

E (&= E (gg-1)-
N(0,I) U1 18 O

Remark 2.24 A function g : R"! x - - - x R™ — R is scale-invariant by blocks when
ghay, ..., Arax) = g(ay, ...,ar) forall Ay, ..., A > 0.

An extension of Corollary 2.23 to such functions is immediate. More precisely,
one can prove that for all r € R,

Prob {g > 1} = Prob {8151 -1 g1 = 1}
N(O,In) U(S'II_I)X---XU(S”](—I) ‘S 1 X - X Sk

and

E g = E 8511 x...xSk—1+
N(0,1,) US"Yx-xU S ! o

Heren=n;+---+ng.

n—1

We close this subsection with some useful bounds for quotients OO of volumes
of spheres. To do so, we first prove a general result on expectations.
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Lemma 2.25 Suppose that Z € R" is standard normal distributed. Then

n Onr 1 THH 1 n
< =——="= E(I1ZI) <,/5—-
N2m(n+1) O, VT T(3) V27 27

Proof The left-hand equality follows immediately from the formula for O,,_; given
in Proposition 2.19. Further, using polar coordinates and the variable transformation
u=p*/2, we get

O— o0 2 O_ n— 00 n—
E(lI1Z]l) = = 1/0 ple” Tdp=—" ,11271/0 ' e du

T en)t 2n)}
n+l1
_ On_},2%1‘<n+l>=«/§r(7),
2mr)?2 2 F(j)

where we used the definition of the gamma function for the second-to-last equal-
ity and again the formula for O,_; for the last equality. This gives the right-hand
equality in the statement.

To obtain the right-hand inequality we use Proposition 2.10 with X = ||Z|| and
note that E(|| Z||2) = n, since || Z||? is x2-distributed with n degrees of freedom.

To obtain the left-hand inequality we use the formula for O, and the recurrence
I'(x+1)=xI(x) to get

Oy _ 1T 1 reHreghH o regh
On Vm I'(%)  Ja I'(p) rie) 2Jared)

The assertion follows now from the estimate

regh 2
reg?) ~Va+1

which we have just proved. g

2.2.5 Expectations of Nonnegative Random Variables

The following result allows one to quickly derive bounds for the expectation of the
logarithm of a random variable X, provided certain bounds on the tail Prob{X > ¢}
are known.

Proposition 2.26 Let X be a random variable taking values in [1, oo] such that

Vt>1ty: Prob{X >t} <Kt ¢,
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where K, o, and ty > 1 are positive real numbers. Then we have (8 > 2)

K
E(logg X) <logg to + Et(‘j‘ logge.

Consequently, if t > K, then E(logg X) <logg o + é logge.
Proof We put Z :=logg X and so := logg fo. Then Prob{Z > s} < K~ for all
s > so. Therefore, using Proposition 2.8,

+00 +oo
E(Z) :/0 Prob{Z > s}ds < sg —i—/ KB~ %ds
S

0
_ K

=50+

—as |50 _
aln,B'B oo =50

atfInp’

O
Sometimes, we want to infer bounds on moments of a random variable from tail
bounds. For this, the following result is useful.
Proposition 2.27 Let X be a random variable taking values in [0, 00] and
K,a, B > 0 such that forall t > B,

Prob{X >t} < Kt™®
Then for all k < «, we have

(4

k

E(x*)<B+ K gt

IfB<K o , we actually have

« o
E(X)Sa—k

R

K

Proof We have Prob{Zk >t} = Prob{Z > t%} < Kt~ % for all ¢ > 0. Then, using
Proposition 2.8,

+00 o0
E(Zk)=/ Prob{Zkzt}dt§B+/
0

Kt~ tdt
B
I=F | Fee K |«
=B—i—K1_g =B+g_lB k.
kB k
IfB<K § then the reasoning above, splitting the integral at K o instead of at B,
shows that
3 K
E(Z) = K

k
u+—
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We finish this subsection with a classical result. Recall that a function ¢: I — R
defined on an interval [ is called concave if

1p(x)+ (1 —0)p(y) <p(tx + (1 —1)y)

forall x, y € I and 7 € [0, 1]. This easily implies that 3" | ;¢ (x;) < p( N, tix;)
for x1,...,xy € I and t; > 0 such that ZlNzl t; = 1. For instance, the logarithm
functions are concave.

Proposition 2.28 (Jensen’s inequality) Let Z be an integrable random variable on
the data space M taking values in the interval I C R and assume that ¢: I — R is
concave. Then

E(p 0 Z) < p(E(2)).

In particular, for any positive random variable Z we have E(log Z) <logE(Z).

Sketch of proof Suppose that {Aj,..., Ay} is a finite partition of the data
space M and Z = ZlNzl cily, for ¢; € R. Then ), vol(A;) = 1. We have E(Z) =
> ;civol(A;) and E(¢ o Z) = Y, ¢(ci) vol(A;). The concavity of ¢ implies that
E(¢ o Z) < ¢p(E(Z)). The general case follows from this by a limit argument. [

Note that if the function ¢ is convex, then the reverse inequality ¢ (E(Z)) <
E(¢ o Z) holds (just replace ¢ by —¢). Taking ¢ = exp, we obtain the following

useful result.

Corollary 2.29 For an integrable random variable Z on the data space M we have
P2 < ]E(ez). O

In the case of centered isotropic Gaussians we can be more precise.

Lemma 2.30 If Z is a standard Gaussian distributed random variable, then we
02
have E(e??) =T forall a € R.

Proof

2.2.6 Caps and Tubes in Spheres

When we are working with uniform distributions on spheres, a number of objects
and notions repeatedly occur. We collect some of them in what follows. We begin
with spherical caps.
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The spherical cap in "~ with center p € S"~! and radius « € [0, 7] is defined
as

cap(p, @) := {x eSS (x, p) > cosa}.
The uniform distribution on cap(p,«) has as density the function that equals

1/ vol(cap(p, «)) at points in cap(p, o) and zero elsewhere.

Lemma 2.31 The volume of cap(p, «) in S"~! satisfies
o
volcap(p, a) = Oy_» - / (sin6)" 2 d6.
0

Proof We may assume without loss of generality that p = e,,. The spherical cap
cap(p, @) is the image of S"2 x [0, «] under the map VY pes defined in Eq. (2.7)
(with n replaced by n — 1), which gives polar coordinates on S"~! with respect to
the center e,,. Corollary 2.3 implies that

volcap(p, @) =/

o
(sin@)”_zd(u,e)zOn_zf (sin®)"~2de.
(u,0)€S"2x(0,a) 0

O

The sphere $"~! has a natural metric given by the angular distance between
points. The following derived distance allows for a number of short and elegant
statements related to condition numbers.

Definition 2.32 Let a, b € S"~!. The sine distance of a and b is defined as
dsin(a, b) :==sin6 € [0, 1],
where 6 € [0, ] is the angle between a and b, i.e., (a, b) = cos6.

Remark 2.33 One can easily verify the triangle inequality: dsin(a, ¢) < dsin(a, b) +
dsin(b, ¢). Note, however, that dgj, is not a metric on $"~1, since dsin(a, —a) = 0.
Nevertheless, we observe that dgj, defines a metric on the real projective space. Note
as well that a and b have the maximal possible distance, namely 1, if and only if
they are orthogonal.

The sine distance gives an alternative way to describe small caps. For o € [0, 1]
it will be convenient to use the notation

B(p,o):={xe S" 1| dein(x, p) <o and (x, p) > 0}.

Note that {x € S"~! | dsin(x, p) < 0} = cap(p, o) U cap(—p, o). It is immediate
that we have cap(p, a) = B(p, sina) for « € [0, 7].
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Lemma 2.34 The volume of B(p, o) is bounded as

1 Op2 ,_ 1 voIB(p,o)
o'l ———1 % —cr ,
2n n—10,_1 O,_1 ~— 2

wheren >2and 0 <o <1.

Proof The left-hand inequality follows from Lemma 2.25. The asserted lower
bound on vol B(p, o) follows from Lemma 2.31 together with

(sina)*!  on!

o o
/ (sin6)*~2do > / (sin6)* "2 cos O d =
0 0

n—1 ~—n—-1

where we have put ¢ := arcsin «. For the upper bound one easily checks that

[o, %} SR, a— / (sin@)" 2 do,

(sin Ol)” (sina)—!

is monotonically increasing by computing the derivative of this function. Hence

/2
7/ (sin@)"~ 2d9</ (sin®)" 2 do. (2.15)
(sina)?~! 0
On the other hand,
1 T /2
5On-1 =v0|cap(p, E) =(9,,_2/ (sin6)" 2 d#. (2.16)
0

Inequalities (2.15) and (2.16) together with Lemma 2.31 yield the desired bound. [J

The following estimate tells us how likely it is that a random point on "~ will
lie in a fixed spherical cap.

Lemma 2.35 Letu € S"! be fixed, m > 2. Then, for all £ € [0, 1],

T i . 2 m;l
Jprob {utv| =& =/ (187 =

Proof We put 6 = arccos £ and let cap(u, 6) denote the spherical cap in S”~! with
center u and angular radius 6. Using the left-hand bound in Lemma 2.34, we get

2volcap(u,§) 20— (1 — £2)"5
Brop {|uTv|z€}= volcap(u, 6) - 20m 2 (1-£9) .
UNU(S’"_I) vol Sm71 Omfl (m - 1)

The result now follows from Lemma 2.25. O
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Fig. 2.1 A tube (and a
neighborhood) around
UcC S"72

T+(U,0) CT(U, o)

For the last point of this section let us consider a fixed embedding of S"~2
in S"~!. For example, we can choose {x = (x1,...,x,) € S""! | x, = 0}. The &-
neighborhood of S"~2% in §"~! is defined as

T(S"‘Z, 8) = {x es+! | dsin(x, S”_z) < 8}.

Hereby, dsin(x, S™2) := min{dsin(x, y) | y € S"2}.

More generally, let U C S"~2 be a closed subset. The e-tube T L(U ,&) around U
in S*~! is the set of those x € S"~! such that there is a segment of a great circle
in "1 from x to a point y € U, of length at most arcsine, that intersects sn—2
orthogonally at y. Figure 2.1 attempts to convey the difference between the e-tube
(whose boundary is an unbroken line) and the ¢-neighborhood (which adds to the
tube the two extremities with dashed boundaries).

In other words, T1 (U, ¢) is the image of U X [7/2 — «, m/2 + «] under the map

Vpes: "2 x (0,7) — S" "\ {£e,},  (u,0) > (usin, cos),

defining polar coordinates on S"~! with respect to the center e, ; compare (2.7).
The next lemma gives a formula, as well as a useful upper bound, for the volume
of TH(U, o).

Lemma 2.36 We suppose that n > 2.
(a) Fora closed subset U CS"2,0<a < %, and & = sina, we have
o
vol TH(U, &) =volU (cos p)" % dp.

-
(b) We have vol T-(U, &) < 2evol U. In particular, vol T (S" 2, &) < 26O, _».
Proof (a) Use Corollary 2.3 and substitute p := /2 — 6.

For (b) note that if n > 2, then [;’ (cos p)"2dp < [, cos pdp = sina = &. This

proves the first inequality. The second one follows by taking U = S"~? and noting
that T(S"72, &) = T1(S" 2, ¢). O

The following lemma will be essential in various smoothed analysis results.
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Fig. 2.2 An illustration of
the quantities in the proof of
Lemma 2.37

Ql

ql» Jag ST gn—2
e

Lemma 237 Let 0 < ¢,0 <1, n > 2, and @ € "', Fix also an embedding
S"2 s §" L Then

VO|(T(S”—2’ &)N B(a, o)) <2n— 1)(1 N £>n—2£
vol B(a, o)

Proof Let a € S"~? satisfy dsin(@, a) = dsin(@, S"~%). We consider the (o + ¢)-
neighborhood of a

U :=Bg2(a,0 +¢) U Bgpa(—a,o +¢)
with respect to the sine distance. We claim that
T(S"2,¢)NB@,o) S THU,e).

For proving this, take any p € T(S"2,&) N B(a, o) and let ¢ € "2 be such
that dsin(p, ) = dsin(p, S*~2). By the triangle inequality we have

dsin(q, a) < dsin(q, p) +dsin(p,a) < e +o.

An elementary geometric argument shows that dgin (¢, @) < dsin(g, a). Hence g € U,
and the claim follows (cf. Fig. 2.2).

We have vol T+ (U, e) <2evolU by Lemma 2.36. Moreover, Lemma 2.34 yields
the estimates

vol(U) = 2vol Bgu—2(a, 0 + ) < Op_a(0 + )" 72,

1
vol B(@,0) > ——Oy_so™ L.
n—1

The assertion follows by combining these observations. g
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2.2.7 Average and Smoothed Analyses

We mentioned at the beginning of this chapter that a glimpse at the literature shows
two forms of probabilistic analysis that, in general terms, model the ideas of ran-
dom data and deterministic data perturbed by noise, respectively. We will exhibit
instances of both kinds of analysis at several points in this book (beginning with the
section after the next). In order to sharpen the meaning of these analyses, we close
this section with a more detailed discussion of the two approaches.

We begin by pointing out that most of the condition numbers occurring in the
literature (and certainly all we will meet in this book) are scale-invariant. We can
therefore confine our discussion to scale-invariant random variables.

We have already noted that the underlying distribution in average analysis is
“evenly spread” and that expected values for such distributions are meant to cap-
ture the behavior of the random variable on the “average Joe” inhabitant of the
data space. In the context we are interested in, the probabilistic analysis of condi-
tion numbers, this data space is usually a Euclidean space R”. So the question that
poses itself is which distribution should we endow R” with for the analysis. As-
sume we have a “natural” system of coordinates in R"”. A first step then towards an
answer consists in noting that such a distribution should be rotationally invariant.
The undistinguished character of “average Joe” cannot favor any particular direc-
tion. Furthermore, scale invariance allows us to give a second step. Indeed, for such
a function on R" the value of the density along a half-line with origin at 0 is not
relevant. It follows that we can take any rotationally invariant distribution on R”",
and the collection of features of the standard Gaussian we listed in Sect. 2.2.2 make
this distribution the obvious choice.

Scale invariance also suggests the choice of an underlying distribution that
is evenly spread by definition, namely, the uniform distribution on the unit
sphere S"~!. This requires us to consider data on the sphere only, a requirement
easily achieved by means of the map

a

lall”

R\ {0} >S""",  am

Proposition 2.23 shows that this choice is equivalent to the standard Gaussian on R”.

All the above, however, is subject to a “natural” system of coordinates in R”.
And while some situations may suggest such a system (we will argue for one in
Sect. 16.1), its choice remains a bone of contention for average-case analysis. The
most common objection to average-case analysis is that its underlying probability
measures may not accurately reflect the distributions occurring in practice, in partic-
ular, that they may be “optimistic” in the sense that they may put more probability
mass on the instances for which the values of the function i under consideration
are small. Such an optimism would produce an expectation Eys smaller than the true
one.

Smoothed analysis was introduced mainly to overcome this objection. Its under-
lying idea, we recall, was to look at the behavior of a function for small perturbations
of arbitrary data. In the case of a condition number, this amounts to understanding
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the condition of slight perturbations of ill-posed data. When compared with the av-
erage analysis, it replaces the goal of showing that

for a random a, it is unlikely that cond(a) will be large
by the following one:

for all a, it is unlikely that a slight random perturbation a + Aa will have
cond(a + Aa) large.

To perform a smoothed analysis, a family of distributions (parameterized by a pa-
rameter r controlling the size of the perturbation) is considered with the following
characteristics:

(a) the density of an element a depends only on the distance |la — a]|.
(b) the value of r is closely related to the variance of ||ja — a||.

A first possible choice for this family of distributions is the set of Gaussians
N (@, o1,,). The role of r is in this case played by o > 0.

Because of scale invariance, one usually assumes that data live in S"~! 1In this
way, the value of the parameter » controlling the size of the perturbations is directly
comparable with the size of a@. Note that in this case, a Gaussian N (a, 021,,) induces
on the sphere a distribution different from the uniform, the density being higher
when close to a.

A different choice of distributions consists in taking, for each o € (0, 7], the
uniform measure on the spherical cap cap(a, «) or even on B(a, o) for each o €
0, 1].

The following table shows a schematic comparison of the quantities computed
in worst-case, average-case, and smoothed analyses for a scale-invariant function
¥ : R" — R in the uniform case (the Gaussian case is obtained in the obvious
manner).

worst-case average-case smoothed

sup ¥r(a) E  ¥(a) sup E v(a)

aesn—1 a~U Sty aesn—1a~U(cap(a,a))

Usually, the quantities estimated in the first two columns are functions of n. For
the estimate in a smoothed analysis there is, in addition, a dependence on «. This
dependence appears to interpolate between worst-case and average-case. Indeed,
when « approaches 0, the value of

sup E v(a)

geSn—1a~U(cap(a,a))

approaches sup,.g: ¥ (a), while when o = m this value coincides with
E,~y@-1)¥(a) (since cap(a,n) = S"=! for all @). In case ¥ (—a) = ¥ (a) for
all a € S"~!, a common occurrence when v is a condition number, it is immediate
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to see that

E V()= E ¥(a)

a~U S a~U(B(a,1))
for all @ € S"~!. Therefore, in this case,

sup E Y (a)
Fesn—1 a~U(B@,0))

interpolates between the worst-case and average-case analyses of i as o varies
between 0 and 1.

The local nature of randomization in smoothed analysis, coupled with its worst-
case dependence on the input data, removes from smoothed analysis the objection to
average-case analysis mentioned above. A satisfying result in this context (usually a
low-degree polynomial bound in the input size n and in the inverse of the dispersion
parameter r) is consequently considered a much more reliable indication that one
may expect low values for the function v in practice. In addition, there is an emerg-
ing impression that smoothed analysis is robust in the sense that its dependence on
the chosen family of measures is low. This tenet is supported in Sect. 21.8, where
the uniform measure is replaced by an adversarial measure (one having a pole at a)
without a significant loss in the estimated averages.

2.3 Probabilistic Analysis of Cw; (A, x)

As a first illustration we perform an average-case analysis of the componentwise
condition numbers Cw; (A, x) of matrix—vector multiplication that were introduced
in Sect. O.4. For the average analysis we shall suppose that A € R™*" and x € R”
are both standard Gaussian distributed and that they are independent.

As will be the case often in this book, the starting point of the probabilistic anal-
ysis is a “condition number theorem,” which in the situation at hand is expressed by

1

Cwi(A,x) < —————,
dsin(a;, Xi(x))

(2.17)
where X (x) := {b € S"~! | bTx = 0}. This bound is an easy consequence of (O.11)
seen in Sect. 0.5.4.

Let a; denote the ith row of A. By the rotational invariance of the standard Gaus-
sian distribution, the normalized ith row a; := a;/||a;|| of A is then uniformly dis-
tributed in the sphere S"~!. We note that by its definition, Cw; (A, x) depends only
ona;/|la;|l and x/|[x||.

The average-case analysis of Cw; is summarized in the following result.

Theorem 2.38 Letn > 2. For A € R™*" and x € R" standard Gaussian distributed
and independent, we have, for all 0 < ¢ <1 and all i € [m],

1 2n
Prob{Cw;(A,x) > ¢~ '} <,/ —e.
T
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Moreover, for g > 2,
1
E(logg Cw; (A, x)) < = logﬂ n+2.

Proof We fix i throughout the proof. By Proposition 2.19, a; is uniformly dis-
tributed in "~ !. Therefore, we obtain from (2.17) for fixed x € R” that

-1 . volT (X, ¢)
Prob {Cwi(A,x)>&"'} < Prob {dsn(d;, X) < e} =——"—
A~N(0,Lnxn) é,‘"’U(S”fl) Onfl

’

where we have written X' := X; (x) to simplify notation. Since X' is isometric to the
subsphere "2 of S"~!, Lemma 2.36(b) implies that vol T'(X, &) < 20,_» & (here
we use n > 2). From Lemma 2.25 we get the tail bound

PI})b{CWi(A,x)zs_l}_ 20,_ 28 /2(n—1) /2n

Since this bound is independent of x, we conclude, with ¢, denoting the density of
the standard normal distribution on R”, that

Prob{Cw; (A, x) > e~} =/ / Lo, (Ax)ze—19n2(A) dA @y (x) dx
Ax xeR™® J AeRm>n B

2n 2n
=< —epp(x)dx =,/ —e.
R® T T

Furthermore, applying Proposition 2.26 to the random variable Cw; (A, x) > 1 (with
a=1and K =ty =+/2n/m), we obtain

E(l Dogy 2 41 L 2
(logg Cw; (A, x)) < 5logs — +logge < Sloggn +2,
as claimed. O

We turn now to the smoothed analysis of Cw; (A, x). Fix any matrix A € Sy
and any vector X € S"~!. Let 0 < o < I and suppose that A is a random matrix such
that the ith row a; of A is chosen uniformly at random in the o-ball B(a;, o) of
a; and x is a random vector uniformly chosen in B(X;, o) (note that Cw; (A, x) =
Cw; (—A, x), so that the discussion at the end of Sect. 2.2.7 applies here).

Theorem 2.39 Let n > 2, A € (S”’l)m and x € S" L. Then, for all i € [m], all
c€(0,1],andall0 <¢e < %

&
Prob {Cwi(A,x)>e" '} <2en—.
a;€B(a;,o) o
xeB(x,0)
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Moreover, we have for B > 2 and all i,
1
E(logg Cw; (A, <1 loggz — + 4.
(logy Cw; (4, x)) = loggn +logs — +
Proof Again let i be fixed throughout the proof. By (2.17) we have for fixed x €
B(x,0),

ol(T(X;(x),e) N B(a;,
Prob {CW,'(A,x)Zfl} < VolT (i) 8_) (@ G))-
a;€B(@;,0) vol B(a;, o)

Since X (x) is isometric to S"~2, Lemma 2.37 implies that

. s n—28
Prob {Cw;(4,x)>s '} <2m—D(1+=) =
ajeB(a;,o) o o

We have (1 + ﬁ)”_z <+ ﬁ)"‘z <eife ! > "0;2 Hence, under this assump-
tion, we have

& &
Prob {Cw;(A,x)>e "'} <2e(n— )= <2en —,
a;eB(a;,o) o o

proving the tail bound for fixed x € B(x, ). The desired tail bound (for both A and
x random) follows as in Theorem 2.38.
For the expectation, Proposition 2.26 (witha =1 and tp = K = zgﬂ) implies that

1 1
E(logg Cw; (A, x)) <1 logs — + log,(2¢%) <1 logs — + 4,
(logg Cw; (A, x)) <loggn + ogﬁa+0gﬁ(e)_ogﬁn+ ogg — +
as claimed. O

Remark 2.40 As we noted in Sect. 2.2.7, we can obtain average-case bounds from
Theorem 2.39 by taking o = 1. A comparison with Theorem 2.38 shows that
the bounds thus obtained are slightly worse than those obtained from a standard
average-case analysis. This is due to the nonoptimal estimation in Lemma 2.34.

2.4 Probabilistic Analysis of «,¢(A)

Recall the set ¥ = {A € R"*" | det A = 0} of ill-posed matrices. The starting point
of our probabilistic analysis is the condition number theorem, Corollary 1.8, stating
that

drs(A, X))
This characterization of the condition number is the key to the geometric way of
reasoning below.

Kkrs(A) = (2.18)
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2.4.1 Preconditioning

Corollary 1.3 shows that the operator norm || |2 defined in (1.4) admits a simple,
easily computable, characterization. As before, let ay, ..., a, denote the rows of A.

Think now of a matrix A poorly conditioned with respect to k3. Because of
Eq. (2.18) and Corollary 1.3, this means that for a certain matrix S € X with rows s;,
we have that

K200 (A) = #”“_”S” (2.19)

jlidj =35
is large. A possible reason for this poor condition may be a bad scaling of A—that
is, the existence of i # j such that the numerator in (2.19) is maximized at i, its
denominator is maximized at j, and 1s large because ||a;|| is large compared

with [la;].

Since the solution of Ax = b is not changed when we divide the rows of [A, b]
by nonzero scalars, a way to avoid poor condition due to a possible bad scaling is to
solve instead the system Ax = b, where

. . (b b
A=< a4 ) and b=<—l,...,—”>.
llai |l llanll llat|l llanll

The following result justifies doing so.

Proposition 2.41 We have ki (A) < K200(A) whenever the left-hand side is de-
fined.

Proof For any § € X we have by (2.19),

1 _ max; la; —s;ll lla;ll 5 H
< =max ——— d; —
K200 (A) max; ||a;|| j max; |la;|| lla;ll
=M ]n H_ do(4, ),

where S is the matrix with columns sj/lls;ll. Hence k200 (A <dano (/i, X)), and
we get
1 14200

K200(A) > . = - = K200 (A).
2 (A D) (A D) =

The passage from A to A is called preconditioning in the literature. In general
(and this is the case in our example), such a process has a negligible computational
cost and can only improve the condition of the data at hand. Furthermore, the loss
of precision in the computation of the pair (A, b) is negligible as well. Hence, the
quantity controlling the loss of precision to compute A~!b from this pair is

K200 (A) 1= K200 (A).
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Note that by construction, k25(A) is scale-invariant in each row of A. We are
therefore in the situation of a block scale-invariant random variable described in
Remark 2.24. To study its behavior when A ~ N (0, L,2) amounts to studying the
behavior of A ~ U (S) with § = (S"~1)". We next proceed to do so.

In the sequel we will interpret a tuple A = (ay, ..., a,) € (S"~1)" as the matrix in
R™ " with rows ay, ..., a,. Because K200 (A) is block scale-invariant, it is possible
to formulate the condition number theorem (Corollary 1.8) in terms of an extension
of dsin to a product of spheres. In order to do so we define for A = (ay,...,a,) €
(S" Y and B = (by, ..., b,) € (S"1)" the distance

dsin(A, B) := maxdsin(a;, b;).
1<n

By Remark 2.33, dg, satisfies the triangle inequality (but recall that it is not a dis-
tance on (S"~1)", since dgjn(A, —A) = 0). We put

Ys:=XnN (S”_l)" = {A € (S"_l)n |ai,...,ay are linearly dependent}

and set
dsin(A, Xg) == min{dsin(Av B)|B € ES}'

Theorem 1.7 for r = 2, s = oo combined with Lemma 2.43 stated below imme-
diately yields the following intrinsic characterization of k2.0 (A).

Corollary 2.42 For all A € X with nonzero rows we have

1

Ko0(A) = ———~——.
dsin(A, Xs)

Lemma 2.43 We have droo(A, X) = dsin(A, Zs) for A € ("),

Proof For a,s € S"~! let s* denote the orthogonal projection of a onto Rs. By
definition we have dgin(a, s) = |la — s*||. Moreover, dsin(a,s) < |la — s||. From
these observations it immediately follows that dyso(A, X*) = dsin(A, Xs), where
Y*:={B e X |b; #0fori € [n]}. Since X* is a dense subset of X, we have
droo (A, X) = droo (A, X*). Hence the assertion follows. O

Recall that for a matrix A € R™*" a vector ¢ € R”, and an index i € [m], we
denote by A(i : ¢) the matrix obtained by replacing the ith row of A by c.
The following result will be used twice in this chapter.

Proposition 2.44 For A € (S*™1)" there exist i € [n] and ¢ € S"~! such that we
have A(i : c) € X and dsin(a;, ¢) < ndsin(A, Xs).

Proof We first note that d(A, X) < i/ndyo(a, X) due to the norm inequalities
n~12|x|l < lIxllee < llx|| holding for x € R”. Moreover, by Lemma 2.43 we have

dZOO(A’ ) =dsin(A, ES)'
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We apply Proposition 1.10 to the matrix AT (having the columns ;) and the
spectral norms (r = s = 2). This shows the existence of i € [n] and ¢ € R” such that
A(i:c)e X and ||la; —c|| < /nd(A, X) <ndsin(a, Xs).

If c =0, then 1 = ||a;|| < ndsin(a, Xs), in which case the assertion is trivial (note
that dgin < 1).

Hence we may suppose that ¢ # 0 and put ¢ := ¢/||c||. Then we have dsjn(a;, ¢) <
lla; — c|| and therefore dgjn(a;, ¢) < ndsin(a, Xs) as claimed. O

2.4.2 Average Analysis

We assume now that A is randomly chosen in (S"~!)" according to the uniform
distribution and investigate the distribution of the random variable k75, (A).

Theorem 2.45 We have, foranyn >2 and 0 <¢ <1,

[2
Prob{kaso(A) = e} </ = n*/%e,
T

if A is chosen randomly in (S"~")" according to the uniform distribution. Moreover,
for =2,

5
E(logg k200 (A)) < 3 logg n + 2.

Proof Let T (Xs, ¢) denote the e-neighborhood of Xg in (S H e,
T(Zs.e):={Ae(S"")" |dsn(A, Z5) <e}.
By Proposition 2.42 we know that
T(Zs.e)={Ae(S"")" | kaoo(A) =7},
and hence
1y Vol T(Xs, ¢)
PrOb{Kzoo (A)>¢ } = W
We thus need to bound the volume of T (Xs, ¢). Proposition 2.44 implies that
n
T(Zs.e) < Wi,
i=1
where

W;:={Ae(S"")" |3ceS"': dsn(ai, c) <neand A(i : ¢) € Zs}.
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By symmetry, vol W; = vol W,,, whence

Prob{Kzoo(A) > 871} < n%.
vol(St—1)»
Consider the projection
T We— (ST @, a) (. a).
Without loss of generality we may assume that ay,...,a,—1 € S*! are linearly

independent. Then the set
H :=span{ay,...,an_1}NS""!
is isometric to S" 2 and A(i : ¢) € X5 <= ¢ € H. We therefore have
7 Yai,...,an—1) ~T(H, ne) := {an eS" ! dsin(an, H) < ns}.
Clearly, vol T (H, ne) = vol T(S"~2, ne). Then, by Lemma 2.36(b),
volr Yay, ..., an_1) = vol T(S"‘Z, ne) <2neOp_s.

Using Fubini’s theorem, we obtain

vol W, =/ volr Yay, ..., an_l)d(S"*l)"*1 <210, 0"\
(Sn—l)n—l
Now using Lemma 2.25, we get

vol W < On—2 2ne <,/ g113’/28.
vol(St—1)y = 0,1 T

Altogether,

[2
Prob{kaso(A) > e} </ =0,
T

which is the desired tail bound.
In order to prove the bound on the expectation we apply Proposition 2.26 (with

a=1land K =1 = \/gnsﬂ) to the random variable kp~(A) > 1 to obtain

2 5
]E(logﬂ KZOO(A)) <logg <\/;n5/2) +logge < 3 loggn +2,

as claimed. O
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2.4.3 Uniform Smoothed Analysis
Let A=@@y,...,a,) €(S" 1" and 0 < ¢ < 1. We define the o -neighborhood of
Ain (S" )" as

B(A,0):=B(@,0) X --- X B(@,, o).

Our smoothed analysis result is the following.

Theorem 2.46 Foranyn > 2,any 0 <o,¢ <1, and any A € (S"H" we have

)
e\ e
Prob {k200(A) > 7'} < 2n3(1 + ”—) =
AeB(A,0) g a

Moreover, for > 2,

1
E (logﬂ ’C2oo(A)) < 310g/5 n+ ]og/S — 14,
A€B(A,0) o

Proof We proceed as in the proof of Theorem 2.45. Fix A € (8" )" and
0 <¢g,0 <1.Wehave

vol(T (Xs, €) N B(A,
Prob {Kzoo(A) > 8_1} _ (T(Xs 8)_ (A, 0)) )
A€B(A,0) volB(A, o)

By Proposition 2.44 we have T(Xs, ¢) € | J;_; Wi, where
Wi={Ae(S"")" |3ceS" " : dsn(ai,c) <ne and Ai : ¢) € Zg}.

Fix i = n and consider the projection

n—1
T W, ﬂB(Z,a)—) HB(E,’,(T), (at,...,ap) > (ai,...,a,—1).

i=1

Without loss of generality we assume that the components a; of (aj,...,a,—1) in
]_[;-:11 B(a;, o) are linearly independent. Then its fiber can be described by

m a1, ... an-1) = {an € B(@y,.0) | dsin(an, H) < ne}

=T(H,ne)N B(a,,o),

where H :=span{ay, ..., a,—1} NS*~'. Lemma 2.37 implies that

vol(T (H, ne) N B(vola,, o)) <2 — 1)<1 N E>n—2E .20
vol B(@,, o) o o’ '
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Using Fubini’s theorem we get

vol(W, N B(A, o)) =/ volr N ay, ..., a,_1)d(S")" ",
1= B@i.0)
and hence, by Eq. (2.20),

vol(Wy N B(A,0)) _ 2n2<1 " E)"zi (2.21)
vol B(A,0)  ~ o) o |

The same bound holds for W; fori =1, ..., n. Noting that

vol(T (Zs, ) N B(A, o)) - 2’: vol(W; N B(A, o))
vol B(A, o) e vol B(A, o)

the desired tail estimate follows.

For the bound on the expectation, note that (1 +“£)" < (1+ %)” <eife !> .

[S)

2
n
Hence, for t > =

en3

-1

Prob{kaee(A) > 1} <2—17".
o

Proposition 2.26 (witha =1 and 7 = K = 29(’;’—3) implies that

2en3
E(logﬂ Kzoo(A)) < logﬂ<

o

1
>+logﬂe§310gﬂn+logﬂ;+4. 0

2.5 Additional Considerations

2.5.1 Probabilistic Analysis for Other Norms

The analyses in the previous sections took advantage of the block scale invariance
of K2c0 and therefore, ultimately, of the properties of || ||200. With some additional
effort, such analyses can be performed for other matrix norms by working in sr*-1
instead of (S"~!)”. But we can also obtain similar results by preconditioning and
using the equivalence between different matrix norms in Table 1.2. We show how
for the case of the spectral norm.

Lemma 2.47 We have ﬁK(A) < Kk200(A) < \/nK(A) for A € R\ {0).

Proof The norm inequality n~'?|ylla < [[vlloo < |l¥ll2 for y € R" implies

n~ Y2 All < | Allaoo < Al and hence n=1/2d(A, X) < droo(A, X) < d(A, ).
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Theorem 1.7 implies

ey ALy Al
d(A, X) * droo(A, X))’
from which the statement immediately follows. 0

We may consider the preconditioning A — A and define k(A):= K(A). In con-
trast with the case of || ||200, this procedure may increase the condition, but it is easy
to see that it is not by much.

Proposition 2.48 For all A & ¥ we have k(A) < ni(A). Moreover, ©(A) <
VK200 (A).

Proof Using Lemma 2.47 twice and Proposition 2.41, we obtain
K(A) < VK200 (A) < VK200 (A) < nkc(A).

For the second statement we use Lemma 2.47 to get
R(A) = ie(A) < Voo (A) = V200 (A). O

The following analyses are an immediate consequence of Theorem 2.45 and The-
orem 2.46.

Proposition 2.49 For A chosen randomly in (S"~1)" from the uniform distribution,
we have

E(logs k(A)) <3loggn +1,
and forn > 2 and any A € (S"~1)",

7 1
E (loggkx(A)) < -loggn +logg — +5.
AEB(Z,U)( P ) 2 P BG

2.5.2 Probabilistic Analysis for Gaussian Distributions

Throughout this chapter, for investigating the condition of a random matrix A €
R"*"  we assumed the rows a; of A to be normalized to Euclidean norm 1 and
viewed A as the point (ag, ..., a,) in the product (S"~1)" of spheres. We then as-
sumed A to be chosen uniformly at random in (S"~!)" (or in a product of spherical
caps thereof). We have chosen this probabilistic model for two reasons. On the one
hand, the average and smoothed analyses in this model are the most elementary



58 2 Probabilistic Analysis

instances of such analyses we are aware of. On the other hand, our considerations
are a natural preparation for similar, but more involved, studies regarding the GCC
condition number of linear programming treated later in this book (see Chap. 13).
However, this chapter would be incomplete without mentioning what is known in
the Gaussian model, in particular for smoothed analysis, since in contrast to average
analysis (where the use of the uniform measure on §"~! is equivalent to the use of
a standard Gaussian in R” due to Corollary 2.23), the smoothed analyses for both
measures are not equivalent. The following result is due to Mario Wschebor.

Theorem 2.50 There is a universal constant K > 1 such that for all A € R™" with
Al <1,all0 <o <1,andallt > 1, we have

1
Prob {k(A) >t} <Kn—.
A~N(A,02]) ot O

We will not prove this result here. Techniques to study the condition of matrices
in the Gaussian model will be developed in Chap. 4, where we shall derive bounds
that are even sharper for rectangular matrices.

Combining Theorem 2.50 with Proposition 2.26 immediately implies the follow-
ing.

gorollary 2.51 Zhere exists K > 1 such that for all o € (0, 1], all B > 2, and all
A e R™" with ||A|| < 1, we have

1
E (logﬂ IC(A)) <loggn +logg — +2+logg K.
A~N(A,02]) o

In particular, taking A=0ando =1,

E loggsk(A)) <logzn+2+logs K.
ANN(O,I)( gp ( )) 2p 2p 0O

Note that the second bound in the corollary above is better than the one (obtained
for the same quantity but with humbler means) in Proposition 2.49.



Chapter 3
Error Analysis of Triangular Linear Systems

The vast majority of the occurrences of condition numbers in the study of linear sys-
tems of equations involve the normwise condition number « (A). Almost invariably,
the use of x(A) is enough to provide a satisfying explanation of the phenomena
observed in practice.

The case of triangular systems of linear equations provides, in contrast, an ex-
ample in which k(A) turns out to be inadequate. Practitioners long observed that
triangular systems of equations are generally solved to high accuracy in spite
of being, in general, ill-conditioned. Thus, for instance, J.H. Wilkinson in [235,
p. 105]: “In practice one almost invariably finds that if L is ill-conditioned, so that
ILINIL~Y > 1, then the computed solution of Lx = b (or the computed inverse) is
far more accurate than [what forward stability analysis] would suggest.”

A first goal in this chapter is to give a precise meaning to the feeling that tri-
angular matrices are, in general, ill-conditioned. We prove that if L € R™" is a
lower-triangular matrix whose entries are independent standard Gaussian random
variables (i.e., L is drawn from N (0, I,@+1))), then E(logﬂ k(L)) = £2(n). Corol-
lary 1.6 then yields an expected loss of précision satisfying

E(LoP(L™'b)) = O(n).

Were the loss of precision in the solution of triangular systems to conform to this
bound, we would not be able to accurately find these solutions. The reason we ac-
tually do find them can be briefly stated. The error analysis of triangular systems
reveals that we may use a componentwise condition number Cw(L, b) instead of
the normwise condition number. The second goal of this chapter is to prove that
when L is drawn from N (0, I,x+1y)) and b € R” is drawn from N (0, I,,), then we
have E(logCw(L, b)) = O(log nz). This bound, together with some backward error
analysis, yields bounds for E(LoP(L~'b)) that are much smaller than the one above,
as well as closer to the loss of precision observed in practice.

P. Biirgisser, F. Cucker, Condition, 59
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_3, © Springer-Verlag Berlin Heidelberg 2013
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60 3 Error Analysis of Triangular Linear Systems
3.1 Random Triangular Matrices Are Ill-conditioned

The main result of this section states that random lower-triangular matrices are ill-
conditioned with respect to the normwise (classical) condition number.

Theorem 3.1 Let L = (¢;;) € R"*" be a random lower-triangular matrix with in-
dependent standard Gaussian random entries {;; for i > j. Then we have

E(lnk(L)) > (In2)n —Inn — 1.

As a warm-up, we first show a related result—with a very simple proof—that
already indicates that on average, « (L) grows exponentially in . For this we focus
on unit lower-triangular matrices L, that is, we additionally assume that ¢;; = 1.

Proposition 3.2 Let L = ({;;) denote a random unit lower-triangular matrix with
Lii = 1 and with independent standard Gaussian random entries £;; for i > j. Then
we have

—112
E(JL7 ) =2"~1.
In particular, I[-3(||L||2F||L_1 ||2F) > n(2" — 1); hence E(x (L)?) grows exponentially

inn.

Proof The first column (s, ..., s,) of L~ is characterized by s1 = 1 and the recur-
rence relation

i—1
S,'Z—Zﬁijsj' fori=2,...,n.
j=I

This implies that s; is a function of the first i rows of L. Hence the random variable
s; is independent of the entries of L in the rows with index larger than i. By squaring

we obtain fori > 2,
2 Z Z 2.2

J#k j<i
Jik<i

By the preceding observation, s sy is independent of ¢;;¢;; for j, k <i.If addition-
ally j # k, we get

EW;ijlixsjsi) =EW;jlix) EGsjsi) =EW;;) EWiy) E(sjse) =0,

since ¢;; and ¢;; are independent and centered. So the expectations of the mixed
terms vanish, and we obtain, using E(Eizj) =1, that

i—1
E(s7) =Y E(s}) fori>2.

Jj=1
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Solving this recurrence with E(slz) =1 yields
]E(slz) =212 fori > 2.

Therefore, the first column v of L1 satisfies

()=

By an analogous argument one shows that
E(llvel?) =2"*

for the kth column vy of L. Altogether, we obtain

n
B ) (lekaz):ZE(llvkllz)—
k=1
Finally, we note that || L ||%- > n, since £;; = 1. Hence,

E(ILIFIL77) = nE(IL77) =0 (2"~ 1).
The last assertion follows from « (L) > %||L||p 1L~ . U

We turn now to the general situation. Consider a lower-triangular matrix L =
(£;j) € R"™*" that is invertible, i.e., det L = €17 - - - £,, # 0. We denote by 11, ..., 1,
the entries of the first column of L~!. These entries can be recursively computed as
follows:

—1
n=4y,
-1
I = _622 £t

13 = —L3; (La1t) + Lxh),

tn =L} Cpits + -+ Ly p—1tn—1).

We suppose that the ¢;; are independent standard Gaussian random variables. The
next lemma provides a recurrence formula for the joint probability density func-

tion fx of (#1, ..., tx). We introduce the notation T} := , /tl2 4+ + t,f.
Lemma 3.3 The joint probability density function fy(t1, ..., tx) satisfies the follow-

ing recurrence:

1 - 17,
L 1fk \ fork>1.
T
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Proof We have 1 = 1/x, where x = £1; is standard Gaussian with density ¢(x) =
(2]‘()_1/26_%)‘2. Therefore, by Proposition 2.11 (withn =1, ¥ (x) = 1/x, and fy =
©), the density p of the random variable #; satisfies

—1 _ 1
9(x) = x2p(x) = uf
dx

(1) ‘dl] 1
)=\ —F— €
P «/27”12

as claimed.
To obtain the recurrence expression for f;, we consider the random variable

=Lt + -+ L g—1t.

For fixed values of fq,...,#_1, the conditional distribution of 7; is Gaussian
with mean O and variance Tszl. Therefore, the joint probability density of
(t1, ..., t—1, Tx) is given by

72
1 §
fict -~ i
V21 T—y
The variable #; is obtained as f; = ti/¢, where ¢ = —¥{;; is an independent

standard Gaussian random variable. Note that the joint probability density of
(t1, ..., tk—1, T, £) is given by

1 =1 e
fk—l [ k-1 e 2
N2 Ty 2
We make now the change of variables (t1, ..., t—1, Tk, £) Ii; (Hy ooyt ty, £),

which satisfies det DY (¢, ..., tx—1, 1, L) = el Proposition 2.11 implies that the
density g of (#1, ..., tk—1, t, £) satisfies

242

&
2 _e
2Ty e~ 7 -2

1
§=fio1-—m—=—c
N2 T 2

A straightforward calculation, making the change of variables b = £2/2, shows that

2
00 00 _ﬁ( /i +1)
fk(tl,...,tk)zf et 1 0 dl = T 2/ e T Tl gde
—0 2 Tr—1  Jo
2

_ Jim 1L fio Ty fie Tim

wTr_1 tzi-i-l T Tk2 T Tk2 ’

Tk*l
which proves the desired recurrence. d

The recursive description of the joint probability density functions f; in
Lemma 3.3 yields the following recurrence for E(In Tkz).
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Lemma 3.4 We have E(InT?) =E(InT? |) +2In2 for k > 1.

Proof By Lemma 3.3 we have, omitting the arguments #; to avoid cluttering the
notation,

T In T2
E(lnT,f):/ filnT2dty - diy = fi1 Tk 1/ £ dnedry - diy.
Rk Rk=1 b4 R Tk
We fix 1, ..., tr—1 and rewrite the inner integral by making the change of variable

y =1t/ Tr—1. Hence Tk2 = Tszl 1+ yz), and we get

1/1nT,3 1 I/InTk2_1+ln(l+y2)d
T Jr T? Trnon e 1+y2

The function y > 1/(;(1 4 y?)) is a probability density on R, and a straightforward
calculation shows that

1 [ In(l+y?
_/Mdyzzmz‘
T Jr l+y2

Hence we obtain for the inner integral

1 [ InT? 1
—f £ dy=— (InTZ | +2In2).
T Jr Tj Ti—1

Plugging this expression into the integral above, we obtain the stated recurrence
E(In7¢) =E(In7Z_;) +21n2. O

Proof of Theorem 3.1 Using the expression for the density function f| provided by
Lemma 3.3, we obtain, using software for symbolic integration,

1 1 -3
E(nT?) = Se YTinitdy =2+,

- Var Je t12

where y & 0.577 denotes the Euler-Mascheroni constant. Combining this with the
recursive expression of Lemma 3.4, we get

E(In7?) = (2In2)(n — 1) +In2+y > (2In2)n — 0.12.
Recalling that 7}, equals the Euclidean norm of the first column of L ™!, this implies
E(ln|L7"| ) = E(nT,) = (In2)n — 0.06.

Since ||L||% is chi-square distributed with n(n 4 1)/2 degrees of freedom, we
have, by Proposition 2.21, that E(In||L||r) > 0 if n > 1. Therefore
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E(in(ILllF|L7"] ;) = E(nT,) > (In2)n — 0.06.

Using that | L||[|IL (| = L||L || p|L~"|| r, the assertion follows. O

3.2 Backward Analysis of Triangular Linear Systems

Let L = (¢;;) € R"*" be a nonsingular lower-triangular matrix and b € R". We are
interested in solving the system Lx = b. Algorithmically, this is very simple, and
the components xi, ..., x, of the solution x are sequentially obtained by forward
substitution as in Algorithm 3.1.

Algorithm 3.1 FS
Input: L eR"™ beR”

Preconditions: L is lower-triangular, nonsingular

x1:=bi/l11

for i=2...n do
compute w:=4{j1x;+---+ii_1xi—1
compute x; = b‘z%w

return x = (x1,...,X,)

Output: x e R”
Postconditions: Lx =5

It is straightforward to obtain a backward error analysis for Algorithm 3.1 from
the results we proved in the Overture. We use notation introduced in Sect. O.3.

Proposition 3.5 There is a round-off implementation of algorithm FS that with in-
put L € R"™" lower-triangular and b € R" computes the solution x of Lx = b. If
€mach([logyn] 4+ 1) < 1, then the computed value fl(x) satisfies (L + E)fl(x) =b
with le;j| < Yllog, i1+11€ij].

Proof By induction on n. If n = 1, then

by

by
() = —(1+6) = ———,
t VT 0+ enen

and the statement follows since 01| < y;.

Now assume n > 1 and let x = (x1,...,X5—1), b= (b1,...,by—1), and Le
RO =Dx(=1 be the matrix obtained by removing the nth row and the nth column
of L. Then, L is lower-triangular, nonsingular, and LxX = b. By the induction hy-
pothesis the point fix) = (fl(x1), ..., fl(x,—1)) computed at the first (n — 2) itera-
tions of FS satisfies (L + E)fl(x) = b with |&;;| < ¥[iog, i1+11€ij].




3.3 Componentwise Condition of Random Sparse Matrices 65

We now use Proposition O.4 to perform the (n — 1)th iteration (which computes
xp) with A = (Up1, ..., €y n—1) € RIx(=1) By this proposition, we compute the
product A fl(x) = £,1fl(x1) + -+ - + £y n—1fl(x,—1) and obtain fl(w) satisfying

fi(w) = (Cp1 +en)fl(x1) +--- + (gn,n—l + en,n—l)ﬂ(xn—l)

with |e,;| < ¥rog,(n—1)1+11€nj| for j <n — 1. We then compute x,,, and we obtain

b, —fl b, —fl 1+6
e :ﬂ( " (w)) _ (( n = fiw) (1 + 1))(1 o
Z,m Enn
_ by — (Up1 +en)fl(x1) + - + (ﬁn,n—l + en,n—l)ﬂ(xn—l)
Lan (] + 92) '
a_nd the result follows by taking e,, = £,,6> and E the matrix obtained by putting
E inits upper-left (n — 1) x (n — 1) corner, appending (e, 1, . . ., €nn) as the nth row,
and filling the remainder of the nth column with zeros. U

3.3 Componentwise Condition of Random Sparse Matrices

Proposition 3.5 justifies the componentwise measure of relative errors and, as a con-
sequence, the use of componentwise condition numbers in the error analysis. The
goal of this section is to give a (classical) probabilistic analysis for these condition
numbers.

We will work in the more general context of sparse matrices (which, in this
section, are matrices with a fixed pattern of zeros).! Therefore, the following results
apply not only to triangular matrices but to other classes of sparse matrices such as,
for instance, tridiagonal matrices. Also, in the process of proving our main result we
will estimate as well the average componentwise condition for the computation of
the determinant and for matrix inversion.

3.3.1 Componentwise Condition Numbers

Recall that for a function ¢ : D € R™ — R? and a point a € D with g; # 0 and
@j(a) #0foralli <m and j < q, we defined in (O.1) the componentwise condition
number

RelError(¢(a
Cw¥(a) = lim  sup RelError(p(a))
8—0RelError(a)<s  RelError(a)

IThe word “sparse” is also used to denote matrices with a large number of zeros, not necessarily
in fixed positions.
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where both RelError(a) and RelError(¢(a)) are measured componentwise and we
follow the convention that g = 1. That is,

la; — a;|
RelError(a) = max ———,
ism |ail

and similarly for ¢(a). In fact, we have Cw¥ (a) = max ;<4 Cw? (a), where for j <gq,

RelError(¢(a)
oWl =lim  sup oErore(@)),
/ 8—0RelError()<s  RelError(a)

compare Sect. O.2.
Componentwise condition numbers behave nicely with respect to multiplication
and division.

Lemma 3.6 Let ¢,y : D C R™ — R be functions and a € D such that a; # 0 for
all i and p(a)y(a) # 0. Then we have

cw?¥ (a) < Cw?(a) + CwY (a), cw?’V (a) < Cw?(a) + CwY (a).
Proof The first statement follows from the identity

Ay—xy _X-x yoy X-xy-—y
xy x y x oy

For the second statement, we use instead

-~ - y—y
y-x/y w5
x/y I+ O
Example 3.7 The multiplication ¢ : R" — R, (ay,...,ay) — aj---a, satisfies

Cw?(a) = m if a; # 0 for all i. In fact, Cw¥(a) < m follows immediately from
Lemma 3.6 by taking into account that the componentwise condition number of a
projection a — a; equals one. It is easy to see that equality holds.

Componentwise condition numbers also behave nicely with respect to addition
and subtraction. We leave the straightforward proof to the reader.

Lemma 3.8 Let ¢,y : D C R”™ — R be functions and a € D such that a; # 0 for
all i and gp(a)y(a) # 0. Then we have

Ccw?*V (a) < max{Cw¥ (a), Cw¥ (a)},
provided the left-hand side is defined (i.e., p(a) £ ¥ (a) #0). O

In all that follows, for n € N, we denote the set {1, ...,n} by [r] and write, as
usual, [n]? = [n] x [n].
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Definition 3.9 We denote by .# the set of n x n real matrices and by X its subset
of singular matrices. Also, for a subset § C [n]2 we define

Ms={Ae.d | if ()¢S then ai; =0}

and write |S| for the cardinality of S. We denote by R the space of random n x
n matrices obtained by setting a;; = 0 if (i, j) ¢ S and drawing all other entries
independently from the standard Gaussian N (0, 1). As above, if S = [n]2, we write
simply R.

Lemma 3.10 If #s & X, then Probscr (A is singular) = 0.

Proof The set of singular matrices in . is the zero set of the restriction of the de-
terminant to .#s. This restriction is a polynomial in R!5! whose zero set, if different
from R8I, has dimension smaller than |S]. 0

3.3.2 Determinant Computation

We consider here the problem of computing the determinant of a sparse matrix A €
M's ~RIS! and its componentwise condition number Cw®!(A), which is defined by
taking ¢ : .#s — R, A > det A. We shall suppose that .#s Z X. Then Cw®!(A) is
almost surely defined by Lemma 3.10, since det A []; ; aij # 0 holds almost surely.

Our goal is to derive probability tail estimates for Cw9'(A). We begin with a
simple observation on Cw9!(A) for triangular matrices, which is in stark contrast to
our findings in Sect. 3.1 on the normwise condition number of such matrices.

Proposition 3.11 Let S be such that #s equals the set of upper-triangular n x n
matrices. Then we have CWw3(A) = n, provided det A # 0.

Proof This is an immediate consequence of Example 3.7. g
Our main result for Cw9'(A) is the following.

Theorem 3.12 Suppose S C [n]? such that Ms € X. Then, for t > 2|S],

1
Prob {Cw®™'(4) > 1} < [S|*~.
AeRs t

We may use this result to estimate the average componentwise condition number

for the computation of the determinant.

Corollary 3.13 For a base B > 2 and a set S C [n]2 with |S| > 2, we have
E(logg cwiel(A)) < 210gﬁ | S|+ logﬂ e, where E denotes expectation over A € Rg.
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Proof Use Proposition 2.26, taking X = Cw®'(A), « = 1, and fo = K = |§|? (note
that |S|2 > 2|S], since | S| > 2), together with Theorem 3.12. O

We move now to the proof of Theorem 3.12. First we give a closed formula for
CwI¢(A). We shall denote by A;; the submatrix of A obtained by deleting its ith

row and its jth column.

Lemma 3.14 For A € M5\ X, we have

deet(A) — Z

(@.))es

ajj det A,’j
det A

In particular, cwe(A) does not depend on S.
Proof For any i € [n], expanding by the ith row, we have
detA = Z(—])iJrjaij detAij.
j
Hence, for all i, j € [n], we get

ddetA
861,']'

= (=) detA;;.

Fix A€ .#s\ X and § > 0. Let A € .#s be such that RelError(A) = §. Then
|aij — a;j| < é8la;j| for all (i, j) € S. Using Taylor’s expansion and the equalities
above, we obtain for § — 0,

detA=detA+ Y (—=1)"" (@;j — a;j) det A;; + O(82).
ij

It follows that

|det A — det A| laij det Ayj|
_— + O0).
S|ldet A| - Z |det A| ®)
Hence, by the definition (O.1), we obtain
|a;j det A;;|

C detA <
W “—; |det A|

To see that equality holds we choose A by taking a;; = a;; (1 & §), where we take
the p!us_ sign if (—1)'*/ det A; j > 0 and the minus sign otherwise. Then the terms
(=D (aij — a;j) det A;; have the same sign for all i, j € [n]. O

We proceed with a general tail estimate for Gaussian random variables.
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Lemma 3.15 Let p, g be two fixed vectors in R" such that ||p|l < lqll, ¢ #O0. If
x ~N(,1,), then forall t > 2,

xTp 1
Prob T | ==
xlq t

Proof Let v = |q||. By the rotational invariance of N(0,1,) we may assume that
qg = ,0,...,0). Also, by appropriately scaling, we may assume that v = 1. Note
that then || p|| < 1. We therefore have

T n
X Xi Di
Prob] |22 >t = Prob pl—i—zl—pl >t

xTq —~ x|
i=2
1

= Probq |p1 + —aZ| >t

X1

V4 t— V4 —t —
= Prob{ £ > pl}+Prob{—§7p]}, G.1)
X1 o

X1 o
where Z = N (0, 1) is independent of x| and o = ,/p% + -+ p2 < 1. Here we
used that a sum of independent centered Gaussians is a centered Gaussian whose
variance is the sum of the terms’ variances (cf. Sect. 2.2.2). Note that in case o = 0,
the statement of the lemma is trivially true.

The random variables x; and Z are independent N (0, 1). It therefore follows
from Proposition 2.19 that the angle 6 = arctan(Z/x;) is uniformly distributed in
[—m/2, 7 /2]. Hence, for y € [0, 00),

Z 1 (7
Prob{— > y} = Prob{f > arctany} = —<— — arctan y)
X1 T\ 2

1/00 1 1/001 1
=— dt < — —dt =—.
), 1+2 ~nJ), 12 Ty

Similarly, one shows for o € (—o0, 0], that

Z 1
Prob{ — <o} < .
X1 w(—o)

—I=pi
o

Using these bounds in (3.1) with y = % and o = , we obtain

xTp
xTq

Prob{

1 o o o 2t 2t 1
>t < — —+ = — < — <—’
T a\t=—p1 t+p mi—pl T w2—1"t

the last since ¢t > 2. O
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)

al-jdetAij >L (32)
det A 1S ’ ’

Proof of Theorem 3.12 From Lemma 3.14 we obtain
a;jjdetA;;
detA

It is therefore enough to prove that for all (i, j) € S and all z > 2,

aij detA,-j

det A

Prob{
z

zz}fl. 3.3)

Without loss of generality, take (i, j) = (1, 1). Let x = a; be the first column of A.
Also, let I ={i € [n] ]| (i, 1) € S} and let x; be the vector obtained by removing
entries x; with i ¢ I. Then,

xp~N@O,Ip. (3.4)

For i € [n] write g; = (_1)i+1 detA;1.Letg = (q1,...,qn) and let g; be the vector
obtained by removing entries ¢; with i ¢ I. Clearly, g; is independent of x;. Using
this notation, the expansion by the first column yields

detA = Z (=) a; det Ay = xTgy.

ie[n]

In addition, a;; det A = xIT(qlel), where e; is the vector with the first entry equal
to 1 and all others equal to 0. Hence,

andetAy  xj(qier)
detA x1qr

Let p be the density of the random vector ¢;. Then, for z > 2,

> z}
T

Xy (q1e1)

el |

Xrdq1
x7(qier)
T

=/ Prob{
ueRMI Xrdr1

1 1
5/ —pu)ydu=-.
u Z

cRIIl Z

ajjdetAq

Prob
{ detA

= Prob{

>z

qi =u}p(u)du

Here the middle line is Proposition 2.14, and the inequality follows since x; is in-
dependent of ¢; and ¢;, and therefore we can use (3.4) and Lemma 3.15 (with
p =uie; and g = u). This proves (3.3) and hence the lemma. O
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3.3.3 Matrix Inversion

We now focus on the problem of inverting a matrix A. The (i, j)th entry y;; of the
inverse A~ is given by Cramer’s rule: Vij = (= 1)/ det Aji/detA.

Fix S C [n]? such that .#Z5 is not contained in X. Let Jg denote the set of all
@ j)e [n2] such that there exists an invertible A € .# with det A ji #0. Note that
the entries of A~! vanish at the positions outside Jg for A € .#s \ X and are thus
uninteresting. For instance, if S = {(i,7) | i € [n]}, then Jg = S. As for Lemma 3.10,
we can show that y;; # 0 with probability one for A € Ry.

We define the componentwise condition number Cw'(A) as in (O.1) for the map
¢:. 4\ X —R'S, A A~!. By the previous reasoning, Cw'(A) is almost surely
defined.

Theorem 3.16 Ler S C [n]2 be such that Ms € X. Then, for all t > 4|S],

1
Prob {Cw'(A) > 1} < 4|S|*n*-.
AeRg t

Proof By the definition of Cw'(A) we have

Prob{Cw'(4) = 1} = Prob{ max Cw];(4) =1} = Y Prob{Cw];(4) =1},

pIeln] i.jeln]
Cramer’s rule
vij=(=1)"/ detA;;/detA
combined with Lemma 3.6 yields
Cw];(A) < Cw'(4) + Cw® (A 7).

‘We conclude that

t t
Prob{Cw,Tj(A) >1} < Prob{deet(A) > E} + Prob{dee‘(Aj,-) > 5}

1
§4|S|2;,

obtaining the last inequality by applying Theorem 3.12 to A and A j;. The statement
now follows. O

Combining Theorem 3.16 with Proposition 2.26, we obtain the following corol-
lary.

Corollary 3.17 Let S C [n]? be such that #Ms Z X. Then,
E(logg (Cw'(A))) < 2logg n + 2logs |S| + logg de,

where E denotes expectation over A € Rg.
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3.3.4 Solving Linear Equations

We finally deal with the problem of solving linear systems of equations. That is, we
consider a matrix A € .#s and a vector b € R", and we want to solve Ax = b. We
denote by Cw(A, b) the corresponding componentwise condition number obtained
from the definition (O.1) by taking ¢ : (A5 \ X) x R" — R”" given by ¢(A, b) =
A~'b. We note that Cw(A, b) is almost surely defined.

Theorem 3.18 Let S C [n)? be such that Ms € X. Then, for all t > 4(|S| + n),
2 1
Prob{Cw(A, b) > t} < 101]S| n;,

where Prob denotes the probability over (A, b) with respect to the product measure
Rs x N(0,1,).

Proof Cramer’s rule states that

det A[i : b]
Xj=————
detA

)

where A[i : b] denotes the matrix obtained by replacing the ith column of A by b.
Hence, Lemma 3.6 implies that

Cw; (A, b) < Cw™'(A) + Cw*™'(A[i : b]). (3.5)
As in the proof of Theorem 3.16, we have

Prob{Cw(A,b) >t} < ) " Prob{Cw;(A, b) > t}.

ie[n]

Hence, applying the estimate (3.5) and Theorem 3.12 (using 5 > 2[S]), we get
t
Prob{Cw; (A, b) >t} < Prob{dee‘(A) > 5} + Prob{dee‘(A[i :b]) >

!

For the second inequality we used the fact that since .#s € X, we have |S| > n.
The statement now follows. U

NSRS

1 1 1
<2157 +2(ls] +n)2; SJUNES

Theorem 3.18, again combined with Proposition 2.26, yields the following.

Corollary 3.19 Ler S C [n]? be such that Ms L X. Then,

E(logg (Cw(A, b))) < loggn +21ogg | S| + logg 10e.
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3.4 Error Bounds for Triangular Linear Systems

We may now use the results in the preceding sections to estimate the expected loss
of precision in the solution of a triangular system Lx = b.

Theorem 3.20 Assume that we solve Lx = b using Algorithm FS. Then, for stan-
dard Gaussian L and b we have

E(LoP(L™'b)) < 5loggn + logg([logy n] + 1) +logg 10e + o(1).

Proof By Proposition 3.5 and Theorem O.3 (where we take f(dims(L,b)) =
[log, n] + 1) we have

LoP(L™'b) <logg([logyn] + 1) +logs Cw(L, b) + o(1).

n2+n

Therefore, using Corollary 3.19 with |S| = >
E(LoP(L™'b)) <logg([logyn] + 1) + E(logs Cw(L, b)) + o(1)
<logg([logyn] + 1) 4 5logg n +logg 10e + o(1). O

Iffl(x) = (fl(xy), ..., fl(xy)) is the solution of Lx = b computed by FS with €mach
sufficiently small, the number of correct significant figures of its ith component is

[flCx;) — x;]
|2x; |

‘logﬁ

‘We can rephrase Theorem 3.20 by stating that for standard Gaussian L and b,

E (I_nin )
1<n

>t — (5loggn +logg([logy n] + 1) +logg 10e + o(1)).

[fl(x;) — xi|
|x; ]

logg

where t = |log 8 €mach| 1S the number of significant figures the machine works with
(compare Sect. 0.3.2).

3.5 Additional Considerations

3.5.1 On Norms and Mixed Condition Numbers

A norm || || on R? is said to be monotonic if whenever |u;| < |v;| fori =1,...,q,
we have |ju|| < |lv]|. It is well known that a norm is monotonic if and only if
i, ...,udll = lI(utl, ..., lugDIl, for all u € R?. All norms we deal with in this

book are monotonic.
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For a € RY and § > 0 define
S@.8)={d eR?||a] —a;| <8la;l, i=1,....q}.
Proposition 3.21 For all a € D and any monotonic norm in R4, M¥ (a) < Cw?(a).

Proof For all x € S(a,d) and all i < g, |p(x); — @(a)i| < d(p(x), p(@))|p(@)il.
Since || || is monotonic, this implies |¢(x) — ¢(a)| < d(p(x), ¢(a))|l¢(a)] and
hence the statement. O

Using a reasoning similar to that in Sect. 3.3.3, for a norm || || on .#, we have

; . (A~ — A7
M'(A)=lim sup ———,
8=0 4eS(A,8) SIAH

and for anorm | || in R", we have

. l[x" — x|l
M(A, b) = lim sup -
8=0 a4’ pyeS((A,b),s) Ollxll

where x = A~'b and x’ = (A)~1p'.
For all monotonic norms on .#s, the bounds for Cw?!(A), Cwf(A), and
Cw(A, b) hold as well for M®t(A), MT(A), and M(A, b) by Proposition 3.21.

3.5.2 On the Underlying Probability Measure

The main result in Sect. 3.4 gives a possible explanation of why triangular systems
are solved with great accuracy that steers clear of the statement “random triangular
systems are poorly normwise conditioned.” The truth of this statement, however,
should be taken with a grain of salt.

The reason is that the triangular matrices L occurring in the solution of systems
Lx = b are usually the result of a process applied to a matrix A that is almost in-
variably not triangular. The two such processes that are consistently used are the LU
factorization (underlying Gaussian elimination) and the QR factorization. We al-
ready mentioned the latter in the introduction to Chap. 1 along with the fact that one
solves the system Ax = b by decomposing A = QR and then, using that R is upper-
triangular, solves Rx = Qb by back substitution. We mention now that the version
of this decomposition producing a lower-triangular matrix (which we consider only
for consistency with the rest of this chapter) is known as QL factorization.

If A is invertible and we require that the diagonal elements of L be positive,
which we can do without loss of generality, then both Q and L are unique. Hence,
the QL factorization defines a map

Y : GL, (R) — GL, (Triang),
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where we have written GL,, (Triang) for the subgroup of GL, (R) of invertible lower-
triangular matrices. A reasonable choice for randomness in the former is obtained by
endowing the latter with the standard Gaussian measure and then pushing forward
this measure (note that there is no loss of generality in considering triangular ma-
trices with positive diagonal entries only). Let &2 be the measure thus obtained on
GL,, (Triang). The next result shows that under &2, the normwise condition number
has a completely different behavior from the one shown in Theorem 3.1.

Proposition 3.22
E logx (L) =logn+ O(1).
L~

Proof Let A € GL,(R) and A = QL with Q orthogonal and L lower-triangular, so
that v/ (A) = L. Let the SVD (recall Theorem 1.13) of L be given by L = UDVT
with D = diag(oy,...,0,). Then A = QUDVT, and since both QU and V are
orthogonal, it follows that A has the same singular values as L. In particular, x (L) =
k(A) = % The statement now follows from (2.11) and Corollary 2.51. Il



Chapter 4
Probabilistic Analysis of Rectangular Matrices

We started Chap. 1 by stating a backward analysis for linear equation solving that
was a particular case of Theorem 19.3 of [121]. We may now quote this result in
full.

Theorem 4.1 Letr A € R7*" have full rank, g > n, b € RY, and suppose the least-
squares problem miny ||b — Ax|| is solved using the Householder QR factorization
method. The computed solution X is the exact solution to

min |6 — Ax],
where A and b satisfy the relative error bounds
IA = Allr <nyeqllAlr  and ||b— bl < nyeqlIb]|
Sfor a small constant ¢ and with y.4 as defined in (O.5). g

Replacing the Frobenius norm by the spectral norm, which yields
1A — All < n*yeqllAlL

it follows from this backward stability result, (O.6), and Theorem O.3 that the rela-
tive error for the computed solution x satisfies

Ix — x|l 3/2
< cn”’"q €machcond(A, b) + o(emach)

llx]]
and the loss of precision is bounded by
LoP(ATb) <logg g + logg cond(A, b) +1logg ¢ +o(1), “4.1)

P. Biirgisser, F. Cucker, Condition, 77
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_4, © Springer-Verlag Berlin Heidelberg 2013
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where cond(A, b) is the normwise condition number for linear least squares (with
respect to the spectral norm), which is defined as

RelError(AThH
cond(A, b) = lim sup 7( ).
5_’0max{ReIError(A),RelError(b)}gS )

We mentioned in Sect. 1.6 that this condition number, even though not tightly ap-
proximated by « (A), is bounded by a constant times x (A4)2. Consequently, to obtain
expected bounds (or a smoothed analysis) for the loss of precision LoP(Ab) from
Eq. (4.1) it is enough to perform the corresponding analysis for logg k (A).

The goal of this chapter is to do so. For consistency with other chapters in this
book, we will consider matrices A € R™*" with m < n and study «(A), which,
we note, coincides with ¥ (AT). One of the main results we prove is the following
theorem.

Theorem 4.2 For all Ay € (0, 1) there exists no such that for all 1 <m < n with
A= m,—l_l < Ao and n > ngy, we have for all o with L <o <1andall AecR"™"

n m
with ||A|| < 1, that

20.1
Ean@oom (k(A) = —

1=
Jensen’s inequality (Proposition 2.28) immediately yields the following conse-
quence.

Corollary 4.3 Under the hypothesis of Theorem 4.2,

20.1
sup 4 _yca.02p (10gg k(A)) <logg( —— ).

IAI<1 1—2 O

It is worth noting that the bounds in Theorem 4.2 and Corollary 4.3 are inde-
pendent of n and depend only on the bound Ag on the elongation. Furthermore,
surprisingly, they are also independent of o . In fact, Corollary 4.3 indicates that for
large reasonably elongated matrices, one may expect the loss of precision in the so-
Iution of least-squares problems to derive mostly from the backward error bounds
of the algorithm used.

We also mention here that the bounds obtained in this chapter are sharper than
those derived in Sect. 2.4. The methods used to prove them are, in exchange, more
involved.

4.1 A Crash Course on Probability: II

We continue our crash course on probability with some results of a more advanced
nature.
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4.1.1 Large Deviations

Let f: R" — R be a Lipschitz continuous function with Lipschitz constant L. This
means that | f(x) — f(y)] < L||x — y| for all x,y € R", where | || denotes the
Euclidean norm. We claim that if f is differentiable, then

|gradf(x)| < L.

Indeed, for given x there exists a unit-length vector v such that
d
T sv)ls=o = |lgradf ().

Using that %If(x 4+ sv) — f(x)| < L, the claim follows.
We shall now prove a powerful and general large-deviation result.

Theorem 4.4 Let f: R" — R be an almost everywhere differentiable and Lipschitz
continuous function with Lipschitz constant L. Then we have, for all t > 0 and
x € R" drawn from the standard Gaussian distribution y,,, that

2 2
Prob >E 1) <e 722!
JProb {700 = E() +1) <e

Proof Note first that the integrability of f follows from the Lipschitz property.
Without loss of generality we may assume that E(f) = 0. We recall that ¢, de-
notes the density of y,. By Markov’s inequality (Corollary 2.9) we have, for any
X > 0 (to be chosen later),

Prob{f(x) > t} = Prob{ekf(x) > e)"} <e ™M E(ekf).

By Corollary 2.29 we have 1 = ®(—*/) < E(e~*/). This implies, using Fubini,
E(M) <E(eV)-E(e™) = / HIOTD) g (g () dxdy.  (42)
R? xR"
Now we set for 0 € [0, /2],
x(0) :=xsinf + ycosb, x'(0) :=xcosf — ysiné.

(Note that x’(9) is the derivative of x(6) with respect to 6.) It is a consequence
of the orthogonal invariance of the standard Gaussian distribution that if (x, y) is
standard Gaussian distributed on R” x R”, then so is the induced random vector
(x(8), x'(8)), for fixed 6.

We have, for all x, y € R”,

/2 d /2
F) =)= fo 5/ (x(©)do = fo (grad f (x(9)), x'(©)) 6.
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This implies, applying Corollary 2.29 to the uniform distribution on [0, 7 /2],

n /2 ,
A TO=F) = e% o /2 Tk (grad f (x(0)).x'(0)) d6 % /n e”%(Qradf(x(G)),x ®) gp.
T Jo

Interchanging integrals, we get from (4.2),

2 /2 o ,
E(e*) <= / / ¢ T (@O ON o (x)p, () dx dy db.
T 0 n xR

Since for fixed 8, (x(8), x’(9)) is standard Gaussian distributed in R” x R”", the
integral on the right-hand side simplifies and we obtain

E(e)hf) < / e%(gradf(x)a)’)gpn(x)(pn(y)dxdy
R xR”

=/ </ e’?<9fadf<x>»y>¢n(y)dy)g)n(x)dx.

By Fubini, the inner integral on the right-hand side equals

n n
7h . 1, 2 7222
| |/673ka(x)yk(p1(yk)dyk=| |ez(73ka(x)) —e¢ 3 ||9fadf(x)||2’
R
k=1 k=1

with the second equality due to Lemma 2.30. Since the last expression is bounded
723212

by e 8 , we conclude that

723212
8

E(e)‘f ) <e
So we have shown that for any positive A we have

7212)2
8 .

Prob{f(x) > t} < e M E(e)‘f) < e Mt

Choosing A = % minimizes the right-hand side, and we obtain
2t
Prob{ f (x) > 1} <e =217,
as claimed. U

Remark 4.5 Theorem 4.4 applied to f and — f implies the concentration inequali-
ties
22

x’\!:;\;%t,)ln){ |f(x) Bl E(f)| = t} = 267@ '
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valid for t > 0. With some additional work [136], this inequality can be improved
to
2

_ —32
Prob {|F@) —E()| =i} =e 2

Here is a first and important application of Theorem 4.4, which will be needed
several times.

Corollary 4.6 If x € R" is chosen from the standard Gaussian distribution, then for
t >0,

2

Prob {l|xl| > Va+1}<e 7.
x~N(0,1,)

Proof The norm function f(x) = ||x| is Lipschitz continuous with Lipschitz con-
stant L = 1. Noting that E(||x|?) = Y E(x?) = n and using Proposition 2.10,
we get E(||x])) < vE(||x]|2) = +/n. The assertion follows now from Theorem 4.4,
where the better exponent is due to Remark 4.5. O

Remark 4.7 Let us illustrate the power of Theorem 4.4 with a simple example.
Suppose that x1, x7, ... are independent standard Gaussian random variables. Put
fa(X1s .oy Xp) i= (x1 + - - + x,,) /+/n. The central limit theorem states that

1 2
e 2
V2w
(the inequality is due to Lemma 2.16). Theorem 4.4 immediately implies a corre-

sponding nonasymptotic result. Namely, note that f,: R” — R is a Lipschitz con-
tinuous function with Lipschitz constant L = 1. Hence, for all 7 > 0,

lim Prob {fn(x)zt}=W(t)=J%/twe€dx§

n—00 x~N(0,1,)

22
Prob x)>tl<e 2.
M(O’In){fn( )=t} <

4.1.2 Random Gaussian Matrices

We begin by recalling some facts about Householder matrices. Assume that v €
R™ is nonzero. One checks immediately that the reflection H, at the hyperplane
orthogonal to v is given by the linear map

2
Hyx=x— VU, 4.3)
viv

The matrix corresponding to H, is called the Householder matrix associated with
the vector v. It is clear that H, is orthogonal.
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It is geometrically evident that for given w € R", there exists a reflection H, that

maps w to a multiple of the first standard basis vector e;. The following lemma tells
us how to compute v.

Lemma 4.8 We have Hyw = ||w| e] for v=e; — w/||w]| if w #O0.

T
Proof We have vTw = w; — |w]| and vTv = 2(1 — w1 /|w]|), hence 2;@5” =—|w].
It follows that
20Tw w
Hw=w—-——v=wt|wlv=w+|wl{er - — | =lwler.
LAY lwll
Lemma 4.8 can be used to transform a given matrix A = [ay, ..., a,] € R™*"

into an orthogonally equivalent one with few nonzero entries. For the first step of
this transformation we assume a; # 0, put v = e; — ay/||a1||, and form the trans-
formed matrix H,A = [Hya1, Hyas, ..., Hya,]. The first column Hya; of H,A
equals ||ap|le1; hence all of its entries, except the first one, are zero. Note that if the
given matrix A is standard Gaussian distributed, then ||a; |2 is x2-distributed with
m degrees of freedom. Moreover, the next lemma guarantees that the remaining
matrix [Hyay, ..., Hya,] is standard Gaussian distributed and independent of ay,
which will allow an inductive continuation of the argument.

Lemma4.9 If [ay,...,a,] € R™" is standard Gaussian distributed, then
a1, Hyaa, ..., Hyay,] is standard Gaussian distributed as well. Here, v is defined in
terms of ay by v=-e1 —ai/|a1ll.

Proof According to Corollary 2.18 it suffices to show that the diffeomorphism
‘(/f: [alaaZ’ --',an] = [a17 Hva% LR} HUal‘l]

preserves the Euclidean norm and has Jacobian identically one. The first property
is obvious, since H, is orthogonal. For the latter, using that v depends on a; only,
one sees that the derivative of ¥ has a block lower-triangular form with the entries
Ln, Hy, ..., H, on the diagonal. Hence Jy/(A) =1 for all A. O

We show now that every X € R™*" can be transformed to a bidiagonal matrix
by performing Householder transformations on the left- and right-hand sides of X.

To begin, we apply the transformation of Lemma 4.8 to X7 in order to find a
Householder matrix H; such that X H = (||x][le1, A) with A € R”~D*" Here, x/
denotes the first row of X. We then apply a similar transformation to A in order to
find a Householder matrix H> such that H» A = [||a; ||e;, B] with B € R"~Dx (=1
Continuing in this way, we construct orthogonal matrices g € & (m) and h € O (n)
(products of Householder matrices) such that gXh has the following bidiagonal
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form:

Wm—1 VUn—1

gXh= (4.4)

W1 Up—m+1 0o --- 0

The following proposition is an immediate consequence of Lemma 4.9.

Proposition 4.10 If X € R™*" is standard Gaussian, then the nonzero entries
vi, w; of the bidiagonal matrix in (4.4) resulting from the above described pro-
cedure are independent random variables. Moreover, vi2 and u)l.2 are Xz-distributed
with i degrees of freedom. O

If X € R™*" is standard Gaussian, then the distribution of the matrix X X7 is
called the Wishart distribution W (m, n). As an application of Proposition 4.10, we
determine the distribution of det(X X T).

Corollary 4.11 If X € R™*" is standard Gaussian, m < n, then det(XXT) has

PR 2.2 2 2 2 .
the same distribution as v;v U where Vs 1o+ Uy are independent

202 -
random variables and vi2 is x2-distributed with i degrees of freedom. In particular,

Edet(XXT) =n!/(n —m)!.

Proof Proposition 4.10 implies that det(XXT) has the same distribution as
det(YYT), where ¥ denotes the bidiagonal matrix in (4.4).

In the case m = n we have detY = v, - - - v;, and hence det(Y¥YT) = (det Y)2 =
v,zl e U12 is as claimed. More generally, det(YYT) can be interpreted as the square
of the m-dimensional volume of the parallelepiped spanned by the rows of Y.

It has the same volume as the parallelepiped spanned by the orthogonal vectors

Up€l, Up—1€2, ..., Up—m+1€m, Where e; denotes the ith standard basis vector in R”".
It follows that det(Y¥T) = 1),2Z e vrzlfer] . O

The previous result easily extends to complex matrices. We call a random vari-
able z € C standard Gaussian if it is standard Gaussian when we identify C with R.
Moreover, we call X € C™*" standard Gaussian when its entries are independent
standard Gaussian distributions in C. The following result will be needed in Part ITI
of the book.

Lemma 4.12 Let N (0, I) denote the standard normal distribution on the set of n X n
complex matrices. Then

E det(XX*) =2"n!.
A~N(0,])

Proof It is immediate to see that the proof of Proposition 4.10 holds for complex
Gaussian matrices as well. The proof of Corollary 4.11 carries over to show that
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c= Evflvlf_l e v%, where v; is a Xz-distributed random variable with 2i degrees of
freedom. Since the expectation of vi2 equals 2i, the result follows. O

4.1.3 A Bound on the Expected Spectral Norm

We make the general assumption that 1 < m < n. For a standard Gaussian X €
R™*" we put

1
Q@m,n) = EE(HXH). 4.5)

The function R™*" — R mapping a matrix X to its spectral norm || X || is Lipschitz
continuous with Lipschitz constant 1, since | X — Y| < || X — Y|/ r. Hence Theo-
rem 4.4 implies that for ¢ > 0,

242

Prob{[[X || = Q(m.m/i +1} <e . (4.6)
This tail bound easily implies the following large-deviation result.

Proposition 4.13 Let AeR™" Al <1,and o € (0, 1]. If A € R™*" follows the
law N (A, 021), then fort > 0,

%2

Prob {lIAll > Qm,n)o/n+1+1} <e 7.
A~N(A,02D)

Pioof We note that ||A] > Q(m,n)o+/n +t + 1 implies that || A —EH > ||A| —
IA] > Q_(m,n)ﬁ + t. Moreover, if A € R™*" follows the law N (A, o21), then
X = AU;A is standard Gaussian in R™*" . The assertion follows from (4.6). U

We derive now an upper bound on Q(m, n).

Lemma 4.14 For n > 2 we have

S < 0( )<2(1+,/721n(2m_1)+i><6
n+1~ ) = n Jn) T

In particular, for standard Gaussian matrices A € R™*"  we have

n

vn+1

The proof relies on the following lemma.

<E[A] <6vn.
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Lemma 4.15 Letry, ..., r, be independent random variables with nonnegative val-
ues such that ri2 is x2-distributed with f; degrees of freedom. Then,

E(max r,~> < max \/E—}— ~2Inn + 1.

1<i<n 1<i<n

Proof Suppose that rq, ..., r, are independent random variables with nonnegative
values such that r,.2 is x2-distributed with f; degrees of freedom. Put f := max; f;.
Corollary 4.6 tells us that for all i and all 7 > 0,

o

t

Prob{r; > \/f +1} <e™ 7,
and hence, by the union bound,

2

Prob{ max r; > \/?+t} §ne_t7.

1<i<n

For a fixed parameter b > 1 (to be determined later), this implies

E(max ri)g\/?+b+/oo

Prob{ max r; > T]dT

1<i=n JF+b 1<i<n
o0
=\/?+b+/ Prob[ max r; z\/?+t}dt
b 1<i<n

o0
S\/?+b+n/ e 7 dt.
b

Using Lemma 2.16 we get, for b > /2,

Y s VR BRI
— e < e < e
N2 Jb b/2m V2
Hence we obtain
2
E(max r,-) 5\/?+b+nef%.
1<i<n
Finally, choosing b := +/2Inn, we get
E(max rl-> 5\/?4— V2Inn +1,
1<i<n
as claimed. O

Proof of Lemma 4.14 According to Proposition 4.10, the spectral norm || X | of a
standard Gaussian matrix X € R™*" has the same distribution as the spectral norm
of the random bidiagonal matrix Y defined in (4.4). The occurring entries vl.2 and wl.2
are x2-distributed with i degrees of freedom.
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The spectral norm of Y is bounded by max; v; + max; w; < 2r, where r denotes
the maximum of the values v; and w;. Lemma 4.15 implies that for n > 2,

E(r) </n++2In@m —1)+1<3/n.

This proves the claimed upper bound on Q (m, n). For the lower bound we note that
1Y || = |v,|, which gives E(||Y]]) > E(|v,]). The claimed lower bound now follows

from Lemma 2.25, which states that E(|v,|) > /n”?. O

4.2 Tail Bounds for «(A)

Prior to proving Theorem 4.2, we want to prove tail bounds for x (A) under local
Gaussian perturbations. To state this result we need to introduce some notation. We
still assume 1 <m < n.

We define for A € (0, 1) the quantity

1+
c(h) i= IO 4.7

1

Note that lim)_,gc(X) = ek lim)_, 1 c(A) = o0, and c(A) is monotonically increas-
ing. Further, for | <m <n and 0 < o < 1, we define the elongation A := m=1 and
introduce the quantity
(m.n) = ( Q. m) + — = ) Oyt 48)
= . _ n—m+1 | .
Co(m,n m,n G\/ﬁ c

Let A € R™*" and o > 0. Since there is no risk of confusion, we will denote
the density of the Gaussian N (A, o-°I) with center A and covariance matrix oI by

@9 (instead of ¢:° ). We recall that
_ 1 _1a-A1%

er(A) = —— e 22
Q)%

Theorem 4.16 Suppose that A € R™ " satisfies |A|| <1 and let 0 < o < 1. Put
A= mT_l Then for z > ¢, (m, n), we have

Prob {K(A)> e }

A~N(A,020) T 1-A

7-[2 1 1 n—m+1
SZC(/\)[(Q(m,n)+,/71n(2z)+m)ﬂ .
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Remark 4.17 When o = 1 and A = 0, Theorem 4.16 yields tail bounds for the usual
average case. In the notes at the end of the book there is a comparison of these
bounds with bounds derived ad hoc for the average case.

Lemma 4.18 For A € (0, 1) we have A~ = <e.
Proof Writing u = 1/, the assertion is equivalent to u = <e,oru <e“! which

is certainly true for u > 1. O

4.2.1 Tail Bounds for ||AT||

The main work in proving Theorem 4.16 is the following tail bound on [|AT|.

Proposition 4.19 Let AecR"™" 5 =0, and put A= ’"T_l For random A ~
N(A, 621) we have, for any t > 0,

. (1=M)n
Prob A < .
A~N[%azu{” I= } e )<0ft)

Before proving Proposition 4.19, we note a consequence of it for square matrices.

Corollary 4.20 Let A € R"™" and o > 0. For any t > 0,

Prob {||A7!| =t} =< —
A~NE%,¢721){” ” - } ~ ot

and

E log|A™!| <log L loge.
A~N(A,c2]) o

Proof The tail estimate follows from Proposition 4.19 by noting that A = % =

1— % and c(A) =,/ % < /n. The expectation then follows from Proposition 2.26
with 7o = K = 2. O

We next prove Proposition 4.19, starting with the following result.

Proposition 4.21 Forall v € S"=1 A e R g > 0, and & > 0 we have

Prob {HAIUH > £} < 1 On—m ( 1 )n—m+1
A~N(A,0? (W2m)yr—mtln —m+1\o& '
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Proof We first claim that because of orthogonal invariance, we may assume that
v=oey :=(0,...,0,1). To see this, take ¥ € &'(m) such that v = ¥e,,. Consider
the isometric map A — B = W' A, which transforms the density ¢4:° (A) into
a density of the same form, namely ¢y 15 ,(B). Thus the assertion for e, and

random B implies the assertion for v and A, noting that ATv = BTe,,. This proves
the claim.

We are going to characterize the norm of w := ATe,, in a geometric way. Let a;
denote the ith row of A. Almost surely, the rows ay, ..., a, are linearly indepen-
dent; hence, we assume so in what follows. Let

R :=span{ay, ..., an}, S :=span{ai,...,am—-1}.

Let S denote the orthogonal complement of § in R”. We decompose a,, = a,J,; +
aS, where a;- denotes the orthogonal projection of a,, onto S* and a3 € S. Then
a,; € R, since both a,, and @, are in R. It follows that a;- € RN S+,

We claim that w € R N S as well. Indeed, note that R equals the orthogonal
complement of the kernel of A in R". Therefore, by definition of the Moore—Penrose
inverse, w = ATem lies in R. Moreover, since AAT = I, we have (w, a;) =0 for
i=1,...,m—1andhence w € ST as well.

It is immediate to see that dim R N S+ = 1. It then follows that R N $+ = Rw =

Ra;t. Since (w, an) = 1, we get 1 = (w, a) = (w, a;-) = |w| |la;; || and therefore

1

Afe,| = :
H €m || ”adl_ ”

4.9)

Let Ay, € R?=Dx" denote the matrix obtained from A by omitting a,,. The den-

sity 47 factors as (pZ’U(A) = ¢1(An)¢2(an), where @1 and ¢, denote the density
functions of N (A,,, o21) and N (a,,, o21), respectively (the meaning of A,, and a,,
being clear). Fubini’s theorem combined with (4.9) yields, for £ > 0,

Prop {[a'en=¢}= [ gz a1
N(A,02I) ||AT5’mHZ‘§

= / 01(Ap) - </ (pZ(am)dam) dAy.
Ay eROn=Dxn la:l<1/¢

(4.10)
To complete the proof it is sufficient to prove the bound
1 Onfm 1 n—m+1
dap < —— — 4.11
Aa#|5é¢2(am) am = ( 271)"—"1+1n—m+1<05) ( )
for fixed, linearly independent ay, ..., a,;;,—1 and & > 0.

To prove (4.11), note that a,ﬂ; ~ N(Zz,Jn-, o21) in St ~ R ™+1 where c"z,ﬁ is the
orthogonal projection of a,, onto S*. Let B, denote the ball of radius r in R?
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centered at the origin. It is easy to see that volB, = O, _1r?/p. For any x € R” and
any o > 0 we have

1 2
Prob {Ixll<e} < Prob {llx|<e}=—— / 5
x~N()E,¢721){ } x~N(0,02D{ } (oN27)P Jyxi<e
- 1 / Iz
X=0Z — Ll
= e 2 dz
(V2m)P Jyz<£
< 1 IB ! (8>p B
< ——volBs = ——+— — ) volB;
(W2m)P 7 (W2m)P \o
N 1 <8)”Op1
W2myp\a) p -
Taking x = &,Jn-, &= é, and p =n —m + 1, the claim (4.11) follows. O

Proof of Proposition 4.19 For A € R"™*" there exists u4 € S"~! such that ||AT|| =
|ATu4|l. Moreover, for almost all A, the vector u,4 is uniquely determined up to
sign. Using the singular value decomposition, it is easy to show that for all v € S"~!,

[aTo] = AT |uhol- (4.12)

Now take A ~ N (A, o?I) and v ~ U(S"~!) independently. Then for any s €
(0,1) and r > 0 we have

Pf{’ob{HATv” zt\/l—sz}
v
zPArob{HATH >t & |ujv| = V1 -s2}
U

—Prob{ | 47] = 1} - Prob{[u}u| = V1~ | 47| = 1)
U

> Prob{||A”|| zz}.,/is’"—l, (4.13)
A Tm

the last line by Proposition 2.14 and Lemma 2.35 with £ = +/1 — s2. Now we use
Proposition 4.21 with & = t4/1 — 52 to deduce that

am 1
prob 47| =} = [0 Prob{| "] = /1 =7}

- \/"W 1 On—m 1 n—m+1
— pgm—1 ( /Zn)n—mn_m_l,_] ot 1 —s2 ’

(4.14)
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We next choose s € (0, 1) to minimize the bound above. To do so amounts to
n—m+1 m—1

maximizing (1 —x) 2 x 2 , where x = s2€(0,1), or equivalently to maximiz-
ing

n—m m=1, 2 n—m m—
g =(1—0)" ") =1 -0 x" =1 -5
We have % Ing(x)= % - % with the only zero attained at x* = A.

Replacing sZ by A in (4.14), we obtain the bound

Prob{[ 4" = 1) <

Van+1 1 Onm < 1 )“‘M"
w4 V2m)yrm (L—=n\ot/T—A '

Lemma 4.18 implies

AE = () o

(1=W)n
e 2 .

So we get

T
Prob{] 47| =

_ VA 1 on_m< Je )“W
T2 (V2mrm (L=n\ot/1—2

(1-Mn
_Nant1( e z 1 On-m (1 (I=1)n
2 1—X (V2m)yr=m (1 —Mn\ot

_ v [ 1< e >—“z“" O <1>(H)”
C2(1-2) nyn\1-»x (V2m)n—m \ ot

< N/ | e . 2w = 1\
T2(0=-2) /n\1-2 (=2t 2gy-m \ot
(1=M)n
VTHA L (e \ 2 V2m 1\
o 1—A ﬁ 1—X F(n(lz—}n) )27(1_2”" ot ’

We next estimate F(W). To do so, recall Stirling’s bound (2.14), which yields,
using I'(x + 1) = xI"(x), the bound I (x) > /27 /x (x/e)*. We use this with x =

W to obtain
-1 4 1 =
r (I—M)n - T (1—=Mn .
2 “V{Ad—-Xn 2e
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Plugging this into the above, we obtain (observe the crucial cancellation of /n)

T
Prob{ 4" = )

141 RN [y B\
< [ 1A e 5 n e 1
(1=2)2n\1-1 4 (1—=Mn ot

(1=M)n

. e (I=2n 1\ 5" /1 (17)\)n_ X e 1—x)n
~o(5) G @) e Ga)

which completes the proof of the proposition. 0

4.2.2 Proof of Theorem 4.16

To simplify notation we write ¢ := c(A) and Q := Q(m, n). Proposition 4.19 implies

that for any ¢ > 0 we have
1 (l—l)»)n
—Aaf( ) }58. (4.15)
242

Similarly, letting ¢ = e #%? in Proposition 4.13 and solving for ¢, we deduce that

for any ¢ € (0, 1],
72 1
Probi ||All = Qo/n+o 71n—+1 <e. (4.16)
&

It is a trivial observation that for nonnegative random variables X, Y and posi-
tive a, B we have

prop {4 >
A~N(A,02)

Prob{XY > af} < Prob{X > o} + Prob{Y > B}. 4.17)

Using this, we conclude that

ez(s)
Prob  k(A)> <2, (4.18)
A~N(A,021) 1—

where we have set, for ¢ € (0, 1],

. nzll 1 (= 419
worm(on Bl O™

We note that z(a) = ¢ := ¢, (m, n); cf. Eq. (4.8). Moreover, lim;_,z(¢) = oo and
z is decreasing in the interval (0, 1]. Hence, for z > ¢, there exists ¢ = ¢(z) € (0, 1]
such that z = z(e).
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We need to bound &(z) from above as a function of z. To do so, we start with a
weak lower bound on &(z) and claim that for z > ¢,

S| =
—_

In - < In(2z(e)). (4.20)

™

To prove this, note first that Q > /-2 > L due to Lemma 4.14. Hence >

n+l = /2
0> %, and it follows that +/2z < 1 for z > ¢. Equation (4.19) implies that
1

) > 1()(1A)n
Z&‘_ﬁ .

(«/Ez)" > (ﬁz)(lﬁ)n > ¢ > ! )
& 2¢e

™o

Using ¢ > Lz’ we get

5

Hence

1
Q2" = -,
P

which proves the claimed inequality (4.20).
Using the bound (4.20) in Eq. (4.19), we get, again writing z = z(¢), that for all

z=24¢,
- nzl 5 1 ¢\ T
(o Fmeas 7))
|72 1 \17d»n
c|:(Q+ 71n(21)+m>2] .

By (4.18) this completes the proof. O

which means that

4.3 Expectations: Proof of Theorem 4.2

Fix Ao € (0, 1) and put ¢ := c(Ap). Suppose that m < n satisfy A = (m — 1)/n < Ap.
Thenn—m+1= (1—A)n > (1 —Xxp)n, and in order to have n —m sufficiently large,

it suffices to require that n be sufficiently large. Thus, cn—'}l+1 < 1.1 if n is suffi-
ciently large. Slmllarly, because of Lemma 4.14, Q(m, n) < 2.1 for large enough n.
This implies that for f <o <1, we have

Q(m,n)+—\/_§21+—<21+ ™ 214 /A0+_ <31,

provided n is large enough. Then ¢, (m,n) <3.1-1.1 =3.41.
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By Iheorem 4.16, the random variable Z := (1 — A)k (A)/e satisfies, for any A
with |A|| <1 and any z > 3.41,

2 1 1 n—m+1
Prob {Z >z} §2c[<Q(m,n)+ —1n(2z)+—>—]
A~N(A,021) 2 on)z
72 1 n—m+1
< 2c[<3.1 4+ = ln(ZZ))—:| ,
2 z

for large enough n. Since
72
3.1+ > In(2z) <ey/z

2. we deduce that for all such z,

forallz>e

n—m+1
Prob {Z>z}< 2c<—) .
A~N(A,02])

%w

Using this tail bound to compute E(Z), we get

00 00 62 —
EZ) = / Prob{Z > z}dz §e2+2c/ (—) dz
0 2 Z
n—m+1
=2y ® /] 4ce?
Zé)ez—l-ZC/ (_) ezdy—e2+ ce
1 y —m—1

We can now conclude, since

3
E((l — A)K(A)) =E(Z)=¢eE(Z) < e+ 4— <20.1,
n—m—1

where the inequality again follows by taking n large enough. 0

4.4 Complex Matrices

In this and the preceding chapters we have assumed data to be given by real num-
bers. For a number of problems in scientific computation, however, data is better
assumed to be complex. All of the results we have shown can be given, without
major modifications, a complex version.

A difference stands out, nonetheless, and it is the fact that—in contrast to the
situation over the real numbers—condition numbers for complex Gaussian data have
in general a finite expectation. The reasons for this general phenomenon will become
clear in Chap. 20. In this section we compute bounds for the probability analysis of
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some complex condition numbers. They give a first taste of the difference with the
real case and will, in addition, be crucial to some of our arguments in Part III.

In the following we fix A e C™", ¢ > 0 and denote by ¢ the Gaussian den-
sity of N (A, o2I) on C"*". Moreover, we consider the related density

A“(A)-—cf |deL4F¢A“(A) (4.21)

where

o= E detAIz).
’ A~N(A,02T)

The following result is akin to a smoothed analysis of the matrix condition number

k(A) = | Al - |A™Y|, with respect to the probability densities ,oz*” that are not
Gaussian, but closely related to Gaussians.

Proposition 4.22 For A € C"" and o > 0 we have

en+1)
B, i (A ) = <2t

Before embarking on the proof, we note that in the centered case ‘A =0, the
constant in (4.21) evaluates to

C0.6 = y@m®|—ﬂm
A~N(0 D

by Lemma 4.12. In this case, Proposition 4.22 implies the following result.

Corollary 4.23 Let N(0,1) denote the standard Gaussian on C**", Then,

e(n+1)
A7 det A &
" N(OD(II |*1deta?) < 5 -

We turn now to the proof of Proposition 4.22. Actually, we will prove tail bounds
from which the stated bound on the expectation easily follows.

Let us denote by S(C") :={¢ € C" | ||¢|| = 1} the unit sphere in C". Also, let
% (n) be the unitary group, which is defined as

U (n) = {u € GL,(C) | uu* =In},
where u* denotes the adjoint of u, i.e., u™);j =i j;.

Lemma 4.24 Let A € C"™" and o > 0. For any v € S(C") and any t > 0, we have

Prob {||A v|| >t} <

A"',D 4O'4t4
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Proof We argue similarly as for Proposition 4.21. We first claim that because of
unitary invariance, we may assume that v = ¢, := (0,...,0, 1). To see this, take
u € U(n) such that v=uey. Consider the isometric map A +— B = u—1A that trans-

forms the density p4-? (A) to a density of the same form, namely
PP (B) = p™7(4) =" |det APp™7 (4) = ¢ |det B 9P 7 (B),

where B :=u"'A and ¢ = sz"’ (|detAJ?) = ]E(pgya (|det B|?). Thus the assertion
for e,, and random B (chosen from any isotropic Gaussian distribution) implies the
assertion for v and A, noting that A~'v = B~le,. This proves the claim.

Let a; denote the ith row of A. Almost surely, the rows ay,...,a,— are lin-
early independent. We are going to characterize ||[A~'e,|| in a geometric way.
Let S, := span{ay,...,a,—1} and denote by anL the orthogonal projection of a,
onto S;-. Consider w := A~!e,, which is the nth column of A~!. Since AA~! =1,
we have (w,a;) =0fori =1,...,n— 1 and hence w € Sj-. Moreover, (w, a,) =1,
so ||wl| ||anL|| =1, and we arrive at

|A™" en]| = ll ) (4.22)
lla; |l

Let A, € C»~D>" denote the matrix obtained from A by omitting a,,. We shall
write vol(A,) = det(AA*)'/2 for the (n — 1)-dimensional volume of the paral-
lelepiped spanned by the rows of A,. Similarly, |det A| can be interpreted as the
n-dimensional volume of the parallelepiped spanned by the rows of A.

Now we write ¢(A) := <pA’”(A) = ¢1(An)¢2(ay), where ¢ and @, are the den-
sity functions of N (A, o?1) and N (G, 021), respectively (the meaning of A, and
an being clear). Moreover, note that

vol(A)? =vol(A,)? e |-

Fubini’s theorem combined with (4.22) yields for ¢ > 0O,

/ vol(A)*p(A) d A =/ vol(A,)? ¢1(An)
|A=te, || >t A, eCi—Dxn

</| . ||a,ﬂ|2<p2(a,,)dan> dA,.  (423)
atl<1/t

We next show that for fixed, linearly independent ay, ..., a,—1 and A > 0,

f |k *¢2(an) day < Rl (4.24)
n n —= . .
. 202
For this, note that a;- ~ N(a;-, o) in S =~ C, where G, is the orthogonal
projection of a, onto Snl. Thus, proving (4.24) amounts to showing that

4

A
/ 2°pz.0(2)dz < —
lzl<A 20
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1
2mo?

_ 1,32
for the Gaussian density ¢ (z) = e 22T of z € C, where 7z € C. Clearly,

it is enough to show that

; A2
9*7(2)dz < S—.
/lzsx 202

Without loss of generality we may assume that z = 0, since the integral on the left-
hand side is maximized at this value of z. The substitution z = cw Yyields dz =
o2 dw (dz denotes the Lebesgue measure on R?), and we get

A
1 a1
/ %0,5(2)dz =/ — e3P gy 2/ — e 2nrdr
2l<h i<t 27 0 27

o2’
which proves inequality (4.24).
A similar argument shows that
7 2
207 < / l2PP¢™% (2)dz = / @i |"¢2(an) dan. (4.25)

Plugging in this inequality into (4.23) (with t = 0), we conclude that
202 E,, (vol(A,)?) < Ey(vol(A)?). (4.26)
On the other hand, plugging in (4.11) with A = % into (4.23), we obtain
1
vol(A)?p(A)dA < —— E,, (vol(A,)?).
/lAleM (A p(A)dA < 5y By, (vol(A,)?)
Combined with (4.26), this yields

/ vol(A)?p(A)dA < E, (vol(A)?).
A= enll=t

40414

By the definition of the density pz*", this means that

_ 1
E'PE{HA e, ” 2l‘} = dodd

which was to be shown. O

Lemma 4.25 For fixed u € S(C"), 0 <s < 1, and random v uniformly chosen
in S(C™) we have

T _ 2yl
Prvob{|u v|2s}—(1 s) .
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Proof By unitary invariance we may assume without loss of generality that u =
(1,0,...,0). Also, we may assume that s < 1. Note that if v € C” is standard Gaus-
sian, then ||v||~!'v is uniformly distributed in the sphere S(C"); see Proposition 2.19.
Therefore, we need to prove that the probability

:= Prob {|vi|>sl= Prob {|vi|>s|v
pi= Prob {luilzs}= Prob {lui] = s|lvil]

equals (1 — s2)"~!. For this, it is convenient to identify C" with R?" and to write
v = (x,y), where x € R? and y € R?"~2. So we have v; = x; + ix>. Note that
Ix11? = s2(|lx]|? + [[y||?) iff ||x|| = A|ly|l, where A := —2—. Therefore, we can

A 1-52

R / e—%w(i/ e—%lxlzdx>dy.
Qm)r=1 Jpan-2 27 Sz alyl

Integrating in polar coordinates (cf. Corollary 2.2), we obtain for r > 0,

write

1 L2 1 _1.2 _ 1,2
- e 2T gy = — e 2P 2mpdp =e" 2.
27 Jixizr T Jpzr

This implies

1 PR S 1 1 _ Iyt
p=—— e—z\lyll e 20152 dy=—— e 20-s2) dy.
Q)= Jpo- Q)= Jpo—

Making the substitution 7 := (1 — s2)~1/2||y||, we get

2n—2

! 2 dn=(1—s2)n_1. 0

_1 2 2
P= a1 /RZn—ze (=57

Lemma 4.26 Let A € C"™" and o > 0. For any t > 0 we have

2 2
_e (n+1) l

—1
prob {4~ 21} = “EL L

A~p

Proof We proceed similarly as for Proposition 4.19. For any invertible A € C"*"
there exists u € S(C") such that ||A~ u|| = ||A~"||. For almost all A, the vector u is
uniquely determined up to a scaling factor 6 of modulus 1. We shall denote by u4 a
representative of such u.

The following is an easy consequence of the singular value decomposition
of ||A~!||: for any v € S(C") we have

[a= o] = [A7H] - fuiol. (4.27)
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We choose now a random pair (A, v) with A following the law p and, independently,
v € S(C") from the uniform distribution. Lemma 4.24 implies that

2
Prob{”A_ll)HZt 2 }<(”+1)
A

n+1] = 16044

On the other hand, we have by (4.27)
Probf[A~lv| 2 1/2/(n + D)}
Prob 47| = r and [wjv] = v2/(n + D)
= Prob{ A~ = 1} Prob[uv| = 2/ + 1) | [AT!] = 1}.

v

Lemma 4.25 tells us that for any fixed u € S(C") we have
Prob{[uTv| > 2/ + D} = (1 = 2/(n + D))" =72,
v

the last inequality following from (%)”—1 =1+ ﬁ)"‘l < ¢2. We thus obtain

2 2
Pl;?b{HA_IHzt}SeZPArob{”A_]v”zt 2 }<e("+”
KT

n+1 16044

as claimed. O

Proof of Proposition 4.22 By Lemma 4.26 we obtain, for any Ty > 0,

8|41 = [ Provf| 4| = T}ar

[} 2 2
12 ec(n+1)° 1
< T Prob{|A~"|" > T}dT < Tp + ———— —,
=To+ [ pron{[a71 P = Tar <7+ ST
usingf;i)o T_ZdeTO_l.Nowchoose Toz%. O

We have already mentioned that all of the probabilistic analyses for random real
matrices in this chapter extend, without major modifications, to a complex version.
We refrain from stating these obvious extensions and only record here the following
variant of Proposition 4.19 for the particular case of complex m x (m 4+ 1) matrices
(and average analysis). This result will be needed in Sect. 17.8.

Proposition 4.27 For a standard Gaussian A € C" "+ and for any t > 0,

Prob {[A7] >;}<’”_21.
A~N(0,D) — 1= 8e
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2
Moreover, E||AT||2 <1+ 5, is finite.

Remark 4.28

(a) The fact that the expectation of || AT||? is finite is a key property used in Chap. 17
for analyzing the running time of a certain algorithm LV for computing a zero of
a system of complex polynomial equations.

(b) In Chap. 20 we will see that the exponent 4 in the tail bound r~* comes
in naturally as twice the complex codimension of the projective variety in
P(C™*m+D)y corresponding to the rank-deficient matrices A € C"*+1D,

For the proof of Proposition 4.27 we need the following lemma.

Lemma 4.29 For fixed v € S(C™) and a standard Gaussian matrix A € C"™*(m+1D
we have for all ¢ > 0,

4

Prob {]|A+v||ze_1}§ e*.

A~N(0,T)

| —

Proof This is very similar to the proof of Proposition 4.21, so that it is sufficient to
point out the few modifications needed. We adopt the notation from there. So we
assume v = e, and note that (4.10) holds. To complete the proof, it is sufficient to
establish the bound

1
/ p2(am) day, < < &*
lag | <e=! 8

for fixed, linearly independent ay, ..., ay,—1 € C™*+1 and ¢ > 0. Note that the or-
thogonal projection afn- of a,, onto the span S of ay, ..., a,—1 is standard normal
distributed in S ~ C? ~ R*. It is therefore sufficient to verify that

Prob {|lx]] < }<( 1 )4 B ( 1 )4(93 s 14
xii=e =]V =|—=—) —¢ =<¢".
S W/ W e

Proof of Proposition 4.27 We proceed similarly as for Proposition 4.19 and adopt
the notation from there. Similarly as for (4.13) we have for s € (0, 1) and ¢ > 0,

PArob{HA*uH > 1v/1 - 52}
U
> PArob{||AT|| >t & |ujyv| = V1 -s2}
U

= Prob{ [ 47] = 1} - Prob{[u}u| = V1~ | 4] = 1)
U

= Prob{[[A"] = 1} 207,
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the last line by Lemma 4.25 (replacing s by +/1 — 52). Using Lemma 4.29, we obtain

IA

T
Prob{| 4" = )

1
33 Prob Prfb{”ATvn >1v1—s2}

1 1
— 814 S2m—2(1 _ s2)2'

We choose now s, :=,/1 — % to minimize the right-hand side. This gives
m—1
2m—2 2)2 1 ! ¢
5701 —s3) :<1_Z> _ZZW'

Hence the tail estimate Prob{||AJr | >t} < %2%4 follows.
The expectation can be bounded as usual:

12 - 2 m’ / Pds_ .m
E| 47| §1+/1 Provf[ 47| =s}as <1+ [T G =1+ o
Remark 4.30 A similar argument for a real standard Gaussian matrix A € R™>(n+D
reveals that Prob{||AT||> > r} decays with 2. From this one can deduce that
E||AT||2 = co. This difference between this and the complex case is responsible for
the fact that a version of an adaptive homotopy algorithm for solving polynomial
equations must fail over the reals (on average).



Chapter 5
Condition Numbers and Iterative Algorithms

Consider a full-rank rectangular matrix R € R?*" with g > n, a vector ¢ € R?, and
the least-squares problem

min ||Rv —c||.
veR"
We saw in Sect. 1.6 that the solution x € R” of this problem is given by
x=R'c=(R"R)'Rc.

It follows that we can find x as the solution of the system Ax = b with A := RTR,
AeR"™" and b:= RTc.

A key remark at this stage is that by construction, A is symmetric and positive
definite. One may therefore consider algorithms exploiting symmetry and positive
definiteness. We do so in this chapter.

The algorithms we describe, steepest descent and conjugate gradient, will serve
to deepen our understanding of the only facet of conditioning—among those de-
scribed in Sect. O.5—that we have not dealt with up to now: the relationship be-
tween condition and complexity. To better focus on this issue, we will disregard all
issues concerning finite precision and assume, instead, infinite precision in all com-
putations. Remarkably, the condition number « (A) of A will naturally occur in the
analysis of the running time for these algorithms. And this occurrence leads us to
the last issue we discuss in this introduction.

Complexity bounds in terms of x(A) are not directly applicable, since x(A) is
not known a priori. We have already argued that one can remove « (A) from these
bounds by trading worst-case for, say, average-case complexity. This passes through
an average analysis of x(A), and in turn, such an analysis assumes that the set
of matrices A is endowed with a probability distribution. When A is arbitrary in
R™ " we endow this space with a standard Gaussian. In our case, when A is pos-
itive definite, this choice is no longer available. A look at our original computa-
tional problem may, however, shed some light. Matrix A is obtained as A = RTR.
It then makes sense to consider R as our primary random data—and for R we can
assume Gaussianity—and endow A with the distribution inherited from that of R.

P. Biirgisser, F. Cucker, Condition, 101
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DOI 10.1007/978-3-642-38896-5_5, © Springer-Verlag Berlin Heidelberg 2013
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Furthermore, as we will see, one has k (A) = k2(R). Therefore, the analysis of k (A)
for this inherited distribution reduces to the analysis of x (R) when R is Gaussian.

5.1 The Cost of Computing: A Primer in Complexity

Before stepping into the description and analysis of algorithms, it is convenient to
agree on some basic notions of complexity.

Since our interest in this book is limited to the analysis of specific algorithms, we
do not need to formally describe machine models.! We will instead consider algo-
rithms &7 described in a high-level language (such as Algorithm FS in Sect. 3.2) and
define, for a given input a € D C R™, the cost or running time of < on input a to
be the number cost? (a) of arithmetic operations (and square roots if the algorithm
performs any) and comparisons performed by </ during the execution with input a.
A simple counting argument shows that with input L € R"*" lower-triangular and
b € R", Algorithm FS performs n? arithmetic operations.

The object of interest is the growth rate of the running time with respect to the
input size. For a given a € D € R™ we say that m is the size of a, and we write
size(a) for the latter. This is the number of reals (i.e., floating-point numbers) we
feed the algorithm with. In our example, size(L, b) = w (we represent L by its

"("TH) lower entries). Hence, the running time of Algorithm FS on input (L, b) is
about (actually less than) twice size(L, b): a linear growth rate.

Another example of this idea is given by Gaussian elimination (we omit describ-
ing the algorithm, since the reader certainly knows it). It is easily checked that for a
given pair (A, b), where A € R"*" and b € R", the cost of producing the triangular
system Lx = ¢ whose solution is A™'b is %(n — Dnm+ 1) +n(mn — 1). To solve
the system, we need to add the n> — 1 operations required by Algorithm FS. In this
case, size(A, b) = n(n + 1), and hence the cost of solving Ax = b using Gaussian
elimination (plus backward substitution) is of order %size(A, b)3/ 2,

Backward substitution and Gaussian elimination are said to be direct methods.
One has an a priori bound on cost? (a) depending on size(a) (or on dims(a) if
this bound communicates better). In contrast to this kind of algorithms, iferative
methods may not possess such a bound. These algorithms iterate a basic procedure
until a certain condition is met, for instance that an approximation of ¢(a) has been
found with RelError(¢(a)) < ¢. In this case, the cost on a given input @ will depend
on . As we will see in this chapter (as well as in some others), it often depends as
well on the condition of a.

We close this section with a word of caution. Most of the algorithms consid-
ered in this book are numerical algorithms: the data they handle are floating-point
numbers, and the basic operations performed on these data are floating-point arith-
metic operations, whence the overall justice of defining data size as the number

IThese theoretical constructions are a must, however, if one wants to prove lower bounds for the
complexity of a computational problem.
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of floating-point numbers in the description of the data and cost as the number of
such operations performed. Alongside numerical algorithms there is the vast class
of discrete algorithms, which handle discrete data (rational numbers, combinatorial
structures such as graphs and lists, etc.). In this case, the size of a certain datum
(say a positive integer number £) is the number of bits necessary to describe it (the
number of bits in the binary expansion of £, which is roughly [log, £]). Also, the
basic operations are elementary bit operations (read a bit, change the value of a
bit, write a bit), and the cost of any procedure on given data is the number of such
elementary operations performed during the execution of the procedure. For exam-
ple, the way we learned to multiply integers (modified to work in base 2) performs
O(size(£)size(g)) bit operations to compute the product £g.

It is a basic principle that one should analyze discrete problems with a discrete
model for cost such as the one just described—we call it bit cost—and numerical
problems with a numerical one—the one above, usually known as algebraic cost.
In particular, the restriction of a given numerical problem (e.g., matrix multiplica-
tion) to discrete data (e.g., matrices with integer coefficients) entails a change of
cost model in the analysis of a given algorithm solving the problem. We will see a
striking example of this issue in Chap. 7.

5.2 The Method of Steepest Descent

The method of steepest descent, also called the gradient method, is one of the oldest
and most widely known algorithms for minimizing a function.
Let A € R"*" be positive definite, b € R", and consider the quadratic function

1
fx):= ExTAx —bTx.

Its gradient at x is grad f(x) = Ax — b. Let ¥ = A~!'b be the solution of the linear
system of equations
Ax =b. (5.1)

Then x is the unique minimum of f, since f is strictly convex. The idea is to
(approximately) compute x by minimizing f. This turns out to be faster for large
sparse matrices A (see Remark 5.4 below).

The method works as follows. Let xg € R” be a starting point. We iteratively
compute a sequence of approximations xg, X1, X2, ... by taking

X1 = Xk — o grad f (xg), (5.2)
where oy is found by minimizing the quadratic univariate function

R—>R, ar f(xk —ocgradf(xk)).
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We call € := x; — x the kth error and rp = b — Axy, the kth residual. Note that —ry
is the gradient of f at x:

rp = —grad f (xx) = — Aeg. (5.3)
Lemma 5.1 We have

T
i nel?
rkTArk rkTArk

Proof Put

._ _ l T T T
gla):= flxx +ary) = 2(xk +ary )A(xk +ary) — b (xp + ary).

Hence

1 1
g(a) = ErkTAxk + Ex,;rArk +arkTArk — by,

Writing Axy = b — r, this yields

1 1
Erka + EbTrk — ErkTrk + arkTArk — bTrk

= ozr,;rArk — r,;rrk.

1
g'@) =—3renc+

Solving for g’(a) = 0 yields the assertion. O
For the analysis it is useful to define the A-norm
1/2
lxlla = (xTAx)"
coming from the scalar product
(x,y)a ::xTAy.
We claim that
1 _2 _
fx)= Ellx — X[y + f ().

Indeed, recall that ¥ = A~1b. Then,
- 1 —_ 2
f(X)—f(X)JrEIIx—XIIA
1 ¢, - L g T 1 —\T -
= 3 Ax —b x—Ex Ax+bx+§(x—x) A(x —Xx)

1
= 3 (3TA% —xTAx +xTAx — 3T Ax — xTAX + 5T AX) = bTx + b'x
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=L %((A‘lb)Tb — (A7) Ax —xTo + (A7'0) 0) = bTAT D+ 0T
_ %(be — (A7'p)"Ax)
=4,

Note that with this notation, Lemma 5.1 can be written as

2
(IlrkHz)
o = .
7kl

Our goal is to prove the following result.

Theorem 5.2 (Convergence of steepest descent) For any starting point xg € R", the
sequence xi defined by (5.2) converges to the unique minimum X and

k
Kk—1
llexlla < <m> lleoll s

where k = Kk (A) is the condition number of A.

A bound for the number of iterations needed to decrease the A-norm of the error
by a given factor immediately follows.

Corollary 5.3 For all ¢ > 0, we have ||&|| 4o < e|€oll4 whenever

2 1 1 1

Remark 5.4 Suppose A has s nonzero entries with s < n? (A is “sparse”). Then
one iteration of the method (xg, rx) = (Xk+1, Fk+1),

T
— Tk = =b—-A
O =~ Xp41 =Xp + kT,  Tip) =b — AXgq,

r Arg

costs O(s + n) arithmetic operations. If, in addition, we are satisfied with an ap-
proximate solution for which the bound in Corollary 5.3 is O(n), then the total
complexity—i.e., the total number of arithmetic operations performed to compute
this solution—is O(n(n + s)). In this case we might want to use steepest descent
instead of Gaussian elimination, which, we recall from Sect. 5.1, has a complex-
ity of O(n?). In the next two sections we will describe an improvement of steepest
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Fig. 5.1 The method of —

steepest descent for
A =diag(1,9), b= (0,0),

s 2 155 T
o=
—

)

—

\

:
<

!

descent, called conjugate gradient, and additional reasons to replace, in a number of
situations, the use of Gaussian elimination with that of conjugate gradient.

Example 5.5 Let A = diag(1,9), b = (0,0), and xo = (18, 2). Figure 5.1 shows
the level curves of the function f(x) = %xTAx force {2 | k=—-2,—1,...,6}.
Moreover, it depicts the first iterates xq, X1, . . ., Xg.

We next prove Theorem 5.2. We begin with a simple lemma.

Lemma 5.6 We have

4
2 7l 2
llek+1llz = <1 ———— |lleklli-

el P
Proof By definition,
€k+1 = Xk+1 — X = €k + OkTk,
and therefore
lerrilli = (e + cwr) T Alex + axre)

= EEAek + ozkrkTAek + akegArk + oz,%r,;rArk

= llexlA 4 a?rf Arg 4 20477 Aey

= |lex ||%4 + a,%rgArk — 2akrgrk,
the last by (5.3). Plugging in the formula for oz, Lemma 5.1 yields

(rfr)® 20 f® el

r;(rArk rl;FArk r/;rArk ||rk||124

2 2
lext1lla — llexlla =

The claim follows, using (5.3) again, by noting that

2 T -1,3\T T 41 2
lexlld =€ Aek = (A" k) re=rg A” re = lrell O
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Proposition 5.7 (Kantorovich’s inequality) For a positive definite matrix A € R"*"
with largest eigenvalue A1 and smallest eigenvalue A, , we have for any x € R",

Al
by X 54
lxla-ll ”Al—zmn x|?. (54
Proof Without loss of generality, we can assume that A = diag(Aq, ..., A,) with

A1 > ---> X, > 0 (by an orthogonal transformation) as well as ||x|| = 1 (by homo-
geneity). Then

llx 1 1 P wiki)
%02 (D x)  wid (i)
where ¢ (¢) := %, w; = xl.2, >; w; = 1. The linear function L(z) = _MA t A‘m’l

satisfies L(A1) = ﬁ and L(A,) = )\17 Furthermore, for 7 := ), w;A; we have fe
[An, A1l and L(F) = Zi w;® (A;). Therefore we have

P wiki) @) o i 20O
=——> min —.
Dowid(h)  L(F) T azrza, L(r)
The minimum is achieved at t = )‘+2A” , and has the value (;::'/)\\")2. So we get

2 2 _ ¢(Zzwl)‘1) -1 ()\‘1_‘_)\‘”)2/4
R R (e B .

Proof of Theorem 5.2 Combining inequality (5.4) with Lemma 5.6 and using that
k(A) =3, we get

4
2 7l 2 401 2
lexril} < (1_—urkni-nrku2 il = (1= 55 il
A-

(A — An)? K—1\?
m” || <+1> llexll s,

which implies the theorem. g

5.3 The Method of Conjugate Gradients

The method of conjugate gradients can be seen as an improvement of the method of
steepest descent in the sense that the convergence is much faster, with the number of
arithmetic operations per iteration step being roughly the same. As in the previous
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section, A € R"*" is positive definite. The function f, the error e, the residual r,
and the A-inner product ( , )4 are similarly defined.

We say that vectors x,y are A-orthogonal (or conjugated) if (x,y)s = 0.
Let (do, ...,d,—1) be an A-orthogonal basis of R", i.e., (dj,d;j)4 =0 for i # j.
Moreover, let x be the solution of Ax = b. Let xo € R" be any starting point.
Expand

n—1
X —xo= Zaidi,
=

with «; € R. Then by A-orthogonality,

(x —x0,di)a
lldi 1%

Define
k—1

X = Zot,-di + xg.
i=0

Then we have (x; —xg,d¢)a =0, forall ¢ =k, ..., n—1.Inparticular, taking £ = k,
(X —x0,di)a = (X — xp, diya = df AR — xi) = dj .,
with ry := b — Axy = Ax — Axy. We obtain that

(die, rr)

o = .
2
k14

Note that oy depends only on dj and r,. We have proved the following.

Lemma 5.8 Ler (dy,...,d,—1) be an A-orthogonal basis and xo € R". Define
X1, ..., X €R" by
Xi+1 = Xg + ady
with
d ’
o = {di rk>, re =b — Axyg.
k1%

Then x, = X. O

The following insight is crucial. Recall that

1 1 _ _
fx) = ExTAx —b'x = Sl = %+ fG.
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Proposition 5.9

(a) For k > 1, x; minimizes the function x — ||x — X|| s on the line xy—1 + Rdx_1
as well as on the affine space xo + span{dy, ..., dr—1}.
(b) We have (ri,d;) =0 fori < k.

Proof For part (a) note that the point x; — xo is the A-orthogonal projection of
X — xo onto span{dy, ..., dy—1}. Therefore, x; — xo minimizes the A-distance to x,

x>l =Xl =[x = x0) = & = x0) | .

on xg + span{dp, ...,dr_1}.
By part (a), xx minimizes f on xg+ span{dy, ..., drx—1}. Hence, grad f (xi) is or-
thogonal to span{dy, ..., dx—1}. But grad f (xx) = —ry by (5.3). This proves (b). [

So far we have assumed that we are already given an A-orthogonal basis (d;).
We next show how one actually computes such a basis. The idea is to sequen-
tially choose the directions dj as conjugates of the gradients —ry as the method
progresses. It turns out that this can be achieved with little cost. The following ex-
ample should illustrate this idea.

Example 5.10 Let us start with dy := ro := b — Axg # 0. Then we get ap :=
(do.ro) _ lldoll*
ldoly ~ lidoll
and we are done), we get from Proposition 5.9(b) (ri,dp) = 0. Now take d; :=
r1 + Bodp. The requirement 0 = (dy, do)a = (r1,do)a + Bo{d, do) 4 implies By =
—%, which can be used as a definition for By. In this way we get the second
basis v?:ctor dp.

. Setting x1 := xo + «odp and 1 := b — Ax1 # 0 (otherwise x| = X

The extension of this example gives us the (full) conjugate gradient algorithm
(Algorithm 5.1 below).

Remark 5.11 Before proceeding with the analysis of Algorithm 5.1 (mostly, with
the analysis of the number of iterations needed to reach a given accuracy, see Theo-
rem 5.13 and Corollary 5.14 below) we can have a look at the cost of each iteration
of the algorithm.

Note that the cost of computing an inner product, such as (rg, dx), is 2n — 1.
Consequently, the cost of a matrix—vector multiplication, such as Ax, is 2n*> — n. It
follows that computing an A-inner product costs 2n2 4+ n — 1. At each iteration of
Conj_Grad the computation of each of x| and dy thus takes O(n) arithmetic op-
erations, and those of a, r+1, and By take 2n? + O(n) each (note that for the latter
we use the already computed ||dj ||124). That is, the cost of an iteration of Conj_Grad
is 6n2 + O(n).
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Algorithm 5.1 Conj_Grad
Input: AR peR" xgeR"

Preconditions: A is positive definite

rg:=do:=b— Axg

k:=0
while di #0 do
)= (rk.dk)
llde I

X1 = Xg + ogdy
Tk+1 = b— Axk+1

o {rka1.di)a
Pr: lldi 15
di1 =141+ Brdk
k:=k+1

end while
return xi

Output: x € R"

Postconditions: Ax =050

Theorem 5.12 Let k be the last k such that dy, # 0. Then, for all k =0, ... k:
(a) (Krylov spaces)

span{do, ..., dx} = span{ro, ..., r} = span{ro, Aro, ..., Akro}.

(b) Algorithm Conj_Grad produces a sequence (dy,di,...,dr) of A-orthogonal
vectors.

Proof The proof goes by induction on k. The start k = 0 is clear. We go from k to
k + 1. Define

Dy :=span{dy, ..., d}, Ry :=span{rg, ..., rt},
Si 1= span{ro, Arg, ..., Akr()}.

Then, by the induction hypothesis, Dy = Ry = Si. The equality Diy); = Ri41 is
trivial. To see that Rx41 = Si+1 we note that

Pyl = —AXxpy1 + b= —A(x + agdy) + b =ri — ag Ady;

hence riy1 € Ry + A(Di) = Sk + A(Sk) € Skt1.
For the reverse inclusion suppose r¢+1 # 0. According to Proposition 5.9(b),
rk+1 is orthogonal to Si. Hence ri4+1 & Sx. We obtain

span{ro, ..., Tk, "k+1} = Sk+1-

This proves part (a).
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For part (b) it remains to prove that dy; is A-orthogonal to dy, ..., dx. We have
(dr+1, di) 4 by the choice of Bi. Furthermore, fori < k,

(dir1sdi)a = (rrsts di) o + Bildi, di) a = (ris1, di) a = 1y Ad;.
Now Ad; € A(S;) C Si+1 € Sk. Therefore
e Adp = (rig, Ady) =0,
since riy1 is orthogonal to S; by Proposition 5.9(b). g

We turn now to the analysis of convergence. The main result in this section is the
following.

Theorem 5.13 The error at the kth step of the conjugate gradient method satisfies

V@A) — 1\F
m lleolla-

Corollary 5.14 For all § > 0 we have ||€x|la < 5|l€olla whenever

s -1
kzln(M> ln<%)%l K(A)]Il(l).

|I6k||AS2<

JKr(A) —1 8 2 8
Each iteration step takes O(n + s) arithmetic operations if A has s nonzero en-
tries. g

Remark 5.15 The 6n% + O(n) cost of each iteration of Algorithm Conj_Grad to-
gether with the convergence rate in Corollary 5.14 suggests that for reasonable § > 0
and large n, computing an approximation of the solution x of Ax = b using Algo-
rithm Conj_Grad may be faster than computing x with, say, Gaussian elimination.
We will return to this question in Sect. 5.4 below.

Towards the proof of Theorem 5.13 we introduce some notation. We denote by
‘Pi the linear space of all real polynomials in one variable X with degree at most k.
We also write Qy for the subset of Pk of polynomials with constant coefficient 1.

Theorem 5.16 The error € at the kth step of the conjugate gradient method satis-

fies
2 . 2 2
llexllz < min maxq(A;)” - [l€olls,
qeQx j=<n
where A1, ..., Ay are the eigenvalues of A.

Proof By Proposition 5.9(a) we know that x; minimizes the A-distance of X to the
affine space

x0 + Sk—1 = x0 + span{do, ..., di—1} = xo + span{ro, Aro,...,Ak_lro},
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An element x of xo + Sx—1 can therefore be written as
x =x0 — p(A)ro,

with p € Pr_1, and conversely, for any such polynomial we obtain x € xg + Sx—1.
Using ro =b — Axg = A(X — xp) we get

xX—x=x90—X— p(A)AKX —x0) =x0 — X + Ap(A)(xp — X)
= (I+Ap(A))(xo—)E).

It follows that the error €; = x; — X at the kth step of the conjugate gradient method
satisfies

€lla= min x—Xx|jla= min |[(I+Ap(A))eg] ,- (5.5)
letla= _min fx—%la= min [(I+4p@)eo],
Suppose that vy, ..., v, is an orthonormal basis of eigenvectors of A correspond-

ing to the eigenvalues A > --- > A, > 0. Write

n
e():xo—i:z&jvj

j=1

for some &1, ..., &, € R. Then

n n n
leold =YD &i&v] Ave =D aj&7.
j=1

j=lk=1
Moreover, for any polynomial p € Py_1,

n

I+ ApA)eo =Y (1+x;p(Ap)&v;.
j=1

Therefore

[+ Ap)eoly = 32(1+25pG)) 2587 = max(1+3;pG)” 32587
j=1 - j=1

and using (5.5),
n
leelld < pg,fl_l I}lgaf(l +2p(r)))’ ;Ajéf-
The result now follows by observing that Qy = 1 4+ XPy. O
Theorem 5.16 is hard to apply in concrete situations. It depends on all the eigen-

values of A and it optimizes a function of them over the space Q. It is nevertheless
a building block in the proof of Theorem 5.13. We proceed to see why.
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N \

1 1

0 An, M\A{ 0 An VS A1
2 2

(a) for k=1 (b) for k =2

Fig. 5.2 The optimal choice of g

Example 5.17 For k =1 it is optimal to choose g(A) =1 — —2_ ). (see Fig. 5.2)

AM+An
and hence :
2
lleillz < (Ki(A) 1 ll€oll4 -

The first step of Algorithm 5.1 is just one step of steepest descent. Thus we have
re-proved Theorem 5.2. See Fig. 5.2 for an optimal choice of g for k =2.

Remark 5.18 Suppose that A has only m < n distinct eigenvalues. Then there exists
q € Qy such that g vanishes on all the eigenvalues. Hence €, = 0 and the method
terminates after m steps. (This can also be easily seen directly.) So multiple eigen-
values decrease the number of steps of Algorithm Conj_Grad.

Suppose that 1, =a and A1 = b, for 0 < a < b. What are optimal polynomials
q € Qi if nothing is known about the location of the eigenvalues A except that
A € [a, b]? In this case we have to minimize the quantity

max q()»)2

a<i<b

over all real polynomials ¢ € Q. This minimization problem can be considered as
well for arbitrary a, b € R with a < b. In the particular case a = —1, b =1 it turns
out that its solution is given by the Chebyshev polynomials Ty defined by

cos(kg) = Ti(cos(e)).
For instance
To(X) =1, Ti(X) = X, TH(X)=2X>—1, T3(X) =4X° — 3X,
and more generally, for i > 2,
T;(X) =2X Ti1(X) — Ti2(X).

See Fig. 5.3 for a display of some of these polynomials.
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1 17 1
Ty T> Ts
-1 1 —T 1 —1 1
—1] -1 —1]
(a) for k=1 (b) for k=2 (c) for k=3

Fig. 5.3 The Chebyshev polynomial T}

The next proposition lists some important properties of Chebyshev polynomials
Ty on [—1, 1]. Its easy proof is left to the reader.

Proposition 5.19

@ [Te()| <1 forxe[-1,1],
(b) Ty has degree k,
(c) Ty has exactly k roots in [—1, 1], namely cos((j + %)%)forj € [k]. O

Proposition 5.20 For all 0 <a < b we have

min max g(})%
gyt ami 2, 1= e
q(0)=1

Proof The polynomial

Tk ( b+a 2)\. )
p(A) = W
has degree k, satisfies p(0) =1, and

max ()\)2 ! =:c?
a<i<b (b+“)2 o

(Note that A — l%‘g” maps [a, b] onto [—1, 1] and T} has maximal value 1 on
this interval.)
In order to show the optimality of p, suppose that for some polynomial ¢ € Q,

max }q(k)‘ < max |p()L)|

a<i<b

Since p alternately takes the values ¢, —c, ¢, —c, ... exactly k 4 1 times in the inter-
val [a, b], we conclude that the polynomial p — g has at least k roots in this interval
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(intermediate value theorem). Moreover, p(0) —¢(0) =1 —1=0. Hence p — ¢q has
degree at most k and k + 1 distinct roots. It follows that p =g. U

Proof of Theorem 5.13 To estimate the optimal value in Proposition 5.20, note that
for z € C, z = cos(¢) + i sin(¢) =x +i+/1 — x2, we have

(o) = Re() = 2 (¢ 47 = S((+ Vo2 — ) + (e = Vo2 — 1)),

Now take again a = A,, b = A1, the smallest and largest eigenvalues of A. Then

Kk =k(A) =2 Forx =10 = 1L we get

Ck+ D=k —D? &

2
ol w—12 (k172

and therefore

K+14+2k  (Je+ D> Je+1

2_ 1= = .
vy k—1 Kk —1 Jr—1
Hence
1/ +1\*
T, > — .
k(X)_2<ﬁ_1> O

We finish this section by noting that the estimate in Theorem 5.13 may be pes-
simistic in certain situations. Suppose that the matrix A has only m large eigen-
values, while the remaining ones are relatively close to the smallest. The following
consequence of Theorem 5.16 shows that one can avoid the bad effect of the m
largest eigenvalues by performing only m steps of the conjugate gradient method.

Proposition 5.21 Suppose the positive definite matrix A € R™" has n —m + 1
eigenvalues in the interval [a, b'] and the remaining m — 1 eigenvalues are greater

than b'. Let xg € R" be any starting point. Then
b —a

b +a

lemlla < ll€olla-

Proof Let Ay > Xy > --- > XA, be the m — 1 largest eigenvalues of A. Let g be of
degree m such that

b/
qg)=---=qAn-1)=0, q0)=1, q( :a>=0-

Then by Theorem 5.16,

lemlla < max |g)] - lleolla.
a<i<b’
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It is not hard to see that

2 . +b/
*» <1-22 if0<i<45,
1 >1— 2 gpathl o5 gy

— a+b’ 2 =S ="

Hence, for A € [a, b'], we have

b —a
<

1_ —= )
b +a

lg)| < —

which proves the assertion. g

5.4 Conjugate Gradient on Random Data

We close this chapter by returning to one of our recurring themes: the randomization
of data as a way to obtain complexity bounds independent of the condition number.

We have noted in the introduction of this chapter that in many situations, the
positive definite matrix A € R"*" given as input to Algorithm 5.1 (Conj_Grad) is
obtained as A = RTR with R € R7*", q > n. By Theorem 1.13, there exist or-
thogonal matrices U and V and positive reals o1 > 02 > --- > 0, > 0 such that
R = U diag(o1, 02, ...,0,)VT. Then

A=R"R=Vdiag(of,03,....0})V".

It follows from this equality that k (A) = «2(R). Therefore, the analysis of k¥ (A) for
this inherited distribution reduces to the analysis of ¥ (R) when R is Gaussian.

In the particular case that R is standard Gaussian, this inherited distribution of
A is known as the Wishart distribution with q degrees of freedom. It extends the
chi-square distribution, since it coincides with a xg whenn = 1.

Corollary 5.14 shows that the number k of iterations that are needed to decrease
llxo — x|l 4 by a factor of ¢ is proportional to +/x (A), that is, proportional to x (R).
We are therefore interested in this quantity for Gaussian rectangular matrices R, a
theme we have dealt with in Chap. 4. Indeed, in Theorem 4.2 we showed that for all
Ao € (0,1) and all 0 < o < 1 there exists go such that for all 1 <n < g we have

20.1
sup E  (k(R)<-——,
HEHEI R~N(R,o2I) 1 —A

provided A = ”q;] <X and g > qo.

It follows that if A is obtained as RT R for a large elongated rectangular matrix R,
then we should expect to effect the decrease mentioned above with about % % ln(é)

iterations (where A = % is the elongation). Since each iteration takes 6n% + O(n)
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arithmetic operations (cf. Remark 5.11), the expected cost is

3n?

201 1 60.3n> 1

In-+0m) = In-+ O(n).
l—)»n8+ () 1—A n£+ ()
The leading term in this expression is smaller than the %n3 operations performed by
Gaussian elimination as long as

_n(d=»)
E>e i

For large n (and A not too close to 1) this bound produces very small values of ¢,
and therefore, Conj_Grad yields, on average (both for a Gaussian distribution of data

and for Gaussian perturbations of arbitrary data), remarkably good approximations
of x.



Intermezzo I: Condition of Structured Data

The themes of Chaps. 3 and 5 introduced, sotfo voce, the issue of structured data.
In both cases we had a general set of data, the space R"*" of n x n real matrices,
and a subset S whose elements are the valid inputs of a given algorithm: triangular
matrices for FS and symmetric positive definite matrices for CGA.

It is apparent that the analysis pattern we have developed till now—an analysis
of the relevant measure of performance for the considered algorithm (loss of pre-
cision or running time) in terms of a condition number, followed by a probabilistic
analysis of the latter—needs to be adjusted. For the probabilistic analysis, the un-
derlying measure will have to be chosen with support in S. We have already done
so in Chap. 3, by drawing from N (0, 1) only the matrix entries that are not fixed to
be zero, as well as in Chap. 5, where the more elaborated family of Wishart distri-
butions was imposed on the set of symmetric positive definite matrices.

As for the object of analysis itself, the condition number, its actual shape will
have to depend on the situation at hand. Yet, even though there is no standard way
to “structure” a condition number, a couple of ways occur frequently enough to be
described in detail.

(a) Structured perturbations. When the analysis is based on data perturbations
(e.g., in accuracy analyses), it is often the case that the only admissible pertur-
bations are those respecting the structure of the data a, that is, those for which
a € S as well. This naturally leads to the following “structuring” of (O.1):

RelError
cond%(a) :=lim  sup w. @)
6—0 RelError(a)<s  RelError(a)

aeS
In the case of triangular linear systems, the backward analysis of algorithm FS
in Sect. 3.2 produced componentwise perturbation bounds that automatically
force the perturbed matrix L to be lower triangular as well. But this need not be
the case.

(b) Distance to structured ill-posedness. We will soon see (in Chap. 6, after this
intermezzo) that for a large class of problems (those having a discrete set of
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values, notably the decisional problems), the notion of condition given by (O.1)
is inadequate and that a common, appropriate replacement is given by taking

9@ = Nl

d(a, X)
for the condition number of a. Here X' is a natural set of ill-posed data. It is
therefore not surprising that in many of the situations in which such a condition
number is considered and data are restricted to some subset S, the useful way
to structure Z(a) is by taking

llall

2@ = e

1.2)
The difference between 2 and Zgs can be large. A case at hand is that of
triangular matrices. For any such matrix L, the condition number theorem
(Theorem 1.7) shows that d(L, X) = ||[L~!|~! and therefore 2(L) = k(L).
Theorem 3.1 then shows that E log 2(L) = Q(n). In contrast, we will see in
Sect. 21.7 that E log Zriiang(L) = O(logn).

Occasionally, there is no need for a structuring of the condition number. This
was the case, for instance, in the complexity analysis of the conjugate gradient
method in Chap. 5. This analysis revealed a dependence of the number of itera-
tions of Conj_Grad on the standard condition number « (A) of the input matrix A;
the only influence of this matrix being symmetric positive definite was on the un-
derlying distribution in the probabilistic analysis.



Part I1
Condition in Linear Optimization
(Andante)



Chapter 6
A Condition Number for Polyhedral Conic
Systems

The second part of this book is essentially a self-contained course on linear pro-
gramming. Unlike the vast majority of expositions of this subject, our account is
“condition-based.” It emphasizes the numerical aspects of linear programming and
derives probabilistic (average and smoothed) analyses of the relevant algorithms by
reducing the object of these analyses from the algorithm to the condition number of
the underlying problem.

In contrast to the exposition of the previous chapters, in this second part of the
book we will use conditioning mainly for complexity analyses. It won’t be until
Sect. 9.5 that we discuss finite-precision analysis.

In this chapter we begin the development of our course. We do so based on a par-
ticular problem, the feasibility of polyhedral conic systems. Briefly stated, the fea-
sibility problem we consider is whether a polyhedral cone given by homogeneous
linear inequalities is nontrivial (i.e., has a point other than the coordinate origin).
A goal of Sect. 6.1 below is to see that for this problem (as well as for numerous
others), the notion of conditioning as defined in the Overture does not help in any
analysis. An idea pioneered by Renegar is, in these situations, to define condition-
ing in terms of distance to ill-posedness. The main character in this chapter, the
condition number € (A)—here A is the matrix stipulating the linear inequalities—
is defined in these terms. As the chapter evolves, we will see that it can, in addition,
be characterized in a number of different ways. The last section of the chapter shows
that ¥’ (A) is a natural parameter in the analysis of some classical simple algorithms
to find points in feasible cones. In subsequent chapters, it will feature in the analysis
of more sophisticated algorithms. The characterizations we just mentioned will turn
out to be helpful in these analyses.

6.1 Condition and Continuity

Consider the problem ¢ that maps any pair (b, ¢) of real numbers to the number of
real roots of the polynomial f = X2 4 bX + c. Since the possible values for this
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problem are the elements in {0, 1, 2}, the set of inputs is partitioned as Dy UD; U D,
with D; = {(b, ¢) € R? | ¢(b, ¢) = i}. We know that

D, = {(b,c) e R? | b* > 4c},
Dy

[(b,c) e R? | b* = 4c},
Dy

{(b,c) e R? | b? < 4c},

so that dim(D>) = dim(Dg) = 2 and dim(D;) = 1. Actually, the boundaries 9D,
and 0Dy are the same and coincide with the parabola D;.

What is the, say normwise, condition number for this problem? If (b, c) € D>,
then all sufficiently small perturbations (b, ¢) of (b, c) will also be in D,. Hence,
for these perturbations RelError(¢ (b, ¢)) = 0, and therefore we have cond(b, ¢) = 0.
A similar argument yields the same equality when (b, ¢) € Dy. In contrast, when
(b, c) € Dy, one can find arbitrarily small perturbations (l;, ¢) in D, as well as
arbitrarily small perturbations in Dy. Therefore, for these perturbations, the quo-
RelEror(¢(b:0) an be arbitrarily large, and it follows that cond(b, ¢) = oo when

tent —RaEror.0
(b, c) € Dy. In summary,

d(b 0 if(b, ¢) €e Dy U Dy,

cond(b, ¢) = {oo if(b, ¢) € Dy.

No matter whether for complexity or for finite-precision analysis, it is apparent that
cond(b, ¢) cannot be of any relevance.

The problem considered above has no computational mysteries. We have chosen
it simply for illustration purposes. The discussion above will nevertheless carry over
to any discrete-valued problem (one with values in a discrete set) and, with the
appropriate modifications, to any decision problem (one with values in {Yes, No}).
For these problems a different development is needed.

Firstly, a different format for finite-precision analysis appears to be a must, the
one discussed in the Overture making no sense in this context. The relevant question
is no longer how many correct significant figures are lost in the computation but
rather how many we need to start with (i.e., how small should emach be) to ensure a
correct output.

Secondly, a different way of measuring condition, appropriate for the goal just
described, should be devised. One also expects such a measure to be of use in com-
plexity analyses.

It won’t be until Sect. 9.5 that we will deal with the first issue above. We can,
in contrast, briefly tackle the second one now. To do so, assume we have a deci-
sion problem. At the boundary where the output of the problem changes—i.e., the
boundary between the sets of data with output Yes and No—the usual condition
is infinity: arbitrarily small perturbations may change this output from any of these
values to the other. This boundary is therefore the set X' of data that are ill-posed for
the problem (recall Sect. 0.5.4), and Renegar’s idea is to define the condition of a
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as the (normalized, if appropriate) inverse of the distance d(a, X') to ill-posedness,
that is, in the normalized case, to take as condition number C (a) of a the following:

Ca e el
T da, %)’

In other words, we do not prove a condition number theorem for C (A): we impose it.

This idea extends straightforwardly to discrete-valued problems and will appear
systematically in this second part and, more sporadically, in the third and last part
of this book.

6.2 Basic Facts on Convexity

We explain here the basic notions related to convexity and recall some of the main
fundamental results in this context.

6.2.1 Convex Sets

A subset K € R™ is called convex when
Vx,ye KVtel0,1], tx+(1—-1t)yeK.

That is, K contains the line segment with endpoints x, y for all x, y € K. The convex

hull of a set of points ay, ..., a, € R™ is defined as
n n
conv{ai,...,a,}:= {Zt,-a,- t1,...,t,,zO,Zt,-=1}.
i=1 i=1

This is easily seen to be closed and the smallest convex set containing ay, ..., d,.
The affine hull of ay, ..., a, is defined as

n n
aff{ay, ..., an}:= {Ztiai fynno by eR,Zti = 1}.
i=1 i=1

This is the smallest affine subspace of R containing ay, ..., a,. We define the
convex hull conv(M) of a subset M C R™ as the union of all conv{ay,...,a,},
where {ay, ..., a,} runs over all finite subsets of M. Similarly, we define aff(M) as
the union of all aff{ay, ..., a,}, where ay, ..., a, € M. The dimension of a convex
set K is defined as the dimension of its affine hull.

The separating hyperplane theorem is a fundamental result in convexity the-
ory. Throughout we denote by (x, y) :=xTy = > x;y; the standard inner product
on R™.
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Theorem 6.1 Let K C R™ be closed and convex. For p & K there exist y € R™ \ {0}
and ) € R such that

Vxe K (x,y)<A<{p,y) (strictseparation).
If p € 0K, there exists y € R™ \ {0} such that

Vxe K (x,y)<{(p,y) (supporting hyperplane). (]

A closed half-space H CR™ is a set H = {z € R" | (z,y) <0} for some y €
R™ \ {0}. Similarly, we say that H° = {z € R | (z, y) < 0} is an open half-space.

A convex cone in R™ is a subset that is closed under addition and multiplication
by nonnegative scalars. We denote by cone(M) the convex cone generated by a
subset M C R™. More specifically, the convex cone generated by points ay, ..., ax €
R™ is given by

k
conelay, ..., ar} = !xeRm|3A120,...,Ak20x=2kiai )
i=1

This is easily seen to be a closed set.

Definition 6.2 The dual cone C of a convex cone C C R™ is defined as

C:={yeR"|VxeC (y,x) <0}.
It is clear that C is a closed convex cone. Moreover, C; € C; implies él D) éz.

Proposition 6.3 Let C C R™ be a closed convex cone. Then the dual cone of C
equals C.

Proof 1t is clear that C is contained in the dual cone of C. Conversely, suppose
that p € C. Theorem 6.1 implies that there exist y € R™ \ {0} and X € R such that
(x,y) <A< {(p,y)forall x € C. Setting x =0 yields 0 < A.

If we had (x, y) > 0 for some x € C, then (kx, y) > A for some k > 0, which is
a contradiction to kx € C. Therefore, we must have y € C. Finally, 0 < A < (y, p);
hence p is not in the dual of C. 0

Here is an important consequence of the previous duality result.

Lemma 6.4 (Farkas’s lemma) Let A € R™*" and b € R™. There exists x € R™,
x >0, such that Ax = b if and only if for each y € R™ satisfying ATy <0 one has
bTy <0.

Proof Suppose x € R™ satisfies Ax = b and x > 0 and let y € R” be such that
ATy < 0. Then we have bTy = xTATy < 0. This proves one direction of the asser-
tion.
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To prove the other direction consider the cone C := cone{ay, ..., a,} generated
by the columns a; of A. Note that the condition

Ix eR”, x>0, Ax=hb,

in geometric terms, just means that b € C.

Assume now b ¢ C. Proposition 6.3 implies that b does not lie in the dual cone
of C. This means that there exists yo € C such that bT yo > 0. But ATyy <0, since
Yo € C. U

We also state without proof the following result due to Carathéodory.

Theorem 6.5 Letay,...,a, € R" and x € cone{ay, ..., a,}. Then there exists I C
[n] with |1| < m such that x € cone{a; |i € 1}. O

An affine version of Carathéodory’s result follows easily.

Corollary 6.6 Letay,...,a, € R™ with d-dimensional affine hull. Then for any x €
conv{ay, ..., a,} there exists I C [n] with |I| <d+ 1 such that x € conv{a; | i € I}.

Proof By replacing R” with the affine hull of ay, ..., a, we may assume without
loss of generality that d = m. Let x = Z Aia; with A; > 0 and )_; A; = 1. Define
the following elements of Rt G :=(a;, 1) and ¥ := (x, 1). Then ¥ = Do i

The assertion follows by applylng Theorem 6.5 to these points. d

Corollary 6.7 Assume that I is as in Corollary 6.6 with minimal cardinality. Then
the affine hull of {a; | i € I} must have dimension k = |I| — 1, that is, (a;)ic; are
affinely independent.

Proof If we had k < |I| — 1, then Corollary 6.6 applied to the subset {a; | i € I}
would yield the existence of J C I withx e conv{a; | j € J}and |J|<k+1 < ||,

which contradicts the minimality of /. g

We define the relative interior of K = conv{ay, ..., a,} by

n
s ..,ln>0,Zti=1
i=1

One can show that this set can be intrinsically characterized by

relint(conv{ay, ..., an}) : {Z ta;i

relint(K) = {a | 3¢ > 0Va' € aff(K) : |a’ —a| <e = d" € K}.

This also provides the definition of relint(K) for an arbitrary convex set K. We
define the relative boundary 3K of K as 0K := K \ relint(K). Here K is the topo-
logical closure of K in R™.

For later use in Chap. 13 we also state without proof Helly’s theorem, which is
another basic result in convex geometry.
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Theorem 6.8 (Helly’s theorem) Let K1, ..., K; CR"™ be a family of convex subsets
such that any n + 1 of them have a nonempty intersection. Then K1N---NK; # @. [

6.2.2 Polyhedra

Let ai,...,ay € R™ and by, ..., b, € R. The set P = {x €e R" | alx < b;,i =
1,...,n} is called a polyhedron. Since a polyhedron is an intersection of convex
sets, polyhedra are convex as well. It is easy to prove that there exists a subset
I C [n] such that

aff(P) = {x eR™ |Vi &1 a]x =b;},
IP={xePl|3iela'x=b}

where we recall that 0 P denotes the relative boundary of P. We say that a subset
F C P is aface of P when there exists J C [n] such that

F={xeP|VYielalx=b}. (6.1)

A face of P is called proper when it is strictly included in P. We note that d P is the
union of the proper faces of P.

Clearly, faces of a polyhedron are themselves polyhedra. In particular, they are
convex. Hence, a zero-dimensional face consists of a single point. These faces are
called vertices of P. We note the following important fact, whose easy proof is left
to the reader.

Lemma 6.9 A face F of a polyhedron P given as in (6.1) is a vertex of P if and
only if the corresponding matrix Ay, whose columns are the vectors a; with i € J,
satisfies rank Ay = m. O

The faces of a polyhedron are not arbitrarily placed in space. The following result
gives a restriction.

Lemma 6.10 Let F, F' be faces of a polyhedron P such that neither F C F' nor
F’' C F. Then dimaff(F U F’) > max{dim F, dim F’}.

Proof Without loss of generality, assume max{dim F, dim F’} =dim F. Let I C [n]
be such that aff(F) = {x e R™ | Vi ¢ I alx =b;}. Then

F={xeR"|Vig¢Ialx=>b;andVielax <b;}.

Since F’ € F, there exists xo € F’ such that xo € F. Since xo € F’, we have aiTxo <
b; for all i < n. Therefore, since xo ¢ F, there exists j ¢ I such that aijo < b;j.
This implies that xo ¢ aff(F') and hence that

dimconv(F U F’) > dimconv(F U {x}) = dimaff(F U {xo}) > dimF. O
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Lemma 6.11 If a line ¢ is contained in a polyhedron P given by aiTx < b;,
i =1,...,n, then the matrix A with columns ay, ..., a, satisfies rank A < m. In
particular, P has no vertices.

Proof Letv # 0 be a direction vector for £. Since £ C P, we have £ C {x | al.Tx =b;}
for all i. This implies aiTv =0 for all i, that is, v € ker A. Hence rank A < m. The
second assertion follows now from Lemma 6.9. O

Lemma 6.12 If F is a face of a polyhedron of minimal dimension (among nonempty
faces), then aff(F) = F. In particular, if P has no vertices, then it contains a line.

Proof Let I C [n] be such that aff(F) ={x e R" |Vie I al.Tx =b;}.
Assume that F # aff(F'). Then, there exists a point xy € aff(F') \ F. In particular,
there exists j & I such that aijN > b;. Let xF be any point in F and let

{x:=txn + (1 = )xp |1 €0, 11}

be the segment with extremities xr and xy. Clearly, this segment is contained in
aff(F). Let

f=inf{re[0,1113j ¢Istajx >b;}.

Then there exists j ¢ I such that x; € F, a}x; = bjf, but for all ¢ > 0, a}?x;ﬂ >

b 3 This shows that the face defined by the set I := I U {j} is nonempty and has
dimension smaller than dim F', a contradiction.
The second statement is a trivial consequence of the first. 0

The following result immediately follows from Lemmas 6.11 and 6.12.

Corollary 6.13 A polyhedron possesses vertices if and only if it does not contain
lines. g

6.3 The Polyhedral Cone Feasibility Problem
For A € R™*", consider the primal feasibility problem
dx e R"\ {0}, Ax=0, x>0, (PF)
and the dual feasibility problem
Jy e R™\ {0}, ATy<o. (DF)

We say that A is primal feasible or dual feasible when (PF), or (DF), respectively,
is satisfied. In both cases we talk about strict feasibility when the satisfied inequal-
ity is strict. The following result shows that strict primal feasibility and strict dual



130 6 A Condition Number for Polyhedral Conic Systems

Fig. 6.1 A partition of R"*"
with respect to feasibility
Fp

Fp

feasibility are incompatible. To simplify its statement we introduce some notation.
Let Fp and Fp denote the sets of matrices A where (PF) and (DF) are satisfied,
respectively. Moreover, let

Fp={AeR"™"|IxeR"Ax=0,x > 0},
Fp={AecR™" |3y eR"ATy <0}

be the sets of strictly primal and strictly dual feasible matrices. Finally, let R :=
{A e R™" | rank A = m} and

X =FpNFp.

Denote by int(M), M, and M = M \ int(M), the interior, closure, and boundary of
a subset M of Euclidean space.

One can easily show that if n < m, then Fp = R™*". The situation of interest is
therefore the case n > m, and in what follows we will assume this inequality.

Theorem 6.14 Both Fp and Fp are closed subsets of R™*". In addition, this space
is partitioned as

R™" =int(Fp) Uint(Fp) U X,
and we have
Y =0Fp=0Fp.

Furthermore, F}, 2 int(Fp), FR\int(Fp)=FpNX ={Aec X |rankA <m}, and
Fp =int(Fp).

For this case, Fig. 6.1 provides a schematic picture derived from Theorem 6.14.
On it, the 2-dimensional space corresponds to the set of all matrices. The curve
corresponds to the set X', which is divided into three parts. All matrices in X' are
in Fp \ F}: those on the full part of the curve correspond to full-rank matrices
that are also in Fp \ F5, those on the dashed part to rank-deficient matrices with
this property, and those on the dotted part to rank-deficient matrices that are in Fp,.
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We observe that there are rank-deficient matrices that are not in X, all of them being
in Fp.

The set X, just as in the picture, is of dimension smaller than mn.

We see that for matrices in X', arbitrarily small perturbations can lead to a change
with respect to feasibility. In contrast, in the set D = R™>" \ 3 the following prob-
lem is well-defined:

Given A € D decide whether A € F}, or A € Fp,.

We call this the polyhedral cone feasibility problem (and we denote it by PCFP).
For all A € X the problem is ill-posed.

The polyhedral cone feasibility problem fits the situation described in the intro-
duction of this chapter. The approach to condition described in the Overture cannot
be applied here (note that even the values of this problem—the tags “strictly pri-
mal feasible” and “strictly dual feasible”—are not elements in a Euclidean space).
We need a different measure of condition. We will define this measure in the next
section. Before doing so, however, we will prove Theorem 6.14 and get some un-
derstanding about the partition depicted in Fig. 6.1.

We begin with a simple result (and recall Notation 1.9 for its statement).

Proposition 6.15 Both Fp and Fp are closed subsets of R™*" and closed under
multiplication by scalars A; > 0. That is, if [a1, ..., a,] € Fp, then [Aay, ..., Ayay]
€ Fp, and similarly for Fp.

Proof Let S"~!:={y e R™ | | y| = 1} denote the (m — 1)-dimensional unit sphere.
The compactness of S” ! easily implies that

Fp={Al3yeS" Nai,y) <0,..., (@, y) <0}
is closed. Similarly, one shows that Fp is closed. The second statement is trivial. [

Let A € R"™*" and denote by ay, . .., a, € R™ its columns. We have the following
geometric characterizations:

AeFp <& 0econviay,...,a,},
(6.2)
AeFp & Oerelint(conviay, ..., a}).
Also, by definition, we have

AeFp <& 3H closed half-space such that conv{ay,...,a,} € H,

AeF} < 3H° open half-space such that conv{ay,...,a,} € H®.

From the definition of X and the first equivalence in (6.2) we obtain the following
characterization:

AeX¥Y <& AeFpandOeconviai,...,a,}. (6.3)
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Lemma 6.16 For A € R™*" we have

() AgF) & AeFp.
(b) A¢Fp = A€ Fp.The converse is true if rank A = m.

Proof (a) We prove the contrapositive. Suppose A € Fp,. Then there exists
y € R™\ {0} such that (a;, y) <O for all i. If we had ) ; x;a; = 0 for some x; > 0
with >, x; = 1, then ) ; x;{a;, y) = (D_, xiai, y) = 0. Hence x; = 0 for all i, which
is a contradiction.

Conversely, suppose that A &€ Fp, that is, O & conv{ay, ..., a,}. Theorem 6.1
(strict separation) implies that A € FJ.

(b) Suppose A ¢ Fp. Then O ¢ relint(conv{ay, ..., a,}), and therefore 0 ¢
int(conv{ay, ..., a,}). Theorem 6.1 implies A € Fp. For the other direction assume
that A € Fp, say (a;,y) <0 for all i and some y # 0. If we had A € F3, then
> ;i xia;i =0 for some x; > 0. Therefore ) _; x;(a;, y) = 0, whence (a;, y) =0 for
all i. This implies rank(A) <m — 1. O

Remark 6.17 For the converse of part (b) of Lemma 6.16 we indeed need the
rank assumption. To see this, take, for example, aj,...,a, € R™=1 gsuch that
0 e relint(conv{ay, ..., a,}). Then A € Fp N Fp.

Lemma 6.16 implies that F3 and 7}, are disjoint,
Fp\Fp=2%, Fp\FpcC X,

and the right-hand inclusion becomes an equality when the matrices are restricted
to being of rank m. Moreover, again using Lemma 6.16,

R™" = FpUFp =.7:;U]:BUE. (6.4)

Furthermore, since X' is closed, F7, is open. It is somewhat confusing that
Fp is not open. To see this, consider again ai,...,a, € R™1 such that 0 €
relint(conv{ai, ..., a,}). Then A € F3, but there are arbitrarily small perturbations
of A that lie in F7,.

Lemma 6.18
(a) Fp CFp.
(b) FpCFpNR.
Proof (a) Let A = [ay,...,a,] € Fp. Hence there exists y € S™=1 such that
(ai,y) <Oforalli.Fore>O0puta;(e):=a; —ey. Then (a;(¢),y) =(a;,y) — ¢ <
—e&; hence A(e) =[ai(e), ..., a,(e)] € F},. Moreover, lim; g A(e) = A.

(b)Let A=[ay,...,a,] € Fp.Put W :=span{ay,...,a,} andd :=dim W. The
first equivalence in (6.2) implies that O € conv{ay, ..., a,}. Note that the affine hull

of {ay, ..., a,} equals W. By Carathéodory’s Corollary 6.6, we may assume without
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loss of generality that 0 = x1a; + --- + xgax with x; > 0, Zlex,- =1,and k <
d + 1. Moreover, by Corollary 6.7, we may assume that the affine hull of ay, ..., ai
has dimension k — 1. Without loss of generality we may assume that ay, ..., ax—1
are linearly independent and that ay, ..., ak—1, Gk+1, - .., dq+1 is a basis of W. Let
ba+4a, ..., byt be abasis of the orthogonal complement W-. We define now

V(&) i=agp1 + -+ +agr1 + (@a2 + ebai2) + - + (Gmt1 + Ebpy1)

+amy2+---+an.

(Here we used the assumption n > m + 1.) Moreover, we put

a; —ev(e) forl<i <k,

©) a; fork+1<i<d+1,

a;(g) =

! a; +¢eb; ford+2<i<m+1,
a; form+2<i<n.

Note that v(g) = Z?=k+1 ai(e). Itis clear that A(¢e) :=[a;(¢), ..., an(e)] converges
to A for ¢ — 0. Also, W =span{ay, ..., ax—1, @Gk+1, - - -, aq+1}, and using this fact,
it follows that span{a;(e), ..., a,(e)} = R™, i.e., that rank(A(e)) = m. Finally, we
have

n

k k k
0= inai = inai (&) +ev(e) = ina,' (&) + Z caj(e).
i=1 i=1

i=1 j=k+1

Hence A(e) € Fp. O

Corollary 6.19 Suppose n > m. Then

(a) X =0Fp,int(Fp)=Fp,
(b) ¥ =0Fp,int(Fp) C ]:;)

Proof (a) We have 7}, Cint(Fp), since F7}, is open. Hence 0 Fp = Fp \int(Fp) C
Fp\ Fp = 2X.Suppose A € X¥. By Lemma 6.18 there is a sequence Ay — A such
that rank Ay =m and Ay € Fp. Lemma 6.16 shows that A; ¢ Fp. Hence A € 9.Fp.
It follows that 3. Fp = X' and int(Fp) = F},.

(b) Let A € ¥'. By Lemma 6.18 there is a sequence Ay — A such that Ay € F3;
hence Ay & Fp. Therefore A € 3 Fp. It follows that X C 9.Fp. On the other hand,

3Fp SR\ Fp =F3 C Fp,
and hence 0. Fp C Fp N Fp = X. It follows that ¥ = 9 Fp. Finally,

int(Fp)=Fp\0Fp=Fp\ X C Fp. 0
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It may seem disturbing that int(Fp) is properly contained in 7. However, the
difference Fp \ int(Fp) lies in X' and thus has measure zero, so that this will not
harm us (see Fig. 6.1).

Proof of Theorem 6.14 1t immediately follows from the results in this section. [

6.4 The GCC Condition Number and Distance to Ill-posedness

We want to define a condition number for PCFP. A way of doing so relies on the
condition number theorem (Corollary 1.8). This result characterized the condition
number of linear equation solving, or matrix inversion, as the inverse of the rela-
tivized distance from the matrix at hand to the set of ill-posed matrices. Instead of
defining condition in terms of perturbations (which we have seen is now useless),
we can take the characterization of the condition number theorem as definition. We
have shown in the previous section that for PCFP, the set of ill-posed instances is
the boundary between feasible and infeasible instances. This motivates the follow-
ing definition.

Definition 6.20 Let A € R”*" be given with nonzero columns a;. Suppose A ¢ X
and A € F§ for § € {P, D}. We define

a —a;
A(A) = sup{(S >0 ‘ VA e R™*" (maxM <s=>A'e f§> },
isn gl
where alf stands for the i th column of A’. The GCC condition number of A is defined
as

IfAe X, weset A(A) =0and € (A) = oo.

‘We note that the suprema are over nonempty bounded sets and hence welldefined,
since F¢ \ X =int(Fs) for § € {P, D} due to Corollary 6.19.

We have written the definition in such a way that it becomes clear that we mea-
sure the relative size of the perturbation for each row a;, where the relativization
is with respect to the norm of a;. Also, it is clear from the definition that A(A) is
scale-invariant in the sense that

A([Mai, ... Awan)) = A(lay, ..., ay])  for A; > 0.

For the analysis of A we may therefore assume, without loss of generality, that
lla;|| =1 for all i. Hence we can see the matrix A with columns ay,...,a, as an
element in the product (S™=Hr of spheres. The scale invariance of €’(A), together
with the characterization of | |12 in Corollary 1.3, yields immediately the following
result.
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1 All12

. 0
dip(A, X)

Proposition 6.21 €(A) =

We now want to rewrite Definition 6.20 in a way that follows the ideas of
Sect. 2.4. Let ds(a, b) € [0, ] denote the angular distance

ds(a, b) := arccos({a, b)).
It is clear that this defines a metric on S”~!. We extend this metric to (S”~1)" by
taking
ds(A, B) := max ds(a;, b;).
1<i<n

Further, for a nonempty subset M € (S’"‘l)” we write
ds(A, M) :=inf{ds(A, B) | Be M}.

For simplicity of notation, we shall denote Fp N (S"~1)" also by the symbol Fp
and similarly for 75, Fp, F},, and X. This should not lead to any confusion.
The fact that ¥ = 0 Fp = dFp (cf. Corollary 6.19) immediately tells us that

ds(A, (8" '\ Fp)=ds(A,¥) for AeFp,
(6.5)
ds(A, (S" '\ Fp) =ds(A, X) for AeF).

We postpone the proof of the following result (compare Theorem 6.27).

Lemma 6.22 For A € (8" 1" we have ds(A, X) < 7. Moreover, ds(A, X¥) = %
iff A=(a,a,...,a) for some a esm1,

We can now give a geometric characterization of the GCC condition number.
Recall the definition of dgjn in a product of spheres (Sect. 2.4.1).

Proposition 6.23 For A € (S~ 1) we have A(A) =dsin(A, ). Hence

A=Ay

Proof Without loss of generality A ¢ X'. Suppose A € Fp. It suffices to show that

(a) sinds(A, X)=1= A(A) =1,
(b) sinds(A, X)) <d < A(A) <dforall0<d < 1.

The first case is easily established with the second part of Lemma 6.22. Thus, let
0 <d < 1 be such that sinds(A, X) < d. Lemma 6.22 tells us that ds(A, X) < %,
hence ds(A, X') < arcsind. By (6.5) there exists B = (by,...,b,) ¢ Fp such
that ds(A, B) < arcsind. Additionally, we may assume that |b;|| = 1. Let 6; =
ds(a;, b;) (cf. Fig. 6.2).
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Fig. 6.2 The definition of b; o

a;

By definition, ds(A, B) = max; 6;; hence 6; < arcsind for all i, and therefore
| (cos6;)b; — a;|| =sin6; <d.

It follows from the definition of A(A) that A(A) < d (consider the matrix A’ with
the columns (cos8;)b;).
Conversely, assume A(A) < d for d < 1. Then there exists A’ ¢ Fp such that

max; |la; — a;|| < d. In particular, a; # 0. For b; := ”Z—’,” we have 6; :=ds(a;, b;) <

% and for all i,
sing; =min |Ab; — a;|| < |a] —a| <d
A>0

(cf. Fig. 6.2). Hence ds(A, B) < arcsind, and therefore we have ds(A, X) =
ds(A, (S" 1y \ Fp) < arcsind.
The case A € Fp, is proved analogously. 0

6.5 The GCC Condition Number and Spherical Caps

We provide here a characterization of the GCC condition number in terms of an
optimization problem in spherical geometry.
For p € S"! and « € [0, 27r] recall that

cap(p,a) :={y €S" | (p,y) = cosa}

denotes the spherical cap in S”~! with center p and angular radius «.

Definition 6.24 A smallest including cap (SIC) for A = (ay, ..., a,) € ("~ 1) is
a spherical cap cap(p, @) of minimal radius containing the points ay, ..., a,. Its
blocking set is defined as {i € [n] | (a;, p) = cosa} (which can be seen as the set of
“active rows”).

We remark that by a compactness argument, an SIC always exists. However, there
may be several SICs (consider, for instance, three equidistant points on the circle).
While an SIC for A might not be uniquely determined, its radius certainly is and
will be denoted by p(A).
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Lemma 6.25 We have p(A) < % tﬁ‘A € F}. Moreover, p(A) = iﬁA e .

Proof We have p(A) < % iff aj,...,a, are contained in a spherical cap of ra-

dius less than 7. This means that there exists p € S™=1 such that (aj, —p) <

0,...,{an, —p) < 0. This is equivalent to A € F},. By the same reasoning, po(A) <
% is equivalent to A € Fp. This proves the lemma. O

Lemma 6.26 Let cap(p, p) be an SIC for A = (ay, ..., a,) with blocking set [k].
Write t := cos p, so that

(a1, p)=---={ak, p) =t, (Ak+1, p) >t,..., (an, p) > 1.
Then tp € conv{ay, ..., ax}.
Proof Suppose first that A is dual feas1b1e ie., thatr > 0. It sufﬁces to show that

p €conelay,...,a}. Indeed, if p = Z, 1 Aiai, A >0, thentp = Z, | tAia;. Fur-
thermore,

> rh=Y it <Zkal,> (b Py =1.

We argue by contradiction. If p & cone{ay, ..., ax}, then by the separating hy-
perplane theorem (Theorem 6.1) there would exist a vector v € S”~! such that
(p,v) <0 and {(a;, v) > 0 for all i. For § > 0 we set

p+év p+év
lp+8vll /T+25(p,v) +62

Then for 1 <i <k and sufficiently small § we have

ps =

t+68{aj,v)
(ai, ps) = >t
1428(p,v) + 82

Moreover, by continuity we have (a;, ps) >t for all i > k and § sufficiently small.
We conclude that for sufficiently small § > O there exists 75 > O such that (a;, ps) >
ts for all i € [n]. Hence cap(ps, es) is a spherical cap containing all the a; that have
angular radius s = arccos?s < o, contradicting the minimality assumption.

In the case that A is dual infeasible (+ < 0) one can argue analogously. g

Theorem 6.27 We have

p(A) ifAeFp,

ds(A, X)) =
s, 2= (A)—% if Ae S\ Fp.

In particular, ds(A, X) < 5 and

€(A)"! =sinds(A, X) = |cos p(A)].
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Fig. 6.3 A= (a1, a2.a3) € 4
Fp, A = (a/l,aé,ag) eX,
and t =1(A)

Proof We first assume that A € Fp. Let cap(p, p) be an SIC for A and put ¢ :=
cosp. Thus p < 5 and hence t > 0. Let A" € (S™=1)" be such that ds(A’, A) <
7 — p. Since ds(p, a;) < p for all i, we get

ds(p.af) < ds(p.ap) +ds(aiaf) <p+ 5 —p=7.

Hence (p, a!) > 0 for all i, which implies A" € Fp. We have thus proved the impli-
cation

VA, dS(A/’ A) = % —p=> A€ Fp.
This implies
ds(A, ) =ds(A, (8" \ Fo) = 7~ p.

For the other direction, without loss of generality, let [k] be the blocking set
of cap(p, p). We have (a;, p) =1t for i <k, (a;j,p) >t for i >k, and tp €
conv{ay, ..., ar} by Lemma 6.26 (see Fig. 6.3). We assume that a; # tp for i € [k],
since otherwise, a; = tp = p for all i € [n], and for this case the claim is easily
established. Put

lai —zpll

, ai—1P - fori <k,
a; = .
a; fori > k.

Then (a, p) > 0foralli € [n], (a., p) =0fori <k, and 0 € conv{aj,...,a;}. The
characterization (6.3) (p. 131) implies that A" = (4}, ..., a,) € X. Hence

ds(A, X) <dg(A,A") <= —p.

o]

Altogether, we have shown that ds(A, X) = % — p, which proves the assertion in
the case A € Fp.
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Fig. 6.4 A'q<0,A¢ Fp,
and ds(aj,, alfo) >a—%

az>p —4

We assume now A & Fp. Let cap(p, p) be an SIC for A. Note that for all i € [n]
with (a;, p) <0 we have a; # {(a;, p) - p, since equality would yield a contradiction
to the minimality of p, which is easily seen. We set

al = : Ta—tapipn ifar—{ai.p)-p<0.

a; otherwise.

As in the proof of the case A € Fp, we see that A" = (a},...,a,) € ¥ and
ds(A’, A) < p — 7. Hence

b1
ds(A, X) <p— 3
For the other direction we need to prove that
/7 / / T
VA <A €Fp=ds(A,A)=p— 5).

Solet A’ € Fp and ¢ € S"~! be such that A’q < 0. Consider the cap of smallest
angular radius o with center —¢g that contains all the points g;. Then o > p. Choose
ip such that (see Fig. 6.4)

ds(a;,, —q) = max ds(a;, —q) = .
1<i<n
It follows that

ds(A, A') = ds(aiy, @) = ds(aiy, —q) — ds(—q. aj)) = o« —

oS
[\
ke
|
o

Therefore ds(A, X) > p — %, which completes the proof. O
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6.6 The GCC Condition Number and Images of Balls

The goal of this section is to exhibit a characterization of 4’(A) in the spirit of Propo-
sition 1.11. This proposition (together with Theorem 1.7) tells us that for A € R**",

dip(A, 2) = | A7 =inf{iyl 1y e {Ax | Ixlh =1},

where X' denotes here the set of singular matrices.

The positive orthant will have to play a role alongside the balls, and the statement
of the corresponding result, Proposition 6.28 below, is far from apparent. To further
motivate it we note the following fact, which follows easily from (6.2).

We assign to A =[ay, ..., a,] € R"*" the convex hull

K :=conv{ay,...,ay} ={Ax x>0, x| =1}.

Then A € Fj) implies 0 ¢ K. Moreover, A € F5, and rank A = m implies 0 €
int(KC). Proposition 6.28 is a quantitative version of this observation.

As usual, we will assume the matrix A to have columns ; with unit norm, that
is, A € ("~ 1)". Recall from Corollary 1.3 that ||A[ 12 = max;<p ||a;||. Therefore,
for S € {P, D} and A € F¢, Definition 6.20 yields

A(A) :=sup{8 >0 |VE e R""(|E|ll2 <8 = A+ E € Fg)}. (6.6)

Proposition 6.28 Let A € (S"~1)" and K :=conv{ay, ..., ay}.
(a) If A € Fp, then
AA) =inf{llyll |y €K}.
) If A e Fp, then
AA)=sup{s | Iyl =8 =y e K}.
Proof (a) Assume that the perturbation E is such that A+ E € Fp. Then there exists

x >0, x # 0, such that (A + E)x = 0. Without loss of generality assume || x||; = 1.
Then y := —Ex = Ax € K. Moreover, ||y|| < [|E|l12]lx]l1 = || E|l12- Therefore

IE|li2 = inf{|ly]l | y € K}.

Since this holds for all E such that A + E € Fp, it follows from (6.6) that A(A) >
inf{llyl | y € ).

To see the reverse inequality, assume that y = Ax with x > 0, ||x||; = 1, is given.
Consider the rank-one perturbation

E:= —yuT,

where u € R" satisfies ||u|loo = 1 and uTx = 1 (use (1.3)). This perturbation satisfies
lE|l12=|ylland (A4+E)x = Ax+ Ex =y—y =0 with 0 # x > 0. In other words,
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A + E € Fp. Therefore
ACA) < [[Elliz= Iyl

Since this holds for arbitrary y € I, we conclude, using (6.6) again, that A(A) <
inf{||y|| | y € K} as well.
(b) Weset 2 ={8 ||yl <8 =y e K} and first show that

vyeR" (lyl <A(A)=yek), 6.7)

which implies A(A) < sup §2. By contradiction, suppose that there exists y & K
with ||y]| < A(A). The separating hyperplane theorem (Theorem 6.1) applied to the
closed convex set I shows that there exists u € R” with |u|| =1 and A € R such
that

Vieln], (u,y)<i<{u,a;).
By the Cauchy—Schwarz inequality,
—n<—u"y <yl < AA),
whence A > —A(A). Theorem 6.27 implies that A(A) = sinds(A, X) = sin(p(A) —
7) = —cos p(A), since we assume that A € Fp. We have shown that
Vie[n] cosp(A)=—-A(A)<Ai< uTai.

It follows that there is a spherical cap centered at u containing all the @; that has a
radius strictly smaller than p(A). This is a contradiction and proves (6.7).

To show that sup £2 < A(A), let E € R™*" be such that A + E &€ Fp. Then,
A+ E € F?, and hence there exists y € R such that (A + E)Ty > 0and | y| = 1.
This implies that ETy > — ATy and hence that

forallx eR", x>0, x ETy>—xTATy. (6.8)

Consider now any § € £2. By (1.3) there exists y € R™, ||| =, such that jTy =
—34. Since § € £2 there exists x € R”, x >0, ||x]l; = 1, such that Ax = y. Hence,
using (6.8),

YVEx=x"ETy=—xTATy=—yTAx=—y'y =5,
which implies
IEIh2 > | Ex|| = | Ex|||y] = |y Ex|> 8.
This shows, using (6.6) a last time, that A(A) > sup £2. Il

It is possible to give other characterizations of ¢’(A) in the spirit of Proposi-
tion 1.11. As an example, we state without proof the following result.

Proposition 6.29 Let A =[ay, ..., a,] € (S" )" If A € Fp, then
A(A) =sup{8 | |I¥]loc <8 =% € {ATv+RYL | v]| < 1}}. O
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Fig. 6.5 Understanding
E(A) for AeFp ai

Y a1 <0

6.7 The GCC Condition Number and Well-Conditioned
Solutions

The definition of ¥’(A) given in Sect. 6.4 is in terms of a relativized distance to
ill-posedness. Its characterization in Sect. 6.5 translates the space where the geo-
metric property defining €' (A) occurs from the space of data (S™~!)"—where ds is
defined—to the sphere S ~!—where smallest including caps are. With a little extra
effort we can now look at S~ as the space of solutions for the problem ATy <0
and characterize %’ (A) in terms of the “best conditioned solution” (at least when
A € Fp). This is the idea.
For A € R™*" with nozero columns a; we define
T
E(A):= min max 4 .
yesm—1 i<n ||a;l|

To understand 5 (A) assume A € Fp and let Solp(A) = {y e "1 | ATy <0).
This set is a polyhedral cone whose boundary is made of subsets of the hyperplanes
hi:= {aiTy = 0}. Now consider y € Solp (A). For each i € [n] we have al.Ty <0and

T
a. .
hence max; <, Tal ;_y‘l < 0. We claim that
- 1

T

ay .
— max = mind;, (6.9)
i=n |laill

where d; is the distance from y to the hyperplane A;. Indeed, for each i € [n], we
have (cf. Fig. 6.5)

T
a; y

llaill

di =sinZ(y, h;) = —cos Z(y,a;) = —
and consequently (6.9). Note that &; <0 if and only if A € Fp.

Proposition 6.30 For all A € R™*" with nonzero columns, we have |E(A)| =
A(A).

Proof By Theorem 6.27 it is enough to show that & (A) = —cos p(A). To do so, we
may assume in addition ||a; || = 1 for i € [n].

Let p = p(A) and p € S"~! be such that cap(p, p) is an SIC for A. Take
y = —p. Then,
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F(A) < maxa-T)'/ =— minan =—Cosp
T i<n ! i<n ! ’

the last inequality resulting from a; € cap(p, p).
To prove the reverse inequality let y, € S™=1 be such that & (A) = max; <y aiTy>|<
and let p = —y, and o = arccos(—&'(A)). Then,

mina; p = — maxa; y, = —Z(A) = cosa.
i<n i<n

It follows that a; € cap(p, «) for all i € [n] and therefore that p < . This implies
E(A)=—cosa > —cosp. O

6.8 Condition of Solutions and Condition Numbers

Proposition 6.30 introduces a new view for condition. In our first approach in the
Overture we considered problems as functions ¢ : D € R”™ — RY. A number of
natural problems, however, do not fit this pattern, since the desired output for a
datum a € D may not be uniquely specified, for instance, the problem of computing
a complex root when given a univariate polynomial (which does not require any
specific root to be returned), or the problem of, given a matrix A € R™*" deciding
whether A € Fp and if so, returning a point y € R” \ {0} such that ATy <0.

For problems of this kind, we may approach conditioning from a different view-
point. For an input a, let Sol(a) be its associated set of solutions (i.e., all the possible
outputs for a). If for each y € Sol(a) we have a number & (a, y) quantifying the qual-
ity of the solution y, we may define the condition £ (a) of a by taking some function
on the set {£(a, ¥) | y € Sol(a)}. Typical choices are

§(a) = yeiSI(l)If(a) §(a, y), §(a) = yeélgl(a)é(a, y), and

&(a):= sup &(a,y),

yeSol(a)

where the expectation in the middle expression is for some distribution on Sol(A).
In the case of a matrix A € Fp we have Solp(A) = {y e R\ {0} | ATy < 0}. If for
y € Solp(A), we define £(A, y) by

R aly
£(A,y)” :=mind; = —max
i<n i<n |lai |||yl
(cf. (6.9)), then we have

T T

a. a:
max &(A,y)"' = —m 4 min  m iy
yeSolp (A) yeSolp(A)  i<n |la;i|llly|l yeSolp(4) i<n |la; |||yl

=-5(A) =|E(A)|=A).

Therefore, € (A) = minyeso,(4) £(A, ¥).
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The quantity £(A, y)~! is the sine of the angular distance from y to the boundary
of the cone Solp(A). The larger this distance, the better conditioned is the solution
y. The equality € (A) = minyesol,,(4) £ (A, y) thus expresses €'(A) as the condition
of the “best conditioned” point in Solp(A).

We finish this section by mentioning that we will encounter in Chaps. 17
and 18, in Part III, examples for the other two choices for &(a), namely
&(a) := Eyesol@)é (a, y)—the “average conditioned” solution—as well as &(a) :=
SUPyesoi(a) § (@, y)—the “worst conditioned” solution.

6.9 The Perceptron Algorithm for Feasible Cones

We close this chapter providing a first, simple, example of the use of 4’ (A) in com-
plexity analysis.

Assume we are given a matrix A € R™*" such that A € Fp. Then, the set
Solf,(A) ={y e R" | ATy < 0} is not empty, and we may be interested in finding
a point in this set. Let us denote this problem by SLI (system of linear inequali-
ties).

In what follows we describe an algorithm solving SLI, known as the perceptron,
whose complexity is naturally analyzed in terms of ¥’ (A). One can devise an ex-
tension of this algorithm that actually decides whether A € F3, or A € F7), but we
will proceed differently, postponing the issue to Chap. 9, where a different method
to solve PCFP is described.

Let us denote by ay, ..., a,, the columns of A which, without loss of generality,
we will assume to have norm one. Thatis, a; € S"Lfori=1,...,n. The following
is the perceptron algorithm.

Algorithm 6.1 Perceptron

Input: aj,...,a, € sm—1
Preconditions: {y e R” | ATy <0} #£0

y:=0
repeat
if ATy<O then return y and halt
else let j be the first index s.t. a}yzO
yi=y-—aj

Output: yeR™
Postconditions: ATy <0

The role of € (A) in the analysis of Algorithm 6.1 is given in the following result

Theorem 6.31 The number of iterations of Algorithm 6.1 is bounded by € (A)?.
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Proof Let p € S"~! and p € [0, %) be such that an SIC for A is cap(p, p) (see
Sect. 6.5). By Theorem 6.27, € (A) = (cos ,o)_l. In addition, w := P isin

min; a; p

Sol},(A), and for all j <n and y € R™ such that a]Ty > (), we have

Iy —aj —wl*=ly—wl*—2a](y —w)+ 1 < ||y —wl> —2a] y +2a] w+ 1
T
a;p
<ly—w?—2—L o +1<lly—w|>~2+1
m id;

=ly—w|*-1.

A trivial induction shows that if yj is the point produced at the kth iteration of the
algorithm, then ||y; — w|? < |w|* — k. Hence, the algorithm stops after at most
|w||? iterations. But

_ 1
lwll =

T - T - ’
min; ai P min; al. P COS p

with the last equality by Lemma 6.26. Since ' (A) = ——, we can conclude. 0

cos p



Chapter 7
The Ellipsoid Method

In this chapter we describe an algorithm, known as the ellipsoid method, solving the
problem SLI we described in Sect. 6.9. Its complexity analysis can also be done in
terms of 4’(A), but in exchange for a loss of simplicity, we obtain bounds linear in
In% (A) (instead of the quadratic dependence in %’(A) of the perceptron algorithm).
We also introduce in this chapter, in its last section, a new theme: the use of
condition numbers in the analysis of algorithms taking integer (as opposed to real)
data. We will show that if the entries of A € 7}, are integer numbers, then one can
return y € Sol},(A) with a cost—and since all our data are discrete, we mean bit
cost (see Sect. 5.1)—polynomial in #, m and the bit-size of the largest entry in A.

7.1 A Few Facts About Ellipsoids

Definition 7.1 An ellipsoid in R™ with center p € R™ is a set of the form
E=E(p.A):={xeR"|(x—p)"A  x—p) <1},

where A € R™*™ is a positive definite symmetric matrix.

In the special case that p =0 and A = diag(a%, ces a,%l) is a diagonal matrix, the
ellipsoid E(0, A) takes the special form

¥} 2
E(O,A):{yeR’” a—12+-~-+a—’;51}. (7.1)

1 m

The o1, ..., oy can be interpreted as the lengths of the principal axes of E(0, A).

It is straightforward to check that an invertible affine map ¢: R” — R™, x
Sx + v, where S € GL,,(R) and v € R™, transforms ellipsoids into ellipsoids. More
specifically, we have

¢(E(p,A)) =E(q,B), whereq=Sp+v, B=SAS". (7.2)
P. Biirgisser, F. Cucker, Condition, 147
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Fig. 7.1 The Lowner-John B
ellipsoid E’ of
E(p, )N{x €R? |aT(x—p) = 0}

The volume of an ellipsoid can be expressed in terms of the determinant of the
defining matrix A as follows.

Proposition 7.2 We have vol E(p, A) = +/det A - 02*1

volume of the unit sphere S™ 1.

, where Oy, denotes the

Proof There exists S € GL,,(R) such that B = SAST =1 is the unit matrix. In
particular, 1 = (detS)>det A. By (7.2), the affine map ¢ corresponding to S and
v = —Sx0 maps E(xp, A) to the unit ball £(0, I). Therefore,

vol E (xg, A) = (det S) "' vol E(0, T) = v/det A vol E (0, I).

In Corollary 2.20 it was shown that the volume of the unit ball in R™ equals
vol E(0,I) = O,,—1/m, which completes the proof. O

Suppose we are given an ellipsoid E = E(p, A) and a nonzero vector a in R™.
We want to intersect £ with the half-space EN{x € R” |aT (x — p) > 0} and enclose
the resulting convex set in an ellipsoid E’ of small volume (cf. Fig. 7.1).

The following result tells us how to do so.

Theorem 7.3 Let E = E(p, A) be an ellipsoid in R™ and a € R™ \ {0}. We define
the symmetric matrix A" and the vector p’ by

1 1
/
—pt—. . Aa,
P b m+1 aTAa
(7.3)
2
2 1
A= A— . - Aaa®AT).
m?—1 m+1 aTAa

Then A’ is positive definite, and the ellipsoid E' = E(p’, A') satisfies
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Eﬂ{xeR’" |aTxZan} CFE, (7.4)

Vol E/ < ¢~ vol E. (7.5)

Proof We first assume p =0, A=1,anda =¢; = (1,0, ...,0). Then E = E(0,])

is the unit ball, and the half-space is described by x; > 0 (see Fig. 7.1). Equa-

tions (7.3) specialize to p’ := m-lquel and

P T m? diag(™ =1 1.1
= — .e1e = P .
M1\ mt1 )T e T

After some calculations we see that the ellipsoid E' = E(p’, A’) is described by

m+1)> 1\ mP-1&,
_ s <1
() () 5 =

This can be easily rewritten as the inequality

2 m
m-—1 5 2m+1) 1
— X;xi S n - D+ — <. (7.6)
1=
We note that equality holds here for the standard basis vectors ey, ..., e,;, which

means that the boundary of E’ contains the e;, as suggested by Fig. 7.1. Using the
characterization (7.6) of E’, it is now easily checked that

m
{xeRm inzfl, X1 ZO} CE,

i=1
which proves (7.4). For proving (7.5), we note that by Proposition 7.2,

vol E’ .
o = Vet A= =/ +1<m2 ) : f(m). (1.7)

For the function f (m) on the right-hand side we have

o 2\l 2 1\
s () (5 ()

which converges to ¢ - 1 - e~ for m — co. A more detailed analysis shows that
in fact, f(m)~2" > e for m > 2. This implies (%)2’" < fm)* < e ! and
hence (7.5).

The general case can be reduced to the special case we have just dealt with by
the following considerations. We know that assertions (7.4)—(7.5) hold for p = 0,
A=1 and a =ey. Let ¢: R — R"™ be an affine transformation given by S €
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GL,,(R) and v € R™. By (7.2) we have ¢ (E(p, A)) = E(q, B), where ¢ = Sp + v
and B = SAST. Defining b = (S~ Ta, it is easily checked that

o({xeR™ 1a"(x — p) = 0}) = {y eR" | bT(y — q) > 0}.

Now we define ¢’ and B’ as in (7.3) by

1 1
/

= +—’ 'Bb’
=T ~bTBb

2
2 1

B=—"_|(p— : . BbbTBT).

m?—1 m+1 bTBb

We claim that the ellipsoid E(g’, B’) satisfies
¢(E(p',A")=E(q. B), (1.8)

where p’ and A’ are as in the special case. Once this is proved, we can conclude
from (7.4) for the triple (p, A, a), by applying ¢, that

E(q.B)n{yeR" |b'(y—¢) =0} S E(¢". B).
MOfeover, from (7.5), also for the triple (p, A, a), it follows that vol E(q’, B") <
e vol E(q, B), using that
volp(E(p', A’)) =detS-vol E(p,A),  vol¢(E(q', B')) =detS -vol E(q, B).
It therefore remains to verify the claim (7.8). A calculation yields
bTBb=a"5'5AST(s7") 'a =a" Aa.

Moreover, we have Bb = SAST(S™)Ta = SAa, and Bbb™B = SAaaTATST.
From these observations one readily sees that ¢’ = Sg 4+ v and B’ = SBST, which
proves the claim (7.8) and thus completes the proof of the theorem. g

Remark 7.4

(a) The computation of p’ and A’ from p and A can be done with O(m?) arithmetic
operations (and one square root).

(b) Itis known that for every convex compact set K € R™ there is a unique ellipsoid
E of minimal volume containing K. One calls E the Lowner—John ellipsoid. It
can be shown that the E’ defined in Theorem 7.3 is the Léwner—John ellipsoid
of EN{x e R" | aT(x — p) > 0}. See [114, §3.1] for more information.

7.2 The Ellipsoid Method

The goal of this section is to describe an algorithm finding a point in a nonempty
convex closed subset K € R™. Before explaining the way the set K is specified,
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we recall from Theorem 6.1 that for a point p € R™ not lying in K, there exists a
half-space H separating K from p, that is, there exists a € R™ such that H = {y €
R™ | aT(y — p) > 0} contains K (and the boundary of H contains p).

The algorithm to be described assumes the existence of (and makes calls to)
a procedure that when given p € R™, returns either the statement “p € K” or a
nonzero vector a € R™ defining a half-space separating K from p. We call such a
procedure a separation oracle for K. It also assumes that K is contained in the ball
B(p, R) and that both p € R™ and R > 0 are given as input. Here is the general
description of the ellipsoid method.

Algorithm 7.1 Ellip_Method

Input: K C R™ given by a separation oracle, p € R", R >0
Preconditions: K # {J is convex and compact; K € Ey:= B(p, R)

Yo:=p
t:=0
repeat

if y; € K then return y, and halt

if y ¢ K use the separation oracle to find a
separating half-space H2OK

compute an ellipsoid E;;; with center y;4i
containing E;NH by applying Theorem 7.3

t:=t+1

Output: yeR™
Postconditions: y e K

In the case that K is a polyhedron, a separation oracle can be easily implemented.
Indeed, suppose that K € R™ is given by a system of n linear inequalities (a; € R™,
b; e R)

T T
ayy<bi,...,a,y <b,.

Then a separation oracle can be implemented with O(mn) arithmetic operations.
For a given p € R™ one just checks the conditions al.T p <b;foralli.If p & K, then
one finds an index i such that alT p > b;, and hence

H:={yeR"| —al(y—p) >0}
is a half-space separating K from p.

Theorem 7.5 The ellipsoid method works correctly. That is, it returns a point in K .
Furthermore, for m > 4, the number of iterations it performs on input (K, R, p) is
bounded by [3(m 4 1) 1In %], where V :=vol B(p, R) and v =vol K.
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Proof Note that if the algorithm reaches iteration ¢, then K C E;. Moreover, Theo-
rem 7.3 implies that

1
Vol E; < e 3m+D yol Ej.

Hence, for t > [3(m + 1)In %1 we have e_3<mt+'> vol Eg < v and therefore vol K <
vol E; < v, a contradiction. The claimed bound follows. Il

We can now proceed to analyze the complexity of the ellipsoid method for the
problem SLI of finding a point in Solp(A) = {y e R" | y #£0, ATy < 0} for given
A € F}) in terms of the GCC condition number %'(A). Since we are dealing with
cones, Solp(A) is nonempty iff the convex compact set K4 := Solp(A) N B(0, 1)
is nonempty.

We will apply Algorithm 7.1 to the set K4 given by the separation oracle ex-
plained before. (We note that even though the inequality ) ; yi2 <1 has to be added
to the description of K4, this inequality is never violated during the execution of
the algorithm.) So we may take p =0 and R = 1 in Algorithm 7.1. The next result
shows that, in addition, we can replace the quotient of volumes V /v by a simple
function of the GCC condition number of the data A.

Lemma 7.6 Let cap(p, p) be an SIC for A € F},. Then B(—p, € (A~ is con-
tained in K 4, and consequently, vol B(0, %(A)_l) <volKj4.

Proof We first note that it is sufficient to show that cap(—p, 5 — p) € K4, since
(A~ = A(A) =cosp.

So assume that y € §™~! satisfies ds(y,—p) < /2 — p. Then we have
ds(y, p) = m/2 4 p. Moreover, since ds(a;, p) < p, we conclude that for all 7,

ds(y,ai) 2 ds(y, p) —ds(p,ai) = /2.

This means that aiTy <O0forall i and hence y € K4. g

So in the analysis of Algorithm 7.1 we have

V. vol B(0, 1)

v = Vol BO.C(A)) A"

Combining this observation with Theorem 7.5, we immediately get the following
result.

Corollary 7.7 Let A € R™*" be such that A € F},. The ellipsoid method, applied
to K 4, finds a feasible point y € K 4 with a number of iterations bounded by

[3m(m + 1)In(%'(A))].

Hereby, each iteration step costs O(mn) arithmetic operations for the implemen-
tation of the separation oracle for K 5 and O(m?) arithmetic operations (plus one
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square root) for the computation of the next ellipsoid. The total number of arithmetic
operations can therefore be bounded by O(m3n1n€ (A)) operations. 0

7.3 Polyhedral Conic Systems with Integer Coefficients

One of the facts giving historical relevance to the ellipsoid method is its protagonism
in showing, in 1979, that linear programming problems with integer data can be
solved in polynomial time. In this section we will show that this is the case for the
solution of SLI with integer data matrices. The key result allowing us to do so is the
following proposition relating condition and bit-size of data, which will be used in
other contexts as well (cf. Remarks 9.18 and 10.5).

Proposition 7.8 (Hadamard’s inequality) For A =|[ay, ..., a,] € R"*" we have
[det Al < llailllazll - - - [lan]l-

Proof Without loss of generality we assume that det A # 0. Then the span §
of ay,...,a,—1 has the dimension n — 1, and by applying an orthogonal trans-
formation we can achieve that S = R"~! x 0. Since orthogonal transformations
change neither the value of the determinant nor the lengths of the columns of A,
it is sufficient to prove the assertion in the special case S = R"~! x 0. We then
have a; = (a;,0) with a] € R"1 for 1 <i <n — 1. Therefore det A = ay,,, det A’,
where A" =[aj,...,a,_,]. The assertion follows now by induction on n, using that
lann| < llanl. O

Proposition 7.9 Let A € Z"" be an integer matrix with entries bounded in ab-
solute value by U. We assume that the columns da; of A are nonzero and form
A:=lai,...,an), where a; :==a; /||d;||. Then we have € (A) < (mU)°™  provided
% (A) is finite.

Proof Let p € S"! and p € [0,7] be such that cap(p, p) is an SIC for A
with blocking set [k] and put 7 := cos p. We may assume A ¢ ¥, so that ¢ # 0.

Lemma 6.26 implies tp € conv{ay, ..., a;} and
alTp=-~=agp=t. (7.9
Without loss of generality, let ay, ..., a; be a basis of span{ai, ..., ax}. Then the

Gram matrix
. : T
G = [Gij]lfi,jff with G,‘j =a;aj

is invertible.
Since tp € conv{ay, ..., ar} C span{ay, ..., ae}, there exist &; such that p =
Z§=1 &jaj. From pTp =1 we deduce that ETG& = 1. On the other hand, (7.9)
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implies that G& = tey, or £ = tG~'e,. Plugging this into the equality éTG& =1,

we obtain that
CA) =t = /el G le.

It is therefore sufficient to show that the entries of G~! are bounded as (mU )O(”’).
For this, we introduce the matrix G with the entries ZziT& j and note that G =
AGA with the diagonal matrix A = diag(||ai], ..., lac||). It follows that G~! =
AG™! A, and hence it suffices to bound the entries of G~! by (mU)©™
By Cramer’s rule, we have

(G_l)ij = (=Dt deth,'/detG,

where the minor M; is obtained from G by omitting the jth row and the ith col-
umn. The assertion follows now from Hadamard’s inequality (Proposition 7.8) and
det G > 1, which holds since G is an invertible integer matrix. O

Remark 7.10 Proposition 7.9 combined with Corollary 7.7 implies that for a matrix
A € 7™ suchthat A € F}, the ellipsoid method finds a feasible point y € Sol p(A)
with O(m3 log(mU)) iterations. Furthermore, it can be shown that it is enough to
implement the arithmetic operations and square roots to a precision of (m log U )o@
digits. The overall number of bit operations is then polynomial in the bit-size of the
input matrix A



Chapter 8
Linear Programs and Their Solution Sets

The polyhedral cone feasibility problem PCFP that occupied us in the last two chap-
ters, though fundamental, is better understood when regarded within the more gen-
eral context of linear programming. Succinctly described, the latter is a family of
problems that consist in optimizing (i.e., maximizing or minimizing) a linear func-
tion over a set defined by linear constraints (equalities and/or inequalities).

A first step towards the solution of such a problem requires one to decide whether
the family of constraints is satisfiable, that is, whether it defines a nonempty set. The
polyhedral cone feasibility problem is a particular case of such a requirement.

Interestingly, optimization and feasibility problems appear to reduce to one an-
other. Thus, in Sect. 9.4, we will solve PCFP by recasting it as an optimization
problem. Conversely, in Sect. 11.3.2, we will reduce the solution of optimization
problems to a sequence of instances of PCFP.

Because of these considerations, before proceeding with the exposition of new
algorithms, we make a pause and devote it to the understanding of linear programs
and their sets of solutions. As usual, such an understanding will prove of the essence
at the moment of defining condition.

8.1 Linear Programs and Duality

We start with a brief review of the basic concepts of linear programming. Be-
cause of the possible forms of the constraints of a linear program, as well as the
choice maximization/minimization, linear programs occur in a variety of different
shapes. They are all, however, equivalent in the sense that they can all be reduced
to a single simple form. The most common such form, called standard, owes its
widespread use to the fact that the first efficient algorithm developed to solve linear
programs, the simplex method, applies to linear programs in this form. For use in
subsequent chapters, we will consider in this section a slightly more general form,
namely
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Table 8.1 Construction of the dual of a linear program

Maximization problem < Dual — Minimization problem

ith inequality (<) constraint ith nonnegative variable

ith equality (=) constraint ith unrestricted variable

Jjth nonnegative variable Jjth inequality (>) constraint
Jjth unrestricted variable Jjth equality (=) constraint
objective function coefficients constant terms of constraints
constant terms of constraints objective function coefficients
matrix of constraints A matrix of constraints AT

min  ¢Tx +dTw
st. Ax+Gw=b, (OP)
x>0,

where A € R"*", G e R"*P, b e R™, c € R", d € RP, are the given data and we
look for an optimal vector (x, w) € R"*7. We say that (OP) is feasible if there exists
(x,w) € R"P such that Ax + Gw = b and x > 0. The set of all such pairs is the
feasible set of (OP).

The function (x, w) — c¢Tx + dTw is the objective function. A feasible linear
program (OP) is called bounded if the minimum of the objective function is finite.
Otherwise, it is called unbounded. In the first case this minimum is called the op-
timal value, and any feasible point (x, w) attaining it iS an optimal solution (or an
optimizer) of (OP).

Linear programming possesses a beautiful theory of duality. To any linear pro-
gram one can associate another one, called its dual, which is obtained in a precise
manner succinctly described in Table 8.1.

For the linear program (OP), given by the data A, G, b, ¢, d, we obtain as dual
the following:

max by
st. ATy <e, (OD)
GTy=d

where y € R™. The notions of feasibility, boundedness, and optimality also apply
here. Furthermore, the essence of duality theory is the interplay of these notions in
both the primal and dual problems. We next elaborate on this interplay.

Feasible sets are intersections of hyperplanes and closed half-spaces. There-
fore, they are closed convex subsets of Euclidean space. The following elementary
lemma, whose proof we leave to the reader, recalls some facts of linear functions on
convex sets.

Lemma 8.1

(a) A linear function € defined on a convex set C C R9 has no extrema in the relative
interior of C unless it is constant on C.
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(b) Under the hypothesis of (a), if C is closed and sup, .- £(x) < 00, then there
exists x* € C such that sup, .- £(x) = £(x*). A similar statement holds for inf £.
(¢) If a linear function is constant on a set S, then it is constant on its convex hull
conv(S). O

An important consequence of Lemma 8.1(b) is that if a linear program is feasible
and bounded, then it has optimal solutions.
Suppose now that (OP) and (OD) are both feasible, say

Ax+Gw=>b, x>0,
ATy <e, G'y=d, forsomexeR" weR’, yeR™

Introducing the vector s := ¢ — ATy of slack variables, we have ATy + s = ¢ and
s > 0. Then

cx+d"w—bTy= (ST + yTA)x +yTGw —bTy
=sTx—|—yT(Ax+Gw—b)=sTx > 0. (8.1)
In particular, for any feasible points (x, w) and y, we have
cx+d"w=>bTy. (8.2)

It follows that if (OP) and (OD) are both feasible, then they are both bounded and
max b’y < min(cTx + dTw). The fundamental duality theorem of linear program-
ming states that actually equality holds.

Theorem 8.2 (Duality theorem of linear programming)

(a) The problem (OP) is bounded iff (OD) is bounded. In this case both problems
have optimal solutions and their objective values are equal.

(b) If (OP) is unbounded, then (OD) is infeasible. If (OD) is unbounded, then (OP)
is infeasible.

Proof We have proved part (b) above. To prove part (a) we will show that if (OP)
has an optimal solution then so has (OD), and in this case the optimal values of these
problems coincide. The proof of the converse is similar.

Assume that (x*, w*) is an optimal solution of (OP) and let v* := ¢Tx* + dTw*
be the corresponding optimal value. For ¢ > 0 let v, := v* — €. Define

A G -G b
A = |:—CT —dT dTi| and ba = |:‘U8i| .

Then, using that any real number can be written as the difference of two nonnegative
reals, the system

A(x,w',w”)=be, x,w',w” >0,
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is feasible when ¢ = 0 and infeasible when & > 0. Farkas’s lemma (Lemma 6.4)
then implies that

AT(y,1)<0, bl 0>0

is infeasible when ¢ = 0 and feasible when ¢ > 0. This is equivalent to saying (now
use that z =0 if and only if z < 0 and z > 0) that the system

ATy <er, Gy =dr, bly —v,t >0 (8.3)

is infeasible when ¢ = 0 and feasible when & > 0.
For ¢ > 0 let (yg, t;) be a solution of (8.3). Note that if #; <0, then

0<bly —vete =bTy — vt 4+ 1, <b'y — v*1,,

and hence a solution (y,, z,) with z, <0 would be a solution of the system for ¢ =0
as well, which is a contradiction. We conclude that ¢, > 0. Dividing by ., it follows
that the system

ATyfc, GTyzd, bTy—v5>0

is infeasible when & = 0 and feasible when ¢ > 0. That is, the linear function £: y
bTy is bounded above by v* on the feasible set Sp of (OD) and its image on this
set contains points arbitrarily close to v*. Hence, SUPyes,, bTy = v*. Lemma 8.1(b)
allows one to conclude that the maximum of £ is attained on the feasible set of (OD)
and has the value v*. O

It is rewarding to consider (OP) and (OD) simultaneously. We define the poly-
hedral set S of (primal-dual) feasible solutions to be the set of points z =
(x,w, y,s) € RPTPTMHN gatisfying

Ax +Gw =b, ATy +s5=c, Gly=d, x>0 5s>0. (8.4)
We note that S is convex. We further note the following fundamental result.

Theorem 8.3 (Complementary slackness) Let (x,w,y,s) € S. Then (x,w) is an
optimal solution of (OP) and y is an optimal solution of (OD) if and only if

x151 =0, ..., x,5, =0. (8.5)
Proof 1t follows from (8.1) and Theorem 8.2. O

The equality (8.5) is known as the complementary slackness condition. We call
relations (8.4) together with (8.5) optimality conditions. For a point (x, w, y,s) € S,
the value ¢Tx +dTw — bTy = sTx is called the duality gap. Interior-point methods,
which will be the theme of the next chapter, work by starting with a point in S and
iteratively constructing a sequence of points in S with a fast decrease in their duality

gap.
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We close this section by giving the standard form mentioned at the beginning of
this section. This is the linear programming form that will occupy us for the rest
of this chapter (and in some chapters to come). Both the primal and the dual are
obtained by removing all terms in (OP) and (OD) in which any of G, w, and d
occurs. Thus, in the primal case we obtain

min ¢’ x subjectto Ax=b, x>0, (SP)

and in the dual,
max bTy subject to ATy <c. (SD)

In what follows, we will consider linear programs in standard form, and we will
systematically assume that n > m. The first result we prove for this form is the
following strengthening of the complementary slackness condition (8.5).

Proposition 8.4 (Strict complementary theorem) If (SP) and (SD) are both feasi-
ble, then there exist optimizers (x*, y*, s*) such that

=0 s'>0 fori=1,...,n.

Proof We will first show that for each i =1, ..., n there exists an optimal solution
(x @ y@ @) guch that either xl.(a) #0or sl.(a) #0.

Let v* be the optimal value of the pair (SP-SD) and consider an optimizer x
of (SP). If there exists an optimizer (y, s) of (SD) with s; # 0, we take (y@, s()) :=
(v, s) and we are done.

If instead, s; = O for every optimizer (y, s) of (SD), then the linear program

max eiTs
s.t. ATy +s =c,
—bTy — _v*7
s>0,
where ¢; = (0, ..., 1,...,0) is the ith coordinate vector, has optimal value 0. By

Theorem 8.2, its dual

x,t >0,

has then a feasible solution (x, f) € R"*! with objective value cTx — v*r = 0.
Assume that for this solution we have t = 0. Then ¢Tx =0, Ax =0, and x > ¢;.
This implies that x@ := X 4 x is an optimizer of (SP) and xi(a) #0.
Assume now that instead, ¢ > 0. Then the point x (@ := + is an optimizer of (SP)
and xl.(“) £ 0.
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We have therefore proved our initial claim. It is now immediate to see that the

points
L Xn:xw and (v, 5%) = - Xn:(yw) $@)
nis s

satisfy that for all i < n, either xl.* >0 or sl.* > 0. In addition, they are optimizers
of (SP) and (SD) respectively, since they are convex combinations of optimizers and
the optimal sets of linear programs are convex (Proposition 8.7(b)). The fact that
not both x and s} are greater than zero is, finally, a consequence of complementary
slackness (8.5). O

Remark 8.5 A word of caution is called for regarding names. We have used the
expression “standard primal” (and the corresponding tag (SP)) and likewise for the
“standard dual.” This choice of words follows a long established tradition that has
its roots in the fact that the simplex method runs (only) on linear programs with the
form (SP). It must be noted, however, that there are no naturally primal (or naturally
dual) problems. To any given problem we may associate its dual using the method
implicit in Table 8.1. And the dual of the dual is the original linear program.

8.2 The Geometry of Solution Sets

We denote by Sp and Sp the primal and dual feasible sets for d = (A, b, c¢) respec-
tively, that is,

Sp::{xeRnle:b,XEO}, szz{yeleATyfc}.
We also denote by Qp and Qp the corresponding sets of optimal solutions.

Proposition 8.6

(a) Both Sp and Sp are polyhedra.
(b) If Sp is nonempty, then it contain vertices. The same holds true for Sp if in
addition, rank A = m.

Proof Part (a) is trivial. For part (b) recall that by Corollary 6.13, if a polyhedron
has no vertices, then it contains a line. The fact that Sp contains vertices is then
clear, since the set Sp is included in the positive orthant {x € R" | x > 0}, and this
set does not contain lines.

For the dual, we use that if there is a line £ contained in Sp, then by Lemma 6.11,
rank A < m, a contradiction. O

Proposition 8.7

(a) The sets Sp and Sp are both nonempty if and only if Qp and Qp are both
nonempty.
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(b) If this is the case, then Qp and Qp are faces of Sp and Sp, respectively. In
particular, they are polyhedra as well.
(¢) In addition, Qp possesses vertices, and so does Qp if rank A = m.

Proof Part (a) is an immediate consequence of Theorem 8.2(a). We then proceed to
part (b), which we will prove for the primal case (the dual being similar).

If the objective function is constant on Sp, then Qp = Sp and we are done. As-
sume then that this is not the case. We claim that Qp is a union of proper faces
of Sp. Indeed, because of Lemma 8.1(a) with C = Sp, we must have Qp C 0Sp,
that is, Qp is included in the union of the proper faces of Sp. The same lemma
applied to each of these faces shows that either the whole face is in Qp or its inter-
section with Qp is in a lower-dimensional subface. Repeating this argument proves
the claim, i.e., Qp is a union of proper faces of Sp. If this union consists of a sin-
gle face, we are done. Assume the contrary, and let F' be a face of Sp of maximal
dimension among those included in Q p. By assumption, there exists a face F’, also
included in Qp, such that neither F' C F nor F C F’. Lemma 8.1(c) implies that
conv(F U F') C Qp. But by Lemma 6.10, dimconv(F U F’) > dim F = dim Qp,
in contradiction to this inequality.

For part (c), assume Sp # @. Then, Proposition 8.6(b) ensures that Sp has ver-
tices, which implies, by Corollary 6.13, that Sp does not contain lines. Therefore,
neither does Qp, and the same corollary (together with part (b)) implies that Qp
possesses vertices. A similar argument applies to Qp. 0

It is a common convention to assign dimension —1 to the empty set. With this
convention, (SP) is feasible and bounded if and only if dim Qp > 0, and likewise
for (SD). We can further distinguish among linear programming data as follows.

We say that a triple d = (A, b, c) is heavy for (SP) (or primal-heavy when
dim Qp > 1), and that it is light, i.e., Qp is a vertex of Sp, otherwise. Similarly
for (SD). We say that d is heavy when it is either primal-heavy or dual-heavy.

Figure 8.1 shows examples of light and heavy instances for (SD) (the arrow
showing the optimization direction, the lines and points in bold, the sets of opti-
mal solutions). At the left we see an instance corresponding to a light triple. Both at
the center and at the right are instances corresponding to heavy data, but the optimal
set Qp in the former is compact and in the latter is not. Because of this, for the data
at the right, arbitrarily small perturbations may make the problem unbounded and
consequently its dual (SP) infeasible. This is not possible for the central situation.

Proposition 8.8 Let d be primal-heavy such that Qp is noncompact but (SP) is
bounded. Then, there exist arbitrarily small perturbations d of d for which (SP) is
unbounded (and hence (SD) infeasible). A similar statement holds for Qp.

Proof Since Qp is noncompact, there exist x, w € R”, ||lw| = 1, such that x; :=
x + Aw € Qp, for all A > 0. Because (SP) is bounded we must have cTx, =cTx +
rcTw = v*, for all A > 0 (here v* is the optimal value of d). This implies ¢Tw = 0.
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Fig. 8.1 Three situations for linear programs

Table 8.2 Possible optimal sets of a linear program

dim Q
—1 0 >0
Q compact infeasible light heavy
Q noncompact heavy with dual nearly infeasible

Consider now, for any ¢ > 0, the point ¢ := ¢ — ¢w and the triple d:=(A,b,0).
Note that the set of feasible points of (SP) for d coincides with that for d. In partic-
ular, it contains Qp. Also, for all > >0,

Ty =cTx —ewTx — Ae.
Therefore, éTx; — —oo when A — oo, which shows that (SP) is unbounded for d.
Since ¢ is arbitrarily small, the conclusion follows. O

We can summarize the distinctions above in Table 8.2 (where empty boxes denote
impossible situations, “dual” refers to the dual of the given problem, which may be
either (SP) or (SD), and we used the expression nearly infeasible to denote that
arbitrarily small perturbations may yield infeasibility).

We say that x* is an extremal optimal solution of (SP) (or of the primal) when x*
is a vertex of Qp, and similarly for the dual problem.

8.3 The Combinatorics of Solution Sets

Proposition 8.7 ensures that if the primal-dual pair (SP-SD) is feasible, and
rank A = m, then one may confine the search for optimizers to the vertices of the
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sets Qp and Qp. But vertices are solutions of square systems of linear equations,
an observation that suggests finding optimizers by solving this kind of system. This
section pursues these ideas.

For any subset B of {1,2,...,n}, we denote by Ap the submatrix of A obtained
by removing from A all the columns with index not in B. If x € R", xp is defined
analogously. Also, let N :={1,2,...,n}\ B. Then Ay and xy are defined similarly.

Definition 8.9 By a basis B for a data triple d = (A, b, ¢) we understand a subset
B C{1,2,...,n} with | B| = m and such that A is invertible.

Let B be a basis for d. Then we may uniquely solve Apx = b. Consider the
point x* € R" defined by x}, =0 and x} = x. Clearly, Ax* = b. We say that x* is
the primal basic solution of (SP) associated with B. If, in addition, x* > 0, which is
equivalent to x3 > 0, then we say that x* is a primal basic feasible solution.

Similarly, for any basis B for d we may uniquely solve A};y = cp. The point y*
thus obtained is said to be the dual basic solution of (SD) associated with B. If, in
addition, AT y* < ¢, then y* is said to be a dual basic feasible solution.

Definition 8.10 A basis B for a data triple d is called an optimal basis if both the
primal and dual basic solutions associated with B are feasible, in which case the
latter are called the basic optimal solutions of d associated to B.

There is a rationale for the word “optimal” in Definition 8.10.

Proposition 8.11 Let B be an optimal basis for a triple d. If (x*, y*) is the basic
optimal solution associated to B, then x* and y* are optimizers for the problems
(SP) and (SD), respectively.

Proof By construction, (x*, y*, s*) is in the set S of feasible solutions (see (8.4)).
In addition, one immediately checks that x* and s* satisfy the complementary slack-
ness conditions (8.5). The optimality thus follows from Theorem 8.3. U

It also follows from Definition 8.10 and Lemma 6.9 that if (x*, y*, s*) is a basic
optimal solution, then x* and y* are extremal optimal solutions of the primal and
dual, respectively. The next example shows that the converse of this property does
not necessarily hold. It is possible for a basis B that the associated basic solution
for a linear program is optimal but the corresponding basic solution for the dual
problem is not optimal (or even feasible). In other words, not all bases defining a
vertex of Q are optimal bases.
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Example 8.12 Consider the linear program

max yi
s.t. Y1 <0,
- <0,
y2 <0,
—y2 <1,
with dual
min x4
st. x| —x2 =1,
x3—x4 =0,

X1, X2, x3, x4 >0.

The feasible set of the maximization problem is the interval with endpoints (0, —1)
and (0, 0). Any point in this interval is an optimizer. The set of optimal points of its
dual is a ray described by

{Go+1,1,0,00| 2 >0].

Both problems have heavy sets of optimizers.

The set {2, 3} C [4] is a basis. The associated solution of the maximization prob-
lem is y* = (0, 0), which is an optimizer. But the associated solution of the mini-
mization problem is (0, —1, 0, 0), which is infeasible.

Our next result, the highlight of this section, shows the existence of optimal
bases.

Theorem 8.13 Let d = (A, b, ¢) be a data triple satisfying rank A = m. Then:

(a) There is an optimal basis for d if and only if both (SP) and (SD) are feasible.

(b) Let B be a basis for d. Then B is optimal if and only if both the primal and the
dual basic solutions associated to B are optimizers for (SP) and (SD) respec-
tively.

(c) If there is more than one optimal basis, say B1, ..., Bs, s > 2, then the set of
optimizers for (SP) contains the convex hull of x, ..., x}, where x} € R" is
the primal basic solution associated to B;,i =1, ...,s. Likewise for the set of
optimizers for (SD).

Proof Clearly, if an optimal basis exists, then both primal and dual problems are
feasible. To see the converse, assume that these problems are feasible. Then, by the
Theorem 8.2(a), there exist optimal solutions x* and y* of (SP) and (SD), respec-
tively. By Proposition 8.7(c), and since rank A = m, we may assume that y* is a ver-
tex. Therefore, by Lemma 6.9, there exists B C [n] such that |B| =m, A;ng* =cp,
and rank Ap = m (i.e., Ap is invertible). In other words, y™* is the dual basic solution
associated to B.
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Let N :=[n] \ B and assume that for all i € N we have aiTy* < ¢;. Then, by
complementary slackness (8.5), we must have that x} = 0 for all i € N. This implies
that Apx}, = b and, consequently, that x* is the primal basic solution associated to
B. Since both x* and y* are feasible, we conclude that B is an optimal basis.

Assume now that instead, there exists i € N such that aiT y*=c¢;,andlet D C N
be the set of all such indices. For all i € D, and since rank Ap = m, we can express
a; as a linear combination of the a; for j € B, say a; = Zj Ajaj. Then

ci=aly* = ija}y* = Z)‘/C-/‘

jeB jeB

It follows that (a;, ¢;) € R™*! is a linear combination of {(aj,cj) | j € B}, for all
i € D. Consider the triple d’ = (A, b, ¢), where A is obtained from A by removing
its ith column for all i € D and likewise for c. The set of feasible solutions of
ATy < ¢ is the same as that of ATy < c¢. Therefore, the same holds for their sets
of optimal solutions with respect to y > b1y, which we know is nonempty. By the
duality theorem, the linear program minec’x’ subject to Ax’ = b, x’ > 0 (with now
x’ € R*7IPly also has a nonempty set of optimal solutions. We can therefore repeat
the argument used above to show that B is an optimal basis for d’, and padding with
zeros the optimal basic solution x’ of its primal, we obtain a primal basic feasible
solution for the basis B of d. This finishes part (a).

The “only if” direction in part (b) is a consequence of Proposition 8.11. The other
direction is trivial, since optimizers are, in particular, feasible points.

Part (c) is clear. Il

The following example shows a linear program with a unique optimal basis but
a heavy set of optimizers for (SP). It also provides an instance for which the strict
complementary guaranteed by Proposition 8.4 cannot be achieved at a basic optimal
solution.

Example 8.14 Consider the linear program

min X1 — X2
s.t. X1 —x3 =1,
Xy —x3 =1,
X1, x2, x3 >0,

with dual
max yi —¥
s.t. 1 <1,
y2 < -1,
-y1 —y» =<0

The feasible set of the primal is a ray with origin at (1, 1,0) and direction vec-
tor (1, 1, 1). All points in this set are optimal solutions; hence, the datum is heavy
for (SP). The feasible set of the dual reduces to the point (1, —1).
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The dual is nearly infeasible (it becomes infeasible if one replaces the third con-
straint by —y; — y» < —¢ for any ¢ > 0) and the primal is consequently nearly
unbounded (it becomes so for the objective functions x| — x2 — £x3).

We have Qp = {(1, —1)}, and the slackness at this point is (0, 0, 0). Strict com-
plementarity is achieved at primal solutions of the form (r 4+ 1,7 + 1, r) for any
r > (. But these points are not basic solutions of (SP) (the only such solution corre-
sponding to r = 0).

8.4 Ill-posedness and Degeneracy

We introduce in this section the notion of degeneracy, which links the algebra of a
linear program with the geometry of its dual. Endowed with this notion, we discuss
ill-posedness in the last part of this section.

8.4.1 Degeneracy

Proposition 8.4 (strict complementarity) imposes a constraint on the solutions of
light data. If (x*, y*, s*) is the only solution of a primal-dual pair of linear pro-
grams, then it must be a basic optimal solution by Theorem 8.13. If B is the as-
sociated optimal basis and N := [n] \ B, we must then have xy = 0 and sz = 0.
Proposition 8.4 further implies that sy > 0 and xp > 0. This property motivates the
following definition.

Definition 8.15 A feasible point x of (SP) is called degenerate when we have
H{j <nl|x; =0} >n — m. Likewise, we say that a feasible point (y, s) of (SD)
is degenerate when |{j < n | s; = 0}| > m. This defines, by extension, the notions
of degenerate optimal solution, degenerate basic feasible point, and degenerate ba-
sic optimal solution.

We say that a triple d = (A, b, ¢) is primal degenerate if (SP) has degenerate
optimal solutions and likewise for dual degenerate. We say that d is degenerate
when it is either primal or dual degenerate.

Proposition 8.16 The problem (SP) has a degenerate optimal solution if and only if
it has a degenerate basic optimal solution. The same holds for (SD) if rank A = m.

Proof We prove the result for (SD). The statement for (SP) admits a similar proof.
The “if” direction is trivial. For the converse, we note that in the course of the
proof of Theorem 8.13(b) we started with an optimal solution (y*, s*) of (SD) and
constructed a basic optimal solution for this problem. A new look at this proof re-
veals that in doing so, the number of nonzero components of s did not increase.
Therefore, if (y*, s*) is a degenerate optimal solution of (SD), then so is the con-
structed basic optimal solution. This proves the second statement. g
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The relationship between heaviness, duality, and degeneracy is captured in the
following statement.

Proposition 8.17 If one of (SP) or (SD) is heavy and has a nondegenerate extremal
optimal solution, then all the optimal solutions of its dual are degenerate.

Proof Assume that (SP) is heavy and let x* be a nondegenerate extremal optimal
solution with basis B, i.e., B ={j <n|x} > 0}. Since (SP) is heavy, there exists
another optimal solution x’ # x* for (SP). Then there exists i ¢ B such that x| > 0.
Otherwise, Apxjy = Ax’ = b, and it would follow that xj; = x} and hence that
x' =x*.

Let x := %(x/ + x*). Then x is an optimizer, since it is a convex combination
of two optimizers. Furthermore, since x* is nondegenerate, we have x* > 0 for all
j € B. This implies that X; > 0, for all j € B U {i}. Now take any optimal solution
(y*, s*) of (SD). Then, by complementary slackness (8.5), sj =0forall j € BU{i}.
That is, (y*, s*) is degenerate.

The proof of the other case, i.e., (SD) heavy with a nondegenerate basic optimal
solution, is similar. O

Example 8.18 A linear program may be degenerate even if all its optimal solutions
satisfy the strict complementarity condition. An example is the following primal—
dual pair:

min x4+ 2x2 + 3x3 max yj
st. xi+x2+x3 =1, st. yi+y»<l1,
xi+x+x3 =1, yit+y2 <2,
X1, x2, x3 >0, yit+y2<3.

Example 8.19 A triple d may be infeasible (in the sense that either (SP) or (SD)
is so) but have arbitrarily close feasible triples. An example is the infeasible primal—
dual pair

min 2x7 max V2
S.t. —Xx1+x2 =0, s.t. —y <0,
x3 =—1, Vi <2,
x1, x2, x3 >0, -y <0,

which is approximated (for ¢ > 0 small) by the following pairs:

min 2x2 max yj
s.t. —Xx1+xp =0, st. —y;1+ey; <0,
ex1+exo—x3 =1, yi+ey <2,
X1, X2, x3 >0, -y =0,

with optimal solutions x} = (2%, %, 0) and y} = (1, %).
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8.4.2 A Brief Discussion on Ill-posedness

The picture for the sets of optimal solutions emerging from the results in this chap-
ter provides a framework to discuss ill-posedness for several problems in linear
programming.

(a) Optimal Solution Problem This is the problem of computing optimizers x*
and y* for the linear programs (SP) and (SD), respectively. We want to identify the
set of ill-posed data for this problem.

To do so, we first observe that infeasible triples should be considered as ill-posed
if and only if they are like the one in Example 8.19, that is, if and only if arbitrar-
ily small perturbations can make these triples feasible (and, consequently, create
optimizers for them). We define

X7 :={d|d is infeasible and Ve > 0 3d’ feasible with |d — d'|| < ¢}

and call this the set of infeasible ill-posed triples.

We next consider feasible triples, along with their sets of optimal solutions. As-
sume first that Qp is heavy for some datum d. If it is compact, then arbitrarily
small perturbations may turn Qp into a singleton made by any of its vertices (cf.
Fig. 8.1). If instead, Qp is noncompact, then arbitrarily small perturbations of d
may make (SD) infeasible (by Proposition 8.8). Similar statements hold for Qp.
Therefore, we should consider data that are heavy for either (SP) or (SD) as ill-
posed.

Assume now that instead, both Qp and Qp are light. Then Theorem 8.13 ensures
that the only optimizers x* and y* for (SP) and (SD), respectively, are basic optimal
solutions associated to a basis B. Furthermore, Proposition 8.4 implies that sy, > 0
(here N :=[n]\ B). Therefore sufficiently small perturbations of d will still yield
solutions for Agxgp = b, xp > 0, A};y =cp, and ALy < cn. In other words, we
should consider data that are light for both (SP) and (SD) as well-posed.

We have thus identified the set of well-posed instances for the optimal solution
problem as those having unique optimizers for both (SP) and (SD). Consequently,
we define the set of ill-posed triples for this problem to be

Topt := {d | d has at least two optimizers (x, y)} U 7.

The following result shows that rank-deficient triples are ill-posed.
Lemma 8.20 Letd = (A, b, c). If d is feasible and rank A < m, then d € Xqp.

Proof Let x*, y* be optimizers for (SP) and (SD), respectively. Because of Propo-
sition 8.4 we may assume that strict complementarity holds for this pair. We will
show that other optimizers exist.

Todoso,let B:={j <n| x; > 0}. If B =0, then ATy* < ¢, and consequently,
sufficiently small perturbations of y* will also be feasible points of (SD). Comple-
mentary slackness (8.5) ensures that they are actually optimizers. If instead, B # 0,
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then
S = {x c RI5 | Apx =b} =x§ + kerAp.

Since rank A < m, we have rank Ap < m and hence dimker Ag > 0. Since xg >0,
the points x” given by xj = x} + x with x e ker Ap and x}, =0 (here N = [n]\ B)
will be, for sufficiently small x € ker A g, feasible points of (SP). Complementary
slackness ensures, again, that they are actually optimizers. g

(b) Optimal Basis Problem This is the problem of computing an optimal basis.
As for the optimal solution problem, we want to identify the set of ill-posed data. In
contrast with the preceding problem, this one is discrete-valued: the output for any
given datum d is an m-element subset in [n]. Therefore, the discussion in Sect. 6.1
applies, and the set Xop of ill-posed triples for this problem should be taken as the
boundary between these possible outputs. In other words, if OB(d) denotes the set
of optimal bases for a triple d, we define

Yop:={d|Ve>03d's.t. OB(d)#0B(d’) and |d —d'| <&}
Again, feasible rank-deficient data are ill-posed for the optimal value problem.

Lemma 8.21 Letd = (A, b, ¢). If d is feasible and rank A < m, then d € Xop.

Proof We begin as in the previous lemma with a pair x*, y* of optimizers for (SP)
and (SD), respectively. Note that the hypothesis rank A < m implies that no m x m
submatrix of A is invertible. Therefore, OB(d) = . We will show that there exist
arbitrarily small perturbations d of d with OB(d) # .

To do so, we need to fix a norm in the space of triples. Clearly, the norm is not
relevant, so we may take || (A, b, ¢)|| :=max{||All, |2, lc|l}, where the first norm is
the spectral and the other two, the Euclidean. Now let R = max{1, ||x*||, ||y*||}. For
any ¢ > 0 there exists a full-rank matrix A such that |A — A|| < %. Let b := Ax*
and ¢ € R” be given by ¢; := max{c;, E[Ty*}. Then

I Bl = | Ax* A" < 1A~ AN ] = £ )] <

e

z|
Similarly, dividing by cases, ||c —¢|| < &. It follows that if we take d = (A, b, ¢), we
have ||d — d|| < . But by construction, Ax* EE and ZTy* <¢. Thatis, x* and y*
are feasible points for the primal and dual of d, respectively. Theorem 8.13(a) now
ensures that OB(d) # @. O

Proposition 8.22 Let d = (A, b, ¢) be feasible. Then we have d € Xop <= d €
20B.

Proof Because of Lemmas 8.20 and 8.21 we know that the statement is true if
rank A < m. We therefore assume rank A = m.
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Suppose d & Xopt. Then d has a unique optimal solution pair (x*, y*). Because
of Theorem 8.13 this solution is basic. Furthermore, because of Proposition 8.4,
we have Ap invertible, xj > 0, and A},y* < ¢y (here B is the optimal basis and
N := B\ [n]). It is clear that sufficiently small perturbations d’ of d will preserve
these properties, so that OB(d") = OB(d) = B. Hence, d ¢ Xog.

Suppose now d € Xop. Then d is heavy either for (SP) or for (SD), say, with-
out loss of generality, that for the former. Because of Theorem 8.13 there exists a
basic optimal solution (x*, y*) of d with associated optimal basis B. If Qp is non-
compact, then because of Proposition 8.8, there exist arbitrarily small perturbations
d’ of d for which (SD) is infeasible. In particular, OB(d’) = ¥, and hence, since
B € OB(d), we deduce d € Xop. If instead, Qp is compact, then it contains at least
two vertices. In particular, it contains a vertex x different from x*. Now arbitrarily
small perturbations d’ (just perturb ¢) may turn X into the only optimizer of (SP)
for d’. But then B ¢ OB(d"), and this shows that d € Xog. O

Corollary 8.23 We have Yopy = Xog. Furthermore, restricted to feasible data, this
set coincides with {d | d is degenerate}.

Proof For an infeasible triple d we have OB(d) = #. Hence, for such a triple,
d € Xop if and only if there exist triples d’ arbitrarily close to d for which
OB(d’) # @, that is, if and only if d € X7. The first statement therefore follows
from Proposition 8.22.

To prove the second, let d = (A, b, c) be feasible. If d ¢ Xpt, then d has a unique
pair of optimizers (x*, y*). Also, because of Lemma 8.21, rank A = m. Therefore,
by Theorem 8.13, (x*, y*) is a basic optimal solution. By Proposition 8.4 this pair
satisfies the strict complementarity condition. Therefore, it is nondegenerate.

We next prove the converse. For this, we assume that d € Yoy, that s, d is either
primal heavy or dual heavy. We will then show that d is degenerate. We do so
dividing by cases.

Assume first that rank A = m. Then, by Theorem 8.13, there exists a basic opti-
mal solution (x*, y*). If d is primal heavy, then either x* is degenerate, in which
case we are done, or it is nondegenerate, in which case y* is degenerate by Propo-
sition 8.17 and we are done as well. The same reasoning applies if d is dual heavy.

Assume now that rank A < m and consider an optimizer (x*, y*) satisfying the
strict complementarity condition. Let B := {j <n | x;’f > 0}. If |B| < m, then d
is primal degenerate. If |B| > m, then d is dual degenerate. We are left with the
case |B| = m. Since Agx™ = b, we see that b € R™ can be expressed as a linear
combination of {a; | i € B} with nonnegative coefficients, i.e., b € cone{qa; | i € B}.
Recall that dimspan{q; | i € B} < m by assumption. Hence, by Carathéodory’s The-
orem 6.5, there exist a set / € B, with |I| <m — 1, and nonnegative real numbers
x/, for i € I, such that A;x" = b (here x’ is the vector in R with entries x)).
This shows that the point ¥ given by X; = x’" and x; =0 for j ¢ I is a feasible
point for (SP). But the pair (x, y*) satisfies the complementary slackness condi-
tions. Therefore, x* is an optimizer for the primal problem and it is degenerate. [J
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The sharing of the set of ill-posed instances suggests that we should numerically
solve the optimal solution problem by doing so for the optimal basis problem. We
will do so in Chap. 11, where in passing, we will also define a condition number
# (d) (the relativized inverse of the distance to Xop) for the optimal basis problem.

(c) Feasibility Problem Both the optimal basis and the optimal solution prob-
lems require a previous (or simultaneous at least) solution of the feasibility problem
for linear programming primal—dual pairs. This consists in deciding whether both
Ax =b, x >0, and ATy < ¢ have feasible points. That is, the feasibility problem
is a decision problem, and therefore, always following the discussion in Sect. 6.1,
condition for this problem’s data can be defined as the relativized distance to ill-
posedness, with the latter defined as the boundary between the sets of feasible and
infeasible triples. That is, letting

1 ifd is feasible,
FP(d) = { 0 if d is infeasible,

we define
Zrp:={d |Ve > 03d s.tFP(d) #FP(d) and |d — d'|| <¢}.

Clearly, Xrp € XoB.

In Chap. 10, we will describe an algorithm solving the feasibility problem and
analyze it in terms of a condition number C(d) (the relativized inverse of the dis-
tance from d to Xgp). We will also show that C(d) is closely related to €.

(d) Optimal Value Problem A last problem that is worth mentioning here is the
optimal value problem. This consists in computing the optimal value v* (or oc-
casionally, of computing an e-approximation of it). A look at the three situations
in Fig. 8.1 reveals a peculiar behavior. For the situation at the left (dim Q = 0),
sufficiently small perturbations will produce only small perturbations of both the
optimizer and the optimal value. That is, light triples are well-posed for the op-
timal value problem. For the situation at the right, arbitrarily small perturbations
may drive the optimal value to oo (or —oo if it is a minimization problem). Hence
we consider this situation to be ill-posed. But the middle situation (compact heavy
data) appears to be well-posed for these problems: sufficiently small perturbations
will neither affect feasibility nor drive the optimal value to +00. The optimal value
problem appears to share the set of ill-posed inputs with the feasibility problem, and
one could consequently expect to have algorithmic solutions analyzed in terms of
C(d). We will return to this problem in Sect. 11.5.



Chapter 9
Interior-Point Methods

The ellipsoid method presented in Chap. 7 has an undeniable historical relevance
(due to its role in establishing polynomial time for linear programming with integer
data). In addition, its underlying idea is simple and elegant. Unfortunately, it is not
efficient in practice compared with both the simplex method and the more recent
interior-point methods. In this chapter, we describe the latter in the context of linear
programming.

Unlike the ellipsoid method, which seems tailored for feasibility problems,
interior-point methods appear to be designed to solve optimization problems. In
linear programming, howeyver, it is possible to recast problems of one kind as prob-
lems of the other, and we will take advantage of this feature to present an algorith-
mic solution for the feasibility problem PCFP. We will see that again, the condition
number %' (A) of the data plays a role in the complexity of this solution.

9.1 Primal-Dual Interior-Point Methods: Basic Ideas

The most common method to solve linear programs is Dantzig’s simplex method.
This method relies on the geometry of the polyhedron of solutions and constructs a
sequence of vertices on the boundary of this polyhedron leading to a basic optimal
solution. By contrast, interior-point methods follow a path in the interior of the
polyhedron, whence the name. The path is a nonlinear curve that is approximately
followed by a variant of Newton’s method.

In what follows we will consider primal—dual pairs of the form (OP)—-(OD) we
saw in Sect. 8.1. Primal-dual interior-point methods search for solutions of the
optimality conditions for this pair, that is, for solutions of the system

Ax +Gw =D, ATy+s=c, GTyzd, x>0,5>0 ©.1
D
x151=0, ..., x35,=0,
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by following a certain curve in the strictly (primal-dual) feasible set S° C
RFPHmER defined by

S i={(x,w,y,9) | Ax+Gw=b,ATy+s=¢,G'y=d,x,s>0}. (9.2)

(Compare with the definition of the primal—-dual feasible set S in (8.4).)

Note that (9.1) is only mildly nonlinear (quadratic equations x;s; = 0). It is the
nonnegativity constraints that appear as the main source of difficulty. For a parame-
ter 4 > 0 we add now to (9.2) the additional constraints

X1S1 =M, ...y XpSp=LMU. (9.3)

One calls p the duality measure. Under mild genericity assumptions, there is ex-
actly one strictly feasible solution ¢, € S§° satisfying (9.3), and the limit ¢ =
(x,w,y,s) =1lim,—0¢, exists. Then it is clear that { € S and x;s; = 0 for all i.
Hence ¢ is a desired solution of the primal-dual optimization problem.

We postpone the proof of the next theorem to Sect. 9.2.

Theorem 9.1 Suppose that p <m <n, rank A =m, rank G = p, and that there is
a strictly feasible point, i.e., S° # . Then for all u > 0 there exists a uniquely
determined point ¢, = (x*, w*, y*, s%) € §° such that xl.“s# =pu fori € [n].

Definition 9.2 The central path C of the primal—dual optimization problem given
by A, G, b, c,d is the set

C={¢u:pn>0}

Suppose we know ¢, for some g > 0. The basic idea of a path-following
method is to choose a sequence of parameters pg > (1 > i > --- converging to
zero and to successively compute approximations zi of § := ¢, fork =0,1,2, ...
until a certain accuracy is reached (see Fig. 9.1). In most cases one chooses
= Gk,uo with a centering parameter o € (0, 1).

It is useful to extend the duality measure to any z = (x, w, y, s) € §°. We do so
by taking

1 ¢ 1
. T
u(z) = o Zx,-si = ;s X.
i=1
How can we compute the approximations z; ? This is based on Newton’s method,
one of the most fundamental methods in computational mathematics (which will
occupy us in Part III).
Consider the map F : R*TpHm+n _, Ratptmtn

z=(x,w,y,s) F(z):(ATy~|—s—c, GTy—d,Ax+Gw—b,x1s1,...,xnsn).



9.1 Primal-Dual Interior-Point Methods: Basic Ideas 175

Fig. 9.1 Central path C u

We note that by Theorem 9.1, {¢,} = F’I(O, 0,0, ue,), where e, :=(1,...,1)
€ R". The Jacobian matrix of F at z equals

0 0 AT 1

0 0 GT o
DF@)=| , G o ol

S 0 0 X

where here and in the following we set
S =diag(si, ..., Sn), X =diag(xy, ..., Xn).
Depending on the context, z, e,, etc. should be interpreted as column vectors.

Lemma 9.3 If p <m <n,rank A =m, and rank G = p, then DF (z) is invertible,
provided six; # 0 for all i.

Proof By elementary column operations we can bring the matrix D F (z) to the form

D 0 AT |
0 0 GT o
A G 0 0}
0O 0 0 X
where D = diag(—slel, e, —snxn_l). It is therefore sufficient to show that the
matrix
D 0 AT
0 0 GT
A G O
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is invertible. Such matrices are of the so-called Karush—Kuhn—Tucker type. Suppose
that

D 0 AT][«x
0 0 GT||w]|=0,
A G O y

that is, Dx + ATy =0, GTy =0 and Ax + Gw = 0. It follows that

D 0 AT [x] Dx + ATy
0= [xT wT yT] 0 0 GT'||w|= [xT wT yT] GTy
A G 0 |[y] 0

=x"Dx + (Ax + Gw)Ty =x"Dx.

Since D is negative definite, it follows that x = 0. Hence ATy = 0. Therefore,
y =0, since rank A = m. Also, since Ax =0, we have Gw = 0 and therefore, since
rankG = p, w =0. O

We continue with the description of the basic algorithmic idea. Choose u; =
o* o and set g = Cui- Then F (&) =(0,0,0, puie,) for all k € N. A first-order
approximation gives

F(Cra1) =~ F(&r) + DF (&) (ka1 — Ck)- 9.4)

Suppose now that zx = (x, w, y,s) € S° is an approximation of {x. Then F(z;) =
0,0,0, x181,...,xn8,) = (0,0,0, XSe,). We obtain from (9.4), replacing the un-
knowns ¢ by zx,

(0,0,0, wrs1€n) = F(Ckr1) = F(zi) + DF (2i) (Sr1 — 2k)-
This leads to the definition
21 =2k + DF(z)1(0,0,0, ftxs1€, — X Sey) 9.5)

of the approximation of ;1. This vector is well defined due to Lemma 9.3. Put
Zk+1 =2k + (Ax, Aw, Ay, As). Then

(ATAy + As, GT Ay, AAx + G Aw, SAx + X As) = DF (z¢)(Ax, Aw, Ay, As)
= (07 Os 01 Mk+1€n — Xsel‘l)v

and hence ATAy + As =0, GTAy =0, AAx + GAw = 0, which implies
AT(y+Ay)+ (s +As)=c¢,GT(y+ Ay) =d, and A(x + Ax) + G (w + Aw) = b.
We have shown that z;4; satisfies the equalities in (9.2). By a suitable choice of
the parameter o we will see that one can achieve that z;4 also satisfies the strict
inequalities in (9.2), that is, zx+1 € S°.
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Summarizing, the framework for a primal—dual interior point method is the fol-
lowing algorithm.

Algorithm 9.1 Primal-Dual IPM

Input: AecR™ " GeR™P hbeR", ceR", deRP,
0= (x9, w9, yO, 50y e R2ntptm 5 < (0, 1)
Preconditions: rankA=m <n,rankG =p <m, z9 € S°

set u:=u(zo)

repeat
set pu:=owu, X:=diag(x), S:=diag(s)
solve
0 0 AT 1 Ax 0
0 0 GT of [4Aw]| _ 0
A G 0 0 Ay | T 0
S 0 0 X As ne, —XSey,
set

(x,w,y,8):=(x,w,y,s) + (Ax, Aw, Ay, As)

until a stopping criterion is satisfied by (x,w,y,s)
return (x,w,y,s) and halt

Output: z=(x,w,y,s)€ R2Zn+p+m

Postconditions: z € S” and z satisfies the stopping criterion

9.2 Existence and Uniqueness of the Central Path
We provide here the proof of the fundamental Theorem 9.1.
Lemma 9.4 Suppose that S° # (. Then for all K € R the set
{(x,s) eR" x R" |dw e RPIy e R (x, w, y, 5) eS,sTxSK}
is bounded.

Proof Let (x,w,y,5) € S°. For any (x,w, y,s) €S we have Ax + Gw = b and
Ax+ Gw = b, hence A(x —x)+ G(w —w) = 0. Similarly, AT@ —N+GE—5)=0
and GT(3 — y) = 0. This implies

G=—)"EF-0)=-F-»NTAG-x)=F -y "G —w)=0.



178 9 Interior-Point Methods
It follows, assuming sTx < K, that
sTe+5Tx =sTx +5T8 <K +35"%.
The quantity & := min; min{Xx;, 5;} is positive by assumption. We therefore get
ée,TL(x +5)<K+5'%;
hence £ 1 (K 4 5Tx) is an upper bound on x; and s; for all i. g

Fix i > 0 and consider the barrier function

fiH - R, f(x,s)= lsTx — E In(xjs;) (9.6)
3 ;
j=1

defined on the projection H° of S°:
He = {(x,s) eR"xR"|Fw e RPIy e R (x, w, y,5) € SO}.

Note that 7° is convex because S° is convex. Moreover, f(x,s) approaches co
whenever any of the products x;s; approaches zero.

Lemma 9.5

(a) f is strictly convex.
(b) f is bounded from below.
(c) Forall k € R there exist 0 < a < B such that

{,s) e | fx,s) <k} S o, BT" x [a, BI".

Proof (a) Consider the function g: R} x R} — R, g(x,s) = — Z?:l In(x;s;).

a2 a2

We have 37‘5 = x;z, ‘;T‘é’ = s;Z, and all other second-order derivatives of g vanish.
j 5

The Hessian of g is therefore positive definite and hence g is strictly convex. In

particular, the restriction of g to H° is strictly convex as well.

We claim that the restriction of sTx to H° is linear. To show this, consider a
fixed point (x, wy,5) € S°. Then AXx + Gw =b, ATy +5=c,and GTy =d. Now
consider any (x,s) € H°. There exist w € R” and y € R™ such that (x,w, y, s)
€ §°. Furthermore, by (8.1),

six=cTx+d"w—->bTy=cTx +5TGw —xTATy — TGy
=c"x4+3'b—Ax) — i (c—s)—w'd

=cTx+ jin - yTAx —iTe+xTs—w'd,

which is linear in (x, s). This proves the first assumption.
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(b) We write

n
fx,s) = Zh(x—jsj) +n—nlnpy,
= P
where
h(t):=t—Int — 1.

It is clear that A is strictly convex on (0, co) as well as that lim,_,¢ 2 (t) = oo, and
lim;_, 5o h(t) = 00. Moreover, h(t) > 0 for ¢ € (0, co) with equality iff r = 1. Using
this, we get

fx,s)=n—nlnp,

which proves the second assertion.
(c) Suppose (x, s) € H° with f(x,s) <« for some «. Then, for all j,

XjsSj -~
h(—) <k —n-+nlogu=:«k.
%

From the properties of # it follows that there exist 0 < a1 < 81 such that
h™! (=00, &1 € [a1. A1),

whence oy < xjs; < upBi. Applying Lemma 9.4 with K =nuf; shows that there
is some B such that x; < 8, s; < . Hence x; > ualﬂ_l, sj > ,ual,B_l, which
proves the third assertion with o = o 7. U

Suppose that §° # (. Lemma 9.5(c) implies that f achieves its minimum in #°.
Moreover, the minimizer is unique, since f is strictly convex. We shall denote this
minimizer by (x*, s*). We note that if rank A =m < n, then y" is uniquely deter-
mined by the condition ATy“ + s#* = ¢, and similarly, if rank G = p < m, then w*
is uniquely determined by the condition Ax* + Gw" =b.

To complete the argument, we will show that x;s; = u,i =1,2,...,n, are ex-
actly the first-order conditions characterizing local minima of the function f. (Note
that a local minimum of f is a global minimum by the strict convexity of f.)

We recall a well-known fact about Lagrange multipliers from analysis. Let
g, hi,....,hyu: U — R be differentiable functions defined on the open subset
U C R". Suppose that u € U is a local minimum of g under the constraints
h1=0,...,h, =0. Then, if the gradients Vhy, ..., Vh,, are linearly independent
at u, there exist Lagrange multipliers A1, ..., A, € R such that

Vgu)+rVhr(w)+---+ 1y Vhy, () =0. 9.7
We apply this fact to the problem
min  f(x,s) st Ax+Gw=b, ATy +s=c,

GTy:d, x>0, s>0.
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Suppose that (x, w, y, s) is a local minimum of f. The linear independence condi-
tion holds due to Lemma 9.3 and our assumptions rank A = m < n and rank G =
p < m. By (9.7) there are Lagrange multipliers v € R”, u € R", t € R?, such that

pwls—xle,+ ATv=0, GTv=0,

1 (9.8)

Au+ Gt =0, wlx—85le,+u=0.

(Here we have used that % =pls— X le,, % = % =0, % =p"lx —S7le,)
The last two equalities in (9.8) imply that

Ap'x —57'e,) = Gr=0

and therefore that
T

(,u_lx — S_len) ATy —TGTv =0.

We now use the second equality in (9.8) to deduce (u~'Xe — S~ 'e,)TATv = 0.
Using the first equality we get

_ 1 \T, _ _
(1 'Xe, — S ]en) (1 ISe, — X 1e,,) =0.
Therefore
0=(u""Xe, — 5 "e,) (X V/28"/2)(x25712) (™" Se, — X 'e,)
_ - 2
= |7 (X9 ?en — (X7 2e,|".
This implies X Se, = ue,; hence (x, w, y, s) lies on the central path C.
Conversely, suppose that (x,w, y,s) € S° satisfies X Se, = ue,. Put v =0,
u =0, and t = 0. Then the first-order conditions (9.8) are satisfied. Since f is strictly

convex, (x, s) is a global minimum of f. By the previously shown uniqueness, we
have (x,s) = (x*, s**). This completes the proof of Theorem 9.1. O

9.3 Analysis of IPM for Linear Programming
Recall the following useful conventions: For a vector u € RY we denote by U the
matrix U = diag(uy, ..., ug). Moreover, e; stands for the vector (1,...,1) of the

corresponding dimension. Note that Uey = u.

Lemma 9.6 Let u, v € R? be such that u™v > 0. Then

1
nquns?w+mﬁ
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Proof We have

[UVeall = Uvl| < [UHIv] < 1UlF vl = [lull o]l

T

Moreover, since 4" v > 0,

1 1 1
lull o]l < 5(||u||2 +lvlI?) < E(Ilullz +2uTv 4 ||v)|?) = Sl + OIS

Let AcR™" GeR"™P pbeR", ccR" decRP, suchthat rankA =m <n
and rank G = p < m. Moreover, let z = (x, w, y, s) € S°, that is, we have

Ax+Gw =b, ATy—i-s:c, GTyzd, x>0, s>0.

We consider one step of Algorithm 9.1, the primal-dual IPM, with centering param-
eter o € (0, 1). That is, we set y := u(z) = %sTx, define Az = (Ax, Aw, Ay, As)
by

0 0 AT I7[ Ax 0
T
0 0 G° O Aw _ 0 , 9.9)
A G 0 O Ay 0
S 0 0 X As oue, — XSe,
and put
=X, w,y,5) =(x,w,y,s)+ (Ax, Aw, Ay, As).
Lemma 9.7
(a) AsT Ax =0.
(®) u(@) =ou).
() zeS°ifx>0,5>0.
Proof (a) By definition of Az = (Ax, Aw, Ay, As) we have
ATAy + As =0,
GTAy =0,
(9.10)

AAx +GAw =0,
SAx + XAs =oue, — XSe,.

Therefore,
AsTAx = —AyTAAx = AYTGAw = AwTGT Ay =0.

(b) The fourth equation in (9.10) implies sTAax + xTas = nou — xTs.

Therefore,
5Tk = (sT + AST) (x+Ax)=s"x+AsTx +sTAx + AsTAx = no .

This means that (7)) = %ET)E =o/u.
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Fig. 9.2 Central path C and
central neighborhood N'(8)

(c) We already verified at the end of Sect. 9.1 (by a straightforward calculation)
that z satisfies the equality constraints in (9.2). 0

A remaining issue is how to achieve X > 0, § > 0 by a suitable choice of the
centering parameter o .

Definition 9.8 Let 8 > 0. The central neighborhood N (B) is defined as the set of
strictly feasible points z = (x, w, y, s) € §° such that

| X Se, — pn(z)e | < Bulz).

The central neighborhood is a neighborhood of the central path C in S° that
becomes narrower as (i (z) approaches zero (see Fig. 9.2).
In the following we set 8 = % and write N := N(%).

Lemma9.9 Let z = (x,w,y,s) € N and Az = (Ax, Aw, Ay, As) be defined
by (9.9) with respect to 0 =1 — % with 0 < & < %. Then 7 = 7z + Az satisfies
ZeN.

Proof By (9.9) we have
XSe, + XAs + SAx = o ue,, 9.11)
which implies
XSe, = XSe, + X As + SAx + AX ASe, = AX ASe, + o ue,.
Moreover, by Lemma 9.7(b), 1 (z) = o . We therefore need to show that
IXSe, — o el = | AX ASe,|| < Bu(2) = Bou. 9.12)
To do so, note first that z € A/ implies |x;s; — | < Bu for all i, and hence

(A =P =xisi <A+ p)u. (9.13)
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By (9.11) we have XAs + SAx = o e, — X Se,. Setting D := XV28-12 we get
DAs+ D ' Ax = (XS) "% (o e, — X Sey). (9.14)

Because (D~ 'Ax)T(DAs) = AsTAx = 0 (cf. Lemma 9.7(a)), we can apply
Lemma 9.6 with u = D! Ax and v = D As to obtain

|AXASe, |l = | (D~'AX)(DAS)e, |

<27 D' Ax + Das|

<27 (x8) 2o e, — XSen)|? by (9.14)
< (2n(1 = B) o e, — X Se, | by (9.13)
< 2u(1 = B) " (e, — XSeull + | (o — ey |))?
< @u - )" (B + (1 - o)uy/n)’ by Def. 9.8
<21 -p) "B+ by def. of 7.

A small calculation shows that

)(,3+$)2<,3(1—,§)<,3<1_i)

21— p NG

for B =g Land0<¢ < < 7. This proves (9.12).

We still need to show that zZ € S§°. For this, by Lemma 9.7(c), it is sufficient to
prove that X, 5 > 0. Inequality (9.12) implies X;s; > (1 — B)ou > 0. Suppose we
had x; <0 or §; <0 for some i. Then x; < 0 and §; < 0, which implies |Ax;| > x;
and |As;| > s;. But then,

9.12) 9.13)
Bu>pou > (|AXASe,| > |Ax; Asi| > xisi = (1= B
hence 8 > %, a contradiction. O

Theorem 9.10 On an input (A, G, b, c,d) € R™*" x R"*P x R™ x R" x R” with
rank A =m < n, rankG = p < m, and for the choice of the centering parameter
o=1- % with & € (0, %], Algorithm 9.1 produces, on a strictly feasible starting
point zg in the central neighborhood N' = N (%), a sequence of iterates zj € N such
that w(zx) = 0¥ (z0), for k € N. We therefore have, for all € > 0,

Jn M(Zo)

n(zx) <& fork= —1

Each iteration can be performed with O(n>) arithmetic operations.
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Proof 1Tt suffices to prove the displayed inequality. This follows from the implication

1
k>a'InB = (l—a)kEE 9.15)

forO<a <1, B>0.(UseIn(l —a) < —a to show this.) O

9.4 Condition-Based Analysis of IPM for PCFP

In the previous sections we described and analyzed an interior-point method (Algo-
rithm 9.1) that approximates an optimal solution of the primal—dual pair (OP)—-(OD).
The goal of this section is to use this algorithm for solving the polyhedral cone fea-
sibility problem (PCFP) and to analyze the resulting algorithm in terms of the GCC
condition number.

Let A € (") be given, n > m. Recall that the problem PCFP consists in
deciding whether A € Fp, or A € Fp) (if A € X, then A is an ill-posed instance of
PCFP).

9.4.1 Reformulation

The first step is to reformulate the problem as a pair of primal-dual optimization
problems by relaxation.

Without loss of generality assume Ae, # 0, since otherwise, the feasibility prob-
lem is trivial. Let u := mAen. Notice that ||#|| = 1 by construction.

Instead of the primal feasibility problem 3x € R" \ {0}, Ax =0, x > 0, we con-
sider the relaxation (introducing one additional variable x" € R)

min x" subjectto Ax —ux' =0,

elx=1, (9.16)

n

x> 0.

Also, the linear program dual of (9.16) (cf. Sect. 8.1) yields an analogous relaxation
for the dual feasibility problem 3x € R” \ {0}, ATy < 0 (again, introducing one
additional variable y’ € R)

max y' subjectto ATy -+e,y <0,
T 9.17)
—uy=1.

We first note that the pair (9.16)—(9.17) has the form of the primal-dual pair
(OP)—(OD) described in Sect. 8.1. We also note that these are both feasible prob-
lems. Indeed, the pair (x, x") with x = % and x’ = ”Ani” satisfies the constraints
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of (9.16), and the pair (y,y’) with y = —u and y’ = —||ATu|| satisfies those
of (9.17). It follows from Theorem 8.2 that both have optimal solutions and that
their optimal values are the same, which in the following we denote by v,.

This optimal value is closely related to PCFP.

Lemma 9.11 For A € R™*" such that Ae, # 0 we have

AcFp = v,<0,
AeFp = vy:>0,
AeX, rankA=m <+<— v,=0.

Proof Assume A € F}. Then, there exists x > 0 such that Ax = 0. Let j be such
that x; = min; <, x; and put A := eg(x — xje,). We have A > 0, since Ae, # 0. We
define

=27 = xjey), x'i= =27 ) Aey .

Then, it is immediate to verify that X > 0, eZ)E =1,x" <0,and Ax — ux’ =0. This
shows that v, <x’ < 0.
Assume now that A € F7},. Then there exists y € R™ such that ATy < 0. This

implies eIATy < 0, or in other words, uTy < 0. Then y := —u%y satisfies ATy <0
and —uTy = 1. In addition, for y' = — max; <, aiT)'z we have ATy + e,y <0 and

vy’ > 0 and therefore vy >y’ > 0.

We next prove the converse of the two statements we just proved. To do so,
consider optimal solutions (x, x) and (y., y,) of (9.16) and (9.17), respectively.
Because of Theorem 8.2 we have x}, = y, = v,.

If v, < 0, then x}, < 0, and we obtain a solution of Ax =0, x > 0 by taking

I
xe
Xp — 1
| Ae, |l

This shows that A € Fp.
If instead, vy, > 0O, then y, > 0, and we have ATy, < —y.e, < 0, showing that

AeFj.
D

The reasoning above proves the first two equivalences in the statement. The third

is now immediate from Theorem 6.14. O

Remark 9.12 The rank condition in Lemma 9.11 is needed, since Fp N X' =
{A € X |rankA < m} # () (compare Theorem 6.14). While this condition may be
confusing, it is quite irrelevant for our computational purposes.

By adding slack variables, we can recast (9.17) as
max y’ subjectto ATy+4e,y +s5=0,
—uly=1, (9.18)

s >0.
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Here y e R™, y' € R, and s € R”. In matrix form, (9.18) can be stated as
max bTy subjectto ATy +s=c, G'y=d, s>0, (9.19)

where

A— |:A] c R(m+l)><n’ G = |:—M] c Rm+1,
el 0

= <y/) e RM+!, b= (O) e R+,
y 1
c=0eR", d=1.

Likewise, (9.16) can be stated as
min ¢'x +dx’ subjectto Ax +Gx'=b, x>0. (9.20)

It is essential that (9.19) and (9.20) form a primal—dual pair. We note that y’ = bTy <
cTx 4 dx" = x’ for any primal—dual feasible point z = (x, x’, ¥, 5), and therefore the
duality gap u(z) satisfies nu(z) =x' — y'.

9.4.2 Algorithmic Solution

‘We now run Algorithm 9.1 on input (A, G, b, ¢, d)—together with an initial point z¢
given in Lemma 9.13 below—with the choice of the centering parameter o = 1 —
£//n, & = 1. This will solve PCFP for input A.

To see why, assume that we have at hand the starting point zg lying in the central
neighborhood N' = N (%). Because of Theorem 9.10, running Algorithm 9.1 on
input (A, G, b, ¢, d) with the starting point zo produces a sequence of iterates z; =
(Xk, X, Yk» S) in N such that u(zx) = 0¥ 11(z0). The sequence zj approaches an
optimal solution of the primal—dual pair (9.19)—(9.20).

Suppose first that (9.19) has an optimal solution with ATy < 0. Since (J, s¢) ap-
proaches an optimal solution of (9.19) for k — oo, we expect that for k sufficiently
large, the first component yi of yr = (yk, y;) will satisfy ATy, <0 and certify the
strict feasibility of the dual feasibility problem (A € F7). This will be formally
proved in Sect. 9.4.3 with an explicit bound on the number & of iterations required
in terms of € (A).

Suppose instead that (9.20) has an optimal solution with x > 0. Since the iterates

Ae, will be a

negative multiple of Ae,, for k sufficiently large. Consequently, x; — TaerT A e T€n will
solve Ax =0, x > 0, thereby certifying the strict feasibility of the pnmal problem
(A € Fp). This will be formally proved in Sect. 9.4.3. Again, a bound on how large
k needs to be will be shown in terms of 4’ (A).

It is not hard to find an explicit starting point zg in the central neighbor-

hood NV ().

(xk, x;) approach an optimal solution of (9.20), Ax; = ux; = ”Ae T
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Lemma 9.13 The point 7o = (x, x’, y, s) defined by
1 , lAeql
- ¥ = ’
n 9.21)
y=—u, Y =-4/n, s=-Aly-ey

lies in the central neighborhood N(%) and (n(zg) < M;LH

Proof 1t is straightforward to verify that

Ax —ux' =0, ATy +e,y +5=0, —uTy=1, x,5s>0,

so that zq satisfies the constraints in (9.16) and (9.17). In addition, using eZATu =
A n J—

€A e = lAeall

1 1
xls = e, (—ATy —eny') =~ Ae, | - y'.

n
Thus, using [|Ae, || = llai +---+anl = n,
T / ’
xX's y [|Ae, ]| yo1 4 14+4yn
/"L(ZO)=—=__ 2” €|l —— = g _97\/_ 9
n n n n'n N/ n

orequivalently, —nji(z0) € [—1—44/n, —4,/n]. On the other hand, using |a] y| < 1,
we have for i € [n],

s —aly—y [—l—y/ l—y’}
Xi§i = — = S 3 )
n n n n

or equivalently, nx;s; € [—1+4+/n, 1 +4./n]. Therefore n(x;s; — u(z0)) € [—2, 1],
for each i € [n], and consequently || X Se, — e, |? < % < %/L(Zo)z. Thus zg =

(x,x’,y,s) is in the central neighborhood ./\/'(%) of (9.19)—(9.20) with u(zg) <
4/n+1 0
.

We are now ready to describe our algorithm for PCFP (see Algorithm 9.2 below).
The main result of this section is the following condition-based analysis of Al-
gorithm 9.2.

Theorem 9.14 Algorithm 9.2 returns, on input A ¢ X, either a strictly feasible pri-
mal solution, i.e., a point x € R" such that Ax =0, x > 0, or a strictly feasible dual
solution, i.e., a point y € R™ such that ATy < 0. In both cases, the algorithm halts
after at most

O(V/n(logn +1log € (A)))

iterations. The total number of arithmetic operations is bounded by

O(n*> (logn + log €' (A))).
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The proof of this theorem will be provided in the next subsection, and it relies on
the characterization of 4’(A) given in Proposition 6.28.

Algorithm 9.2 Primal-Dual_IPM_for_PCFP

Input: A eR"™*"
Preconditions: rankA=m <n

if Ae; =0 then return “Primal Feasible with
solution e;” and halt
if rank[AT e,]=m then
compute ye€R™, AeR such that e, =1ATy
if A>0 then return “Dual Feasible with
solution —y” and halt
if A <0 then return “Dual Feasible with

solution y” and halt
1

4yn
set z:=(x,x',¥,s) with x,x’,y,s as defined in (9.21)
w=u(z)
repeat
if y'>0 then return “Dual Feasible with
solution y” and halt
if x' <0 then return ,“Primal Feasible with
solution i::x—men” and halt
set pu:=opu, X =diag(x), S =diag(s)
compute Az = (Ax, Ax', Ay, A5) by solving

o:=1-—

0 0 AT T Ax 0

0 0 GT of|ax|_ 0

A G 0 ofl|lay|™ 0 '
S 0 0 X As ue, — X Sey

set z:=z+4 Az

Output: either x e R” or y € R™

Postconditions: The algorithm halts if A ¢ X'. In this case, Ax =0 and x > 0 (if x is
returned) or AT y < 0 (if y is returned)

9.4.3 Analysis

A key result in our analysis is the following quantitative complement of Lemma 9.11.

Lemma 9.15 We have A(A) < |vy| for A € R™*",
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Proof If A € ¥, then A(A) =0, and the result is trivial. We may then assume
AgX.

Consider first the case A € F}. Let (x4, x}) be an optimal solution of (9.16).
Then |lx.||; = 1 and Ax, = ux). By Lemma 9.11 we have x, = v, > 0. Proposi-
tion 6.28(a) implies that

A(A) < | Ax,l = [ux | = x,.

Consider now the case A € Fp. Let 0 <n < A(A) and y = —nu. Then ||y| =
n < A(A), and by Proposition 6.28(b) there exists x > 0 such that ||x|; = 1 and
Ax = y. Let x’ = —n. Then Ax — ux’ = y + un = 0. Hence, (x, x’) is a feasible
point of (9.16), and it follows that the optimal value v, of the pair (9.16)—(9.17) is
at most x’ = —. Since this is true for all < A(A), it follows that v, < —A(A). O

The goal is to prove the following result, from which Theorem 9.14 will easily
follow.

Proposition 9.16 Let A e R"*" and z = (x,x', y,s) € /\/‘(%)-
(a) For Ae F3,

1 /
0.
n(z) < ") = y>
In particular, ATy < 0.
(b) For A e F5,
1 /
0.
u(z) < ") = x <

— / . — —
In particular, the point X := x — ”Ax—e”e,, satisfies Ax =0, x > 0.
n

Proof Assume A € Fp,. It follows from Lemma 9.15 that for any feasible point
z=(x,x,3,9),

nu)=clx+dx' —b'y=x"—y >x, —y' > A(A) — .
Since nu(z) < €(A)~' = A(A), it follows that
y' = A(A) —nu(z) > 0.

Now assume A € Fp. Using again Lemma 9.15, we deduce that for any feasible
point z = (x, x’, ¥, 5),

nu@)=x"—y >x"—y, >x"+ A(A).
Since nu(z) < A(A), it follows that

X' <—AA) +nu(z) <0. O
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Proof of Theorem 9.14 Assume A € F},. By Lemma 9.13 and Theorem 9.10, the
sequence of iterates z; produced by Algorithm 9.2 stays in the central neighborhood
N($) and pu(z) = 0¥ p(zo) < o*(4/n+ 1)/n for all k € N. If

4n+1 . k 1
n ( 4ﬁ> 0N

then Proposition 9.16 implies ATy < 0, and hence Algorithm 9.2 halts and returns y.
Inequality (9.22) holds if (compare (9.15))

k> 4y/nIn((4v/n + 1)€(A)).

The case A € F}, is dealt with similarly. d

(9.22)

Remark 9.17 In the preceding chapter we described the ellipsoid method, an elegant
theoretical framework for showing the existence of efficient algorithms in convex
optimization. We used such a method to find a point y such that ATy < 0 for a ma-
trix A € F},. Even though the task done by Algorithm 9.2 is more general than that
performed by Algorithm 7.1, it makes sense to compare their theoretical complexity
bounds. The total number of arithmetic operations is bounded by O (13- (logn +
log € (A))) in the interior-point Algorithm 9.2 and by O(m3nIn € (A)) for the el-
lipsoid Algorithm 7.1. This last bound can be smaller that the former when n > m,
but for comparable m and n (say m a fraction of n) it is larger.

Remark 9.18 Since the complexity bound in Theorem 9.14 is in terms of €’ (A), we
may use again Proposition 7.9 to deduce, as in Remark 7.10, that if the data matrix
A has integer entries, then (a suitable modification of) Algorithm 9.2 works in time
polynomial in 7, m and the bit-size of the largest entry of A. Note that the only way
for Algorithm 9.2 not to have halted when reaching this time bound is if A € X
Hence, by “clocking” the algorithm, one can decide whether A € F3, A € F}), or
A € ¥ in polynomial time in the bit-size of the given integer matrix A.

9.5 Finite Precision for Decision and Counting Problems

We may now return to an issue pointed out in Sect. 6.1. We mentioned there that
for a decisional problem such as PCFP, a different form of finite-precision analysis
is needed. Recall that the obstruction is that the notion of loss of precision hardly
makes sense for a problem whose possible outputs are the tags “primal strictly fea-
sible” and “dual strictly feasible.” It is apparent, however, that the value of the ma-
chine precision €macn has an influence on the computed solution for the problem.
One feels that the smaller emgach is, the more likely the returned tag will be the cor-
rect one for the input matrix A € (S”~!)". This is clear if errors occur only in read-
ing A. In this case—assuming that the error satisfies dgjn (A, A) < €mach—one has
that the computed tag is guaranteed to be the correct one whenever €mach < % (A).
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If instead, errors occur all along the computation, then similar results can be sought
with a more elaborate right-hand side.

Indeed, one can actually think of two template results for a (discrete-valued)
problem ¢ : D C R”™ — V for which a condition number cond? has been defined.
In the first one, the machine precision €mach is fixed.

Template Result 1 The cost of (fixed-precision) algorithm of —computing the func-
tion of Y—satisfies, for all a € D, a bound of the form

f(dims(a), cond? (a)).
Moreover, o7%(a) = ¢(a) if

1
g(dims(a), cond?(a))

€mach =

Here f and g are functions of the dimensions of a and its condition. O

In the second template result, the finite-precision algorithm has the capacity to
adaptively modify its machine precision. This leads to outputs that are guaranteed
to be correct but do not have a priori bounds on the precision required for a given
computation.

Template Result 2 The cost of variable-precision algorithm of —computing the
function of Y—satisfies, for all a € D, a bound of the form

f(dims(a), cond? (a)).

Moreover, for all a € D, </ (a) = ¢(a), and the finest precision required satisfies
the bound

1
g(dims(a), cond?(a))

Here f and g are functions of the dimensions of a and its condition. U

€mach =

In practice, one may want to limit both the running time and the precision of 7.
If this is the case, one may stop the execution of <7 on input a after a certain number
of steps if the computation has not succeeded by then, and return a message of the
form

The condition of the data is larger than K.
The value of K can be obtained by solving f for cond?(a).
To give an example, we return to PCFP. For this problem, note that the assump-
tion of finite precision sets some limitations on the solutions (feasible points) we

may obtain. If system A belongs to F73, then we will obtain, after sufficiently refin-
ing the precision, a point y € R™ such that ATy < 0. On the other hand, if A € 3,
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then there is no hope of computing a point x € R” such that Ax =0, x > 0, since
the set of such points is thin in R” (i.e., has empty interior). In such a case there
is no way to ensure that the errors produced by the use of finite precision will not
move any candidate solution out of this set. We may instead compute good approx-
imations.

Let y € (0, 1). A point X € R" is a y-forward solution of the system Ax =0,
x>0,if x >0, x #0, there exists x € R" such that

Ax=0, x>0,

andfori=1,...,n,

X — %] < yXi.
The point X is said to be an associated solution for x. A point is a forward-
approximate solution of Ax =0, x >0, if it is a y-forward solution of the system
for some y € (0, 1). Strict forward-approximate solutions are defined, as usual, by
replacing the inequalities by strict inequalities.

The main result in [69] is the following extension (in the form of Template Re-
sult 2) of Theorem 9.14.

Theorem 9.19 There exists a round-off machine that with input a matrix A € R™*"
and a number y € (0, 1) finds either a strict y -forward solution x € R" of Ax =0,
x >0, or a strict solution y € R™ of the system ATy < 0. The machine precision
€mach varies during the execution of the algorithm. The finest required precision is

1
cnl2¢(A)2°

€mach =

where ¢ is a universal constant. The number of main (interior-point) iterations of
the algorithm is bounded by

(’)(n]/z(logn + log(%(A)) + | lOgyD)

if A € Fp, and by the same expression without the |logy| term if A € F7},. g



Chapter 10
The Linear Programming Feasibility Problem

In Chap. 8 we introduced linear programming optimization problems. Then, in
Chap. 9, we rephrased PCFP as one such problem. By doing so, we could apply
an interior-point method to the latter and obtain an algorithm solving PCFP with a
complexity bounded by a low-degree polynomial in n, m and log ¥ (A). A question
conspicuously left open is the solution of the optimization problem itself. Theo-
rem 9.10 provides a key step of this solution but leaves at least two aspects un-
touched: the initial feasible point is assumed to be given and there is no hint as how
to deduce, at some moment of the process, the optimizers and optimal value.

In this chapter we deal with the first of the two aspects above. To fix a context,
let us consider the primal-dual pair in standard form:

min cTx subjectto Ax=b, x>0, (SP)

and
max bTy subject to ATy <c. (SD)

The problem at hand is, given the triple d = (A, b, ¢) to decide whether the primal
feasible set Sp = {x € R" | Ax = b, x > 0} and dual feasible set Sp = {y € R™ |
ATy < ¢} are both nonempty, and if this is so, to compute a pair (x, y) of points in
these sets. If both primal and dual are feasible, we say that d is feasible. This is the
feasibility problem we discussed in Sect. 8.4.2.

10.1 A Condition Number for Polyhedral Feasibility

We will call any system of linear equalities and inequalities a polyhedral system.

For any polyhedral system with data S we write F(S) = 0 if the system is infea-
sible and F(S) = 1 otherwise. Then, we define (assuming some norm in the space
of data) the distance to ill-posedness

p(S) :=inf{||AS| : F(S) #F(S + AS)}
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as well as the condition number

C(S):= M
p(S)
These definitions follow the lines of Sects. 1.3 and 6.4.

Consider now the data d = (A, b, ¢) of the pair (SP-SD). For the primal poly-
hedral system Ax = b, x > 0, this yields a distance to ill-posedness pp(A, b) and
a condition number Cp (A, b); we similarly obtain pp(A, ¢) and Cp(A, c¢) for the
dual. Finally we define, for the triple d = (A, b, ¢), the condition number

C(d) :=max{Cp(A,b),Cp(A,c)}.

As usual, if C(d) = oo, we say that d is ill-posed and we say that it is well-posed
otherwise.

We note that, following the discussion in Sect. 8.4.2(c), we could also define a
condition number for the feasibility problem by taking

]|

d)=— 1
Cre(d) dist(d, Zep)

with the set of ill-posed triples X'rp as defined there and where dist is the distance
induced by || ||. The condition number C(d) is similar in spirit to Crp but differs in
the way the normalization of the inverse distance is made. In particular, we note that
C(d)=ocif and only if d € Xrp.

To make these definitions precise, we need to fix a norm. It will be convenient to
choose || ||12. That is, the norm of a pair (A, b) is the 12-norm of the matrix [A, b],
which we denote by || A, b|12. Similarly for the dual, where for a pair (A, c¢), we
consider the 12-norm of the matrix (A, c¢T) (or equivalently, due to Lemma 1.2(c),
the 200-norm of the matrix [AT, c).

Remark 10.1 Note that pp(A, b) < ||A, b||12 and pp(A, ) < U(CAT)HIZ.

We can now use C(d) to state the main result of this chapter.
Theorem 10.2 There exists an algorithm that given a triple d = (A, b, ¢) with A €

R™" b eR™, and c € R", decides whether both Sp and Sp are nonempty with a
cost bounded by

O(n*>(logn +log C(d))).
Furthermore, if both sets are nonempty, the algorithm returns a pair (x, y) of strictly

feasible points.

Note that the algorithm in Theorem 10.2 decides feasibility only for well-posed
triples d.
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10.2 Deciding Feasibility of Primal-Dual Pairs

The idea for proving Theorem 10.2 is simple: by homogenizing, we reduce the two
feasibility problems to instances of PCFP. Indeed, given d = (A, b, ¢), we have

x>0 st Ax=b <+ dx>0, >0 st. Ax—>bt=0 (10.1)

and, for any o > 0,

T _
3y st ATy<c < Iy st [AO _;Hf}o. (10.2)

Therefore, we can decide the feasibility of d with two calls to Algorithm 9.2 (Primal-
Dual_IPM_for_PCFP). In addition, we have freedom to choose o > 0.
We say that d is dual-normalized when

(%)

From a computational viewpoint, this normalization can be straightforwardly
achieved in a way that the dual feasible set Sp remains unchanged as does the
condition number Cp(d). These considerations lead to Algorithm 10.1 below.

The complexity bounds in Theorem 9.14 do not, however, directly apply to ana-
lyzing Algorithm 10.1, since they are expressed in terms of %, a condition number
for a homogeneous problem, and we want a bound in terms of C(d) (i.e., in terms of
Cp and Cp). Proposition 10.3 below shows that this is not a major obstacle, since
these condition numbers are roughly the same. Indeed, the characterization of % in
Proposition 6.21 shows that for M € R™*",

=1
12

I Ml12
@y = 122
) ph (M)

where we have written ,oh (M) :=dist;p(M, X) to emphasize the resemblance with

the corresponding expressions for Cp(A, b) and Cp(A, c). Note actually that the

only difference between ,oh ([ 7’3; —01 ]) and pp(A,c) is that in the former we are

allowed to consider perturbations of the 0 and the —1 in the last column of the
matrix, whereas in the latter we can perturb only the entries of A and c.

Proposition 10.3 For any dual-normalized triple d = (A, b, ¢),

A 0 1 A 0
([ S=emmonie(( 4 S

and for any triple d = (A, b, ¢),

Cp(A,b) =% (A, —b]).
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Algorithm 10.1 FEAS_LP

Inmput: AcR™" beR",ceR"
Preconditions: rankA=m <n

run Primal-Dual_IPM_for_ PCFP with input
M :=[A, —b]

if M(x,t)=0,(x,t) >0 is feasible
return “primal feasible” with solution x
else return “primal infeasible”

dual normalize (A,c)

run Primal-Dual_IPM_for_PCFP with input

A 0
M.=|:—CT _1i|

if MT(y,1) <0 is feasible
return “dual feasible” with solution y
else return “dual infeasible”

Output: x € R" or y € R™ or both

Postconditions: The algorithm outputs x if Sp # @ and Cp(A, b) < oo and it
returns y if Sp ¥ and Cp(A, c) < 00

Towards the proof of Proposition 10.3 we introduce some notation. Let
Fh={(A.0) eR™" x R" |3y eR" s.t. ATy < c}

and

Fp={BeR"D*0HD 3 e RmH s BTz <0}

Lemma 104 Let A € R™*" and ¢ € R", such that |[( 1|, = 1. Then

[—?:T _Ol]e]—'D = (A, c)eF}

([ e o)) zmao=st ([ 4 2 ).

Proof 1t is clear that

and

[AT _OJGFD — (A, 0)eFh.
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From here, the inequality

i A 0
p . < pp(A,0) (10.3)
—c -1
readily follows.

We now address the other inequality. By the definition of p”, there exist
AA, Ac, Au, Av, such that

) AA  Au n A 0
@-= AcT Av 12_'0 —T -1

A4 AA Au |
—T+ AT —1+4 Av

and

€eFp < (A, c)¢Fy. (10.4)

Note that due to Remark 10.1 and (10.3), we have w < 1 and, in particular, |Av| < 1.
Assume |Av| < 1 and consider

(1—-Av),, Au A+ AA Au
M= T T .
0 1 —c'+Act —1+4 Av

Note that M € R *+D*#+D and the matrix at the left in the product above is invert-

ible. Therefore,

MeF A+ AA Au
S — [S
b —T+ AT =1+ Av b

It now follows from (10.4) that M € Fp if and only if (A, ¢) ¢ ]-'g. In addition,

| (1= Av)(A+ A4) + Au(—c" + AcT) 0
B —cT+ ACT —14+4v |’

Due to the form of M, and since —1 4+ Av < 0, it follows, using (10.2), that M € Fp
if and only if

(1 — Av)(A + AA) + Au(—cT + AcT) J_E#
—cT+ AT €7D

Therefore

A,c) <
PD(A,€) = —cT+ AcT

( A ) <(1—Av)(A+AA)+Au(—cT+AcT)>
+) -
—c

12
—AA + AvA + AVAA + Auct — AuAcT
a AcT

12
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- H AA
- AcT

+ ”A”CT “12 + HA”ACT ”12

- H AA
- AcT

+ lAull2liclloc + [ Aull2l| Aclioo.

+[Av[[|All12 + |Av][[AAll12
12

+[Av[l|Alli2 + |AA]12
12

where the last inequality is due to Lemma 1.2(a). Now use that

H A [AA[12, [Av], [|Aull2, || Ac] H A4 du
5 5 v, u 5 Cc S =
Act [ . g > AcT Av ),
and that
A
Al el < | o )| =1
¢ 12
(together with > < ) to obtain pp(A, ¢) < Sw.
If instead, |Av| = 1, then
A 0 AA  Au
h —
A DA e

In addition, since | (ﬁ) =1, pp(A, c) < 1. Hence, using (10.3),

[

Ao
p T <pp(A,0) <L (10.6)
—c -1

Inequalities (10.5) and (10.6) yield p" ([ *r °,]) = pp(A.¢) = 1, and thus the
statement. O

Proof of Proposition 10.3 The equality in the primal case easily follows from (10.1).
The inequalities for the dual case have been shown in Lemma 10.4. 0

Proof of Theorem 10.2 For both the primal and the dual systems, Theorem 9.14 (to-
gether with (10.1) and (10.2)) ensures that Algorithm 9.2 decides feasibility return-
ing a strictly feasible point (if the system is well posed). Furthermore, this algorithm
performs at most

O(v/n(logn +log €' (M)))

iterations, where M = [A, —b] in the primal case and M = [_ﬂT _Ol] in the dual.

Proposition 10.3 allows one to replace (M) by C(d) in both cases. O
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Remark 10.5 We can use Proposition 7.9 one more time to deduce, as in Re-
marks 7.10 and 9.18, that when restricted to data with integer entries, Algo-
rithm 10.1 works in polynomial time.

Remark 10.6 Theorem 9.19 states that the problem PCFP can be accurately solved
with finite precision. Since Algorithm 10.1 is, essentially, two calls to a PCFP-
solver, a finite-precision version of this algorithm will work accurately as well.

Theorem 10.7 There exists a finite-precision algorithm that, given a triple d =
(A,b,c) with A e R™" b eR™, and ¢ € R", decides whether both Sp and Sp
are nonempty. The machine precision €mach varies during the execution of the algo-
rithm. The finest required precision satisfies

1
Om2Ccd)?)’

€mach =

The total number of arithmetic operations is bounded by
O(n*>(logn +log C(d))).

Furthermore, if both sets are nonempty, and an additional input y € (0, 1) is spec-
ified, the algorithm returns a pair (x,y), where y is a strictly feasible solution of
ATy < cand x is a strict y-forward solution of Ax = b, x > 0. In this case the total
number of arithmetic operations becomes

O(n*3 (logn +log C() + [og 1)) :



Chapter 11
Condition and Linear Programming
Optimization

In the previous chapter we analyzed an algorithm deciding feasibility for a triple
d = (A, b, c¢) specifying a pair of primal and dual linear programming problems in
standard form,

min cTx subjectto Ax=b, x>0, (SP)
and
max by subject to ATy <e. (SD)

If such an algorithm decides that a triple d is feasible, we may want to compute the
optimizers x* and y*, as well as the optimal value v*, of the pair (SP)—(SD). To do
so is the goal of this chapter.

An approach to this problem is to apply the interior-point Algorithm 9.1 along
with its basic analysis as provided in Theorem 9.10. A possible obstacle is the fact
that the feasible point z = (x, y, s) returned in Theorem 10.2 does not necessarily
belong to the central neighborhood A (%).

Another obstacle, now at the heart of this book’s theme, is how to deduce, at
some iteration of Algorithm 9.1, the optimizers x* and y*. Without doing so, Algo-
rithm 9.1 will increasingly approach these optimizers without ever reaching them. It
is not surprising that a notion of condition should be involved in this process. This
notion follows lines already familiar to us. For almost all feasible triples d a small
perturbation of d will produce a small change in x* and y*. For a thin subset of
data, instead, arbitrarily small perturbations may substantially change these opti-
mizers (recall the discussion in Sect. 8.4.2). The central character of this chapter,
the condition number %" (d), measures the relative size of the smallest perturbation
that produces such a discontinuous change in the optimizers. We will formally de-
fine # (d) in Sect. 11.1. We will also show there a characterization of % (d) that,
in line with the theme occupying Sect. O.5.2, makes its computation possible.

In Sect. 11.3 below we describe and analyze algorithms solving the optimal basis
problem, which, we recall, consists in, given a feasible triple d, finding an optimal
basis for it. The first main result concerning this goal is the following.

P. Biirgisser, F. Cucker, Condition, 201
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_11, © Springer-Verlag Berlin Heidelberg 2013


http://dx.doi.org/10.1007/978-3-642-38896-5_11

202 11 Condition and Linear Programming Optimization

Theorem 11.1 There exists an algorithm that with input a full-rank matrix
A e R™" vectors b € R™, ¢ € R", and a feasible point zg = (x¢, Yo, S0) in the
central neighborhood N(}T) such that u(z9) < (n ||d||)0(1) finds an optimal basis B
for d. The number of iterations performed by the algorithm is bounded by

O(V/n(logn +log # (d))).

The total number of arithmetic operations is bounded by
O(n*?(logn + log # (d))).

Remark 11.2 There is no loss of generality in assuming @ (zo) < (n||d||)o(1). In
fact, a bit of observation shows that the feasible points x and (y, s) returned by
Algorithm 10.1 satisfy max{||x][, |s||} = (||d|)©D. Therefore

1 1 ols!
@ = ~a"s < sl = (nld]) W

Unfortunately, the assumption zg € - (JT) appears to be more difficult to get rid of,
and a discussion on the possible ways to deal with it would take us too far away
from our main themes.

There is an alternative way to compute an optimal basis for d that does not require
an initial point in A/ (%). Instead, it proceeds by reducing the optimal basis problem
to a sequence of polyhedral cone feasibility problems. The cost of this new approach
is slightly larger than the cost in Theorem 11.1, but this is compensated by the
simplicity in its overcoming the need for an initial point in the central neighborhood.

Theorem 11.3 There exists an algorithm that with input a full-rank matrix A €
R™ " and vectors b € R™ and ¢ € R", finds an optimal basis B for d. The total
number of arithmetic operations is bounded by

O(n*3(logn + log # (d)) loglog(# (d) + 4)).

11.1 The Condition Number ¢ (d)

Definition 11.4 We say that d is feasible well-posed when there exists a unique
optimal solution (x*, y*, s*) for d. In this case, we write d € V. If more than one
optimal solution exists, we say that d is feasible ill-posed.

Let B:={B C [n] | |B| =m}. Theorem 8.13(c) implies that if d € WV is feasible
well-posed with optimal solution (x*, y*, s*), then there is a unique B € B such
that (x*, y*, s*) is the basic optimal solution associated to B (see Definition 8.10).
We called such B the optimal basis for d.
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Fig. 11.1 The situation in the
space of data

Ip

Wa,

Ip

For any B € B, we write
Wpg :={d € W | B is the optimal basis for d}.

The set W is thus partitioned by the family {Wp | B € B}. Figure 11.1 schematically
summarizes the situation in the space of data.

At the right of the diagram we have the set YV of well-posed feasible triples,
which is partitioned into the subsets Wpg. The dotted lines separating these subsets
correspond to data with more than one optimal basis. These are degenerate triples.
The boundary of this right part (made out of the two continuous segments) corre-
sponds, using the notation of Sect. 8.4.2, to the set Xrp. The union of these lines—
the dotted lines of degenerate triples and the continuous segments at the boundary
of YW—forms the set Yot = Yo of ill-posed triples for both the optimal solution
and the optimal basis problems.

At the left of the diagram we have the sets Zp and Zp of triples that are primal,
respectively dual, infeasible. The dashed line at their boundary correspond to triples
that are both primal and dual infeasible. Away from this line, elements in Zp are
primal infeasible (and hence dual feasible but unbounded), and similarly with Zp,.

To define condition we need a norm in the space of data triples. We fix 1 <r,

s < oo and define
A b
”d”rs = H (CT 0)
rs

Since all the results in this section hold with respect to any of the norms || ||,s,
we shall omit the indices r, s in order to simplify notation.
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Definition 11.5 Let d be feasible well-posed. We define the distance to ill-
posedness to be
o(d) =inf{||Ad| :d + Ad € Zop}.
Moreover, we define the RCC condition number ¢ (d) of d by
_ Il
o(d)

If d is feasible but not well-posed, we let o(d) =0 and # (d) = cc.
We shall write o,5(d) and J#4(d) in case we want to emphasize the choice of
norm || |Iys.

H(d)

Remark 11.6

(a) 7 (d) is undefined for infeasible d.

(b) We have o(d) < ||d|| and hence % (d) > 1.

(c) We saw in Corollary 8.23 that Yo = Xog. Also, it easily follows from its
definition that Yop is closed. Hence, the infimum in Definition 11.5 is actually
attained. Also, o(d) > 0 if and only if d € W.

(d) When d is feasible, we have C,s(d) < #;s(d), where C,(d) is the condition
number for feasibility defined in Sect. 10.1. This follows immediately from the
inclusion Xrp € Yop.

Our next goal is to characterize .# (d) in terms of distance to singularity for a
certain family of matrices. To do so, for any square matrix S, we denote its distance
to singularity by

Psing(S) = inf{||AS|| | S+ ASis singular}.

Here the norm refers to || ||s. The distance to singularity has been the core subject
of Sect. 1.3. In the notation of that section we have pging(S) = d,4(S, X). For our
characterization we need to consider this distance for a set of square matrices, which
we next specify.

Let B be a basis, Sj the set of all m x m submatrices of [Ag, b], S, the set of
all (m + 1) x (m + 1) submatrices of [ﬁ] containing Ag, and Sp = S; U S,. Note
that |S;| =m + 1 and |S>| =n — m, so Sp has n + 1 elements. Note that Ag € S;.

Theorem 11.7 If d is feasible well-posed with optimal basis B, then

d) = min Psing(S).
o(d) Sn;«lS'I}g Psing (S)

Remark 11.8 A consequence of Theorem 11.7 worth noting is an easy way to com-
pute J# (d) from an optimal basis B of d. Indeed, given such a basis, the n + 1
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matrices S in Sp are immediately written down, and for each such matrix S one can
compute its inverse S~!. Theorems 1.7 and 11.7 then give

”d”rs -1
HKys(d) = ————— = ||d||;s max || S .
re(d) minSeSB /Osing(S) Il SeSp ” ”Sr

We now proceed with a few partial results towards the proof of Theorem 11.7.
They rely on the well-known Cramer’s rule for systems of linear equations.

Lemma 11.9 Ler A € R™*™ be invertible, c € R™, and y = A~ Te. In addition, let
veR" and ¢’ e R. Then

T / AT c ..
vy=c <& T o) singular.

Proof Suppose that vy = ¢’. Then

AT ¢ y
(5 2)(2)=>
and hence (A; ‘,) must be singular. The converse is shown similarly. g

v C

For the next result we introduce some notation. We defined degeneracy of solu-
tions in Definition 8.15, and this notion was central to the content of Sect. 8.4. We
now consider the slightly more restrictive notion of degeneracy for a basis.

Definition 11.10 We say that a basis B is primal degenerate for a triple d when
its associated solution is degenerate (and hence, feasible). We similarly define dual
degenerate. We say that B is degenerate for d when it is either primal or dual de-
generate for this triple.

Let d be feasible well-posed with optimal basis B. We define
pézg d) = min{ |Ad|| : B is primal degenerate for d + Ad}
and
,odDeg(d) = min{ |Ad|| : B is dual degenerate for d + Ad}.
Finally, let
Paeg(d) :=min{ pgey(d), piag(d) }.

The following characterization of o, though less applicable than that in Theo-
rem 11.7, will be useful to prove the latter result.

Proposition 11.11 Let d be a feasible well-posed triple and B its optimal basis.
Then o(d) = min{pgeq(d), psing(AB)}.
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Proof Let Ad = (AA,0,0) be such that (A + AA)p is singular. Then B is not a
basis of d + Ad, and in particular, OB(d) # OB(d + Ad). This shows that o(d) <
|Ad|| = ||AA| and hence o(d) < psing(A ). This inequality, together with the fact
that triples d with degenerate solutions are ill-posed (Corollary 8.23), shows that
o(d) < min{pgeq(d), psing(Ap)}. We next prove the reverse inequality.

Assume o(d) < min{pgeq(d), psing(Ap)}. Then, there is Ad = (AA, Ab, Ac)
such that || Ad|| < min{pgeg(d), psing(Ap)} and B is not an optimal basis for d + Ad.

Fort €[0,1]let tAd = (tAA,tAb,tAc) and AD = A +1AA, b =b + 1 Ab,
and ¢ = ¢ +t Ac. Then

[(tAA)B| < lltAd| < | Ad]| < min{pgeq(d), psing(AB)},

and therefore, (A + tAA)p is invertible for all ¢ € [0, 1].
Let x® and y® be the primal and dual basic solutions of d\¥) := d + t Ad, for
tel0,1],1ie.,

x(f) — (Ag))*lb(t)
and
0= (A

Note that x(@ and y© are basic feasible solutions for d (since d® = d) but either
x@ or y(“) is not a feasible basic solution for d + Ad, since B is not an optimal
basis for d + Ad. Therefore,

(0)

min{minx< ,minc; —aTy(O)} >0
jeB /7 j¢B J

and
: @ T (a)}
minyminx; ,minc; —a; <0.
{jeB I et Y
By continuity, there exists t* € (0, 1) such that
. ) . T (,*)} .
minyminx;: ‘,minc; —a; =0.
jes gl T4

That is, B is a degenerate basis for d + 1* Ad (it is even a degenerate optimal basis
for this triple). But [|t* Ad|| < pgeg(d), in contradiction to the definition of pgeg(d).
Hence min{pgeq(d), psing(Ap)} < 0(d). U

Lemma 11.12

min sing(8) < Paeg(d) and min psing(8) < Pang(d)-

Proof We first prove the primal statement. Let Ad = (AA, Ab, Ac) be a pertur-
bation such that B is primal degenerate for d + Ad. Then there exists j € B such
that x; = 0, where x denotes the primal basic solution of d + Ad associated to B.



11.1 The Condition Number % (d) 207

Cramer’s rule implies that the matrix (A + AA)g[j : b + Ab] is singular; see Nota-
tion 1.9. Therefore

psing(ABLj : b]) < |AAglj : Ab]|| < || Ad]l,

which implies minges, Psing(S) < [|Ad||, since Ag[j : b] € S;. The primal state-
ment follows.

For the dual statement, let Ad = (AA, Ab, Ac) be a perturbation such that B
is dual degenerate for d + Ad. Then there exists j ¢ B such that (a; + Aaj)Ty =
(c+ Ac);, where y denotes the dual basic solution of d + Ad associated to B. Note
that (A + AA)p is invertible, since by our assumption (the dual degeneracy of B for
d + Ad), B is a basis of d + Ad.

By Lemma 11.9, the matrix

. (A+AA)T  (c+Ao)p
(aj+ Aaj)T  (c+ Ac);j
is singular. Hence

in psing(S) < Ap enl) _[[Ads Acs
min i i
s Psing = Psing a}" ¢ - Aa} Ac;

The dual assertion follows. O

< ld|l.

Proof of Theorem 11.7 We have minges, psing(S) < psing(Ap), since Ap € Sj.
Also, it follows from Lemma 11.12 that minges, psing(S) < pdeg(d). Altogether
and using Proposition 11.11, we obtain minges; 0sing(S) < o(d).

To prove the reverse inequality, take any S € Sp. We need to show that

o(d) < psing(S). (11.1)

CASEIL: § = Ap. Let AA be the smallest perturbation making Ap singular. Let
d=(A+4+ AA,b,c). Then B € OB(d). Hence, denoting by dist the distance induced
by || || and using Corollary 8.23,

o(d) =dist(d, Xopt) = dist(d, Xop) < dist(d, j) = | AA|| = psing(AB).

CASEIL: S€S8;,S# Ap. Weassume that B={1,2,...,m}and S =[ay,a, ...,
am—1, b] without loss of generality. There is a perturbation AS = [Aay, Aay, ...,
Aap, 1, Ab] of § such that § + AS is singular and || AS|| = psing(S). For j > m
we set Aa; := 0 and thus have defined a matrix AA. Further, we set Ad;=
(AA, Ab,0). By construction, ||Ad| = ||AS]||. For proving (11.1), because of
Proposition 11.11, it is sufficient to show that

min{ ping (), 0R4(d). prank(A)} < [ AS]. (11.2)
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In the case that (A + AA)p is singular, we have
Prank(A) < psing(Ap) < [|AABl < [[AA] < | ASII,

and (11.2) follows. So suppose that (A + AA)p is invertible. It is now sufficient to
show that B is primal degenerate for d + Ad. Let x* be the primal basic solution of
d + Ad associated with B. Cramer’s rule tells us that
x  det(A+ AA)p[m:b+ Ab]
tm = det(A + AA)

But (A + AA)g[m : b+ Ab] = S + AS is singular by assumption, hence x,; = 0.
It follows that B is primal degenerate for d + Ad and hence pg;g(d) < |lAd]| =
|AS]|, proving (11.2).

CASE III: S € S;. Without loss of generality we assume B = {1,2,...,m} and
that the submatrix S is obtained by picking the first m + 1 columns of A. There is
a perturbation AS of S such that § + AS is singular and [|AS|| = psing(S). Now
let Aaj = Asj for j <m + 1 and Aa; = 0 otherwise. Define Ad = (AA,0,0).
As before, it is sufficient to prove the bound (11.2). In the case that (A + AA)p is
singular, we again have

Prank(A) < psing(AB) <||AA| =]AS],

and (11.2) follows. So we may suppose that (A + AA) p is invertible. It is now suffi-
cient to show that B is dual degenerate for d + Ad. Let y* be the dual basic solution
of d + Ad associated with B. That is, (a; + Aa;*)Ty* =c;fori=1,2,..., m.Since
(A 4+ AA)p is invertible, the first m columns of S + AS are linearly independent.
Hence, since S 4+ AS is singular, the last column of S 4+ AS must be a linear combi-
nation of the first m ones. We conclude that (a,,+1 + Aam_H)Ty* = cp4+1. Hence B
is dual degenerate for d + Ad, and we obtain pc?eg(d) < ||AS]|, proving (11.2) and
completing the proof. g

11.2 7 (d) and Optimal Solutions

In this section it will be convenient to fix particular norms in R**! and R"™*!. We
will actually endow these spaces with the norms || ||; and || ||2, respectively. The
distance to singularity we considered in the previous section now takes the form

Psing(S) = min{ 1AS|12] S+ AS is singular}.

It follows from the definition of || |12 that ||d|| is at least as large as the 2-norm of
any of the columns or the co-norm of any of the rows of [Z} g]; cf. Corollary 1.3.
In particular, we will repeatedly use that with a; denoting the :th column of A,

max{[la:[l, 151, llclloo} < lId]l- (11.3)
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For a dual feasible solution y € R” we write, as usual, s for its slack. That is,
T
s=c—Ay.

Proposition 11.13 Assume d is feasible well-posed. Let B be the optimal basis of
d and (x*, y*, s*) the associated basic optimal solution. Then

1

3 min{s; | j ¢ B}
H(d) = }

min{min{x;k |ie B}, i

and

max{ ||x*

vl =7 @.

Proof Fori € B consider Ad = (0, Ab, 0), where Ab = —xl.*a,-. Recall that x*(i : 0)
denotes the vector obtained by substituting the ith entry of x* by 0. Clearly, the
point (x*(i : 0), y*, s*) is a feasible solution for d + Ad, and B is an optimal basis
for d + Ad. By construction, B is primal degenerate for d + Ad. It follows that
0(d) < pioy(d) < |1 Ad| = || Ab|| = x}'[la;|| < x}'l|d||. This proves that

o(d) [ w
Il fmln{xi lie B}.
The bound o(d) < min{s;‘ | j & B} follows from a similar argument. For each
Jj & B we consider the triple Ad = (0,0, Ac), where Ac := —s;.‘ej. Clearly,
(x*, y*,s*(j : 0)) is a feasible solution for d + Ad and B is an optimal basis
for this triple. Therefore, B is dual-degenerate for d + Ad. We deduce again that
o(d) < pdDeg(d) < || Ad|| = ||Ac|ly = s and conclude that

o(d) <min{s} | j & B}.
The upper bounds on ||x||; and | y|| follow from Theorem 11.7, since

o]l - Idll
1A 21 ~ A5 B~ Ix*lh

o(d) < ,Osing(AB) =

(we used Theorem 1.7 for the equality) and

1 leall Il
od) S ———=——F— < —— < —,
[AZ 21 1Ag lloc2 ~ NAg call — IVl
where the equality follows from Lemma 1.2(c). U

The next result gives a lower bound on changes in the objective function with
respect to changes in either the primal or dual solution.
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Theorem 11.14 Let d = (A, b, ¢) be a feasible well-posed triple.
(a) Let (y*,s*) be the optimal solution of the dual. Then, for any y € Sp with

slack s,
lls — s*lloo «

— =y

<l =l
(b) Let x™* be the optimal solution of the primal. Then, for any x € Sp,

N cTx —cTx*
e =xy = ——=—

e(d)

Proof (a) Assume y # y*, since otherwise, there is nothing to prove. Let v € R™ be
such that [[v]| = 1 and vT(y — y*) = ||y — y*|| (we have used (1.3)). Now put

bTy* _ bTy
Iy —y*I

By construction, (b+ Ab)T(y — y*) =0, i.e., both y* and y have the same objective
value for the triple (A, b + Ab, ¢). We claim that the unique optimal basis B for d
can no longer be a unique optimal basis for the perturbed data d + Ad := (A, b +
Ab, ¢). It follows from this claim that

0 Ab
0 0
the last since ||[v]| =1, and

Is = 5% oo = 1ATG =) oo = A uo Iy = y* [ < Nl |y = ¥*].

Assertion (a) is a consequence of these inequalities.

We now prove the claim. To do so, note that y* is a dual basic feasible solution
for B and d 4+ Ad (the perturbation of b does not affect dual feasibility). If B is an
optimal basis of d + Ad, then by Theorem 8.13(b), y* is the dual optimal solution
of d + Ad. Also, since y is dual feasible for d, it is dual feasible for d + Ad as well.
Finally, the equality (b + Ab)Ty = (b + Ab)Ty* implies that the objective value of
y is the optimal value of d + Ad. We conclude that y is also a dual optimal solution
of this triple. The claim now follows from Theorem 8.13(c), which implies that B
is not the only optimal basis for d + Ad.

T, * T
y*—=>b'y
= ||Ab| =

o(d) < —_—
12 ly — y*I

s

(b) The argument is similar to that in (a). Assume x # x*, since otherwise, there
is nothing to prove. Let u € R” be such that ||u|leo = 1 and uT (x —x*) = ||x —x*]|1.
Now put

cTx* —cTx
Aci=———u
lx — x*[I1

By construction, (¢ + AT (x —x*) =0, i.e., both x* and x have the same objective
value for the triple d + Ad := (A, b, ¢ + Ac). Reasoning as in part (a), one shows
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that the unique optimal basis for d is no longer a unique optimal basis for d + Ad.

Hence

C X —C X
=Aclloc = ——
12 lx — x*I1

11.3 Computing the Optimal Basis

In this section we will prove Theorems 11.1 and 11.3. To do so, we will exhibit
and analyze two algorithms for computing optimal bases. In this context, it will be
convenient to control the size of our data.

We say that d is normalized when

A b
||d||12=”<T )
c 0 12

From a computational viewpoint, this normalization can be straightforwardly
achieved by multiplying the entries of d by ||d|~'. In addition, feasible sets and
optimizers remain unchanged, as does the condition number J# (d).
In the rest of this chapter we assume that d is feasible and has been normalized.
The general idea underlying our two algorithms relies on the following three
ingredients:

=1

(I) a method to construct candidates B C {1, ..., n} for the optimal basis,
(II) a criterion to check that a given candidate B is optimal,
(ITT) some bounds ensuring that the candidate in (I) eventually satisfies the criterion
in (I) (and from which a complexity estimate can be deduced).

Let us begin with (I). If d is a well-posed feasible triple and x* is the primal
optimal solution, then

B*:{jfnlx;‘;éO}

is the optimal basis for d (otherwise, x* would be degenerate and we would have
d € Xop by Corollary 8.23). In particular, B* consists of the indices of the m largest
components of x*. By continuity, for a point x € R” sufficiently close to x* we ex-
pect that the same choice will also produce the optimal basis. Therefore, for any
point x € R" we define B (x) to be the set of indices corresponding to the m largest
components of x (ties are broken by taking the smallest index). Hence, Bj(x) satis-
fies

Bi(x)C{l,....,n}, |Bi(x)|=m, and max x; < min x;.
J€B1(x) JE€B(x)

Similarly, if y* is the optimal solution of the dual and s* = ¢ — ATy*, then B* =

{j<n| s;‘ = 0} consists of the indices of the m smallest components of s*. Again

by continuity, for a point y € R™ sufficiently close to y* we expect that the same
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choice will also produce the optimal basis. Therefore, for any point y € R” we
let s =c — ATy and define B(s) to be the set of indices corresponding to the m
smallest components of s (ties are broken as above). Hence, B> (s) satisfies

By(s) C{1,...,n}, |Bz(s)|:m, and max s; < min s;.
J€Ba(s) ° JEBa(s) -~

Given a point (x, y, s), we may take any of By (x) and B;(s) as candidate for optimal
basis.

We next look at (I): for this, we use the basic criterion that guarantees optimality
when both the primal and dual solutions are feasible (that is, Definition 8.10).

As for (III), the desired conditions, for each of the algorithms, will be provided
in Proposition 11.15.

11.3.1 An Interior-Point Algorithm

In this section we assume the availability of a point zg = (x9, yo, yo) € N (%) such
that u(zg) = nOM | as described in the introduction to this chapter.

We can now describe the algorithm computing an optimal basis. It is just
Algorithm 9.1, Primal-Dual IPM, enhanced with the ideas in ingredients (I) and (II)
above.

Algorithm 11.1 OB
Input: d=(A,b,c) e R™"*" x R"™ x R", 79 = (xg, Y0, 5o) € R*Tm+7n

Preconditions: d is feasible, normalized, rank A =m <n, zg € N(}T) and u(zg) =n

o)

run Algorithm Primal-Dual_IPM with input (A,b,c) and zg
at each iteration:

compute Bj(x) and set B:=Bj(x)

if Ap is invertible then

use B to compute x*,y*, s*

. £ 4—1
given by xp=A; b,
xy =0, y*=AETCB, and s*=c— ATy*

if x*,s*>0 then Return B and Halt

QOutput: B C{l,...,n}
Postconditions: B is an optimal basis for d = (A, b, ¢)

The correctness of Algorithm 11.1 is clear by the definition of optimal basis.
To analyze its complexity we use the following result (recall that we are assuming

ldll12=1).
Proposition 11.15 Let (x,y,s) € R" x R™ x R" be such that

o(d)

d2
lAx - bl < £ 1y e

s=c—ATy, x>0, >0, and x's< o

Then B1(x) = Ba(s), and this is the optimal basis for d.
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Proof Let Ab:= Ax — b and Ad := (0, Ab,0). Then
Ax =b+ Ab, ATy+s:c, x>0, and s > 0.

That is, x and (y, s) are feasible points for the primal and the dual for the triple
d + Ad. Let x* and (y*, s*) be the primal and dual optimal solutions of this triple.
By (8.1),

Tx —Tx* <cTx — b+ Ab)Ty =xTs < Q(ldz)2
and
b+ AD) Y — b+ Ab)Ty <Tx — (b + ATy =xTs < Q(é)z
In addition, since ||Ab| < o(d)/2 and by Corollary 1.3,
| Adlli2 = H (0 Ab) =146l <e/2. (11.4)

Therefore, if B denotes the optimal basis for d, then by the definition of g, B is also
an optimal basis for the triple d + Ad and o(d + Ad) > o(d)/2.
We now use Theorem 11.14 for d + Ad to obtain

cTx —cTx*  o(d)?/12  o(d)
< _

| = x| o =[x =x], = od+Ad) ~ od/2 6

and

Is =s%loo _y oy o @ADL = 0+ ATy 0@Y/12_ o(d)
||d + Ad| — o(d + Ad) o(d)/2 6
Note that inequality (11.4) and the normalization ||d|| = 1 imply ||Ad|| < 1/2 and

therefore that ||d + Ad|| < 3.
Now assume Bj(x) # B and let j; € B1(x) \ B. Since x* is an optimal solution

for the triple d + Ad and j; ¢ B, we have x =0. Let also j» € B\ Bi(x). By
Proposition 11.13 applied to d + Ad,

o(d + Ad) 20(d) o)
xz—m—3 @+Ad)z 3= =75

Since [|x* — x|loo < 0(d)/6, we have xj, > 0(d)/6 and x}, < o(d)/6. This contra-
dicts

max x; < min Xx;.
JE€Bi(x) J€Bi(x)

The proof for B, is similar. Assume By (s) # B and let j; € B\ By (s). Since y*
is an optimal solution for the triple d + Ad and j; &€ B, we have sjl =0. Now let
J2 € Ba(s) \ B. By Proposition 11.13, sjz > o(d + Ad) > o(d)/2. Also, the bounds

'l'fd ;j\'t‘;ﬁ < 0(d)/6 and ||d + Ad| < 3/2 imply ||s* — s|lec < 0(d)/4. Therefore,
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sj, > o0(d)/4 and s, < o(d)/4. This contradicts

max s; < min s;. 0
J€B(s) J€Ba(s)

Proof of Theorem 11.1 Theorem 9.10 (take & = %) ensures that Algorithm 11.1
produces a sequence of iterates (z;);ien With z; = (x;, y;, s;) feasible. Hence, the
first four hypotheses in Proposition 11.15, namely ||[Ax — b| < %, s=c— ATy,
x >0, and s > 0, are trivially satisfied by these z;.

Theorem 9.10, along with the assumption 1 (zg) = no(l), also ensures that

o(d)?
12n

w(zr) <

and consequently that kask < %, as soon as

k>4\/_<ln/¢(z())+ln ) O(Vi(logn + In 4 ))).

(@)?

Proposition 11.15 now finishes the proof. g

11.3.2 A Reduction to Polyhedral Feasibility Problems

Our second approach to finding an optimal basis also follows the roadmap based
on ingredients (I-III) above but with a major deviation: the sequence of points z =
(x,y,s) used to construct By or B, is obtained differently (and they are no longer
feasible solutions of the pair (SP-SD)).

To see how, note that the optimal solution (x*, y*) is the only solution of the
system

Ax =b,
ATy <c,

cTx — bTy <0,
x >0.

Therefore, points (x, y) close to (x*, y*) can be obtained as solutions of the relax-
ation (recall thate,, = (1,1,...,1))

Ax <b-+oie,,
Ax >b—oiey,,

ATy < c, (11.5)
Ty — bTy = 02,

x > 0,

where 0 = (01, 02) € Ri has small components. To get solutions of such a system
we can use any algorithm solving the polyhedral cone feasibility problem PCFP
homogenizing the system above (with a new variable ¢) so that it becomes a poly-
hedral conic system (as we did in the preceding chapter). In our algorithm we will
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take o1, 02 to be functions of a single parameter ¢ > 0 as follows:
83 82
0y = —.
25

o]l i = —,
48m

Furthermore, we will want to ensure that ¢ > 0 and to control the magnitude of y/¢
so that

2
y/tlleo < =
&

The resulting extension of (11.5) is given by the polyhedral conic system

X
M.y ] <O, (11.6)
t
where
A —(b+o1ey)
~A (b— o16n)
AT —c
M, = T —bT -0
-1, 0
el, —2e;,
—ely —2e,
-1

Note that M, € R@n+2n+2)x(ntm+1) and rank My =n +m + 1 if rank A = m.

During the execution of the algorithm ¢ will decrease to zero. Therefore, suc-
cessive pairs (x/t, y/t) induced by the solutions of the system will be increasingly
closer to (x*, y*).

Because of the lines we added in M, it may happen that the linear conic system
(11.6) has no solutions even though the system (11.5) has. The next result shows
that for small enough ¢ this is not the case. Recall that data d are assumed to be
normalized.

Proposition 11.16 If d is feasible and 0 < ¢ < o(d), then the polyhedral conic sys-
tem (11.6) is strictly feasible.

Proof Let (x*, y*) be the optimal solution of d. Then, by Proposition 11.13, ||y*|| <
H(d) < % Since ||y*]loo < IIy*|l, this shows that (x*, y*, 1) satisfies the sixth and
seventh lines of (11.6). The result follows since the other constraints are clear. [

Hence, for ¢ sufficiently small the conic system (11.6) has solutions. Further-
more, continuity suggests that any point (x, y) such that (x, y, 1) is such a solution
will be close to (x*, y*). Therefore, we can construct our candidate for the optimal
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basis by taking either By (x) or B>(s). Again, we need to prove that when ¢ becomes
small enough, this candidate is indeed the optimal basis.

Proposition 11.17 If0 < ¢ < o(d) and (x, y,t) € R"™"*+1 are such that
Mc(x,y, 1) <0,
then B1(x) = Bx(s), and this is the optimal basis for d.

A last basic ingredient is needed. In order to solve the feasibility problems
My (x,y,t) <0, we will use Algorithm 9.2 (but we observe that we could perfectly
well use, with appropriate modifications, an ellipsoid method or the perceptron al-
gorithm). The number of iterations of Algorithm 9.2 for deciding the feasibility
of (11.6) is a function of the GCC condition €’ (M ST ). We therefore need bounds on
<K(Mg ). The next result provides bounds for <K(Mg ) for small enough ¢.

Proposition 11.18 If0 < ¢ < o(d), then

€(MY) < B(n,m, &) :=96m+/3(m +n+ 1)e~*.

We next describe our second algorithm for computing an optimal basis. Here C
is any constant such that (recall Theorem 9.14) Algorithm 9.2 with input M halts
after at most

C/n(log, n +log, € (M}))

iterations.

Algorithm 11.2 OB2
Input: d=(A,b,c) e R"*" x R" x R"

Preconditions: d is feasible well-posed, normalized, and rank A =m < n

set ¢:=1/2
repeat
write down M = M,
run at most Ci/n(logyn +logy B(n,m,¢))
iterations of Algorithm 9.2 with input M
if a solution of the system M(x,y,t) <0 is found
within the allowed number of iterations then
compute Bj(x) and set B = Bj(x)
use B to compute x*,y* s* defined by
x%zAElb, xl’f,:O, y*=AETcB, s*:c—ATy*
if x*,s*>0 then return B and halt

set ¢:= 82

Qutput: B C{l,...,n}
Postconditions: B is an optimal basis for d = (A, b, ¢)
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We can now prove the second main result of this chapter.

Proof of Theorem 11.3 The correctness of Algorithm 11.2, as was that of Algo-

rithm 11.1, is clear. For its cost, note that at the kth iteration the value of ¢ is 2_2k.
Therefore, after log, log, (£ (d) + 4) iterations we have Q(a’)2 < e <o(d). At this
stage, Proposition 11.16 ensures that the system (11.6) is strictly feasible. Further-
more, Proposition 11.18 along with Theorem 9.14 guarantees that the clock we set
for the execution of Algorithm 9.2 is generous enough to allow this procedure to
find a strictly feasible solution of (11.6). Finally, Proposition 11.17 shows that the
candidate basis constructed from this solution is the optimal basis for d.
Since the cost of each iteration of OB2 is at most

Cn*>(logy n +log, B(n,m, ¢)),
a total bound of
O(n*>(logy n +log, # (d)) log, log, (A (d) + 4))
follows for the total cost of Algorithm 11.2. 0

To finish this section, the only task remaining is to prove Propositions 11.17
and 11.18.

Proposition 11.19 Ler 0 < & < o(d), and let (x, y, s) € R"2™ be such that

& T T T £?
Ax —b|| < , =c—AYy, —by<—,
lAx=bl< g7 s=c-Ay cx=bysag
2Jm
Iyl < X2 x5 >0.

Then B1(x) = Ba(s), and this is the optimal basis for d.

Proof Let Ab= Ax — b. Then | Ab| < 488\3/%, and we have

xTs =xTe— xTATy =xTc— bTy — AbTy
< (xTe=bTy) +lyllAv|

2 2ym & g2 o(d)?
<—< )
25 e 48/m 127 12

In addition, since ¢ < o(d) <1,

3
& _old)

Ax —b|| <
IAx=bl= g7 =2

and the result follows from Proposition 11.15. g
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Proof of Proposition 11.17 If (x, y, t) satisfy (11.6), then M. (x/t,y/t,1) <0. The
first two lines in (11.6) yield || Ax — bl < 75, which implies | Ax — b| < %
In addition, the fourth line implies
2
T T £

—by<—.
o y= 25
Finally, letting s := ¢ — AT y and now using the sixth, seventh, fifth, and third lines
of (11.6), one has,

2./m
||y||§\/%||y||oo§%— and x,s>0.

The hypotheses of Proposition 11.19 are thus satisfied by (x, y, s), and therefore
Bi(x/t) = By(y/t) is the optimal basis of d. But By(x) = Bi(x/t) and Ba(y) =
B>(y/t). Thus Bj(x) is the optimal basis for d. O

Proof of Proposition 11.18 The proof will be based on the characterization of
€ (MgT ) given in Proposition 6.21. Let x* and y* be the optimal solutions of the
primal and dual of d, respectively. Then

A —(b+oiey) —01€n
—A (b —o1e) x* —o1e,
AT —c vl < 0
CT —bT —0) 1 —0)
-1, 0

In addition, by Proposition 11.13, ||x*||1, || y*|| < #(d) < %, and the bound on || y*||
implies (note that ¢ < 1)

el,, —2ey, x* —e,
—el,, —2e, yil < | —en
-1 1 -1

Since min{o1, 92} = 01 = 75, it follows that M (x*, y*, 1) < — 2 €ams2042.
Let E be any (4m + 2n + 2) x (m + n + 1) matrix such that || E||200 <

64
48+/3m
and let £ be the jthrow of E for j =1,2,...,4m+2n+2. Then, || E;|| < ﬁ.
Similarly, let M, ; be the jth row of M,. Then, for j =1,2,...,4m +2n+2,

(Mg,j + Ejp)(x*, y*, 1) = M, j (x*, y*, 1) + Ej(x*, y*, 1)

LN RTINS
48m J TS
83 84 \/g

€t ——=
48m  483m ¢
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the last inequality following from [|(x*, y*, 1)|| < +/3/e. Therefore, (x*, y*, 1) is
also a solution of (M, + E)(x,y,t) < 0. We conclude that for X' as defined in
Sect. 6.3,

(M7, 5) = do My, 5 >
’ - &€ - .
¢ 48y/3m
In addition, since ||d|| = 1, all the entries of M, are bounded in absolute value

by 2, and we have ||MST|| 12 < 24/m 4+ n + 1. Therefore, recalling Proposition 6.21,

MT
%(Mg)—m <96m+\/3(m +n+ e 0

CdpME X)) T

Remark 11.20 As we did in Remark 10.6, we observe now that since Algo-
rithm 11.2 is essentially a sequence of calls to a PCFP-solver, it should come as
no surprise that a finite-precision version of this algorithm will work accurately as
well. Indeed, the main result in [58] (in the spirit of Template 2 in Sect. 9.5) is the
following.

Theorem 11.21 There exists a finite-precision algorithm that with input a full-rank
matrix A € R™*" and vectors b € R™ and ¢ € R" finds an optimal basis B for d.
The machine precision €mach varies during the execution of the algorithm. The finest
required precision satisfies

1
€mach = O(n26<)£/(d)16) .

The total number of arithmetic operations is bounded by

O(n*?(logn +log # (d)) loglog(# (d) +2)). .

11.4 Optimizers and Optimal Bases: The Condition Viewpoint

Algorithms OB and OB2 in the preceding section compute optimal bases for (well-
posed) triples d = (A, b, ¢). Given such a basis B, we can obtain optimizers for
primal and dual by taking

xXp = Aglb, xy:=0, and y*:= AETCB.

Conversely, we note that any algorithm computing x* and y* for a well-posed triple
d would produce (in an even simpler way) an optimal basis B by taking B :={j <
n | x;‘ > 0}. Restricted to well-posed data and under infinite precision, these two
problems are equivalent.

We can nonetheless abandon the infinite-precision hypothesis and consider at
least the case of perturbed data. How do these two problems compare in this case?
An answer to this question should involve a comparison of their condition numbers.
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Fig. 11.2 A schematic TOO
picture of # (d) and
cond®P!(d)

Wi, Wg,

And we note at this point that we have never defined the condition number of the
optimal solution problem. Because of the continuously valued nature of this prob-
lem, one might be inclined to define condition following the lines laid down in the
Overture, that is, to take

P . RelError(x*)
cond’ (d) := lim sup 7
8—0RelError(d)<s RelError(d)

and likewise for cond? (d), and finally define
cond®'(d) := max{cond” (d), cond” (d)}.

A moment’s thought reveals, however, that the combinatorial structure of linear pro-
gramming imposes on cond®?!(d) the same shortcomings we discussed for discrete-
valued problems in Sect. 6.1. Indeed, if d is well-posed with optimal basis B, then
sufficiently small perturbations will also be well-posed with optimal basis B. By
Theorem 1.4, the (say dual) optimizer 7 of such a perturbation d will therefore sat-
isfy

S vk

Iy =7 <

y*l

The key factor here is /((AE,); and this quantity may be moderate for data arbitrarily

close (or even belonging) to Xqpt. The simplest example is an ill-posed triple d with
two optimal bases By and B;. Both matrices AEI and A};z may be well-conditioned

2k (A} )RelError(AT, ¢) +o(1). (11.7)

and yet d is ill-posed. What makes d ill-posed is the possibility to jump from one
extremal optimal solution to the other. But each of these extremal solutions is itself
well-posed as a function of the pair (A%, cp).

Figure 11.2 shows a schematic picture of this situation. The quantity cond®P'(d)
remains bounded around the boundary between Wg, and W, but it jumps to oo at
this boundary (in accordance with the discussion in Sect. 8.4.2). Figure 11.2 depicts
as well the condition number .#"(d), whose behavior appears to be more adapted to
its use in the analysis of algorithms.
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We note that in addition, .# (d) plays a central role in bounding the loss of pre-
cision for the computation of x* and y*. The following result gives a first idea.

Proposition 11.22 Let d be feasible well-posed and B the optimal basis for d.
Then, forall r,s > 1,

krs(AB) < Hrs(d) and  Kkgxp* (Ajl;) < Hs(d).

Proof Let X C R™ ™ denote the set of singular matrices. By Theorem 11.7 we
have o(d) <d,s(Ap, X). Hence, using Corollary 1.8, we get

IABllrs _ lldll
drs(AB’ 2) h Q(d)

krs(Ap) = =5 (d).

The second inequality follows from Lemma 1.2(c), according to which we have
Kxp* (A};) =Krs(Ap). O

For r, s > 1 consider now the quantity

lld s s }
1(AB, B)lrs ™ (AL, cp)llgirs )

R(d) := max max{
BeB

which measures how balanced the norms of the square subsystems of d are for
the different choices of basis. Then, by the primal version of (11.7) and Proposi-
tion 11.22,

RelError(x*) < 2«,s(Ap) RelError(Ag, b) + o(1)

(Ag,b) — (Ap,b)llys ld|lrs
= 2k,5(AB) + o(1
R TV ST FTRRAL

Id —dllrs  lldllrs
< 2k5(AB) +o(1)
" Idl-s 1I(AB, b)lrs

< 2,s(d) RelError(d) R(d) + o(1),

and a similar bound applies for RelError(y*). We conclude that the loss of preci-
sion in the computation of the optimizers x* and y* is controlled by the product
J(d)R(d).

11.5 Approximating the Optimal Value

We close this chapter with a few words on the problem of computing the optimal
value v*. We noted in Sect. 8.4.2 that the set of ill-posed triples for this problem is
the same as that for the feasibility problem, and hence, one could expect to have al-
gorithmic solutions analyzed in terms of C(d) (as defined in Sect. 10.1). We cannot
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substantiate this last claim here, but we can nonetheless give some indications of the
issues involved.

The first one is that as far as we know, there is no algorithm that will compute
the optimal value without computing an optimal basis or an optimizer. This fact
would appear to conflict with the picture above. But there is no such conflict. What
happens is that to understand the role of condition in the computation of the optimal
value, we need to consider the problem of approximating v*, not of computing it
exactly. We won’t enter into the details, but we observe that given ¢ > 0 and a
feasible point zg = (xo, Yo, So) in the central neighborhood A (%) such that p(zg) <
(n||d ||)O(1)—in what follows, we assume, without loss of generality that ||d|| = 1—
we can compute a real number v satisfying [0 — v*| < ¢ using

O(Vn(Inn + |Inel))

iterations (and n> times this bound for the number of arithmetic operations per-
formed). This follows from Theorem 9.10 and the fact that if zx = (xk, yx, sx) de-
notes the value of z at the kth iterate of Algorithm 9.1 and we take vy := ¢Tx; then

ok — v*| < vk =BTy =np(z).

We therefore conclude that if we can compute a point zq in the central neighborhood
N ($) such that u(z0) < n®D with cost O(n>3(Inn + InC(d)), then we can ob-
tain the desired approximation of v* with cost bounded by O (n3- (Inn +In C(d) +
|Ing|)). As we pointed out in Remark 11.2, however, a discussion on the ways of
doing the first computation would take us too far away from our main themes.
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Average Analysis of the RCC Condition Number

In Chap. 11 we considered the primal—dual pair of linear programming optimization
problems

min ¢'x subjectto Ax=b, x>0, (SP)
and
max bTy subject to ATy <c, (SD)

and analyzed two algorithms that in case both problems are feasible, return optimiz-
ers x* and y* for them, respectively. Recall that here A € R™*", b € R",c € R",
andn>m > 1.

To analyze these algorithms we introduced the condition number 7 (d)—here
d = (A, b, c) and the indices r, s refer to the underlying operator norm—and the
main results in the previous chapter, Theorems 11.1 and 11.3, bound the cost of
these algorithms by

O (13 (logn +log #2(d)))
and
O(n*? (logn + log #12(d)) loglog(#12(d) + 2)),

respectively. Furthermore, Theorem 11.21 states that this task can be done with finite
precision and the result is correct as long as the machine epsilon satisfies

1
“meeh = 5 (126 12 (d)16)

This means that the number of digits or bits necessary to perform the computation
is bounded by O(logn + log #12(d)).

The use of || |12 in these bounds is irrelevant: the consideration of other norms
will only change the constant in the O notation. The goal of this chapter, following
a line of thought well established in our development, is to eliminate .# (d) from
these bounds via a probabilistic analysis.
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To be precise, we consider Gaussian triples d. That is, we assume that the entries
of A, b, and ¢ are i.i.d. random variables with standard normal distribution. Recall
that we denoted by W the set of triples that are feasible well-posed. Our main result
in this chapter is the following.

Theorem 12.1 We have

5
vonl d 51 D+1 1) +log24
d~N(0,I>(Og%( )| d e W) = Slog(n + 1) +log(m + 1) +log 24e
as well as
E | (loglog #2(d) | d € W) =loglogn + O(1)
and
4 ]]\?:(0 I)(logﬂ/z(d) loglog %5 (d) | d € W) =lognloglogn + O(1).

Theorems 11.1, 11.3, and 12.1 combine to yield the following average complex-
ity results.

Corollary 12.2 There exists an algorithm that with input a matrix A € R™*", vec-
tors b € R", ¢ € R", and a feasible point zo = (x¢, yo, So) in the central neigh-
borhood N (%) finds an optimal basis B for d. The average number of iterations
performed by the algorithm, on Gaussian data d, conditioned to d being feasible
well-posed, is bounded by

O(+v/n logn).

The average number of arithmetic operations is bounded by
O(n3'5 logn). 0

Corollary 12.3 There exists an algorithm that with input a matrix A € R™*" and
vectors b € R™ and ¢ € R”" finds an optimal basis B for d. The average cost of
the algorithm, on Gaussian data d, conditioned to d being feasible well-posed, is
bounded by

O(n3'5 lognloglogn). O

In addition, a bound on the average maximum number of digits 10g émach(d) re-
quired by the algorithm in Theorem 11.21 follows as well, namely,

E  logémach(d) = O(logn).
d~N(0,I)

The main difficulty in proving Theorem 12.1 is the conditioning over the event
d € W. The idea of the proof involves rewriting the conditional expectation in the
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statement as an expectation over a Gaussian of some function (easier to deal with
than J#"). In order to do so, we will rely on an idea that will be central in Part III: the
use of symmetry properties of functions and distributions expressed as invariance
under the action of certain groups.

12.1 Proof of Theorem 12.1

Write D = R™* "+ for the space of data inputs, and
B={B<{l,2,....,n}||B| =m}

for the family of possible bases.

12.1.1 The Group &, and Its Action

We consider the group &, = {—1, 1}"* with respect to componentwise multiplica-
tion. This group acts on D as follows. For ue®,, let D, be the diagonal matrix
having u; as its jth diagonal entry, and define

UA := AD, = (ujai, wa, ..., uyay),
uc := Dyc = (uicy, Upcy, ..., UyCn),
where a; denotes the ith column of A. We define ud := (uA, b, uc). The group &,
also acts on R" by ux := (ujxy,...,Upxy,). It is immediate to verify that for all
A e R™*" 3]l x € R", and all ue®,, we have uA ux = Ax.
Now recall (from Sect. 11.1) the definition of Sg, for B € B, and consider the
function
hg: D—[0,+00),
d+— min ing(S).
SeSp(d) Psmg( )
These functions are important to us because for any d € W, Theorem 11.7 charac-

terizes o(d) as hp(d), where B is the optimal basis of d. The functions ¢ and hp
are symmetric in a very precise sense.

Lemma 12.4 The functions hp are &,-invariant. That is, for any d € D, B € B,
and ue®,,,

hp(d) = hp(ud).
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Proof Let §* be any matrix in Sg(d) such that

Psing (S*) = Setnsgzd) Psing(S)- (12.1)

Let k be the number of rows (or columns) of S$* and let E be any matrix in Rkxk
such that $* + E is singular and

IE|l = psing(S™)- (12.2)
Then, there exists a nonzero z € R¥ such that
(S*+E)z=0. (12.3)

Suppose S* consists of the ji, j2, ..., jx columns of d (recall the definition
of Sp) and let U € & be given by U = (uj;,uj,,...,uj;). Then, by the definition
of Sg(d) and Sp(ud), we have uS* € Sg(ud). Furthermore,

(US* + GE)uz =0(S* + E)uz = (S* + E)(2) =0,

the last equality by Eq. (12.3). That is, (uS* + UE) is also singular. By the definition
of psing,
Psing (US¥) < |GE]|. (12.4)

Since operator norms are invariant under multiplication of arbitrary matrix columns
by —1 we have || E|| = |[uE||. Combining this equality with Egs. (12.1), (12.2), and
(12.4), we obtain

ing(0S™) < min ing(:S).
Psmg( ) = geSpt )Psmg( )
Since uS* € Sg(ud), we obtain

min ing(8) < min ing(S).
SeSp(ud) Psing(S) < SeSpld) Osing ()

The reverse inequality follows by exchanging the roles of uS and S. 0

Recall from Sect. 11.1 the partition {Wp | B € B} of the set W of well-posed
feasible triples.

Lemma 12.5 Letd € D and B € B. If hp(d) > 0, then there exists a unique Ue®,
such that ud € Wg.

Proof First observe that since minges;(4) Psing(S) > 0, the matrix Ap is invertible
and therefore B is a basis for d. Let y* and x™* be the dual and primal basic solutions
of d for the basis B, i.e.,

y*=AzTcp.  xp=Ap'b, and x7=0, forallj¢B. (12.5)
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Similarly, let y" and x" be the dual and primal basic solutions of ud for the same
basis. Then, using that uA = ADy and uc = Dyc,

YW= (uA)," ()= Ay (DY) (Du)ges = Ay cp =y, (12.6)
the third equality by the definition of (D) p. Similarly,

X% = A b= (D)3 A b= (DAL b= (Dy)px} (12.7)
and x? =0 forall j € B. Therefore,

B isoptimal forud < x“and y" are both feasible

x>0
- >
(UA)yyUS(UC)j, for j ¢ B
N (Dy)pxp >0
(Ujllj)Ty*SUjCj, for j & B
u;x*>0, for j € B
o R . (12.8)
uj(cj—aj;y)=0, for;j¢B,

the third equivalence by (12.6) and (12.7).
Since by hypothesis 2 g (d) > 0, we have minge s, 4y Psing(S) > 0 and hence

x%#0, foralljeB, and ajys#c;, forallj¢B. (12.9)

Combining Egs. (12.8) and (12.9), the statement follows for ue®,, given by u; =

* T
x_j o . o cj—a;y
55 if jeBandu; = —aJTyI

lcj

otherwise. Clearly, this u is unique. g

For B € B let
XYp = {deD|hB(d)=0}

and Dp :=D\ Y. Lemma 12.4 implies that Xp and Dp are &, -invariant, for all
B € B. Lemma 12.5 immediately implies the following corollary.

Corollary 12.6 For all B € B the sets

Dy:={d €Dp|ud e Wg}, forued,,
from a partition of Dp. O
Remark 12.7 The set of ill-posed feasible triples is included in the union of the

sets X'p over B € B (this follows from the proof of Theorem 11.7). The reverse
inclusion, however, even restricted to feasible triples, does not hold. In other words,
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Fig. 12.1 The situation in the
space of data, revisited

there are triples d € W belonging to X'p for some B € B (and actually, because of
an argument of symmetry, for all B € 13). Needless to say, this B is not an optimal
basis for d.

As an example of the above, consider the matrix A = [1, 0], and the vectors
b= (1) and ¢ = (1, 1). Then the primal—dual pair of optimization problems is

min  xj] +x2 max y
X1\ _ 1 1
s.t. [1,0]<x2>—1, s.t. [0]y5<1),
x1,x2 >0,

and it is immediate to check that By = {1} is an optimal basis and the corresponding
optimizers are x, = (1, 0) and y, = 1. Furthermore,

Sn = {[11,[1], [} ‘1)“

and hence ¢(d) = 1. The other element in B is By = {2}, for which we have

Sp, = {[01, (11 [} ?“

and hence /i p,(d) = 0. In summary, d € Wg, and d € X, .

Figure 12.1 revisits the situation discussed at the end of the introduction to
Chap. 11 and summarized in Fig. 11.1. We have added to the latter a dashed curve
corresponding to one of the sets X'p (say, By). We see that this set intersects both Zp
and Zp. Furthermore, it contains the boundary of Wg,, but it also contains triples
in the interior of other WWg’s (in the figure, we have shown this for Wg,).
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12.1.2 Probabilities

Although Theorem 12.1 is stated for the Gaussian distribution, a substantial part of
its proof—a reduction from a conditional expectation to a nonconditional one—can
be done more generally. Therefore, for a time to come, we fix a distribution & on
the set of triples d = (A, b, c¢), with density function f with respect to the Lebesgue
measure dD on D, satisfying the following conditions:

(Di) f is &, -invariant; that is, if d ~ Z, then ud ~ & for all ue®,,.
(Dii) forall B € B, Prob;.g{hpg(d) =0} =0.
(Diii) for all By, By € B and all measurable functions g : R — R,

/d w g(hp,(d))f(d)dD = 8(hp,(d)) f(d)dD.

deWBz

Note that condition (Dii) implies that the probability of having two optimal bases
is zero. Also, condition (Diii) is satisfied whenever & comes from an i.i.d. distri-
bution on D. In particular, the standard Gaussian distribution N (0, I) satisfies (Di)-
(Diii) above.

Lemma 12.8 For any ue®,, and B € B,

1
Prob{ud € Wg} =Prob{d e Wp} = —.
a~9 a~9 2n

Proof The equality between probabilities follows from (Di). Therefore, by Corol-
lary 12.6 and condition (Dii), the probability of each of them is 27". U

The following lemma tells us that for all B € B, the random variable i g(d) is
independent of the event “d € Wp.”

Lemma 12.9 For all measurable g : R — R and B € B,

E (s(ip@) 1deWs) = E_(s(hn()).

Proof From the definition of conditional expectation and Lemma 12.8 we have

ey, 8(hp(d) f(d)dD
B (@) |d e wy) = ===

—on f 15(d)g(h5(@) f(d) dD.
deD

where 1p denotes the indicator function of WWg. Now, for any ue®,,, the map d
ud is a linear isometry on D. Therefore

/ JlB(d)g(hB(d))f(d)dD=/ 1p(ud)g(hp(ud)) f (ud) dD.
deD deD
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Using that hp(d) = hp(ud) (by Lemma 12.4) and f(d) = f(ud) (by the
®,,-invariance of 2), it follows that

d~

E@(g(hg(d)) |d e Wp) = 2"/d D 1p(d)g(hp(d)) f(d)dD

= Z/ 1g(ud)g(hp(ud)) f (ud) dD
deD

ue®,

=¥ [ tsdgu@)r@ar
deD

ue®,
=/ g(hp(d) f(d)dD= E (g(hp(d)),
deD d~9
the last line by Corollary 12.6. U
The following lemma is proved as Lemma 12.9.

Lemma 12.10 Forallr,s > 1 we have

E (ldllrs1deW)=E (ld|s). O
a~9 a~9

Lemmas 12.9 and 12.10 eliminate the conditioning to “d € WWp” in the expecta-
tions we want to compute. A difficulty remains in the fact that o(d) = hp(d) only
when B is the optimal basis of d. Therefore, to compute Eg(o(d)) we will have
to compute Eg(hp(d)), with B being a function of d. The next lemma solves this
problem. Let B* ={1,2,...,m}.

Lemma 12.11 For all measurable g : R — R,

dLE@(g(@(d)) |deW) = d@@(g(hg*(d))),

Proof By the definition of conditional expectation,

_ Jaew 80(d) f(d)dD
E (gle@)]dew)= KT 1210

Because of (Dii), the probability that d has two optimal bases is 0. Using this and
Lemma 12.8, we see that

1 n\ 1
I;Lo@b{deW}zZI;Lo@b{deWB}zzz—nz(m>2—n. (12.11)
BeB BeB

Combining Egs. (12.10) and (12.11), we have
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n\ 1
( )2”f;(mwﬂdemﬂ 1; g(o(@) f(d)dD

—Z/ g(o(d)) f(d)dD,

BeB

with the last equality from the fact that the probability that d has two optimal bases
is 0. Using now this equality, condition (Diii), and the fact that o(d) = hp(d) for
d € Wpg (Theorem 11.7), we obtain

51 B (s(e@)deW) = ./ g(o(d)) f(d)aD
deWpx

dEWB*

Therefore, by Lemma 12.8 with B = B*,

Probld € Wp+) E (s(e(d)) |deW)=/d y g(hp(d)) f(d)dD.

We conclude, since by the definition of conditional expectation and Lemma 12.9,

~ d~

E@(g(g(d)) |deW)= E@(g(hg*(d)) |d € Wg+) =dINE@(g(hB* @))-

Corollary 12.12 Forallr,s > 1 we have

E (1 rs(d) | d = E (logldll,s) — E (loghpg«(d)).
E (logArs(@)|d eW) = E (loglldlirs) = E (loghp-(d))

Proof 1Tt is a trivial consequence of the definition of J#'(d) and Lemmas 12.10
and 12.11. O

Corollary 12.12 reduces the computation of the conditional expectation of
log ;¢ to those for the expectations of log||d||,s and loghp+(d). The reduction
holds for any distribution 2 satisfying properties (Di)—(Diii). To proceed further
and to give estimates of the latter two expectations, we need to choose a particular
distribution & (and values for r and s). We next take 2 = N(0,1) and r =5 = 2.

Lemma 12.13 Let B € B be fixed. Then,

1 1/2
dw}%ﬂ( hB(d)>§2JE(m+1) (n+1).

Proof Consider a random matrix S € R”*. Using the tail bound in Corollary 4.20
(with A =0 and o = 1) together with Proposition 2.27 (with k = % K = pe,
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= ./pe, and o = 1) we obtain

E S <2 . 12.12
gorly WIS =20Pe (12.12)

For any fixedd € D,

=¥ Vis

\/; SESB ,Osmg(S 'Os'”g(S SeSp

Taking averages on both sides yields

dg(@) M(ZW) X, E (Vis)

< Y 2Jem+1)'? by (12.12) with p=m orm + 1
SESB

<2Je(m+ D2 +1). O

Proof of Theorem 12.1 Recall from Sect. 11.1 the definition of ||d||. Since for a
random Gaussian M € R +D>x0+D we have E(||M||) < 64/n + 1 (Lemma 4.14),
it follows from Jensen’s inequality that

1
By loglidl) <log B (IM]) < 5log(n + 1) +log

In addition, using Lemma 12.13 and Jensen’s inequality, we have

1
> —2log

log(hps(d))=-2 E 1 "
og(hp+(d)) A~NOD) og hpe(d) d~N©,D\ hp=(d)

E
d~N(0,])
> —log(4e(m + 1)(n + 1)?).

Now use Corollary 12.12 with 2 = N (0, I) and r = s = 2 to obtain the first inequal-
ity in the statement. The remaining two inequalities follow from applying Jensen’s
inequality (Proposition 2.28) to the random variable log.#>2(d) and the concave
functions z + logz and z > zlogz. O



Chapter 13
Probabilistic Analyses of the GCC Condition

Number

In Chap. 6 we identified the GCC condition number as the crucial parameter in
the perturbation theory of the polyhedral conic feasibility problem PCFP. Later on,
we saw that this quantity occurs in cost estimates for an ellipsoid method finding
feasible points in a nonempty cone (Corollary 7.7) and for interior-point methods
deciding feasibility of polyhedral conic systems (Theorem 9.14). Furthermore, the
development in Chap. 10 showed that this condition number also plays a central role
in cost estimates for deciding feasibility of primal—dual pairs in linear programming.

Continuing with one of the central themes in our exposition, we perform in this
chapter probabilistic analyses of the GCC condition number, as was done in Chap. 2
for the condition number of linear equation solving. Our average-analysis result is
the following.

Theorem 13.1 For A € (S"~1)" chosen uniformly at random, n > m, we have
51
Prob{%¢'(A) >t} <cm ;lnt fort>e,
where c is a universal constant. Moreover, E(In%€ (A)) = O(Inm).

Some average complexity results easily follow from Theorem 13.1. The follow-
ing, which uses Theorem 9.14, is an example.

Corollary 13.2 Let cost™®AS(A) denote the cost of Algorithm 9.2 on input A €
R™*" Then

E cost™S(A) = O(n* (logn + logm)).
A~N(0,T) U

A glimpse at the right-hand side of the inequality in Corollary 13.2 shows that
the contribution to average cost coming from conditioning is the humblest in the
bound. For n >> m it is negligible.
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We also perform a uniform smoothed analysis of the GCC condition num-
ber in the sense of Sect. 2.4.3. That is, for 0 < 0 < 1 we consider a random
A= (ai,...,ay), with the points g; € sm—1 independently chosen at random from
the uniform distribution in the B(a;, o) with center a; and radius o, with respect to
dsin (cf. Sect. 2.2.6). To simplify notation we write A = (@, ..., a,) € ("~ 1" and
consider the o-neighborhood of A in (S"~1)", defined as

B(A,0):=B(@,0) X --- X B@@y,0).

So we are assuming that A is chosen uniformly at random from B(A, o). In this
context our result is the following.

Theorem 13.3 Let 0 <o <1 and A € (S" 1", n > m. Assume that A € B(A, o)
is chosen uniformly at random. Then we have

13nm? 1 2m?
Prob{A € Fp, €(A) >t} < o - fortzi. (13.1)
o
Moreover, we have fort > 1,
845n%m3 1 65nm> 1
Prob{A € Fp, G(A) > 1) < —o " Zinp 4 222 (132)
802 ¢t o2

Combining the tail bounds of Theorem 13.3 with Proposition 2.26, e.g., using
the rough estimate 1 logt < t~1/2 we obtain the following estimates for the ex-
pectation.

Corollary 13.4 For 0 <o <1 and n > m we have

sup E (log %(A)) = O(log ﬁ)
Ae(Sm—1yn AeB(A,0) o

where the supremum is over all A € (S"~1)". O

We can derive from this result smoothed-complexity estimates. Again, as an ex-
ample, we do so for polyhedral conic feasibility.

Corollary 13.5 For0 <o <1 and n > m we have

n
sup E  cost®AS(A) = O<n3'5 log —).
Ae(Sm—1yn AeB(A,0) o

This chapter, which completes Part II of this book, is technically somewhat more
demanding than our previous developments.
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13.1 The Probability of Primal and Dual Feasibility

A first step in the proof of our probabilistic estimates consists in computing the
probability that a random A € R™*" is dual (resp. primal) feasible. We begin by
considering dual feasibility. That is we want to compute the probability p(n, m)
that

Ay eR™  (a1,y) <0,....{an. y) <0

for independent standard Gaussian vectors ay, ..., a, € R™.
Let us illustrate this problem by a simple example. In the case m = 1, we have
ai,...,a, € F}iff ay, ..., a, have the same sign, either positive or negative. Since

each sign occurs with the probability 1/2, we obtain p(n, 1) =2/2". The case m =2
is already more challenging, and the reader may try to directly prove that p(n,2) =
n/2"~!. The answer in the general case involves the binomial distribution. We shall
take () =0if i > n.

Theorem 13.6 For a standard Gaussian matrix A € R™*" we have

m—1

1 n—1

i=0

and Probs{A € Fp}=1—Probs{A € Fp}.

Let us introduce some notation towards the proof. Fix nonzero vectors ay, ...,
ap € R™. To any y € R™ we assign its sign pattern sgn(y) € {—1,0, 1}" defined
by sgn(y); := sgn(a;, y). Moreover, for o € {—1,0, 1} we consider the realization
set Ro(o) :={y € R™ | sgn(y) = o} of the sign pattern o. We have a partition of
R™ into the sets R4 (o). This partition is determined by the linear hyperplanes H;
given by (a;, y) = 0. The full-dimensional R4 (o)’s shall be called cells. They corre-
spond to the sign patterns o € {—1, 1} with R4 (o) # (. We say that the hyperplanes
Hi,..., H, of R™ are in general position if (";c; H; is of dimension m — || for
all I C [n] with |I| <m 4+ 1 (setting dim@ = —1). It is clear that this condition is
satisfied by almost all ay, ..., a,.

Lemma 13.7 A linear hyperplane arrangement Hy, ..., H, of R" in general posi-
tion has exactly c(n,m) =2 Z;"z_ol (";1) cells.

Proof We have c(n, 1) = ¢(1, m) = 2, and hence the assertion is true for m =1 or
n = 1. Suppose now m > 2. We proceed by induction on n. Let Hy, ..., H,41 be hy-
perplanes of R™ in general position. By the induction hypothesis, the arrangement
‘H given by Hi, ..., H, has exactly c(n, m) cells. We now intersect this arrange-
ment with H,11. If H,4 intersects the interior of a cell C of H, then this cell splits
into two cells. This happens when C N H, 4 is a cell of the arrangement of hyper-
planes Hy N H, 41, ..., H, N Hyy1 of Hyy =~ R By the induction hypothesis,



236 13 Probabilistic Analyses of the GCC Condition Number

this arrangement has exactly c(n,m — 1) cells. From this we may conclude that
Hy, ..., Hyyq has exactly ¢(n, m) + c(n,m — 1) cells, that is,

m—1 m—1
c(n,m)+c(n,m—1)=2+22(n;1>+22<’;:11>
i=1

i=1

m—1
n
+ ;(J c(n+1,m)

Proof of Theorem 13.6 For 0 € ® := {—1,1}" consider the event & = {A €
R™*" | Ra(0) # @}. Then, Fp coincides with &, foro = (—1, ..., —1). Moreover,
all events &, have the same probability, since the standard Gaussian distribution is
invariant under a; — —a;. We also note that ) o 1g (A) = [{o | Ra(0) # ¥}
equals the number of cells of the hyperplane arrangement given by A. Now we
conclude that

O

m—1
n—1
2" Prob Fp = P = = =
b= Probs, = Y E(lg,) E(Z 1&,) 5 ( i )
oce® oce® oce® i=0
where the last equality is due to Lemma 13.7. U

By definition, p(n,m) is the probability that n» randomly chosen open hemi-
spheres have a nonempty intersection. This is also the probability that the union
of n randomly chosen closed hemispheres do not cover the whole sphere S"~!.
More generally, let p(n, m, @) denote the probability that n randomly chosen spher-
ical caps with centers aj, ..., a, and angular radius o do not cover the sphere S”~!
(random meaning here that the centers g; are independently chosen with respect to
the uniform distribution of S™~1). Then it is clear that p(n, m, 7w/2) = p(n, m).

The problem of determining the probabilities p(n, m, ) is arguably the central
problem in the area of covering processes on spheres. Interestingly, there is a close
connection between these probabilities and the probabilistic behavior of the GCC
condition number. To explain this, recall from Sect. 6.4 that p(A) denotes the angu-
lar radius of a smallest including cap of ay, ..., a, € sm—1

Proposition 13.8
(a) We have for0 <o <m,
pn,m,a) = Prob{p(A) <m-— a}.
(b) Moreover, forr/2 <o <m,
pn,m,a) = Prob{A € Fp and €(A) < (—cosa) ™! },
andforO0<a <m/2,

p(n,m,a) = p(n,m) + Prob{A € Fp and €(A) > (cosa) ™'}
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Proof (a) The caps of radius « with center ay, ..., a, do not cover S™—1 iff there
exists y € §”~! having distance greater than « from all ¢;. The latter means that the
cap of radius w — o centered at —y contains all the a;, which implies p(A) <7 —«
and vice versa. This proves the first claim.

(b) The following arguments are based on Theorem 6.27. Suppose first
m/2<a<m.If p(A) <7 — a, then p(A) < m/2; hence A € Fp. Furthermore,

cos p(A) >cos(mr —a) =—cosa >0,

whence % (A) = (cos,o(A))_1 < (—cosa)~!. On the other hand, if A € Fp and
%(A) < (—cosa)~!, we know that p(A) < m/2, and we can reverse the argument
to infer p(A) < w — . Thus the asserted characterization of p(n, m, o) follows with
part one.

Suppose now 0 <o <7 /2. If p(A) < — « then either p(A) < /2 (meaning
A € Fp), or t/2 < p(A). In the latter case, 0 < —cosp(A) < —cos(mr — a) =
cosa, and hence € (A) = (—cos p(A)) ™ > (cosa)~!. Conversely, if A € Fp and
% (A) > (cosa) ™!, then either p(A) < /2 or /2 < p(A), in which case the above
argument can be reversed to deduce that p(A) <7 — «. O

We conclude with a technical lemma about the asymptotic growth of p(n, m), to
be used later.

Lemma 13.9 We have > > 4, n p(n,m) = o(1) for m — oc.

=4m
Proof Let n > 4m. We have by Theorem 13.6, sincem — 1< (n —1)/2,

m (n—1 <2nm(n—1)m’l<2m2nm
on—1 -2 m=D! T om! 2n’

np(n,m)<n
m—1

We also have n™2~" <272 for n > Cm logm, and sufficiently large m, where
C > 0 is a suitable universal constant. Therefore, we get

2mr 1
> npm) <=y s =o(l) (m— o).
n>Cmlogm n=0

We now deal with the case n € {4m, ..., Cmlogm}. The function x — x"27" is
monotonically decreasing for x > m/In2. Hence, using n > 4m and m! > (m/e)™,

we get
1 n™ 1 (4m)™ (e)m
—_—— < <=1 .
m!2n — m! 24m — \ 4

Since e/4 < 1, we conclude that

Cmlogm e\
Z np(n,m)§2m2(z) Cmlogm =o0(1) (m— 00),

n=4m

which completes the proof. g
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13.2 Spherical Convexity

Section 6.2 gave a first introduction to the notion of convexity, through results such
as Carathéodory’s theorem, Helly’s theorem, or the separating hyperplane theorem.
In this section we further develop the theme of convexity by looking at convex sets in
spheres. This amounts to studying convex cones C along with their duals C, which
were already introduced previously, in Sect. 6.2.

A convex cone C C R” is called pointed if C N (—C) = {0}. Suppose that
ag,...,ax € R" are nonzero. Then it is easy to check that cone{ay,...,ax} is
pointed iff O is not contained in the convex hull conv{a, ..., ax}. The following
two lemmas give additional characterizations.

Lemma 13.10 Let C € R" be a convex cone. Then C is pointed iff C has a
nonempty interior.

Proof C has empty interior iff C is contained in a hyperplane H = (Rg)* of R".

This implies by Proposition 6.3 that Rg = HCC=C;hence 0£ g € CN(=C)
and C is not pointed. The argument is reversible. g

Lemma 13.11 A convex cone C is pointed iff C \ {0} is contained in an open half-
space whose bounding hyperplane goes through the origin.

Proof Suppose C is pointed. Then, by Lemma 13.10, there exists g € int((:’). Let
x € C\ {0}. Then (g, x) <O0. If we had (g, x) =0, then (¢’, x) > O for some ¢’ € C
sufficiently close to ¢, which is a contradiction. Hence (g, x) < 0 for all x € C \ {0}.
The converse direction is trivial. O

We now define a notion of convexity for subsets of the sphere S"~!. Let x, y €
S"™~1 be such that x # +y. We call [x, y] := cone{x, y} N S"~! the great circle
segment connecting x and y.

Definition 13.12 A subset K of S"~! is called (spherically) convex if we have
[x,y] € K for all x,y € K with x # +y. We call K properly convex if it is
nonempty, convex, and does not contain a pair of antipodal points.

This notion of spherical convexity is closely related to convex cones. In fact, it is
easy to see that a subset K of S”~! is convex iff it is of the form K = C N S™~! for
some convex cone C C R™. In this case, we must have C = cone(K). Moreover,
K is properly convex iff C is a pointed convex cone, i.e., C N (—C) = {0}. By the
separating hyperplane theorem (Theorem 6.1) applied to C = cone(K), a convex
subset K of "~ is contained in a closed half-space, unless K = S™=1 Moreover,
by Lemma 13.11, a properly convex set K is always contained in an open half-space.

Example 13.13 A spherical cap cap(a, o) of radius « is convex iff « < /2 or
o = 7 (in which case the cap equals the whole sphere). The cap cap(a, «) is prop-
erly convex iff o < /2.
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We denote by sconv(M) := cone(M) N S™~! the (spherical) convex hull of a
subset M of S”~!, which is the smallest spherical convex set containing M. Clearly,
M is convex iff M = sconv(M). Moreover, the closure of a convex set is convex as
well.

Definition 13.14 The dual set of a convex set K € S~ ! is defined as

K= {a esm! |Vx € K (a,x) 50}.

Clearly, if C is the convex cone generated by K and C its dual cone, then K =
cns" 1 particular, K is a closed convex set disjoint from K. For example, the
dual set of cap(a, @) equals cap(—a, 7/2 — «), where o < 7 /2.

By Proposition 6.3, the dual of K equals K. Furthermore, by Lemma 13.10,
a convex set K € S™~! is properly convex iff K has nonempty interior. Thus
“nonempty interior” and “properly convex” are dual properties. We also note that
K1 € K5 implies IE] ) [52.

By a convex body K in S"~! we will understand a closed convex set K such that
both K and K have nonempty interior. Therefore, the map K +— K is an involution
of the set of convex bodies in S~

We define the distance of a € S"~! to a nonempty set K € S"~! by ds(a, K) :=
inf{ds(a, x) | x € K} (recall that we defined dg in Sect. 6.4). Then it is immediate
that the dual set of a convex body K can be characterized in terms of distances as
follows:

acK < ds(a, K)>n/2 (13.3)

There is a simple relation between the distances of a to K and to K, respectively,
if a lies outside of both K and K (cf. Fig. 13.1).

Lemma 13.15 Let K be a convex body in "' and a € S"~!\ (K U I%). Then
ds(a,K) +ds(a, K)=m/2.

Proof Let b € K be such that 6 := ds(a, b) = ds(a, K). Since a ¢ 15, we have
6 < m/2. The point b* := (a, b) b = (cos ) b is therefore nonzero and contained in
C :=cone(K).Put p* :=a—b*. Then (p*, b) =0, (p*, a) = sin’ 6, and (p*, p*) =
sin? 6. In particular, p* 0.

By construction, b* is the point of C closest to a. It follows that {x € R"™*! |
(p*,x) = 0} is a supporting hyperplane (cf. Theorem 6.1(b)) of C. Hence
(p*,x) <0 for all x € C, and the point p := p*/||p*| therefore belongs to K.
Moreover, (p, a) = sinf, which implies ds(a, p) =7 /2 — 6. Hence

ds(a, K) +ds(a, K) < ds(a, b) + ds(a, p) =7/2.

To complete the Eroof it suffices to show that ds(a, K ) = ds(a, p). Suppose
there exists p’ € K such that ds(a, p’) < ds(a, p). Then ds(b, p') < ds(b,a) +
ds(a, p') <ds(b,a) +ds(a, p) = /2, which contradicts the fact thatb € K. [



240 13 Probabilistic Analyses of the GCC Condition Number

F:ig. 13.1 A cone K, its dual
K, and a point y
aeS" I\ (KUK)

13.3 A Bound on the Volume of Tubes

In Sect. 2.2.6 we studied neighborhoods of special subsets of spheres and deter-
mined their volume. We will now look at this in more generality.

Definition 13.16

1. For 0 < ¢ <1, the e-neighborhood of a nonempty subset U of Sm—1 is defined
as T(U,¢) .= {x € " | ds(x,U) < arcsine}, where as usual ds(x,U) :=

infycy ds(x, y).
2. If U equals the boundary 3K of a properly convex set K in S”~!, we call

T,0K,e) :=T@OK,e)\ K and T;(0K,e):=T(@K,e)NK
the outer e-neighborhood and inner e-neighborhood of dK, respectively.

Remark 13.17
(a) If U is symmetric, that is, —U = U, then
T, &) ={x €SP |dein(x,U) <&}.
(b) We have T(0K, &) =T,(0K,e) UT; (9K, ¢).
For technical reasons, we define
Bsin(@, 0) == {x € S? | dsin(x,a) <0}, (13.4)

which is the closed ball of radius o, with respect to dsjn, around a in S”. We note that
Bgin(a,0) = B(a,o0)U B(—a, o), where B(a, o) denotes the spherical cap around a
with angular radius arcsin o; compare Sect. 2.2.6.

For the probabilistic analyses in this chapter it will be crucial to effectively bound
the volume of the neighborhoods 7' (K, ¢) of convex subsets K of a sphere. More
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specifically, such bounds suffice for an average analysis. For a uniform smoothed
analysis as in Sect. 2.4.3 we need bounds on the volume of the intersection of
T (K, &) with a ball Bgj,(a, o), relative to the volume of Bgi,(a, o).

We state such a result now, but postpone its proof to Sect. 21.6.

Theorem 13.18 Let K be a properly convex subset of S"~ !, let a € S"~!, and let

0 < g,& < 1. Then we have the following upper bound for the volume of the outer
e-neighborhood of 0K :

vol(T, (3K, &) N Bsin(a, o)) < em_s

o
— ife<—.
vol Bgin(a, o) o 2m

The same upper bound holds for the relative volume of the inner e-neighborhood
of 0K . For o = 1 we obtain in particular,

vol T, (0K, &) -

1
<eme ife<—,
vol Sm—1 2m

and the same upper bound holds for the relative volume of the inner e-neighborhood
of 0K.

13.4 Two Essential Reductions

Recall from Sects. 6.3 and 6.4 the decomposition (S™~1" = Fp U Fp into the sets
of primal and dual feasible instances of the polyhedral cone feasibility problem.
The set of ill-posed instances equals ¥ = Fp N Fp, and the GCC condition number
%(A) of an instance A = (ay,...,a,) € (S"~1)" is characterized as the inverse
distance of A to X,

1
dsin(Aa 2) ’
see Proposition 6.23. We shall use the same symbols Fp, Fp, and X' to denote
the corresponding sets of primal feasible, dual feasible, and ill-posed instances in

(S™=1" for different values of n.
We start with a simple observation.

C(A) =

Lemma 13.19 Let A = (ay, ..., ay) € (S"V)" and let K be the cone defined by
K := —sconvi{ay, ..., a,}. Then, forany b € sm—=1,

(a) ifb ¢ K, then (A,b) € F3),
(b) ifbedK, then (A,b) € X,
(c) ifbeint(K), then (A, b) € Fp.

Proof (a)If b ¢ K, then —b ¢ cone{ay, ..., a,}, and the separating hyperplane the-
orem (Theorem 6.1) yields the existence of g € S™=1 such that (a;, ¢) > 0 for all i
and (—b, g) <0. Hence (A, b) € F},.
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(b) If b € 0K, then —b lies on the boundary of cone{ai,...,a,}. Hence
there exists a supporting hyperplane with normal vector ¢ € S"~! such that
(ai,q) = 0 for all i and (—b, q) < 0. Therefore, (A, b) € Fp. Moreover, since

—b € conelay,...,a,}, we have 0 = b + Zi Mia; with some A > 0, and hence
0 e conv{ay, ..., a,}. Therefore, (A, b) € X by (6.3).

(c) If b €int(K), then —b lies in the interior of cone{ay, ..., a,}. In particular,
the latter is of dimension m. Hence —b € relint(cone{ay, ..., a,}) and there exist
A; > 0 such that —b = Zi Aia;i. It follows that O € relint(cone{ay, ..., a,, b}) and
hence (A, b) € Fp by (6.2). O

A key idea for the probabilistic analyses of the matrix condition number in
Sect. 2.4 was the following. Suppose that the square matrix A € R"*" with columns
ai, ..., a, is e-close to the set of singular matrices. This means that there exist lin-
early dependent vectors by, ..., b, such that ||ay — bi|| < ¢ for all k. Then it is
possible to pick a “pivot index” i and just perturb the ith component a; to a; by
at most ne, i.e., ||a; — a;|| < ne, such thatay,...,a;_1,a;,ai+1, ..., a, are linearly
dependent (cf. Proposition 2.44).

We try to employ a similar idea, but now we have to deal with convexity issues
and inequalities. In a first step, assume that A € R”*" is such that (ay, ..., a,) € X.
Hence a smallest including cap of these points has radius 7 /2; cf. Lemma 6.25. If ¢
denotes the center of this cap, then we have, after a possible reordering,

<01,¢1)="‘=<ak,4)=0» (ak+17Q>>0a-~~a<an’CI>>0,

and by Lemma 6.26 we must have 0 € conv{ay, ..., a;} (we called [k] the blocking
set of the cap). It follows that without loss of generality, —a; € conv{ay, ..., ar}. In
particular, —aj lies in the convex set K :=sconv{ay, ..., a,}. Since K is contained
in the half-space {x | (¢, x) > 0} and (a1, q) =0, we have —a; € K.

It is now plausible that this argument can be extended in the following way:
suppose that (ai, ..., a,) € Fp, is e-close to X. Then there exists a pivot index i,
say i = 1, such that —aj is close to d K. The next result shows that this is indeed the
case.

Proposition 13.20 Let A = (ay,...,a,) € F} and 0 < & < 1. If we have € (A) >
me), then there exists i € [n] such that

a; € T,(0K;, ¢),
where K; := —sconv{ay, ..., ai—1,Qi41,...,qn}-

Proof Note first that by Lemma 13.19 we have a; ¢ K; for all i. Hence
ds(a;, 0K;) =ds(a;, K;). Put 6 := arcsine.

We will prove the contrapositive of the assertion: assuming ds(a;, K;) > 6 for
all i € [n], we need to prove that sinds(A, Xy ) > m~le. Then we are done, since
€ (A)~! =sinds(A, X) by Proposition 6.23.



13.4 Two Essential Reductions 243

In a first step we show that for each i there exists p; close to a; such that all a;
are contained in the open hemisphere with center p;. More specifically, we claim
that for every i € [n] there exists p; € S"™=1 such that

(aj,pi) >¢ and Vj#i (aj, p;)>0. (13.5)

To prove this, we distinguish two cases. If a; € I?,-, we just choose p; € int(I?,-)
close enough to a; such that (a;, p;) > . If a; ¢ Ié, then Lemma 13.15 tells us that
ds(ai, K;) + ds(a;, K;) = /2. Hence ds(a;, K;) < /2 — 6. Choose p; € int(K;)
such that ds(a;, pi) < w/2 — 6. This implies {(a;, p;) > cos(wr/2 — 6) = ¢. This
completes the proof of the claim (13.5).

Let g be the center of a smallest included cap (SIC) of A. Then g € cone(A) and
hence (g, p;) > 0 for all i,

Consider now for i € [n] the following convex sets in §” !

Ci={x eS" ' (aj,x)>e/mand (x,q) > 0}.

It suffices to show that these sets have a nonempty intersection. Indeed, if z €
(M;_; Ci, then ds(a;, z) < « for all i, where & := arccos(e/m). This implies that
the spherical cap cap(z, «) strictly contains all a;. The radius p(A) of the SIC
of A is therefore strictly smaller than «. Hence, by Theorem 6.27, sinds(A, X) =
cos p(A) > cosa = ¢/m, as claimed.

In fact, by Helly’s theorem (Theorem 6.8), it suffices to show that any m of the
sets C; have a nonempty intersection. To see this, just use the bijective perspective
map

mifxeS" M (x,q) >0} > E, x> (g,x)"'x,
to the affine hyperplane E := {x ¢ R” | (x,q) = 1} ~ R”~! and note that 7 (C;) is
well defined and convex.

Let now I C [n] be of cardinality m and consider p* := %Z jer Pj- Note that
|p*|| < 1. We obtain for any i € I, using (13.5),

(aisp )_%Z«llvpj)z

jel

&
(ai, pi) > —
m

S|~

Moreover, {p*, g) > 0, and hence p* # 0. It follows that p := p*/|| p*|| is contained
in C;, for all i € 1. This completes the proof. O

The next proposition describes the transition from the dual feasible to the primal

feasible case. Suppose that A = (ay, ..., a,) is strictly dual feasible, but after adding
a further column vector b, (A, b) is not dual feasible anymore. By Lemma 13.19 this
means that b lies in the convex set K = —sconv(A) and in fact, (A, b) is ill-posed iff

b € K. It is now plausible that a large condition number of (A, b) may be caused
by two reasons: first, b may be close to the boundary of K; second, A may have
a large condition number itself. The following result turns this heuristic reasoning
into a quantitative statement.
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Proposition 13.21 Let A= (aj, ..., ay) € Fy, K := —sconv(A), and b € S"~' . If
(A,b) :=(ai,...,an,b) is not dual feasible, then b € K, and we have

5% (A)

A, b _
% )Ssindg(b,aK)

Proof Lemma 13.19 implies that b € K and gives us the following characterization
of ds(b, dK) in terms of distances to X':

ds(b,0K) =min{ds(b,b") | b’ € S"™=1 such that (ai,....,an b") € X}.

By the characterization of the GCC condition number in Theorem 6.27, the assertion
can be restated as

1
Sindg((A,b), Z‘) > ﬁdS(b’ dK)sinds(A, X). (13.6)
Consider the convex set
C:=—K=|xeS" " [{a1,x) <0,..., (ay x) <0}.

‘We claim that

s :=sinds(b, 0K) < min(b, x). (13.7)
xeC

In order to establish this, suppose x € C. Since b € K, we have cosw := (b, x) > 0.
We may assume that ||b — x cos wl?=1—-cos?wis positive, since otherwise, b = x
and clearly s < 1 = (b, x). Therefore, b’ := (b — x cosw)/||b — x cosw|| is a well-
defined pointin " € S"~! and (b, x) = 0. Note that ds(b, b') = 7 /2 — w. Therefore
(A,b")=(ay,...,a,,b") is dual feasible. It is either strictly dual feasible, in which
case b’ ¢ K, or (A,b') is ill-posed, in which case b’ € K (cf. Lemma 13.19).
Since b € K, we conclude that ds(b,dK) < ds(b,b’) = w/2 — w. This implies
sinds(b, 0K) < cosw = (b, x) and proves inequality (13.7).

Suppose now that cap(p, p) is an SIC for A. Since we assume A to be strictly
feasible, t := cos p is positive and we have t = sinds(A, X'); cf. Theorem 6.27.

We need to prove the assertion (13.6), which is equivalent to

1
sinds((A, b), Fp) = St (13.8)

since (A,b) ¢ Fp by assumption. So let (A’,b") € Fp and put ¢ :=
ds((A, D), (A’,b)). We need to show that sing > st/10. By Theorem 6.27, we
may assume that ¢ < 77/2. Since (A’, b’) € Fp, there exists x’ € "~ ! such that

<ai,x/)50, o (a;,,x/>50, <b’,x’)§0.

Taking into account that dg(alf, a;) < @, we see that ds(a;, x") > w/2 — ¢ and hence
{a;, x") <sing.
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We now put ¥ := x’ — Ap with A := ¢~ sing. Since (a;, p) > ¢, we have for all i,
(@i, %) =(ai, x") — Maj, p) <sing — At =0.

Without loss of generality we may assume that X 7 0. Otherwise, ¢ = sin6, and we
are done, since ¢t > s¢/10. So x /|| x|| is well defined and lies in C.
Inequality (13.7) implies that (use ||X]| > 1—X)

s—A<s(1—21)<(b,x).

Put Ab := b’ — b. Then || Ab|| < 2sin(g/2) < 2 by our assumption ds(b’, b) < ¢.
‘We obtain

(b, %) = (b' — Ab,x" — ap) = (b, x') = (Ab, x') — (b, Ap) + (Ab, )p)
<O+ ||AD|| + A+ |AD||X <2sin(p/2) + 3A.
Combining the above two estimates yields
s <2sin(p/2) + 4x.
Recalling A = 7! sin¢ and using 7 < 1, we get
st <2tsin(p/2) +4rt <2sin(@/2) + 4sing < 5sing.

This proves (13.8) and thus completes the proof. g

13.5 A Crash Course on Probability: 11T

Before continuing, we need to develop a few further facts from the theory of proba-
bility.

Suppose that X and Y are random variables on the data space M taking non-
negative values. We assume that the pushforward measure of w3 with respect to
(X,Y): M — R? has a density p. Associated with p are the marginal density
px(x) == fooo p(x,y)dy and, for x € R with px(x) > 0, the conditional density
py(y| X =x):=p(x,y)/px(x); compare (2.8) and (2.9).

Proposition 13.22 Suppose that X, Y : M — R are random variables on the data

space M taking nonnegative values such that (X, Y) has density p on R?. Then
Z := XY has the following density, for z > 0:

o
pz(2) = f 27 px (@) py(z/x | X =x)dx.
0
Moreover, the distribution function of Z is given by

o0
Prob{Z > z} =f px(x) Prob{Y >z/x | X =x}dx.
0
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Proof Consider the diffeomorphism v : (0, 00)2 — (0, 00)?, (x, y) — (x,xy) =
(x, z) having Jacobian Jir(x, y) = x. By Proposition 2.11, the pushforward den-
sity é of p under ¥ is given by

8(x,2) =x"! p(x,z/x), forx,z>0.

The distribution of the random variable Z is obtained as the marginal distribution of
the distribution of §, whence

pz(Z)Z/ 8(x,z)dx=/ x_l,o(x,z/x)dx
0 0

= fo x 7 px(x) py(z/x | X =x)dx.

This proves the first statement. To prove the second, note that we have

Prob{Zzz}=/ pz@)dc:/o px(x)/ x L py(e/x | X = x) dg dx.

z

For fixed x > 0, the substitution ¢ — y = ¢ /x yields

/ PY(§/X|X=X)X_ldC=// or(y| X =x)dy
4 /X
=Prob{Y > z/x | X =x}.

Altogether, we get
o0
Prob{Z > z} :/ px(x)Prob{Y > z/x | X =x}dx
0

as claimed. O

The next result provides an upper bound for the tail of XY that may be easier to
apply than Proposition 13.22.

Lemma 13.23 Let X and Y be random variables on M taking nonnegative values

such that (X,Y) has a density. Further, let f,g: (0,00) — (0,00) be piecewise
differentiable functions such that for x,y > 0,

Prob{X > x} < f(x), Prob{Y > y | X =x} < g(y).

We further assume that g is bounded and limy_, , g(y) = 0. Then, for z > 0,

Prob{XY > 7} < /0 £/ (=g ) dy.
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Proof We apply Proposition 13.22 with Z := XY to obtain for z > 0,

Prob{Z >z} = /Oopx(x) Prob{Y >z/x | X =x}dx
0
< / px () g(z/x) dx = — / 4 brob(X = x} g(z/x) dx
0 0o dx

o d
= / Prob{X > x}—g(z/x)dx.
0 dx
For the last equality we used integration by parts together with

lim Prob{X > x}g(z/x)dx = lin%) Prob{X > x}g(z/x) =0,
X—> 00 X—>

which follows from lim, _, o Prob{X > x} =0, limy_, oc g(y) =0, and the assump-
tion that g is bounded. Continuing, we get

/ Prob(X > 1) g (z/x) dx < f f(x)g’@/x)(-%) dx
0 dx 0 X

= /0 f@/y (=& »)dy. 0

Lemma 13.24 Let X and Y be random variables on M taking nonnegative values
such that (X,Y) has a density. Assume there are xq, yo,c > 0 such that for all
x,y >0,

Prob{X > x} <ax™ ¢ if x > xq,
Prob{(Y >y | X =x} < By ° if y=> yo.

Then, for all z > 0,

X Z .
Prob{XY >z} <caBz lnmax{ L1 } + Bxpz €.
X0Y0

Proof Lemma 13.23 with the functions f, g defined as

1 if y < yo,
By~¢ if y > yo,

1 if x < xg,

f(X)={ .

oax ifx > xg,

g(y)={

yields

Prob{XY > 7} < /0 £/ (=g ) dy. (13.9)
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If z > xpy9, we estimate this by

z/xp oo
Prob{XY >z} < / az yeBy " ldy +/ cBy < ldy
Yo z/X0
=cafz” ¢ 1n<i) + Bxgz €.
X0X1
If z < xpy0, we have
o0
ProbiXY = 2) = [ (~g/()dy =gl = Byg" = page ™
o
This completes the proof. O

13.6 Average Analysis

In this section we prove Theorem 13.1. With this goal in mind, we first derive a tail
bound for ¥’ (A), conditional on A being dual feasible. Recall from Sect. 13.1 that
p(n, m) stands for the probability of A being dual feasible.

Lemma 13.25 For A chosen uniformly at random in (S"~1)" we have
13 5 1 )
Prob{A € Fp, €(A) > t} < Zm np(n — l,m)? fort >2m~.
Proof Let t > 2m? and put & := m/t. Proposition 13.20 tells us that

n
Prob{A € F},, €(A) =1} <) Prob{A € F}, ai € T,(3K;, )},
i=1

where K; := —sconv{ay,...,aj—1,di+1, - .., an}. To bound the probabilities on the
right-hand side we assume without loss of generality that i = n. We express the
probability as an integral over A’ := (ay,...,a,—1) of probabilities conditioned
on A’. Furthermore, we write K 4/ := K, = —sconv{ay, ..., a,_1} to emphasize the

dependence on A’. By Fubini’s theorem we obtain
Prob{A € F), an € T,(3K 4, €)}
<Prob{A" € 7}, ay € T,(3K 41, 6)}

1

S Prob{a, € T,(0K 4/,¢) | A’} dA’'.
VO|(Sm_1)n_l /A’e]-';’) { n o( A )| }



13.6 Average Analysis 249

For fixed A" € F}, the set K4 in S™=1 is properly convex. Theorem 13.18 yields,
since ¢ < 1/(2m) by assumption,

vol T,(0K a1, 6) 13
Prob{a, € T,(0Ka, ) | A} = % = 4m &

We therefore obtain

Prob{A € Fp, a, € T,(3K 4, 8)} < 13ng Prob{A’ € Fpp}.

Note that Prob{A’ € Fp} = p(n — 1, m) and ¢ = m/t. The same bound holds for all
i € [n]; hence multiplying by n, we obtain the claimed upper bound on Prob{A e

Fp and €' (A) > t}, since ¥ = Fp \ F}, has measure zero. O
We study now the situation for A primal feasible. For A = (ay,...,a,) €
(Sm’l)” and 1 <k <n we write A; := (ay, ..., ar). Again we shall use the same

symbol Fp to denote the corresponding sets of dual feasible instances in (S"~1)"
and (S"~1)¥, respectively.

Lemma 13.26 Let A € (S"~ 1" and k < n be such that Ay is not dual feasible.
Then € (Ax) = € (A).

Proof Let A’ = (a},...,a,) € ¥ be such that ds(A, A") =ds(A, X). Since A’ €
Fp, we have A, = (a},...,a;) € Fp. But Ay ¢ Fp by assumption. Hence, using
ds(A, X) <m/2 and (6.5), we get

sinds(Ag, X) = sinds(Ax, Fp) < sinds(Ag, Ay) <sinds(A, A')
=sinds(A, X)),

and the assertion follows with Proposition 6.23. O

Suppose that A = A, is not dual feasible. Since A,, is dual feasible, there exists
a smallest index k > m such that Ay is dual feasible and Ay is not dual feasible.
Consider, for ¢ > 0, the event

E(t) := {A | Ay dual feasible and Ag4 not dual feasible and €' (A1) > t}.

Using Lemma 13.26 we obtain

n—1
Prob{A ¢ Fp, €(A) =t} <) Prob&(t) (13.10)

k=m

for uniformly random A € (S"~1)".
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Lemma 13.27 We have, for a universal constant c,
3 1
Prob & (t) < cm’kp(k — l,m); Int fort>e.

Proof We fix k and write from now on
A:=(ay,...,ar), Ka:=-sconv{ay,...,a;}, b:=ap+1.
With this notation, we have (using that Fp \ F}, = X has measure zero)

PArobb () = PArobb{A €Fp. (A,b) ¢ Fp, C(A,b) >1}.
Proposition 13.21 implies that for # > 0,

(13.11)

E (A t
ProbEk(t)gProb{Ae}'}’), be Ky, (4) z—},
Ab Ab 5

sinds(b, K 4)
Introducing the random variables

1

U(A) := 175 (A) C(A), V(A,b) = ]lKA(b)m’

where 1, denotes the indicator function of the set M, we may rewrite (13.11) as

Prob & (1) < Prob{U(A) - V(A, b) > 1/5}. (13.12)
Ab A,b

Lemma 13.25 tells us that for x > 2m?2,

PI;?b{U(A)zx}zPl;?b{Ae]-"’, C(A)>x} <ax”!, (13.13)

where o 1= 14—3m2kp(k —1,m).
Moreover, for A € Fp,, the set K4 is properly convex, and the bound in Theo-
rem 13.18 on the inner neighborhood of 0K 4 implies

1
Prob{V(A,b) > y| Al =Problbe Ky, ——— >y | A
ob{V(4,0) 2 y | A} rz?{ A Sinds(b, 0K 4) y‘ }

=Prob{be Ti(8Ks.y") 1 A} < gy~ (13.14)

if y > 2m, where B := 1%.

In Sect. 17.3 we will learn how to define the conditional density p, of the
map U: R™" \ ¥ — R on its fiber U~!(u) over u # 0 that is induced by
the standard Gaussian density ¢ on R™*". (In fact, we will see that p,(A) :=
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fAeU—l(u) o (A)d A, where NJU is the normal Jacobian of U.) For u > 0 we de-
fine the conditional probability

Prob{V(A,b) >y | U(A) =u} ::/ Prob{V(A,b) > y | A}pu(A)dA.
Ab AeFp b
Using this, we deduce from (13.14) that for all # > 0 and y > 2m,
PArc;)b{V(A,b)ZyIU(A)zu} <py . (13.15)

We can combine the probability estimates (13.13) and (13.15) by applying
Lemma 13.24 to the random variables U and V. This implies for z > 0,

PArf)bb{U(A) V(A b)>2z) < %lnmax{z, 1} +2m2,3§.
Setting z =1¢/5, we conclude that for ¢ > e,
PAr!c;;bEk(t) < PX%b{U(A) -V(A,b) > t/5} <em’kp(k — 1, m)% Int
with some universal constant ¢ > 0. g

Proof of Theorem 13.1 Combining equation (13.10) with Lemma 13.27, we obtain

1 n—1
Prob]A ¢ Fp, €(A) > 1} < Cm3?lnt > kplk—1.m).

k=m

In order to bound the sum, we use Lemma 13.9, which gives

n—1 n—2 n—2
Y kpk—1,my=Y Ep,m)+ Y pt,m)=o(l) (m— o0).
k=4m+1 =4m =4m

Therefore,

n—1 4m n—1
Y kpk—1,my=> kpk—1,my+ > kpk—1,m)=0(m>.
k=m

k=m k=4m-+1

‘We conclude that
1
Prob{A ¢ Fp, €(A) >t} < c/ms;lnt

for some universal constant ¢’. Moreover, Prob{A € Fp and € (A) > t} can also
be bounded in this way by Lemma 13.25. This proves the asserted tail estimate
for € (A).

Finally, the claimed bound on the expectation of In €’ (A) follows from Proposi-
tion 2.26, e.g., using the rough estimate r ' logz < ~1/2. g
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13.7 Smoothed Analysis

In this section we prove Theorem 13.3. We will see that this can be done by virtually
the same method employed for the average analysis in the previous section, along
with the use of Theorem 13.18.

Proof of Theorem 13.3 We first prove (13.1), proceeding exactly as in the proof of
Lemma 13.25. Fix A € (Sm’l)" and 0 < o < 1. Further, suppose that r > 2m?o 1
and put & := mt~!. If we suppose that A is chosen uniformly at random in B(A, o),
then Proposition 13.20 tells us that

Prob {AeFp, €(A) =1} <Z Prob {AeF}, a; € T,(0K;, e)},
AeB(A,0) | AeB(A,0)

where K; := —sconv{ai,...,ai—1,ai+1, ..., a,}. To bound the probabilities on the
right-hand side, we assume without loss of generality that i = n. We will ex-
press the probability as an integral over A’ := (ay, ..., a,—1) of probabilities con-
ditioned on A’ and write K 4 := K,, = —sconv{ay, ..., an_1}. Note that B(A, o) =
B(X’, o) X B(a,, o), where A’:=(dy,...,dy—1). Then the distribution of a, con-
ditional on A’ is just the uniform distribution of B(a,, o). By Fubini’s theorem we
obtain

Prob {A€F}, an € T,(0Ka, )}
AeB(A,0)

< Prob [A"e€F}, ay€T,(3Ka,6)}
A'eB(A o)
an€B(ay o)

1
=7_,f . Prob {an eT,(0K a1, 8) |A/}dA/.
vol B(A , o) JAeFyNB(A o) 4n€B(@n.0)

For fixed A" € F}, the set K 4 in S™=1is properly convex. Theorem 13.18 implies

vol(T, (0K 4 N B(a,,
Prob {a, € Ty(0Ky e) | A') = W2To0Ka &) 11 Ban, o))
an€B(@,,0) vol B(a,, o)
13m
2

=

Q| ™

Note that we get an extra factor of two by considering B(a,,o) instead of
Bsin(an, 0). Note also that ¢ < ¢/(2m) by our assumption ¢ > 2m25 1. Hence,
using e =mt~ 1 we conclude that

13m?
Prob {A€Fp, apeT(0Ku, )} < Prob {A' e Fp}
AeB@,0) 20t preB(A,0)
ap€B(ay,o0)
13m?
<

= 20t
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Note that in contrast to the average analysis, we do not have a good bound for
Prob{A’ € Fp}, so we had to bound this quantity by 1. Since the same bound holds
for all i € [n], we obtain the claim (13.1) by multiplying by n.

We continue now with the proof of (13.2) and proceed as in Theorem 13.1 and
Lemma 13.27. We fix k and write

A:=(ay,...,ar), Ka:=—sconviay,...,ar}, b:=ap.

As_above, we suppose that (A, b) is chosen uniformly at random in B(A,0) x
B(b, o) and consider, for r > 0, the event

&) ={(A,b)| Ais dual feasible, (A, b) is not dual feasible, (A, b) >1}.
Then, as in (13.12) and using the notation from there, we have

Prob & (1) < Prob|{U(A) - V(A, b) > 1/5}. (13.16)
Ab Ab

From (13.1) we know that for x > 2m?/o,

Prfb{U(A)zx}zPrfb{Ae}""D, C(A) > x} <ax!, (13.17)

2
where we have set here « := 1321;'”

Moreover, for A € F7), the set K4 is properly convex, and the bound in
Theorem 13.18 on the inner neighborhood of d K 4 implies, for y > 2m /o,

Prob{V (A, b) > y | A} =Prob{b & T; (9K 4, y 1) 1A}

_ Vol(Ti(@Ka,y~) N B(b,0))

-1
[ < 9
vol B(b, o) =Py

where we have set 8 := 123—0'" Since U (A) > 0 implies A € F3, we get, forall u > 0
and y >2m/o,

PArc;?b{V(A,b)zmU(A)zu}sﬂyfl. (13.18)

We can now combine the estimates (13.17) and (13.18) by applying Lemma 13.24
to the random variables U and V. This yields, for z > 0,

of 2m? 1
Prob{U(A) - V(A,b) > z} < == Inmax{z, 1} + —fB-.
A,b Z o Z

Setting z =t /5 and using (13.16), we conclude that for r > 1,

845 km> 1

65m3 1
Int —-.
462 ¢

2

Prob & () <
Ab o
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As in (13.10) we have

n—1
Prob{A ¢ Fp, €(A) =t} <) Prob&().

k=m

Summing the bounds for Proby j, & (t) over all k and using ZZ:I k < n2/2, the
assertion (13.2) follows. O



Intermezzo I1: The Condition of the Condition

How costly is it to compute a condition number? This question presents two aspects:
computational cost and accuracy. We begin by briefly discussing the first of these
aspects. To do so, we recall a few of the condition numbers we have met thus far.

Take matrix—vector multiplication. We analyzed this problem in Sect. O.4, where
we proved (Proposition O.8) that the normwise condition number cond(A, x) for
this problems satisfies

[ Alloo llxl oo
[Ax]loo

The denominator on the right-hand side indicates that to compute cond(A, x), we
need at least to compute Ax, that is, to solve the problem for which (A, x) is the
input data.

Consider now matrix inversion. Its normwise condition number (for the norms
Il ls and || ||s» in data and solution space, respectively) is, as we proved in Theo-
rem 1.5,

cond(A, x) =

krs (A) = | Allrs | A7,

Again, it is apparent that for computing «,s(A) one needs to solve the problem for
which A is the data, i.e., inverting A.

Finally, consider the condition number % (A) for PCFP. All its characterizations,
in Sect. 6.5 via smallest including caps, in Sect. 6.6 via images of balls, and in
Sect. 6.7 via well-conditioned solutions, turn into computations of ¥’ (A) that re-
quire, among other things, the solution of PCFP for input A.

It would seem that invariably, to compute cond’ (a) we need to compute ¢(a).
This is not true. The function ¢(a) = a satisfies cond? (a) = k for all a # 0; it is
thus trivially computed. Yet the cost of computing ¢(a) can be bounded by the cost
of computing cond? (a) plus a constant. The emerging picture can be thus summa-
rized as follows:

The cost of computing cond? (a) is, modulo an additive constant, at least the
cost of computing ¢(a). That is, cost(cond?”) > cost(¢) + O(1).

P. Biirgisser, F. Cucker, Condition, 255
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5, © Springer-Verlag Berlin Heidelberg 2013
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The nature of this statement makes it difficult to formally prove it. We will therefore
refrain from continuing and leave the statement as an empirical conclusion.

We can now proceed with the second aspect mentioned above. The accuracy in
the computation of cond?(a) depends on the algorithm used to compute cond? (a)
as well as on the condition of a for the function cond? : D C R™ — [0, 00). Disre-
garding the former, the question is posed, what is the condition number of condition
number computation? This “condition of the condition” is called level-2 condition
number.

In this intermezzo we give an answer for a large class of condition numbers. We
say that a condition number cond? is a la Renegar when there exists a X~ C R™,
X # (), such that for all « € D C R",

llall

cond’(q) = ———.
dist(a, X)

(IL.1)
Here || || is an arbitrary norm in R and dist is the distance induced by that norm. As
we have seen, several condition numbers have this form (or are well approximated
by expressions of this form). Furthermore (cf. Sect. 6.1), expression (IL.1) is the
definition of choice for condition numbers of discrete-valued problems (e.g., ' (A))
when the set of ill-posed inputs is clear.

Denote by cond‘[pz] (a) the normwise (for the norm || ||) condition number of the
function cond?. Our main result is the following.

Theorem II.1 Let ¢ be any problem and let cond? be given by (11.1). Then

cond?(a) — 1 < cond‘["Z] (a) <cond’(a) + 1.

Proof To simplify notation, let o(a) = dist(a, X'). For all input data a,
|cond? (a + Aa) — cond? (a)||la||

condeI(a) =lim sup

8=0 Aa<sall cond?(a)l|Aal|
| sazaa — v lal
=lim sup QWF?ZT' o)
8=0)Aa)<s]al 2@ 14al
. +A - + A
“lim  sup la+ Aallo(a) — llallo(a + Aa) TS
80 Aa|<sall o(a+ Aa)| Aal|

To prove the upper bound, note that for every perturbation Aa,
lla + Aall = llall| < |Aal
and
lo(a+ Aa) — o(@)] < || Aal.
Therefore,

|la + Aalle(a) — lalle(@)] < || Aallo(a)
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and
llalloa + Aa) — llallo(@)] < llall] Aall.
It follows that
lla + Aalle(a) — llallo(a + Aa)| < || Aallo(a) + [la]| | Aal
and consequently that for sufficiently small Aa,

lla + Aalle(a) — llallo(a + Aa)
o(a+ Aa)||Aal

_ l4alie(@) + llallllAall _ e(a) + |l
~ (e(a) = [[AalDl|Aa] o(a) — [ Aall’

Now use this inequality together with (I1.2) to obtain
la + Aalle(a) — llalle(a 4 Aa)

cond‘["z] (@) =1lim sup

5=0 Aa|<sllall o(a+ Aa)| Aal
< lim o(a) + llal
8=0 Aq|<s|la (@) — | Aal|
_ o(a)+ llall _ llal — 1+ cond(a).
o(a) o(a)

This proves the upper bound. We now proceed with the lower bound.
Let Aa™ be such that p(a) = ||Aa*| and a + Aa™* € ¥. For any ¢ € R satisfying
0<e<|Aa*| let
Aal = 2 Aa*.
o(a)

Then, ||Aa}|| = ¢ and o(a + Aa}) = o(a) — || Aa}|| = o(a) — ¢ and therefore
la + AaZllo(a) — llallo(a + Aay) lla + Aafllo(a) — llal(o(a) — &)

ola+ Aa¥)||Aat| (o(a) —¢)e
- Ulall = |AaZlo(a) — llall(o(a) — &)
- (o(a) —e)e
_ Ulall = &)e(@) — llall(e(a) — &)
(o(a) —¢)e
_ —ee@+lale _ llall —o(a)
(o(a) —¢)e ola)—c¢

Again, use this inequality together with (I.2) to obtain
lla + Aalle(a) — llallo(a + Aa)

cond‘["zl (@) =lim  sup

8=0 Aa| <sllall o(a + Aa)|| Aal|
. lall —o(@) _ llall —e(@) _ cond?(a) — 1.
§—0 g(a) — 8|lall o(a)

This proves the lower bound. g
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Remark 11.2 The bounds in Theorem II.1 are sharp, as shown by the following toy
example. Consider ¢ to be the problem of deciding whether a point x € R is greater
than a fixed value £ > 0. Then X' = {£}, and for x € R, x > 0, Eq. (I.1) yields

if x > &,
STX ifx<§,

oo ifx=E&.

X
x—E
cond’(x) = { £

Since cond? is differentiable at x for x # &, we have (compare Proposition 14.1)

o ifx>E

d X
cond = |—cond? — =1
21(x) ‘dx O\ eond? )] { £ ifx <€

Now note that = = x%+1and == % -1

Another simple example shows that a result like Theorem II.1 (actually, even a
version with multiplicative constants) may fail to hold for condition numbers not
having a characterization of the form (II.1). Consider the problem ¢ : R — R given
by ¢(x) = x> 4+ x + ¢, for some ¢ € R. For x € R, let cond?(x) be its condition

number, as defined in (O.1). Since ¢ is differentiable on R, we have

lx¢' (x)]

d?(x) =
cond () =]

and, assuming x¢’(x), ¢(x) > 0,

(W’(}O)’
@(x)

Now take x = 1 and ¢ > —2 (so that x, ¢(x), ¢’(x) > 0). Then

[P _ xe"()e() +¢' (e (x) — x(¢' ()’
|’ ()] lp(x)e’(x)] '

cond‘[‘;] )=

3
cond?(a) = ——
24c¢
and
[S5¢c+ 1]
cond?, (@) = ———.
2 =355
When ¢ — oo we have cond?(a) — 0 and cond‘[‘;] (a) —> % while for ¢ = —% we

have cond? (a) = 3 and condf) (a) =0.
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Condition in Polynomial Equation
Solving (Allegro con brio)



Chapter 14
A Geometric Framework for Condition
Numbers

Solving equations—Tlinear, algebraic, differential, difference, analytic, Diophantine
...—is arguably the most central problem in mathematics. A case of this problem
that can be efficiently tackled is that of linear systems of equations. What could
be considered the level of difficulty immediately above that for linear systems, the
case of quadratic, or more generally, polynomial equations, is substantially more
complicated. Even for polynomials in one variable, classical results of Abel and
Galois deprive us of any hope to actually compute their zeros. The best we can do
is to approximate them (and a number of algorithms compute these approximations
quite efficiently).

For systems of multivariate polynomials we need to add complexity obstructions.
The first that meets the eye is the possibly large number of solutions. A system
of n quadratic equations in n variables has (generically) 2" solutions in complex
space C". But each polynomial in the system has %(n2 + 3n + 2) coefficients, and
therefore the whole system is specified with @ (n°) coefficients. If we were to com-
pute approximations for all its zeros, the size of the output would be exponential in
the input size!

A focal theme in this third part of the book is that of systems of polynomial equa-
tions and algorithms that approximate solutions of these systems. These algorithms
have a “numeric” character, and it goes without saying that their analyses strongly
rely on appropriate condition numbers. But the nature of these systems and their so-
lutions suggests a view of their condition numbers within a more general framework
than the one underlying Sect. O.2. The present chapter introduces this framework
and provides some motivating (but also interesting per se) examples.

14.1 Condition Numbers Revisited

Let us reexamine the general definition of condition number given at the very begin-
ning of this book. Our goal in this section is to bring this concept closer to calculus,
so that it will become apparent how to extend it to the more general framework of
manifolds.

P. Biirgisser, F. Cucker, Condition, 261
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We begin by assuming that X and Y are finite-dimensional normed real vector
spaces and consider a function

0:X2D—>Y

defined on an open subset D of X. (Everything we say immediately extends to finite-
dimensional complex normed vector spaces.) In Sect. O.2 we defined the relative
normwise condition number cond?(x) of ¢ at a nonzero input x € D satisfying

@(x) #0by

RelError(p(x
cond’(x) = lim  sup &
8—0RelEror(x)<s RelError(x)

More specifically, the supremum is over all X € X such that

_lx=xll
RelError(x) := <

[lxl

where we used the abbreviation RelError(¢(x)) := W. ‘We can as well de-
fine an absolute normwise condition number by

acond”(x) := lim sup M
8=05_y|<s  IIX — x|

It is clear that cond? (x) = acond? (x) ”([l)'fx“)” )

In the case that ¢ is differentiable, condition numbers turn out to be a familiar
concept from calculus. Indeed, the absolute condition number of ¢ at x is nothing
but the operator norm of the derivative D¢ (x): X — Y of ¢ at x,

[ Do) := max [ De() ]
Let us explicitly state this important insight.

Proposition 14.1 If ¢ is differentiable at x, then

llxl

d’(x)= | D Nl
acond’ (x) = | De(x) ool

, cond?(x) =acond’ (x)

Proof 1t suffices to prove the assertion about the absolute condition number. The
proof is basically a rewriting of the definition of differentiability. We fix x and write
o(x +y) =¢kx) + Dp(x)y + ||lyllr(y) with a function r defined in a neighbor-
hood of 0 such that limy_,q [|[7(y)|| = 0. For ¢ > 0 there exists §; > 0 such that
supyyj<s, II7(W)Il < €. For any y satisfying ||y|| < J. we get

DOyl _ lletx+3) —e@l _ Do)yl
Iyl a Iyl iy

+ ¢,
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and hence we obtain for any 0 < § < §,,

D)yl < lo(x +y) — @)l < Do)yl L
Iyi<s Iyl Iyll<s Iyl Iyi<s Iyl
But sup <5 ”D‘ﬁ;ﬂ)y” = ||Dg(x)|. Now take the limit for § — 0. The claim follows
since ¢ was arbitrary. d

To illustrate Proposition 14.1, let us briefly review the proof of Theorem 1.5 on
the condition number of matrix inversion.

Example 14.2 Consider the map ¢: GL,(R) — R" " given by ¢(A) = A~!,
where, we recall, GL,(R) = {A € R"*" | det A # 0}. The argument at the begin-
ning of the proof of Theorem 1.4 shows that D(p(A)(A) =—A"TAA!. We choose
the norm || |5 on the input space X = R"*" and the norm || ||5, on the output space
Y =R"" forr,s > 1. Then we have by (1.5),

—1 421 -1 i —1 —12
[A7AAT, = A7 Al AT, = (A5
for A with ||Al|,s = 1. The argument at the end of the proof of Theorem 1.5, which
we shall not repeat here, shows that equality holds for some A. Therefore,

acond” (A) = | De(A)|| = ”A_l H%r

rs,sr

Finally,

cond?(a) = acond” (A) | Alls [ A" || = 1Al A", = krs(A).

14.1.1 Complex Zeros of Univariate Polynomials

In many situations of interest, the map ¢ is only implicitly given. For example,
consider the problem of finding a complex zero of a univariate polynomial f =
Z(}l:o aj Z),a ; € C. The zeros ¢ are given implicitly by the nonlinear equation
f(¢) =0, and in general, there are d zeros by the fundamental theorem of algebra.

Consider the input space Py := {Z‘;:O aij laj e C}~ C4t et fy € Py, and
suppose that o € C is a simple zero of fy, that is, fo(¢o) =0 and fj(o) #O.

Consider the map F: Py x C— C, F(f, ¢) := f(¢) and note that %(fo, Lo) =
fo(Co) # 0. The implicit function theorem (Theorem A.1) applied to F implies that
for all f sufficiently close to fy, there is a unique zero ¢ of f close to ¢y, and more-
over, ¢ is a differentiable function of f. More specifically, there are open neigh-
borhoods U C P, of fy and V C C of ¢y, and there is a differentiable function
@: U — V suchthatforall f € U, ¢(f) is the only zero of f in V.
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The derivative D¢(gp): Pgs — C at ¢ is a linear map that can be calculated
by the following general method. Consider a smooth curve R — U, t — f(1) =
Z?:o a;j(t)Z7, such that f(0) = fy and write

d
i=%o =Z Loz = Za]Zf

Jj=0

Let R— C, t— ¢(t) := ¢(f(¢)) be the corresponding curve of solutions and write
.= fl—f(O). Then we have Do(fp)(f) = ¢ by the chain rule. Differentiating the
equality

0=fn(¢0) Za, GG
with respect to ¢ at zero yields

0=>a;5l + ajjgd &= f) + £t (14.1)
j j

Since f;(¢0) # 0, we get Do(fo)(f) = = —f;(c0) ™" f (o).

To simplify notation we write from now on f = fy and ¢ = p. Once we fix

anorm || || on P; (and take the absolute value as the norm on C), the condition
number of ¢ at f is defined and hence given by
RAl} A
cond?(f) = o(f) f@©
[Z] |p I= RG] |f|| 1’ ;

The standard choice of a norm on Py is

d 1/2
I1f llse = (Z |aj|2> :
j=0

which comes from the isomorphism P ~ C¢*! and the standard Hermitian inner
product (, ) on C?*! We shall denote the corresponding condition number by
cond’ (f). Since f (&) = (a, (¢7)), the Cauchy—Schwarz inequality yields

IA 1 3 N
d 2j .
condg (f) = 1zl 1£/(0)] (./‘Z:(:)Ié‘l )

Another choice of norm on P is given by

. d A 1/2
IIfllw:=<Z<.> |a,~|2> :
j=o ™
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and we shall denote the corresponding condition number by cond(‘fv (f).InSect. 16.1
we will learn that || f|w is a natural choice when our aim is a unitarily invariant

theory. Writing @ = (,/ (31) bj); with ¥ i |bj|> = 1, we obtain with the Cauchy-

Schwarz inequality
d d 12

, d\ d ; dj2
> b, (.){f 5<§ (.)mzf) = (1+1¢17)"
j=0 VM =0 N

Clearly, the right-hand side is attained at some a, so that

Ifllw 1
1zl 1f ()]

We can specialize the content of the previous example to particular polynomials,
for instance, to cyclotomic polynomials.

1f©)| =

condf, (f) = (1+ |§|2)d/2.

Example 14.3 Let f = Z¢ — 1 and let ¢ be a dth root of unity, i.e., {¢ = 1. Then

d+l
condf,(f):@, cond‘(,",(f)zzd2 )

Note the exponential difference in these results: while cond?, (f) goes to zero as
d — o0, cond({,)v( f) grows exponentially with d. So the choice of the norm on P,
may make a huge difference in the corresponding condition.

14.1.2 A Geometric Framework

The previous discussion is just a special case of a general geometric framework. Let
X and Y be finite-dimensional real vector spaces. Suppose F': X x ¥ — R" is a
smooth (C°) map (which can be defined on an open subset only) and consider its
zero set

V.= {(x,y)eXxY|F(x,y)=0}.

We shall interpret X as the space of inputs, Y as the space of outputs, and (x, y) € V
as meaning that y is a “solution” to input x. We shall suppose n = dim Y and that
the derivative % (x, y) has full rank » for all (x, y) € V. Then the implicit function
theorem implies that V is a submanifold of X x Y of dimension dim X. We shall
call V the solution manifold. Consider the subset

3/ ::{(x,y)eVlrankE;—F(x,y)<n}. (14.2)
y

For reasons to be clear soon, we call the elements of X’ ill-posed and the elements
of V\ X’ well-posed. Let (xq, yo) be well-posed. Then the implicit function theorem



266 14 A Geometric Framework for Condition Numbers

tells us that there exist open neighborhoods U’ € X x Y of (xg, yo) and U C X of
xo such that the projection U' NV — U, (x, y) +> x is bijective and has a smooth
inverse U — U' N V,x — (x, G(x)) given by some function G: U — Y. Thus
locally around (xg, yo), V 1is the graph of G. Note that yo = G(xp). We call G
the solution map, since y = G(x) is the unique solution for input x € U such that
(x,y) € U'. Moreover, we call the derivative DG (x): X — Y the condition map of
the problem at input x. (Note that G, and hence DG, depends on the initial choice
of (xo, y0).) After choosing bases of X and Y, the condition map determines the
condition matrix DG (xg).

We may, in addition, fix norms on the space X of inputs and the space Y of out-
puts. Then, according to Sect. 14.1, the solution map G: U — Y has well-defined
absolute and relative normwise condition numbers. By Proposition 14.1 they take
the following form:

[lx 1l
GOl

acond’ (x) = | DG (x) |, cond® (x) =

DG )]

For an ill-posed (x, y) € X’ we define the (absolute) condition to be infinity.
Even though G is only implicitly given, it is easy to find an explicit formula for
DG (x). Indeed, differentiating the equation F(x, G(x)) =0 yields

oF oF
—(x,y)+ —(x,y) DG(x) =0. (14.3)
ox dy
Hence
IF LoF
DG(x)=— 8—(x,y) —— (). (14.4)
y ax
Lemma 14.4 The tangent space T(x )V of V at (x, y) is given by
.. oF . OF .
T(x,y)V= (X,)’)GXXY _(x,)’)x+_(xa)’)y=0 .
ax dy
Moreover, denoting by w: V — X, (x, ¥) — x the projection to the first component,
Z”:{(x,y)eV|rankD7r(x,y)<dimX}. (14.5)

Proof The linear space Ty )V equals the kernel of D F(x, y), which is determined
by

.. oF . OF .
DF()C, y)(xs y) = _(xs y)-x + _(X, )’)y =0.
ax ay
Moreover, D (x, y) equals the projection T(, )V — X, (&, y) — x. This projec-

tion has a nontrivial kernel iff the matrix d F/dy(x, y) is singular, which by defini-
tion means that (x, y) € X’. O
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14.1.3 Linear Equation Solving

We take up the example of linear equation solving, whose condition was already
discussed in Sect. 1.2. Consider X = R"*" xR",Y =R",andthemap F: X XY —
R", (A, b, y) — Ay —b. We make X and Y normed spaces by considering, for fixed
r,s > 1, the norm

(A, b)] == max{l|Alls. Ibll;} (14.6)

on X and the norm ||y||, on Y. If the matrix A is invertible, then the input (A, b)
has the unique solution G(A, b) = A~'b =y, with G denoting the solution map.

We want to compute acond® (A, b) = ||[DG(A, b)||, and from it, cond® (A, b).
In principle, we could expect the same bounds we obtained in Theorem 1.5 (which
would make k,5(A) < cond (A, b) < 2k,5(A)). A more careful look at the hypothe-
ses in Theorem 1.5 shows that the relative error in (A, b) considered there is the
maximum of the normwise relative errors A and b. This introduces a minor, but not
negligible, “componentwise viewpoint” that does not fit into our present geometric
framework. The latter is entirely normwise.

The derivative of F at (A, b, y) is given by

DF(A,b,y)(A,b,y) = Ay + Ay — b,
which clearly has full rank for all (A, b, y). So
V=F'0)={(A,b,y)eX xY|Ay=b]}

is a smooth submanifold of X x Y of dimension dim X = n2 + n. Moreover,

aF . - L
———(A,b,y)(A,b) = DF(A,b,y)(A,b,0)= Ay — b,
a(A,b)( Y)(A, b) (A, b, y)( )= Ay

oF . . .

By Eq. (14.4), the condition map equals
DG(A,b)(A,b)=—A""(Ay — b).

Let r,s > 1 and consider the norm ||(A, b)|| on X defined in (14.6) and the norm
Iyl on Y. We have

|A~ Ay =B, <A, (1ALl + 1515).
This implies for the corresponding operator norm

[DGA. b = max A7 Ay =), < [A7, (Iyl- + 1),

”A\ rs=
Iblls =<1
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and it is straightforward to check that equality holds. Therefore,
acond® (A, b) = ||A7"||, (Iyll- +1).

From this we obtain, recalling i,s(A) = | A|l;s[|A" 57,

[(A, D)l

cond’ (A, b) = acond® (A, b) ———=
Iyl

1
= A=, (vl + D max{14ls lb1)
r

AT ol - (D).

= max{/c,s(A),
Hence, cond (A, b) > k4 (A). In addition, using |5y < [|All,s |||l it follows that
cond? (A, b) < iers (A) - max{1, Iyl } - (1+ Iyl;").
Putting these bounds together, we obtain
krs(4) < 0ond? (A, b) < ieys (A) (1 + max{llyl- Iyl }).

As already discussed, this result is different from the one in Theorem 1.5. As an
exercise, the reader may check that if we take the norm

[AB)] = (1A1% + 1612) 2,

then we obtain yet another result, namely

acond’ (A, b) = ||A7"|| 1+ Iyl

For the analysis of certain problems, a further generalization of the geometric
framework described in this section is necessary. In the following it is convenient
to use the notation W, := W \ {0} for any vector space W. For instance, let us con-
sider the problem of computing the eigenvalues and eigenvectors of a given matrix
A € C™"_ A first attempt to formalize this problem would be to consider the set of
solutions

Vi={(A,v,1) eC"" x (C"), x C| Av=Av}.

However, even if A has only simple eigenvalues, its eigenvectors v are determined
only up to scaling. It is therefore natural to replace (C"), by the complex projective
space P"~!, which is defined as the set of one-dimensional linear subspaces of C”.
This geometric object will also be of paramount importance for our analysis of
polynomial equation solving.

The space P"—! is a Riemannian manifold, and we will see in Sect. 14.3 that
the geometric framework discussed so far naturally extends to this more general
setting. We shall also continue there the discussion of the eigenvalue and eigenvector
problems.

Before doing so, we give a short introduction to the geometry of P!
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14.2 Complex Projective Space

Let V be a finite-dimensional complex vector space and recall V, := V \ {0}. For
v € V, we write [v] := Cv for the one-dimensional linear subspace spanned by v.

Definition 14.5 The complex projective space P(V') is defined as
P(V) :={[v]|ve V.}.
One writes P"~! := P(C").

The space P(V) comes with a topology. Consider the canonical map 7: V, —
P(V), v [v]. We say that U C P(V) is open if 7 L(U) is open in V with respect
to the standard topology (induced by the Euclidean topology via a linear isomor-
phism V >~ C").

We argue now that P(V') is compact: Let (, ) be a Hermitian inner product on V.
Then v € V has the norm ||v]| := +/{v, v), and we can define the sphere

SVyi={veVvivl=1},

which is compact. Consider the restriction 7s: S(V) — P(V), w + [w] of . This
map is surjective, and its fibers are given by ngl([v]) ={\v | |A] = 1}. Since 75 is
continuous, it follows that P(V') is compact.

In the next subsections we shall explain that P(V) carries the structure of a Rie-
mannian manifold. For a brief introduction to these concepts, see Appendix A.2.

14.2.1 Projective Space as a Complex Manifold

We show here that P(V) is a complex manifold by exhibiting an atlas for it.
Fix a Hermitian inner product ( , ) on V >~ C". For v € V,, we consider the
orthogonal complement of Cuv,

T,:={zeV|(z,v)=0}.

Clearly, T, is a linear subspace of V of complex codimension one, and we have
V =Cv @ T,,. Consider the open subsets

Ay:={LeP(V)|ILZT,}={lv+w]|lweT,}

of P(V). Itis easy to check that P(V) =A,, U---UA, whenvy,...,v, is a basis
of V. We can parameterize A, by the bijective map

v, T,— A, w[v+w]. (14.7)

Note that ¥, (0) = [v].
The next lemma shows that lI/v’l is a chart and the collection {lI/v’1 lveVi}isa
holomorphic atlas for P(V).
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Lemma 14.6
(a) We have 'I/U_l([x]) = @, (x), where

. [v))?
@u: VAT, —> Ty, (14.8)
(x,v)
(b) The derivative of ¢, at x € V \ T, is given by y = D@, (x)(X), where
5= ol ((x,v) & — (&, v) x). (14.9)
{x,v)?

(c) W, is a homeomorphism.
(d) The change of coordinates map

T2, (AuNA) = ¥ (AuNA) STy, w i &) W (w)
is a complex differentiable map.

Proof (a, b) These are verified by a direct computation.

(c) The map ¥, is the composition of T, — V \ T, w > v 4+ w with the canoni-
calmap V\ T, - A,, x — [x], and hence ¥, is continuous. By part (a), the inverse
lI/v_1 factors over the continuous map ¢, : V \ T, - T, and hence \I/v_1 is continu-
ous. We have thus shown that ¥, is a homeomorphism.

(d) By part (a), the change of coordinates map is given by lI/U_l v, (w) =
oy (1 + w). It is straightforward to check that this is a complex differentiable map. [

In the following we view P(V) as a complex manifold with respect to the above
atlas. We therefore have a well-defined abstract notion of the tangent space Tj,)P(V)
at [v]; see Appendix A.2 (and Sect. A.3.2). We make this now more concrete.

By Lemma 14.6(c), the map ¥, is a complex diffeomorphism (i.e., biholomor-
phism). Since the tangent space of the vector space T, at O can be identified with
T,, the derivative DY, (0) of ¥, at 0 provides a C-linear isomorphism

DW,(0): T, — Ty P(V). (14.10)

In the following, we shall identify 7},jP(V') with T, via this map. A little care has to
be taken here, because there is a choice of the representative v of [v]. Suppose that
a vector in T},)P(V) is represented by w € T, via D¥,(0). Then this same vector
is represented by Aw € Ty, = T, when the representative v is replaced by Av. This
fact is a consequence of the following commutative diagram

qj)\u
T — Ajy

d

T, — A,

where the vertical arrow A- stands for the multiplication by A.
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Remark 14.7 A more invariant, yet concrete, description of 7},jP(V) is obtained by
replacing T, by the isomorphic vector space .2 (Cv; T,) of linear maps Cv — T,.
The isomorphism is .Z(Cv; T)) — Ty, o — a(e).

In the following, we will mostly forget the complex structure and view P(V) as
a smooth (C*°) manifold. Here is a useful result for concrete computations.

Lemma 14.8 Let y: R — V,, be a smooth map and let yp: [0, 1] = P(V) be de-
fined by yp(t) = [y (t)]. Then, writing y (t) :==dy (t)/dt, we have

dye(t) _ pi(7 ()
dt lyol -’

where p;: 'V — T, denotes the orthogonal projection.

Proof Fix tg € [0, 1] and put v := y (o). Since the statement is local, we may as-
sume that yp: R — A,. By scale invariance we may assume that ||v|| = 1. Fur-
ther, by choosing a suitable orthonormal basis of V, we may assume that V = C"
and v = e,,. We express now the curve y in the coordinates provided by the chart
Ve, : T, = A, cf. (14.7). The composition g := lI/e;1 oy: R — T, is given by
(cf. (14.8))

gt) = (@), .. a1, 0).

Yu(2)

The derivative g(tp) € T,, represents dyp(tp)/dt in the chosen coordinates. Taking
the derivative at 7y and using y () = e, implies

g(to) = (Y1(t0). ..., Ya—1(10), 0).

This completes the proof. O

14.2.2 Distances in Projective Space

We again fix a Hermitian inner product (, ) on V. The real and imaginary parts
of a complex number z € C shall be denoted by Nz and Iz, respectively. Setting
(v, w)r = R(v, w) defines an associated inner product (, )gr on V. This inner
product defines the same norm as (, ), since (v, v)r = (v, v) for v € V. Moreover,
(iv,v)r=0forallve V.

The sphere S(V) = {v € V | ||v|| = 1} is a submanifold of V, and its tangent
space at v € S(V) is given by the real subspace

T,S(V)={aeV|(a,v)r=0}. (14.11)

Recall the projection 7rs: S(V) — P(S), w — [w].
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Lemma 14.9 For all v € S(V) we have the orthogonal decomposition T,S(V) =
T, @ Riv, which is orthogonal with respect to {, )r. Moreover, the derivative
Drs(e): T,S(V) — Ty is the orthogonal projection onto T,.

Proof 1t is clear that T, C T,S(V) and moreover iv € T,S(V), since (iv, v)r =
Ni (v, v) = 0. The first statement follows by comparing the dimensions. For the
second statement take a smooth curve y: R — S(V) and consider yp := g o y.
Then yp(t) = Drs(y (t))(y (¢)). Now use Lemma 14.8. O

A result similar to Lemma 14.8 holds for spheres.

Lemma 14.10 Ler y : R — V, be a smooth map and let ys: [0, 1] — S(V) be de-

fined by ys(t) = % Then we have

dys®) _ P (y (1))
dt Iyl

where P;: V — T, S(V) denotes the orthogonal projection.

Proof A straightforward calculation shows that

. _ vy 1 .
Vo= 1—r— y=1—P),
[P A ¥l
where
. vy
Ply)=y— 7Y
vl
equals the orthogonal projection of y onto T),(»S(V). O

The inner product {, )g on V induces an inner product on the subspace 7,,S(V)
of V, which turns the sphere S(V) into a Riemannian manifold.

As in any Riemannian manifold, we have a well-defined notion of Riemannian
distance ds (v, w) between points v, w € S(V); cf. Appendix A.2. It is a well-known
fact that ds(v, w) equals the angle between v and w, that is,

ds(v, w) = arccos(v, wW)R. (14.12)

Similarly, we define an inner product on the tangent space 1},;P(V) of the pro-
jective space P(V) by setting, for a, b € T,

(a,b)r
vl

(a,b)y = (14.13)
The reader should note that this is a well-defined notion, independent of the choice
of the representative v of [v]. Clearly, if v € S(V), this coincides with the inner
product defined on 7,S(V).
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The next lemma is a precise formulation of the fact that the inner product (, ),
“varies smoothly” with the base point v. It implies that P(V) is also a Riemannian
manifold. The corresponding metric is called Fubini—Study metric.

Lemma 14.11 Fix v € V, and recall ¥,,: T, — Ay, p, w — [v + w]. Consider its
derivative DW,(w): T, — Tjy+w)P(V) at w € T,,. Then, for fixed a,b € T,,

T,—> R, wr (D¥,(w)(a), DWv(w)(b))[v+u)],

is a smooth map.

Proof Consider the derivative of ¥, at w € T,
DU, (w): Ty = TixAy =Ty, Yy X%,

where we write x = v 4+ w and recall that [x] = ¥, (w). Lemma 14.6 implies that x
and y are related according to Eq. (14.9).

Assume now without loss of generality that ||v|| = 1 (scaling). Let ey, ..., e, =
v be an orthonormal basis of V. Without loss of generality, we may assume that
V = C" and that ¢; is the standard basis. Then (14.9) becomes

. L.
Yk = —5 (XnXk — XnXp).
xn
Fix i <n and let y = ¢; € T,, be the ith standard basis vector. Solving the above
equation for X under the constraint x € Ty, that is, (x, x) =0, yields

Xi
2y
llx1?

e —

as is easily verified. Now taking a =e; and b = ¢; in T, for fixed i, j < n, we
obtain

1 X Y
(DW,, (x)(@), DWe, (X)(B)),, (x)=—2< R p— x>
@~ x| | R

[lx] 112
)
lx112 [T
Clearly, this depends smoothly on x1, ..., x,_1, which completes the proof. g

We denote by dp the Riemannian distance of P(V), cf. Appendix A.2. It turns
out that dp([u], [v]) equals the angle between the complex lines Cu and Cv. More
specifically, we have the following result.

Proposition 14.12 We have for v, w € S(V);

dp([v], [w]) = xgéi(?:) ds (v, Aw) = arccos| (v, w)|.
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Proof The right-hand equality follows from the definition (14.12) of ds and the fact
max; esc) R(rz) = |z|, for z € C.

For the left-hand equality take a smooth curve y : [0, 1] — S(V) connecting v
with Aw. Then yp: [0, 1] — P(V) defined as yp(¢) = [y (¢)] connects [v] with [w].
Lemma 14.8 implies that ||yp(#)|| < ||y (¢)||. By the definition (A.3) of the length of
curves we obtain L(yp) < L(y). This shows that

dp([v], [w]) < Agéi(%) ds(v, rw).

In order to prove the reverse inequality, take a smooth curve yp: [0, 1] — P(V).
Using charts as in the proof of Lemma 14.8, it is easy to see that yp can be lifted to
S(V), that is, there exists a smooth curve y: [0, 1] — S(V) such that yp = 75 0 y.
Hence yp(t) = Drg(y (¢))(y(¢)). If we have

(y®,y®m)=0, (14.14)

then yp(¢) = y(¢), since Dmg(y(¢)) is the orthogonal projection onto 7),(;); see
Lemma 14.9. It follows that L(yp) = L(y), and we are done.

In order to achieve (14.14) we multiply y by a smooth function A : [0, 1] — C*.
A short calculation shows that (d(gt”) ,Ay) =0 iff A = —(y, y) A. This linear dif-
ferential equation has the solution A(#) = exp(x(¢)), where «(¢) is a primitive func-
tion of —(y(¢), y(¢)). Note that since (y,y)r =0, we have «(¢) € iR and hence

A = 1. O

We define the sine distance on P(V) by setting dgin ([v], [w]) := sindp([v], [w]).
Recall that we have already introduced a similar notion dsj, for spheres in Def-
inition 2.32. As for spheres, one can show that this defines a metric on P(V)
(cf. Remark 2.33).

For later use we present the following result.

Lemma 14.13
(a) Letv,w € S(V). Then

dsin(v, w) = min ||v — pwll.
neR

If the minimum is attained at |1, then (v — pow, w) = 0 and |ug| < 1. More-
over, if (v, w) # 0, then pg # 0.
(b) Let v,w € Vy. Then

(o1 ) = i 1201
dsm([v]’ [w]) = I)}lelél ol

If the minimum is attained at A, then (v — Agw, w) = 0 and |[Low]| < |v].
Moreover, if (v, w) # 0, then Ag # 0.
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Proof (a) The corresponding statement for two points on the circle S! can be proved
by elementary geometry. This already implies the first assertion.

(b) For the second assertion we may assume v, w € S(V') without loss of gener-
ality. Then we have by Proposition 14.12 and part (a);

sindp([v], [w]) = min sinds (v, Aw) =

min min v — gAw]|| = min ||[v — Aw]|.
|Al=1 =1ueR reC

[Al=1p
The claim about the minimum attained at A is an immediate consequence of the
corresponding statement for S(V') in part (a). g

14.3 Condition Measures on Manifolds

We return now to the main theme of this chapter, the definition of condition in a
general geometric framework. Let X be a manifold of inputs, ¥ a manifold of out-
puts, and let V € X x Y be a submanifold of “solutions” to some computational
problem. We assume that X and V have the same dimension »n to guarantee the lo-
cal uniqueness of solutions. Consider the projection 7;: V — X, (x, y) — x, and
its derivative D1 (x, y): T(x,y)V — Tx X, which is the restriction of the projection
T, X xT,Y — T, X, (x, y) = X, to the subspace T, )V . Following (14.5), we de-
fine the set of ill-posed solutions as

> :={(x,y) €V |rank D (x, y) <dim X }. (14.15)

If (xg, yo) € V' \ X, then Dy (xq, yo): T(xg,v0)V — Ty, X is a linear isomorphism.
The implicit function theorem tells us that w1: V — X can be locally inverted
around (xg, yp). Its inverse x — (x, G(x)) is given by the solution map G: X 2
U — Y defined on an open neighborhood U of xp. So we have (x, G(x)) € V for
all x € U. The derivative

DG(xp): TxyX — Ty Y
will again be called the condition map. Clearly, the inverse of Dm1(xo, yo) is given
by
T X = Txgyg) Ve X+ (%, DG(x0)(1)). (14.16)

If V is given as the zero set of a smooth map F: X x ¥ — R”", then, as in
Lemma 14.4 and (14.2), we have the following characterization of X"

X' ={(x,y) €V |rankdF/dy(x,y) <n}. (14.17)

Here the partial derivative 0 F/dy(x, y): T,Y — R" is defined as the restriction of
DF(x,y)to T,Y.

Now suppose that X and Y are Riemannian manifolds. That is, we have an inner
product on each tangent space T, X and 7Y that varies smoothly with x and y,
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respectively. In particular, 7, X and T, Y are normed vector spaces. In this case, we
may define the (absolute) normwise condition number

acond® (xo) := | DG (xo) | = max | DG (xo) ()|
as the operator norm of DG (xg). We note that in this general framework, it does not
directly make sense to define relative condition numbers. However, implicitly, we
can model relative notions of condition numbers by choosing the manifolds appro-
priately. For instance, working with projective spaces means to study ratios, which
accounts for a relative notion.

Remark 14.14 The discussion above ties in with the theme of Sect. 6.8. For
an element xg in the manifold of inputs X we have a finite number of points
(x0,¥1), ..., (x0, ys) in the fiber 7~ 1(xo). Each of them has a corresponding so-
lution map G, j =1,...,s, and a condition number acond?/ (xp). The condition
of x¢ will depend on the computational problem we are considering associated to the
geometric situation V C X x Y. As described in Sect. 6.8, the three typical choices
are

acond(xp) := inf acond®/ (x0), acond(xp) := E acond®’ (x0),
J=s Jj<s

and
acond(xp) := sup acond®’ (x0).
J=s

Note that the last two choices force one to define as set of ill-posed inputs the set
X :=m(X"), whereas for the first, one should take instead

Ti={xeX|(x,y)e X forall (x,y) e 7 (x)}.

14.3.1 Eigenvalues and Eigenvectors

The computation of eigenvalues and eigenvectors can be modeled as follows. Con-
sider the manifold X = C**" of inputs, the manifold ¥ = P(C") x C of outputs,
and the solution manifold

Vi={(A,[v].1) € X x Y | Av=1v}.

(We will see shortly that V is indeed a smooth submanifold of X x Y; compare
Lemma 14.17.) If A is a simple eigenvalue of A with eigenvector v, then we can
locally invert the projection w1: V — X around (A, [v], A) and thus have a well-
defined solution map G: X 2 U — Y defined on an open neighborhood U of A. We
may decompose the map G via G(A) = (G1(A), G2(A)), where G1: U — P" 1 is
the solution map for the computation of eigenvectors and G, : U — C is the solution
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map for the computation of eigenvalues. We may thus interpret the operator norms
of the derivatives

DG(A): TyX=C""— T[U]Pn_l,
DGr(A): TaX=C""—=C

as the (absolute) condition numbers of the corresponding computational problems.
Clearly, a choice of norms on C"*" and Tj,)P" ! has to be made. From a geometric
point of view, it is natural to take the norms coming from the inner products on 74 X
and Tj,)P"~! induced by the structure of the Riemannian manifolds in X and P"~!,
respectively. Note that on T4 X, this would amount to considering the Frobenius
norm. However, we may as well choose other norms. As in Sect. 1.1, we may fix
r,s > 1 and consider the corresponding operator norm || ||,s on T4 X = C"*". On
the space T[U]IP’”_l = T, we shall consider the norm m 0]l for v € Ty.

Within this context, we can compute the condition numbers of the eigenvector

[v] and the eigenvalue A,
acond®! (A, [v]) = | DG1(A)| and acond®2(A, 1) = [ DG(A)].

Before stating the result we need to introduce the notions of left and right eigen-
vectors. Suppose that A is a simple eigenvalue of A € C"™*", i.e., ker(AI — A) is
one-dimensional. Let v € C! be a corresponding (right) eigenvector, so Av = Av.
Consider the characteristic polynomial x4(z) = det(zl — A) = (z — A)g(z) with
g(1) # 0. Taking complex conjugates, we get

det(z1 — A*) =det(ZI — A) = (2 — A)g(2).

Hence x4+ (z) = det(zl — A)=(z— X)E(z), and we see that A is a simple eigegvalue
of A*. Let u € C] be a corresponding eigenvector of A*, that is, A*u = Au, or
equivalently u* A = Au*. One calls u a left eigenvector of A. We note that for v € C"
we have

(u, A — A)i)) = (u, AD) — (u, AV) = Au, 0) — (A*u, i)) = Au, v) — (Au, 0) =0.

So the image of Al — A is contained in 7, and hence equals 7, for dimensional
reasons.

Let P: C" — T, denote the orthogonal projection, which is given by P(z) =
z — vl ~%(z, v)v. We will see shortly that (u, v) # 0, so that the restriction of P
induces an isomorphism 7, = Ty. Thus P(AI — A): C" — T, is surjective with
kernel Cv. We can thus take its Moore—Penrose inverse (P (LI — A))T, which pro-
vides an isomorphism from 7}, onto itself. The next proposition tells us that the norm
of this map equals | DG (A)].

1

Proposition 14.15 Choosing the norm || ||,s on TaX = C"*" and ™ II'll- on Ty,

the condition maps DG for the eigenvector problem and DG, for the eigenvalue
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problem have the following operator norms:

acondG‘(A, [v]) = ||DG1(A)|| = ||(P(“ - A))T“sr’
luellg«Nlv I

|(u, v}

where || ||+ denotes the dual norm of || ||s; cf. (1.3).

acond“2(A, 1) = | DG2(A)| =

’

Let us first illustrate this result in a special case of interest.

Example 14.16 Suppose that A € C"*" is Hermitian, i.e., A* = A, with distinct
eigenvalues A, ..., A, and corresponding left eigenvectors vy, ..., v,. Then A; is
real and u; = v; is a right eigenvector of A;. Suppose that r = s = 2. Proposi-
tion 14.15 easily implies that

1

aCOﬂdG2 (A, )"l) = 1, aCOﬂdGl (A, ['Ui]) = m
JFLM T g

So, in accordance with our intuition, a large condition acond®! (A, [v;]) means that
A; is close to other eigenvalues. By contrast, acond®2 (A, A;) always equals 1.

For the proof of Proposition 14.15 we first need to compute the derivative
DG(A): C"™" > T, x C.
Lemma 14.17
(a) V is a smooth submanifold of X x Y and dimV = dim X.
(b) We have (v,u) # 0.

(¢) If A is a simple eigenvalue of A € C"*" with right eigenvector v and left eigen-
vector u, then the derivative of the solution map is given by DG (A)(A) = (v, 1),
where

. o=(POI—A) Piv.

Proof Consider the map
F:C"" x (C})xC—C", (A,v,A)— Av—hv.
For all (A, v, 1), the derivative of F at (A, v, A) is given by
DF(A,v, M) (A, 0, 1) = Av+ A — Av — Ab.
Since DF (A, v, A) has rank n, the zero set

Vi={(4,v,0) e C"”" x C" x C| F(A, v, 1) =0}
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is a submanifold of C"*" x CI x C — C" of real dimension 2(n? +1). Since V
is obtained as the image of V under the canonical map (A, v, L) — (A, [v], A), it
follows that V is a manifold of dimension 212. This proves part (a).

LetG: XD U — C" x C be a local lifting of the solution map G: U — P"~!
x C.If DG(A)(A) = (v, 1), then DG(A)(A) = (P9, 1), where P: C" — T, is the
orthogonal projection and we have identified 7j,)P"~! with T,,. It is thus sufficient
to compute the derivative of G.

We have F (A, G (A)) =0 for A € U, and taking the derivative at A yields (com-
pare (14.3))

oF F .
—(A,v, M)A A,v,.)DG(A) =0. 14.18
aA( v, A) +8(v,k)( v, A)DG(A) ( )
Furthermore,

OF . . )

ﬁ(A,v,,\)A=D}L“(A,U,A)(A,O,O)=Av,

(A, v, )0, X)) = DF(A, v, A\)(0,0,%) = (A — Al)D — iv.

d(v, \)

Thus setting (v, 1) = DG(A)(A), Eq. (14.18) yields
Av+(A—=ADD—iv=0. (14.19)

Recall that im(AI — A) = T,,. Taking the inner product of (14.19) with u, we thus
obtain

(Av,u) — A(v,u) =0.

This implies that (v, u) # 0, since u, v % 0 and A was arbitrary. Part (b) and the
stated formula for A follow.

For part (c) we apply the orthogonal projection P: C* — T, to (14.19), to get
for v € Ty,

PAv=POI — A= P\l — AP0,
noting that Py = v. This implies, since the kernel of P(Al — A) equals Cv,

Pi= (P — A)) PAv.

The proof is now complete, since DG(A)(A) is obtained from (v, i) = DG(A)(A)
by projecting v orthogonally onto 7. But we already assumed v € T,. 0

Proof of Proposition 14.15 For all A € C"*" we have by Holder’s inequality (1.3),

[(Av, )| < | Avlsllulls < IAllslvll-lulss
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Moreover, by Lemma 1.2, there exists A such that ||A||rs =1 and Av/||v||r
= u/||lul|s. For this choice of A we have equality above. This implies with Lem-
ma 14.17 that

A *
DG ()] = max AL _ vl lluls
lAlls=1 (v, u)] (v, u)]|

’

as claimed. )
For the assertion on || DG{(A)]| we note that for all A,

IPAv|s < IPllssIIAllsllvlly < Al slvll-

Let w € T, be such that |wl; = [|v]|,. By Lemma 1.2 there exists A such that
|All;s =1 and Av/||v]|, = w/|lw||s; hence P Av = w. This observation implies

max (P — A)) PAv],

lallo=1 max | (PG.1 - 4)'w],

weTy

lwlls=lvilr
= ol [ (PaT = )],
The assertion follows with Lemma 14.17 (recall the norm |[v||~ Yl |l on Ty). O

14.3.2 Computation of the Kernel

The goal of this short section is to show that in our geometric framework, the con-
dition number x(A) = ||A|| ||[AT| of a rectangular matrix A (cf. Sect. 1.6) has a
natural interpretation as the condition to compute the kernel of A. For this we re-
quire a certain understanding of the notion of a Grassmann manifold. This section is
not required for the understanding of the remainder of the book and may be skipped.

Fix 1 <r <m < n and consider the input space X :={A € R™*" | rank A =r},
which is a smooth submanifold by Proposition A.5. As the output space Y we take
the Grassmann manifold consisting of the k-dimensional linear subspaces of R”,
where k :=n —r. The solution mapis G: X — Y, A+ ker A.

Computations in the Grassmann manifold are best performed in the Stiefel man-
ifold St, ., which is defined as the set of n x k matrices M satisfying M ™™ =14.
According to Proposition A.4, St x is indeed a submanifold of R”>*k Note the Sty k
is invariant under the right action of the orthogonal group @'(k) on R We have
a natural surjective map m : St, x — Y, which maps M to its image Im M. Clearly,
this map is constant on &'(k)-orbits M &' (k) :={Mg | g € O(k)}.

Lemma 14.18 The orbit M O (k) is a submanifold of R">**. The derivative Dt (M)
is surjective and ker Dt (M) = Ty M O (k). Moreover, its orthogonal complement
(ker Dt (M))* in Ty Sty k consists of the matrices M € Rk such that \mM =
(Im M)*. In particular, the orthogonal projection of Ty Sty i onto TyM O (k) is
given by V > PV where P is the orthogonal projection onto (Im M)*.
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Proof We leave it to the reader to verify that 7 has local sections. More specifically,
for each L € Y and each M € St, ; such that 7 (M) = L there exist an open neigh-
borhood U of L and a smooth map ¢: U — St,, x such that 7 o ¢ =I;. This implies
that Dt (M)D¢(L) =1. Hence D (M) is surjective.

It follows that all L € Y are regular values of 7. Theorem A.9 implies therefore
that M O(k) = w1 (w (M) is a submanifold and ker D (M) = Tyy M O (k).

For the remaining statements, we may assume that M = (I, 0)T. This is possible
by the singular value decomposition (see Sect. 1.5) and the orthogonal invariance of
the statement. Proposition A.4 states that TM Sty x consists of the matrices (B )T ),
where B € RE¥K is skew-symmetric, ie., B + BT =0, and C € RE*". Similarly,
it follows that the tangent space of M &'(k) at M consists of the matrices (B, 07,
where B + BT = 0. Hence (ker Dt (M))~* equals the set of matrices (0, C)T, as
stated. d

By this lemma, D (M) provides an isomorphism of the orthogonal complement
of Ty M O'(k) with the tangent space T (3)Y of Y at ImM. In the following, we
shall identify T (37)Y with this subspace of Ty St, x to have a concrete model to
work with. This also defines a Riemannian metric on Y.

The following result shows that k (A) = || A|| acond® (A), and hence k (A) can be
interpreted as the relative condition number for computing the kernel of A from a
given A.

Proposition 14.19 We have acond®(A) = ||AT| for A € X.

Proof From the existence of local sections for m it follows that G can be lo-
cally lifted to a smooth map G: X — Stn r such that G =7 o G. Let A(t) be
a smooth curve in X and put M(t) := G(A(t)) Since kerA(t) =ImM(t), we
have A(t)M(t) = 0. Taking derivatives, we get AM + AM = 0, hence ATAM =
—ATAM.

Recall that ATA is the orthogonal projection onto (ker A)* = (Im M)*; cf.
Lemma 1.24. Lemma 14.18 and our interpretation of the tangent spaces of ¥ imply
now

(M) = ATAM =—ATAM.

Taking norms, we obtain
|ATam |, < |AT| - 1AMIE < [ AT] - 1Al F.

Here we have used that | M|| =1 for M € St, &, as well as the easily verified gen-
eral facts |PQllr < |P|- 1 QllF and [P Q|lF < [IP|lF - [ Qll for matrices P, Q of
compatible formats. It follows that

[DGA)| = sup
lAlF=1

d
Zr)] <1’
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In order to see that equality holds, using the singular value decomposition, one
may assume without loss of generality that A = er: 10i Ei;, where E;; stands for
the matrix with entry 1 at position (i, j) and 0 elsewhere. We assume that o; is
the smallest positive singular value, so that AT = o, ! Now we choose the curve
A(t)=A+1tE| 41 in X and take M := Zle E,4; ;. Then itis easily verified that
IATAMI|F =07 " = AT, O



Chapter 15
Homotopy Continuation and Newton’s Method

A general approach to solving a problem consists in reducing it to another problem
for which a solution can be found. The first section in this chapter is an example of
this approach for the zero-finding problem. Yet, in most occurrences of this strategy,
this auxiliary problem is different from the original one, as in the reduction of a
nonlinear problem to one or more linear ones. In contrast with this, the treatment
we will consider reduces the situation at hand to the consideration of a number of
instances of the same problem with different data. The key remark is that for these
instances, either we know the corresponding solution or we can compute it with
little effort.

We mentioned in the introduction of the previous section that even for functions
as simple as univariate polynomials, there is no hope of computing their zeros, and
the best we can do is to compute accurate approximations. A goal of the second
section in this chapter is to provide a notion of approximation (of a zero) that does
not depend on preestablished accuracies. It has an intrinsic character. In doing so,
we will rely on a pearl of numerical analysis, Newton’s method, and on the study of
it pioneered by Kantorovich and Smale.

15.1 Homotopy Methods

Homotopy (or continuation) methods are a family of algorithms to compute zeros of
a given function, say f, belonging to a class F of functions defined on a domain Y.
They require a pair (g, ¢) at hand with g € F and ¢ € Y a zero of g.

The general idea of the method is to consider a path

V:[O,l]—)]:, t'_>4t,

such that go = g and g1 = f. This path needs to be computable (in the sense that g,
may be computed from f, g, and ¢).

Under certain conditions the path y can be lifted to a path I" in the solution man-
ifold V. C F x Y such that I"(0) = (qo, ¢). If this is the case, by projecting onto Y
we obtain a path {£;},¢[0,1) on Y such that {o = ¢ and f(£1) = 0. The goal of homo-
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topy methods is to “follow” (or “continue”) the path on V to eventually obtain an
approximation of ¢;. A nonalgorithmic instance of this continuation is at the heart
of our proof of Bézout’s theorem in the next chapter (see Sect. 16.5). The algorith-
mic scheme, broadly described (and this includes just an informal description of the
postcondition satisfied by the output) is the following:

Algorithm 15.1 Homotopy_Continuation
Input: f,geF, €Y, keN
Preconditions: g(¢) =0

set a partition fHpH=0<ti<---<fro1<tr=1
set zp9:=¢
for i=0,...,k—1 do
compute an approximation zjy; of ¢,
from z; and gy,
end for
Return zx

Output: zeVY
Postconditions: 7 is an approximate zero of f

Figure 15.1 below depicts the process.
To turn this broad description into a working algorithm, a number of issues need
to be clarified. For instance: how are the points #; computed and how many of them

¢1

g=4qo qt; iy f=a

Fig. 15.1 A homotopy continuation
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are considered (i.e., which k should be given as input)? What is “an approximation”
of a zero ¢; of ¢;? How does one compute one such approximation?

These questions are too general for an all-encompassing answer to be possible.
Furthermore, they are not independent, and the answer given to one of them may
affect the way we approach the others. The next section provides a first answer to
the last two questions above. Prior to proceeding with such an answer, however, we
stress a couple of issues leading to an improved version of Algorithm 15.1.

The number k of iterations in Algorithm 15.1 is given as input and presumably
needs to be estimated in some way such that it is appropriate for the triple (f, g, ¢).
Such an estimation does not appear to be simple. A way to avoid the issue altogether
is to compute, at the ith iteration, the point #; 4 as a function of #;, g;,, and z;. The
underlying idea is the following. Assume that z; is a “strong approximation” of
¢y, in the sense that for all ¢ reasonably close to #;, z; is an approximation of ;.
Assume, in addition, that the computation of z;4 in Algorithm 15.1 is such that if
z; is an approximation of ¢y, ,, then z; 1 is a strong approximation of ¢, ,. Then
the good functioning of the homotopic continuation will be guaranteed—by a trivial
induction argument—as long as (a) zg is a strong approximation of ¢, and (b) the
point # 41 is chosen reasonably close (in the sense above) of #;.

Requirement (a) allows for a relaxation. We no longer need a zero of g at hand. It
is enough to have a strong approximation of one such zero. Requirement (b) intro-
duces condition into the scenario. Intuitively, for z; to be an approximation of ¢, |
it has to be close to this zero. For this to occur, we expect t; 1 to be close to ¢;, but
how close exactly—as shown by a look at Fig. 15.1—will depend on how fast ¢;
moves apart from ¢, when ¢ increases from #;. That is, on how large . (g;,, &;;) is.

The discussion above introduces one more notion to be made precise (what ex-
actly we mean by strong approximation) but allows us to (again, broadly) describe
an adaptive version of homotopy.

We do so in Algorithm 15.2.

Algorithm 15.2 Adaptive_Homotopy

Input: f,geF,zeY
Preconditions: 3¢ € Y such that g(¢) = 0 and z strongly approximates ¢

set i:=0, z;:=z, and t:=0

while t; <1 do
compute f4; from #, z;, and gy
compute an approximation zj+1 of ¢,
from z; and gy,

end while

Return zi

Output: zeVY
Postconditions: z is an approximate zero of f
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We may now turn to the notions of approximation.

15.2 Newton’s Method

Newton’s method is doubtless one the most widely used algorithms in numeri-
cal analysis. To understand the idea behind it, consider an analytic function f :
C — C. Given an initial point zg € C, the method constructs a sequence of iterates
20,21, 22, - - . » Where

_ flz)
@)
Here f’ is the derivative of f (which we assume well defined for all i > 0). An

immediate property of Ny is the fact that Ny(z) =z if and only if f(z) =0 and
f'(z) #0. Also, for a point z € C,

'@ = f@f"@ _ f@f"R)
f'@? f'(@)?

In particular, for a simple zero ¢ of f we have N }.(g) =0, and the Taylor expansion
of Ny at ¢ is given by

Zit1 =Nyp(zi) =2z

Ni@)=1-

1
Ni@) =& =2 NF O =+ 0 = 0)). (15.1)

This implies that if the initial point zg is close enough to ¢, the sequence of points
generated by Newton’s method approaches ¢{ quadratically fast. Newton’s method
does not necessarily find a zero of f, but starting with a modest approximation of
such a zero, it refines its accuracy in a very fast manner.

The above reasoning can be extended to many variables. Let f : C" — C” be
analytic. Newton’s method is an iteration based on the map

Ni(2)=z—-Df ()~ f(2),

where Df (z) is the derivative of f at z. This formula is defined if Df (z) is invert-
ible. As for the one-dimensional case (15.1), one shows that for z — ¢,

IN/ @ = ¢ =0(lz—¢I?).

Hence, for all initial points zo sufficiently close to ¢, the distance from the iterates
Zi41 := Ny(z;) to ¢ decreases quadratically.

This property inspired Steve Smale to introduce a notion of approximate zero
that does not depend on prescribed accuracies: a point is an approximate zero of
a function when Newton’s method starting at this point converges to a zero of the
function immediately, quadratically fast. In what follows we make this idea precise
(which, we note, gives a possible answer to the second question at the end of the
previous section).
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Definition 15.1 We say that z € C" is an approximate zero of f if the sequence
given by zo = z and z; 11 = N7(z;) is defined for all natural numbers i, and there is
a ¢ with f(¢) =0 such that for all i e N,

| 201
lzi =<l < <5) lz =<l

We say that ¢ is the associated zero of z.

Remark 15.2 An approximate zero in the sense above yields approximations to any
desired accuracy of a zero of f. Indeed, for any ¢ > 0 and approximate zero z of f
with associated zero ¢, we may compute the kth iterate zx = N ;‘c @.Ifz—-¢ll =M,

then ||z — ¢ || < e if k > loglog ¥ + 1.

Let’s go back to the discussion on homotopy methods. Definition 15.1 provides
a notion of approximate zero. We can take as “strong approximate zero” the image
under Newton’s operator of an approximate zero. That is, if z is an approximate
zero of f, then Ny (z) is a strong approximate zero. An immediate advantage of this
is that we can make the second computation in the while loop in Algorithm 15.2
precise. It is

compute zi+1 := Ny, (2.

Having made precise what we understand by approximation and strong approx-
imation sheds light as well on the meaning of the condition (b) of the previous
section, namely, to choose #; 1 reasonably close to #;. Indeed, this means choosing
ti+1 such that z; is an approximate zero of gy, .

To provide an algorithmic procedure for this choice of #; 1 will take us some
time (and we will do that only in the specific context of homogeneous polynomial
systems). Yet, it is apparent that a first step in this endeavor is to have an estimate,
for a zero ¢ of an analytic function f, of how large its basin of quadratic attraction
is, that is, how large the set

{z € C" | z is an approximate zero of f with associated zero §}
is. An answer to this question is naturally given in terms of a quantity y (f, ¢) that

we shall define in a moment.
Before doing so, we recall some basic facts from multivariate calculus. For

finite-dimensional vector spaces Vi, ..., Vx, W we denote by % (V1, ..., Vi; W)
the space of k-linear maps from Vi x --- x Vi to W. In case k = 1, we omit the
index. Also, if V| =--- =V, =V, we simply write £ (V; W). If Vi,..., Vi, W

are normed vector spaces, then one defines the induced norm

llell = max ||<p(v1,...,vk)||
florl|=--=llvk =1
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forp € £ (V1, ..., Vi; W). Inthis way, £ (V1, ..., Vk; W) becomes a normed vec-
tor space as well. We do have a canonical isomorphism

Lea(Vi, o Ve n LV W) > L (Vi . Vig W), (15.2)

which is an isometry if V1, ..., Vi, W are normed vector spaces.

For z € C", we denote by Df(z) the derivative of f at z. This is a linear map
Df(z) : C" — C" so that Df : C" — Z(C"; C"). Taking the derivative of Df
at z € C", we obtain that this second derivative is a linear map D2 f(2):C" —>
ZL(C"; L(C"; C")). That is, using (15.2), D? f(z) € £ (C"; C"). Repeating this
argument we find, for all kK > 1 and z € C", that the kth derivative of f at z satisfies
DX f(z) € Z(C™; C"). 1t is known that D¥ f(z) is a symmetric k-linear map. By
abuse of notation, we shall abbreviate D¥ f (2)(y —z, ...,y —2z) by DF f(2)(y —2)¥
for y € C". The definition of the norm of DX f(z) implies that

ID* )y — | < | D*r@ | Iy - zI* (15.3)

Recall that an analytic function f : C" — C" can be expanded in a Taylor series
around a point ¢ € C",

o]

1
f@=) 5P f©OE-0k

k=0

and we have absolute convergence for z € C" such that ||z — | < p, where the
radius of convergence p > 0 is given by Hadamard’s formula

D* f(z)
k!

1
—1 . 3
o~ =limsup .
k— 00

(15.4)

We can now define the quantity y (f, ¢).

Definition 15.3 For an analytic function f : C" — C" and z € C" such that Df (z)
is invertible, we define

Df ()" 'DFf(2)
k!

1
k=1

y(f,2) =sup
k>2

We set y (f, z) = oo if Df (z) is not invertible.

Remark 15.4 The supremum exists so that y := y(f, z) is well defined. Indeed,
by (15.4), the supremum

1
k

C :=sup
k

DX f(z)
k!
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is finite. Therefore,

< (|pr@t|chyF,

H Df(2)~'D* f(2)
k!

1
‘kl

and the right-hand side converges to C for k — oo and hence is bounded.
On the other hand, we have

1
k

Df(2)"'D¥f(2)

k! < |pr@|F 't

Dk 1
H% < |pfo|}

1
‘ X

Therefore, by (15.4), p~! < y. So y~! is a lower bound for the radius of conver-
gence p.

Theorem 15.5 (Smale’s y-theorem) Suppose that f : C" — C" is analytic, f({) =
0, and Df (¢) is invertible. If, for 7z € C",

then z is an approximate zero of f with associated zero ¢ .
For the proof of this theorem we use the following stepping stones.

Lemma 15.6 For —1 < u < 1 we have

o0

o) 1 1
k k—1

= N k == .

kg(:)u 1—u Z u (1_u)2

k=1

Proof The first equation is the well-known geometric series. The second equation
is obtained from the first by (termwise) differentiation. O

Lemma 15.7 Let A € Z(C"; C") be invertible and let A € Z(C"; C") be such
that | A| - |A™| < 1. Then A + A is invertible and

L—[lAl A=Y

Proof Wehave || B|| < 1 for B := AA~!. The geometric series converges and yields
I+ B)~!' =372 o(—B)*. In particular, I + B is invertible. Bounding the norms,
we get [T+ B) 71 <32, I1BI* = (1 — [|B[)~'. Finally, we note that A + A =
(I+ B)A; hence (A + A)~! = A~1d + B)~! and the assertion follows. Il

The following simple quadratic polynomial plays an important role in our esti-
mates:

V) =1—4u+2u?. (15.5)
The proof of the following properties of v is left to the reader.
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Lemma 15.8 The function ¥ (u) = 1 — 4u + 2u? is monotonically decreasing and
V2

nonnegative in [0, 1 — 5] and satisfies

5—A17
u <1l forO<u<-——,
¥ (u) 4
1 3—-417
“ <= forO<u< \/—
Yw) — 2 2 0

The following crucial lemma gives an estimate on how much Df(z) changes
when we perturb z a little.

Lemma 15.9 Ler f: C* — C" be analytic and y, z € C" such that Df (z) is invert-

ible. We put u .= ||y — z|ly(f,2). Ifu <1 — 4, then Df (y) is invertible and we
have:

(@) Df(x)"'Df(y) =14 A, where A € ZL(C"; C"), | A < ﬁ —1<1.
() IDF () ' Df )] < G2,

Proof Put g :== Df and consider the Taylor expansion of g: C" — £ (C"; C")
around z € C™:

1
g =2@+)_ 5 DP'e@y 2"
=1

Composition with g(z)~! yields g(z)"'g(y) =1+ A, where A € Z(C";C") is
given by

1
A=) 8@ ' D@ -
=1

Setting k = £ + 1, using (15.3) as well as the isometric identification (15.2) along
with D¥1g(z) = D* f(z), we can bound as follows:

1 1
Ellg(z)*‘D"”g(z)(y - < E||g(z>*‘D"*‘g(z)|| ly — z)*!

1
= Sls@ D r@ iy — 20!

<y, 0" My —zlIF Y,

where we have used the definition of y (f, z) for the last inequality. Therefore, by
Lemma 15.6,
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—-1<1,

lal <Y k(y(folly—zll) ' =

k=2

1
(1 —u?

where the strict inequality on the right is due to our assumption u < 1 — +/2/2.
Lemma 15.7 (with A =1) implies that I + A is invertible. Hence Df (y) = g(y) =
g(2)(I+ A) is invertible as well. We have thus proved part (a).

Part (b) follows from the relations

le)e@| = [(g@em) | = a+ a7
1 1 (- u)?

STo0Al T T (o h W

)

where we have again used Lemma 15.7 for the first inequality. d

We now apply the previous lemma to the analysis of the Newton iteration. We
shall denote by N ]; the k-fold iterate of the Newton operator N .

Proposition 15.10 Let f: C" — C" be analytic, f(¢) =0, and let Df (¢) be in-
vertible. Let 7 € C" be such that

1
wi=lz=ly(£.0) < 55— V1),

Then ﬁ <1and

@ INf(2) = ¢l < g liz = ¢l = LEiz — 212,

k_
) INE@) — ¢l < (525)° " iz = ¢l for all k > 0.

Proof The bound W < 1 was established in Lemma 15.8.
Towards proving part (a), we expand f around ¢ to obtain in C",

o0
1
f@=) 5P r@Oe-0k
k=1
Similarly, expanding g := Df around ¢, we obtain in .Z(C"; C"),

o]

1
§@ =2 G e OG-

k=1

Evaluating both sides of the last equality at z — ¢, we obtain

o0

Df@)Gz-0) =)

k=1

k ok
o=k
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which is an equality in C"*. We may now subtract from it the first equality above to
obtain

o]

Df@)Gz—0) — f) = Z(
k=1

1
— k,) D)o

=Z k-2 LO gy (15.6)

From this it follows that

Ni(@)—¢=z—¢—Df@ " (f@)=Df @ Y(Df )z —¢) - f(2)

Df()"'D*f(¢) .

=Df (7' D) Y (k=1 T @=ok

k=1

‘We can bound the norm of this as follows, recalling u = y (f, z)lz — ¢|I:

Df ()~ 1D"f(§) H -

INy@) —¢| < |Df @)~ 1Df(§)||Z(k 1)”

k=1

<|DF@'DFO| Iz =<l (k= Hut!

k=1

Lemma 15.6 implies

- k—1 k—1 _ 1 _ u
];(k—l Zku Zu (1—u)2 R TRRC

Combining this with Lemma 15.9(b), we conclude that

2
—WT M ==l

N
v -l < S o o)

which proves (a).
We next prove (b). For k = 0 this is trivial. For £ > 1 we assume by induction
that

u \2'1
[N @) ¢ < (W) llz—¢lI.

Part (a) implies that [N (z) — ¢ |l < llz—¢ |, since u /v (1) < 1. Applying this k — 1
times, it follows that

=N =gy o) <
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Furthermore, since ¥ is decreasing in [0, f) we have ¥ (u) > ¥ (u). So, by
part (a) and the induction hypothesis,

y(f, )
¥ (u)

v (u NP 2_<L)2k1 i
S W (wu)) le=el={70) l-d g

Proof of Theorem 15.5 By Lemma 15.8, W(u) % if u < # Now Proposi-
tion 15.10(b) finishes the proof. g

|NS@ —¢| = |Np (V@) — ¢ < |V @) — ¢|)?

A bound for the separation of zeros of an analytic function easily follows as a
consequence of the previous results.

Corollary 15.11 If ¢, & are distinct zeros of f, then
5—+17 1

E—&l> ; :

4  min{y(f,2),y(f. &)}
Proof Assume, without loss of generality, that min{y (£, ¢), y(f, &)} =y (f.¢). If
e — & < 5—2/_ 75 then by Proposition 15.10(b) with z = § we deduce that
fo@) — ¢ as k — oo. However, since f(§) =0, we have N;(S) =& forall k.
Hence § =¢. -

Remark 15.12 (A fresh view of interior-point methods) The content of this chapter
allows us to look at the interior-point method described in Sect. 9.1 with new eyes.
The reader may recall (or have a look at the Egs. (9.1)) that the idea was to find a
solution (x, w, y, s) of the function F' given by

[ ATy 4+s5—c¢
Gy —d
Ax+Gw—>b
(x,w,y,s) X151
XnSn

To this end we considered a curve C of functions F), parameterized by u € [0, uol
with F, given by

ATy +5—c¢ ]
Gly—d
Ax+Gw —b

(wiﬂy’s)'_) X181 — M

XnSp — MK
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and such that we had at hand a point ¢,,, with F,(¢,,,) = 0. Note that by construc-
tion, Fp = F. The central path C we defined in Sect. 9.1 in fact is obtained from the
lifting of the curve C containing (F),, {,) by projecting on the space of solutions.

But there is more. A look at Algorithm 9.1 (or, probably more compelling, at
Fig. 9.1) reveals that the central path is “followed” from the initial point ¢, by a
sequence of points z;, each of them approximating a point £,,; on C. And a somehow
closer look at the way the point z;4 1 is computed reveals that a Newton’s step is used
to approximate ¢y, ,, as a zero of f,,,, starting at z;; compare Eq. (9.5).

Thus interior-point methods, as described in Sect. 9.1, turn out to be an illustra-
tion of the main ideas of this chapter.



Chapter 16
Homogeneous Polynomial Systems

We finished the preceding chapter with a notion of approximate zero of a function
and an algorithmic scheme to compute these approximate zeros, the adaptive homo-
topy.

Within this scheme, we identified as critical the issue of determining the step
length at each iteration of the continuation process, and as a first step towards this
goal, we estimated the size of the basin of quadratic attraction of a proper zero ¢ for
a given analytic function f: this basin contains a ball of radius 2?/_(—}/; centered at ¢ .

At this stage we perceive two weaknesses in this estimate. Firstly, the computa-
tion of y (f, ¢) appears to require the computation of the norm of all the higher order
derivatives of f at ¢. Even if we deal with polynomials (for which the number of
such computations is finite), this can be very costly. Secondly, we can hardly com-
pute these derivatives without having ¢ at our disposal. And the whole idea of the
adaptive homotopy relies on not having resource to the zeros ¢; in the lifted path I".

In this chapter we provide solutions for these shortcomings. To do so, we narrow
the context we are working on and focus on a specific class of functions, namely ho-
mogeneous multivariate polynomial functions f : C*t! — C”". Homogenization is
a common approach to the study of zeros for not necessarily homogeneous polyno-
mial systems: given one such system, one homogenizes its component polynomials
and considers the zeros of the resulting homogeneous system, which are now sets
of lines through the origin, as points in projective space P”. In doing so, one avoids
the distortions produced by having “large” zeros or, in the limit, zeros at infinity.
We denote by Hgq the linear space of homogeneous polynomial systems with degree
pattern d = (d1, ..., d,) (more details in Sect. 16.1 below).

Newton’s method as described in the previous chapter can be modified to work
in this setting (i.e., acting on P" and with underlying function in Hgq); we will do
that in Sect. 16.6. With a few natural modifications we recover both the notion of
approximate zero and a version Ypoj(f, ¢) of the y invariant. Furthermore—and
gratifyingly, also with only a few minor modifications—we show that the size of
the basin of quadratic attraction of a zero is controlled by yproj in about the same
manner as what we saw in Theorem 15.5 (see Theorem 16.38 below).

P. Biirgisser, F. Cucker, Condition, 295
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_16, © Springer-Verlag Berlin Heidelberg 2013
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The invariant yproj(f, ¢) is also defined in terms of higher-order derivatives and
therefore shares the first weakness mentioned above. Condition proves helpful to
overcoming it. The solution in P” of systems in Hgq fits within the framework de-
scribed in Sect. 14.3 and therefore, to a pair (f, {) € Hq x P"* with f(¢) = 0 we may
associate a condition number acondG( f) (here G denotes the solution map corre-
sponding to (f, ¢)). It is common to denote acond® (f)| f||~! by wu(f,¢). Shub
and Smale introduced a normalization of u( f, ¢)—denoted by pnorm(f, {)—whose
value is close to w(f, ¢) and is computed with the same cost. This normalized con-
dition number allows for some elegant statements, such as a condition number theo-
rem; see Theorem 16.19. To follow what is an already established tradition, we will
base our exposition in norm (f, ¢).

Since we shall only be able to compute approximations z of a true zero ¢ of f,
we will extend the definition of pnorm (f, z) (or w(f, z) for that matter) to any pair
f €Haq and z € P" as long as Df (z)|r, is invertible. It is an important feature that
the quantity tnorm(f, z) depends only on the equivalence class of f in P(Hq). We
may therefore view ftporm as a function defined (almost everywhere) on P(#Hq) x P".

A main result in this exposition is the following. Let D = max, <, deg f;.

Theorem 16.1 For all nonzero f € Hq and z € P* we have

.y
Yproj (S5 2) < 5 D' pnorm (f' 2)-

Theorem 16.1 allows one to use finorm(f, ¢) instead of Yproj(f, ¢) to estimate
sizes of basins of quadratic attraction. This solves the first of the two shortcomings
above.

To solve the second shortcoming, a key step will be the observation that the
condition pnorm satisfies a Lipschitz property that allows one to estimate (tnorm (g, ¥)
in terms of norm(f, z) for pairs (g, y) close to (f, z). Hereby we measure both
distances dp( f, g) and dp(y, z) in the Riemannian metric of the complex projective
spaces P(Hq) and P", respectively. (Recall Sect. 14.2 for the definition and some
properties of this metric.)

Proposition 16.2 Fix 0 <e < % Let f, g € P(Hq) and y, z € P"* be such that

Hnorm (f, ) max{ D2 dp(f, g), D**dp(y, 2)} <

B

Then

1
m Hnorm (5 2) < Mnorm (&, ¥) < (1 + &) tnorm (S5 2)-

The way this proposition solves the second shortcoming can be briefly stated if
we leave technical details aside. At the ith iteration of the adaptive homotopy, we
compute Lnorm (s, Zi). Since z; is a strong approximation of ¢, , this quantity yields
Hnorm(qy; , &) up to a factor of 14 . Having this estimate in hand allows us to chose
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ti+1,so that dp(qy;, g1, ) < 1D . This ensures that pnorm(qy, , &7, ) yields

&

Mnorm ((11,« s Ct,- )

Mnorm(Gr; 41 » 1y )» Again up to a factor 1 + ¢, and therefore that finorm(gy,, zi) does

so up to a factor of (14 ¢)?. We will see that it also ensures that z; is an approximate

zero of gy, and therefore z; 1 := qum (zi) is a strong approximate zero of ¢, .

This allows one to iterate the procedure. We will provide the details of the resulting

(fully specified) version of the adaptive homotopy in the next chapter (Sect. 17.1).
In the meanwhile, we devote this chapter to proving the two results stated above.

16.1 A Unitarily Invariant Inner Product

Let Hg = C[Xo, . .., X, ] be the complex vector space of homogeneous polynomials
of degree d in n 4 1 variables. A basis of H, is given by the system of monomials
X% .= Xgo -+ X{" running over all multi-indices o = (p, . . ., a,) € N"T! such that

d+n)_

loe| =) ; @;. The dimension of H,4 equals Ng = ( 4 )- It will be essential to rescale

2
this basis of monomials by considering the basis (Z)l/ X% of Hy defined with the

multinomial coefficients
dy d!
o) aplap!

1/2
We call the basis {(z) / X%} oj=a of Hq Weyl’s basis. The dot product in this basis
defines a Hermitian inner product (, ) on H,4. More specifically,

(f.8):=)_ fuZa

1 1
for f=3", (i)zfaX“ andg=), (Z)igo,X“ in Hgy. We shall call (, ) Weyl’s
inner product. It defines a norm on H, that we shall denote by || ||. The reason
to consider this inner product is its invariance under the unitary group % (n + 1),
which, we recall, is defined as

U(n+1):={u€GLy1(C) |uu* =111},

where u* denotes the adjoint of u,i.e., (u™);; =itj;.

Every unitary transformation u € %/ (n + 1) induces a transformation on H, by
setting uf := f ou~!. The invariance just mentioned is stated in the following the-
orem.

Theorem 16.3 Forall f, g € Hy and all u € % (n + 1) we have
(uf,ug)=(f, g
Proof Consider the function

K:C"+1XC"+1—>C, (xvy)’_)<x’y>d7
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where (x, y) := >, xxy; denotes the standard Hermitian inner product on crHat
is clear that K (ux, uy) = K (x, y) foru € % (n+ 1) and x, y € C**1. Moreover,

_ — d —a
Ky(x) = K(x,y) = (x¥o + - + xa7,)" = Z ( )y o
lal=d ¥

1/2

and hence K, € Hy. We conclude that for f =3, (4) " f. X,

A\ 12
LK) =D fa <a) ¥ = f). (16.1)

le|=d

We also note the following transformation behavior:
_ _ d
@Ky (X) =Ky (™' X) = (™" X, )" = (X, u)? = Kup (X)),

and therefore uKy = K,y.

Hence, if f € Hy satisfies (f, Ky) = f(y) =0 for all y, we have f =0. It fol-
lows that the set {Ky | y € C"*1} generates the vector space Hy. So, it is enough
to prove the assertion for the functions in {Ky | y € C™t1}. We can now conclude,
since for x, y € C"+1,

(UK, uKy) = (Kyx, Kyy)
= Kux(uy) (by (16.1))
= (ux,uy) = (x, y)* = K, (x)
= (K., K,),

where the last equality is again obtained by (16.1). U

Remark 16.4

(a) The function K in the proof of Theorem 16.3 is a kernel, and the space H con-
structed in this proof (in a more general, infinite-dimensional, case one would
have to take a completion) is the reproducing kernel Hilbert space associated
to K. The reproducing property justifying the name is the equality in (16.1).

(b) Up to scaling, Weyl’s inner product is the only unitarily invariant Hermitian in-
ner product on H4. This can be readily deduced from the fact that H, is an irre-
ducible % (n + 1)-module, that is, Hy does not contain a nontrivial % (n + 1)-
invariant linear subspace. Remarkably, this uniqueness property fails for the
space of real homogeneous polynomials of degree d when one considers or-
thogonal invariance.

(c) Weyl’s inner product can also be described by the integral

(fig)=c / FEASHY)
S(Ha)
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with respect to the volume measure of the sphere S(Hy), where f, g € Hy
and ¢ denotes a constant. This follows immediately from the uniqueness stated
in (b).

(d) We briefly encountered Weyl’s norm in the univariate case and denoted it by
| lw in Sect. 14.1.1.

We proceed with a few observations regarding Weyl’s inner product. Throughout,
we denote by ||x]|| the Euclidean norm of x € C"*+1. We first determine the norm of
the evaluation map at x, defined as eval,: Hy — C, f— f(x).

Lemma 16.5 For all x € C"*! we have

d

lleval || = max | f (x)| = [lx]|“.
feHy
If1=1

Proof Note that | f(eg)| < || f|l for f € Hq, since f(eg) equals the coefficient of
Xg in f.Letu € % (n+ 1) be such that u(x) = ||x||eg. For any f € Hg,

|| = Juf (ue)| = 1x1]uf ()| < Ix 19 lluf 1l = Ix 191 £1.

This shows that max rew, | f(x)| < [|x [|4. The reverse inequality is obtained by tak-
ILfl=t

ing f=u"'Xx¢. O

We next extend the development above to polynomial systems. Given a degree

pattern, d = (dy, ..., d,) we consider the space Hq = Hq, X --- X Hgq,. We make
Hq an inner product space by defining, for f, g € Haq,

<f’g)=<flagl>++<fn’gn>’ (162)
and call (, ) Weyl’s inner product on Hgq. It defines a norm on Hgq that we again
denote by || ||. The unitary group % (n + 1) naturally acts on g componentwise,
thatis, uf := (uf1,...,uf,), and as a consequence of Theorem 16.3, Weyl’s inner

product is invariant under this action.

Summarizing, we have a linear action of the group % (n + 1) on the vector space
Ha that leaves Weyl’s inner product invariant. This symmetry property has a pro-
found impact on the design and analysis of algorithms developed here and in the
chapters to follow.

Lemma 16.6 Let x € C"t1. The linear map

Ha—C", [ (A@/IXI, L f@)/Ix])®),

maps the unit ball in Hq onto the Euclidean unit ball in C".
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Proof Lemma 16.5 implies that | f;(x)|/|lx|% < |l fill, for x # 0 and f € Hq.
Therefore

S AP <3112 = 112
i i
The assertion follows immediately from this observation. O
We also note the following basic observation.
Corollary 16.7 Forallu e % (n+1), f € Ha, and ¢, w € crtl
D(uf)wé)(uw) = Df(&)(w).

Proof By the chain rule, D(f ou™')(u¢) = Df(¢) ou~". The assertion follows by
applying this to uw. U

There is a straightforward relation between a polynomial f € Hy and its first-
order partial derivatives, known as Euler’s formula:

d-f=> X of
i=0 !

X, (16.3)

The following is an immediate consequence of this relation.

Corollary 16.8 If f(¢) =0, then Df (¢)(¢) =0, for f € Ha and ¢ € C"!. Hence
C¢ =ker Df (¢), and assuming rank Df (¢) = n, we have for all w € C",

Df©)lz}w=Df &) w. 0

16.2 A Unitarily Invariant Condition Number

We are now in position to fit the context of homogeneous polynomial systems into
the framework for condition we developed in Sect. 14.3.

We shall consider the vector space Hq as the space of inputs and complex projec-
tive space P = P(C"*!) as the space of outputs. The solution manifold is defined
as

Vi={(f.¢) e Ha xP"| f()=0}

and comes with the two projections 7;: V — Hq and 7: V — P” onto the first
and second components, respectively.

In Theorem 16.3 we saw that the unitary group % (n + 1) acts on Hgq by unitary
transformations f > f ou~!, for all u € % (n + 1). Combined with the natural
action of % (n + 1) on IP", we have the action

u(f, )= (fou ' uc)
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of % (n + 1) on the product Hq x P". It is immediate that V is invariant under this
action. Moreover, both 71 and 7, are % (n + 1)-equivariant; that is, 7y (u(f, )) =
umy(f, ¢) foru € 7 and (f, ¢) € V, and similarly for 7, (the proof is obvious).

The group S' = {1 € C | |A| = 1} acts on the sphere S(C"*!) by scalar multi-
plication. We may interpret " as the set of orbits of the sphere S(C"*!) under this
action. When looking at representatives in the sphere S(C"*1) of points in projective
space [P, one is led to study the related solution set

Vi={(f.0) € Ha x S(C"*) | (&) =0}.

Clearly, V is the image of V under the canonical map Hq x S(C*1) — Hq x P".
We may interpret V as the quotient of V under the S!-action.
The next lemma summarizes some important geometric properties of V and V.

Lemma 16.9

(a) V is a connected smooth submanifold of Hq x S(C"'Y of real dimension
dimg V =dimg Hq + 1.
(b) The tangent space of V at (f, ¢) equals

Tiro)V ={(f.O) € Ha x T.S(C") | £(©) + Df )¢ =0}

(c) V is a connected complex submanifold of Hq x P" of complex dimension
dimc V = dimc Hq.

(d) The tangent space of V at (f, ¢) equals
Tiro)V ={(f, &) € Ha x Ty | f(©)+ DF©Q)E =0}.

Here we fixed a representative ¢ € C"! (denoted by the same symbol) and identified
T{ P"* with T; .

Proof Write (C"+1), := C"*1\ {0} and consider the evaluation map
F:Hax (C™), > C", (L0~ [0
Computing its derivative at (f, {) as in the univariate case, cf. (14.1), we obtain

DF(f,¢): HaxC""' - C",  DF(£,.0)(f,O)=f()+Df()¢. (16.4)

Note that D F (f, ¢) is surjective, even when restricted to Hq x {0}. If F denotes the
restriction of F to Hg x S(C"*1), we have V = F~1(0). Since DI:"(f, ) equals the
restriction of DF (f, ¢) to the tangent space of Hg x S(C**1) at (f, ¢), the latter is
surjective and Theorem A.9 implies that V = F~1(0) is a smooth submanifold of
Ha x S(C**1) with

dimp V = dimg Hq + dimg (Ha x S(C")) — dimg C" = dimg Hq + 1.
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Moreover, by Theorem A.9, the tangent space Ty 1% equals the kernel of
DF( /> ¢). This proves the first two assertions except for the connectedness of V.

To establish the latter, let (f, ¢), ( f , E ) € V. Clearly, (f,¢) can be connected
with (0, ¢) by a continuous path in V. Analogously, (f,Z) can be connected with
o, E ). Since S(C"*1) is connected, one can connect (0, ¢) with (0, E) by a contin-
uous path in V.

We leave it to the reader to verify that V is a complex submanifold of Hq x P".
The manifold V is connected, since it is the image of V under the canonical map
I x ms: Hq x S(C"T1) — Hq x P". Moreover, the tangent space T(t,r)V equals
the image of T(y, ;)‘7 under the derivative of I x 7g at (f, ¢), which equals I x
Drg(¢); cf. Lemma 14.9 . This proves the fourth assertion. In addition, dimg V =
dimg T(f.¢)V =dimg T( )V — 1 =dimg V — 1 = dimg Hq. O

As in (14.15) we define the set of ill-posed solutions as
2 ={(f.¢) € V|rank D1 (f,¢) < dimHq}.

If (f,¢) € V\ X, then we say that ¢ is a simple zero of f. By the implicit function
theorem, if ¢ is a simple zero of f, there are neighborhoods Uy and U» of f and ¢,
respectively, such that for all f” € Uy, there is exactly one zero of f” in Up. One can
show that this is not true if (f, ¢) € X’. Hence the name multiple zero of f for ¢ in
this case. We also define the set X := 7y (X”) consisting of those systems f € Hq
that have some multiple zero ¢.

We may also characterize X’ as follows:

' ={(f.t) eV |rank Df () <n}. (16.3)

This follows from Eq. (14.17) applied to the evaluation map F(f, ) = f({), noting
that 0 F/9¢(f,¢) = Df(¢) by (16.4).

Suppose now that (fo, ¢o) € V \ X’. According to the general principles ex-
plained in Sect. 14.3, we can locally invert the projection map my: V — Hgq
around (fo, ¢o). Its inverse f — (f,¢) is defined in terms of a solution map
G: U — P, G(f) =¢, that is defined on an open neighborhood U of f in Hgq.
We consider the derivative DG (f): Ha — T;P" of G at f and define the condition
number as follows:

w(f, )= Ifl-[DGH, (16.6)

where the operator norm is defined with respect to Weyl’s inner product (16.2)
on Hq and the inner product on 7;P" coming from the standard inner product
on (Cn+l .

We shall see next that w(f,¢) can be expressed in terms of the derivative
Df(¢): C™!1 — C" of f: C"*! — C". Corollary 16.8 implies that ¢ lies in the
kernel of Df(¢). So, if Df(¢) is of full rank, its kernel is C¢ and T; equals its
orthogonal complement. The inverse of the restriction Df (¢)|r, is described by the

Moore—Penrose inverse Df ({)"".
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Proposition 16.10 For (f,¢) € V \ X’ we have
n(£.O =111~ |Df @) diag(I1“~) .

Proof We fix a representative ¢ and identify T;IP" with T;. According to (14.16),
the derivative DG (f) can be described in terms of the inverse of the derivative
Dmi(f, ¢) of the projection m; as follows: we have § = DG(f)(f) iff (f g“) €
T(f,:)V. By Lemma 16.9, this can be restated as Df({)({) =—f(¢)with ¢ € T;.
Equivalently, .= —Df(g)*(f(;)) So we have for all f € Haq,

DG()(f)=¢=-Df O (f(©).
The operator norm of DG (¢) is defined as the maximum of

[1]]

el f(C)H = | Df )" diag(li¢ 1 ~") diag (I I7) £

1
H PIOS

over the f in the unit ball in Hgq (compare the definition of the norm on T;
in (14.13)). Lemma 16.6 states that f — diag(||Z || d,) f(;) maps the unit ball in
Hq onto the Euclidean unit ball in C". We conclude that

[ DG ()] = max | D )" diag(liz 1" )w]| = | Df ) diag(iz 1471)].

llwii=<1

Remark 16.11 We note that u(f, ¢) defined in (16.6) should be interpreted as a
relative normwise condition number. With respect to the input f, the relative nature
of w(f,¢) is obvious (and this is why we multiplied acond’(f) = | DG(f)| by
|| f1l in (16.6)). With respect to the output, the relative nature of w( f, ¢) is built into
the choice of the output’s space, which is a projective space.

We could also have considered the solution manifold Vi as a subset of P(Hq) X
P" with the corresponding solution maps Gp: P(Hq) 2 U — P". Had we done so,
it would have turned out that

|DGe(L)]| =11 DGO = n(f. 0. (16.7)

We leave the straightforward proof of this fact to the reader. Also, it is a good ex-
ercise to directly check that | Df (¢)T diag(||¢||%~1)|| is invariant under the scaling
of ¢.

Corollary 16.12 The condition number w is invariant under the action of % (n+1).
That is, u(u(f,¢)) =u(f,¢), forall f € Hqgandu € % (n+1).

Proof Corollary 16.7 tells us that D(uf)(u¢) = Df(¢) o u-l forue¥m+1).
The invariance of u under % (n + 1) is thus a consequence of Proposition 16.10
combined with the fact that % (n + 1) acts unitarily on Hq and crl, O
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We finish this section with a useful observation, which also illustrates the advan-
tages of working with the projective space of Hq. Suppose that (f,¢) € V \ X’ and
let Gp: U — P" be the solution map defined on an open subset U of the projective
space P(Hq) such that Gp([ f]) = ¢. Suppose further that ¢ — f; is a smooth curve
in Hq with fo = f and put & := Gp([f7])-

Lemma 16.13 We have

1Pl
Il el

where P denotes the orthogonal projection of Hq onto Ty, .

W&l < 1w fr, o) =u(fi. &)

)

d
E[ﬁ]

Proof Differentiating ¢; = Gp([ f;]), we get
. d
&= DGP([ft]) —Lfi],
dt
which implies by (16.7),

= u(fin &) . (16.8)

. d d
Ié = | DG L) | 5101 s

Lemma 14.8 yields %[f,] = ||f,||*1P(f,) (as usual identifying T{7,1P(Hq) with
Ty,). This implies the second equality. g

Corollary 16.14 Let [0,1] —> V, ¢t = (ft,¢) eV, _be a smooth curve such that
fi € S(Ha) for all t. Then we have ||&|| < w(ft, SOl fill-

Proof We combine Lemma 16.13 with the observation ||%[f,]|| < %fzﬂ, which
follows from Lemma 14.9. U

16.3 Orthogonal Decompositions of H 4

We identify here a family of orthogonal decompositions! of Hq, parameterized by
e,

For ¢ € (C"*1), we consider the subspace R; of Hq consisting of all systems &
that vanish at ¢ to higher order:

Re:={h e Ha|h(¢) =0, Dh({) =0}.

UIn fact, we have an orthogonal decomposition of the trivial vector bundle Hq x P" — P", but we
won’t use this bundle structure.
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We further decompose the orthogonal complement Ré‘ of R; in Hq (defined with
respect to Weyl’s inner product). Let L; denote the subspace of Rgl consisting of the

systems vanishing at ¢ and let C; denote its orthogonal complement in Ré. Then
we have an orthogonal decomposition

Ha=Cr® L ® R, (16.9)

parameterized by ¢ € (C"*1),. Note that the spaces C¢, L¢, and R; depend only
on [¢] € P". We next show that the above orthogonal decomposition is compatible
with the unitary action. Before doing so, recall that the stabilizer of ¢ is the subgroup
U ={ue¥m+1)|ut=of %n+1).

Lemma 16.15 Ler ¢ € (C'1),.. We have uCr =Cyr, uLy = Ly¢, uR; = Ry for
u € % n+1). In particular, the decomposition Hq = C; ® Ly ® R; is invariant
under the action of the stabilizer %; of ¢.

Proof We first prove the inclusion uR; € R,;. Suppose h € R;. Then (uh)(u¢) =
h(¢) = 0. Corollary 16.7 implies D(uh)(u¢)(mw) = Dh(¢)(w) =0 for all w €
C"*+1; hence D(uh)(u¢) = 0. Altogether, uh € Ry¢. The inclusion shown above
implies u ' R,; C R, and hence uR; = Ry;.

Since u acts unitarily on 4, we deduce that uR;" = R, . This immediately gives
ulL; = Ly; and hence uCy = Cy;. O

Let us now have a concrete look at this orthogonal decomposition in the spe-
cial case { =¢p = (1,0,...,0). Expanding f; according to the powers of Xy with
respect to decreasing degree, we can write

n
fi=aXy + X0 /d Y aij X+ hi. (16.10)
j=1

A simple calculation shows that

fileo) =ci.  dx,fileo) =dici, dx, fileo)) =/dia; for j=1.

Therefore, f € R, iff c; =0 and a;; = 0 for all 7, j, which means that f; = h;.
Suppose now f € Rjo, which means that #; = 0 for all i. In this case, we have

f € L iff ¢; =0 for all i. Similarly, f € C, iff a;; = 0 for all 7, j. Furthermore,
for f € L, by the definition of Weyl’s inner product we have || f; 1?2 = Zj |a,~.,~|2.

Indeed, note that (‘;’) = d;, where o denotes the exponent vector corresponding to

the monomial X gi “'x ;. This observation is the reason to introduce the factors v/d;
in (16.10). We also note that D f (ep)(w) = (Jd_iZ’}zl ajjw;) forw € Tg,.

Combining these findings with the unitary invariance of the orthogonal decom-
positions expressed in Lemma 16.15, we arrive at the following result.
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Proposition 16.16

(a) The space C. consists of the systems (c;(X,¢ Y4y with ¢; € C. We have
Dk(¢)|1, =0 fork € C¢.
The space L consists of the systems

g=(Vdi (X, 0)%7'¢;),

where {; is a linear form vanishing at ¢. If £; = Z;%:o m;iX; with M = (m;;),
then we may characterize the matrix M € C**+D py

M =A""Dg(¢), where A=diag(v/d;l|¢|%7).

Moreover, we have Mt =0 and | gl = |M| F.
(b) Given f € Hq and ¢ € (C"*1), we have f =k +g+h € C; @ Ly ® R, with,
forl=1,...,n,

ki=fi@(X. 0%, gi=Vdi(X. 0% mijX;,
j=0

—-1,2
where m;; = d, /

(Ox; fi(Q) —d; fi(£)E)).

Proof The reasoning above proves both assertions for the special point { = eg. For
multiples of eg, the result follows by scaling appropriately. For a general ¢, it follows
by unitary invariance using Lemma 16.15. d

We determine now the “best conditioned” pairs among all (f,¢) € V \ X/, i.e.,
those for which w(f, ¢) is minimal. The result itself will not be essential in our
development, but its proof will. Recall that P; : crl - T; denotes the orthogonal
projection onto 7.

Proposition 16.17 We have

n | 1/2
min (f,o)= — .
(f,c)eV\E’M Ul (Z di)

i=1

Moreover, the pair (f, ¢) minimizes wiff f € Ly and Df(§) = o P, for some o > 0.

Proof Let ¢ € S(C**!) and f = g + h with g € L, and € R;. Note that || f]| >
llgll and Df(¢) = Dg(¢). By Proposition 16.10 we have u(f,¢) > u(g,¢), and
equality holds iff f = g. It remains to find the minimum of u(g,¢) = |lgll INT|l
overg€ L.

The description of L, in Proposition 16.16(a) tells us that the group % (n) x %;
actson L; via (v,u)g :=v ogou~ ! for (v,u) € % (n) x Y, and g € L. Moreover,
D@ogou™"(¢)=vDg()u™".
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By unitary invariance, we may assume that { = ep. Then the first column of N :=
Dg(¢) equals zero, due to N¢ = 0. Further, using the singular value decomposition
(cf. Sect. 1.5), we may assume that N, after the first column has been removed,
equals a diagonal matrix diag(o1, ..., 0,), with the singular values oy > 07 > --- >
o, > 0. By Proposition 16.16 this implies that

1

di—
g =X, oXi,

and we have

" " o2 : 1
lel?=> lgil?=3 —  [N]=—.
i=1 i=1 " on

no g2\ g\
M(g,§)=(zd_(’72> Z<ZE> :

i=1 i=1

Hence

Equality holds iff o; = o, for all j. This means that N = Dg(¢) is a multiple of the
orthogonal projection Py, . O

Remark 16.18 Proposition 16.17 identifies the system g € Hq given by
— di—
8i = Xo X;

as the only one, up to scaling and unitary invariance, having a zero that is best
possibly conditioned, namely eg = (1,0, ...,0). As if by divine justice, all other
zeros of g are ill-posed.

16.4 A Condition Number Theorem

Proposition 16.16 suggests that we modify the definition of the condition number
w(f, £) by introducing additional scaling factors +/d;. We will see that this leads to
an elegant characterization of condition as an inverse distance to ill-posedness.

We define the normalized condition number pnorm (f, ¢) for (f,¢) € V by

tnorm(f, ©) == I £1I - | Df )" diag(v/d;i £ 11471 |- (16.11)

Note that the introduction of the /d; factors is the only change compared with

w(f, ¢); cf. Proposition 16.10. As for u(f, ¢), we note that pnorm(f, ¢) does not

depend on the choice of a representative of ¢ and it is thus well defined. Moreover,

as in Corollary 16.12, one can show that pporm (f, ¢) is % (n + 1)-invariant.
Setting D := max; d;, we clearly have

1(f, §) < oo (f, ©) < ~D u(f, 0). (16.12)
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We shall now prove a condition number theorem that expresses inorm(f, {) as
an inverse distance to ill-posedness.

Fix ¢ € (C"*1), and consider the vector space Ve ={f € Ha: f(¢) =0}, that
is, Vo = L; ® R;. We focus here on the corresponding projective space P(V;) and,
as in Sect. 14.2.2, denote by djin the sine distance on P(V;).

Now consider the set X := {[f] | (f, £) € X'} of systems for which ¢ is a
multiple zero and let dgin ([ /], ~;) denote the minimum sine distance of [ ] to X¢.
According to Lemma 14.13, this quantity may be characterized by

||f—f||_

dsin sE =
G fexoo ISl

(16.13)

Theorem 16.19 For (f,¢) € V we have

1
Mnorm (f, &) = m

Proof We decompose f € V, and fe X as
f=g+h, f=g+h withg,geL,andh,heR;.

Consider the diagonal matrix A = diag(+/d;||¢ %=1 and define the following ma-
trices in C"*+1):

M:=A"'Df(0), M:=A"'Df ().
We note that rank M < n, since ¢ is a multiple zero of f.Sinceg—g € L; and
M-M=A""D(f - )©)=4""D(g - ).
Proposition 16.16 implies that
lg =&l =IIM— M| F.

The characterization of the (Moore—Penrose) matrix condition number as relativized
inverse distance to singularity in Corollary 1.27 implies

1M — M| r> | M~ (16.14)

By the orthogonality of the decomposition V; = L; + R, and the Pythagorean the-
orem we have

If—FfIP=llg— &> +Ilh—hll>>llg—&I* =M — M|%.
Altogether, we obtain

If=fl M =M1
A= A T IAIIML T o (6




16.4 A Condition Number Theorem 309

With Eq. (16.13) this implies

1

dsin B b)) = .
([f] {) = Mnorm (S5 €)

In order to show that equality holds, it suffices to trace back the proof. According to
Corollary 1.27 there exists a singular matrix M € C**"*+D such that equality holds
in (16.14). Let g be the corresponding system in L, such that M=A"" Dg(¢), and
put f := g, so that # = 0. Then we have

If=FfI*=lg—&l*=IM— M|%. O

We remark that Theorem 16.19 again implies that the condition number pinorm 1S
unitarily invariant.

Example 16.20 Consider now the following particular system U € Hq defined as

_ 1 - 1

dl dl dn d,
U =———(X; = X5'), ..., Uy=—==(X"—X'"), (16.15)
/_Zn( 0 1 ) n /_271( 0 n )
where the scaling factor guarantees that |U|| = 1. This system will serve as the

starting system in a homotopy continuation algorithm studied in Chap. 18.

Denote by z(,) a d;th primitive root of unity. The zeros of U= U,...,U,)

are then the points z; = [(I, Z{;), cees Z{,’; )] € P" for all the possible tuples j =

(1, .-, jn) with j; € {0, ...,d; — 1}. Clearly, each z; can be obtained from z; :=
[(1,1,...,1)] by a unitary transformation u; that leaves U invariant, that is,

Ujz1 =12; and ujU=U.

The following lemma results from the unitary invariance of our setting. The proof
is immediate.

Lemma 16.21 Let g € Hq, ¢ € P" a zero of g, and u € % (n + 1). Then
Mnorm (8> &) = Mnorm (ug, ug). U

Note that Lemma 16.21 implies ftnorm (U, Z;) = finorm (U, 21) for all j. The fol-
lowing result gives an upper bound for these condition numbers.

Lemma 16.22 Let D := max; d;. Then
2 T8ien l di—1
Mrorm (U, £) < 2n max —(n + 1)
i<n d;

with equality if d; = D for all i. In particular, u2...(U,7) <2(n+ 1)P.



310 16 Homogeneous Polynomial Systems

Proof Put M := diag(di_% IZI'=%) DU (¢) € C™ @+ By definition (16.11) we
have

. 1

B Omin (M)
where omin (M) denotes the smallest singular value of M. It can be characterized as
a constrained minimization problem as follows:

’

tnorm (U, 0) = 1T | M| = | M

2
%min

(M)= min |Mw|? subjectto w e (kerM)*, |w|?=1.
we(C"+1

In our situation, ker M = C(1, ..., 1) and DU () is given by the following matrix:

dy —d 0 0
DU(_) 1 d2 0 —d2 0
D=l o o
d, 0 0 —d,
Hence for w = (wy, ..., wy,) € C*t1,

n

1 d 1 d;
2 _ i ol Lo A Y
IMw]| _—2n27(n+1)di_l|wl wol” > 5., min TESIE] lel wol”,
i=1 i=1

n

with equality holding if d; = D. A straightforward calculation shows that

n n n
Y olwi—wolf =1 i Y wi=0, Y w*=1.
i=l1 i=0 i=0

The assertion follows by combining these observations. d

16.5 Bézout’s Theorem

Let us further study the solution manifold V with its two projections 7y, 2. The
fiber Ve :={f e Hal (f. ) € V}ofmo: V — P" over any ¢ € P" is clearly a linear
subspace’ of Hg with complex codimension n. It decomposes as Vi = L; @ R;.

We now have a look at the fiber |~ ! (f), which can be identified with the set
Zp(f):={¢ceP"| f1(¢)=0,..., fu(¢) =0} of common zeros of fi,..., f,. Re-
call that ¥ C Hgq denotes the set of systems f € Hq having a multiple zero.

The following result is the celebrated Bézout’s theorem. It states that the fibers
nl_l(f) are finite with D :=d - - - d,, elements, provided f € Hq \ X. One calls D
the Bézout number. We shall prove this result using a non-algorithmic version of the

20ne can even show that 7o : V — P" is a vector bundle, but again, we will not need this here.
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homotopy continuation we saw in Sect. 15.1. In the next two chapters we will see
that with considerable more effort, the idea underlying this existence proof can be
converted into an efficient numerical algorithm. A main goal of the third part of this
book is the analysis of this algorithm and its variations.

Theorem 16.23 The zero set Zp(f) ={¢ € P"| f1(¢) =0,..., fu(¢) =0} of a
system of homogeneous polynomials (f1, ..., fu) € Ha \ X is finite and has exactly
D =dj---d, elements. Recall that d; = deg f;.

The proof relies on a few concepts and results from algebraic geometry;
cf. Sect. A.3.

Lemma 16.24 X’ is the zero set of finitely many polynomial functions of (f,¢) €
Ha x C"*1 that are homogeneous in the arguments f and ¢.

Proof We have rank Df (¢) < n iff the determinant of all of the n x n submatrices
of Df(¢) vanish. Since the entries of Df (¢) are linear in f and homogeneous in ¢,
the assertion follows. O

Proposition 16.25 The image X of X' under the projection w: V — Hq is an
algebraic variety, closed under multiplication by complex scalars. It is called the
discriminant variety.

Proof Recall that X equals the image of X’ under the projection 7;: V — Hgq.
The assertion is a consequence of Lemma 16.24 combined with the main theorem
of elimination theory; cf. Theorem A.39. O

Remark 16.26 One can show that X is the zero set of a single polynomial, called the
multivariate discriminant in N variables with integer coefficients (cf. Sect. A.3.5).
This implies that X' is a complex hypersurface in Hq. There exists a well-defined no-
tion of dimension for algebraic varieties (which are not necessarily submanifolds);
cf. Sect. A.3.2. It is known that X' is of complex codimension one and of real codi-
mension two in Hgq. This makes it intuitively plausible that Hq \ X' is connected (in
the Euclidean topology). The next result provides a formal proof of this important
fact.

Corollary 16.27 The complement Hq \ X of the discriminant variety is connected.

Proof By Proposition 16.25, X' is the zero set of a system F1, ..., Fs of homoge-
neous polynomials. Let f, g € Hq \ X~'. We may assume that f and g are C-linearly
independent and denote by E the complex span of f, g. Then EN X is the zero set of
the restrictions Fi|g, ..., Fy|g. There exists i such that F; g # 0, since f € E\ X;
hence E N X # E. We need to show that f and g can be connected by a continuous
pathin E\ (EN X).
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In order to see this, we note that the image of £ N X' under the canonical pro-
jection E \ 0 — P(E), g — [q], is contained in the zero set of the (homogeneous
bivariate) polynomial Fj|g, # 0, which thus consists of finitely many points in P(E).
Moreover, it is known that P(E) is homeomorphic to a (Riemann) sphere. Remov-
ing finitely many points from P(E) cannot destroy connectedness. Hence [ f] and
[¢] can be connected by a continuous path in P(E) avoiding these points. This path
can be lifted to E' \ (E N X) as in the proof of Proposition 14.12. U

Proof of Theorem 16.23 The system U from Example 16.20 (omitting the scaling
factors),

O=x—x8 . Uy=X%—xi,
has exactly D = d ---d, zeros. They are of the form (¢1, ..., &), where ¢; runs

through all dth roots of unity exp(z’;—fk) for 0 <k <d; — 1. It is straightforward to
J

check that all these zeros ¢ are simple and hence g & X.
We consider the following restriction of the projection 7y:

e VAT H(D) > Ha\ T, (O f

By Corollary 16.27 we know that Hq \ X is connected. We shall prove that the
function x: V\ X’ — N, f > |¢~!(f)|, is well defined and locally constant. Then
the theorem follows, since x (U) = |¢~ ' (U)| = D.

We first argue that the fibers of ¢ are finite. Note that ¢! (f) is a closed subset
of {f} x P" and thus compact. The inverse function theorem implies that ¢ ~!(f) is
a discrete set. (This means that for each f, there exists a neighborhood W' such that
W' N~ 1 (f) consists of f only.) However, a compact discrete set must be finite. It
follows that the fibers of ¢ are finite.

Pick now any f € V \ 7~ 1(X) and let ¢~ '(f) = {¢1, ..., &}. By the implicit
function theorem, there exists an open neighborhood W C Hg \ X of f and there
exist pairwise disjoint open subsets W, ..., W of V \ 711_1(2) with (f,¢) € w!
such that ¢ ~!(W) = W U--- U W/ and such that for each i, the projection W/ —
W, (f,¢) + f,is bijective (actually, a diffeomorphism). It follows that ¢ ~!(f) has
exactly k elements for all f € W, and hence yx is locally constant. 0

We finish this section with a further result that will be of great relevance in
Chap. 17. Recall that aff(f, g) denotes the real line passing through two distinct
points f and g in Hgq.

Lemma 16.28 For all f € Hq \ X the set {g € Ha \ {f} | aff(f, g) N X # @} has

measure zero.

Proof By Proposition 16.25, X is an algebraic variety. Since X # Hgq, we have
dim¢c ¥ < dimg¢ Hgq — 1. Hence dimg X' = 2dim¢ X' < dimg Hq — 2. The assertion
is now an immediate consequence of Corollary A.36. g
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16.6 A Projective Newton’s Method

In this section we extend Newton’s method to projective space. More precisely,
for f € Hq having at least one simple zero, we shall define a map Ny : P" — P"
(defined almost everywhere) with properties similar to those of Newton’s method
in C" we saw in Sect. 15.2. In particular, we prove a projective version of Smale’s
y -theorem.

Let (f,z) € Haq x (C"*t1),. The derivative of f at z is a linear map Df(z) :
C"*t! — C". Suppose that its restriction Df (2)Ir, to the subspace T is invertible.
Then we can define the value of the projective Newton operator associated to f,
at z, by

Nf(2):=z—Df @Iz ().

We next verify that N can be interpreted as mapping points from " to P".

Lemma 16.29 We have Df(/\z)|;zl f(2) = ADf (D7 f(z) for A € Cy. Hence
Nf(Az) =ANj(2) . )

Proof The assertion is a consequence of

fGz2) =diag(i%) f(2).  Df (h2) =diag(x“~") Df (@),
which follows from the homogeneity of f. g
Example 16.30 Since T, is defined in terms of the Hermitian inner product, the
definition of N involves not only operations of the field C, but also complex
conjugation. So Ny is not a rational map over C. We illustrate this in the case

n = 1. It is easy to check that 7T is spanned by (—Zz1, zp). Solving the equation
Df(2)M(=Z1,70)T = f(z) for A yields

_|z] _ F@ o
Ny(2) = |:Z1:| —Z105 f + 200, f |: 20 ]

We next investigate the cost of one Newton step.

Lemma 16.31 Let z € C"!. A homogeneous polynomial f € Hy can be evaluated
at z with 3(":‘1) + d — 3 arithmetic operations. For a system f € Hq, assuming
d; =2 for all i, we can compute both f(z) and || f (z)|| with O(N) operations.

Proof Let T (n, d) be the number of additions and multiplications sufficient to com-
pute any fixed f € Hy from the powers Xy, Xé, A Xg, the variables X1, ..., X,,
and complex numbers. Any linear form f =) !_a; X; can be evaluated with n + 1
multiplications and » additions, whence T (n, 1) <2n + 1.
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It is easy to see that any f € Hy can be written as f = aX{ + >0, fiX;,
where a € C and f; is a homogeneous polynomial of degree d — 1 in the variables
Xo, ..., X;. This implies the following recurrence

n

T(n,d) < ZT(i,d— 1) +2n+1.
i=1

Induction on d proves that T (n,d) < 3(":01) — 2. Since X%, e, Xg can be com-
puted with d — 1 further multiplications, the first assertion follows.

For f € Hq write N; = ("Jrndi) and N := ) !_, N;. We have just seen that we
can compute f(z) from the coefficients of f and z with > ;| (3N; —=2)+d — 1=
3N —2n +d — 1 = O(N) arithmetic operations. The computation of || f(z)|| from
f(z) has cost O(n). O

Proposition 16.32 One Newton step, i.e., the evaluation of Ny (z) from the coef-
ficients of f € Ha and z € C'*!, can be performed with O(N + n®) arithmetic
operations. If d; > 2 for all i, then this is O(N).

Proof Based on Lemma 16.31, the Jacobian matrix Df(z) can be computed with
O(nN) arithmetic operations. By a more sophisticated reasoning, based on a gen-
eral transformation of straight-line programs, one can show that in fact, O(N) op-
erations are sufficient for this. Instead of proving this fact, we refer to the Notes for
references.

Further, by linear algebra over R, one can compute Df (z)|i1 f(z) from Df(z)

and f(z) with O(n®) operations. Hence O(N + n?) arithmetic operations are suf-
ficient for evaluating Ny (z). Moreover, if we assume that d; > 2 for all i, then we
have n2 = O(N;) and hence n° = O(N). O

The projective Newton operator associated with f is the map
Np:P"\A;—>P", Np@)=z—DfQ@I7 f(2)
defined on the complement of the following subset of P":
Af:i= {Z eP" | Df(z)|r, not invertible}. (16.16)
Note also that N,y = Ny for A € C,, so that N f depends on f only as an element

of P(Ha). Moreover, for ¢ ¢ Ay, we have Ny (¢) = ¢ iff f(¢) =0.
The following result tells us that N is defined almost everywhere.

Lemma 16.33 If f € Hq has a simple zero ¢, then Ay has measure zero in P".

Proof First, by (16.5), (f,¢) € X’ means that rank Df (¢) = n. Because of Corol-
lary 16.8, we see that ¢ ¢ A ¢. Hence A ¢ is properly contained in P".
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Let A rC (C"*1), denote the cone corresponding to A £ We shall view C 1 as
the real vector space R?*+2

Claim A 7 1s the zero set of a system of homogeneous real polynomials.

In other words, A f corresponds to a real projective variety. Corollary A.36
implies that /if has measure zero in C"*!, which will complete the proof
(cf. Sect. A.2.4).

In order to prove the claim, consider the orthogonal projection onto 77:

PCT ST, P(w)=w— |z X (w, 2)z.

We have z € A £ iff rank(Df (z) ||z||2PZ) < n. The latter means that the determinant
of all of the n x n submatrices A(z) of Df(z)|/z||* P, vanish. Now note that (with
ej denoting the standard basis) ||z||2PZ(ej) = ||Z||2€j — Zjz;. Hence the real and
imaginary parts of ||z||? P, are homogeneous quadratic polynomials in the real and
imaginary parts of the z ;. It follows that the real and the imaginary parts of det A(z)
are homogeneous polynomials in the real and imaginary parts of the z; as well. This
proves the claim. g

It is now natural to extend the notion of approximate zero (Definition 15.1) from
C" to P". We shall measure distances in P" using the Riemannian distance dp, i.e.,
by the angle, as defined in Proposition 14.12.

Definition 16.34 We say that z € P" is an approximate zero of f € Hgq if the se-
quence given by zo =z and z;+1 = Ny(z;) is defined for all natural numbers i, and
there exists ¢ € P" with f(¢) = 0 such that for all 7,

1 20—1
dp(zi,¢) < (5) dp(z, ¢).
We say that ¢ is the associated zero of z.

Note that if z is an approximate zero of f with associated zero ¢, then one New-
ton step reduces the distance to ¢ by a factor of two: dp(z1, ¢) < %dp(z, Z).

We define now a projective version of the invariant y introduced in Defini-
tion 15.3 for Euclidean space.

Definition 16.35 For (f, z) € Hq X (C;Z“ such that Df (z)|7, is invertible we define

1
k=1

DX f(2)
k!

Yoroj (f52) = [Iz]l sup Df(Z)|;Z
k>2

If Df (z)|7, is not invertible, we set Yproj(f, 2) := 00.
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Fig. 16.1 Graph of 5 for, 11
from top to bottom, LACH
8§=0,%,5,and
0.5
0 T T T T 1
0 0.4 0.6 0.8 1
u
-0.51

- 1 -
Note that the existence of the supremum follows as for y; cf. Definition 15.3.

Lemma 16.36 For all A € C, we have Yoroj( f, 22) = Vproj(f+ 2) and yproj(Af, 2) =
Yoroj (f, 2). In particular, yproj induces a function V\ X" — R.

Proof By homogeneity we have
D¥ f (rz) = diag(A*) DX £ (2).
In particular, Df (Az) = diag(A% ') Df (z). This implies

1
|Df G217 DF F )| = T |Df @I D' F(2)

and it follows that Yproj(f, AZ) = Vproj (f, ¢). The second assertion is trivial. O

For the statement of the projective y-theorem below we need to define certain
numerical quantities.
For 0 <8 < 7 /2 let us consider the following family of quadratic functions:

Ys(u) ;= (14 cosd)(1 —uw)?—1= (1 +cos 8)u’ —2(14cosé)u+cosd; (16.17)

cf. Fig. 16.1.

For 6 = 0 we retrieve the function i introduced in Sect. 15.2. We note that
¥s(0) = cos 8 and ¥5(a) = —1. Moreover, ¥y (1) > Ws(u) for § <8.

For % <r <1 we define §(r) as the smallest nonnegative real number § such
that r§ = siné. Then we have

ré <sing, for0<38 <d(r).

For example, taking r = 2/m, we get 6(r) = /2.
We also define u(r) as the smallest nonnegative number u satisfying the equation

u 1

rsy @) 2
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154 u(r)
() 0.16
0.14
0.12
0.10
0.08-
0.5 0.06

0.04+

0.024

0.7 0.8 0.9 r 10 0.7 0.8 0.9 r 1O

Fig. 16.2 The values of () (left) and u(r) (right) as functions of r € [%, 1]

Table 16.1 Some examples

of r,8(r), and u(r) r 8(r) u(r)
3-v7
! 0 =
0.99991 ... = 0.17708....
0.99500. .. 0.17333... 0.17486...
0.88800... 0.83415... 0.12469.. ..

Then we have, for0 <8 <8(r) and 0 <u < u(r),

u u 1
< =—. (16.18)
rysu)  rsey(w) 2
Figure 16.2 displays the functions 6 () and u(r). An approximation of §(r) and u(r)
for a few values of r is shown in Table 16.1.
The following trivial result will be repeatedly used.

Lemma 16.37 For § <46(r) and u <u(r) we have ¥s(u) > 0.

Proof Tt follows from (16.18) that ¥rs(u) > 27“ > 0. Il
‘We can now state the main result of this section.

Theorem 16.38 (Projective y-theorem) Fix % <r<l.Let (f,t) e V\ X and
z € IP" be such that

dp(z,8) =8(r),  dp(z, $)Vproj(f, §) = u(r).

Then z is an approximate zero of f with associated zero ¢.
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Theorem 16.38 follows from the following proposition just as Theorem 15.5 fol-
lowed from Proposition 15.10.

Proposition 16.39 Let (f, ;) € V\ X' and z € P" \ Ay. Put § :=dp(z,¢) and
u = 8Yproj (f, ¢). Then we have, for % <r<l,

dp(N7(@).8) = ——dp(e. ) = 1D o o2,

s () sy ()

provided § <8(r) and u <u(r).

The proof will be similar to Proposition 15.10 and proceeds in several steps.

For z € (C"*t1), let P,: C*t! — T, denote the orthogonal projection onto 7.
Note that Py, = P, for A € C,. We shall represent points in P by representatives in
the sphere S(C"*!) := {x € C"*! | |x|| = 1}. Their angular distance is denoted by
ds(y, z). It follows from Proposition 14.12 that dp(y, z) < ds(y, 2).

The easy proof of the following observation is left to the reader.

Lemma 16.40 Let z,y € (C*tY), and assume 8§ := ds(z,y) < m/2. Then
Py|1,: T, — Ty is invertible and ||Py|£1 | < (cos8)~!. O

We prove now a variant of Lemma 15.9 for homogeneous maps C"*! — C.

Lemma 16.41 Let f € Hq and y € S(C"Y) be such that Df(y)lr, is invert-
ible. Let 7 € S(C") and put § :=ds(z, y), u := 8Vproj (f> ¥). If Wws(u) > 0, then
Df ()1, is invertible and we have

@ Df 7 Df @lr, = Pylr, + B with B € Z(T:: Ty), | Bll < s — 1.
— —n2
®) 1Df @17 Df Wl | < G-

Proof (a) We proceed as in Lemma 15.9 and can therefore be brief. Note first
that Df(y)|;v1Df(y)|TZ = Py|r,. Taking the Taylor expansion of Df : crtl -

Zcntt, C"j around y € cntl restricting to T, and then composing from the
left with Df (y) |;)_1 yields

_ _ o~ DX F ()G — )
Df Wy, Df @I, = Df )7, (Df(y)ln+2 D =),

k=2
= PleZ + B,

where

© DfWlg, DX fG@ =i,
B=) k - :

k=2
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We can now bound ||B| < (1 — 1 as in the proof of Lemma 15.9 using that

lz —yll <ds(z, ).

(b) Put P := Py|7,. According to part (a) we need to show that when s (u) > 0,
P + B is invertible (and hence Df (z)|7, is invertible as well) and || (P + Bl <
(1—u)?

s (u)
Towards this end, first note that by Lemma 16.40,

[P~ 8] <[P 1Bl < (1) <1
- “coss \ (1 —u)?

due to our assumption ¥s(x) > 0. Lemma 15.7 implies that I + P~! B is invertible.
Now (P+B) '=1+ P 'B)y"'p1. Bounding the norms with Lemma 15.7 and
using part (a) yields

- 1l -
P +B)!] = 1+ 5] 1Py
[ [V
T L= P7IB| T 1= PTMIBI
1 1
= < i
cosS — ||B]l T coss — (m —-1)
(1 —u? _=w?
(1—|—c058)(1—u)2— 1 ys(u)
where we have again used Lemma 16.40 for the penultimate equality. d

Proof of Proposition 16.39 We choose representatives z, ¢ € S(C"T!) such that § :=
dp(z,$) =ds(z,¢). Note that ||z — || <é.

Note as well that /5 (u) > 0 by Lemma 16.37. Also, since (f, ) ¢ X', we have
that Df ()7, is invertible. We are therefore in the hypothesis of Lemma 16.41 with
y=g.

We can therefore proceed similarly as for Proposition 15.10. As we did for (15.6),
we get

k
DFDGE-0)— FD =3k~ A%

k=1

-0k

Applying Df(z)|;1 to this equation and inserting Df (¢)|r, Df(;')|;{1 = Icn, we
obtain

Ni@) —¢ =G-8 -Df@I f&)
kf(g*)

=Y k- DDFEI Df () Df )7, -k

k=1
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By bounding the norm, using ||z — & [[¥proj (f> &) < 8¥proj(f, ¢) = u, and recalling
the definition of Yproj 1= Vproj (f, ¢), We get

INt @) —¢| < | DF@IZ D@8 Dtk — 1) (vproj)* ™

k=1

(1 —u)? < 1 1 )
< ) —
= Ysu) I-w? (I—-uw

u

Vs (u)

where we used Lemma 15.9 for the second inequality. By Lemma 14.13 we have

8’

sindp(N7(2).£) < [Ny — .

Hence we obtain
u

Vs ()

sindp(Ny(2),¢) < dp(z, ). (16.19)

This implies, since

u - u _ l
rsu) T rsey @) 2

for§ <d8(r) and u < u(r),
2 1
— dp(N7(2),¢) <sindp(Ny(2),¢) < %dp(z, £) = 5 dp(z.0).

Here we have used that %(p <sing for 0 < ¢ < /2 for the left-hand inequality.
Hence dp(N¢(2),¢) < dp(z,¢) < 8(r). We can now conclude from (16.19) that

1 u
dp(Nyf(2),¢) < = sindp(Nyf(2),¢) < ————dp(z, %),
Ny @, ¢) = 7 sindp(N; . ¢) = =0
where the first inequality follows from the definition of §(r). This completes the
proof. 0

One can deduce from Theorem 16.38 bounds for the separation of zeros of f €
Ha, just as we did for Corollary 15.11. We leave the straightforward proof to the
reader.

Corollary 16.42 Let £, & € P" be two distinct zeros of f € Hq. Then we have for
any % <r<l,

dp(2,£) > min{am, u(r) u(r) }

Vproj(fv %) ' Vproj (f,8)
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16.7 A Higher Derivative Estimate

Since our algorithms work with approximations of zeros only, it will be convenient
to extend the notion of condition number pnorm (f, 2) to the case that z is not a zero

of f.

Definition 16.43 For f € Hq and z € (C"*!), we define the normalized condition
number Unorm (f, z) as

pom ()= 1711 - | DF ) g (v 1217 |

if Df(2)|7,: T, — C" is invertible. Otherwise, we set finorm (f, 2) := 00

By Corollary 16.8, if f(z) = 0, this is consistent with the original defini-
tion (16.11):

tnorm (> 2) = I £1I - | Df (2)F diag(v/di 1z1171) .

We note, however, that using this formula in the case f(z) # 0 would lead to a
different notion of ftporm(f, z) (although the difference is small if z is close to ¢).

Again, fporm is invariant under scaling. That is, for A1, Ay € C,, we have
Unorm (A1 f, A22) = tnorm ([, 2). Moreover, pnorm (f, 2) is as well invariant under the
action of % (n + 1) in this more general setting.

Lemma 16.44 We have pinom (f, z) = /n for all (f,z) € Ha x (C"Th),.

Proof Let f =k + g+ h with k € C;, g € L;, h € R;. By the orthogonality of
the decomposition (16.9) we have || £112 = k[ + llgl|®> + 1212 > Ilg]|>. Moreover,
Df(2)l1, = Dg(2)|r,, since Dh(z) =0 and Dk(z)|7, = 0; cf. Proposition 16.16.
Therefore, norm(f,2) = Mnorm (g, z). We now argue as for Proposition 16.17. In-
stead of N := Dg(z) we consider the scaled matrix M := diag(~/d;) "' N, and sim-
ilarly, we obtain

nog2 1/2 i 7
||g||=||M||F=<Z—{), |7 = max Y.

=l d] g;

Then we get
n 2 1/2
Mnorm (s 2) = Mnorm (8, Z)—|M||F”M ’ = ( d_j—j2> 2\/;,
j=1 J
thus finishing the proof. d

As in the proof of Proposition 16.32, we obtain the following estimate on the cost
of evaluating ftporm (f, Xx).
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Proposition 16.45 The computation of pnorm(f, x) from the coefficients of f € Ha
and x € (C"tY), can be performed with O(N + n3) arithmetic operations and
square roots. If dj > 2 for all i, then this is O(N). O

The goal of this section is to prove Theorem 16.1, which, we recall, states that
for f € Hq and z € P",

1
Vproj (fio) < 5 D32 Mnorm (f 2)-

We begin with some inequalities relating norms of polynomials, points in C"*!,
and function values.

For fixed w € C"*!, consider the derivative evaluated at w as a map Dy, : Hqg —
Ha—1 given by Dy, f := Df(X)(w) = Z?:o w;dx; f. Similarly, for k > 2 and
wi, ..., w; € C"1 we consider D'&) :Hg — Ha—i given by Dﬁ-)f = Dkf(X)(wl,

., wk). Here w denotes the k-tuple (wq, ..., wk) € (Crhyk,

Lemma 16.46 For any f € Hy and any w € C'1,
1Dwfll =dllfllwl.

Proof By homogeneity we may suppose ||w|| = 1. Moreover, by unitary invariance
and Corollary 16.7 we may further suppose that w = ey.
If f =Y ayX®, then

Df(X)(eo) =dx,f = ) aoagXg" X{'--- X,
olog#0

Then, by the definition of the Weyl norm,

(ot — Dlory! -+ !
IDeg fIP =) olaal’ e

|
o|an#0 (d ])
ool ay!
=d ) ao|aa|27"
o|op#0
O
d2Z|aa|2 =d*|f1.

We extend now the previous result to higher order derivatives.

Lemma 16.47 For f € Hg and wy, ..., w; € C*H1,

HDS)fH_(d k),||f||||w1|| el

where w = (w1, ..., Wk).
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Proof We proceed by induction. The case k = 0 is trivial. For k > 1 let w =
(wi, ..., wg—1) and g = Dg_lf € Hg—k+1, so that Dﬁ-)f = Dy, g. Hence, by
Lemma 16.46,

ID% £l = 1Dw,gll < (@ =k + 1) ligll 1wl

But
k—1 d!
gl =|Dg ' f| < ] A wll - - flwe—1l
by the induction hypothesis, so that
ID5 ] <2 pllw - )
d—k)!
and we are finished. O

Proposition 16.48 Let f € Hy. Forall x, wy, ..., w € C"*Y, the kih derivative of
f satisfies

D fy i, wp)| =dd =1 (d =k DIFIEN lwi] - llwgdl-
Proof This is an immediate consequence of Lemmas 16.5 and 16.47. g

Lemma 16.49 Let d > k > 2 be positive integers and put

o (dd=Dd—k+ D) =)
k= d172k! :

Then maxy-1 Ay is attained at k = 2.

Proof 1t is sufficient to show that Ay < Ay for £ > 2. This amounts to

3

dd—1)---d—k) [(dd—1)---(d—k+1)\FT
FREET R A2k )

which follows from

d=1)(d=k) [ d=1)---d—k+ 1)\ FTET
<

(k+1)! k! '
which in turn is equivalent to

d—k ((d—l)-u(d—k—l—l))kll
K1 k! '

The last inequality is clear. g
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Lemma 16.50 Let f € Ha, x € C"T!, and k > 2. Then

1/2|| 4 k) | D¥ D f(x) || F
T

= 1D3/2
-2

[ o

Proof By Proposition 16.48 we have
| D" fi G| < diti = 1)+ (di =k + DI fill 47

Hence,

I

Dk f; di(di —1)---(di —k+ 1D\ 1

/2” Sil S( i (dj ) 1/2( i )) < _di3/27 (16.20)
[l 1 =% KXl £ d; k! 2

the last inequality resulting from Lemma 16.49.
Note that for all ¢ = (¢1,...,¢,) € Z(V;C") with ¢; € £ (V;C), we have
lloll < (3, llgi1%)'/2. Therefore,

| diag(e; " x]1~) "' DF f (I FT_ DA\
( KIS ) ;( 72 > '

[l =Kkt

From (16.20) we obtain

I DX £ )l <<1 3/2)" LIl
;7RI F Ik T \2 L1

from which the claim follows. O
We can now prove Theorem 16.1.
Proof of Theorem 16.1 By Definition 16.35 we have

k
I Df @yl 2L

Yoroj (f, ¥ 1 = = max

Using Definition (16.11) of pporm and Lemma 16.50, we estimate as follows

k!

Dk
It sl 2 ‘
Dk
<l |||Df(Z)IT1 dlag( 4172 ”Z”dq H i dlag 1/2|| || k) 1 f(z) ‘

1 k—1 . 1 k—1
< tnorm ([ 2) - <§ D3/2> < Hnorm (5 Z)k : <§D3/2> .

For the last inequality note that ftnorm(f, 2) > 1 by Lemma 16.44. The assertion is
now immediate. O
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16.8 A Lipschitz Estimate for the Condition Number

The goal of this section is to prove the Lipschitz property stated in Proposition 16.2.
The invariance of pnporm under scaling suggests that we think of (nonzero) in-
puts f € Hq as elements of the corresponding complex projective space P(Hgq). We
denote by dp( f, g) the Riemannian distance of the corresponding points in P(Hgq);
compare Sect. 14.2.2.
We shall proceed in several steps. First we only perturb the system. Recall D :=
max; d;.

Lemma 16.51 Let f, g € P(Hq) and z € P"*. Then

Hnorm (f, 2)
D2 pinorm (f, 2) sindp(f, g)°

Mnorm(ga 7) < 1—
provided pinorm (f, 7) < 00 and the denominator is positive.

Proof We choose representatives and denote them by the same symbol f, g € Hg.
Note that the assumption D'/2 piporm (f, z) sindp(f, g) < 1 implies dp(f, g) < /2
since Unorm(f,z) = 1 by Lemma 16.44. Hence (f, g) # 0. Also, to simplify nota-
tion, we may choose a representative z in the sphere S(C"*!) by the invariance of
Unorm under scaling.

By Definition 16.43,

—1/2

tnorm (£, 2) = I fII|ATY|,  where A :=diag(d; /") Df (2)Iz,.

We shall apply Lemma 15.7 with A := diag(di_l/z) D(g — /@I, € L(T; CH).

First we prove that
lAl <DV g — FI. (16.21)
Indeed, Lemma 16.46 implies that for all w € C"*1,

|Dw(gi — )] <dillgi — fill lwll,

where Dy, (gi — fi) = Z?‘:o w;dx;(gi — fi). Evaluating the polynomial Dy, (g; —
fi) at z and using Lemma 16.5, we get

|D(gi — )@ w)| = |Du(gi = @] < | Dulei = f)

|

since ||z|| = 1. Therefore,

1/2

[d7"*Dgi — )@ )| <dPlgi — fillllwl < DV?llgi — fill lwl,

and the claim (16.21) follows.
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From (16.21) we obtain

_ lg — £l
jafa~t| < V2 8 UL
Il
Let 1o € C be such that
Aog — Ag —
l2og — fI — min lrg — 1l — sindp(g. ).
AN reC | fIl

Lemma 14.13 ensures that Ag # 0 and [|[Aog|| < || f I, since (f, g) # 0. Replacing g
by Xog, we may assume that

g — [l
A1

since the assertion of Proposition 16.51 is invariant under scaling of g. Therefore,
we conclude from the above that

Al A™"| < D'? sindp(g, f) tnorm (f. 2)-

=sindp(g, f), lgll =1l

Lemma 15.7 implies now, using diag(di_l/z) Dg(2)lr, = A+ A,

tnom (8. 2) = gl [(A+ )7 | < I fIl A+ )7

LFInA— - Hnorm (£, 2)
T 1—[lAIIATY T 1= DV2sindp(g, f)inom(f.2) =

Corollary 16.52 Let f, g € P(Hq) and z € P" be such that

Dl/z/v(/norm(f, z)sindp(f,g) <e < 1.

Then we have
1
(1 — &) pnorm (f> 2) < Mnorm (g, 2) < m Mnorm ([ 2).

Proof The right-hand inequality follows from Lemma 16.51. The left-hand in-
equality is clear if pporm(fs 2) < Unorm(g, z)- If, on the other hand, pnorm(g,z) <
Unorm (f, 2), we obtain DY/ 2,unorm(g, z)sindp(f, g) < &, and the left-hand inequal-
ity follows from the right-hand inequality by exchanging f and g. g

Now we investigate what happens when we perturb the point z € P". Recall the
family of functions s () introduced in (16.17).

Lemma 16.53 Let f € Hq and z € P" be such that yproi(f, 2) < 00. For y € P" put
§:=dp(y,z) and u := 8yproj(f, 2). If Ys(u) > 0, then

(1—u)?

W Mnorm (f; 2).

Mnorm (f, y) <
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Proof We choose representatives y, z € S(C"*!) such that § = dp(y, z) = ds(», z).
Lemma 16.41 tells us that Df (y)|r, is invertible. We have

Df ()7, diag(v/d; ) = Df Iz, Df 2)l7, Df (17, diag(v/d; ).
and hence

|DF ()7 diag(vdi )| < [ Df W17, DF @Ir || - | Df @17 diag(Vd: ) |

_-w?
— Ys(u)

| Df ()17 diag(v/d; ),

where the last inequality follows from Lemma 16.41(b). Multiplying by || f|| and
using the definition

pnorm (£, ) = £ | DF )17, diag(v/d; )

E

the assertion follows. O

Corollary 16.54 Let0<e <1/4.Forall f €e P(Hq) andall y, z € P" the following
is true: if D32 poorm (f, 2)dp (v, z) < €, then

(1 = 2¢) pnorm (f 2) < tnorm (S5 ¥) < Mnorm (f5 2).

1—2¢

Proof Tt suffices to prove the right-hand inequality, since the left-hand inequality
then follows by exchanging the roles of f and g as in the proof of Corollary 16.52.
Our assumption combined with Theorem 16.1 implies, setting § := dp(y, 2),

1 3/2
u:= Vproj(faz)(sf ED Mnorm (f52) 8 <

| ™

Moreover, by Lemma 16.44,
s < D3/2,un0rm(f’ 7)é <e.

According to Lemma 16.53 it suffices to show that

(;P&(”))z >1—2¢ forall0<é<eg 0<u<eg/2. (16.22)
—u

By definition (16.17), ¥s(u) = (1 + coss)(1 — u)? — 1, whence

Vs L ue—w
(1_u)2—1+cos8 7(1_”2—0058 7(1_14)2.
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Using cosd > 1 — 82/2 and that u — (13—’;)2 is monotonically increasing, we see
that the inequality (16.22) is a consequence of

— 4+ ———<2¢ foréd=2u=c¢. (16.23)

We are now going to check this inequality. Using (1 —u)™' <14 2u for 0 <u <
1/2, we get

u 2 3 2
+ <u +u(l+2u)"=4u” +5u” +u
(I —u)?

1
54-§u2+5u2+u=7u2—|—u.

But, since u = ¢/2 and ¢ < 1/4, we have

2

and hence (16.23) follows. U

Proposition 16.55 Fix0<e < 17—0 Let f,g € P(Hq) and x,y € P" be such that

2e
tnorm (f, ) max{ D' dp(f, g), D** dp(y. 2)} < =
Then

(I =€) tnorm (f 2) < fnorm (g, ¥) < : T Hnom(f. 2).
Proof Let0 <e < 17—0 and put &’ := %s. By hypothesis,
tnorm (f, ) max{ D2 dp(f, g), D**dp(y, 2)} <¢'.
Corollary 16.52 implies
(1 =€) ttnorm(f, 2) < Knom (g, 2) < - : T Mo (f, 2)-

Therefore,

"

| |
o

1
D3 tnorm (g, 2) dp(y, 2) < —— D/ Hnom (f, 2)de(y,2) < T—

We have ¢” < }T, since &’ < % Corollary 16.54 now implies

1 1
Mnorm (g, ¥) < gl ——— [norm (&, 2) < m Mnorm (S5 2),



16.8 A Lipschitz Estimate for the Condition Number 329
and in the same way,
(1 - 28”) (1 - 8/) Mnorm (f5 2) < Hnorm (g, ¥)-

Note that (1 —¢/)"! <1+ %8/ for0<e' < é Therefore

/

2¢e
8/+28//:8/+ 1

5 5 5 1
- 58’+28/<1+Ze’> =38/+§€/2§38/+58/§ =e.
Hence (1 —2¢”)(1 —¢’) > 1 —¢&' —2¢” > 1 — ¢, which completes the proof. O

We can finally prove Proposition 16.2.

[<

Proof of Proposition 16.2 Let 1 +¢ = ﬁ Then 0 <e < 7
< % Moreover, when assuming € < l, we have % < 27—5 = =. Thus Proposi-
tion 16.2 follows from Proposition 16.55. For ease of notation we renamed € by ¢

in the final statement. U

corresponds to 0 <

SRS
I|ml

<



Chapter 17
Smale’s 17th Problem: I

In 1998, at the request of the International Mathematical Union, Steve Smale pub-
lished a list of mathematical problems for the twenty-first century. The 17th problem
in the list reads as follows:

Can a zero of n complex polynomial equations in n unknowns be found ap-
proximately, on the average, in polynomial time with a uniform algorithm?

Smale pointed out that “it is reasonable” to homogenize the polynomial equations by
adding a new variable and to work in projective space. That is, he considered as input
a system f € Hq to which he associated its zeros in P”. Smale also stressed that
the word “approximately” refers to the computation of an approximate zero in the
sense of Definition 16.34 and that “average” refers to expectation with respect to f
after endowing Hq with a standard Gaussian measure. This amounts to considering
the coefficients of a system f—with respect to the Weyl basis—as independent
and identically distributed complex standard Gaussian variables. We will denote
this distribution by N (0, 1) (instead of the more cumbersome N (0, Iox)). Finally,
Smale used the expression “uniform algorithm” to refer to a numerical algorithm
like those we have seen thus far and “time” to refer to the running time, or cost, of
this algorithm as we defined in Sect. 5.1.

As of today, there is no conclusive answer to the question above. But a number
of partial results towards such an answer have been obtained in recent years. We
will devote this and the next chapter to the exposition of these results. The core of
this is an algorithm, proposed by Carlos Beltran and Luis Miguel Pardo, that finds an
approximate zero in average polynomial time but makes random choices (flips coins,
so to speak) during the computation. The result of the computation is not affected
by these choices, but its cost, for any given input f € Hq, is a random variable. For
such an input one is forced to replace cost by expected (also called randomized)
cost, and the average time that Smale wants to consider is the average over f of this
expected cost. We will describe these notions in some detail in Sect. 17.2. We can
nonetheless state here the main result in this chapter.

P. Biirgisser, F. Cucker, Condition, 331
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_17, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 17.1 The family ¢,
T €[0,1]

Theorem 17.1 We exhibit a randomized algorithm that on input f € Hq\ X returns
an approximate zero of f. The average of the expected (randomized) cost of this
algorithm is bounded by O(D3/*nN?).

Theorem 17.1 provides a probabilistic solution to Smale’s 17th problem.

17.1 The Adaptive Linear Homotopy for Hg4

Suppose that we are given an input system f € Hq and an initial pair (g, ) in the
solution variety V C Hg x P" such that f and g are R-linearly independent. Let
a :=ds(f, g) € (0, ) denote the angle between the rays R f and R g. Consider
the line segment E'f , in Hq with endpoints f and g. We parameterize this segment
by writing

Efe=1{q: €eHal7 €0, 11}

with g; being the only pointin E s, such that ds(g, g:) = T (see Fig. 17.1).

Recall the discriminant variety from Proposition 16.25. If the line segment E 7,
does not intersect the discriminant variety X, then starting at the zero ¢ of g, the
map [0, 1] - Hq, T — g+, can be uniquely extended to a continuous map

0, 1]=V, 7 (9, 8),

such that ¢y = ¢, We call this map the lifting of Ey, with origin (g, ¢). In fact,
the formal argument for the existence of such a lifting was the basis of our proof
of Bézout’s theorem (Theorem 16.23). We shall also call t — (g, ¢;) the solution
path in V corresponding to the input system f and initial pair (g, ¢).

In order to find an approximation of the zero ¢; of f = ¢; we may start with
the zero { = ¢y of g = go and numerically follow the path (g, {;) by subdividing
[0, 1] into points 0 = 79 < 71 < --- < Tx = 1 and by successively computing ap-
proximations z; of ¢;; by Newton’s method. The main result of this section states
that the number K of Newton steps sufficient to follow the path can be bounded
by a constant times the integral fol uﬁorm(qt, ¢r)dt of the square of the condition
number norm-
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This integral can be given a more invariant interpretation, which will be essential
in the proofs to follow. We associate with the solution path in V' the following curve
in S(Hq) x P":

0,11 V. 7 (pr.go) = ("—;)
g

where we recall S(Hq) := {g € Ha | llgll = 1}. (In fact, we could also associate
with the solution path a corresponding curve in P(#Hq) x P", but in view of the
homotopy algorithm to be discussed in a moment, the spherical viewpoint is more
natural.) Recall that « = ds(f, g). The meaning of the parameterization by t is that
ot is the parameterization of T +— p; by arc length, which means that || %’ | =c.

Let now [0, 1] — [0, 1], T + #(7), be any smooth bijective map such that
dt/dt > 0. Then we have

dt dt
L —a—
dt dt

)

dp(r)
dt

_ dp=
Tl dt

and hence, by variable transformation,

1 1
d
a/o uﬁm(p,,g)dr:/o Mgorm(p,(,),;,(,))HM dr. (17.1)

dt

In fact, for the probabilistic analysis later on, it will be essential to consider a
specific parameterization of E . different from t.

Proposition 17.2 For all T € [0, 1] we have g =tf + (1 —t)g, where t =1(T) is
given by

gl

o= I fllsinecot(rar) — || fllcoser + llgll”

Proof We use some elementary geometry. For this, we introduce Cartesian coordi-
nates (x, y) in the plane spanned by f and g and assume that g has the coordinates
(s,0) and f has the coordinates (r cosa, r sin) (see Fig. 17.1), so that r = || f||
and s = ||g|l.
Then, the lines determining ¢, have the equations
cos(ta) rcoso — s

X =y— and x=y—— +,
sin(ta) rsina

from which it follows that the coordinate y of g; is

rssina sin(ta)

y=— - - . (17.2)
rsina cos(ta) — rcosa sin(ta) + s sin(to)
Since 7 (1) = ;—, we conclude that
s
t(t)=

rsinocot(ta) —rcoso + O
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We now explicitly describe the path-following algorithm ALH (adaptive linear
homotopy) by specifying the step size in an adaptive way. For the step size parameter
we chose A = 0.008535284254 (cf. Remark 17.4).

Algorithm 17.1 ALH
Input: f,ge€Hqgand ¢ e P"
Preconditions: g(¢) =0

a:=ds(f,8), r=IfIl. s:=Igl
t:=0, g:=¢g, z:=¢
repeat

AT = — 2
aDS/zl‘L%orm (¢,2)

T:=min{l, 7 + At}
1= rsino COt(TOf)*I‘COSOFFS
q:=tf+d—-1)g
7:=Ny(2)

until 7=1

return z and halt

Output: z e (C't),
Postconditions: The algorithm halts if the lifting of E ¢ at ¢ does not cut X’. In
this case, [z] € P" is an approximate zero of f.

The following result estimates the number of iterations performed by algo-
rithm ALH.

Theorem 17.3 Suppose that Ey,, does not intersect the discriminant variety X.
Then the algorithm ALH stops after at most K steps with

1
K <188 D*/*ds(f, g) /O 120 (e, Co) dT.

The returned point 7 is an approximate zero of [ with associated zero 1. Further-
more, the bound above is optimal up to a constant: we have

1
K =74 DY2ds(f, g) /0 12 (e £o)d.

Proof For 0 <¢ < % put C := %. Proposition 16.2 on the Lipschitz continuity of
Inorm implies that for all f, g € S(Hq) and all y, z € P" such that

fnorm (f, 7) max{ D2 ds(f, g), D**dp(y,2)} < C
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we have

1
m Mnorm (f5 2) < Mnorm (g, ¥) < (1 + &) tnorm (£, 2).

(Note that dp( f, g) <ds(f, g) by Proposition 14.12.)

The analysis of ALH is based on this Lipschitz property with the choice
g = % and C := § = 3% = 0.03125. Furthermore, we set A = 88((11;88))“ = 2;—87 =
0.008535284254. (See Remark 17.4(a) below for an explanation of these choices.)

As before, we consider the curve p; := g /||q-|l in the sphere S(Hq). Let 0 =
<717 <---<7tg =1and ¢ = 20,21, ..., 2k be the sequences of r-values and
points in P" generated by the algorithm ALH. To simplify notation we write p;
instead of p;, and ¢; instead of ¢;.

We claim that fori =0, ..., K — 1, the following statements are true:

s c
(a) dP(Zl ’ {l) S D3/2Mnorm(piv§i) ’

(b) o2 < o (pi &) < (1+ &) tenorm (Pi- 20)-

C
(©) ds(pi, pi+1) < D oo (P2

C 1—
(d) dp(&i, Giv1) = mﬁ

. 2C
(e) dP(Zl ’ {H—l) = (1+8)D3/2llnorm(17iy§i) ’

(f) z; is an approximate zero of p; 1 with associated zero &;4.

We proceed by induction, showing that
(a,i) = (b,i) = ((c,i) and (d,i)) = (e,i) = ((f, i) and (a,i + 1)).

Inequality (a) for i =0 is trivial.
Assume now that (a) holds for some i < K — 1. Then, Proposition 16.2 (with
f =g = p;) implies

Mnorm (i, Zi)

< tnorm (Pi» &) < (1 + &) pnorm (Pi > i)
1+e¢
and thus (b). We now prove (c) and (d). To do so, let 7, > 7; be such that

_ C 1—c¢
B D3/2/*Lnorm(piv i)l +e

/ (Dl + 11 11) de

or 7, = 1, whichever is smaller. Then, for all ¢ € [1;, T«],

t Te )
do(@io) = [ Necldr < [ (1l + D) dr

C 1—¢

< . (17.3)
D3/2Mnorm(pi7 Cl) I+e¢
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Similarly,

t Ty .
dS(PisPt)Z/ IIPrlldtS/ (Ip<ll+ 1 ll) do
T T;

- C 1—¢ - C
- DB/zanorm(pi, G)l+e ™ D3/2Hnorm(piv &) ’
It is therefore enough to show that 7,1 < t,. This is trivial if 7, = 1. We therefore

assume 7, < 1. The two bounds above allow us to apply Proposition 16.2 and to
deduce, for all t € [1;, T4],

(17.4)

Mnorm (P €z) < (14 €) tnorm (i &i)-
Corollary 16.14 implies that (using © < norm)
1821l < pnorm (Pe. &2) 1Pl
It follows that using pinorm > 1,
152+ 1122 Il < 2ttnorm (Pes €) e .

‘We now deduce that
C 1—¢ _
D3/2//Ln0rm(pis g)l+e

Tx .
/(||pr||+||zf||)dr
T
Ty
< / 2tnom (pes &)l el d
T

Ty
<2(1 + &) pnorm(pi» é‘t)/ lp:lldz
Ti

< 2(1 + &) pnorm (pi» &i) ds (i, pr,)-
Consequently, using (b), we obtain

)> C(l—e¢) - C(1l—-e¢)
T 21482 D3 2 ug o (pis &) T 2(1 + &) D32 (pis i)

ds(pi, p-,

C(l—e)
2(1+e)*"
. So we obtain

Recall that the parameter A in ALH was chosen as A = By the definition of

A

Tir1 — 7; in ALH we have a(tj11 — 7)) = 55—
i+l ! (Tig1 i) D322 o (pinzi)

ds(pi, pz,) = a(tit1 — ;) = ds(pi, pi+1)-

This implies 7,41 < 7, as claimed, and hence inequalities (c) and (d) follow from
(17.4) and (17.3), respectively. With them, we may apply Proposition 16.2 to de-
duce, for all T € [1;, Tj+1],

Mnorm (Pi» §i)

1 < norm (Pr, &o) < (1 + &) phnorm (Pi s §i)- (17.5)
+e&
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Next we use the triangle inequality, (a), and (d) to obtain

dp(zi, Gi+1) < dp(zi, &) +dp(&i, Git1)
C C 1—¢
< +
DS/ZMnorm(piv gt) D3/2/Lnorm(pi7 gt) I+¢
_ 2C
B 1+ 8)D3/2N«norm(Pia i) ’

(17.6)

which proves (e). Now note that since D > 2 and ptporm(pi, &) > 1, we have

2C 1

d iy Ci < — < —,
]P)(Zl §l+1)_ (l+8)23/2 = 45

For » = 0.99991... we have that §(r) = % (recall Table 16.1) and u(r) =
0.17708. ... Inequality (17.6) combined with (17.5) for t = 7;4 yields

C Mnorm(pi+lvgi+l)fc

1
L 1 Gt do (@i Eiat) <
Mnorm (Pi+1, Cit1) dp(Zis Cip1) < 14¢ o (pi &)

2
Together with Theorem 16.1 and C = 3% < u(r), this implies

Yoroj (Pi+1 Gi+1) dp(2i, Si1) < u(r).

We can therefore apply Theorem 16.38 for this value of r to deduce that z; is an
approximate zero of p;; associated with its zero ¢;41, and hence (f) holds.
It follows from (f) that z; 11 = N, (z;) satisfies

1
dp(ziy1,Cit1) < 2 dp(zi, Cit1).

Using (e) and the right-hand inequality in (17.5) with T = 1,41, we obtain
from (17.6)

C C
dp(zZit1, Gi+1) < < ,
rrb e (1 +8)D3/2/Lnorm([7ia i) D3/2U«norm(pi+la Zit1)

which proves (a) for i 4+ 1. The claim is thus proved.
Note that (f) for K — 1 shows that zx_1 is an approximate zero of gg = f with
associated zero ¢ and consequently, so is the returned point zx = N (zgx—1).
Consider now any i € {0, ..., K — 1}. Using (17.5), (b), and by the choice of the
step size At in Algorithm 17.1, we obtain

Tit+l Tit1 4,2 L 2 .
2 :unorm(pl’ Cl) _ :U«norm(Pu é‘l)
ﬁi Mnorm(pr: {o)de Z/{i (1+8)2 dt = (1+8)2 (Tiv1 — )

2
- Miporm (Pis Zi)

Z = lte (Tit1 — )
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2 . .
_ Miorm (Pi» Zi) A
A+t aD2pfom(pis i)
- A _e(l—e) 1
T (+e)*aD¥2  8(1+e)8aD32
1 1
Z s 3 -
~ 188 aD3/2
This implies
1 ) % |
0 Mnorm(pt» é‘r)d‘[ > @(w—3/2’

which proves the stated upper bound on K. The lower bound follows from

Ti+1 2 Tit+1 ) 2
/ H’norm(p‘l’v é“[)dr S / I‘Lnorm(pi’ {l)(l +8) d":
T Ti

= 1o (i, G (14 €)% (Ti1 — T)

< 2o (pir )1+ ) (g1 — 1)

M+t e(l—g) 1 _1o
aD2 8  aD2"74qD32 U
Remark 17.4
(a) The proof of Theorem 17.3 gives a rationale for the choice of the value ¢. It is

(b)

the one minimizing the expression F'(¢) := % on the interval [0, 1/7] that
produces the constant 188. A computation shows that F is minimized at g, =
% - %\/ﬁ =0.120847... and F(g,,) = 187.568 ... We have approximated &,
by ¢ =1/8 =0.125, which yields F(¢) = 187.668... < 188.

Algorithm 17.1 requires the computation of finorm, Which, in turn, requires the
computation of the operator norm of a matrix. This cannot be done exactly
with rational operations and square roots only. We can do, however, with a suf-
ficiently good approximation of w2 .. (¢, z), and there exist several numerical
methods efficiently computing such an approximation. We will therefore neglect
this issue, pointing out, however, for the skeptical reader that another course of
action is possible. Indeed, one may replace the operator by the Frobenius norm
in the definition of (tporm and use the bounds |M|| < |M || F < «/rank(M)||M ||
to show that this change preserves the correctness of Algorithm 17.1 and adds a
multiplicative factor n to the right-hand side of Theorem 17.3. A similar com-
ment applies to the computation of o and cot(re) in Algorithm 17.1, which
cannot be done exactly with rational operations.

For applying Theorem 17.3, it will be central in our development to calculate

the integral (17.1) of the squared condition number with respect to the parameter-
ization ¢ of Ef, introduced in Proposition 17.2. Abusing notation, we shall write
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Fig. 17.2 An elementary
geometric argument

q: = (1 —t)g + tf. For this parameterization we have the following bound on the

norm of the speed of the spherical curve ¢ — p; 1= qul\

Lemma 17.5 We have

Al

H dp:
llg: 11>

Proof Note that dq’ = f — g. Hence, if P denotes the orthogonal projection of Hq
onto the tangent space T,,S(Ha), we have by Lemma 14.10,

dp[ _ 1
dr gl

P(f—g).

We show now by some elementary geometry that | P(f — g)|| < ||fIl llgll. For this,
as for Proposition 17.2, we introduce Cartesian coordinates in the plane spanned
by f and g and assume that g has the coordinates (s, 0) and f has the coordinates
(rcosa, rsina); see Fig. 17.2.

We write g :=¢q; and L := || f — g||. Then ||¢ — g|| =tL, and trigonometry tells
us that

sing s

sin(tew) L’

Hence
y

|Pf— g)H_Lsm(p——s n(re) = )
l||61||

We have
% =LsinB <r,

and therefore

PG =l _ Ly _ I/l
gl gl e gl

as claimed. O
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The following result is an immediate consequence of Theorem 17.3, (17.1), and
Lemma 17.5.

Corollary 17.6 The algorithm ALH stops after at most K steps with

1
Il
K§188D3/2/0 P Form (@1, ¢ dt.

Its output z is an approximate zero of f with associated zero (. O

Algorithm 17.1 together with Theorem 17.3, or Corollary 17.6, provides the de-
tails of how a linear path is followed in V and how many iterations are needed to do
so. It now becomes imperative to deal with an issue we have neglected thus far: the
choice of the initial pair.

17.2 Interlude: Randomization

17.2.1 Randomized Algorithms

We start this section, for a change, with a problem in algorithmic number theory—
primality testing—which does not appear to bear any relation with conditioning. It
consists in, given an integer n > 3, deciding whether n is prime. The most obvious
algorithm to do so checks for all numbers d from 2 to |/n] whether d divides n.
If such a d is found, the algorithm halts and returns COMPOSITE. Otherwise, it
returns PRIME. The simplicity of this algorithm is shadowed by its poor complexity.
The size s = size(n) of the input z is the number of bits needed to write n, which is
approximately log n. And the number of candidate divisors we may need to consider
is, in the worst case, about | /7, i.e., about 237, By the 1970s, variants of this naive
approach had been proposed that improved this behavior but not in any substantial
manner: the cost was still exponential.

It is at this time that a new idea entered the stage, proposed by Robert Solovay
and Volker Strassen. To understand this idea let us return to the naive algorithm. If a
number d, 2 < d < |/n], divides n, then d is a “certificate” of n’s compositeness.
Given n and d, to decide whether d is such a certificate (i.e., whether d divides n)
can be quickly done. The shortcoming of the naive algorithm is the possible large
number of certifications to be checked. What Solovay and Strassen came up with
was a different manner by which a number a € {2, ...,n — 1} could certify that n is
composite, namely, to check the identity

a7 & (%) (mod 1), (17.7)

where ( %) denotes the Jacobi symbol. We write certif_C(a, n) when (17.7) holds.
Again, if n is prime, then there is no a € {2,...,n — 1} such that certif_C(a, n)
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holds. In contrast with the naive certification, however, if n is composite, at least
half of the candidates a in {2,...,n — 1} are certificates for that. Furthermore, Ja-
cobi’s symbol can be quickly computed (with cost O(log? n) = O(s?)). Solovay and
Strassen therefore proposed the following algorithm.

Algorithm 17.2 Randomized_Primality_Testing

Input: n,keN
Preconditions: n >3 odd, k> 1

repeat k times

draw a at random from {2,...,n— 1}

if certif_C(a,n) then return COMPOSITE and halt
return PRIME and halt

Output: atagin {PRIME, COMPOSITE}

Postconditions: if the tag is COMPOSITE, then n is composite; if the tag is
PRIME, then n is prime with probability at least 1 — 2%

Algorithm 17.2 presents some features that are new in our exposition. The most
noticeable is the presence of the instruction draw. . .at random. Up to now, all
algorithms we have described rely on the basic arithmetic operations, on compar-
isons, and on occasionally taking a square root. Algorithm 17.2 uses a new tool:
randomization. To be precise, it assumes at hand a function random_bit( ) returning
an element in {0, 1}, each of them with probability % Note that the number a in the
algorithm can be obtained with s calls to this function (corresponding to the n first
bits in the binary expansion of a). It is out of our scope to describe how this func-
tion is implemented. Suffice it for our purposes to note that many implementations
exist (usually called pseudorandom number generators) and are widely accepted as
appropriate for their task.

A second new feature in Algorithm 17.2 is the possibility of a wrong answer
for some composite numbers. Indeed, if the algorithm returns COMPOSITE then its
input n is so. But there is a possibility of returning PRIME on a composite input 7.
Yet, since the k draws of a are independent, this happens with a probability of
at most 2% And for moderate values of k, say around 100, this probability of a
mistaken output is certainly negligible.

In 1992, Leonard Adleman and Ming-Deh Huang devised a new randomized
algorithm (this is how algorithms making random draws are called) that differed
from Algorithm 17.2 in an important aspect: the certificate now was for primality.
Consequently, the possibility of a wrong output was now associated with returning
COMPOSITE. Let us denote by certif_P(b, n) the fact that b is a certificate of primal-
ity for n and assume that for a random b € {0, 1}9®) the probability that b certifies
n’s primality, if n is prime, is at least % Here ¢ is some low-degree polynomial.
Consider now the following algorithm.
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Algorithm 17.3 Randomized_Primality_Testing_2

Input: neN
Preconditions: » >3 odd

repeat
draw a at random from {2,...,n—1}
if certif_C(a,n) then return COMPOSITE and halt
draw b at random from {0,1}9®)
if certif_P(b,n) then return PRIME and halt

Output: atagin {PRIME, COMPOSITE}
Postconditions: the tag is PRIME iff # is prime

This algorithm never gives a wrong output. But its running time is no longer
bounded by a function of s. Each iteration is done in time polynomial in s, but
the number of iterations itself is a random variable. The probability of performing
more than k iterations is at most zik Consequently, the expectation of the number of
iterations performed is (use Lemma 15.6)

o0

k
Zz_k:z'

k=1

Algorithm 17.3 belongs to a class commonly referred to as Las Vegas algorithms,
as opposed to Monte Carlo algorithms. In the latter, the running time is bounded by
a function of the input size but incorrect outputs occur with a small probability. In
the former, it is the opposite. Outputs are always correct, but the running time is a
random variable.

Because of this, we consider for Las Vegas algorithms a notion of randomized
cost, which consists of the expectation of the cost over all possible random draws.

17.2.2 A Las Vegas Homotopy Method

With this new set of ideas in mind, let us return to the problem of computing an
approximate zero of a system f € Hgq.

All the efforts to couple linear homotopies (such as Algorithm 17.1) with some
deterministically constructed initial pair (g, ¢) to produce zero-finding algorithms
working on average polynomial time have, as of today, failed. A way out to deal with
the manifest difficulty of the problem, recently proposed by Carlos Beltran and Luis
Miguel Pardo, is to randomly draw the initial pair (g, ¢). For this, they endowed V
with a probability distribution pst and described an efficient procedure for drawing
a pair from pgt. With such a procedure at hand, the following Las Vegas algorithm
is a natural way of proceeding.
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Algorithm 17.4 LV
Input: f € Hq
Preconditions: f #0

draw (g,¢) eV from ps
run ALH on input (f, g,?¢)

Output: z e (C*t1),
Postconditions: The algorithm halts if the lifting of E s, at £ does not cut X’. In
this case, [z] € P" is an approximate zero of f.

Due to our analysis of ALH we know that for an input f € Hq, algorithm LV
either outputs an approximate zero z of f or loops forever (in case the lifting of
the segment E, intersects X’). Furthermore, the number of iterations performed
by ALH depends on the initial pair (g, ¢). The analysis of LV will therefore pass
through the notion of randomized cost described above.

At this moment it becomes apparent that the probabilistic framework we have
been using thus far, based on Euclidean spaces, spheres, and their products, is too
narrow to accommodate the measure pst, supported on V. A new installment of our
crash course is called for.

17.3 A Crash Course on Probability: IV

In Sect. 2.1 we gave a brief introduction to integration on “data spaces,” which
were defined in an ad hoc manner as open subsets of a finite product of Euclidean
spaces and spheres. The study of these particular spaces turned out to be sufficient
for the purposes of the first two parts of this book. Now we need to extend the
scope of this theory to the framework of Riemannian manifolds. For background
information on this concept we refer to Sect. A.2. Note that a data space by definition
is a submanifold of a Euclidean space and thus inherits the structure of a Riemannian
manifold, i.e., an inner product in each of its tangent spaces from the inner product
of the ambient space.

It is important that on a Riemannian manifold M there is a well-defined measure
volys obtained by integrating the indicator functions 14 of Borel-measurable subsets
A C M against the volume form d M of M:

voI(A):/ 1adM
M M

(for the definition of the volume form see Sect. A.2.5). This is clearly an extension
of the natural measure voly, for data spaces encountered in Sect. 2.1, and dividing
1 by volys (M) if volys (M) < o0, it leads to a natural notion of uniform distribution



344 17 Smale’s 17th Problem: I

on M. More generally, we will call any measurable function f: M — [0, co] such
that [, f dM =1 a probability density on M.

The most fundamental tool encountered in Sect. 2.1 was the transformation for-
mula in Theorem 2.1 for diffeomorphisms between data spaces. The extension of
this result to not necessarily bijective smooth maps between Riemannian manifolds,
called the coarea formula, is of paramount importance for us. In order to state this
result, we first need to generalize the notion of Jacobians.

Suppose that M, N are Riemannian manifolds of dimensions m, n, respectively
such that m > n. Let ¢v: M — N be a smooth map. By definition, the derivative
Dyr(x): TyM — Ty (x)N at a regular point x € M is surjective. Hence the restric-
tion of Dr(x) to the orthogonal complement of its kernel yields a linear isomor-
phism. The absolute value of its determinant is called the normal Jacobian of i at
x and denoted by NJr(x). We set NJy (x) := 0 if x is not a regular point.

Remark 17.7 In the special case that m = n, the kernel of Dyr(x) reduces to zero
and its orthogonal complement is therefore all of 7, M. Therefore, NJy(x) =

T (x).

If y is a regular value of ¥, then the fiber Fy := 1//_1(y) is a Riemannian sub-
manifold of M of dimension m — n (see Theorem A.9). Sard’s lemma states that
almost all y € N are regular values.

We can now state the coarea formula.

Theorem 17.8 (Coarea formula) Suppose that M, N are Riemannian manifolds of
dimensions m, n, respectively, and let v : M — N be a surjective smooth map. Put
Fy = ¥~ Y(y). Then we have for any function x: M — R that is integrable with
respect to the volume measure of M that

/de: (/ LdFy>dN.
M yeN \JF, NJYr

It should be clear that this result contains the transformation formula (Theo-
rem 2.1). as a special case. Moreover, if we apply the coarea formula to the pro-
jection mo: M x N — N, (x,y) — y, we retrieve Fubini’s equality (2.2), since
NJm, = 1. For this reason, the coarea formula is sometimes also called Fubini’s
theorem for Riemannian manifolds. It tells us how probability distributions on Rie-
mannian manifolds transform.

Example 17.9 The natural projection R¥+2\ {0} = C*t \ {0} — P" factors
through a projection 7s: S***! — P" with fibers isometric to S'. Theorem 17.8
allows us to reduce the computation of integrals on P" to the computation of inte-
grals on S?*1. In Lemma 14.9 we showed that the derivative Drrs(x): T,S***! —
Tin)P" equals the orthogonal projection onto T, = Tj,)P". Hence the normal Ja-
cobian of mg equals 1. By Theorem 17.8, we have for any integrable function
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f:P" — R and measurable U C P”,

1
/ fdP" = —f (f omr)dS™ . (17.8)
U 27 Jx ')
Taking f =1 and U = P" yields the volume of complex projective space,
1 @ "
VOIP" = — vol S+ = 22l _ T (17.9)
2 2 n!

For later use we note the following immediate consequence of Theorem 17.8.

Corollary 17.10 Let M, N be Riemannian manifolds of the same dimension and
let yy: M — N be a surjective smooth map. Suppose that fM |det Dy | dM is finite.
Then the fiber ' (v) is finite for almost all y € N, and we have

[|detD1p|dM / v () dN ().
yEN

Here and in what follows, # denotes cardinality. O

In Sect. 2.2 we studied probability densities on data spaces and looked at the
concepts of marginal and conditional distributions for densities defined on a product
space M x N. We shall now see how these notions generalize to the setting of
probability densities on Riemannian manifolds.

Suppose that we are in the situation described in the statement of Proposition 17.8
and we have a probability measure on M with density pys. For a regular value y € N
we set

pn () :=/ ear (17.10)

The coarea formula implies that for all measurable sets B C N we have

/ pMdMZ/ ,ONdN.
v=1(B) B

Hence py is a probability density on N. We call it the pushforward of py with
respect to . Note that this generalizes Proposition 2.11.
Further, for a regular value y € N and x € F, we define

om(x)
=— 17.11
P = NIV () (7.1h

Clearly, this defines a probability density on F. In the special case that yr: M x
N — N, (x,y) — Yy, is the projection, we have NJi = 1, and we retrieve the for-
mula (2.9) for the conditional density.
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The coarea formula implies that for all measurable functions y : M — R,

/XPMdM: (/ X:OFdey)PN(y)dN»
M yeN \JF,

provided the left-hand integral exists. Therefore, we can interpret pr, as the density
of the conditional distribution of x on the fiber F, and briefly express the formula
above in probabilistic terms as

E xx)=E E x). (17.12)

xX~pM YPN X~PFy

Remark 17.11 In the context of a map ¥ : M — N, we started with a probability
density pps on M and derived both its pushforward density px on N and, for every
y € N, the conditional density p F, On the fiber F, C M.

Conversely, we can start with a density py on N and densities pr, on the fibers
F) of y. The operational process of first drawing y from py and then x from pp,
determines a distribution py; on M, which, following (17.11), has the form

pm (x) = pn (¥) pF, (ONIY (x).

These two processes are inverse to each other and hence, for instance, the push-
forward of the derived pys(x) above is the original py. In order to emphasize its
possible primary character, and by analogy with the case of product spaces, we will
call it the marginal density on N.

In summary, any density on M “decomposes” as a marginal density on N and
conditional densities on the fibers, and we can recover the distribution on M from
this decomposition.

17.4 Normal Jacobians of Projections

We shall determine here the normal Jacobians of various projection maps. Let us
start with a few general comments. The R-linear map C — C, z +— Az, with A € C
has determinant |A|2.

Later on, we will need the following observation, whose easy proof is left to the
reader.

Lemma 17.12 For some fixed nonzero A € R let G C C x C denote the graph of the
linear map C — C, z +— Az. Then the R-linear isomorphism C — G, z +— (z, A2),
has determinant 1 + )\2. O

We shall distinguish points in P” from their representatives ¢ in the sphere
S(C"y :={¢ e C*! | ||| = 1}. The lifting

Vi={(f.¢) € Ha x S(C"") | f(¢) =0} (17.13)
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of the solution variety V is a smooth submanifold of Hq x S(C"*!) by Lemma 16.9.
Our goal is to determine the normal Jacobians of the projections

m:VisHa, (¢, q, and m: Vi S(C, (¢,0) ¢

(No confusion should arise from the fact that in Sect. 16.5 we denoted the projec-
tions V — Hgq and V — P" by the same symbols 71, 77.)

Recall from Sect. 16.2 that the unitary group % (n + 1) acts on Hq x S(C*+1),
leaving invariant the solution variety V. It is clear that the projections m; and w2
are % (n + 1)-equivariant. This implies that the normal Jacobians of 7 and 7, are
constant on 7% (n + 1)-orbits. Let us explicitly state this important insight.

Lemma 17.13 Forall (q,¢) € Vand all u € U (n + 1) we have

NIrm1(q, &) = NJmi(ug, ut), NIma(q, &) = Nlma(uq, uf). 0

We shall first investigate the special case in which all the degrees d; equal 1.
Consider the vector space . := C"* "+ of matrices and define

={(M,¢) et xS(C) | M¢ =0}. (17.14)

Note that in the special case d; = 1, we can indeed identify Hq with M and V
specializes to W.In particular, W is a smooth manifold. If M € .# has rank n, then
the linear system M¢ = 0 has a unique solution ¢ € S(C"*!) up to scaling by a
complex number of modulus 1. That is, the fiber of the projection

prW—, (MM,

over M then equals the unit circle {(M, e/?¢) | 6 € R}. We also note that the fibers
of the projection p;: W — P", (M, ) — ¢, are vector spaces of complex dimen-
sion n2.

The group % = % (n) x % (n + 1) acts on .# = C"™"*D via (v, u)M :=
vMu~!, and it acts on S(C"*!) by (v, u)¢ := ut. Hence, by the complex singular
value decomposition, every (M, ¢) € W can be transformed into the special form in
which ¢ =eg = (1,0,...,0) and M consists of the zero column and the diagonal
matrix diag(o1, ..., o0y), where o1, ..., 0, are the singular values of M.

It is clear that the projections p; and p; are % -equivariant. This implies that the
normal Jacobians of p; and p; are constant on %/ -orbits. Therefore, NJp; and NJ p;
must be functions of the singular values o7, ..., 0, of M only. We now determine
these functions.

Lemma 17.14 Let o1, ..., 0y be the singular values of M € 4 of full rank. Then
we have

n 2 n 1

N0 =[] N o =]

2’
i=1 i =1 1+6i
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and
NJpl
NIp>

(M, ) =det(MM*).

Proof The tangent space to the sphere S(C*™') at ¢ is given by T, S(C"*!) = (e
crtly Re(¢, Z)=0}; compare (14.11). Lemma 16.9 implies that the tangent space
Tm, {)W consists of the (M, 0)e M x T;S(C”“)" such that M( + M =0.

As already explained before, by unitary invariance, we may assume that ¢ =
(1,0, ...,0). Then the first column of M vanishes, and using the singular value
decomposition, we may assume that the remaining part A € C"*" of M equals A =
diag(oy, ..., 0n).

Let it € C" denote the first column of M and A € C"*" its remaining part. We
may thus identify T(M,g)W with the product E x C"*" via (M, 0) — ((,0), A),
where E denotes the subspace

E:={@,¢)eC" xC™ i+ 015 =0,1<i <n, {eiR}.

We also note that E >~ graph(—A) x iR. The derivative of p; is described by the
following commutative diagram:

T(M,;)W = (graph(—A) x iR) x C**"
Dp(M,?) prlxI
/A i> Cn x Cnxn,

where pry (i, §') = u. Note that pr has kernel iR. Since A = diag(o1, ..., 0,), the
pseudoinverse of the projection pr; is given by the linear map
@: C" — graph(—A), (i1, ... 1) > (i1, ..., iy, —aflzh, o, —an_lb't,,).

Lemma 17.12 implies that detg =[]/, (1 + al._2), where the determinant refers to
@ as an R-linear map. Noting that 1 /NJp (M, {) = det g, the first assertion follows.
For the second assertion we consider the following commutative diagram:

T W —> (graph(—A) x iR) x C""
D[?z(M,{) pry
T,S(C"!) —> C" x iR,

where pr;, (i, ¢, A) =¢. The map pr, has the kernel C**", and its pseudoinverse is
given by
¥ C" x iR — graph(—A) x iR,  (¢1, ..., ¢, 80) > (=011, .., —Onin, &0)-

As before, we conclude that 1/NJp2(M, ¢) =detyr = ]_['}:1(1 + 0]2), proving the
second assertion.
The third assertion follows immediately from the first and second. g
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We next show that the normal Jacobians of the projections 7; can be expressed
in terms of the normal Jacobians of the projections p; that we just determined.

Lemma 17.15 For (q,¢) € V and N := Dq(¢) we have
NIm1(g,¢) =NIpi(N, ¢), NJm2(q, &) =NIpa(N, ).

Proof By unitary invariance we may assume without loss of generality that { =
(1,0,...,0). If we write N = (n;;) = Dq(¢) € .4, we must have n;o = 0, since
N¢ = 0. Moreover, according to the orthogonal decomposition (16.9) and Proposi-
tion 16.16, we have for 1 <i <n,

n
di—1
qi =X, Zniij+hi
j=1
for some i = (hy, ..., h,) € R;. We express g; € T;Ha = Ha as
n
. . d; di—1 . H
qi =u;i X, +\/d7iX0 Zainj + h;
j=1

in terms of the coordinates i = (i1;) € C", A = (aij) € C™", and h=(hj) e R;.
The reason to put the factor +/d; here is that

G 17 =D 1l + Y laig P + Y il (17.15)
i ij i

by the definition of Weyl’s inner product.
The tangent space Ty )V consists of the (¢, ¢) € Ha x T{S((C”‘H)” such that
q(¢)+ N¢ =0; see Lemma 16.9. This condition can be expressed in coordinates as

n
ui+zni,~§j=o, i=1,...,n. (17.16)
j=1

By (17.15) the inner product on Tg,¢) V is given by the standard inner product in
the chosen coordinates i;, a;;, {; if h; = 0. Thinking of the description of T(y ;)W
given in the proof of Lemma 17.14, we may therefore isometrically identify T, )V
with the product Ty .y W x R; via (g, g;) — ((u, A, §'), h). The derivative of 7 is
then described by the commutative diagram

Tq.)V — TivoW x R;
Dm(q.%) Dpi(N.5)xI (17.17)

Hd i) e%XR@.
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The claim NJm1 (g, ¢) =NJp1(N, ¢) is now immediate.
Similarly, we have the commutative diagram

Tq.o)V — TnoW x Ry

Smale’s 17th Problem: I

Dra(q.2) Dpy(N,¢)xzero (17.18)
T§S(Cn+]) i) T;S(Cn+]),
where zero: R; — 0 is the zero map. Hence NIz (g, ¢) =NIp2(N, ¢). O

The following corollary will be crucial for the proof of the main result of this

chapter.

Corollary 17.16 For (q,¢) € V we have

NJTL’]
Nlm;

(q.¢) =Ddet(MM*),

where M := diag(v/d;) ™' Dq(¢) and D =d - - - dy.

Proof Lemma 17.15 implies that

Nl N

_ NJpi
N (8.0 = NI ps (N, 0,

where N := Dq(¢). Moreover, Lemma 17.14 says that

NJpi
Nlp»

(N,¢) =det(NN¥).

If we put A :=diag(v/d;), then N = AM and hence

det(NN*) = det(AMM* A) = det(A?) det(MM*) = Ddet(MM*).

Combining these equations, the assertion follows.

O

Remark 17.17 One obtains the same formulas for the normal Jacobians of the pro-

jections V. — Hq and V — P”".

17.5 The Standard Distribution on the Solution Variety

‘We may now return to the probability distribution pst. The most immediate approach
to pst defines it via the following procedure (recall that N denotes the complex

dimension of Hgq, so that 2N equals its real dimension):

o draw g € Hq from N (0, Iry);

e draw one of the D zeros of g from the uniform distribution on {1, ..., D}.



17.5 The Standard Distribution on the Solution Variety 351

The goal of this section is to provide an explicit density function for pg and
to prove some properties that will simplify the computation of expectations for this
measure. To do so it will be more convenient to work with a standard distribution pgt
on the lifted solution variety Vc Ha x S(C"1) considered in (17.13). This distri-
bution arises from drawing (g, [¢]) € V from the standard distribution as described
above and further drawing a representative ¢ uniformly at random from the circle
[£1NSEC"Hh.

Recall that Zp(g) denotes the set of zeros in P of g € Hq. Bézout’s theorem tells
us that Zp(q) is finite of cardinality D = d| - - - d,, if g does not lie in the discriminant
variety X. This implies that the fiber over g & X,

Vig):=]¢cesS(C ™) (g, ) eV},

of the projection my : V — Ha, (g,¢) — g, consists of D disjoint circles. Hence
the volume of such fibers is 27 D.

With the help of the coarea formula, we can now give a formal definition of these
standard distributions by specifying their densities. If ¢4,, denotes the density of
the standard Gaussian distribution on Hgq, we have (cf. Sect. 2.2.2)

1 _ lig)?

2 .
A naive attempt to define the density pst would be to take the product 2nD PHq-
However, this function is not even a density function on V, since its integral over 1%
differs from 1. As it happens, we have to take into account the normal Jacobian of
the projection 7r;. We define the density pg of the standard distribution on V as
follows:

1
5= PHa @ NIT1 (4. 0). (17.19)
This definition is justified by the following lemma.

b\st(qv g) =

Lemma 17.18

(a) The function pg is a probability density on V.

(b) The pushforward of ps; with respect to w1 V = Hqg equals ¢34, .

(¢) The pushforward of ps with respect to the projection 1y : V> S(C"1Y equals
the density of the uniform distribution on S(C"+1).

(d) For q & X, the conditional distribution on the fiber \A/(q) is the uniform distri-
bution on V(q).

(e) The expectation of a function F': V — R with respect to pst can be expressed
as

E F(@.0)= E Falg),
(9,5)~pst 4~9Hg

where Fa(q) := 525 Jeevig Fla. ©)dg.
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Proof The coarea formula (Theorem 17.8) applied to 7y : V — Hq implies

~ ~ ﬁSt(q’g) i )
F psdV = F(q,0)——22>2_qV dH
/o Pt /qeﬂd@ev@ @ ORI V@)
=/ Fa(q) o34(q) dHa,
qeHaq

where F: V — R is a function that is integrable with respect to the volume measure
on V. Taking F = 1 reveals that pg is a density, proving the first assertion. The
above formula also proves the fifth assertion.

By eq. (17.10) the pushforward density p; of st with respect to 7} satisfies

ﬁst(q9§) ‘>
p1(q) /{Em) Nim@.0) (q) = on,y(q)

This establishes the second assertion.

For the third assertion we first note that by its definition and Lemma 17.13, pg; is
unitarily invariant. Since 7, is an equivariant map, it follows that the pushforward
density of pg is unitarily invariant on S(C"*+1). Hence it must be the uniform distri-
bution.

Finally, by (17.11) the conditional density satisfies

ﬁst(q’ ;) _ 1
(/’Hd(CI)NJﬂl(CI’ ;) 27TD’

which proves the fourth assertion. d

pV(q)(g) =

We may now recover the density pst on the original solution variety V' as
the pushforward of ps under the canonical map V — V. As in the proof of
Lemma 17.18, one shows that

R 1
pst(q. §) =27 pst(q. §) = 5 ¢pa (O NIT1(q. ).
Moreover, the expectation of an integrable function F: V — R with respect to pgt
can be expressed as

E F= E Fa, (17.20)
(8.8)~pst g~N(0.D)

where Fa(q) := % Z;\g(g):o F(q,?0).
Recall from (17.14) the manifold W, which naturally arises as a special case of
V in the case d; = 1. We put A := diag(dl.l/ 2) and consider the linearization map

VoW, (q.0)— (M), where M:=A"'Dg(¢). (17.21)

The proof of the following result is postponed to Sect. 18.1.3 in the next chapter,
where it will be a consequence of more general results.
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Lemma 17.19 The pushforward density of the standard distribution pgt on V with
respect to the map ¥ equals the standard distribution on W.

17.6 Beltran—-Pardo Randomization

Our next goal is to describe an efficient sampling procedure for the standard distri-
bution pg on the solution variety V C Hgq x P".

An immediate difference with the context of Sect. 17.2.1 is the inadequacy of
random_bit( ) as the fundamental building block for randomized algorithms deal-
ing with continuous distributions. We will instead rely on the basic procedure
rand_Gaussian( ), which returns, with no input and with unit cost, a real number
z drawn from N (0, 1). It is obvious how to draw z € C from N(0, I,) using this
procedure. And it is equally easy to use these draws to draw systems in Hq from
N(0,Irn) (recall that N denotes the complex dimension of 4, so that 2N equals
its real dimension). See Algorithm 17.5 below.

Algorithm 17.5 random_system
Input: d,...,d, eN
Preconditions: n>1landd; >1fori=1,...,n

for i=1,...,n do
for a e N*t! with |e|=d; do
draw fiq€C from N(0,Ip)

An1/2
fi=2Ya=a fia(G) X
return f:=(f1,...,fn) and halt

Output: f e Hgq
Postconditions: f ~ N(0, 1)

Recall that the standard distribution arises as follows: we first draw g € Hq at
random from the standard Gaussian distribution N (0, I>5) on Hgq, and then uni-
formly draw one of the (almost surely) D zeros of g. Algorithm 17.5 allows one
to do the first task. But to do the second once g has been obtained appears to be
difficult, since we do not have the zeros of g at hand. Actually, computing one such
zero is the problem we wanted to solve in the first place!

Beltran and Pardo’s idea to turn around this obstruction is very elegant. We have
shown in Sect. 16.3 that for any [¢] € P", the space Hq is written as a direct sum
C; @ Ly ® R; and any system g correspondingly decomposes as k; + gr + hy.
If [¢] is going to be a zero of ¢, then k; needs to equal 0. Furthermore, Proposi-
tion 16.16(a) shows that L, is isometrically bijected with the space .#; = {M €
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C+D | M[¢] = 0}. More precisely, given a representative ¢ € (C"+1), of [¢]
and M € ./, we compute g, € L; by taking

8t =8M = (\/E(X’ é‘)di—l Zmqu). (17.22)
j=0

To draw (g, ¢) € V, we can therefore first draw M € .# = C™"+D from a stan-
dard Gaussian distribution, then compute [¢] € P such that M[{] =0, then g; us-
ing (17.22), and finally draw h; € R; also from a Gaussian distribution. The system
q = g¢ + h; satisfies g(¢) = O—that is (g, ¢) € V—and is certainly random (we
have randomized both M and /). The somehow surprising fact is that the resulting
distribution on V is precisely ps;.

The following is a high-level description of the Beltran—Pardo randomization
scheme.

Algorithm 17.6 BP_Randomization_scheme
Input: d;,...,d, eN
Preconditions: n>1landd;, >1fori=1,...,n

draw M € .# from the standard Gaussian distribution
# almost surely M has rank n #

compute the unique [(]€P” such that M[¢]=0

choose ¢ uniformly at random in [;]OS((C”H)

compute gy according to (17.22)

draw h € R; from the standard Gaussian distribution

compute g=gu+h

return (¢g,¢) and halt

Output: (gq,¢) € Hq x (C"1),
Postconditions: (g, [z]) € V, (q, [¢]) ~ pst

It is obvious how to draw M € ./ in the first line of Algorithm 17.6 using 2(n> +
n) calls to rand_Gaussian( ). A representative of the class [¢] € P” such that M[¢] =
0 can be computed by standard algorithms in linear algebra. The drawing of ¢ from
the uniform distribution in [£] N S(C"**!) is done by drawing z € C from N (0, I»)
and then multiplying the representative of [¢] obtained above by %

The drawing of & € R, requires more thought but is nonetheless simple. The idea
istodraw f € Hgq from N (0, I) and then compute the image 4 of f under the orthog-
onal projection Hq — R;. Since the orthogonal projection of a standard Gaussian is
a standard Gaussian, this amounts to drawing 4 from a standard Gaussian in R;. For
computing the projection 4 we use the orthogonal decomposition f =k, + g, +h
with k; € C¢, and g; € L, given by Proposition 16.16(b). A precise description is
given in Algorithm 17.7 (random_h) below.
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Algorithm random_h returns a system 2 € R; randomly drawn from a Gaussian
in this space performing 2N calls to rand_Gaussian( ). Furthermore, its overall cost
is low.

Lemma 17.20 Algorithm random_h can be implemented such that it uses only
O(DnN) arithmetic operations.

Proof First recall that by Lemma 16.31, a polynomial f; € Hg4 can be evaluated

with O(N;) arithmetic operations, where N; = (”:d") equals the number of its coef-
ficients. This implies that one can evaluate f; and all of its first-order partial deriva-
tives with O(nN;) arithmetic operations. This implies that the entries of the matrix
M can be computed with O(nN) arithmetic operations (recall N = Zi N;).

Let f; € Hy; and let £ € H; be a linear form. Then the coefficients of the product
£ - f; can be obtained from the coefficients of ¢ and f; with O(nN;) arithmetic
operations. It follows that the coefficients of (X, {)k for k=1,2,...,d; can be
computed with a total of O(d;nN;) arithmetic operations. This implies that we can
compute the coefficients of the polynomials ki, ..., k, as well as those of g, with
O(DnN) arithmetic operations, where we recall D = max; d;. O

Algorithm 17.7 random_h

Input: di,...,d, € Nand ¢ e (C*)),
Preconditions: n>1,d; >1fori=1,...,n,and ||| =1

draw fe€Hq from N(0,])
for i=1,...,n do
ki i= fi(£)(X, £)%
for j=0,...,n do
—1/2

mij:=d; " (0x, fi(¢) —d; f;(£)¢))
(gm.0)i = di (X, )13 _ymijX;
h=f—k—gmc¢
return kA and halt

Output: /€ Hqg
Postconditions: /7€ R;, h~ N(0,I)

More importantly, we have the following result for the overall behavior of Algo-
rithm 17.6.

Proposition 17.21

(a) Algorithm 17.6 returns a random pair (g,¢) € 1% according to the density pg.
(b) The routine in Algorithm 17.7 performs 2(N + n? + n + 1) draws of random
real numbers from the standard Gaussian distribution and can be implemented
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with O(DnN + n?) arithmetic operations (including square roots of positive
numbers).

Proof We delay the proof of part (a) to Sect. 18.1.3 in the next chapter, where it will
follow from more general results.

For part (b), we note that the total number of calls to rand_Gaussian( ) is 2(N +
n? +n+ 1), of which 2(n2 4 n) are to draw M, 2 to draw z, and the remaining 2N
to draw h. The claim on the operation count follows from Lemma 17.20, noting that
O(n?) operations suffice for the computation of a representative of [¢] in solving
M[¢]=0. O

17.7 Analysis of Algorithm LV

Recall from Sect. 5.1 that cost?™" (£, g, ¢) is the number of elementary operations
(i.e., arithmetic operations, elementary functions, and comparisons) performed by
algorithm ALH with input (£, g, ¢). The randomized cost r_costY ( f) of LV on input
f € Ha is given by

r_cost™ (f) := O(DnN +n’)+ E cost™™M(f, 5,0,
(8.5)~pst

where the first term is the cost of drawing a pair (g, ¢) from ps; (Proposition 17.21).
We next focus on the second term.

For all f, g, ¢o, the quantity cost""( £, g, ¢) is given by the number of iterations
K (f, g, ¢) of ALH with input this triple times the cost of an iteration. The latter is
dominated by the computation of one Newton iterate (which is O(N) independently
of the triple (f, g, ¢); see Proposition 16.32). It therefore follows that analyzing the
expected cost of LV amounts to doing so for the expected value—over (g,¢) € V
drawn from pg—of K (f, g, ¢). We denote this expectation by

8:8)~pst

To compute bounds for K (f), the following quantity (suggested by the form of
Fay in (17.20)) will be of the essence. For g € Hq \ X we define its mean square
condition number by

1
M@ =5 D Haom(@-©)- (1723)
¢lg(©)=0

If g € X, then we set (g, (q) := 00.

Remark 17.22 Note that u2, is Fay for F = u2 . In this sense, we should write
(12 m)av- But we will use 2, for the sake of simplicity, and we may even abuse

notation and write way for /u2,.
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The definition of Mgv(q) as an average is an example for the discussion in
Sect. 6.8 (see also Remark 14.14).

The use of (4, together with Corollary 17.6, yields an upper bound for K (f).

Proposition 17.23 The expected number of iterations of ALH on input f € Hq \ ¥
is bounded as

LISl
lg: 11

K(f)<188D*? E / uz, (g dr.
g~N(©0,D) Jo

Proof Fix f € Hq\ X. Consider any g € Hq such that the segment E 7, does not
intersect the discriminant variety X~'. By Lemma 16.28, this is the case for almost all
g € Hq. To each of the zeros ¢ of g there corresponds a lifting [0, 1] — V, 7

(1, &), of E #.¢ such that {O(“) =@ _ Corollary 17.6 states that

(a) 3/2 ! NAIgl - (a)
K(f’g’ ¢ ) =188D 7Mnorm(qtv & )dt~

o llg:lI?
Since g“t(”), R {,(D) are the zeros of ¢;, we have, by the definition (17.23),
D 1
1 /gl
5K (e c@) <issp [ULELR ) ar
t

i=1

The assertion follows now from (17.20), since

D
1
K(f)= E (K(f,g.0)= E <5§j1<(f,g,¢<“))>.
=1

(8:5)~pst g~N(0,D) O

l

Remark 17.24 Let ’HAR denote the subspace of Hqg with real coefficients and let
f eHa\ X. Were we to try to take the average of K (f, g, ¢) over all real standard
Gaussian g € ’Hﬂf and its zeros ¢ € P(R"*1), then the argument of Proposition 17.23
would break down. The reason is that X' N H?f has codimension one. Hence, for
random g € ’Hﬂ(f, the line segment E 7, intersects X' N Hff with positive probability.
(Compare Lemma 16.28.) Therefore, ALH will fail with positive probability.

We can further take the expectation of K (f) for f ~ N (0, I) to obtain the aver-
age expected cost (or average randomized cost) of LV. Because of Proposition 17.23,
this quantity is bounded as

1
K(f)<188D? ® E /”fnuﬁnugv(q,)dt. (17.24)
F~NQ©O,D f~NODg~N©ODJo gl

At this point it is perhaps befitting to stress a difference between the two expecta-
tions in the formula above. From a technical point of view, they have exactly the
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same nature: both f and g are drawn (independently) from N (0, I). Yet, the two
drawings play very different roles. In the case of g or, more precisely, of (g, ¢),
the nature of the underlying probability distribution is irrelevant as long as one can
efficiently draw elements from it. In contrast, in the case of f, the underlying distri-
bution is supposed to model the (elusive) notion of “frequency in practice,” and the
appropriateness of the Gaussian for this purpose, recall the discussion in Sect. 2.2.7,
is not without contention.

But let us return to the bound (17.24). It is tempting to swap the integral and the
expectations in this expression because, for a fixed ¢ € [0, 1], g; is Gaussian and we
know its mean and variance (by Proposition 2.17). We could then replace the two
expectations for a single one in g;. An obstruction to doing so is the presence of
Il £1I'llgll, but this obstruction can be easily overcome.

We consider, for T, o > 0, the truncated Gaussian Nt (0, 1) on Hq given by
the density (recall Sect. 2.2.2)

v .
P

: (17.25)
0 otherwise,

where Pr, = ProbeN(O)dzI){Hfll < T}, and as usual, @9, is the density of
N(0,5%I,y). In the following we set the threshold T := +/2N.

Lemma 17.25 We have Pr, > %for all0 <o < 1.
Proof Clearly it suffices to assume o = 1. The statement follows from Proposi-
tion 2.22 and the fact that the random variable || f||? is chi-square distributed with

2N degrees of freedom. g

Proposition 17.26 The average randomized number of iterations of LV satisfies

2
E  K(f) <7527 D¥*N “av(z) .
F~N©O.D a~N©O.D gl

Proof By (17.24) we have

1

f~N@O) F~N@O.D g~N(©.D) llgell*
1
=188D%? E E /”f“”é;”uiv(qz)dt.
f~Nr©Dg~Nr©DJo gl

The equality follows from the fact that since both % and M%V(Qt) are homo-

geneous of degree 0 in both f and g, we may replace the standard Gaussian by
any rotationally invariant distribution on Hgq, in particular by the centered truncated
Gaussian N7 (0, I). The last expression can be bounded (we use, as usual, ¢ to de-

note the density of N (0, I)) as follows:
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2
18803/2 / / / Mav(q;) dto(2) o) dg df
Tl IFI<T Jlgl<T llg: |

" uZ,(a)
2 1) I 2
Pr | f~NODg~NODJo gl

T2 1 2
= 188D3/ZT/ ( E Mav(‘];))dt’
Pr Jo \g~N@©.2+1-n»D gl

where the last equality follows from the fact that for fixed ¢, the random polyno-
mial system ¢; = ¢f + (1 — t)g has a Gaussian distribution with law N (0, 0,21),
where 0,2 =124 (1 —1)? (by Proposition 2.17). Note that we deal with nonnega-
tive integrands, so the interchange of integrals is justified by Tonelli’s theorem (cf.

Sect. 2.1). We next note that by Lemma 17.25, we have PTTz < 8N, and we use the
T,1

< 18803/2 dt

homogeneity (of degree —2) of M‘l""vﬁg) to obtain
1 2
K(f) < 1504D3/2N/ ( “av(q;))dz
F~N@©.D a~N©O,2+0-021n gl
2 1
1
—1504D3?N E “av(g) . S di
a~No.D llgll= Jo 7+ (1 —1)
= 1504D32N Mav(g)z. (17.26)
g~N©O.D llgll* 2
O

We can now complete the average analysis of LV. The remaining step is achieved
in the following result.

Proposition 17.27 We have

Hav(@) _e(nt])
g~Non lgl> = 2

Proof By the definition (17.23) of 112,(¢) we have

2

May(q) / 12,(q)
= v3,(q)dq

Ha lgl? geta lglI? Ha

1 weom(@, ©)
- — Ponorm - 2) o () d
/qudD 2 Igz (Mt

[¢leZ(q)

Mmrm(q C) )
— d
/qead 27D ( 2 / g %) oa@da

[¢1lez(q)
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1 / Mﬁorm(Qv C) -1 >
= T — 5 A (@) |ene(q)dg
‘/qud 27TD< (q,()errfl(q) ||q||2 ! d

:/ Mﬁorm(qvg)NJ”I(q,é‘)
(q.0)eV

g2 wp PHa DAV,

the last equality by the coarea formula applied to 7 : V — Hq. We next apply the
coarea formula to the projection 72 : V — S(C**1) and obtain that the last expres-
sion above equals

— ora(@) dry  (§)dS(C'H).
es©+) 27D Jig.pyens '@y Nlgl? NIma(q, o) 7™ 2 ©)

/ 1 120 (@, &) NIm1(q, )
¢

Recall the orthogonal decompositions Hq = C; @ L; @ R; from (16.9). For fixed
¢ € S(C™t), the fiber Ty ! (¢) can be identified with the linear subspace

Vei={qgeMalq¢)=0}=L; ®R;.

For g € ‘75 let us write ¢ = 0 4 g + & corresponding to the orthogonal sum above.
Factoring the standard Gaussian density as in (2.12), we obtain

1
PHa (@) = ¢, (0) oL, (8) pr, (h) = Gy Pk (&) ¢r, (h),

since C; =~ C" R2", Furthermore, we put
M :=diag(v/d;) ™' Dq(¢) = diag(y/d;) "' Dg(¢). (17.27)
Note that M ¢ = 0. By the definition (16.11) of the condition number [tporm, We have

Mgorm(qv ;) _ + 2
||6]||2 - ” ” .

Moreover, Corollary 17.16 tells us that

(17.28)

NIm
NJ7T2

(q,¢) =Ddet(MM¥).

Fubini’s theorem (Theorem 2.2) implies now, using f heRr, PR (h)ydh =1,

2
u’norm(q’ ¢) Nlmy 1
ST (. 0) pra (@) dmy  (©)
/(qx)enzl(;) lql?> NIm, d 2

D
- Q)

/ | | det(MM*) g1 (g) dsg.
geL;
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By unitary invariance, this expression is independent of ¢ € S(C"*!), so that we
may assume that ¢ = eg; cf. Lemma 16.15. Hence we obtain that

12, (q) _ volS(C'*1
Hy gl Qo Jee

| MT|? det(MM*)gr, (9)dg.  (17.29)
Le,

where M is determined by (17.27). Proposition 16.16 reveals that

Loy — Moy, g M =diag(v/d;) ™' Dg(¢)

is a linear isometry, where .#,, := {M € .# | Mey = 0}. This space can be identi-
fied with C"*", since it consists of the matrices in .# whose first column is zero.
Corollary 4.23 states that

1
/ . | A= [det(A) [y (A) dA < Z"n!g. (17.30)
AE nxn
Moreover, cf. Proposition 2.19,
2 n+1
VoIS (C"H) = vol s+ = T (17.31)
n!
Combining (17.29)—(17.31), we get
Hav(@) _e(n+1)
Ha lgl> — 2 7
as claimed. O

We close this section by proving the main result in this chapter.

Proof of Theorem 17.1 We already know that the algorithm LV described in
Sect. 17.2 returns an approximate zero of its input f, since ALH does so. In ad-
dition, it follows from Propositions 17.26 and 17.27, and the O(N) cost of each
iteration of ALH established in Proposition 16.32 that the average cost of ALH over
random f ~ N (0, 1) and random (g, ¢) ~ pst is bounded as

E E cost'™(f,g,¢) < O(D¥*nN?).
FANOD (8.0)~pst

Proposition 17.21 further ensures that the cost of the initial randomization in LV,
i.e., O(DnN + n?), is dominated by this bound. O

17.8 Average Analysis of norms Mavs and fmax

It is clear that for successfully applying the algorithm ALH, one needs a starting pair
(g, ¢) in the solution variety V having small condition pinorm (g, z). It is therefore of
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interest to understand the distribution of (o on V. For instance, what is the order
of magnitude of the expectation [Enorm With respect to the standard distribution?
In order to analyze this, recall from (17.14) the special case

={(M,¢) et xS(C") | Mg =0}

of the solution manifold, where .# := C"™"+D_ We put A := diag(dil/ 2) and con-
sider the linearization map

W:V—)W, (g,0)—~ (M, ), whereM::A_qu(g),

already introduced in (17.21). We claim that if (g, ¢) € V is random following pst,
then M € /# is a standard Gaussian matrix. Indeed, Lemma 17.19 states that the
pushforward of the standard distribution Pst On V under the map ¥ equals the
standard distribution on W. Moreover, Lemma 17.18(b), applied to the projection
W A, implies that the pushforward of the standard distribution on W under
P1 equals the standard Gaussian on .Z .

According to (16.11), the condition number pnorm(q,¢) can be described in

terms of ¥ as follows:

Mnorm(q, ¢) _
llgl

where (M, ) =W (q, ¢). (17.32)

In Sect. 4.4 we already analyzed the distribution of | M T|| for a standard Gaus-
sian. Putting things together, it is now easy to prove the following result.

Theorem 17.28 Fort > /nN we have

2.9 In? ¢
Prob {Mnorm(qa )= t} <24n°N 4 -
(q:8)~pst
Moreover,
E  ftnom(q.¢) <5vnN In*(nN)
(q.5)~pst
and

E /J“%orm(q’ é‘) = O(nN 1n2(nN)).
(g,5)~pst

Proof Proposition 4.27 implies that for any € > 0,

1
Prob {”M [> gi}gg.
M~N(0,T) (8¢ )—

Moreover, Corollary 4.6 implies that for any & > 0,

[ 1
Prob {||q||zv2N+ 21n—}§s
g~N(0,]) e
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Using the observation (4.17), we combine the above two tail estimates to obtain

Prob{ [ M| llgll > t(e)} < 2e, (17.33)

1 1
t(e) = nee t (v +,/21n£).
(8e)# €

Clearly, the function #(e) is strictly monotonically decreasing on (0,1) and
limy_, ot (e) = co. Hence for all > #(a) there exists a unique ¢ = ¢(¢) such that
t =t(¢). In order to bound &(¢) from above in terms of &, we note that

where

ey =8 VAN
(86)4

and hence
1

= N)2t<a)4 <i(e)*.

Using this bound in (17.33), we get for ¢ = £(7),

£7i (V2N +V2Int) < ™4 4/ Nnt,

(86) 1 (8e)¥

where we have used that a + b < ab for a, b > 2. This implies

,In?¢
~ 8e Il

Since t(a) = nN < +/nN, this bound is valid for any r > +/nN. Hence we obtain
from (17.33) that

—
0
]
N
A=

Prob{ | M| llgll >t} < 2e < 24;12N2 ln !

proving the tail estimate.
The bound on the expectation follows from

00 - 00 1n2t
E norm = / Prob{itnorm > t}dt < ~nN +24n“N / — dt,
1 VnN I

noting that

2 ¢ 7y 2lnty 2 17 In? 19
A=ty TSy
10 % % Tt %
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Therefore,

E fnorm < VnN + (nN)2 In2(2N) < 5(N)? In2(nN).

We can argue similarly for the expectation of uﬁorm(q), where g € Hq is standard
Gaussian. 0

The previous result easily implies information on the distribution of fi4y.

Corollary 17.29 Fort > 1 we have
nN
Prob >t} =0 = In*uN
qNN(O’D{Mav(Q) > 1} ( I ))

and

E ud(q)=0O(nN In*(nN)).
g~N(0.D)

Proof Lemma 17.18(e) implies E ,ugv =EK ,u%orm. Hence the bound on the expecta-
tion of ugv follows from Theorem 17.28. The tail bound is now a consequence of
Markov’s inequality (Corollary 2.9). O

Remark 17.30 The t~2 tail decay in Corollary 17.29 results from a simple appli-
cation of Markov’s inequality and does not describe the true behavior. This can be
seen be comparing the tail bound with such a bound in Theorem 17.28 in the case
d; = 1 for all i, in which pnorm = Hay-

We finish this chapter with a brief discussion of the distribution of the maximum
condition number [Lmax defined, for g € Hq \ X, by

Mmax(q) == fr;%( Mnorm (q, gi (CI)),
where ¢1(q), ..., {p(q) are the zeros of g. By definition, pimax (q) > ¢ iff there exists
J <D such that pnorm(q, ¢;(g)) > t. Hence, for standard Gaussian ¢,
D

qf{]o(gfl){ﬂmax(cn > t} < ; PrOb{,unorm(q, g (C])) > t}.

If we could assume that (g, ¢;(q)) follows the standard distribution, for all j, then
we could deduce from Theorem 17.28 that

In? ¢
Prob {umax(q)zt}=o<27 22t )
qg~N(0,I)

While it is not clear that the latter assumption is in fact true, the following result can
be rigorously proven. We omit the proof.
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Proposition 17.31 In the case n > 1 we have for t > \/n,

Dn3N?
Prob >t =0
qu(O,I){MmaX(q) = } ( 4 )

and

2 13
E (@) =O(DInIN).
q~N(@©O.D

In the case n = 1 we have fort > 1,

Prob {umax(q) =1} <d (11 1y P
NOD Mmax(q) = 1T§ = 2 ) . 0]

Remark 17.32 In the special case n = 1, Proposition 17.31 implies that for a ran-
dom g of degree d we have umax(q) = O(d) with probability at least 1/2. Remark-
ably, as of today, no deterministic polynomial-time procedure is known to produce
a family (g4) of univariate polynomials such that deggy = d and pmax(q) = O(d).




Chapter 18
Smale’s 17th Problem: 11

In the preceding chapter we described Smale’s 17th problem and a probabilistic so-
lution for it, namely, a randomized algorithm whose average cost is polynomially
bounded. The present chapter continues with this theme, adding further understand-
ing of the behavior of Algorithm LV (introduced in Sect. 17.2.2). Also, getting closer
to the original formulation of Smale’s problem, this chapter exhibits a deterministic
algorithm whose average cost is nearly polynomial.

Our first result here is an extension of Theorem 17.1 providing a smoothed
analysis for the randomized cost of Algorithm LV. For this result we use a trun-
cated Gaussian as defined in (17.25) but noncentered. For f € Hq we define
N(f,o%) :=f + N(0, o).

Theorem 18.1 Forany 0 <o <1, Algorithm LV satisfies

1
sup E  rcost(f)= (9(D3/2nN2 —>_
TeS(Ha) /N1 (oD o

Our second result is a condition-based cost analysis of Algorithm LV. We are
here interested in estimating K (f) for a fixed input system f € Hgq \ X. Such an
estimate will have to depend on, besides D, n, and N, the condition of f. We take
for the latter the maximum condition number (which we met in Sect. 17.8)

Mmax (f) = max fnorm(f;¢), (18.1)
Z1f(6)=0
which, we note in passing, provides an example for the third (and last) form of
measuring condition in terms of solutions discussed in Sect. 6.8.
Our condition-based analysis of LV is summarized in the following statement.

Theorem 18.2 The randomized cost of Algorithm LV with input f € Hq \ X is
bounded as

Lv 3 2,2
r_cost™ (f) = O(D’nN~ ppma ().
P. Biirgisser, F. Cucker, Condition, 367
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We finally want to consider deterministic algorithms for finding zeros of poly-
nomial systems. One such algorithm with polynomial average cost would provide a
positive answer to Smale’s 17th problem. As of today, this answer has proved to be
elusive. The last main result in this chapter is just a step in this direction.

Theorem 18.3 There is a deterministic real-number algorithm that on input
€ Hq computes an approximate zero o in average time NOUEEN)  pope.

f € Ha comp pp g

over, if we restrict data to polynomials satisfying

1
D<nT™ or D>n'T¢,

for some fixed ¢ > 0, then the average time of the algorithm is polynomial in the
input size N.

A common characteristic of the contexts of the three results above is the fact
that the systems g; occurring in their corresponding homotopy paths, while still
random because of the randomness of either f or g, follow distributions that are
no longer centered at 0. Gaussianity remains, but centrality doesn’t. Consequently,
variance plays a role. This characteristic adds a degree of intricacy to the arguments
of the preceding chapter. In particular, it requires the consideration of extensions
of the measure pg;. We therefore begin this chapter with some probability results
including, among others, the postponed proof of Proposition 17.21.

18.1 The Main Technical Result

The technical heart of the proof of the results in this chapter is the following
smoothed analysis of the mean square condition number pi4,. Note that this result
extends Proposition 17.27.

Theorem 18.4 Forq € Hq and o > 0 we have

(u;(q)) _en+1)
~N@G.o\ lgll? 202

We note that no bound on the norm of g is required here. Indeed, using
Hav(Aq) = nav(q), it is easy to see that the assertion for a pair (g, o) implies the
assertion for (Ag, Ao), for any A > 0.

18.1.1 Outline of the Proof

We shall now give an outline of the proof of Theorem 18.4. Let p3, denote the
density of the Gaussian N (g, o21) on Hq, where g € Hq and o > 0. For fixed ¢ €
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S(C"*1) we decompose the mean g as
q:%; +§; +E{ € C; @L; @R;

according to the orthogonal decomposition (16.9). If we denote by pc,, pr,, and
PR, the densities of the Gaussian distributions in the spaces C¢, L¢, and R; with
covariance matrices o 21 and means E;, MC’ and E;, respectively, then the density
P, Tactors as

PHa(k+ g +h) =pc, (k) - pL (&) - pr, (h): (18.2)

compare (2.12).
Recall from (17.14) the manifold

W= {(M,¢) et xS(C") | Mt =0},
whose projection p;: W — Sy, (M, ) — ¢, has the fibers
W, :={Me.#|M; =0}

Proposition 16.16 tells us that we have the isometric linear maps
We— Ly, Mis gy = (/E(X,g)di—lzmijxj) (18.3)
J

Thus the Gaussian density pr, on L, induces a Gaussian density pw, on the
fiber W, with covariance matrix 021 via this map, so that pw, (M) = pr, (gm.¢)-

We derive now from the given Gaussian distribution p3;, on Hq a probability
distribution on the solution variety V as follows (naturally extending ps; introduced
in Sect. 17.5). Think of choosing (g, ¢) at random from 1% by first choosing g € Hq
from N (g, 021), then choosing one of its D zeros [¢] € P at random from the uni-
form distribution on {1, ..., D}, and finally choosing a representative ¢ in the unit
circle [¢] N'S" uniformly at random. (An explicit expression of the corresponding
probability density py on Vis given in (18.16); compare the special case (17.19).)

The road map to proving Theorem 18.4 is as follows. By the definition of py,
and as in Lemma 17.18, we have

2 2
(M0} g (Bem@0) g
a~N@Go>D\ g @.)~pp gl

Recall from (17.13) the lifting V C Ha x S(C"*1) of the solution variety V C Hq x
P". Put A := diag(dl.l/ 2). In (17.32) we already noted that the condition number

Unorm (¢, ¢) can be described in terms of the linearization map

vV W, (g, 0)—~> (M,t), where M := A—qu(g),
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as follows:
Mm#(ﬁ’oﬂlw . where (M, ) =¥(q.0).
Hence
2
<q,;?~pv<%(uq2’§)> WE (! 1%). (18.5)

where p 4 denotes the pushforward density of py with respect to the map
p1o v ‘7 — M.

It will turn out that the density p_, has the following explicit description. For
M € .4 of rank n and ¢ € S(C"*+!) with M¢ =0 we have

1
p.at(M)=pc,(0) - > / ow;,. (M) ds'. (18.6)
T JareS!
By (17.12) we have

Mt E (
MNM(H %) = i,

(Im"]%). (18.7)
where pgcn+1y is the pushforward density of py with respect to pyo¥: V —
S(C"*+1) and pw, denotes the conditional density on the fiber W;. This conditional
density will turn out to be of the form

,OW{ M) = c det(MM ) PW, (M), (18.8)

with ¢; denoting a normalization factor possibly depending on ¢. In the case ¢ =
(1,0, ...,0) we can identify W, with C"*", and pw, takes the form (4.21) studied
in Sect. 4.4. Proposition 4.22 and unitary invariance imply that for all { € S(C"*1),

s12y _ em+1)
() < <450 (189

M~pw,
This implies by (18.7) that

en+1)

112
JE () = <552,

and this bound, replaced in (18.5) and back in (18.4), completes the outline of the
proof of Theorem 18.4.

The formal proof of the stated facts (18.6) and (18.8) is quite involved and will
be given in the remainder of this section.
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18.1.2 Normal Jacobians of Linearizations

In (17.32) we saw that the condltlon number [norm (g, ¢) can be described in terms
of the linearization map W : V> W.Asa stepping stone towards the analysis of
the normal Jacobian of ¥ we introduce now the related linearization map

D:V—-W, (q.0)r (N0 =(Dg(),¢). (18.10)
Lemma 18.5 The derivative of D®(q,¢): Tig,c)V — T(n,c)W is determined by
D®(q,0)(G,{)=(N,{),  where N =DG(¢) + D*q(¢)(, ).

Proof Consider a smooth curve ¢ +— (q(t), ¢(?)) in V with (q(0),¢(0) =(g,¢)
and put N(¢) = Dq(¢)(¢(¢)). In coordinates, n;; (1) = ij qi (t)(¢(1)). Differentiat-
ing this with respect to ¢ at zero, we obtain

hij = 0x,Gi(0) + Y 0x, 0%, (¢) Lk
k=0

This is nothing but the claimed assertion, written in coordinates. g
It is a crucial observation that the normal Jacobian of @ is constant.
Proposition 18.6 We have NI® (g, ¢) =D" forall (q,7) € V.

Proof We adopt the notation from the proof of Lemma 17.15. Using the shorthand
dkq for the partial derivative dx, g, etc., a short calculation yields, for j > 0,

dogi (¢) = d;u;, 9;4i(0) =Vd; aij, 33,’4i(§)=(di_1)”ij~ (18.11)

Similarly, we obtain dog; (¢) = O and 0;q;(¢) =n;; for j > 0.
Introducing the coordinates N = (71;;), the formula of Lemma 18.5 can be written
as

n
hij=0;Gi(0)+ Y 0%4i(0) &k (18.12)
k=1
For j > 0 this gives, using (18.11),

n
hij = /di dij + Y0541 () &k (18.13)
k=1
For j =0 we obtain from (18.12), using (18.11) and (17.16),

Rio = 004i () + Y 0 di(Q) &k =ditti + (d; — 1) Y n&x =ity (18.14)
k=1 k=1

Note the crucial cancellation taking place here!
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From (18.13) and (18.14) we see that the kernel K of D® (g, ¢) is determined by
the conditions ¢ = 0, =0, A = 0. Hence, recalling T, ¢)V =~ T(n. )W x R; from
the proof of Lemma 17.15, we have K ~ 0 x R; and K+~ T(n,cyW x 0. Moreover,
as in the proof of Lemma 17.14 (but replacing M by N), we write

n
E;:i(u,é)ecn x<c"+1|ui+znij§j=o,1gign, b €iR
j=1

and identify Ty )W with E x C"*". Using this identification of spaces, (18.13)
and (18.14) imply that D®(q, ¢) g+ has the following structure:

D®(q,0)gr: ExCV"— ExCY",
(G, 6),4) = (@, &), 1(A) + p(D)),

where the linear map A: C"*" — C"*", A (Vd; a;j), multiplies the ith row of A
by /d; and p: C**1 — C"*" is given by p(£)ij = Y _j—; 35.4i () k-

By definition we have NJ® (g, ¢) = |det DP(q, {) g |. The triangular form of
D®(q, ¢) x+ shown above implies that |det D®(q, {) g 1| = detA. Finally, using
the diagonal form of 4, we obtain det 2 = [ i, [T}, Jd; 2 — D", which completes
the proof. g

Remark 18.7 Denote by H]}‘Q the linear space of homogeneous polynomial systems
with degree pattern d = (d, ..., d,) and real coefficients. The real solution variety
Vr C HAR x S" is defined in the obvious way and so is Wr C .#g x S", where .4 =
R"*(+1D) The same proof as for Proposition 18.6 shows that the normal Jacobian
of the map @r: Vr — Wr, (¢,¢) — (Dq(£), ¢), has the constant value D2, As
the only change in the proof we notice that the R-linear map C — C, z > /d;z,
has determinant d;, while the map R — R, x — +/d;x, has determinant \/d;.

The normal Jacobian of the map ¥ : V — W is not constant and takes a more
complicated form in terms of the normal Jacobians of the projection p;: W — Z.
For obtaining an expression for NJ¥ we need the following lemma.

Lemma 18.8 The scaling map y : W — W, (N, o) (M, ¢), with M = A™'N of
rank n satisfies

L NIpiV.9)
D+l NIpi(M,¢)

detDy(N,¢) =

Proof Note that T(y,¢) W= Tim,o) W @ Rig, where W denotes the solution variety
in # xP". Let pj: W — .# denote the projection. The derivative Dyp(N, ¢)
of the corresponding scaling map yp: W — W is determined by the commutative
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diagram

Dyp(N.{)
InW —— T, )W

Dp|(N.5) l i Dp|(M.¢)
where the vertical arrows are linear isomorphisms. The assertion follows by observ-
ing that NJp{(N,¢) = detDp’l(N, £), NJly(N,¢) =det Dyp(N, ¢), and using that
the R-linear map sc: # — #,N+—> M = A~IN, has determinant 1/D"+1. O

Proposition 18.6 combined with Lemma 18.8 immediately gives

_ 1 NIpi(N, )
NV @O = 5 N (18.15)

for N =Dgq(¢), M = AN,

Remark 18.9 Here is a sketch of an alternative proof of Proposition 18.6. For given
(g,¢) € V we decompose g = g + h with g € L; and h € R; according to the
orthogonal decomposition (16.9). It turns out that NJ@ (g, {) depends only on the
component g, so that we may assume that h =0 and g = g.

The map @ is equivariant under the action of % (n + 1). Hence NJ@ is constant
on 7 -orbits. We may therefore assume that { = eg = (1,0, ...,0). The elements
g = (gi) of L, are of the form g; = Xg"fl Z’}zl n;jX; and in bijection with the
matrices N = [n;;] € . having zero as their first column. The action of the stabi-
lizer %,, >~ % (n) of e corresponds to the multiplication of N by unitary matrices
from the right. However, we also have an action of % (n) on .# given by multi-
plication from the left. This defines a % (n)-action on L.,. (Note that this action
does not extend to Hq unless all the degrees d; are equal.) It can be shown that
@ is also equivariant with respect to this action. As a consequence, NJ@ is con-
stant on % (n) x %,,-orbits. By the singular value decomposition of the matrix N,
we may therefore assume that N consists of the zero column and the diagonal ma-
trix diag(o1, ..., 0,), where o1, ..., 0, are the singular values of N. Summarizing,
(g, ¢) is of the special form

7]X}’l5 §=(1705"'50)7

81 =01X61"71X1,..., &n =onX61"
that we already encountered in Remark 16.18. A closer look then reveals that
NJ® (g, ¢) does not depend on the singular values o;. Using this fact, it is pos-
sible to derive the actual value NJ@ by an indirect argument as follows. As
in the proof of Theorem 19.2, one can derive the following complex analogue
of (19.11):

n+1

NJ®

)

f #c(q) opa(q) dHa =
geHaq
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where #c(g) denotes the number of zeros of ¢ in P (C) and ¢y, is the standard
Gaussian distribution on Hq. Bézout’s theorem implies that #¢(g) = D for almost
all g € Hgq. Therefore, NJ@ = D",

18.1.3 Induced Probability Distributions

By Bézout’s theorem, the fiber V(q) of the projection 7 : V — Hgq at qgeHa\ X
is a disjoint union of D =d; - - - d,, unit circles and therefore has volume 27 D.
Recall that p7;, denotes the density of the Gaussian distribution N (g, o2I) for

fixed g € Hq and o > 0. We associate with py;, the function py; : V — R defined
by
) 1
Py (g, %) -ZM—DPHd(q)NJm(q,é“)- (18.16)

By the same proof as for the standard distribution dealt with in Lemma 17.18 we
can prove the following.

Lemma 18.10

(a) The function py, is a probability density on V.
(b) The expectation of a function F : V — R with respect to py, can be expressed
as

E F(g,0)= E Fsalg),
(q.9)~py q4~PHg

where Fsay(q) = ﬁ f‘;(q) Fd‘7(q).

(¢) The pushforward of py, with respect to 7 V = Hq equals p3(,.

(d) Forq ¢ X, the cgnditional density on the fiber V(q) is the density of the uniform
distribution on V (q). g

We can now determine the various probability distributions induced by py, .

Proposition 18.11 Let ¢ € C**!. For h € R, we have

Py

where the pushforward density py;, of py, with respect to W VoW satisfies

1
Py (M, §) = Eﬂcg(o)'pwg(M) ‘NIpi1(M, ¢).
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Proof Using the factorization of Gaussians (18.2) and Lemma 17.15, the density p;,
can be written as

1
py(8mc +h,8)= 72D P ) pw, (M) pr, (h) NIp1(N, ),

where N = AM. It follows from (18.15) that

Py
NIy

1
(8. +h.0) = 5~ pe,(O) pw, (M) pr, NI (M. 0. (18.17)

This implies, using (17.10) for ¥ : V — W and the isometry (M, $) >~ R; for
the fiber at ¢, that

Py
pA(M,§)=f
w ner, NIW

1
27[ hER{

1

as claimed. Replacing in (18.17), we therefore obtain

Py
h,¢)=py (M, h).
NW(gM,ng §)=py (M, ) pr, (h) O
Lemma 18.12 Let c; denote the expectation of det(M M*) with respect to py, . We
have
PW_m,¢)= Sw, (M
NJpz( »8) = pgcr+y (§) - pw, (M),

where pgcn+1y(§) = ;—i pc, (0) is the pushforward density of py, with respect to
p2: W — S(C"Y), and where the conditional density pw, on the fiber Wy of pa is
given by

pw, (M) = cgl - det(MM*) pw, (M).

Proof Lemma 17.16 states that

Nlp;
NIp2

(M, ) =det(MM*).
Combining this with Proposition 18.11, we get

Py 1 )
NJV;Z (M) = 5~ pe, (0) - pw, (M) - det(MM”).




376 18 Smale’s 17th Problem: 1T
Integrating over W, we get pg(cn+1)(§) = % pc, (0) - ¢z, and finally (cf. (17.11))

Py (M, ¢) _
Pty QO NIpa (M, )

pw, (M) = ;' pw, (M) - det(MM*¥),

as claimed. U
We can finally complete the proof of the main technical result of this chapter.

Proof of Theorem 18.4 The claimed formula (18.6) for the pushforward density p, 4
of py;, withrespect to p; : W— immediately follows from Proposition 18.11 by
integrating py;, /NJp; over the fibers of p;; compare (17.10).

Moreover, Lemma 18.12 shows that the conditional density ,5W§ has the form
stated in (18.8). We have thus filled the two gaps in the outline of the proof given in
Sect. 18.1.1. O

We close this section by providing a proof of Lemma 17.19 as well as of Propo-
sition 17.21(a), both tasks that we postponed in the previous chapter.

We begin by noting that the fibers of ¥ allow for a transparent description. In-
deed, for (¢, ¢) € V we have the decompositiong =g +h with g € L; and h € R;
according to (16.9). If ¥ (g, ¢) = (M, ¢), then g is uniquely determined by (M, ¢)
(by (18.3)). It follows that the fiber of ¥ over (M, ¢) is in bijective correspondence
with the space R; as follows:

Re — W' (M, 0), hrs (gmc+h0). (18.18)

Proposition 18.13 The conditional distribution on the fiber of ¥ over (M, ) € w
is induced from the Gaussian in R; via the bijection (18.18).

Proof By the definition (17.11) of the conditional distributions on fibers we have
that the density /3‘;; satisfies, for (g, ) e v~ 1(M, ¢) = Ve,

Py (M, 5)NI¥ (g, ¢)

0y, (q,8) = = pr, (h),

where g decomposes as ¢ = gy,r +h € Ly @ R¢, the last equality following by
Proposition 18.11. This proves (a). [l

Proof of Lemma 17.19 Since we assume here p;, to be standard Gaussian, the
induced distributions on C¢, L;, and R; are standard Gaussian as well. Hence
pw, equals the standard Gaussian distribution on the fiber W;. Moreover, pc, (0) =
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(+/27) 72", Therefore, using the second statement in Proposition 18.11, we get

1
Py (M.£) = = pc,(0) - pw (M) -NIpi (M)

1 1 1
= — —e€
27 2r)" 2m )"

1
xp(—5||M||%) NIp1(M, ¢)

1
= 2—¢%(M) ‘NIpi(M, ¢),
g
where ¢_, denotes the standard Gaussian distribution on .. It follows from the
deﬁnltlon (17.19) of standard distribution (taking D = 1 there, since we are dealing
with W) that Py 1s the density of this distribution on w. O

Proof of Proposition 17.21(a) Let us denote by pgp the density for the distribution
of the pairs (¢, ¢) € V returned by Algorithm 17.6.

Pairs are drawn from pgp by first drawing (M, ¢) from a marginal distribution
pg(, on W and then drawing (g, ¢) from the conditional distribution on the fiber

w~1(M, ¢) (recall Remark 17.11). Draws from the marginal pg‘;, are likewise ob-
tained by first drawing M from the standard Gaussian ¢_j; on .# and then draw-
ing ¢ from the uniform distribution on M ~1(0) N S(C"*1) (which is almost cer-
tainly Sl). From here it follows that pé‘,’, is the standard distribution on W. Indeed,
Lemma 17.18(b) applied to w states that the pushforward of the standard distribu-
tion on W with respect to pg: W — .« equals the standard Gaussian distribution
on ./, and part (d) of the same lemma ensures that the conditional distribution
on the fiber pl_1 (M) equals the uniform distribution on M~1(0) N S(C"*!). Hence

the standard distribution on W decomposes with respect to p; in the same manner
as pg‘,’,.

A similar argument shows that pg; and pgp decompose in the same manner with
respect to the linearization ¥ : V — W. Indeed, the pushforward of ps with respect
to ¥ is, by Lemma 17.19, the standard distribution on W, showing that the marginals
coincide. The conditionals for pairs (M, ¢) coincide as well, since in the case of pgp
these are the standard Gaussian in R; by construction and in the case of pg they are
the same distribution by Proposition 18.13. O

18.2 Smoothed Analysis of LV

The smoothed analysis of LV, that is, Theorem 18.1, is shown similarly to its
average-case analysis.

Proof of Theorem 18.1 Fix z € S(Ha). Reasoning as in the proof of Proposi-
tion 17.26 and using | f|| < | fIl +1|.f — fIl <1+ T, we show that
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E k() <igsp2rT DT E (/]“%(q’)d;)
0

N7 (F02D) Pr o Pr,1 f~N(F,021g~N(O.D llge |l
_188D3/2<T+1>Tf1 E (u%(qn)dt
ProPri Jo g~N@,.o2n\ gl

with g, =¢f and 0,2 = (1 —1)*> 4+ o%t2. We now apply Theorem 18.4 to deduce

1 2 1
/ E <M2(q;)>dt§ e(n+1) Zt - err(n+1).
0 ¢~NG@G, oD\ gl 2 o I—0*+o°t 4o

Consequently, using Lemma 17.25, we get

em(n+1)

3/2
E oy, FornK(f) <188D%% 4. (2N + V2N) -

which, combined with the O(N) cost of each iteration in LV, proves the assertion. [J

18.3 Condition-Based Analysis of LV

The last two results stated in the introduction of this chapter involve homotopies
on which one endpoint of the homotopy segment is fixed, not randomized. The
following result provides the major stepping stone in their proofs.

Theorem 18.14 For g € S(Hq) \ X we have

1
JE (dgoc g) /0 Mﬁv(qr)dr> <639 DN (1 + 1) g, (8) +0.02.

The idea for proving Theorem 18.14 is simple. For small values of 7 the system
g is close to g, and therefore, the value of ,ugv(qt) can be bounded by a small
multiple of ,ufnax(g). For the remaining values of t, the corresponding ¢ = #(7)
is bounded away from 0, and therefore, so is the variance Utz in the distribution
N(q;, ot2I) for g;. This allows one to control the denominator on the right-hand side
of Theorem 18.4 when using this result. Here are the precise details.

In the following fix g € S(Hq) \ X. First note that we may again replace
the Gaussian distribution of f on Hgq by the truncated Gaussian Nt (0, I).
As in Sect. 17.7 we choose T := +/2N. Recall also from this section the proba-
bility Pr 1, which is at least 1/2; cf. Lemma 17.25. We therefore need to bound the
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quantity

1
Qg = d(f, g)/ /’Lgv(ql')df>

Fonl
S~Nr(0.1)

To simplify notation, we set ¢ := %, C = lz A :=0.00853... as in the proof of
Theorem 17.3 and define

A 1
S — = )
D32u . (8) 14T +1.00001 £

8o =

Proposition 18.15 We have

T ! ©2,(qr)
Qg < (148?80 i () + — E ( = )dt,
max Pra Jiy a~N@G.2D\ llg:]|?

where g, = (1 —t)g.

Proof Let @, ..., ¢P be the zeros of g and denote by (g:. ) er0.1 the lifting
of Ef¢ in V corresponding to the initial pair (g, ¢ and final system f € Hq\ .

Equation (17.5) fori = 0 in the proof of Theorem 17.3 shows the following: for
all jandall T < =% (fg)D3/2unorm(g oy e have

Hnorm(‘]n (])) <A +8)/J/norm(87 é-(j)) < (I + &) max(g)-

In particular, this inequality holds for all j and all 7 < ﬁ;g), and hence for all
such 7, we have

Hav(gr) < (14 &)max(g). (18.19)
Splitting the integral in Q, at To(f) := min{1, LZSES—?@}, we obtain

w0 (f) )
= E d d
Qg fNNT(O,I)< s(f, g)/() Mav(Qr) T>

1
+ E |ds(f, / 2 dr).
f~NT((),I)( s(/8) To(f)uav(qr)

Using (18.19) we bound the first term on the right-hand side as follows:

70(f)
E (ds(f, 2(g)dt ) <(1+¢e)?8 2,
f~NT(0,I)< s(f. 8) /O May(qr) ) = (I +¢&)" do/max(g)
For bounding the second term, we assume without loss of generality that 7o(f) < 1.
It then follows from (17.1) and Lemma 17.5 that for a fixed f,

1

1
13, ()
ds(f. ) f W2 (g0 dT < [ 1 g
w0(f) t0(f) llg: I

7
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where #o(f) is given by

1

1 = ,
0(f) 1+ || fll(sinxcotdy — cos )

a:=ds(f, g).

Now note that || f|| < T, since we draw f from N7 (0, I). This will allow us to bound
to(f) from below by a quantity independent of f. For || f|| < T we have

0 <sinacotdy —cosa < — —cosa < +1,

sin g sin &g

and moreover, sin 8y > 0.9999978 &, since 5y < 273/2), < 0.0037. We can therefore
bound 79 (f) as

1 1
to(f) = > =tr.
Dy I+ 7 +1.00001 L r

sindq

We can now bound the second term in Q as follows:

1
E ds<,>f 2<)dr)
P (0,1)( 18 m(f)MaV q-

1,2
< E (T/ Ma"(q;) dt)
F~Nr(0.D i gl

1 2 | 5
T
ZTf Efwvr(o,n(ua"(qé))dtf / E (Mav(qé)>dt-
T ||611 I PT,l tp F~N©.D ||6]z I

To conclude, note that for fixed r and when f is distributed following N (0, I), the
variable g; = (1 —t)g +tf follows the Gaussian N (g, 21), where g, =0-1g.0O

Proof of Theorem 18.14 We only need to estimate Q, for which we use the right-
hand side of Proposition 18.15. In order to bound the first term there, we note that

(14€)280 12 (8) = (1 +£)*AD 72 < (1 +£)*1 < 0.02.

For bounding the second term we apply Theorem 18.4 to deduce that

1 2 1
A - ()
tr a~NG.2D\ gl w2 2 fr

e(n+ 1T 1.00001
— 1+ .
2 80

Replacing this bound in Proposition 18.15, we obtain

eT?(n+ 1 1.00001
0, < 2;“ )(1+ - D3/2ur2nax(g)>+0.02
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< 2eN D322 R 1.00001 0.0
3/2,,2
<639N(n+1)D*us . (g) +0.02,
where we used D > 2 for the last inequality. U

Proof of Theorem 18.2 The result follows immediately by combining Proposi-
tion 17.23 with Theorem 18.14, with the roles of f and g swapped. g

18.4 A Near-Solution to Smale’s 17th Problem

In this section we prove the last main result of this chapter, namely Theorem 18.3.

18.4.1 A Deterministic Homotopy Continuation

The analysis of the previous section allows one to eliminate the randomness from
the system in one of the extremes of the homotopy segment. Unfortunately, though,
it does not, in principle, allow one to do so for the choice of the zero (or, equiv-
alently, of the lifting of this segment in V') of this system. Therefore, it cannot be
directly used to analyze the average complexity of a homotopy with a given initial
pair (g, ¢).

There is one particular case, however, in which this analysis can be used. Recall
the system U introduced in Example 16.20,

- | A
U=———(X,—-X"), i=1,...,n,
! m( 0 i )
along with its zeros zi,...,zp € P", where the ith components of the z’s run

through all possible d;th roots of unity. We set z; = [(1, ..., 1)].

The various invariances we saw for this system are now helpful. Denote by
K (f) the number of iterations performed by ALH with input (f, U,z,). The fol-
lowing result is an immediate consequence of Lemma 16.21.

Lemma 18.16 Let g € Hq, ¢ € P" be a zero of g, and u € % (n + 1). Then, for all
f €Ma, we have K(f,g,¢) = K(uf,ug,ut). O

Proposition 18.17 K;(f) = K(f,U, z)) satisfies

Kg(f)=

E K(f, U,
F~N(0,T) f~ N(OI)'DZ (f.U.2)).
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Proof Letu; € % (n+1) be such thatz; = u ;z;. Then ujU = U and Lemma 18.16
implies that

K(f,U,Zl): K(ujf,ujl_/,ujzl): K(u;j f, U,Zj).
It follows that
D
_ 1 _
Kg(H=K(f,U,2)=13 ZIK(ujf, U,z)).
j:

The assertion follows now, since for all integrable functions F': Hq — R and all
ueYm+1), we have

E F(f)= E F(f),
N o) N wf)

due to the unitary invariance of N (0, I). Il

We consider the following algorithm MD (moderate degree).

Algorithm 18.1 MD
Input: feHg
Preconditions: f #0

run ALH on input (f,l_/,zl)

Output: z e (C'thy,
Postconditions: The algorithm halts if the lifting of E ro Atz does not cut X, In this
case, [z] € P" is an approximate zero of f. .

Proposition 18.17, together with the bound for pnom(U,z1) we derived in
Sect. 16.4, yields bounds for the average cost of MD.

Theorem 18.18 Let costMP(f) denote the cost of Algorithm MD with input f € Hq.
Then
E cost'P(f)=0O(D? N*nPT).
f~N(©.,D)

Proof Theorem 17.3, together with the definition of ,ugv, implies for g = U that

D 1

1 _ -

5 2 K(f.U.2) <188 D% ds(f. U)/O May(qr) dT.
i=1
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Using Proposition 18.17 we get

1
E Kq(f)<188D* E |d ,0/ 2 dr ).
N g(f) = P s(f,U) A May(gr)dT

Applying Theorem 18.14 with g = U we obtain

_ _ 3 2 3
E, Koh= O(D3Nn p2,, (0)).

We now plug in the bound /L?nax(U) <2(n+ 1)P of Lemma 16.22 to obtain

E  Kg(f)=0(D*NnPT).
FN QD g () ( n )
Multiplying by O(N) to take into account the cost of each iteration completes the
proof. g

Algorithm MD is efficient when D is small, say, when D < n. Otherwise, it has a
cost exponential in D. This is an unusual feature. The common cost of zero-finding
algorithms is polynomial in D but exponential in n. We will take advantage of this
fact to use, for D > n, a different approach with this kind of complexity bound. The
combination of both procedures yields the desired near-polynomial cost.

18.4.2 An Elimination Procedure for Zero-Finding

For our second procedure we will rely on an algorithm due to Jim Renegar.

Before giving the specification of Renegar’s algorithm, we need to fix some nota-
tion. We shall identify IPfj := {[(z0, . .., zx)] € P" | zo # 0} with C" via the bijection
[(zo,...,2zu)]— z2:=(21/20,..-,2n/20). For z € ]P’g we shall denote by ||z as the
Euclidean norm of z € C", that is,

Zi

1

n 2\ 2

lIzllasf := llzll = (E ) ,
20

i=1
and we put [|z]|art = 0o if z € P" \ . Furthermore, for z, y € Pj we shall write
daft(z, y) := |lz— y|l, and we set daft(z, y) := 00 otherwise. An elementary argument
shows that

dp(z,y) <dag(z,y) forallz,yeP(.

By a §-approximation of a zero ¢ € Pj of f € Hq we understand a z € IPjj such that
daii(z, ) < 6.
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Renegar’s algorithm Ren takes as input f € Hq and R,§ € R with R > § >
0, decides whether its zero set Zp(f) C P" is finite, and if so, computes §-
approximations z to at least all zeros ¢ of f satisfying ¢ [|ar < R. We may formally
specify this algorithm as follows.

Algorithm 18.2 Ren
Input: feHg, R, 6€R
Preconditions: f#0,R>§>0

Output: Either ¢ e Nand z,...,z¢ € IF’?) or tag INFINITE
Postconditions: If tag INFINITE is returned, then Zp(f) is infinite. Otherwise, we have
{CeZp(H) 1 ¢llat < RY=1{¢1, ... Cebs dast (G z) <dfori=1,..., L.

It is known that the cost of Ren on input (f, R, §) is bounded by

N\ 4
o(nD4(1og D) <1og log ?) + n2D4<1 + nZi d‘) ) (18.20)

Algorithm Ren finds §-approximations, not necessarily approximate zeros in the
sense of Definition 16.34. This is not a hindrance; the following result relates these
two forms of approximation.

Proposition 18.19 Let z € P be a §-approximation of a zero ¢ € Py of f.
If D32 oo (f, 2)8 < %, then z is an approximate zero of f.

Proof From the hypothesis and Proposition 16.2 with ¢ = f we obtain that
Unorm (fs &) < (1 4+ &) tnorm ( f, 7) with e = % We are going to apply Theorem 16.38
with r =0.99500, §(r) =0.17333 ..., u(r) =0.17486... (see Table 16.1). Writing
C=5%= Lg, we can bound d :=dp(z, ¢) < dax(z,¢) <3 by

C C
< —m7——— < —= < 0.0127 < é(r).
- D3/2Mn0rm(f» z) ~ 23?2 =00

Moreover,

1 1 1
§D3/2Mnorm(fv £)d < 5(1 + 5)D3/2Mnorm(fv 2)d < 5(1 +6)C <0.021 <u(r).

Hence Yproj(f, ¢)dp(z, £) < u(r) by Theorem 16.1. It follows from Theorem 16.38
that z is an approximate zero of f. U

To find an approximate zero of f we may therefore use Ren(R, §) iteratively
for R=4% and § =27 for k = 1,2, ... until we are successful. More precisely,

we consider the following algorithm (here, and for the rest of this section, ¢ = %
and C = %):
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Algorithm 18.3 ItRen
Input: fe?Hq
Preconditions: f #0

for k=1,2,... do
run Ren(4k,2_k) on input f
for all d-approximations z found
if D3/2;Ln0rm(f,z)6§c return z and halt

Output: z € (cnthy,
Postconditions: The algorithm halts if f ¢ X and Zp(f) NP{j # @. In this case [z] € P"
is an approximate zero of f.

Let Xo:= X U{f € Ha | Z(f)NP) = @}. It is obvious that [tRen stops on inputs
f ¢ Xo. In particular, ItRen stops almost surely. We next show that it does so, on
average, with cost polynomial in N and D.

Proposition 18.20 Let cost™e"( £) denote the running time of algorithm 1tRen on
input f. Then,

- II\[;I(O I)cost'me”( )= (DNn)°D.

Towards the proof of Proposition 18.20 we first bound the probability Probfail
that the main loop of ItRen, with parameters R and §, fails to output an approximate
zero for a standard Gaussian input f € Hq. We do so in a sequence of lemmas.

Lemma 18.21 Let £ denote the set of f € Hq such that at least one z on the output
list of Ren(R, 8) on input f satisfies D3/? pnorm (f, 2)8 > C. Then

Probfail < Prob{ min (1€ flag > R} +Prob£.
Feraleez(n)

Proof We may assume that Z( f) is finite. Let z1, ..., z¢ be the output of Ren(R, §)
on input f. If £ =0, then by the specification of ItRen, all the zeros { of f sat-
isfy ||¢|laf > R. Otherwise, £ > 1. If ItRen fails, then all z; fail the test, so that
D3/2/Ln0rm(f, zi)§ > C fori =1, ..., £. In particular, at least one z on the output
list satisfies this, and hence f € £. O

Lemma 18.22 For R > 0 and standard Gaussian f € Hq we have

n
Prob{ min zR}s—.
prob 1 mn, 1 1l att %2

Proof Choose f € Hq standard Gaussian and pick one of the D zeros {}a) of f
uniformly at random; call it ¢. Then the resulting distribution of (f,¢) in V has
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density pst. Lemma 17.18 (adapted to V') implies that ¢ is uniformly distributed
in P". Therefore,

Prob {min] | = R| < Prob{ ¢ lar = K.

To estimate the right-hand-side probability we set P*~! := {z € P" | z9 = 0}, and we
define 6 by R =tan#. It is straightforward to check that

b
I¢llat > R == dp(¢,P" ") < 56

Therefore,

vol{z e P" | dp(z, P" ') < % —6)
vol(P) '

E’é%nb{llfllaff >R} =

In Lemma 20.8 we shall provide bounds on the volume of the tubes in P" around
Pl Using this and vol(IP*) = =" /n!, cf. (17.9), we see that

n—1 1
vol(P"~ ) vol(P') sin2<n _9)

Prob >R} < —
{EP’I{anaff_ } < VoI (P

2
n < n
1+R2 = RY O

=ncos?h =

Lemma 18.23 We have Prob & = O(DN?n3 D).

Proof Assume that f € £. Then, there exist ¢,z € P such that f(¢) =0,
I latt < R, dar(¢, 2) <8, Ren returns z, and D2 piyorm (f, 2)8 > C.
We proceed by cases. Suppose first that § < 57 Then, by Proposi-

___c
Mnorm (fC) !
tion 16.2 (with e = 1/7, C = 1/28),
(1+e)7'C <147 D¥?tnorm (£, 2)8 < D32 tnorm (£, 0)8,

and hence

Mmax () = tnorm(f, ¢) = (1 + 8)_1CD_3/25_1.

If, on the other hand, § > then we have

___c
D3/2U~norm(fa§) ’
tmax () = tnomm (f, ) = CD73/2871

Therefore, for any f € £,

1
tmax(f) = (1 +2)'CD257 1 = 3_2D73/25—1'
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Proposition 17.31 shows that Prob {umax(f) = p~'} = O(DN?n3p*) for all
p > 0. Therefore, we get

Prob & < ]I?Gr%t;{umax(f) > %0—3/25—1 } = O(DN?*n’D%%),
as claimed. 0
From Lemma 18.22 and Lemma 18.23 we immediately obtain the following.
Lemma 18.24 We have Probfail = O(DN?n3D%* + nR™?). O
Proof of Proposition 18.20 The probability that [tRen stops in the (k + 1)th loop is

bounded above by the probability py that Ren(4¥, 27%) fails to produce an approxi-
mate zero. Lemma 18.24 tells us that

pxk=O(DN*n’ D0 167%).

If Ay denotes the running time of the (k + 1)th loop, we conclude that

o0
f~szE(0 I)COSt“Ren(f )<Y Arpi
’ k=0

According to (18.20), A is bounded by
1+ Y, d\*
o<nD4(1og D)(logk) + n2D4( p ) + (N + n3)D),
n

where the last term accounts for the cost of the tests. The assertion now fol-
lows by distributing the products A px and using that the series ) ;| 167, and

D k=1 16 ¥ log k have finite sums. O

18.4.3 Some Inequalities of Combinatorial Numbers

Theorem 18.18 and Proposition 18.20 yield bounds (exponential in D and 7, respec-
tively) for the cost of computing an approximate zero. We next relate these bounds
to bounds purely in terms of the input size N.

Lemma 18.25

(a) For D <n,n >4, we have

Inn
W< ("TP)
- D
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(b) For D*> > n > 1 we have
D
Inn <2Inln (" * ) +4.
n

(c) For0 < c < 1 there exists K such that for all n, D,

n+ D\ X
. .

(d) For D <n we have
nD < N2lnlnN+O(l).

(e) Forn < D we have

D" < N21nlnN+(9(1)

Proof Stirling’s formula states that n! = «/En”%e_"e% with ®,, € (0,1). Let
H(x)=xIn % 4+ (1 —x)In ﬁ denote the binary entropy function, defined for 0 <
x < 1. By a straightforward calculation we get from Stirling’s formula the following
asymptotics for the binomial coefficient: for any 0 < m < n we have

n m 1 n
In =nH|—)+-In—— — 1 4+ &, 1, (18.21)
m n 2 mm—m) ’

where —0.1 < ¢,,,, < 0.2. This formula holds as well for the extension of binomial
coefficients on which m is not necessarily integer.

(a) The first claim is equivalent to el < ("J[)D ) The latter is easily checked for
D € {1,2,3} and n > 4. So assume n > D > 4. By monotonicity it suffices to show
that ¢” < (°D) for D > 4. Equation (18.21) implies

2D 1. 2
In >2DIn2+ —In— — 1.1,
D 2 D

and the right-hand side is easily checked to be at least D, for D > 4.
(b) Put m := /n. If D > m, then (":D) > (”J’r[mw), s it is enough to show that

Inn <2Inln ("+r[m]) + 4. Equation (18.21) implies

11
ln<n+ W) zln<n+m) z(n+m)H(L> f-ln——11.
n n n+m 2 m

The entropy function can be bounded as

m m n m
H( >2 1n<1+ —) > Inm.
n+m n+m m n+m
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It follows that

1 1 1
In n At fm] >—/nlnn—-Inn—1.1>—/nlnn,
n 2 4 4

the right-hand inequality holding for n > 10. Hence
1 1
min (") = L £ ininn —n4= Sinn—2,
n 2 2

the right-hand inequality holding for n > 2. This proves the second claim for n > 10.
The cases n <9 are easily directly checked.
(c) Writing D = nd, we obtain from (18.21),

n+D 8 1

Estimating the entropy function yields

) 8 1 5. 1 e
Hl —— ) > Infl1+<)>-In-=—Inn,
144 1+6 8 P )

where ¢ is defined by § = n~¢. By assumption, ¢ > c. From the last two lines we get

1 n+D c 1—-c¢ 1
In - — +0(— ).
Dlinn n 2 2D Inn

In the case ¢ < % we have D > n!/4, and we bound the above by

c 1 1
-+ 0l—).
2 2nl/4 + <lnn>

which is greater than c/4 for sufficiently large n. In the case ¢ > % we bound as
follows:

1 D 1— 1 1 1 1
In n 25— c—i—(’)— =c—=—+0|—|>-
Dinn n 2 2 Inn 2 Inn 5
for sufficiently large .
‘We have shown that for 0 < ¢ < 1 there exists n. such that forn > n., D < nl-e,

we have
K.
WD < n+D ’
- n

where K. :=max{4/c, 5}. By increasing K. we can achieve that the above inequal-
ity holds for all n, D with D <n'~¢,

v
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(d) Clearly, N > ("';D). If D < \/n, then by part (c), there exists K such that

K
nD§<n+D) < NK.
n

Otherwise, D € [+/n, n], and the desired inequality is an immediate consequence of
parts (a) and (b).
(e) Use (”';D) = ("'ED) and swap the roles of n and D in part (d) above. O

We finally proceed to the proof of Theorem 18.3.

Proof of Theorem 18.3 We use Algorithm MD if D < n and Algorithm ItRen if
D > n.
Theorem 18.18 combined with Lemma 18.25(d) implies that

E I)costMD(f) = N2 N+OM) e p < . (18.22)

Note that this bound is nearly polynomial in N. Moreover, if D < n'~¢ for some
fixed 0 < ¢ < 1, then Lemma 18.25(c) implies

f~1]\];j(0 I)(f) =NOO, (18.23)

In this case, the average cost is polynomially bounded in the input size N.

For the case D > n we use Proposition 18.20 together with the inequality
DO < DO <N O(loglog N ), which follows from Lemma 18.25(e). Moreover,
in the case D > n!t¢, Lemma 18.25(c) implies D < D" < NOO, O



Chapter 19
Real Polynomial Systems

The development of the preceding three chapters focused on complex systems of
homogeneous polynomial equations. The main algorithmic results in these chapters
were satisfying: we can compute an approximate zero of a system f in average
(and even smoothed) randomized polynomial time. Central in these results were the
consideration of complex numbers for both the coefficients of the input system and
the components of the computed approximate zero.

For a variety of purposes, however, one is interested in real zeros of systems with
real coefficients. An observation previous to any consideration about the computa-
tion of any such zero is that in this context there are systems having no zeros at all.
For instance, the polynomial X% + X f + X% has no zeros in ]P’(]R3). Furthermore,
this absence of zeros is not a phenomenon occurring almost nowhere. The simplest
example is given by the quadratic polynomials

aX?+bXoX1 +cX3

with a, b, c € R, not all three of them zero. Such a polynomial has two zeros in
P(RZ) if b2 > 4ac, one zero if b? = 4ac, and no zeros at all if b < 4ac. Therefore—
and this is a situation we have already met when dealing with linear programming—
the issue of feasibility precedes that of computing zeros.

For systems of n homogeneous polynomials in n + 1 variables one can consider
a problem more demanding than feasibility, namely, to count how many zeros the
system has. Let us denote by 7—[§ the linear space of these systems for a fixed de-
gree pattern d = (dy, ..., d,). The goal of this chapter is to exhibit and analyze an
algorithm for zero-counting. Even though we will not pursue the issue here, the
motivating idea for this algorithm was the possibility to implement it with finite
precision (see Remark 19.28 at the end of the chapter). A measure of conditioning
was therefore a must, and not unexpectedly, this measure appears in the complexity
analysis of the algorithm as well.

This measure follows a pattern we have already studied. Recall the discussion in
Sect. 6.1 on conditioning for problems with a discrete set of values. In accordance
with it, we say that a system f € H](lf is ill-posed when arbitrary small perturbations

P. Biirgisser, F. Cucker, Condition, 391
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of f can change its number of real zeros. We observe that this is the case if and
only if f has multiple real zeros in P(R"*!). Let Zg C HéR be the set of ill-posed
systems. We define

I/l
K(f) = e
d(f, Zr)
In Sect. 19.2 below we will relate « () to the quantities norm(f, x) via a charac-
terization of the former akin to a condition number theorem.
Otherwise, the main result of this chapter is the following.

(19.1)

Theorem 19.1 There exists an iterative algorithm that given an input f € ’H?f \
ZR:

(a) Returns the number of real zeros of f in P(R"*1).
(b) Performs O(log,(nDk(f))) iterations and has a total cost (number of arith-
metic operations) of

O((C(n + 1)D*(/)?)* "V N log, (n Dk (1))

for some universal constant C.
(c) It can be modified to return, in addition, at the same cost, and for each real zero
¢ e P(R™) of £, an approximate zero x of f with associated zero ¢ .

In addition to Theorem 19.1 we present in this chapter some additional results
related to real polynomial systems. Firstly, we profit from the tools developed in
Sects. 17.5 and 18.1 to give a short proof of a well-known result of Shub and Smale
giving the expected value for the output of the counting problem.

Theorem 19.2 The average number of zeros of a standard Gaussian random f €
'HE (with respect to Weyl’s basis) in real projective space P(R"1) equals ~/D.

Secondly, we briefly describe and analyze an algorithm to decide feasibility of
underdetermined systems of real polynomials.

19.1 Homogeneous Systems with Real Coefficients

We will use for real systems of polynomials the same notation we used for com-
plex systems. Furthermore, we observe that a number of the notions and results we
proved for the latter carry over, with only natural modifications, to the real setting. In
particular, we may endow H§ with the Weyl inner product defined in Sect. 16.1 and
consider for f € ’Hﬂf and x € Rt the quantity pnorm(f, x) defined in Sect. 16.7.
The arguments used to show unitary invariance for both (, ) and pperm carry over
to show invariance, now under the action of the orthogonal group &'(n + 1).
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Fig. 19.1 Newton’s operator T
on S" -

8|

Ny(z)

Newton’s method can be defined to act on the sphere S”. Indeed, for f € "HEIR and
x € S" we let

Ti=x — Df ()75 f (1)

andput Ny (x) := Ié_ﬂ; see Fig. 19.1. In this way we get the operator N7 : §" \Ai@ —
S", where Aﬂﬁ :={x €S" | Df (x)|r,s" not invertible}.

The invariant yproj(f, x) is defined as in Sect. 16.6, and Theorem 16.1 carries
over unchanged. The notion of approximate zero is defined in the same manner
(part (c) of Theorem 19.1 above refers to this notion), and the projective y -theorem
(Theorem 16.38) holds as well.

The covering map S" — P(R"*!) has degree 2. Hence, real projective zeros of
polynomial systems f € Hﬁli{ correspond to pairs of zeros (—¢, ¢) of the restriction
fisn of f toS". We will thus consider a system f € ’Hflf to be a (centrally symmetric)
mapping of S” into R”. In particular, the number #r (/) of real projective zeros of
fe HAR is equal to half the number of zeros of f in S". That is,

1
#r(f) = |Zp(f)| = §|Zs(f)|-

Our algorithm will thus compute #g ( f) by counting the number of points in Zg(f).

The same reason is behind the use of ds(x, y) instead of dp(x, y), a choice that
has no consequences as long as the angle between x and y is at most 7.

The tangent spaces of P” and S" at x can be identified, and it will be convenient
to denote them by Ty := xt=71.8"=T1P".

For the rest of this chapter all systems f € 7’-1/,](11zi considered are different from 0.

19.2 On the Condition for Real Zero-Counting

The goal of this section is to provide an explicit characterization of « (f) that will
be useful in calculations. We have similarly done so for ¥’ (A) (Theorems 6.27 and
Propositions 6.28 and 6.30) and for .7 (d) (Theorem 11.7).

The development in the previous chapters suggests that the condition numbers
Mnorm (f, ¢) for the zeros ¢ € S” of f should play a role. But it is apparent that these
quantities cannot be the only ingredient. For in the first place, it may happen that
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Fig. 19.2 A poorly
conditioned system f

/c 3

Zs(f) =0, in which case there would be no ingredient at all, but also because the
poor conditioning of a system f may be caused by the behavior of f away from
its zeros. Figure 19.2 gives an idea. Here f has only one zero ¢, and it is well
conditioned (has a small value of tnorm). Yet, a small perturbation of f will make
& azero as well. That is, d(f, X'r) is small, or equivalently, « (f) is large.

The situation is clear: f is poorly conditioned when there are points x for which
both || f(x)|| is small and pporm(f, x) is large. This inspires the following measure
of condition.

We define v(f, x) € (0, oo] by

B £
U 1P norm (fs )2 4 LGOI

the oo corresponding to division by 0, and

v(f,x): (19.2)

v(f) :=maxv(f, x).
xes"

Note that v(f, x) > tnorm(f, x) with v(f, x) = tnorm(f, x) if and only if f(x) =0.
Furthermore, v(f) = oo if and only if there exists a zero ¢ of f with pporm(f, &)
= 00. The fact that we allow v(f, x) to take the value oo is what allows us to use a
maximum in the definition of v( f). For ill-posed systems this maximum is attained
at an ill-posed zero of f.

Our characterization is the following.

Theorem 19.3 We have k (f) =v(f) forall f € ’H&R.
A first consequence of Theorem 19.3 is the following result.
Corollary 19.4 Forall f € HX, v(f) > 1.

Proof Since Xy has points arbitrarily close to 0, we have d(f, Xr) < | f|l and
hence x(f) > 1. Now use Theorem 19.3. O

Remark 19.5 Tt is worth noting that although v( f) is somehow related to the con-
dition number pmax(f) or pay(f) for complex polynomial systems, a result like
Theorem 19.3 does not hold for the latter. As we have seen (in Theorem 16.19),
a result of this kind holds for ppom on the fibers of the zeros. It can be shown,
however, that it does not hold globally.
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Consider a point x € S"” and a system f € ’H,ilf. One may define a notion of ill-
posedness relative to the point x by taking

Jr(x) = {f € ”Hgg | x is a multiple zero of f},
the set of systems that are ill-posed at x. Note that X' (x) # @ for all x € S” and that
SR = {f € 7—[“5 | £ has a multiple zero in S”} = U Ir().
xesSt

Note that for all A # 0, v(Af) = v(f) and d(\f, Xr) = |A|d(f, Zr). The same is
true relative to a point x € S”. We will therefore assume, without loss of generality,
that || ]| = 1, and denote by S(’H?f) the unit sphere in Hﬂd%.

Proposition 19.6 Forall x € S" and f € S(HQR),

1

YU = G e

Proof For 0 <i <n, lete; =(0,...,0,1,0,...,0) denote the ith standard basis
vector. The group &'(n + 1) acts on ’Hﬂf x S" and leaves [tnorm, K and the distance to
YR () invariant. Therefore, we may assume without loss of generality that x = ey.

This implies that T,,S" ~ span{ey, ..., e,}, and we may write the singular value
decomposition
1 1
dia Df (e n = [u e u . yT
U on

with U and V orthogonal and o1 > 03 > --- > 0, > 0. Recall from Sect. 16.3 that
the stabilizer O, is the subgroup of &'(n 4 1) leaving eg invariant. Since &, is
isomorphic to &'(n) and acts on T,,S", we may as well assume that V = I. Note that
tnorm (f, €0) = 0, "', and therefore « (f, o) = (o, + || f (e0)3) /2.

In what follows, for the sake of simplicity, we write Dg;j(ep) instead of
Dygi(eo)|r,,sn and we denote by A the matrix diag(+/d;).

Fori=1,...,n,let g;(x) = fi(x) — fi(eo)x§ — /dionutinx§ " x,, where u, =
Win, .-y unn)T~

Clearly, gi(ep) = 0 and Dg;(eg)e, = 0, since 0g;/dx,(en) = af;/dx,(ep) —
Jdiuino, =0. Thus, g = (g1, ..., gn) € Zr(ep). Moreover,

di\ ™! di \!
||f,~—gz-||2=< df) fi(eo)2+< o 1) (Vdiowuin)’ = fi(e0)? +02ul,,
1 i )

and hence, using ||u,|| =1,

I1f — gl = fen) |3+ 02 =k(f,e0) 2.
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It follows that

d(f, Zr(en)) < IIf — gll=k(fre0)”"

For the reverse inequality, let g € Yr(ep). Then, g(eg) = 0 and Dg(eq) is singu-
lar. We want to show that || f — g|| > « (£, eg) . To this end, we write

afi
dxp

) af; _ _
fi(x) = fileo)xd + Gl (e)xs " xp 4 4 = (ep)xd e + Qi (1)
0x]
with deg,, Qi < d; — 2 and, similarly,

xn + R;(x).

3 .
gi(x) = a—f’l(eo)xo

Then
1
I1fi = 8l = fi(eo)® + - | Dfi(eo) — Dgieo) [
1
and hence
2 2 -1 —1 2
If—gl* = | fo)|;+ A~ Df(e0) — A7 Dg(eo)| -

By assumption, A~! Dg(ep) is singular. Hence, denoting by Sing,, the set of singular
n x n matrices and by dr the Frobenius distance on this set of matrices, we get

dr(A™'Df (eo), A™' Dg(eo)) = dr (A~ Df (eo), Sing,) = on,
the equality holding by Corollary 1.19. It follows that
If —gl?= | flen) |+ 02 =k(fen) 2. O
Proof of Theorem 19.3 Again we can assume f € S(HQR). Note that
d(f, Zr) = min d(f, g) = min d(f, Zr(x)),
since Xr = (J, g 2R (x). Therefore, using Proposition 19.6,

1 1

V) = M) = M S TR () . mineesr A, Zr()  d(f, TR)

O

19.3 Smale’s a-Theory

The projective y -theorem shows that the quantity ypro;(f, ¢) can be used to estimate
the size of the basin of quadratic attraction of a zero ¢ of f. It cannot, however, be
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directly used to check that a point z is an approximate zero of f associated to ¢. For
checking this, Steve Smale introduced another quantity apro;( f, x). We define

Boroj (f x) = | DF ()7 )50 f ()
aproj(fs x) = ,Bproj(fv x) Vproj(fa X).

’

Recall that Ny (x) = H%II’ where x =x — Df (x)|;X1S,, f(x). Then, by construction,
Bproj (f5 x) = |IX — x|| is the tangent of the Newton step ds(x, N¢(x)); cf. Fig. 19.1.
In particular, ds(x, N7 (x)) < Bproj( f, x). We have, in addition, the following bound.

Proposition 19.7 Let f € HéR and x,¢ € S". If x is an approximate zero of f with
associated zero ¢, then ds(x, £) < 2Bproj(f, x).

Proof Let x1 := Ny(x). By the definition of approximate zero, ds(x1,¢) <
Zds(x, ¢). This implies

1
ds(x,¢) <ds(x,x1) +ds(x1,¢) <ds(x,x1) + Eds(x, £,
from which it follows that ds(x, ¢) < 2ds(x, x1) < 2Bpr0j(f, X). O

We should next turn to the meaning of aproj, Which, roughly speaking, guaran-
tees the existence of zeros near points x where opoi(f, x) is small enough. For
ease of computation, though, we will use slight modifications of the quantities apyo;
and yproj. We set

ILf @l
A1

E(fa X) := fnorm (f> X)

)

1
Y(fix):= §D3/2Mnorm(fv x),

ILf @
IF

— 2z — 1 3/2,.2
a(f7-x) = ﬂ(f»x))/(f,x)ZED I’Lnorm(fv-x)
We will also use, for technical reasons, the quantity
a(f, x) = Bproj (f, )V (f, x).

Lemma 19.8 For f € ’H](If and x € S" we have

(a) gproj(fvx) <a(f.x) <a(f.x), Bproj (f5 x) < E(f: x), Yproj(fs X) <V (f, %),
(®) B(f.x) < tnorm (. %) and 7(f, x) = 33/n D2,
© IDfWI7 DfF X)) < VD B(f. x).
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Proof (a) The inequality Yproj(f, x) < ¥ (f, x) is just a restatement of the higher
derivative estimate (Theorem 16.1). Further,

Boroi (fs X) = | DF )7 sn F@) | < [DFOIT g [ [ £ 0
< Mnom ([, X) ”j”C;x”)” = B(f, x).

The inequalities oproj(f, x) < &(f, x) <@(f, x) are then immediate.
(b) This is a consequence of || f (x)|| < || f |l (see Lemma 16.6) and of Lemma 16.44.
(c) Euler’s formula (16.3) implies Df (x)(x) = diag(d;) f (x). Writing
Df (x)|7! Df (x)(x) = Df (x)|7 diag(y/d; )diag(y/d; ) £ (x)

and bounding norms, the third assertion follows. 0
In what follows we set, for f € ’HéR and x € §",

By(x):={yeS"|ds(x,y) <2B(f,0)}.

The following result is a version of Smale’s «-theorem.

Theorem 19.9 There exists a universal constant ag := 0.02 such that for all f €
Hﬂf and x € S", if a(f, x) < ag, then:

(a) x is an approximate zero of f. .

(b) If ¢ denotes its associated zero, then { € B f(x).

(c) Furthermore, for each point y in B r(x), ¥ is an approximate zero of f with

associated zero . In particular, the Newton sequence starting at 'y converges
to ¢.

The proof of Theorem 19.9 requires some preliminary steps. The first such step
is the kth-derivative version of Lemma 15.6.

Lemma 19.10 For —1 < u < 1 and a positive integer k we have

i k+0! , 1
ket (1 — M)k—H :

=0

Proof We compute the kth derivative on both sides of the geometric series

Yoou = = 1= - By induction it is easy to see that
o \® o ¢ ®
; k+0)! 1 k!
Zu‘ =ZM and that < ) = T
i=1 =0 ¢! l—u (1 —u)*t O

Recall from Sect. 16.6 the family of functions ¥s as well as the quantities &(r)
and u(r) defined for r € [5, 1].
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Lemma 19.11 Fix % <r <1 such that u(r) < % Letx,y e S", §:=ds(x,y), and
u =38y (f,x), and assume that § < §(r) and u < u(r). Then ¥s(u) > 0, the map
Df (y)lr, is invertible, and

1 _
|DF I F O] = Boro () + Iy ‘x”<m + JBﬁ(ﬁx)).

Proof First note that Df (x)|7, is invertible since we assume ypr0j( f, x) to be finite.
Lemma 16.37 gives ¥5(u) > 0. Lemma 16.41 implies that Df (y)|r, is invertible.
Using the Taylor expansion of f at y around x, we obtain

|Df I F D] < [DFOIE £ + | D @)1 DO — 0|
=, Df ()7 DX £ (x)

+1> - (y —x)*

k=2

. (19.3)

The first term on the right-hand side equals Byroj(f, x). In order to estimate the
second contribution, we decompose y — x = p + Ax with p € T, (similarly as in
Fig. 19.1). Then (x, y — x) = A and hence |1| < ||y — x||. Further, || p|| < ||y — x]|.
Using this decomposition we get

Df )|z Df ) (y = x) = p + ADf(0)|7 Df (x)(x)
and hence, using Lemma 19.8(c),
|Df I DF @G =0 < llpll + 11| DF )7 Df @) |
<y —xI(1+~DB(f.x)).
We can estimate the third term in (19.3) by
Ly — x| (g Yoroj (> )My — x||"—1> <Ily—x]| (ﬁ - 1>,

taking into account that Yproj (f, X)ly — x| <V (f, X)lly — x|l <u <u(r) <1dueto
Lemma 19.8(a) and using ||y — x|| <. Putting these estimates together, the asser-
tion follows. O

The next proposition estimates o, Bproj, and ¥ for a point y near x in terms of the
values of these quantities at x.

Proposition 19.12 Under the hypotheses of Lemma 19.11 we have:

@) Boroj (f+ ) < G (1 = w) Bproj (f, ) + (L + VD B(f, ) |y = x1),
(b) ¥(fiy) < 5L

(© @(f.Y) < oty (1 = W&E(f.x) +u+ VDE(L 1)y = x1).
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Proof (a) We have

Boroi(f. 1) = | DF W7 f | < [ Df WIZ! Df Ir | DF 17 f )|

_d-w? _ ' /b3
= @) ’(lgpm](fvx)“l‘”y_x”(m“" ﬂ(f,x))),

where we used Lemmas 16.41(b) and 19.11 for the last inequality.

(b) Let & = 2u. Then & < § and D2 punom (f,x)8 = 27(f.x)8 = 2u = «.
Hence the hypotheses of Corollary 16.54 are satisfied, from which it follows that
fnorm (f, ¥) < 15z Hnorm (f, X). Multiplying both sides by § D3/ yields the desired
inequality.

(c) Multiplying the inequalities in (a) and (b) and noting that ||y — x|| <
proves (c). O

A zero x of f is the same as a fixed point of Ny (provided Df (x)|r s has full
rank). For studying the latter, the Banach fixed-point theorem is a standard tool.

Definition 19.13 Let (X, d) be a metric spaceand 0 <c < 1. Amap F: X - X
satisfying d(F (x), F(y)) <cd(x,y) for all x,y in X is called a contraction map
with contraction constant c.

Theorem 19.14 (Banach fixed-point theorem) Suppose that (X, d) is a complete
metric space and let F : X — X be a contraction map with contraction constant c.
Then F has a unique fixed point p € X. For any start value x € X, the nth iteration
F™(x) of F converges to p as n — 00. Moreover,

1 1
1—+Cd(x, F(x)) <d(x, p) < I—_Cd(x, F(x)).

Proof Note first that F can have at most one fixed point: namely, if F(p) = p
and F(q) =g, then d(p,q) =d(F(p), F(q)) < cd(p, q) implies that p = g, since
c<l1.

Let x € X. By induction it follows that d(F" (x), F"l(x)) < ¢"d(x, F(x)) for
n > 1. By summing the geometric series, we have forallm >n > 1,

n—1 n—1
d(F"(x), F"(x)) < Y _d(F'(x), F*'(x)) = ) " cld(x, F(x))

Cm
< ——d(x, F(x)).
= 724 FW)
Hence (F"(x)),>1 is a Cauchy sequence that converges to a point p in X, since
X is complete. The sequence {F "+1(x)}n21 also converges to p, so by conti-
nuity of F we have F(p) = p. Thus p is the unique fixed point of F. Since
d(x,p) <d(x, F(x)) + d(F(x), F2(x)) 4+ --- < 372 c'd(x, F(x)), by summing
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the geometric sequence once again, it follows that d(x, p) < ﬁ d(x, F(x)). Fi-
nally, by the triangle inequality,

d(x, F(x)) <d(x, p)+d(p, F(x))
=d(x,p)+d(F(p), F(x)) < (1+c)d(x, p). U

In our case X will be a closed spherical cap in $" and d will be ds. To follow
standard notation we will write Bg(x, §) instead of cap(x, §), since this set is the
closed ball of radius § around x in S with respect to its Riemannian distance.

Lemma 19.15 Suppose g: Bs(x, 8) — Bs(x, 8) is continuously differentiable with

IDg)Il < c forall y € Bs(x,8). Then ds(g(y), g(z)) < cds(y,z) forall y,z €
Bs(x, 8).

Proof Let y: [0,1] — S" be a parameterization of the segment of the great circle
connecting y and z. Then y := g o y is a parameterization of a curve connecting
g(y) with g(z). We have 47 (1) = Dg(y (1)) Ly () and hence

<c

4
dt)/()

d v (t
HEV()

Hence the length of ¥ can be bounded as

1 1
L(?)z/ dlSC/
0 0

This implies ds(g(y), g(z)) < cds(y, 2)- O

dt =cL(y)=cds(y,2z).

4 ()
dt Y

iN(t)
dty

As we pointed out above, we will take Ny as the function F. We next bound the
derivative of this map in terms of o.

Proposition 19.16 We have | DNy (x)|| <3.71a(f, x) forall x € S".

Proof We may assume || f|| = 1 without loss of generality. Consider the map
p: R\ AR S R s x - DI f (),

where AI}& denotes the set of x € R™! such that Df(x)|r, is not invertible;
cf. Fig. 19.1. Note that le@)| = |Ix]| =1.

Moreover, consider the map 7 : (R”“)* - Sy ”’T“ We can factor the
Newton operator as N = 7 o ¢ and hence DNy (x) = D7 (¢(x))Dg(x).

It is easy to check that D (y) is given by the orthogonal projection onto T,
followed by multiplication by the scalar ||y||~'. This implies ||[Dz(y)| < [ly]~"
and hence || D7 (¢(x))|| < 1, since ||¢(x)||~' < 1. Therefore, it is sufficient to prove
that [| Do (x)|| < 4a(f,x).
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Take a smooth curve x(¢) in S” and consider the corresponding curves z(t) :=
Df(x(t))|Txmf(x(t)) and y(¢) := o(x(t)) = x(t) — z(¢) in R+ By differentiat-
ing Df (x(#))(z(t)) = f(x(¢)) with respect to ¢ (and omitting the argument ¢ for
notational simplicity), we obtain

Df(x)(2) + D> f(x)(z,%) = Df (x) (%) (19.4)

We also have (z, x) + (z, x) =0, since (z, x) =0.
Let p: R"*! — T, denote the orthogonal projection onto 7. We decompose

2= p(@) +rx,
where A = (2, x) = —(z, x). Since B := Bproj(f, x) = |Iz[|, we have
Al < Bllxll. (19.5)

Inserting z = p(z) + Ax into (19.4) and taking the inverse D f (x) |}x1, we obtain

P& +ADf ()7 Df () (x) + Df ()7 D* f(x)(z, %) = £
Therefore,
[ = p@ ] <M [DF I DF @ | + | DF @I D> Fo) [ llzl %11 (19.6)

To simplify notation, in the rest of this proof we write ¥ := yproi( f, x) and similarly

fory, B, B,a, &, a, and inorm.
Using this convention, Lemma 19.8, and the definition of y}j, we bound

DI DF | <BVD,  [DF@IZ D f0)] <2y

Combining these two bounds with (19.5) and (19.6), we get

|% = p@| < BIZIBYD +2yBlI%|
and hence, using (19.5) again,

131l = 1% = 2l < [|£ — p@) | + 14l < BIENBYD + 2y Bkl + BlIA.
Since y = Dg(x)(x), we have shown that
|Dex)| <20+ (BYD+ 1) <2a + (BVD +1)B.

Since @ = B, the right-hand side equals

20

D3/2Mnorm

’

2&+(E¢5+1)%=2&+(B~/5+1)
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which equals

2a<1+ ﬁﬁ+ ! >2<1+1+1>

D3/2Mnorm Ds/zﬂnorm D D3/2

1 1 ~
< 201(1 + = 3 + 23/2> <3.71a,

where we have used B < fnorm for the first inequality; cf. Lemma 19.8(b). Hence
|De(x)| <4a, as claimed. O

Theorem 19.17 Fix % <r <1lsuchthatu(r) < % Further, let § <§(r) and x € S"
be given such that u := 8y (f, x) <u(r). Put

3.71(1 —u)

= A= dwgpe TS0 +u)

Then we have

@) [IDNg(WIl < cforall y with ds(y, x) <3,
(b) Nf(Bs(x,8)) € Bs(Nyf(x),cd).

Proof By Proposition 19.16 we have ||DN¢(y)|l < 3.71c(f, y). We can estimate
the latter with Proposition 19.12(c). Using u > 7 (f, x)|ly — x| = 1 D3|y — x|,
we can bound as follows:

(1 —wa(f,x) +~vDa(f, )y — x|l +u
< (1 —wa(f,x) +vDa(f, X)Ily — x| 4u

<(1—u)a(fx)+x/5a(fx) u-+u

D3/2
2
< —u)&(f,x)+5u&(f,x)+u <a(f,x)+u,

and part (a) follows.
For part (b) we note that by part (a) and Lemma 19.15,

ds(Nf(y), Np(x)) < cds(y, x) <8

for all y in Bg(x, §). O

Corollary 19.18 Under the hypotheses of Theorem 19.17, we assume that ¢ < 1
anda(f,x) < (1 —c)u. Then Ny is a contraction map of the ball Bs(x, S x)) into
itself with contraction constant c.

Proof Write y =y (f,x) and@ =a(f,x). Forall y € Bs(Ny(x), cd) we have

ds(y,x) <ds(y, Ny(x)) +ds(Ny(x), x) <cd+ B <3,
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the last by dividing the hypothesis & +cu < u by y. It follows that Bs(Nf(x), ¢d) C
Bs(x, 8). Hence, by Theorem 19.17(b),

Nyf(Bs(x,8)) € Bs(Nyf(x), c8) € Bs(x, ),

and we deduce that Ny maps Bs(x,d) into itself. Furthermore, ¢ is a contrac-
tion constant for this map by Lemma 19.15, Theorem 19.17(a), and the hypothesis
c<l1. O

We can finally prove the main result of this section.

Proof of Theorem 19.9 Let r, := 0.888. Then (recall Table 16.1) &, :=6(ry) =
0.834... and u, :=u(ry) = 0.1246 - - < ¢ satisfy u, < +/25,.
Now we take «g := 0.02 and let ug := 2o = 0.04. These constants satisfy

3T -up) (uo 1
T U= a0, () ( 2 +”°> =7 o

Furthermore, ¥, (u0) =0.54... and ug < u,.
The numbers «, 1o, and co are universal constants. They depend neither on f €
’Hﬂd{ nor on x € S". Now consider such a pair (f, x) and assume that &( f, x) < ap.

Then the bound Y (f, x) > # > 2 (cf. Lemma 19.8) together with up < u, im-
plies that

Also, let
_3.71(1 —uo)
©T U= S0 s o)
Then, o(f,x) <oy = %, Wsx) (o) = Vs, (ug), together with (19.7) imply ¢ <
co < % and therefore

(&(f, x)+ uo).

@(f.x) <ag= % < (=

We see that the hypotheses of Corollary 19.18 hold for r = r,, and § = §(x).
Hence Ny is a contraction map on Bs(x, §(x)) with contraction constant cg. The
Banach fixed point theorem then implies that there exists a zero ¢ € Bs(x, §(x)) of
f» and for all points y € Bs(x, §(x)) we have ds(Nr(y),¢) < %ds(y, ¢). Hence by
induction, ds(N } ),0) < (%)2l’ldg(y, ¢), which means that y is an approximate
zero of f with associated zero ¢.

It remains to show that Bs(x, 8(x)) € B £ (x). This follows from the fact that

29 _ - 55, x).

Sx)=—20 _ _
V(A Y(fx) T O
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Remark 19.19

(a) Note that the proof above gives a ball of approximate zeros with a radius § (x) =
%, inversely proportional to Y (f, x). This is reminiscent of Theorems 15.5
and 16.38, but with the basin of attraction now centered at the point x at hand.

(b) Using the Moore—Penrose inverse Df (x)" instead of D f(x) |}1 in the definition
of the Newton operator leads to the so-called Moore—Penrose Newton’s itera-
tion. The algebraic properties of the Moore-Penrose inverse, close to those of
the common inverse for matrices, would lead to versions of Lemma 19.11 and
Propositions 19.12 and 19.16 with simpler proofs. We will briefly return to the
Moore—Penrose Newton’s iteration in Sect. 19.6 below.

19.4 An Algorithm for Real Zero-Counting

In this section we will describe an algorithm for zero-counting, Algorithm 19.1
below, and show that it satisfies the statements claimed in Theorem 19.1.

19.4.1 Grids and Graphs

Our algorithm works on a grid on S", which we construct by projecting onto S”

a grid on the cube C" := {y | ||ylloo = 1}. We make use of the (easy to compute)

bijections ¢ : C" — S" and ¢! : S — C" given by ¢(y) = ﬁ and ¢~ (x) =
X

TxTleo -

Given 1 := 2% for some k > 1, we consider the uniform grid U, of mesh n
on C". This is the set of points in C" whose coordinates are of the form 2% for
ie {—2k, 2k, ..., 2k}, with at least one coordinate equal to 1 or —1. We denote
by G, its image by ¢ in S". An argument in elementary geometry shows that for

v, 2 €C",
T T
ds(¢ (), ¢(2)) < E”yl —»nll < Ew +1y1 — y2ll0- (19.8)

Given n as above, we associate to it a graph G, as follows. We set A(f) :=
{x e " |@(f, x) < ap}. The vertices of the graph are the points in G, N A(f). Two
vertices x, y € G, are joined by an edge if and only if B(x) N B(y) # #. We have
here (and we will in the rest of this section) dropped the index ¢ in the balls Ef (x).

Note that as a simple consequence of Theorem 19.9, we obtain the following
lemma.

Lemma 19.20

(a) For each x € A(f) there exists ¢, € Zs(f) such that {, € B(x). Moreover, for
each point 7 in B(x), the Newton sequence starting at z converges 10 .
(b) Letx,y € A(f).Then ¢, =&y <= B(x) N B(y) #0. O



406 19 Real Polynomial Systems

We define W(G,) = UxeG,, B(x) CS", where x € G, has to be understood as
x running over all the vertices of G,. Similarly, for a connected component U of
G, we define

W) := U B(x).

xeU

The following lemma implies that the connected components of the graph G, are of
a very special nature: they are cliques. It also implies that

]ZS(f)‘ > # connected components of G,,. (19.9)

Lemma 19.21

(a) For each component U of G, there is a unique zero {y € Zs(f) such that
Sy € W(U). Moreover, ¢y € (,cy B(x).
(b) If U and V are different components of G, then {y # (v .

Proof (a) Let x € U. Since x € A(f), by Lemma 19.20(a) there exists a zero
¢y of f in B(x) € W(U). This shows the existence. For the uniqueness and
the second assertion, assume that there exist zeros ¢ and & of f in W(U). Let
x,y € U be such that ¢ € B(x), and & € B(y). Since U is connected, there ex-
ist xo =X, X1, ..., Xk—1, Xk :=y in A(f) such that (x;, x;+1) is an edge of G, for
i=0,... k—1,thatis, B(x;) ﬁE(xi_H) # (. If ¢; and ;4 are the associated zeros
of x; and x;41 in Zg(f) respectively, then by Lemma 19.20(b) we have ¢§; = ¢i+1,
and thus ¢ =& € B(x) N B(y).

(b)Let ¢y € B(x) and ¢y € B(y) forx e U and y € V. If ¢y = ¢y, then B(x) N
B(y) # ¥ and x and y are joined by an edge; hence U = V.. O

If equality holds in (19.9), we can compute |Zs(f)| by computing the number
of connected components of G,. The reverse inequality in (19.9) amounts to the
fact that there are no zeros of f in S” that are not in W(G,). To verify that this
is the case, we want to find, for each point x € G, \ A(f), a ball centered at x
such that f 7 0 on this ball. In addition, we want the union of these balls to cover
S"\ W(G,). The next result is the key ingredient towards this goal, since it provides
radii for these balls.

Lemma 19.22 (Exclusion lemma) Let f € ’HéR and x,y € S" be such that 0 <
ds(x,y) < V2. Then,

lf ) = FO| < I FIVDds(x, y).

In particular, if f (x) # 0, there is no zero of f in the ball Bs(x, l:'}{”(i‘/)‘_;),
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Proof Because of (16.1), for all f; € Hﬁl}; and x € R"+1,
[y =(fX), (x, X)%). (19.10)

Because of orthogonal invariance, we can assume that x = eg and y = epcos6 +
e1sinf, where 6 = ds(x, y) > 0. Equation (19.10) implies that

fi) = fi(y) = (fi(X), (x, X)) = (fi (XD, (. X))
= (£, (x, X)% — (y, X))
= (fi(X), X — (Xogcos0 + X sin0)%).
Hence, by Cauchy—Schwarz,

i) = fin| < I XE = (Xocos6 + X sing)®

Since
Xgi — (XpcosO + X, sin6)%
di o
= Xgi (1 — (cos)%) — Z <kl)(cos G)d"_k(sine)ng"ka’f,
k=1
we have

H Xgi — (Xocosf + X sin@)% ||2
2 b rd;
< (1 = (cos9)%)” + ( l)(cos )%=k (gin 9)k
( ) ; .

=(1- (cos@)‘l")2 + 1 — (cos0)*% =2(1 — (cos0)%)
92 d; 92
<2<1— (1--) ) 52<1— (1—d,~—))
2 2

Here the first inequality is due to the fact thatfor g = > gx X, gik X*, wehave ||g||> =
92

—1
> (Z) g,%. Also, the second inequality follows from the bound cosf > 1 — 5

which is true for all 0 < @ < /2, and the third from the bound (1—a)¥>1-da,
for a < 1. We conclude that

i) = )] < I1£116Vd;

|fe)—from| <lifle /mgxd,-.

and hence
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Lf&l )
IFIVD”

lron| = r@|=]re—=rm]|
> | f@] = 1£1VDds(x. y)

@I _,
1£1VD z

For the second assertion, we have, for all y € B(x,

> |f@| - 1£1vVD

19.4.2 Proof of Theorem 19.1

We begin by describing our zero-counting algorithm (see Algorithm 19.1 below).

Remark 19.23 Algorithm 19.1 uses a routine for computing the connected compo-
nents of a graph from the description of this graph. This is a standard task in discrete
algorithmics. We will not enter into a discussion of this aspect of Algorithm 19.1
(but see the Notes for pointers to appropriate references).

Algorithm 19.1 Zero_Counting

Input: f € ”H§
Preconditions: f #0

let n::%
repeat
let Ui,...,U, be the connected components of G,
if
(a) for 1<i<j<r
for all x; €U; and all x; e€U;
ds(xi,xj) >nmnv/n+1
and
(b) for all xeG,\A(f)
I £ > Fn/(n+ 1D f]]
then return r/2 and halt
else n:=n/2

Output: reN

Postconditions: The algorithm halts if f ¢ X'r. In this case f has exactly r zeros
in P(R"1).

We will now show that Algorithm 19.1 satisfies the claims (a)—(c) of the state-
ment of Theorem 19.1.
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(a) This part claims the correctness of Algorithm 19.1. To prove it, we will use
the notions of spherical convexity introduced in Sect. 13.2.
Let H" be an open hemisphere in S" and x1, ..., x, € H". Recall that the spher-

ical convex hull of {x1, ..., x4} is defined by

sconv(xi, ..., Xg) :=cone(xy, ..., xs) NS",
where cone(xi, ..., x,) is the smallest convex cone with vertex at the origin and
containing the points x1, ..., x;.

Lemma 19.24 Let xi,...,x, € H" C R gf ﬂ?zl Bs(xi,r;) # @, then
sconv(xp, ..., xq) C U;’Zl Bs(x;,ri).

Proof Let x € sconv(xy, ..., xq) and y € (°_, Bs(x;, ;). We will prove that x €
Bs(x;, r;) for some i. Without loss of generality we assume x # y. Let H be the
open half-space

H:=|zeR":(z,y —x) <0}.
We have

zeH <— (z,y—x)<0 <+— —(z,x)<—(z,y)
= zP+lIx0* = 2(z, x) < llzII* + IyI* = 2(z, »)

2 2
—  lz—=xl" <llz=yl",

the second line following from ||x|| = ||y|| = 1. Therefore the half-space H is the
set of points z in R"+! such that the Euclidean distance ||z — x|| is less than ||z — y||.

On the other hand, H must contain at least one point of the set {x1,..., x4},
since if this were not the case, the convex set cone(xy, ..., x;) would be contained
in {z: (z, y —x) > 0}, contradicting x € sconv(xy, ..., x4). Therefore, there exists i
such that x; € H. It follows that

e —xill < lly = xill.

Since the function z > 2arcsin(3) giving the length of an arc as a function of its
chord is nondecreasing, we obtain

ds(x, x;) <ds(y,x;) <ri. O

We can now proceed. Assume that Algorithm 19.1 halts. We want to show that
if r equals the number of connected components of G, then #r(f) =#Zs(f)/2 =
r/2. We already know by Lemma 19.21 that each connected component U of G,
determines uniquely a zero {y € Zs(f). Thus it is enough to prove that Zg(f) C
W (G). This would prove the reverse inequality in (19.9).

Assume, by way of contradiction, that there is a zero ¢ of f in S" such
that ¢ is not in W(G,). Let Bos(¢™' (), m) i={y €Uy | Iy = ¢ (Olloo <
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n} = {y1,..., Y4}, the set of all neighbors of ¢~ 1(¢) in Uy, and let x; = ¢ (y;),
i=1,...,q. Clearly, qﬁ’l(;) is in the cone spanned by {y1,..., y,}, and hence
¢ esconv(xy, ..., xq).

We claim that there exists j < ¢ such that x; &€ A(f). Indeed, assume this is not
the case. We consider two cases.

(i) All the x; belong to the same connected component U of G,. In this case
Lemma 19.21 ensures that there exists a unique zero {y € S" of f in W(U)
and ¢y € ﬂi B(x;). Since x1, ..., x4 lie in an open half-space of R+ we may
apply Lemma 19.24 to deduce that

sconv(xy, ..., x4) C Uﬁ(xi).

It follows that for some i € {1,...,q}, ¢ € B(x;) € W(U), contradicting that
€ W(Gy).

(ii) There exist £ # s and 1 < j <k <r such that x, € U; and xy € Uy. Since
condition (a) in the algorithm is satisfied, ds(x¢, xs) > mn+/n + 1. But by the
bounds (19.8),

dsxe, %) < 2+ Tye =yl
= V(=7 O+ |7 @ = [ ) = TvaFT.

a contradiction.

We have thus proved the claim. Let then 1 < j < ¢ be such thatx; ¢ A(f). Then,
using Lemma 19.22,

lfap)=rfea) =@ <1fIVDds(xj,¢) < %w(n + 1D f].

This is in contradiction with condition (b) in the algorithm being satisfied.

(b) We next prove the bound for the cost claimed in part (b) of Theorem 19.1.
The idea is to show that when 7 becomes small enough, as a function of « (f),n, N
and D, then conditions (a) and (b) in Algorithm 19.1 are satisfied. We spread this
task over a few lemmas, the first two of them being extensions of the bounds for
separation of zeros we saw in Sect. 16.6.

Lemma 19.25 Forall 2 <r <1,if{| # ¢ € Zs(f), then
. 2u(r)
ds(¢1,82) > mm{(S(r), 1)3/2—K(f)}

Proof The statement follows from Corollary 16.42, the estimate ypoi(f,2) <

#Mnorm(ﬁ z), and the fact that max{unorm (f, £)» Mnorm (S, &)} S v(f) =« (f). O
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Lemma 19.26 Let x1, x € Gy, with associated zeros {1 # 3. Let ry, 8«, and uy be
as in the proof of Theorem 19.9. If

Uy

<
"= 3D3 2wk (f)vn+1
then ds(x1, x2) > Tna/n + 1.

Proof Assume ds(x1, x2) < wn/n+ 1. Since x» & B(x1), ds(x1, x2) > 2B(f, x1).
Consequently,

ds(x1,¢1) <2B(f, x1) <ds(x1,x2) <mnvn+1,

and similarly, ds(x», {2) < wn+/n + 1. But then,

2u
ds(81, 82) = ds(@1,31) + ds(x1,x2) + do ez, £2) < 3w+ 1< .
In particular, ds(Z1.¢2) < <% < 4., since k(f) = 1. These two inequalities are in

contradiction with Lemma 19.25 for r = r,. O

Lemma 19.27 Let x € S" be such that x ¢ A(f). Suppose n < W Then

K(f)?”
If Ol > Znv/(n+ DDIfI.

Proof Since x € A(f), we have a(f, x) > ap. Also, k(f) =v(f) = v(f, x). This
implies, by (19.2),

2
K(f) %< 2max{,un0rm(ﬁ X2, ||J|;(f)f||)2|| }

We accordingly divide the proof into two cases.

IIf(x)Hz} _ lr@)?
/12 1%

Assume firstly that max{unorm ( f, x)_z,
In this case

- o _ 2a0lfW?
1= T ODR(2 = i+ VDA fIZ

which implies

IV 1D
lre)| = Vivn+ IDIAL %Mn + 1D fll,

V200
the second inequality since n < 5 < "
()12
Now assume instead that max{tnorm ( f, x) 2, %} = Unorm (f, X) 2.
In this case ‘
o 2w

n= = )
(n+ DDk (f)? = (n+ 1) D?inorm (f, x)?
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which implies ag > 31(n + 1) D2 ftnorm (£, x)2. Also,

ap <a(f,x)= —ﬂ(f X) fnorm (f, x)D3/? < mumrmmx)2D3/2||f<x>||.

Putting both inequalities together, we obtain

A +1 D norm 2 norm 2Dz/2
n(n )D? pinorm (f, X) _2||f”u (f, %)

which implies

T
| £ 2 0@+ DDV £ > Znv/(n+ DD O
We can now conclude the proof of part (b) of Theorem 19.1. Assume

Uy o }
3n D32+ 1k(f) (n+1)D(f)?

Then the hypotheses of Lemmas 19.26 and 19.27 hold. The first of these lemmas en-
sures that condition (a) in Algorithm 19.1 is satisfied, the second, that condition (b)
is satisfied as well. Therefore, the algorithm halts as soon as n < ng. This gives a
bound of O(log,(n Dk (f))) for the number of iterations.

At each iteration there are K :=2(n + 1)(%)” points in the grid. For each such
point x we evaluate pnorm(f,x) and || f(x)|, both with cost O(N), by Propo-
sition 16.45 and Lemma 16.31, respectively. We can therefore decide with cost
O(K N) which of these points are vertices of G, and for those points x compute the
radius 28( £, x) of the ball Ef (x). Therefore, with cost O(K2N) we can compute
the edges of G,. The number of connected components of G, is then computed
with O(K?N) operations as well by standard algorithms in graph theory (see the
Notes for references).

Since ds is computed with O(n) operations, the total cost of verifying condi-
tion (a) is at most O(K>n), and the additional cost of verifying (b) is O(K). It
follows that the cost of each iteration is O(K2N). Furthermore, since at these it-
erations 1 > ng, we have K < (C(n + 1)D2/c(f)2)”+1. Using this estimate in the
O(K?N) cost of each iteration and multiplying by the bound O(log, (n Dk (f))) for
the number of iterations, the claimed bound for the total cost follows.

(c) To prove part (c) of Theorem 19.1 just note that fori =1, ..., r, any vertex
x; of U; is an approximate zero of the only zero of f in W (U;). g

n=<mo:= min{

Remark 19.28 A finite-precision version of Algorithm 19.1 can be implemented as
well. The running time remains the same (with o replaced by a smaller universal
constant o), and the returned value is #r ( f) as long as the round-off unit satisfies

1
€mach = O(D2n5/2K(f)3(10g2 N +n3/2D2K(f)2)).
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19.5 On the Average Number of Real Zeros

The real solution variety VR C HAR x S§" is defined in the obvious way, and so is

Wr C M x S", where A = R™+D Let#r(q) denote the number of real zeros
in P*(R) of g € 'Hﬂf. Thus the number of real zeros in the sphere " = S(R"*1)
equals 2#r(g). In what follows we denote the density of the standard Gaussian
distribution on ’Hilf by P

Theorem 19.2 states that the expectation of #gr equals the square root of the
Bézout number D. We now provide the proof.

Proof of Theorem 19.2 Applying the coarea formula (Theorem 17.8) to the projec-
tion 7y : VR — HAR yields

1
#g MHR=/ ¢ wn—/ dry (q) dHE
/;_LAR Hd d q€'H§‘ Hd 2 Hfl(q) 1 d

1 n
= | ¢ eNmdVg.
/oRz Ha

We can factor the standard Gaussian ga%d into standard Gaussian densities ¢, and
¢L, on Cy and L, respectively, as was done in (18.2) over C (denoting them by the
same symbol will not cause any confusion). We also have an isometry W, — L, as
in (18.3), and ¢, induces the standard Gaussian density gw, on W;. The fiber of
Pr: Vi — Wr, (¢, ) = (N, ), over (N, ¢) has the form &5 (N, ¢) = {(gm,c +
h,l) | he Ry}, where M = ATLN; ef. (18.18). We therefore have (pHnda (gm,c+h) =

9c, (0) pw, (M) gr, (h).
Remark 18.7 states that the normal Jacobian of the map

PR: Vg — Wr, (¢8> (Dq(0). %),

has the constant value D"/2. The coarea formula applied to @, using Lemma 17.13,
yields

1 o
— @,r NI d VR
/oR 2"

1 / “
= vc, (0) pw, (M)NJpl(N,i)/ @R, (h)dR; dWR
2NI®R Jv.pyewve ‘ heRe ‘
1 / o
= oc, (0) ow, (M)NIp1(N, ¢)dWr.
2NJ¢R (N,()EW]R ¢ ¢

Applying the coarea formula to the projection pj : Wg — R, we can simplify the
above to

1
/ oc, (0) pw, (M) = dpy ' (N)d.#tw
Ne iy 2 !

NIog cepy (V)
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1
T NIdog

/ oc, (0) pw, (M) d 4w
Ne Ar

n+l

D72
T NJog

/ oc, (0) pw, (M) d M,
Me. iR

where the last equality is due to the change of variables .#Zgr — #r, N +— M,
which has Jacobian determinant D’%. Now we note that

1
pe, (0) - pw, (M) = 2m)™"/* @)™/ exp(_gllM ||%>

is the density of the standard Gaussian distribution on .ZR =~ R"*@+1D) g6 that the
last integral (over M € /) equals one. Altogether, we obtain, using NJ®g = D"/2,

n+l

D™
R
/H]R #yp dHG = ypm = VD, (19.11)

d

This finishes the proof. 0

19.6 Feasibility of Underdetermined and Semialgebraic Systems

The grid method used in Algorithm 19.1 can be put to use as well to decide feasi-
bility of underdetermined systems. For m <n we denote by Hﬁ[m] the linear space
of systems f = (f1,..., fm) of m homogeneous polynomials in n + 1 variables.

We want to decide whether a system f € Hﬂdii[m] is feasible, that is, whether there
exists x € P" (or equivalently, x € S*) such that f(x) = 0. In the complex setting
this would always be the case. Over the reals, it does not need to be so; for instance,
the polynomial X(z) +X 12 + X% has no zeros on S" and this is also true for any small
perturbation of it.

A first observation on our way towards an algorithm for this problem is that the
projective Newton’s method cannot be used in this context. But it turns out that a
slightly different form of this method works. For f € ’Hilf[m] and x € R"*! such
that Df (x) is surjective define

MPs(x):=x — Df(x)" f(x).

This Moore—Penrose Newton’s iteration satisfies the basic property of Newton’s
method, namely, that if we start at a point x close enough to a simple zero ¢ of f, the
sequence of iterates converges to { immediately, quadratically fast. In particular, we
can define approximate zeros as in Definition 16.34. Furthermore, versions y+, B+,
and o Of Yproj, Bproj» and aproj, respectively, are defined in the obvious manner, as
well as the natural extension

usf.x) =71 | Df (o) g (v x|
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of Wnorm to this context. The main results we proved for the projective versions of
these quantities in Chapter 16 can be extended to their Moore—Penrose counterparts.
In particular, the following Moore—Penrose «-theorem holds.

Theorem 19.29 There exists a universal positive constant o, such that if o (f, x) <
Oy, then x is an approximate zero of f . O

Furthermore, if we define o (f, x) 1= #u%(f, X) ”'ﬁﬁf‘”)” , the bound o+ (f, x) <

o (f, x) holds as well, so that the computation of the bound o (f, x) for at(f, x)
reduces to that of i (f, x).
We also have the following counterpart of Corollary 16.54.

Proposition 19.30 There exist constants C,€ > 0 such that the following is true.
Forall e €[0,¢],all f € ”Hilf[m], and all x,y € S", ifDS/ZILT(f, y)ds(x,y) <Ce,
then

1
T S ue(foy) = A+ eui(f.x). O

The constants ¢y, €, and C in Theorem 19.29 and Proposition 19.30 may be dif-
ferent from those occurring in Theorem 19.9 and Corollary 16.54, but the methods
of proof are the same (and some proofs may become simpler; cf. Remark 19.19(b)).
We therefore omit these proofs.

The algorithm deciding feasibility is the following (recall Algorithm 19.1 for the
notation; see below for the meaning of xteas(f)).

Algorithm 19.2 Underdetermined_Feasibility

Input: f € Hﬁ[m]
Preconditions: f1,..., f;,, #0

let n::%
repeat
if @7(f,x) <ap for some x el
then return “feasible” and halt

if ||f(x)||>%n«/(n+l)D||f|| for all xel

then return “infeasible” and halt
n:=n/2

Output: atagin {feasible,infeasible}

Postconditions: The algorithm halts if keas(f) < co. In this case the tag is
feasible iff f has a zero in P(R"*1).
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To analyze this algorithm we need a notion of condition for the input system. For
fe ”HAR[m] we define

mingezg(r) mi(f5¢) if Zs(f) #0,
Kfeas(f) = |

max,cse ”}”C(;xl)” otherwise.

We call f well-posed when kieas (f) < 00. Note that kreas(f) = oo if and only if f
is feasible and all its zeros are multiple.

For feasible systems f the condition number ka5 is reminiscent of the GCC con-
dition number ¥ . In both cases, condition is defined in terms of the best-conditioned
solution (recall the discussion in Sect. 6.8). The absence of a “dual” for the feasibil-
ity problem of real polynomial systems forces a different approach for the condition
in the infeasible case.

Theorem 19.31 Algorithm 19.2 works correctly: with input a well-posed system it
returns “feasible” (resp. “infeasible”) if and only if the system is so. The number of
iterations is bounded by O(log, (Dnkieas(f))).

Proof The correctness in the feasible case is a trivial consequence of Theorem 19.29
and the inequality o+ (f, x) < &y (f, x). The correctness in the infeasible case fol-
lows from Lemma 19.22 along with the inequalities (19.8).

To see the complexity bound, assume first that f is feasible and let ¢ in the cube
C", ¢ € Z(f), be such that «seas(f) = 1 (f, ¢). Let k be such that

min{4a,, 2C €}
aD2/n+1 Kfeas

Here C and € are the constants in Proposition 19.30. Let x € U, be such that ||x —
¢ |loo < n. Then, by (19.8),

n=2"<

min{2a,, C €}

ds(x,?) < .
s(x,¢) 02 f2eas(f)

Proposition 19.30 applies, and we have

wi(f, x) = (A +8)ps(f, &) = (1 +8)kteas (f)- (19.12)

Also, by Lemma 19.22,

lr@| </ IVDdsx. o) < ||f||m.

‘We then have

T (fox) = D3/2 2SN D, 2o
=TT = 2 e g K2 ()

= Oly.
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It follows that Algorithm 19.2 halts at this point, and therefore the number k of
iterations performed is at most O(log, (Dnkteas(f))).
Assume finally that f is infeasible and let k be such that

2
=27k .
1 <7TV(”+1)DKfeas(f)

Then, at any point y € U, we have

lre| =0 T G DD

Kteas(f) 2
Again, Algorithm 19.2 halts for this value of 5, and the number k of iterations
performed is also bounded by O(log, (Dnkieas(f))). Il

Remark 19.32 We finish this section by noting that the ideas above can be used to
further decide feasibility of semialgebraic systems. These are systems of the form

fix)y=0, i=1,...,s,
gi(x)=0, i=s+1,...,¢,
hi(x)>0, i=t+1,...,m,

with f;, gi, hi € R[X1, ..., X,,]. A solution for such a system is a point x € R”" sat-
isfying the equalities and inequalities above, and we say that the system is feasible
when solutions for it exist. Details of an algorithm deciding feasibility of semial-
gebraic systems and its analysis in terms of a condition number close to kgas are
in [70].



Chapter 20
Probabilistic Analysis of Conic Condition
Numbers: 1. The Complex Case

The smoothed analysis of condition numbers in the preceding chapters was done
on a case-by-case basis. For each considered condition number we proved a result
giving bounds on either expectation or probability tails or both. In this chapter and
the next we proceed differently—the theme of both chapters is the same, but the
focus of this is on problems over C, while the focus on the next is on problems
over R. We will consider a reasonably large class of condition numbers and obtain
smoothed analysis estimates for elements in this class depending only on geometric
invariants of the corresponding sets of ill-posed inputs.

This class is a subclass of the condition numbers a la Renegar introduced in In-
termezzo II. To be precise, assume that X' # {0} is an algebraic cone included in the
data space CPT!, i.e., a Zariski closed subset that is closed under multiplication by
complex scalars. We call a function % : CP*!\ {0} — R a conic condition number
when it has the form

__lal
da, %)’

where the norm and distance d in the quotient above are those induced by the stan-
dard Hermitian product on CP*!. We call X the set of ill-posed inputs for €.

The fact that X' is a cone implies that for all a € CPH! and all A € C,., we have
%(a) = € (ha). Hence, we may restrict attention to data a € P? := P(C*!) in
complex projective space for which the condition number takes the form

% (a)

C(a)= ——, (20.1)

where abusing notation, X' is interpreted now as a subset of P? and dgjn = sindp
denotes the sine distance in P? (cf. Fig. 20.1).

Since P? is a Riemannian manifold (cf. Sect. 14.2), we have a well-defined vol-
ume measure on it. The total volume of PP for this measure is finite (recall Exam-
ple 17.9). Hence, it makes sense to talk about the uniform probability distribution
on the closed ball B(a, o) of radius o around a € P? with respect to dgjn. So it is
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Fig. 20.1 Three distances
Ccp+1

natural to ask for a smoothed analysis of 4 whereby a random perturbation a of
a € P? is modeled by a € B(a, o) chosen from the uniform distribution on B(a, o).

Because X is a projective variety, it has associated with it a number of geometric
invariants, notably a (complex) dimension m = dimc X and a degree d = degX
(see Sect. A.3.4 for the definition). It is remarkable that a smoothed analysis of ¢
can be done in terms of these invariants only.

Our main result holds for any conic condition number for which the set of ill-
posed inputs X is purely dimensional, that is, all of its irreducible components have
the same dimension.

Theorem 20.1 Let € be a conic condition number with set of ill-posed inputs X C
3
. Then, for

PP, of pure dimension m, 0 <m < p. Let K(p, m) := ZW.

allaeP? allo €(0,1],and all t > pY2m o have

p—m >’

2(p—m) p 1 2m
Prob {€(a)>1t} <K (p, m)deg>:<t—> (1 + ——) ,
o

aeB(a,o) P —mio
as well as
o —L m 1
= (%(Cl)) <2eK(p, m)2r—m (degX)2(p—m p 1
a€eB(a,o) —mo
and

E (logﬁ %(a))

aeB(a,o)

1 pm 1
< m(logﬁ K (p,m)+loggdegX + 3logg e) + logg o + logg p

Taking o = 1, one obtains an average-case analysis.
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We will devote Sect. 20.6 to deriving applications of Theorem 20.1 to a few
condition numbers, some of which we have already encountered in the preceding
chapters.

In most of our applications, the set of ill-posed inputs X' is a hypersurface. That
is, X is the zero set Zp( f) of a nonzero homogeneous polynomial f, and thus degX
is at most the degree of f. In this case, we have the following corollary.

Corollary 20.2 Let E be a conic condition number with set of ill-posed inputs
X CPP. Assume X C Zp(f) with f € C[Xo, ..., X,] homogeneous of degree d.
Then, for alla € PP, all o € (0, 11, and all t > /2 p>/2,

1\2 1 \2(—D
Prob {€(a)>1} < 263p3d<t_0'> (1 + p—)

a€eB(a,o) to
as well as
1 3

E (¥(a)<4(2¢°)2p2d2

aeB(a,o)

Q-

and

E (logg6(a) <

aeB(a,o)

3 1 1 3
Elogﬁp%—ilogﬁd—l-loglg p +3logﬁe~|—§.

Taking o = 1, one obtains an average case analysis.

Remark 20.3 The results above have the beauty of generality. We pay for this beauty
with a loss of sharpness. A comparison of the bounds obtained as a consequence of
these results with bounds obtained with ad hoc arguments reveals this loss (compare,
e.g., the bounds in Sect. 20.6.1 for the condition number « r(A) with those obtained
in Sect. 4.4 for k (A); see also Remark 20.20 at the end of Sect. 20.6.3).

20.1 The Basic Idea

The basic idea towards the proof of Theorem 20.1 is not new to us. We can trace
it back to the proof of Theorem 2.39—where we performed a smoothed analysis
for the simple example of Sect. O.4—and we find it again at several points in the
previous chapters. It consists in reformulating the probability distribution of a conic
condition number in terms of a quotient of volumes.

In Sect. 2.2.6 we already introduced caps and tubes in spheres in very special
situations and obtained both exact formulas and estimates for the volumes of these
sets. We now need to extend these results and to replace the sphere as ambient space
by a complex projective space. We start with the obvious definitions.

The volume of a measurable subset A € P? is given by vol A = f 4 dPP, where
dP? denotes the volume form induced by the Riemannian metric on P?. For a €
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P? and o € [0, 1] we denote by B(a,o) := {a € P? | dgn(a,a) < o} the closed
ball of radius ¢ around a in P? with respect to the metric dgj, = sindp introduced
in Sect. 14.2.2. For a nonempty subset V € P? and 0 < & < 1 we define the &-
neighborhood around U in P? as

T(U,¢):={x € P” | dsin(x,U) <&},
where as usual, dgin (x, U) := inf{dgn(x, y) | y € U}. With this notation, we have

—1y _ _vol(T'(X,e)N B(a,0))
cze%’(%l:)a){(g(a) = } o aEF;?r(%t,)a){dsm(a’ 2) = S} o voI(B(a, O'))

The first claim in Theorem 20.1 will thus follow from the following purely geomet-
ric statement.

Theorem 20.4 Let V be a projective variety in PP