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Preface

Motivation A combined search at Mathscinet and Zentralblatt shows
more than 800 articles with the expression “condition number” in their title. It is
reasonable to assume that the number of articles dealing with conditioning, in one
way or another, is a substantial multiple of this quantity. This is not surprising. The
occurrence of condition numbers in the accuracy analysis of numerical algorithms
is pervasive, and its origins are tied to those of the digital computer. Indeed, the
expression “condition number” itself was first introduced in 1948, in a paper by Alan
M. Turing in which he studied the propagation of errors for linear equation solving
with the then nascent computing machinery [221]. The same subject occupied John
von Neumann and Herman H. Goldstine, who independently found results similar
to those of Turing [226]. Ever since then, condition numbers have played a leading
role in the study of both accuracy and complexity of numerical algorithms.

To the best of our knowledge, and in stark contrast to this prominence, there is no
book on the subject of conditioning. Admittedly, most books on numerical analysis
have a section or chapter devoted to it. But their emphasis is on algorithms, and the
links between these algorithms and the condition of their data are not pursued be-
yond some basic level (for instance, they contain almost no instances of probabilistic
analysis of algorithms via such analysis for the relevant condition numbers).

Our goal in writing this book has been to fill this gap. We have attempted to
provide a unified view of conditioning by making condition numbers the primary
object of study and by emphasizing the many aspects of condition numbers in their
relation to numerical algorithms.

Structure The book is divided into three parts, which approximately correspond
to themes of conditioning in linear algebra, linear programming, and polynomial
equation solving, respectively. The increase in technical requirements for these sub-
jects is reflected in the different paces for their expositions. Part I proceeds leisurely
and can be used for a semester course at the undergraduate level. The tempo in-
creases in Part II and reaches its peak in Part III with the exposition of the recent
advances in and partial solutions to the 17th of the problems proposed by Steve
Smale for the mathematicians of the 21st century, a set of results in which condi-
tioning plays a paramount role [27, 28, 46].
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viii Preface

As in a symphonic poem, these changes in cadence underlie a narration in which,
as mentioned above, condition numbers are the main character. We introduce them,
along with the cast of secondary characters making up the dramatis personae of this
narration, in the Overture preceding Part I.

We mentioned above that Part I can be used for a semester course at the under-
graduate level. Part II (with some minimal background from Part I) can be used as
an undergraduate course as well (though a notch more advanced). Briefly stated, it is
a “condition-based” exposition of linear programming that, unlike more elementary
accounts based on the simplex algorithm, sets the grounds for similar expositions of
convex programming. Part III is also a course on its own, now on computation with
polynomial systems, but it is rather at the graduate level.

Overlapping with the primary division of the book into its three parts there is
another taxonomy. Most of the results in this book deal with condition numbers of
specific problems. Yet there are also a few discussions and general results applying
either to condition numbers in general or to large classes of them. These discussions
are in most of the Overture, the two Intermezzi between parts, Sects. 6.1, 6.8, 9.5,
and 14.3, and Chaps. 20 and 21. Even though few, these pages draft a general theory
of condition, and most of the remainder of the book can be seen as worked examples
and applications of this theory.

The last structural attribute we want to mention derives from the technical char-
acteristics of our subject, which prominently features probability estimates and, in
Part III, demands some nonelementary geometry. A possible course of action in our
writing could have been to act like Plato and deny access to our edifice to all those
not familiar with geometry (and, in our case, probabilistic analysis). We proceeded
differently. Most of the involved work in probability takes the form of estimates—
of either distributions’ tails or expectations—for random variables in a very specific
context. We therefore included within the book a Crash Course on Probability pro-
viding a description of this context and the tools we use to compute these estimates.
It goes without saying that probability theory is vast, and alternative choices in its
toolkit could have been used as well. A penchant for brevity, however, prevented
us to include these alternatives. The course is supplied in installments, six in to-
tal, and contains the proofs of most of its results. Geometry requirements are of a
more heterogeneous nature, and consequently, we have dealt with them differently.
Some subjects, such as Euclidean and spherical convexity, and the basic properties
of projective spaces, are described in detail within the text. But we could not do so
with the basic notions of algebraic, differential, and integral geometry. We therefore
collected these notions in an appendix, providing only a few proofs.

Peter Bürgisser
Felipe Cucker

Paderborn, Germany
Hong Kong, Hong Kong SAR
May 2013
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Overture: On the Condition of Numerical
Problems

O.1 The Size of Errors

Since none of the numbers we take out from logarithmic or trigonometric ta-
bles admit of absolute precision, but are all to a certain extent approximate
only, the results of all calculations performed by the aid of these numbers
can only be approximately true. [. . .] It may happen, that in special cases
the effect of the errors of the tables is so augmented that we may be obliged
to reject a method, otherwise the best, and substitute another in its place.

Carl Friedrich Gauss, Theoria Motus

The heroes of numerical mathematics (Euler, Gauss, Lagrange, . . . ) developed a
good number of the algorithmic procedures which constitute the essence of numer-
ical analysis. At the core of these advances was the invention of calculus. And un-
derlying the latter, the field of real numbers.

The dawn of the digital computer, in the decade of the 1940s, allowed the execu-
tion of these procedures on increasingly large data, an advance that, however, made
even more patent the fact that real numbers cannot be encoded with a finite number
of bits and therefore that computers had to work with approximations only. With the
increased length of computations, the systematic rounding of all occurring quanti-
ties could now accumulate to a greater extent. Occasionally, as already remarked by
Gauss, the errors affecting the outcome of a computation were so big as to make it
irrelevant.

Expressions like “the error is big” lead to the question, how does one measure
an error? To approach this question, let us first assume that the object whose error
we are considering is a single number x encoding a quantity that may take values
on an open real interval. An error of magnitude 1 may yield another real number
x̃ with value either x − 1 or x + 1. Intuitively, this will be harmless or devastating
depending on the magnitude of x itself. Thus, for x = 106, the error above is hardly
noticeable, but for x = 10−3, it certainly is (and may even change basic features of

xvii
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x such as being positive). A relative measure of the error appears to convey more
meaning. We therefore define1

RelError(x)= |x̃ − x|
|x| .

Note that this expression is well defined only when x �= 0.
How does this measure extend to elements x ∈R

m? We want to consider relative
errors as well, but how does one relativize? There are essentially two ways:

Componentwise: Here we look at the relative error in each component, taking as
error for x the maximum of them. That is, for x ∈ R

m such that xi �= 0 for i =
1, . . . ,m, we define

RelError(x)= max
i≤m

RelError(xi).

Normwise: Endowing R
m with a norm allows one to mimic, for x �= 0, the defini-

tion for the scalar case. We obtain

RelError(x)= ‖x̃ − x‖
‖x‖ .

Needless to say, the normwise measure depends on the choice of the norm.

O.2 The Cost of Erring

How do round-off errors affect computations? The answer to this question depends
on a number of factors: the problem being solved, the data at hand, the algorithm
used, the machine precision (as well as other features of the computer’s arithmetic).
While it is possible to consider all these factors together, a number of idealiza-
tions leading to the consideration of simpler versions of our question appears as a
reasonable—if not necessary—course of action. The notion of condition is the re-
sult of some of these idealizations. More specifically, assume that the problem being
solved can be described by a function

ϕ :D ⊆R
m →R

q,

where D is an open subset of Rm. Assume as well that the computation of ϕ is per-
formed by an algorithm with infinite precision (that is, there are no round-off errors
during the execution of this algorithm). All errors in the computed value arise as a
consequence of possible errors in reading the input (which we will call perturba-
tions). Our question above then takes the following form:

How large is the output error with respect to the input perturbation?

1To be completely precise, we should write RelError(x, x̃). In all what follows, however, to simplify
notation, we will omit the perturbation x̃ and write simply RelError(x).
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The condition number of input a ∈D (with respect to problem ϕ) is, roughly speak-
ing, the worst possible magnification of the output error with respect to a small input
perturbation. More formally,

condϕ(a)= lim
δ→0

sup
RelError(a)≤δ

RelError(ϕ(a))

RelError(a)
. (O.1)

This expression defines the condition number as a limit. For small values of δ we
can consider the approximation

condϕ(a)≈ sup
RelError(a)≤δ

RelError(ϕ(a))

RelError(a)

and, for practical purposes, the approximate bound

RelError
(
ϕ(a)

)
� condϕ(a)RelError(a), (O.2)

or yet, using “little oh” notation2 for RelError(a)→ 0,

RelError
(
ϕ(a)

)≤ condϕ(a)RelError(a)+ o
(
RelError(a)

)
. (O.3)

Expression (O.1) defines a family of condition numbers for the pair (ϕ, a). Errors
can be measured either componentwise or normwise, and in the latter case, there is a
good number of norms to choose from. The choice of normwise or componentwise
measures for the errors has given rise to three kinds of condition numbers (condi-
tion numbers for normwise perturbations and componentwise output errors are not
considered in the literature).

We will generically denote normwise condition numbers by condϕ(a), mixed con-
dition numbers by Mϕ(a), and componentwise condition numbers by Cwϕ(a). We
may skip the superscript ϕ if it is clear from the context. In the case of component-
wise condition numbers one may be interested in considering the relative error for
each of the output components separately. Thus, for j ≤ q one defines

Cwϕ
j (a)= lim

δ→0
sup

RelError(a)≤δ

RelError(ϕ(a)j )

RelError(a)
,

and one has Cwϕ(a)= maxj≤q Cwϕ
j (a).

2A short description of the little oh and other asymptotic notations is in the Appendix, Sect. A.1.



xx Overture: On the Condition of Numerical Problems

The consideration of a normwise, mixed, or componentwise condition number
will be determined by the characteristics of the situation at hand. To illustrate this,
let’s look at data perturbation. The two main reasons to consider such perturbations
are inaccurate data reading and backward-error analysis.

In the first case the idea is simple. We are given data that we know to be inac-
curate. This may be because we obtained it by measurements with finite precision
(e.g., when an object is weighed, the weight is displayed with a few digits only) or
because our data are the result of an inaccurate computation.

The idea of backward-error analysis is less simple (but very elegant). For a prob-
lem ϕ we may have many algorithms that solve it. While all of them ideally compute
ϕ when endowed with infinite precision, under the presence of errors they will com-
pute only approximations of this function. At times, for a problem ϕ and a finite-
precision algorithm Aϕ solving it, it is possible to show that for all a ∈ D there
exists e ∈R

m with a + e ∈D satisfying

(∗) Aϕ(a)= ϕ(a + e), and

(∗∗) e is small with respect to a.

In this situation—to which we refer by saying that Aϕ is backward-stable—
information on how small exactly e is (i.e., how large RelError(a) is) together with
the condition number of a directly yields bounds on the error of the computed quan-
tity Aϕ(a). For instance, if (∗∗) above takes the form

‖e‖ ≤m310−6‖a‖,
we will deduce, using (O.2), that

∥∥Aϕ(a)− ϕ(a)
∥∥� condϕ(a)m310−6

∥∥ϕ(a)
∥∥. (O.4)

No matter whether due to inaccurate data reading or because of a backward-
error analysis, we will measure the perturbation of a in accordance with the situ-
ation at hand. If, for instance, we are reading data in a way that each component
ai satisfies RelError(ai) ≤ 5 × 10−8, we will measure perturbations in a compo-
nentwise manner. If, in contrast, a backward-error analysis yields an e satisfying
‖e‖ ≤m3‖a‖10−6, we will have to measure perturbations in a normwise manner.

While we may have more freedom in the way we measure the output error, there
are situations in which a given choice seems to impose itself. Such a situation could
arise when the outcome of the computation at hand is going to be the data of an-
other computation. If perturbations of the latter are measured, say, componentwise,
we will be interested in doing the same with the output error of the former. A striking
example in which error analysis can be only appropriately explained using compo-
nentwise conditioning is the solution of triangular systems of equations. We will
return to this issue in Chap. 3.

At this point it is perhaps convenient to emphasize a distinction between condi-
tion and (backward) stability. Given a problem ϕ, the former is a property of the
input only. That is, it is independent on the possible algorithms used to compute ϕ.
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In contrast, backward stability, at least in the sense defined above, is a property of
an algorithm Aϕ computing ϕ that holds for all data a ∈D (and is therefore inde-
pendent of particular data instances).

Expressions like (O.4) are known as forward-error analyses, and algorithms Aϕ

yielding a small value of ‖Aϕ(a)−ϕ(a)‖
‖ϕ(a)‖ are said to be forward-stable. It is impor-

tant to mention that while backward-error analyses immediately yield forward-error
bounds, some problems do not admit backward-error analysis, and therefore, their
error analysis must be carried forward.

It is time to have a closer look at the way errors are produced in a computer.

O.3 Finite-Precision Arithmetic and Loss of Precision

O.3.1 Precision . . .

Although the details of computer arithmetic may vary with computers and software
implementations, the basic idea was agreed upon shortly after the dawn of digital
computers. It consisted in fixing positive integers β ≥ 2 (the basis of the representa-
tion), t (its precision), and e0, and approximating nonzero real numbers by rational
numbers of the form

z=±m

βt
βe

with m ∈ {1, . . . , βt } and e ∈ {−e0, . . . , e0}. The fraction m
βt is called the mantissa

of z and the integer e its exponent. The condition |e| ≤ e0 sets limits on how big (and
how small) z may be. Although these limits may give rise to situations in which (the
absolute value of) the number to be represented is too large (overflow) or too small
(underflow) for the possible values of z, the value of e0 in most implementations is
large enough to make these phenomena rare in practice. Idealizing a bit, we may
assume e0 =∞.

As an example, taking β = 10 and t = 12, we can approximate

π8 ≈ 0.948853101607× 104.

The relative error in this approximation is bounded by 1.1 × 10−12. Note that t is
the number of correct digits of the approximation. Actually, for any real number x,
by appropriately rounding and truncating an expansion of x we can obtain a number

x̃ as above satisfying x̃ = x(1 + δ) with |δ| ≤ β−t+1

2 . That is,

RelError(x)≤ β−t+1

2
.

More generally, whenever a real number x is approximated by x̃ satisfying an in-
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equality like the one above, we say that x̃ approximates x with t correct digits.3

Leaving aside the details such as the choice of basis and the particular way a
real number is truncated to obtain a number as described above, we may summa-
rize the main features of computer arithmetic (recall that we assume e0 =∞) by
stating the existence of a subset F ⊂ R containing 0 (the floating-point numbers),
a rounding map round : R→ F, and a round-off unit (also called machine epsilon)
0 < εmach < 1, satisfying the following properties:

(a) For any x ∈ F, round(x)= x. In particular round(0)= 0.
(b) For any x ∈R, round(x)= x(1 + δ) with |δ| ≤ εmach.

Furthermore, one can take εmach = β−t+1

2 and therefore | logβ εmach| = t − logβ
β
2 .

Arithmetic operations on F are defined following the scheme

x ◦̃ y = round(x ◦ y)

for any x, y ∈ F and ◦ ∈ {+,−,×, /} and therefore

◦̃ : F× F→ F.

It follows from (b) above that for any x, y ∈ F we have

x ◦̃ y = (x ◦ y)(1 + δ), |δ| ≤ εmach.

Other operations may also be considered. Thus, a floating-point version √̃ of the
square root would similarly satisfy

√̃
x =√

x(1 + δ), |δ| ≤ εmach.

When combining many operations in floating-point arithmetic, expressions such as
(1+δ) above naturally appear. To simplify round-off analyses it is useful to consider
the quantities, for k ≥ 1 and kεmach < 1,

γk := kεmach

1 − kεmach
(O.5)

and to denote by θk any number satisfying |θk| ≤ γk . In this sense, θk represents
a set of numbers, and different occurrences of θk in a proof may denote different
numbers. Note that

γk ≤ (k + 1)εmach if k(k + 1)≤ ε−1
mach. (O.6)

The proof of the following proposition can be found in Chap. 3 of [121].

Proposition O.1 The following relations hold (assuming all quantities are well de-
fined):

3This notion reflects the intuitive idea of significant figures modulo carry differences. The number
0.9999 approximates 1 with a precision t = 10−4. Yet their first significant digits are different.
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(a) (1 + θk)(1 + θj )= 1 + θk+j ,
(b)

1 + θk

1 + θj
=
{

1 + θk+j if j ≤ k,

1 + θk+2j if j > k,

(c) γkγj ≤ γmin{k,j} if max{kεmach, jεmach} ≤ 1/2,
(d) iγk ≤ γik ,
(e) γk + εmach ≤ γk+1,
(f) γk + γj + γkγj ≤ γk+j . �

O.3.2 . . . and the Way We Lose It

In computing an arithmetic expression q with a round-off algorithm, errors will
accumulate, and we will obtain another quantity, which we denote by fl(q). We will
also write Error(q)= |q − fl(q)|, so that RelError(q)= Error(q)

|q| .
Assume now that q is computed with a real-number algorithm A executed using

floating-point arithmetic from data a (a formal model for real-number algorithms
was given in [37]). No matter how precise the representation we are given of the
entries of a, these entries will be rounded to t digits. Hence t (or, being roughly the
same, | logβ εmach|) is the precision of our data. On the other hand, the number of
correct digits in fl(q) is approximately −logβRelError(q). Therefore, the value

LoP(q) := logβ

RelError(q)

εmach
= | logβ εmach| −

∣∣logβ RelError(q)
∣∣

quantifies the loss of precision in the computation of q . To extend this notion to
the computation of vectors v = (v1, . . . , vq) ∈ R

q , we need to fix a measure for the
precision of the computed fl(e)= (fl(v1), . . . , fl(vq)): componentwise or normwise.

In the componentwise case, we have

−logβRelError(e)=−logβ max
i≤q

|fl(vi)− vi |
|vi | = min

i≤q

(
−logβ

|fl(vi)− vi |
|vi |

)
,

so that the precision of v is the smallest of the precisions of its components.
For the normwise measure, we take the precision of v to be

−logβRelError(e)=−logβ

‖fl(e)− v‖
‖v‖ .

This choice has both the pros and cons of viewing v as a whole and not as the
aggregation of its components.

For both the componentwise and the normwise measures we can consider εmach

as a measure of the worst possible relative error RelError(a) when we read data a

with round-off unit εmach, since in both cases

max
|ãi−ai |≤εmach|ai |

RelError(a)= εmach.
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Hence, | logβ εmach| represents in both cases the precision of the data. We therefore
define the loss of precision in the computation of ϕ(a) to be

LoP
(
ϕ(a)

) := logβ

RelError(ϕ(a))

εmach
= | logβ εmach| + logβ RelError

(
ϕ(a)

)
. (O.7)

Remark O.2 By associating RelError(a) ≈ εmach, we may view the logarithm of a
condition number logβ condϕ(a) as a measure of the worst possible loss of precision
in a computation of ϕ(a) in which the only error occurs in reading the data.

To close this section we prove a result putting together—and making precise—a
number of issues dealt with so far. For data a ∈ D ⊆ R

m we call m the size of a

and we write size(a) = m. Occasionally, this size is a function of a few integers,
the dimensions of a, the set of which we denote by dims(a). For instance, a p × q

matrix has dimensions p and q and size pq .

Theorem O.3 Let Aϕ be a finite-precision algorithm with round-off unit εmach com-
puting a function ϕ : D ⊆ R

m → R
q . Assume Aϕ satisfies the following backward

bound: for all a ∈D there exists ã ∈D such that

Aϕ(a)= ϕ(ã)

and

RelError(a)≤ f
(
dims(a)

)
εmach + o(εmach)

for some positive function f , and where the “little oh” is for εmach → 0. Then the
computed Aϕ(a) satisfies the forward bound

RelError
(
ϕ(a)

)≤ f
(
dims(a)

)
condϕ(a)εmach + o(εmach),

and the loss of precision in the computation (in base β) is bounded as

LoP
(
ϕ(a)

)≤ logβ f
(
dims(a)

)+ logβ condϕ(a)+ o(1).

Here condϕ refers to the condition number defined in (O.1) with the same measures
(normwise or componentwise) for RelError(a) and RelError(ϕ(a)) as those in the
backward and forward bounds above, respectively.

Proof The forward bound immediately follows from the backward bound and (O.3).
For the loss of precision we have

logβ RelError
(
ϕ(a)

) ≤ logβ f
(
dims(a)

)
condϕ(a)εmach

(
1 + o(1)

)

≤ logβ f
(
dims(a)

)+ logβ condϕ(a)− | logβ εmach| + o(1),

from which the statement follows. �
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O.4 An Example: Matrix–Vector Multiplication

It is perhaps time to illustrate the notions introduced so far by analyzing a simple
problem, namely, matrix–vector multiplication. We begin with a (componentwise)
backward stability analysis.

Proposition O.4 There is a finite-precision algorithm A that with input A ∈R
m×n

and x ∈ R
n, computes the product Ax. If εmach(�log2 n� + 2)2 < 1, then the com-

puted vector fl(Ax) satisfies fl(Ax)= Ãx with

|ãij − aij | ≤
(�log2 n� + 2

)
εmach|aij |.

Proof Let b=Ax. For i = 1, . . . ,m we have

bi = ai1x1 + ai2x2 + · · · + ainxn.

For the first product on the right-hand side we have fl(ai1x1) = ai1x1(1 + δ)

with |δ| ≤ εmach ≤ εmach
1−εmach

= γ1. That is, fl(ai1x1) = ai1x1(1 + θ1) and similarly
fl(ai2x2)= ai2x2(1 + θ1). Note that the two occurrences of θ1 here denote two dif-
ferent quantities. Hence, using Proposition O.1,

fl(ai1x1 + ai2x2) =
(
ai1x1(1 + θ1)+ ai2x2(1 + θ1)

)
(1 + θ1)

= ai1x1(1 + θ2)+ ai2x2(1 + θ2).

By the same reasoning, fl(ai3x3 +ai4x4)= ai3x3(1+ θ2)+ai4x4(1+ θ2), and there-
fore

fl(ai1x1 + ai2x2 + ai3x3 + ai4x4)

= (
ai1x1(1 + θ2)+ ai2x2(1 + θ2)+ ai3x3(1 + θ2)+ ai4x4(1 + θ2)

)
(1 + θ1)

= ai1x1(1 + θ3)+ ai2x2(1 + θ3)+ ai3x3(1 + θ3)+ ai4x4(1 + θ3).

Continuing in this way, we obtain

fl(bi)= ãi1x1 + ãi2x2 + · · · + ãinxn

with ãij = aij (1 + θ�log2 n�+1). The result follows from the estimate (O.6), setting
k = �log2 n� + 1. �

Remark O.5 Note that the algorithm computing Ax is implicitly given in the proof
of Proposition O.4. This algorithm uses a balanced treelike structure for the sums.
The order of the sums cannot be arbitrarily altered: the operations +̃ and ·̃ are
nonassociative.

We next estimate the componentwise condition number of matrix–vector mul-
tiplication. In doing so, we note that in the backward analysis of Proposition O.4,
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only the entries of A are perturbed. Those of x are not. This feature allows one to
consider the condition of data (A,x) for perturbations of A only. Such a situation is
common and also arises when data are structured (e.g., unit upper-triangular matri-
ces have zeros below the diagonal and ones on the diagonal) or contain entries that
are known to be integers.

Proposition O.6 The componentwise condition numbers Cwi (A, x) of matrix–
vector multiplication, for perturbations of A only, satisfy

Cwi (A, x)≤ ∣∣sec(ai, x)
∣∣,

where ai denotes the ith row of A and sec(ai, x) = 1
cos(ai ,x)

denotes the secant of
the angle it makes with x (we assume ai, x �= 0).

Proof Let Ã = A + E be a perturbation of A with E = (eij ). By definition,
|eij | ≤ RelError(A)|aij | for all i, j , whence ‖ei‖ ≤ RelError(A)‖ai‖ for all i (here
‖ ‖ denotes the Euclidean norm in R

n). We obtain

RelError
(
(Ax)i

)= |eT
i x|

|aT
i x|

≤ ‖ei‖‖x‖
|aT

i x|
≤ RelError(A)

‖ai‖‖x‖
|aT

i x|
.

This implies that

Cwi (A, x)= lim
δ→0

sup
RelError(A)≤δ

RelError((Ax)i)

RelError(A)

≤ ‖ai‖‖x‖
|aT

i x|
= 1

| cos(ai, x)| =
∣∣sec(ai, x)

∣∣. �

A bound for the loss of precision in the componentwise context follows.

Corollary O.7 In the componentwise setting, for all i such that bi = (Ax)i �= 0,

RelError(bi) ≤
∣∣sec(ai, x)

∣∣(�log2 n� + 2
)
εmach + o(εmach),

LoP(bi) ≤ logβ

∣∣sec(ai, x)
∣∣+ logβ

(�log2 n� + 2
)+ o(1),

provided log2 n≤ ε
−1/2
mach + 3.

Proof Immediate from Propositions O.4 and O.6 and Theorem O.3. �

The corollary above states that if we are working with | logβ εmach| bits of pre-
cision, we compute a vector fl(Ax) whose nonzero entries have, approximately, at
least

| logβ εmach| − logβ

∣∣sec(ai, x)
∣∣− logβ log2 n
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bits of precision. (The required bound on n is extremely weak and will be satisfied
in all cases of interest.) This is a satisfying result. One may, nevertheless, wonder
about the (absolute) error for the zero components of Ax. In this case, a normwise
analysis may be more appropriate.

To proceed with a normwise analysis we first need to choose a norm in the space
of m× n matrices. For simplicity, we choose

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞.

It is well known that

‖A‖∞ = max
i≤n

‖ai‖1. (O.8)

Now note that it follows from Proposition O.4 that the perturbation Ã in its statement
satisfies, for n not too large,

‖Ã−A‖∞ ≤ (�log2 n� + 2
)
εmach. (O.9)

Therefore, we do have a normwise backward-error analysis. In addition, a normwise
version of Proposition O.6 can be easily obtained.

Proposition O.8 The normwise condition number cond(A,x) of matrix–vector
multiplication, for perturbations on A only, satisfies, for Ax �= 0,

cond(A,x)= ‖A‖∞‖x‖∞
‖Ax‖∞ .

Proof We have

cond(A,x) = lim
δ→0

sup
RelError(A)≤δ

RelError(Ax)

RelError(A)

= lim
δ→0

sup
‖Ã−A‖∞≤δ‖A‖∞

‖Ãx −Ax‖∞
‖Ax‖∞

‖A‖∞
‖Ã−A‖∞

≤ ‖A‖∞‖x‖∞
‖Ax‖∞ .

Actually, equality holds. In order to see this, assume, without loss of generality, that
‖x‖∞ = |x1|. Set Ã= A+E, where e11 = δ and eij = 0 otherwise. Then we have
‖Ãx −Ax‖∞ = ‖Ex‖∞ = δ|x1| = ‖E‖∞‖x‖∞ = ‖Ã−A‖∞‖x‖∞. �

Again, a bound for the loss of precision immediately follows.

Corollary O.9 In the normwise setting, when Ax �= 0,

LoP(Ax)≤ logβ

(‖A‖∞‖x‖∞
‖Ax‖∞

)
+ logβ

(�log2 n� + 2
)+ o(1),

provided log2 n≤ ε
−1/2
mach + 3.
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Proof It is an immediate consequence of (O.9), Proposition O.8, and Theo-
rem O.3. �

Remark O.10 If m = n and A is invertible, it is possible to give a bound on the
normwise condition that is independent of x. Using that x = A−1Ax, we de-
duce ‖x‖∞ ≤ ‖A−1‖∞‖Ax‖∞ and therefore, by Proposition O.8, cond(A,x) ≤
‖A−1‖∞‖A‖∞. A number of readers may find this expression familiar.

O.5 The Many Faces of Condition

The previous sections attempted to introduce condition numbers by retracing the
way these numbers were introduced: as a way of measuring the effect of data per-
turbations. The expression “condition number” was first used by Turing [221] to
denote a condition number for linear equation solving, independently introduced by
him and by von Neumann and Goldstine [226] in the late 1940s. Expressions like
“ill-conditioned set [of equations]” to denote systems with a large condition number
were also introduced in [221].

Conditioning, however, was eventually related to issues in computation other
than error-propagation analysis and this fact—together with the original role of con-
ditioning in error analysis—triggered research on different aspects of the subject.
We briefly describe some of them in what follows.

O.5.1 Condition and Complexity

In contrast with direct methods (such as Gaussian elimination), the number of
times that a certain basic procedure is repeated in iterative methods is not data-
independent. In the analysis of this dependence on the data at hand it was early
realized that, quite often, one could express it using its condition number. That is,
the number of iterations the algorithm Aϕ would perform with data a ∈ R

m could
be bounded by a function of m, condϕ(a), and—in the case of an algorithm comput-
ing an ε-approximation of the desired solution—the accuracy ε. A very satisfying
bound for the number of iterations # iterations(Aϕ(a)) of algorithm Aϕ would have
the form

# iterations
(
Aϕ(a)

)≤
(
m+ log condϕ(a)+ log

(
1

ε

))O(a)

, (O.10)

and a less satisfying (but often still acceptable) bound would have log condϕ(a)

replaced by condϕ(a) and/or log( 1
ε
) replaced by 1

ε
. We will encounter several in-

stances of this condition-based complexity analysis in the coming chapters.
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O.5.2 Computing Condition Numbers

Irrespective of whether relative errors are measured normwise or componentwise,
the expression (O.1) defining the condition number of a (for the problem ϕ) is hardly
usable. Not surprisingly then, one of the main lines of research regarding condition
numbers has focused on finding equivalent expressions for condϕ(a) that would
be directly computable or, if this appears to be out of reach, tight enough bounds
with this property. We have done so for the problem of matrix–vector multiplication
in Propositions O.6 and O.8 (for the componentwise and normwise cases, respec-
tively). In fact, in many examples the condition number can be succinctly expressed
in terms of the norm of a derivative, which facilitates its analysis (cf. Sect. 14.1).

O.5.3 Condition of Random Data

How many iterations does an iterative algorithm need to perform to compute ϕ(a)?
To answer this question we need condϕ(a). And to compute condϕ(a) we would
like a simple expression like those in Propositions O.6 and O.8. A second look
at these expressions, however, shows that they seem to require ϕ(a), the quantity
in which we were interested in the first place. For in the componentwise case, we
need to compute sec(ai, x)—and hence aT

i x—for i = 1, . . . , n, and in the normwise
case the expression ‖Ax‖∞ speaks for itself. Worst of all, this is not an isolated
situation. We will see that the condition number of a matrix A with respect to matrix
inversion is expressed in terms of A−1 (or some norm of this inverse) and that a
similar phenomenon occurs for each of the problems we consider. So, even though
we do not formalize this situation as a mathematical statement, we can informally
describe it by saying that the computation of a condition number condϕ(a) is never
easier than the computation of ϕ(a). The most elaborate reasoning around this issue
was done by Renegar [164].

A similar problem appears with perturbation considerations. If we are given only
a perturbation ã of data a, how can we know how accurate ϕ(ã) is? Even assuming
that we can compute condϕ accurately and fast, the most we could do is to compute
condϕ(ã), not condϕ(a).

There are a number of ways in which this seemingly circular situation can be
broken. Instead of attempting to make a list of them (an exercise that can only result
in boredom), we next describe a way out pioneered by John von Neumann (e.g.,
in [108]) and strongly advocated by Steve Smale in [201]. It consists in randomizing
the data (i.e., in assuming a probabilistic distribution D in R

m) and considering the
tail

Prob
a∼D

{
condϕ(a)≥ t

}

or the expected value (for q ≥ 1)

E
a∼D

(
logq condϕ(a)

)
.
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The former, together with a bound as in (O.10), would allow one to bound the prob-
ability that Aϕ needs more than a given number of iterations. The latter, taking q to
be the constant in the O(a) notation, would make it possible to estimate the expected
number of iterations. Furthermore, the latter again, now with q = 1, can be used to
obtain an estimate of the average loss of precision for a problem ϕ (together with a
backward stable algorithm Aϕ if we are working with finite-precision arithmetic).

For instance, for the example that formed the substance of Sect. O.4, we will
prove for a matrix A ∈R

m×n with standard Gaussian entries that

E
(
logβ Cwi (A)

)≤ 1

2
logβ n+ 2.

In light of Corollary O.7, this bound implies that the expected loss of precision in
the computation of (Ax)i is at most 1

2 logβ n+ logβ log2 n+O(1).
The probabilistic analysis proposed by von Neumann and Smale relies on the

assumption of “evenly spread random data.” A different approach was recently pro-
posed that relies instead on the assumption of “nonrandom data affected by random
noise.” We will develop both approaches in this book.

O.5.4 Ill-posedness and Condition

Let us return once more to the example of matrix–vector multiplication. If A and
x are such that Ax = 0, then the denominator in ‖A‖∞‖x‖∞

‖Ax‖∞ is zero, and we can
define cond(A,x)=∞. This reflects the fact that no matter how small the absolute
error in computing Ax, the relative error will be infinite. The quest for any relative
precision is, in this case, a battle lost in advance. It is only fair to refer to instances
like this with a name that betrays this hopelessness. We say that a is ill-posed for
ϕ when condϕ(a) =∞. Again, one omits the reference to ϕ when the problem is
clear from the context, but it goes without saying that the notion of ill-posedness,
like that of condition, is with respect to a problem. It also depends on the way we
measure errors. For instance, in our example, Cw(A,x) =∞ if and only if there
exists i ≤ n such that aT

i x = 0, while for cond(A,x) to be infinity, it is necessary
(and sufficient) that Ax = 0.

The subset of Rm of ill-posed inputs is denoted by Σϕ (or simply by Σ ), and
it has played a distinguished role in many developments in conditioning. To see
why, let us return (yes, once again) to matrix–vector multiplication, say in the com-
ponentwise setting. Recall that we are considering x as fixed (i.e., not subject to
perturbations). In this situation we take Σ ⊂R

n×m to be the set of matrices A such
that Cw(A,x)=∞. We have Σ =⋃

i≤n Σi with

Σi =
{
A ∈R

n×m | Cwi (A, x)=∞}= {
A ∈R

n×m | aT
i x = 0

}
.
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Now recall Cwi (A, x)≤ 1
| cos(ai ,x)| . If we denote by āi the orthogonal projection of

ai on the space x⊥ = {y ∈R
m | yTx = 0}, then

1

| cos(ai, x)| =
‖ai‖

‖ai − āi‖ ,

and it follows that

Cwi (A, x)≤ ‖ai‖
dist(A,Σi)

. (O.11)

That is, componentwise, the condition number of (A,x) is bounded by the inverse
of the relativized distance from A to ill-posedness.

This is not an isolated phenomenon. On the contrary, it is a common occurrence
that condition numbers can be expressed as, or at least bounded by, the inverse of a
relativized distance to ill-posedness. We will actually meet this theme repeatedly in
this book.



Part I
Condition in Linear Algebra

(Adagio)



Chapter 1
Normwise Condition of Linear Equation Solving

Every invertible matrix A ∈R
n×n can be uniquely factored as A=QR, where Q is

an orthogonal matrix and R is upper triangular with positive diagonal entries. This
is called the QR factorization of A, and in numerical linear algebra, different ways
for computing it are studied. From the QR factorization one obtains the solution of
the system Ax = b by y =QTb and x = R−1y, where the latter is easily computed
by back substitution.

The Householder QR factorization method is an algorithm for computing the
QR-decomposition of a given matrix (compare Sect. 4.1.2). It is one of the main
engines in numerical linear algebra. The following result states a backward analysis
for this algorithm.

Theorem 1.1 Let A ∈R
n×n be invertible and b ∈R

n. If the system Ax = b is solved
using the Householder QR factorization method, then the computed solution x̃ sat-
isfies

Ãx̃ = b̃,

where Ã and b̃ satisfy the relative error bounds

‖Ã−A‖F ≤ nγcn‖A‖F and ‖b̃− b‖ ≤ nγcn‖b‖
for a small constant c and with γcn as defined in (O.5). �

This yields ‖Ã−A‖ ≤ n3/2γcn ‖A‖ when the Frobenius norm is replaced by the
spectral norm. It follows from this backward stability result, (O.6), and Theorem O.3
that the relative error for the computed solution x̃ satisfies

‖x̃ − x‖
‖x‖ ≤ cn5/2εmachcond(A,b)+ o(εmach), (1.1)

and the loss of precision is bounded by

LoP
(
A−1b

)≤ 5

2
logβ n+ logβ cond(A,b)+ logβ c+ o(1). (1.2)

P. Bürgisser, F. Cucker, Condition,
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_1, © Springer-Verlag Berlin Heidelberg 2013
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Table 1.1 Equivalence of
vector norms 1 2 ∞

1 = √
n n

2 1 = √
n

∞ 1 1 =

Here cond(A,b) is the normwise condition number for linear equation solving,

cond(A,b)= lim
δ→0

sup
max{RelError(A),RelError(b)}≤δ

RelError(A−1b)

max{RelError(A),RelError(b)} ,

where RelError(A) is defined with respect to the spectral norm and RelError(b) with
respect to the Euclidean norm. Inequality (1.1) calls for a deeper understanding of
what cond(A,b) is than the equality above. The pursuit of this understanding is the
goal of this chapter.

1.1 Vector and Matrix Norms

The condition number cond(A,b) in the introduction is a normwise one. For this
reason, we begin by providing a brief review of norms.

The three most useful norms in error analysis on the real vector space R
n are the

following:

‖x‖1 :=
n∑

i=1

|xi |, ‖x‖2 :=
(

n∑

i=1

|xi |2
)1/2

, ‖x‖∞ := max
1≤i≤n

|xi |.

Any two of them are equivalent, and the equivalence constants are given in Table 1.1,
whose (i, j)th entry shows the smallest constant k for which ‖ ‖i ≤ k‖ ‖j .

These norms are special cases of the Hölder r-norm

‖x‖r :=
(

n∑

i=1

|xi |r
)1/r

defined for a real number r ≥ 1. Even though we will need only the cases r ∈
{1,2,∞}, stating the results for general Hölder norms avoids case distinctions and
thus saves space.

For a given r ≥ 1 there is exactly one r∗ ≥ 1 such that 1/r + 1/r∗ = 1. The
well-known Hölder inequality states that for x, z ∈R

n, we have

∣∣xTz
∣∣≤ ‖x‖r ‖z‖r∗ .
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Moreover, equality holds if (|xi |r ) and (|zi |r∗) are linearly dependent. This easily
implies that for any x ∈R

n,

max
‖z‖r∗=1

xTz= ‖x‖r . (1.3)

For this reason, one calls ‖ ‖r∗ the dual norm of ‖ ‖r . In particular, for each x ∈R
n

with ‖x‖r = 1 there exists z ∈R
n such that ‖z‖r∗ = 1 and zTx = 1.

We will adopt the notational convention ‖ ‖ := ‖ ‖2 for the Euclidean vector
norm. Note that this norm is dual to itself. Note as well that ‖ ‖1 and ‖ ‖∞ are dual
to each other.

To the vector norms ‖ ‖r on a domain space Rn and ‖ ‖s on a range space Rm, one
associates the subordinate matrix norm ‖ ‖rs on the vector space of linear operators
A : Rn →R

m defined by

‖A‖rs := sup
x∈Rp

x �=0

‖Ax‖s
‖x‖r = sup

‖x‖r=1
‖Ax‖s . (1.4)

By compactness of the unit sphere, the supremum is a minimum. In case r = s,
we write ‖ ‖r instead of ‖ ‖rr . (We recall that we already met ‖ ‖∞ in Sect. O.4.)
Furthermore, when r = 2, ‖ ‖2 is called the spectral norm, and it is written simply
as ‖ ‖.

We note that the following submultiplicativity property of matrix norms holds:
for r, s, t ≥ 1 and matrices A,B we have

‖AB‖rs ≤ ‖A‖ts ‖B‖rt , (1.5)

provided the matrix product is defined.
Most of what we will need about operator norms is stated in the following simple

lemma.

Lemma 1.2

(a) For y ∈R
m and v ∈R

n we have ‖yvT‖rs = ‖y‖s ‖v‖r∗ .

(b) Suppose that x ∈ R
n and y ∈ R

m satisfy ‖x‖r = ‖y‖s = 1. Then there exists
B ∈R

m×n such that ‖B‖rs = 1 and Bx = y.

(c) ‖AT‖rs = ‖A‖s∗r∗ .

Proof (a) We have
∥∥yvT

∥∥
rs
= max

‖x‖r=1

∥∥yvTx
∥∥
s
= ‖y‖s max

‖x‖r=1

∣∣vTx
∣∣= ‖y‖s‖v‖r∗,

where the last equality holds due to (1.3).
(b) By (1.3) there exists z ∈ R

n such that ‖z‖r∗ = 1 and zTx = 1. For B := yzT

we have Bx = y, and by part (a) ‖B‖rs = ‖y‖s ‖z‖r∗ = 1.
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(c) We have
∥∥AT

∥∥
rs
= max

‖x‖r=1

∥∥ATx
∥∥
s

(1.3)= max
‖x‖r=1

max
‖z‖s∗=1

xTAz

(1.3)= max
‖z‖s∗=1

‖Az‖r∗ = ‖A‖s∗r∗ . �

Lemma 1.2 allows one to provide friendly characterizations of some operator
norms.

Corollary 1.3 For all r , ‖A‖r∞ = maxi≤m ‖ai‖r∗ , where ai is the ith row of A. In
particular:

(a) ‖A‖1∞ = maxi≤m,j≤n |aij |,
(b) ‖A‖2∞ = maxi≤m ‖ai‖,
(c) ‖A‖∞ = maxi≤m

∑
j≤n |aij |,

(d) ‖A‖1 = maxj≤n

∑
i≤m |aij |,

(e) ‖A‖12 = maxj≤n ‖a·j‖ (a·j denoting the j th column of A).

Proof Using (1.3) we obtain

‖A‖r∞ = max
‖x‖r=1

‖Ax‖∞ = max
i≤m

max
‖x‖r=1

∣∣aT
i x

∣∣= max
i≤m

‖ai‖r∗ .

The particular cases follow from the definition of vector norms ‖ ‖1,‖ ‖2, and ‖ ‖∞
and the use of Lemma 1.2(c). �

Considering a matrix A = (aij ) ∈ R
m×n as an element in R

mn yields at least
two more matrix norms (corresponding to the 1-norm and 2-norm in this space). Of
them, the most frequently used is the Frobenius norm,

‖A‖F :=
(

m∑

i=1

n∑

j=1

a2
ij

)1/2

,

which corresponds to the Euclidean norm of A as an element of Rmn. The advantage
of the Frobenius norm is that it is induced by an inner product on R

m×n.
Just like the vector norms, all matrix norms are equivalent. A table showing

equivalence constants for the matrix norms we have described above is shown next
as Table 1.2. Most of these bounds follow from those in Table 1.1, while a few will
be shown below (Proposition 1.15(h)).

1.2 Turing’s Condition Number

We now proceed to exhibit a characterization of the normwise condition number for
linear equation solving, pursuing the theme described in Sect. O.5.2.

Let m= n and fix norms ‖ ‖r and ‖ ‖s on R
n. Also, let

Σ := {
A ∈R

n×n | det(A)= 0
}
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Table 1.2 Equivalence of matrix norms

1 2 ∞ 12 1∞ 21 2∞ ∞1 ∞2 F

1 = √
m m

√
m m 1 m 1

√
m

√
m

2
√
n = √

m
√
n

√
mn 1

√
m 1 1 1

∞ n
√
n = n n

√
n

√
n 1 1

√
n

12 1 1
√
m = √

m 1
√
m 1 1 1

1∞ 1 1 1 1 = 1 1 1 1 1

21
√
n

√
m m

√
mn m

√
n = m 1

√
m

√
m

2∞ √
n 1 1

√
n

√
n 1 = 1 1 1

∞1 n
√
mn m n

√
m mn

√
n m

√
n = √

m
√
mn

∞2 n
√
n

√
m n n

√
m

√
n

√
mn 1 = √

n

F
√
n

√
rank(A)

√
m

√
n

√
mn

√
rank(A)

√
m 1

√
rank(A) =

denote the set of ill-posed matrices and put D := R
n×n \ Σ . We define the map

κrs :D→R by

κrs(A) := ‖A‖rs
∥∥A−1

∥∥
sr
.

Note that κrs(A)≥ 1, since 1 = ‖I‖r ≤ ‖A‖rs‖A−1‖sr = κrs(A).

Theorem 1.4 Let ϕ :D ×R
n → R

n be given by ϕ(A,b)= A−1b. We measure the
relative error in D×R

n by

RelError(A,b)= max

{‖Ã−A‖rs
‖A‖rs ,

‖b̃− b‖s
‖b‖s

}
,

and we measure the relative error in the solution space normwise with respect
to ‖ ‖r . Then

condϕ(A,b)= κrs(A)+ ‖A−1‖sr‖b‖s
‖A−1b‖r .

In particular, we have

κrs(A)≤ condϕ(A,b)≤ 2κrs(A).

Proof Let Ã=A−E and b̃ = b+ f . By definition, ‖E‖rs ≤ R‖A‖rs and ‖f ‖s ≤
R‖b‖s , where for simplicity, R = RelError(A,b). We have, for R → 0,

(A−E)−1 = A−1(I −EA−1)−1 =A−1(I +EA−1 + o(R)
)

= A−1 +A−1EA−1 + o(R).

This implies, writing x :=A−1b and x̃ := Ã−1b̃,

x̃ − x = (A−E)−1(b+ f )− x =A−1Ex +A−1f + o(R). (1.6)



8 1 Normwise Condition of Linear Equation Solving

Taking norms and using (1.5), we conclude that

‖x̃ − x‖r ≤
∥∥A−1

∥∥
sr
‖E‖rs‖x‖r +

∥∥A−1
∥∥
sr
‖f ‖s + o(R)

≤ ∥∥A−1
∥∥
sr
‖A‖rs‖x‖rR + ∥∥A−1

∥∥
sr
‖b‖sR + o(R),

and hence

‖x̃ − x‖r
R‖x‖r ≤ κrs(A)+ ‖A−1‖sr‖b‖s

‖x‖r ,

which shows the upper bound in the claimed equality.
For the corresponding lower bound we choose y ∈ R

n such that ‖y‖s = 1 and
‖A−1y‖r = ‖A−1‖sr . Further, we choose v ∈ R

n such that ‖v‖r∗ = 1 and vTx =
‖x‖r , which is possible by (1.3). Now we put

E := R‖A‖rs yvT, f := ±R‖b‖s y. (1.7)

We note that

‖E‖rs = R‖A‖rs, ‖f ‖s = R‖b‖s ,
the first equality holding since by Lemma 1.2(a), ‖yvT‖rs = ‖y‖s‖v‖r∗ = 1. We
have

A−1Ex = R‖A‖rs A−1y vTx = R‖A‖rs‖x‖rA−1y

and hence ‖A−1Ex‖r = κrs(A)‖x‖rR. Similarly, A−1f = ±R‖b‖sA−1y and
‖A−1f ‖r = ‖A−1‖sr‖b‖sR. Since A−1Ex and A−1f are both proportional to
A−1y, we obtain from (1.6),

‖x̃ − x‖r = κrs(A)‖x‖rR + ∥∥A−1
∥∥
sr
‖b‖sR,

if we choose the sign for f in (1.7) appropriately. This proves the claimed lower
bound. �

The next result shows that κrs actually coincides with the condition number for
the problem of matrix inversion.

Theorem 1.5 Let ψ : D → R
n×n be given by ψ(A) = A−1. We measure the rel-

ative error on the data space and solution space with respect to ‖ ‖rs and ‖ ‖sr ,
respectively. Then we have

condψ(A)= κrs(A).

Proof Let E ∈R
n×n be such that Ã=A−E. Then RelError(A)= ‖E‖rs

‖A‖rs . As in the
proof of Theorem 1.4, we have for ‖E‖→ 0,

∥∥Ã−1 −A−1
∥∥
sr
= ∥∥A−1EA−1

∥∥
sr
+ o

(‖E‖). (1.8)
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Hence, ‖A−1EA−1‖sr ≤ ‖A−1‖sr‖E‖rsA−1‖sr . Consequently, we obtain

RelError
(
A−1)= ‖Ã−1 −A−1‖sr

‖A−1‖sr ≤ ∥∥A−1
∥∥
sr
‖E‖rs + o

(‖E‖).

We conclude that

RelError(A−1)

RelError(A)
≤ ‖A‖rs

∥∥A−1
∥∥
sr
+ o(1)

and hence condψ(A)≤ κrs(A).
To prove the reverse inequality it is enough to find arbitrarily small matrices E

such that ‖A−1EA−1‖sr = ‖A−1‖2
sr‖E‖rs , since then we can proceed from (1.8) as

we did in Theorem 1.4 from (1.6).
To do so, let y ∈R

n be such that ‖y‖s = 1 and ‖A−1y‖r = ‖A−1‖sr . Define x :=
1

‖A−1‖sr A
−1y, so that A−1y = ‖A−1‖srx and ‖x‖r = ‖y‖s = 1. For any B ∈ R

n×n

we have

∥∥A−1BA−1
∥∥
sr
≥ ∥∥A−1BA−1y

∥∥
r
= ∥∥A−1

∥∥
sr
· ∥∥A−1Bx

∥∥
r
.

By Lemma 1.2(b) there exists B ∈ R
n×n such that Bx = y and ‖B‖rs = 1. There-

fore,
∥∥A−1BA−1

∥∥
sr
≥ ∥∥A−1

∥∥
sr
· ∥∥A−1y

∥∥
r
= ∥∥A−1

∥∥2
sr
.

Taking E = δB with arbitrarily small δ finishes the proof. �

The most often considered case is r = s = 2, that is, when the error in both
the input and the output space is measured with the Euclidean norm. The resulting
condition number κ(A) := κ22(A) is so pervasive in numerical linear algebra that
it is commonly referred to as “the condition number of A”—without mention of
the function of A whose condition we want to measure. We remark that κ(A) was
originally introduced by Turing [221] and by von Neumann and Goldstine [226]
(Turing actually considered norms other than the spectral).

Theorem 1.4—together with (1.2)—immediately yields a bound for the loss of
precision in linear equation solving.

Corollary 1.6 Let A ∈ R
n×n be invertible and b ∈ R

n. If the system Ax = b is
solved using the Householder QR factorization method, then the computed solution
x̃ satisfies, for a small constant c,

LoP(A−1b)≤ 2 logβ n+ logβ κ(A)+ logβ c+ o(1),

where o(1) is for εmach → 0. �
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1.3 Condition and Distance to Ill-posedness

A goal of this section, now revisiting the discussion in Sect. O.5.4, is to show that the
condition number κrs(A) can be expressed as the relativized inverse of the distance
from the square matrix A to the set Σ of singular matrices: a large κrs(A) means
that A is close to a singular matrix. In order to make this precise, we introduce the
distance of A ∈R

n×n to the set Σ of singular matrices,

drs(A,Σ) := min
{‖A−B‖rs |B ∈Σ

}
, (1.9)

defined with respect to the norm ‖ ‖rs . For the spectral norm we just write
d(A,Σ) := d22(A,Σ).

Theorem 1.7 Let A ∈R
n×n be nonsingular. Then

drs(A,Σ)= 1

‖A−1‖sr .

Proof Let A be nonsingular and let A + E be singular. Then there exists an x ∈
R

n \ {0} such that (A+E)x = 0. This means that x =−A−1Ex and hence

‖x‖r ≤
∥∥A−1E

∥∥
rr
· ‖x‖r ≤

∥∥A−1
∥∥
sr
· ‖E‖rs · ‖x‖r ,

which implies ‖E‖rs ≥ ‖A−1‖−1
sr . Therefore drs(A,Σ)≥ ‖A−1‖−1

sr .
To prove the other inequality, it suffices to find a singular matrix Ã with

drs(A, Ã)≤ ‖A−1‖−1
sr . Let y ∈R

n be such that ‖A−1‖sr = ‖A−1y‖r and ‖y‖s = 1.
Writing x := A−1y, we have ‖x‖r = ‖A−1‖sr , in particular x �= 0. By
Lemma 1.2(b), there exists B ∈R

n×n such that ‖B‖rs = 1 and

B
x

‖x‖r =−y.

Hence E := ‖x‖−1
r B satisfies Ex = −y, and hence (A + E)x = 0. So the matrix

Ã :=A+E must be singular. In addition, we have

drs(A, Ã)= ‖E‖rs = ‖x‖−1
r ‖B‖rs =

∥∥A−1
∥∥−1
sr

· ‖B‖rs =
∥∥A−1

∥∥−1
sr

,

which finishes the proof. �

Defining κrs(A) :=∞ for a singular matrix, we immediately obtain the following
result, which is known as the “condition number theorem.”

Corollary 1.8 For nonzero A ∈R
n×n we have

κrs(A)= ‖A‖rs
drs(A,Σ)

. �
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Thus the condition number κrs(A) can be seen as the inverse of a normalized
distance of A to the set of ill-posed inputs Σ .

Notation 1.9 In this book we will consider matrices given by their columns or by
their rows. In order to emphasize this distinction and avoid ambiguities, given vec-
tors a1, . . . , an ∈R

m, we write (a1, . . . , an) for the matrix in R
n×m whose rows are

a1, . . . , an, and [a1, . . . , an] for the matrix in R
m×n whose columns are these vec-

tors. Note that this notation relieves us from having to transpose (x1, . . . , xn) when
we want to emphasize that this is a column vector.

For a matrix A ∈ R
n×m, a vector c ∈ R

n, and an index j ∈ [m], we denote by
A(j : c) the matrix obtained by replacing the j th row of A by c. The meaning of
A[j : c] is defined similarly.

We draw now a consequence of Theorem 1.7 that will be used in several varia-
tions throughout the book.

Proposition 1.10 For A ∈ R
n×n and r, s ≥ 1 there exist j ∈ [n] and c ∈ R

n such
that A[j : c] ∈Σ and ‖aj − c‖s ≤ n1/r drs(A,Σ).

Proof Theorem 1.7 states that ‖A−1‖sr = ε−1, where ε := drs(A,Σ). There exists
b ∈ R

n such that ‖b‖s = 1 and ‖A−1b‖r = ‖A−1‖sr . So if we put v := A−1b, then
‖v‖r ≥ ε−1. This implies ‖v‖∞ ≥ n−1/r‖v‖r ≥ n−1/rε−1. Without loss of general-
ity we may assume that |vn| = ‖v‖∞.

Since Av = b, we can express vn by Cramer’s rule as follows:

vn = det([a1, . . . , an−1, b])
det(A)

.

This implies

0 = det(A)− v−1
n det

([a1, . . . , an−1, b]
)= det

([
a1, . . . , an−1, an − v−1

n b
])
.

Thus if we put c := an − v−1
n b, we have A[i : c] ∈Σ and

‖an − c‖s = |vn|−1‖b‖s = |vn|−1 ≤ n1/r ε. �

1.4 An Alternative Characterization of Condition

Theorem 1.7 characterizes ‖A−1‖sr—and hence κrs(A)—as the inverse of the dis-
tance from A to Σ . The underlying geometry is on the space R

n×n of matrices. The
following result characterizes ‖A−1‖sr in different terms, with underlying geom-
etry on R

n. Even though its proof is very simple, the idea behind this alternative
characterization can (and will) be useful in more complex settings.

For a ∈R
n and δ > 0 denote by Br(a, δ) the closed ball with center a and radius

δ in R
n with the norm ‖ ‖r .
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Proposition 1.11 For A ∈R
n×n \Σ ,

∥∥A−1
∥∥−1
sr

= sup
{
δ | Bs(0, δ)⊆A

(
Br(0,1)

)}
.

Proof It is immediate from the fact that

Bs(0, δ)⊆A
(
Br(0,1)

) ⇐⇒ A−1(Bs(0,1)
)⊆ Br

(
0,

1

δ

)
. �

1.5 The Singular Value Decomposition

The singular value decomposition of a matrix is the numerically appropriate way to
discuss matrix rank. It also leads to a natural generalization of Theorem 1.7.

In this section we mainly work with the spectral and the Frobenius norms. Both
of them are invariant under orthogonal transformations.

Lemma 1.12 For A ∈ R
m×n and orthogonal matrices U ∈ R

m×m and V ∈ R
n×n

we have ‖UAV ‖F = ‖A‖F and ‖UAV ‖ = ‖A‖.

Proof For the first assertion, let s1, . . . , sn denote the columns of A. Then Usi is the
ith column of UA. Since U is orthogonal, we have ‖Usi‖ = ‖si‖ and therefore

‖UA‖2
F =

∑

i≤n

‖Usi‖2 =
∑

i≤n

‖si‖2 = ‖A‖2
F .

In the same way, one shows that ‖AV ‖F = ‖A‖F . The second assertion is proved
as follows:

‖UAV ‖ = sup
‖x‖=1

‖UAV x‖ = sup
‖x‖=1

∥∥U(AV x)
∥∥

= sup
‖x‖=1

‖AV x‖ = sup
‖x‖=1

∥
∥A(V x)

∥
∥

= sup
‖x′‖=1

∥∥Ax′
∥∥= ‖A‖.

�

For conveniently stating the singular value decomposition, we extend the usual
notation for diagonal matrices from square to rectangular m× n matrices. We put
p := min{n,m} and define, for a1, . . . , ap ∈R,

diagm,n(a1, . . . , ap) := (bij ) ∈R
m×n with bij :=

{
ai if i = j ,
0 otherwise.

For notational convenience we usually drop the index, the format being clear from
the context.

The next result is known as the “singular value decomposition theorem” (or, for
short, the “SVD theorem”).
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Theorem 1.13 For A ∈R
m×n there exist orthogonal matrices U ∈R

m×m and V ∈
R

n×n such that

UTAV = diag(σ1, . . . , σp),

with p = min{m,n} and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Proof Let x ∈ R
n, ‖x‖ = 1 be such that σ := ‖A‖ = ‖Ax‖ and define y :=

σ−1Ax ∈ R
m, so that ‖y‖ = 1 and Ax = σy. There exist matrices V2 ∈ R

n×(n−1)

and U2 ∈R
m×(m−1) such that V := [x,V2] and U := [y,U2] are orthogonal.

We have for some w ∈R
n−1 and B ∈R

(m−1)×(n−1) that

UTAV =
[
yT

UT
2

]
A[x,V2] =

[
yT

UT
2

]
[σy,AV2] =

[
σ wT

0 B

]
=:A1.

Note that ‖A1‖ = ‖A‖ by the orthogonal invariance of the spectral norm. Moreover,
we have for v ∈R

n−1,

‖Bv‖ =
∥∥∥∥

[
σ wT

0 B

][
0
v

]∥∥∥∥=
∥∥∥∥U

TAV

[
0
v

]∥∥∥∥≤
∥∥UTAV

∥∥‖v‖ ≤ ‖A‖‖v‖,

whence ‖B‖ ≤ ‖A‖.
We claim that w = 0. To see this, note that

A1

[
σ

w

]
=
[
σ 2 +wTw

∗
]

and therefore
∥∥∥∥A1

[
σ

w

]∥∥∥∥≥ σ 2 + ‖w‖2.

On the other hand,
∥∥∥∥A1

[
σ

w

]∥∥∥∥≤ ‖A‖(σ 2 + ‖w‖2)1/2 = σ
(
σ 2 + ‖w‖2)1/2

.

It follows that w = 0. The argument can now be completed by induction. �

The nonnegative numbers σi in Theorem 1.13 are called the singular values of
A and are sometimes written σi(A). We will see soon enough (Corollary 1.18) that
they are uniquely determined by A. Sometimes one writes σmax and σmin for σ1 and
σp , respectively. The ith columns ui and vi of U and V in Theorem 1.13 are called
ith left singular vector and ith right singular vector of A, respectively (in general,
those are not uniquely determined).

Remark 1.14 If A ∈ R
n×n is symmetric, then there exists V ∈ R

n×n orthogonal
such that V T AV = diag(λ1, . . . , λn), where λ1, . . . , λn ∈ R are the eigenvalues of
A (spectral theorem). Hence |λ1|, . . . , |λn| are the singular values of A.
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The following result summarizes the main properties of the singular value de-
composition.

Proposition 1.15 Suppose that σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0 are the
singular values of A ∈ R

m×n and ui, vi are left and right singular vectors of A.
Then:

(a) A=∑r
i=1 σiuiv

T
i (singular value decomposition of A),

(b) rank(A)= r ,
(c) ker(A)= span{vr+1, . . . , vn}, Im(A)= span{u1, . . . , ur},
(d) ‖A‖ = σ1, ‖A‖2

F = σ 2
1 + · · · + σ 2

p ,
(e) min‖x‖=1 ‖Ax‖ = σn if m≥ n,
(f) κ(A)= σ1/σn if m= n, A �= 0,
(g) A and AT have the same singular values; in particular, ‖A‖ = ‖AT‖,
(h) ‖A‖ ≤ ‖A‖F ≤√

rank(A)‖A‖.

Proof In the case p =m≤ n, we have

A=U · diagm,n(σ1, . . . , σm) · V T = [u1 . . . um]
⎡

⎢
⎣

σ1v
T
1

...

σmvT
m

⎤

⎥
⎦=

m∑

i=1

σiuiv
T
i .

(1.10)
The case n > m is treated similarly, which proves the first assertion. The second
assertion is immediate from the diagonal form of UTAV .

For showing (c), note that

(Av1, . . . ,Avn) = AV =Udiag(σ1, . . . , σr ,0, . . . ,0)

= (σ1u1, . . . , σrur ,0, . . . ,0)

implies the inclusions span{vr+1, . . . , vn} ⊆ ker(A) and span{u1, . . . , ur} ⊆ Im(A).
Equality follows by comparing the dimensions.

Assertion (d) is an immediate consequence of the orthogonal invariance of the
spectral norm and the Frobenius norm; cf. Lemma 1.12. For (e) note that

min‖x‖=1
‖Ax‖ = min‖x‖=1

∥∥diagm,n(σ1, . . . , σp)x
∥∥=

{
σn if m≥ n,
0 otherwise.

For proving (f), suppose m= n and A ∈R
n×n invertible. Then

V TA−1U = diag
(
σ−1

1 , . . . , σ−1
n

)
.

Hence σ−1
n ≥ σ−1

n−1 ≥ · · · ≥ σ−1
1 are the singular values of A−1. Assertion (d) im-

plies ‖A−1‖ = σ−1
n . Hence

κ(A)= ‖A‖ · ∥∥A−1
∥∥= σ1

σn

.
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The first part of assertion (g) is trivial; the second easily follows from (d). Finally,
assertion (h) follows from (d) by noting that σ 2

1 + · · · + σ 2
r ≤ rσ 2

1 . �

We draw now some conclusions from the singular value decomposition. For a
square matrix we always have κ(A) ≥ 1. So the best condition one can hope for is
κ(A)= 1. Orthogonal matrices A satisfy this property, since ‖A‖ = 1 (and A−1 is
orthogonal as well). Of course, any nonzero multiple λA of an orthogonal matrix A

also satisfies

κ(A)= ‖λA‖ · ∥∥λ−1A−1
∥∥= λλ−1‖A‖ = 1.

Proposition 1.15(f) implies that these are all matrices with κ(A)= 1.

Corollary 1.16 If κ(A) = 1, then σ1 = · · · = σn. This implies that UTAV = σ1I,
and hence σ−1

1 A is orthogonal. �

The following results extend Theorem 1.7 in the case of spectral norms.

Theorem 1.17 Let A = ∑r
i=1 σiuiv

T
i be a singular value decomposition of A ∈

R
m×n and 0 ≤ k < r = rank(A). Then we have

min
rank(B)≤k

‖A−B‖ = ‖A−Ak‖ = σk+1,

where Ak :=∑k
i=1 σiuiv

T
i .

Proof As in (1.10) we get UTAkV = diag(σ1, . . . , σk,0, . . . ,0), which implies that
rank(Ak)= k. Moreover, UT(A−Ak)V = diag(0, . . . ,0, σk+1, . . . , σp), which im-
plies that ‖A−Ak‖ = σk+1.

Let now B ∈ R
m×n with rank(B) ≤ k. Then dim(kerB) ≥ n − k and there-

fore span{v1, . . . , vk+1} ∩ kerB �= 0. Let z be an element of this intersection with
‖z‖ = 1. Then

Az=
r∑

i=1

σiuiv
T
i z=

r∑

i=1

σi〈vi, z〉ui,

and hence

‖Az‖2 =
r∑

i=1

σ 2
i 〈vi, z〉2 ≥

k+1∑

i=1

σ 2
i 〈vi, z〉2 ≥ σ 2

k+1

k+1∑

i=1

〈vi, z〉2 = σ 2
k+1.

Therefore,

‖A−B‖2 ≥ ∥∥(A−B)z
∥∥2 = ‖Az‖2 ≥ σ 2

k+1,

completing the proof of the theorem. �

Corollary 1.18 The singular values σi of A are uniquely determined. �
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We can now extend some of the discussion in Sect. 1.2 from square to rectangular
matrices. Put p := min{m,n} and consider the set of ill-posed matrices

Σ := {
A ∈R

m×n | rank(A) < p
}
.

We may measure the distance to ill-posedness from a matrix A ∈ R
m×n, similarly

as in (1.9), by the spectral norm, resulting in d(A,Σ). Alternatively, we may also
measure the distance from A to Σ with respect to the Frobenius norm and define

dF (A,Σ) := min
{‖A−B‖F |B ∈Σ

}
.

It turns out that this gives the same distance as that given by the spectral norm.

Corollary 1.19 For A ∈R
m×n we have d(A,Σ)= dF (A,Σ)= σmin(A).

Proof It is sufficient to show that dF (A,Σ) ≤ d(A,Σ), since the other inequality
is obvious. Theorem 1.7 with k = p − 1 tells us that d(A,Σ) equals the smallest
singular value σp of A. Let now A=∑p

i=1 σiuiv
T
i be a singular value decomposi-

tion of A. Then B =∑p−1
i=1 σiuiv

T
i lies in Σ , and A− B = σnunv

T
n has Frobenius

norm σn. Therefore dF (A,Σ)≤ σp , completing the proof. �

Remark 1.20 The singular value decomposition has a natural extension to complex
matrices, and so have all the results in this and the previous sections. More specif-
ically, for A ∈ C

m×n there exist unitary matrices U ∈ C
m×m, V ∈ C

n×n as well as
real numbers σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 such that U∗AV = diagm,n(σ1, . . . , σp). Here
A∗ = ĀT is the conjugate transpose of A, and p = min{m,n}.

We finish this section with two results that will be needed in Chap. 9. Recall that
σmin(A) denotes the smallest singular value of A.

Lemma 1.21 Let A ∈ R
m×n with n ≥ m and σmin(A) > 0. Denote by Bm and Bn

the closed unit balls in R
m and R

n, respectively. Then we have

σmin(A)= sup
{
λ > 0 | λBm ⊆A(Bn)

}
.

Proof By Theorem 1.13 we assume without loss of generality that A =
diag(σ1, . . . , σm). It follows that

A(Bn)=
{
y ∈R

m

∣
∣∣∣
y2

1

σ 2
1

+ · · · + y2
m

σ 2
m

≤ 1

}
,

which is a hyperellipsoid with semiaxes σi . This proves the assertion (see
Fig. 1.1). �

Remark 1.22 It is sometimes useful to visualize the singular values of A as the
lengths of the semiaxes of the hyperellipsoid {Ax | ‖x‖ = 1}.
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Fig. 1.1 Ball of maximal radius σ2 contained in an ellipse

We will also need the following perturbation result.

Lemma 1.23 For A,B ∈R
m×n we have

∣∣σmin(A+B)− σmin(A)
∣∣≤ ‖B‖.

Proof Since A and AT have the same singular values, we assume without loss of
generality that n≥m. According to the characterization of σmin in Proposition 1.15,
there exists x ∈R

n with ‖x‖ = 1 such that ‖Ax‖ = σmin(A). Then

σmin(A+B)≤ ∥∥(A+B)x
∥∥≤ ‖Ax‖ + ‖Bx‖ ≤ σmin(A)+ ‖B‖.

Since A,B were arbitrary, we also get

σmin(A)= σmin
(
(A+B)+ (−B)

)≤ σmin(A+B)+ ‖B‖.
This proves the assertion. �

1.6 Least Squares and the Moore–Penrose Inverse

In Sect. 1.2 we studied the condition of solving a square system of linear equations.
If instead, there are more equations than variables (overdetermined case) or fewer
equations than variables (underdetermined case), the Moore–Penrose inverse and its
condition naturally enter the game.

Let A ∈ R
m×n be of maximal rank p = min{m,n} with a singular value decom-

position

UTAV = diagm,n(σ1, . . . , σp),

where σ1 ≥ σ2 ≥ · · · ≥ σp > 0. We define the Moore–Penrose inverse of A to be the
matrix

A† = V diagn,m

(
σ−1

1 , . . . , σ−1
p

)
UT.

From the geometric description of A† given below, it follows that A† is in fact
independent of the choice of the orthogonal matrices U and V .
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Fig. 1.2 The spaces Im(A),
Im(A)⊥ and the points b and
c in R

m

Lemma 1.24

(a) Suppose that m ≥ n and A ∈ R
m×n has rank n. Then the matrix A defines a

linear isomorphism A1 of Rn onto Im(A), and we have A† = A−1
1 ◦ π , where

π : Rm → Im(A) denotes the orthogonal projection. In particular, A†A = I.
Moreover, ATA is invertible and A† = (ATA)−1AT.

(b) Suppose that n ≥ m and A ∈ R
m×n has rank m. Then the matrix A de-

fines an isomorphism A2 : (kerA)⊥ → R
m, and we have A† = ι ◦ A−1

2 , where
ι : (kerA)⊥ → R

n denotes the embedding. In particular, AA† = I. Moreover,
AAT is invertible and A† =AT(AAT)−1.

Proof The claims are obvious for the diagonal matrix A= diagm,n(σ1, . . . , σp) and
easily extend to the general case by orthogonal invariance. �

The following is obvious from the definition of A†.

Corollary 1.25 We have ‖A†‖ = 1
σmin(A)

. �

Suppose we are given a matrix A ∈R
m×n, with m> n and rank(A)= n, as well

as b ∈R
m. Since A, as a linear map, is not surjective, the system Ax = b may have

no solutions. We might therefore attempt to find the point x ∈ R
n with Ax closest

to b, that is, to solve the linear least squares problem

min
x∈Rn

‖Ax − b‖2. (1.11)

Since A is injective, there is a unique minimizer x for (1.11), namely the preimage
of the projection c of b onto Im(A). From Lemma 1.24(a) it follows immediately
that the minimizer can be expressed as x =A†b (see Fig. 1.2).

For the case of underdetermined systems, we consider instead the case m< n and
rank(A)=m. For each b ∈R

m, the set of solutions of Ax = b is an affine subspace
of Rn of dimension n−m and therefore contains a unique point of minimal norm.
We want to find this point, i.e., to solve

min
x|Ax=b

‖x‖2. (1.12)

Lemma 1.24(b) implies that the solution of (1.12) again satisfies x =A†b.
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So the Moore–Penrose inverse naturally yields the solution of linear least squares
problems and of underdetermined systems. What is the condition of computing
the Moore–Penrose inverse? Theorem 1.5 has a natural extension showing that the
quantity

κrs(A) := ‖A‖rs
∥∥A†

∥∥
sr

equals the normwise condition for the computation of the Moore–Penrose inverse.

Theorem 1.26 Consider

ψ : {A ∈R
m×n | rank(A)= min{m,n}}→R

m×n, A �→A†.

Then we have condψ(A)= κrs(A) when errors are measured on the data space with
respect to ‖ ‖rs and on the solution space with respect to ‖ ‖sr .

Proof Let Ã=A−E. We claim that for ‖E‖→ 0, we have

Ã† −A† =A†EA† + o
(‖E‖).

For proving this we may assume without loss of generality that m≥ n, hence A† =
(ATA)−1AT, and perform a computation similar to that in the proof of Theorem 1.5.
We leave the straightforward details to the reader. The remaining arguments then
follow in exactly the same way as in the proof of Theorem 1.5, just by replacing A−1

by A†. �

We note that the solution of linear least squares problems and underdetermined
systems has, in contrast to Moore–Penrose inversion, a normwise condition that is
only loosely approximated by κ(A). Indeed, in 1973, P.-Å. Wedin gave tight upper
bounds for the normwise condition numbers condLLS and condULS for these prob-
lems. It follows from these bounds that

Ω
(
κ(A)

)≤ condLLS, condULS ≤O
(
κ(A)2). (1.13)

Interestingly, in contrast to Theorem 1.4, the normwise condition for solving
min‖Ax − b‖ depends on b as well as on A.

We finally note that Theorem 1.7 has a natural extension: κ(A) is again the rel-
ativized inverse of the distance to ill-posedness, where the latter now amounts to
rank-deficiency. The following is an immediate consequence of Corollary 1.19.

Corollary 1.27 For A ∈R
m×n we have

κ(A)= ‖A‖
d(A,Σ)

= ‖A‖
dF (A,Σ)

,

where Σ = {A ∈R
m×n | rank(A) < min{m,n}}. �

Remark 1.28 The extension of Corollary 1.27 to more general norms as in Corol-
lary 1.8 is false in general.
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Probabilistic Analysis

Recall Corollary 1.6. It tells us that the loss of precision in linear equation solving
(via QR Householder factorization) is bounded as

LoP
(
A−1b

)≤ (2 +Crs) logβ n+ logβ κrs(A)+ logβ c+ o(1),

where c,Crs are small constants. While the terms (2+Crs) logβ n+ logβ c point to
a loss of approximately (2 + Crs) logβ n figures of precision independently of the
data (A,b), the quantity logβ κrs(A), i.e., logβ ‖A‖rs + logβ ‖A−1‖sr , depends on
A and does not appear to be a priori estimable.

We already discussed this problem in Sect. O.5.3, where we pointed to a way out
consisting in randomizing the data and analyzing the effects of such randomization
on the condition number at hand (which now becomes a random variable). In this
chapter we become more explicit and actually perform such an analysis for κrs(A).

A cursory look at the current literature shows two different ideas of randomiza-
tion for the underlying data. In the first one, which lacking a better name we will
call classical or average, data are supposed to be drawn from “evenly spread” dis-
tributions. If the space M where data live is compact, a uniform measure is usually
assumed. If instead, data are taken from R

n, the most common choice is the multi-
variate isotropic Gaussian centered at the origin. In the case of condition numbers
(which are almost invariably scale-invariant), this choice is essentially equivalent
to the uniform measure on the sphere S

n−1 of dimension n− 1. We will make this
precise in Sect. 2.2. Data randomly drawn from these evenly spread distributions
are meant to be “average” (whence the name), and the analysis performed for such
a randomization is meant to describe the behavior of the analyzed quantity for such
an “average Joe” inhabitant of M .

The second idea for randomization, known as smoothed analysis, replaces this
average data by a small random perturbation of worst-case data. That is, it consid-
ers an arbitrary element x in M (and thus, in particular, the instance at hand) and
assumes that x is affected by random noise. The distribution for this perturbed input
is usually taken to be centered and isotropic around x, and with a small variance.

An immediate advantage of smoothed analysis is its robustness with respect to
the distribution governing the random noise (see Sect. 2.2 below). This is in con-
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trast to the most common critique of average-case analysis: “A bound on the per-
formance of an algorithm under one distribution says little about its performance
under another distribution, and may say little about the inputs that occur in prac-
tice” [207].

The main results of this chapter show bounds for both the classical and smoothed
analysis of logβ κrs(A), for all choices of r, s ∈ {1,2, . . . ,∞}. In the first case

we obtain E(logβ κrs(A)) = O(logβ n). In the second, that for all A ∈ R
n×n,

E(logβ κrs(A)) = O(logβ n) + logβ
1
σ

, where A is randomly drawn from a distri-

bution centered at A with dispersion σ (we will be more explicit in Sect. 2.4.3).
Therefore, the first result implies that for random data (A,b) we have

E
(
LoP

(
A−1b

))=O(logβ n),

and the second that for all data (A,b) and random perturbations (A,b) of it,

E
(
LoP

(
A−1b

))=O(logβ n)+ logβ

1

σ
.

2.1 A Crash Course on Integration

Our use of probabilities in the first two parts in this book is limited to the following
situation. We endow a space (of data) with a probability distribution and consider
a certain real-valued function g(x) of a point x in this space (the running time of
a given algorithm with input x, a condition number of x, . . .) as a random variable.
The goal is to estimate some quantities (the probability that g(x) is at least K for a
given K , the expected value of g, . . .) that provide some picture of the behavior of
g (what is the probability that the algorithm just mentioned will need more than a
certain number of iterations, which condition should we expect for a random input
x, . . .).

Data Spaces and Measures A first step towards a formal setting for this back-
ground is the description of our spaces of data. For a time to come we will confine
these spaces to being of a precise form, which, lacking some established name, we
will call by one to suit our development.

We give the name data space to any open subset M in a product of Euclidean
spaces and spheres. That is, there exist m,n1, n2, . . . , nk ∈N such that

M ⊆R
m × S

n1−1 × S
n2−1 × · · · × S

nk−1

is an open subset. In a second step we will endow the data space M with a probability
measure describing the law governing data sampling from M .

Before doing so, we briefly recall some basic concepts of integration, tailored to
our purposes. It is not our goal to dwell on the subtleties of measure theory. Rather,
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we intend to collect here in a coherent (and correct) way the basic facts of integration
that are needed in the later developments of the book.

Before defining measures on our data space M , we need to introduce the abstract
notion of measurability. By a measurable (or Borel-measurable) set A in a data
space M we understand a subset A⊆M that can be obtained from open and closed
subsets of M by countably many operations of taking unions and intersections. In
particular, open and closed subsets of M are measurable.

Let N be a further data space. A function f : M → N is called measurable if
f−1(B) is measurable for all measurable sets B in N . In particular, continuous
functions are measurable. The indicator function 1A of a subset A⊆M is defined
by

1A(x)=
{

1 if x ∈A,

0 otherwise.

Clearly, 1A is measurable iff A is measurable.
A measure on the data space M is a function μ assigning a value μ(A) ∈ [0,∞]

to each measurable set A of M such that μ(∅)= 0 and countable additivity holds,
that is,

μ

( ∞⋃

i=0

Ai

)

=
∞∑

i=0

μ(Ai)

for each sequence Ai of pairwise disjoint measurable sets in M .
On the data space M we have a natural measure volM that can be interpreted as

the volume in a higher-dimensional sense. In the case M = R
1, the measure volM

is characterized by giving the length of intervals [a, b], that is, by the requirement
volM([a, b])= b− a for all a ≤ b. In the case M = S

1, volM is similarly character-
ized as measuring angles.

Products of Data Spaces, Fubini’s Theorem One can build up volM from sim-
pler components by the product measure construction. Assume that μi is a measure
on a data space Mi for i = 1,2. It can be shown that there exists a uniquely de-
termined measure μ on M1 × M2, called the product measure, with the property
that

μ(A1 ×A2)= μ(A1) ·μ(A2) (2.1)

for all measurable sets Ai in Mi . One can formally define volRm as the m-fold prod-
uct of the measures volR. The measure volSn−1 on the sphere can be defined by setting
volSn−1(A) := n volRn(BA), where BA := {tx | x ∈A, 0 ≤ t ≤ 1}. (In the case n= 2
this gives the angle, as mentioned above.) Altogether, by the product construction,
we have a well-defined measure volM on M . We say that a property of elements
of M holds almost everywhere if it holds for all elements except those in a set of
measure zero (with respect to volM ).
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We turn now to the topic of integration. One can assign to any measurable func-
tion f : M →[0,∞], in a unique way, a value

∫

M

f =
∫

x∈M
f (x)dx,

the integral of f over M , by some limit process along with the basic requirement
that

∫

M

n∑

i=1

ci1Ai
=

n∑

i=1

ci vol
M

(Ai)

for measurable sets Ai and ci ≥ 0. The function f is called integrable if
∫
M

f is
finite. One can show that in this case, {x ∈ M | f (x) =∞} has measure zero and
thus is irrelevant for the integration. A measurable function f : M → R is called
integrable if it can be written as the difference of two integrable functions with non-
negative values. The map f �→ ∫

M
f can be shown to be linear and continuous with

respect to the L1-norm given by ‖f ‖1 :=
∫
M
|f |. We note that changing the value

of a function f on a set of measure zero does not alter the value of the integral. We
will therefore write

∫
M

f even when f is only defined almost everywhere. We also
write

∫
A
f := ∫

M
f 1A if the set A⊆M and the function f on M are measurable.

How can one possibly compute such integrals? An important tool is Fubini’s
theorem, which allows one to reduce the computation of integrals over a prod-
uct M × N to integrals over the factor spaces M,N . Suppose that A ⊆ M × N

is measurable. For x ∈M we define the set Ax := {y ∈ N | (x, y) ∈ A} (which can
be shown to be measurable). Then Fubini’s theorem states that for an integrable
function f : M × N → R, the map x �→ ∫

y∈Ax
f (x, y) dy is integrable for almost

all x ∈M , and we have

∫

(x,y)∈A
f (x, y) d(x, y)=

∫

x∈M

(∫

y∈Ax

f (x, y) dy

)
dx. (2.2)

By this theorem one can in principle reduce the computation of integrals over Rm

to integrals over the real line R, a good number of which are known to us from
elementary calculus. Tonelli’s theorem is a subtle variant of Fubini’s theorem. It says
that (2.2) holds for any nonnegative measurable function f : M ×N →R (without
the assumption of f being integrable).

The Transformation Formula Another important tool to compute integrals is
the change of variables or transformation formula. Suppose we have a linear iso-
morphism Λ : Rm → R

m. It is a well-known fact that the determinant of Λ is the
volume-stretching factor of the map Λ. More precisely, we have volRm(Λ(A)) =
|detΛ| · volRm(A) for a measurable subset A of M .

The transformation formula extends this finding to the nonlinear case. Suppose
that M and N are open subsets of Rm, and ψ : M → N is a diffeomorphism (here
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and in what follows we will assume that diffeomorphisms have continuous deriva-
tives). This means that ψ is bijective and both ψ and its inverse ψ−1 are differen-
tiable. The derivative of ψ at x ∈M is the linearization of ψ given by the Jacobian
matrix Dψ(x)= [∂Xj

ψi(x)] ∈R
m×m. The absolute value of its determinant,

Jψ(x) := ∣∣detDψ(x)
∣∣,

is called the Jacobian of ψ at x. The transformation formula for Rm states that for
any integrable function f : N →R we have

∫

y∈N
f (y)dy =

∫

x∈M
f
(
ψ(x)

)
Jψ(x)dx. (2.3)

Data spaces are more general than open subsets of Euclidean spaces. Fortunately,
formula (2.3) carries over to this more general situation. The only thing we need to
clarify is the notion of the Jacobian in this more general setting.

Suppose first that M = S
n−1 and p ∈M . The orthogonal projection

γ : Sn−1 →Rp⊥, x �→ x − 〈x,p〉p, (2.4)

defines a bijection of the hemisphere given by ‖x‖ = 1, 〈x,p〉 > 0, to the open
unit ball in the orthogonal complement Rp⊥ �R

n−1 of Rp. We call the map γ the
standard chart of Sn−1 at p. Note that in the special case p = en = (0, . . . ,0,1),
writing B = {x ∈R

n−1 |∑i x
2
i < 1}, the inverse of this map reads as

B → S
n−1, (x1, . . . , xn−1) �→

(
x1, . . . , xn−1,

√
1 − x2

1 − · · · − x2
n−1

)
. (2.5)

The standard chart of R
m is defined to be the identity map on R

m. By taking
products, we arrive at a notion of a standard chart at a point p of a data space M ,
which is a bijection γM,p of a certain open neighborhood of p in M to an open
subset of Rn, where n is the dimension of M .

Suppose now we have a bijection ψ : M → N between data spaces such that
n= dimM = dimN . For any p ∈M we can form the composition ψ̃p := γN,ψ(p) ◦
ψ ◦ γ−1

M,p of ψ with the standard charts. Then, ψ̃p : U ⊆ R
n → R

n for some open

subset U . We say that ψ is differentiable at p if ψ̃p is. In this case, we define the
Jacobian of ψ at p by Jψ(p) := Jψ̃p(p

′), where γM,p(p
′)= p.

Theorem 2.1 (Transformation formula) Let ψ : M → N be a diffeomorphism be-
tween data spaces and let f : N →R be an integrable function. Then we have

∫

y∈N
f (y)dy =

∫

x∈M
f
(
ψ(x)

) · Jψ(x)dx. �

An important application of this formula is integration in polar coordinates (in
Euclidean space). Consider the diffeomorphism

ψpc : Sn−1 × (0,∞)→R
n \ {0}, (u, r) �→ ru, (2.6)
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describing polar coordinates u, r on R
n. The next result shows the usefulness of

polar coordinates in integration. Before stating it, let us point out a remarkable sym-
metry property of this map.

Let GLn(R) denote the general linear group over R, i.e., the group of invertible
n× n real matrices. Also, let O(n) := {g ∈ GLn(R) | ggT = In} denote the orthog-
onal group (i.e., the group of orthogonal linear endomorphisms of Rn). This group
acts on R

n via g · x := gx, and the induced action on the sphere S
n−1 is transi-

tive. We may also let O(n) act on S
n−1 × (0,∞) by setting g · (u, r) := (gu, r).

Then the map ψpc is O(n)-equivariant, that is, ψpc(g · (u, r)) = g · ψpc(u, r) for
all g ∈ O(n) and (u, r) ∈ S

n−1 × (0,∞). From this property, it is straightforward
to derive that the Jacobian of ψpc is invariant under the action of O(n), that is,
Jψpc(g · (u, r))= Jψpc(u, r). This observation often allows us to simplify the writ-
ing of proofs considerably. In fact, the use of orthogonal (or some other group)
invariance will be pervasive in this book.

Corollary 2.2 For any integrable function f : Rn →R we have

∫

y∈Rn

f (y) dy =
∫

(u,r)∈Sn−1×(0,∞)

f
(
ψpc(u, r)

) · rn−1 dudr.

Proof By Theorem 2.1 it is sufficient to show that Jψpc(u, r)= rn−1. By orthogonal
invariance it suffices to prove this at u= en = (0,0, . . . ,0,1). From (2.5) it follows
that the inverse of the standard chart of Sn−1× (0,∞) at (en, r) is the map B(0,1)×
(0,∞)→ S

n−1 × (0,∞) given by

(u1, . . . , un−1, r) �→
(
u1, . . . , un−1,

√
1 − u2

1 − · · · − u2
n−1, r

)
.

By composing with ψpc this gives the map ψ̃pc : B(0,1)× (0,∞)→R
n,

(u1, . . . , un−1, r) �→
(
ru1, . . . , run−1, r

√
1 − u2

1 − · · · − u2
n−1

)
.

It is clear that Dψ̃pc(0, r) = diag(r, . . . , r,1). Hence we obtain Jψpc(en, r) =
Jψ̃pc(0, r)= rn−1 as claimed. �

A second application of the transformation formula is integration in polar co-
ordinates on a sphere. Let p = en+1 be the “north pole” of S

n and consider the
diffeomorphism

ψpcs : Sn−1 × (0,π)→ S
n \ {±en+1}, (u, θ) �→ (

(sin θ)u, cos θ
)
. (2.7)

Note that we may interpret u, θ as polar coordinates on the sphere S
n with respect

to (the center) en+1.
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Corollary 2.3 For any integrable function f : Sn →R we have

∫

y∈Sn

f (y) dy =
∫

(u,θ)∈Sn−1×(0,π)

f
(
ψpcs(u, θ)

) · (sin θ)n−1 dudθ.

Proof By Theorem 2.1 it is sufficient to show that Jψpcs(u, θ) = (sin θ)n−1. By
orthogonal invariance it suffices to prove this at u= en. We fix θ and put

y :=ψpcs(en, θ)= (0, . . . ,0, sin θ, cos θ).

Equation (2.4) and a short calculation imply that the standard chart of S
n at y is

given by

S
n →Ry⊥, y �→ y − 〈y, y〉y = (

y1, . . . , yn−1, yn cos2 θ − yn+1 cos θ sin θ
)
.

To get coordinates for Ry⊥, we use the orthogonal map

Rx⊥ → R
n,

(y1, . . . , yn−1, yn, yn+1) �→ (y1, . . . , yn−1, yn/ cos θ).

This gives the standard chart

S
n →R

n−1, y �→ (y1, . . . , yn−1, yn cos θ − yn+1 sin θ),

of Sn at y. Recall that the inverse of the standard chart of Sn−1 at en is given by (2.5).
By composing ψpcs with these standard charts we obtain the map ψ̃pcs given by

(u1, . . . , un−1, θ, )

�→
(

u1 sin θ, . . . , un−1 sin θ,

(

1 −
n−1∑

i=1

u2
i

)1/2

sin θ cos θ − cos θ sin θ

)

.

A calculation shows that Dψ̃pcs(en, θ) = diag(sin θ, . . . , sin θ,1), which implies
that Jψpcs(en, θ)= (sin θ)n−1 and completes the proof. �

2.2 A Crash Course on Probability: I

We develop here some basics of probability theory and show how to apply them in
our cases of interest, which are mainly Gaussian distributions in Euclidean spaces,
uniform distributions on spheres, and their products on data spaces.



28 2 Probabilistic Analysis

2.2.1 Basic Facts

Densities and Probabilities By a probability measure on a data space M one un-
derstands a measure μ on M such that μ(M)= 1. All the measures we are interested
in can be defined in terms of a probability density, defined as follows.

Definition 2.4 A (probability) density on a data space M is a measurable function
f :M →[0,∞] such that

∫
M

f = 1.

A density f on M defines a probability measure μ on M by

μ(A) :=
∫

M

1A.

The additivity properties of the integral readily imply that μ is indeed a probability
measure. Up to changes on a set of measure zero, the density f is uniquely deter-
mined by μ.

Example 2.5 Let M be a data space of finite volume. Then the constant function
on M with value volM(M)−1 is a density on M . The corresponding probability
measure is called the uniform distribution U(M) on M . More generally, let A be a
measurable subset of a data space M such that volM(A) is finite. Then volM(A)−11A

is a density on M , and one calls the corresponding probability measure the uniform
distribution on A.

It is common to say that via the density f , we endow M with a probability dis-
tribution, or simply a distribution. Even though we will sometimes use interchange-
ably the terms “probability distribution” and “probability measure” induced by f ,
we tend to denote them differently (and use expressions such as U(M) to denote a
uniform distribution on M and N(0, In) to denote the standard normal distribution
on R

n; see below). In this context, it is also common to call any measurable subset
of M an event.

Let M and N be two data spaces and let f :M ×N → [0,∞] be a density on
the product M × N . We can associate with f its marginal densities on M and N

defined as follows:

fM(x) :=
∫

y∈N
f (x, y) dy and fN(y)=

∫

x∈M
f (x, y) dx. (2.8)

It follows from Fubini’s theorem (2.2) that these are indeed probability densities.
One says that M and N are independent if f (x, y)= fM(x)fN(y) for all x ∈M

and y ∈N . We note that in this case, we have μ(A×B)= μM(A) ·μN(B), where
μ, μM , and μN denote the measures associated with the densities f , fM , and fN ,
respectively, and A ⊆M and B ⊆ N are measurable sets. In other words, μ is the
product measure of μM and μN . We also note that if we start with any densities
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fM and fN on M and N , respectively, and endow M ×N with the product density
fM(x)fN(y), then M and N become independent by construction.

In the situation where M and N are not independent with respect to the density
f on M × N , it is convenient to introduce conditional densities. The conditional
density of x, given y, is defined as

f (x | y) := f (x, y)

fN(y)
(2.9)

(we assume here fN(y) �= 0). It is clear from the definition that M →R, x �→ f (x |
y) is actually a density on M . Note that f (x | y)= fM(x) if M and N are indepen-
dent. When we happen to know (or we can bound) the conditional density, then we
can derive information on f by means of the equation

f (x, y)= f (x | y) · fN(y), (2.10)

which is just a rewriting of (2.9).

Remark 2.6 Equation (2.10) can be interpreted in the following operational way
in terms of random sampling. First we sample y ∈ N according to the marginal
density fN . In a second step, we sample x ∈M according to the conditional density
f (· | y). Then the obtained pair (x, y) is random according to the density f .

Random Variables One of the most fundamental notions in probability is that of
a random variable.

Definition 2.7 Let M be endowed with the probability density f . A random vari-
able defined on M is a measurable function Z : M → R (defined almost every-
where). The expected value or expectation of Z is defined by

E(Z) :=
∫

x∈M
Z(x)f (x) dx

if the integral is well defined. The variance of Z is defined as

Var(Z) := E
((
Z −E(Z)

)2)
.

Example 2.5 (continued) Let Z be the map (0,1) ↪→ R, x �→ x. The expected
value of Z for the uniform distribution on (0,1) is 1

2 , and its variance is 1
12 . The

expected value of the function Z(x)= ex is
∫ 1

0 ex dx = e− 1.

A few words on notation. If D denotes a probability distribution on M associated
with the probability measure μ, and R is a (measurable) predicate on M , we will
write

Prob
x∼D

{
R(x)

} := μ
({

x ∈M |R(x)
})

.
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Also, for a random variable Z on M , we define the measure μZ on R given by
μZ(A) := μ{Z−1(A)}. This is a probability measure on the data space R. It is com-
mon to use the shorthand notation Prob{Z ≥ t} := μZ{[t,∞)}.

In case the random variable takes only nonnegative values, we can express its
expectation differently.

Proposition 2.8 Let Z : M →[0,∞) be integrable. Then

E(Z)=
∫ ∞

0
Prob{Z ≥ t}dt.

Proof We apply Fubini’s theorem (2.2) to the set A := {(x, t) ∈ M × [0,∞) |
Z(x)≥ t}, obtaining

∫

(x,t)∈A
f (x)d(x, t)=

∫ ∞

0

(∫

x∈At

f (x) dx

)
dt =

∫ ∞

0
Prob{Z ≥ t}dt.

Applying Fubini again (and thus interchanging the order of integration) yields

∫

(x,t)∈A
f (x)d(x, t)=

∫

x∈M

(∫

t∈Ax

f (x) dt

)
dx =

∫

x∈M
f (x)Z(x)= E(Z).

�

The following simple corollary is at the core of numerous probability tail esti-
mates.

Corollary 2.9 (Markov’s inequality) Let Z : M → [0,∞) be integrable. Then for
all t > 0, we have

Prob{Z ≥ t} ≤ 1

t
E(Z).

Proof Proposition 2.8 implies that

E(Z) ≥
∫ t

0
Prob{Z ≥ τ }dτ ≤ t Prob{Z ≥ t}. �

Here is a general result relating expectation and variance of a random variable.

Proposition 2.10 Let Z be a random variable on a data space M endowed with a
density f . Then E(Z)≤√

E(Z2).

Proof The functional (Y,Z) �→ ∫
x∈M Y(x)Z(x)f (x) dx defines an inner product on

the linear space of random variables X on M satisfying E(X2) <∞. When Y = 1,
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the Cauchy–Schwarz inequality yields

E(Z)=
∫

M

Z(x)f (x) dx ≤
√∫

M

Z(x)2f (x)dx

√∫

M

f (x)dx =
√
E
(
Z2

)
. �

Pushforward Measures Suppose that ψ : M → N is any measurable map be-
tween data spaces. In general, a probability measure μM on M induces a probability
measure on N via ψ defined by

μN(B) := μM

(
ψ−1(B)

)

for measurable sets B ⊆N . One calls μN the pushforward measure of μM .
For instance, a random variable Z : M → R has an associated probability dis-

tribution on R, sometimes called the distribution of Z, which is nothing but the
pushforward of μM with respect to Z. We already met this distribution when we
were introducing the notation Prob{Z ≥ t} := μ({x ∈M |Z(x)≥ t}).

In our situations of interest, μM is given by a density fM . If ψ happens to be
a diffeomorphism, then the pushforward of μM has a density as well that can be
explicitly calculated with the transformation formula.

Proposition 2.11 Let ψ : M →N be a diffeomorphism of data spaces and let μM

be a probability measure on M with the density fM . Then the pushforward mea-
sure μN of μM has the density

fN(y)= fM(x)

Jψ(x)
, where x =ψ−1(y).

Moreover, for any random variable Z : N →R, we have

EμN
(Z)= EμM

(Z ◦ψ), (2.11)

where the expectations refer to μN and μM respectively.

Proof Let B ⊆ N be measurable and set A := ψ−1(B). Applying Theorem 2.1 to
the function fN1B implies

∫

y∈B
fN(y)dy =

∫

x∈A
fM(x)dx.

Hence μN has the density fN . The second assertion follows by applying Theo-
rem 2.1 to ZfN . �

Remark 2.12 Equation (2.11) also holds when ψ is not a diffeomorphism, but we
will not prove this here. Instead, we will see a general result extending both Propo-
sitions 2.14 and 2.11 in Sect. 17.3.
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Independence Suppose that Z and W are random variables on the data space M ,
endowed with the density f . Let us denote by μZ and μW their probability mea-
sures on R. The map M → R

2, x �→ (Z(x),W(x)), induces a pushforward μZ,W

on R
2. One calls the random variables Z and W independent if μZ,W is the product

measure of μZ and μW ; compare (2.1). This means that for all s, t ∈R we have

Prob{Z ≥ s and W ≥ t} = Prob{Z ≥ s} · Prob{W ≥ t}.

Proposition 2.13 Suppose that Z and W are independent random variables on M .
Then E(ZW)= E(Z)E(W), provided Z and W are integrable.

Sketch of proof Suppose first that Z = 1A and W = 1B are indicator func-
tions of A,B ⊆ M . The independence of Z and W means that Prob(A ∩ B) =
Prob(A)Prob(B). Since ZW = 1A∩B , we have

E(ZW)= Prob(A∩B)= Prob(A)Prob(B)= E(Z)E(W).

By the linearity of expectation this immediately extends to random variables that
are a finite linear combination of indicator functions. Finally, the assertion follows
by a limit argument (compare the definition of the integral in Sect. 2.1). �

Conditional Expectations Let M,N be data spaces and let f be a density in
M×N . Let fM and fN be the marginal densities on M and N , respectively. Finally,
let ϕ :M ×N →R be a random variable.

An element x0 ∈ M determines a random variable ϕx0 : N → R given by
ϕx0(y) := ϕ(x0, y). The conditional expectation of ϕ (with respect to the event
x = x0), which we denote by ENx0

ϕx0 or sometimes by Ey∈Nx0
(ϕ(x, y) | x = x0), is

the expectation of ϕx0 with respect to the conditional density f (y | x0), i.e.,

E
Nx0

ϕx0 :=
∫

y∈N
ϕx0(y)f (y | x0) dy,

with the left-hand side defined only if both f (y | x0) and the integral on the right-
hand side exist. Here we wrote Nx0 at the left to emphasize that the distribution on
N is the one given by the conditional density f (y | x0). By construction, this is a
random variable on M ,

x0 �→ E
Nx0

ϕx0 .

The following result ties the expectation of this random variable to that of ϕ. It will
be helpful in many computations in which conditional expectations are easier to
estimate than unrestricted ones.

Proposition 2.14 For all integrable ϕ :M ×N →R we have

E
M×N

ϕ = E
x0∈M

E
y∈Nx0

(
ϕ(x, y) | x = x0

)
.
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In particular, if ENx0
ϕx0 ≤ K for almost all x0 ∈ M , then EM×Nϕ ≤ K , and the

same is true for lower bounds.

Proof We have

E
M×N

ϕ =
∫

M×N

ϕ(x, y)f (x, y) dy dx

=
∫

M×N

ϕ(x, y)f (y | x)fM(x)dy dx

(2.2)=
∫

M

(∫

N

ϕx(y)f (y | x)dy
)
fM(x)dx

= E
x0∈M

E
Nx0

ϕx0 . �

We next describe the basic probability distributions occurring in this book.

2.2.2 Gaussian Distributions

Take M = R
n for some n. The most important example of a density in this context

is the isotropic multivariate Gaussian. For a point a ∈ R
n and σ > 0, we consider

the density ϕ
a,σ
n :Rn → (0,∞) given by

ϕa,σ
n (x)= 1

(2πσ 2)
n
2
e
−‖x−a‖2

2σ2 .

Using Fubini’s theorem and the well-known fact that

1√
2πσ 2

∫ ∞

−∞
e
− x2

2σ2 dx = 1,

one sees that ϕa,σ
n is indeed a density on R

n.
We denote the distribution associated with ϕ

a,σ
n by N(a,σ 2In), and its induced

measure on R
n by γ

a,σ
n . When a = 0 and σ = 1, it is commonly referred to as

the standard normal (or standard Gaussian) distribution in R
n, and its density and

measure are denoted by ϕn and γn.

Lemma 2.15 We have E(xi)= ai and E((xi − ai)(xj − aj ))= σ 2δij .

Proof Since the density ϕ
a,σ
n is invariant under the map x �→ 2a − x (reflection

at a), we have E(xi)= 2ai − E(xi) and hence E(xi)= ai . For the second property
we may assume without loss of generality that a = 0 and σ = 1. A direct calculation
shows that

1√
2π

∫ ∞

−∞
t2e−

t2
2 dt = 1,
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which implies E(x2
i ) = 1. Suppose now i �= j . Since the density ϕ

0,1
n is invari-

ant under xi �→ −xi , leaving the other coordinates of x fixed, we have E(xixj ) =
E(−xixj ) and hence E(xixj )= 0. �

We may interpret x = (x1, . . . , xn) as a random vector on R
n. The expecta-

tion E(x) of x is componentwise defined and thus equals a, which is called the
center of the Gaussian distribution. The distribution is called centered if a = 0.

Furthermore, one calls Cov(x) := [E((xi − ai)(xj − aj ))]1≤i,j≤n the covariance
matrix of the random vector x. Thus we have Cov(x) = σ 2In in our situation. We
call σ 2 the variance of the isotropic Gaussian distribution. Note also that if x has
the distribution N(a,σ 2In), then x − v has the distribution N(a − v,σ 2In), for
any v ∈R

n.
It is common to denote the distribution function of the one-dimensional standard

Gaussian distribution γ1 by

Φ(t) := 1√
2π

∫ t

−∞
e−

t2
2 dt

and to set Ψ (t) := 1 −Φ(t) for t ∈R. This function can be bounded as follows.

Lemma 2.16 We have Ψ (t)≤ 1
t
√

2π
e− t2

2 for t > 0.

Proof Making the substitution x = τ 2/2, we obtain

Ψ (t)= 1√
2π

∫ ∞

t

e−
τ2
2 dτ = 1√

2π

∫ ∞

t2/2

1

τ
e−x dx ≤ 1

t
√

2π
e−

t2
2 . �

The Gaussian distribution has several properties that together with its common
occurrence in practice and its role in the central limit theorem, explain why it is so
frequently used.

A first such property is orthogonal invariance when a = 0. If g ∈ O(n) is an
orthogonal linear map of R

n, then ϕ
0,σ
n (x) = ϕ

0,σ
n (gx). This is obvious from the

fact that ϕ
0,σ
n (x) depends on ‖x‖ only. Using Theorem 2.1, it follows that for all

measurable subsets B ⊆R
n, γ 0,σ

n (g(B))= γ
0,σ
n (B).

A second such property is that the isotropic Gaussian density decomposes as
a product of lower-dimensional standard Gaussians in the following sense. Take
n1, n2 such that n= n1 + n2 and consider the decomposition R

n = R
n1 ×R

n2 . For
a point x ∈R

n we thus write x = (x1, x2). Then

ϕa,σ
n (x) = 1

(2πσ 2)
n
2
e
−‖x−a‖2

2σ2 = 1

(2πσ 2)
n1
2

e
−‖x1−a1‖2

2σ2
1

(2πσ 2)
n2
2

e
−‖x2−a2‖2

2σ2

= ϕa1,σ
n1

(x1)ϕ
a2,σ
n2

(x2), (2.12)
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and it is clear that ϕa1,σ
n1 and ϕ

a2,σ
n2 are the marginals of ϕa,σ

n . Hence the distributions
induced by ϕ

a,σ
n on R

n1 and R
n2 are also isotropic Gaussians, and x1 and x2 are

independent (compare Sect. 2.2.1).
A third property of Gaussians is that they are preserved by linear combinations

in the following sense.

Proposition 2.17 Suppose that x ∈R
n and y ∈R

n are independent isotropic Gaus-
sian vectors with centers a ∈ R

n and b ∈ R
n and variance σ 2 and τ 2, respectively.

Then the distribution of αx + βy is isotropic Gaussian with center αa + βb and
variance α2σ 2 + β2τ 2.

Proof Without loss of generality we assume that a = b = 0. We first consider the
case n= 1. When we write x = σx′ and y = τy′, then (x′, y′) is standard Gaussian
distributed. We put

r :=
√
α2σ 2 + β2τ 2, c := ασ/r, d := βτ/r.

Then z := αx + βy = r(cx′ + dy′) and c2 + d2 = 1. We look at the distribution of
(

z′
w′

)
=
(

c d

−d c

)(
x′
y′
)
.

Since this is a transformation with an orthogonal matrix of the standard Gaussian
(x′, y′), the resulting (z′,w′) is standard Gaussian as well. Hence the marginal
distribution of z′ is standard Gaussian. It follows that z = rz′ has the distribution
N(0, r2), which was to be shown.

This shows that in the general case, n ≥ 1, zi = αxi + βyi has the distribution
N(0, r2), for all i. Since the zi are independent, the assertion follows. �

A last property is that standard Gaussians are preserved by pushforwards under
norm-preserving diffeomorphisms with Jacobian identically one.

Corollary 2.18 Let ψ : Rn → R
n be a diffeomorphism satisfying ‖ψ(x)‖ = ‖x‖

and Jψ(x)= 1 for all x. Then the pushforward of the standard Gaussian distribution
under the map ψ is again the standard Gaussian distribution.

Proof This is an immediate consequence of Proposition 2.11. �

2.2.3 The χ2 Distribution

Suppose that x ∈ R
n is standard Gaussian distributed. The induced distribution of

q := ‖x‖2 := x2
1 + · · · + x2

n is called the χ2 distribution with n degrees of freedom.
It is also denoted χ2

n . We note that

E(q)= E
(‖x‖2)= E

(
x2

1

)+ · · · +E
(
x2
n

)= n,
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so that n equals the expectation of a χ2-distributed random variable with n degrees
of freedom.

In the following we are going to derive a formula for the density of q as well as
for the volume On−1 of the sphere S

n−1 in terms of the gamma function, which is
defined as

Γ (x) :=
∫ ∞

0
tx−1e−t dt for x > 0. (2.13)

This is an extension of the factorial in the sense that it satisfies Γ (x + 1)= xΓ (x)

for all x > 0. In particular, we have Γ (n + 1) = n! for n ∈ N. It can be tightly
approximated by the well-known Stirling bounds

√
2πxx+ 1

2 e−x < Γ (x + 1) <
√

2πxx+ 1
2 e−x+ 1

12x for all x > 0. (2.14)

Proposition 2.19

(a) The volume of the sphere S
n−1 is given by the formula

On−1 = volSn−1 = 2πn/2

Γ (n2 )
.

(b) The χ2-distribution with n degrees of freedom has the density, for q ≥ 0,

ρ(q)= 1

2
n
2 Γ (n2 )

q
n
2−1e−

q
2 .

(c) The pushforward density of the standard Gaussian distribution on R
n with re-

spect to the map

Ψ : Rn \ {0}→ S
n−1 × (0,∞), x �→ (u, q) := (

x/‖x‖,‖x‖2),

has the density ρ(u, q)= 1
On−1

· ρ(q). In particular, u and q are independent.

Proof Recall the diffeomorphism ψpc from (2.6) introducing polar coordinates
in R

n. The inverse of this map is given by

ψ−1
pc : Rn \ {0}→ S

n−1 × (0,∞), x �→ (u, r) := (
x/‖x‖,‖x‖).

Making the further change of variable q = r2, we arrive at the diffeomorphism Ψ

defined above. By Corollary 2.2 we know that Jψpc(u, r)= rn−1. It follows that

JΨ (x)= 1

rn−1
· 2r = 2

2rn−2
= 2

qn/2−1
.

Hence, by Proposition 2.11, the pushforward density ρ on S
n−1 × (0,∞) of the

standard Gaussian induced via Ψ equals

ρ(u, q)= 1

2(2π)n/2
qn/2−1e−q/2.
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Integrating over Sn−1 × (0,∞) yields, using Fubini,

1 =
∫

Sn−1×(0,∞)

ρ = On−1

2(2π)n/2
·
∫ ∞

0
qn/2−1e−q/2 dq = On−1

2πn/2
Γ

(
n

2

)
,

where we have used the definition (2.13) for the last equality (and made the change
of variable t = q/2). The stated formula for the volume On−1 of the sphere is an
immediate consequence.

Using this formula for On−1, we can rewrite the density ρ as

ρ(u, q)= 1

On−1

On−1

2(2π)n/2
qn/2−1e−q/2 = 1

On−1

1

2n/2Γ (n/2)
qn/2−1e−q/2

and arrive at the second assertion of the proposition. The third assertion is now
obvious. �

Corollary 2.20 The n-dimensional unit ball Bn := {x ∈ R
n | |x| = 1} has the vol-

ume volBn =On−1/n.

Proof The diffeomorphism ψpc from (2.6) maps S
n−1 × [0,1] to Bn. Using polar

coordinates and Fubini, we obtain

volBn =
∫

Bn

1 =
∫

(u,r)∈Sn−1×(0,1)
rn−1 d(u, r)=On−1

∫ 1

0
rn−1 dr = On−1

n
. �

The following result will be needed later on.

Proposition 2.21 For all n≥ 2, E(lnχ2
n)≥ 0.

Proof It is enough to prove the statement for n= 2. In this case we have

E
(
lnχ2

n

) = 1

2π

∫

R2
ln
(
x2 + y2)e−

x2+y2

2 dx dy

= 1

2π

∫ 2π

0

∫ ∞

0
ln r2e−

r2
2 r dr dθ

=
∫ ∞

0
ln r2e−

r2
2 rdr =−γ + ln 2 ≈ 0.115932,

where the last equality is obtained using software for symbolic integration and γ is
the Euler–Mascheroni constant, which is approximately 0.577. �

In Part III of this book we will need the following fact (which we state without
proof; see the notes for a reference to a proof). A median median(X) of a random
variable X is any value m ∈R for which

Prob{X ≤m} ≥ 1

2
and Prob{X ≥m} ≤ 1

2
.
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Gaussian random variables have a unique median, which equals its expectation. For
the χ2

n distribution the following inequality holds.

Proposition 2.22 For all n≥ 1, median(χ2
n)≤ E(χ2

n )= n. �

2.2.4 Uniform Distributions on Spheres

Take now M = S
n−1 := {x ∈ R

n | ‖x‖ = 1} for some n. The simplest (and again,
the most important) example of a probability distribution in this case is the uniform
distribution, which we denote by U(Sn−1). Its density is given by 1/On−1.

A function g : Rn → R is scale-invariant when for all a ∈ R
n and all λ > 0,

g(λa)= g(a). We noted in the introduction to this chapter that the behavior of such
a function over random points from a standard Gaussian distribution is essentially
equivalent to the behavior of its restriction to S

n−1 when points are drawn from
the uniform distribution on this sphere. This was formally proved in Sect. 2.2.3,
where we showed that U(Sn−1) arises as the pushforward distribution of the stan-
dard Gaussian on R

n under the map R
n \ {0}→ S

n−1, x �→ x/‖x‖.
Proposition 2.11 immediately implies the following.

Corollary 2.23 Let g : Rn → R be a scale-invariant, integrable function and de-
note by g|Sn−1 its restriction to S

n−1. Then we have, for all t ∈R,

Prob
N(0,In)

{g ≥ t} = Prob
U(Sn−1)

{g|Sn−1 ≥ t}

and

E
N(0,In)

(g)= E
U(Sn−1)

(g|Sn−1). �

Remark 2.24 A function g :Rn1 ×· · ·×R
nk →R is scale-invariant by blocks when

g(λ1a1, . . . , λkak)= g(a1, . . . , ak) for all λ1, . . . , λk > 0.
An extension of Corollary 2.23 to such functions is immediate. More precisely,

one can prove that for all t ∈R,

Prob
N(0,In)

{g ≥ t} = Prob
U(Sn1−1)×···×U(Snk−1)

{g|Sn1−1×···×S
nk−1 ≥ t}

and

E
N(0,In)

g = E

U(Sn1−1)×···×U(Snk−1)

g|Sn1−1×···×S
nk−1 .

Here n= n1 + · · · + nk .

We close this subsection with some useful bounds for quotients On−1
On

of volumes
of spheres. To do so, we first prove a general result on expectations.
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Lemma 2.25 Suppose that Z ∈R
n is standard normal distributed. Then

n√
2π(n+ 1)

≤ On−1

On

= 1√
π

Γ (n+1
2 )

Γ (n2 )
= 1√

2π
E
(‖Z‖)≤

√
n

2π
.

Proof The left-hand equality follows immediately from the formula for On−1 given
in Proposition 2.19. Further, using polar coordinates and the variable transformation
u= ρ2/2, we get

E
(‖Z‖) = On−1

(2π)
n
2

∫ ∞

0
ρne−

ρ2

2 dρ = On−1

(2π)
n
2

2
n−1

2

∫ ∞

0
u

n−1
2 e−udu

= On−1

(2π)
n
2

2
n−1

2 Γ

(
n+ 1

2

)
=√

2
Γ (n+1

2 )

Γ (n2 )
,

where we used the definition of the gamma function for the second-to-last equal-
ity and again the formula for On−1 for the last equality. This gives the right-hand
equality in the statement.

To obtain the right-hand inequality we use Proposition 2.10 with X = ‖Z‖ and
note that E(‖Z‖2)= n, since ‖Z‖2 is χ2-distributed with n degrees of freedom.

To obtain the left-hand inequality we use the formula for On and the recurrence
Γ (x + 1)= xΓ (x) to get

On−1

On

= 1√
π

Γ (n+1
2 )

Γ (n2 )
= 1√

π

Γ (n+2
2 )

Γ (n2 )

Γ (n+1
2 )

Γ (n+2
2 )

= n

2
√
π

Γ (n+1
2 )

Γ (n+2
2 )

.

The assertion follows now from the estimate

Γ (n+1
2 )

Γ (n+2
2 )

≥
√

2

n+ 1
,

which we have just proved. �

2.2.5 Expectations of Nonnegative Random Variables

The following result allows one to quickly derive bounds for the expectation of the
logarithm of a random variable X, provided certain bounds on the tail Prob{X ≥ t}
are known.

Proposition 2.26 Let X be a random variable taking values in [1,∞] such that

∀t ≥ t0 : Prob{X ≥ t} ≤Kt−α,
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where K,α, and t0 ≥ 1 are positive real numbers. Then we have (β ≥ 2)

E(logβ X)≤ logβ t0 + K

α
tα0 logβ e.

Consequently, if tα0 ≥K , then E(logβ X)≤ logβ t0 + 1
α

logβ e.

Proof We put Z := logβ X and s0 := logβ t0. Then Prob{Z ≥ s} ≤ Kβ−αs for all
s ≥ s0. Therefore, using Proposition 2.8,

E(Z) =
∫ +∞

0
Prob{Z ≥ s}ds ≤ s0 +

∫ +∞

s0

Kβ−αsds

= s0 + K

α lnβ
β−αs

∣
∣s0
+∞ = s0 + K

αtα0 lnβ
. �

Sometimes, we want to infer bounds on moments of a random variable from tail
bounds. For this, the following result is useful.

Proposition 2.27 Let X be a random variable taking values in [0,∞] and
K,α,B > 0 such that for all t ≥ B ,

Prob{X ≥ t} ≤Kt−α.

Then for all k < α, we have

E
(
Xk

)≤ B + K
α
k
− 1

B1− α
k .

If B ≤K
k
α , we actually have

E
(
Xk

)≤ α

α − k
K

k
α .

Proof We have Prob{Zk ≥ t} = Prob{Z ≥ t
1
k } ≤ Kt− α

k for all t ≥ 0. Then, using
Proposition 2.8,

E
(
Zk

) =
∫ +∞

0
Prob

{
Zk ≥ t

}
dt ≤ B +

∫ +∞

B

Kt−
α
k dt

= B +K
t1− α

k

1 − α
k

∣∣∣∣

+∞

B

= B + K
α
k
− 1

B1− α
k .

If B ≤ K
k
α , then the reasoning above, splitting the integral at K

k
α instead of at B ,

shows that

E
(
Zk

)=K
k
α + K

α
k
− 1

K
k
α
(1− α

k
) =K

k
α

(
1 + 1

α
k
− 1

)
= α

α− k
K

k
α . �
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We finish this subsection with a classical result. Recall that a function φ : I →R

defined on an interval I is called concave if

tφ(x)+ (1 − t)φ(y)≤ φ
(
tx + (1 − t)y

)

for all x, y ∈ I and t ∈ [0,1]. This easily implies that
∑N

i=1 tiφ(xi)≤ φ(
∑N

i=1 tixi)

for x1, . . . , xN ∈ I and ti ≥ 0 such that
∑N

i=1 ti = 1. For instance, the logarithm
functions are concave.

Proposition 2.28 (Jensen’s inequality) Let Z be an integrable random variable on
the data space M taking values in the interval I ⊆R and assume that φ : I →R is
concave. Then

E(φ ◦Z)≤ φ
(
E(Z)

)
.

In particular, for any positive random variable Z we have E(logZ)≤ logE(Z).

Sketch of proof Suppose that {A1, . . . ,AN } is a finite partition of the data
space M and Z =∑N

i=1 ci1Ai
for ci ∈ R. Then

∑
i vol(Ai) = 1. We have E(Z) =∑

i ci vol(Ai) and E(φ ◦ Z) = ∑
i φ(ci) vol(Ai). The concavity of φ implies that

E(φ ◦Z)≤ φ(E(Z)). The general case follows from this by a limit argument. �

Note that if the function φ is convex, then the reverse inequality φ(E(Z)) ≤
E(φ ◦ Z) holds (just replace φ by −φ). Taking φ = exp, we obtain the following
useful result.

Corollary 2.29 For an integrable random variable Z on the data space M we have
eE(Z) ≤ E(eZ). �

In the case of centered isotropic Gaussians we can be more precise.

Lemma 2.30 If Z is a standard Gaussian distributed random variable, then we

have E(eaZ)= e
a2
2 for all a ∈R.

Proof

1√
2π

∫ ∞

−∞
eat−

t2
2 dt = 1√

2π

∫ ∞

−∞
e−

(t−a)2
2 e

a2
2 dt = e

a2
2 . �

2.2.6 Caps and Tubes in Spheres

When we are working with uniform distributions on spheres, a number of objects
and notions repeatedly occur. We collect some of them in what follows. We begin
with spherical caps.
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The spherical cap in S
n−1 with center p ∈ S

n−1 and radius α ∈ [0,π] is defined
as

cap(p,α) := {
x ∈ S

n−1 | 〈x,p〉 ≥ cosα
}
.

The uniform distribution on cap(p,α) has as density the function that equals
1/ vol(cap(p,α)) at points in cap(p,α) and zero elsewhere.

Lemma 2.31 The volume of cap(p,α) in S
n−1 satisfies

vol cap(p,α)=On−2 ·
∫ α

0
(sin θ)n−2 dθ.

Proof We may assume without loss of generality that p = en. The spherical cap
cap(p,α) is the image of Sn−2 × [0, α] under the map ψpcs defined in Eq. (2.7)
(with n replaced by n− 1), which gives polar coordinates on S

n−1 with respect to
the center en. Corollary 2.3 implies that

vol cap(p,α)=
∫

(u,θ)∈Sn−2×(0,α)
(sin θ)n−2 d(u, θ)=On−2

∫ α

0
(sin θ)n−2 dθ.

�

The sphere S
n−1 has a natural metric given by the angular distance between

points. The following derived distance allows for a number of short and elegant
statements related to condition numbers.

Definition 2.32 Let a, b ∈ S
n−1. The sine distance of a and b is defined as

dsin(a, b) := sin θ ∈ [0,1],
where θ ∈ [0,π] is the angle between a and b, i.e., 〈a, b〉 = cos θ .

Remark 2.33 One can easily verify the triangle inequality: dsin(a, c)≤ dsin(a, b)+
dsin(b, c). Note, however, that dsin is not a metric on S

n−1, since dsin(a,−a) = 0.
Nevertheless, we observe that dsin defines a metric on the real projective space. Note
as well that a and b have the maximal possible distance, namely 1, if and only if
they are orthogonal.

The sine distance gives an alternative way to describe small caps. For σ ∈ [0,1]
it will be convenient to use the notation

B(p,σ ) := {
x ∈ S

n−1 | dsin(x,p)≤ σ and 〈x,p〉 ≥ 0
}
.

Note that {x ∈ S
n−1 | dsin(x,p) ≤ σ } = cap(p,σ ) ∪ cap(−p,σ). It is immediate

that we have cap(p,α)= B(p, sinα) for α ∈ [0, π
2 ].
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Lemma 2.34 The volume of B(p,σ ) is bounded as

1√
2πn

σn−1 ≤ 1

n− 1

On−2

On−1
σn−1 ≤ volB(p,σ )

On−1
≤ 1

2
σn−1,

where n≥ 2 and 0 ≤ σ ≤ 1.

Proof The left-hand inequality follows from Lemma 2.25. The asserted lower
bound on volB(p,σ ) follows from Lemma 2.31 together with

∫ α

0
(sin θ)n−2 dθ ≥

∫ α

0
(sin θ)n−2 cos θ dθ = (sinα)n−1

n− 1
= σn−1

n− 1
,

where we have put σ := arcsinα. For the upper bound one easily checks that

[
0,

π

2

]
→R, α �→ 1

(sinα)n−1

∫ α

0
(sin θ)n−2 dθ,

is monotonically increasing by computing the derivative of this function. Hence

1

(sinα)n−1

∫ α

0
(sin θ)n−2 dθ ≤

∫ π/2

0
(sin θ)n−2 dθ. (2.15)

On the other hand,

1

2
On−1 = vol cap

(
p,

π

2

)
=On−2

∫ π/2

0
(sin θ)n−2 dθ. (2.16)

Inequalities (2.15) and (2.16) together with Lemma 2.31 yield the desired bound. �

The following estimate tells us how likely it is that a random point on S
m−1 will

lie in a fixed spherical cap.

Lemma 2.35 Let u ∈ S
m−1 be fixed, m≥ 2. Then, for all ξ ∈ [0,1],

Prob
v∼U(Sm−1)

{∣∣uTv
∣∣≥ ξ

}≥
√

2

πm

(
1 − ξ2)m−1

2 .

Proof We put θ = arccos ξ and let cap(u, θ) denote the spherical cap in S
m−1 with

center u and angular radius θ . Using the left-hand bound in Lemma 2.34, we get

Prob
v∼U(Sm−1)

{∣∣uTv
∣∣≥ ξ

}= 2 vol cap(u, θ)

volSm−1
≥ 2Om−2

Om−1

(1 − ξ2)
m−1

2

(m− 1)
.

The result now follows from Lemma 2.25. �
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Fig. 2.1 A tube (and a
neighborhood) around
U ⊆ S

n−2

For the last point of this section let us consider a fixed embedding of S
n−2

in S
n−1. For example, we can choose {x = (x1, . . . , xn) ∈ S

n−1 | xn = 0}. The ε-
neighborhood of Sn−2 in S

n−1 is defined as

T
(
S
n−2, ε

) := {
x ∈ S

n−1 | dsin
(
x,Sn−2)≤ ε

}
.

Hereby, dsin(x,S
m−2) := min{dsin(x, y) | y ∈ S

m−2}.
More generally, let U ⊆ S

n−2 be a closed subset. The ε-tube T ⊥(U, ε) around U

in S
n−1 is the set of those x ∈ S

n−1 such that there is a segment of a great circle
in S

n−1 from x to a point y ∈ U , of length at most arcsin ε, that intersects S
n−2

orthogonally at y. Figure 2.1 attempts to convey the difference between the ε-tube
(whose boundary is an unbroken line) and the ε-neighborhood (which adds to the
tube the two extremities with dashed boundaries).

In other words, T ⊥(U, ε) is the image of U ×[π/2−α,π/2+α] under the map

ψpcs : Sn−2 × (0,π)→ S
n−1 \ {±en}, (u, θ) �→ (u sin θ, cos θ),

defining polar coordinates on S
n−1 with respect to the center en; compare (2.7).

The next lemma gives a formula, as well as a useful upper bound, for the volume
of T ⊥(U,σ ).

Lemma 2.36 We suppose that n > 2.

(a) For a closed subset U ⊆ S
n−2, 0 ≤ α ≤ π

2 , and ε = sinα, we have

volT ⊥(U, ε)= volU

∫ α

−α

(cosρ)n−2 dρ.

(b) We have volT ⊥(U, ε)≤ 2ε volU . In particular, volT (Sn−2, ε)≤ 2εOn−2.

Proof (a) Use Corollary 2.3 and substitute ρ := π/2 − θ .
For (b) note that if n > 2, then

∫ α

0 (cosρ)n−2 dρ ≤ ∫ α

0 cosρ dρ = sinα = ε. This
proves the first inequality. The second one follows by taking U = S

n−2 and noting
that T (Sn−2, ε)= T ⊥(Sn−2, ε). �

The following lemma will be essential in various smoothed analysis results.
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Fig. 2.2 An illustration of
the quantities in the proof of
Lemma 2.37

Lemma 2.37 Let 0 < ε,σ ≤ 1, n > 2, and ā ∈ S
n−1. Fix also an embedding

S
n−2 ↪→ S

n−1. Then

vol(T (Sn−2, ε)∩B(ā, σ ))

volB(ā, σ )
≤ 2(n− 1)

(
1 + ε

σ

)n−2
ε

σ
.

Proof Let a ∈ S
n−2 satisfy dsin(ā, a) = dsin(ā,S

n−2). We consider the (σ + ε)-
neighborhood of a

U := BSn−2(a, σ + ε) ∪ BSn−2(−a,σ + ε)

with respect to the sine distance. We claim that

T
(
S
n−2, ε

)∩B(ā, σ )⊆ T ⊥(U, ε).

For proving this, take any p ∈ T (Sn−2, ε) ∩ B(ā, σ ) and let q ∈ S
n−2 be such

that dsin(p, q)= dsin(p,Sn−2). By the triangle inequality we have

dsin(q, ā)≤ dsin(q,p)+ dsin(p, ā)≤ ε+ σ.

An elementary geometric argument shows that dsin(q, a)≤ dsin(q, ā). Hence q ∈U ,
and the claim follows (cf. Fig. 2.2).

We have volT ⊥(U, ε)≤ 2ε volU by Lemma 2.36. Moreover, Lemma 2.34 yields
the estimates

vol(U) = 2 volBSn−2(a, σ + ε)≤On−2(σ + ε)n−2,

volB(ā, σ ) ≥ 1

n− 1
On−2σ

n−1.

The assertion follows by combining these observations. �
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2.2.7 Average and Smoothed Analyses

We mentioned at the beginning of this chapter that a glimpse at the literature shows
two forms of probabilistic analysis that, in general terms, model the ideas of ran-
dom data and deterministic data perturbed by noise, respectively. We will exhibit
instances of both kinds of analysis at several points in this book (beginning with the
section after the next). In order to sharpen the meaning of these analyses, we close
this section with a more detailed discussion of the two approaches.

We begin by pointing out that most of the condition numbers occurring in the
literature (and certainly all we will meet in this book) are scale-invariant. We can
therefore confine our discussion to scale-invariant random variables.

We have already noted that the underlying distribution in average analysis is
“evenly spread” and that expected values for such distributions are meant to cap-
ture the behavior of the random variable on the “average Joe” inhabitant of the
data space. In the context we are interested in, the probabilistic analysis of condi-
tion numbers, this data space is usually a Euclidean space R

n. So the question that
poses itself is which distribution should we endow R

n with for the analysis. As-
sume we have a “natural” system of coordinates in R

n. A first step then towards an
answer consists in noting that such a distribution should be rotationally invariant.
The undistinguished character of “average Joe” cannot favor any particular direc-
tion. Furthermore, scale invariance allows us to give a second step. Indeed, for such
a function on R

n the value of the density along a half-line with origin at 0 is not
relevant. It follows that we can take any rotationally invariant distribution on R

n,
and the collection of features of the standard Gaussian we listed in Sect. 2.2.2 make
this distribution the obvious choice.

Scale invariance also suggests the choice of an underlying distribution that
is evenly spread by definition, namely, the uniform distribution on the unit
sphere S

n−1. This requires us to consider data on the sphere only, a requirement
easily achieved by means of the map

R
n \ {0}→ S

n−1, a �→ a

‖a‖ .

Proposition 2.23 shows that this choice is equivalent to the standard Gaussian on R
n.

All the above, however, is subject to a “natural” system of coordinates in R
n.

And while some situations may suggest such a system (we will argue for one in
Sect. 16.1), its choice remains a bone of contention for average-case analysis. The
most common objection to average-case analysis is that its underlying probability
measures may not accurately reflect the distributions occurring in practice, in partic-
ular, that they may be “optimistic” in the sense that they may put more probability
mass on the instances for which the values of the function ψ under consideration
are small. Such an optimism would produce an expectation Eψ smaller than the true
one.

Smoothed analysis was introduced mainly to overcome this objection. Its under-
lying idea, we recall, was to look at the behavior of a function for small perturbations
of arbitrary data. In the case of a condition number, this amounts to understanding
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the condition of slight perturbations of ill-posed data. When compared with the av-
erage analysis, it replaces the goal of showing that

for a random a, it is unlikely that cond(a) will be large

by the following one:

for all a, it is unlikely that a slight random perturbation a + �a will have
cond(a +�a) large.

To perform a smoothed analysis, a family of distributions (parameterized by a pa-
rameter r controlling the size of the perturbation) is considered with the following
characteristics:

(a) the density of an element a depends only on the distance ‖a − a‖.
(b) the value of r is closely related to the variance of ‖a − a‖.

A first possible choice for this family of distributions is the set of Gaussians
N(a,σ 2In). The role of r is in this case played by σ > 0.

Because of scale invariance, one usually assumes that data live in S
n−1. In this

way, the value of the parameter r controlling the size of the perturbations is directly
comparable with the size of a. Note that in this case, a Gaussian N(a,σ 2In) induces
on the sphere a distribution different from the uniform, the density being higher
when close to a.

A different choice of distributions consists in taking, for each α ∈ (0,π], the
uniform measure on the spherical cap cap(a,α) or even on B(a,σ ) for each σ ∈
(0,1].

The following table shows a schematic comparison of the quantities computed
in worst-case, average-case, and smoothed analyses for a scale-invariant function
ψ : Rn → R in the uniform case (the Gaussian case is obtained in the obvious
manner).

worst-case average-case smoothed

sup
a∈Sn−1

ψ(a) E
a∼U(Sn−1)

ψ(a) sup
a∈Sn−1

E
a∼U(cap(a,α))

ψ(a)

Usually, the quantities estimated in the first two columns are functions of n. For
the estimate in a smoothed analysis there is, in addition, a dependence on α. This
dependence appears to interpolate between worst-case and average-case. Indeed,
when α approaches 0, the value of

sup
a∈Sn−1

E
a∼U(cap(a,α))

ψ(a)

approaches supa∈Rn ψ(a), while when α = π this value coincides with
Ea∼U(Sn−1)ψ(a) (since cap(a,π) = S

n−1 for all a). In case ψ(−a) = ψ(a) for
all a ∈ S

n−1, a common occurrence when ψ is a condition number, it is immediate
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to see that

E
a∼U(Sn−1)

ψ(a)= E
a∼U(B(a,1))

ψ(a)

for all a ∈ S
n−1. Therefore, in this case,

sup
a∈Sn−1

E
a∼U(B(a,σ ))

ψ(a)

interpolates between the worst-case and average-case analyses of ψ as σ varies
between 0 and 1.

The local nature of randomization in smoothed analysis, coupled with its worst-
case dependence on the input data, removes from smoothed analysis the objection to
average-case analysis mentioned above. A satisfying result in this context (usually a
low-degree polynomial bound in the input size n and in the inverse of the dispersion
parameter r) is consequently considered a much more reliable indication that one
may expect low values for the function ψ in practice. In addition, there is an emerg-
ing impression that smoothed analysis is robust in the sense that its dependence on
the chosen family of measures is low. This tenet is supported in Sect. 21.8, where
the uniform measure is replaced by an adversarial measure (one having a pole at a)
without a significant loss in the estimated averages.

2.3 Probabilistic Analysis of Cwi(A,x)

As a first illustration we perform an average-case analysis of the componentwise
condition numbers Cwi (A, x) of matrix–vector multiplication that were introduced
in Sect. O.4. For the average analysis we shall suppose that A ∈ R

m×n and x ∈ R
n

are both standard Gaussian distributed and that they are independent.
As will be the case often in this book, the starting point of the probabilistic anal-

ysis is a “condition number theorem,” which in the situation at hand is expressed by

Cwi (A, x)≤ 1

dsin(ăi ,Σi(x))
, (2.17)

where Σi(x) := {b ∈ S
n−1 | bTx = 0}. This bound is an easy consequence of (O.11)

seen in Sect. O.5.4.
Let ai denote the ith row of A. By the rotational invariance of the standard Gaus-

sian distribution, the normalized ith row ăi := ai/‖ai‖ of A is then uniformly dis-
tributed in the sphere S

n−1. We note that by its definition, Cwi (A, x) depends only
on ai/‖ai‖ and x/‖x‖.

The average-case analysis of Cwi is summarized in the following result.

Theorem 2.38 Let n > 2. For A ∈R
m×n and x ∈R

n standard Gaussian distributed
and independent, we have, for all 0 < ε ≤ 1 and all i ∈ [m],

Prob
{
Cwi (A, x)≥ ε−1}≤

√
2n

π
ε.
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Moreover, for β ≥ 2,

E
(
logβ Cwi (A, x)

)≤ 1

2
logβ n+ 2.

Proof We fix i throughout the proof. By Proposition 2.19, ăi is uniformly dis-
tributed in S

n−1. Therefore, we obtain from (2.17) for fixed x ∈R
n that

Prob
A∼N(0,Im×n)

{
Cwi (A, x)≥ ε−1}≤ Prob

ăi∼U(Sn−1)

{
dsin(ăi ,Σ)≤ ε

}= volT (Σ,ε)

On−1
,

where we have written Σ :=Σi(x) to simplify notation. Since Σ is isometric to the
subsphere S

n−2 of Sn−1, Lemma 2.36(b) implies that volT (Σ,ε) ≤ 2On−2 ε (here
we use n > 2). From Lemma 2.25 we get the tail bound

Prob
A

{
Cwi (A, x)≥ ε−1}≤ 2On−2 ε

On−1
≤
√

2(n− 1)

π
ε ≤

√
2n

π
ε.

Since this bound is independent of x, we conclude, with ϕm denoting the density of
the standard normal distribution on R

m, that

Prob
A,x

{
Cwi (A, x)≥ ε−1} =

∫

x∈Rn

∫

A∈Rm×n

1Cwi (A,x)≥ε−1ϕn2(A)dAϕn(x) dx

≤
∫

Rn

√
2n

π
ε ϕn(x) dx =

√
2n

π
ε.

Furthermore, applying Proposition 2.26 to the random variable Cwi (A, x)≥ 1 (with
α = 1 and K = t0 =√

2n/π ), we obtain

E
(
logβ Cwi (A, x)

)≤ 1

2
logβ

2n

π
+ logβ e <

1

2
logβ n+ 2,

as claimed. �

We turn now to the smoothed analysis of Cwi (A, x). Fix any matrix A ∈ (Sn−1)m

and any vector x ∈ S
n−1. Let 0 < σ ≤ 1 and suppose that A is a random matrix such

that the ith row ai of A is chosen uniformly at random in the σ -ball B(ai, σ ) of
ai and x is a random vector uniformly chosen in B(xi, σ ) (note that Cwi (A, x) =
Cwi (−A,x), so that the discussion at the end of Sect. 2.2.7 applies here).

Theorem 2.39 Let n > 2, A ∈ (Sn−1)m and x ∈ S
n−1. Then, for all i ∈ [m], all

σ ∈ (0,1], and all 0 < ε ≤ σ
n

,

Prob
ai∈B(ai ,σ )

x∈B(x,σ )

{
Cwi (A, x)≥ ε−1}≤ 2en

ε

σ
.
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Moreover, we have for β ≥ 2 and all i,

E
(
logβ Cwi (A, x)

)≤ logβ n+ logβ

1

σ
+ 4.

Proof Again let i be fixed throughout the proof. By (2.17) we have for fixed x ∈
B(x,σ ),

Prob
ai∈B(ai ,σ )

{
Cwi (A, x)≥ ε−1}≤ vol(T (Σi(x), ε)∩B(ai, σ ))

volB(ai, σ )
.

Since Σi(x) is isometric to S
n−2, Lemma 2.37 implies that

Prob
ai∈B(ai ,σ )

{
Cwi (A, x)≥ ε−1}≤ 2(n− 1)

(
1 + ε

σ

)n−2
ε

σ
.

We have (1 + ε
σ
)n−2 ≤ (1 + 1

n−2 )
n−2 ≤ e if ε−1 ≥ n−2

σ
. Hence, under this assump-

tion, we have

Prob
ai∈B(ai ,σ )

{
Cwi (A, x)≥ ε−1}≤ 2e(n− 1)

ε

σ
≤ 2en

ε

σ
,

proving the tail bound for fixed x ∈ B(x,σ ). The desired tail bound (for both A and
x random) follows as in Theorem 2.38.

For the expectation, Proposition 2.26 (with α = 1 and t0 =K = 2en
σ

) implies that

E
(
logβ Cwi (A, x)

)≤ logβ n+ logβ

1

σ
+ logβ

(
2e2)≤ logβ n+ logβ

1

σ
+ 4,

as claimed. �

Remark 2.40 As we noted in Sect. 2.2.7, we can obtain average-case bounds from
Theorem 2.39 by taking σ = 1. A comparison with Theorem 2.38 shows that
the bounds thus obtained are slightly worse than those obtained from a standard
average-case analysis. This is due to the nonoptimal estimation in Lemma 2.34.

2.4 Probabilistic Analysis of κrs(A)

Recall the set Σ = {A ∈ R
n×n | detA= 0} of ill-posed matrices. The starting point

of our probabilistic analysis is the condition number theorem, Corollary 1.8, stating
that

κrs(A)= ‖A‖rs
drs(A,Σ)

. (2.18)

This characterization of the condition number is the key to the geometric way of
reasoning below.
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2.4.1 Preconditioning

Corollary 1.3 shows that the operator norm ‖ ‖2∞ defined in (1.4) admits a simple,
easily computable, characterization. As before, let a1, . . . , an denote the rows of A.

Think now of a matrix A poorly conditioned with respect to κ2∞. Because of
Eq. (2.18) and Corollary 1.3, this means that for a certain matrix S ∈Σ with rows si ,
we have that

κ2∞(A)= maxi ‖ai‖
maxj ‖aj − sj‖ (2.19)

is large. A possible reason for this poor condition may be a bad scaling of A—that
is, the existence of i �= j such that the numerator in (2.19) is maximized at i, its
denominator is maximized at j , and ‖ai‖‖aj−sj ‖ is large because ‖ai‖ is large compared
with ‖aj‖.

Since the solution of Ax = b is not changed when we divide the rows of [A,b]
by nonzero scalars, a way to avoid poor condition due to a possible bad scaling is to
solve instead the system Ăx = b̆, where

Ă=
(

a1

‖a1‖ , . . . ,
an

‖an‖
)

and b̆=
(

b1

‖a1‖ , . . . ,
bn

‖an‖
)
.

The following result justifies doing so.

Proposition 2.41 We have κ2∞(Ă) ≤ κ2∞(A) whenever the left-hand side is de-
fined.

Proof For any S ∈Σ we have by (2.19),

1

κ2∞(A)
≤ maxj ‖aj − sj‖

maxi ‖ai‖ = max
j

‖aj‖
maxi ‖ai‖

∥∥∥∥ăj −
sj

‖aj‖
∥∥∥∥

≤ max
j

∥∥∥∥ăj −
sj

‖aj‖
∥∥∥∥= d2∞(Ă, S̆),

where S̆ is the matrix with columns sj /‖sj‖. Hence κ2∞(A)−1 ≤ d2∞(Ă,Σ), and
we get

κ2∞(A)≥ 1

d2∞(Ă,Σ)
= ‖Ă‖2∞

d2∞(Ă,Σ)
= κ2∞(Ă). �

The passage from A to Ă is called preconditioning in the literature. In general
(and this is the case in our example), such a process has a negligible computational
cost and can only improve the condition of the data at hand. Furthermore, the loss
of precision in the computation of the pair (Ă, b̆) is negligible as well. Hence, the
quantity controlling the loss of precision to compute A−1b from this pair is

κ2∞(A) := κ2∞(Ă).
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Note that by construction, κ2∞(A) is scale-invariant in each row of A. We are
therefore in the situation of a block scale-invariant random variable described in
Remark 2.24. To study its behavior when A ∼ N(0, In2) amounts to studying the
behavior of Ă∼U(S) with S = (Sn−1)n. We next proceed to do so.

In the sequel we will interpret a tuple A= (a1, . . . , an) ∈ (Sn−1)n as the matrix in
R

n×n with rows a1, . . . , an. Because κ2∞(A) is block scale-invariant, it is possible
to formulate the condition number theorem (Corollary 1.8) in terms of an extension
of dsin to a product of spheres. In order to do so we define for A = (a1, . . . , an) ∈
(Sn−1)n and B = (b1, . . . , bn) ∈ (Sn−1)n the distance

dsin(A,B) := max
i≤n

dsin(ai, bi).

By Remark 2.33, dsin satisfies the triangle inequality (but recall that it is not a dis-
tance on (Sn−1)n, since dsin(A,−A)= 0). We put

ΣS :=Σ ∩ (
S
n−1)n = {

A ∈ (
S
n−1)n | a1, . . . , an are linearly dependent

}

and set

dsin(A,ΣS) := min
{
dsin(A,B) |B ∈ΣS

}
.

Theorem 1.7 for r = 2, s =∞ combined with Lemma 2.43 stated below imme-
diately yields the following intrinsic characterization of κ2∞(A).

Corollary 2.42 For all A �∈Σ with nonzero rows we have

κ2∞(A)= 1

dsin(Ă,ΣS)
.

Lemma 2.43 We have d2∞(A,Σ)= dsin(A,ΣS) for A ∈ (Sn−1)n.

Proof For a, s ∈ S
n−1 let s∗ denote the orthogonal projection of a onto Rs. By

definition we have dsin(a, s) = ‖a − s∗‖. Moreover, dsin(a, s) ≤ ‖a − s‖. From
these observations it immediately follows that d2∞(A,Σ∗) = dsin(A,ΣS), where
Σ∗ := {B ∈ Σ | bi �= 0 for i ∈ [n]}. Since Σ∗ is a dense subset of Σ , we have
d2∞(A,Σ)= d2∞(A,Σ∗). Hence the assertion follows. �

Recall that for a matrix A ∈ R
m×n, a vector c ∈ R

n, and an index i ∈ [m], we
denote by A(i : c) the matrix obtained by replacing the ith row of A by c.

The following result will be used twice in this chapter.

Proposition 2.44 For A ∈ (Sn−1)n there exist i ∈ [n] and c̄ ∈ S
n−1 such that we

have A(i : c̄) ∈ΣS and dsin(ai, c̄)≤ ndsin(A,ΣS).

Proof We first note that d(A,Σ) ≤ √
nd2∞(a,Σ) due to the norm inequalities

n−1/2‖x‖ ≤ ‖x‖∞ ≤ ‖x‖ holding for x ∈ R
n. Moreover, by Lemma 2.43 we have

d2∞(A,Σ)= dsin(A,ΣS).
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We apply Proposition 1.10 to the matrix AT (having the columns ai ) and the
spectral norms (r = s = 2). This shows the existence of i ∈ [n] and c ∈R

n such that
A(i : c) ∈Σ and ‖ai − c‖ ≤√

nd(A,Σ)≤ ndsin(a,ΣS).
If c= 0, then 1 = ‖ai‖ ≤ ndsin(a,ΣS), in which case the assertion is trivial (note

that dsin ≤ 1).
Hence we may suppose that c �= 0 and put c̄ := c/‖c‖. Then we have dsin(ai, c̄)≤

‖ai − c‖ and therefore dsin(ai, c̄)≤ ndsin(a,ΣS) as claimed. �

2.4.2 Average Analysis

We assume now that A is randomly chosen in (Sn−1)n according to the uniform
distribution and investigate the distribution of the random variable κ2∞(A).

Theorem 2.45 We have, for any n > 2 and 0 < ε ≤ 1,

Prob
{
κ2∞(A)≥ ε−1}≤

√
2

π
n5/2 ε,

if A is chosen randomly in (Sn−1)n according to the uniform distribution. Moreover,
for β ≥ 2,

E
(
logβ κ2∞(A)

)≤ 5

2
logβ n+ 2.

Proof Let T (ΣS, ε) denote the ε-neighborhood of ΣS in (Sn−1)n, i.e.,

T (ΣS, ε) :=
{
A ∈ (

S
n−1)n | dsin(A,ΣS)≤ ε

}
.

By Proposition 2.42 we know that

T (ΣS, ε)=
{
A ∈ (

S
n−1)n | κ2∞(A)≥ ε−1},

and hence

Prob
{
κ2∞(A)≥ ε−1}= volT (ΣS, ε)

vol(Sn−1)n
.

We thus need to bound the volume of T (ΣS, ε). Proposition 2.44 implies that

T (ΣS, ε)⊆
n⋃

i=1

Wi,

where

Wi :=
{
A ∈ (

S
n−1)n | ∃c ∈ S

n−1 : dsin(ai, c)≤ nε and A(i : c) ∈ΣS

}
.
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By symmetry, volWi = volWn, whence

Prob
{
κ2∞(A)≥ ε−1}≤ n

volWn

vol(Sn−1)n
.

Consider the projection

π :Wn →
(
S
n−1)n−1

, (a1, . . . , an) �→ (a1, . . . , an−1).

Without loss of generality we may assume that a1, . . . , an−1 ∈ S
n−1 are linearly

independent. Then the set

H := span{a1, . . . , an−1} ∩ S
n−1

is isometric to S
n−2 and A(i : c) ∈ΣS ⇐⇒ c ∈H . We therefore have

π−1(a1, . . . , an−1)� T (H,nε) := {
an ∈ S

n−1 | dsin(an,H)≤ nε
}
.

Clearly, volT (H,nε)= volT (Sn−2, nε). Then, by Lemma 2.36(b),

volπ−1(a1, . . . , an−1)= volT
(
S
n−2, nε

)≤ 2nεOn−2.

Using Fubini’s theorem, we obtain

volWn =
∫

(Sn−1)n−1
volπ−1(a1, . . . , an−1) d

(
S
n−1)n−1 ≤ 2nεOn−2On−1

n−1.

Now using Lemma 2.25, we get

volWn

vol(Sn−1)n
≤ On−2

On−1
2nε ≤

√
2

π
n3/2ε.

Altogether,

Prob
{
κ2∞(A)≥ ε−1}≤

√
2

π
n5/2ε,

which is the desired tail bound.
In order to prove the bound on the expectation we apply Proposition 2.26 (with

α = 1 and K = t0 =
√

2
π
n5/2) to the random variable κ2∞(A)≥ 1 to obtain

E
(
logβ κ2∞(A)

)≤ logβ

(√
2

π
n5/2

)
+ logβ e ≤ 5

2
logβ n+ 2,

as claimed. �
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2.4.3 Uniform Smoothed Analysis

Let A = (a1, . . . , an) ∈ (Sn−1)n and 0 ≤ σ ≤ 1. We define the σ -neighborhood of
A in (Sm−1)n as

B(A,σ) := B(a1, σ )× · · · ×B(an,σ ).

Our smoothed analysis result is the following.

Theorem 2.46 For any n > 2, any 0 < σ,ε ≤ 1, and any A ∈ (Sn−1)n we have

Prob
A∈B(A,σ)

{
κ2∞(A)≥ ε−1}≤ 2n3

(
1 + nε

σ

)n−2
ε

σ
.

Moreover, for β ≥ 2,

E

A∈B(A,σ)

(
logβ κ2∞(A)

)≤ 3 logβ n+ logβ

1

σ
+ 4.

Proof We proceed as in the proof of Theorem 2.45. Fix A ∈ (Sn−1)n and
0 < ε,σ ≤ 1. We have

Prob
A∈B(A,σ)

{
κ2∞(A)≥ ε−1}= vol(T (ΣS, ε)∩B(A,σ))

volB(A,σ)
.

By Proposition 2.44 we have T (ΣS, ε)⊆⋃n
i=1 Wi , where

Wi :=
{
A ∈ (

S
n−1)n | ∃c ∈ S

n−1 : dsin(ai, c)≤ nε and A(i : c) ∈ΣS

}
.

Fix i = n and consider the projection

π :Wn ∩B(A,σ)→
n−1∏

i=1

B(ai, σ ), (a1, . . . , an) �→ (a1, . . . , an−1).

Without loss of generality we assume that the components ai of (a1, . . . , an−1) in∏n−1
i=1 B(ai, σ ) are linearly independent. Then its fiber can be described by

π−1(a1, . . . , an−1) �
{
an ∈ B(an,σ ) | dsin(an,H)≤ nε

}

= T (H,nε)∩B(an,σ ),

where H := span{a1, . . . , an−1} ∩ S
n−1. Lemma 2.37 implies that

vol(T (H,nε)∩B(volan,σ ))

volB(an,σ )
≤ 2(n− 1)

(
1 + nε

σ

)n−2
nε

σ
. (2.20)
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Using Fubini’s theorem we get

vol
(
Wn ∩B(A,σ)

)=
∫

∏n−1
i=1 B(ai ,σ )

volπ−1(a1, . . . , an−1) d
(
S
n−1)n−1

,

and hence, by Eq. (2.20),

vol(Wn ∩B(A,σ))

volB(A,σ)
≤ 2n2

(
1 + nε

σ

)n−2
ε

σ
. (2.21)

The same bound holds for Wi for i = 1, . . . , n. Noting that

vol(T (ΣS, ε)∩B(A,σ))

volB(A,σ)
≤

n∑

i=1

vol(Wi ∩B(A,σ))

volB(A,σ)
,

the desired tail estimate follows.
For the bound on the expectation, note that (1+ nε

σ
)n ≤ (1+ 1

n
)n ≤ e if ε−1 ≥ n2

σ
.

Hence, for t ≥ n2

σ
,

Prob
{
κ2∞(A)≥ t

}≤ 2
en3

σ
t−1.

Proposition 2.26 (with α = 1 and t0 =K = 2 en3

σ
) implies that

E
(
logβ κ2∞(A)

)≤ logβ

(
2en3

σ

)
+ logβ e ≤ 3 logβ n+ logβ

1

σ
+ 4. �

2.5 Additional Considerations

2.5.1 Probabilistic Analysis for Other Norms

The analyses in the previous sections took advantage of the block scale invariance
of κ2∞ and therefore, ultimately, of the properties of ‖ ‖2∞. With some additional
effort, such analyses can be performed for other matrix norms by working in S

n2−1

instead of (Sn−1)n. But we can also obtain similar results by preconditioning and
using the equivalence between different matrix norms in Table 1.2. We show how
for the case of the spectral norm.

Lemma 2.47 We have 1√
n
κ(A)≤ κ2∞(A)≤√

nκ(A) for A ∈R
n×n \ {0}.

Proof The norm inequality n−1/2‖y‖2 ≤ ‖y‖∞ ≤ ‖y‖2 for y ∈ R
n implies

n−1/2‖A‖ ≤ ‖A‖2∞ ≤ ‖A‖ and hence n−1/2d(A,Σ) ≤ d2∞(A,Σ) ≤ d(A,Σ).
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Theorem 1.7 implies

κ(A)= ‖A‖
d(A,Σ)

and κ2∞(A)= ‖A‖2∞
d2∞(A,Σ)

,

from which the statement immediately follows. �

We may consider the preconditioning A �→ Ă and define κ(A) := κ(Ă). In con-
trast with the case of ‖ ‖2∞, this procedure may increase the condition, but it is easy
to see that it is not by much.

Proposition 2.48 For all A �∈ Σ we have κ(Ă) ≤ nκ(A). Moreover, κ(A) ≤√
nκ2∞(A).

Proof Using Lemma 2.47 twice and Proposition 2.41, we obtain

κ(Ă)≤√
nκ2∞(Ă)≤√

nκ2∞(A)≤ nκ(A).

For the second statement we use Lemma 2.47 to get

κ(A)= κ(Ă)≤√
nκ2∞(Ă)=√

nκ2∞(A). �

The following analyses are an immediate consequence of Theorem 2.45 and The-
orem 2.46.

Proposition 2.49 For A chosen randomly in (Sn−1)n from the uniform distribution,
we have

E
(
logβ κ(A)

)≤ 3 logβ n+ 1,

and for n > 2 and any A ∈ (Sn−1)n,

E

A∈B(A,σ)

(
logβ κ(A)

)≤ 7

2
logβ n+ logβ

1

σ
+ 5.

�

2.5.2 Probabilistic Analysis for Gaussian Distributions

Throughout this chapter, for investigating the condition of a random matrix A ∈
R

n×n, we assumed the rows ai of A to be normalized to Euclidean norm 1 and
viewed A as the point (a1, . . . , an) in the product (Sn−1)n of spheres. We then as-
sumed A to be chosen uniformly at random in (Sn−1)n (or in a product of spherical
caps thereof). We have chosen this probabilistic model for two reasons. On the one
hand, the average and smoothed analyses in this model are the most elementary
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instances of such analyses we are aware of. On the other hand, our considerations
are a natural preparation for similar, but more involved, studies regarding the GCC
condition number of linear programming treated later in this book (see Chap. 13).

However, this chapter would be incomplete without mentioning what is known in
the Gaussian model, in particular for smoothed analysis, since in contrast to average
analysis (where the use of the uniform measure on S

n−1 is equivalent to the use of
a standard Gaussian in R

n due to Corollary 2.23), the smoothed analyses for both
measures are not equivalent. The following result is due to Mario Wschebor.

Theorem 2.50 There is a universal constant K ≥ 1 such that for all A ∈R
n×n with

‖A‖ ≤ 1, all 0 < σ ≤ 1, and all t ≥ 1, we have

Prob
A∼N(A,σ 2I)

{
κ(A)≥ t

}≤Kn
1

σ t
. �

We will not prove this result here. Techniques to study the condition of matrices
in the Gaussian model will be developed in Chap. 4, where we shall derive bounds
that are even sharper for rectangular matrices.

Combining Theorem 2.50 with Proposition 2.26 immediately implies the follow-
ing.

Corollary 2.51 There exists K ≥ 1 such that for all σ ∈ (0,1], all β ≥ 2, and all
A ∈R

n×n with ‖A‖ ≤ 1, we have

E

A∼N(A,σ 2I)

(
logβ κ(A)

)≤ logβ n+ logβ

1

σ
+ 2 + logβ K.

In particular, taking A= 0 and σ = 1,

E
A∼N(0,I)

(
logβ κ(A)

)≤ logβ n+ 2 + logβ K. �

Note that the second bound in the corollary above is better than the one (obtained
for the same quantity but with humbler means) in Proposition 2.49.



Chapter 3
Error Analysis of Triangular Linear Systems

The vast majority of the occurrences of condition numbers in the study of linear sys-
tems of equations involve the normwise condition number κ(A). Almost invariably,
the use of κ(A) is enough to provide a satisfying explanation of the phenomena
observed in practice.

The case of triangular systems of linear equations provides, in contrast, an ex-
ample in which κ(A) turns out to be inadequate. Practitioners long observed that
triangular systems of equations are generally solved to high accuracy in spite
of being, in general, ill-conditioned. Thus, for instance, J.H. Wilkinson in [235,
p. 105]: “In practice one almost invariably finds that if L is ill-conditioned, so that
‖L‖‖L−1‖" 1, then the computed solution of Lx = b (or the computed inverse) is
far more accurate than [what forward stability analysis] would suggest.”

A first goal in this chapter is to give a precise meaning to the feeling that tri-
angular matrices are, in general, ill-conditioned. We prove that if L ∈ R

n×n is a
lower-triangular matrix whose entries are independent standard Gaussian random
variables (i.e., L is drawn from N(0, I n(n+1)

2
)), then E(logβ κ(L)) = Ω(n). Corol-

lary 1.6 then yields an expected loss of precision satisfying

E
(
LoP

(
L−1b

))=O(n).

Were the loss of precision in the solution of triangular systems to conform to this
bound, we would not be able to accurately find these solutions. The reason we ac-
tually do find them can be briefly stated. The error analysis of triangular systems
reveals that we may use a componentwise condition number Cw(L,b) instead of
the normwise condition number. The second goal of this chapter is to prove that
when L is drawn from N(0, I n(n+1)

2
)) and b ∈ R

n is drawn from N(0, In), then we

have E(log Cw(L,b))=O(logn). This bound, together with some backward error
analysis, yields bounds for E(LoP(L−1b)) that are much smaller than the one above,
as well as closer to the loss of precision observed in practice.
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DOI 10.1007/978-3-642-38896-5_3, © Springer-Verlag Berlin Heidelberg 2013
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3.1 Random Triangular Matrices Are Ill-conditioned

The main result of this section states that random lower-triangular matrices are ill-
conditioned with respect to the normwise (classical) condition number.

Theorem 3.1 Let L= (�ij ) ∈ R
n×n be a random lower-triangular matrix with in-

dependent standard Gaussian random entries �ij for i ≥ j . Then we have

E
(
lnκ(L)

)≥ (ln 2)n− lnn− 1.

As a warm-up, we first show a related result—with a very simple proof—that
already indicates that on average, κ(L) grows exponentially in n. For this we focus
on unit lower-triangular matrices L, that is, we additionally assume that �ii = 1.

Proposition 3.2 Let L = (�ij ) denote a random unit lower-triangular matrix with
�ii = 1 and with independent standard Gaussian random entries �ij for i > j . Then
we have

E
(∥∥L−1

∥∥2
F

)= 2n − 1.

In particular, E(‖L‖2
F ‖L−1‖2

F ) ≥ n(2n − 1); hence E(κ(L)2) grows exponentially
in n.

Proof The first column (s1, . . . , sn) of L−1 is characterized by s1 = 1 and the recur-
rence relation

si =−
i−1∑

j=1

�ij sj for i = 2, . . . , n.

This implies that si is a function of the first i rows of L. Hence the random variable
si is independent of the entries of L in the rows with index larger than i. By squaring
we obtain for i ≥ 2,

s2
i =

∑

j �=k
j,k<i

�ij �iksj sk +
∑

j<i

�2
ij s

2
j .

By the preceding observation, sj sk is independent of �ij �ik for j, k < i. If addition-
ally j �= k, we get

E(�ij �iksj sk)= E(�ij �ik)E(sj sk)= E(�ij )E(�ik)E(sj sk)= 0,

since �ij and �ik are independent and centered. So the expectations of the mixed
terms vanish, and we obtain, using E(�2

ij )= 1, that

E
(
s2
i

)=
i−1∑

j=1

E
(
s2
j

)
for i ≥ 2.
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Solving this recurrence with E(s2
1)= 1 yields

E
(
s2
i

)= 2i−2 for i ≥ 2.

Therefore, the first column v1 of L−1 satisfies

E
(‖v1‖2)= E

(
n∑

i=1

s2
i

)

= 2n−1.

By an analogous argument one shows that

E
(‖vk‖2)= 2n−k

for the kth column vk of L−1. Altogether, we obtain

E
(∥∥L−1

∥∥2
F

)= E

(
n∑

k=1

‖vk‖2

)

=
n∑

k=1

E
(‖vk‖2)= 2n − 1.

Finally, we note that ‖L‖2
F ≥ n, since �ii = 1. Hence,

E
(‖L‖2

F

∥∥L−1
∥∥2
F

)≥ nE
(∥∥L−1

∥∥2
F

)≥ n
(
2n − 1

)
.

The last assertion follows from κ(L)≥ 1
n
‖L‖F ‖L−1‖F . �

We turn now to the general situation. Consider a lower-triangular matrix L =
(�ij ) ∈ R

n×n that is invertible, i.e., detL= �11 · · ·�nn �= 0. We denote by t1, . . . , tn
the entries of the first column of L−1. These entries can be recursively computed as
follows:

t1 = �−1
11 ,

t2 =−�−1
22 �21t1,

t3 =−�−1
33 (�31t1 + �32t2),

...

tn =−�−1
nn (�n1t1 + · · · + �n,n−1tn−1).

We suppose that the �ij are independent standard Gaussian random variables. The
next lemma provides a recurrence formula for the joint probability density func-

tion fk of (t1, . . . , tk). We introduce the notation Tk :=
√
t2
1 + · · · + t2

k .

Lemma 3.3 The joint probability density function fk(t1, . . . , tk) satisfies the follow-
ing recurrence:

f1 = 1√
2πt2

1

e
− 1

2t21 , fk = 1

π

Tk−1

T 2
k

fk−1 for k > 1.
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Proof We have t1 = 1/x, where x = �11 is standard Gaussian with density ϕ(x)=
(2π)−1/2e− 1

2 x
2
. Therefore, by Proposition 2.11 (with n= 1, ψ(x)= 1/x, and fM =

ϕ), the density ρ of the random variable t1 satisfies

ρ(t1)=
∣
∣∣∣
dt1

dx

∣
∣∣∣

−1

ϕ(x)= x2ϕ(x)= 1√
2πt2

1

e
− 1

2t21 ,

as claimed.
To obtain the recurrence expression for fk , we consider the random variable

τk := �k1t1 + · · · + �k,k−1tk.

For fixed values of t1, . . . , tk−1, the conditional distribution of τk is Gaussian
with mean 0 and variance T 2

k−1. Therefore, the joint probability density of
(t1, . . . , tk−1, τk) is given by

fk−1 · 1√
2π Tk−1

e
− τ2

k

2T 2
k−1 .

The variable tk is obtained as tk = τk/�, where � = −�kk is an independent
standard Gaussian random variable. Note that the joint probability density of
(t1, . . . , tk−1, τk, �) is given by

fk−1 · 1√
2π Tk−1

e
− τ2

k

2T 2
k−1

1√
2π

e−
�2
2 .

We make now the change of variables (t1, . . . , tk−1, τk, �)
Ψ�→ (t1, . . . , tk−1, tk, �),

which satisfies detDΨ (t1, . . . , tk−1, tk, �) = �−1. Proposition 2.11 implies that the
density g of (t1, . . . , tk−1, tk, �) satisfies

g = fk−1 · 1√
2π Tk−1

e
− �2 t2

k

2T 2
k−1

1√
2π

e−
�2
2 · |�|.

A straightforward calculation, making the change of variables b= �2/2, shows that

fk(t1, . . . , tk) =
∫ ∞

−∞
g(t1, . . . , tk, �) d�= fk−1

2π Tk−1
2
∫ ∞

0
e
− �2

2 (
t2
k

T 2
k−1

+1)
� d�

= fk−1

πTk−1

1
t2
k

T 2
k−1

+ 1
= fk−1

πTk−1

T 2
k−1

T 2
k

= fk−1

π

Tk−1

T 2
k

,

which proves the desired recurrence. �

The recursive description of the joint probability density functions fk in
Lemma 3.3 yields the following recurrence for E(lnT 2

k ).
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Lemma 3.4 We have E(lnT 2
k )= E(lnT 2

k−1)+ 2 ln 2 for k > 1.

Proof By Lemma 3.3 we have, omitting the arguments ti to avoid cluttering the
notation,

E
(
lnT 2

k

)=
∫

Rk

fk lnT 2
k dt1 · · · dtk =

∫

Rk−1

fk−1Tk−1

π

∫

R

lnT 2
k

T 2
k

dtk dt1 · · · dtk−1.

We fix t1, . . . , tk−1 and rewrite the inner integral by making the change of variable
y = tk/Tk−1. Hence T 2

k = T 2
k−1(1 + y2), and we get

1

π

∫

R

lnT 2
k

T 2
k

dtk = 1

Tk−1

1

π

∫

R

lnT 2
k−1 + ln(1 + y2)

1 + y2
dy.

The function y �→ 1/(π(1+y2)) is a probability density on R, and a straightforward
calculation shows that

1

π

∫

R

ln(1 + y2)

1 + y2
dy = 2 ln 2.

Hence we obtain for the inner integral

1

π

∫

R

lnT 2
k

T 2
k

dtk = 1

Tk−1

(
lnT 2

k−1 + 2 ln 2
)
.

Plugging this expression into the integral above, we obtain the stated recurrence

E
(
lnT 2

k

)= E
(
lnT 2

k−1

)+ 2 ln 2. �

Proof of Theorem 3.1 Using the expression for the density function f1 provided by
Lemma 3.3, we obtain, using software for symbolic integration,

E
(
lnT 2

1

)= 1√
2π

∫

R

1

t2
1

e
− 1

2t21 ln t2
1 dt1 = ln 2 + γ,

where γ ≈ 0.577 denotes the Euler–Mascheroni constant. Combining this with the
recursive expression of Lemma 3.4, we get

E
(
lnT 2

n

)= (2 ln 2)(n− 1)+ ln 2 + γ ≥ (2 ln 2)n− 0.12.

Recalling that Tn equals the Euclidean norm of the first column of L−1, this implies

E
(
ln
∥∥L−1

∥∥
F

)≥ E(lnTn)≥ (ln 2)n− 0.06.

Since ‖L‖2
F is chi-square distributed with n(n + 1)/2 degrees of freedom, we

have, by Proposition 2.21, that E(ln‖L‖F )≥ 0 if n > 1. Therefore
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E
(
ln
(‖L‖F

∥∥L−1
∥∥
F

))≥ E(lnTn)≥ (ln 2)n− 0.06.

Using that ‖L‖‖L−1‖ ≥ 1
n
‖L‖F ‖L−1‖F , the assertion follows. �

3.2 Backward Analysis of Triangular Linear Systems

Let L= (�ij ) ∈ R
n×n be a nonsingular lower-triangular matrix and b ∈ R

n. We are
interested in solving the system Lx = b. Algorithmically, this is very simple, and
the components x1, . . . , xn of the solution x are sequentially obtained by forward
substitution as in Algorithm 3.1.

Algorithm 3.1 FS

Input: L ∈R
n×n, b ∈R

n

Preconditions: L is lower-triangular, nonsingular

x1 := b1/�11
for i = 2 . . . n do

compute w := �i1x1 + · · · + �i,i−1xi−1

compute xi := bi−w
�ii

return x = (x1, . . . , xn)

Output: x ∈R
n

Postconditions: Lx = b

It is straightforward to obtain a backward error analysis for Algorithm 3.1 from
the results we proved in the Overture. We use notation introduced in Sect. O.3.

Proposition 3.5 There is a round-off implementation of algorithm FS that with in-
put L ∈ R

n×n lower-triangular and b ∈ R
n computes the solution x of Lx = b. If

εmach(�log2 n� + 1) < 1, then the computed value fl(x) satisfies (L + E)fl(x) = b

with |eij | ≤ γ�log2 i�+1|�ij |.
Proof By induction on n. If n= 1, then

fl(x1)= b1

�11
(1 + θ1)= b1

(1 + θ1)�11
,

and the statement follows since |θ1| ≤ γ1.
Now assume n > 1 and let x̄ = (x1, . . . , xn−1), b̄ = (b1, . . . , bn−1), and L̄ ∈

R
(n−1)×(n−1) be the matrix obtained by removing the nth row and the nth column

of L. Then, L̄ is lower-triangular, nonsingular, and L̄x̄ = b̄. By the induction hy-
pothesis the point fl(x) = (fl(x1), . . . , fl(xn−1)) computed at the first (n− 2) itera-
tions of FS satisfies (L̄+ Ē)fl(x)= b̄ with |ēij | ≤ γ�log2 i�+1|�ij |.
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We now use Proposition O.4 to perform the (n− 1)th iteration (which computes
xn) with A = (�n1, . . . , �n,n−1) ∈ R

1×(n−1). By this proposition, we compute the
product A fl(x)= �n1fl(x1)+ · · · + �n,n−1fl(xn−1) and obtain fl(w) satisfying

fl(w)= (�n1 + en1)fl(x1)+ · · · + (�n,n−1 + en,n−1)fl(xn−1)

with |enj | ≤ γ�log2(n−1)�+1|�nj | for j ≤ n− 1. We then compute xn, and we obtain

fl(xn) = fl

(
bn − fl(w)

�nn

)
=
(
(bn − fl(w))(1 + θ1)

�nn

)
(1 + θ1)

= bn − (�n1 + en1)fl(x1)+ · · · + (�n,n−1 + en,n−1)fl(xn−1)

�nn(1 + θ2)
,

and the result follows by taking enn = �nnθ2 and E the matrix obtained by putting
Ē in its upper-left (n−1)× (n−1) corner, appending (en1, . . . , enn) as the nth row,
and filling the remainder of the nth column with zeros. �

3.3 Componentwise Condition of Random Sparse Matrices

Proposition 3.5 justifies the componentwise measure of relative errors and, as a con-
sequence, the use of componentwise condition numbers in the error analysis. The
goal of this section is to give a (classical) probabilistic analysis for these condition
numbers.

We will work in the more general context of sparse matrices (which, in this
section, are matrices with a fixed pattern of zeros).1 Therefore, the following results
apply not only to triangular matrices but to other classes of sparse matrices such as,
for instance, tridiagonal matrices. Also, in the process of proving our main result we
will estimate as well the average componentwise condition for the computation of
the determinant and for matrix inversion.

3.3.1 Componentwise Condition Numbers

Recall that for a function ϕ : D ⊆ R
m → R

q and a point a ∈ D with ai �= 0 and
ϕj (a) �= 0 for all i ≤m and j ≤ q , we defined in (O.1) the componentwise condition
number

Cwϕ(a)= lim
δ→0

sup
RelError(a)≤δ

RelError(ϕ(a))

RelError(a)
,

1The word “sparse” is also used to denote matrices with a large number of zeros, not necessarily
in fixed positions.
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where both RelError(a) and RelError(ϕ(a)) are measured componentwise and we
follow the convention that 0

0 = 1. That is,

RelError(a)= max
i≤m

|ãi − ai |
|ai | ,

and similarly for ϕ(a). In fact, we have Cwϕ(a)= maxj≤q Cwϕ
j (a), where for j ≤ q ,

Cwϕ
j (a)= lim

δ→0
sup

RelError(a)≤δ

RelError(ϕ(a)j )

RelError(a)
;

compare Sect. O.2.
Componentwise condition numbers behave nicely with respect to multiplication

and division.

Lemma 3.6 Let ϕ,ψ : D ⊆ R
m → R be functions and a ∈ D such that ai �= 0 for

all i and ϕ(a)ψ(a) �= 0. Then we have

Cwϕψ(a)≤ Cwϕ(a)+ Cwψ(a), Cwϕ/ψ(a)≤ Cwϕ(a)+ Cwψ(a).

Proof The first statement follows from the identity

x̃ỹ − xy

xy
= x̃ − x

x
+ ỹ − y

y
+ x̃ − x

x

ỹ − y

y
.

For the second statement, we use instead

x̃/ỹ − x/y

x/y
=

x̃−x
x

− ỹ−y
y

1 + ỹ−y
y

.
�

Example 3.7 The multiplication ϕ : Rm → R, (a1, . . . , am) �→ a1 · · ·am satisfies
Cwϕ(a) = m if ai �= 0 for all i. In fact, Cwϕ(a) ≤ m follows immediately from
Lemma 3.6 by taking into account that the componentwise condition number of a
projection a �→ ai equals one. It is easy to see that equality holds.

Componentwise condition numbers also behave nicely with respect to addition
and subtraction. We leave the straightforward proof to the reader.

Lemma 3.8 Let ϕ,ψ : D ⊆ R
m → R be functions and a ∈ D such that ai �= 0 for

all i and ϕ(a)ψ(a) �= 0. Then we have

Cwϕ±ψ(a)≤ max
{
Cwϕ(a),Cwψ(a)

}
,

provided the left-hand side is defined (i.e., ϕ(a)±ψ(a) �= 0). �

In all that follows, for n ∈ N, we denote the set {1, . . . , n} by [n] and write, as
usual, [n]2 = [n] × [n].
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Definition 3.9 We denote by M the set of n× n real matrices and by Σ its subset
of singular matrices. Also, for a subset S ⊆ [n]2 we define

MS :=
{
A ∈M

∣∣ if (i, j) /∈ S then aij = 0
}

and write |S| for the cardinality of S. We denote by RS the space of random n×
n matrices obtained by setting aij = 0 if (i, j) /∈ S and drawing all other entries
independently from the standard Gaussian N(0,1). As above, if S = [n]2, we write
simply R.

Lemma 3.10 If MS �⊆Σ , then ProbA∈RS
(A is singular)= 0.

Proof The set of singular matrices in MS is the zero set of the restriction of the de-
terminant to MS . This restriction is a polynomial in R

|S| whose zero set, if different
from R

|S|, has dimension smaller than |S|. �

3.3.2 Determinant Computation

We consider here the problem of computing the determinant of a sparse matrix A ∈
MS �R

|S| and its componentwise condition number Cwdet(A), which is defined by
taking ϕ : MS →R,A �→ detA. We shall suppose that MS �⊆Σ . Then Cwdet(A) is
almost surely defined by Lemma 3.10, since detA

∏
ij aij �= 0 holds almost surely.

Our goal is to derive probability tail estimates for Cwdet(A). We begin with a
simple observation on Cwdet(A) for triangular matrices, which is in stark contrast to
our findings in Sect. 3.1 on the normwise condition number of such matrices.

Proposition 3.11 Let S be such that MS equals the set of upper-triangular n× n

matrices. Then we have Cwdet(A)= n, provided detA �= 0.

Proof This is an immediate consequence of Example 3.7. �

Our main result for Cwdet(A) is the following.

Theorem 3.12 Suppose S ⊆ [n]2 such that MS �⊆Σ . Then, for t ≥ 2|S|,

Prob
A∈RS

{
Cwdet(A)≥ t

}≤ |S|2 1

t
.

We may use this result to estimate the average componentwise condition number
for the computation of the determinant.

Corollary 3.13 For a base β ≥ 2 and a set S ⊆ [n]2 with |S| ≥ 2, we have
E(logβ Cwdet(A))≤ 2 logβ |S| + logβ e, where E denotes expectation over A ∈RS .
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Proof Use Proposition 2.26, taking X = Cwdet(A), α = 1, and t0 =K = |S|2 (note
that |S|2 ≥ 2|S|, since |S| ≥ 2), together with Theorem 3.12. �

We move now to the proof of Theorem 3.12. First we give a closed formula for
Cwdet(A). We shall denote by Aij the submatrix of A obtained by deleting its ith
row and its j th column.

Lemma 3.14 For A ∈MS \Σ , we have

Cwdet(A)=
∑

(i,j)∈S

∣∣∣∣
aij detAij

detA

∣∣∣∣.

In particular, Cwdet(A) does not depend on S.

Proof For any i ∈ [n], expanding by the ith row, we have

detA=
∑

j

(−1)i+j aij detAij .

Hence, for all i, j ∈ [n], we get

∂ detA

∂aij
= (−1)i+j detAij .

Fix A ∈ MS \ Σ and δ > 0. Let Ã ∈ MS be such that RelError(A) = δ. Then
|ãij − aij | ≤ δ|aij | for all (i, j) ∈ S. Using Taylor’s expansion and the equalities
above, we obtain for δ → 0,

det Ã= detA+
∑

i,j

(−1)i+j (ãij − aij )detAij +O
(
δ2).

It follows that

|det Ã− detA|
δ|detA| ≤

∑

i,j

|aij detAij |
|detA| +O(δ).

Hence, by the definition (O.1), we obtain

Cwdet(A)≤
∑

i,j

|aij detAij |
|detA| .

To see that equality holds we choose Ã by taking ãij = aij (1 ± δ), where we take
the plus sign if (−1)i+j detAij ≥ 0 and the minus sign otherwise. Then the terms
(−1)i+j (ãij − aij )detAij have the same sign for all i, j ∈ [n]. �

We proceed with a general tail estimate for Gaussian random variables.
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Lemma 3.15 Let p,q be two fixed vectors in R
n such that ‖p‖ ≤ ‖q‖, q �= 0. If

x ∼N(0, In), then for all t ≥ 2,

Prob

{∣∣∣∣
xTp

xTq

∣∣∣∣≥ t

}
≤ 1

t
.

Proof Let ν = ‖q‖. By the rotational invariance of N(0, In) we may assume that
q = (ν,0, . . . ,0). Also, by appropriately scaling, we may assume that ν = 1. Note
that then ‖p‖ ≤ 1. We therefore have

Prob

{∣∣∣∣
xTp

xTq

∣∣∣∣≥ t

}
= Prob

{∣∣∣∣∣
p1 +

n∑

i=2

xipi

x1

∣∣∣∣∣
≥ t

}

= Prob

{∣∣∣∣p1 + 1

x1
αZ

∣∣∣∣≥ t

}

= Prob

{
Z

x1
≥ t − p1

α

}
+ Prob

{
Z

x1
≤ −t − p1

α

}
, (3.1)

where Z = N(0,1) is independent of x1 and α =
√
p2

2 + · · · + p2
n ≤ 1. Here we

used that a sum of independent centered Gaussians is a centered Gaussian whose
variance is the sum of the terms’ variances (cf. Sect. 2.2.2). Note that in case α = 0,
the statement of the lemma is trivially true.

The random variables x1 and Z are independent N(0,1). It therefore follows
from Proposition 2.19 that the angle θ = arctan(Z/x1) is uniformly distributed in
[−π/2,π/2]. Hence, for γ ∈ [0,∞),

Prob

{
Z

x1
≥ γ

}
= Prob{θ ≥ arctanγ } = 1

π

(
π

2
− arctanγ

)

= 1

π

∫ ∞

γ

1

1 + t2
dt ≤ 1

π

∫ ∞

γ

1

t2
dt = 1

πγ
.

Similarly, one shows for σ ∈ (−∞,0], that

Prob

{
Z

x1
≤ σ

}
≤ 1

π(−σ)
.

Using these bounds in (3.1) with γ = t−p1
α

and σ = −t−p1
α

, we obtain

Prob

{∣∣∣∣
xTp

xTq

∣∣∣∣≥ t

}
≤ 1

π

(
α

t − p1
+ α

t + p1

)
= α

π

2t

t2 − p2
1

≤ 2

π

t

t2 − 1
≤ 1

t
,

the last since t ≥ 2. �



70 3 Error Analysis of Triangular Linear Systems

Proof of Theorem 3.12 From Lemma 3.14 we obtain

Prob
{
Cwdet(A)≥ t

} = Prob

{ ∑

(i,j)∈S

∣∣∣∣
aij detAij

detA

∣∣∣∣≥ t

}

≤
∑

(i,j)∈S
Prob

{∣∣∣∣
aij detAij

detA

∣∣∣∣≥
t

|S|
}
. (3.2)

It is therefore enough to prove that for all (i, j) ∈ S and all z≥ 2,

Prob

{∣∣∣∣
aij detAij

detA

∣∣∣∣≥ z

}
≤ 1

z
. (3.3)

Without loss of generality, take (i, j)= (1,1). Let x = a1 be the first column of A.
Also, let I = {i ∈ [n] | (i,1) ∈ S} and let xI be the vector obtained by removing
entries xi with i /∈ I . Then,

xI ∼N(0, I|I |). (3.4)

For i ∈ [n] write qi = (−1)i+1 detAi1. Let q = (q1, . . . , qn) and let qI be the vector
obtained by removing entries qi with i /∈ I . Clearly, qI is independent of xI . Using
this notation, the expansion by the first column yields

detA=
∑

i∈[n]
(−1)i+1ai1 detAi1 = xT

I qI .

In addition, a11 detA11 = xT
I (q1e1), where e1 is the vector with the first entry equal

to 1 and all others equal to 0. Hence,

a11 detA11

detA
= xT

I (q1e1)

xT
I qI

.

Let ρ be the density of the random vector qI . Then, for z≥ 2,

Prob

{∣∣∣∣
a11 detA11

detA

∣∣∣∣≥ z

}

= Prob

{∣∣∣∣
xT
I (q1e1)

xT
I qI

∣∣∣∣≥ z

}

=
∫

u∈R|I |
Prob

{∣∣∣∣
xT
I (q1e1)

xT
I qI

∣∣∣∣≥ z

∣∣∣∣ qI = u

}
ρ(u)du

≤
∫

u∈R|I |
1

z
ρ(u)du= 1

z
.

Here the middle line is Proposition 2.14, and the inequality follows since xI is in-
dependent of q1 and qI , and therefore we can use (3.4) and Lemma 3.15 (with
p = u1e1 and q = u). This proves (3.3) and hence the lemma. �
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3.3.3 Matrix Inversion

We now focus on the problem of inverting a matrix A. The (i, j)th entry γij of the
inverse A−1 is given by Cramer’s rule: γij = (−1)i+j detAji/detA.

Fix S ⊆ [n]2 such that MS is not contained in Σ . Let JS denote the set of all
(i, j) ∈ [n2] such that there exists an invertible A ∈MS with detAji �= 0. Note that
the entries of A−1 vanish at the positions outside JS for A ∈ MS \Σ and are thus
uninteresting. For instance, if S = {(i, i) | i ∈ [n]}, then JS = S. As for Lemma 3.10,
we can show that γij �= 0 with probability one for A ∈RS .

We define the componentwise condition number Cw†(A) as in (O.1) for the map
ϕ : M \Σ → R

JS ,A �→A−1. By the previous reasoning, Cw†(A) is almost surely
defined.

Theorem 3.16 Let S ⊆ [n]2 be such that MS �⊆Σ . Then, for all t ≥ 4|S|,

Prob
A∈RS

{
Cw†(A)≥ t

}≤ 4|S|2n2 1

t
.

Proof By the definition of Cw†(A) we have

Prob
{
Cw†(A)≥ t

}= Prob
{

max
i,j∈[n]Cw†

ij (A)≥ t
}
≤

∑

i,j∈[n]
Prob

{
Cw†

ij (A)≥ t
}
.

Cramer’s rule

γij = (−1)i+j detAji/detA

combined with Lemma 3.6 yields

Cw†
ij (A)≤ Cwdet(A)+ Cwdet(Aji).

We conclude that

Prob
{
Cw†

ij (A)≥ t
} ≤ Prob

{
Cwdet(A)≥ t

2

}
+ Prob

{
Cwdet(Aji)≥ t

2

}

≤ 4|S|2 1

t
,

obtaining the last inequality by applying Theorem 3.12 to A and Aji . The statement
now follows. �

Combining Theorem 3.16 with Proposition 2.26, we obtain the following corol-
lary.

Corollary 3.17 Let S ⊆ [n]2 be such that MS �⊆Σ . Then,

E
(
logβ

(
Cw†(A)

))≤ 2 logβ n+ 2 logβ |S| + logβ 4e,

where E denotes expectation over A ∈RS .
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3.3.4 Solving Linear Equations

We finally deal with the problem of solving linear systems of equations. That is, we
consider a matrix A ∈ MS and a vector b ∈ R

n, and we want to solve Ax = b. We
denote by Cw(A,b) the corresponding componentwise condition number obtained
from the definition (O.1) by taking ϕ : (MS \Σ)× R

n → R
n given by ϕ(A,b) =

A−1b. We note that Cw(A,b) is almost surely defined.

Theorem 3.18 Let S ⊆ [n]2 be such that MS �⊆Σ . Then, for all t ≥ 4(|S| + n),

Prob
{
Cw(A,b)≥ t

}≤ 10|S|2n1

t
,

where Prob denotes the probability over (A,b) with respect to the product measure
RS ×N(0, In).

Proof Cramer’s rule states that

xi = detA[i : b]
detA

,

where A[i : b] denotes the matrix obtained by replacing the ith column of A by b.
Hence, Lemma 3.6 implies that

Cwi (A, b)≤ Cwdet(A)+ Cwdet(A[i : b]). (3.5)

As in the proof of Theorem 3.16, we have

Prob
{
Cw(A,b)≥ t

}≤
∑

i∈[n]
Prob

{
Cwi (A, b)≥ t

}
.

Hence, applying the estimate (3.5) and Theorem 3.12 (using t
2 ≥ 2|S|), we get

Prob
{
Cwi (A, b)≥ t

} ≤ Prob

{
Cwdet(A)≥ t

2

}
+ Prob

{
Cwdet(A[i : b])≥ t

2

}

≤ 2|S|2 1

t
+ 2

(|S| + n
)2 1

t
≤ 10|S|2 1

t
.

For the second inequality we used the fact that since MS �⊆ Σ , we have |S| ≥ n.
The statement now follows. �

Theorem 3.18, again combined with Proposition 2.26, yields the following.

Corollary 3.19 Let S ⊆ [n]2 be such that MS �⊆Σ . Then,

E
(
logβ

(
Cw(A,b)

))≤ logβ n+ 2 logβ |S| + logβ 10e.
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3.4 Error Bounds for Triangular Linear Systems

We may now use the results in the preceding sections to estimate the expected loss
of precision in the solution of a triangular system Lx = b.

Theorem 3.20 Assume that we solve Lx = b using Algorithm FS. Then, for stan-
dard Gaussian L and b we have

E
(
LoP

(
L−1b

))≤ 5 logβ n+ logβ

(�log2 n� + 1
)+ logβ 10e+ o(1).

Proof By Proposition 3.5 and Theorem O.3 (where we take f (dims(L,b)) =
�log2 n� + 1) we have

LoP
(
L−1b

)≤ logβ

(�log2 n� + 1
)+ logβ Cw(L,b)+ o(1).

Therefore, using Corollary 3.19 with |S| = n2+n
2 ,

E
(
LoP

(
L−1b

))≤ logβ

(�log2 n� + 1
)+E

(
logβ Cw(L,b)

)+ o(1)

≤ logβ

(�log2 n� + 1
)+ 5 logβ n+ logβ 10e+ o(1). �

If fl(x)= (fl(x1), . . . , fl(xn)) is the solution of Lx = b computed by FS with εmach

sufficiently small, the number of correct significant figures of its ith component is
∣∣∣∣logβ

|fl(xi)− xi |
|xi |

∣∣∣∣.

We can rephrase Theorem 3.20 by stating that for standard Gaussian L and b,

E

(
min
i≤n

∣∣∣∣logβ

|fl(xi)− xi |
|xi |

∣∣∣∣

)

≥ t − (
5 logβ n+ logβ

(�log2 n� + 1
)+ logβ 10e+ o(1)

)
,

where t = | logβ εmach| is the number of significant figures the machine works with
(compare Sect. O.3.2).

3.5 Additional Considerations

3.5.1 On Norms and Mixed Condition Numbers

A norm ‖ ‖ on R
q is said to be monotonic if whenever |ui | ≤ |vi | for i = 1, . . . , q ,

we have ‖u‖ ≤ ‖v‖. It is well known that a norm is monotonic if and only if
‖(u1, . . . , uq)‖ = ‖(|u1|, . . . , |uq |)‖, for all u ∈ R

q . All norms we deal with in this
book are monotonic.
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For a ∈R
q and δ > 0 define

S(a, δ)= {
a′ ∈R

d
∣∣ ∣∣a′i − ai

∣∣≤ δ|ai |, i = 1, . . . , q
}
.

Proposition 3.21 For all a ∈D and any monotonic norm in R
q , Mϕ(a)≤ Cwϕ(a).

Proof For all x ∈ S(a, δ) and all i ≤ q , |ϕ(x)i − ϕ(a)i | ≤ d(ϕ(x),ϕ(a))|ϕ(a)i |.
Since ‖ ‖ is monotonic, this implies ‖ϕ(x) − ϕ(a)‖ ≤ d(ϕ(x),ϕ(a))‖ϕ(a)‖ and
hence the statement. �

Using a reasoning similar to that in Sect. 3.3.3, for a norm ‖ ‖ on M , we have

M†(A)= lim
δ→0

sup
A′∈S(A,δ)

‖(A′)−1 −A−1‖
δ‖A−1‖ ,

and for a norm ‖ ‖ in R
n, we have

M(A,b)= lim
δ→0

sup
(A′,b′)∈S((A,b),δ)

‖x′ − x‖
δ‖x‖ ,

where x =A−1b and x′ = (A′)−1b′.
For all monotonic norms on MS , the bounds for Cwdet(A),Cw†(A), and

Cw(A,b) hold as well for Mdet(A),M†(A), and M(A,b) by Proposition 3.21.

3.5.2 On the Underlying Probability Measure

The main result in Sect. 3.4 gives a possible explanation of why triangular systems
are solved with great accuracy that steers clear of the statement “random triangular
systems are poorly normwise conditioned.” The truth of this statement, however,
should be taken with a grain of salt.

The reason is that the triangular matrices L occurring in the solution of systems
Lx = b are usually the result of a process applied to a matrix A that is almost in-
variably not triangular. The two such processes that are consistently used are the LU
factorization (underlying Gaussian elimination) and the QR factorization. We al-
ready mentioned the latter in the introduction to Chap. 1 along with the fact that one
solves the system Ax = b by decomposing A=QR and then, using that R is upper-
triangular, solves Rx =QTb by back substitution. We mention now that the version
of this decomposition producing a lower-triangular matrix (which we consider only
for consistency with the rest of this chapter) is known as QL factorization.

If A is invertible and we require that the diagonal elements of L be positive,
which we can do without loss of generality, then both Q and L are unique. Hence,
the QL factorization defines a map

ψ : GLn(R)→ GLn(Triang),
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where we have written GLn(Triang) for the subgroup of GLn(R) of invertible lower-
triangular matrices. A reasonable choice for randomness in the former is obtained by
endowing the latter with the standard Gaussian measure and then pushing forward
this measure (note that there is no loss of generality in considering triangular ma-
trices with positive diagonal entries only). Let P be the measure thus obtained on
GLn(Triang). The next result shows that under P , the normwise condition number
has a completely different behavior from the one shown in Theorem 3.1.

Proposition 3.22

E
L∼P

logκ(L)= logn+O(1).

Proof Let A ∈ GLn(R) and A=QL with Q orthogonal and L lower-triangular, so
that ψ(A) = L. Let the SVD (recall Theorem 1.13) of L be given by L = UDV T

with D = diag(σ1, . . . , σn). Then A = QUDV T, and since both QU and V are
orthogonal, it follows that A has the same singular values as L. In particular, κ(L)=
κ(A)= σ1

σn
. The statement now follows from (2.11) and Corollary 2.51. �



Chapter 4
Probabilistic Analysis of Rectangular Matrices

We started Chap. 1 by stating a backward analysis for linear equation solving that
was a particular case of Theorem 19.3 of [121]. We may now quote this result in
full.

Theorem 4.1 Let A ∈ R
q×n have full rank, q ≥ n, b ∈ R

q , and suppose the least-
squares problem minx ‖b−Ax‖ is solved using the Householder QR factorization
method. The computed solution x̃ is the exact solution to

min
x∈Rn

‖b̃− Ãx‖,

where Ã and b̃ satisfy the relative error bounds

‖Ã−A‖F ≤ nγcq‖A‖F and ‖b̃− b‖ ≤ nγcq‖b‖

for a small constant c and with γcq as defined in (O.5). �

Replacing the Frobenius norm by the spectral norm, which yields

‖Ã−A‖ ≤ n3/2γcq‖A‖,

it follows from this backward stability result, (O.6), and Theorem O.3 that the rela-
tive error for the computed solution x̃ satisfies

‖x̃ − x‖
‖x‖ ≤ cn3/2q εmachcond(A,b)+ o(εmach)

and the loss of precision is bounded by

LoP
(
A†b

)≤ logβ n3/2q + logβ cond(A,b)+ logβ c+ o(1), (4.1)

P. Bürgisser, F. Cucker, Condition,
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where cond(A,b) is the normwise condition number for linear least squares (with
respect to the spectral norm), which is defined as

cond(A,b)= lim
δ→0

sup
max{RelError(A),RelError(b)}≤δ

RelError(A†b)

δ
.

We mentioned in Sect. 1.6 that this condition number, even though not tightly ap-
proximated by κ(A), is bounded by a constant times κ(A)2. Consequently, to obtain
expected bounds (or a smoothed analysis) for the loss of precision LoP(A†b) from
Eq. (4.1) it is enough to perform the corresponding analysis for logβ κ(A).

The goal of this chapter is to do so. For consistency with other chapters in this
book, we will consider matrices A ∈ R

m×n with m ≤ n and study κ(A), which,
we note, coincides with κ(AT). One of the main results we prove is the following
theorem.

Theorem 4.2 For all λ0 ∈ (0,1) there exists n0 such that for all 1 ≤ m ≤ n with
λ= m−1

n
≤ λ0 and n ≥ n0, we have for all σ with 1√

m
≤ σ ≤ 1 and all A ∈ R

m×n

with ‖A‖ ≤ 1, that

EA∼N(A,σ 2I)

(
κ(A)

)≤ 20.1

1 − λ
.

Jensen’s inequality (Proposition 2.28) immediately yields the following conse-
quence.

Corollary 4.3 Under the hypothesis of Theorem 4.2,

sup
‖A‖≤1

EA∼N(A,σ 2I)

(
logβ κ(A)

)≤ logβ

(
20.1

1 − λ

)
.

�

It is worth noting that the bounds in Theorem 4.2 and Corollary 4.3 are inde-
pendent of n and depend only on the bound λ0 on the elongation. Furthermore,
surprisingly, they are also independent of σ . In fact, Corollary 4.3 indicates that for
large reasonably elongated matrices, one may expect the loss of precision in the so-
lution of least-squares problems to derive mostly from the backward error bounds
of the algorithm used.

We also mention here that the bounds obtained in this chapter are sharper than
those derived in Sect. 2.4. The methods used to prove them are, in exchange, more
involved.

4.1 A Crash Course on Probability: II

We continue our crash course on probability with some results of a more advanced
nature.
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4.1.1 Large Deviations

Let f : Rn →R be a Lipschitz continuous function with Lipschitz constant L. This
means that |f (x) − f (y)| ≤ L‖x − y‖ for all x, y ∈ R

n, where ‖ ‖ denotes the
Euclidean norm. We claim that if f is differentiable, then

∥∥gradf (x)
∥∥≤ L.

Indeed, for given x there exists a unit-length vector v such that

d

ds
f (x + sv)|s=0 =

∥∥gradf (x)
∥∥.

Using that 1
s
|f (x + sv)− f (x)| ≤ L, the claim follows.

We shall now prove a powerful and general large-deviation result.

Theorem 4.4 Let f : Rn →R be an almost everywhere differentiable and Lipschitz
continuous function with Lipschitz constant L. Then we have, for all t ≥ 0 and
x ∈R

n drawn from the standard Gaussian distribution γn, that

Prob
x∼N(0,In)

{
f (x)≥ E(f )+ t

}≤ e
− 2

π2L2 t2

.

Proof Note first that the integrability of f follows from the Lipschitz property.
Without loss of generality we may assume that E(f ) = 0. We recall that ϕn de-
notes the density of γn. By Markov’s inequality (Corollary 2.9) we have, for any
λ > 0 (to be chosen later),

Prob
{
f (x)≥ t

}= Prob
{
eλf (x) ≥ eλt

}≤ e−λt
E
(
eλf

)
.

By Corollary 2.29 we have 1 = eE(−λf ) ≤ E(e−λf ). This implies, using Fubini,

E
(
eλf

)≤ E
(
eλf

) ·E(e−λf
)=

∫

Rn×Rn

eλ(f (x)−f (y)) ϕn(x)ϕn(y) dx dy. (4.2)

Now we set for θ ∈ [0,π/2],
x(θ) := x sin θ + y cos θ, x′(θ) := x cos θ − y sin θ.

(Note that x′(θ) is the derivative of x(θ) with respect to θ .) It is a consequence
of the orthogonal invariance of the standard Gaussian distribution that if (x, y) is
standard Gaussian distributed on R

n × R
n, then so is the induced random vector

(x(θ), x′(θ)), for fixed θ .
We have, for all x, y ∈R

n,

f (x)− f (y)=
∫ π/2

0

d

dθ
f
(
x(θ)

)
dθ =

∫ π/2

0

〈
gradf

(
x(θ)

)
, x′(θ)

〉
dθ.
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This implies, applying Corollary 2.29 to the uniform distribution on [0,π/2],

eλ(f (x)−f (y)) = e
2
π

∫ π/2
0

πλ
2 〈gradf (x(θ)),x′(θ)〉dθ ≤ 2

π

∫ π/2

0
e

πλ
2 〈gradf (x(θ)),x′(θ)〉 dθ.

Interchanging integrals, we get from (4.2),

E
(
eλf

)≤ 2

π

∫ π/2

0

∫

Rn×Rn

e
πλ
2 〈gradf (x(θ)),x′(θ)〉 ϕn(x)ϕn(y) dx dy dθ.

Since for fixed θ , (x(θ), x′(θ)) is standard Gaussian distributed in R
n × R

n, the
integral on the right-hand side simplifies and we obtain

E
(
eλf

) ≤
∫

Rn×Rn

e
πλ
2 〈gradf (x),y〉ϕn(x)ϕn(y) dx dy

=
∫

Rn

(∫

Rn

e
πλ
2 〈gradf (x),y〉ϕn(y) dy

)
ϕn(x) dx.

By Fubini, the inner integral on the right-hand side equals

n∏

k=1

∫

R

e
πλ
2 ∂Xk

f (x)ykϕ1(yk) dyk =
n∏

k=1

e
1
2 (

πλ
2 ∂Xk

f (x))2 = e
π2λ2

8 ‖gradf (x)‖2
,

with the second equality due to Lemma 2.30. Since the last expression is bounded

by e
π2λ2L2

8 , we conclude that

E
(
eλf

)≤ e
π2λ2L2

8 .

So we have shown that for any positive λ we have

Prob
{
f (x)≥ t

}≤ e−λt
E
(
eλf

)≤ e−λt+ π2L2λ2
8 .

Choosing λ= 4t
π2L2 minimizes the right-hand side, and we obtain

Prob
{
f (x)≥ t

}≤ e
− 2t2

π2L2 ,

as claimed. �

Remark 4.5 Theorem 4.4 applied to f and −f implies the concentration inequali-
ties

Prob
x∼N(0,In)

{∣∣f (x)−E(f )
∣∣≥ t

}≤ 2e
− 2t2

π2L2 ,



4.1 A Crash Course on Probability: II 81

valid for t ≥ 0. With some additional work [136], this inequality can be improved
to

Prob
x∼N(0,In)

{∣∣f (x)−E(f )
∣
∣≥ t

}≤ e
− t2

2L2 .

Here is a first and important application of Theorem 4.4, which will be needed
several times.

Corollary 4.6 If x ∈R
n is chosen from the standard Gaussian distribution, then for

t > 0,

Prob
x∼N(0,In)

{‖x‖ ≥√
n+ t

}≤ e−
t2
2 .

Proof The norm function f (x) = ‖x‖ is Lipschitz continuous with Lipschitz con-
stant L = 1. Noting that E(‖x‖2) =∑n

i=1 E(x2
i ) = n and using Proposition 2.10,

we get E(‖x‖) ≤√
E(‖x‖2) =√

n. The assertion follows now from Theorem 4.4,
where the better exponent is due to Remark 4.5. �

Remark 4.7 Let us illustrate the power of Theorem 4.4 with a simple example.
Suppose that x1, x2, . . . are independent standard Gaussian random variables. Put
fn(x1, . . . , xn) := (x1 + · · · + xn)/

√
n. The central limit theorem states that

lim
n→∞ Prob

x∼N(0,In)

{
fn(x)≥ t

}= Ψ (t)= 1√
2π

∫ ∞

t

e−
x2
2 dx ≤ 1

t
√

2π
e−

t2
2

(the inequality is due to Lemma 2.16). Theorem 4.4 immediately implies a corre-
sponding nonasymptotic result. Namely, note that fn : Rn → R is a Lipschitz con-
tinuous function with Lipschitz constant L= 1. Hence, for all t ≥ 0,

Prob
x∼N(0,In)

{
fn(x)≥ t

}≤ e
− 2t2

π2 .

4.1.2 Random Gaussian Matrices

We begin by recalling some facts about Householder matrices. Assume that v ∈
R

m is nonzero. One checks immediately that the reflection Hv at the hyperplane
orthogonal to v is given by the linear map

Hvx = x − 2

vTv
vvTx. (4.3)

The matrix corresponding to Hv is called the Householder matrix associated with
the vector v. It is clear that Hv is orthogonal.
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It is geometrically evident that for given w ∈R
m, there exists a reflection Hv that

maps w to a multiple of the first standard basis vector e1. The following lemma tells
us how to compute v.

Lemma 4.8 We have Hvw = ‖w‖ e1 for v = e1 −w/‖w‖ if w �= 0.

Proof We have vTw =w1 −‖w‖ and vTv = 2(1−w1/‖w‖), hence 2vTw
vTv

=−‖w‖.
It follows that

Hvw =w− 2vTw

vTv
v =w+ ‖w‖v =w+ ‖w‖

(
e1 − w

‖w‖
)
= ‖w‖ e1. �

Lemma 4.8 can be used to transform a given matrix A = [a1, . . . , an] ∈ R
m×n

into an orthogonally equivalent one with few nonzero entries. For the first step of
this transformation we assume a1 �= 0, put v = e1 − a1/‖a1‖, and form the trans-
formed matrix HvA = [Hva1,Hva2, . . . ,Hvan]. The first column Hva1 of HvA

equals ‖a1‖e1; hence all of its entries, except the first one, are zero. Note that if the
given matrix A is standard Gaussian distributed, then ‖a1‖2 is χ2-distributed with
m degrees of freedom. Moreover, the next lemma guarantees that the remaining
matrix [Hva2, . . . ,Hvan] is standard Gaussian distributed and independent of a1,
which will allow an inductive continuation of the argument.

Lemma 4.9 If [a1, . . . , an] ∈ R
m×n is standard Gaussian distributed, then

[a1,Hva2, . . . ,Hvan] is standard Gaussian distributed as well. Here, v is defined in
terms of a1 by v = e1 − a1/‖a1‖.

Proof According to Corollary 2.18 it suffices to show that the diffeomorphism

ψ : [a1, a2, . . . , an] �→ [a1,Hva2, . . . ,Hvan]

preserves the Euclidean norm and has Jacobian identically one. The first property
is obvious, since Hv is orthogonal. For the latter, using that v depends on a1 only,
one sees that the derivative of ψ has a block lower-triangular form with the entries
Im,Hv, . . . ,Hv on the diagonal. Hence Jψ(A)= 1 for all A. �

We show now that every X ∈ R
m×n can be transformed to a bidiagonal matrix

by performing Householder transformations on the left- and right-hand sides of X.
To begin, we apply the transformation of Lemma 4.8 to XT in order to find a

Householder matrix H1 such that XHT
1 = (‖x′1‖e1,A) with A ∈R

(m−1)×n. Here, x′1
denotes the first row of X. We then apply a similar transformation to A in order to
find a Householder matrix H2 such that H2A= [‖a1‖e1,B] with B ∈R

(m−1)×(n−1).
Continuing in this way, we construct orthogonal matrices g ∈ O(m) and h ∈ O(n)

(products of Householder matrices) such that gXh has the following bidiagonal
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form:

gXh=

⎡

⎢⎢⎢⎢
⎣

vn 0 · · · 0

wm−1 vn−1
...

...

. . .
. . .

...
...

w1 vn−m+1 0 · · · 0

⎤

⎥⎥⎥⎥
⎦

. (4.4)

The following proposition is an immediate consequence of Lemma 4.9.

Proposition 4.10 If X ∈ R
m×n is standard Gaussian, then the nonzero entries

vi,wi of the bidiagonal matrix in (4.4) resulting from the above described pro-
cedure are independent random variables. Moreover, v2

i and w2
i are χ2-distributed

with i degrees of freedom. �

If X ∈ R
m×n is standard Gaussian, then the distribution of the matrix XXT is

called the Wishart distribution W(m,n). As an application of Proposition 4.10, we
determine the distribution of det(XXT).

Corollary 4.11 If X ∈ R
m×n is standard Gaussian, m ≤ n, then det(XXT) has

the same distribution as v2
nv

2
n−1 · · ·v2

n−m+1, where v2
n−m+1, . . . , v

2
n are independent

random variables and v2
i is χ2-distributed with i degrees of freedom. In particular,

Edet(XXT)= n!/(n−m)!.

Proof Proposition 4.10 implies that det(XXT) has the same distribution as
det(YYT), where Y denotes the bidiagonal matrix in (4.4).

In the case m = n we have detY = vn · · ·v1, and hence det(YYT) = (detY)2 =
v2
n · · ·v2

1 is as claimed. More generally, det(YYT) can be interpreted as the square
of the m-dimensional volume of the parallelepiped spanned by the rows of Y .
It has the same volume as the parallelepiped spanned by the orthogonal vectors
vne1, vn−1e2, . . . , vn−m+1em, where ei denotes the ith standard basis vector in R

n.
It follows that det(YYT)= v2

n · · ·v2
n−m+1. �

The previous result easily extends to complex matrices. We call a random vari-
able z ∈C standard Gaussian if it is standard Gaussian when we identify C with R

2.
Moreover, we call X ∈ C

m×n standard Gaussian when its entries are independent
standard Gaussian distributions in C. The following result will be needed in Part III
of the book.

Lemma 4.12 Let N(0, I) denote the standard normal distribution on the set of n×n

complex matrices. Then

E
A∼N(0,I)

det
(
XX∗)= 2nn!.

Proof It is immediate to see that the proof of Proposition 4.10 holds for complex
Gaussian matrices as well. The proof of Corollary 4.11 carries over to show that
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c= Ev2
nv

2
n−1 · · ·v2

1 , where vi is a χ2-distributed random variable with 2i degrees of
freedom. Since the expectation of v2

i equals 2i, the result follows. �

4.1.3 A Bound on the Expected Spectral Norm

We make the general assumption that 1 ≤ m ≤ n. For a standard Gaussian X ∈
R

m×n we put

Q(m,n) := 1√
n
E
(‖X‖). (4.5)

The function R
m×n →R mapping a matrix X to its spectral norm ‖X‖ is Lipschitz

continuous with Lipschitz constant 1, since ‖X − Y‖ ≤ ‖X − Y‖F . Hence Theo-
rem 4.4 implies that for t > 0,

Prob
{‖X‖ ≥Q(m,n)

√
n+ t

}≤ e
− 2t2

π2 . (4.6)

This tail bound easily implies the following large-deviation result.

Proposition 4.13 Let A ∈R
m×n, ‖A‖ ≤ 1, and σ ∈ (0,1]. If A ∈R

m×n follows the
law N(A,σ 2I), then for t > 0,

Prob
A∼N(A,σ 2I)

{‖A‖ ≥Q(m,n)σ
√
n+ t + 1

}≤ e
− 2t2

π2 .

Proof We note that ‖A‖ ≥ Q(m,n)σ
√
n + t + 1 implies that ‖A − A‖ ≥ ‖A‖ −

‖A‖ ≥ Q(m,n)
√
n + t . Moreover, if A ∈ R

m×n follows the law N(A,σ 2I), then

X := A−A
σ

is standard Gaussian in R
m×n. The assertion follows from (4.6). �

We derive now an upper bound on Q(m,n).

Lemma 4.14 For n > 2 we have

√
n

n+ 1
≤Q(m,n)≤ 2

(
1 +

√
2 ln(2m− 1)

n
+ 2√

n

)
≤ 6.

In particular, for standard Gaussian matrices A ∈R
m×n, we have

n√
n+ 1

≤ E‖A‖ ≤ 6
√
n.

The proof relies on the following lemma.
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Lemma 4.15 Let r1, . . . , rn be independent random variables with nonnegative val-
ues such that r2

i is χ2-distributed with fi degrees of freedom. Then,

E

(
max

1≤i≤n
ri

)
≤ max

1≤i≤n

√
fi +

√
2 lnn+ 1.

Proof Suppose that r1, . . . , rn are independent random variables with nonnegative
values such that r2

i is χ2-distributed with fi degrees of freedom. Put f := maxi fi .
Corollary 4.6 tells us that for all i and all t > 0,

Prob
{
ri ≥

√
f + t

}≤ e−
t2
2 ,

and hence, by the union bound,

Prob
{

max
1≤i≤n

ri ≥
√
f + t

}
≤ ne−

t2
2 .

For a fixed parameter b ≥ 1 (to be determined later), this implies

E

(
max

1≤i≤n
ri

)
≤ √

f + b+
∫ ∞
√
f+b

Prob
{

max
1≤i≤n

ri ≥ T
}
dT

=√
f + b+

∫ ∞

b

Prob
{

max
1≤i≤n

ri ≥
√
f + t

}
dt

≤ √
f + b+ n

∫ ∞

b

e−
t2
2 dt.

Using Lemma 2.16 we get, for b ≥ π/2,

1√
2π

∫ ∞

b

e−
t2
2 dt ≤ 1

b
√

2π
e−

b2
2 ≤ 1√

2π
e−

b2
2 .

Hence we obtain

E

(
max

1≤i≤n
ri

)
≤√

f + b+ ne−
b2
2 .

Finally, choosing b := √
2 lnn, we get

E

(
max

1≤i≤n
ri

)
≤√

f +√
2 lnn+ 1,

as claimed. �

Proof of Lemma 4.14 According to Proposition 4.10, the spectral norm ‖X‖ of a
standard Gaussian matrix X ∈R

m×n has the same distribution as the spectral norm
of the random bidiagonal matrix Y defined in (4.4). The occurring entries v2

i and w2
i

are χ2-distributed with i degrees of freedom.
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The spectral norm of Y is bounded by maxi vi +maxj wj ≤ 2r , where r denotes
the maximum of the values vi and wj . Lemma 4.15 implies that for n > 2,

E(r)≤√
n+√

2 ln(2m− 1)+ 1 ≤ 3
√
n.

This proves the claimed upper bound on Q(m,n). For the lower bound we note that
‖Y‖ ≥ |vn|, which gives E(‖Y‖)≥ E(|vn|). The claimed lower bound now follows

from Lemma 2.25, which states that E(|vn|)≥
√

n
n+1 . �

4.2 Tail Bounds for κ(A)

Prior to proving Theorem 4.2, we want to prove tail bounds for κ(A) under local
Gaussian perturbations. To state this result we need to introduce some notation. We
still assume 1 ≤m≤ n.

We define for λ ∈ (0,1) the quantity

c(λ) :=
√

1 + λ

2(1 − λ)
. (4.7)

Note that limλ→0 c(λ)= 1√
2

, limλ→1 c(λ)=∞, and c(λ) is monotonically increas-

ing. Further, for 1 ≤m≤ n and 0 < σ ≤ 1, we define the elongation λ := m−1
n

and
introduce the quantity

ζσ (m,n) :=
(
Q(m,n)+ 1

σ
√
n

)
c(λ)

1
n−m+1 . (4.8)

Let A ∈ R
m×n and σ > 0. Since there is no risk of confusion, we will denote

the density of the Gaussian N(A,σ 2I) with center A and covariance matrix σ 2I by

ϕA,σ (instead of ϕA,σ
m×n). We recall that

ϕA,σ (A) := 1

(2π)
mn
2

e
−‖A−A‖2

F

2σ2 .

Theorem 4.16 Suppose that A ∈ R
m×n satisfies ‖A‖ ≤ 1 and let 0 < σ ≤ 1. Put

λ := m−1
n

. Then for z≥ ζσ (m,n), we have

Prob
A∼N(A,σ 2I)

{
κ(A)≥ ez

1 − λ

}

≤ 2c(λ)

[(
Q(m,n)+

√
π2

2
ln(2z)+ 1

σ
√
n

)
1

z

]n−m+1

.
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Remark 4.17 When σ = 1 and A= 0, Theorem 4.16 yields tail bounds for the usual
average case. In the notes at the end of the book there is a comparison of these
bounds with bounds derived ad hoc for the average case.

Lemma 4.18 For λ ∈ (0,1) we have λ−
λ

1−λ ≤ e.

Proof Writing u= 1/λ, the assertion is equivalent to u
1

u−1 ≤ e, or u≤ eu−1, which
is certainly true for u≥ 1. �

4.2.1 Tail Bounds for ‖A†‖

The main work in proving Theorem 4.16 is the following tail bound on ‖A†‖.

Proposition 4.19 Let A ∈ R
m×n, σ > 0, and put λ := m−1

n
. For random A ∼

N(A,σ 2I) we have, for any t > 0,

Prob
A∼N(A,σ 2I)

{∥
∥A†

∥
∥≥ t

1 − λ

}
≤ c(λ)

(
e

σ
√
n t

)(1−λ)n

.

Before proving Proposition 4.19, we note a consequence of it for square matrices.

Corollary 4.20 Let A ∈R
n×n and σ > 0. For any t > 0,

Prob
A∼N(A,σ 2I)

{∥∥A−1
∥∥≥ t

}≤ ne

σ t

and

E

A∼N(A,σ 2I)
log

∥∥A−1
∥∥≤ log

n

σ
+ log e.

Proof The tail estimate follows from Proposition 4.19 by noting that λ = n−1
n

=
1− 1

n
and c(λ)=

√
2n−1

2 ≤√
n. The expectation then follows from Proposition 2.26

with t0 =K = ne
σ

. �

We next prove Proposition 4.19, starting with the following result.

Proposition 4.21 For all v ∈ S
m−1, A ∈R

m×n, σ > 0, and ξ > 0 we have

Prob
A∼N(A,σ 2I)

{∥∥A†v
∥∥≥ ξ

}≤ 1

(
√

2π)n−m+1

On−m

n−m+ 1

(
1

σξ

)n−m+1

.
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Proof We first claim that because of orthogonal invariance, we may assume that
v = em := (0, . . . ,0,1). To see this, take Ψ ∈ O(m) such that v = Ψem. Consider
the isometric map A �→ B = Ψ−1A, which transforms the density ϕA,σ (A) into
a density of the same form, namely ϕΨ−1A,σ (B). Thus the assertion for em and

random B implies the assertion for v and A, noting that A†v = B†em. This proves
the claim.

We are going to characterize the norm of w := A†em in a geometric way. Let ai
denote the ith row of A. Almost surely, the rows a1, . . . , am are linearly indepen-
dent; hence, we assume so in what follows. Let

R := span{a1, . . . , am}, S := span{a1, . . . , am−1}.
Let S⊥ denote the orthogonal complement of S in R

n. We decompose am = a⊥m +
aS
m, where a⊥m denotes the orthogonal projection of am onto S⊥ and aS

m ∈ S. Then
a⊥m ∈R, since both am and aS

m are in R. It follows that a⊥m ∈R ∩ S⊥.
We claim that w ∈ R ∩ S⊥ as well. Indeed, note that R equals the orthogonal

complement of the kernel of A in R
n. Therefore, by definition of the Moore–Penrose

inverse, w = A†em lies in R. Moreover, since AA† = I, we have 〈w,ai〉 = 0 for
i = 1, . . . ,m− 1 and hence w ∈ S⊥ as well.

It is immediate to see that dimR ∩ S⊥ = 1. It then follows that R ∩ S⊥ =Rw =
Ra⊥m . Since 〈w,am〉 = 1, we get 1 = 〈w,am〉 = 〈w,a⊥m〉 = ‖w‖‖a⊥m‖ and therefore

∥∥A†em
∥∥= 1

‖a⊥m‖
. (4.9)

Let Am ∈R
(m−1)×n denote the matrix obtained from A by omitting am. The den-

sity ϕA,σ factors as ϕA,σ (A)= ϕ1(An)ϕ2(an), where ϕ1 and ϕ2 denote the density
functions of N(Am,σ 2I) and N(ām,σ 2I), respectively (the meaning of Am and ām
being clear). Fubini’s theorem combined with (4.9) yields, for ξ > 0,

Prob
N(A,σ 2I)

{∥∥A†em
∥
∥≥ ξ

} =
∫

‖A†em‖≥ξ

ϕA,σ 2I(A)dA

=
∫

Am∈R(m−1)×n

ϕ1(Am) ·
(∫

‖a⊥m‖≤1/ξ
ϕ2(am)dam

)
dAm.

(4.10)

To complete the proof it is sufficient to prove the bound

∫

‖a⊥m‖≤ 1
ξ

ϕ2(am)dam ≤ 1

(
√

2π)n−m+1

On−m

n−m+ 1

(
1

σξ

)n−m+1

(4.11)

for fixed, linearly independent a1, . . . , am−1 and ξ > 0.
To prove (4.11), note that a⊥m ∼ N(ā⊥m,σ 2I) in S⊥ � R

n−m+1, where ā⊥m is the
orthogonal projection of ām onto S⊥. Let Br denote the ball of radius r in R

p



4.2 Tail Bounds for κ(A) 89

centered at the origin. It is easy to see that volBr =Op−1r
p/p. For any x̄ ∈R

p and
any σ > 0 we have

Prob
x∼N(x̄,σ 2I)

{‖x‖ ≤ ε
} ≤ Prob

x∼N(0,σ 2I)

{‖x‖ ≤ ε
}= 1

(σ
√

2π)p

∫

‖x‖≤ε

e
−‖x‖2

2σ2 dx

x=σz= 1

(
√

2π)p

∫

‖z‖≤ ε
σ

e−
‖z‖2

2 dz

≤ 1

(
√

2π)p
volB ε

σ
= 1

(
√

2π)p

(
ε

σ

)p

volB1

= 1

(
√

2π)p

(
ε

σ

)pOp−1

p
.

Taking x̄ = ā⊥m , ε = 1
ξ

, and p = n−m+ 1, the claim (4.11) follows. �

Proof of Proposition 4.19 For A ∈R
m×n there exists uA ∈ S

m−1 such that ‖A†‖ =
‖A†uA‖. Moreover, for almost all A, the vector uA is uniquely determined up to
sign. Using the singular value decomposition, it is easy to show that for all v ∈ S

m−1,

∥∥A†v
∥∥≥ ∥∥A†

∥∥ · ∣∣uT
Av

∣∣. (4.12)

Now take A ∼ N(A,σ 2I) and v ∼ U(Sm−1) independently. Then for any s ∈
(0,1) and t > 0 we have

Prob
A,v

{∥∥A†v
∥∥≥ t

√
1 − s2

}

≥ Prob
A,v

{∥∥A†
∥∥≥ t &

∣∣uT
Av

∣∣≥
√

1 − s2
}

= Prob
A

{∥∥A†
∥∥≥ t

} · Prob
A,v

{∣∣uT
Av

∣∣≥
√

1 − s2
∣∣ ∥∥A†

∥∥≥ t
}

≥ Prob
A

{∥∥A†
∥∥≥ t

} ·
√

2

πm
sm−1, (4.13)

the last line by Proposition 2.14 and Lemma 2.35 with ξ =√
1 − s2. Now we use

Proposition 4.21 with ξ = t
√

1 − s2 to deduce that

Prob
A

{∥∥A†
∥∥≥ t

} ≤
√

πm

2

1

sm−1
Prob
A,v

{∥∥A†v
∥∥≥ t

√
1 − s2

}

≤
√
m

2sm−1

1

(
√

2π)n−m

On−m

n−m+ 1

(
1

σ t
√

1 − s2

)n−m+1

.

(4.14)
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We next choose s ∈ (0,1) to minimize the bound above. To do so amounts to
maximizing (1 − x)

n−m+1
2 x

m−1
2 , where x = s2 ∈ (0,1), or equivalently to maximiz-

ing

g(x)= (
(1 − x)

n−m+1
2 x

m−1
2
) 2

n = (1 − x)
n−m+1

n x
m−1
n = (1 − x)1−λxλ.

We have d
dx

lng(x)= λ
x
− 1−λ

1−x
with the only zero attained at x∗ = λ.

Replacing s2 by λ in (4.14), we obtain the bound

Prob
A

{∥∥A†
∥∥≥ t

}≤
√
λn+ 1

2λ
λn
2

1

(
√

2π)n−m

On−m

(1 − λ)n

(
1

σ t
√

1 − λ

)(1−λ)n

.

Lemma 4.18 implies

λ−
λn
2 = (

λ
− λ

2(1−λ)
)(1−λ)n ≤ e

(1−λ)n
2 .

So we get

Prob
A

{∥∥A†
∥∥≥ t

}

≤
√
λn+ 1

2

1

(
√

2π)n−m

On−m

(1 − λ)n

( √
e

σ t
√

1 − λ

)(1−λ)n

=
√
λn+ 1

2

(
e

1 − λ

) (1−λ)n
2 1

(
√

2π)n−m

On−m

(1 − λ)n

(
1

σ t

)(1−λ)n

= 1

2(1 − λ)

√

λ+ 1

n

1√
n

(
e

1 − λ

) (1−λ)n
2 On−m

(
√

2π)n−m

(
1

σ t

)(1−λ)n

≤
√
λ+ 1

2(1 − λ)

1√
n

(
e

1 − λ

) (1−λ)n
2 2π

n−m+1
2

Γ (n−m+1
2 )(

√
2π)n−m

(
1

σ t

)(1−λ)n

=
√

1 + λ

1 − λ

1√
n

(
e

1 − λ

) (1−λ)n
2

√
2π

Γ (
n(1−λ)

2 )2
(1−λ)n

2

(
1

σ t

)(1−λ)n

.

We next estimate Γ (
(1−λ)n

2 ). To do so, recall Stirling’s bound (2.14), which yields,
using Γ (x + 1)= xΓ (x), the bound Γ (x) >

√
2π/x (x/e)x . We use this with x =

(1−λ)n
2 to obtain

Γ

(
(1 − λ)n

2

)
≥
√

4π

(1 − λ)n

(
(1 − λ)n

2e

) (1−λ)n
2

.
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Plugging this into the above, we obtain (observe the crucial cancellation of
√
n)

Prob
A

{∥∥A†
∥
∥≥ t

}

≤
√

1 + λ

(1 − λ)2n

(
e

1 − λ

) (1−λ)n
2 √

2π

√
(1 − λ)n

4π

(
e

(1 − λ)n

) (1−λ)n
2

(
1

σ t

)(1−λ)n

= c(λ)

(
e

1 − λ

)(1−λ)n(1

n

) (1−λ)n
2

(
1

σ t

)(1−λ)n

= c(λ)

(
e

σ
√
n(1 − λ)t

)(1−λ)n

,

which completes the proof of the proposition. �

4.2.2 Proof of Theorem 4.16

To simplify notation we write c := c(λ) and Q :=Q(m,n). Proposition 4.19 implies
that for any ε > 0 we have

Prob
A∼N(A,σ 2I)

{∥∥A†
∥∥≥ e

1 − λ

1

σ
√
n

(
c

ε

) 1
(1−λ)n

}
≤ ε. (4.15)

Similarly, letting ε = e
− 2t2

π2σ2 in Proposition 4.13 and solving for t , we deduce that
for any ε ∈ (0,1],

Prob

{
‖A‖ ≥Qσ

√
n+ σ

√
π2

2
ln

1

ε
+ 1

}
≤ ε. (4.16)

It is a trivial observation that for nonnegative random variables X,Y and posi-
tive α,β we have

Prob{XY ≥ αβ} ≤ Prob{X ≥ α} + Prob{Y ≥ β}. (4.17)

Using this, we conclude that

Prob
A∼N(A,σ 2I)

{
κ(A)≥ ez(ε)

1 − λ

}
≤ 2ε, (4.18)

where we have set, for ε ∈ (0,1],

z(ε) :=
(
Q+

√
π2

2n
ln

1

ε
+ 1

σ
√
n

)(
c

ε

) 1
(1−λ)n

. (4.19)

We note that z(a) = ζ := ζσ (m,n); cf. Eq. (4.8). Moreover, limε→0 z(ε) =∞ and
z is decreasing in the interval (0,1]. Hence, for z≥ ζ , there exists ε = ε(z) ∈ (0,1]
such that z= z(ε).
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We need to bound ε(z) from above as a function of z. To do so, we start with a
weak lower bound on ε(z) and claim that for z≥ ζ ,

1

n
ln

1

ε
≤ ln

(
2z(ε)

)
. (4.20)

To prove this, note first that Q ≥
√

n
n+1 ≥ 1√

2
due to Lemma 4.14. Hence ζ ≥

Q≥ 1√
2

, and it follows that
√

2z≤ 1 for z≥ ζ . Equation (4.19) implies that

z(ε)≥ 1√
2

(
c

ε

) 1
(1−λ)n

.

Using c ≥ 1√
2

, we get

(√
2z
)n ≥ (√

2z
)(1−λ)n ≥ c

ε
≥ 1√

2 ε
.

Hence

(2z)n ≥ 1

ε
,

which proves the claimed inequality (4.20).
Using the bound (4.20) in Eq. (4.19), we get, again writing z= z(ε), that for all

z≥ ζ ,

z≤
(
Q+

√
π2

2
ln(2z)+ 1

σ
√
n

)(
c

ε

) 1
(1−λ)n

,

which means that

ε ≤ c

[(
Q+

√
π2

2
ln(2z)+ 1

σ
√
n

)
1

z

](1−λ)n

.

By (4.18) this completes the proof. �

4.3 Expectations: Proof of Theorem 4.2

Fix λ0 ∈ (0,1) and put c := c(λ0). Suppose that m≤ n satisfy λ= (m− 1)/n≤ λ0.
Then n−m+1 = (1−λ)n≥ (1−λ0)n, and in order to have n−m sufficiently large,

it suffices to require that n be sufficiently large. Thus, c
1

n−m+1 ≤ 1.1 if n is suffi-
ciently large. Similarly, because of Lemma 4.14, Q(m,n)≤ 2.1 for large enough n.
This implies that for 1√

m
≤ σ ≤ 1, we have

Q(m,n)+ 1

σ
√
n
≤ 2.1 + 1

σ
√
n
≤ 2.1 +

√
m

n
≤ 2.1 +

√

λ0 + 1

n
< 3.1,

provided n is large enough. Then ζσ (m,n)≤ 3.1 · 1.1 = 3.41.
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By Theorem 4.16, the random variable Z := (1 − λ)κ(A)/e satisfies, for any A

with ‖A‖ ≤ 1 and any z≥ 3.41,

Prob
A∼N(A,σ 2I)

{Z ≥ z} ≤ 2c

[(
Q(m,n)+

√
π2

2
ln(2z)+ 1

σ
√
n

)
1

z

]n−m+1

≤ 2c

[(
3.1 +

√
π2

2
ln(2z)

)
1

z

]n−m+1

,

for large enough n. Since

3.1 +
√

π2

2
ln(2z)≤ e

√
z

for all z≥ e2, we deduce that for all such z,

Prob
A∼N(A,σ 2I)

{Z ≥ z} ≤ 2c

(
e√
z

)n−m+1

.

Using this tail bound to compute E(Z), we get

E(Z) =
∫ ∞

0
Prob{Z ≥ z}dz ≤ e2 + 2c

∫ ∞

e2

(
e2

z

) n−m+1
2

dz

z=e2y= e2 + 2c
∫ ∞

1

(
1

y

) n−m+1
2

e2 dy = e2 + 4ce2

n−m− 1
.

We can now conclude, since

E
(
(1 − λ)κ(A)

)= E(eZ)= eE(Z)≤ e3 + 4ce3

n−m− 1
≤ 20.1,

where the inequality again follows by taking n large enough. �

4.4 Complex Matrices

In this and the preceding chapters we have assumed data to be given by real num-
bers. For a number of problems in scientific computation, however, data is better
assumed to be complex. All of the results we have shown can be given, without
major modifications, a complex version.

A difference stands out, nonetheless, and it is the fact that—in contrast to the
situation over the real numbers—condition numbers for complex Gaussian data have
in general a finite expectation. The reasons for this general phenomenon will become
clear in Chap. 20. In this section we compute bounds for the probability analysis of
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some complex condition numbers. They give a first taste of the difference with the
real case and will, in addition, be crucial to some of our arguments in Part III.

In the following we fix A ∈ C
n×n, σ > 0 and denote by ϕA,σ the Gaussian den-

sity of N(A,σ 2I) on C
n×n. Moreover, we consider the related density

ρA,σ (A)= c−1
A,σ

|detA|2ϕA,σ (A), (4.21)

where

cA,σ := E

A∼N(A,σ 2I)

(|detA|2).

The following result is akin to a smoothed analysis of the matrix condition number
κ(A) = ‖A‖ · ‖A−1‖, with respect to the probability densities ρA,σ that are not
Gaussian, but closely related to Gaussians.

Proposition 4.22 For A ∈C
n×n and σ > 0 we have

E
A∼ρA,σ

(∥∥A−1
∥∥2)≤ e(n+ 1)

2σ 2
.

Before embarking on the proof, we note that in the centered case A = 0, the
constant in (4.21) evaluates to

c0,σ = E
A∼N(0,I)

∣∣det(A)
∣∣2 = 2nn!

by Lemma 4.12. In this case, Proposition 4.22 implies the following result.

Corollary 4.23 Let N(0, I) denote the standard Gaussian on C
n×n. Then,

E
A∼N(0,I)

(∥∥A−1
∥∥2|detA|2)≤ 2nn!e(n+ 1)

2
. �

We turn now to the proof of Proposition 4.22. Actually, we will prove tail bounds
from which the stated bound on the expectation easily follows.

Let us denote by S(Cn) := {ζ ∈ C
n | ‖ζ‖ = 1} the unit sphere in C

n. Also, let
U (n) be the unitary group, which is defined as

U (n) := {
u ∈GLn(C) | uu∗ = In

}
,

where u∗ denotes the adjoint of u, i.e., (u∗)ij = ūj i .

Lemma 4.24 Let A ∈C
n×n and σ > 0. For any v ∈ S(Cn) and any t > 0, we have

Prob
A∼ρA,σ

{∥∥A−1v
∥∥≥ t

}≤ 1

4σ 4t4
.
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Proof We argue similarly as for Proposition 4.21. We first claim that because of
unitary invariance, we may assume that v = en := (0, . . . ,0,1). To see this, take
u ∈U(n) such that v = uen. Consider the isometric map A �→ B = u−1A that trans-
forms the density ρA,σ (A) to a density of the same form, namely

ρB,σ (B)= ρA,σ (A)= c−1|detA|2ϕA,σ (A)= c−1|detB|2ϕB,σ (B),

where B := u−1A and c = E
ϕA,σ (|detA|2) = E

ϕB,σ (|detB|2). Thus the assertion
for en and random B (chosen from any isotropic Gaussian distribution) implies the
assertion for v and A, noting that A−1v = B−1en. This proves the claim.

Let ai denote the ith row of A. Almost surely, the rows a1, . . . , an−1 are lin-
early independent. We are going to characterize ‖A−1en‖ in a geometric way.
Let Sn := span{a1, . . . , an−1} and denote by a⊥n the orthogonal projection of an
onto S⊥n . Consider w :=A−1en, which is the nth column of A−1. Since AA−1 = I,
we have 〈w,ai〉 = 0 for i = 1, . . . , n− 1 and hence w ∈ S⊥n . Moreover, 〈w,an〉 = 1,
so ‖w‖‖a⊥n ‖ = 1, and we arrive at

∥∥A−1en
∥∥= 1

‖a⊥n ‖
. (4.22)

Let An ∈ C
(n−1)×n denote the matrix obtained from A by omitting an. We shall

write vol(An) = det(AA∗)1/2 for the (n − 1)-dimensional volume of the paral-
lelepiped spanned by the rows of An. Similarly, |detA| can be interpreted as the
n-dimensional volume of the parallelepiped spanned by the rows of A.

Now we write ϕ(A) := ϕA,σ (A)= ϕ1(An)ϕ2(an), where ϕ1 and ϕ2 are the den-
sity functions of N(Ān, σ

2I) and N(ān, σ
2I), respectively (the meaning of Ān and

ān being clear). Moreover, note that

vol(A)2 = vol(An)
2
∥∥a⊥n

∥∥2
.

Fubini’s theorem combined with (4.22) yields for t > 0,
∫

‖A−1en‖≥t

vol(A)2ϕ(A)dA=
∫

An∈C(n−1)×n

vol(An)
2 ϕ1(An)

·
(∫

‖a⊥n ‖≤1/t

∥∥a⊥n
∥∥2

ϕ2(an) dan

)
dAn. (4.23)

We next show that for fixed, linearly independent a1, . . . , an−1 and λ > 0,
∫

‖a⊥n ‖≤λ

∥∥a⊥n
∥∥2

ϕ2(an) dan ≤ λ4

2σ 2
. (4.24)

For this, note that a⊥n ∼ N(ā⊥n , σ 2I) in S⊥n � C, where ā⊥n is the orthogonal
projection of ān onto S⊥n . Thus, proving (4.24) amounts to showing that

∫

|z|≤λ

|z|2ϕz̄,σ (z) dz≤ λ4

2σ 2
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for the Gaussian density ϕz̄,σ (z)= 1
2πσ 2 e

− 1
2σ2 |z−z̄|2

of z ∈C, where z̄ ∈C. Clearly,
it is enough to show that

∫

|z|≤λ

ϕz̄,σ (z) dz≤ λ2

2σ 2
.

Without loss of generality we may assume that z̄= 0, since the integral on the left-
hand side is maximized at this value of z̄. The substitution z = σw yields dz =
σ 2 dw (dz denotes the Lebesgue measure on R

2), and we get

∫

|z|≤λ

ϕ0,σ (z) dz =
∫

|w|≤ λ
σ

1

2π
e−

1
2 |w|2 dw =

∫ λ
σ

0

1

2π
e−

1
2 r

2
2πr dr

= −e−
1
2 r

2 ∣∣
λ
σ

0 = 1 − e
− λ2

2σ2 ≤ λ2

2σ 2
,

which proves inequality (4.24).
A similar argument shows that

2σ 2 ≤
∫

|z|2ϕz̄,σ (z) dz=
∫ ∥∥a⊥n

∥∥2
ϕ2(an) dan. (4.25)

Plugging in this inequality into (4.23) (with t = 0), we conclude that

2σ 2
Eϕ1

(
vol(An)

2)≤ Eϕ

(
vol(A)2). (4.26)

On the other hand, plugging in (4.11) with λ= 1
t

into (4.23), we obtain

∫

‖A−1en‖≥t

vol(A)2ϕ(A)dA≤ 1

2σ 2t4
Eϕ1

(
vol(An)

2).

Combined with (4.26), this yields
∫

‖A−1en‖≥t

vol(A)2ϕ(A)dA≤ 1

4σ 4t4
Eϕ

(
vol(A)2).

By the definition of the density ρA,σ , this means that

Prob
A∼ρ

{∥∥A−1en
∥∥≥ t

}≤ 1

4σ 4t4
,

which was to be shown. �

Lemma 4.25 For fixed u ∈ S(Cn), 0 ≤ s ≤ 1, and random v uniformly chosen
in S(Cn) we have

Prob
v

{∣∣uTv
∣∣≥ s

}= (
1 − s2)n−1

.
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Proof By unitary invariance we may assume without loss of generality that u =
(1,0, . . . ,0). Also, we may assume that s < 1. Note that if v ∈C

n is standard Gaus-
sian, then ‖v‖−1v is uniformly distributed in the sphere S(Cn); see Proposition 2.19.
Therefore, we need to prove that the probability

p := Prob
v∈S(Cn)

{|v1| ≥ s
}= Prob

v∼N(0;I)
{|v1| ≥ s‖v‖}

equals (1 − s2)n−1. For this, it is convenient to identify C
n with R

2n and to write
v = (x, y), where x ∈ R

2 and y ∈ R
2n−2. So we have v1 = x1 + ix2. Note that

‖x‖2 ≥ s2(‖x‖2 + ‖y‖2) iff ‖x‖ ≥ λ‖y‖, where λ := s√
1−s2

. Therefore, we can

write

p = 1

(2π)n−1

∫

R2n−2
e−

1
2 ‖y‖2

(
1

2π

∫

‖x‖≥λ‖y‖
e−

1
2 ‖x‖2

dx

)
dy.

Integrating in polar coordinates (cf. Corollary 2.2), we obtain for r ≥ 0,

1

2π

∫

‖x‖≥r

e−
1
2 ‖x‖2

dx = 1

2π

∫

ρ≥r

e−
1
2 ρ

2
2πρ dρ = e−

1
2 r

2
.

This implies

p = 1

(2π)n−1

∫

R2n−2
e−

1
2 ‖y‖2

e
− s2‖y‖2

2(1−s2) dy = 1

(2π)n−1

∫

R2n−2
e
− ‖y‖2

2(1−s2) dy.

Making the substitution η := (1 − s2)−1/2‖y‖, we get

p = 1

(2π)n−1

∫

R2n−2
e−

1
2 ‖η‖2(

1 − s2) 2n−2
2 dη= (

1 − s2)n−1
. �

Lemma 4.26 Let A ∈C
n×n and σ > 0. For any t > 0 we have

Prob
A∼ρA,σ

{∥∥A−1
∥∥≥ t

}≤ e2(n+ 1)2

16σ 4

1

t4
.

Proof We proceed similarly as for Proposition 4.19. For any invertible A ∈ C
n×n

there exists u ∈ S(Cn) such that ‖A−1u‖ = ‖A−1‖. For almost all A, the vector u is
uniquely determined up to a scaling factor θ of modulus 1. We shall denote by uA a
representative of such u.

The following is an easy consequence of the singular value decomposition
of ‖A−1‖: for any v ∈ S(Cn) we have

∥∥A−1v
∥∥≥ ∥∥A−1

∥∥ · ∣∣uT
Av

∣∣. (4.27)
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We choose now a random pair (A,v) with A following the law ρ and, independently,
v ∈ S(Cn) from the uniform distribution. Lemma 4.24 implies that

Prob
A,v

{∥∥A−1v
∥∥≥ t

√
2

n+ 1

}
≤ (n+ 1)2

16σ 4t4
.

On the other hand, we have by (4.27)

Prob
A,v

{∥∥A−1v
∥∥≥ t

√
2/(n+ 1)

}

≥ Prob
A,v

{∥∥A−1
∥
∥≥ t and

∣
∣uT

Av
∣
∣≥√

2/(n+ 1)
}

≥ Prob
A

{∥∥A−1
∥∥≥ t

}
Prob
A,v

{∣∣uT
Av

∣∣≥√
2/(n+ 1)

∣∣ ∥∥A−1
∥∥≥ t

}
.

Lemma 4.25 tells us that for any fixed u ∈ S(Cn) we have

Prob
v

{∣∣uTv
∣∣≥√

2/(n+ 1)
}= (

1 − 2/(n+ 1)
)n−1 ≥ e−2,

the last inequality following from ( n+1
n−1 )

n−1 = (1 + 2
n−1 )

n−1 ≤ e2. We thus obtain

Prob
A

{∥∥A−1
∥∥≥ t

}≤ e2 Prob
A,v

{∥∥A−1v
∥∥≥ t

√
2

n+ 1

}
≤ e2(n+ 1)2

16σ 4t4
,

as claimed. �

Proof of Proposition 4.22 By Lemma 4.26 we obtain, for any T0 > 0,

E
(∥∥A−1

∥∥2) =
∫ ∞

0
Prob

{∥∥A−1
∥∥2 ≥ T

}
dT

≤ T0 +
∫ ∞

T0

Prob
{∥∥A−1

∥∥2 ≥ T
}
dT ≤ T0 + e2(n+ 1)2

16σ 4

1

T0
,

using
∫∞
T0

T −2 dT = T −1
0 . Now choose T0 = e(n+1)

4σ 2 . �

We have already mentioned that all of the probabilistic analyses for random real
matrices in this chapter extend, without major modifications, to a complex version.
We refrain from stating these obvious extensions and only record here the following
variant of Proposition 4.19 for the particular case of complex m× (m+ 1) matrices
(and average analysis). This result will be needed in Sect. 17.8.

Proposition 4.27 For a standard Gaussian A ∈C
m×(m+1) and for any t > 0,

Prob
A∼N(0,I)

{∥∥A†
∥∥≥ t

}≤ m2

8e

1

t4
.
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Moreover, E‖A†‖2 ≤ 1 + m2

8e is finite.

Remark 4.28

(a) The fact that the expectation of ‖A†‖2 is finite is a key property used in Chap. 17
for analyzing the running time of a certain algorithm LV for computing a zero of
a system of complex polynomial equations.

(b) In Chap. 20 we will see that the exponent 4 in the tail bound t−4 comes
in naturally as twice the complex codimension of the projective variety in
P(Cm×(m+1)) corresponding to the rank-deficient matrices A ∈C

m×(m+1).

For the proof of Proposition 4.27 we need the following lemma.

Lemma 4.29 For fixed v ∈ S(Cm) and a standard Gaussian matrix A ∈ C
m×(m+1)

we have for all ε > 0,

Prob
A∼N(0,I)

{∥∥A†v
∥∥≥ ε−1}≤ 1

8
ε4.

Proof This is very similar to the proof of Proposition 4.21, so that it is sufficient to
point out the few modifications needed. We adopt the notation from there. So we
assume v = em and note that (4.10) holds. To complete the proof, it is sufficient to
establish the bound

∫

‖a⊥m‖≤ε−1
ϕ2(am)dam ≤ 1

8
ε4

for fixed, linearly independent a1, . . . , am−1 ∈ C
m+1 and ε > 0. Note that the or-

thogonal projection a⊥m of am onto the span S of a1, . . . , am−1 is standard normal
distributed in S⊥ ∼C

2 �R
4. It is therefore sufficient to verify that

Prob
x∈R4

x∼N(0,I)

{‖x‖ ≤ ε
}≤

(
1√
2π

)4

volBε =
(

1√
2π

)4O3

4
ε4 = 1

8
ε4.

�

Proof of Proposition 4.27 We proceed similarly as for Proposition 4.19 and adopt
the notation from there. Similarly as for (4.13) we have for s ∈ (0,1) and t > 0,

Prob
A,v

{∥∥A†v
∥∥≥ t

√
1 − s2

}

≥ Prob
A,v

{∥∥A†
∥∥≥ t &

∣∣uT
Av

∣∣≥
√

1 − s2
}

= Prob
A

{∥∥A†
∥∥≥ t

} · Prob
A,v

{∣∣uT
Av

∣∣≥
√

1 − s2
∣∣ ∥∥A†

∥∥≥ t
}

≥ Prob
A

{∥∥A†
∥∥≥ t

} · s2(m−1),
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the last line by Lemma 4.25 (replacing s by
√

1 − s2). Using Lemma 4.29, we obtain

Prob
A

{∥∥A†
∥∥≥ t

} ≤ 1

s2m−2
Prob

v
Prob

A

{∥∥A†v
∥∥≥ t

√
1 − s2

}

≤ 1

8t4

1

s2m−2(1 − s2)2
.

We choose now s∗ :=
√

1 − 1
m

to minimize the right-hand side. This gives

s2m−2∗
(
1 − s2∗

)2 =
(

1 − 1

m

)m−1 1

m2
≥ e

m2
.

Hence the tail estimate Prob{‖A†‖ ≥ t} ≤ m2

8e
1
t4 follows.

The expectation can be bounded as usual:

E
∥∥A†

∥∥2 ≤ 1 +
∫ ∞

1
Prob

{∥∥A†
∥∥2 ≥ s

}
ds ≤ 1 + m2

8e

∫ ∞

1

ds

s2
= 1 + m2

8e
. �

Remark 4.30 A similar argument for a real standard Gaussian matrix A ∈R
m×(m+1)

reveals that Prob{‖A†‖2 ≥ t} decays with t−2. From this one can deduce that
E‖A†‖2 =∞. This difference between this and the complex case is responsible for
the fact that a version of an adaptive homotopy algorithm for solving polynomial
equations must fail over the reals (on average).



Chapter 5
Condition Numbers and Iterative Algorithms

Consider a full-rank rectangular matrix R ∈R
q×n with q > n, a vector c ∈R

q , and
the least-squares problem

min
v∈Rn

‖Rv− c‖.
We saw in Sect. 1.6 that the solution x ∈R

n of this problem is given by

x =R†c= (
RTR

)−1
RTc.

It follows that we can find x as the solution of the system Ax = b with A := RTR,
A ∈R

n×n, and b :=RTc.
A key remark at this stage is that by construction, A is symmetric and positive

definite. One may therefore consider algorithms exploiting symmetry and positive
definiteness. We do so in this chapter.

The algorithms we describe, steepest descent and conjugate gradient, will serve
to deepen our understanding of the only facet of conditioning—among those de-
scribed in Sect. O.5—that we have not dealt with up to now: the relationship be-
tween condition and complexity. To better focus on this issue, we will disregard all
issues concerning finite precision and assume, instead, infinite precision in all com-
putations. Remarkably, the condition number κ(A) of A will naturally occur in the
analysis of the running time for these algorithms. And this occurrence leads us to
the last issue we discuss in this introduction.

Complexity bounds in terms of κ(A) are not directly applicable, since κ(A) is
not known a priori. We have already argued that one can remove κ(A) from these
bounds by trading worst-case for, say, average-case complexity. This passes through
an average analysis of κ(A), and in turn, such an analysis assumes that the set
of matrices A is endowed with a probability distribution. When A is arbitrary in
R

n×n, we endow this space with a standard Gaussian. In our case, when A is pos-
itive definite, this choice is no longer available. A look at our original computa-
tional problem may, however, shed some light. Matrix A is obtained as A= RTR.
It then makes sense to consider R as our primary random data—and for R we can
assume Gaussianity—and endow A with the distribution inherited from that of R.

P. Bürgisser, F. Cucker, Condition,
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_5, © Springer-Verlag Berlin Heidelberg 2013
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Furthermore, as we will see, one has κ(A)= κ2(R). Therefore, the analysis of κ(A)

for this inherited distribution reduces to the analysis of κ(R) when R is Gaussian.

5.1 The Cost of Computing: A Primer in Complexity

Before stepping into the description and analysis of algorithms, it is convenient to
agree on some basic notions of complexity.

Since our interest in this book is limited to the analysis of specific algorithms, we
do not need to formally describe machine models.1 We will instead consider algo-
rithms A described in a high-level language (such as Algorithm FS in Sect. 3.2) and
define, for a given input a ∈D ⊆ R

m, the cost or running time of A on input a to
be the number costA (a) of arithmetic operations (and square roots if the algorithm
performs any) and comparisons performed by A during the execution with input a.
A simple counting argument shows that with input L ∈ R

n×n lower-triangular and
b ∈R

n, Algorithm FS performs n2 arithmetic operations.
The object of interest is the growth rate of the running time with respect to the

input size. For a given a ∈ D ⊆ R
m we say that m is the size of a, and we write

size(a) for the latter. This is the number of reals (i.e., floating-point numbers) we
feed the algorithm with. In our example, size(L,b)= n(n+3)

2 (we represent L by its
n(n+1)

2 lower entries). Hence, the running time of Algorithm FS on input (L,b) is
about (actually less than) twice size(L,b): a linear growth rate.

Another example of this idea is given by Gaussian elimination (we omit describ-
ing the algorithm, since the reader certainly knows it). It is easily checked that for a
given pair (A,b), where A ∈R

n×n and b ∈R
n, the cost of producing the triangular

system Lx = c whose solution is A−1b is 2
3 (n− 1)n(n+ 1)+ n(n− 1). To solve

the system, we need to add the n2 − 1 operations required by Algorithm FS. In this
case, size(A,b)= n(n+ 1), and hence the cost of solving Ax = b using Gaussian
elimination (plus backward substitution) is of order 2

3 size(A,b)3/2.
Backward substitution and Gaussian elimination are said to be direct methods.

One has an a priori bound on costA (a) depending on size(a) (or on dims(a) if
this bound communicates better). In contrast to this kind of algorithms, iterative
methods may not possess such a bound. These algorithms iterate a basic procedure
until a certain condition is met, for instance that an approximation of ϕ(a) has been
found with RelError(ϕ(a))≤ ε. In this case, the cost on a given input a will depend
on ε. As we will see in this chapter (as well as in some others), it often depends as
well on the condition of a.

We close this section with a word of caution. Most of the algorithms consid-
ered in this book are numerical algorithms: the data they handle are floating-point
numbers, and the basic operations performed on these data are floating-point arith-
metic operations, whence the overall justice of defining data size as the number

1These theoretical constructions are a must, however, if one wants to prove lower bounds for the
complexity of a computational problem.
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of floating-point numbers in the description of the data and cost as the number of
such operations performed. Alongside numerical algorithms there is the vast class
of discrete algorithms, which handle discrete data (rational numbers, combinatorial
structures such as graphs and lists, etc.). In this case, the size of a certain datum
(say a positive integer number �) is the number of bits necessary to describe it (the
number of bits in the binary expansion of �, which is roughly �log2 ��). Also, the
basic operations are elementary bit operations (read a bit, change the value of a
bit, write a bit), and the cost of any procedure on given data is the number of such
elementary operations performed during the execution of the procedure. For exam-
ple, the way we learned to multiply integers (modified to work in base 2) performs
O(size(�)size(q)) bit operations to compute the product �q .

It is a basic principle that one should analyze discrete problems with a discrete
model for cost such as the one just described—we call it bit cost—and numerical
problems with a numerical one—the one above, usually known as algebraic cost.
In particular, the restriction of a given numerical problem (e.g., matrix multiplica-
tion) to discrete data (e.g., matrices with integer coefficients) entails a change of
cost model in the analysis of a given algorithm solving the problem. We will see a
striking example of this issue in Chap. 7.

5.2 The Method of Steepest Descent

The method of steepest descent, also called the gradient method, is one of the oldest
and most widely known algorithms for minimizing a function.

Let A ∈R
n×n be positive definite, b ∈R

n, and consider the quadratic function

f (x) := 1

2
xTAx − bTx.

Its gradient at x is gradf (x)= Ax − b. Let x̄ = A−1b be the solution of the linear
system of equations

Ax = b. (5.1)

Then x̄ is the unique minimum of f , since f is strictly convex. The idea is to
(approximately) compute x̄ by minimizing f . This turns out to be faster for large
sparse matrices A (see Remark 5.4 below).

The method works as follows. Let x0 ∈ R
n be a starting point. We iteratively

compute a sequence of approximations x0, x1, x2, . . . by taking

xk+1 = xk − αk gradf (xk), (5.2)

where αk is found by minimizing the quadratic univariate function

R→R, α �→ f
(
xk − α gradf (xk)

)
.
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We call εk := xk − x̄ the kth error and rk = b−Axk the kth residual. Note that −rk
is the gradient of f at xk :

rk =−gradf (xk)=−Aεk. (5.3)

Lemma 5.1 We have

αk = rT
k rk

rT
k Ark

= ‖rk‖2

rT
k Ark

.

Proof Put

g(α) := f (xk + αrk)= 1

2

(
xT
k + αrT

k

)
A(xk + αrk)− bT(xk + αrk).

Hence

g′(α)= 1

2
rT
k Axk + 1

2
xT
k Ark + αrT

k Ark − bTrk.

Writing Axk = b− rk , this yields

g′(α) = −1

2
rT
k rk +

1

2
rT
k b+

1

2
bTrk − 1

2
rT
k rk + αrT

k Ark − bTrk

= αrT
k Ark − rT

k rk.

Solving for g′(α)= 0 yields the assertion. �

For the analysis it is useful to define the A-norm

‖x‖A := (
xTAx

)1/2

coming from the scalar product

〈x, y〉A := xTAy.

We claim that

f (x)= 1

2
‖x − x̄‖2

A + f (x̄).

Indeed, recall that x̄ =A−1b. Then,

f (x̄)−f (x)+ 1

2
‖x − x̄‖2

A

= 1

2
x̄TAx̄ − bTx̄ − 1

2
xTAx + bTx + 1

2
(x − x̄)TA(x − x̄)

= 1

2

(
x̄TAx̄ − xTAx + xTAx − x̄TAx − xTAx̄ + x̄TAx̄

)− bTx̄ + bTx
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x̄=A−1b= 1

2

((
A−1b

)T
b− (

A−1b
)T

Ax − xTb+ (
A−1b

)T
b
)− bTA−1b+ bTx

= 1

2

(
xTb− (

A−1b
)T

Ax
)

AT=A= 0.

Note that with this notation, Lemma 5.1 can be written as

αk =
( ‖rk‖2

‖rk‖A
)2

.

Our goal is to prove the following result.

Theorem 5.2 (Convergence of steepest descent) For any starting point x0 ∈R
n, the

sequence xk defined by (5.2) converges to the unique minimum x̄ and

‖εk‖A ≤
(
κ − 1

κ + 1

)k

‖ε0‖A,

where κ = κ(A) is the condition number of A.

A bound for the number of iterations needed to decrease the A-norm of the error
by a given factor immediately follows.

Corollary 5.3 For all ε > 0, we have ‖εt‖A ≤ ε‖ε0‖A whenever

t ≥ log

(
1 + 2

κ(A)− 1

)
log

(
1

ε

)
≈ 1

2
κ(A) log

(
1

ε

)
.

Remark 5.4 Suppose A has s nonzero entries with s # n2 (A is “sparse”). Then
one iteration of the method (xk, rk) �→ (xk+1, rk+1),

αk = rT
k rk

rT
k Ark

, xk+1 = xk + αkrk, rk+1 = b−Axk+1,

costs O(s + n) arithmetic operations. If, in addition, we are satisfied with an ap-
proximate solution for which the bound in Corollary 5.3 is O(n), then the total
complexity—i.e., the total number of arithmetic operations performed to compute
this solution—is O(n(n + s)). In this case we might want to use steepest descent
instead of Gaussian elimination, which, we recall from Sect. 5.1, has a complex-
ity of O(n3). In the next two sections we will describe an improvement of steepest
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Fig. 5.1 The method of
steepest descent for
A= diag(1,9), b= (0,0),
and x0 = (18,2)

descent, called conjugate gradient, and additional reasons to replace, in a number of
situations, the use of Gaussian elimination with that of conjugate gradient.

Example 5.5 Let A = diag(1,9), b = (0,0), and x0 = (18,2). Figure 5.1 shows
the level curves of the function f (x) = 1

2x
TAx for c ∈ {2k | k = −2,−1, . . . ,6}.

Moreover, it depicts the first iterates x0, x1, . . . , x8.

We next prove Theorem 5.2. We begin with a simple lemma.

Lemma 5.6 We have

‖εk+1‖2
A =

(
1 − ‖rk‖4

‖rk‖2
A · ‖rk‖2

A−1

)
‖εk‖2

A.

Proof By definition,

εk+1 = xk+1 − x̄ = εk + αkrk,

and therefore

‖εk+1‖2
A = (εk + αkrk)

TA(εk + αkrk)

= εT
k Aεk + αkr

T
k Aεk + αkε

T
k Ark + α2

k r
T
k Ark

= ‖εk‖2
A + α2

k r
T
k Ark + 2αkr

T
k Aεk

= ‖εk‖2
A + α2

k r
T
k Ark − 2αkr

T
k rk,

the last by (5.3). Plugging in the formula for αk , Lemma 5.1 yields

‖εk+1‖2
A − ‖εk‖2

A = (rT
k rk)

2

rT
k Ark

− 2(rT
k rk)

2

rT
k Ark

=− (rT
k rk)

2

rT
k Ark

= ‖rk‖4

‖rk‖2
A

.

The claim follows, using (5.3) again, by noting that

‖εk‖2
A = εT

k Aεk =
(
A−1rk

)T
rk = rT

k A
−1rk = ‖rk‖2

A−1 . �



5.3 The Method of Conjugate Gradients 107

Proposition 5.7 (Kantorovich’s inequality) For a positive definite matrix A ∈R
n×n

with largest eigenvalue λ1 and smallest eigenvalue λn, we have for any x ∈R
n,

‖x‖A · ‖x‖A−1 ≤ λ1 + λn

2
√
λ1λn

‖x‖2. (5.4)

Proof Without loss of generality, we can assume that A = diag(λ1, . . . , λn) with
λ1 ≥ · · · ≥ λn > 0 (by an orthogonal transformation) as well as ‖x‖ = 1 (by homo-
geneity). Then

‖x‖4

‖x‖2
A · ‖x‖2

A−1

= 1

(
∑

i λix
2
i )(

∑
i λ

−1
i x2

i )
= φ(

∑
i wiλi)∑

i wiφ(λi)
,

where φ(t) := 1
t
, wi := x2

i ,
∑

i wi = 1. The linear function L(t)=− 1
λ1λn

t + λ1+λn

λ1λn

satisfies L(λ1) = 1
λ1

and L(λn) = 1
λn

. Furthermore, for t̃ :=∑
i wiλi we have t̃ ∈

[λn,λ1] and L(t̃)=∑
i wiφ(λi). Therefore we have

φ(
∑

i wiλi)∑
i wiφ(λi)

= φ(t̃)

L(t̃)
≥ min

λ1≥t≥λn

φ(t)

L(t)
.

The minimum is achieved at t = λ+λn

2 , and has the value 4λ1λn

(λ1+λn)2 . So we get

‖x‖2
A · ‖x‖2

A−1 =
(
φ(
∑

i wiλi)∑
i wiφ(λi)

)−1

≤ (λ1 + λn)
2/4

λ1λn

. �

Proof of Theorem 5.2 Combining inequality (5.4) with Lemma 5.6 and using that
κ(A)= λ1

λn
, we get

‖εk+1‖2
A ≤

(
1 − ‖rk‖4

‖rk‖2
A · ‖rk‖2

A−1

)
‖εk‖2

A ≤
(

1 − 4λ1λn

(λ1 + λn)2

)
‖εk‖2

A

= (λ1 − λn)
2

(λ1 + λn)2
‖εk‖2

A =
(
κ − 1

κ + 1

)2

‖εk‖2
A,

which implies the theorem. �

5.3 The Method of Conjugate Gradients

The method of conjugate gradients can be seen as an improvement of the method of
steepest descent in the sense that the convergence is much faster, with the number of
arithmetic operations per iteration step being roughly the same. As in the previous
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section, A ∈ R
n×n is positive definite. The function f , the error e, the residual r ,

and the A-inner product 〈 , 〉A are similarly defined.
We say that vectors x, y are A-orthogonal (or conjugated) if 〈x, y〉A = 0.

Let (d0, . . . , dn−1) be an A-orthogonal basis of R
n, i.e., 〈di, dj 〉A = 0 for i �= j .

Moreover, let x̄ be the solution of Ax = b. Let x0 ∈ R
n be any starting point.

Expand

x̄ − x0 =
n−1∑

i=0

αidi,

with αi ∈R. Then by A-orthogonality,

αk = 〈x̄ − x0, dk〉A
‖dk‖2

A

.

Define

xk :=
k−1∑

i=0

αidi + x0.

Then we have 〈xk−x0, d�〉A = 0, for all �= k, . . . , n−1. In particular, taking �= k,

〈x̄ − x0, dk〉A = 〈x̄ − xk, dk〉A = dT
k A(x̄ − xk)= dT

k rk,

with rk := b−Axk =Ax̄ −Axk . We obtain that

αk = 〈dk, rk〉
‖dk‖2

A

.

Note that αk depends only on dk and rk . We have proved the following.

Lemma 5.8 Let (d0, . . . , dn−1) be an A-orthogonal basis and x0 ∈ R
n. Define

x1, . . . , xn ∈R
n by

xk+1 = xk + αkdk

with

αk = 〈dk, rk〉
‖dk‖2

A

, rk = b−Axk.

Then xn = x̄. �

The following insight is crucial. Recall that

f (x)= 1

2
xTAx − bTx = 1

2
‖x − x̄‖2

A + f (x̄).
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Proposition 5.9

(a) For k ≥ 1, xk minimizes the function x �→ ‖x − x̄‖A on the line xk−1 +Rdk−1

as well as on the affine space x0 + span{d0, . . . , dk−1}.
(b) We have 〈rk, di〉 = 0 for i < k.

Proof For part (a) note that the point xk − x0 is the A-orthogonal projection of
x̄ − x0 onto span{d0, . . . , dk−1}. Therefore, xk − x0 minimizes the A-distance to x̄,

x �→ ‖x − x̄‖A = ∥∥(x − x0)− (x̄ − x0)
∥∥
A
,

on x0 + span{d0, . . . , dk−1}.
By part (a), xk minimizes f on x0+span{d0, . . . , dk−1}. Hence, gradf (xk) is or-

thogonal to span{d0, . . . , dk−1}. But gradf (xk)=−rk by (5.3). This proves (b). �

So far we have assumed that we are already given an A-orthogonal basis (di).
We next show how one actually computes such a basis. The idea is to sequen-
tially choose the directions dk as conjugates of the gradients −rk as the method
progresses. It turns out that this can be achieved with little cost. The following ex-
ample should illustrate this idea.

Example 5.10 Let us start with d0 := r0 := b − Ax0 �= 0. Then we get α0 :=
〈d0,r0〉
‖d0‖2

A

= ‖d0‖2

‖d0‖2
A

. Setting x1 := x0 + α0d0 and r1 := b − Ax1 �= 0 (otherwise x1 = x̄

and we are done), we get from Proposition 5.9(b) 〈r1, d0〉 = 0. Now take d1 :=
r1 + β0d0. The requirement 0 = 〈d1, d0〉A = 〈r1, d0〉A + β0〈d, d0〉A implies β0 =
−〈r1,d0〉A

‖d0‖2
A

, which can be used as a definition for β0. In this way we get the second

basis vector d1.

The extension of this example gives us the (full) conjugate gradient algorithm
(Algorithm 5.1 below).

Remark 5.11 Before proceeding with the analysis of Algorithm 5.1 (mostly, with
the analysis of the number of iterations needed to reach a given accuracy, see Theo-
rem 5.13 and Corollary 5.14 below) we can have a look at the cost of each iteration
of the algorithm.

Note that the cost of computing an inner product, such as 〈rk, dk〉, is 2n − 1.
Consequently, the cost of a matrix–vector multiplication, such as Axk , is 2n2 −n. It
follows that computing an A-inner product costs 2n2 + n− 1. At each iteration of
Conj_Grad the computation of each of xk+1 and dk+1 thus takes O(n) arithmetic op-
erations, and those of αk , rk+1, and βk take 2n2 +O(n) each (note that for the latter
we use the already computed ‖dk‖2

A). That is, the cost of an iteration of Conj_Grad

is 6n2 +O(n).
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Algorithm 5.1 Conj_Grad

Input: A ∈R
n×n, b ∈R

n, x0 ∈R
n

Preconditions: A is positive definite

r0 := d0 := b−Ax0
k := 0
while dk �= 0 do

αk := 〈rk,dk〉
‖dk‖2

A

xk+1 := xk + αkdk

rk+1 := b−Axk+1

βk := −〈rk+1,dk〉A
‖dk‖2

A

dk+1 := rk+1 + βkdk

k := k + 1
end while

return xk

Output: x ∈R
n

Postconditions: Ax = b

Theorem 5.12 Let k̄ be the last k such that dk �= 0. Then, for all k = 0, . . . , k̄:

(a) (Krylov spaces)

span{d0, . . . , dk} = span{r0, . . . , rk} = span
{
r0,Ar0, . . . ,A

kr0
}
.

(b) Algorithm Conj_Grad produces a sequence (d0, d1, . . . , dk) of A-orthogonal
vectors.

Proof The proof goes by induction on k. The start k = 0 is clear. We go from k to
k+ 1. Define

Dk := span{d0, . . . , dk}, Rk := span{r0, . . . , rk},
Sk := span

{
r0,Ar0, . . . ,A

kr0
}
.

Then, by the induction hypothesis, Dk = Rk = Sk . The equality Dk+1 = Rk+1 is
trivial. To see that Rk+1 = Sk+1 we note that

rk+1 =−Axk+1 + b=−A(xk + αkdk)+ b= rk − αkAdk;
hence rk+1 ∈Rk +A(Dk)= Sk +A(Sk)⊆ Sk+1.

For the reverse inclusion suppose rk+1 �= 0. According to Proposition 5.9(b),
rk+1 is orthogonal to Sk . Hence rk+1 �∈ Sk . We obtain

span{r0, . . . , rk, rk+1} = Sk+1.

This proves part (a).
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For part (b) it remains to prove that dk+1 is A-orthogonal to d1, . . . , dk . We have
〈dk+1, dk〉A by the choice of βk . Furthermore, for i < k,

〈dk+1, di〉A = 〈rk+1, di〉A + βk〈dk, di〉A = 〈rk+1, di〉A = rT
k+1Adi.

Now Adi ∈A(Si)⊆ Si+1 ⊆ Sk . Therefore

rT
k+1Adi = 〈rk+1,Adi〉 = 0,

since rk+1 is orthogonal to Sk by Proposition 5.9(b). �

We turn now to the analysis of convergence. The main result in this section is the
following.

Theorem 5.13 The error at the kth step of the conjugate gradient method satisfies

‖εk‖A ≤ 2

(√
κ(A)− 1√
κ(A)+ 1

)k

‖ε0‖A.

Corollary 5.14 For all δ > 0 we have ‖εk‖A ≤ δ‖ε0‖A whenever

k ≥ ln

(√
κ(A)+ 1√
κ(A)− 1

)−1

ln

(
2

δ

)
≈ 1

2

√
κ(A) ln

(
1

δ

)
.

Each iteration step takes O(n + s) arithmetic operations if A has s nonzero en-
tries. �

Remark 5.15 The 6n2 + O(n) cost of each iteration of Algorithm Conj_Grad to-
gether with the convergence rate in Corollary 5.14 suggests that for reasonable δ > 0
and large n, computing an approximation of the solution x of Ax = b using Algo-
rithm Conj_Grad may be faster than computing x with, say, Gaussian elimination.
We will return to this question in Sect. 5.4 below.

Towards the proof of Theorem 5.13 we introduce some notation. We denote by
Pk the linear space of all real polynomials in one variable X with degree at most k.
We also write Qk for the subset of Pk of polynomials with constant coefficient 1.

Theorem 5.16 The error εk at the kth step of the conjugate gradient method satis-
fies

‖εk‖2
A ≤ min

q∈Qk

max
j≤n

q(λj )
2 · ‖ε0‖2

A,

where λ1, . . . , λn are the eigenvalues of A.

Proof By Proposition 5.9(a) we know that xk minimizes the A-distance of x̄ to the
affine space

x0 + Sk−1 = x0 + span{d0, . . . , dk−1} = x0 + span
{
r0,Ar0, . . . ,A

k−1r0
}
.
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An element x of x0 + Sk−1 can therefore be written as

x = x0 − p(A)r0,

with p ∈ Pk−1, and conversely, for any such polynomial we obtain x ∈ x0 + Sk−1.
Using r0 = b−Ax0 =A(x̄ − x0) we get

x − x̄ = x0 − x̄ − p(A)A(x̄ − x0)= x0 − x̄ +Ap(A)(x0 − x̄)

= (
I +Ap(A)

)
(x0 − x̄).

It follows that the error εk = xk − x̄ at the kth step of the conjugate gradient method
satisfies

‖εk‖A = min
x∈x0+Sk−1

‖x − x̄‖A = min
p∈Pk−1

∥∥(I +Ap(A)
)
ε0
∥∥
A
. (5.5)

Suppose that v1, . . . , vn is an orthonormal basis of eigenvectors of A correspond-
ing to the eigenvalues λ1 ≥ · · · ≥ λn > 0. Write

ε0 = x0 − x̄ =
n∑

j=1

ξj vj

for some ξ1, . . . , ξn ∈R. Then

‖ε0‖2
A =

n∑

j=1

n∑

k=1

ξj ξk vT
j Avk =

n∑

j=1

λj ξ
2
j .

Moreover, for any polynomial p ∈Pk−1,

(
I +Ap(A)

)
ε0 =

n∑

j=1

(
1 + λjp(λj )

)
ξj vj .

Therefore

∥∥(I +Ap(A)
)
ε0
∥∥2
A
=

n∑

j=1

(
1 + λjp(λj )

)2
λj ξ

2
j ≤ max

j≤n

(
1 + λjp(λj )

)2
n∑

j=1

λj ξ
2
j ,

and using (5.5),

‖εk‖2
A ≤ min

p∈Pk−1

max
j≤n

(
1 + λjp(λj )

)2
n∑

j=1

λj ξ
2
j .

The result now follows by observing that Qk = 1 +XPk . �

Theorem 5.16 is hard to apply in concrete situations. It depends on all the eigen-
values of A and it optimizes a function of them over the space Qk . It is nevertheless
a building block in the proof of Theorem 5.13. We proceed to see why.
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Fig. 5.2 The optimal choice of q

Example 5.17 For k = 1 it is optimal to choose q(λ) = 1 − 2
λ1+λn

λ (see Fig. 5.2)
and hence

‖ε1‖2
A ≤

(
κ(A)− 1

κ(A)+ 1

)2

‖ε0‖2
A.

The first step of Algorithm 5.1 is just one step of steepest descent. Thus we have
re-proved Theorem 5.2. See Fig. 5.2 for an optimal choice of q for k = 2.

Remark 5.18 Suppose that A has only m< n distinct eigenvalues. Then there exists
q ∈Qm such that q vanishes on all the eigenvalues. Hence εm = 0 and the method
terminates after m steps. (This can also be easily seen directly.) So multiple eigen-
values decrease the number of steps of Algorithm Conj_Grad.

Suppose that λn = a and λ1 = b, for 0 < a < b. What are optimal polynomials
q ∈ Qk if nothing is known about the location of the eigenvalues λ except that
λ ∈ [a, b]? In this case we have to minimize the quantity

max
a≤λ≤b

q(λ)2

over all real polynomials q ∈Qk . This minimization problem can be considered as
well for arbitrary a, b ∈ R with a < b. In the particular case a =−1, b = 1 it turns
out that its solution is given by the Chebyshev polynomials Tk defined by

cos(kφ)= Tk

(
cos(φ)

)
.

For instance

T0(X)= 1, T1(X)=X, T2(X)= 2X2 − 1, T3(X)= 4X3 − 3X,

and more generally, for i ≥ 2,

Ti(X)= 2XTi−1(X)− Ti−2(X).

See Fig. 5.3 for a display of some of these polynomials.
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Fig. 5.3 The Chebyshev polynomial Tk

The next proposition lists some important properties of Chebyshev polynomials
Tk on [−1,1]. Its easy proof is left to the reader.

Proposition 5.19

(a) |Tk(x)| ≤ 1 for x ∈ [−1,1],
(b) Tk has degree k,
(c) Tk has exactly k roots in [−1,1], namely cos((j + 1

2 )
π
k
) for j ∈ [k]. �

Proposition 5.20 For all 0 < a < b we have

min
degq≤k
q(0)=1

max
a≤λ≤b

q(λ)2 = 1

Tk(
b+a
b−a

)2
.

Proof The polynomial

p(λ) := Tk(
b+a−2λ

b−a
)

Tk(
b+a
b−a

)

has degree k, satisfies p(0)= 1, and

max
a≤λ≤b

p(λ)2 = 1

Tk(
b+a
b−a

)2
=: c2.

(Note that λ �→ b+a−2λ
b−a

maps [a, b] onto [−1,1] and Tk has maximal value 1 on
this interval.)

In order to show the optimality of p, suppose that for some polynomial q ∈Qk ,

max
a≤λ≤b

∣
∣q(λ)

∣
∣< max

a≤λ≤b

∣
∣p(λ)

∣
∣.

Since p alternately takes the values c,−c, c,−c, . . . exactly k+1 times in the inter-
val [a, b], we conclude that the polynomial p− q has at least k roots in this interval
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(intermediate value theorem). Moreover, p(0)− q(0)= 1− 1 = 0. Hence p− q has
degree at most k and k + 1 distinct roots. It follows that p = q . �

Proof of Theorem 5.13 To estimate the optimal value in Proposition 5.20, note that
for z ∈C, z= cos(φ)+ i sin(φ)= x + i

√
1 − x2, we have

Tk(x)= Re
(
zk
)= 1

2

(
zk + zk

)= 1

2

((
x +

√
x2 − 1

)k + (
x −

√
x2 − 1

)k)
.

Now take again a = λn, b = λ1, the smallest and largest eigenvalues of A. Then
κ = κ(A)= b

a
. For x = b+a

b−a
= κ+1

κ−1 we get

x2 − 1 = (κ + 1)2 − (κ − 1)2

(κ − 1)2
= 4κ

(κ − 1)2

and therefore

x +
√
x2 − 1 = κ + 1 + 2

√
κ

κ − 1
= (

√
κ + 1)2

κ − 1
=

√
κ + 1√
κ − 1

.

Hence

Tk(x)≥ 1

2

(√
κ + 1√
κ − 1

)k

. �

We finish this section by noting that the estimate in Theorem 5.13 may be pes-
simistic in certain situations. Suppose that the matrix A has only m large eigen-
values, while the remaining ones are relatively close to the smallest. The following
consequence of Theorem 5.16 shows that one can avoid the bad effect of the m

largest eigenvalues by performing only m steps of the conjugate gradient method.

Proposition 5.21 Suppose the positive definite matrix A ∈ R
n×n has n − m + 1

eigenvalues in the interval [a, b′] and the remaining m− 1 eigenvalues are greater
than b′. Let x0 ∈R

n be any starting point. Then

‖εm‖A ≤ b′ − a

b′ + a
‖ε0‖A.

Proof Let λ1 ≥ λ2 ≥ · · · ≥ λm−1 be the m− 1 largest eigenvalues of A. Let q be of
degree m such that

q(λ1)= · · · = q(λm−1)= 0, q(0)= 1, q

(
b′ + a

2

)
= 0.

Then by Theorem 5.16,

‖εm‖A ≤ max
a≤λ≤b′

∣∣q(λ)
∣∣ · ‖ε0‖A.
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It is not hard to see that

q(λ)

{≤ 1 − 2λ
a+b′ if 0 ≤ λ≤ a+b′

2 ,

≥ 1 − 2λ
a+b′ if a+b′

2 ≤ λ≤ b′.

Hence, for λ ∈ [a, b′], we have

∣∣q(λ)
∣∣≤

∣∣∣∣1 −
2λ

a + b′

∣∣∣∣≤
b′ − a

b′ + a
,

which proves the assertion. �

5.4 Conjugate Gradient on Random Data

We close this chapter by returning to one of our recurring themes: the randomization
of data as a way to obtain complexity bounds independent of the condition number.

We have noted in the introduction of this chapter that in many situations, the
positive definite matrix A ∈ R

n×n given as input to Algorithm 5.1 (Conj_Grad) is
obtained as A = RTR with R ∈ R

q×n, q > n. By Theorem 1.13, there exist or-
thogonal matrices U and V and positive reals σ1 ≥ σ2 ≥ · · · ≥ σn > 0 such that
R =U diag(σ1, σ2, . . . , σn)V

T. Then

A=RTR = V diag
(
σ 2

1 , σ
2
2 , . . . , σ

2
n

)
V T.

It follows from this equality that κ(A)= κ2(R). Therefore, the analysis of κ(A) for
this inherited distribution reduces to the analysis of κ(R) when R is Gaussian.

In the particular case that R is standard Gaussian, this inherited distribution of
A is known as the Wishart distribution with q degrees of freedom. It extends the
chi-square distribution, since it coincides with a χ2

q when n= 1.
Corollary 5.14 shows that the number k of iterations that are needed to decrease

‖x0 − x̄‖A by a factor of ε is proportional to
√
κ(A), that is, proportional to κ(R).

We are therefore interested in this quantity for Gaussian rectangular matrices R, a
theme we have dealt with in Chap. 4. Indeed, in Theorem 4.2 we showed that for all
λ0 ∈ (0,1) and all 0 < σ ≤ 1 there exists q0 such that for all 1 ≤ n≤ q we have

sup
‖R‖≤1

E

R∼N(R,σ 2I)

(
κ(R)

)≤ 20.1

1 − λ
,

provided λ= n−1
q

≤ λ0 and q ≥ q0.

It follows that if A is obtained as RTR for a large elongated rectangular matrix R,
then we should expect to effect the decrease mentioned above with about 1

2
20.1
1−λ

ln( 1
ε
)

iterations (where λ = q
n

is the elongation). Since each iteration takes 6n2 +O(n)
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arithmetic operations (cf. Remark 5.11), the expected cost is

3n2 20.1

1 − λ
ln

1

ε
+O(n)= 60.3n2

1 − λ
ln

1

ε
+O(n).

The leading term in this expression is smaller than the 2
3n

3 operations performed by
Gaussian elimination as long as

ε ≥ e−
n(1−λ)

91 .

For large n (and λ not too close to 1) this bound produces very small values of ε,
and therefore, Conj_Grad yields, on average (both for a Gaussian distribution of data
and for Gaussian perturbations of arbitrary data), remarkably good approximations
of x̄.



Intermezzo I: Condition of Structured Data

The themes of Chaps. 3 and 5 introduced, sotto voce, the issue of structured data.
In both cases we had a general set of data, the space R

n×n of n× n real matrices,
and a subset S whose elements are the valid inputs of a given algorithm: triangular
matrices for FS and symmetric positive definite matrices for CGA.

It is apparent that the analysis pattern we have developed till now—an analysis
of the relevant measure of performance for the considered algorithm (loss of pre-
cision or running time) in terms of a condition number, followed by a probabilistic
analysis of the latter—needs to be adjusted. For the probabilistic analysis, the un-
derlying measure will have to be chosen with support in S . We have already done
so in Chap. 3, by drawing from N(0,1) only the matrix entries that are not fixed to
be zero, as well as in Chap. 5, where the more elaborated family of Wishart distri-
butions was imposed on the set of symmetric positive definite matrices.

As for the object of analysis itself, the condition number, its actual shape will
have to depend on the situation at hand. Yet, even though there is no standard way
to “structure” a condition number, a couple of ways occur frequently enough to be
described in detail.

(a) Structured perturbations. When the analysis is based on data perturbations
(e.g., in accuracy analyses), it is often the case that the only admissible pertur-
bations are those respecting the structure of the data a, that is, those for which
ã ∈ S as well. This naturally leads to the following “structuring” of (O.1):

condϕ

S(a) := lim
δ→0

sup
RelError(a)≤δ

ã∈S

RelError(ϕ(a))

RelError(a)
. (I.1)

In the case of triangular linear systems, the backward analysis of algorithm FS
in Sect. 3.2 produced componentwise perturbation bounds that automatically
force the perturbed matrix L̃ to be lower triangular as well. But this need not be
the case.

(b) Distance to structured ill-posedness. We will soon see (in Chap. 6, after this
intermezzo) that for a large class of problems (those having a discrete set of
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values, notably the decisional problems), the notion of condition given by (O.1)
is inadequate and that a common, appropriate replacement is given by taking

Q(a) := ‖a‖
d(a,Σ)

for the condition number of a. Here Σ is a natural set of ill-posed data. It is
therefore not surprising that in many of the situations in which such a condition
number is considered and data are restricted to some subset S , the useful way
to structure Q(a) is by taking

QS(a) := ‖a‖
d(a,Σ ∩ S)

. (I.2)

The difference between Q and QS can be large. A case at hand is that of
triangular matrices. For any such matrix L, the condition number theorem
(Theorem 1.7) shows that d(L,Σ) = ‖L−1‖−1 and therefore Q(L) = κ(L).
Theorem 3.1 then shows that E logQ(L) = "(n). In contrast, we will see in
Sect. 21.7 that E logQTriang(L)=O(logn).

Occasionally, there is no need for a structuring of the condition number. This
was the case, for instance, in the complexity analysis of the conjugate gradient
method in Chap. 5. This analysis revealed a dependence of the number of itera-
tions of Conj_Grad on the standard condition number κ(A) of the input matrix A;
the only influence of this matrix being symmetric positive definite was on the un-
derlying distribution in the probabilistic analysis.



Part II
Condition in Linear Optimization

(Andante)



Chapter 6
A Condition Number for Polyhedral Conic
Systems

The second part of this book is essentially a self-contained course on linear pro-
gramming. Unlike the vast majority of expositions of this subject, our account is
“condition-based.” It emphasizes the numerical aspects of linear programming and
derives probabilistic (average and smoothed) analyses of the relevant algorithms by
reducing the object of these analyses from the algorithm to the condition number of
the underlying problem.

In contrast to the exposition of the previous chapters, in this second part of the
book we will use conditioning mainly for complexity analyses. It won’t be until
Sect. 9.5 that we discuss finite-precision analysis.

In this chapter we begin the development of our course. We do so based on a par-
ticular problem, the feasibility of polyhedral conic systems. Briefly stated, the fea-
sibility problem we consider is whether a polyhedral cone given by homogeneous
linear inequalities is nontrivial (i.e., has a point other than the coordinate origin).
A goal of Sect. 6.1 below is to see that for this problem (as well as for numerous
others), the notion of conditioning as defined in the Overture does not help in any
analysis. An idea pioneered by Renegar is, in these situations, to define condition-
ing in terms of distance to ill-posedness. The main character in this chapter, the
condition number C (A)—here A is the matrix stipulating the linear inequalities—
is defined in these terms. As the chapter evolves, we will see that it can, in addition,
be characterized in a number of different ways. The last section of the chapter shows
that C (A) is a natural parameter in the analysis of some classical simple algorithms
to find points in feasible cones. In subsequent chapters, it will feature in the analysis
of more sophisticated algorithms. The characterizations we just mentioned will turn
out to be helpful in these analyses.

6.1 Condition and Continuity

Consider the problem ϕ that maps any pair (b, c) of real numbers to the number of
real roots of the polynomial f = X2 + bX + c. Since the possible values for this
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problem are the elements in {0,1,2}, the set of inputs is partitioned as D0 ∪D1 ∪D2

with Di = {(b, c) ∈R
2 | ϕ(b, c)= i}. We know that

D2 =
{
(b, c) ∈R

2 | b2 > 4c
}
,

D1 =
{
(b, c) ∈R

2 | b2 = 4c
}
,

D0 =
{
(b, c) ∈R

2 | b2 < 4c
}
,

so that dim(D2) = dim(D0) = 2 and dim(D1) = 1. Actually, the boundaries ∂D2

and ∂D0 are the same and coincide with the parabola D1.
What is the, say normwise, condition number for this problem? If (b, c) ∈ D2,

then all sufficiently small perturbations (b̃, c̃) of (b, c) will also be in D2. Hence,
for these perturbations RelError(ϕ(b, c))= 0, and therefore we have cond(b, c)= 0.
A similar argument yields the same equality when (b, c) ∈ D0. In contrast, when
(b, c) ∈ D1, one can find arbitrarily small perturbations (b̃, c̃) in D2 as well as
arbitrarily small perturbations in D0. Therefore, for these perturbations, the quo-
tient RelError(ϕ(b,c))

RelError(b,c) can be arbitrarily large, and it follows that cond(b, c)=∞ when
(b, c) ∈D1. In summary,

cond(b, c)=
{

0 if(b, c) ∈D0 ∪D2,

∞ if(b, c) ∈D1.

No matter whether for complexity or for finite-precision analysis, it is apparent that
cond(b, c) cannot be of any relevance.

The problem considered above has no computational mysteries. We have chosen
it simply for illustration purposes. The discussion above will nevertheless carry over
to any discrete-valued problem (one with values in a discrete set) and, with the
appropriate modifications, to any decision problem (one with values in {Yes,No}).
For these problems a different development is needed.

Firstly, a different format for finite-precision analysis appears to be a must, the
one discussed in the Overture making no sense in this context. The relevant question
is no longer how many correct significant figures are lost in the computation but
rather how many we need to start with (i.e., how small should εmach be) to ensure a
correct output.

Secondly, a different way of measuring condition, appropriate for the goal just
described, should be devised. One also expects such a measure to be of use in com-
plexity analyses.

It won’t be until Sect. 9.5 that we will deal with the first issue above. We can,
in contrast, briefly tackle the second one now. To do so, assume we have a deci-
sion problem. At the boundary where the output of the problem changes—i.e., the
boundary between the sets of data with output Yes and No—the usual condition
is infinity: arbitrarily small perturbations may change this output from any of these
values to the other. This boundary is therefore the set Σ of data that are ill-posed for
the problem (recall Sect. O.5.4), and Renegar’s idea is to define the condition of a
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as the (normalized, if appropriate) inverse of the distance d(a,Σ) to ill-posedness,
that is, in the normalized case, to take as condition number C(a) of a the following:

C(a) := ‖a‖
d(a,Σ)

.

In other words, we do not prove a condition number theorem for C(A): we impose it.
This idea extends straightforwardly to discrete-valued problems and will appear

systematically in this second part and, more sporadically, in the third and last part
of this book.

6.2 Basic Facts on Convexity

We explain here the basic notions related to convexity and recall some of the main
fundamental results in this context.

6.2.1 Convex Sets

A subset K ⊆R
m is called convex when

∀x, y ∈K ∀t ∈ [0,1], tx + (1 − t)y ∈K.

That is, K contains the line segment with endpoints x, y for all x, y ∈K . The convex
hull of a set of points a1, . . . , an ∈R

m is defined as

conv{a1, . . . , an} :=
{

n∑

i=1

tiai

∣∣
∣∣∣
t1, . . . , tn ≥ 0,

n∑

i=1

ti = 1

}

.

This is easily seen to be closed and the smallest convex set containing a1, . . . , an.
The affine hull of a1, . . . , an is defined as

aff{a1, . . . , an} :=
{

n∑

i=1

tiai

∣∣
∣∣∣
t1, . . . , tn ∈R,

n∑

i=1

ti = 1

}

.

This is the smallest affine subspace of R
m containing a1, . . . , an. We define the

convex hull conv(M) of a subset M ⊆ R
m as the union of all conv{a1, . . . , an},

where {a1, . . . , an} runs over all finite subsets of M . Similarly, we define aff(M) as
the union of all aff{a1, . . . , an}, where a1, . . . , an ∈M . The dimension of a convex
set K is defined as the dimension of its affine hull.

The separating hyperplane theorem is a fundamental result in convexity the-
ory. Throughout we denote by 〈x, y〉 := xTy =∑

i xiyi the standard inner product
on R

m.
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Theorem 6.1 Let K ⊆R
m be closed and convex. For p �∈K there exist y ∈R

m \{0}
and λ ∈R such that

∀x ∈K 〈x, y〉< λ< 〈p,y〉 (strict separation).

If p ∈ ∂K , there exists y ∈R
m \ {0} such that

∀x ∈K 〈x, y〉 ≤ 〈p,y〉 (supporting hyperplane). �

A closed half-space H ⊆ R
m is a set H = {z ∈ R

m | 〈z, y〉 ≤ 0} for some y ∈
R

m \ {0}. Similarly, we say that H ◦ = {z ∈R
m | 〈z, y〉< 0} is an open half-space.

A convex cone in R
m is a subset that is closed under addition and multiplication

by nonnegative scalars. We denote by cone(M) the convex cone generated by a
subset M ⊆R

m. More specifically, the convex cone generated by points a1, . . . , ak ∈
R

m is given by

cone{a1, . . . , ak} :=
{

x ∈R
m | ∃λ1 ≥ 0, . . . , λk ≥ 0 x =

k∑

i=1

λiai

}

.

This is easily seen to be a closed set.

Definition 6.2 The dual cone C̆ of a convex cone C ⊆R
m is defined as

C̆ := {
y ∈R

m | ∀x ∈ C 〈y, x〉 ≤ 0
}
.

It is clear that C̆ is a closed convex cone. Moreover, C1 ⊆ C2 implies C̆1 ⊇ C̆2.

Proposition 6.3 Let C ⊆ R
m be a closed convex cone. Then the dual cone of C̆

equals C.

Proof It is clear that C is contained in the dual cone of C̆. Conversely, suppose
that p �∈ C. Theorem 6.1 implies that there exist y ∈ R

m \ {0} and λ ∈ R such that
〈x, y〉< λ< 〈p,y〉 for all x ∈ C. Setting x = 0 yields 0 < λ.

If we had 〈x, y〉> 0 for some x ∈ C, then 〈kx, y〉 ≥ λ for some k > 0, which is
a contradiction to kx ∈ C. Therefore, we must have y ∈ C̃. Finally, 0 < λ < 〈y,p〉;
hence p is not in the dual of C̆. �

Here is an important consequence of the previous duality result.

Lemma 6.4 (Farkas’s lemma) Let A ∈ R
m×n and b ∈ R

m. There exists x ∈ R
m,

x ≥ 0, such that Ax = b if and only if for each y ∈ R
m satisfying ATy ≤ 0 one has

bTy ≤ 0.

Proof Suppose x ∈ R
m satisfies Ax = b and x ≥ 0 and let y ∈ R

m be such that
ATy ≤ 0. Then we have bTy = xTATy ≤ 0. This proves one direction of the asser-
tion.
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To prove the other direction consider the cone C := cone{a1, . . . , an} generated
by the columns ai of A. Note that the condition

∃x ∈R
m, x ≥ 0, Ax = b,

in geometric terms, just means that b ∈ C.
Assume now b �∈ C. Proposition 6.3 implies that b does not lie in the dual cone

of C̆. This means that there exists y0 ∈ C̆ such that bTy0 > 0. But ATy0 ≤ 0, since
y0 ∈ C̆. �

We also state without proof the following result due to Carathéodory.

Theorem 6.5 Let a1, . . . , an ∈R
m and x ∈ cone{a1, . . . , an}. Then there exists I ⊆

[n] with |I | ≤m such that x ∈ cone{ai | i ∈ I }. �

An affine version of Carathéodory’s result follows easily.

Corollary 6.6 Let a1, . . . , an ∈R
m with d-dimensional affine hull. Then for any x ∈

conv{a1, . . . , an} there exists I ⊆ [n] with |I | ≤ d + 1 such that x ∈ conv{ai | i ∈ I }.

Proof By replacing R
m with the affine hull of a1, . . . , an we may assume without

loss of generality that d =m. Let x =∑
i λiai with λi ≥ 0 and

∑
i λi = 1. Define

the following elements of Rm+1: ãi := (ai,1) and x̃ := (x,1). Then x̃ =∑
i λi ãi .

The assertion follows by applying Theorem 6.5 to these points. �

Corollary 6.7 Assume that I is as in Corollary 6.6 with minimal cardinality. Then
the affine hull of {ai | i ∈ I } must have dimension k = |I | − 1, that is, (ai)i∈I are
affinely independent.

Proof If we had k < |I | − 1, then Corollary 6.6 applied to the subset {ai | i ∈ I }
would yield the existence of J ⊆ I with x ∈ conv{aj | j ∈ J } and |J | ≤ k+ 1 < |I |,
which contradicts the minimality of I . �

We define the relative interior of K = conv{a1, . . . , an} by

relint
(
conv{a1, . . . , an}

) :=
{

n∑

i=1

tiai

∣∣∣∣
∣
t1, . . . , tn > 0,

n∑

i=1

ti = 1

}

.

One can show that this set can be intrinsically characterized by

relint(K)= {
a | ∃ε > 0∀a′ ∈ aff(K) : ∥∥a′ − a

∥∥< ε ⇒ a′ ∈K
}
.

This also provides the definition of relint(K) for an arbitrary convex set K . We
define the relative boundary ∂K of K as ∂K :=K \ relint(K). Here K is the topo-
logical closure of K in R

m.
For later use in Chap. 13 we also state without proof Helly’s theorem, which is

another basic result in convex geometry.
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Theorem 6.8 (Helly’s theorem) Let K1, . . . ,Kt ⊆R
m be a family of convex subsets

such that any n+1 of them have a nonempty intersection. Then K1∩· · ·∩Kt �= ∅. �

6.2.2 Polyhedra

Let a1, . . . , an ∈ R
m and b1, . . . , bn ∈ R. The set P = {x ∈ R

m | aT
i x ≤ bi, i =

1, . . . , n} is called a polyhedron. Since a polyhedron is an intersection of convex
sets, polyhedra are convex as well. It is easy to prove that there exists a subset
I ⊆ [n] such that

aff(P ) = {
x ∈R

m | ∀i �∈ I aT
i x = bi

}
,

∂P = {
x ∈ P | ∃i ∈ I aT

i x = bi
}
,

where we recall that ∂P denotes the relative boundary of P . We say that a subset
F ⊆ P is a face of P when there exists J ⊆ [n] such that

F = {
x ∈ P | ∀i ∈ J aT

i x = bi
}
. (6.1)

A face of P is called proper when it is strictly included in P . We note that ∂P is the
union of the proper faces of P .

Clearly, faces of a polyhedron are themselves polyhedra. In particular, they are
convex. Hence, a zero-dimensional face consists of a single point. These faces are
called vertices of P . We note the following important fact, whose easy proof is left
to the reader.

Lemma 6.9 A face F of a polyhedron P given as in (6.1) is a vertex of P if and
only if the corresponding matrix AJ , whose columns are the vectors ai with i ∈ J ,
satisfies rankAJ =m. �

The faces of a polyhedron are not arbitrarily placed in space. The following result
gives a restriction.

Lemma 6.10 Let F,F ′ be faces of a polyhedron P such that neither F ⊆ F ′ nor
F ′ ⊆ F . Then dim aff(F ∪ F ′) > max{dimF,dimF ′}.

Proof Without loss of generality, assume max{dimF,dimF ′} = dimF . Let I ⊆ [n]
be such that aff(F )= {x ∈R

m | ∀i �∈ I aT
i x = bi}. Then

F = {
x ∈R

m | ∀i �∈ I aT
i x = bi and ∀i ∈ I aT

i x ≤ bi
}
.

Since F ′ �⊆ F , there exists x0 ∈ F ′ such that x0 �∈ F . Since x0 ∈ F ′, we have aT
i x0 ≤

bi for all i ≤ n. Therefore, since x0 �∈ F , there exists j �∈ I such that aT
j x0 < bj .

This implies that x0 �∈ aff(F ) and hence that

dim conv
(
F ∪ F ′)≥ dim conv

(
F ∪ {x0}

)= dim aff
(
F ∪ {x0}

)
> dimF. �
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Lemma 6.11 If a line � is contained in a polyhedron P given by aT
i x ≤ bi ,

i = 1, . . . , n, then the matrix A with columns a1, . . . , an satisfies rankA < m. In
particular, P has no vertices.

Proof Let v �= 0 be a direction vector for �. Since �⊆ P , we have �⊆ {x | aT
i x = bi}

for all i. This implies aT
i v = 0 for all i, that is, v ∈ kerA. Hence rankA < m. The

second assertion follows now from Lemma 6.9. �

Lemma 6.12 If F is a face of a polyhedron of minimal dimension (among nonempty
faces), then aff(F )= F . In particular, if P has no vertices, then it contains a line.

Proof Let I ⊆ [n] be such that aff(F )= {x ∈R
m | ∀i ∈ I aT

i x = bi}.
Assume that F �= aff(F ). Then, there exists a point xN ∈ aff(F )\F . In particular,

there exists j �∈ I such that aT
j xN > bj . Let xF be any point in F and let

{
xt := txN + (1 − t)xF | t ∈ [0,1]}

be the segment with extremities xF and xN . Clearly, this segment is contained in
aff(F ). Let

t̄ = inf
{
t ∈ [0,1] | ∃j �∈ I s.t. aT

j xt > bj
}
.

Then there exists j̄ �∈ I such that xt̄ ∈ F , aT
j̄
xt̄ = bj̄ , but for all ε > 0, aT

j̄
xt̄+ε >

bj̄ . This shows that the face defined by the set Ī := I ∪ {j̄} is nonempty and has
dimension smaller than dimF , a contradiction.

The second statement is a trivial consequence of the first. �

The following result immediately follows from Lemmas 6.11 and 6.12.

Corollary 6.13 A polyhedron possesses vertices if and only if it does not contain
lines. �

6.3 The Polyhedral Cone Feasibility Problem

For A ∈R
m×n, consider the primal feasibility problem

∃x ∈R
n \ {0}, Ax = 0, x ≥ 0, (PF)

and the dual feasibility problem

∃y ∈R
m \ {0}, ATy ≤ 0. (DF)

We say that A is primal feasible or dual feasible when (PF), or (DF), respectively,
is satisfied. In both cases we talk about strict feasibility when the satisfied inequal-
ity is strict. The following result shows that strict primal feasibility and strict dual
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Fig. 6.1 A partition of Rm×n

with respect to feasibility

feasibility are incompatible. To simplify its statement we introduce some notation.
Let FP and FD denote the sets of matrices A where (PF) and (DF) are satisfied,
respectively. Moreover, let

F◦
P = {

A ∈R
m×n | ∃x ∈R

nAx = 0, x > 0
}
,

F◦
D = {

A ∈R
m×n | ∃y ∈R

mATy < 0
}

be the sets of strictly primal and strictly dual feasible matrices. Finally, let R :=
{A ∈R

m×n | rankA=m} and

Σ :=FP ∩FD.

Denote by int(M), M , and ∂M =M \ int(M), the interior, closure, and boundary of
a subset M of Euclidean space.

One can easily show that if n≤m, then FD =R
m×n. The situation of interest is

therefore the case n >m, and in what follows we will assume this inequality.

Theorem 6.14 Both FP and FD are closed subsets of Rm×n. In addition, this space
is partitioned as

R
m×n = int

(
F◦

P

)∪ int
(
F◦

D

)∪Σ,

and we have

Σ = ∂FP = ∂FD.

Furthermore, F◦
P ⊇ int(FP ), F◦

P \ int(FP )=F◦
P ∩Σ = {A ∈Σ | rankA<m}, and

F◦
D = int(FD).

For this case, Fig. 6.1 provides a schematic picture derived from Theorem 6.14.
On it, the 2-dimensional space corresponds to the set of all matrices. The curve
corresponds to the set Σ , which is divided into three parts. All matrices in Σ are
in FD \ F◦

D : those on the full part of the curve correspond to full-rank matrices
that are also in FP \ F◦

P , those on the dashed part to rank-deficient matrices with
this property, and those on the dotted part to rank-deficient matrices that are in F◦

P .
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We observe that there are rank-deficient matrices that are not in Σ , all of them being
in F◦

D .
The set Σ , just as in the picture, is of dimension smaller than mn.
We see that for matrices in Σ , arbitrarily small perturbations can lead to a change

with respect to feasibility. In contrast, in the set D =R
m×n \Σ the following prob-

lem is well-defined:

Given A ∈D decide whether A ∈F◦
P or A ∈F◦

D .

We call this the polyhedral cone feasibility problem (and we denote it by PCFP).
For all A ∈Σ the problem is ill-posed.

The polyhedral cone feasibility problem fits the situation described in the intro-
duction of this chapter. The approach to condition described in the Overture cannot
be applied here (note that even the values of this problem—the tags “strictly pri-
mal feasible” and “strictly dual feasible”—are not elements in a Euclidean space).
We need a different measure of condition. We will define this measure in the next
section. Before doing so, however, we will prove Theorem 6.14 and get some un-
derstanding about the partition depicted in Fig. 6.1.

We begin with a simple result (and recall Notation 1.9 for its statement).

Proposition 6.15 Both FP and FD are closed subsets of Rm×n and closed under
multiplication by scalars λi ≥ 0. That is, if [a1, . . . , an] ∈FP , then [λ1a1, . . . , λnan]
∈FP , and similarly for FD .

Proof Let Sm−1 := {y ∈R
m | ‖y‖ = 1} denote the (m−1)-dimensional unit sphere.

The compactness of Sm−1 easily implies that

FD = {
A | ∃y ∈ S

m−1〈a1, y〉 ≤ 0, . . . , 〈an, y〉 ≤ 0
}

is closed. Similarly, one shows that FP is closed. The second statement is trivial. �

Let A ∈R
m×n and denote by a1, . . . , an ∈R

m its columns. We have the following
geometric characterizations:

A ∈FP ⇔ 0 ∈ conv{a1, . . . , an},
A ∈F◦

P ⇔ 0 ∈ relint
(
conv{a1, . . . , an}

)
.

(6.2)

Also, by definition, we have

A ∈FD ⇔ ∃H closed half-space such that conv{a1, . . . , an} ⊆H,

A ∈F◦
D ⇔ ∃H ◦ open half-space such that conv{a1, . . . , an} ⊆H ◦.

From the definition of Σ and the first equivalence in (6.2) we obtain the following
characterization:

A ∈Σ ⇔ A ∈FD and 0 ∈ conv{a1, . . . , an}. (6.3)
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Lemma 6.16 For A ∈R
m×n we have

(a) A �∈F◦
D ⇔ A ∈FP .

(b) A �∈F◦
P ⇒ A ∈FD . The converse is true if rankA=m.

Proof (a) We prove the contrapositive. Suppose A ∈ F◦
D . Then there exists

y ∈R
m \ {0} such that 〈ai, y〉< 0 for all i. If we had

∑
i xiai = 0 for some xi ≥ 0

with
∑

i xi = 1, then
∑

i xi〈ai, y〉 = 〈∑i xiai, y〉 = 0. Hence xi = 0 for all i, which
is a contradiction.

Conversely, suppose that A �∈ FP , that is, 0 �∈ conv{a1, . . . , an}. Theorem 6.1
(strict separation) implies that A ∈F◦

D .
(b) Suppose A �∈ F◦

P . Then 0 �∈ relint(conv{a1, . . . , an}), and therefore 0 �∈
int(conv{a1, . . . , an}). Theorem 6.1 implies A ∈FD . For the other direction assume
that A ∈ FD , say 〈ai, y〉 ≤ 0 for all i and some y �= 0. If we had A ∈ F◦

P , then∑
i xiai = 0 for some xi > 0. Therefore

∑
i xi〈ai, y〉 = 0, whence 〈ai, y〉 = 0 for

all i. This implies rank(A)≤m− 1. �

Remark 6.17 For the converse of part (b) of Lemma 6.16 we indeed need the
rank assumption. To see this, take, for example, a1, . . . , an ∈ R

m−1 such that
0 ∈ relint(conv{a1, . . . , an}). Then A ∈FD ∩F◦

P .

Lemma 6.16 implies that F◦
P and F◦

D are disjoint,

FD \F◦
D =Σ, FP \F◦

P ⊆Σ,

and the right-hand inclusion becomes an equality when the matrices are restricted
to being of rank m. Moreover, again using Lemma 6.16,

R
m×n =FP ∪FD =F◦

P ∪F◦
D ∪Σ. (6.4)

Furthermore, since Σ is closed, F◦
D is open. It is somewhat confusing that

F◦
P is not open. To see this, consider again a1, . . . , an ∈ R

m−1 such that 0 ∈
relint(conv{a1, . . . , an}). Then A ∈ F◦

P , but there are arbitrarily small perturbations
of A that lie in F◦

D .

Lemma 6.18

(a) FD ⊆F◦
D .

(b) FP ⊆F◦
P ∩R.

Proof (a) Let A = [a1, . . . , an] ∈ FD . Hence there exists y ∈ S
m−1 such that

〈ai, y〉 ≤ 0 for all i. For ε > 0 put ai(ε) := ai − εy. Then 〈ai(ε), y〉 = 〈ai, y〉 − ε ≤
−ε; hence A(ε)= [a1(ε), . . . , an(ε)] ∈F◦

D . Moreover, limε→0 A(ε)=A.
(b) Let A= [a1, . . . , an] ∈FP . Put W := span{a1, . . . , an} and d := dimW . The

first equivalence in (6.2) implies that 0 ∈ conv{a1, . . . , an}. Note that the affine hull
of {a1, . . . , an} equals W . By Carathéodory’s Corollary 6.6, we may assume without
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loss of generality that 0 = x1a1 + · · · + xkak with xi > 0,
∑k

i=1 xi = 1, and k ≤
d + 1. Moreover, by Corollary 6.7, we may assume that the affine hull of a1, . . . , ak
has dimension k − 1. Without loss of generality we may assume that a1, . . . , ak−1

are linearly independent and that a1, . . . , ak−1, ak+1, . . . , ad+1 is a basis of W . Let
bd+2, . . . , bm+1 be a basis of the orthogonal complement W⊥. We define now

v(ε) := ak+1 + · · · + ad+1 + (ad+2 + εbd+2)+ · · · + (am+1 + εbm+1)

+ am+2 + · · · + an.

(Here we used the assumption n≥m+ 1.) Moreover, we put

ai(ε) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ai − εv(ε) for 1 ≤ i ≤ k,

ai for k + 1 ≤ i ≤ d + 1,

ai + εbi for d + 2 ≤ i ≤m+ 1,

ai for m+ 2 ≤ i ≤ n.

Note that v(ε)=∑n
i=k+1 ai(ε). It is clear that A(ε) := [a1(ε), . . . , an(ε)] converges

to A for ε → 0. Also, W = span{a1, . . . , ak−1, ak+1, . . . , ad+1}, and using this fact,
it follows that span{a1(ε), . . . , an(ε)} = R

m, i.e., that rank(A(ε))=m. Finally, we
have

0 =
k∑

i=1

xiai =
k∑

i=1

xiai(ε)+ εv(ε)=
k∑

i=1

xiai(ε)+
n∑

j=k+1

ε aj (ε).

Hence A(ε) ∈F◦
P . �

Corollary 6.19 Suppose n >m. Then

(a) Σ = ∂FD , int(FD)=F◦
D ,

(b) Σ = ∂FP , int(FP )⊆F◦
P .

Proof (a) We have F◦
D ⊆ int(FD), since F◦

D is open. Hence ∂FD =FD \ int(FD)⊆
FD \F◦

D =Σ . Suppose A ∈Σ . By Lemma 6.18 there is a sequence Ak →A such
that rankAk =m and Ak ∈F◦

P . Lemma 6.16 shows that Ak �∈FD . Hence A ∈ ∂FD .
It follows that ∂FD =Σ and int(FD)=F◦

D .
(b) Let A ∈Σ . By Lemma 6.18 there is a sequence Ak →A such that Ak ∈F◦

D ;
hence Ak �∈FP . Therefore A ∈ ∂FP . It follows that Σ ⊆ ∂FP . On the other hand,

∂FP ⊆Rm×n \FP =F◦
D ⊆FD,

and hence ∂FP ⊆FP ∩FD =Σ . It follows that Σ = ∂FP . Finally,

int(FP )=FP \ ∂FP =FP \Σ ⊆F◦
P . �
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It may seem disturbing that int(FP ) is properly contained in F◦
P . However, the

difference F◦
P \ int(FP ) lies in Σ and thus has measure zero, so that this will not

harm us (see Fig. 6.1).

Proof of Theorem 6.14 It immediately follows from the results in this section. �

6.4 The GCC Condition Number and Distance to Ill-posedness

We want to define a condition number for PCFP. A way of doing so relies on the
condition number theorem (Corollary 1.8). This result characterized the condition
number of linear equation solving, or matrix inversion, as the inverse of the rela-
tivized distance from the matrix at hand to the set of ill-posed matrices. Instead of
defining condition in terms of perturbations (which we have seen is now useless),
we can take the characterization of the condition number theorem as definition. We
have shown in the previous section that for PCFP, the set of ill-posed instances is
the boundary between feasible and infeasible instances. This motivates the follow-
ing definition.

Definition 6.20 Let A ∈R
m×n be given with nonzero columns ai . Suppose A �∈Σ

and A ∈F◦
S for S ∈ {P,D}. We define

Δ(A) := sup

{
δ > 0

∣∣∣∣ ∀A′ ∈R
m×n

(
max
i≤n

‖a′i − ai‖
‖ai‖ < δ ⇒A′ ∈F◦

S

)}
,

where a′i stands for the ith column of A′. The GCC condition number of A is defined
as

C (A) := 1

Δ(A)
.

If A ∈Σ , we set Δ(A)= 0 and C (A)=∞.

We note that the suprema are over nonempty bounded sets and hence welldefined,
since F◦

S \Σ = int(FS) for S ∈ {P,D} due to Corollary 6.19.
We have written the definition in such a way that it becomes clear that we mea-

sure the relative size of the perturbation for each row ai , where the relativization
is with respect to the norm of ai . Also, it is clear from the definition that Δ(A) is
scale-invariant in the sense that

Δ
([λ1a1, . . . , λnan]

)=Δ
([a1, . . . , an]

)
for λi > 0.

For the analysis of Δ we may therefore assume, without loss of generality, that
‖ai‖ = 1 for all i. Hence we can see the matrix A with columns a1, . . . , an as an
element in the product (Sm−1)n of spheres. The scale invariance of C (A), together
with the characterization of ‖ ‖12 in Corollary 1.3, yields immediately the following
result.
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Proposition 6.21 C (A)= ‖A‖12

d12(A,Σ)
. �

We now want to rewrite Definition 6.20 in a way that follows the ideas of
Sect. 2.4. Let dS(a, b) ∈ [0,π] denote the angular distance

dS(a, b) := arccos
(〈a, b〉).

It is clear that this defines a metric on S
m−1. We extend this metric to (Sm−1)n by

taking

dS(A,B) := max
1≤i≤n

dS(ai, bi).

Further, for a nonempty subset M ⊆ (Sm−1)n we write

dS(A,M) := inf
{
dS(A,B) | B ∈M

}
.

For simplicity of notation, we shall denote FP ∩ (Sm−1)n also by the symbol FP

and similarly for F◦
P ,FD,F◦

D , and Σ . This should not lead to any confusion.
The fact that Σ = ∂FP = ∂FD (cf. Corollary 6.19) immediately tells us that

dS
(
A, (Sm−1)n \F◦

P

)= dS(A,Σ) for A ∈F◦
P ,

dS
(
A, (Sm−1)n \F◦

D

)= dS(A,Σ) for A ∈F◦
D.

(6.5)

We postpone the proof of the following result (compare Theorem 6.27).

Lemma 6.22 For A ∈ (Sm−1)n we have dS(A,Σ) ≤ π
2 . Moreover, dS(A,Σ) = π

2
iff A= (a, a, . . . , a) for some a ∈ S

m−1.

We can now give a geometric characterization of the GCC condition number.
Recall the definition of dsin in a product of spheres (Sect. 2.4.1).

Proposition 6.23 For A ∈ (Sm−1)n we have Δ(A)= dsin(A,Σ). Hence

C (A)= 1

dsin(A,Σ)
.

Proof Without loss of generality A �∈Σ . Suppose A ∈F◦
P . It suffices to show that

(a) sindS(A,Σ)= 1 ⇒Δ(A)= 1,
(b) sindS(A,Σ) < d ⇔Δ(A) < d for all 0 < d < 1.

The first case is easily established with the second part of Lemma 6.22. Thus, let
0 < d < 1 be such that sindS(A,Σ) < d . Lemma 6.22 tells us that dS(A,Σ) ≤ π

2 ,
hence dS(A,Σ) < arcsind . By (6.5) there exists B = (b1, . . . , bn) �∈ F◦

P such
that dS(A,B) < arcsind . Additionally, we may assume that ‖bi‖ = 1. Let θi =
dS(ai, bi) (cf. Fig. 6.2).
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Fig. 6.2 The definition of bi

By definition, dS(A,B)= maxi θi ; hence θi < arcsind for all i, and therefore
∥∥(cos θi)bi − ai

∥∥= sin θi < d.

It follows from the definition of Δ(A) that Δ(A) < d (consider the matrix A′ with
the columns (cos θi)bi ).

Conversely, assume Δ(A) < d for d < 1. Then there exists A′ �∈ F◦
P such that

maxi ‖a′i − ai‖< d . In particular, a′i �= 0. For bi := a′i
‖a′i‖ we have θi := dS(ai, bi) <

π
2 and for all i,

sin θi = min
λ>0

‖λbi − ai‖ ≤
∥∥a′i − a

∥∥< d

(cf. Fig. 6.2). Hence dS(A,B) < arcsind , and therefore we have dS(A,Σ) =
dS(A, (Sm−1)n \F◦

P ) < arcsind .
The case A ∈F◦

D is proved analogously. �

6.5 The GCC Condition Number and Spherical Caps

We provide here a characterization of the GCC condition number in terms of an
optimization problem in spherical geometry.

For p ∈ S
m−1 and α ∈ [0,2π] recall that

cap(p,α) := {
y ∈ S

m−1 | 〈p,y〉 ≥ cosα
}

denotes the spherical cap in S
m−1 with center p and angular radius α.

Definition 6.24 A smallest including cap (SIC) for A= (a1, . . . , an) ∈ (Sm−1)n is
a spherical cap cap(p,α) of minimal radius containing the points a1, . . . , an. Its
blocking set is defined as {i ∈ [n] | 〈ai,p〉 = cosα} (which can be seen as the set of
“active rows”).

We remark that by a compactness argument, an SIC always exists. However, there
may be several SICs (consider, for instance, three equidistant points on the circle).
While an SIC for A might not be uniquely determined, its radius certainly is and
will be denoted by ρ(A).
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Lemma 6.25 We have ρ(A) < π
2 iff A ∈F◦

D . Moreover, ρ(A)= π
2 iff A ∈Σ .

Proof We have ρ(A) < π
2 iff a1, . . . , an are contained in a spherical cap of ra-

dius less than π
2 . This means that there exists p ∈ S

m−1 such that 〈a1,−p〉 <

0, . . . , 〈an,−p〉< 0. This is equivalent to A ∈F◦
D . By the same reasoning, ρ(A)≤

π
2 is equivalent to A ∈FD . This proves the lemma. �

Lemma 6.26 Let cap(p,ρ) be an SIC for A = (a1, . . . , an) with blocking set [k].
Write t := cosρ, so that

〈a1,p〉 = · · · = 〈ak,p〉 = t, 〈ak+1,p〉> t, . . . , 〈an,p〉> t.

Then tp ∈ conv{a1, . . . , ak}.

Proof Suppose first that A is dual feasible, i.e., that t ≥ 0. It suffices to show that
p ∈ cone{a1, . . . , ak}. Indeed, if p =∑k

i=1 λiai , λi ≥ 0, then tp =∑k
i=1 tλiai . Fur-

thermore,

k∑

i=1

tλi =
k∑

i=1

λi〈ai,p〉 =
〈 k∑

i=1

λiai,p

〉
= 〈p,p〉 = 1.

We argue by contradiction. If p �∈ cone{a1, . . . , ak}, then by the separating hy-
perplane theorem (Theorem 6.1) there would exist a vector v ∈ S

m−1 such that
〈p,v〉< 0 and 〈ai, v〉> 0 for all i. For δ > 0 we set

pδ := p+ δv

‖p+ δv‖ = p+ δv
√

1 + 2δ〈p,v〉 + δ2
.

Then for 1 ≤ i ≤ k and sufficiently small δ we have

〈ai,pδ〉 = t + δ〈ai, v〉√
1 + 2δ〈p,v〉 + δ2

> t.

Moreover, by continuity we have 〈ai,pδ〉> t for all i > k and δ sufficiently small.
We conclude that for sufficiently small δ > 0 there exists tδ > 0 such that 〈ai,pδ〉>
tδ for all i ∈ [n]. Hence cap(pδ,αδ) is a spherical cap containing all the ai that have
angular radius αδ = arccos tδ < α, contradicting the minimality assumption.

In the case that A is dual infeasible (t < 0) one can argue analogously. �

Theorem 6.27 We have

dS(A,Σ)=
{

π
2 − ρ(A) if A ∈FD,

ρ(A)− π
2 if A ∈ (Sm−1)n \FD.

In particular, dS(A,Σ)≤ π
2 and

C (A)−1 = sindS(A,Σ)= ∣∣cosρ(A)
∣∣.
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Fig. 6.3 A= (a1, a2, a3) ∈
FD , A′ = (a′1, a′2, a′3) ∈Σ ,
and t = t (A)

Proof We first assume that A ∈ FD . Let cap(p,ρ) be an SIC for A and put t :=
cosρ. Thus ρ ≤ π

2 and hence t ≥ 0. Let A′ ∈ (Sm−1)n be such that dS(A
′,A) ≤

π
2 − ρ. Since dS(p, ai)≤ ρ for all i, we get

dS
(
p,a′i

)≤ dS(p, ai)+ dS
(
ai, a

′
i

)≤ ρ + π

2
− ρ = π

2
.

Hence 〈p,a′i〉 ≥ 0 for all i, which implies A′ ∈FD . We have thus proved the impli-
cation

∀A′, dS
(
A′,A

)≤ π

2
− ρ ⇒A′ ∈FD.

This implies

dS(A,Σ)= dS
(
A,

(
S
m−1)n \FD

)≥ π

2
− ρ.

For the other direction, without loss of generality, let [k] be the blocking set
of cap(p,ρ). We have 〈ai,p〉 = t for i ≤ k, 〈ai,p〉 > t for i > k, and tp ∈
conv{a1, . . . , ak} by Lemma 6.26 (see Fig. 6.3). We assume that ai �= tp for i ∈ [k],
since otherwise, ai = tp = p for all i ∈ [n], and for this case the claim is easily
established. Put

a′i :=
{ ai−tp

‖ai−tp‖ for i ≤ k,

ai fori > k.

Then 〈a′i , p〉 ≥ 0 for all i ∈ [n], 〈a′i , p〉 = 0 for i ≤ k, and 0 ∈ conv{a′1, . . . , a′k}. The
characterization (6.3) (p. 131) implies that A′ = (a′1, . . . , a′n) ∈Σ . Hence

dS(A,Σ)≤ dS
(
A,A′)≤ π

2
− ρ.

Altogether, we have shown that dS(A,Σ) = π
2 − ρ, which proves the assertion in

the case A ∈FD .
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Fig. 6.4 A′q ≤ 0, A �∈FD ,
and dS(ai0 , a

′
i0
)≥ α − π

2

We assume now A �∈FD . Let cap(p,ρ) be an SIC for A. Note that for all i ∈ [n]
with 〈ai,p〉< 0 we have ai �= 〈ai,p〉 ·p, since equality would yield a contradiction
to the minimality of ρ, which is easily seen. We set

a′i :=
{

ai−〈ai ,p〉·p
‖ai−〈ai ,p〉·p‖ if ai − 〈ai,p〉 · p < 0,

ai otherwise.

As in the proof of the case A ∈ FD , we see that A′ = (a′1, . . . , a′n) ∈ Σ and
dS(A

′,A)≤ ρ − π
2 . Hence

dS(A,Σ)≤ ρ − π

2
.

For the other direction we need to prove that

∀A′
(
A′ ∈FD ⇒ dS

(
A′,A

)≥ ρ − π

2

)
.

So let A′ ∈ FD and q ∈ S
m−1 be such that A′q ≤ 0. Consider the cap of smallest

angular radius α with center −q that contains all the points ai . Then α ≥ ρ. Choose
i0 such that (see Fig. 6.4)

dS(ai0,−q)= max
1≤i≤n

dS(ai,−q)= α.

It follows that

dS
(
A,A′)≥ dS

(
ai0, a

′
i0

)≥ dS(ai0,−q)− dS
(−q, a′i0

)≥ α− π

2
≥ ρ − π

2
.

Therefore dS(A,Σ)≥ ρ − π
2 , which completes the proof. �
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6.6 The GCC Condition Number and Images of Balls

The goal of this section is to exhibit a characterization of C (A) in the spirit of Propo-
sition 1.11. This proposition (together with Theorem 1.7) tells us that for A ∈R

n×n,

d12(A,Σ)= ∥∥A−1
∥∥−1

21 = inf
{‖y‖ | y ∈ {

Ax | ‖x‖1 = 1
}}

,

where Σ denotes here the set of singular matrices.
The positive orthant will have to play a role alongside the balls, and the statement

of the corresponding result, Proposition 6.28 below, is far from apparent. To further
motivate it we note the following fact, which follows easily from (6.2).

We assign to A= [a1, . . . , an] ∈R
m×n the convex hull

K := conv{a1, . . . , an} =
{
Ax | x ≥ 0,‖x‖1 = 1

}
.

Then A ∈ F◦
D implies 0 �∈ K. Moreover, A ∈ F◦

P , and rankA = m implies 0 ∈
int(K). Proposition 6.28 is a quantitative version of this observation.

As usual, we will assume the matrix A to have columns ai with unit norm, that
is, A ∈ (Sm−1)n. Recall from Corollary 1.3 that ‖A‖12 = maxi≤n ‖ai‖. Therefore,
for S ∈ {P,D} and A ∈F◦

S , Definition 6.20 yields

Δ(A) := sup
{
δ > 0 | ∀E ∈R

m×n
(‖E‖12 < δ ⇒A+E ∈F◦

S

)}
. (6.6)

Proposition 6.28 Let A ∈ (Sm−1)n and K := conv{a1, . . . , an}.
(a) If A ∈FD , then

Δ(A)= inf
{‖y‖ | y ∈K

}
.

(b) If A ∈FP , then

Δ(A)= sup
{
δ | ‖y‖ ≤ δ ⇒ y ∈K

}
.

Proof (a) Assume that the perturbation E is such that A+E ∈FP . Then there exists
x ≥ 0, x �= 0, such that (A+E)x = 0. Without loss of generality assume ‖x‖1 = 1.
Then y := −Ex =Ax ∈K. Moreover, ‖y‖ ≤ ‖E‖12‖x‖1 = ‖E‖12. Therefore

‖E‖12 ≥ inf
{‖y‖ | y ∈K

}
.

Since this holds for all E such that A+E ∈FP , it follows from (6.6) that Δ(A)≥
inf{‖y‖ | y ∈K}.

To see the reverse inequality, assume that y =Ax with x ≥ 0, ‖x‖1 = 1, is given.
Consider the rank-one perturbation

E := −yuT,

where u ∈R
n satisfies ‖u‖∞ = 1 and uTx = 1 (use (1.3)). This perturbation satisfies

‖E‖12 = ‖y‖ and (A+E)x =Ax+Ex = y−y = 0 with 0 �= x ≥ 0. In other words,
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A+E ∈FP . Therefore

Δ(A)≤ ‖E‖12 = ‖y‖.
Since this holds for arbitrary y ∈ K, we conclude, using (6.6) again, that Δ(A) ≤
inf{‖y‖ | y ∈K} as well.

(b) We set Ω = {δ | ‖y‖ ≤ δ ⇒ y ∈K} and first show that

∀y ∈R
m

(‖y‖<Δ(A)⇒ y ∈K
)
, (6.7)

which implies Δ(A) ≤ supΩ . By contradiction, suppose that there exists y �∈ K
with ‖y‖<Δ(A). The separating hyperplane theorem (Theorem 6.1) applied to the
closed convex set K shows that there exists u ∈ R

m with ‖u‖ = 1 and λ ∈ R such
that

∀i ∈ [n], 〈u,y〉< λ< 〈u,ai〉.
By the Cauchy–Schwarz inequality,

−λ <−uTy ≤ ‖y‖<Δ(A),

whence λ >−Δ(A). Theorem 6.27 implies that Δ(A)= sindS(A,Σ)= sin(ρ(A)−
π
2 )=− cosρ(A), since we assume that A ∈FP . We have shown that

∀i ∈ [n] cosρ(A)=−Δ(A) < λ < uTai.

It follows that there is a spherical cap centered at u containing all the ai that has a
radius strictly smaller than ρ(A). This is a contradiction and proves (6.7).

To show that supΩ ≤ Δ(A), let E ∈ R
m×n be such that A + E �∈ FP . Then,

A+E ∈F◦
D , and hence there exists y ∈R

m such that (A+E)Ty ≥ 0 and ‖y‖ = 1.
This implies that ETy ≥−ATy and hence that

for all x ∈R
n, x ≥ 0, xTETy ≥−xTATy. (6.8)

Consider now any δ ∈Ω . By (1.3) there exists ȳ ∈ R
m, ‖ȳ‖ = δ, such that ȳTy =

−δ. Since δ ∈ Ω there exists x ∈ R
n, x ≥ 0, ‖x‖1 = 1, such that Ax = ȳ. Hence,

using (6.8),

yTEx = xTETy ≥−xTATy =−yTAx =−yTȳ = δ,

which implies

‖E‖12 ≥ ‖Ex‖ = ‖Ex‖‖y‖ ≥ ∣∣yTEx
∣∣≥ δ.

This shows, using (6.6) a last time, that Δ(A)≥ supΩ . �

It is possible to give other characterizations of C (A) in the spirit of Proposi-
tion 1.11. As an example, we state without proof the following result.

Proposition 6.29 Let A= [a1, . . . , an] ∈ (Sm−1)n. If A ∈FD , then

Δ(A)= sup
{
δ | ‖x̄‖∞ ≤ δ ⇒ x̄ ∈ {

ATv+R
n+ | ‖v‖ ≤ 1

}}
. �
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Fig. 6.5 Understanding
Ξ(A) for A ∈FD

6.7 The GCC Condition Number and Well-Conditioned
Solutions

The definition of C (A) given in Sect. 6.4 is in terms of a relativized distance to
ill-posedness. Its characterization in Sect. 6.5 translates the space where the geo-
metric property defining C (A) occurs from the space of data (Sm−1)n—where dS is
defined—to the sphere Sm−1—where smallest including caps are. With a little extra
effort we can now look at Sm−1 as the space of solutions for the problem ATy ≤ 0
and characterize C (A) in terms of the “best conditioned solution” (at least when
A ∈FD). This is the idea.

For A ∈R
m×n with nozero columns ai we define

Ξ(A) := min
y∈Sm−1

max
i≤n

aT
i y

‖ai‖ .

To understand Ξ(A) assume A ∈ FD and let SolD(A) = {y ∈ S
m−1 | ATy ≤ 0}.

This set is a polyhedral cone whose boundary is made of subsets of the hyperplanes
hi := {aT

i y = 0}. Now consider y ∈ SolD(A). For each i ∈ [n] we have aT
i y ≤ 0 and

hence maxi≤n
aT
i y‖ai‖ ≤ 0. We claim that

−max
i≤n

aT
i y

‖ai‖ = mindi, (6.9)

where di is the distance from y to the hyperplane hi . Indeed, for each i ∈ [n], we
have (cf. Fig. 6.5)

di = sin∠(y,hi)=− cos∠(y, ai)=− aT
i y

‖ai‖
and consequently (6.9). Note that Ξi ≤ 0 if and only if A ∈FD .

Proposition 6.30 For all A ∈ R
m×n with nonzero columns, we have |Ξ(A)| =

Δ(A).

Proof By Theorem 6.27 it is enough to show that Ξ(A)=− cosρ(A). To do so, we
may assume in addition ‖ai‖ = 1 for i ∈ [n].

Let ρ = ρ(A) and p ∈ S
m−1 be such that cap(p,ρ) is an SIC for A. Take

ȳ =−p. Then,
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Ξ(A)≤ max
i≤n

aT
i ȳ =−min

i≤n
aT
i p =− cosρ,

the last inequality resulting from ai ∈ cap(p,ρ).
To prove the reverse inequality let y∗ ∈ S

m−1 be such that Ξ(A)= maxi≤n a
T
i y∗

and let p =−y∗ and α = arccos(−Ξ(A)). Then,

min
i≤n

aT
i p =−max

i≤n
aT
i y∗ = −Ξ(A)= cosα.

It follows that ai ∈ cap(p,α) for all i ∈ [n] and therefore that ρ ≤ α. This implies
Ξ(A)=− cosα ≥− cosρ. �

6.8 Condition of Solutions and Condition Numbers

Proposition 6.30 introduces a new view for condition. In our first approach in the
Overture we considered problems as functions ϕ : D ⊆ R

m → R
q . A number of

natural problems, however, do not fit this pattern, since the desired output for a
datum a ∈D may not be uniquely specified, for instance, the problem of computing
a complex root when given a univariate polynomial (which does not require any
specific root to be returned), or the problem of, given a matrix A ∈R

m×n, deciding
whether A ∈FD and if so, returning a point y ∈R

m \ {0} such that ATy ≤ 0.
For problems of this kind, we may approach conditioning from a different view-

point. For an input a, let Sol(a) be its associated set of solutions (i.e., all the possible
outputs for a). If for each y ∈ Sol(a) we have a number ξ(a, y) quantifying the qual-
ity of the solution y, we may define the condition ξ(a) of a by taking some function
on the set {ξ(a, y) | y ∈ Sol(a)}. Typical choices are

ξ(a) := inf
y∈Sol(a)

ξ(a, y), ξ(a) := E
y∈Sol(a)

ξ(a, y), and

ξ(a) := sup
y∈Sol(a)

ξ(a, y),

where the expectation in the middle expression is for some distribution on Sol(A).
In the case of a matrix A ∈FD we have SolD(A)= {y ∈R

m \ {0} |ATy ≤ 0}. If for
y ∈ SolD(A), we define ξ(A,y) by

ξ(A,y)−1 := min
i≤n

di =−max
i≤n

aT
i y

‖ai‖‖y‖
(cf. (6.9)), then we have

max
y∈SolD(A)

ξ(A,y)−1 = max
y∈SolD(A)

−max
i≤n

aT
i y

‖ai‖‖y‖ =− min
y∈SolD(A)

max
i≤n

aT
i y

‖ai‖‖y‖
= −Ξ(A)= ∣∣Ξ(A)

∣∣=Δ(A).

Therefore, C (A)= miny∈SolD(A) ξ(A,y).
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The quantity ξ(A,y)−1 is the sine of the angular distance from y to the boundary
of the cone SolD(A). The larger this distance, the better conditioned is the solution
y. The equality C (A)= miny∈SolD(A) ξ(A,y) thus expresses C (A) as the condition
of the “best conditioned” point in SolD(A).

We finish this section by mentioning that we will encounter in Chaps. 17
and 18, in Part III, examples for the other two choices for ξ(a), namely
ξ(a) := Ey∈Sol(a)ξ(a, y)—the “average conditioned” solution—as well as ξ(a) :=
supy∈Sol(a) ξ(a, y)—the “worst conditioned” solution.

6.9 The Perceptron Algorithm for Feasible Cones

We close this chapter providing a first, simple, example of the use of C (A) in com-
plexity analysis.

Assume we are given a matrix A ∈ R
m×n such that A ∈ F◦

D . Then, the set
Sol◦D(A) = {y ∈ R

m | ATy < 0} is not empty, and we may be interested in finding
a point in this set. Let us denote this problem by SLI (system of linear inequali-
ties).

In what follows we describe an algorithm solving SLI, known as the perceptron,
whose complexity is naturally analyzed in terms of C (A). One can devise an ex-
tension of this algorithm that actually decides whether A ∈ F◦

P or A ∈ F◦
D , but we

will proceed differently, postponing the issue to Chap. 9, where a different method
to solve PCFP is described.

Let us denote by a1, . . . , an, the columns of A which, without loss of generality,
we will assume to have norm one. That is, aj ∈ S

m−1 for i = 1, . . . , n. The following
is the perceptron algorithm.

Algorithm 6.1 Perceptron

Input: a1, . . . , an ∈ S
m−1

Preconditions: {y ∈R
m |ATy < 0} �= ∅

y := 0
repeat

if ATy < 0 then return y and halt

else let j be the first index s.t. aT
j
y ≥ 0

y := y − aj

Output: y ∈R
m

Postconditions: ATy < 0

The role of C (A) in the analysis of Algorithm 6.1 is given in the following result

Theorem 6.31 The number of iterations of Algorithm 6.1 is bounded by C (A)2.
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Proof Let p ∈ S
m−1 and ρ ∈ [0, π

2 ) be such that an SIC for A is cap(p,ρ) (see
Sect. 6.5). By Theorem 6.27, C (A) = (cosρ)−1. In addition, w := − p

mini a
T
i p

is in

Sol◦D(A), and for all j ≤ n and y ∈R
m such that aT

j y ≥ 0, we have

‖y − aj −w‖2 = ‖y −w‖2 − 2aT
j (y −w)+ 1 ≤ ‖y −w‖2 − 2aT

j y + 2aT
j w+ 1

≤ ‖y −w‖2 − 2
aT
j p

mini a
T
i p

+ 1 ≤ ‖y −w‖2 − 2 + 1

= ‖y −w‖2 − 1.

A trivial induction shows that if yk is the point produced at the kth iteration of the
algorithm, then ‖yk − w‖2 ≤ ‖w‖2 − k. Hence, the algorithm stops after at most
‖w‖2 iterations. But

‖w‖ = ‖p‖
mini a

T
i p

= 1

mini a
T
i p

= 1

cosρ
,

with the last equality by Lemma 6.26. Since C (A)= 1
cosρ , we can conclude. �



Chapter 7
The Ellipsoid Method

In this chapter we describe an algorithm, known as the ellipsoid method, solving the
problem SLI we described in Sect. 6.9. Its complexity analysis can also be done in
terms of C (A), but in exchange for a loss of simplicity, we obtain bounds linear in
lnC (A) (instead of the quadratic dependence in C (A) of the perceptron algorithm).

We also introduce in this chapter, in its last section, a new theme: the use of
condition numbers in the analysis of algorithms taking integer (as opposed to real)
data. We will show that if the entries of A ∈ F◦

D are integer numbers, then one can
return y ∈ Sol◦D(A) with a cost—and since all our data are discrete, we mean bit
cost (see Sect. 5.1)—polynomial in n,m and the bit-size of the largest entry in A.

7.1 A Few Facts About Ellipsoids

Definition 7.1 An ellipsoid in R
m with center p ∈R

m is a set of the form

E =E(p,A) := {
x ∈R

m | (x − p)TA−1(x − p)≤ 1
}
,

where A ∈R
m×m is a positive definite symmetric matrix.

In the special case that p = 0 and A= diag(α2
1, . . . , α

2
m) is a diagonal matrix, the

ellipsoid E(0,A) takes the special form

E(0,A)=
{
y ∈R

m

∣∣∣∣
y2

1

α2
1

+ · · · + y2
m

α2
m

≤ 1

}
. (7.1)

The α1, . . . , αm can be interpreted as the lengths of the principal axes of E(0,A).
It is straightforward to check that an invertible affine map φ : Rm → R

m, x �→
Sx+ v, where S ∈ GLm(R) and v ∈R

m, transforms ellipsoids into ellipsoids. More
specifically, we have

φ
(
E(p,A)

)=E(q,B), where q = Sp+ v, B = SAST. (7.2)
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Fig. 7.1 The Löwner–John
ellipsoid E′ of
E(p,A)∩{x ∈R

2 | aT(x−p)≥ 0}

The volume of an ellipsoid can be expressed in terms of the determinant of the
defining matrix A as follows.

Proposition 7.2 We have volE(p,A) = √
detA · Om−1

m
, where Om−1 denotes the

volume of the unit sphere S
m−1.

Proof There exists S ∈ GLm(R) such that B = SAST = I is the unit matrix. In
particular, 1 = (detS)2 detA. By (7.2), the affine map φ corresponding to S and
v =−Sx0 maps E(x0,A) to the unit ball E(0, I). Therefore,

volE(x0,A)= (detS)−1 volE(0, I)=√
detA volE(0, I).

In Corollary 2.20 it was shown that the volume of the unit ball in R
m equals

volE(0, I)=Om−1/m, which completes the proof. �

Suppose we are given an ellipsoid E = E(p,A) and a nonzero vector a in R
m.

We want to intersect E with the half-space E∩{x ∈R
m |aT(x−p)≥ 0} and enclose

the resulting convex set in an ellipsoid E′ of small volume (cf. Fig. 7.1).
The following result tells us how to do so.

Theorem 7.3 Let E = E(p,A) be an ellipsoid in R
m and a ∈ R

m \ {0}. We define
the symmetric matrix A′ and the vector p′ by

p′ := p+ 1

m+ 1
· 1√

aTAa
·Aa,

A′ := m2

m2 − 1

(
A− 2

m+ 1
· 1

aTAa
·AaaTAT

)
.

(7.3)

Then A′ is positive definite, and the ellipsoid E′ =E(p′,A′) satisfies
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E ∩ {
x ∈R

m | aTx ≥ aTp
}⊆E′, (7.4)

volE′ < e− 1
2m volE. (7.5)

Proof We first assume p = 0, A= I, and a = e1 = (1,0, . . . ,0). Then E = E(0, I)
is the unit ball, and the half-space is described by x1 ≥ 0 (see Fig. 7.1). Equa-
tions (7.3) specialize to p′ := 1

m+1e1 and

A′ := m2

m2 − 1

(
I − 2

m+ 1
· e1e

T
1

)
= m2

m2 − 1
diag

(
m− 1

m+ 1
,1, . . . ,1

)
.

After some calculations we see that the ellipsoid E′ =E(p′,A′) is described by

(
m+ 1

m

)2(
x1 − 1

m+ 1

)2

+ m2 − 1

m2

m∑

i=2

x2
i ≤ 1.

This can be easily rewritten as the inequality

m2 − 1

m2

m∑

i=1

x2
i +

2(m+ 1)

m2
x1(x1 − 1)+ 1

m2
≤ 1. (7.6)

We note that equality holds here for the standard basis vectors e1, . . . , em, which
means that the boundary of E′ contains the ei , as suggested by Fig. 7.1. Using the
characterization (7.6) of E′, it is now easily checked that

{

x ∈R
m

∣∣∣∣∣

m∑

i=1

x2
i ≤ 1, x1 ≥ 0

}

⊆E′,

which proves (7.4). For proving (7.5), we note that by Proposition 7.2,

volE′

volE
=√

detA′ =
√

m− 1

m+ 1

(
m2

m2 − 1

)m
2 =: f (m). (7.7)

For the function f (m) on the right-hand side we have

f (m)−2m =
(

1 + 2

m− 1

)m−1(
1 + 2

m− 1

)(
1 − 1

m2

)m2

,

which converges to e2 · 1 · e−1 for m →∞. A more detailed analysis shows that
in fact, f (m)−2m ≥ e for m ≥ 2. This implies ( volE′

volE )2m ≤ f (m)2m ≤ e−1 and
hence (7.5).

The general case can be reduced to the special case we have just dealt with by
the following considerations. We know that assertions (7.4)–(7.5) hold for p = 0,
A = I, and a = e1. Let φ : Rm → R

m be an affine transformation given by S ∈
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GLm(R) and v ∈ R
m. By (7.2) we have φ(E(p,A))= E(q,B), where q = Sp+ v

and B = SAST. Defining b= (S−1)Ta, it is easily checked that

φ
({

x ∈R
m | aT(x − p)≥ 0

})= {
y ∈R

m | bT(y − q)≥ 0
}
.

Now we define q ′ and B ′ as in (7.3) by

q ′ = q + 1

m+ 1
· 1√

bTBb
·Bb,

B ′ = m2

m2 − 1

(
B − 2

m+ 1
· 1

bTBb
·BbbTBT

)
.

We claim that the ellipsoid E(q ′,B ′) satisfies

φ
(
E
(
p′,A′))=E

(
q ′,B ′), (7.8)

where p′ and A′ are as in the special case. Once this is proved, we can conclude
from (7.4) for the triple (p,A,a), by applying φ, that

E(q,B)∩ {
y ∈R

m
∣∣ bT(y − q)≥ 0

}⊆E
(
q ′,B ′).

Moreover, from (7.5), also for the triple (p,A,a), it follows that volE(q ′,B ′) <
e− 1

2m volE(q,B), using that

volφ
(
E
(
p′,A′))= detS · volE(p,A), volφ

(
E
(
q ′,B ′))= detS · volE(q,B).

It therefore remains to verify the claim (7.8). A calculation yields

bTBb= aTS−1SAST(S−1)T
a = aTAa.

Moreover, we have Bb = SAST(S−1)Ta = SAa, and BbbTB = SAaaTATST.
From these observations one readily sees that q ′ = Sq + v and B ′ = SBST, which
proves the claim (7.8) and thus completes the proof of the theorem. �

Remark 7.4

(a) The computation of p′ and A′ from p and A can be done with O(m2) arithmetic
operations (and one square root).

(b) It is known that for every convex compact set K ⊆R
m there is a unique ellipsoid

E of minimal volume containing K . One calls E the Löwner–John ellipsoid. It
can be shown that the E′ defined in Theorem 7.3 is the Löwner–John ellipsoid
of E ∩ {x ∈R

m | aT(x − p)≥ 0}. See [114, §3.1] for more information.

7.2 The Ellipsoid Method

The goal of this section is to describe an algorithm finding a point in a nonempty
convex closed subset K ⊆ R

m. Before explaining the way the set K is specified,



7.2 The Ellipsoid Method 151

we recall from Theorem 6.1 that for a point p ∈ R
m not lying in K , there exists a

half-space H separating K from p, that is, there exists a ∈R
m such that H = {y ∈

R
m | aT(y − p)≥ 0} contains K (and the boundary of H contains p).
The algorithm to be described assumes the existence of (and makes calls to)

a procedure that when given p ∈ R
m, returns either the statement “p ∈ K” or a

nonzero vector a ∈ R
m defining a half-space separating K from p. We call such a

procedure a separation oracle for K . It also assumes that K is contained in the ball
B(p,R) and that both p ∈ R

m and R > 0 are given as input. Here is the general
description of the ellipsoid method.

Algorithm 7.1 Ellip_Method

Input: K ⊆R
m given by a separation oracle, p ∈R

m, R > 0

Preconditions: K �= ∅ is convex and compact; K ⊆E0 := B(p,R)

y0 := p

t := 0
repeat

if yt ∈K then return yt and halt
if yt �∈K use the separation oracle to find a

separating half-space H ⊇K

compute an ellipsoid Et+1 with center yt+1
containing Et ∩H by applying Theorem 7.3

t := t + 1

Output: y ∈R
m

Postconditions: y ∈K

In the case that K is a polyhedron, a separation oracle can be easily implemented.
Indeed, suppose that K ⊆R

m is given by a system of n linear inequalities (ai ∈R
m,

bi ∈R)

aT
1 y ≤ b1, . . . , a

T
n y ≤ bn.

Then a separation oracle can be implemented with O(mn) arithmetic operations.
For a given p ∈R

m one just checks the conditions aT
i p ≤ bi for all i. If p �∈K , then

one finds an index i such that aT
i p > bi , and hence

H := {
y ∈R

m | − aT
i (y − p)≥ 0

}

is a half-space separating K from p.

Theorem 7.5 The ellipsoid method works correctly. That is, it returns a point in K .
Furthermore, for m≥ 4, the number of iterations it performs on input (K,R,p) is
bounded by �3(m+ 1) ln V

ν
�, where V := volB(p,R) and ν = volK .
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Proof Note that if the algorithm reaches iteration t , then K ⊆Et . Moreover, Theo-
rem 7.3 implies that

volEt ≤ e
− t

3(m+1) volE0.

Hence, for t > �3(m+ 1) ln V
ν
� we have e

− t
3(m+1) volE0 < ν and therefore volK ≤

volEt < ν, a contradiction. The claimed bound follows. �

We can now proceed to analyze the complexity of the ellipsoid method for the
problem SLI of finding a point in SolD(A) = {y ∈ R

m | y �= 0,ATy ≤ 0} for given
A ∈ F◦

D in terms of the GCC condition number C (A). Since we are dealing with
cones, SolD(A) is nonempty iff the convex compact set KA := SolD(A) ∩ B(0,1)
is nonempty.

We will apply Algorithm 7.1 to the set KA given by the separation oracle ex-
plained before. (We note that even though the inequality

∑
i y

2
i ≤ 1 has to be added

to the description of KA, this inequality is never violated during the execution of
the algorithm.) So we may take p = 0 and R = 1 in Algorithm 7.1. The next result
shows that, in addition, we can replace the quotient of volumes V/ν by a simple
function of the GCC condition number of the data A.

Lemma 7.6 Let cap(p,ρ) be an SIC for A ∈ Fo
D . Then B(−p,C (A)−1) is con-

tained in KA, and consequently, volB(0,C (A)−1)≤ volKA.

Proof We first note that it is sufficient to show that cap(−p, π
2 − ρ) ⊆ KA, since

C (A)−1 =Δ(A)= cosρ.
So assume that y ∈ Sm−1 satisfies dS(y,−p) ≤ π/2 − ρ. Then we have

dS(y,p)≥ π/2 + ρ. Moreover, since dS(ai,p)≤ ρ, we conclude that for all i,

dS(y, ai)≥ dS(y,p)− dS(p, ai)≥ π/2.

This means that aT
i y ≤ 0 for all i and hence y ∈KA. �

So in the analysis of Algorithm 7.1 we have

V

ν
≤ volB(0,1)

volB(0,C (A)−1)
= C (A)m.

Combining this observation with Theorem 7.5, we immediately get the following
result.

Corollary 7.7 Let A ∈ R
m×n be such that A ∈ F◦

D . The ellipsoid method, applied
to KA, finds a feasible point y ∈KA with a number of iterations bounded by

⌈
3m(m+ 1) ln

(
C (A)

)⌉
.

Hereby, each iteration step costs O(mn) arithmetic operations for the implemen-
tation of the separation oracle for KA and O(m2) arithmetic operations (plus one
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square root) for the computation of the next ellipsoid. The total number of arithmetic
operations can therefore be bounded by O(m3n lnC (A)) operations. �

7.3 Polyhedral Conic Systems with Integer Coefficients

One of the facts giving historical relevance to the ellipsoid method is its protagonism
in showing, in 1979, that linear programming problems with integer data can be
solved in polynomial time. In this section we will show that this is the case for the
solution of SLI with integer data matrices. The key result allowing us to do so is the
following proposition relating condition and bit-size of data, which will be used in
other contexts as well (cf. Remarks 9.18 and 10.5).

Proposition 7.8 (Hadamard’s inequality) For A= [a1, . . . , an] ∈R
n×n we have

|detA| ≤ ‖a1‖‖a2‖ · · · ‖an‖.

Proof Without loss of generality we assume that detA �= 0. Then the span S

of a1, . . . , an−1 has the dimension n − 1, and by applying an orthogonal trans-
formation we can achieve that S = R

n−1 × 0. Since orthogonal transformations
change neither the value of the determinant nor the lengths of the columns of A,
it is sufficient to prove the assertion in the special case S = R

n−1 × 0. We then
have ai = (a′i ,0) with a′i ∈ R

n−1 for 1 ≤ i ≤ n− 1. Therefore detA = ann detA′,
where A′ = [a′1, . . . , a′n−1]. The assertion follows now by induction on n, using that
|ann| ≤ ‖an‖. �

Proposition 7.9 Let Ã ∈ Z
m×n be an integer matrix with entries bounded in ab-

solute value by U . We assume that the columns ãi of Ã are nonzero and form
A := [a1, . . . , an], where ai := ãi/‖̃ai‖. Then we have C (A)≤ (mU)O(m), provided
C (A) is finite.

Proof Let p ∈ S
m−1 and ρ ∈ [0,π] be such that cap(p,ρ) is an SIC for A

with blocking set [k] and put t := cosρ. We may assume A �∈ Σ , so that t �= 0.
Lemma 6.26 implies tp ∈ conv{a1, . . . , ak} and

aT
1 p = · · · = aT

k p = t. (7.9)

Without loss of generality, let a1, . . . , a� be a basis of span{a1, . . . , ak}. Then the
Gram matrix

G := [Gij ]1≤i,j≤� with Gij = aT
i aj

is invertible.
Since tp ∈ conv{a1, . . . , ak} ⊆ span{a1, . . . , a�}, there exist ξj such that p =

∑�
j=1 ξj aj . From pTp = 1 we deduce that ξTGξ = 1. On the other hand, (7.9)
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implies that Gξ = te�, or ξ = tG−1e�. Plugging this into the equality ξTGξ = 1,
we obtain that

C (A)= |t |−1 =
√

eT
�G

−1e�.

It is therefore sufficient to show that the entries of G−1 are bounded as (mU)O(m).
For this, we introduce the matrix G̃ with the entries ãT

i ãj and note that G̃ =
ΔGΔ with the diagonal matrix Δ = diag(‖a1‖, . . . ,‖a�‖). It follows that G−1 =
ΔG̃−1Δ, and hence it suffices to bound the entries of G̃−1 by (mU)O(m).

By Cramer’s rule, we have

(
G̃−1)

ij
= (−1)i+j detMji/det G̃,

where the minor Mji is obtained from G̃ by omitting the j th row and the ith col-
umn. The assertion follows now from Hadamard’s inequality (Proposition 7.8) and
det G̃≥ 1, which holds since G̃ is an invertible integer matrix. �

Remark 7.10 Proposition 7.9 combined with Corollary 7.7 implies that for a matrix
Ã ∈ Z

m×n such that A ∈F◦
D , the ellipsoid method finds a feasible point y ∈ SolD(Ã)

with O(m3 log(mU)) iterations. Furthermore, it can be shown that it is enough to
implement the arithmetic operations and square roots to a precision of (m logU)O(a)

digits. The overall number of bit operations is then polynomial in the bit-size of the
input matrix Ã.



Chapter 8
Linear Programs and Their Solution Sets

The polyhedral cone feasibility problem PCFP that occupied us in the last two chap-
ters, though fundamental, is better understood when regarded within the more gen-
eral context of linear programming. Succinctly described, the latter is a family of
problems that consist in optimizing (i.e., maximizing or minimizing) a linear func-
tion over a set defined by linear constraints (equalities and/or inequalities).

A first step towards the solution of such a problem requires one to decide whether
the family of constraints is satisfiable, that is, whether it defines a nonempty set. The
polyhedral cone feasibility problem is a particular case of such a requirement.

Interestingly, optimization and feasibility problems appear to reduce to one an-
other. Thus, in Sect. 9.4, we will solve PCFP by recasting it as an optimization
problem. Conversely, in Sect. 11.3.2, we will reduce the solution of optimization
problems to a sequence of instances of PCFP.

Because of these considerations, before proceeding with the exposition of new
algorithms, we make a pause and devote it to the understanding of linear programs
and their sets of solutions. As usual, such an understanding will prove of the essence
at the moment of defining condition.

8.1 Linear Programs and Duality

We start with a brief review of the basic concepts of linear programming. Be-
cause of the possible forms of the constraints of a linear program, as well as the
choice maximization/minimization, linear programs occur in a variety of different
shapes. They are all, however, equivalent in the sense that they can all be reduced
to a single simple form. The most common such form, called standard, owes its
widespread use to the fact that the first efficient algorithm developed to solve linear
programs, the simplex method, applies to linear programs in this form. For use in
subsequent chapters, we will consider in this section a slightly more general form,
namely
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Table 8.1 Construction of the dual of a linear program

Maximization problem ← Dual → Minimization problem

ith inequality (≤) constraint ith nonnegative variable

ith equality (=) constraint ith unrestricted variable

j th nonnegative variable j th inequality (≥) constraint

j th unrestricted variable j th equality (=) constraint

objective function coefficients constant terms of constraints

constant terms of constraints objective function coefficients

matrix of constraints A matrix of constraints AT

min cTx + dTw

s.t. Ax +Gw = b,

x ≥ 0,
(OP)

where A ∈ R
m×n, G ∈ R

m×p , b ∈ R
m, c ∈ R

n, d ∈ R
p , are the given data and we

look for an optimal vector (x,w) ∈R
n+p . We say that (OP) is feasible if there exists

(x,w) ∈ R
n+p such that Ax +Gw = b and x ≥ 0. The set of all such pairs is the

feasible set of (OP).
The function (x,w) �→ cTx + dTw is the objective function. A feasible linear

program (OP) is called bounded if the minimum of the objective function is finite.
Otherwise, it is called unbounded. In the first case this minimum is called the op-
timal value, and any feasible point (x,w) attaining it is an optimal solution (or an
optimizer) of (OP).

Linear programming possesses a beautiful theory of duality. To any linear pro-
gram one can associate another one, called its dual, which is obtained in a precise
manner succinctly described in Table 8.1.

For the linear program (OP), given by the data A,G,b, c, d , we obtain as dual
the following:

max bTy

s.t. ATy ≤ c,

GTy = d

(OD)

where y ∈ R
m. The notions of feasibility, boundedness, and optimality also apply

here. Furthermore, the essence of duality theory is the interplay of these notions in
both the primal and dual problems. We next elaborate on this interplay.

Feasible sets are intersections of hyperplanes and closed half-spaces. There-
fore, they are closed convex subsets of Euclidean space. The following elementary
lemma, whose proof we leave to the reader, recalls some facts of linear functions on
convex sets.

Lemma 8.1

(a) A linear function � defined on a convex set C ⊆R
q has no extrema in the relative

interior of C unless it is constant on C.
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(b) Under the hypothesis of (a), if C is closed and supx∈C �(x) < ∞, then there
exists x∗ ∈ C such that supx∈C �(x)= �(x∗). A similar statement holds for inf�.

(c) If a linear function is constant on a set S, then it is constant on its convex hull
conv(S). �

An important consequence of Lemma 8.1(b) is that if a linear program is feasible
and bounded, then it has optimal solutions.

Suppose now that (OP) and (OD) are both feasible, say

Ax +Gw = b, x ≥ 0,

ATy ≤ c, GTy = d, for some x ∈R
n, w ∈R

p, y ∈R
m.

Introducing the vector s := c − ATy of slack variables, we have ATy + s = c and
s ≥ 0. Then

cTx + dTw− bTy = (
sT + yTA

)
x + yTGw− bTy

= sTx + yT(Ax +Gw− b)= sTx ≥ 0. (8.1)

In particular, for any feasible points (x,w) and y, we have

cTx + dTw ≥ bTy. (8.2)

It follows that if (OP) and (OD) are both feasible, then they are both bounded and
maxbTy ≤ min(cTx + dTw). The fundamental duality theorem of linear program-
ming states that actually equality holds.

Theorem 8.2 (Duality theorem of linear programming)

(a) The problem (OP) is bounded iff (OD) is bounded. In this case both problems
have optimal solutions and their objective values are equal.

(b) If (OP) is unbounded, then (OD) is infeasible. If (OD) is unbounded, then (OP)
is infeasible.

Proof We have proved part (b) above. To prove part (a) we will show that if (OP)
has an optimal solution then so has (OD), and in this case the optimal values of these
problems coincide. The proof of the converse is similar.

Assume that (x∗,w∗) is an optimal solution of (OP) and let v∗ := cTx∗ + dTw∗
be the corresponding optimal value. For ε ≥ 0 let vε := v∗ − ε. Define

A :=
[

A G −G

−cT −dT dT

]
and bε :=

[
b

vε

]
.

Then, using that any real number can be written as the difference of two nonnegative
reals, the system

A
(
x,w′,w′′)= bε, x,w′,w′′ ≥ 0,
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is feasible when ε = 0 and infeasible when ε > 0. Farkas’s lemma (Lemma 6.4)
then implies that

AT(y, t)≤ 0, bT
ε (y, t) > 0

is infeasible when ε = 0 and feasible when ε > 0. This is equivalent to saying (now
use that z= 0 if and only if z≤ 0 and z≥ 0) that the system

ATy ≤ ct, GTy = dt, bTy − vεt > 0 (8.3)

is infeasible when ε = 0 and feasible when ε > 0.
For ε > 0 let (yε, tε) be a solution of (8.3). Note that if tε ≤ 0, then

0 < bTy − vεtε = bTy − v∗tε + εtε ≤ bTy − v∗tε,

and hence a solution (yε, tε) with tε ≤ 0 would be a solution of the system for ε = 0
as well, which is a contradiction. We conclude that tε > 0. Dividing by tε , it follows
that the system

ATy ≤ c, GTy = d, bTy − vε > 0

is infeasible when ε = 0 and feasible when ε > 0. That is, the linear function � : y �→
bTy is bounded above by v∗ on the feasible set SD of (OD) and its image on this
set contains points arbitrarily close to v∗. Hence, supy∈SD

bTy = v∗. Lemma 8.1(b)
allows one to conclude that the maximum of � is attained on the feasible set of (OD)
and has the value v∗. �

It is rewarding to consider (OP) and (OD) simultaneously. We define the poly-
hedral set S of (primal–dual) feasible solutions to be the set of points z =
(x,w,y, s) ∈R

n+p+m+n satisfying

Ax +Gw = b, ATy + s = c, GTy = d, x ≥ 0, s ≥ 0. (8.4)

We note that S is convex. We further note the following fundamental result.

Theorem 8.3 (Complementary slackness) Let (x,w,y, s) ∈ S . Then (x,w) is an
optimal solution of (OP) and y is an optimal solution of (OD) if and only if

x1s1 = 0, . . . , xnsn = 0. (8.5)

Proof It follows from (8.1) and Theorem 8.2. �

The equality (8.5) is known as the complementary slackness condition. We call
relations (8.4) together with (8.5) optimality conditions. For a point (x,w,y, s) ∈ S ,
the value cTx+ dTw− bTy = sTx is called the duality gap. Interior-point methods,
which will be the theme of the next chapter, work by starting with a point in S and
iteratively constructing a sequence of points in S with a fast decrease in their duality
gap.
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We close this section by giving the standard form mentioned at the beginning of
this section. This is the linear programming form that will occupy us for the rest
of this chapter (and in some chapters to come). Both the primal and the dual are
obtained by removing all terms in (OP) and (OD) in which any of G,w, and d

occurs. Thus, in the primal case we obtain

min cTx subject to Ax = b, x ≥ 0, (SP)

and in the dual,

max bTy subject to ATy ≤ c. (SD)

In what follows, we will consider linear programs in standard form, and we will
systematically assume that n ≥ m. The first result we prove for this form is the
following strengthening of the complementary slackness condition (8.5).

Proposition 8.4 (Strict complementary theorem) If (SP) and (SD) are both feasi-
ble, then there exist optimizers (x∗, y∗, s∗) such that

x∗i = 0 ⇐⇒ s∗i > 0 for i = 1, . . . , n.

Proof We will first show that for each i = 1, . . . , n there exists an optimal solution
(x(a), y(a), s(a)) such that either x(a)

i �= 0 or s(a)i �= 0.
Let v∗ be the optimal value of the pair (SP–SD) and consider an optimizer x̄

of (SP). If there exists an optimizer (y, s) of (SD) with si �= 0, we take (y(a), s(a)) :=
(y, s) and we are done.

If instead, si = 0 for every optimizer (y, s) of (SD), then the linear program

max eT
i s

s.t. ATy + s = c,

−bTy =−v∗,
s ≥ 0,

where ei = (0, . . . ,1, . . . ,0) is the ith coordinate vector, has optimal value 0. By
Theorem 8.2, its dual

min cTx − v∗t
s.t. Ax − bt = 0,

x ≥ ei,

x, t ≥ 0,

has then a feasible solution (x, t) ∈R
n+1 with objective value cTx − v∗t = 0.

Assume that for this solution we have t = 0. Then cTx = 0, Ax = 0, and x ≥ ei .
This implies that x(a) := x̄ + x is an optimizer of (SP) and x

(a)
i �= 0.

Assume now that instead, t > 0. Then the point x(a) := x
t

is an optimizer of (SP)

and x
(a)
i �= 0.
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We have therefore proved our initial claim. It is now immediate to see that the
points

x∗ := 1

n

n∑

i=1

x(a) and
(
y∗, s∗

) := 1

n

n∑

i=1

(
y(a), s(a)

)

satisfy that for all i ≤ n, either x∗i > 0 or s∗i > 0. In addition, they are optimizers
of (SP) and (SD) respectively, since they are convex combinations of optimizers and
the optimal sets of linear programs are convex (Proposition 8.7(b)). The fact that
not both x∗i and s∗i are greater than zero is, finally, a consequence of complementary
slackness (8.5). �

Remark 8.5 A word of caution is called for regarding names. We have used the
expression “standard primal” (and the corresponding tag (SP)) and likewise for the
“standard dual.” This choice of words follows a long established tradition that has
its roots in the fact that the simplex method runs (only) on linear programs with the
form (SP). It must be noted, however, that there are no naturally primal (or naturally
dual) problems. To any given problem we may associate its dual using the method
implicit in Table 8.1. And the dual of the dual is the original linear program.

8.2 The Geometry of Solution Sets

We denote by SP and SD the primal and dual feasible sets for d = (A,b, c) respec-
tively, that is,

SP := {
x ∈R

n |Ax = b, x ≥ 0
}
, SD := {

y ∈R
m |ATy ≤ c

}
.

We also denote by QP and QD the corresponding sets of optimal solutions.

Proposition 8.6

(a) Both SP and SD are polyhedra.
(b) If SP is nonempty, then it contain vertices. The same holds true for SD if in

addition, rankA=m.

Proof Part (a) is trivial. For part (b) recall that by Corollary 6.13, if a polyhedron
has no vertices, then it contains a line. The fact that SP contains vertices is then
clear, since the set SP is included in the positive orthant {x ∈ R

n | x ≥ 0}, and this
set does not contain lines.

For the dual, we use that if there is a line � contained in SD , then by Lemma 6.11,
rankA<m, a contradiction. �

Proposition 8.7

(a) The sets SP and SD are both nonempty if and only if QP and QD are both
nonempty.
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(b) If this is the case, then QP and QD are faces of SP and SD , respectively. In
particular, they are polyhedra as well.

(c) In addition, QP possesses vertices, and so does QD if rankA=m.

Proof Part (a) is an immediate consequence of Theorem 8.2(a). We then proceed to
part (b), which we will prove for the primal case (the dual being similar).

If the objective function is constant on SP , then QP = SP and we are done. As-
sume then that this is not the case. We claim that QP is a union of proper faces
of SP . Indeed, because of Lemma 8.1(a) with C = SP , we must have QP ⊆ ∂SP ,
that is, QP is included in the union of the proper faces of SP . The same lemma
applied to each of these faces shows that either the whole face is in QP or its inter-
section with QP is in a lower-dimensional subface. Repeating this argument proves
the claim, i.e., QP is a union of proper faces of SP . If this union consists of a sin-
gle face, we are done. Assume the contrary, and let F be a face of SP of maximal
dimension among those included in QP . By assumption, there exists a face F ′, also
included in QP , such that neither F ′ ⊆ F nor F ⊆ F ′. Lemma 8.1(c) implies that
conv(F ∪ F ′) ⊆QP . But by Lemma 6.10, dim conv(F ∪ F ′) > dimF = dimQP ,
in contradiction to this inequality.

For part (c), assume SP �= ∅. Then, Proposition 8.6(b) ensures that SP has ver-
tices, which implies, by Corollary 6.13, that SP does not contain lines. Therefore,
neither does QP , and the same corollary (together with part (b)) implies that QP

possesses vertices. A similar argument applies to QD . �

It is a common convention to assign dimension −1 to the empty set. With this
convention, (SP) is feasible and bounded if and only if dimQP ≥ 0, and likewise
for (SD). We can further distinguish among linear programming data as follows.

We say that a triple d = (A,b, c) is heavy for (SP) (or primal-heavy when
dimQP ≥ 1), and that it is light, i.e., QP is a vertex of SP , otherwise. Similarly
for (SD). We say that d is heavy when it is either primal-heavy or dual-heavy.

Figure 8.1 shows examples of light and heavy instances for (SD) (the arrow
showing the optimization direction, the lines and points in bold, the sets of opti-
mal solutions). At the left we see an instance corresponding to a light triple. Both at
the center and at the right are instances corresponding to heavy data, but the optimal
set QD in the former is compact and in the latter is not. Because of this, for the data
at the right, arbitrarily small perturbations may make the problem unbounded and
consequently its dual (SP) infeasible. This is not possible for the central situation.

Proposition 8.8 Let d be primal-heavy such that QP is noncompact but (SP) is
bounded. Then, there exist arbitrarily small perturbations d̃ of d for which (SP) is
unbounded (and hence (SD) infeasible). A similar statement holds for QD .

Proof Since QP is noncompact, there exist x,w ∈ R
n, ‖w‖ = 1, such that xλ :=

x + λw ∈QP , for all λ≥ 0. Because (SP) is bounded we must have cTxλ = cTx +
λcTw = v∗, for all λ≥ 0 (here v∗ is the optimal value of d). This implies cTw = 0.
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Fig. 8.1 Three situations for linear programs

Table 8.2 Possible optimal sets of a linear program

dimQ
−1 0 > 0

Q compact infeasible light heavy

Q noncompact heavy with dual nearly infeasible

Consider now, for any ε > 0, the point c̃ := c− εw and the triple d̃ := (A,b, c̃).
Note that the set of feasible points of (SP) for d̃ coincides with that for d . In partic-
ular, it contains QP . Also, for all λ≥ 0,

c̃Txλ = cTx − εwTx − λε.

Therefore, c̃Txλ →−∞ when λ→∞, which shows that (SP) is unbounded for d̃ .
Since ε is arbitrarily small, the conclusion follows. �

We can summarize the distinctions above in Table 8.2 (where empty boxes denote
impossible situations, “dual” refers to the dual of the given problem, which may be
either (SP) or (SD), and we used the expression nearly infeasible to denote that
arbitrarily small perturbations may yield infeasibility).

We say that x∗ is an extremal optimal solution of (SP) (or of the primal) when x∗
is a vertex of QP , and similarly for the dual problem.

8.3 The Combinatorics of Solution Sets

Proposition 8.7 ensures that if the primal–dual pair (SP–SD) is feasible, and
rankA = m, then one may confine the search for optimizers to the vertices of the
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sets QP and QD . But vertices are solutions of square systems of linear equations,
an observation that suggests finding optimizers by solving this kind of system. This
section pursues these ideas.

For any subset B of {1,2, . . . , n}, we denote by AB the submatrix of A obtained
by removing from A all the columns with index not in B . If x ∈ R

n, xB is defined
analogously. Also, let N := {1,2, . . . , n}\B . Then AN and xN are defined similarly.

Definition 8.9 By a basis B for a data triple d = (A,b, c) we understand a subset
B ⊆ {1,2, . . . , n} with |B| =m and such that AB is invertible.

Let B be a basis for d . Then we may uniquely solve ABx = b. Consider the
point x∗ ∈ R

n defined by x∗N = 0 and x∗B = x. Clearly, Ax∗ = b. We say that x∗ is
the primal basic solution of (SP) associated with B . If, in addition, x∗ ≥ 0, which is
equivalent to x∗B ≥ 0, then we say that x∗ is a primal basic feasible solution.

Similarly, for any basis B for d we may uniquely solve AT
By = cB . The point y∗

thus obtained is said to be the dual basic solution of (SD) associated with B . If, in
addition, ATy∗ ≤ c, then y∗ is said to be a dual basic feasible solution.

Definition 8.10 A basis B for a data triple d is called an optimal basis if both the
primal and dual basic solutions associated with B are feasible, in which case the
latter are called the basic optimal solutions of d associated to B .

There is a rationale for the word “optimal” in Definition 8.10.

Proposition 8.11 Let B be an optimal basis for a triple d . If (x∗, y∗) is the basic
optimal solution associated to B , then x∗ and y∗ are optimizers for the problems
(SP) and (SD), respectively.

Proof By construction, (x∗, y∗, s∗) is in the set S of feasible solutions (see (8.4)).
In addition, one immediately checks that x∗ and s∗ satisfy the complementary slack-
ness conditions (8.5). The optimality thus follows from Theorem 8.3. �

It also follows from Definition 8.10 and Lemma 6.9 that if (x∗, y∗, s∗) is a basic
optimal solution, then x∗ and y∗ are extremal optimal solutions of the primal and
dual, respectively. The next example shows that the converse of this property does
not necessarily hold. It is possible for a basis B that the associated basic solution
for a linear program is optimal but the corresponding basic solution for the dual
problem is not optimal (or even feasible). In other words, not all bases defining a
vertex of Q are optimal bases.
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Example 8.12 Consider the linear program

max y1
s.t. y1 ≤ 0,

−y1 ≤ 0,
y2 ≤ 0,

−y2 ≤ 1,

with dual

min x4
s.t. x1 − x2 = 1,

x3 − x4 = 0,
x1, x2, x3, x4 ≥ 0.

The feasible set of the maximization problem is the interval with endpoints (0,−1)
and (0,0). Any point in this interval is an optimizer. The set of optimal points of its
dual is a ray described by

{
(λ+ 1, λ,0,0) | λ≥ 0

}
.

Both problems have heavy sets of optimizers.
The set {2,3} ⊆ [4] is a basis. The associated solution of the maximization prob-

lem is y∗ = (0,0), which is an optimizer. But the associated solution of the mini-
mization problem is (0,−1,0,0), which is infeasible.

Our next result, the highlight of this section, shows the existence of optimal
bases.

Theorem 8.13 Let d = (A,b, c) be a data triple satisfying rankA=m. Then:

(a) There is an optimal basis for d if and only if both (SP) and (SD) are feasible.
(b) Let B be a basis for d . Then B is optimal if and only if both the primal and the

dual basic solutions associated to B are optimizers for (SP) and (SD) respec-
tively.

(c) If there is more than one optimal basis, say B1, . . . ,Bs , s ≥ 2, then the set of
optimizers for (SP) contains the convex hull of x∗1 , . . . , x∗s , where x∗i ∈ R

n is
the primal basic solution associated to Bi , i = 1, . . . , s. Likewise for the set of
optimizers for (SD).

Proof Clearly, if an optimal basis exists, then both primal and dual problems are
feasible. To see the converse, assume that these problems are feasible. Then, by the
Theorem 8.2(a), there exist optimal solutions x∗ and y∗ of (SP) and (SD), respec-
tively. By Proposition 8.7(c), and since rankA=m, we may assume that y∗ is a ver-
tex. Therefore, by Lemma 6.9, there exists B ⊆ [n] such that |B| =m, AT

By∗ = cB ,
and rankAB =m (i.e., AB is invertible). In other words, y∗ is the dual basic solution
associated to B .
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Let N := [n] \ B and assume that for all i ∈ N we have aT
i y

∗ < ci . Then, by
complementary slackness (8.5), we must have that x∗i = 0 for all i ∈N . This implies
that ABx∗B = b and, consequently, that x∗ is the primal basic solution associated to
B . Since both x∗ and y∗ are feasible, we conclude that B is an optimal basis.

Assume now that instead, there exists i ∈N such that aT
i y

∗ = ci , and let D ⊆N

be the set of all such indices. For all i ∈D, and since rankAB =m, we can express
ai as a linear combination of the aj for j ∈ B , say ai =∑

j λj aj . Then

ci = aT
i y

∗ =
∑

j∈B
λja

T
j y

∗ =
∑

j∈B
λj cj .

It follows that (ai, ci) ∈ R
m+1 is a linear combination of {(aj , cj ) | j ∈ B}, for all

i ∈D. Consider the triple d ′ = (A, b, c), where A is obtained from A by removing
its ith column for all i ∈ D and likewise for c. The set of feasible solutions of
ATy ≤ c is the same as that of ATy ≤ c. Therefore, the same holds for their sets
of optimal solutions with respect to y �→ bTy, which we know is nonempty. By the
duality theorem, the linear program min cTx′ subject to Ax′ = b, x′ ≥ 0 (with now
x′ ∈ R

n−|D|) also has a nonempty set of optimal solutions. We can therefore repeat
the argument used above to show that B is an optimal basis for d ′, and padding with
zeros the optimal basic solution x′ of its primal, we obtain a primal basic feasible
solution for the basis B of d . This finishes part (a).

The “only if” direction in part (b) is a consequence of Proposition 8.11. The other
direction is trivial, since optimizers are, in particular, feasible points.

Part (c) is clear. �

The following example shows a linear program with a unique optimal basis but
a heavy set of optimizers for (SP). It also provides an instance for which the strict
complementary guaranteed by Proposition 8.4 cannot be achieved at a basic optimal
solution.

Example 8.14 Consider the linear program

min x1 − x2
s.t. x1 − x3 = 1,

x2 − x3 = 1,
x1, x2, x3 ≥ 0,

with dual

max y1 − y2
s.t. y1 ≤ 1,

y2 ≤−1,
−y1 − y2 ≤ 0.

The feasible set of the primal is a ray with origin at (1,1,0) and direction vec-
tor (1,1,1). All points in this set are optimal solutions; hence, the datum is heavy
for (SP). The feasible set of the dual reduces to the point (1,−1).
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The dual is nearly infeasible (it becomes infeasible if one replaces the third con-
straint by −y1 − y2 ≤ −ε for any ε > 0) and the primal is consequently nearly
unbounded (it becomes so for the objective functions x1 − x2 − εx3).

We have QD = {(1,−1)}, and the slackness at this point is (0,0,0). Strict com-
plementarity is achieved at primal solutions of the form (r + 1, r + 1, r) for any
r > 0. But these points are not basic solutions of (SP) (the only such solution corre-
sponding to r = 0).

8.4 Ill-posedness and Degeneracy

We introduce in this section the notion of degeneracy, which links the algebra of a
linear program with the geometry of its dual. Endowed with this notion, we discuss
ill-posedness in the last part of this section.

8.4.1 Degeneracy

Proposition 8.4 (strict complementarity) imposes a constraint on the solutions of
light data. If (x∗, y∗, s∗) is the only solution of a primal–dual pair of linear pro-
grams, then it must be a basic optimal solution by Theorem 8.13. If B is the as-
sociated optimal basis and N := [n] \ B , we must then have xN = 0 and sB = 0.
Proposition 8.4 further implies that sN > 0 and xB > 0. This property motivates the
following definition.

Definition 8.15 A feasible point x of (SP) is called degenerate when we have
|{j ≤ n | xj = 0}| > n − m. Likewise, we say that a feasible point (y, s) of (SD)
is degenerate when |{j ≤ n | sj = 0}| > m. This defines, by extension, the notions
of degenerate optimal solution, degenerate basic feasible point, and degenerate ba-
sic optimal solution.

We say that a triple d = (A,b, c) is primal degenerate if (SP) has degenerate
optimal solutions and likewise for dual degenerate. We say that d is degenerate
when it is either primal or dual degenerate.

Proposition 8.16 The problem (SP) has a degenerate optimal solution if and only if
it has a degenerate basic optimal solution. The same holds for (SD) if rankA=m.

Proof We prove the result for (SD). The statement for (SP) admits a similar proof.
The “if” direction is trivial. For the converse, we note that in the course of the

proof of Theorem 8.13(b) we started with an optimal solution (y∗, s∗) of (SD) and
constructed a basic optimal solution for this problem. A new look at this proof re-
veals that in doing so, the number of nonzero components of s did not increase.
Therefore, if (y∗, s∗) is a degenerate optimal solution of (SD), then so is the con-
structed basic optimal solution. This proves the second statement. �
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The relationship between heaviness, duality, and degeneracy is captured in the
following statement.

Proposition 8.17 If one of (SP) or (SD) is heavy and has a nondegenerate extremal
optimal solution, then all the optimal solutions of its dual are degenerate.

Proof Assume that (SP) is heavy and let x∗ be a nondegenerate extremal optimal
solution with basis B , i.e., B = {j ≤ n | x∗j > 0}. Since (SP) is heavy, there exists
another optimal solution x′ �= x∗ for (SP). Then there exists i �∈ B such that x′i > 0.
Otherwise, ABx′B = Ax′ = b, and it would follow that x′B = x∗B and hence that
x′ = x∗.

Let x̄ := 1
2 (x

′ + x∗). Then x̄ is an optimizer, since it is a convex combination
of two optimizers. Furthermore, since x∗ is nondegenerate, we have x∗j > 0 for all
j ∈ B . This implies that x̄j > 0, for all j ∈ B ∪ {i}. Now take any optimal solution
(y∗, s∗) of (SD). Then, by complementary slackness (8.5), s∗j = 0 for all j ∈ B∪{i}.
That is, (y∗, s∗) is degenerate.

The proof of the other case, i.e., (SD) heavy with a nondegenerate basic optimal
solution, is similar. �

Example 8.18 A linear program may be degenerate even if all its optimal solutions
satisfy the strict complementarity condition. An example is the following primal–
dual pair:

min x1 + 2x2 + 3x3
s.t. x1 + x2 + x3 = 1,

x1 + x2 + x3 = 1,
x1, x2, x3 ≥ 0,

max y1
s.t. y1 + y2 ≤ 1,

y1 + y2 ≤ 2,
y1 + y2 ≤ 3.

Example 8.19 A triple d may be infeasible (in the sense that either (SP) or (SD)
is so) but have arbitrarily close feasible triples. An example is the infeasible primal–
dual pair

min 2x2
s.t. −x1 + x2 = 0,

x3 =−1,
x1, x2, x3 ≥ 0,

max y2
s.t. −y1 ≤ 0,

y1 ≤ 2,
−y2 ≤ 0,

which is approximated (for ε > 0 small) by the following pairs:

min 2x2
s.t. −x1 + x2 = 0,

εx1 + εx2 − x3 = 1,
x1, x2, x3 ≥ 0,

max y1
s.t. −y1 + εy2 ≤ 0,

y1 + εy2 ≤ 2,
−y2 ≤ 0,

with optimal solutions x∗ε = ( 1
2ε ,

1
2ε ,0) and y∗ε = (1, 1

ε
).
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8.4.2 A Brief Discussion on Ill-posedness

The picture for the sets of optimal solutions emerging from the results in this chap-
ter provides a framework to discuss ill-posedness for several problems in linear
programming.

(a) Optimal Solution Problem This is the problem of computing optimizers x∗
and y∗ for the linear programs (SP) and (SD), respectively. We want to identify the
set of ill-posed data for this problem.

To do so, we first observe that infeasible triples should be considered as ill-posed
if and only if they are like the one in Example 8.19, that is, if and only if arbitrar-
ily small perturbations can make these triples feasible (and, consequently, create
optimizers for them). We define

ΣI := {
d | d is infeasible and ∀ε > 0 ∃d ′ feasible with

∥∥d − d ′
∥∥≤ ε

}

and call this the set of infeasible ill-posed triples.
We next consider feasible triples, along with their sets of optimal solutions. As-

sume first that QP is heavy for some datum d . If it is compact, then arbitrarily
small perturbations may turn QP into a singleton made by any of its vertices (cf.
Fig. 8.1). If instead, QP is noncompact, then arbitrarily small perturbations of d

may make (SD) infeasible (by Proposition 8.8). Similar statements hold for QD .
Therefore, we should consider data that are heavy for either (SP) or (SD) as ill-
posed.

Assume now that instead, both QP and QD are light. Then Theorem 8.13 ensures
that the only optimizers x∗ and y∗ for (SP) and (SD), respectively, are basic optimal
solutions associated to a basis B . Furthermore, Proposition 8.4 implies that s∗N > 0
(here N := [n] \ B). Therefore sufficiently small perturbations of d will still yield
solutions for ABxB = b, xB > 0, AT

By = cB , and AT
Ny < cN . In other words, we

should consider data that are light for both (SP) and (SD) as well-posed.
We have thus identified the set of well-posed instances for the optimal solution

problem as those having unique optimizers for both (SP) and (SD). Consequently,
we define the set of ill-posed triples for this problem to be

Σopt :=
{
d | d has at least two optimizers (x, y)

}∪ΣI .

The following result shows that rank-deficient triples are ill-posed.

Lemma 8.20 Let d = (A,b, c). If d is feasible and rankA<m, then d ∈Σopt.

Proof Let x∗, y∗ be optimizers for (SP) and (SD), respectively. Because of Propo-
sition 8.4 we may assume that strict complementarity holds for this pair. We will
show that other optimizers exist.

To do so, let B := {j ≤ n | x∗j > 0}. If B = ∅, then ATy∗ < c, and consequently,
sufficiently small perturbations of y∗ will also be feasible points of (SD). Comple-
mentary slackness (8.5) ensures that they are actually optimizers. If instead, B �= ∅,
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then

S := {
x ∈R

|B| |ABx = b
}= x∗B + kerAB.

Since rankA < m, we have rankAB < m and hence dim kerAB > 0. Since x∗B > 0,
the points x′ given by x′B = x∗B + x with x ∈ kerAB and x′N = 0 (here N = [n] \B)
will be, for sufficiently small x ∈ kerAB , feasible points of (SP). Complementary
slackness ensures, again, that they are actually optimizers. �

(b) Optimal Basis Problem This is the problem of computing an optimal basis.
As for the optimal solution problem, we want to identify the set of ill-posed data. In
contrast with the preceding problem, this one is discrete-valued: the output for any
given datum d is an m-element subset in [n]. Therefore, the discussion in Sect. 6.1
applies, and the set ΣOB of ill-posed triples for this problem should be taken as the
boundary between these possible outputs. In other words, if OB(d) denotes the set
of optimal bases for a triple d , we define

ΣOB := {
d | ∀ε > 0 ∃d ′s.t. OB(d) �= OB

(
d ′
)

and
∥∥d − d ′

∥∥≤ ε
}
.

Again, feasible rank-deficient data are ill-posed for the optimal value problem.

Lemma 8.21 Let d = (A,b, c). If d is feasible and rankA<m, then d ∈ΣOB.

Proof We begin as in the previous lemma with a pair x∗, y∗ of optimizers for (SP)
and (SD), respectively. Note that the hypothesis rankA < m implies that no m×m

submatrix of A is invertible. Therefore, OB(d) = ∅. We will show that there exist
arbitrarily small perturbations d of d with OB(d) �= ∅.

To do so, we need to fix a norm in the space of triples. Clearly, the norm is not
relevant, so we may take ‖(A,b, c)‖ := max{‖A‖,‖b‖,‖c‖}, where the first norm is
the spectral and the other two, the Euclidean. Now let R = max{1,‖x∗‖,‖y∗‖}. For
any ε > 0 there exists a full-rank matrix A such that ‖A− A‖ ≤ ε

R
. Let b := Ax∗

and c ∈R
n be given by ci := max{ci, aT

i y
∗}. Then

‖b− b‖ = ∥∥Ax∗ −Ax∗
∥∥≤ ‖A−A‖∥∥x∗∥∥≤ ε

R

∥∥x∗
∥∥≤ ε.

Similarly, dividing by cases, ‖c− c‖ ≤ ε. It follows that if we take d = (A,b, c), we

have ‖d − d‖ ≤ ε. But by construction, Ax∗ = b and A
T
y∗ ≤ c. That is, x∗ and y∗

are feasible points for the primal and dual of d , respectively. Theorem 8.13(a) now
ensures that OB(d) �= ∅. �

Proposition 8.22 Let d = (A,b, c) be feasible. Then we have d ∈ Σopt ⇐⇒ d ∈
ΣOB.

Proof Because of Lemmas 8.20 and 8.21 we know that the statement is true if
rankA<m. We therefore assume rankA=m.
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Suppose d �∈Σopt. Then d has a unique optimal solution pair (x∗, y∗). Because
of Theorem 8.13 this solution is basic. Furthermore, because of Proposition 8.4,
we have AB invertible, x∗B > 0, and AT

Ny∗ < cN (here B is the optimal basis and
N := B \ [n]). It is clear that sufficiently small perturbations d ′ of d will preserve
these properties, so that OB(d ′)= OB(d)= B . Hence, d �∈ΣOB.

Suppose now d ∈ Σopt. Then d is heavy either for (SP) or for (SD), say, with-
out loss of generality, that for the former. Because of Theorem 8.13 there exists a
basic optimal solution (x∗, y∗) of d with associated optimal basis B . If QP is non-
compact, then because of Proposition 8.8, there exist arbitrarily small perturbations
d ′ of d for which (SD) is infeasible. In particular, OB(d ′) = ∅, and hence, since
B ∈ OB(d), we deduce d ∈ΣOB. If instead, QP is compact, then it contains at least
two vertices. In particular, it contains a vertex x̃ different from x∗. Now arbitrarily
small perturbations d ′ (just perturb c) may turn x̃ into the only optimizer of (SP)
for d ′. But then B �∈ OB(d ′), and this shows that d ∈ΣOB. �

Corollary 8.23 We have Σopt =ΣOB. Furthermore, restricted to feasible data, this
set coincides with {d | d is degenerate}.

Proof For an infeasible triple d we have OB(d) = ∅. Hence, for such a triple,
d ∈ ΣOB if and only if there exist triples d ′ arbitrarily close to d for which
OB(d ′) �= ∅, that is, if and only if d ∈ ΣI . The first statement therefore follows
from Proposition 8.22.

To prove the second, let d = (A,b, c) be feasible. If d �∈Σopt, then d has a unique
pair of optimizers (x∗, y∗). Also, because of Lemma 8.21, rankA=m. Therefore,
by Theorem 8.13, (x∗, y∗) is a basic optimal solution. By Proposition 8.4 this pair
satisfies the strict complementarity condition. Therefore, it is nondegenerate.

We next prove the converse. For this, we assume that d ∈Σopt, that is, d is either
primal heavy or dual heavy. We will then show that d is degenerate. We do so
dividing by cases.

Assume first that rankA=m. Then, by Theorem 8.13, there exists a basic opti-
mal solution (x∗, y∗). If d is primal heavy, then either x∗ is degenerate, in which
case we are done, or it is nondegenerate, in which case y∗ is degenerate by Propo-
sition 8.17 and we are done as well. The same reasoning applies if d is dual heavy.

Assume now that rankA < m and consider an optimizer (x∗, y∗) satisfying the
strict complementarity condition. Let B := {j ≤ n | x∗j > 0}. If |B| < m, then d

is primal degenerate. If |B| > m, then d is dual degenerate. We are left with the
case |B| = m. Since ABx∗ = b, we see that b ∈ R

m can be expressed as a linear
combination of {ai | i ∈ B} with nonnegative coefficients, i.e., b ∈ cone{ai | i ∈ B}.
Recall that dim span{ai | i ∈ B}<m by assumption. Hence, by Carathéodory’s The-
orem 6.5, there exist a set I ⊆ B , with |I | ≤m− 1, and nonnegative real numbers
x′i , for i ∈ I , such that AIx

′ = b (here x′ is the vector in R
|I | with entries x′i ).

This shows that the point x̄ given by x̄I = x′ and x̄j = 0 for j �∈ I is a feasible
point for (SP). But the pair (x̄, y∗) satisfies the complementary slackness condi-
tions. Therefore, x∗ is an optimizer for the primal problem and it is degenerate. �
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The sharing of the set of ill-posed instances suggests that we should numerically
solve the optimal solution problem by doing so for the optimal basis problem. We
will do so in Chap. 11, where in passing, we will also define a condition number
K (d) (the relativized inverse of the distance to ΣOB) for the optimal basis problem.

(c) Feasibility Problem Both the optimal basis and the optimal solution prob-
lems require a previous (or simultaneous at least) solution of the feasibility problem
for linear programming primal–dual pairs. This consists in deciding whether both
Ax = b, x ≥ 0, and ATy ≤ c have feasible points. That is, the feasibility problem
is a decision problem, and therefore, always following the discussion in Sect. 6.1,
condition for this problem’s data can be defined as the relativized distance to ill-
posedness, with the latter defined as the boundary between the sets of feasible and
infeasible triples. That is, letting

FP(d)=
{

1 if d is feasible,
0 if d is infeasible,

we define

ΣFP := {
d | ∀ε > 0 ∃d ′ s.t.FP(d) �= FP

(
d ′
)

and
∥∥d − d ′

∥∥≤ ε
}
.

Clearly, ΣFP ⊆ΣOB.
In Chap. 10, we will describe an algorithm solving the feasibility problem and

analyze it in terms of a condition number C(d) (the relativized inverse of the dis-
tance from d to ΣFP). We will also show that C(d) is closely related to C .

(d) Optimal Value Problem A last problem that is worth mentioning here is the
optimal value problem. This consists in computing the optimal value v∗ (or oc-
casionally, of computing an ε-approximation of it). A look at the three situations
in Fig. 8.1 reveals a peculiar behavior. For the situation at the left (dimQ = 0),
sufficiently small perturbations will produce only small perturbations of both the
optimizer and the optimal value. That is, light triples are well-posed for the op-
timal value problem. For the situation at the right, arbitrarily small perturbations
may drive the optimal value to ∞ (or −∞ if it is a minimization problem). Hence
we consider this situation to be ill-posed. But the middle situation (compact heavy
data) appears to be well-posed for these problems: sufficiently small perturbations
will neither affect feasibility nor drive the optimal value to ±∞. The optimal value
problem appears to share the set of ill-posed inputs with the feasibility problem, and
one could consequently expect to have algorithmic solutions analyzed in terms of
C(d). We will return to this problem in Sect. 11.5.



Chapter 9
Interior-Point Methods

The ellipsoid method presented in Chap. 7 has an undeniable historical relevance
(due to its role in establishing polynomial time for linear programming with integer
data). In addition, its underlying idea is simple and elegant. Unfortunately, it is not
efficient in practice compared with both the simplex method and the more recent
interior-point methods. In this chapter, we describe the latter in the context of linear
programming.

Unlike the ellipsoid method, which seems tailored for feasibility problems,
interior-point methods appear to be designed to solve optimization problems. In
linear programming, however, it is possible to recast problems of one kind as prob-
lems of the other, and we will take advantage of this feature to present an algorith-
mic solution for the feasibility problem PCFP. We will see that again, the condition
number C (A) of the data plays a role in the complexity of this solution.

9.1 Primal–Dual Interior-Point Methods: Basic Ideas

The most common method to solve linear programs is Dantzig’s simplex method.
This method relies on the geometry of the polyhedron of solutions and constructs a
sequence of vertices on the boundary of this polyhedron leading to a basic optimal
solution. By contrast, interior-point methods follow a path in the interior of the
polyhedron, whence the name. The path is a nonlinear curve that is approximately
followed by a variant of Newton’s method.

In what follows we will consider primal–dual pairs of the form (OP)–(OD) we
saw in Sect. 8.1. Primal–dual interior-point methods search for solutions of the
optimality conditions for this pair, that is, for solutions of the system

Ax +Gw = b, ATy + s = c, GTy = d, x ≥ 0, s ≥ 0,

x1s1 = 0, . . . , xnsn = 0,
(9.1)
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by following a certain curve in the strictly (primal–dual) feasible set S◦ ⊆
R

n+p+m+n defined by

S◦ := {
(x,w,y, s) |Ax +Gw = b,ATy + s = c,GTy = d, x, s > 0

}
. (9.2)

(Compare with the definition of the primal–dual feasible set S in (8.4).)
Note that (9.1) is only mildly nonlinear (quadratic equations xisi = 0). It is the

nonnegativity constraints that appear as the main source of difficulty. For a parame-
ter μ> 0 we add now to (9.2) the additional constraints

x1s1 = μ, . . . , xnsn = μ. (9.3)

One calls μ the duality measure. Under mild genericity assumptions, there is ex-
actly one strictly feasible solution ζμ ∈ S◦ satisfying (9.3), and the limit ζ =
(x,w,y, s) = limμ→0 ζμ exists. Then it is clear that ζ ∈ S and xisi = 0 for all i.
Hence ζ is a desired solution of the primal–dual optimization problem.

We postpone the proof of the next theorem to Sect. 9.2.

Theorem 9.1 Suppose that p ≤m ≤ n, rankA=m, rankG= p, and that there is
a strictly feasible point, i.e., S◦ �= ∅. Then for all μ > 0 there exists a uniquely
determined point ζμ = (xμ,wμ,yμ, sμ) ∈ S◦ such that xμ

i s
μ
i = μ for i ∈ [n].

Definition 9.2 The central path C of the primal–dual optimization problem given
by A,G,b, c, d is the set

C = {ζμ : μ> 0}.

Suppose we know ζμ0 for some μ0 > 0. The basic idea of a path-following
method is to choose a sequence of parameters μ0 > μ1 > μ2 > · · · converging to
zero and to successively compute approximations zk of ζk := ζμk

for k = 0,1,2, . . .
until a certain accuracy is reached (see Fig. 9.1). In most cases one chooses
μk = σkμ0 with a centering parameter σ ∈ (0,1).

It is useful to extend the duality measure to any z= (x,w,y, s) ∈ S◦. We do so
by taking

μ(z) := 1

n

n∑

i=1

xisi = 1

n
sTx.

How can we compute the approximations zk? This is based on Newton’s method,
one of the most fundamental methods in computational mathematics (which will
occupy us in Part III).

Consider the map F : Rn+p+m+n →R
n+p+m+n,

z= (x,w,y, s) �→ F(z)= (
ATy + s − c,GTy − d,Ax +Gw− b, x1s1, . . . , xnsn

)
.
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Fig. 9.1 Central path C

We note that by Theorem 9.1, {ζμ} = F−1(0,0,0,μen), where en := (1, . . . ,1)
∈R

n. The Jacobian matrix of F at z equals

DF(z)=

⎡

⎢⎢
⎣

0 0 AT I

0 0 GT 0
A G 0 0
S 0 0 X

⎤

⎥⎥
⎦ ,

where here and in the following we set

S = diag(s1, . . . , sn), X = diag(x1, . . . , xn).

Depending on the context, z, en, etc. should be interpreted as column vectors.

Lemma 9.3 If p ≤m ≤ n, rankA=m, and rankG= p, then DF(z) is invertible,
provided sixi �= 0 for all i.

Proof By elementary column operations we can bring the matrix DF(z) to the form

⎡

⎢⎢
⎣

D 0 AT I

0 0 GT 0
A G 0 0
0 0 0 X

⎤

⎥⎥
⎦ ,

where D = diag(−s1x
−1
1 , . . . ,−snx

−1
n ). It is therefore sufficient to show that the

matrix
⎡

⎣
D 0 AT

0 0 GT

A G 0

⎤

⎦
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is invertible. Such matrices are of the so-called Karush–Kuhn–Tucker type. Suppose
that

⎡

⎣
D 0 AT

0 0 GT

A G 0

⎤

⎦

⎡

⎣
x

w

y

⎤

⎦= 0,

that is, Dx +ATy = 0, GTy = 0 and Ax +Gw = 0. It follows that

0 = [
xT wT yT

]
⎡

⎣
D 0 AT

0 0 GT

A G 0

⎤

⎦

⎡

⎣
x

w

y

⎤

⎦= [
xT wT yT

]
⎡

⎣
Dx +ATy

GTy

0

⎤

⎦

= xTDx + (Ax +Gw)Ty = xTDx.

Since D is negative definite, it follows that x = 0. Hence ATy = 0. Therefore,
y = 0, since rankA=m. Also, since Ax = 0, we have Gw = 0 and therefore, since
rankG= p, w = 0. �

We continue with the description of the basic algorithmic idea. Choose μk =
σkμ0 and set ζk = ζμk

. Then F(ζk) = (0,0,0,μken) for all k ∈ N. A first-order
approximation gives

F(ζk+1)≈ F(ζk)+DF(ζk)(ζk+1 − ζk). (9.4)

Suppose now that zk = (x,w,y, s) ∈ S◦ is an approximation of ζk . Then F(zk) =
(0,0,0, x1s1, . . . , xnsn) = (0,0,0,XSen). We obtain from (9.4), replacing the un-
knowns ζk by zk ,

(0,0,0,μk+1en)= F(ζk+1)≈ F(zk)+DF(zk)(ζk+1 − zk).

This leads to the definition

zk+1 := zk +DF(zk)
−1(0,0,0,μk+1en −XSen) (9.5)

of the approximation of ζk+1. This vector is well defined due to Lemma 9.3. Put
zk+1 = zk + (Δx,Δw,Δy,Δs). Then

(
ATΔy +Δs,GTΔy,AΔx +GΔw,SΔx +XΔs

)=DF(zk)(Δx,Δw,Δy,Δs)

= (0,0,0,μk+1en −XSen),

and hence ATΔy + Δs = 0, GTΔy = 0, AΔx + GΔw = 0, which implies
AT(y+Δy)+ (s+Δs)= c, GT(y+Δy)= d , and A(x+Δx)+G(w+Δw)= b.
We have shown that zk+1 satisfies the equalities in (9.2). By a suitable choice of
the parameter σ we will see that one can achieve that zk+1 also satisfies the strict
inequalities in (9.2), that is, zk+1 ∈ S◦.



9.2 Existence and Uniqueness of the Central Path 177

Summarizing, the framework for a primal–dual interior point method is the fol-
lowing algorithm.

Algorithm 9.1 Primal–Dual IPM

Input: A ∈R
m×n, G ∈R

m×p , b ∈R
m, c ∈R

n, d ∈R
p ,

z0 = (x0,w0, y0, s0) ∈R
2n+p+m, σ ∈ (0,1)

Preconditions: rankA=m≤ n, rankG= p ≤m, z0 ∈ S◦

set μ := μ(z0)

repeat
set μ := σμ, X := diag(x), S := diag(s)
solve

⎡

⎢
⎢⎢
⎣

0 0 AT I

0 0 GT 0
A G 0 0
S 0 0 X

⎤

⎥
⎥⎥
⎦
·

⎡

⎢
⎢
⎣

Δx

Δw

Δy

Δs

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

0
0
0

μ en −XSen

⎤

⎥
⎥
⎦

set

(x,w,y, s) := (x,w,y, s)+ (Δx,Δw,Δy,Δs)

until a stopping criterion is satisfied by (x,w,y, s)

return (x,w,y, s) and halt

Output: z= (x,w,y, s) ∈R
2n+p+m

Postconditions: z ∈ S0 and z satisfies the stopping criterion

9.2 Existence and Uniqueness of the Central Path

We provide here the proof of the fundamental Theorem 9.1.

Lemma 9.4 Suppose that S◦ �= ∅. Then for all K ∈R the set

{
(x, s) ∈R

n ×R
n | ∃w ∈R

p∃y ∈R
m(x,w,y, s) ∈ S, sTx ≤K

}

is bounded.

Proof Let (x̄, w̄, ȳ, s̄) ∈ S◦. For any (x,w,y, s) ∈ S we have Ax̄ + Gw̄ = b and
Ax+Gw = b, hence A(x̄−x)+G(w̄−w)= 0. Similarly, AT(ȳ−y)+ (s̄− s)= 0
and GT(ȳ − y)= 0. This implies

(s̄ − s)T(x̄ − x)=−(ȳ − y)TA(x̄ − x)= (ȳ − y)TG(w̄−w)= 0.
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It follows, assuming sTx ≤K , that

sTx̄ + s̄Tx = sTx + s̄Tx̄ ≤K + s̄Tx̄.

The quantity ξ := mini min{x̄i , s̄i} is positive by assumption. We therefore get

ξeT
n(x + s)≤K + s̄Tx̄;

hence ξ−1(K + s̄Tx̄) is an upper bound on xi and si for all i. �

Fix μ> 0 and consider the barrier function

f : H◦ →R, f (x, s)= 1

μ
sTx −

n∑

j=1

ln(xj sj ) (9.6)

defined on the projection H◦ of S◦:

H◦ := {
(x, s) ∈R

n ×R
n | ∃w ∈R

p∃y ∈R
m(x,w,y, s) ∈ S◦}.

Note that H◦ is convex because S◦ is convex. Moreover, f (x, s) approaches ∞
whenever any of the products xj sj approaches zero.

Lemma 9.5

(a) f is strictly convex.
(b) f is bounded from below.
(c) For all κ ∈R there exist 0 < α < β such that

{
(x, s) ∈H◦ | f (x, s)≤ κ

}⊆ [α,β]n × [α,β]n.

Proof (a) Consider the function g : Rn+ × R
n+ → R, g(x, s) = −∑n

j=1 ln(xj sj ).

We have ∂2g

∂x2
j

= x−2
j , ∂2g

∂s2
j

= s−2
j , and all other second-order derivatives of g vanish.

The Hessian of g is therefore positive definite and hence g is strictly convex. In
particular, the restriction of g to H◦ is strictly convex as well.

We claim that the restriction of sTx to H◦ is linear. To show this, consider a
fixed point (x̄, w̄ȳ, s̄) ∈ S◦. Then Ax̄ +Gw̄ = b,ATȳ + s̄ = c, and GTȳ = d . Now
consider any (x, s) ∈ H◦. There exist w ∈ R

p and y ∈ R
m such that (x,w,y, s)

∈ S◦. Furthermore, by (8.1),

sTx = cTx + dTw− bTy = cTx + ȳTGw− x̄TATy − w̄TGTy

= cTx + ȳT(b−Ax)− x̄T(c− s)− w̄Td

= cTx + ȳTb− ȳTAx − x̄Tc+ x̄Ts − w̄Td,

which is linear in (x, s). This proves the first assumption.
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(b) We write

f (x, s)=
n∑

j=1

h
(xj sj

μ

)
+ n− n lnμ,

where

h(t) := t − ln t − 1.

It is clear that h is strictly convex on (0,∞) as well as that limt→0 h(t) =∞, and
limt→∞ h(t)=∞. Moreover, h(t)≥ 0 for t ∈ (0,∞) with equality iff t = 1. Using
this, we get

f (x, s)≥ n− n lnμ,

which proves the second assertion.
(c) Suppose (x, s) ∈H◦ with f (x, s)≤ κ for some κ . Then, for all j ,

h
(xj sj

μ

)
≤ κ − n+ n logμ=: κ̄ .

From the properties of h it follows that there exist 0 < α1 < β1 such that

h−1(−∞, κ̄] ⊆ [α1, β1],
whence μα1 ≤ xj sj ≤ μβ1. Applying Lemma 9.4 with K = nμβ1 shows that there
is some β such that xj ≤ β , sj ≤ β . Hence xj ≥ μα1β

−1, sj ≥ μα1β
−1, which

proves the third assertion with α = μα1β
−1. �

Suppose that S◦ �= ∅. Lemma 9.5(c) implies that f achieves its minimum in H◦.
Moreover, the minimizer is unique, since f is strictly convex. We shall denote this
minimizer by (xμ, sμ). We note that if rankA=m ≤ n, then yμ is uniquely deter-
mined by the condition ATyμ + sμ = c, and similarly, if rankG= p ≤m, then wμ

is uniquely determined by the condition Axμ +Gwμ = b.
To complete the argument, we will show that xisi = μ, i = 1,2, . . . , n, are ex-

actly the first-order conditions characterizing local minima of the function f . (Note
that a local minimum of f is a global minimum by the strict convexity of f .)

We recall a well-known fact about Lagrange multipliers from analysis. Let
g,h1, . . . , hm : U → R be differentiable functions defined on the open subset
U ⊆ R

n. Suppose that u ∈ U is a local minimum of g under the constraints
h1 = 0, . . . , hm = 0. Then, if the gradients ∇h1, . . . ,∇hm are linearly independent
at u, there exist Lagrange multipliers λ1, . . . , λm ∈R such that

∇g(u)+ λ1∇h1(u)+ · · · + λm∇hm(u)= 0. (9.7)

We apply this fact to the problem

min f (x, s) s.t. Ax +Gw = b, ATy + s = c,

GTy = d, x > 0, s > 0.



180 9 Interior-Point Methods

Suppose that (x,w,y, s) is a local minimum of f . The linear independence condi-
tion holds due to Lemma 9.3 and our assumptions rankA = m ≤ n and rankG =
p ≤m. By (9.7) there are Lagrange multipliers v ∈R

m, u ∈R
n, t ∈R

p , such that

μ−1s −X−1en +ATv = 0, GTv = 0,

Au+Gt = 0, μ−1x − S−1en + u= 0.
(9.8)

(Here we have used that ∂f
∂x

= μ−1s −X−1en, ∂f
∂w

= ∂f
∂y

= 0, ∂f
∂s

= μ−1x − S−1en.)
The last two equalities in (9.8) imply that

A
(
μ−1x − S−1en

)−Gt = 0

and therefore that
(
μ−1x − S−1en

)T
ATv − tTGTv = 0.

We now use the second equality in (9.8) to deduce (μ−1Xe − S−1en)TATv = 0.
Using the first equality we get

(
μ−1Xen − S−1en

)T(
μ−1Sen −X−1en

)= 0.

Therefore

0 = (
μ−1Xen − S−1en

)T(
X−1/2S1/2)(X1/2S−1/2)(μ−1Sen −X−1en

)

= ∥∥μ−1(XS)1/2en − (XS)−1/2en
∥∥2

.

This implies XSen = μen; hence (x,w,y, s) lies on the central path C.
Conversely, suppose that (x,w,y, s) ∈ S◦ satisfies XSen = μen. Put v = 0,

u= 0, and t = 0. Then the first-order conditions (9.8) are satisfied. Since f is strictly
convex, (x, s) is a global minimum of f . By the previously shown uniqueness, we
have (x, s)= (xμ, sμ). This completes the proof of Theorem 9.1. �

9.3 Analysis of IPM for Linear Programming

Recall the following useful conventions: For a vector u ∈ R
d we denote by U the

matrix U = diag(u1, . . . , ud). Moreover, ed stands for the vector (1, . . . ,1) of the
corresponding dimension. Note that Ued = u.

Lemma 9.6 Let u,v ∈R
d be such that uTv ≥ 0. Then

‖UV ed‖ ≤ 1

2
‖u+ v‖2.
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Proof We have

‖UV ed‖ = ‖Uv‖ ≤ ‖U‖‖v‖ ≤ ‖U‖F ‖v‖ = ‖u‖‖v‖.
Moreover, since uTv ≥ 0,

‖u‖‖v‖ ≤ 1

2

(‖u‖2 + ‖v‖2)≤ 1

2

(‖u‖2 + 2uTv + ‖v‖2)= 1

2
‖u+ v‖2. �

Let A ∈ R
m×n, G ∈ R

m×p , b ∈ R
m, c ∈ R

n, d ∈ R
p , such that rankA = m ≤ n

and rankG= p ≤m. Moreover, let z= (x,w,y, s) ∈ S◦, that is, we have

Ax +Gw = b, ATy + s = c, GTy = d, x > 0, s > 0.

We consider one step of Algorithm 9.1, the primal–dual IPM, with centering param-
eter σ ∈ (0,1). That is, we set μ := μ(z)= 1

n
sTx, define Δz= (Δx,Δw,Δy,Δs)

by
⎡

⎢⎢
⎣

0 0 AT I

0 0 GT 0
A G 0 0
S 0 0 X

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

Δx

Δw

Δy

Δs

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

0
0
0

σμen −XSen

⎤

⎥⎥
⎦ , (9.9)

and put

z̃= (x̃, w̃, ỹ, s̃)= (x,w,y, s)+ (Δx,Δw,Δy,Δs).

Lemma 9.7

(a) ΔsT Δx = 0.
(b) μ(z̃)= σμ(z).
(c) z̃ ∈ S◦ if x̃ > 0, s̃ > 0.

Proof (a) By definition of Δz= (Δx,Δw,Δy,Δs) we have

ATΔy +Δs = 0,

GTΔy = 0,

AΔx +GΔw = 0,

SΔx +XΔs = σμen −XSen.

(9.10)

Therefore,

ΔsTΔx =−ΔyTAΔx =ΔyTGΔw =ΔwTGTΔy = 0.

(b) The fourth equation in (9.10) implies sTΔx + xTΔs = nσμ − xTs.
Therefore,

s̃Tx̃ = (
sT +ΔsT)(x +Δx)= sTx +ΔsTx + sTΔx +ΔsTΔx = nσμ.

This means that μ(z̃)= 1
n
s̃Tx̃ = σμ.
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Fig. 9.2 Central path C and
central neighborhood N (β)

(c) We already verified at the end of Sect. 9.1 (by a straightforward calculation)
that z̃ satisfies the equality constraints in (9.2). �

A remaining issue is how to achieve x̃ > 0, s̃ > 0 by a suitable choice of the
centering parameter σ .

Definition 9.8 Let β > 0. The central neighborhood N (β) is defined as the set of
strictly feasible points z= (x,w,y, s) ∈ S◦ such that

∥∥XSen −μ(z)en
∥∥≤ βμ(z).

The central neighborhood is a neighborhood of the central path C in S◦ that
becomes narrower as μ(z) approaches zero (see Fig. 9.2).

In the following we set β = 1
4 and write N :=N ( 1

4 ).

Lemma 9.9 Let z = (x,w,y, s) ∈ N and Δz = (Δx,Δw,Δy,Δs) be defined
by (9.9) with respect to σ = 1 − ξ√

n
with 0 < ξ ≤ 1

4 . Then z̃ = z + Δz satisfies

z̃ ∈N .

Proof By (9.9) we have

XSen +XΔs + SΔx = σμen, (9.11)

which implies

X̃S̃en =XSen +XΔs + SΔx +ΔXΔSen =ΔXΔSen + σμen.

Moreover, by Lemma 9.7(b), μ(z̃)= σμ. We therefore need to show that

‖X̃S̃en − σμen‖ = ‖ΔXΔSen‖ ≤ βμ(z̃)= βσμ. (9.12)

To do so, note first that z ∈N implies |xisi −μ| ≤ βμ for all i, and hence

(1 − β)μ≤ xisi ≤ (1 + β)μ. (9.13)
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By (9.11) we have XΔs + SΔx = σμen −XSen. Setting D :=X1/2S−1/2, we get

DΔs +D−1Δx = (XS)−1/2(σμen −XSen). (9.14)

Because (D−1Δx)T(DΔs) = ΔsTΔx = 0 (cf. Lemma 9.7(a)), we can apply
Lemma 9.6 with u=D−1Δx and v =DΔs to obtain

‖ΔXΔSen‖ =
∥∥(D−1ΔX

)
(DΔS)en

∥∥

≤ 2−1
∥∥D−1Δx +DΔs

∥∥2

≤ 2−1
∥∥(XS)−1/2(σμen −XSen)

∥∥2 by (9.14)

≤ (
2μ(1 − β)

)−1‖σμen −XSen‖2 by (9.13)

≤ (
2μ(1 − β)

)−1(‖μen −XSen‖ +
∥∥μ(σ − 1)en

∥∥)2

≤ (
2μ(1 − β)

)−1(
βμ+ (1 − σ)μ

√
n
)2 by Def. 9.8

≤ (
2(1 − β)

)−1
(β + ξ)2μ by def. of σ .

A small calculation shows that

1

2(1 − β)
(β + ξ)2 ≤ β(1 − ξ)≤ β

(
1 − ξ√

n

)

for β = 1
4 and 0 ≤ ξ ≤ 1

4 . This proves (9.12).
We still need to show that z̃ ∈ S◦. For this, by Lemma 9.7(c), it is sufficient to

prove that x̃, s̃ > 0. Inequality (9.12) implies x̃i s̃i ≥ (1 − β)σμ > 0. Suppose we
had x̃i ≤ 0 or s̃i ≤ 0 for some i. Then x̃i < 0 and s̃i < 0, which implies |Δxi |> xi
and |Δsi |> si . But then,

βμ> βσμ
(9.12)≥ ‖ΔXΔSen‖ ≥ |ΔxiΔsi |> xisi

(9.13)≥ (1 − β)μ;
hence β ≥ 1

2 , a contradiction. �

Theorem 9.10 On an input (A,G,b, c, d) ∈R
m×n ×R

m×p ×R
m ×R

n ×R
p with

rankA = m ≤ n, rankG = p ≤ m, and for the choice of the centering parameter
σ = 1 − ξ√

n
with ξ ∈ (0, 1

4 ], Algorithm 9.1 produces, on a strictly feasible starting

point z0 in the central neighborhood N =N ( 1
4 ), a sequence of iterates zk ∈N such

that μ(zk)= σkμ(z0), for k ∈N. We therefore have, for all ε > 0,

μ(zk)≤ ε for k ≥
√
n

ξ
ln

μ(z0)

ε
.

Each iteration can be performed with O(n3) arithmetic operations.



184 9 Interior-Point Methods

Proof It suffices to prove the displayed inequality. This follows from the implication

k ≥ a−1 lnB ⇒ (1 − a)k ≤ 1

B
(9.15)

for 0 < a < 1, B > 0. (Use ln(1 − a)≤−a to show this.) �

9.4 Condition-Based Analysis of IPM for PCFP

In the previous sections we described and analyzed an interior-point method (Algo-
rithm 9.1) that approximates an optimal solution of the primal–dual pair (OP)–(OD).
The goal of this section is to use this algorithm for solving the polyhedral cone fea-
sibility problem (PCFP) and to analyze the resulting algorithm in terms of the GCC
condition number.

Let A ∈ (Sm−1)n be given, n > m. Recall that the problem PCFP consists in
deciding whether A ∈ F◦

P or A ∈ F◦
D (if A ∈Σ , then A is an ill-posed instance of

PCFP).

9.4.1 Reformulation

The first step is to reformulate the problem as a pair of primal–dual optimization
problems by relaxation.

Without loss of generality assume Aen �= 0, since otherwise, the feasibility prob-
lem is trivial. Let u := 1

‖Aen‖Aen. Notice that ‖u‖ = 1 by construction.
Instead of the primal feasibility problem ∃x ∈ R

n \ {0}, Ax = 0, x ≥ 0, we con-
sider the relaxation (introducing one additional variable x′ ∈R)

min x′ subject to Ax − ux′ = 0,

eT
nx = 1,

x ≥ 0.

(9.16)

Also, the linear program dual of (9.16) (cf. Sect. 8.1) yields an analogous relaxation
for the dual feasibility problem ∃x ∈ R

n \ {0}, ATy ≤ 0 (again, introducing one
additional variable y′ ∈R)

max y′ subject to ATy + eny′ ≤ 0,

− uTy = 1.
(9.17)

We first note that the pair (9.16)–(9.17) has the form of the primal–dual pair
(OP)–(OD) described in Sect. 8.1. We also note that these are both feasible prob-
lems. Indeed, the pair (x, x′) with x = en

n
and x′ = ‖Aen‖

n
satisfies the constraints
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of (9.16), and the pair (y, y′) with y = −u and y′ = −‖ATu‖∞ satisfies those
of (9.17). It follows from Theorem 8.2 that both have optimal solutions and that
their optimal values are the same, which in the following we denote by v∗.

This optimal value is closely related to PCFP.

Lemma 9.11 For A ∈R
m×n such that Aen �= 0 we have

A ∈F◦
P ⇐⇒ v∗ < 0,

A ∈F◦
D ⇐⇒ v∗ > 0,

A ∈Σ, rankA=m ⇐⇒ v∗ = 0.

Proof Assume A ∈ F◦
P . Then, there exists x > 0 such that Ax = 0. Let j be such

that xj = mini≤n xi and put λ := eT
n(x − xj en). We have λ > 0, since Aen �= 0. We

define

x̄ := λ−1(x − xjen), x′ := −λ−1xj‖Aen‖.
Then, it is immediate to verify that x̄ ≥ 0, eT

n x̄ = 1, x′ < 0, and Ax̄ − ux′ = 0. This
shows that v∗ ≤ x′ < 0.

Assume now that A ∈ F◦
D . Then there exists y ∈ R

m such that ATy < 0. This
implies eT

nA
Ty < 0, or in other words, uTy < 0. Then ȳ := − y

uTy
satisfies ATȳ < 0

and −uTȳ = 1. In addition, for y′ = −maxi≤n a
T
i ȳ we have ATȳ + eny′ ≤ 0 and

y′ > 0 and therefore v∗ ≥ y′ > 0.
We next prove the converse of the two statements we just proved. To do so,

consider optimal solutions (x∗, x′∗) and (y∗, y′∗) of (9.16) and (9.17), respectively.
Because of Theorem 8.2 we have x′∗ = y′∗ = v∗.

If v∗ < 0, then x′∗ < 0, and we obtain a solution of Ax = 0, x > 0 by taking

x := x∗ − x′∗en
‖Aen‖ .

This shows that A ∈F◦
P .

If instead, v∗ > 0, then y′∗ > 0, and we have ATy∗ ≤ −y′∗en < 0, showing that
A ∈F◦

D .
The reasoning above proves the first two equivalences in the statement. The third

is now immediate from Theorem 6.14. �

Remark 9.12 The rank condition in Lemma 9.11 is needed, since F◦
P ∩ Σ =

{A ∈ Σ | rankA < m} �= ∅ (compare Theorem 6.14). While this condition may be
confusing, it is quite irrelevant for our computational purposes.

By adding slack variables, we can recast (9.17) as

max y′ subject to ATy + eny′ + s = 0,

−uTy = 1,

s ≥ 0.

(9.18)
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Here y ∈R
m, y′ ∈R, and s ∈R

n. In matrix form, (9.18) can be stated as

max bT (y subject to AT (y + s = c, GT (y = d, s ≥ 0, (9.19)

where

A=
[
A

eT
n

]
∈R

(m+1)×n, G=
[−u

0

]
∈R

m+1,

(y =
(
y

y′
)
∈R

m+1, b=
(

0
1

)
∈R

m+1,

c= 0 ∈R
n, d = 1.

Likewise, (9.16) can be stated as

min cTx + dx′ subject to Ax +Gx′ = b, x ≥ 0. (9.20)

It is essential that (9.19) and (9.20) form a primal–dual pair. We note that y′ = bT (y ≤
cTx+dx′ = x′ for any primal–dual feasible point z= (x, x′, (y, s), and therefore the
duality gap μ(z) satisfies nμ(z)= x′ − y′.

9.4.2 Algorithmic Solution

We now run Algorithm 9.1 on input (A,G,b, c, d)—together with an initial point z0
given in Lemma 9.13 below—with the choice of the centering parameter σ = 1 −
ξ/
√
n, ξ = 1

4 . This will solve PCFP for input A.
To see why, assume that we have at hand the starting point z0 lying in the central

neighborhood N = N ( 1
4 ). Because of Theorem 9.10, running Algorithm 9.1 on

input (A,G,b, c, d) with the starting point z0 produces a sequence of iterates zk =
(xk, x

′
k, (yk, sk) in N such that μ(zk) = σk μ(z0). The sequence zk approaches an

optimal solution of the primal–dual pair (9.19)–(9.20).
Suppose first that (9.19) has an optimal solution with ATy < 0. Since ((yk, sk) ap-

proaches an optimal solution of (9.19) for k →∞, we expect that for k sufficiently
large, the first component yk of (yk = (yk, y

′
k) will satisfy ATyk < 0 and certify the

strict feasibility of the dual feasibility problem (A ∈ F◦
D). This will be formally

proved in Sect. 9.4.3 with an explicit bound on the number k of iterations required
in terms of C (A).

Suppose instead that (9.20) has an optimal solution with x > 0. Since the iterates

(xk, x
′
k) approach an optimal solution of (9.20), Axk = ux′k = x′k‖Aen‖Aen will be a

negative multiple of Aen for k sufficiently large. Consequently, xk − x′k‖Aen‖en will
solve Ax = 0, x > 0, thereby certifying the strict feasibility of the primal problem
(A ∈F◦

P ). This will be formally proved in Sect. 9.4.3. Again, a bound on how large
k needs to be will be shown in terms of C (A).

It is not hard to find an explicit starting point z0 in the central neighbor-
hood N ( 1

4 ).
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Lemma 9.13 The point z0 = (x, x′, (y, s) defined by

x = 1

n
en, x′ = ‖Aen‖

n
,

y =−u, y′ = −4
√
n, s =−ATy − eny′

(9.21)

lies in the central neighborhood N ( 1
4 ) and μ(z0)≤ 4

√
n+1
n

.

Proof It is straightforward to verify that

Ax − ux′ = 0, ATy + eny′ + s = 0, −uTy = 1, x, s > 0,

so that z0 satisfies the constraints in (9.16) and (9.17). In addition, using eT
nA

Tu=
eT
nA

T Aen‖Aen‖ = ‖Aen‖,

xTs = 1

n
eT
n

(−ATy − eny′
)= 1

n
‖Aen‖ − y′.

Thus, using ‖Aen‖ = ‖a1 + · · · + an‖ ≤ n,

μ(z0)= xTs

n
=−y′

n
+ ‖Aen‖

n2
∈
[
−y′

n
,

1

n

]
⊆
[

4√
n
,

1 + 4
√
n

n

]
,

or equivalently, −nμ(z0) ∈ [−1−4
√
n,−4

√
n]. On the other hand, using |aT

i y| ≤ 1,
we have for i ∈ [n],

xisi = si

n
= −aT

i y − y′

n
∈
[−1 − y′

n
,

1 − y′

n

]
,

or equivalently, nxisi ∈ [−1+4
√
n,1+4

√
n]. Therefore n(xisi −μ(z0)) ∈ [−2,1],

for each i ∈ [n], and consequently ‖XSen − μen‖2 ≤ 4
n
≤ 1

4μ(z0)
2. Thus z0 =

(x, x′, (y, s) is in the central neighborhood N ( 1
4 ) of (9.19)–(9.20) with μ(z0) ≤

4
√
n+1
n

. �

We are now ready to describe our algorithm for PCFP (see Algorithm 9.2 below).
The main result of this section is the following condition-based analysis of Al-

gorithm 9.2.

Theorem 9.14 Algorithm 9.2 returns, on input A �∈Σ , either a strictly feasible pri-
mal solution, i.e., a point x ∈R

n such that Ax = 0, x > 0, or a strictly feasible dual
solution, i.e., a point y ∈ R

m such that ATy < 0. In both cases, the algorithm halts
after at most

O
(√

n
(
logn+ logC (A)

))

iterations. The total number of arithmetic operations is bounded by

O
(
n3.5(logn+ logC (A)

))
.
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The proof of this theorem will be provided in the next subsection, and it relies on
the characterization of C (A) given in Proposition 6.28.

Algorithm 9.2 Primal-Dual_IPM_for_PCFP

Input: A ∈R
m×n

Preconditions: rankA=m< n

if Aen = 0 then return “Primal Feasible with
solution en” and halt

if rank[AT en] =m then
compute y ∈R

m, λ ∈R such that en = λATy

if λ > 0 then return “Dual Feasible with
solution −y” and halt

if λ < 0 then return “Dual Feasible with
solution y” and halt

σ := 1 − 1
4
√
n

set z := (x, x′, (y, s) with x, x′, (y, s as defined in (9.21)
μ := μ(z)

repeat
if y′ > 0 then return “Dual Feasible with

solution y” and halt
if x′ < 0 then return “Primal Feasible with

solution x̄ := x − x′
‖Aen‖ en” and halt

set μ := σμ, X = diag(x), S = diag(s)
compute Δz= (Δx,Δx′,Δ(y,Δ(s) by solving

⎡

⎢
⎢
⎣

0 0 AT In

0 0 GT 0
A G 0 0
S 0 0 X

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

Δx

Δx′
Δ(y
Δs

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

0
0
0

μen −XSen

⎤

⎥
⎥
⎦ ,

set z := z+Δz

Output: either x ∈R
n or y ∈R

m

Postconditions: The algorithm halts if A �∈ Σ . In this case, Ax = 0 and x > 0 (if x is
returned) or ATy < 0 (if y is returned)

9.4.3 Analysis

A key result in our analysis is the following quantitative complement of Lemma 9.11.

Lemma 9.15 We have Δ(A)≤ |v∗| for A ∈R
m×n.
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Proof If A ∈ Σ , then Δ(A) = 0, and the result is trivial. We may then assume
A �∈Σ .

Consider first the case A ∈ F◦
D . Let (x∗, x′∗) be an optimal solution of (9.16).

Then ‖x∗‖1 = 1 and Ax∗ = ux′∗. By Lemma 9.11 we have x′∗ = v∗ > 0. Proposi-
tion 6.28(a) implies that

Δ(A)≤ ‖Ax∗‖ =
∥
∥ux′∗

∥
∥= x′∗.

Consider now the case A ∈ F◦
P . Let 0 < η < Δ(A) and y = −ηu. Then ‖y‖ =

η < Δ(A), and by Proposition 6.28(b) there exists x ≥ 0 such that ‖x‖1 = 1 and
Ax = y. Let x′ = −η. Then Ax − ux′ = y + uη = 0. Hence, (x, x′) is a feasible
point of (9.16), and it follows that the optimal value v∗ of the pair (9.16)–(9.17) is
at most x′ = −η. Since this is true for all η <Δ(A), it follows that v∗ ≤ −Δ(A). �

The goal is to prove the following result, from which Theorem 9.14 will easily
follow.

Proposition 9.16 Let A ∈R
m×n and z= (x, x′, (y, s) ∈N ( 1

4 ).

(a) For A ∈F◦
D ,

μ(z) <
1

nC (A)
⇒ y′ > 0.

In particular, ATy < 0.
(b) For A ∈F◦

P ,

μ(z) <
1

nC (A)
⇒ x′ < 0.

In particular, the point x̄ := x − x′
‖Aen‖en satisfies Ax̄ = 0, x̄ > 0.

Proof Assume A ∈ F◦
D . It follows from Lemma 9.15 that for any feasible point

z= (x, x′, (y, (s),
nμ(z)= cTx + dx′ − bT (y = x′ − y′ ≥ x′∗ − y′ ≥Δ(A)− y′.

Since nμ(z) < C (A)−1 =Δ(A), it follows that

y′ ≥Δ(A)− nμ(z) > 0.

Now assume A ∈F◦
P . Using again Lemma 9.15, we deduce that for any feasible

point z= (x, x′, (y, (s),
nμ(z)= x′ − y′ ≥ x′ − y′∗ ≥ x′ +Δ(A).

Since nμ(z) <Δ(A), it follows that

x′ ≤ −Δ(A)+ nμ(z) < 0. �
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Proof of Theorem 9.14 Assume A ∈ F◦
D . By Lemma 9.13 and Theorem 9.10, the

sequence of iterates zk produced by Algorithm 9.2 stays in the central neighborhood
N ( 1

4 ) and μ(zk)= σkμ(z0)≤ σk(4
√
n+ 1)/n for all k ∈N. If

4
√
n+ 1

n

(
1 − 1

4
√
n

)k

<
1

nC (A)
, (9.22)

then Proposition 9.16 implies ATy < 0, and hence Algorithm 9.2 halts and returns y.
Inequality (9.22) holds if (compare (9.15))

k > 4
√
n ln

((
4
√
n+ 1

)
C (A)

)
.

The case A ∈F◦
P is dealt with similarly. �

Remark 9.17 In the preceding chapter we described the ellipsoid method, an elegant
theoretical framework for showing the existence of efficient algorithms in convex
optimization. We used such a method to find a point y such that ATy < 0 for a ma-
trix A ∈F◦

D . Even though the task done by Algorithm 9.2 is more general than that
performed by Algorithm 7.1, it makes sense to compare their theoretical complexity
bounds. The total number of arithmetic operations is bounded by O(n3.5(logn +
logC (A))) in the interior-point Algorithm 9.2 and by O(m3n lnC (A)) for the el-
lipsoid Algorithm 7.1. This last bound can be smaller that the former when n"m,
but for comparable m and n (say m a fraction of n) it is larger.

Remark 9.18 Since the complexity bound in Theorem 9.14 is in terms of C (A), we
may use again Proposition 7.9 to deduce, as in Remark 7.10, that if the data matrix
A has integer entries, then (a suitable modification of) Algorithm 9.2 works in time
polynomial in n,m and the bit-size of the largest entry of A. Note that the only way
for Algorithm 9.2 not to have halted when reaching this time bound is if A ∈ Σ .
Hence, by “clocking” the algorithm, one can decide whether A ∈ F◦

P , A ∈ F◦
D , or

A ∈Σ in polynomial time in the bit-size of the given integer matrix A.

9.5 Finite Precision for Decision and Counting Problems

We may now return to an issue pointed out in Sect. 6.1. We mentioned there that
for a decisional problem such as PCFP, a different form of finite-precision analysis
is needed. Recall that the obstruction is that the notion of loss of precision hardly
makes sense for a problem whose possible outputs are the tags “primal strictly fea-
sible” and “dual strictly feasible.” It is apparent, however, that the value of the ma-
chine precision εmach has an influence on the computed solution for the problem.
One feels that the smaller εmach is, the more likely the returned tag will be the cor-
rect one for the input matrix A ∈ (Sm−1)n. This is clear if errors occur only in read-
ing A. In this case—assuming that the error satisfies dsin(A, Ã) ≤ εmach—one has
that the computed tag is guaranteed to be the correct one whenever εmach < C (A).
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If instead, errors occur all along the computation, then similar results can be sought
with a more elaborate right-hand side.

Indeed, one can actually think of two template results for a (discrete-valued)
problem ϕ : D ⊆ R

m → V for which a condition number condϕ has been defined.
In the first one, the machine precision εmach is fixed.

Template Result 1 The cost of (fixed-precision) algorithm A —computing the func-
tion A ϕ—satisfies, for all a ∈D, a bound of the form

f
(
dims(a), condϕ(a)

)
.

Moreover, A ϕ(a)= ϕ(a) if

εmach ≤ 1

g(dims(a), condϕ(a))
.

Here f and g are functions of the dimensions of a and its condition. �

In the second template result, the finite-precision algorithm has the capacity to
adaptively modify its machine precision. This leads to outputs that are guaranteed
to be correct but do not have a priori bounds on the precision required for a given
computation.

Template Result 2 The cost of variable-precision algorithm A —computing the
function A ϕ—satisfies, for all a ∈D, a bound of the form

f
(
dims(a), condϕ(a)

)
.

Moreover, for all a ∈ D, A ϕ(a) = ϕ(a), and the finest precision required satisfies
the bound

εmach ≥ 1

g(dims(a), condϕ(a))
.

Here f and g are functions of the dimensions of a and its condition. �

In practice, one may want to limit both the running time and the precision of A .
If this is the case, one may stop the execution of A on input a after a certain number
of steps if the computation has not succeeded by then, and return a message of the
form

The condition of the data is larger than K.

The value of K can be obtained by solving f for condϕ(a).

To give an example, we return to PCFP. For this problem, note that the assump-
tion of finite precision sets some limitations on the solutions (feasible points) we
may obtain. If system A belongs to F◦

D , then we will obtain, after sufficiently refin-
ing the precision, a point y ∈R

m such that ATy < 0. On the other hand, if A ∈F◦
P ,
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then there is no hope of computing a point x ∈ R
n such that Ax = 0, x > 0, since

the set of such points is thin in R
n (i.e., has empty interior). In such a case there

is no way to ensure that the errors produced by the use of finite precision will not
move any candidate solution out of this set. We may instead compute good approx-
imations.

Let γ ∈ (0,1). A point x̂ ∈ R
n is a γ -forward solution of the system Ax = 0,

x ≥ 0, if x̂ ≥ 0, x̂ �= 0, there exists x̄ ∈R
n such that

Ax̄ = 0, x̄ ≥ 0,

and for i = 1, . . . , n,

|x̂i − x̄i | ≤ γ x̂i .

The point x̄ is said to be an associated solution for x̂. A point is a forward-
approximate solution of Ax = 0, x ≥ 0, if it is a γ -forward solution of the system
for some γ ∈ (0,1). Strict forward-approximate solutions are defined, as usual, by
replacing the inequalities by strict inequalities.

The main result in [69] is the following extension (in the form of Template Re-
sult 2) of Theorem 9.14.

Theorem 9.19 There exists a round-off machine that with input a matrix A ∈R
m×n

and a number γ ∈ (0,1) finds either a strict γ -forward solution x ∈ R
n of Ax = 0,

x ≥ 0, or a strict solution y ∈ R
m of the system ATy ≤ 0. The machine precision

εmach varies during the execution of the algorithm. The finest required precision is

εmach = 1

cn12C (A)2
,

where c is a universal constant. The number of main (interior-point) iterations of
the algorithm is bounded by

O
(
n1/2(logn+ log

(
C (A)

)+ | logγ |))

if A ∈F◦
P , and by the same expression without the | logγ | term if A ∈F◦

D . �



Chapter 10
The Linear Programming Feasibility Problem

In Chap. 8 we introduced linear programming optimization problems. Then, in
Chap. 9, we rephrased PCFP as one such problem. By doing so, we could apply
an interior-point method to the latter and obtain an algorithm solving PCFP with a
complexity bounded by a low-degree polynomial in n, m and logC (A). A question
conspicuously left open is the solution of the optimization problem itself. Theo-
rem 9.10 provides a key step of this solution but leaves at least two aspects un-
touched: the initial feasible point is assumed to be given and there is no hint as how
to deduce, at some moment of the process, the optimizers and optimal value.

In this chapter we deal with the first of the two aspects above. To fix a context,
let us consider the primal–dual pair in standard form:

min cTx subject to Ax = b, x ≥ 0, (SP)

and

max bTy subject to ATy ≤ c. (SD)

The problem at hand is, given the triple d = (A,b, c) to decide whether the primal
feasible set SP = {x ∈ R

n | Ax = b, x ≥ 0} and dual feasible set SD = {y ∈ R
m |

ATy ≤ c} are both nonempty, and if this is so, to compute a pair (x, y) of points in
these sets. If both primal and dual are feasible, we say that d is feasible. This is the
feasibility problem we discussed in Sect. 8.4.2.

10.1 A Condition Number for Polyhedral Feasibility

We will call any system of linear equalities and inequalities a polyhedral system.
For any polyhedral system with data S we write F(S)= 0 if the system is infea-

sible and F(S) = 1 otherwise. Then, we define (assuming some norm in the space
of data) the distance to ill-posedness

ρ(S) := inf
{‖ΔS‖ : F(S) �= F(S +ΔS)

}
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as well as the condition number

C(S) := ‖S‖
ρ(S)

.

These definitions follow the lines of Sects. 1.3 and 6.4.
Consider now the data d = (A,b, c) of the pair (SP–SD). For the primal poly-

hedral system Ax = b, x ≥ 0, this yields a distance to ill-posedness ρP (A,b) and
a condition number CP (A,b); we similarly obtain ρD(A, c) and CD(A, c) for the
dual. Finally we define, for the triple d = (A,b, c), the condition number

C(d) := max
{
CP (A,b),CD(A, c)

}
.

As usual, if C(d) =∞, we say that d is ill-posed and we say that it is well-posed
otherwise.

We note that, following the discussion in Sect. 8.4.2(c), we could also define a
condition number for the feasibility problem by taking

CFP(d) := ‖d‖
dist(d,ΣFP)

with the set of ill-posed triples ΣFP as defined there and where dist is the distance
induced by ‖ ‖. The condition number C(d) is similar in spirit to CFP but differs in
the way the normalization of the inverse distance is made. In particular, we note that
C(d)=∞ if and only if d ∈ΣFP.

To make these definitions precise, we need to fix a norm. It will be convenient to
choose ‖ ‖12. That is, the norm of a pair (A,b) is the 12-norm of the matrix [A,b],
which we denote by ‖A,b‖12. Similarly for the dual, where for a pair (A, c), we
consider the 12-norm of the matrix (A, cT) (or equivalently, due to Lemma 1.2(c),
the 2∞-norm of the matrix [AT, c]).

Remark 10.1 Note that ρP (A,b)≤ ‖A,b‖12 and ρD(A, c)≤ ∥∥( A

cT

)∥∥
12.

We can now use C(d) to state the main result of this chapter.

Theorem 10.2 There exists an algorithm that given a triple d = (A,b, c) with A ∈
R

m×n, b ∈ R
m, and c ∈R

n, decides whether both SP and SD are nonempty with a
cost bounded by

O
(
n3.5(logn+ logC(d)

))
.

Furthermore, if both sets are nonempty, the algorithm returns a pair (x, y) of strictly
feasible points.

Note that the algorithm in Theorem 10.2 decides feasibility only for well-posed
triples d .
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10.2 Deciding Feasibility of Primal–Dual Pairs

The idea for proving Theorem 10.2 is simple: by homogenizing, we reduce the two
feasibility problems to instances of PCFP. Indeed, given d = (A,b, c), we have

∃x > 0 s.t. Ax = b ⇐⇒ ∃x > 0, ∃t > 0 s.t. Ax − bt = 0 (10.1)

and, for any α > 0,

∃y s.t. ATy < c ⇐⇒ ∃y ∃t s.t.

[
AT −c

0 −α

][
y

t

]
< 0. (10.2)

Therefore, we can decide the feasibility of d with two calls to Algorithm 9.2 (Primal-
Dual_IPM_for_PCFP). In addition, we have freedom to choose α > 0.

We say that d is dual-normalized when
∥∥∥∥

(
A

cT

)∥∥∥∥
12
= 1.

From a computational viewpoint, this normalization can be straightforwardly
achieved in a way that the dual feasible set SD remains unchanged as does the
condition number CD(d). These considerations lead to Algorithm 10.1 below.

The complexity bounds in Theorem 9.14 do not, however, directly apply to ana-
lyzing Algorithm 10.1, since they are expressed in terms of C , a condition number
for a homogeneous problem, and we want a bound in terms of C(d) (i.e., in terms of
CP and CD). Proposition 10.3 below shows that this is not a major obstacle, since
these condition numbers are roughly the same. Indeed, the characterization of C in
Proposition 6.21 shows that for M ∈R

m×n,

C (M)= ‖M‖12

ρh(M)
,

where we have written ρh(M) := dist12(M,Σ) to emphasize the resemblance with
the corresponding expressions for CP (A,b) and CD(A, c). Note actually that the
only difference between ρh

([ A 0
−cT −1

])
and ρD(A, c) is that in the former we are

allowed to consider perturbations of the 0 and the −1 in the last column of the
matrix, whereas in the latter we can perturb only the entries of A and c.

Proposition 10.3 For any dual-normalized triple d = (A,b, c),

C

([
A 0
−cT −1

])
≥ CD(A, c)≥ 1

5
C

([
A 0
−cT −1

])
,

and for any triple d = (A,b, c),

CP (A,b)= C
([A,−b]).
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Algorithm 10.1 FEAS_LP

Input: A ∈R
m×n, b ∈R

m, c ∈R
n

Preconditions: rankA=m< n

run Primal-Dual_IPM_for_PCFP with input
M := [A,−b]

if M(x, t)= 0, (x, t) > 0 is feasible
return “primal feasible” with solution x

else return “primal infeasible”
dual normalize (A, c)

run Primal-Dual_IPM_for_PCFP with input

M :=
[

A 0
−cT −1

]

if MT(y, t) < 0 is feasible
return “dual feasible” with solution y

else return “dual infeasible”

Output: x ∈R
n or y ∈R

m or both

Postconditions: The algorithm outputs x if SP �= ∅ and CP (A,b) < ∞ and it
returns y if SD �= ∅ and CP (A, c) <∞

Towards the proof of Proposition 10.3 we introduce some notation. Let

F#
D = {

(A, c) ∈R
m×n ×R

n | ∃y ∈R
m s.t. ATy < c

}

and

FD = {
B ∈R

(m+1)×(n+1) | ∃z ∈R
m+1 s.t. BTz < 0

}
.

Lemma 10.4 Let A ∈R
m×n and c ∈R

n, such that
∥∥( A

cT

)∥∥
12 = 1. Then

[
A 0
−cT −1

]
∈FD ⇐⇒ (A, c) ∈F#

D

and

ρh

([
A 0
−cT −1

])
≤ ρD(A, c)≤ 5ρh

([
A 0
−cT −1

])
.

Proof It is clear that

[
A 0
−cT −1

]
∈FD ⇐⇒ (A, c) ∈F#

D.
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From here, the inequality

ρh

([
A 0

−cT −1

])

≤ ρD(A, c) (10.3)

readily follows.
We now address the other inequality. By the definition of ρh, there exist

ΔA,Δc,Δu,Δv, such that

ω :=
∥∥
∥∥∥

(
ΔA Δu

ΔcT Δv

)∥∥
∥∥∥

12

= ρh

([
A 0

−cT −1

])

and
[

A+ΔA Δu

−cT +ΔcT −1 +Δv

]

∈FD ⇐⇒ (A, c) /∈F#
D. (10.4)

Note that due to Remark 10.1 and (10.3), we have ω ≤ 1 and, in particular, |Δv| ≤ 1.
Assume |Δv|< 1 and consider

M =
[
(1 −Δv)Im Δu

0 1

][
A+ΔA Δu

−cT +ΔcT −1 +Δv

]

.

Note that M ∈R
(m+1)×(n+1) and the matrix at the left in the product above is invert-

ible. Therefore,

M ∈FD ⇐⇒
[

A+ΔA Δu

−cT +ΔcT −1 +Δv

]

∈FD.

It now follows from (10.4) that M ∈FD if and only if (A, c) /∈F#
D . In addition,

M =
[
(1 −Δv)(A+ΔA)+Δu(−cT +ΔcT) 0

−cT +ΔcT −1 +Δv

]

.

Due to the form of M , and since −1+Δv < 0, it follows, using (10.2), that M ∈FD

if and only if
[
(1 −Δv)(A+ΔA)+Δu(−cT +ΔcT)

−cT +ΔcT

]

∈F#
D.

Therefore

ρD(A, c) ≤
∥∥∥∥∥

(
A

−cT

)
−
(
(1 −Δv)(A+ΔA)+Δu(−cT +ΔcT)

−cT +ΔcT

)∥∥∥∥∥
12

=
∥∥∥∥

(
−ΔA+ΔvA+ΔvΔA+ΔucT −ΔuΔcT

ΔcT

)∥∥∥∥
12
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≤
∥∥∥∥

(
ΔA

ΔcT

)∥∥∥∥
12
+ |Δv|‖A‖12 + |Δv|‖ΔA‖12

+ ∥∥ΔucT
∥∥

12 +
∥∥ΔuΔcT

∥∥
12

≤
∥∥
∥∥

(
ΔA

ΔcT

)∥∥
∥∥

12
+ |Δv|‖A‖12 + ‖ΔA‖12

+ ‖Δu‖2‖c‖∞ + ‖Δu‖2‖Δc‖∞,

where the last inequality is due to Lemma 1.2(a). Now use that

∥∥∥∥

(
ΔA

ΔcT

)∥∥∥∥
12
,‖ΔA‖12, |Δv|,‖Δu‖2,‖Δc‖∞ ≤

∥∥∥∥

(
ΔA Δu

ΔcT Δv

)∥∥∥∥
12
= ω

and that

‖A‖12,‖c‖∞ ≤
∥∥∥∥

(
A

cT

)∥∥∥∥
12
= 1

(together with ω2 ≤ ω) to obtain ρD(A, c)≤ 5ω.
If instead, |Δv| = 1, then

ρh

([
A 0

−cT −1

])

=
∥∥∥
∥

(
ΔA Δu

ΔcT Δv

)∥∥∥
∥

12
≥ 1. (10.5)

In addition, since
∥∥( A

cT

)∥∥
12 = 1, ρD(A, c)≤ 1. Hence, using (10.3),

ρh

([
A 0

−cT −1

])

≤ ρD(A, c)≤ 1. (10.6)

Inequalities (10.5) and (10.6) yield ρh
([ A 0

−cT −1

]) = ρD(A, c) = 1, and thus the
statement. �

Proof of Proposition 10.3 The equality in the primal case easily follows from (10.1).
The inequalities for the dual case have been shown in Lemma 10.4. �

Proof of Theorem 10.2 For both the primal and the dual systems, Theorem 9.14 (to-
gether with (10.1) and (10.2)) ensures that Algorithm 9.2 decides feasibility return-
ing a strictly feasible point (if the system is well posed). Furthermore, this algorithm
performs at most

O
(√

n
(
logn+ logC (M)

))

iterations, where M = [A,−b] in the primal case and M = [ A 0
−cT −1

]
in the dual.

Proposition 10.3 allows one to replace C (M) by C(d) in both cases. �
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Remark 10.5 We can use Proposition 7.9 one more time to deduce, as in Re-
marks 7.10 and 9.18, that when restricted to data with integer entries, Algo-
rithm 10.1 works in polynomial time.

Remark 10.6 Theorem 9.19 states that the problem PCFP can be accurately solved
with finite precision. Since Algorithm 10.1 is, essentially, two calls to a PCFP-
solver, a finite-precision version of this algorithm will work accurately as well.

Theorem 10.7 There exists a finite-precision algorithm that, given a triple d =
(A,b, c) with A ∈ R

m×n, b ∈ R
m, and c ∈ R

n, decides whether both SP and SD

are nonempty. The machine precision εmach varies during the execution of the algo-
rithm. The finest required precision satisfies

εmach = 1

O(n12C(d)2)
.

The total number of arithmetic operations is bounded by

O
(
n3.5(logn+ logC(d)

))
.

Furthermore, if both sets are nonempty, and an additional input γ ∈ (0,1) is spec-
ified, the algorithm returns a pair (x, y), where y is a strictly feasible solution of
ATy ≤ c and x is a strict γ -forward solution of Ax = b, x ≥ 0. In this case the total
number of arithmetic operations becomes

O
(
n3.5(logn+ logC(d)+ | logγ |)). �



Chapter 11
Condition and Linear Programming
Optimization

In the previous chapter we analyzed an algorithm deciding feasibility for a triple
d = (A,b, c) specifying a pair of primal and dual linear programming problems in
standard form,

min cTx subject to Ax = b, x ≥ 0, (SP)

and

max bTy subject to ATy ≤ c. (SD)

If such an algorithm decides that a triple d is feasible, we may want to compute the
optimizers x∗ and y∗, as well as the optimal value v∗, of the pair (SP)–(SD). To do
so is the goal of this chapter.

An approach to this problem is to apply the interior-point Algorithm 9.1 along
with its basic analysis as provided in Theorem 9.10. A possible obstacle is the fact
that the feasible point z = (x, y, s) returned in Theorem 10.2 does not necessarily
belong to the central neighborhood N ( 1

4 ).
Another obstacle, now at the heart of this book’s theme, is how to deduce, at

some iteration of Algorithm 9.1, the optimizers x∗ and y∗. Without doing so, Algo-
rithm 9.1 will increasingly approach these optimizers without ever reaching them. It
is not surprising that a notion of condition should be involved in this process. This
notion follows lines already familiar to us. For almost all feasible triples d a small
perturbation of d will produce a small change in x∗ and y∗. For a thin subset of
data, instead, arbitrarily small perturbations may substantially change these opti-
mizers (recall the discussion in Sect. 8.4.2). The central character of this chapter,
the condition number K (d), measures the relative size of the smallest perturbation
that produces such a discontinuous change in the optimizers. We will formally de-
fine K (d) in Sect. 11.1. We will also show there a characterization of K (d) that,
in line with the theme occupying Sect. O.5.2, makes its computation possible.

In Sect. 11.3 below we describe and analyze algorithms solving the optimal basis
problem, which, we recall, consists in, given a feasible triple d , finding an optimal
basis for it. The first main result concerning this goal is the following.

P. Bürgisser, F. Cucker, Condition,
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_11, © Springer-Verlag Berlin Heidelberg 2013

201

http://dx.doi.org/10.1007/978-3-642-38896-5_11


202 11 Condition and Linear Programming Optimization

Theorem 11.1 There exists an algorithm that with input a full-rank matrix
A ∈R

m×n, vectors b ∈ R
m, c ∈ R

n, and a feasible point z0 = (x0, y0, s0) in the
central neighborhood N ( 1

4 ) such that μ(z0)≤ (n‖d‖)O(1) finds an optimal basis B

for d . The number of iterations performed by the algorithm is bounded by

O
(√

n
(
logn+ logK (d)

))
.

The total number of arithmetic operations is bounded by

O
(
n3.5(logn+ logK (d)

))
.

Remark 11.2 There is no loss of generality in assuming μ(z0) ≤ (n‖d‖)O(1). In
fact, a bit of observation shows that the feasible points x and (y, s) returned by
Algorithm 10.1 satisfy max{‖x‖,‖s‖} = (n‖d‖)O(1). Therefore

μ(z)= 1

n
xTs ≤ 1

n
‖x‖‖s‖ = (

n‖d‖)O(1)
.

Unfortunately, the assumption z0 ∈N ( 1
4 ) appears to be more difficult to get rid of,

and a discussion on the possible ways to deal with it would take us too far away
from our main themes.

There is an alternative way to compute an optimal basis for d that does not require
an initial point in N ( 1

4 ). Instead, it proceeds by reducing the optimal basis problem
to a sequence of polyhedral cone feasibility problems. The cost of this new approach
is slightly larger than the cost in Theorem 11.1, but this is compensated by the
simplicity in its overcoming the need for an initial point in the central neighborhood.

Theorem 11.3 There exists an algorithm that with input a full-rank matrix A ∈
R

m×n and vectors b ∈ R
m and c ∈ R

n, finds an optimal basis B for d . The total
number of arithmetic operations is bounded by

O
(
n3.5(logn+ logK (d)

)
log log

(
K (d)+ 4

))
.

11.1 The Condition Number K (d)

Definition 11.4 We say that d is feasible well-posed when there exists a unique
optimal solution (x∗, y∗, s∗) for d . In this case, we write d ∈W . If more than one
optimal solution exists, we say that d is feasible ill-posed.

Let B := {B ⊆ [n] | |B| =m}. Theorem 8.13(c) implies that if d ∈W is feasible
well-posed with optimal solution (x∗, y∗, s∗), then there is a unique B ∈ B such
that (x∗, y∗, s∗) is the basic optimal solution associated to B (see Definition 8.10).
We called such B the optimal basis for d .
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Fig. 11.1 The situation in the
space of data

For any B ∈ B, we write

WB := {d ∈W | B is the optimal basis for d}.

The set W is thus partitioned by the family {WB | B ∈ B}. Figure 11.1 schematically
summarizes the situation in the space of data.

At the right of the diagram we have the set W of well-posed feasible triples,
which is partitioned into the subsets WB . The dotted lines separating these subsets
correspond to data with more than one optimal basis. These are degenerate triples.
The boundary of this right part (made out of the two continuous segments) corre-
sponds, using the notation of Sect. 8.4.2, to the set ΣFP. The union of these lines—
the dotted lines of degenerate triples and the continuous segments at the boundary
of W—forms the set Σopt =ΣOB of ill-posed triples for both the optimal solution
and the optimal basis problems.

At the left of the diagram we have the sets IP and ID of triples that are primal,
respectively dual, infeasible. The dashed line at their boundary correspond to triples
that are both primal and dual infeasible. Away from this line, elements in IP are
primal infeasible (and hence dual feasible but unbounded), and similarly with ID .

To define condition we need a norm in the space of data triples. We fix 1 ≤ r ,
s ≤∞ and define

‖d‖rs =
∥∥∥∥

(
A b

cT 0

)∥∥∥∥
rs

.

Since all the results in this section hold with respect to any of the norms ‖ ‖rs ,
we shall omit the indices r, s in order to simplify notation.
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Definition 11.5 Let d be feasible well-posed. We define the distance to ill-
posedness to be

&(d)= inf
{‖Δd‖ : d +Δd ∈Σopt

}
.

Moreover, we define the RCC condition number K (d) of d by

K (d)= ‖d‖
&(d)

.

If d is feasible but not well-posed, we let &(d)= 0 and K (d)=∞.
We shall write &rs(d) and Krs(d) in case we want to emphasize the choice of

norm ‖ ‖rs .

Remark 11.6

(a) K (d) is undefined for infeasible d .
(b) We have &(d)≤ ‖d‖ and hence K (d)≥ 1.
(c) We saw in Corollary 8.23 that Σopt = ΣOB. Also, it easily follows from its

definition that ΣOB is closed. Hence, the infimum in Definition 11.5 is actually
attained. Also, &(d) > 0 if and only if d ∈W .

(d) When d is feasible, we have Crs(d) ≤ Krs(d), where Crs(d) is the condition
number for feasibility defined in Sect. 10.1. This follows immediately from the
inclusion ΣFP ⊆ΣOB.

Our next goal is to characterize K (d) in terms of distance to singularity for a
certain family of matrices. To do so, for any square matrix S, we denote its distance
to singularity by

ρsing(S)= inf
{‖ΔS‖ | S +ΔS is singular

}
.

Here the norm refers to ‖ ‖rs . The distance to singularity has been the core subject
of Sect. 1.3. In the notation of that section we have ρsing(S) = drs(S,Σ). For our
characterization we need to consider this distance for a set of square matrices, which
we next specify.

Let B be a basis, S1 the set of all m×m submatrices of [AB,b], S2 the set of
all (m+ 1)× (m+ 1) submatrices of

[ A

cT

]
containing AB , and SB = S1 ∪ S2. Note

that |S1| =m+ 1 and |S2| = n−m, so SB has n+ 1 elements. Note that AB ∈ S1.

Theorem 11.7 If d is feasible well-posed with optimal basis B , then

&(d)= min
S∈SB

ρsing(S).

Remark 11.8 A consequence of Theorem 11.7 worth noting is an easy way to com-
pute K (d) from an optimal basis B of d . Indeed, given such a basis, the n + 1
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matrices S in SB are immediately written down, and for each such matrix S one can
compute its inverse S−1. Theorems 1.7 and 11.7 then give

Krs(d)= ‖d‖rs
minS∈SB

ρsing(S)
= ‖d‖rs max

S∈SB

∥
∥S−1

∥
∥
sr
.

We now proceed with a few partial results towards the proof of Theorem 11.7.
They rely on the well-known Cramer’s rule for systems of linear equations.

Lemma 11.9 Let A ∈ R
m×m be invertible, c ∈ R

m, and y = A−Tc. In addition, let
v ∈R

m and c′ ∈R. Then

vTy = c′ ⇔
(
AT c

vT c′
)

is singular.

Proof Suppose that vTy = c′. Then
(
AT c

vT c′
)(

y

−1

)
= 0,

and hence
(AT c

vT c′
)

must be singular. The converse is shown similarly. �

For the next result we introduce some notation. We defined degeneracy of solu-
tions in Definition 8.15, and this notion was central to the content of Sect. 8.4. We
now consider the slightly more restrictive notion of degeneracy for a basis.

Definition 11.10 We say that a basis B is primal degenerate for a triple d when
its associated solution is degenerate (and hence, feasible). We similarly define dual
degenerate. We say that B is degenerate for d when it is either primal or dual de-
generate for this triple.

Let d be feasible well-posed with optimal basis B . We define

ρP
deg(d) := min

{‖Δd‖ : B is primal degenerate for d +Δd
}

and

ρD
deg(d) := min

{‖Δd‖ : B is dual degenerate for d +Δd
}
.

Finally, let

ρdeg(d) := min
{
ρP

deg(d), ρ
D
deg(d)

}
.

The following characterization of &, though less applicable than that in Theo-
rem 11.7, will be useful to prove the latter result.

Proposition 11.11 Let d be a feasible well-posed triple and B its optimal basis.
Then &(d)= min{ρdeg(d), ρsing(AB)}.
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Proof Let Δd = (ΔA,0,0) be such that (A +ΔA)B is singular. Then B is not a
basis of d +Δd , and in particular, OB(d) �= OB(d +Δd). This shows that &(d)≤
‖Δd‖ = ‖ΔA‖ and hence &(d)≤ ρsing(AB). This inequality, together with the fact
that triples d with degenerate solutions are ill-posed (Corollary 8.23), shows that
&(d)≤ min{ρdeg(d), ρsing(AB)}. We next prove the reverse inequality.

Assume &(d) < min{ρdeg(d), ρsing(AB)}. Then, there is Δd = (ΔA,Δb,Δc)

such that ‖Δd‖< min{ρdeg(d), ρsing(AB)} and B is not an optimal basis for d+Δd .
For t ∈ [0,1] let tΔd = (tΔA, tΔb, tΔc) and A(t) = A+ tΔA, b(t) = b+ tΔb,

and c(t) = c+ tΔc. Then
∥∥(tΔA)B

∥∥≤ ‖tΔd‖ ≤ ‖Δd‖< min
{
ρdeg(d), ρsing(AB)

}
,

and therefore, (A+ tΔA)B is invertible for all t ∈ [0,1].
Let x(t) and y(t) be the primal and dual basic solutions of d(t) := d + tΔd , for

t ∈ [0,1], i.e.,

x(t) = (
A

(t)
B

)−1
b(t)

and

y(t) = (
A

(t)
B

)−T
c
(t)
B .

Note that x(0) and y(0) are basic feasible solutions for d (since d(0) = d) but either
x(a) or y(a) is not a feasible basic solution for d +Δd , since B is not an optimal
basis for d +Δd . Therefore,

min
{

min
j∈B x

(0)
j ,min

j �∈B cj − aT
j y

(0)
}
> 0

and

min
{

min
j∈B x

(a)
j ,min

j �∈B cj − aT
j y

(a)
}
< 0.

By continuity, there exists t∗ ∈ (0,1) such that

min
{

min
j∈B x

(t∗)
j ,min

j �∈B cj − aT
j y

(t∗)
}
= 0.

That is, B is a degenerate basis for d + t∗Δd (it is even a degenerate optimal basis
for this triple). But ‖t∗Δd‖< ρdeg(d), in contradiction to the definition of ρdeg(d).
Hence min{ρdeg(d), ρsing(AB)} ≤ &(d). �

Lemma 11.12

min
S∈S1

ρsing(S)≤ ρP
deg(d) and min

S∈S2

ρsing(S)≤ ρD
deg(d).

Proof We first prove the primal statement. Let Δd = (ΔA,Δb,Δc) be a pertur-
bation such that B is primal degenerate for d +Δd . Then there exists j ∈ B such
that xj = 0, where x denotes the primal basic solution of d +Δd associated to B .
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Cramer’s rule implies that the matrix (A+ΔA)B [j : b+Δb] is singular; see Nota-
tion 1.9. Therefore

ρsing
(
AB [j : b]

)≤ ∥∥ΔAB [j :Δb]∥∥≤ ‖Δd‖,
which implies minS∈S1 ρsing(S) ≤ ‖Δd‖, since AB [j : b] ∈ S1. The primal state-
ment follows.

For the dual statement, let Δd = (ΔA,Δb,Δc) be a perturbation such that B

is dual degenerate for d +Δd . Then there exists j �∈ B such that (aj +Δaj )
Ty =

(c+Δc)j , where y denotes the dual basic solution of d+Δd associated to B . Note
that (A+ΔA)B is invertible, since by our assumption (the dual degeneracy of B for
d +Δd), B is a basis of d +Δd .

By Lemma 11.9, the matrix

M :=
[
(A+ΔA)T

B (c+Δc)B

(aj +Δaj )
T (c+Δc)j

]

is singular. Hence

min
S∈S2

ρsing(S)≤ ρsing

([
AT

B cB

aT
j cj

])

≤
∥∥∥∥∥

[
ΔAT

B ΔcB

ΔaT
j Δcj

]∥∥∥∥∥
≤ ‖d‖.

The dual assertion follows. �

Proof of Theorem 11.7 We have minS∈SB
ρsing(S) ≤ ρsing(AB), since AB ∈ S1.

Also, it follows from Lemma 11.12 that minS∈SB
ρsing(S) ≤ ρdeg(d). Altogether

and using Proposition 11.11, we obtain minS∈SB
ρsing(S)≤ &(d).

To prove the reverse inequality, take any S ∈ SB . We need to show that

&(d)≤ ρsing(S). (11.1)

CASE I: S = AB . Let ΔA be the smallest perturbation making AB singular. Let
d̃ = (A+ΔA,b, c). Then B �∈ OB(d̃). Hence, denoting by dist the distance induced
by ‖ ‖ and using Corollary 8.23,

&(d)= dist(d,Σopt)= dist(d,ΣOB)≤ dist(d, d̃)= ‖ΔA‖ = ρsing(AB).

CASE II: S ∈ S1, S �=AB . We assume that B = {1,2, . . . ,m} and S = [a1, a2, . . . ,

am−1, b] without loss of generality. There is a perturbation ΔS = [Δa1,Δa2, . . . ,

Δam−1,Δb] of S such that S + ΔS is singular and ‖ΔS‖ = ρsing(S). For j ≥ m

we set Δaj := 0 and thus have defined a matrix ΔA. Further, we set Δd;=
(ΔA,Δb,0). By construction, ‖Δd‖ = ‖ΔS‖. For proving (11.1), because of
Proposition 11.11, it is sufficient to show that

min
{
ρP

deg(d), ρ
D
deg(d), ρrank(A)

}≤ ‖ΔS‖. (11.2)
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In the case that (A+ΔA)B is singular, we have

ρrank(A)≤ ρsing(AB)≤ ‖ΔAB‖ ≤ ‖ΔA‖ ≤ ‖ΔS‖,
and (11.2) follows. So suppose that (A+ΔA)B is invertible. It is now sufficient to
show that B is primal degenerate for d +Δd . Let x∗ be the primal basic solution of
d +Δd associated with B . Cramer’s rule tells us that

x∗m = det(A+ΔA)B [m : b+Δb]
det(A+ΔA)

.

But (A+ΔA)B [m : b +Δb] = S +ΔS is singular by assumption, hence x∗m = 0.
It follows that B is primal degenerate for d + Δd and hence ρP

deg(d) ≤ ‖Δd‖ =
‖ΔS‖, proving (11.2).

CASE III: S ∈ S2. Without loss of generality we assume B = {1,2, . . . ,m} and
that the submatrix S is obtained by picking the first m+ 1 columns of A. There is
a perturbation ΔS of S such that S + ΔS is singular and ‖ΔS‖ = ρsing(S). Now
let Δaj = Δsj for j ≤ m + 1 and Δaj = 0 otherwise. Define Δd = (ΔA,0,0).
As before, it is sufficient to prove the bound (11.2). In the case that (A+ΔA)B is
singular, we again have

ρrank(A)≤ ρsing(AB)≤ ‖ΔA‖ = ‖ΔS‖,
and (11.2) follows. So we may suppose that (A+ΔA)B is invertible. It is now suffi-
cient to show that B is dual degenerate for d+Δd . Let y∗ be the dual basic solution
of d+Δd associated with B . That is, (ai +Δa∗i )Ty∗ = ci for i = 1,2, . . . ,m. Since
(A+ΔA)B is invertible, the first m columns of S +ΔS are linearly independent.
Hence, since S+ΔS is singular, the last column of S+ΔS must be a linear combi-
nation of the first m ones. We conclude that (am+1 +Δam+1)

Ty∗ = cm+1. Hence B

is dual degenerate for d +Δd , and we obtain ρD
deg(d)≤ ‖ΔS‖, proving (11.2) and

completing the proof. �

11.2 K (d) and Optimal Solutions

In this section it will be convenient to fix particular norms in R
n+1 and R

m+1. We
will actually endow these spaces with the norms ‖ ‖1 and ‖ ‖2, respectively. The
distance to singularity we considered in the previous section now takes the form

ρsing(S)= min
{‖ΔS‖12 | S +ΔS is singular

}
.

It follows from the definition of ‖ ‖12 that ‖d‖ is at least as large as the 2-norm of
any of the columns or the ∞-norm of any of the rows of

[ A b

cT 0

]
; cf. Corollary 1.3.

In particular, we will repeatedly use that with ai denoting the ith column of A,

max
{‖ai‖,‖b‖,‖c‖∞

}≤ ‖d‖. (11.3)
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For a dual feasible solution y ∈ R
m we write, as usual, s for its slack. That is,

s = c−ATy.

Proposition 11.13 Assume d is feasible well-posed. Let B be the optimal basis of
d and (x∗, y∗, s∗) the associated basic optimal solution. Then

1

K (d)
≤ min

{
min

{
x∗i | i ∈ B

}
,

min{s∗j | j �∈ B}
‖d‖

}

and

max
{∥∥x∗

∥∥
1,
∥∥y∗

∥∥}≤K (d).

Proof For i ∈ B consider Δd = (0,Δb,0), where Δb=−x∗i ai . Recall that x∗(i : 0)
denotes the vector obtained by substituting the ith entry of x∗ by 0. Clearly, the
point (x∗(i : 0), y∗, s∗) is a feasible solution for d +Δd , and B is an optimal basis
for d + Δd . By construction, B is primal degenerate for d + Δd . It follows that
&(d)≤ ρP

deg(d)≤ ‖Δd‖ = ‖Δb‖ = x∗i ‖ai‖ ≤ x∗i ‖d‖. This proves that

&(d)

‖d‖ ≤ min
{
x∗i | i ∈ B

}
.

The bound &(d) ≤ min{s∗j | j �∈ B} follows from a similar argument. For each
j �∈ B we consider the triple Δd = (0,0,Δc), where Δc := −s∗j ej . Clearly,
(x∗, y∗, s∗(j : 0)) is a feasible solution for d + Δd and B is an optimal basis
for this triple. Therefore, B is dual-degenerate for d +Δd . We deduce again that
&(d)≤ ρD

deg(d)≤ ‖Δd‖ = ‖Δc‖1 = s∗j and conclude that

&(d)≤ min
{
s∗j | j �∈ B

}
.

The upper bounds on ‖x‖1 and ‖y‖ follow from Theorem 11.7, since

&(d)≤ ρsing(AB)= 1

‖A−1
B ‖21

≤ ‖b‖
‖A−1

B b‖1
≤ ‖d‖

‖x∗‖1

(we used Theorem 1.7 for the equality) and

&(d)≤ 1

‖A−1
B ‖21

= 1

‖A−T
B ‖∞2

≤ ‖cB‖∞
‖A−T

B cB‖
≤ ‖d‖

‖y∗‖ ,

where the equality follows from Lemma 1.2(c). �

The next result gives a lower bound on changes in the objective function with
respect to changes in either the primal or dual solution.
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Theorem 11.14 Let d = (A,b, c) be a feasible well-posed triple.

(a) Let (y∗, s∗) be the optimal solution of the dual. Then, for any y ∈ SD with
slack s,

‖s − s∗‖∞
‖d‖ ≤ ∥∥y − y∗

∥∥

(b) Let x∗ be the optimal solution of the primal. Then, for any x ∈ SP ,

∥∥x − x∗
∥∥

1 ≤
cTx − cTx∗

&(d)
.

Proof (a) Assume y �= y∗, since otherwise, there is nothing to prove. Let v ∈R
m be

such that ‖v‖ = 1 and vT(y − y∗)= ‖y − y∗‖ (we have used (1.3)). Now put

Δb := bTy∗ − bTy

‖y − y∗‖ v.

By construction, (b+Δb)T(y−y∗)= 0, i.e., both y∗ and y have the same objective
value for the triple (A,b+Δb,c). We claim that the unique optimal basis B for d

can no longer be a unique optimal basis for the perturbed data d +Δd := (A,b +
Δb,c). It follows from this claim that

&(d)≤
∥∥∥∥

(
0 Δb

0 0

)∥∥∥∥
12
= ‖Δb‖ = bTy∗ − bTy

‖y − y∗‖ ,

the last since ‖v‖ = 1, and
∥∥s − s∗

∥∥∞ = ∥∥AT(y − y∗
)∥∥∞ ≤ ∥∥AT

∥∥
2∞

∥∥y − y∗
∥∥≤ ‖d‖∥∥y − y∗

∥∥.

Assertion (a) is a consequence of these inequalities.
We now prove the claim. To do so, note that y∗ is a dual basic feasible solution

for B and d +Δd (the perturbation of b does not affect dual feasibility). If B is an
optimal basis of d +Δd , then by Theorem 8.13(b), y∗ is the dual optimal solution
of d+Δd . Also, since y is dual feasible for d , it is dual feasible for d+Δd as well.
Finally, the equality (b+Δb)Ty = (b+Δb)Ty∗ implies that the objective value of
y is the optimal value of d +Δd . We conclude that y is also a dual optimal solution
of this triple. The claim now follows from Theorem 8.13(c), which implies that B
is not the only optimal basis for d +Δd .

(b) The argument is similar to that in (a). Assume x �= x∗, since otherwise, there
is nothing to prove. Let u ∈R

n be such that ‖u‖∞ = 1 and uT(x−x∗)= ‖x−x∗‖1.
Now put

Δc := cTx∗ − cTx

‖x − x∗‖1
u.

By construction, (c+Δc)T(x−x∗)= 0, i.e., both x∗ and x have the same objective
value for the triple d +Δd := (A,b, c +Δc). Reasoning as in part (a), one shows
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that the unique optimal basis for d is no longer a unique optimal basis for d +Δd .
Hence

&(d)≤
∥∥
∥∥

(
0 0

(Δc)T 0

)∥∥
∥∥

12
= ‖Δc‖∞ = cTx − cTx∗

‖x − x∗‖1
. �

11.3 Computing the Optimal Basis

In this section we will prove Theorems 11.1 and 11.3. To do so, we will exhibit
and analyze two algorithms for computing optimal bases. In this context, it will be
convenient to control the size of our data.

We say that d is normalized when

‖d‖12 =
∥∥∥∥

(
A b

cT 0

)∥∥∥∥
12
= 1.

From a computational viewpoint, this normalization can be straightforwardly
achieved by multiplying the entries of d by ‖d‖−1. In addition, feasible sets and
optimizers remain unchanged, as does the condition number K (d).

In the rest of this chapter we assume that d is feasible and has been normalized.
The general idea underlying our two algorithms relies on the following three

ingredients:

(I) a method to construct candidates B ⊆ {1, . . . , n} for the optimal basis,
(II) a criterion to check that a given candidate B is optimal,

(III) some bounds ensuring that the candidate in (I) eventually satisfies the criterion
in (II) (and from which a complexity estimate can be deduced).

Let us begin with (I). If d is a well-posed feasible triple and x∗ is the primal
optimal solution, then

B∗ = {
j ≤ n | x∗j �= 0

}

is the optimal basis for d (otherwise, x∗ would be degenerate and we would have
d ∈ΣOB by Corollary 8.23). In particular, B∗ consists of the indices of the m largest
components of x∗. By continuity, for a point x ∈R

n sufficiently close to x∗ we ex-
pect that the same choice will also produce the optimal basis. Therefore, for any
point x ∈R

n we define B1(x) to be the set of indices corresponding to the m largest
components of x (ties are broken by taking the smallest index). Hence, B1(x) satis-
fies

B1(x)⊆ {1, . . . , n}, ∣∣B1(x)
∣∣=m, and max

j �∈B1(x)
xj ≤ min

j∈B1(x)
xj .

Similarly, if y∗ is the optimal solution of the dual and s∗ = c − ATy∗, then B∗ =
{j ≤ n | s∗j = 0} consists of the indices of the m smallest components of s∗. Again
by continuity, for a point y ∈ R

m sufficiently close to y∗ we expect that the same
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choice will also produce the optimal basis. Therefore, for any point y ∈ R
m we

let s = c − ATy and define B2(s) to be the set of indices corresponding to the m

smallest components of s (ties are broken as above). Hence, B2(s) satisfies

B2(s)⊆ {1, . . . , n}, ∣∣B2(s)
∣∣=m, and max

j∈B2(s)
sj ≤ min

j �∈B2(s)
sj .

Given a point (x, y, s), we may take any of B1(x) and B2(s) as candidate for optimal
basis.

We next look at (II): for this, we use the basic criterion that guarantees optimality
when both the primal and dual solutions are feasible (that is, Definition 8.10).

As for (III), the desired conditions, for each of the algorithms, will be provided
in Proposition 11.15.

11.3.1 An Interior-Point Algorithm

In this section we assume the availability of a point z0 = (x0, y0, y0) ∈N ( 1
4 ) such

that μ(z0)= nO(1), as described in the introduction to this chapter.
We can now describe the algorithm computing an optimal basis. It is just

Algorithm 9.1, Primal-Dual IPM, enhanced with the ideas in ingredients (I) and (II)
above.

Algorithm 11.1 OB

Input: d = (A,b, c) ∈R
m×n ×R

m ×R
n, z0 = (x0, y0, s0) ∈R

n+m+n

Preconditions: d is feasible, normalized, rankA=m< n, z0 ∈N ( 1
4 ) and μ(z0)= nO(1)

run Algorithm Primal-Dual_IPM with input (A,b, c) and z0
at each iteration:

compute B1(x) and set B := B1(x)

if AB is invertible then

use B to compute x∗, y∗, s∗ given by x∗
B
=A−1

B
b,

x∗
N
= 0, y∗ =A−T

B
cB, and s∗ = c−ATy∗

if x∗, s∗ ≥ 0 then Return B and Halt

Output: B ⊆ {1, . . . , n}
Postconditions: B is an optimal basis for d = (A,b, c)

The correctness of Algorithm 11.1 is clear by the definition of optimal basis.
To analyze its complexity we use the following result (recall that we are assuming
‖d‖12 = 1).

Proposition 11.15 Let (x, y, s) ∈R
n ×R

m ×R
n be such that

‖Ax − b‖ ≤ &(d)

2
, s = c−ATy, x ≥ 0, s ≥ 0, and xTs <

&(d)2

12
.

Then B1(x)= B2(s), and this is the optimal basis for d .
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Proof Let Δb :=Ax − b and Δd := (0,Δb,0). Then

Ax = b+Δb, ATy + s = c, x ≥ 0, and s ≥ 0.

That is, x and (y, s) are feasible points for the primal and the dual for the triple
d +Δd . Let x∗ and (y∗, s∗) be the primal and dual optimal solutions of this triple.
By (8.1),

cTx − cTx∗ ≤ cTx − (b+Δb)Ty = xTs <
&(d)2

12
and

(b+Δb)Ty∗ − (b+Δb)Ty ≤ cTx − (b+Δb)Ty = xTs <
&(d)2

12
.

In addition, since ‖Δb‖ ≤ &(d)/2 and by Corollary 1.3,

‖Δd‖12 =
∥∥
∥∥

(
0 Δb

0 0

)∥∥
∥∥

12
= ‖Δb‖ ≤ &(d)/2. (11.4)

Therefore, if B denotes the optimal basis for d , then by the definition of &, B is also
an optimal basis for the triple d +Δd and &(d +Δd)≥ &(d)/2.

We now use Theorem 11.14 for d +Δd to obtain

∥∥x∗ − x
∥∥∞ ≤ ∥∥x∗ − x

∥∥
1 ≤

cTx − cTx∗

&(d +Δd)
<

&(d)2/12

&(d)/2
= &(d)

6

and

‖s − s∗‖∞
‖d +Δd‖ ≤ ∥∥y − y∗

∥∥≤ (b+Δb)Ty∗ − (b+Δb)Ty

&(d +Δd)
<

&(d)2/12

&(d)/2
= &(d)

6
.

Note that inequality (11.4) and the normalization ‖d‖ = 1 imply ‖Δd‖ ≤ 1/2 and
therefore that ‖d +Δd‖ ≤ 3

2 .
Now assume B1(x) �= B and let j1 ∈ B1(x) \ B . Since x∗ is an optimal solution

for the triple d + Δd and j1 �∈ B , we have x∗j1
= 0. Let also j2 ∈ B \ B1(x). By

Proposition 11.13 applied to d +Δd ,

x∗j2
≥ &(d +Δd)

‖d +Δd‖ ≥ 2

3
&(d +Δd)≥ 2

3

&(d)

2
= &(d)

3
.

Since ‖x∗ − x‖∞ < &(d)/6, we have xj2 > &(d)/6 and xj1 < &(d)/6. This contra-
dicts

max
j �∈B1(x)

xj ≤ min
j∈B1(x)

xj .

The proof for B2 is similar. Assume B2(s) �= B and let j1 ∈ B \B2(s). Since y∗
is an optimal solution for the triple d +Δd and j1 �∈ B , we have s∗j1

= 0. Now let
j2 ∈ B2(s) \B . By Proposition 11.13, s∗j2

≥ &(d +Δd)≥ &(d)/2. Also, the bounds
‖s∗−s‖∞
‖d+Δd‖ < &(d)/6 and ‖d + Δd‖ ≤ 3/2 imply ‖s∗ − s‖∞ < &(d)/4. Therefore,
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sj2 > &(d)/4 and sj1 < &(d)/4. This contradicts

max
j∈B2(s)

sj ≤ min
j �∈B2(s)

sj . �

Proof of Theorem 11.1 Theorem 9.10 (take ξ = 1
4 ) ensures that Algorithm 11.1

produces a sequence of iterates (zi)i∈N with zi = (xi, yi, si) feasible. Hence, the
first four hypotheses in Proposition 11.15, namely ‖Ax − b‖ ≤ &(d)

2 , s = c−ATy,
x ≥ 0, and s ≥ 0, are trivially satisfied by these zi .

Theorem 9.10, along with the assumption μ(z0)= nO(1), also ensures that

μ(zk) <
&(d)2

12n
,

and consequently that xT
k sk <

&(d)2

12 , as soon as

k > 4
√
n

(
lnμ(z0)+ ln

12n

&(d)2

)
=O

(√
n
(
logn+ lnK (d)

))
.

Proposition 11.15 now finishes the proof. �

11.3.2 A Reduction to Polyhedral Feasibility Problems

Our second approach to finding an optimal basis also follows the roadmap based
on ingredients (I–III) above but with a major deviation: the sequence of points z=
(x, y, s) used to construct B1 or B2 is obtained differently (and they are no longer
feasible solutions of the pair (SP–SD)).

To see how, note that the optimal solution (x∗, y∗) is the only solution of the
system

Ax = b,

ATy ≤ c,

cTx − bTy ≤ 0,
x ≥ 0.

Therefore, points (x, y) close to (x∗, y∗) can be obtained as solutions of the relax-
ation (recall that em = (1,1, . . . ,1))

Ax ≤ b+ σ1em,

Ax ≥ b− σ1em,

ATy ≤ c,

cTx − bTy ≤ σ2,

x ≥ 0,

(11.5)

where σ = (σ1, σ2) ∈ R
2+ has small components. To get solutions of such a system

we can use any algorithm solving the polyhedral cone feasibility problem PCFP
homogenizing the system above (with a new variable t) so that it becomes a poly-
hedral conic system (as we did in the preceding chapter). In our algorithm we will
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take σ1, σ2 to be functions of a single parameter ε > 0 as follows:

σ1 := ε3

48m
, σ2 := ε2

25
.

Furthermore, we will want to ensure that t > 0 and to control the magnitude of y/t
so that

‖y/t‖∞ ≤ 2

ε
.

The resulting extension of (11.5) is given by the polyhedral conic system

Mε

⎛

⎝
x

y

t

⎞

⎠< 0, (11.6)

where

Mε :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

A −(b+ σ1em)

−A (b− σ1em)

AT −c

cT −bT −σ2

−In 0

εIm −2em
−εIm −2em

−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

.

Note that Mε ∈R
(4m+2n+2)×(n+m+1) and rankMε = n+m+ 1 if rankA=m.

During the execution of the algorithm ε will decrease to zero. Therefore, suc-
cessive pairs (x/t, y/t) induced by the solutions of the system will be increasingly
closer to (x∗, y∗).

Because of the lines we added in Mε , it may happen that the linear conic system
(11.6) has no solutions even though the system (11.5) has. The next result shows
that for small enough ε this is not the case. Recall that data d are assumed to be
normalized.

Proposition 11.16 If d is feasible and 0 < ε ≤ &(d), then the polyhedral conic sys-
tem (11.6) is strictly feasible.

Proof Let (x∗, y∗) be the optimal solution of d . Then, by Proposition 11.13, ‖y∗‖ ≤
K (d)≤ 1

ε
. Since ‖y∗‖∞ ≤ ‖y∗‖, this shows that (x∗, y∗,1) satisfies the sixth and

seventh lines of (11.6). The result follows since the other constraints are clear. �

Hence, for ε sufficiently small the conic system (11.6) has solutions. Further-
more, continuity suggests that any point (x, y) such that (x, y,1) is such a solution
will be close to (x∗, y∗). Therefore, we can construct our candidate for the optimal
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basis by taking either B1(x) or B2(s). Again, we need to prove that when ε becomes
small enough, this candidate is indeed the optimal basis.

Proposition 11.17 If 0 < ε ≤ &(d) and (x, y, t) ∈R
n+m+1 are such that

Mε(x, y, t) < 0,

then B1(x)= B2(s), and this is the optimal basis for d .

A last basic ingredient is needed. In order to solve the feasibility problems
Mε(x, y, t) < 0, we will use Algorithm 9.2 (but we observe that we could perfectly
well use, with appropriate modifications, an ellipsoid method or the perceptron al-
gorithm). The number of iterations of Algorithm 9.2 for deciding the feasibility
of (11.6) is a function of the GCC condition C (MT

ε ). We therefore need bounds on
C (MT

ε ). The next result provides bounds for C (MT
ε ) for small enough ε.

Proposition 11.18 If 0 < ε ≤ &(d), then

C
(
MT

ε

)≤ B(n,m, ε) := 96m
√

3(m+ n+ 1)ε−4.

We next describe our second algorithm for computing an optimal basis. Here C
is any constant such that (recall Theorem 9.14) Algorithm 9.2 with input MT

ε halts
after at most

C
√
n
(
log2 n+ log2 C

(
MT

ε

))

iterations.

Algorithm 11.2 OB2

Input: d = (A,b, c) ∈R
m×n ×R

m ×R
n

Preconditions: d is feasible well-posed, normalized, and rankA=m< n

set ε := 1/2
repeat

write down M =Mε

run at most C
√
n(log2 n+ log2 B(n,m, ε))

iterations of Algorithm 9.2 with input M

if a solution of the system M(x,y, t) < 0 is found

within the allowed number of iterations then

compute B1(x) and set B = B1(x)

use B to compute x∗, y∗, s∗ defined by

x∗
B
=A−1

B
b, x∗

N
= 0, y∗ =A−T

B
cB, s∗ = c−ATy∗

if x∗, s∗ ≥ 0 then return B and halt

set ε := ε2

Output: B ⊆ {1, . . . , n}
Postconditions: B is an optimal basis for d = (A,b, c)
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We can now prove the second main result of this chapter.

Proof of Theorem 11.3 The correctness of Algorithm 11.2, as was that of Algo-
rithm 11.1, is clear. For its cost, note that at the kth iteration the value of ε is 2−2k

.
Therefore, after log2 log2(K (d)+ 4) iterations we have &(d)2 < ε ≤ &(d). At this
stage, Proposition 11.16 ensures that the system (11.6) is strictly feasible. Further-
more, Proposition 11.18 along with Theorem 9.14 guarantees that the clock we set
for the execution of Algorithm 9.2 is generous enough to allow this procedure to
find a strictly feasible solution of (11.6). Finally, Proposition 11.17 shows that the
candidate basis constructed from this solution is the optimal basis for d .

Since the cost of each iteration of OB2 is at most

Cn3.5(log2 n+ log2 B(n,m, ε)
)
,

a total bound of

O
(
n3.5(log2 n+ log2 K (d)

)
log2 log2

(
K (d)+ 4

))

follows for the total cost of Algorithm 11.2. �

To finish this section, the only task remaining is to prove Propositions 11.17
and 11.18.

Proposition 11.19 Let 0 < ε ≤ &(d), and let (x, y, s) ∈R
n+2m be such that

‖Ax − b‖ ≤ ε3

48
√
m

, s = c−ATy, cTx − bTy ≤ ε2

25
,

‖y‖ ≤ 2
√
m

ε
, x, s ≥ 0.

Then B1(x)= B2(s), and this is the optimal basis for d .

Proof Let Δb=Ax − b. Then ‖Δb‖ ≤ ε3

48
√
m

, and we have

xTs = xTc− xTATy = xTc− bTy −ΔbTy

≤ (
xTc− bTy

)+ ‖y‖‖Δb‖

≤ ε2

25
+ 2

√
m

ε

ε3

48
√
m

<
ε2

12
≤ &(d)2

12
.

In addition, since ε ≤ &(d)≤ 1,

‖Ax − b‖ ≤ ε3

48
√
m

≤ &(d)

2
,

and the result follows from Proposition 11.15. �
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Proof of Proposition 11.17 If (x, y, t) satisfy (11.6), then Mε(x/t, y/t,1)≤ 0. The

first two lines in (11.6) yield ‖Ax − b‖∞ ≤ ε3

48m , which implies ‖Ax − b‖ ≤ ε3

48
√
m

.
In addition, the fourth line implies

cTx − bTy ≤ ε2

25
.

Finally, letting s := c−ATy and now using the sixth, seventh, fifth, and third lines
of (11.6), one has,

‖y‖ ≤√
m‖y‖∞ ≤ 2

√
m

ε
and x, s ≥ 0.

The hypotheses of Proposition 11.19 are thus satisfied by (x, y, s), and therefore
B1(x/t) = B2(y/t) is the optimal basis of d . But B1(x) = B1(x/t) and B2(y) =
B2(y/t). Thus B1(x) is the optimal basis for d . �

Proof of Proposition 11.18 The proof will be based on the characterization of
C (MT

ε ) given in Proposition 6.21. Let x∗ and y∗ be the optimal solutions of the
primal and dual of d , respectively. Then

⎛

⎜⎜⎜
⎜
⎝

A −(b+ σ1em)

−A (b− σ1em)

AT −c

cT −bT −σ2
−In

⎞

⎟⎟⎟
⎟
⎠

⎛

⎝
x∗
y∗
1

⎞

⎠≤

⎛

⎜⎜⎜
⎜
⎝

−σ1em
−σ1em

0
−σ2

0

⎞

⎟⎟⎟
⎟
⎠

.

In addition, by Proposition 11.13, ‖x∗‖1,‖y∗‖ ≤K (d)≤ 1
ε

, and the bound on ‖y∗‖
implies (note that ε ≤ 1)

⎛

⎝
εIm −2em
−εIm −2em

−1

⎞

⎠

⎛

⎝
x∗
y∗
1

⎞

⎠≤
⎛

⎝
−em
−em
− 1

2

⎞

⎠ .

Since min{σ1, σ2} = σ1 = ε3

48m , it follows that Mε(x
∗, y∗,1)≤− ε3

48me4m+2n+2.

Let E be any (4m+ 2n+ 2)× (m+ n+ 1) matrix such that ‖E‖2∞ ≤ ε4

48
√

3m

and let Ej be the j th row of E for j = 1,2, . . . ,4m+2n+2. Then, ‖Ej‖ ≤ ε4

48
√

3m
.

Similarly, let Mε,j be the j th row of Mε . Then, for j = 1,2, . . . ,4m+ 2n+ 2,

(Mε,j +Ej)
(
x∗, y∗,1

) = Mε,j

(
x∗, y∗,1

)+Ej

(
x∗, y∗,1

)

< − ε3

48m
+ ∥∥Ej

∥∥∥∥(x∗, y∗,1
)∥∥

≤ − ε3

48m
+ ε4

48
√

3m

√
3

ε
= 0,
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the last inequality following from ‖(x∗, y∗,1)‖ ≤ √
3/ε. Therefore, (x∗, y∗,1) is

also a solution of (Mε + E)(x, y, t) ≤ 0. We conclude that for Σ as defined in
Sect. 6.3,

d12
(
MT

ε ,Σ
)= d2∞(Mε,Σ)≥ ε4

48
√

3m
.

In addition, since ‖d‖ = 1, all the entries of Mε are bounded in absolute value
by 2, and we have ‖MT

ε ‖12 ≤ 2
√
m+ n+ 1. Therefore, recalling Proposition 6.21,

C
(
MT

ε

)= ‖MT
ε ‖12

d12(MT
ε ,Σ)

≤ 96m
√

3(m+ n+ 1)ε−4. �

Remark 11.20 As we did in Remark 10.6, we observe now that since Algo-
rithm 11.2 is essentially a sequence of calls to a PCFP-solver, it should come as
no surprise that a finite-precision version of this algorithm will work accurately as
well. Indeed, the main result in [58] (in the spirit of Template 2 in Sect. 9.5) is the
following.

Theorem 11.21 There exists a finite-precision algorithm that with input a full-rank
matrix A ∈ R

m×n and vectors b ∈ R
m and c ∈ R

n finds an optimal basis B for d .
The machine precision εmach varies during the execution of the algorithm. The finest
required precision satisfies

εmach = 1

O(n26K (d)16)
.

The total number of arithmetic operations is bounded by

O
(
n3.5(logn+ logK (d)

)
log log

(
K (d)+2

))
. �

11.4 Optimizers and Optimal Bases: The Condition Viewpoint

Algorithms OB and OB2 in the preceding section compute optimal bases for (well-
posed) triples d = (A,b, c). Given such a basis B , we can obtain optimizers for
primal and dual by taking

x∗B :=A−1
B b, x∗N := 0, and y∗ :=A−T

B cB.

Conversely, we note that any algorithm computing x∗ and y∗ for a well-posed triple
d would produce (in an even simpler way) an optimal basis B by taking B := {j ≤
n | x∗j > 0}. Restricted to well-posed data and under infinite precision, these two
problems are equivalent.

We can nonetheless abandon the infinite-precision hypothesis and consider at
least the case of perturbed data. How do these two problems compare in this case?
An answer to this question should involve a comparison of their condition numbers.
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Fig. 11.2 A schematic
picture of K (d) and
condopt(d)

And we note at this point that we have never defined the condition number of the
optimal solution problem. Because of the continuously valued nature of this prob-
lem, one might be inclined to define condition following the lines laid down in the
Overture, that is, to take

condP (d) := lim
δ→0

sup
RelError(d)≤δ

RelError(x∗)
RelError(d)

,

and likewise for condD(d), and finally define

condopt(d) := max
{
condP (d), condD(d)

}
.

A moment’s thought reveals, however, that the combinatorial structure of linear pro-
gramming imposes on condopt(d) the same shortcomings we discussed for discrete-
valued problems in Sect. 6.1. Indeed, if d is well-posed with optimal basis B , then
sufficiently small perturbations will also be well-posed with optimal basis B . By
Theorem 1.4, the (say dual) optimizer ỹ of such a perturbation d̃ will therefore sat-
isfy

‖ỹ − y∗‖
‖y∗‖ ≤ 2κ

(
AT

B

)
RelError

(
AT

B, c
)+ o(1). (11.7)

The key factor here is κ(AT
B); and this quantity may be moderate for data arbitrarily

close (or even belonging) to Σopt. The simplest example is an ill-posed triple d̄ with
two optimal bases B1 and B2. Both matrices AT

B1
and AT

B2
may be well-conditioned

and yet d̄ is ill-posed. What makes d̄ ill-posed is the possibility to jump from one
extremal optimal solution to the other. But each of these extremal solutions is itself
well-posed as a function of the pair (AT

B, cB).
Figure 11.2 shows a schematic picture of this situation. The quantity condopt(d)

remains bounded around the boundary between WB1 and WB2 but it jumps to ∞ at
this boundary (in accordance with the discussion in Sect. 8.4.2). Figure 11.2 depicts
as well the condition number K (d), whose behavior appears to be more adapted to
its use in the analysis of algorithms.
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We note that in addition, K (d) plays a central role in bounding the loss of pre-
cision for the computation of x∗ and y∗. The following result gives a first idea.

Proposition 11.22 Let d be feasible well-posed and B the optimal basis for d .
Then, for all r, s ≥ 1,

κrs(AB)≤Krs(d) and κs∗r∗
(
AT

B

)≤Krs(d).

Proof Let Σ ⊆ R
m×m denote the set of singular matrices. By Theorem 11.7 we

have &(d)≤ drs(AB,Σ). Hence, using Corollary 1.8, we get

κrs(AB)= ‖AB‖rs
drs(AB,Σ)

≤ ‖d‖
&(d)

=Krs(d).

The second inequality follows from Lemma 1.2(c), according to which we have
κs∗r∗(AT

B)= κrs(AB). �

For r, s ≥ 1 consider now the quantity

R(d) := max
B∈B

max

{ ‖d‖rs
‖(AB,b)‖rs ,

‖d‖rs
‖(AT

B, cB)‖s∗r∗
}
,

which measures how balanced the norms of the square subsystems of d are for
the different choices of basis. Then, by the primal version of (11.7) and Proposi-
tion 11.22,

RelError
(
x∗
) ≤ 2κrs(AB)RelError(AB,b)+ o(1)

= 2κrs(AB)
‖(ÃB, b̃)− (AB,b)‖rs

‖(AB,b)‖rs
‖d‖rs
‖d‖rs + o(1)

≤ 2κrs(AB)
‖d̃ − d‖rs
‖d‖rs

‖d‖rs
‖(AB,b)‖rs + o(1)

≤ 2Krs(d)RelError(d)R(d)+ o(1),

and a similar bound applies for RelError(y∗). We conclude that the loss of preci-
sion in the computation of the optimizers x∗ and y∗ is controlled by the product
K (d)R(d).

11.5 Approximating the Optimal Value

We close this chapter with a few words on the problem of computing the optimal
value v∗. We noted in Sect. 8.4.2 that the set of ill-posed triples for this problem is
the same as that for the feasibility problem, and hence, one could expect to have al-
gorithmic solutions analyzed in terms of C(d) (as defined in Sect. 10.1). We cannot
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substantiate this last claim here, but we can nonetheless give some indications of the
issues involved.

The first one is that as far as we know, there is no algorithm that will compute
the optimal value without computing an optimal basis or an optimizer. This fact
would appear to conflict with the picture above. But there is no such conflict. What
happens is that to understand the role of condition in the computation of the optimal
value, we need to consider the problem of approximating v∗, not of computing it
exactly. We won’t enter into the details, but we observe that given ε > 0 and a
feasible point z0 = (x0, y0, s0) in the central neighborhood N ( 1

4 ) such that μ(z0)≤
(n‖d‖)O(1)—in what follows, we assume, without loss of generality that ‖d‖ = 1—
we can compute a real number ṽ satisfying |ṽ − v∗| ≤ ε using

O
(√

n
(
lnn+ |ln ε|))

iterations (and n3 times this bound for the number of arithmetic operations per-
formed). This follows from Theorem 9.10 and the fact that if zk = (xk, yk, sk) de-
notes the value of z at the kth iterate of Algorithm 9.1 and we take vk := cTxk then

∣∣vk − v∗
∣∣≤ vk − bTyk = nμ(zk).

We therefore conclude that if we can compute a point z0 in the central neighborhood
N ( 1

4 ) such that μ(z0) ≤ nO(1) with cost O(n3.5(lnn + lnC(d)), then we can ob-
tain the desired approximation of v∗ with cost bounded by O(n3.5(lnn+ lnC(d)+
|ln ε|)). As we pointed out in Remark 11.2, however, a discussion on the ways of
doing the first computation would take us too far away from our main themes.



Chapter 12
Average Analysis of the RCC Condition Number

In Chap. 11 we considered the primal–dual pair of linear programming optimization
problems

min cTx subject to Ax = b, x ≥ 0, (SP)

and

max bTy subject to ATy ≤ c, (SD)

and analyzed two algorithms that in case both problems are feasible, return optimiz-
ers x∗ and y∗ for them, respectively. Recall that here A ∈ R

m×n, b ∈ R
m, c ∈ R

n,
and n≥m≥ 1.

To analyze these algorithms we introduced the condition number Krs(d)—here
d = (A,b, c) and the indices r, s refer to the underlying operator norm—and the
main results in the previous chapter, Theorems 11.1 and 11.3, bound the cost of
these algorithms by

O
(
n3.5(logn+ logK12(d)

))

and

O
(
n3.5(logn+ logK12(d)

)
log log

(
K12(d)+ 2

))
,

respectively. Furthermore, Theorem 11.21 states that this task can be done with finite
precision and the result is correct as long as the machine epsilon satisfies

εmach = 1

O(n26K12(d)16)
.

This means that the number of digits or bits necessary to perform the computation
is bounded by O(logn+ logK12(d)).

The use of ‖ ‖12 in these bounds is irrelevant: the consideration of other norms
will only change the constant in the O notation. The goal of this chapter, following
a line of thought well established in our development, is to eliminate K (d) from
these bounds via a probabilistic analysis.
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To be precise, we consider Gaussian triples d . That is, we assume that the entries
of A,b, and c are i.i.d. random variables with standard normal distribution. Recall
that we denoted by W the set of triples that are feasible well-posed. Our main result
in this chapter is the following.

Theorem 12.1 We have

E
d∼N(0,I)

(
logK2(d) | d ∈W

)≤ 5

2
log(n+ 1)+ log(m+ 1)+ log 24e

as well as

E
d∼N(0,I)

(
log logK2(d) | d ∈W

)= log logn+O(1)

and

E
d∼N(0,I)

(
logK2(d) log logK2(d) | d ∈W

)= logn log logn+O(1).

Theorems 11.1, 11.3, and 12.1 combine to yield the following average complex-
ity results.

Corollary 12.2 There exists an algorithm that with input a matrix A ∈R
m×n, vec-

tors b ∈ R
m, c ∈ R

n, and a feasible point z0 = (x0, y0, s0) in the central neigh-
borhood N ( 1

4 ) finds an optimal basis B for d . The average number of iterations
performed by the algorithm, on Gaussian data d , conditioned to d being feasible
well-posed, is bounded by

O
(√

n logn
)
.

The average number of arithmetic operations is bounded by

O
(
n3.5 logn

)
. �

Corollary 12.3 There exists an algorithm that with input a matrix A ∈ R
m×n and

vectors b ∈ R
m and c ∈ R

n finds an optimal basis B for d . The average cost of
the algorithm, on Gaussian data d , conditioned to d being feasible well-posed, is
bounded by

O
(
n3.5 logn log logn

)
. �

In addition, a bound on the average maximum number of digits log εmach(d) re-
quired by the algorithm in Theorem 11.21 follows as well, namely,

E
d∼N(0,I)

log εmach(d)=O(logn).

The main difficulty in proving Theorem 12.1 is the conditioning over the event
d ∈W . The idea of the proof involves rewriting the conditional expectation in the



12.1 Proof of Theorem 12.1 225

statement as an expectation over a Gaussian of some function (easier to deal with
than K ). In order to do so, we will rely on an idea that will be central in Part III: the
use of symmetry properties of functions and distributions expressed as invariance
under the action of certain groups.

12.1 Proof of Theorem 12.1

Write D =R
mn+m+n for the space of data inputs, and

B = {
B ⊆ {1,2, . . . , n}| |B| =m

}

for the family of possible bases.

12.1.1 The Group Gn and Its Action

We consider the group Gn = {−1,1}n with respect to componentwise multiplica-
tion. This group acts on D as follows. For u∈Gn let Du be the diagonal matrix
having uj as its j th diagonal entry, and define

uA := ADu = (u1a1,u2a2, . . . ,unan),

uc := Duc= (u1c1,u2c2, . . . ,uncn),

where ai denotes the ith column of A. We define ud := (uA,b,uc). The group Gn

also acts on R
n by ux := (u1x1, . . . ,unxn). It is immediate to verify that for all

A ∈R
m×n, all x ∈R

n, and all u∈Gn we have uAux =Ax.
Now recall (from Sect. 11.1) the definition of SB , for B ∈ B, and consider the

function

hB : D→[0,+∞),

d �→ min
S∈SB(d)

ρsing(S).

These functions are important to us because for any d ∈W , Theorem 11.7 charac-
terizes &(d) as hB(d), where B is the optimal basis of d . The functions & and hB

are symmetric in a very precise sense.

Lemma 12.4 The functions hB are Gn-invariant. That is, for any d ∈ D, B ∈ B,
and u∈Gn,

hB(d)= hB(ud).
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Proof Let S∗ be any matrix in SB(d) such that

ρsing
(
S∗
)= min

S∈SB(d)
ρsing(S). (12.1)

Let k be the number of rows (or columns) of S∗ and let E be any matrix in R
k×k

such that S∗ +E is singular and

‖E‖ = ρsing
(
S∗
)
. (12.2)

Then, there exists a nonzero z ∈R
k such that

(
S∗ +E

)
z= 0. (12.3)

Suppose S∗ consists of the j1, j2, . . . , jk columns of d (recall the definition
of SB ) and let ū ∈ Gk be given by ū = (uj1 ,uj2, . . . ,ujk ). Then, by the definition
of SB(d) and SB(ud), we have ūS∗ ∈ SB(ud). Furthermore,

(
ūS∗ + ūE

)
ūz= ū

(
S∗ +E

)
ūz= (

S∗ +E
)
(z)= 0,

the last equality by Eq. (12.3). That is, (ūS∗ + ūE) is also singular. By the definition
of ρsing,

ρsing
(
ūS∗

)≤ ‖ūE‖. (12.4)

Since operator norms are invariant under multiplication of arbitrary matrix columns
by −1 we have ‖E‖ = ‖ūE‖. Combining this equality with Eqs. (12.1), (12.2), and
(12.4), we obtain

ρsing
(
ūS∗

)≤ min
S∈SB(d)

ρsing(S).

Since ūS∗ ∈ SB(ud), we obtain

min
S∈SB(ud)

ρsing(S)≤ min
S∈SB(d)

ρsing(S).

The reverse inequality follows by exchanging the roles of uS and S. �

Recall from Sect. 11.1 the partition {WB | B ∈ B} of the set W of well-posed
feasible triples.

Lemma 12.5 Let d ∈D and B ∈ B. If hB(d) > 0, then there exists a unique u∈Gn

such that ud ∈WB .

Proof First observe that since minS∈SB(d) ρsing(S) > 0, the matrix AB is invertible
and therefore B is a basis for d . Let y∗ and x∗ be the dual and primal basic solutions
of d for the basis B , i.e.,

y∗ =A−T
B cB, x∗B =A−1

B b, and x∗j = 0, for all j �∈ B. (12.5)



12.1 Proof of Theorem 12.1 227

Similarly, let yu and xu be the dual and primal basic solutions of ud for the same
basis. Then, using that uA=ADu and uc=Duc,

yu = (uA)−T
B (uc)B =A−T

B (Du)
−T
B (Du)BcB =A−T

B cB = y∗, (12.6)

the third equality by the definition of (Du)B . Similarly,

xu
B = (uA)−1

B b= (Du)
−1
B A−1

B b= (Du)BA−1
B b= (Du)Bx∗B (12.7)

and xu
j = 0 for all j �∈ B . Therefore,

B is optimal for ud ⇔ xu and yu are both feasible

⇔
{
xu
B ≥ 0

(uA)T
j y

u≤(uc)j , for j �∈ B

⇔
{
(Du)Bx∗B ≥ 0

(uj aj )
Ty∗ ≤ uj cj , for j �∈ B

⇔
{

uj x
∗
j ≥ 0, for j ∈ B

uj (cj − aT
j y)≥ 0, for j �∈ B,

(12.8)

the third equivalence by (12.6) and (12.7).
Since by hypothesis hB(d) > 0, we have minS∈SB(d) ρsing(S) > 0 and hence

x∗j �= 0, for all j ∈ B, and aT
j y �= cj , for all j �∈ B. (12.9)

Combining Eqs. (12.8) and (12.9), the statement follows for u∈Gn given by uj =
x∗j
|x∗j | if j ∈ B and uj = cj−aT

j y

|cj−aT
j y|

otherwise. Clearly, this u is unique. �

For B ∈ B let

ΣB := {
d ∈D | hB(d)= 0

}

and DB :=D \ΣB . Lemma 12.4 implies that ΣB and DB are Gn-invariant, for all
B ∈ B. Lemma 12.5 immediately implies the following corollary.

Corollary 12.6 For all B ∈ B the sets

Du :=
{
d ∈DB | ud ∈WB

}
, for u∈Gn,

from a partition of DB . �

Remark 12.7 The set of ill-posed feasible triples is included in the union of the
sets ΣB over B ∈ B (this follows from the proof of Theorem 11.7). The reverse
inclusion, however, even restricted to feasible triples, does not hold. In other words,
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Fig. 12.1 The situation in the
space of data, revisited

there are triples d ∈W belonging to ΣB for some B ∈ B (and actually, because of
an argument of symmetry, for all B ∈ B). Needless to say, this B is not an optimal
basis for d .

As an example of the above, consider the matrix A = [1,0], and the vectors
b= (1) and c= (1,1). Then the primal–dual pair of optimization problems is

min x1 + x2

s.t. [1,0]
(
x1
x2

)
= 1,

x1, x2 ≥ 0,

max y

s.t.

[
1
0

]
y ≤

(
1
1

)
,

and it is immediate to check that B1 = {1} is an optimal basis and the corresponding
optimizers are x∗ = (1,0) and y∗ = 1. Furthermore,

SB1 =
{
[1], [1],

[
1 0
1 1

]}
,

and hence &(d)= 1. The other element in B is B2 = {2}, for which we have

SB2 =
{
[0], [1],

[
1 0
1 1

]}

and hence hB2(d)= 0. In summary, d ∈WB1 and d ∈ΣB2 .

Figure 12.1 revisits the situation discussed at the end of the introduction to
Chap. 11 and summarized in Fig. 11.1. We have added to the latter a dashed curve
corresponding to one of the sets ΣB (say, B1). We see that this set intersects both IP

and ID . Furthermore, it contains the boundary of WB1 , but it also contains triples
in the interior of other WB ’s (in the figure, we have shown this for WB4 ).
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12.1.2 Probabilities

Although Theorem 12.1 is stated for the Gaussian distribution, a substantial part of
its proof—a reduction from a conditional expectation to a nonconditional one—can
be done more generally. Therefore, for a time to come, we fix a distribution D on
the set of triples d = (A,b, c), with density function f with respect to the Lebesgue
measure dD on D, satisfying the following conditions:

(Di) f is Gn-invariant; that is, if d ∼D , then ud ∼D for all u∈Gn.
(Dii) for all B ∈ B, Probd∼D {hB(d)= 0} = 0.

(Diii) for all B1,B2 ∈ B and all measurable functions g :R→R,
∫

d∈WB1

g
(
hB1(d)

)
f (d)dD =

∫

d∈WB2

g
(
hB2(d)

)
f (d)dD.

Note that condition (Dii) implies that the probability of having two optimal bases
is zero. Also, condition (Diii) is satisfied whenever D comes from an i.i.d. distri-
bution on D. In particular, the standard Gaussian distribution N(0, I) satisfies (Di)–
(Diii) above.

Lemma 12.8 For any u∈Gn and B ∈ B,

Prob
d∼D

{ud ∈WB} = Prob
d∼D

{d ∈WB} = 1

2n
.

Proof The equality between probabilities follows from (Di). Therefore, by Corol-
lary 12.6 and condition (Dii), the probability of each of them is 2−n. �

The following lemma tells us that for all B ∈ B, the random variable hB(d) is
independent of the event “d ∈WB .”

Lemma 12.9 For all measurable g :R→R and B ∈ B,

E
d∼D

(
g
(
hB(d)

) | d ∈WB

)= E
d∼D

(
g
(
hB(d)

))
.

Proof From the definition of conditional expectation and Lemma 12.8 we have

E
d∼D

(
g
(
hB(d)

) | d ∈WB

)=
∫
d∈WB

g(hB(d))f (d) dD
Probd∼D {d ∈WB}

= 2n

∫

d∈D
1B(d)g

(
hB(d)

)
f (d) dD,

where 1B denotes the indicator function of WB . Now, for any u∈Gn, the map d �→
ud is a linear isometry on D. Therefore

∫

d∈D
1B(d)g

(
hB(d)

)
f (d)dD =

∫

d∈D
1B(ud)g

(
hB(ud)

)
f (ud) dD.
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Using that hB(d) = hB(ud) (by Lemma 12.4) and f (d) = f (ud) (by the
Gn-invariance of D ), it follows that

E
d∼D

(
g
(
hB(d)

) | d ∈WB

) = 2n

∫

d∈D
1B(d)g

(
hB(d)

)
f (d)dD

=
∑

u∈Gn

∫

d∈D
1B(ud)g

(
hB(ud)

)
f (ud)dD

=
∑

u∈Gn

∫

d∈D
1B(ud)g

(
hB(d)

)
f (d)dD

=
∫

d∈D
g
(
hB(d)

)
f (d)dD = E

d∼D

(
g
(
hB(d)

))
,

the last line by Corollary 12.6. �

The following lemma is proved as Lemma 12.9.

Lemma 12.10 For all r, s ≥ 1 we have

E
d∼D

(‖d‖rs | d ∈W)= E
d∼D

(‖d‖rs). �

Lemmas 12.9 and 12.10 eliminate the conditioning to “d ∈WB” in the expecta-
tions we want to compute. A difficulty remains in the fact that &(d)= hB(d) only
when B is the optimal basis of d . Therefore, to compute Eg(&(d)) we will have
to compute Eg(hB(d)), with B being a function of d . The next lemma solves this
problem. Let B∗ = {1,2, . . . ,m}.

Lemma 12.11 For all measurable g :R→R,

E
d∼D

(
g
(
&(d)

) | d ∈W
)= E

d∼D

(
g
(
hB∗(d)

))
.

Proof By the definition of conditional expectation,

E
d∼D

(
g
(
&(d)

) | d ∈W
)=

∫
d∈W g(&(d))f (d) dD

Probd∼D {d ∈W} . (12.10)

Because of (Dii), the probability that d has two optimal bases is 0. Using this and
Lemma 12.8, we see that

Prob
d∼D

{d ∈W} =
∑

B∈B
Prob
d∼D

{d ∈WB} =
∑

B∈B

1

2n
=
(

n

m

)
1

2n
. (12.11)

Combining Eqs. (12.10) and (12.11), we have
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(
n

m

)
1

2n
E

d∼D

(
g
(
&(d)

) | d ∈W
) =

∫

d∈W
g
(
&(d)

)
f (d)dD

=
∑

B∈B

∫

d∈WB

g
(
&(d)

)
f (d)dD,

with the last equality from the fact that the probability that d has two optimal bases
is 0. Using now this equality, condition (Diii), and the fact that &(d) = hB(d) for
d ∈WB (Theorem 11.7), we obtain

1

2n
E

d∼D

(
g
(
&(d)

) | d ∈W
) =

∫

d∈WB∗
g
(
&(d)

)
f (d)dD

=
∫

d∈WB∗
g
(
hB∗(d)

)
f (d)dD.

Therefore, by Lemma 12.8 with B = B∗,

Prob
d∼D

{d ∈WB∗} E
d∼D

(
g
(
&(d)

) | d ∈W
)=

∫

d∈WB∗
g
(
hB∗(d)

)
f (d)dD.

We conclude, since by the definition of conditional expectation and Lemma 12.9,

E
d∼D

(
g
(
&(d)

) | d ∈W
)= E

d∼D

(
g
(
hB∗(d)

) | d ∈WB∗
)= E

d∼D

(
g
(
hB∗(d)

))
. �

Corollary 12.12 For all r, s ≥ 1 we have

E
d∼D

(
logKrs(d) | d ∈W

)= E
d∼D

(
log‖d‖rs

)− E
d∼D

(
loghB∗(d)

)
.

Proof It is a trivial consequence of the definition of K (d) and Lemmas 12.10
and 12.11. �

Corollary 12.12 reduces the computation of the conditional expectation of
logKrs to those for the expectations of log‖d‖rs and loghB∗(d). The reduction
holds for any distribution D satisfying properties (Di)–(Diii). To proceed further
and to give estimates of the latter two expectations, we need to choose a particular
distribution D (and values for r and s). We next take D =N(0, I) and r = s = 2.

Lemma 12.13 Let B ∈ B be fixed. Then,

E
d∼N(0,I)

(√
1

hB(d)

)

≤ 2
√
e(m+ 1)1/2(n+ 1).

Proof Consider a random matrix S ∈R
p×p . Using the tail bound in Corollary 4.20

(with A = 0 and σ = 1) together with Proposition 2.27 (with k = 1
2 , K = pe,
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B =√
pe, and α = 1) we obtain

E
S∼N(0,I

p2 )

√
‖S−1‖ ≤ 2

√
pe. (12.12)

For any fixed d ∈D,

√
1

hB(d)
= max

S∈SB

√
1

ρsing(S)
≤

∑

S∈SB

√
1

ρsing(S)
=

∑

S∈SB

√
‖S−1‖.

Taking averages on both sides yields

E
d∼D

(√
1

hB(d)

)

≤ E
d∼D

(∑

S∈SB

√
‖S−1‖

)
=

∑

S∈SB

E
d∼D

(√
‖S−1‖

)

≤
∑

S∈SB

2
√
e(m+ 1)1/2 by (12.12) with p =m or m+ 1

≤ 2
√
e(m+ 1)1/2(n+ 1). �

Proof of Theorem 12.1 Recall from Sect. 11.1 the definition of ‖d‖. Since for a
random Gaussian M ∈ R

(m+1)×(n+1) we have E(‖M‖) ≤ 6
√
n+ 1 (Lemma 4.14),

it follows from Jensen’s inequality that

E
d∼N(0,I)

(
log‖d‖)≤ log E

M∼N(0,I)

(‖M‖)≤ 1

2
log(n+ 1)+ log 6.

In addition, using Lemma 12.13 and Jensen’s inequality, we have

E
d∼N(0,I)

log
(
hB∗(d)

) = −2 E
d∼N(0,I)

log

√
1

hB∗(d)
≥−2 log E

d∼N(0,I)

√
1

hB∗(d)

≥ − log
(
4e(m+ 1)(n+ 1)2).

Now use Corollary 12.12 with D =N(0, I) and r = s = 2 to obtain the first inequal-
ity in the statement. The remaining two inequalities follow from applying Jensen’s
inequality (Proposition 2.28) to the random variable logK2(d) and the concave
functions z �→ log z and z �→ z log z. �



Chapter 13
Probabilistic Analyses of the GCC Condition
Number

In Chap. 6 we identified the GCC condition number as the crucial parameter in
the perturbation theory of the polyhedral conic feasibility problem PCFP. Later on,
we saw that this quantity occurs in cost estimates for an ellipsoid method finding
feasible points in a nonempty cone (Corollary 7.7) and for interior-point methods
deciding feasibility of polyhedral conic systems (Theorem 9.14). Furthermore, the
development in Chap. 10 showed that this condition number also plays a central role
in cost estimates for deciding feasibility of primal–dual pairs in linear programming.

Continuing with one of the central themes in our exposition, we perform in this
chapter probabilistic analyses of the GCC condition number, as was done in Chap. 2
for the condition number of linear equation solving. Our average-analysis result is
the following.

Theorem 13.1 For A ∈ (Sm−1)n chosen uniformly at random, n >m, we have

Prob
{
C (A)≥ t

}≤ cm5 1

t
ln t for t ≥ e,

where c is a universal constant. Moreover, E(lnC (A))=O(lnm).

Some average complexity results easily follow from Theorem 13.1. The follow-
ing, which uses Theorem 9.14, is an example.

Corollary 13.2 Let costFEAS(A) denote the cost of Algorithm 9.2 on input A ∈
R

m×n. Then

E
A∼N(0,I)

costFEAS(A)=O
(
n3.5(logn+ logm)

)
. �

A glimpse at the right-hand side of the inequality in Corollary 13.2 shows that
the contribution to average cost coming from conditioning is the humblest in the
bound. For n"m it is negligible.
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DOI 10.1007/978-3-642-38896-5_13, © Springer-Verlag Berlin Heidelberg 2013

233

http://dx.doi.org/10.1007/978-3-642-38896-5_13


234 13 Probabilistic Analyses of the GCC Condition Number

We also perform a uniform smoothed analysis of the GCC condition num-
ber in the sense of Sect. 2.4.3. That is, for 0 < σ ≤ 1 we consider a random
A= (a1, . . . , an), with the points ai ∈ S

m−1 independently chosen at random from
the uniform distribution in the B(ai, σ ) with center ai and radius σ , with respect to
dsin (cf. Sect. 2.2.6). To simplify notation we write A= (a1, . . . , an) ∈ (Sm−1)n and
consider the σ -neighborhood of A in (Sm−1)n, defined as

B(A,σ) := B(a1, σ )× · · · ×B(an,σ ).

So we are assuming that A is chosen uniformly at random from B(A,σ). In this
context our result is the following.

Theorem 13.3 Let 0 < σ ≤ 1 and Ā ∈ (Sm−1)n, n > m. Assume that A ∈ B(A,σ)

is chosen uniformly at random. Then we have

Prob
{
A ∈FD, C (A)≥ t

}≤ 13nm2

2σ

1

t
for t ≥ 2m2

σ
. (13.1)

Moreover, we have for t ≥ 1,

Prob
{
A ∈FP , C (A)≥ t

} ≤ 845n2m3

8σ 2

1

t
ln t + 65nm3

σ 2

1

t
. (13.2)

Combining the tail bounds of Theorem 13.3 with Proposition 2.26, e.g., using
the rough estimate t−1 log t ≤ t−1/2, we obtain the following estimates for the ex-
pectation.

Corollary 13.4 For 0 < σ ≤ 1 and n >m we have

sup
A∈(Sm−1)n

E

A∈B(A,σ)

(
logC (A)

)=O
(

log
n

σ

)
,

where the supremum is over all A ∈ (Sm−1)n. �

We can derive from this result smoothed-complexity estimates. Again, as an ex-
ample, we do so for polyhedral conic feasibility.

Corollary 13.5 For 0 < σ ≤ 1 and n >m we have

sup
A∈(Sm−1)n

E

A∈B(A,σ)

costFEAS(A)=O
(
n3.5 log

n

σ

)
.

�

This chapter, which completes Part II of this book, is technically somewhat more
demanding than our previous developments.
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13.1 The Probability of Primal and Dual Feasibility

A first step in the proof of our probabilistic estimates consists in computing the
probability that a random A ∈ R

m×n is dual (resp. primal) feasible. We begin by
considering dual feasibility. That is we want to compute the probability p(n,m)

that

∃y ∈R
m 〈a1, y〉< 0, . . . , 〈an, y〉< 0

for independent standard Gaussian vectors a1, . . . , an ∈R
m.

Let us illustrate this problem by a simple example. In the case m = 1, we have
a1, . . . , an ∈F◦

D iff a1, . . . , an have the same sign, either positive or negative. Since
each sign occurs with the probability 1/2, we obtain p(n,1)= 2/2n. The case m= 2
is already more challenging, and the reader may try to directly prove that p(n,2)=
n/2n−1. The answer in the general case involves the binomial distribution. We shall
take

(
n
i

)= 0 if i > n.

Theorem 13.6 For a standard Gaussian matrix A ∈R
m×n we have

p(n,m) := Prob
A

{A ∈FD} = 1

2n−1

m−1∑

i=0

(
n− 1

i

)

and ProbA{A ∈FP } = 1 − ProbA{A ∈FD}.

Let us introduce some notation towards the proof. Fix nonzero vectors a1, . . . ,

an ∈ R
m. To any y ∈ R

m we assign its sign pattern sgn(y) ∈ {−1,0,1}n defined
by sgn(y)i := sgn〈ai, y〉. Moreover, for σ ∈ {−1,0,1} we consider the realization
set RA(σ) := {y ∈ R

m | sgn(y) = σ } of the sign pattern σ . We have a partition of
R

m into the sets RA(σ). This partition is determined by the linear hyperplanes Hi

given by 〈ai, y〉 = 0. The full-dimensional RA(σ)’s shall be called cells. They corre-
spond to the sign patterns σ ∈ {−1,1} with RA(σ) �= ∅. We say that the hyperplanes
H1, . . . ,Hn of Rm are in general position if

⋂
i∈I Hi is of dimension m− |I | for

all I ⊆ [n] with |I | ≤ m+ 1 (setting dim∅ = −1). It is clear that this condition is
satisfied by almost all a1, . . . , an.

Lemma 13.7 A linear hyperplane arrangement H1, . . . ,Hn of Rm in general posi-
tion has exactly c(n,m) := 2

∑m−1
i=0

(
n−1
i

)
cells.

Proof We have c(n,1)= c(1,m)= 2, and hence the assertion is true for m= 1 or
n= 1. Suppose now m≥ 2. We proceed by induction on n. Let H1, . . . ,Hn+1 be hy-
perplanes of Rm in general position. By the induction hypothesis, the arrangement
H given by H1, . . . ,Hn has exactly c(n,m) cells. We now intersect this arrange-
ment with Hn+1. If Hn+1 intersects the interior of a cell C of H, then this cell splits
into two cells. This happens when C ∩Hn+1 is a cell of the arrangement of hyper-
planes H1 ∩Hn+1, . . . ,Hn ∩Hn+1 of Hn+1 � R

m−1. By the induction hypothesis,
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this arrangement has exactly c(n,m − 1) cells. From this we may conclude that
H1, . . . ,Hn+1 has exactly c(n,m)+ c(n,m− 1) cells, that is,

c(n,m)+ c(n,m− 1) = 2 + 2
m−1∑

i=1

(
n− 1

i

)
+ 2

m−1∑

i=1

(
n− 1

i − 1

)

= 2 + 2
m−1∑

i=1

(
n

i

)
= c(n+ 1,m).

�

Proof of Theorem 13.6 For σ ∈ Θ := {−1,1}n consider the event Eσ := {A ∈
R

m×n |RA(σ) �= ∅}. Then, FD coincides with Eσ for σ = (−1, . . . ,−1). Moreover,
all events Eσ have the same probability, since the standard Gaussian distribution is
invariant under ai �→ −ai . We also note that

∑
σ∈Θ 1Eσ

(A) = |{σ | RA(σ) �= ∅}|
equals the number of cells of the hyperplane arrangement given by A. Now we
conclude that

2n ProbFD =
∑

σ∈Θ
ProbEσ =

∑

σ∈Θ
E(1Eσ

)= E

(∑

σ∈Θ
1Eσ

)
= 2

m−1∑

i=0

(
n− 1

i

)
,

where the last equality is due to Lemma 13.7. �

By definition, p(n,m) is the probability that n randomly chosen open hemi-
spheres have a nonempty intersection. This is also the probability that the union
of n randomly chosen closed hemispheres do not cover the whole sphere S

m−1.
More generally, let p(n,m,α) denote the probability that n randomly chosen spher-
ical caps with centers a1, . . . , an and angular radius α do not cover the sphere S

m−1

(random meaning here that the centers ai are independently chosen with respect to
the uniform distribution of Sm−1). Then it is clear that p(n,m,π/2)= p(n,m).

The problem of determining the probabilities p(n,m,α) is arguably the central
problem in the area of covering processes on spheres. Interestingly, there is a close
connection between these probabilities and the probabilistic behavior of the GCC
condition number. To explain this, recall from Sect. 6.4 that ρ(A) denotes the angu-
lar radius of a smallest including cap of a1, . . . , an ∈ S

m−1.

Proposition 13.8

(a) We have for 0 ≤ α ≤ π ,

p(n,m,α)= Prob
{
ρ(A)≤ π − α

}
.

(b) Moreover, for π/2 ≤ α ≤ π ,

p(n,m,α)= Prob
{
A ∈FD and C (A)≤ (− cosα)−1},

and for 0 ≤ α ≤ π/2,

p(n,m,α)= p(n,m)+ Prob
{
A ∈FP and C (A)≥ (cosα)−1}.
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Proof (a) The caps of radius α with center a1, . . . , an do not cover Sm−1 iff there
exists y ∈ Sm−1 having distance greater than α from all ai . The latter means that the
cap of radius π −α centered at −y contains all the ai , which implies ρ(A)≤ π −α

and vice versa. This proves the first claim.
(b) The following arguments are based on Theorem 6.27. Suppose first

π/2 ≤ α ≤ π . If ρ(A) ≤ π − α, then ρ(A) ≤ π/2; hence A ∈ FD . Furthermore,

cosρ(A)≥ cos(π − α)=− cosα ≥ 0,

whence C (A) = (cosρ(A))−1 ≤ (− cosα)−1. On the other hand, if A ∈ FD and
C (A) ≤ (− cosα)−1, we know that ρ(A) ≤ π/2, and we can reverse the argument
to infer ρ(A)≤ π−α. Thus the asserted characterization of p(n,m,α) follows with
part one.

Suppose now 0 ≤ α ≤ π/2. If ρ(A) ≤ π − α then either ρ(A) ≤ π/2 (meaning
A ∈ FD), or π/2 < ρ(A). In the latter case, 0 ≤ − cosρ(A) ≤ − cos(π − α) =
cosα, and hence C (A)= (− cosρ(A))−1 ≥ (cosα)−1. Conversely, if A ∈ FD and
C (A)≥ (cosα)−1, then either ρ(A)≤ π/2 or π/2 < ρ(A), in which case the above
argument can be reversed to deduce that ρ(A)≤ π − α. �

We conclude with a technical lemma about the asymptotic growth of p(n,m), to
be used later.

Lemma 13.9 We have
∑∞

n=4m np(n,m)= o(1) for m→∞.

Proof Let n≥ 4m. We have by Theorem 13.6, since m− 1 ≤ (n− 1)/2,

np(n,m)≤ n
m

2n−1

(
n− 1

m− 1

)
≤ 2nm

2n

(n− 1)m−1

(m− 1)! ≤ 2m2

m!
nm

2n
.

We also have nm2−n ≤ 2−n/2 for n ≥ Cm logm, and sufficiently large m, where
C > 0 is a suitable universal constant. Therefore, we get

∑

n≥Cm logm

np(n,m)≤ 2m2

m!
∞∑

n=0

1

2n/2
= o(1) (m→∞).

We now deal with the case n ∈ {4m, . . . ,Cm logm}. The function x �→ xm2−x is
monotonically decreasing for x ≥m/ ln 2. Hence, using n≥ 4m and m! ≥ (m/e)m,
we get

1

m!
nm

2n
≤ 1

m!
(4m)m

24m
≤
(
e

4

)m

.

Since e/4 < 1, we conclude that

Cm logm∑

n=4m

np(n,m)≤ 2m2
(
e

4

)m

Cm logm= o(1) (m→∞),

which completes the proof. �
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13.2 Spherical Convexity

Section 6.2 gave a first introduction to the notion of convexity, through results such
as Carathéodory’s theorem, Helly’s theorem, or the separating hyperplane theorem.
In this section we further develop the theme of convexity by looking at convex sets in
spheres. This amounts to studying convex cones C along with their duals C̆, which
were already introduced previously, in Sect. 6.2.

A convex cone C ⊂ R
n is called pointed if C ∩ (−C) = {0}. Suppose that

a1, . . . , ak ∈ R
n are nonzero. Then it is easy to check that cone{a1, . . . , ak} is

pointed iff 0 is not contained in the convex hull conv{a1, . . . , ak}. The following
two lemmas give additional characterizations.

Lemma 13.10 Let C ⊆ R
n be a convex cone. Then C is pointed iff C̆ has a

nonempty interior.

Proof C̆ has empty interior iff C̆ is contained in a hyperplane H = (Rq)⊥ of Rn.

This implies by Proposition 6.3 that Rq = H̆ ⊆ ˘̆
C = C; hence 0 �= q ∈ C ∩ (−C)

and C is not pointed. The argument is reversible. �

Lemma 13.11 A convex cone C is pointed iff C \ {0} is contained in an open half-
space whose bounding hyperplane goes through the origin.

Proof Suppose C is pointed. Then, by Lemma 13.10, there exists q ∈ int(C̆). Let
x ∈ C \ {0}. Then 〈q, x〉 ≤ 0. If we had 〈q, x〉 = 0, then 〈q ′, x〉> 0 for some q ′ ∈ C̆

sufficiently close to q , which is a contradiction. Hence 〈q, x〉< 0 for all x ∈ C \ {0}.
The converse direction is trivial. �

We now define a notion of convexity for subsets of the sphere S
m−1. Let x, y ∈

S
m−1 be such that x �= ±y. We call [x, y] := cone{x, y} ∩ S

m−1 the great circle
segment connecting x and y.

Definition 13.12 A subset K of S
m−1 is called (spherically) convex if we have

[x, y] ⊆ K for all x, y ∈ K with x �= ±y. We call K properly convex if it is
nonempty, convex, and does not contain a pair of antipodal points.

This notion of spherical convexity is closely related to convex cones. In fact, it is
easy to see that a subset K of Sm−1 is convex iff it is of the form K = C ∩ S

m−1 for
some convex cone C ⊆ R

m. In this case, we must have C = cone(K). Moreover,
K is properly convex iff C is a pointed convex cone, i.e., C ∩ (−C)= {0}. By the
separating hyperplane theorem (Theorem 6.1) applied to C = cone(K), a convex
subset K of Sm−1 is contained in a closed half-space, unless K = S

m−1. Moreover,
by Lemma 13.11, a properly convex set K is always contained in an open half-space.

Example 13.13 A spherical cap cap(a,α) of radius α is convex iff α ≤ π/2 or
α = π (in which case the cap equals the whole sphere). The cap cap(a,α) is prop-
erly convex iff α < π/2.
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We denote by sconv(M) := cone(M) ∩ S
m−1 the (spherical) convex hull of a

subset M of Sm−1, which is the smallest spherical convex set containing M . Clearly,
M is convex iff M = sconv(M). Moreover, the closure of a convex set is convex as
well.

Definition 13.14 The dual set of a convex set K ⊆ S
m−1 is defined as

K̆ := {
a ∈ S

m−1 | ∀x ∈K 〈a, x〉 ≤ 0
}
.

Clearly, if C is the convex cone generated by K and C̆ its dual cone, then K̆ =
C̆ ∩ S

m−1. In particular, K̆ is a closed convex set disjoint from K . For example, the
dual set of cap(a,α) equals cap(−a,π/2 − α), where α ≤ π/2.

By Proposition 6.3, the dual of K̆ equals K . Furthermore, by Lemma 13.10,
a convex set K ⊆ S

m−1 is properly convex iff K̆ has nonempty interior. Thus
“nonempty interior” and “properly convex” are dual properties. We also note that
K1 ⊆K2 implies K̆1 ⊇ K̆2.

By a convex body K in S
m−1 we will understand a closed convex set K such that

both K and K̆ have nonempty interior. Therefore, the map K �→ K̆ is an involution
of the set of convex bodies in S

m−1.
We define the distance of a ∈ S

m−1 to a nonempty set K ⊆ S
m−1 by dS(a,K) :=

inf{dS(a, x) | x ∈ K} (recall that we defined dS in Sect. 6.4). Then it is immediate
that the dual set of a convex body K can be characterized in terms of distances as
follows:

a ∈ K̆ ⇐⇒ dS(a,K)≥ π/2. (13.3)

There is a simple relation between the distances of a to K and to K̆ , respectively,
if a lies outside of both K and K̆ (cf. Fig. 13.1).

Lemma 13.15 Let K be a convex body in S
m−1 and a ∈ S

m−1 \ (K ∪ K̆). Then
dS(a,K)+ dS(a, K̆)= π/2.

Proof Let b ∈ K be such that θ := dS(a, b) = dS(a,K). Since a /∈ K̆ , we have
θ < π/2. The point b∗ := 〈a, b〉b = (cos θ) b is therefore nonzero and contained in
C := cone(K). Put p∗ := a−b∗. Then 〈p∗, b〉 = 0, 〈p∗, a〉 = sin2 θ , and 〈p∗,p∗〉 =
sin2 θ . In particular, p∗ �= 0.

By construction, b∗ is the point of C closest to a. It follows that {x ∈ R
m+1 |

〈p∗, x〉 = 0} is a supporting hyperplane (cf. Theorem 6.1(b)) of C. Hence
〈p∗, x〉 ≤ 0 for all x ∈ C, and the point p := p∗/‖p∗‖ therefore belongs to K̆ .
Moreover, 〈p,a〉 = sin θ , which implies dS(a,p)= π/2 − θ . Hence

dS(a,K)+ dS(a, K̆)≤ dS(a, b)+ dS(a,p)= π/2.

To complete the proof it suffices to show that dS(a, K̆) = dS(a,p). Suppose
there exists p′ ∈ K̆ such that dS(a,p

′) < dS(a,p). Then dS(b,p
′) ≤ dS(b, a) +

dS(a,p
′) < dS(b, a)+ dS(a,p)= π/2, which contradicts the fact that b ∈ K̆ . �
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Fig. 13.1 A cone K , its dual
K̆ , and a point
a ∈ S

m−1 \ (K ∪ K̆)

13.3 A Bound on the Volume of Tubes

In Sect. 2.2.6 we studied neighborhoods of special subsets of spheres and deter-
mined their volume. We will now look at this in more generality.

Definition 13.16

1. For 0 ≤ ε ≤ 1, the ε-neighborhood of a nonempty subset U of Sm−1 is defined
as T (U, ε) := {x ∈ S

m−1 | dS(x,U) ≤ arcsin ε}, where as usual dS(x,U) :=
infy∈U dS(x, y).

2. If U equals the boundary ∂K of a properly convex set K in S
m−1, we call

To(∂K, ε) := T (∂K,ε) \K and Ti(∂K, ε) := T (∂K,ε)∩K

the outer ε-neighborhood and inner ε-neighborhood of ∂K , respectively.

Remark 13.17

(a) If U is symmetric, that is, −U =U , then

T (U, ε)= {
x ∈ S

p | dsin(x,U)≤ ε
}
.

(b) We have T (∂K,ε)= To(∂K, ε)∪ Ti(∂K, ε).

For technical reasons, we define

Bsin(a, σ ) := {
x ∈ S

p | dsin(x, a)≤ σ
}
, (13.4)

which is the closed ball of radius σ , with respect to dsin, around a in S
p . We note that

Bsin(a, σ )= B(a,σ )∪B(−a,σ ), where B(a,σ ) denotes the spherical cap around a

with angular radius arcsinσ ; compare Sect. 2.2.6.
For the probabilistic analyses in this chapter it will be crucial to effectively bound

the volume of the neighborhoods T (K,ε) of convex subsets K of a sphere. More
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specifically, such bounds suffice for an average analysis. For a uniform smoothed
analysis as in Sect. 2.4.3 we need bounds on the volume of the intersection of
T (K,ε) with a ball Bsin(a, σ ), relative to the volume of Bsin(a, σ ).

We state such a result now, but postpone its proof to Sect. 21.6.

Theorem 13.18 Let K be a properly convex subset of Sm−1, let a ∈ S
m−1, and let

0 < σ,ε ≤ 1. Then we have the following upper bound for the volume of the outer
ε-neighborhood of ∂K :

vol(To(∂K, ε)∩Bsin(a, σ ))

volBsin(a, σ )
≤ e

mε

σ
if ε ≤ σ

2m
.

The same upper bound holds for the relative volume of the inner ε-neighborhood
of ∂K . For σ = 1 we obtain in particular,

volTo(∂K, ε)

volSm−1
≤ emε if ε ≤ 1

2m
,

and the same upper bound holds for the relative volume of the inner ε-neighborhood
of ∂K .

13.4 Two Essential Reductions

Recall from Sects. 6.3 and 6.4 the decomposition (Sm−1)n =FP ∪FD into the sets
of primal and dual feasible instances of the polyhedral cone feasibility problem.
The set of ill-posed instances equals Σ =FP ∩FD , and the GCC condition number
C (A) of an instance A = (a1, . . . , an) ∈ (Sm−1)n is characterized as the inverse
distance of A to Σ ,

C (A)= 1

dsin(A,Σ)
;

see Proposition 6.23. We shall use the same symbols FP , FD , and Σ to denote
the corresponding sets of primal feasible, dual feasible, and ill-posed instances in
(Sm−1)n for different values of n.

We start with a simple observation.

Lemma 13.19 Let A = (a1, . . . , an) ∈ (Sm−1)n and let K be the cone defined by
K := −sconv{a1, . . . , an}. Then, for any b ∈ S

m−1,

(a) if b /∈K , then (A,b) ∈F◦
D ,

(b) if b ∈ ∂K , then (A,b) ∈Σ ,
(c) if b ∈ int(K), then (A,b) ∈F◦

P .

Proof (a) If b /∈K , then −b /∈ cone{a1, . . . , an}, and the separating hyperplane the-
orem (Theorem 6.1) yields the existence of q ∈ S

m−1 such that 〈ai, q〉> 0 for all i
and 〈−b, q〉< 0. Hence (A,b) ∈F◦

D .
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(b) If b ∈ ∂K , then −b lies on the boundary of cone{a1, . . . , an}. Hence
there exists a supporting hyperplane with normal vector q ∈ S

m−1 such that
〈ai, q〉 ≥ 0 for all i and 〈−b, q〉 ≤ 0. Therefore, (A,b) ∈ FD . Moreover, since
−b ∈ cone{a1, . . . , an}, we have 0 = b + ∑

i λiai with some λ ≥ 0, and hence
0 ∈ conv{a1, . . . , an}. Therefore, (A,b) ∈Σ by (6.3).

(c) If b ∈ int(K), then −b lies in the interior of cone{a1, . . . , an}. In particular,
the latter is of dimension m. Hence −b ∈ relint(cone{a1, . . . , an}) and there exist
λi > 0 such that −b =∑

i λiai . It follows that 0 ∈ relint(cone{a1, . . . , an, b}) and
hence (A,b) ∈F◦

P by (6.2). �

A key idea for the probabilistic analyses of the matrix condition number in
Sect. 2.4 was the following. Suppose that the square matrix A ∈R

n×n with columns
a1, . . . , an is ε-close to the set of singular matrices. This means that there exist lin-
early dependent vectors b1, . . . , bn such that ‖ak − bk‖ ≤ ε for all k. Then it is
possible to pick a “pivot index” i and just perturb the ith component ai to ãi by
at most nε, i.e., ‖ãi − ai‖ ≤ nε, such that a1, . . . , ai−1, ãi , ai+1, . . . , an are linearly
dependent (cf. Proposition 2.44).

We try to employ a similar idea, but now we have to deal with convexity issues
and inequalities. In a first step, assume that A ∈R

m×n is such that (a1, . . . , an) ∈Σ .
Hence a smallest including cap of these points has radius π/2; cf. Lemma 6.25. If q
denotes the center of this cap, then we have, after a possible reordering,

〈a1, q〉 = · · · = 〈ak, q〉 = 0, 〈ak+1, q〉> 0, . . . , 〈an, q〉> 0,

and by Lemma 6.26 we must have 0 ∈ conv{a1, . . . , ak} (we called [k] the blocking
set of the cap). It follows that without loss of generality, −a1 ∈ conv{a2, . . . , ak}. In
particular, −a1 lies in the convex set K := sconv{a2, . . . , an}. Since K is contained
in the half-space {x | 〈q, x〉 ≥ 0} and 〈a1, q〉 = 0, we have −a1 ∈ ∂K .

It is now plausible that this argument can be extended in the following way:
suppose that (a1, . . . , an) ∈ F◦

D is ε-close to Σ . Then there exists a pivot index i,
say i = 1, such that −a1 is close to ∂K . The next result shows that this is indeed the
case.

Proposition 13.20 Let A = (a1, . . . , an) ∈ F◦
D and 0 < ε ≤ 1. If we have C (A) ≥

mε−1, then there exists i ∈ [n] such that

ai ∈ To(∂Ki, ε),

where Ki := −sconv{a1, . . . , ai−1, ai+1, . . . , an}.

Proof Note first that by Lemma 13.19 we have ai /∈ Ki for all i. Hence
dS(ai, ∂Ki)= dS(ai,Ki). Put θ := arcsin ε.

We will prove the contrapositive of the assertion: assuming dS(ai,Ki) > θ for
all i ∈ [n], we need to prove that sindS(A,Σn,m) > m−1ε. Then we are done, since
C (A)−1 = sindS(A,Σ) by Proposition 6.23.
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In a first step we show that for each i there exists pi close to ai such that all aj
are contained in the open hemisphere with center pi . More specifically, we claim
that for every i ∈ [n] there exists pi ∈ S

m−1 such that

〈ai,pi〉> ε and ∀j �= i 〈aj ,pi〉> 0. (13.5)

To prove this, we distinguish two cases. If ai ∈ K̆i , we just choose pi ∈ int(K̆i)

close enough to ai such that 〈ai,pi〉> ε. If ai /∈ K̆i , then Lemma 13.15 tells us that
dS(ai,Ki)+ dS(ai, K̆i) = π/2. Hence dS(ai, K̆i) < π/2 − θ . Choose pi ∈ int(K̆i)

such that dS(ai,pi) < π/2 − θ . This implies 〈ai,pi〉 > cos(π/2 − θ) = ε. This
completes the proof of the claim (13.5).

Let q be the center of a smallest included cap (SIC) of A. Then q ∈ cone(A) and
hence 〈q,pi〉> 0 for all i,

Consider now for i ∈ [n] the following convex sets in S
m−1:

Ci :=
{
x ∈ S

m−1 | 〈ai, x〉> ε/m and 〈x, q〉> 0
}
.

It suffices to show that these sets have a nonempty intersection. Indeed, if z ∈⋂n
i=1 Ci , then dS(ai, z) < α for all i, where α := arccos(ε/m). This implies that

the spherical cap cap(z,α) strictly contains all ai . The radius ρ(A) of the SIC
of A is therefore strictly smaller than α. Hence, by Theorem 6.27, sindS(A,Σ)=
cosρ(A) > cosα = ε/m, as claimed.

In fact, by Helly’s theorem (Theorem 6.8), it suffices to show that any m of the
sets Ci have a nonempty intersection. To see this, just use the bijective perspective
map

π : {x ∈ S
m−1 | 〈x, q〉> 0

}→E, x �→ 〈q, x〉−1x,

to the affine hyperplane E := {x ∈ R
m | 〈x, q〉 = 1} � R

m−1 and note that π(Ci) is
well defined and convex.

Let now I ⊆ [n] be of cardinality m and consider p∗ := 1
m

∑
j∈I pj . Note that

‖p∗‖ ≤ 1. We obtain for any i ∈ I , using (13.5),

〈
ai,p

∗〉= 1

m

∑

j∈I
〈ai,pj 〉 ≥ 1

m
〈ai,pi〉> ε

m
.

Moreover, 〈p∗, q〉> 0, and hence p∗ �= 0. It follows that p := p∗/‖p∗‖ is contained
in Ci , for all i ∈ I . This completes the proof. �

The next proposition describes the transition from the dual feasible to the primal
feasible case. Suppose that A= (a1, . . . , an) is strictly dual feasible, but after adding
a further column vector b, (A,b) is not dual feasible anymore. By Lemma 13.19 this
means that b lies in the convex set K =−sconv(A) and in fact, (A,b) is ill-posed iff
b ∈ ∂K . It is now plausible that a large condition number of (A,b) may be caused
by two reasons: first, b may be close to the boundary of K ; second, A may have
a large condition number itself. The following result turns this heuristic reasoning
into a quantitative statement.
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Proposition 13.21 Let A= (a1, . . . , an) ∈F◦
D , K := −sconv(A), and b ∈ S

m−1. If
(A,b) := (a1, . . . , an, b) is not dual feasible, then b ∈K , and we have

C (A,b)≤ 5C (A)

sindS(b, ∂K)
.

Proof Lemma 13.19 implies that b ∈K and gives us the following characterization
of dS(b, ∂K) in terms of distances to Σ :

dS(b, ∂K)= min
{
dS
(
b, b′

) | b′ ∈ S
m−1 such that

(
a1, . . . , an, b

′) ∈Σ
}
.

By the characterization of the GCC condition number in Theorem 6.27, the assertion
can be restated as

sindS
(
(A,b),Σ

)≥ 1

10
dS(b, ∂K) sindS(A,Σ). (13.6)

Consider the convex set

C := −K̆ = {
x ∈ S

m−1 | 〈a1, x〉 ≤ 0, . . . , 〈an, x〉 ≤ 0
}
.

We claim that

s := sindS(b, ∂K)≤ min
x∈C〈b, x〉. (13.7)

In order to establish this, suppose x ∈ C. Since b ∈K , we have cosω := 〈b, x〉 ≥ 0.
We may assume that ‖b− x cosω‖2 = 1− cos2 ω is positive, since otherwise, b= x

and clearly s ≤ 1 = 〈b, x〉. Therefore, b′ := (b − x cosω)/‖b − x cosω‖ is a well-
defined point in b′ ∈ S

m−1 and 〈b′, x〉 = 0. Note that dS(b, b′)= π/2−ω. Therefore
(A,b′)= (a1, . . . , an, b

′) is dual feasible. It is either strictly dual feasible, in which
case b′ /∈ K , or (A,b′) is ill-posed, in which case b′ ∈ ∂K (cf. Lemma 13.19).
Since b ∈ K , we conclude that dS(b, ∂K) ≤ dS(b, b

′) = π/2 − ω. This implies
sindS(b, ∂K)≤ cosω= 〈b, x〉 and proves inequality (13.7).

Suppose now that cap(p,ρ) is an SIC for A. Since we assume A to be strictly
feasible, t := cosρ is positive and we have t = sindS(A,Σ); cf. Theorem 6.27.

We need to prove the assertion (13.6), which is equivalent to

sindS
(
(A,b),FD

)≥ 1

5
st, (13.8)

since (A,b) /∈ FD by assumption. So let (A′, b′) ∈ FD and put ϕ :=
dS((A,b), (A′, b′)). We need to show that sinϕ ≥ st/10. By Theorem 6.27, we
may assume that ϕ ≤ π/2. Since (A′, b′) ∈FD , there exists x′ ∈ S

m−1 such that

〈
a′1, x′

〉≤ 0, . . . ,
〈
a′n, x′

〉≤ 0,
〈
b′, x′

〉≤ 0.

Taking into account that dS(a′i , ai)≤ ϕ, we see that dS(ai, x′)≥ π/2− ϕ and hence
〈ai, x′〉 ≤ sinϕ.



13.5 A Crash Course on Probability: III 245

We now put x̃ := x′ −λp with λ := t−1 sinϕ. Since 〈ai,p〉 ≥ t , we have for all i,

〈ai, x̃〉 =
〈
ai, x

′〉− λ〈ai,p〉 ≤ sinϕ − λt = 0.

Without loss of generality we may assume that x̃ �= 0. Otherwise, t = sin θ , and we
are done, since t ≥ st/10. So x̃/‖x̃‖ is well defined and lies in C.

Inequality (13.7) implies that (use ‖x̃‖ ≥ 1 − λ)

s − λ≤ s(1 − λ)≤ 〈b, x̃〉.
Put Δb := b′ − b. Then ‖Δb‖ ≤ 2 sin(ϕ/2) ≤ 2 by our assumption dS(b

′, b) ≤ ϕ.
We obtain

〈b, x̃〉 = 〈
b′ −Δb,x′ − λp

〉= 〈
b′, x′

〉− 〈
Δb,x′

〉− 〈
b′, λp

〉+ 〈Δb,λp〉
≤ 0 + ‖Δb‖ + λ+ ‖Δb‖λ≤ 2 sin(ϕ/2)+ 3λ.

Combining the above two estimates yields

s ≤ 2 sin(ϕ/2)+ 4λ.

Recalling λ= t−1 sinϕ and using t ≤ 1, we get

st ≤ 2t sin(ϕ/2)+ 4λt ≤ 2 sin(ϕ/2)+ 4 sinϕ ≤ 5 sinϕ.

This proves (13.8) and thus completes the proof. �

13.5 A Crash Course on Probability: III

Before continuing, we need to develop a few further facts from the theory of proba-
bility.

Suppose that X and Y are random variables on the data space M taking non-
negative values. We assume that the pushforward measure of μM with respect to
(X,Y ) : M → R

2 has a density ρ. Associated with ρ are the marginal density
ρX(x) := ∫∞

0 ρ(x, y) dy and, for x ∈ R with ρX(x) > 0, the conditional density
ρY (y |X = x) := ρ(x, y)/ρX(x); compare (2.8) and (2.9).

Proposition 13.22 Suppose that X,Y : M →R+ are random variables on the data
space M taking nonnegative values such that (X,Y ) has density ρ on R

2. Then
Z :=XY has the following density, for z > 0:

ρZ(z)=
∫ ∞

0
x−1 ρX(x)ρY (z/x |X = x)dx.

Moreover, the distribution function of Z is given by

Prob{Z ≥ z} =
∫ ∞

0
ρX(x) Prob{Y ≥ z/x |X = x}dx.
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Proof Consider the diffeomorphism ψ : (0,∞)2 → (0,∞)2, (x, y) �→ (x, xy) =
(x, z) having Jacobian Jψ(x, y) = x. By Proposition 2.11, the pushforward den-
sity δ of ρ under ψ is given by

δ(x, z)= x−1 ρ(x, z/x), for x, z > 0.

The distribution of the random variable Z is obtained as the marginal distribution of
the distribution of δ, whence

ρZ(z) =
∫ ∞

0
δ(x, z) dx =

∫ ∞

0
x−1ρ(x, z/x)dx

=
∫ ∞

0
x−1 ρX(x)ρY (z/x |X = x)dx.

This proves the first statement. To prove the second, note that we have

Prob{Z ≥ z} =
∫ ∞

z

ρZ(ζ ) dζ =
∫ ∞

0
ρX(x)

∫ ∞

z

x−1 ρY (ζ/x |X = x)dζ dx.

For fixed x > 0, the substitution ζ �→ y = ζ/x yields

∫ ∞

z

ρY (ζ/x |X = x)x−1 dζ =
∫ ∞

z/x

ρY (y |X = x)dy

= Prob{Y ≥ z/x |X = x}.

Altogether, we get

Prob{Z ≥ z} =
∫ ∞

0
ρX(x)Prob{Y ≥ z/x |X = x}dx

as claimed. �

The next result provides an upper bound for the tail of XY that may be easier to
apply than Proposition 13.22.

Lemma 13.23 Let X and Y be random variables on M taking nonnegative values
such that (X,Y ) has a density. Further, let f,g : (0,∞) → (0,∞) be piecewise
differentiable functions such that for x, y > 0,

Prob{X ≥ x} ≤ f (x), Prob{Y ≥ y |X = x} ≤ g(y).

We further assume that g is bounded and limy→∞ g(y)= 0. Then, for z > 0,

Prob{XY ≥ z} ≤
∫ ∞

0
f (z/y)

(−g′(y)
)
dy.
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Proof We apply Proposition 13.22 with Z :=XY to obtain for z > 0,

Prob{Z ≥ z} =
∫ ∞

0
ρX(x) Prob{Y ≥ z/x |X = x}dx

≤
∫ ∞

0
ρX(x)g(z/x)dx =−

∫ ∞

0

d

dx
Prob{X ≥ x}g(z/x)dx

=
∫ ∞

0
Prob{X ≥ x} d

dx
g(z/x)dx.

For the last equality we used integration by parts together with

lim
x→∞Prob{X ≥ x}g(z/x)dx = lim

x→0
Prob{X ≥ x}g(z/x)= 0,

which follows from limx→∞ Prob{X ≥ x} = 0, limy→∞ g(y)= 0, and the assump-
tion that g is bounded. Continuing, we get

∫ ∞

0
Prob{X ≥ x} d

dx
g(z/x)dx ≤

∫ ∞

0
f (x)g′(z/x)

(
− z

x2

)
dx

=
∫ ∞

0
f (z/y)

(−g′(y)
)
dy. �

Lemma 13.24 Let X and Y be random variables on M taking nonnegative values
such that (X,Y ) has a density. Assume there are x0, y0, c > 0 such that for all
x, y > 0,

Prob{X ≥ x} ≤ αx−c if x ≥ x0,

Prob{Y ≥ y |X = x} ≤ βy−c if y ≥ y0.

Then, for all z > 0,

Prob{XY ≥ z} ≤ cαβz−c ln max

{
z

x0y0
,1

}
+ βxc

0z
−c.

Proof Lemma 13.23 with the functions f,g defined as

f (x)=
{

1 if x < x0,

αx−c ifx ≥ x0,
g(y)=

{
1 if y < y0,

βy−c if y ≥ y0,

yields

Prob{XY ≥ z} ≤
∫ ∞

0
f (z/y)

(−g′(y)
)
dy. (13.9)
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If z≥ x0y0, we estimate this by

Prob{XY ≥ z} ≤
∫ z/x0

y0

αz−cyccβy−c−1 dy +
∫ ∞

z/x0

cβy−c−1 dy

= cαβz−c ln

(
z

x0x1

)
+ βxc

0z
−c.

If z < x0y0, we have

Prob{XY ≥ z} ≤
∫ ∞

y0

(−g′(y)
)
dy = g(y0)= βy−c

0 ≤ βxc
0z

−c.

This completes the proof. �

13.6 Average Analysis

In this section we prove Theorem 13.1. With this goal in mind, we first derive a tail
bound for C (A), conditional on A being dual feasible. Recall from Sect. 13.1 that
p(n,m) stands for the probability of A being dual feasible.

Lemma 13.25 For A chosen uniformly at random in (Sm−1)n we have

Prob
{
A ∈FD, C (A)≥ t

}≤ 13

4
m2np(n− 1,m)

1

t
for t ≥ 2m2.

Proof Let t ≥ 2m2 and put ε :=m/t . Proposition 13.20 tells us that

Prob
{
A ∈F◦

D, C (A)≥ t
}≤

n∑

i=1

Prob
{
A ∈F◦

D, ai ∈ To(∂Ki, ε)
}
,

where Ki := −sconv{a1, . . . , ai−1, ai+1, . . . , an}. To bound the probabilities on the
right-hand side we assume without loss of generality that i = n. We express the
probability as an integral over A′ := (a1, . . . , an−1) of probabilities conditioned
on A′. Furthermore, we write KA′ :=Kn =−sconv{a1, . . . , an−1} to emphasize the
dependence on A′. By Fubini’s theorem we obtain

Prob
{
A ∈F◦

D, an ∈ To(∂KA′ , ε)
}

≤ Prob
{
A′ ∈F◦

D, an ∈ To(∂KA′ , ε)
}

= 1

vol(Sm−1)n−1

∫

A′∈F◦
D

Prob
{
an ∈ To(∂KA′ , ε) |A′}dA′.
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For fixed A′ ∈ F◦
D the set KA′ in S

m−1 is properly convex. Theorem 13.18 yields,
since ε ≤ 1/(2m) by assumption,

Prob
{
an ∈ To(∂KA′ , ε) |A′}= volTo(∂KA′ , ε)

volSm−1
≤ 13m

4
ε.

We therefore obtain

Prob
{
A ∈F◦

D, an ∈ To(∂KA′ , ε)
}≤ 13m

4
ε Prob

{
A′ ∈FD

}
.

Note that Prob{A′ ∈FD} = p(n− 1,m) and ε =m/t . The same bound holds for all
i ∈ [n]; hence multiplying by n, we obtain the claimed upper bound on Prob{A ∈
FD and C (A)≥ t}, since Σ =FD \F◦

D has measure zero. �

We study now the situation for A primal feasible. For A = (a1, . . . , an) ∈
(Sm−1)n and 1 ≤ k ≤ n we write Ak := (a1, . . . , ak). Again we shall use the same
symbol FD to denote the corresponding sets of dual feasible instances in (Sm−1)n

and (Sm−1)k , respectively.

Lemma 13.26 Let A ∈ (Sm−1)n and k ≤ n be such that Ak is not dual feasible.
Then C (Ak)≥ C (A).

Proof Let A′ = (a′1, . . . , a′n) ∈ Σ be such that dS(A,A′) = dS(A,Σ). Since A′ ∈
FD , we have A′

k = (a′1, . . . , a′k) ∈ FD . But Ak /∈ FD by assumption. Hence, using
dS(A,Σ)≤ π/2 and (6.5), we get

sindS(Ak,Σ) = sindS(Ak,FD)≤ sindS
(
Ak,A

′
k

)≤ sindS
(
A,A′)

= sindS(A,Σ),

and the assertion follows with Proposition 6.23. �

Suppose that A=An is not dual feasible. Since Am is dual feasible, there exists
a smallest index k ≥m such that Ak is dual feasible and Ak+1 is not dual feasible.
Consider, for t > 0, the event

Ek(t) :=
{
A |Ak dual feasible and Ak+1 not dual feasible and C (Ak+1)≥ t

}
.

Using Lemma 13.26 we obtain

Prob
{
A /∈FD, C (A)≥ t

}≤
n−1∑

k=m

ProbEk(t) (13.10)

for uniformly random A ∈ (Sm−1)n.
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Lemma 13.27 We have, for a universal constant c,

ProbEk(t)≤ cm3kp(k − 1,m)
1

t
ln t for t ≥ e.

Proof We fix k and write from now on

A := (a1, . . . , ak), KA := −sconv{a1, . . . , ak}, b := ak+1.

With this notation, we have (using that FD \F◦
D =Σ has measure zero)

Prob
A,b

Ek(t)= Prob
A,b

{
A ∈F◦

D, (A,b) /∈FD, C (A,b)≥ t
}
.

Proposition 13.21 implies that for t > 0,

Prob
A,b

Ek(t)≤ Prob
A,b

{
A ∈F◦

D, b ∈KA,
C (A)

sindS(b,KA)
≥ t

5

}
. (13.11)

Introducing the random variables

U(A) := 1F◦
D
(A)C (A), V (A,b) := 1KA

(b)
1

sindS(b, ∂KA)
,

where 1M denotes the indicator function of the set M , we may rewrite (13.11) as

Prob
A,b

Ek(t)≤ Prob
A,b

{
U(A) · V (A,b)≥ t/5

}
. (13.12)

Lemma 13.25 tells us that for x ≥ 2m2,

Prob
A

{
U(A)≥ x

}= Prob
A

{
A ∈F◦

D, C (A)≥ x
}≤ αx−1, (13.13)

where α := 13
4 m2kp(k − 1,m).

Moreover, for A ∈ F◦
D , the set KA is properly convex, and the bound in Theo-

rem 13.18 on the inner neighborhood of ∂KA implies

Prob
b

{
V (A,b)≥ y |A} = Prob

b

{
b ∈KA,

1

sindS(b, ∂KA)
≥ y

∣∣∣∣ A
}

= Prob
b

{
b ∈ Ti

(
∂KA,y

−1) | A}≤ β y−1 (13.14)

if y ≥ 2m, where β := 13m
4 .

In Sect. 17.3 we will learn how to define the conditional density ρu of the
map U : Rm×n \ Σ → R on its fiber U−1(u) over u �= 0 that is induced by
the standard Gaussian density ϕ on R

m×n. (In fact, we will see that ρu(A) :=
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∫
A∈U−1(u)

ϕ
NJU (A)dA, where NJU is the normal Jacobian of U .) For u > 0 we de-

fine the conditional probability

Prob
A,b

{
V (A,b)≥ y |U(A)= u

} :=
∫

A∈F◦
D

Prob
b

{
V (A,b)≥ y |A}ρu(A)dA.

Using this, we deduce from (13.14) that for all u > 0 and y ≥ 2m,

Prob
A,b

{
V (A,b)≥ y |U(A)= u

}≤ βy−1. (13.15)

We can combine the probability estimates (13.13) and (13.15) by applying
Lemma 13.24 to the random variables U and V . This implies for z > 0,

Prob
A,b

{
U(A) · V (A,b)≥ z

}≤ αβ

z
ln max{z,1} + 2m2β

1

z
.

Setting z= t/5, we conclude that for t ≥ e,

Prob
A,b

Ek(t)≤ Prob
A,b

{
U(A) · V (A,b)≥ t/5

}≤ cm3kp(k− 1,m)
1

t
ln t

with some universal constant c > 0. �

Proof of Theorem 13.1 Combining equation (13.10) with Lemma 13.27, we obtain

Prob
{
A /∈FD, C (A)≥ t

}≤ cm3 1

t
ln t

n−1∑

k=m

kp(k − 1,m).

In order to bound the sum, we use Lemma 13.9, which gives

n−1∑

k=4m+1

k p(k − 1,m)=
n−2∑

�=4m

�p(�,m)+
n−2∑

�=4m

p(�,m)= o(1) (m→∞).

Therefore,

n−1∑

k=m

k p(k − 1,m)=
4m∑

k=m

k p(k − 1,m)+
n−1∑

k=4m+1

k p(k− 1,m)=O
(
m2).

We conclude that

Prob
{
A /∈FD, C (A)≥ t

}≤ c′m5 1

t
ln t

for some universal constant c′. Moreover, Prob{A ∈ FD and C (A) ≥ t} can also
be bounded in this way by Lemma 13.25. This proves the asserted tail estimate
for C (A).

Finally, the claimed bound on the expectation of lnC (A) follows from Proposi-
tion 2.26, e.g., using the rough estimate t−1 log t ≤ t−1/2. �
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13.7 Smoothed Analysis

In this section we prove Theorem 13.3. We will see that this can be done by virtually
the same method employed for the average analysis in the previous section, along
with the use of Theorem 13.18.

Proof of Theorem 13.3 We first prove (13.1), proceeding exactly as in the proof of
Lemma 13.25. Fix A ∈ (Sm−1)n and 0 < σ ≤ 1. Further, suppose that t ≥ 2m2σ−1

and put ε :=mt−1. If we suppose that A is chosen uniformly at random in B(A,σ),
then Proposition 13.20 tells us that

Prob
A∈B(A,σ)

{
A ∈F◦

D, C (A)≥ t
}≤

n∑

i=1

Prob
A∈B(A,σ)

{
A ∈F◦

D, ai ∈ To(∂Ki, ε)
}
,

where Ki := −sconv{a1, . . . , ai−1, ai+1, . . . , an}. To bound the probabilities on the
right-hand side, we assume without loss of generality that i = n. We will ex-
press the probability as an integral over A′ := (a1, . . . , an−1) of probabilities con-
ditioned on A′ and write KA′ :=Kn =−sconv{a1, . . . , an−1}. Note that B(A,σ)=
B(A

′
, σ )×B(an,σ ), where A′ := (a1, . . . , an−1). Then the distribution of an con-

ditional on A′ is just the uniform distribution of B(an,σ ). By Fubini’s theorem we
obtain

Prob
A∈B(A,σ)

{
A ∈F◦

D, an ∈ To(∂KA′ , ε)
}

≤ Prob
A′∈B(A′,σ )

an∈B(an,σ )

{
A′ ∈F◦

D, an ∈ To(∂KA′ , ε)
}

= 1

volB(A
′
, σ )

∫

A′∈F◦
D∩B(A′,σ )

Prob
an∈B(an,σ )

{
an ∈ To(∂KA′ , ε) |A′}dA′.

For fixed A′ ∈F◦
D the set KA′ in S

m−1 is properly convex. Theorem 13.18 implies

Prob
an∈B(an,σ )

{
an ∈ To(∂KA′ , ε) |A′} = vol(To(∂KA′ , ε)∩B(an,σ ))

volB(an,σ )

≤ 13m

2

ε

σ
.

Note that we get an extra factor of two by considering B(an,σ ) instead of
Bsin(an, σ ). Note also that ε ≤ σ/(2m) by our assumption t ≥ 2m2σ−1. Hence,
using ε =mt−1, we conclude that

Prob
A′∈B(A′,σ )

an∈B(an,σ )

{
A ∈F◦

D, an ∈ To(∂KA′ , ε)
} ≤ 13m2

2σ t
Prob

A′∈B(A′,σ )

{
A′ ∈FD

}

≤ 13m2

2σ t
.
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Note that in contrast to the average analysis, we do not have a good bound for
Prob{A′ ∈FD}, so we had to bound this quantity by 1. Since the same bound holds
for all i ∈ [n], we obtain the claim (13.1) by multiplying by n.

We continue now with the proof of (13.2) and proceed as in Theorem 13.1 and
Lemma 13.27. We fix k and write

A := (a1, . . . , ak), KA := −sconv{a1, . . . , ak}, b := ak+1.

As above, we suppose that (A,b) is chosen uniformly at random in B(A,σ) ×
B(b,σ ) and consider, for t > 0, the event

Ek(t)=
{
(A,b) |A is dual feasible, (A,b) is not dual feasible, C (A,b)≥ t

}
.

Then, as in (13.12) and using the notation from there, we have

Prob
A,b

Ek(t)≤ Prob
A,b

{
U(A) · V (A,b)≥ t/5

}
. (13.16)

From (13.1) we know that for x ≥ 2m2/σ ,

Prob
A

{
U(A)≥ x

}= Prob
A

{
A ∈F◦

D, C (A)≥ x
}≤ αx−1, (13.17)

where we have set here α := 13km2

2σ .
Moreover, for A ∈ F◦

D , the set KA is properly convex, and the bound in
Theorem 13.18 on the inner neighborhood of ∂KA implies, for y ≥ 2m/σ ,

Prob
b

{
V (A,b)≥ y |A} = Prob

b

{
b ∈ Ti

(
∂KA,y

−1) |A}

= vol(Ti(∂KA,y
−1)∩B(b,σ ))

volB(b,σ )
≤ βy−1,

where we have set β := 13m
2σ . Since U(A) > 0 implies A ∈F◦

D , we get, for all u > 0
and y ≥ 2m/σ ,

Prob
A,b

{
V (A,b)≥ y |U(A)= u

}≤ βy−1. (13.18)

We can now combine the estimates (13.17) and (13.18) by applying Lemma 13.24
to the random variables U and V . This yields, for z > 0,

Prob
A,b

{
U(A) · V (A,b)≥ z

}≤ αβ

z
ln max{z,1} + 2m2

σ
β

1

z
.

Setting z= t/5 and using (13.16), we conclude that for t ≥ 1,

Prob
A,b

Ek(t)≤ 845 km3

4σ 2

1

t
ln t + 65m3

σ 2

1

t
.
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As in (13.10) we have

Prob
{
A /∈FD, C (A)≥ t

}≤
n−1∑

k=m

ProbEk(t).

Summing the bounds for ProbA,b Ek(t) over all k and using
∑n

k=1 k ≤ n2/2, the
assertion (13.2) follows. �



Intermezzo II: The Condition of the Condition

How costly is it to compute a condition number? This question presents two aspects:
computational cost and accuracy. We begin by briefly discussing the first of these
aspects. To do so, we recall a few of the condition numbers we have met thus far.

Take matrix–vector multiplication. We analyzed this problem in Sect. O.4, where
we proved (Proposition O.8) that the normwise condition number cond(A,x) for
this problems satisfies

cond(A,x)= ‖A‖∞‖x‖∞
‖Ax‖∞ .

The denominator on the right-hand side indicates that to compute cond(A,x), we
need at least to compute Ax, that is, to solve the problem for which (A,x) is the
input data.

Consider now matrix inversion. Its normwise condition number (for the norms
‖ ‖rs and ‖ ‖sr in data and solution space, respectively) is, as we proved in Theo-
rem 1.5,

κrs(A)= ‖A‖rs
∥∥A−1

∥∥
sr
.

Again, it is apparent that for computing κrs(A) one needs to solve the problem for
which A is the data, i.e., inverting A.

Finally, consider the condition number C (A) for PCFP. All its characterizations,
in Sect. 6.5 via smallest including caps, in Sect. 6.6 via images of balls, and in
Sect. 6.7 via well-conditioned solutions, turn into computations of C (A) that re-
quire, among other things, the solution of PCFP for input A.

It would seem that invariably, to compute condϕ(a) we need to compute ϕ(a).
This is not true. The function ϕ(a) = ak satisfies condϕ(a) = k for all a �= 0; it is
thus trivially computed. Yet the cost of computing ϕ(a) can be bounded by the cost
of computing condϕ(a) plus a constant. The emerging picture can be thus summa-
rized as follows:

The cost of computing condϕ(a) is, modulo an additive constant, at least the
cost of computing ϕ(a). That is, cost(condϕ)≥ cost(ϕ)+O(1).

P. Bürgisser, F. Cucker, Condition,
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5, © Springer-Verlag Berlin Heidelberg 2013

255

http://dx.doi.org/10.1007/978-3-642-38896-5
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The nature of this statement makes it difficult to formally prove it. We will therefore
refrain from continuing and leave the statement as an empirical conclusion.

We can now proceed with the second aspect mentioned above. The accuracy in
the computation of condϕ(a) depends on the algorithm used to compute condϕ(a)

as well as on the condition of a for the function condϕ :D ⊆ R
m → [0,∞). Disre-

garding the former, the question is posed, what is the condition number of condition
number computation? This “condition of the condition” is called level-2 condition
number.

In this intermezzo we give an answer for a large class of condition numbers. We
say that a condition number condϕ is à la Renegar when there exists a Σ ⊂ R

m,
Σ �= ∅, such that for all a ∈D ⊆R

m,

condϕ(a)= ‖a‖
dist(a,Σ)

. (II.1)

Here ‖ ‖ is an arbitrary norm in R
m and dist is the distance induced by that norm. As

we have seen, several condition numbers have this form (or are well approximated
by expressions of this form). Furthermore (cf. Sect. 6.1), expression (II.1) is the
definition of choice for condition numbers of discrete-valued problems (e.g., C (A))
when the set of ill-posed inputs is clear.

Denote by condϕ
[2](a) the normwise (for the norm ‖ ‖) condition number of the

function condϕ . Our main result is the following.

Theorem II.1 Let ϕ be any problem and let condϕ be given by (II.1). Then

condϕ(a)− 1 ≤ condϕ
[2](a)≤ condϕ(a)+ 1.

Proof To simplify notation, let &(a)= dist(a,Σ). For all input data a,

condϕ
[2](a) = lim

δ→0
sup

‖Δa‖≤δ‖a‖
|condϕ(a +Δa)− condϕ(a)|‖a‖

condϕ(a)‖Δa‖

= lim
δ→0

sup
‖Δa‖≤δ‖a‖

| ‖a+Δa‖
&(a+Δa)

− ‖a‖
&(a)

|‖a‖
‖a‖
&(a)

‖Δa‖

= lim
δ→0

sup
‖Δa‖≤δ‖a‖

∣∣∣∣
‖a +Δa‖&(a)− ‖a‖&(a +Δa)

&(a +Δa)‖Δa‖
∣∣∣∣. (II.2)

To prove the upper bound, note that for every perturbation Δa,
∣∣‖a +Δa‖ − ‖a‖∣∣≤ ‖Δa‖

and
∣
∣&(a +Δa)− &(a)

∣
∣≤ ‖Δa‖.

Therefore,
∣∣‖a +Δa‖&(a)− ‖a‖&(a)∣∣≤ ‖Δa‖&(a)
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and
∣∣‖a‖&(a +Δa)− ‖a‖&(a)∣∣≤ ‖a‖‖Δa‖.

It follows that
∣∣‖a +Δa‖&(a)− ‖a‖&(a +Δa)

∣∣≤ ‖Δa‖&(a)+ ‖a‖‖Δa‖
and consequently that for sufficiently small Δa,
∣∣∣∣
‖a +Δa‖&(a)− ‖a‖&(a +Δa)

&(a +Δa)‖Δa‖
∣∣∣∣ ≤

‖Δa‖&(a)+ ‖a‖‖Δa‖
(&(a)− ‖Δa‖)‖Δa‖ = &(a)+ ‖a‖

&(a)− ‖Δa‖ .

Now use this inequality together with (II.2) to obtain

condϕ
[2](a) = lim

δ→0
sup

‖Δa‖≤δ‖a‖

∣∣∣∣
‖a +Δa‖&(a)− ‖a‖&(a +Δa)

&(a +Δa)‖Δa‖
∣∣∣∣

≤ lim
δ→0

sup
‖Δa‖≤δ‖a‖

&(a)+ ‖a‖
&(a)− ‖Δa‖

= &(a)+ ‖a‖
&(a)

= 1 + ‖a‖
&(a)

= 1 + condϕ(a).

This proves the upper bound. We now proceed with the lower bound.
Let Δa∗ be such that &(a)= ‖Δa∗‖ and a +Δa∗ ∈Σ . For any ε ∈R satisfying

0 < ε < ‖Δa∗‖ let

Δa∗ε =
ε

&(a)
Δa∗.

Then, ‖Δa∗ε‖ = ε and &(a +Δa∗ε )= &(a)− ‖Δa∗ε‖ = &(a)− ε and therefore
∣∣
∣∣
‖a +Δa∗ε‖&(a)− ‖a‖&(a +Δa∗ε )

&(a +Δa∗ε )‖Δa∗ε‖
∣∣
∣∣ =

∣∣
∣∣
‖a +Δa∗ε‖&(a)− ‖a‖(&(a)− ε)

(&(a)− ε)ε

∣∣
∣∣

≥ (‖a‖ − ‖Δa∗ε‖)&(a)− ‖a‖(&(a)− ε)

(&(a)− ε)ε

= (‖a‖ − ε)&(a)− ‖a‖(&(a)− ε)

(&(a)− ε)ε

= −ε&(a)+ ‖a‖ε
(&(a)− ε)ε

= ‖a‖ − &(a)

&(a)− ε
.

Again, use this inequality together with (II.2) to obtain

condϕ
[2](a) = lim

δ→0
sup

‖Δa‖≤δ‖a‖

∣∣∣∣
‖a +Δa‖&(a)− ‖a‖&(a +Δa)

&(a +Δa)‖Δa‖
∣∣∣∣

≥ lim
δ→0

‖a‖ − &(a)

&(a)− δ‖a‖ = ‖a‖ − &(a)

&(a)
= condϕ(a)− 1.

This proves the lower bound. �
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Remark II.2 The bounds in Theorem II.1 are sharp, as shown by the following toy
example. Consider ϕ to be the problem of deciding whether a point x ∈R is greater
than a fixed value ξ > 0. Then Σ = {ξ}, and for x ∈R, x > 0, Eq. (II.1) yields

condϕ(x)=

⎧
⎪⎨

⎪⎩

x
x−ξ

if x > ξ ,
x

ξ−x
if x < ξ ,

∞ if x = ξ .

Since condϕ is differentiable at x for x �= ξ , we have (compare Proposition 14.1)

cond[2](x)=
∣∣∣∣
d

dx
condϕ(x)

∣∣∣∣
x

|condϕ(x)| =
{

ξ
x−ξ

if x > ξ ,
ξ

ξ−x
if x < ξ.

Now note that x
x−ξ

= ξ
x−ξ

+ 1 and x
ξ−x

= ξ
ξ−x

− 1.
Another simple example shows that a result like Theorem II.1 (actually, even a

version with multiplicative constants) may fail to hold for condition numbers not
having a characterization of the form (II.1). Consider the problem ϕ :R→R given
by ϕ(x) = x2 + x + c, for some c ∈ R. For x ∈ R, let condϕ(x) be its condition
number, as defined in (O.1). Since ϕ is differentiable on R, we have

condϕ(x)= |xϕ′(x)|
|ϕ(x)|

and, assuming xϕ′(x),ϕ(x) > 0,

condϕ
[2](x)=

∣∣∣∣

(
xϕ′(x)
ϕ(x)

)′∣∣∣∣
|ϕ(x)|
|ϕ′(x)| =

|xϕ′′(x)ϕ(x)+ ϕ′(x)ϕ(x)− x(ϕ′(x))2|
|ϕ(x)ϕ′(x)| .

Now take x = 1 and c >−2 (so that x,ϕ(x),ϕ′(x) > 0). Then

condϕ(a)= 3

2 + c

and

condϕ
[2](a)=

|5c+ 1|
3(2 + c)

.

When c →∞ we have condϕ(a) → 0 and condϕ
[2](a) → 5

3 , while for c = − 1
5 we

have condϕ(a)= 5
3 and condϕ

[2](a)= 0.



Part III
Condition in Polynomial Equation

Solving (Allegro con brio)



Chapter 14
A Geometric Framework for Condition
Numbers

Solving equations—linear, algebraic, differential, difference, analytic, Diophantine
. . .—is arguably the most central problem in mathematics. A case of this problem
that can be efficiently tackled is that of linear systems of equations. What could
be considered the level of difficulty immediately above that for linear systems, the
case of quadratic, or more generally, polynomial equations, is substantially more
complicated. Even for polynomials in one variable, classical results of Abel and
Galois deprive us of any hope to actually compute their zeros. The best we can do
is to approximate them (and a number of algorithms compute these approximations
quite efficiently).

For systems of multivariate polynomials we need to add complexity obstructions.
The first that meets the eye is the possibly large number of solutions. A system
of n quadratic equations in n variables has (generically) 2n solutions in complex
space C

n. But each polynomial in the system has 1
2 (n

2 + 3n+ 2) coefficients, and
therefore the whole system is specified with Θ(n3) coefficients. If we were to com-
pute approximations for all its zeros, the size of the output would be exponential in
the input size!

A focal theme in this third part of the book is that of systems of polynomial equa-
tions and algorithms that approximate solutions of these systems. These algorithms
have a “numeric” character, and it goes without saying that their analyses strongly
rely on appropriate condition numbers. But the nature of these systems and their so-
lutions suggests a view of their condition numbers within a more general framework
than the one underlying Sect. O.2. The present chapter introduces this framework
and provides some motivating (but also interesting per se) examples.

14.1 Condition Numbers Revisited

Let us reexamine the general definition of condition number given at the very begin-
ning of this book. Our goal in this section is to bring this concept closer to calculus,
so that it will become apparent how to extend it to the more general framework of
manifolds.

P. Bürgisser, F. Cucker, Condition,
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_14, © Springer-Verlag Berlin Heidelberg 2013
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We begin by assuming that X and Y are finite-dimensional normed real vector
spaces and consider a function

ϕ :X ⊇D→ Y

defined on an open subset D of X. (Everything we say immediately extends to finite-
dimensional complex normed vector spaces.) In Sect. O.2 we defined the relative
normwise condition number condϕ(x) of ϕ at a nonzero input x ∈ D satisfying
ϕ(x) �= 0 by

condϕ(x)= lim
δ→0

sup
RelError(x)≤δ

RelError(ϕ(x))

RelError(x)
.

More specifically, the supremum is over all x̃ ∈X such that

RelError(x) := ‖x̃ − x‖
‖x‖ ≤ δ,

where we used the abbreviation RelError(ϕ(x)) := ‖ϕ(x̃)−ϕ(x)‖
‖ϕ(x)‖ . We can as well de-

fine an absolute normwise condition number by

acondϕ(x) := lim
δ→0

sup
‖x̃−x‖≤δ

‖ϕ(x̃)− ϕ(x)‖
‖x̃ − x‖ .

It is clear that condϕ(x)= acondϕ(x)
‖x‖

‖ϕ(x)‖ .
In the case that ϕ is differentiable, condition numbers turn out to be a familiar

concept from calculus. Indeed, the absolute condition number of ϕ at x is nothing
but the operator norm of the derivative Dϕ(x) : X → Y of ϕ at x,

∥∥Dϕ(x)
∥∥ := max

‖ẋ‖=1

∥∥Dϕ(x)(ẋ)
∥∥.

Let us explicitly state this important insight.

Proposition 14.1 If ϕ is differentiable at x, then

acondϕ(x)= ∥∥Dϕ(x)
∥∥, condϕ(x)= acondϕ(x)

‖x‖
‖ϕ(x)‖ .

Proof It suffices to prove the assertion about the absolute condition number. The
proof is basically a rewriting of the definition of differentiability. We fix x and write
ϕ(x + y) = ϕ(x) + Dϕ(x)y + ‖y‖r(y) with a function r defined in a neighbor-
hood of 0 such that limy→0 ‖r(y)‖ = 0. For ε > 0 there exists δε > 0 such that
sup‖y‖≤δε

‖r(y)‖ ≤ ε. For any y satisfying ‖y‖ ≤ δε we get

‖Dϕ(x)y‖
‖y‖ − ε ≤ ‖ϕ(x + y)− ϕ(x)‖

‖y‖ ≤ ‖Dϕ(x)y‖
‖y‖ + ε,
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and hence we obtain for any 0 < δ ≤ δε ,

sup
‖y‖≤δ

‖Dϕ(x)y‖
‖y‖ − ε ≤ sup

‖y‖≤δ

‖ϕ(x + y)− ϕ(x)‖
‖y‖ ≤ sup

‖y‖≤δ

‖Dϕ(x)y‖
‖y‖ + ε.

But sup‖y‖≤δ
‖Dϕ(x)y‖

‖y‖ = ‖Dϕ(x)‖. Now take the limit for δ → 0. The claim follows
since ε was arbitrary. �

To illustrate Proposition 14.1, let us briefly review the proof of Theorem 1.5 on
the condition number of matrix inversion.

Example 14.2 Consider the map ϕ : GLn(R) → R
n×n given by ϕ(A) = A−1,

where, we recall, GLn(R) = {A ∈ R
n×n | detA �= 0}. The argument at the begin-

ning of the proof of Theorem 1.4 shows that Dϕ(A)(Ȧ)=−A−1ȦA−1. We choose
the norm ‖ ‖rs on the input space X =R

n×n and the norm ‖ ‖sr on the output space
Y =R

n×n, for r, s ≥ 1. Then we have by (1.5),

∥∥A−1ȦA−1
∥∥
sr
≤ ∥∥A−1

∥∥
sr
‖Ȧ‖rs

∥∥A−1
∥∥
sr
= ∥∥A−1

∥∥2
sr

for Ȧ with ‖Ȧ‖rs = 1. The argument at the end of the proof of Theorem 1.5, which
we shall not repeat here, shows that equality holds for some Ȧ. Therefore,

acondϕ(A)= ∥∥Dϕ(A)
∥∥
rs,sr

= ∥∥A−1
∥∥2
sr
.

Finally,

condϕ(a)= acondϕ(A)‖A‖rs
∥∥A−1

∥∥−1
sr

= ‖A‖rs
∥∥A−1

∥∥
sr
= κrs(A).

14.1.1 Complex Zeros of Univariate Polynomials

In many situations of interest, the map ϕ is only implicitly given. For example,
consider the problem of finding a complex zero of a univariate polynomial f =∑d

j=0 ajZ
j , aj ∈ C. The zeros ζ are given implicitly by the nonlinear equation

f (ζ )= 0, and in general, there are d zeros by the fundamental theorem of algebra.
Consider the input space Pd := {∑d

j=0 ajZ
j | aj ∈C} �C

d+1, let f0 ∈ Pd , and
suppose that ζ0 ∈C is a simple zero of f0, that is, f0(ζ0)= 0 and f ′

0(ζ0) �= 0.
Consider the map F : Pd ×C→C,F (f, ζ ) := f (ζ ) and note that ∂F

∂ζ
(f0, ζ0)=

f ′
0(ζ0) �= 0. The implicit function theorem (Theorem A.1) applied to F implies that

for all f sufficiently close to f0, there is a unique zero ζ of f close to ζ0, and more-
over, ζ is a differentiable function of f . More specifically, there are open neigh-
borhoods U ⊆ Pd of f0 and V ⊆ C of ζ0, and there is a differentiable function
ϕ : U → V such that for all f ∈U , ϕ(f ) is the only zero of f in V .
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The derivative Dϕ(ζ0) : Pd → C at ζ0 is a linear map that can be calculated
by the following general method. Consider a smooth curve R → U , t �→ f (t) =∑d

j=0 aj (t)Z
j , such that f (0)= f0 and write

ḟ = df

dt
(0)=

d∑

j=0

daj

dt
(0)Zj =:

d∑

j=0

ȧjZ
j .

Let R→C, t �→ ζ(t) := ϕ(f (t)) be the corresponding curve of solutions and write
ζ̇ = dζ

dt
(0). Then we have Dϕ(f0)(ḟ ) = ζ̇ by the chain rule. Differentiating the

equality

0 = f (t)
(
ζ(t)

)=
∑

j

aj (t)ζ(t)
j

with respect to t at zero yields

0 =
∑

j

ȧj ζ
j

0 +
∑

j

aj jζ
j−1
0 ζ̇ = ḟ (ζ0)+ f ′

0(ζ0)ζ̇ . (14.1)

Since f ′
0(ζ0) �= 0, we get Dϕ(f0)(ḟ )= ζ̇ =−f ′

0(ζ0)
−1 ḟ (ζ0).

To simplify notation we write from now on f = f0 and ζ = ζ0. Once we fix
a norm ‖ ‖ on Pd (and take the absolute value as the norm on C), the condition
number of ϕ at f is defined and hence given by

condϕ(f )= ‖f ‖
|ζ |

∥∥Dϕ(f )
∥∥= ‖f ‖

|ζ | |f ′(ζ )| max
‖ḟ ‖=1

∣∣ḟ (ζ )
∣∣.

The standard choice of a norm on Pd is

‖ḟ ‖st :=
(

d∑

j=0

|ȧj |2
)1/2

,

which comes from the isomorphism Pd � C
d+1 and the standard Hermitian inner

product 〈 , 〉 on C
d+1. We shall denote the corresponding condition number by

condϕ
st(f ). Since ḟ (ζ )= 〈ȧ, (ζ j )〉, the Cauchy–Schwarz inequality yields

condϕ
st(f )= ‖f ‖

|ζ |
1

|f ′(ζ )|

(
d∑

j=0

|ζ |2j
)1/2

.

Another choice of norm on Pd is given by

‖ḟ ‖W :=
(

d∑

j=0

(
d

j

)−1

|ȧj |2
)1/2

,
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and we shall denote the corresponding condition number by condϕ
W (f ). In Sect. 16.1

we will learn that ‖ḟ ‖W is a natural choice when our aim is a unitarily invariant

theory. Writing ȧ = (

√(
d
j

)
ḃj )j with

∑
j |ḃj |2 = 1, we obtain with the Cauchy-

Schwarz inequality

∣∣ḟ (ζ )
∣∣=

∣∣∣∣
∣

d∑

j=0

ḃj

√(
d

j

)
ζ j

∣∣∣∣
∣
≤
(

d∑

j=0

(
d

j

)
|ζ |2j

)1/2

= (
1 + |ζ |2)d/2

.

Clearly, the right-hand side is attained at some ȧ, so that

condϕ
W (f )= ‖f ‖W

|ζ |
1

|f ′(ζ )|
(
1 + |ζ |2)d/2

.

We can specialize the content of the previous example to particular polynomials,
for instance, to cyclotomic polynomials.

Example 14.3 Let f = Zd − 1 and let ζ be a d th root of unity, i.e., ζ d = 1. Then

condϕ
st (f )=

√
2(d + 1)

d
, condϕ

W (f )= 2
d+1

2

d
.

Note the exponential difference in these results: while condϕ
st (f ) goes to zero as

d →∞, condϕ
W (f ) grows exponentially with d . So the choice of the norm on Pd

may make a huge difference in the corresponding condition.

14.1.2 A Geometric Framework

The previous discussion is just a special case of a general geometric framework. Let
X and Y be finite-dimensional real vector spaces. Suppose F : X × Y → R

n is a
smooth (C∞) map (which can be defined on an open subset only) and consider its
zero set

V := {
(x, y) ∈X× Y | F(x, y)= 0

}
.

We shall interpret X as the space of inputs, Y as the space of outputs, and (x, y) ∈ V

as meaning that y is a “solution” to input x. We shall suppose n = dimY and that
the derivative ∂F

∂y
(x, y) has full rank n for all (x, y) ∈ V . Then the implicit function

theorem implies that V is a submanifold of X × Y of dimension dimX. We shall
call V the solution manifold. Consider the subset

Σ ′ :=
{
(x, y) ∈ V | rank

∂F

∂y
(x, y) < n

}
. (14.2)

For reasons to be clear soon, we call the elements of Σ ′ ill-posed and the elements
of V \Σ ′ well-posed. Let (x0, y0) be well-posed. Then the implicit function theorem
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tells us that there exist open neighborhoods U ′ ⊆X × Y of (x0, y0) and U ⊆X of
x0 such that the projection U ′ ∩ V → U, (x, y) �→ x is bijective and has a smooth
inverse U → U ′ ∩ V,x �→ (x,G(x)) given by some function G : U → Y . Thus
locally around (x0, y0), V is the graph of G. Note that y0 = G(x0). We call G

the solution map, since y = G(x) is the unique solution for input x ∈ U such that
(x, y) ∈U ′. Moreover, we call the derivative DG(x) : X → Y the condition map of
the problem at input x. (Note that G, and hence DG, depends on the initial choice
of (x0, y0).) After choosing bases of X and Y , the condition map determines the
condition matrix DG(x0).

We may, in addition, fix norms on the space X of inputs and the space Y of out-
puts. Then, according to Sect. 14.1, the solution map G : U → Y has well-defined
absolute and relative normwise condition numbers. By Proposition 14.1 they take
the following form:

acondG(x)= ∥∥DG(x)
∥∥, condG(x)= ‖x‖

‖G(x)‖
∥∥DG(x)

∥∥.

For an ill-posed (x, y) ∈Σ ′ we define the (absolute) condition to be infinity.
Even though G is only implicitly given, it is easy to find an explicit formula for

DG(x). Indeed, differentiating the equation F(x,G(x))= 0 yields

∂F

∂x
(x, y)+ ∂F

∂y
(x, y)DG(x)= 0. (14.3)

Hence

DG(x)=−
(
∂F

∂y
(x, y)

)−1
∂F

∂x
(x, y). (14.4)

Lemma 14.4 The tangent space T(x,y)V of V at (x, y) is given by

T(x,y)V =
{
(ẋ, ẏ) ∈X× Y

∣∣∣∣
∂F

∂x
(x, y) ẋ + ∂F

∂y
(x, y) ẏ = 0

}
.

Moreover, denoting by π : V →X, (x, y) �→ x the projection to the first component,

Σ ′ = {
(x, y) ∈ V | rankDπ(x, y) < dimX

}
. (14.5)

Proof The linear space T(x,y)V equals the kernel of DF(x,y), which is determined
by

DF(x,y)(ẋ, ẏ)= ∂F

∂x
(x, y) ẋ + ∂F

∂y
(x, y) ẏ = 0.

Moreover, Dπ(x, y) equals the projection T(x,y)V → X, (ẋ, ẏ) �→ ẋ. This projec-
tion has a nontrivial kernel iff the matrix ∂F/∂y(x, y) is singular, which by defini-
tion means that (x, y) ∈Σ ′. �
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14.1.3 Linear Equation Solving

We take up the example of linear equation solving, whose condition was already
discussed in Sect. 1.2. Consider X =R

n×n×R
n, Y =R

n, and the map F : X×Y →
R

n, (A,b, y) �→Ay−b. We make X and Y normed spaces by considering, for fixed
r, s ≥ 1, the norm

∥∥(A,b)
∥∥ := max

{‖A‖rs,‖b‖s
}

(14.6)

on X and the norm ‖y‖r on Y . If the matrix A is invertible, then the input (A,b)

has the unique solution G(A,b)=A−1b= y, with G denoting the solution map.
We want to compute acondG(A,b) = ‖DG(A,b)‖, and from it, condG(A,b).

In principle, we could expect the same bounds we obtained in Theorem 1.5 (which
would make κrs(A)≤ condG(A,b)≤ 2κrs(A)). A more careful look at the hypothe-
ses in Theorem 1.5 shows that the relative error in (A,b) considered there is the
maximum of the normwise relative errors A and b. This introduces a minor, but not
negligible, “componentwise viewpoint” that does not fit into our present geometric
framework. The latter is entirely normwise.

The derivative of F at (A,b, y) is given by

DF(A,b, y)(Ȧ, ḃ, ẏ)=Aẏ + Ȧy − ḃ,

which clearly has full rank for all (A,b, y). So

V = F−1(0)= {
(A,b, y) ∈X× Y |Ay = b

}

is a smooth submanifold of X× Y of dimension dimX = n2 + n. Moreover,

∂F

∂(A,b)
(A,b, y)(Ȧ, ḃ) = DF(A,b, y)(Ȧ, ḃ,0)= Ȧy − ḃ,

∂F

∂y
(A,b, y)(ẏ) = DF(A,b, y)(0,0, ẏ)=Aẏ.

By Eq. (14.4), the condition map equals

DG(A,b)(Ȧ, ḃ)=−A−1(Ȧy − ḃ).

Let r, s ≥ 1 and consider the norm ‖(A,b)‖ on X defined in (14.6) and the norm
‖y‖r on Y . We have

∥∥A−1(Ȧy − ḃ)
∥∥
r
≤ ∥∥A−1

∥∥
sr

(‖Ȧ‖rs‖y‖r + ‖ḃ‖s
)
.

This implies for the corresponding operator norm

∥∥DG(A,b)
∥∥= max

‖Ȧ‖rs≤1
‖ḃ‖s≤1

∥∥A−1(Ȧy − ḃ)
∥∥
r
≤ ∥∥A−1

∥∥
sr

(‖y‖r + 1
)
,
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and it is straightforward to check that equality holds. Therefore,

acondG(A,b)= ∥∥A−1
∥∥
sr

(‖y‖r + 1
)
.

From this we obtain, recalling κrs(A)= ‖A‖rs‖A−1‖sr ,

condG(A,b) = acondG(A,b)
‖(A,b)‖
‖y‖r

= ∥∥A−1
∥∥
sr

(‖y‖r + 1
) 1

‖y‖r max
{‖A‖rs,‖b‖s

}

= max
{
κrs(A),

∥∥A−1
∥∥
sr
‖b‖s

} · (1 + ‖y‖−1
r

)
.

Hence, condG(A,b)≥ κrs(A). In addition, using ‖b‖s ≤ ‖A‖rs ‖y‖r , it follows that

condG(A,b)≤ κrs(A) · max
{
1,‖y‖r

} · (1 + ‖y‖−1
r

)
.

Putting these bounds together, we obtain

κrs(A)≤ condG(A,b)≤ κrs(A)
(
1 + max

{‖y‖r‖y‖−1
r

})
.

As already discussed, this result is different from the one in Theorem 1.5. As an
exercise, the reader may check that if we take the norm

∥∥(A,b)
∥∥ := (‖A‖2

rs + ‖b‖2
s

)1/2
,

then we obtain yet another result, namely

acondG(A,b)= ∥∥A−1
∥∥
sr

√
1 + ‖y‖2

r .

For the analysis of certain problems, a further generalization of the geometric
framework described in this section is necessary. In the following it is convenient
to use the notation W∗ :=W \ {0} for any vector space W. For instance, let us con-
sider the problem of computing the eigenvalues and eigenvectors of a given matrix
A ∈C

n×n. A first attempt to formalize this problem would be to consider the set of
solutions

V := {
(A,v,λ) ∈C

n×n × (
C

n
)
∗ ×C |Av = λv

}
.

However, even if A has only simple eigenvalues, its eigenvectors v are determined
only up to scaling. It is therefore natural to replace (Cn)∗ by the complex projective
space P

n−1, which is defined as the set of one-dimensional linear subspaces of Cn.
This geometric object will also be of paramount importance for our analysis of
polynomial equation solving.

The space P
n−1 is a Riemannian manifold, and we will see in Sect. 14.3 that

the geometric framework discussed so far naturally extends to this more general
setting. We shall also continue there the discussion of the eigenvalue and eigenvector
problems.

Before doing so, we give a short introduction to the geometry of Pn−1.
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14.2 Complex Projective Space

Let V be a finite-dimensional complex vector space and recall V∗ := V \ {0}. For
v ∈ V∗ we write [v] :=Cv for the one-dimensional linear subspace spanned by v.

Definition 14.5 The complex projective space P(V ) is defined as

P(V ) := {[v] | v ∈ V∗
}
.

One writes Pn−1 := P(Cn).

The space P(V ) comes with a topology. Consider the canonical map π : V∗ →
P(V ), v �→ [v]. We say that U ⊆ P(V ) is open if π−1(U) is open in V with respect
to the standard topology (induced by the Euclidean topology via a linear isomor-
phism V �C

n).
We argue now that P(V ) is compact: Let 〈 , 〉 be a Hermitian inner product on V .

Then v ∈ V has the norm ‖v‖ :=√〈v, v〉, and we can define the sphere

S(V ) := {
v ∈ V | ‖v‖ = 1

}
,

which is compact. Consider the restriction πS : S(V )→ P(V ), w �→ [w] of π . This
map is surjective, and its fibers are given by π−1

S
([v])= {λv | |λ| = 1}. Since πS is

continuous, it follows that P(V ) is compact.
In the next subsections we shall explain that P(V ) carries the structure of a Rie-

mannian manifold. For a brief introduction to these concepts, see Appendix A.2.

14.2.1 Projective Space as a Complex Manifold

We show here that P(V ) is a complex manifold by exhibiting an atlas for it.
Fix a Hermitian inner product 〈 , 〉 on V � C

n. For v ∈ V∗, we consider the
orthogonal complement of Cv,

Tv :=
{
z ∈ V | 〈z, v〉 = 0

}
.

Clearly, Tv is a linear subspace of V of complex codimension one, and we have
V =Cv⊕ Tv . Consider the open subsets

Av :=
{
L ∈ P(V ) | L �⊆ Tv

}= {[v +w] |w ∈ Tv

}

of P(V ). It is easy to check that P(V )=Av1 ∪ · · · ∪Avn when v1, . . . , vn is a basis
of V . We can parameterize Av by the bijective map

Ψv : Tv →Av, w �→ [v+w]. (14.7)

Note that Ψv(0)= [v].
The next lemma shows that Ψ−1

v is a chart and the collection {Ψ−1
v | v ∈ V∗} is a

holomorphic atlas for P(V ).
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Lemma 14.6

(a) We have Ψ−1
v ([x])= ϕv(x), where

ϕv : V \ Tv → Tv, x �→ ‖v‖2

〈x, v〉 x − v. (14.8)

(b) The derivative of ϕv at x ∈ V \ Tv is given by ẏ =Dϕv(x)(ẋ), where

ẏ = ‖v‖2

〈x, v〉2
(〈x, v〉 ẋ − 〈ẋ, v〉x). (14.9)

(c) Ψv is a homeomorphism.
(d) The change of coordinates map

Tu ⊇ Ψ−1
u (Au ∩Av)→ Ψ−1

v (Au ∩Av)⊆ Tv, w �→ Ψ−1
v Ψu(w)

is a complex differentiable map.

Proof (a, b) These are verified by a direct computation.
(c) The map Ψv is the composition of Tv → V \ Tv,w �→ v+w with the canoni-

cal map V \Tv →Av, x �→ [x], and hence Ψv is continuous. By part (a), the inverse
Ψ−1

v factors over the continuous map ϕv : V \ Tv → Tv and hence Ψ−1
v is continu-

ous. We have thus shown that Ψv is a homeomorphism.
(d) By part (a), the change of coordinates map is given by Ψ−1

v Ψu(w) =
ϕv(u+w). It is straightforward to check that this is a complex differentiable map. �

In the following we view P(V ) as a complex manifold with respect to the above
atlas. We therefore have a well-defined abstract notion of the tangent space T[v]P(V )

at [v]; see Appendix A.2 (and Sect. A.3.2). We make this now more concrete.
By Lemma 14.6(c), the map Ψv is a complex diffeomorphism (i.e., biholomor-

phism). Since the tangent space of the vector space Tv at 0 can be identified with
Tv , the derivative DΨv(0) of Ψv at 0 provides a C-linear isomorphism

DΨv(0) : Tv → T[v]P(V ). (14.10)

In the following, we shall identify T[v]P(V ) with Tv via this map. A little care has to
be taken here, because there is a choice of the representative v of [v]. Suppose that
a vector in T[v]P(V ) is represented by w ∈ Tv via DΨv(0). Then this same vector
is represented by λw ∈ Tλv = Tv when the representative v is replaced by λv. This
fact is a consequence of the following commutative diagram

Tλv
Ψλv−→ Aλv

↑ ‖λ· | ‖
Tv

Ψv−→ Av

where the vertical arrow λ· stands for the multiplication by λ.
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Remark 14.7 A more invariant, yet concrete, description of T[v]P(V ) is obtained by
replacing Tv by the isomorphic vector space L (Cv;Tv) of linear maps Cv → Tv .
The isomorphism is L (Cv;Tv)→ Tv, α �→ α(e).

In the following, we will mostly forget the complex structure and view P(V ) as
a smooth (C∞) manifold. Here is a useful result for concrete computations.

Lemma 14.8 Let γ : R→ V∗ be a smooth map and let γP : [0,1] → P(V ) be de-
fined by γP(t)= [γ (t)]. Then, writing γ̇ (t) := dγ (t)/dt , we have

dγP(t)

dt
= pt (γ̇ (t))

‖γ (t)‖ ,

where pt : V → Tγ (t) denotes the orthogonal projection.

Proof Fix t0 ∈ [0,1] and put v := γ (t0). Since the statement is local, we may as-
sume that γP : R → Av . By scale invariance we may assume that ‖v‖ = 1. Fur-
ther, by choosing a suitable orthonormal basis of V , we may assume that V = C

n

and v = en. We express now the curve γ in the coordinates provided by the chart
Ψen : Ten → Aen ; cf. (14.7). The composition g := Ψ−1

en
◦ γ : R→ Ten is given by

(cf. (14.8))

g(t)= 1

γn(t)

(
γ1(t), . . . , γn−1(t),0

)
.

The derivative ġ(t0) ∈ Ten represents dγP(t0)/dt in the chosen coordinates. Taking
the derivative at t0 and using γ (t0)= en implies

ġ(t0)=
(
γ̇1(t0), . . . , γ̇n−1(t0),0

)
.

This completes the proof. �

14.2.2 Distances in Projective Space

We again fix a Hermitian inner product 〈 , 〉 on V . The real and imaginary parts
of a complex number z ∈ C shall be denoted by .z and /z, respectively. Setting
〈v,w〉R := .〈v,w〉 defines an associated inner product 〈 , 〉R on V . This inner
product defines the same norm as 〈 , 〉, since 〈v, v〉R = 〈v, v〉 for v ∈ V . Moreover,
〈iv, v〉R = 0 for all v ∈ V .

The sphere S(V ) = {v ∈ V | ‖v‖ = 1} is a submanifold of V , and its tangent
space at v ∈ S(V ) is given by the real subspace

TvS(V )= {
a ∈ V | 〈a, v〉R = 0

}
. (14.11)

Recall the projection πS : S(V )→ P(S), w �→ [w].
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Lemma 14.9 For all v ∈ S(V ) we have the orthogonal decomposition TvS(V ) =
Tv ⊕ Riv, which is orthogonal with respect to 〈 , 〉R. Moreover, the derivative
DπS(e) : TvS(V )→ Tv is the orthogonal projection onto Tv .

Proof It is clear that Tv ⊆ TvS(V ) and moreover iv ∈ TvS(V ), since 〈iv, v〉R =
.i〈v, v〉 = 0. The first statement follows by comparing the dimensions. For the
second statement take a smooth curve γ : R → S(V ) and consider γP := πS ◦ γ .
Then γ̇P(t)=DπS(γ (t))(γ̇ (t)). Now use Lemma 14.8. �

A result similar to Lemma 14.8 holds for spheres.

Lemma 14.10 Let γ : R→ V∗ be a smooth map and let γS : [0,1] → S(V ) be de-
fined by γS(t)= γ (t)

‖γ (t)‖ . Then we have

dγS(t)

dt
= Pt(γ̇ (t))

‖γ (t)‖ ,

where Pt : V → Tγ (t)S(V ) denotes the orthogonal projection.

Proof A straightforward calculation shows that

γ̇S = γ̇

‖γ ‖ − 〈γ, γ̇ 〉
‖γ ‖3

γ = 1

‖γ ‖ P(γ̇ ),

where

P(γ̇ )= γ̇ − 〈γ, γ̇ 〉
‖γ ‖2

γ

equals the orthogonal projection of γ̇ onto Tγ (t)S(V ). �

The inner product 〈 , 〉R on V induces an inner product on the subspace TvS(V )

of V , which turns the sphere S(V ) into a Riemannian manifold.
As in any Riemannian manifold, we have a well-defined notion of Riemannian

distance dS(v,w) between points v,w ∈ S(V ); cf. Appendix A.2. It is a well-known
fact that dS(v,w) equals the angle between v and w, that is,

dS(v,w)= arccos〈v,w〉R. (14.12)

Similarly, we define an inner product on the tangent space T[v]P(V ) of the pro-
jective space P(V ) by setting, for a, b ∈ Tv ,

〈a, b〉v := 〈a, b〉R
‖v‖2

. (14.13)

The reader should note that this is a well-defined notion, independent of the choice
of the representative v of [v]. Clearly, if v ∈ S(V ), this coincides with the inner
product defined on TvS(V ).
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The next lemma is a precise formulation of the fact that the inner product 〈 , 〉v
“varies smoothly” with the base point v. It implies that P(V ) is also a Riemannian
manifold. The corresponding metric is called Fubini–Study metric.

Lemma 14.11 Fix v ∈ V∗ and recall Ψv : Tv → Av,p,w �→ [v +w]. Consider its
derivative DΨv(w) : Tv → T[v+w]P(V ) at w ∈ Tv . Then, for fixed a, b ∈ Tv ,

Tv →R, w �→ 〈
DΨv(w)(a),DΨv(w)(b)

〉
[v+w],

is a smooth map.

Proof Consider the derivative of Ψv at w ∈ Tv ,

DΨv(w) : Tv → T[x]Av � Tx, ẏ �→ ẋ,

where we write x = v +w and recall that [x] = Ψv(w). Lemma 14.6 implies that ẋ
and ẏ are related according to Eq. (14.9).

Assume now without loss of generality that ‖v‖ = 1 (scaling). Let e1, . . . , en =
v be an orthonormal basis of V . Without loss of generality, we may assume that
V =C

n and that ei is the standard basis. Then (14.9) becomes

ẏk = 1

x2
n

(xnẋk − ẋnxk).

Fix i < n and let ẏ = ei ∈ Ten be the ith standard basis vector. Solving the above
equation for ẋ under the constraint ẋ ∈ Tx , that is, 〈ẋ, x〉 = 0, yields

ẋ = ei − x̄i

‖x‖2
x,

as is easily verified. Now taking a = ei and b = ej in Ten , for fixed i, j < n, we
obtain

〈
DΨen(x)(a),DΨen(x)(b)

〉
Ψen (x)

= 1

‖x‖2

〈
ei − x̄i

‖x‖2
x, ej − x̄j

‖x‖2
x

〉

R

= 1

‖x‖2

(
δij − 1

‖x‖2
.(xi x̄j )

)
.

Clearly, this depends smoothly on x1, . . . , xn−1, which completes the proof. �

We denote by dP the Riemannian distance of P(V ), cf. Appendix A.2. It turns
out that dP([u], [v]) equals the angle between the complex lines Cu and Cv. More
specifically, we have the following result.

Proposition 14.12 We have for v,w ∈ S(V );

dP
([v], [w])= min

λ∈S(C)
dS(v,λw)= arccos

∣∣〈v,w〉∣∣.
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Proof The right-hand equality follows from the definition (14.12) of dS and the fact
maxλ∈S(C).(λz)= |z|, for z ∈C.

For the left-hand equality take a smooth curve γ : [0,1] → S(V ) connecting v

with λw. Then γP : [0,1]→ P(V ) defined as γP(t)= [γ (t)] connects [v] with [w].
Lemma 14.8 implies that ‖γ̇P(t)‖ ≤ ‖γ̇ (t)‖. By the definition (A.3) of the length of
curves we obtain L(γP)≤ L(γ ). This shows that

dP
([v], [w])≤ min

λ∈S(C)
dS(v,λw).

In order to prove the reverse inequality, take a smooth curve γP : [0,1]→ P(V ).
Using charts as in the proof of Lemma 14.8, it is easy to see that γP can be lifted to
S(V ), that is, there exists a smooth curve γ : [0,1] → S(V ) such that γP = πS ◦ γ .
Hence γ̇P(t)=DπS(γ (t))(γ̇ (t)). If we have

〈
γ̇ (t), γ (t)

〉= 0, (14.14)

then γ̇P(t) = γ̇ (t), since DπS(γ (t)) is the orthogonal projection onto Tγ (t); see
Lemma 14.9. It follows that L(γP)= L(γ ), and we are done.

In order to achieve (14.14) we multiply γ by a smooth function λ : [0,1]→C
×.

A short calculation shows that 〈 d(λγ )
dt

, λγ 〉 = 0 iff λ̇ = −〈γ̇ , γ 〉λ. This linear dif-
ferential equation has the solution λ(t)= exp(α(t)), where α(t) is a primitive func-
tion of −〈γ̇ (t), γ (t)〉. Note that since 〈γ̇ , γ 〉R = 0, we have α(t) ∈ iR and hence
|λ(t)| = 1. �

We define the sine distance on P(V ) by setting dsin([v], [w]) := sindP([v], [w]).
Recall that we have already introduced a similar notion dsin for spheres in Def-
inition 2.32. As for spheres, one can show that this defines a metric on P(V )

(cf. Remark 2.33).
For later use we present the following result.

Lemma 14.13

(a) Let v,w ∈ S(V ). Then

dsin(v,w)= min
μ∈R‖v−μw‖.

If the minimum is attained at μ0, then 〈v − μ0w,w〉 = 0 and |μ0| ≤ 1. More-
over, if 〈v,w〉 �= 0, then μ0 �= 0.

(b) Let v,w ∈ V∗. Then

dsin
([v], [w])= min

λ∈C
‖v− λw‖

‖v‖ .

If the minimum is attained at λ0, then 〈v − λ0w,w〉 = 0 and ‖λ0w‖ ≤ ‖v‖.
Moreover, if 〈v,w〉 �= 0, then λ0 �= 0.
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Proof (a) The corresponding statement for two points on the circle S
1 can be proved

by elementary geometry. This already implies the first assertion.
(b) For the second assertion we may assume v,w ∈ S(V ) without loss of gener-

ality. Then we have by Proposition 14.12 and part (a);

sindP
([v], [w])= min|λ|=1

sindS(v,λw)= min|λ|=1
min
μ∈R‖v−μλw‖ = min

λ∈C ‖v− λw‖.

The claim about the minimum attained at λ0 is an immediate consequence of the
corresponding statement for S(V ) in part (a). �

14.3 Condition Measures on Manifolds

We return now to the main theme of this chapter, the definition of condition in a
general geometric framework. Let X be a manifold of inputs, Y a manifold of out-
puts, and let V ⊆ X × Y be a submanifold of “solutions” to some computational
problem. We assume that X and V have the same dimension n to guarantee the lo-
cal uniqueness of solutions. Consider the projection π1 : V → X, (x, y) �→ x, and
its derivative Dπ1(x, y) : T(x,y)V → TxX, which is the restriction of the projection
TxX× TyY → TxX, (ẋ, ẏ) �→ ẋ, to the subspace T(x,y)V . Following (14.5), we de-
fine the set of ill-posed solutions as

Σ ′ := {
(x, y) ∈ V | rankDπ1(x, y) < dimX

}
. (14.15)

If (x0, y0) ∈ V \Σ ′, then Dπ1(x0, y0) : T(x0,y0)V → Tx0X is a linear isomorphism.
The implicit function theorem tells us that π1 : V → X can be locally inverted
around (x0, y0). Its inverse x �→ (x,G(x)) is given by the solution map G : X ⊇
U → Y defined on an open neighborhood U of x0. So we have (x,G(x)) ∈ V for
all x ∈U . The derivative

DG(x0) : Tx0X → Ty0Y

will again be called the condition map. Clearly, the inverse of Dπ1(x0, y0) is given
by

Tx0X → T(x0,y0)V , ẋ �→ (
ẋ,DG(x0)(ẋ)

)
. (14.16)

If V is given as the zero set of a smooth map F : X × Y → R
n, then, as in

Lemma 14.4 and (14.2), we have the following characterization of Σ ′:

Σ ′ = {
(x, y) ∈ V | rank ∂F/∂y(x, y) < n

}
. (14.17)

Here the partial derivative ∂F/∂y(x, y) : TyY → R
n is defined as the restriction of

DF(x,y) to TyY .
Now suppose that X and Y are Riemannian manifolds. That is, we have an inner

product on each tangent space TxX and TyY that varies smoothly with x and y,
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respectively. In particular, TxX and TyY are normed vector spaces. In this case, we
may define the (absolute) normwise condition number

acondG(x0) :=
∥∥DG(x0)

∥∥= max
‖ẋ‖=1

∥∥DG(x0)(ẋ)
∥∥

as the operator norm of DG(x0). We note that in this general framework, it does not
directly make sense to define relative condition numbers. However, implicitly, we
can model relative notions of condition numbers by choosing the manifolds appro-
priately. For instance, working with projective spaces means to study ratios, which
accounts for a relative notion.

Remark 14.14 The discussion above ties in with the theme of Sect. 6.8. For
an element x0 in the manifold of inputs X we have a finite number of points
(x0, y1), . . . , (x0, ys) in the fiber π−1

1 (x0). Each of them has a corresponding so-
lution map Gj , j = 1, . . . , s, and a condition number acondGj (x0). The condition
of x0 will depend on the computational problem we are considering associated to the
geometric situation V ⊆X× Y . As described in Sect. 6.8, the three typical choices
are

acond(x0) := inf
j≤s

acondGj (x0), acond(x0) := E
j≤s

acondGj (x0),

and

acond(x0) := sup
j≤s

acondGj (x0).

Note that the last two choices force one to define as set of ill-posed inputs the set
Σ := π1(Σ

′), whereas for the first, one should take instead

Σ := {
x ∈X | (x, y) ∈Σ ′ for all (x, y) ∈ π−1(x)

}
.

14.3.1 Eigenvalues and Eigenvectors

The computation of eigenvalues and eigenvectors can be modeled as follows. Con-
sider the manifold X = C

n×n of inputs, the manifold Y = P(Cn) × C of outputs,
and the solution manifold

V := {(
A, [v], λ) ∈X× Y |Av = λv

}
.

(We will see shortly that V is indeed a smooth submanifold of X × Y ; compare
Lemma 14.17.) If λ is a simple eigenvalue of A with eigenvector v, then we can
locally invert the projection π1 : V → X around (A, [v], λ) and thus have a well-
defined solution map G : X ⊇U → Y defined on an open neighborhood U of A. We
may decompose the map G via G(A)= (G1(A),G2(A)), where G1 : U → P

n−1 is
the solution map for the computation of eigenvectors and G2 : U →C is the solution
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map for the computation of eigenvalues. We may thus interpret the operator norms
of the derivatives

DG1(A) : TAX = C
n×n → T[v]Pn−1,

DG2(A) : TAX = C
n×n →C

as the (absolute) condition numbers of the corresponding computational problems.
Clearly, a choice of norms on C

n×n and T[v]Pn−1 has to be made. From a geometric
point of view, it is natural to take the norms coming from the inner products on TAX

and T[v]Pn−1 induced by the structure of the Riemannian manifolds in X and P
n−1,

respectively. Note that on TAX, this would amount to considering the Frobenius
norm. However, we may as well choose other norms. As in Sect. 1.1, we may fix
r, s ≥ 1 and consider the corresponding operator norm ‖ ‖rs on TAX = C

n×n. On
the space T[v]Pn−1 = Tv we shall consider the norm 1

‖v‖r ‖v̇‖r for v̇ ∈ Tv .
Within this context, we can compute the condition numbers of the eigenvector

[v] and the eigenvalue λ,

acondG1
(
A, [v])= ∥∥DG1(A)

∥∥ and acondG2(A,λ)= ∥∥DG2(A)
∥∥.

Before stating the result we need to introduce the notions of left and right eigen-
vectors. Suppose that λ is a simple eigenvalue of A ∈ C

n×n, i.e., ker(λI − A) is
one-dimensional. Let v ∈ C

n∗ be a corresponding (right) eigenvector, so Av = λv.
Consider the characteristic polynomial χA(z) = det(zI − A) = (z − λ)g(z) with
g(λ) �= 0. Taking complex conjugates, we get

det
(
zI −A∗)= det( zI −A)= ( z− λ)g( z ).

Hence χA∗(z)= det(zI−A)= (z−λ)g(z), and we see that λ is a simple eigenvalue
of A∗. Let u ∈ C

n∗ be a corresponding eigenvector of A∗, that is, A∗u = λu, or
equivalently u∗A= λu∗. One calls u a left eigenvector of A. We note that for v̇ ∈C

n

we have

〈
u, (λI −A)v̇

〉= 〈u,λv̇〉 − 〈u,Av̇〉 = λ〈u, v̇〉 − 〈
A∗u, v̇

〉= λ〈u, v̇〉 − 〈λu, v̇〉 = 0.

So the image of λI − A is contained in Tu and hence equals Tu for dimensional
reasons.

Let P : Cn → Tv denote the orthogonal projection, which is given by P(z) =
z − ‖v‖−2〈z, v〉v. We will see shortly that 〈u,v〉 �= 0, so that the restriction of P

induces an isomorphism Tu
∼→ Tv . Thus P(λI − A) : Cn → Tv is surjective with

kernel Cv. We can thus take its Moore–Penrose inverse (P (λI −A))†, which pro-
vides an isomorphism from Tv onto itself. The next proposition tells us that the norm
of this map equals ‖DG1(A)‖.

Proposition 14.15 Choosing the norm ‖ ‖rs on TAX = C
n×n and 1

‖v‖r ‖ ‖r on Tv ,
the condition maps DG1 for the eigenvector problem and DG2 for the eigenvalue
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problem have the following operator norms:

acondG1
(
A, [v])= ∥∥DG1(A)

∥∥ = ∥∥(P(λI −A)
)†∥∥

sr
,

acondG2(A,λ)= ∥∥DG2(A)
∥∥ = ‖u‖s∗‖v‖r

|〈u,v〉| ,

where ‖ ‖s∗ denotes the dual norm of ‖ ‖s ; cf. (1.3).

Let us first illustrate this result in a special case of interest.

Example 14.16 Suppose that A ∈ C
n×n is Hermitian, i.e., A∗ = A, with distinct

eigenvalues λ1, . . . , λn and corresponding left eigenvectors v1, . . . , vn. Then λi is
real and ui = vi is a right eigenvector of λi . Suppose that r = s = 2. Proposi-
tion 14.15 easily implies that

acondG2(A,λi)= 1, acondG1
(
A, [vi]

)= 1

minj �=i |λi − λj | .

So, in accordance with our intuition, a large condition acondG1(A, [vi]) means that
λi is close to other eigenvalues. By contrast, acondG2(A,λi) always equals 1.

For the proof of Proposition 14.15 we first need to compute the derivative
DG(A) : Cn×n → Tv ×C.

Lemma 14.17

(a) V is a smooth submanifold of X× Y and dimV = dimX.

(b) We have 〈v,u〉 �= 0.

(c) If λ is a simple eigenvalue of A ∈C
n×n with right eigenvector v and left eigen-

vector u, then the derivative of the solution map is given by DG(A)(Ȧ)= (v̇, λ̇),
where

λ̇= 〈Ȧv,u〉
〈v,u〉 , v̇ = (

P(λI −A)
)†
P Ȧv.

Proof Consider the map

F : Cn×n × (
C

n∗
)×C→C

n, (A,v,λ) �→Av− λv.

For all (A,v,λ), the derivative of F at (A,v,λ) is given by

DF(A,v,λ)(Ȧ, v̇, λ̇)= Ȧv+Av̇− λ̇v− λv̇.

Since DF(A,v,λ) has rank n, the zero set

V̂ := {
(A,v,λ) ∈C

n×n ×C
n∗ ×C | F(A,v,λ)= 0

}
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is a submanifold of Cn×n × C
n∗ × C→ C

n of real dimension 2(n2 + 1). Since V

is obtained as the image of V̂ under the canonical map (A,v,λ) �→ (A, [v], λ), it
follows that V is a manifold of dimension 2n2. This proves part (a).

Let Ĝ : X ⊇ U → C
n∗ × C be a local lifting of the solution map G : U → P

n−1

×C. If DĜ(A)(Ȧ)= (v̇, λ̇), then DG(A)(Ȧ)= (P v̇, λ̇), where P : Cn → Tv is the
orthogonal projection and we have identified T[v]Pn−1 with Tv . It is thus sufficient
to compute the derivative of Ĝ.

We have F(A, Ĝ(A))= 0 for A ∈U , and taking the derivative at A yields (com-
pare (14.3))

∂F

∂A
(A,v,λ)A+ ∂F

∂(v,λ)
(A,v,λ)DĜ(A)= 0. (14.18)

Furthermore,

∂F

∂A
(A,v,λ)Ȧ = DF(A,v,λ)(Ȧ,0,0)= Ȧv,

∂F

∂(v,λ)
(A,v,λ)(v̇, λ̇) = DF(A,v,λ)(0, v̇, λ̇)= (A− λI)v̇ − λ̇v.

Thus setting (v̇, λ̇)=DĜ(A)(Ȧ), Eq. (14.18) yields

Ȧv+ (A− λI)v̇− λ̇v = 0. (14.19)

Recall that im(λI − A) = Tu. Taking the inner product of (14.19) with u, we thus
obtain

〈Ȧv,u〉 − λ̇〈v,u〉 = 0.

This implies that 〈v,u〉 �= 0, since u,v �= 0 and Ȧ was arbitrary. Part (b) and the
stated formula for λ̇ follow.

For part (c) we apply the orthogonal projection P : Cn → Tv to (14.19), to get
for v̇ ∈ Tv ,

P Ȧv = P(λI −A)v̇ = P(λI −A)P v̇,

noting that P v̇ = v̇. This implies, since the kernel of P(λI −A) equals Cv,

P v̇ = (
P(λI −A)

)†
P Ȧv.

The proof is now complete, since DĜ(A)(Ȧ) is obtained from (v̇, λ̇)=DĜ(A)(Ȧ)

by projecting v̇ orthogonally onto Tv . But we already assumed v̇ ∈ Tv . �

Proof of Proposition 14.15 For all Ȧ ∈C
n×n we have by Hölder’s inequality (1.3),

∣∣〈Ȧv,u〉∣∣≤ ‖Ȧv‖s‖u‖s∗ ≤ ‖Ȧ‖rs‖v‖r‖u‖s∗ .
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Moreover, by Lemma 1.2, there exists Ȧ such that ‖Ȧ‖rs = 1 and Ȧv/‖v‖r
= u/‖u‖s . For this choice of Ȧ we have equality above. This implies with Lem-
ma 14.17 that

∥∥DG2(A)
∥∥= max

‖Ȧ‖rs=1

|〈Ȧv,u〉|
|〈v,u〉| = ‖v‖r‖u‖s∗

|〈v,u〉| ,

as claimed.
For the assertion on ‖DG1(A)‖ we note that for all Ȧ,

‖P Ȧv‖s ≤ ‖P ‖ss‖Ȧ‖rs‖v‖r ≤ ‖Ȧ‖rs‖v‖r .
Let w ∈ Tv be such that ‖w‖s = ‖v‖r . By Lemma 1.2 there exists Ȧ such that
‖Ȧ‖rs = 1 and Ȧv/‖v‖r =w/‖w‖s ; hence P Ȧv =w. This observation implies

max
‖Ȧ‖rs=1

∥∥(P(λI −A)
)†
P Ȧv

∥∥
r
= max

w∈Tv‖w‖s=‖v‖r

∥∥(P(λI −A)
)†
w
∥∥
r

= ‖v‖r
∥∥(P(λI −A)

)†∥∥
sr
.

The assertion follows with Lemma 14.17 (recall the norm ‖v‖−1
r ‖ ‖r on Tv). �

14.3.2 Computation of the Kernel

The goal of this short section is to show that in our geometric framework, the con-
dition number κ(A) = ‖A‖‖A†‖ of a rectangular matrix A (cf. Sect. 1.6) has a
natural interpretation as the condition to compute the kernel of A. For this we re-
quire a certain understanding of the notion of a Grassmann manifold. This section is
not required for the understanding of the remainder of the book and may be skipped.

Fix 1 ≤ r ≤m≤ n and consider the input space X := {A ∈ R
m×n | rankA= r},

which is a smooth submanifold by Proposition A.5. As the output space Y we take
the Grassmann manifold consisting of the k-dimensional linear subspaces of R

n,
where k := n− r . The solution map is G : X → Y, A �→ kerA.

Computations in the Grassmann manifold are best performed in the Stiefel man-
ifold Stn,k , which is defined as the set of n× k matrices M satisfying MTM = Ik .
According to Proposition A.4, Stn,k is indeed a submanifold of Rn×k . Note the Stn,k
is invariant under the right action of the orthogonal group O(k) on R

n×k . We have
a natural surjective map π : Stn,k → Y , which maps M to its image ImM . Clearly,
this map is constant on O(k)-orbits MO(k) := {Mg | g ∈O(k)}.

Lemma 14.18 The orbit MO(k) is a submanifold of Rn×k . The derivative Dπ(M)

is surjective and kerDπ(M) = TMMO(k). Moreover, its orthogonal complement
(kerDπ(M))⊥ in TMStn,k consists of the matrices Ṁ ∈ R

n×k such that Im Ṁ =
(ImM)⊥. In particular, the orthogonal projection of TMStn,k onto TMMO(k) is
given by V �→ PV , where P is the orthogonal projection onto (ImM)⊥.
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Proof We leave it to the reader to verify that π has local sections. More specifically,
for each L ∈ Y and each M ∈ Stn,k such that π(M)= L there exist an open neigh-
borhood U of L and a smooth map ι : U → Stn,k such that π ◦ ι= IU . This implies
that Dπ(M)Dι(L)= I. Hence Dπ(M) is surjective.

It follows that all L ∈ Y are regular values of π . Theorem A.9 implies therefore
that MO(k)= π−1(π(M)) is a submanifold and kerDπ(M)= TMMO(k).

For the remaining statements, we may assume that M = (Ik,0)T. This is possible
by the singular value decomposition (see Sect. 1.5) and the orthogonal invariance of
the statement. Proposition A.4 states that TMStn,k consists of the matrices (Ḃ, Ċ)T,
where Ḃ ∈ R

k×k is skew-symmetric, i.e., Ḃ + ḂT = 0, and Ċ ∈ R
k×r . Similarly,

it follows that the tangent space of MO(k) at M consists of the matrices (Ḃ,0)T,
where Ḃ + ḂT = 0. Hence (kerDπ(M))⊥ equals the set of matrices (0, Ċ)T, as
stated. �

By this lemma, Dπ(M) provides an isomorphism of the orthogonal complement
of TMMO(k) with the tangent space Tπ(M)Y of Y at ImM . In the following, we
shall identify Tπ(M)Y with this subspace of TMStn,k to have a concrete model to
work with. This also defines a Riemannian metric on Y .

The following result shows that κ(A)= ‖A‖acondG(A), and hence κ(A) can be
interpreted as the relative condition number for computing the kernel of A from a
given A.

Proposition 14.19 We have acondG(A)= ‖A†‖ for A ∈X.

Proof From the existence of local sections for π it follows that G can be lo-
cally lifted to a smooth map Ĝ : X → Stn,k such that G = π ◦ Ĝ. Let A(t) be
a smooth curve in X and put M(t) := Ĝ(A(t)). Since kerA(t) = ImM(t), we
have A(t)M(t) = 0. Taking derivatives, we get ȦM + AṀ = 0, hence A†AṀ =
−A†ȦM .

Recall that A†A is the orthogonal projection onto (kerA)⊥ = (ImM)⊥; cf.
Lemma 1.24. Lemma 14.18 and our interpretation of the tangent spaces of Y imply
now

d

dt
π
(
M(t)

)=A†AṀ =−A†ȦM.

Taking norms, we obtain

∥∥A†AṀ
∥∥
F
≤ ∥∥A†

∥∥ · ‖ȦM‖F ≤ ∥∥A†
∥∥ · ‖Ȧ‖F .

Here we have used that ‖M‖ = 1 for M ∈ Stn,k , as well as the easily verified gen-
eral facts ‖PQ‖F ≤ ‖P ‖ · ‖Q‖F and ‖PQ‖F ≤ ‖P ‖F · ‖Q‖ for matrices P,Q of
compatible formats. It follows that

∥∥DG(A)
∥∥= sup

‖Ȧ‖F=1

∥
∥∥∥
d

dt
π
(
M(t)

)
∥
∥∥∥
F

≤ ∥∥A†
∥∥.
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In order to see that equality holds, using the singular value decomposition, one
may assume without loss of generality that A=∑r

i=1 σiEii , where Eij stands for
the matrix with entry 1 at position (i, j) and 0 elsewhere. We assume that σi is
the smallest positive singular value, so that ‖A†‖ = σ−1

1 . Now we choose the curve

A(t)=A+ tE1,r+1 in X and take M :=∑k
i=1 Er+i,i . Then it is easily verified that

‖A†ȦM‖F = σ−1
1 = ‖A†‖. �



Chapter 15
Homotopy Continuation and Newton’s Method

A general approach to solving a problem consists in reducing it to another problem
for which a solution can be found. The first section in this chapter is an example of
this approach for the zero-finding problem. Yet, in most occurrences of this strategy,
this auxiliary problem is different from the original one, as in the reduction of a
nonlinear problem to one or more linear ones. In contrast with this, the treatment
we will consider reduces the situation at hand to the consideration of a number of
instances of the same problem with different data. The key remark is that for these
instances, either we know the corresponding solution or we can compute it with
little effort.

We mentioned in the introduction of the previous section that even for functions
as simple as univariate polynomials, there is no hope of computing their zeros, and
the best we can do is to compute accurate approximations. A goal of the second
section in this chapter is to provide a notion of approximation (of a zero) that does
not depend on preestablished accuracies. It has an intrinsic character. In doing so,
we will rely on a pearl of numerical analysis, Newton’s method, and on the study of
it pioneered by Kantorovich and Smale.

15.1 Homotopy Methods

Homotopy (or continuation) methods are a family of algorithms to compute zeros of
a given function, say f , belonging to a class F of functions defined on a domain Y .
They require a pair (g, ζ ) at hand with g ∈F and ζ ∈ Y a zero of g.

The general idea of the method is to consider a path

γ : [0,1]→F , t �→ qt ,

such that q0 = g and q1 = f . This path needs to be computable (in the sense that qt
may be computed from f,g, and t).

Under certain conditions the path γ can be lifted to a path Γ in the solution man-
ifold V ⊂ F × Y such that Γ (0)= (q0, ζ ). If this is the case, by projecting onto Y

we obtain a path {ζt }t∈[0,1] on Y such that ζ0 = ζ and f (ζ1)= 0. The goal of homo-
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topy methods is to “follow” (or “continue”) the path on V to eventually obtain an
approximation of ζ1. A nonalgorithmic instance of this continuation is at the heart
of our proof of Bézout’s theorem in the next chapter (see Sect. 16.5). The algorith-
mic scheme, broadly described (and this includes just an informal description of the
postcondition satisfied by the output) is the following:

Algorithm 15.1 Homotopy_Continuation

Input: f,g ∈F , ζ ∈ Y , k ∈N

Preconditions: g(ζ )= 0

set a partition t0 = 0 < t1 < · · ·< tk−1 < tk = 1
set z0 := ζ

for i = 0, . . . , k− 1 do
compute an approximation zi+1 of ζti+1

from zi and qti+1

end for
Return zk

Output: z ∈ Y

Postconditions: z is an approximate zero of f

Figure 15.1 below depicts the process.
To turn this broad description into a working algorithm, a number of issues need

to be clarified. For instance: how are the points ti computed and how many of them

Fig. 15.1 A homotopy continuation
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are considered (i.e., which k should be given as input)? What is “an approximation”
of a zero ζt of qt? How does one compute one such approximation?

These questions are too general for an all-encompassing answer to be possible.
Furthermore, they are not independent, and the answer given to one of them may
affect the way we approach the others. The next section provides a first answer to
the last two questions above. Prior to proceeding with such an answer, however, we
stress a couple of issues leading to an improved version of Algorithm 15.1.

The number k of iterations in Algorithm 15.1 is given as input and presumably
needs to be estimated in some way such that it is appropriate for the triple (f, g, ζ ).
Such an estimation does not appear to be simple. A way to avoid the issue altogether
is to compute, at the ith iteration, the point ti+1 as a function of ti , qti , and zi . The
underlying idea is the following. Assume that zi is a “strong approximation” of
ζti in the sense that for all t reasonably close to ti , zi is an approximation of ζt .
Assume, in addition, that the computation of zi+1 in Algorithm 15.1 is such that if
zi is an approximation of ζti+1 , then zi+1 is a strong approximation of ζti+1 . Then
the good functioning of the homotopic continuation will be guaranteed—by a trivial
induction argument—as long as (a) z0 is a strong approximation of ζ , and (b) the
point ti+1 is chosen reasonably close (in the sense above) of ti .

Requirement (a) allows for a relaxation. We no longer need a zero of g at hand. It
is enough to have a strong approximation of one such zero. Requirement (b) intro-
duces condition into the scenario. Intuitively, for zi to be an approximation of ζti+1

it has to be close to this zero. For this to occur, we expect ti+1 to be close to ti , but
how close exactly—as shown by a look at Fig. 15.1—will depend on how fast ζt
moves apart from ζti when t increases from ti . That is, on how large μ(gti , ζti ) is.

The discussion above introduces one more notion to be made precise (what ex-
actly we mean by strong approximation) but allows us to (again, broadly) describe
an adaptive version of homotopy.

We do so in Algorithm 15.2.

Algorithm 15.2 Adaptive_Homotopy

Input: f,g ∈F , z ∈ Y

Preconditions: ∃ζ ∈ Y such that g(ζ )= 0 and z strongly approximates ζ

set i := 0, zi := z, and ti := 0
while ti < 1 do

compute ti+1 from ti, zi, and qti
compute an approximation zi+1 of ζti+1

from zi and qti+1

end while
Return zk

Output: z ∈ Y

Postconditions: z is an approximate zero of f
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We may now turn to the notions of approximation.

15.2 Newton’s Method

Newton’s method is doubtless one the most widely used algorithms in numeri-
cal analysis. To understand the idea behind it, consider an analytic function f :
C→ C. Given an initial point z0 ∈ C, the method constructs a sequence of iterates
z0, z1, z2, . . . , where

zi+1 =Nf (zi) := zi − f (zi)

f ′(zi)
.

Here f ′ is the derivative of f (which we assume well defined for all i ≥ 0). An
immediate property of Nf is the fact that Nf (z) = z if and only if f (z) = 0 and
f ′(z) �= 0. Also, for a point z ∈C,

N ′
f (z)= 1 − f ′(z)2 − f (z)f ′′(z)

f ′(z)2
= f (z)f ′′(z)

f ′(z)2
.

In particular, for a simple zero ζ of f we have N ′
f (ζ )= 0, and the Taylor expansion

of Nf at ζ is given by

Nf (z)− ζ = 1

2
N ′′

f (ζ )(z− ζ )2 +O
(
(z− ζ )3). (15.1)

This implies that if the initial point z0 is close enough to ζ , the sequence of points
generated by Newton’s method approaches ζ quadratically fast. Newton’s method
does not necessarily find a zero of f , but starting with a modest approximation of
such a zero, it refines its accuracy in a very fast manner.

The above reasoning can be extended to many variables. Let f : Cn → C
n be

analytic. Newton’s method is an iteration based on the map

Nf (z)= z−Df (z)−1f (z),

where Df (z) is the derivative of f at z. This formula is defined if Df (z) is invert-
ible. As for the one-dimensional case (15.1), one shows that for z→ ζ ,

∥∥Nf (z)− ζ
∥∥=O

(‖z− ζ‖2).

Hence, for all initial points z0 sufficiently close to ζ , the distance from the iterates
zi+1 :=Nf (zi) to ζ decreases quadratically.

This property inspired Steve Smale to introduce a notion of approximate zero
that does not depend on prescribed accuracies: a point is an approximate zero of
a function when Newton’s method starting at this point converges to a zero of the
function immediately, quadratically fast. In what follows we make this idea precise
(which, we note, gives a possible answer to the second question at the end of the
previous section).
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Definition 15.1 We say that z ∈ C
n is an approximate zero of f if the sequence

given by z0 = z and zi+1 =Nf (zi) is defined for all natural numbers i, and there is
a ζ with f (ζ )= 0 such that for all i ∈N,

‖zi − ζ‖ ≤
(

1

2

)2i−1

‖z− ζ‖.

We say that ζ is the associated zero of z.

Remark 15.2 An approximate zero in the sense above yields approximations to any
desired accuracy of a zero of f . Indeed, for any ε > 0 and approximate zero z of f
with associated zero ζ , we may compute the kth iterate zk =Nk

f (z). If ‖z−ζ‖ ≤M ,

then ‖zk − ζ‖< ε if k ≥ log log M
ε
+ 1.

Let’s go back to the discussion on homotopy methods. Definition 15.1 provides
a notion of approximate zero. We can take as “strong approximate zero” the image
under Newton’s operator of an approximate zero. That is, if z is an approximate
zero of f , then Nf (z) is a strong approximate zero. An immediate advantage of this
is that we can make the second computation in the while loop in Algorithm 15.2
precise. It is

compute zi+1 :=Nqti+1
(zi).

Having made precise what we understand by approximation and strong approx-
imation sheds light as well on the meaning of the condition (b) of the previous
section, namely, to choose ti+1 reasonably close to ti . Indeed, this means choosing
ti+1 such that zi is an approximate zero of qti+1 .

To provide an algorithmic procedure for this choice of ti+1 will take us some
time (and we will do that only in the specific context of homogeneous polynomial
systems). Yet, it is apparent that a first step in this endeavor is to have an estimate,
for a zero ζ of an analytic function f , of how large its basin of quadratic attraction
is, that is, how large the set

{
z ∈C

n | z is an approximate zero of f with associated zero ζ
}

is. An answer to this question is naturally given in terms of a quantity γ (f, ζ ) that
we shall define in a moment.

Before doing so, we recall some basic facts from multivariate calculus. For
finite-dimensional vector spaces V1, . . . , Vk,W we denote by Lk(V1, . . . , Vk;W)

the space of k-linear maps from V1 × · · · × Vk to W . In case k = 1, we omit the
index. Also, if V1 = · · · = Vk = V , we simply write Lk(V ;W). If V1, . . . , Vk,W

are normed vector spaces, then one defines the induced norm

‖ϕ‖ := max
‖v1‖=···=‖vk‖=1

∥∥ϕ(v1, . . . , vk)
∥∥
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for ϕ ∈Lk(V1, . . . , Vk;W). In this way, Lk(V1, . . . , Vk;W) becomes a normed vec-
tor space as well. We do have a canonical isomorphism

Lk−1
(
V1, . . . , Vk−1;L (Vk;W)

)�Lk(V1, . . . , Vk;W), (15.2)

which is an isometry if V1, . . . , Vk,W are normed vector spaces.
For z ∈ C

n, we denote by Df (z) the derivative of f at z. This is a linear map
Df (z) : Cn → C

n so that Df : Cn → L (Cn;Cn). Taking the derivative of Df

at z ∈ C
n, we obtain that this second derivative is a linear map D2f (z) : Cn →

L (Cn;L (Cn;Cn)). That is, using (15.2), D2f (z) ∈ L2(C
n;Cn). Repeating this

argument we find, for all k ≥ 1 and z ∈C
n, that the kth derivative of f at z satisfies

Dkf (z) ∈ Lk(C
n;Cn). It is known that Dkf (z) is a symmetric k-linear map. By

abuse of notation, we shall abbreviate Dkf (z)(y− z, . . . , y− z) by Dkf (z)(y− z)k

for y ∈C
n. The definition of the norm of Dkf (z) implies that

∥∥Dkf (z)(y − z)k
∥∥≤ ∥∥Dkf (z)

∥∥‖y − z‖k. (15.3)

Recall that an analytic function f :Cn →C
n can be expanded in a Taylor series

around a point ζ ∈C
n,

f (z)=
∞∑

k=0

1

k!D
kf (ζ )(z− ζ )k,

and we have absolute convergence for z ∈ C
n such that ‖z − ζ‖ < ρ, where the

radius of convergence ρ > 0 is given by Hadamard’s formula

ρ−1 = lim sup
k→∞

∥∥∥∥
Dkf (z)

k!
∥∥∥∥

1
k

. (15.4)

We can now define the quantity γ (f, ζ ).

Definition 15.3 For an analytic function f :Cn →C
n and z ∈C

n such that Df (z)

is invertible, we define

γ (f, z)= sup
k≥2

∥∥∥∥
Df (z)−1Dkf (z)

k!
∥∥∥∥

1
k−1

.

We set γ (f, z)=∞ if Df (z) is not invertible.

Remark 15.4 The supremum exists so that γ := γ (f, z) is well defined. Indeed,
by (15.4), the supremum

C := sup
k

∥∥∥∥
Dkf (z)

k!
∥∥∥∥

1
k
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is finite. Therefore,

∥
∥∥∥
Df (z)−1Dkf (z)

k!
∥
∥∥∥

1
k−1 ≤ (∥∥Df (z)−1

∥∥Ck
) 1

k−1 ,

and the right-hand side converges to C for k →∞ and hence is bounded.
On the other hand, we have

∥∥∥∥
Dkf (z)

k!
∥∥∥∥

1
k ≤ ∥∥Df (z)

∥∥
1
k

∥∥∥∥
Df (z)−1Dkf (z)

k!
∥∥∥∥

1
k ≤ ∥∥Df (z)

∥∥
1
k γ 1− 1

k .

Therefore, by (15.4), ρ−1 ≤ γ . So γ−1 is a lower bound for the radius of conver-
gence ρ.

Theorem 15.5 (Smale’s γ -theorem) Suppose that f :Cn →C
n is analytic, f (ζ )=

0, and Df (ζ ) is invertible. If, for z ∈C
n,

‖z− ζ‖ ≤ 3 −√
7

2γ (f, ζ )
,

then z is an approximate zero of f with associated zero ζ .

For the proof of this theorem we use the following stepping stones.

Lemma 15.6 For −1 < u< 1 we have
∞∑

k=0

uk = 1

1 − u
,

∞∑

k=1

k uk−1 = 1

(1 − u)2
.

Proof The first equation is the well-known geometric series. The second equation
is obtained from the first by (termwise) differentiation. �

Lemma 15.7 Let A ∈ L (Cn;Cn) be invertible and let Δ ∈ L (Cn;Cn) be such
that ‖Δ‖ · ‖A−1‖< 1. Then A+Δ is invertible and

∥
∥(A+Δ)−1

∥
∥≤ ‖A−1‖

1 − ‖Δ‖‖A−1‖ .

Proof We have ‖B‖< 1 for B :=ΔA−1. The geometric series converges and yields
(I + B)−1 =∑∞

k=0(−B)k . In particular, I + B is invertible. Bounding the norms,
we get ‖(I + B)−1‖ ≤∑∞

k=0 ‖B‖k = (1 − ‖B‖)−1. Finally, we note that A+Δ=
(I +B)A; hence (A+Δ)−1 =A−1(I +B)−1 and the assertion follows. �

The following simple quadratic polynomial plays an important role in our esti-
mates:

ψ(u)= 1 − 4u+ 2u2. (15.5)

The proof of the following properties of ψ is left to the reader.
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Lemma 15.8 The function ψ(u)= 1 − 4u+ 2u2 is monotonically decreasing and

nonnegative in [0,1 −
√

2
2 ] and satisfies

u

ψ(u)
< 1 for 0 ≤ u <

5 −√
17

4
,

u

ψ(u)
≤ 1

2
for 0 ≤ u≤ 3 −√

7

2
.

�

The following crucial lemma gives an estimate on how much Df (z) changes
when we perturb z a little.

Lemma 15.9 Let f : Cn →C
n be analytic and y, z ∈C

n such that Df (z) is invert-

ible. We put u := ‖y − z‖γ (f, z). If u < 1 −
√

2
2 , then Df (y) is invertible and we

have:

(a) Df (z)−1Df (y)= I +Δ, where Δ ∈L (Cn;Cn), ‖Δ‖ ≤ 1
(1−u)2 − 1 < 1.

(b) ‖Df (y)−1Df (z)‖ ≤ (1−u)2

ψ(u)
.

Proof Put g := Df and consider the Taylor expansion of g : Cn → L (Cn;Cn)

around z ∈C
n:

g(y)= g(z)+
∞∑

�=1

1

�!D
�g(z)(y − z)�.

Composition with g(z)−1 yields g(z)−1g(y) = I + Δ, where Δ ∈ L (Cn;Cn) is
given by

Δ :=
∞∑

�=1

1

�!g(z)
−1D�g(z)(y − z)�.

Setting k = �+ 1, using (15.3) as well as the isometric identification (15.2) along
with Dk−1g(z)=Dkf (z), we can bound as follows:

1

k!
∥
∥g(z)−1Dk−1g(z)(y − z)k−1

∥
∥ ≤ 1

k!
∥
∥g(z)−1Dk−1g(z)

∥
∥‖y − z‖k−1

= 1

k!
∥∥g(z)−1Dkf (z)

∥∥‖y − z‖k−1

≤ γ (f, z)k−1‖y − z‖k−1,

where we have used the definition of γ (f, z) for the last inequality. Therefore, by
Lemma 15.6,
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‖Δ‖ ≤
∞∑

k=2

k
(
γ (f, z)‖y − z‖)k−1 = 1

(1 − u)2
− 1 < 1,

where the strict inequality on the right is due to our assumption u < 1 − √
2/2.

Lemma 15.7 (with A= I) implies that I +Δ is invertible. Hence Df (y)= g(y)=
g(z)(I +Δ) is invertible as well. We have thus proved part (a).

Part (b) follows from the relations

∥∥g(y)−1g(z)
∥∥ = ∥∥(g(z)−1g(y)

)−1∥∥= ∥∥(I +Δ)−1
∥∥

≤ 1

1 − ‖Δ‖ ≤ 1

1 − ( 1
(1−u)2 − 1)

= (1 − u)2

ψ(u)
,

where we have again used Lemma 15.7 for the first inequality. �

We now apply the previous lemma to the analysis of the Newton iteration. We
shall denote by Nk

f the k-fold iterate of the Newton operator Nf .

Proposition 15.10 Let f : Cn → C
n be analytic, f (ζ ) = 0, and let Df (ζ ) be in-

vertible. Let z ∈C
n be such that

u := ‖z− ζ‖γ (f, ζ ) <
1

4

(
5 −√

17
)
.

Then u
ψ(u)

< 1 and

(a) ‖Nf (z)− ζ‖< u
ψ(u)

‖z− ζ‖ = γ (f,ζ )
ψ(u)

‖z− ζ‖2.

(b) ‖Nk
f (z)− ζ‖ ≤ (

u
ψ(u)

)2k−1‖z− ζ‖ for all k ≥ 0.

Proof The bound u
ψ(u)

< 1 was established in Lemma 15.8.
Towards proving part (a), we expand f around ζ to obtain in C

n,

f (z)=
∞∑

k=1

1

k!D
kf (ζ )(z− ζ )k.

Similarly, expanding g :=Df around ζ , we obtain in L (Cn;Cn),

g(z)=
∞∑

k=1

1

(k − 1)!D
k−1g(ζ )(z− ζ )k−1.

Evaluating both sides of the last equality at z− ζ , we obtain

Df (z)(z− ζ )=
∞∑

k=1

1

(k − 1)!D
kf (ζ )(z− ζ )k,
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which is an equality in C
n. We may now subtract from it the first equality above to

obtain

Df (z)(z− ζ )− f (z) =
∞∑

k=1

(
1

(k − 1)! −
1

k!
)
Dkf (ζ )(z− ζ )k

=
∞∑

k=1

(k − 1)
Dkf (ζ )

k! (z− ζ )k. (15.6)

From this it follows that

Nf (z)− ζ = z− ζ −Df (z)−1(f (z)
)=Df (z)−1(Df (z)(z− ζ )− f (z)

)

= Df (z)−1Df (ζ )

∞∑

k=1

(k − 1)
Df (ζ )−1Dkf (ζ )

k! (z− ζ )k.

We can bound the norm of this as follows, recalling u= γ (f, z)‖z− ζ‖:

∥∥Nf (z)− ζ
∥∥ ≤ ∥∥Df (z)−1Df (ζ )

∥∥
∞∑

k=1

(k − 1)

∥∥∥∥
Df (ζ )−1Dkf (ζ )

k!
∥∥∥∥‖z− ζ‖k

≤ ∥∥Df (z)−1Df (ζ )
∥∥‖z− ζ‖

∞∑

k=1

(k − 1)uk−1.

Lemma 15.6 implies

∞∑

k=1

(k − 1)uk−1 =
∞∑

k=1

kuk−1 −
∞∑

k=1

uk−1 = 1

(1 − u)2
− 1

1 − u
= u

(1 − u)2
.

Combining this with Lemma 15.9(b), we conclude that

∥∥Nf (z)− ζ
∥∥≤ (1 − u)2

ψ(u)

u

(1 − u)2
‖z− ζ‖ = u

ψ(u)
‖z− ζ‖,

which proves (a).
We next prove (b). For k = 0 this is trivial. For k ≥ 1 we assume by induction

that

∥∥Nk−1
f (z)− ζ

∥∥<

(
u

ψ(u)

)2k−1−1

‖z− ζ‖.

Part (a) implies that ‖Nf (z)− ζ‖< ‖z− ζ‖, since u/ψ(u) < 1. Applying this k−1
times, it follows that

ū := ∥∥Nk−1
f (z)− ζ

∥∥γ (f, ζ ) < u.
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Furthermore, since ψ is decreasing in [0, 5−√
17

4 ), we have ψ(ū) > ψ(u). So, by
part (a) and the induction hypothesis,

∥∥Nk
f (z)− ζ

∥∥ = ∥∥Nf

(
Nk−1

f (z)
)− ζ

∥∥≤ γ (f, ζ )

ψ(ū)

∥∥Nk−1
f (z)− ζ

∥∥2

<
γ (f, ζ )

ψ(u)

(
u

ψ(u)

)2k−2

‖z− ζ‖2 =
(

u

ψ(u)

)2k−1

‖z− ζ‖. �

Proof of Theorem 15.5 By Lemma 15.8, u
ψ(u)

< 1
2 if u < 3−√

7
2 . Now Proposi-

tion 15.10(b) finishes the proof. �

A bound for the separation of zeros of an analytic function easily follows as a
consequence of the previous results.

Corollary 15.11 If ζ, ξ are distinct zeros of f , then

‖ζ − ξ‖ ≥ 5 −√
17

4

1

min{γ (f, ζ ), γ (f, ξ)} .

Proof Assume, without loss of generality, that min{γ (f, ζ ), γ (f, ξ)} = γ (f, ζ ). If

‖ζ − ξ‖ < 5−√
17

4
1

γ (f,ζ )
, then by Proposition 15.10(b) with z = ξ we deduce that

Nk
f (ξ) → ζ as k → ∞. However, since f (ξ) = 0, we have Nk

f (ξ) = ξ for all k.
Hence ξ = ζ . �

Remark 15.12 (A fresh view of interior-point methods) The content of this chapter
allows us to look at the interior-point method described in Sect. 9.1 with new eyes.
The reader may recall (or have a look at the Eqs. (9.1)) that the idea was to find a
solution (x,w,y, s) of the function F given by

(x,w,y, s) �→

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

ATy + s − c

GTy − d

Ax +Gw− b

x1s1
...

xnsn

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

.

To this end we considered a curve C of functions Fμ parameterized by μ ∈ [0,μ0]
with Fμ given by

(x,w,y, s) �→

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

ATy + s − c

GTy − d

Ax +Gw− b

x1s1 −μ
...

xnsn −μ

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦
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and such that we had at hand a point ζμ0 with Fμ0(ζμ0)= 0. Note that by construc-
tion, F0 = F . The central path C we defined in Sect. 9.1 in fact is obtained from the
lifting of the curve C containing (Fμ0, ζμ0) by projecting on the space of solutions.

But there is more. A look at Algorithm 9.1 (or, probably more compelling, at
Fig. 9.1) reveals that the central path is “followed” from the initial point ζμ0 by a
sequence of points zi , each of them approximating a point ζμi

on C. And a somehow
closer look at the way the point zi+1 is computed reveals that a Newton’s step is used
to approximate ζμi+1 , as a zero of fμi+1 , starting at zi ; compare Eq. (9.5).

Thus interior-point methods, as described in Sect. 9.1, turn out to be an illustra-
tion of the main ideas of this chapter.



Chapter 16
Homogeneous Polynomial Systems

We finished the preceding chapter with a notion of approximate zero of a function
and an algorithmic scheme to compute these approximate zeros, the adaptive homo-
topy.

Within this scheme, we identified as critical the issue of determining the step
length at each iteration of the continuation process, and as a first step towards this
goal, we estimated the size of the basin of quadratic attraction of a proper zero ζ for

a given analytic function f : this basin contains a ball of radius 3−√
7

2γ (f,ζ )
centered at ζ .

At this stage we perceive two weaknesses in this estimate. Firstly, the computa-
tion of γ (f, ζ ) appears to require the computation of the norm of all the higher order
derivatives of f at ζ . Even if we deal with polynomials (for which the number of
such computations is finite), this can be very costly. Secondly, we can hardly com-
pute these derivatives without having ζ at our disposal. And the whole idea of the
adaptive homotopy relies on not having resource to the zeros ζt in the lifted path Γ .

In this chapter we provide solutions for these shortcomings. To do so, we narrow
the context we are working on and focus on a specific class of functions, namely ho-
mogeneous multivariate polynomial functions f : Cn+1 → C

n. Homogenization is
a common approach to the study of zeros for not necessarily homogeneous polyno-
mial systems: given one such system, one homogenizes its component polynomials
and considers the zeros of the resulting homogeneous system, which are now sets
of lines through the origin, as points in projective space P

n. In doing so, one avoids
the distortions produced by having “large” zeros or, in the limit, zeros at infinity.
We denote by Hd the linear space of homogeneous polynomial systems with degree
pattern d = (d1, . . . , dn) (more details in Sect. 16.1 below).

Newton’s method as described in the previous chapter can be modified to work
in this setting (i.e., acting on P

n and with underlying function in Hd); we will do
that in Sect. 16.6. With a few natural modifications we recover both the notion of
approximate zero and a version γproj(f, ζ ) of the γ invariant. Furthermore—and
gratifyingly, also with only a few minor modifications—we show that the size of
the basin of quadratic attraction of a zero is controlled by γproj in about the same
manner as what we saw in Theorem 15.5 (see Theorem 16.38 below).

P. Bürgisser, F. Cucker, Condition,
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_16, © Springer-Verlag Berlin Heidelberg 2013
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The invariant γproj(f, ζ ) is also defined in terms of higher-order derivatives and
therefore shares the first weakness mentioned above. Condition proves helpful to
overcoming it. The solution in P

n of systems in Hd fits within the framework de-
scribed in Sect. 14.3 and therefore, to a pair (f, ζ ) ∈Hd×P

n with f (ζ )= 0 we may
associate a condition number acondG(f ) (here G denotes the solution map corre-
sponding to (f, ζ )). It is common to denote acondG(f )‖f ‖−1 by μ(f, ζ ). Shub
and Smale introduced a normalization of μ(f, ζ )—denoted by μnorm(f, ζ )—whose
value is close to μ(f, ζ ) and is computed with the same cost. This normalized con-
dition number allows for some elegant statements, such as a condition number theo-
rem; see Theorem 16.19. To follow what is an already established tradition, we will
base our exposition in μnorm(f, ζ ).

Since we shall only be able to compute approximations z of a true zero ζ of f ,
we will extend the definition of μnorm(f, z) (or μ(f, z) for that matter) to any pair
f ∈Hd and z ∈ P

n as long as Df (z)|Tz is invertible. It is an important feature that
the quantity μnorm(f, z) depends only on the equivalence class of f in P(Hd). We
may therefore view μnorm as a function defined (almost everywhere) on P(Hd)×P

n.
A main result in this exposition is the following. Let D = maxi≤n degfi .

Theorem 16.1 For all nonzero f ∈Hd and z ∈ P
n we have

γproj(f, z)≤ 1

2
D3/2 μnorm(f, z).

Theorem 16.1 allows one to use μnorm(f, ζ ) instead of γproj(f, ζ ) to estimate
sizes of basins of quadratic attraction. This solves the first of the two shortcomings
above.

To solve the second shortcoming, a key step will be the observation that the
condition μnorm satisfies a Lipschitz property that allows one to estimate μnorm(g, y)

in terms of μnorm(f, z) for pairs (g, y) close to (f, z). Hereby we measure both
distances dP(f, g) and dP(y, z) in the Riemannian metric of the complex projective
spaces P(Hd) and P

n, respectively. (Recall Sect. 14.2 for the definition and some
properties of this metric.)

Proposition 16.2 Fix 0 ≤ ε ≤ 1
7 . Let f,g ∈ P(Hd) and y, z ∈ P

n be such that

μnorm(f, z)max
{
D1/2 dP(f, g),D

3/2 dP(y, z)
}≤ ε

4
.

Then

1

1 + ε
μnorm(f, z)≤ μnorm(g, y)≤ (1 + ε)μnorm(f, z).

The way this proposition solves the second shortcoming can be briefly stated if
we leave technical details aside. At the ith iteration of the adaptive homotopy, we
compute μnorm(qti , zi). Since zi is a strong approximation of ζti , this quantity yields
μnorm(qti , ζti ) up to a factor of 1+ε. Having this estimate in hand allows us to chose
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ti+1, so that dP(qti , qti+1)≤ ε

4D1/2μnorm(qti ,ζti )
. This ensures that μnorm(qti , ζti ) yields

μnorm(qti+1 , ζti+1), again up to a factor 1 + ε, and therefore that μnorm(qti , zi) does
so up to a factor of (1+ε)2. We will see that it also ensures that zi is an approximate
zero of qti+1 and therefore zi+1 := Nqti+1

(zi) is a strong approximate zero of ζti+1 .
This allows one to iterate the procedure. We will provide the details of the resulting
(fully specified) version of the adaptive homotopy in the next chapter (Sect. 17.1).
In the meanwhile, we devote this chapter to proving the two results stated above.

16.1 A Unitarily Invariant Inner Product

Let Hd =C[X0, . . . ,Xn] be the complex vector space of homogeneous polynomials
of degree d in n+ 1 variables. A basis of Hd is given by the system of monomials
Xα :=X

α0
0 · · ·Xαn

n running over all multi-indices α = (α0, . . . , αn) ∈N
n+1 such that

|α| =∑
i αi . The dimension of Hd equals Nd =

(
d+n
d

)
. It will be essential to rescale

this basis of monomials by considering the basis
(
d
α

)1/2
Xα of Hd defined with the

multinomial coefficients
(
d

α

)
:= d!

α0! · · ·αn! .

We call the basis {(d
α

)1/2
Xα}|α|=d of Hd Weyl’s basis. The dot product in this basis

defines a Hermitian inner product 〈 , 〉 on Hd . More specifically,

〈f,g〉 :=
∑

α

fα gα

for f =∑
α

(
d
α

) 1
2 fαX

α and g =∑
α

(
d
α

) 1
2 gαX

α in Hd . We shall call 〈 , 〉 Weyl’s
inner product. It defines a norm on Hd that we shall denote by ‖ ‖. The reason
to consider this inner product is its invariance under the unitary group U (n+ 1),
which, we recall, is defined as

U (n+ 1) := {
u ∈ GLn+1(C) | uu∗ = In+1

}
,

where u∗ denotes the adjoint of u, i.e., (u∗)ij = ūj i .
Every unitary transformation u ∈ U (n+ 1) induces a transformation on Hd by

setting uf := f ◦ u−1. The invariance just mentioned is stated in the following the-
orem.

Theorem 16.3 For all f,g ∈Hd and all u ∈U (n+ 1) we have

〈uf,ug〉 = 〈f,g〉.

Proof Consider the function

K : Cn+1 ×C
n+1 →C, (x, y) �→ 〈x, y〉d ,



298 16 Homogeneous Polynomial Systems

where 〈x, y〉 :=∑
k xkyk denotes the standard Hermitian inner product on C

n+1. It
is clear that K(ux,uy)=K(x,y) for u ∈U (n+ 1) and x, y ∈C

n+1. Moreover,

Ky(x) :=K(x,y)= (x0y0 + · · · + xnyn)
d =

∑

|α|=d

(
d

α

)
yα xα,

and hence Ky ∈Hd . We conclude that for f =∑
α

(
d
α

)1/2
fαX

α ,

〈f,Ky〉 =
∑

|α|=d

fα

(
d

α

)1/2

yα = f (y). (16.1)

We also note the following transformation behavior:

(uKy)(X)=Ky

(
u−1X

)= 〈
u−1X,y

〉d = 〈X,uy〉d =Kuy(X),

and therefore uKy =Kuy .
Hence, if f ∈Hd satisfies 〈f,Ky〉 = f (y) = 0 for all y, we have f = 0. It fol-

lows that the set {Ky | y ∈ C
n+1} generates the vector space Hd . So, it is enough

to prove the assertion for the functions in {Ky | y ∈ C
n+1}. We can now conclude,

since for x, y ∈C
n+1,

〈uKx,uKy〉 = 〈Kux,Kuy〉
= Kux(uy)

(
by (16.1)

)

= 〈ux,uy〉d = 〈x, y〉d =Ky(x)

= 〈Kx,Ky〉,
where the last equality is again obtained by (16.1). �

Remark 16.4

(a) The function K in the proof of Theorem 16.3 is a kernel, and the space H con-
structed in this proof (in a more general, infinite-dimensional, case one would
have to take a completion) is the reproducing kernel Hilbert space associated
to K . The reproducing property justifying the name is the equality in (16.1).

(b) Up to scaling, Weyl’s inner product is the only unitarily invariant Hermitian in-
ner product on Hd . This can be readily deduced from the fact that Hd is an irre-
ducible U (n+ 1)-module, that is, Hd does not contain a nontrivial U (n+ 1)-
invariant linear subspace. Remarkably, this uniqueness property fails for the
space of real homogeneous polynomials of degree d when one considers or-
thogonal invariance.

(c) Weyl’s inner product can also be described by the integral

〈f,g〉 = c

∫

S(Hd )

f g dS(Hd)
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with respect to the volume measure of the sphere S(Hd), where f,g ∈ Hd

and c denotes a constant. This follows immediately from the uniqueness stated
in (b).

(d) We briefly encountered Weyl’s norm in the univariate case and denoted it by
‖ ‖W in Sect. 14.1.1.

We proceed with a few observations regarding Weyl’s inner product. Throughout,
we denote by ‖x‖ the Euclidean norm of x ∈C

n+1. We first determine the norm of
the evaluation map at x, defined as evalx : Hd →C, f �→ f (x).

Lemma 16.5 For all x ∈C
n+1 we have

‖evalx‖ = max
f∈Hd‖f ‖=1

∣∣f (x)
∣∣= ‖x‖d .

Proof Note that |f (e0)| ≤ ‖f ‖ for f ∈ Hd , since f (e0) equals the coefficient of
Xd

0 in f . Let u ∈U (n+ 1) be such that u(x)= ‖x‖e0. For any f ∈Hd ,

∣
∣f (x)

∣
∣= ∣

∣uf
(
u(x)

)∣∣= ‖x‖d ∣∣uf (e0)
∣
∣≤ ‖x‖d‖uf ‖ = ‖x‖d‖f ‖.

This shows that max f∈Hd‖f ‖=1
|f (x)| ≤ ‖x‖d . The reverse inequality is obtained by tak-

ing f = u−1Xd
0 . �

We next extend the development above to polynomial systems. Given a degree
pattern, d = (d1, . . . , dn) we consider the space Hd =Hd1 × · · · ×Hdn . We make
Hd an inner product space by defining, for f,g ∈Hd,

〈f,g〉 = 〈f1, g1〉 + · · · + 〈fn, gn〉, (16.2)

and call 〈 , 〉 Weyl’s inner product on Hd. It defines a norm on Hd that we again
denote by ‖ ‖. The unitary group U (n+ 1) naturally acts on Hd componentwise,
that is, uf := (uf1, . . . , ufn), and as a consequence of Theorem 16.3, Weyl’s inner
product is invariant under this action.

Summarizing, we have a linear action of the group U (n+ 1) on the vector space
Hd that leaves Weyl’s inner product invariant. This symmetry property has a pro-
found impact on the design and analysis of algorithms developed here and in the
chapters to follow.

Lemma 16.6 Let x ∈C
n+1. The linear map

Hd →C
n, f �→ (

f1(x)/‖x‖d1 , . . . , fn(x)/‖x‖dn
)
,

maps the unit ball in Hd onto the Euclidean unit ball in C
n.
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Proof Lemma 16.5 implies that |fi(x)|/‖x‖di ≤ ‖fi‖, for x �= 0 and f ∈ Hd.
Therefore

∑

i

∣
∣fi(x)

∣
∣2/‖x‖2di ≤

∑

i

‖fi‖2 = ‖f ‖2.

The assertion follows immediately from this observation. �

We also note the following basic observation.

Corollary 16.7 For all u ∈U (n+ 1), f ∈Hd, and ζ,w ∈C
n+1,

D(uf )(uζ )(uw)=Df (ζ )(w).

Proof By the chain rule, D(f ◦ u−1)(uζ )=Df (ζ ) ◦ u−1. The assertion follows by
applying this to uw. �

There is a straightforward relation between a polynomial f ∈Hd and its first-
order partial derivatives, known as Euler’s formula:

d · f =
n∑

i=0

Xi

∂f

∂Xi

. (16.3)

The following is an immediate consequence of this relation.

Corollary 16.8 If f (ζ )= 0, then Df (ζ )(ζ )= 0, for f ∈Hd and ζ ∈C
n+1. Hence

Cζ = kerDf (ζ ), and assuming rankDf (ζ )= n, we have for all w ∈C
n,

Df (ζ )|−1
Tζ

w =Df (ζ )†w. �

16.2 A Unitarily Invariant Condition Number

We are now in position to fit the context of homogeneous polynomial systems into
the framework for condition we developed in Sect. 14.3.

We shall consider the vector space Hd as the space of inputs and complex projec-
tive space P

n = P(Cn+1) as the space of outputs. The solution manifold is defined
as

V := {
(f, ζ ) ∈Hd × P

n
∣∣ f (ζ )= 0

}

and comes with the two projections π1 : V →Hd and π2 : V → P
n onto the first

and second components, respectively.
In Theorem 16.3 we saw that the unitary group U (n+ 1) acts on Hd by unitary

transformations f �→ f ◦ u−1, for all u ∈ U (n + 1). Combined with the natural
action of U (n+ 1) on P

n, we have the action

u (f, ζ )= (
f ◦ u−1, uζ

)
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of U (n+ 1) on the product Hd × P
n. It is immediate that V is invariant under this

action. Moreover, both π1 and π2 are U (n+ 1)-equivariant; that is, π1(u(f, ζ ))=
uπ1(f, ζ ) for u ∈U and (f, ζ ) ∈ V , and similarly for π2 (the proof is obvious).

The group S
1 = {λ ∈ C | |λ| = 1} acts on the sphere S(Cn+1) by scalar multi-

plication. We may interpret Pn as the set of orbits of the sphere S(Cn+1) under this
action. When looking at representatives in the sphere S(Cn+1) of points in projective
space P

n, one is led to study the related solution set

V̂ := {
(f, ζ ) ∈Hd × S

(
C

n+1) | f (ζ )= 0
}
.

Clearly, V is the image of V̂ under the canonical map Hd × S(Cn+1)→Hd × P
n.

We may interpret V as the quotient of V̂ under the S
1-action.

The next lemma summarizes some important geometric properties of V̂ and V .

Lemma 16.9

(a) V̂ is a connected smooth submanifold of Hd × S(Cn+1) of real dimension
dimR V̂ = dimRHd + 1.

(b) The tangent space of V̂ at (f, ζ ) equals

T(f,ζ )V̂ = {
(ḟ , ζ̇ ) ∈Hd × TζS

(
C

n+1) | ḟ (ζ )+Df (ζ )ζ̇ = 0
}
.

(c) V is a connected complex submanifold of Hd × P
n of complex dimension

dimC V = dimCHd.

(d) The tangent space of V at (f, ζ ) equals

T(f,ζ )V = {
(ḟ , ζ̇ ) ∈Hd × Tζ | ḟ (ζ )+Df (ζ )ζ̇ = 0

}
.

Here we fixed a representative ζ ∈C
n+1 (denoted by the same symbol) and identified

TζP
n with Tζ .

Proof Write (Cn+1)∗ :=C
n+1 \ {0} and consider the evaluation map

F : Hd ×
(
C

n+1)
∗ →C

n, (f, ζ ) �→ f (ζ ).

Computing its derivative at (f, ζ ) as in the univariate case, cf. (14.1), we obtain

DF(f, ζ ) : Hd ×C
n+1 →C

n, DF(f, ζ )(ḟ , ζ̇ )= ḟ (ζ )+Df (ζ )ζ̇ . (16.4)

Note that DF(f, ζ ) is surjective, even when restricted to Hd ×{0}. If F̂ denotes the
restriction of F to Hd ×S(Cn+1), we have V̂ = F̂−1(0). Since DF̂(f, ζ ) equals the
restriction of DF(f, ζ ) to the tangent space of Hd × S(Cn+1) at (f, ζ ), the latter is
surjective and Theorem A.9 implies that V̂ = F−1(0) is a smooth submanifold of
Hd × S(Cn+1) with

dimR V̂ = dimRHd + dimR

(
Hd × S

(
C

n+1))− dimRC
n = dimRHd + 1.
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Moreover, by Theorem A.9, the tangent space T(f,ζ )V̂ equals the kernel of
DF̂(f, ζ ). This proves the first two assertions except for the connectedness of V̂ .

To establish the latter, let (f, ζ ), (f̃ , ζ̃ ) ∈ V̂ . Clearly, (f, ζ ) can be connected
with (0, ζ ) by a continuous path in V̂ . Analogously, (f̃ , ζ̃ ) can be connected with
(0, ζ̃ ). Since S(Cn+1) is connected, one can connect (0, ζ ) with (0, ζ̃ ) by a contin-
uous path in V̂ .

We leave it to the reader to verify that V is a complex submanifold of Hd × P
n.

The manifold V is connected, since it is the image of V̂ under the canonical map
I × πS : Hd × S(Cn+1) → Hd × P

n. Moreover, the tangent space T(f,ζ )V equals
the image of T(f,ζ )V̂ under the derivative of I × πS at (f, ζ ), which equals I ×
DπS(ζ ); cf. Lemma 14.9 . This proves the fourth assertion. In addition, dimR V =
dimR T(f,ζ )V = dimR T(f,ζ )V̂ − 1 = dimR V̂ − 1 = dimRHd. �

As in (14.15) we define the set of ill-posed solutions as

Σ ′ := {
(f, ζ ) ∈ V | rankDπ1(f, ζ ) < dimHd

}
.

If (f, ζ ) ∈ V \Σ ′, then we say that ζ is a simple zero of f . By the implicit function
theorem, if ζ is a simple zero of f , there are neighborhoods U1 and U2 of f and ζ ,
respectively, such that for all f ′ ∈U1, there is exactly one zero of f ′ in U2. One can
show that this is not true if (f, ζ ) ∈Σ ′. Hence the name multiple zero of f for ζ in
this case. We also define the set Σ := π1(Σ

′) consisting of those systems f ∈Hd
that have some multiple zero ζ .

We may also characterize Σ ′ as follows:

Σ ′ = {
(f, ζ ) ∈ V | rankDf (ζ ) < n

}
. (16.5)

This follows from Eq. (14.17) applied to the evaluation map F(f, ζ )= f (ζ ), noting
that ∂F/∂ζ(f, ζ )=Df (ζ ) by (16.4).

Suppose now that (f0, ζ0) ∈ V \ Σ ′. According to the general principles ex-
plained in Sect. 14.3, we can locally invert the projection map π1 : V → Hd
around (f0, ζ0). Its inverse f �→ (f, ζ ) is defined in terms of a solution map
G : U → P

n,G(f ) = ζ , that is defined on an open neighborhood U of f in Hd.
We consider the derivative DG(f ) : Hd → TζP

n of G at f and define the condition
number as follows:

μ(f, ζ ) := ‖f ‖ · ∥∥DG(f )
∥∥, (16.6)

where the operator norm is defined with respect to Weyl’s inner product (16.2)
on Hd and the inner product on TζP

n coming from the standard inner product
on C

n+1.
We shall see next that μ(f, ζ ) can be expressed in terms of the derivative

Df (ζ ) : Cn+1 → C
n of f : Cn+1 → C

n. Corollary 16.8 implies that ζ lies in the
kernel of Df (ζ ). So, if Df (ζ ) is of full rank, its kernel is Cζ and Tζ equals its
orthogonal complement. The inverse of the restriction Df (ζ )|Tζ is described by the
Moore–Penrose inverse Df (ζ )†.
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Proposition 16.10 For (f, ζ ) ∈ V \Σ ′ we have

μ(f, ζ )= ‖f ‖ · ∥∥Df (ζ )† diag
(‖ζ‖di−1)∥∥.

Proof We fix a representative ζ and identify TζP
n with Tζ . According to (14.16),

the derivative DG(f ) can be described in terms of the inverse of the derivative
Dπ1(f, ζ ) of the projection π1 as follows: we have ζ̇ = DG(f )(ḟ ) iff (ḟ , ζ̇ ) ∈
T(f,ζ )V . By Lemma 16.9, this can be restated as Df (ζ )(ζ̇ )=−ḟ (ζ ) with ζ̇ ∈ Tζ .
Equivalently, ζ̇ =−Df (ζ )†(ḟ (ζ )). So we have for all ḟ ∈Hd,

DG(f )(ḟ )= ζ̇ =−Df (ζ )†(ḟ (ζ )
)
.

The operator norm of DG(ζ) is defined as the maximum of

‖ζ̇‖
‖ζ‖ =

∥∥∥∥Df (ζ )† 1

‖ζ‖ ḟ (ζ )

∥∥∥∥=
∥∥Df (ζ )† diag

(‖ζ‖di−1)diag
(‖ζ‖−di

)
ḟ (ζ )

∥∥

over the ḟ in the unit ball in Hd (compare the definition of the norm on Tζ

in (14.13)). Lemma 16.6 states that ḟ �→ diag(‖ζ‖−di ) ḟ (ζ ) maps the unit ball in
Hd onto the Euclidean unit ball in C

n. We conclude that

∥
∥DG(f )

∥
∥= max

w∈Cn

‖w‖≤1

∥
∥Df (ζ )† diag

(‖ζ‖di−1)w
∥
∥= ∥

∥Df (ζ )† diag
(‖ζ‖di−1)∥∥.

�

Remark 16.11 We note that μ(f, ζ ) defined in (16.6) should be interpreted as a
relative normwise condition number. With respect to the input f , the relative nature
of μ(f, ζ ) is obvious (and this is why we multiplied acondG(f ) = ‖DG(f )‖ by
‖f ‖ in (16.6)). With respect to the output, the relative nature of μ(f, ζ ) is built into
the choice of the output’s space, which is a projective space.

We could also have considered the solution manifold VP as a subset of P(Hd)×
P
n with the corresponding solution maps GP : P(Hd)⊇ U → P

n. Had we done so,
it would have turned out that

∥∥DGP

([f ])∥∥= ‖f ‖ · ∥∥DG(f )
∥∥= μ(f, ζ ). (16.7)

We leave the straightforward proof of this fact to the reader. Also, it is a good ex-
ercise to directly check that ‖Df (ζ )† diag(‖ζ‖di−1)‖ is invariant under the scaling
of ζ .

Corollary 16.12 The condition number μ is invariant under the action of U (n+1).
That is, μ(u(f, ζ ))= μ(f, ζ ), for all f ∈Hd and u ∈U (n+ 1).

Proof Corollary 16.7 tells us that D(uf )(uζ ) = Df (ζ ) ◦ u−1 for u ∈ U (n + 1).
The invariance of μ under U (n + 1) is thus a consequence of Proposition 16.10
combined with the fact that U (n+ 1) acts unitarily on Hd and C

n+1. �
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We finish this section with a useful observation, which also illustrates the advan-
tages of working with the projective space of Hd. Suppose that (f, ζ ) ∈ V \Σ ′ and
let GP : U → P

n be the solution map defined on an open subset U of the projective
space P(Hd) such that GP([f ])= ζ . Suppose further that t �→ ft is a smooth curve
in Hd with f0 = f and put ζt :=GP([ft ]).

Lemma 16.13 We have

‖ζ̇t‖ ≤ μ(ft , ζt )

∥
∥∥∥
d

dt
[ft ]

∥
∥∥∥= μ(ft , ζt )

‖P(ḟt )‖
‖ft‖ ,

where P denotes the orthogonal projection of Hd onto Tft .

Proof Differentiating ζt =GP([ft ]), we get

ζ̇t =DGP

([ft ]
) d

dt
[ft ],

which implies by (16.7),

‖ζ̇t‖ ≤
∥∥DGP

([ft ]
)∥∥
∥∥∥∥
d

dt
[ft ]

∥∥∥∥= μ(ft , ζt )

∥∥∥∥
d

dt
[ft ]

∥∥∥∥. (16.8)

Lemma 14.8 yields d
dt
[ft ] = ‖ft‖−1P(ḟt ) (as usual identifying T[ft ]P(Hd) with

Tft ). This implies the second equality. �

Corollary 16.14 Let [0,1] → V, t �→ (ft , ζt ) ∈ V , be a smooth curve such that
ft ∈ S(Hd) for all t . Then we have ‖ζ̇t‖ ≤ μ(ft , ζt )‖ḟt‖.

Proof We combine Lemma 16.13 with the observation ‖ d
dt
[ft ]‖ ≤ ‖ d

dt
ft‖, which

follows from Lemma 14.9. �

16.3 Orthogonal Decompositions of Hd

We identify here a family of orthogonal decompositions1 of Hd, parameterized by
ζ ∈ P

n.
For ζ ∈ (Cn+1)∗ we consider the subspace Rζ of Hd consisting of all systems h

that vanish at ζ to higher order:

Rζ :=
{
h ∈Hd | h(ζ )= 0,Dh(ζ )= 0

}
.

1In fact, we have an orthogonal decomposition of the trivial vector bundle Hd × P
n → P

n, but we
won’t use this bundle structure.
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We further decompose the orthogonal complement R⊥
ζ of Rζ in Hd (defined with

respect to Weyl’s inner product). Let Lζ denote the subspace of R⊥
ζ consisting of the

systems vanishing at ζ and let Cζ denote its orthogonal complement in R⊥
ζ . Then

we have an orthogonal decomposition

Hd = Cζ ⊕Lζ ⊕Rζ (16.9)

parameterized by ζ ∈ (Cn+1)∗. Note that the spaces Cζ , Lζ , and Rζ depend only
on [ζ ] ∈ P

n. We next show that the above orthogonal decomposition is compatible
with the unitary action. Before doing so, recall that the stabilizer of ζ is the subgroup
Uζ := {u ∈U (n+ 1) | uζ = ζ } of U (n+ 1).

Lemma 16.15 Let ζ ∈ (Cn+1)∗. We have uCζ = Cuζ , uLζ = Luζ , uRζ = Ruζ for
u ∈ U (n+ 1). In particular, the decomposition Hd = Cζ ⊕ Lζ ⊕ Rζ is invariant
under the action of the stabilizer Uζ of ζ .

Proof We first prove the inclusion uRζ ⊆ Ruζ . Suppose h ∈ Rζ . Then (uh)(uζ )=
h(ζ ) = 0. Corollary 16.7 implies D(uh)(uζ )(uw) = Dh(ζ )(w) = 0 for all w ∈
C

n+1; hence D(uh)(uζ ) = 0. Altogether, uh ∈ Ruζ . The inclusion shown above
implies u−1Ruζ ⊆Rζ and hence uRζ =Ruζ .

Since u acts unitarily on Hd, we deduce that uR⊥
ζ =R⊥

uζ . This immediately gives
uLζ = Luζ and hence uCζ = Cuζ . �

Let us now have a concrete look at this orthogonal decomposition in the spe-
cial case ζ = e0 = (1,0, . . . ,0). Expanding fi according to the powers of X0 with
respect to decreasing degree, we can write

fi = ciX
di
0 +X

di−1
0

√
di

n∑

j=1

aijXj + hi. (16.10)

A simple calculation shows that

fi(e0)= ci, ∂X0fi(e0)= dici, ∂Xj
fi(e0)=

√
di aij for j ≥ 1.

Therefore, f ∈Re0 iff ci = 0 and aij = 0 for all i, j , which means that fi = hi .
Suppose now f ∈ R⊥

e0
, which means that hi = 0 for all i. In this case, we have

f ∈ Lζ iff ci = 0 for all i. Similarly, f ∈ Cζ iff aij = 0 for all i, j . Furthermore,
for f ∈ Lζ , by the definition of Weyl’s inner product we have ‖fi‖2 =∑

j |aij |2.

Indeed, note that
(
di
α

) = di , where α denotes the exponent vector corresponding to

the monomial Xdi−1
0 Xj . This observation is the reason to introduce the factors

√
di

in (16.10). We also note that Df (e0)(w)= (
√
di
∑n

j=1 aijwj ) for w ∈ Te0 .
Combining these findings with the unitary invariance of the orthogonal decom-

positions expressed in Lemma 16.15, we arrive at the following result.
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Proposition 16.16

(a) The space Cζ consists of the systems (ci〈X,ζ 〉di ) with ci ∈ C. We have
Dk(ζ )|Tζ = 0 for k ∈ Cζ .

The space Lζ consists of the systems

g = (√
di 〈X,ζ 〉di−1�i

)
,

where �i is a linear form vanishing at ζ . If �i =∑n
j=0 mijXj with M = (mij ),

then we may characterize the matrix M ∈C
n×(n+1) by

M =Δ−1Dg(ζ ), where Δ= diag
(√

di‖ζ‖di−1).

Moreover, we have Mζ = 0 and ‖g‖ = ‖M‖F .
(b) Given f ∈Hd and ζ ∈ (Cn+1)∗ we have f = k + g + h ∈ Cζ ⊕Lζ ⊕Rζ with,

for 1 = 1, . . . , n,

ki = fi(ζ )〈X,ζ 〉di , gi =
√
di〈X,ζ 〉di−1

n∑

j=0

mijXj ,

where mij = d
−1/2
i (∂Xj

fi(ζ )− difi(ζ )ζ̄j ).

Proof The reasoning above proves both assertions for the special point ζ = e0. For
multiples of e0, the result follows by scaling appropriately. For a general ζ , it follows
by unitary invariance using Lemma 16.15. �

We determine now the “best conditioned” pairs among all (f, ζ ) ∈ V \Σ ′, i.e.,
those for which μ(f, ζ ) is minimal. The result itself will not be essential in our
development, but its proof will. Recall that Pζ : Cn+1 → Tζ denotes the orthogonal
projection onto Tζ .

Proposition 16.17 We have

min
(f,ζ )∈V \Σ ′ μ(f, ζ )=

(
n∑

i=1

1

di

)1/2

.

Moreover, the pair (f, ζ ) minimizes μ iff f ∈ Lζ and Df (ζ )= σPζ for some σ > 0.

Proof Let ζ ∈ S(Cn+1) and f = g + h with g ∈ Lζ and h ∈ Rζ . Note that ‖f ‖ ≥
‖g‖ and Df (ζ ) = Dg(ζ ). By Proposition 16.10 we have μ(f, ζ ) ≥ μ(g, ζ ), and
equality holds iff f = g. It remains to find the minimum of μ(g, ζ ) = ‖g‖‖N†‖
over g ∈ Lζ .

The description of Lζ in Proposition 16.16(a) tells us that the group U (n)×Uζ

acts on Lζ via (v,u)g := v ◦g ◦u−1 for (v,u) ∈U (n)×Uζ and g ∈ Lζ . Moreover,
D(v ◦ g ◦ u−1)(ζ )= vDg(ζ )u−1.
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By unitary invariance, we may assume that ζ = e0. Then the first column of N :=
Dg(ζ ) equals zero, due to Nζ = 0. Further, using the singular value decomposition
(cf. Sect. 1.5), we may assume that N , after the first column has been removed,
equals a diagonal matrix diag(σ1, . . . , σn), with the singular values σ1 ≥ σ2 ≥ · · · ≥
σn > 0. By Proposition 16.16 this implies that

gi =X
di−1
0 σiXi,

and we have

‖g‖2 =
n∑

i=1

‖gi‖2 =
n∑

i=1

σ 2
i

di
,

∥∥N†
∥∥= 1

σn

.

Hence

μ(g, ζ )=
(

n∑

i=1

σ 2
i

diσ 2
n

)1/2

≥
(

n∑

i=1

1

di

)1/2

.

Equality holds iff σj = σn for all j . This means that N =Dg(ζ ) is a multiple of the
orthogonal projection Pe0 . �

Remark 16.18 Proposition 16.17 identifies the system g ∈Hd given by

gi =X
di−1
0 Xi

as the only one, up to scaling and unitary invariance, having a zero that is best
possibly conditioned, namely e0 = (1,0, . . . ,0). As if by divine justice, all other
zeros of g are ill-posed.

16.4 A Condition Number Theorem

Proposition 16.16 suggests that we modify the definition of the condition number
μ(f, ζ ) by introducing additional scaling factors

√
di . We will see that this leads to

an elegant characterization of condition as an inverse distance to ill-posedness.
We define the normalized condition number μnorm(f, ζ ) for (f, ζ ) ∈ V by

μnorm(f, ζ ) := ‖f ‖ · ∥∥Df (ζ )† diag
(√

di‖ζ‖di−1)∥∥. (16.11)

Note that the introduction of the
√
di factors is the only change compared with

μ(f, ζ ); cf. Proposition 16.10. As for μ(f, ζ ), we note that μnorm(f, ζ ) does not
depend on the choice of a representative of ζ and it is thus well defined. Moreover,
as in Corollary 16.12, one can show that μnorm(f, ζ ) is U (n+ 1)-invariant.

Setting D := maxi di , we clearly have

μ(f, ζ )≤ μnorm(f, ζ )≤ √
Dμ(f, ζ ). (16.12)
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We shall now prove a condition number theorem that expresses μnorm(f, ζ ) as
an inverse distance to ill-posedness.

Fix ζ ∈ (Cn+1)∗ and consider the vector space Vζ = {f ∈Hd : f (ζ ) = 0}, that
is, Vζ = Lζ ⊕Rζ . We focus here on the corresponding projective space P(Vζ ) and,
as in Sect. 14.2.2, denote by dsin the sine distance on P(Vζ ).

Now consider the set Σζ := {[f̃ ] | (f̃ , ζ ) ∈ Σ ′} of systems for which ζ is a
multiple zero and let dsin([f ],Σζ ) denote the minimum sine distance of [f ] to Σζ .
According to Lemma 14.13, this quantity may be characterized by

dsin
([f ],Σζ

)= min
f̃∈Σζ \0

‖f − f̃ ‖
‖f ‖ . (16.13)

Theorem 16.19 For (f, ζ ) ∈ V we have

μnorm(f, ζ )= 1

dsin([f ],Σζ )
.

Proof We decompose f ∈ Vζ and f̃ ∈Σζ as

f = g + h, f̃ = g̃+ h̃ with g, g̃ ∈ Lζ and h, h̃ ∈Rζ .

Consider the diagonal matrix Δ= diag(
√
di‖ζ‖di−1) and define the following ma-

trices in C
n×(n+1):

M :=Δ−1Df (ζ ), M̃ :=Δ−1Df̃ (ζ ).

We note that rank M̃ < n, since ζ is a multiple zero of f̃ . Since g− g̃ ∈ Lζ and

M − M̃ =Δ−1D(f − f̃ )(ζ )=Δ−1D(g − g̃)(ζ ),

Proposition 16.16 implies that

‖g− g̃‖ = ‖M − M̃‖F .

The characterization of the (Moore–Penrose) matrix condition number as relativized
inverse distance to singularity in Corollary 1.27 implies

‖M − M̃‖F ≥ ∥∥M†
∥∥−1

. (16.14)

By the orthogonality of the decomposition Vζ = Lζ +Rζ and the Pythagorean the-
orem we have

‖f − f̃ ‖2 = ‖g− g̃‖2 + ‖h− h̃‖2 ≥ ‖g − g̃‖2 = ‖M − M̃‖2
F .

Altogether, we obtain

‖f − f̃ ‖
‖f ‖ ≥ ‖M − M̃‖F

‖f ‖ ≥ 1

‖f ‖‖M†‖ = 1

μnorm(f, ζ )
.
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With Eq. (16.13) this implies

dsin
([f ],Σζ

)≥ 1

μnorm(f, ζ )
.

In order to show that equality holds, it suffices to trace back the proof. According to
Corollary 1.27 there exists a singular matrix M̃ ∈C

n×(n+1) such that equality holds
in (16.14). Let g̃ be the corresponding system in Lζ such that M̃ =Δ−1Dg̃(ζ ), and
put f̃ := g̃, so that h̃= 0. Then we have

‖f − f̃ ‖2 = ‖g− g̃‖2 = ‖M − M̃‖2
F . �

We remark that Theorem 16.19 again implies that the condition number μnorm is
unitarily invariant.

Example 16.20 Consider now the following particular system Ū ∈Hd defined as

Ū1 = 1√
2n

(
X

d1
0 −X

d1
1

)
, . . . , Ūn = 1√

2n

(
X

dn
0 −Xdn

n

)
, (16.15)

where the scaling factor guarantees that ‖Ū‖ = 1. This system will serve as the
starting system in a homotopy continuation algorithm studied in Chap. 18.

Denote by z(a) a di th primitive root of unity. The zeros of Ū = (Ū1, . . . , Ūn)

are then the points zj = [(1, zj1
(a), . . . , z

jn
(n))] ∈ P

n for all the possible tuples j =
(j1, . . . , jn) with ji ∈ {0, . . . , di − 1}. Clearly, each zj can be obtained from z1 :=
[(1,1, . . . ,1)] by a unitary transformation uj that leaves Ū invariant, that is,

uj z1 = zj and uj Ū = Ū .

The following lemma results from the unitary invariance of our setting. The proof
is immediate.

Lemma 16.21 Let g ∈ Hd, ζ ∈ P
n a zero of g, and u ∈ U (n + 1). Then

μnorm(g, ζ )= μnorm(ug,uζ ). �

Note that Lemma 16.21 implies μnorm(Ū , zj )= μnorm(Ū , z1) for all j . The fol-
lowing result gives an upper bound for these condition numbers.

Lemma 16.22 Let D := maxi di . Then

μ2
norm(Ū , ζ )≤ 2n max

i≤n

1

di
(n+ 1)di−1

with equality if di =D for all i. In particular, μ2
norm(Ū , ζ )≤ 2 (n+ 1)D .
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Proof Put M := diag(d
− 1

2
i ‖ζ‖1−di )DŪ(ζ ) ∈ C

n×(n+1). By definition (16.11) we
have

μnorm(Ū , ζ )= ‖Ū‖∥∥M†
∥∥= ∥∥M†

∥∥= 1

σmin(M)
,

where σmin(M) denotes the smallest singular value of M . It can be characterized as
a constrained minimization problem as follows:

σ 2
min(M)= min

w∈Cn+1
‖Mw‖2 subject to w ∈ (kerM)⊥, ‖w‖2 = 1.

In our situation, kerM =C(1, . . . ,1) and DŪ(ζ ) is given by the following matrix:

DŪ(ζ )= 1√
2n

⎡

⎢⎢
⎣

d1 −d1 0 . . . 0
d2 0 −d2 . . . 0
...

...
...

. . . 0
dn 0 0 −dn

⎤

⎥⎥
⎦ .

Hence for w = (w0, . . . ,wn) ∈C
n+1,

‖Mw‖2 = 1

2n

n∑

i=1

di

(n+ 1)di−1
|wi −w0|2 ≥ 1

2n
min
i

di

(n+ 1)di−1
·

n∑

i=1

|wi −w0|2,

with equality holding if di =D. A straightforward calculation shows that

n∑

i=1

|wi −w0|2 ≥ 1 if
n∑

i=0

wi = 0,
n∑

i=0

|wi |2 = 1.

The assertion follows by combining these observations. �

16.5 Bézout’s Theorem

Let us further study the solution manifold V with its two projections π1,π2. The
fiber Vζ := {f ∈Hd | (f, ζ ) ∈ V } of π2 : V → P

n over any ζ ∈ P
n is clearly a linear

subspace2 of Hd with complex codimension n. It decomposes as Vζ = Lζ ⊕Rζ .
We now have a look at the fiber π−1

1 (f ), which can be identified with the set
ZP(f ) := {ζ ∈ P

n | f1(ζ )= 0, . . . , fn(ζ )= 0} of common zeros of f1, . . . , fn. Re-
call that Σ ⊂Hd denotes the set of systems f ∈Hd having a multiple zero.

The following result is the celebrated Bézout’s theorem. It states that the fibers
π−1

1 (f ) are finite with D := d1 · · ·dn elements, provided f ∈Hd \Σ . One calls D
the Bézout number. We shall prove this result using a non-algorithmic version of the

2One can even show that π2 : V → P
n is a vector bundle, but again, we will not need this here.
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homotopy continuation we saw in Sect. 15.1. In the next two chapters we will see
that with considerable more effort, the idea underlying this existence proof can be
converted into an efficient numerical algorithm. A main goal of the third part of this
book is the analysis of this algorithm and its variations.

Theorem 16.23 The zero set ZP(f ) = {ζ ∈ P
n | f1(ζ ) = 0, . . . , fn(ζ ) = 0} of a

system of homogeneous polynomials (f1, . . . , fn) ∈Hd \Σ is finite and has exactly
D = d1 · · ·dn elements. Recall that di = degfi .

The proof relies on a few concepts and results from algebraic geometry;
cf. Sect. A.3.

Lemma 16.24 Σ ′ is the zero set of finitely many polynomial functions of (f, ζ ) ∈
Hd ×C

n+1 that are homogeneous in the arguments f and ζ .

Proof We have rankDf (ζ ) < n iff the determinant of all of the n× n submatrices
of Df (ζ ) vanish. Since the entries of Df (ζ ) are linear in f and homogeneous in ζ ,
the assertion follows. �

Proposition 16.25 The image Σ of Σ ′ under the projection π1 : V → Hd is an
algebraic variety, closed under multiplication by complex scalars. It is called the
discriminant variety.

Proof Recall that Σ equals the image of Σ ′ under the projection π1 : V → Hd.
The assertion is a consequence of Lemma 16.24 combined with the main theorem
of elimination theory; cf. Theorem A.39. �

Remark 16.26 One can show that Σ is the zero set of a single polynomial, called the
multivariate discriminant in N variables with integer coefficients (cf. Sect. A.3.5).
This implies that Σ is a complex hypersurface in Hd. There exists a well-defined no-
tion of dimension for algebraic varieties (which are not necessarily submanifolds);
cf. Sect. A.3.2. It is known that Σ is of complex codimension one and of real codi-
mension two in Hd. This makes it intuitively plausible that Hd \Σ is connected (in
the Euclidean topology). The next result provides a formal proof of this important
fact.

Corollary 16.27 The complement Hd \Σ of the discriminant variety is connected.

Proof By Proposition 16.25, Σ is the zero set of a system F1, . . . ,Fs of homoge-
neous polynomials. Let f,g ∈Hd \Σ . We may assume that f and g are C-linearly
independent and denote by E the complex span of f,g. Then E∩Σ is the zero set of
the restrictions F1|E, . . . ,Fs |E . There exists i such that Fi |E �= 0, since f ∈E \Σ ;
hence E ∩Σ �=E. We need to show that f and g can be connected by a continuous
path in E \ (E ∩Σ).
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In order to see this, we note that the image of E ∩Σ under the canonical pro-
jection E \ 0 → P(E), q �→ [q], is contained in the zero set of the (homogeneous
bivariate) polynomial Fi |Ei

�= 0, which thus consists of finitely many points in P(E).
Moreover, it is known that P(E) is homeomorphic to a (Riemann) sphere. Remov-
ing finitely many points from P(E) cannot destroy connectedness. Hence [f ] and
[g] can be connected by a continuous path in P(E) avoiding these points. This path
can be lifted to E \ (E ∩Σ) as in the proof of Proposition 14.12. �

Proof of Theorem 16.23 The system Ū from Example 16.20 (omitting the scaling
factors),

Ū1 =X
d1
1 −X

d1
0 , . . . , Ūn =Xdn

n −X
dn
0 ,

has exactly D = d1 · · ·dn zeros. They are of the form (ζ1, . . . , ζn), where ζj runs
through all dj th roots of unity exp( 2πik

dj
) for 0 ≤ k ≤ dj − 1. It is straightforward to

check that all these zeros ζ are simple and hence g �∈Σ .
We consider the following restriction of the projection π1:

ϕ : V \ π−1
1 (Σ)→Hd \Σ, (f, ζ ) �→ f.

By Corollary 16.27 we know that Hd \ Σ is connected. We shall prove that the
function χ : V \Σ ′ →N, f �→ |ϕ−1(f )|, is well defined and locally constant. Then
the theorem follows, since χ(Ū)= |ϕ−1(Ū )| =D.

We first argue that the fibers of ϕ are finite. Note that ϕ−1(f ) is a closed subset
of {f }×P

n and thus compact. The inverse function theorem implies that ϕ−1(f ) is
a discrete set. (This means that for each f , there exists a neighborhood W ′ such that
W ′ ∩ ϕ−1(f ) consists of f only.) However, a compact discrete set must be finite. It
follows that the fibers of ϕ are finite.

Pick now any f̃ ∈ V \ π−1(Σ) and let ϕ−1(f̃ ) = {ζ1, . . . , ζk}. By the implicit
function theorem, there exists an open neighborhood W ⊆Hd \Σ of f̃ and there
exist pairwise disjoint open subsets W ′

1, . . . ,W
′
k of V \ π−1

1 (Σ) with (f̃ , ζi) ∈W ′
i

such that ϕ−1(W)=W ′
1 ∪ · · · ∪W ′

k and such that for each i, the projection W ′
i →

W,(f, ζ ) �→ f , is bijective (actually, a diffeomorphism). It follows that ϕ−1(f ) has
exactly k elements for all f ∈W , and hence χ is locally constant. �

We finish this section with a further result that will be of great relevance in
Chap. 17. Recall that aff(f, g) denotes the real line passing through two distinct
points f and g in Hd.

Lemma 16.28 For all f ∈Hd \Σ the set {g ∈Hd \ {f } | aff(f, g) ∩Σ �= ∅} has
measure zero.

Proof By Proposition 16.25, Σ is an algebraic variety. Since Σ �= Hd, we have
dimCΣ ≤ dimCHd − 1. Hence dimRΣ = 2 dimCΣ ≤ dimRHd − 2. The assertion
is now an immediate consequence of Corollary A.36. �
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16.6 A Projective Newton’s Method

In this section we extend Newton’s method to projective space. More precisely,
for f ∈Hd having at least one simple zero, we shall define a map Nf : Pn → P

n

(defined almost everywhere) with properties similar to those of Newton’s method
in C

n we saw in Sect. 15.2. In particular, we prove a projective version of Smale’s
γ -theorem.

Let (f, z) ∈ Hd × (Cn+1)∗. The derivative of f at z is a linear map Df (z) :
C

n+1 → C
n. Suppose that its restriction Df (z)|Tz to the subspace Tz is invertible.

Then we can define the value of the projective Newton operator associated to f ,
at z, by

Nf (z) := z−Df (z)|−1
Tz

f (z).

We next verify that Nf can be interpreted as mapping points from P
n to P

n.

Lemma 16.29 We have Df (λz)|−1
Tz

f (λz) = λDf (z)|−1
Tz

f (z) for λ ∈ C∗. Hence
Nf (λz)= λNf (z) .

Proof The assertion is a consequence of

f (λz)= diag
(
λdi

)
f (z), Df (λz)= diag

(
λdi−1)Df (z),

which follows from the homogeneity of f . �

Example 16.30 Since Tz is defined in terms of the Hermitian inner product, the
definition of Nf involves not only operations of the field C, but also complex
conjugation. So Nf is not a rational map over C. We illustrate this in the case
n = 1. It is easy to check that Tz is spanned by (−z̄1, z̄0). Solving the equation
Df (z)λ(−z̄1, z̄0)

T = f (z) for λ yields

Nf (z)=
[
z0
z1

]
− f (z)

−z̄1∂z0f + z̄0∂z1f

[−z̄1
z̄0

]
.

We next investigate the cost of one Newton step.

Lemma 16.31 Let z ∈C
n+1. A homogeneous polynomial f ∈Hd can be evaluated

at z with 3
(
n+d
n

) + d − 3 arithmetic operations. For a system f ∈ Hd, assuming
di ≥ 2 for all i, we can compute both f (z) and ‖f (z)‖ with O(N) operations.

Proof Let T (n, d) be the number of additions and multiplications sufficient to com-
pute any fixed f ∈Hd from the powers X0,X

2
0, . . . ,X

d
0 , the variables X1, . . . ,Xn,

and complex numbers. Any linear form f =∑n
i=0 aiXi can be evaluated with n+1

multiplications and n additions, whence T (n,1)≤ 2n+ 1.
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It is easy to see that any f ∈ Hd can be written as f = aXd
0 + ∑n

i=1 fiXi ,
where a ∈ C and fi is a homogeneous polynomial of degree d − 1 in the variables
X0, . . . ,Xi . This implies the following recurrence

T (n, d)≤
n∑

i=1

T (i, d − 1)+ 2n+ 1.

Induction on d proves that T (n, d) ≤ 3
(
n+d
n

) − 2. Since X2
0, . . . ,X

d
0 can be com-

puted with d − 1 further multiplications, the first assertion follows.
For f ∈ Hd write Ni =

(
n+di
n

)
and N :=∑n

i=1 Ni . We have just seen that we
can compute f (z) from the coefficients of f and z with

∑n
i=1(3Ni − 2)+ d − 1 =

3N − 2n+ d − 1 =O(N) arithmetic operations. The computation of ‖f (z)‖ from
f (z) has cost O(n). �

Proposition 16.32 One Newton step, i.e., the evaluation of Nf (z) from the coef-
ficients of f ∈ Hd and z ∈ C

n+1∗ , can be performed with O(N + n3) arithmetic
operations. If di ≥ 2 for all i, then this is O(N).

Proof Based on Lemma 16.31, the Jacobian matrix Df (z) can be computed with
O(nN) arithmetic operations. By a more sophisticated reasoning, based on a gen-
eral transformation of straight-line programs, one can show that in fact, O(N) op-
erations are sufficient for this. Instead of proving this fact, we refer to the Notes for
references.

Further, by linear algebra over R, one can compute Df (z)|−1
Tz

f (z) from Df (z)

and f (z) with O(n3) operations. Hence O(N + n3) arithmetic operations are suf-
ficient for evaluating Nf (z). Moreover, if we assume that di ≥ 2 for all i, then we
have n2 =O(Ni) and hence n3 =O(N). �

The projective Newton operator associated with f is the map

Nf : Pn \Λf → P
n, Nf (z)= z−Df (z)|−1

Tz
f (z)

defined on the complement of the following subset of Pn:

Λf := {
z ∈ P

n |Df (z)|Tz not invertible
}
. (16.16)

Note also that Nλf = Nf for λ ∈ C∗, so that Nf depends on f only as an element
of P(Hd). Moreover, for ζ /∈Λf , we have Nf (ζ )= ζ iff f (ζ )= 0.

The following result tells us that Nf is defined almost everywhere.

Lemma 16.33 If f ∈Hd has a simple zero ζ , then Λf has measure zero in P
n.

Proof First, by (16.5), (f, ζ ) �∈Σ ′ means that rankDf (ζ ) = n. Because of Corol-
lary 16.8, we see that ζ �∈Λf . Hence Λf is properly contained in P

n.
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Let Λ̂f ⊆ (Cn+1)∗ denote the cone corresponding to Λf . We shall view C
n+1 as

the real vector space R
2n+2.

Claim Λ̂f is the zero set of a system of homogeneous real polynomials.

In other words, Λ̂f corresponds to a real projective variety. Corollary A.36
implies that Λ̂f has measure zero in C

n+1, which will complete the proof
(cf. Sect. A.2.4).

In order to prove the claim, consider the orthogonal projection onto Tz:

Pz : Cn+1 → Tz, Pz(w)=w− ‖z‖−2〈w,z〉z.
We have z ∈ Λ̂f iff rank(Df (z)‖z‖2Pz) < n. The latter means that the determinant
of all of the n× n submatrices A(z) of Df (z)‖z‖2Pz vanish. Now note that (with
ej denoting the standard basis) ‖z‖2Pz(ej ) = ‖z‖2ej − z̄j zi . Hence the real and
imaginary parts of ‖z‖2Pz are homogeneous quadratic polynomials in the real and
imaginary parts of the zj . It follows that the real and the imaginary parts of detA(z)

are homogeneous polynomials in the real and imaginary parts of the zj as well. This
proves the claim. �

It is now natural to extend the notion of approximate zero (Definition 15.1) from
C

n to P
n. We shall measure distances in P

n using the Riemannian distance dP, i.e.,
by the angle, as defined in Proposition 14.12.

Definition 16.34 We say that z ∈ P
n is an approximate zero of f ∈Hd if the se-

quence given by z0 = z and zi+1 =Nf (zi) is defined for all natural numbers i, and
there exists ζ ∈ P

n with f (ζ )= 0 such that for all i,

dP(zi, ζ )≤
(

1

2

)2i−1

dP(z, ζ ).

We say that ζ is the associated zero of z.

Note that if z is an approximate zero of f with associated zero ζ , then one New-
ton step reduces the distance to ζ by a factor of two: dP(z1, ζ )≤ 1

2dP(z, ζ ).
We define now a projective version of the invariant γ introduced in Defini-

tion 15.3 for Euclidean space.

Definition 16.35 For (f, z) ∈Hd ×C
n+1∗ such that Df (z)|Tz is invertible we define

γproj(f, z) := ‖z‖ sup
k≥2

∥∥∥∥Df (z)|−1
Tz

Dkf (z)

k!
∥∥∥∥

1
k−1

.

If Df (z)|Tz is not invertible, we set γproj(f, z) :=∞.
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Fig. 16.1 Graph of ψδ for,
from top to bottom,
δ = 0, π

6 , π
3 , and π

2

Note that the existence of the supremum follows as for γ ; cf. Definition 15.3.

Lemma 16.36 For all λ ∈ C∗ we have γproj(f,λz)= γproj(f, z) and γproj(λf, z)=
γproj(f, z). In particular, γproj induces a function V \Σ ′ →R.

Proof By homogeneity we have

Dkf (λz)= diag
(
λdi−k

)
Dkf (z).

In particular, Df (λz)= diag(λdi−1)Df (z). This implies
∥∥Df (λz)|−1

Tz
Dkf (λz)

∥∥= 1

|λ|k−1

∥∥Df (z)|−1
Tz

Dkf (z)
∥∥,

and it follows that γproj(f,λζ )= γproj(f, ζ ). The second assertion is trivial. �

For the statement of the projective γ -theorem below we need to define certain
numerical quantities.

For 0 ≤ δ < π/2 let us consider the following family of quadratic functions:

ψδ(u) := (1+ cos δ)(1−u)2 − 1 = (1+ cos δ)u2 − 2(1+ cos δ)u+ cos δ; (16.17)

cf. Fig. 16.1.
For δ = 0 we retrieve the function ψ introduced in Sect. 15.2. We note that

ψδ(0)= cos δ and ψδ(a)=−1. Moreover, ψδ′(u)≥ψδ(u) for δ′ ≤ δ.
For 2

π
≤ r ≤ 1 we define δ(r) as the smallest nonnegative real number δ such

that rδ = sin δ. Then we have

rδ < sin δ, for 0 ≤ δ < δ(r).

For example, taking r = 2/π , we get δ(r)= π/2.
We also define u(r) as the smallest nonnegative number u satisfying the equation

u

rψδ(r)(u)
= 1

2
.
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Fig. 16.2 The values of δ(r) (left) and u(r) (right) as functions of r ∈ [ 2
π
,1]

Table 16.1 Some examples
of r, δ(r), and u(r) r δ(r) u(r)

1 0 3−√
7

2

0.99991 . . . 1
45 0.17708 . . .

0.99500 . . . 0.17333 . . . 0.17486 . . .

0.88800 . . . 0.83415 . . . 0.12469 . . .

Then we have, for 0 < δ ≤ δ(r) and 0 ≤ u < u(r),

u

rψδ(u)
<

u

rψδ(r)(u)
= 1

2
. (16.18)

Figure 16.2 displays the functions δ(r) and u(r). An approximation of δ(r) and u(r)

for a few values of r is shown in Table 16.1.
The following trivial result will be repeatedly used.

Lemma 16.37 For δ ≤ δ(r) and u≤ u(r) we have ψδ(u) > 0.

Proof It follows from (16.18) that ψδ(u) >
2u
r
≥ 0. �

We can now state the main result of this section.

Theorem 16.38 (Projective γ -theorem) Fix 2
π
≤ r < 1. Let (f, ζ ) ∈ V \ Σ ′ and

z ∈ P
n be such that

dP(z, ζ )≤ δ(r), dP(z, ζ )γproj(f, ζ )≤ u(r).

Then z is an approximate zero of f with associated zero ζ .
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Theorem 16.38 follows from the following proposition just as Theorem 15.5 fol-
lowed from Proposition 15.10.

Proposition 16.39 Let (f, ζ ) ∈ V \ Σ ′ and z ∈ P
n \ Λf . Put δ := dP(z, ζ ) and

u := δγproj(f, ζ ). Then we have, for 2
π
≤ r < 1,

dP
(
Nf (z), ζ

)≤ u

rψδ(r)(u)
dP(z, ζ )= γproj(f, ζ )

rψδ(r)(u)
dP(z, ζ )

2,

provided δ ≤ δ(r) and u≤ u(r).

The proof will be similar to Proposition 15.10 and proceeds in several steps.
For z ∈ (Cn+1)∗ let Pz : Cn+1 → Tz denote the orthogonal projection onto Tz.

Note that Pλz = Pz for λ ∈C∗. We shall represent points in P
n by representatives in

the sphere S(Cn+1) := {x ∈ C
n+1 | ‖x‖ = 1}. Their angular distance is denoted by

dS(y, z). It follows from Proposition 14.12 that dP(y, z)≤ dS(y, z).
The easy proof of the following observation is left to the reader.

Lemma 16.40 Let z, y ∈ (Cn+1)∗ and assume δ := dS(z, y) < π/2. Then
Py |Tz : Tz → Ty is invertible and ‖Py |−1

Tz
‖ ≤ (cos δ)−1. �

We prove now a variant of Lemma 15.9 for homogeneous maps Cn+1 →C.

Lemma 16.41 Let f ∈ Hd and y ∈ S(Cn+1) be such that Df (y)|Ty is invert-
ible. Let z ∈ S(Cn+1) and put δ := dS(z, y), u := δγproj(f, y). If ψδ(u) > 0, then
Df (z)|Tz is invertible and we have

(a) Df (y)|−1
Ty

Df (z)|Tz = Py |Tz +B , with B ∈L (Tz;Ty), ‖B‖ ≤ 1
(1−u)2 − 1.

(b) ‖Df (z)|−1
Tz

Df (y)|Ty‖ ≤ (1−u)2

ψδ(u)
.

Proof (a) We proceed as in Lemma 15.9 and can therefore be brief. Note first
that Df (y)|−1

Ty
Df (y)|Tz = Py |Tz . Taking the Taylor expansion of Df : Cn+1 →

L (Cn+1;Cn) around y ∈ C
n+1, restricting to Tz, and then composing from the

left with Df (y)|−1
Ty

yields

Df (y)|−1
Ty

Df (z)|Tz = Df (y)|−1
Ty

(

Df (y)|Tz +
∞∑

k=2

Dkf (y)(z− y)k−1|Tz

(k − 1)!

)

,

= Py |Tz +B,

where

B =
∞∑

k=2

k
Df (y)|−1

Ty
Dkf (y)(z− y)k−1|Tz

k! .
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We can now bound ‖B‖ ≤ 1
(1−u)2 − 1 as in the proof of Lemma 15.9 using that

‖z− y‖ ≤ dS(z, y).
(b) Put P := Py |Tz . According to part (a) we need to show that when ψδ(u) > 0,

P + B is invertible (and hence Df (z)|Tz is invertible as well) and ‖(P + B)−1‖ ≤
(1−u)2

ψδ(u)
.

Towards this end, first note that by Lemma 16.40,

∥∥P−1B
∥∥≤ ∥∥P−1

∥∥‖B‖ ≤ 1

cos δ

(
1

(1 − u)2
− 1

)
< 1

due to our assumption ψδ(u) > 0. Lemma 15.7 implies that I + P−1B is invertible.
Now (P +B)−1 = (I + P−1B)−1P−1. Bounding the norms with Lemma 15.7 and
using part (a) yields

∥∥(P +B)−1
∥∥ ≤ ∥∥I + P−1B

∥∥−1 ‖P ‖−1

≤ ‖P−1‖
1 − ‖P−1B‖ ≤ ‖P−1‖

1 − ‖P−1‖‖B‖
= 1

cos δ − ‖B‖ ≤ 1

cos δ − ( 1
(1−u)2 − 1)

= (1 − u)2

(1 + cos δ)(1 − u)2 − 1
= (1 − u)2

ψδ(u)
,

where we have again used Lemma 16.40 for the penultimate equality. �

Proof of Proposition 16.39 We choose representatives z, ζ ∈ S(Cn+1) such that δ :=
dP(z, ζ )= dS(z, ζ ). Note that ‖z− ζ‖ ≤ δ.

Note as well that ψδ(u) ≥ 0 by Lemma 16.37. Also, since (f, ζ ) �∈Σ ′, we have
that Df (ζ )|Tζ is invertible. We are therefore in the hypothesis of Lemma 16.41 with
y = ζ .

We can therefore proceed similarly as for Proposition 15.10. As we did for (15.6),
we get

Df (z)(z− ζ )− f (z)=
∞∑

k=1

(k − 1)
Dkf (ζ )

k! (z− ζ )k.

Applying Df (z)|−1
Tz

to this equation and inserting Df (ζ )|Tζ Df (ζ )|−1
Tζ

= ICn , we
obtain

Nf (z)− ζ = (z− ζ )−Df (z)|−1
Tz

f (z)

=
∞∑

k=1

(k − 1)Df (z)|−1
Tz

Df (ζ )Df (ζ )|−1
Tζ

Dkf (ζ )

k! (z− ζ )k.
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By bounding the norm, using ‖z − ζ‖γproj(f, ζ ) ≤ δγproj(f, ζ ) = u, and recalling
the definition of γproj := γproj(f, ζ ), we get

∥∥Nf (z)− ζ
∥∥ ≤ ∥∥Df (z)|−1

Tz
Df (ζ )

∥∥ δ
∞∑

k=1

(k − 1)(γprojδ)
k−1

≤ (1 − u)2

ψδ(u)
δ

(
1

(1 − u)2
− 1

(1 − u)

)

= u

ψδ(u)
δ,

where we used Lemma 15.9 for the second inequality. By Lemma 14.13 we have

sindP
(
Nf (z), ζ

)≤ ∥∥Nf (z)− ζ
∥∥.

Hence we obtain

sindP
(
Nf (z), ζ

)≤ u

ψδ(u)
dP(z, ζ ). (16.19)

This implies, since

u

rψδ(u)
≤ u

rψδ(r)(u)
= 1

2

for δ ≤ δ(r) and u≤ u(r),

2

π
dP
(
Nf (z), ζ

)≤ sindP
(
Nf (z), ζ

)≤ r

2
dP(z, ζ )≤ 1

2
dP(z, ζ ).

Here we have used that 2
π
ϕ ≤ sinϕ for 0 ≤ ϕ ≤ π/2 for the left-hand inequality.

Hence dP(Nf (z), ζ )≤ dP(z, ζ )≤ δ(r). We can now conclude from (16.19) that

dP
(
Nf (z), ζ

)≤ 1

r
sindP

(
Nf (z), ζ

)≤ u

rψδ(r)(u)
dP(z, ζ ),

where the first inequality follows from the definition of δ(r). This completes the
proof. �

One can deduce from Theorem 16.38 bounds for the separation of zeros of f ∈
Hd, just as we did for Corollary 15.11. We leave the straightforward proof to the
reader.

Corollary 16.42 Let ζ, ξ ∈ P
n be two distinct zeros of f ∈Hd. Then we have for

any 2
π
≤ r < 1,

dP(ζ, ξ)≥ min

{
δ(r),

u(r)

γproj(f, ζ )
,

u(r)

γproj(f, ξ)

}
. �
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16.7 A Higher Derivative Estimate

Since our algorithms work with approximations of zeros only, it will be convenient
to extend the notion of condition number μnorm(f, z) to the case that z is not a zero
of f .

Definition 16.43 For f ∈Hd and z ∈ (Cn+1)∗ we define the normalized condition
number μnorm(f, z) as

μnorm(f, z) := ‖f ‖ · ∥∥Df (z)|−1
Tz

diag
(√

di ‖z‖di−1)∥∥

if Df (z)|Tz : Tz →C
n is invertible. Otherwise, we set μnorm(f, z) :=∞.

By Corollary 16.8, if f (z) = 0, this is consistent with the original defini-
tion (16.11):

μnorm(f, z)= ‖f ‖ · ∥∥Df (z)† diag
(√

di‖z‖di−1)∥∥.

We note, however, that using this formula in the case f (z) �= 0 would lead to a
different notion of μnorm(f, z) (although the difference is small if z is close to ζ ).

Again, μnorm is invariant under scaling. That is, for λ1, λ2 ∈ C∗, we have
μnorm(λ1f,λ2z)= μnorm(f, z). Moreover, μnorm(f, z) is as well invariant under the
action of U (n+ 1) in this more general setting.

Lemma 16.44 We have μnorm(f, z)≥√
n for all (f, z) ∈Hd × (Cn+1)∗.

Proof Let f = k + g + h with k ∈ Cz, g ∈ Lz, h ∈ Rz. By the orthogonality of
the decomposition (16.9) we have ‖f ‖2 = ‖k‖2 + ‖g‖2 + ‖h‖2 ≥ ‖g‖2. Moreover,
Df (z)|Tz = Dg(z)|Tz , since Dh(z) = 0 and Dk(z)|Tz = 0; cf. Proposition 16.16.
Therefore, μnorm(f, z) ≥ μnorm(g, z). We now argue as for Proposition 16.17. In-
stead of N :=Dg(z) we consider the scaled matrix M := diag(

√
di)

−1N , and sim-
ilarly, we obtain

‖g‖ = ‖M‖F =
(

n∑

j=1

σ 2
j

dj

)1/2

,
∥
∥M†

∥
∥= max

i

√
di

σi

.

Then we get

μnorm(f, z)≥ μnorm(g, z)= |M‖F
∥∥M†

∥∥≥
(

n∑

j=1

σ 2
j

dj

dj

σ 2
j

)1/2

=√
n,

thus finishing the proof. �

As in the proof of Proposition 16.32, we obtain the following estimate on the cost
of evaluating μnorm(f, x).
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Proposition 16.45 The computation of μnorm(f, x) from the coefficients of f ∈Hd
and x ∈ (Cn+1)∗ can be performed with O(N + n3) arithmetic operations and
square roots. If di ≥ 2 for all i, then this is O(N). �

The goal of this section is to prove Theorem 16.1, which, we recall, states that
for f ∈Hd and z ∈ P

n,

γproj(f, z)≤ 1

2
D3/2 μnorm(f, z).

We begin with some inequalities relating norms of polynomials, points in C
n+1,

and function values.
For fixed w ∈C

n+1, consider the derivative evaluated at w as a map Dw : Hd →
Hd−1 given by Dwf := Df (X)(w) = ∑n

j=0 wj∂Xj
f . Similarly, for k ≥ 2 and

w1, . . . ,wk ∈C
n+1, we consider Dk

w̄ :Hd →Hd−k given by Dk
w̄f :=Dkf (X)(w1,

. . . ,wk). Here w̄ denotes the k-tuple (w1, . . . ,wk) ∈ (Cn+1)k .

Lemma 16.46 For any f ∈Hd and any w ∈C
n+1,

‖Dwf ‖ ≤ d ‖f ‖‖w‖.

Proof By homogeneity we may suppose ‖w‖ = 1. Moreover, by unitary invariance
and Corollary 16.7 we may further suppose that w = e0.

If f =∑
aαX

α , then

Df (X)(e0)= ∂X0f =
∑

α|α0 �=0

α0aαX
α0−1
0 X

α1
1 · · ·Xαn

n .

Then, by the definition of the Weyl norm,

‖De0f ‖2 =
∑

α|α0 �=0

α2
0 |aα|2

(α0 − 1)!α1! · · ·αn!
(d − 1)!

= d
∑

α|α0 �=0

α0|aα|2 α0! · · ·αn!
d!

≤ d2
∑

α

|aα|2 α0! · · ·αn!
d! = d2‖f ‖.

�

We extend now the previous result to higher order derivatives.

Lemma 16.47 For f ∈Hd and w1, . . . ,wk ∈C
n+1,

∥∥Dk
w̄f

∥∥≤ d!
(d − k)! ‖f ‖‖w1‖ · · · ‖wk‖,

where w̄ = (w1, . . . ,wk).
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Proof We proceed by induction. The case k = 0 is trivial. For k ≥ 1 let w̃ =
(w1, . . . ,wk−1) and g = Dk−1

w̃
f ∈ Hd−k+1, so that Dk

w̄f = Dwk
g. Hence, by

Lemma 16.46,
∥∥Dk

w̄f
∥∥= ‖Dwk

g‖ ≤ (d − k+ 1)‖g‖‖wk‖.
But

‖g‖ = ∥∥Dk−1
w̃

f
∥∥≤ d!

(d − k + 1)! ‖f ‖‖w1‖ · · · ‖wk−1‖
by the induction hypothesis, so that

∥∥Dk
w̄f

∥∥≤ d!
(d − k)! ‖f ‖‖w1‖ · · · ‖wk‖

and we are finished. �

Proposition 16.48 Let f ∈Hd . For all x,w1, . . . ,wk ∈C
n+1, the kth derivative of

f satisfies
∣∣Dkf (x)(w1, . . . ,wk)

∣∣≤ d(d − 1) · · · (d − k + 1)‖f ‖‖x‖d−k‖w1‖ · · · ‖wk‖.

Proof This is an immediate consequence of Lemmas 16.5 and 16.47. �

Lemma 16.49 Let d ≥ k ≥ 2 be positive integers and put

Ak :=
(
d(d − 1) · · · (d − k + 1)

d1/2k!
) 1

k−1

.

Then maxk>1 Ak is attained at k = 2.

Proof It is sufficient to show that Ak+1 <Ak for k ≥ 2. This amounts to

d(d − 1) · · · (d − k)

d1/2(k + 1)! <

(
d(d − 1) · · · (d − k+ 1)

d1/2k!
) k

k−1

,

which follows from

(d − 1) · · · (d − k)

(k + 1)! <

(
(d − 1) · · · (d − k + 1)

k!
)1+ 1

k−1

,

which in turn is equivalent to

d − k

k + 1
<

(
(d − 1) · · · (d − k+ 1)

k!
) 1

k−1

.

The last inequality is clear. �
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Lemma 16.50 Let f ∈Hd, x ∈C
n+1, and k ≥ 2. Then

∥∥∥∥
1

‖f ‖ diag
(
d

1/2
i ‖x‖di−k

)−1 Dkf (x)

k!
∥∥∥∥

1
k−1 ≤ 1

2
D3/2.

Proof By Proposition 16.48 we have
∥∥Dkfi(x)

∥∥≤ di(di − 1) · · · (di − k+ 1)‖fi‖‖x‖di−k.

Hence,

‖Dkfi(x)‖
d

1/2
i ‖x‖di−k k!‖fi‖

≤
(
di(di − 1) · · · (di − k+ 1)

d
1/2
i k!

) 1
k−1 ≤ 1

2
d

3/2
i , (16.20)

the last inequality resulting from Lemma 16.49.
Note that for all ϕ = (ϕ1, . . . , ϕn) ∈ Lk(V ;Cn) with ϕi ∈ Lk(V ;C), we have

‖ϕ‖ ≤ (
∑

i ‖ϕi‖2)1/2. Therefore,

(‖diag(d
1/2
i ‖x‖di−k)−1Dkf (x)‖

k!‖f ‖
) 1

k−1 ≤
(

n∑

i=1

( ‖Dkfi(x)‖
d

1/2
i ‖x‖di−kk!‖f ‖

)2
) 1

2(k−1)

.

From (16.20) we obtain

‖Dkfi(x)‖
d

1/2
i k!‖f ‖‖x‖di−k

≤
(

1

2
D3/2

)k−1 ‖fi‖
‖f ‖ ,

from which the claim follows. �

We can now prove Theorem 16.1.

Proof of Theorem 16.1 By Definition 16.35 we have

γproj(f, z)
k−1 = max

k≥2

∥∥∥∥‖z‖k−1Df (z)|−1
Tz

Dkf (z)

k!
∥∥∥∥.

Using Definition (16.11) of μnorm and Lemma 16.50, we estimate as follows
∥∥
∥∥‖z‖k−1Df (z)|−1

Tz

Dkf (z)

k!
∥∥
∥∥

≤ ‖f ‖∥∥|Df (z)|−1
Tz

diag
(
d

1/2
i ‖z‖di−1)∥∥ ·

∥∥
∥∥

1

‖f ‖ diag
(
d

1/2
i ‖z‖di−k

)−1 Dkf (z)

k!
∥∥
∥∥

≤ μnorm(f, z) ·
(

1

2
D3/2

)k−1

≤ μnorm(f, z)k−1
(

1

2
D3/2

)k−1

.

For the last inequality note that μnorm(f, z) ≥ 1 by Lemma 16.44. The assertion is
now immediate. �
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16.8 A Lipschitz Estimate for the Condition Number

The goal of this section is to prove the Lipschitz property stated in Proposition 16.2.
The invariance of μnorm under scaling suggests that we think of (nonzero) in-

puts f ∈Hd as elements of the corresponding complex projective space P(Hd). We
denote by dP(f, g) the Riemannian distance of the corresponding points in P(Hd);
compare Sect. 14.2.2.

We shall proceed in several steps. First we only perturb the system. Recall D :=
maxi di .

Lemma 16.51 Let f,g ∈ P(Hd) and z ∈ P
n. Then

μnorm(g, z)≤ μnorm(f, z)

1 −D1/2μnorm(f, z) sindP(f, g)
,

provided μnorm(f, z) <∞ and the denominator is positive.

Proof We choose representatives and denote them by the same symbol f,g ∈Hd.
Note that the assumption D1/2μnorm(f, z) sindP(f, g) < 1 implies dP(f, g) < π/2
since μnorm(f, z) ≥ 1 by Lemma 16.44. Hence 〈f,g〉 �= 0. Also, to simplify nota-
tion, we may choose a representative z in the sphere S(Cn+1) by the invariance of
μnorm under scaling.

By Definition 16.43,

μnorm(f, z)= ‖f ‖∥∥A−1
∥∥, where A := diag

(
d
−1/2
i

)
Df (z)|Tz .

We shall apply Lemma 15.7 with Δ := diag(d
−1/2
i )D(g − f )(z)|Tz ∈ L (Tz;Cn).

First we prove that

‖Δ‖ ≤D1/2 ‖g− f ‖. (16.21)

Indeed, Lemma 16.46 implies that for all w ∈C
n+1,

∥∥Dw(gi − fi)
∥∥≤ di ‖gi − fi‖‖w‖,

where Dw(gi − fi) =∑n
j=0 wj∂Xj

(gi − fi). Evaluating the polynomial Dw(gi −
fi) at z and using Lemma 16.5, we get

∣∣D(gi − fi)(z)(w)
∣∣= ∣∣Dw(gi − fi)(z)

∣∣≤ ∥∥Dw(gi − fi)
∥∥,

since ‖z‖ = 1. Therefore,

∣∣d−1/2
i D(gi − fi)(z)(w)

∣∣≤ d
1/2
i ‖gi − fi‖‖w‖ ≤D1/2‖gi − fi‖‖w‖,

and the claim (16.21) follows.
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From (16.21) we obtain

‖Δ‖∥∥A−1
∥∥≤D1/2 ‖g− f ‖

‖f ‖ μnorm(f, z).

Let λ0 ∈C be such that

‖λ0g− f ‖
‖f ‖ = min

λ∈C
‖λg− f ‖

‖f ‖ = sindP(g, f ).

Lemma 14.13 ensures that λ0 �= 0 and ‖λ0g‖ ≤ ‖f ‖, since 〈f,g〉 �= 0. Replacing g

by λ0g, we may assume that

‖g− f ‖
‖f ‖ = sindP(g, f ), ‖g‖ ≤ ‖f ‖,

since the assertion of Proposition 16.51 is invariant under scaling of g. Therefore,
we conclude from the above that

‖Δ‖∥∥A−1
∥∥≤D1/2 sindP(g, f )μnorm(f, z).

Lemma 15.7 implies now, using diag(d
−1/2
i )Dg(z)|Tz =A+Δ,

μnorm(g, z) = ‖g‖∥∥(A+Δ)−1
∥∥≤ ‖f ‖∥∥(A+Δ)−1

∥∥

≤ ‖f ‖‖A−1‖
1 − ‖Δ‖‖A−1‖ ≤ μnorm(f, z)

1 −D1/2 sindP(g, f )μnorm(f, z)
. �

Corollary 16.52 Let f,g ∈ P(Hd) and z ∈ P
n be such that

D1/2μnorm(f, z) sindP(f, g)≤ ε < 1.

Then we have

(1 − ε)μnorm(f, z)≤ μnorm(g, z)≤ 1

1 − ε
μnorm(f, z).

Proof The right-hand inequality follows from Lemma 16.51. The left-hand in-
equality is clear if μnorm(f, z) ≤ μnorm(g, z). If, on the other hand, μnorm(g, z) <

μnorm(f, z), we obtain D1/2μnorm(g, z) sindP(f, g)≤ ε, and the left-hand inequal-
ity follows from the right-hand inequality by exchanging f and g. �

Now we investigate what happens when we perturb the point z ∈ P
n. Recall the

family of functions ψδ(u) introduced in (16.17).

Lemma 16.53 Let f ∈Hd and z ∈ P
n be such that γproj(f, z) <∞. For y ∈ P

n put
δ := dP(y, z) and u := δγproj(f, z). If ψδ(u) > 0, then

μnorm(f, y)≤ (1 − u)2

ψδ(u)
μnorm(f, z).
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Proof We choose representatives y, z ∈ S(Cn+1) such that δ = dP(y, z)= dS(y, z).
Lemma 16.41 tells us that Df (y)|Ty is invertible. We have

Df (y)|−1
Ty

diag
(√

di
)=Df (y)|−1

Ty
Df (z)|TzDf (z)|−1

Tz
diag

(√
di
)
,

and hence

∥∥Df (y)|−1
Ty

diag
(√

di
)∥∥ ≤ ∥∥Df (y)|−1

Ty
Df (z)|Tz

∥∥ · ∥∥Df (z)|−1
Tz

diag
(√

di
)∥∥

≤ (1 − u)2

ψδ(u)

∥∥Df (z)|−1
Tz

diag
(√

di
)∥∥,

where the last inequality follows from Lemma 16.41(b). Multiplying by ‖f ‖ and
using the definition

μnorm(f, y)= ‖f ‖∥∥Df (y)|−1
Ty

diag
(√

di
)∥∥,

the assertion follows. �

Corollary 16.54 Let 0 ≤ ε ≤ 1/4. For all f ∈ P(Hd) and all y, z ∈ P
n the following

is true: if D3/2μnorm(f, z)dP(y, z)≤ ε, then

(1 − 2ε)μnorm(f, z)≤ μnorm(f, y)≤ 1

1 − 2ε
μnorm(f, z).

Proof It suffices to prove the right-hand inequality, since the left-hand inequality
then follows by exchanging the roles of f and g as in the proof of Corollary 16.52.

Our assumption combined with Theorem 16.1 implies, setting δ := dP(y, z),

u := γproj(f, z) δ ≤ 1

2
D3/2μnorm(f, z) δ ≤ ε

2
.

Moreover, by Lemma 16.44,

δ ≤D3/2μnorm(f, z) δ ≤ ε.

According to Lemma 16.53 it suffices to show that

ψδ(u)

(1 − u)2
≥ 1 − 2ε for all 0 ≤ δ ≤ ε, 0 ≤ u≤ ε/2. (16.22)

By definition (16.17), ψδ(u)= (1 + cos δ)(1 − u)2 − 1, whence

ψδ(u)

(1 − u)2
= 1 + cos δ − 1

(1 − u)2
= cos δ − u(2 − u)

(1 − u)2
.
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Using cos δ ≥ 1 − δ2/2 and that u �→ 2u
(1−u)2 is monotonically increasing, we see

that the inequality (16.22) is a consequence of

δ2

2
+ 2u

(1 − u)2
≤ 2ε for δ = 2u= ε. (16.23)

We are now going to check this inequality. Using (1 − u)−1 ≤ 1 + 2u for 0 ≤ u ≤
1/2, we get

u2 + u

(1 − u)2
≤ u2 + u(1 + 2u)2 = 4u3 + 5u2 + u

≤ 4 · 1

2
u2 + 5u2 + u= 7u2 + u.

But, since u= ε/2 and ε ≤ 1/4, we have

7u2 + u= 7
ε2

4
+ ε

2
≤ 2ε2 + ε

2
≤ ε

2
+ ε

2
= ε,

and hence (16.23) follows. �

Proposition 16.55 Fix 0 ≤ ε ≤ 7
10 . Let f,g ∈ P(Hd) and x, y ∈ P

n be such that

μnorm(f, z)max
{
D1/2 dP(f, g),D

3/2 dP(y, z)
}≤ 2ε

7
.

Then

(1 − ε)μnorm(f, z)≤ μnorm(g, y)≤ 1

1 − ε
μnorm(f, z).

Proof Let 0 ≤ ε ≤ 7
10 and put ε′ := 2

7ε. By hypothesis,

μnorm(f, z)max
{
D1/2 dP(f, g),D

3/2 dP(y, z)
}≤ ε′.

Corollary 16.52 implies

(
1 − ε′

)
μnorm(f, z)≤ μnorm(g, z)≤ 1

1 − ε′
μnorm(f, z).

Therefore,

D3/2 μnorm(g, z) dP(y, z)≤ 1

1 − ε′
D3/2 μnorm(f, z) dP(y, z)≤ ε′

1 − ε′
=: ε′′.

We have ε′′ ≤ 1
4 , since ε′ ≤ 1

5 . Corollary 16.54 now implies

μnorm(g, y)≤ 1

1 − 2ε′′
μnorm(g, z)≤ 1

(1 − 2ε′′)(1 − ε′)
μnorm(f, z),
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and in the same way,

(
1 − 2ε′′

)(
1 − ε′

)
μnorm(f, z)≤ μnorm(g, y).

Note that (1 − ε′)−1 ≤ 1 + 5
4ε

′ for 0 ≤ ε′ ≤ 1
5 . Therefore

ε′ + 2ε′′ = ε′ + 2ε′

1 − ε′
≤ ε′ + 2ε′

(
1 + 5

4
ε′
)
= 3ε′ + 5

2
ε′2 ≤ 3ε′ + 5

2
ε′ 1

5
= ε.

Hence (1 − 2ε′′)(1 − ε′)≥ 1 − ε′ − 2ε′′ ≥ 1 − ε, which completes the proof. �

We can finally prove Proposition 16.2.

Proof of Proposition 16.2 Let 1 + ε = 1
1−ε

. Then 0 ≤ ε ≤ 7
10 corresponds to 0 ≤

ε ≤ 7
3 . Moreover, when assuming ε ≤ 1

7 , we have ε
4 ≤ 2ε

7 = 2
7

ε
1+ε

. Thus Proposi-
tion 16.2 follows from Proposition 16.55. For ease of notation we renamed ε by ε

in the final statement. �



Chapter 17
Smale’s 17th Problem: I

In 1998, at the request of the International Mathematical Union, Steve Smale pub-
lished a list of mathematical problems for the twenty-first century. The 17th problem
in the list reads as follows:

Can a zero of n complex polynomial equations in n unknowns be found ap-
proximately, on the average, in polynomial time with a uniform algorithm?

Smale pointed out that “it is reasonable” to homogenize the polynomial equations by
adding a new variable and to work in projective space. That is, he considered as input
a system f ∈ Hd to which he associated its zeros in P

n. Smale also stressed that
the word “approximately” refers to the computation of an approximate zero in the
sense of Definition 16.34 and that “average” refers to expectation with respect to f

after endowing Hd with a standard Gaussian measure. This amounts to considering
the coefficients of a system f —with respect to the Weyl basis—as independent
and identically distributed complex standard Gaussian variables. We will denote
this distribution by N(0, I) (instead of the more cumbersome N(0, I2N)). Finally,
Smale used the expression “uniform algorithm” to refer to a numerical algorithm
like those we have seen thus far and “time” to refer to the running time, or cost, of
this algorithm as we defined in Sect. 5.1.

As of today, there is no conclusive answer to the question above. But a number
of partial results towards such an answer have been obtained in recent years. We
will devote this and the next chapter to the exposition of these results. The core of
this is an algorithm, proposed by Carlos Beltrán and Luis Miguel Pardo, that finds an
approximate zero in average polynomial time but makes random choices (flips coins,
so to speak) during the computation. The result of the computation is not affected
by these choices, but its cost, for any given input f ∈Hd, is a random variable. For
such an input one is forced to replace cost by expected (also called randomized)
cost, and the average time that Smale wants to consider is the average over f of this
expected cost. We will describe these notions in some detail in Sect. 17.2. We can
nonetheless state here the main result in this chapter.

P. Bürgisser, F. Cucker, Condition,
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_17, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 17.1 The family qτ ,
τ ∈ [0,1]

Theorem 17.1 We exhibit a randomized algorithm that on input f ∈Hd\Σ returns
an approximate zero of f . The average of the expected (randomized) cost of this
algorithm is bounded by O(D3/2nN2).

Theorem 17.1 provides a probabilistic solution to Smale’s 17th problem.

17.1 The Adaptive Linear Homotopy for Hd

Suppose that we are given an input system f ∈Hd and an initial pair (g, ζ ) in the
solution variety V ⊆ Hd × P

n such that f and g are R-linearly independent. Let
α := dS(f, g) ∈ (0,π) denote the angle between the rays R+f and R+g. Consider
the line segment Ef,g in Hd with endpoints f and g. We parameterize this segment
by writing

Ef,g =
{
qτ ∈Hd | τ ∈ [0,1]}

with qτ being the only point in Ef,g such that dS(g, qτ )= τα (see Fig. 17.1).
Recall the discriminant variety from Proposition 16.25. If the line segment Ef,g

does not intersect the discriminant variety Σ , then starting at the zero ζ of g, the
map [0,1]→Hd, τ �→ qτ , can be uniquely extended to a continuous map

[0,1]→ V, τ �→ (qτ , ζτ ),

such that ζ0 = ζ , We call this map the lifting of Ef,g with origin (g, ζ ). In fact,
the formal argument for the existence of such a lifting was the basis of our proof
of Bézout’s theorem (Theorem 16.23). We shall also call τ �→ (qτ , ζτ ) the solution
path in V corresponding to the input system f and initial pair (g, ζ ).

In order to find an approximation of the zero ζ1 of f = q1 we may start with
the zero ζ = ζ0 of g = q0 and numerically follow the path (qτ , ζτ ) by subdividing
[0,1] into points 0 = τ0 < τ1 < · · · < τK = 1 and by successively computing ap-
proximations zi of ζτi by Newton’s method. The main result of this section states
that the number K of Newton steps sufficient to follow the path can be bounded
by a constant times the integral

∫ 1
0 μ2

norm(qτ , ζτ ) dτ of the square of the condition
number μnorm.
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This integral can be given a more invariant interpretation, which will be essential
in the proofs to follow. We associate with the solution path in V the following curve
in S(Hd)× P

n:

[0,1]→ V, τ �→ (pτ , ζτ ) :=
(

qτ

‖qτ‖ , ζτ
)
,

where we recall S(Hd) := {q ∈ Hd | ‖q‖ = 1}. (In fact, we could also associate
with the solution path a corresponding curve in P(Hd) × P

n, but in view of the
homotopy algorithm to be discussed in a moment, the spherical viewpoint is more
natural.) Recall that α = dS(f, g). The meaning of the parameterization by τ is that
ατ is the parameterization of τ �→ pτ by arc length, which means that ‖ dpτ

dτ
‖ = α.

Let now [0,1] → [0,1], τ �→ t (τ ), be any smooth bijective map such that
dt/dτ > 0. Then we have

∥∥∥∥
dpτ(t)

dt

∥∥∥∥=
∥∥∥∥
dpτ

dτ

∥∥∥∥
dτ

dt
= α

dτ

dt
,

and hence, by variable transformation,

α

∫ 1

0
μ2

norm(pτ , ζτ ) dτ =
∫ 1

0
μ2

norm(pτ(t), ζτ(t))

∥∥∥∥
dpτ(t)

dt

∥∥∥∥dt. (17.1)

In fact, for the probabilistic analysis later on, it will be essential to consider a
specific parameterization of Ef,g different from τ .

Proposition 17.2 For all τ ∈ [0,1] we have qτ = tf + (1 − t)g, where t = t (τ ) is
given by

t (τ )= ‖g‖
‖f ‖ sinα cot(τα)− ‖f ‖ cosα+ ‖g‖ .

Proof We use some elementary geometry. For this, we introduce Cartesian coordi-
nates (x, y) in the plane spanned by f and g and assume that g has the coordinates
(s,0) and f has the coordinates (r cosα, r sinα) (see Fig. 17.1), so that r = ‖f ‖
and s = ‖g‖.

Then, the lines determining qτ have the equations

x = y
cos(τα)

sin(τα)
and x = y

r cosα− s

r sinα
+ s,

from which it follows that the coordinate y of qτ is

y = rs sinα sin(τα)

r sinα cos(τα)− r cosα sin(τα)+ s sin(τα)
. (17.2)

Since t (τ )= y
r sinα

, we conclude that

t (τ )= s

r sinα cot(τα)− r cosα+ s
. �
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We now explicitly describe the path-following algorithm ALH (adaptive linear
homotopy) by specifying the step size in an adaptive way. For the step size parameter
we chose λ= 0.008535284254 (cf. Remark 17.4).

Algorithm 17.1 ALH

Input: f,g ∈Hd and ζ ∈ P
n

Preconditions: g(ζ )= 0

α := dS(f, g), r := ‖f ‖, s := ‖g‖
τ := 0, q := g, z := ζ

repeat

Δτ := λ

αD3/2μ2
norm(q,z)

τ := min{1, τ +Δτ }
t := s

r sinα cot(τα)−r cosα+s

q := tf + (1 − t)g

z :=Nq(z)

until τ = 1

return z and halt

Output: z ∈ (Cn+1)∗
Postconditions: The algorithm halts if the lifting of Ef,g at ζ does not cut Σ ′. In
this case, [z] ∈ P

n is an approximate zero of f .

The following result estimates the number of iterations performed by algo-
rithm ALH.

Theorem 17.3 Suppose that Ef,g does not intersect the discriminant variety Σ .
Then the algorithm ALH stops after at most K steps with

K ≤ 188D3/2 dS(f, g)

∫ 1

0
μ2

norm(qτ , ζτ ) dτ.

The returned point z is an approximate zero of f with associated zero ζ1. Further-
more, the bound above is optimal up to a constant: we have

K ≥ 74D3/2 dS(f, g)

∫ 1

0
μ2

norm(qτ , ζτ ) dτ.

Proof For 0 ≤ ε ≤ 1
7 put C := ε

4 . Proposition 16.2 on the Lipschitz continuity of
μnorm implies that for all f,g ∈ S(Hd) and all y, z ∈ P

n such that

μnorm(f, z)max
{
D1/2 dS(f, g),D

3/2 dP(y, z)
}≤ C
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we have

1

1 + ε
μnorm(f, z)≤ μnorm(g, y)≤ (1 + ε)μnorm(f, z).

(Note that dP(f, g)≤ dS(f, g) by Proposition 14.12.)
The analysis of ALH is based on this Lipschitz property with the choice

ε := 1
8 and C := ε

4 = 1
32 = 0.03125. Furthermore, we set λ = ε(1−ε)

8(1+ε)4 = 23·7
38 =

0.008535284254. (See Remark 17.4(a) below for an explanation of these choices.)
As before, we consider the curve pτ := qτ /‖qτ‖ in the sphere S(Hd). Let 0 =

τ0 < τ1 < · · · < τK = 1 and ζ0 = z0, z1, . . . , zK be the sequences of τ -values and
points in P

n generated by the algorithm ALH. To simplify notation we write pi

instead of pτi and ζi instead of ζτi .
We claim that for i = 0, . . . ,K − 1, the following statements are true:

(a) dP(zi, ζi)≤ C

D3/2μnorm(pi ,ζi )
.

(b) μnorm(pi ,zi )
1+ε

≤ μnorm(pi, ζi)≤ (1 + ε)μnorm(pi, zi).

(c) dS(pi,pi+1)≤ C

D3/2μnorm(pi ,ζi )
.

(d) dP(ζi, ζi+1)≤ C

D3/2μnorm(pi ,ζi )

1−ε
1+ε

.

(e) dP(zi, ζi+1)≤ 2C
(1+ε)D3/2μnorm(pi ,ζi )

.
(f) zi is an approximate zero of pi+1 with associated zero ζi+1.

We proceed by induction, showing that

(a, i)⇒ (b, i)⇒ (
(c, i) and (d, i)

)⇒ (e, i)⇒ (
(f, i) and (a, i + 1)

)
.

Inequality (a) for i = 0 is trivial.
Assume now that (a) holds for some i ≤ K − 1. Then, Proposition 16.2 (with

f = g = pi ) implies

μnorm(pi, zi)

1 + ε
≤ μnorm(pi, ζi)≤ (1 + ε)μnorm(pi, zi)

and thus (b). We now prove (c) and (d). To do so, let τ∗ > τi be such that

∫ τ∗

τi

(‖ṗτ‖ + ‖ζ̇τ‖
)
dτ = C

D3/2μnorm(pi, ζi)

1 − ε

1 + ε

or τ∗ = 1, whichever is smaller. Then, for all t ∈ [τi, τ∗],

dP(ζi, ζt ) =
∫ t

τi

‖ζ̇τ‖dτ ≤
∫ τ∗

τi

(‖ṗτ‖ + ‖ζ̇τ‖
)
dτ

≤ C

D3/2μnorm(pi, ζi)

1 − ε

1 + ε
. (17.3)
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Similarly,

dS(pi,pt ) =
∫ t

τi

‖ṗτ‖dτ ≤
∫ τ∗

τi

(‖ṗτ‖ + ‖ζ̇τ‖
)
dτ

≤ C

D3/2μnorm(pi, ζi)

1 − ε

1 + ε
≤ C

D3/2μnorm(pi, ζi)
. (17.4)

It is therefore enough to show that τi+1 ≤ τ∗. This is trivial if τ∗ = 1. We therefore
assume τ∗ < 1. The two bounds above allow us to apply Proposition 16.2 and to
deduce, for all τ ∈ [τi, τ∗],

μnorm(pτ , ζτ )≤ (1 + ε)μnorm(pi, ζi).

Corollary 16.14 implies that (using μ≤ μnorm)

‖ζ̇τ‖ ≤ μnorm(pτ , ζτ )‖ṗτ‖.
It follows that using μnorm ≥ 1,

‖ṗτ‖ + ‖ζ̇τ‖ ≤ 2μnorm(pτ , ζτ )‖ṗτ‖.
We now deduce that

C

D3/2μnorm(pi, ζi)

1 − ε

1 + ε
=
∫ τ∗

τi

(‖ṗτ‖ + ‖ζ̇τ‖
)
dτ

≤
∫ τ∗

τi

2μnorm(pτ , ζτ )‖ṗτ‖dτ

≤ 2(1 + ε)μnorm(pi, ζi)

∫ τ∗

τi

‖ṗτ‖dτ

≤ 2(1 + ε)μnorm(pi, ζi) dS(pi,pτ∗).

Consequently, using (b), we obtain

dS(pi,pτ∗)≥
C(1 − ε)

2(1 + ε)2D3/2μ2
norm(pi, ζi)

≥ C(1 − ε)

2(1 + ε)4D3/2μ2
norm(pi, zi)

.

Recall that the parameter λ in ALH was chosen as λ= C(1−ε)

2(1+ε)4 . By the definition of

τi+1 − τi in ALH we have α(τi+1 − τi)= λ

D3/2μ2
norm(pi ,zi )

. So we obtain

dS(pi,pτ∗)≥ α(τi+1 − τi) = dS(pi,pi+1).

This implies τi+1 ≤ τ∗ as claimed, and hence inequalities (c) and (d) follow from
(17.4) and (17.3), respectively. With them, we may apply Proposition 16.2 to de-
duce, for all τ ∈ [τi, τi+1],

μnorm(pi, ζi)

1 + ε
≤ μnorm(pτ , ζτ )≤ (1 + ε)μnorm(pi, ζi). (17.5)
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Next we use the triangle inequality, (a), and (d) to obtain

dP(zi , ζi+1) ≤ dP(zi, ζi)+ dP(ζi, ζi+1)

≤ C

D3/2μnorm(pi, ζi)
+ C

D3/2μnorm(pi, ζi)

1 − ε

1 + ε

= 2C

(1 + ε)D3/2μnorm(pi, ζi)
, (17.6)

which proves (e). Now note that since D ≥ 2 and μnorm(pi, ζi)≥ 1, we have

dP(zi, ζi+1)≤ 2C

(1 + ε)23/2
≤ 1

45
.

For r = 0.99991 . . . we have that δ(r) = 1
45 (recall Table 16.1) and u(r) =

0.17708 . . . . Inequality (17.6) combined with (17.5) for τ = τi+1 yields

1

2
D3/2μnorm(pi+1, ζi+1) dP(zi, ζi+1)≤ C

1 + ε

μnorm(pi+1, ζi+1)

μnorm(pi, ζi)
≤ C.

Together with Theorem 16.1 and C = 1
32 < u(r), this implies

γproj(pi+1, ζi+1) dP(zi, ζi+1)≤ u(r).

We can therefore apply Theorem 16.38 for this value of r to deduce that zi is an
approximate zero of pi+1 associated with its zero ζi+1, and hence (f) holds.

It follows from (f) that zi+1 =Npi+1(zi) satisfies

dP(zi+1, ζi+1)≤ 1

2
dP(zi, ζi+1).

Using (e) and the right-hand inequality in (17.5) with τ = τi+1, we obtain
from (17.6)

dP(zi+1, ζi+1)≤ C

(1 + ε)D3/2μnorm(pi, ζi)
≤ C

D3/2μnorm(pi+1, ζi+1)
,

which proves (a) for i + 1. The claim is thus proved.
Note that (f) for K − 1 shows that zK−1 is an approximate zero of qK = f with

associated zero ζ1 and consequently, so is the returned point zK =Nf (zK−1).
Consider now any i ∈ {0, . . . ,K − 1}. Using (17.5), (b), and by the choice of the

step size Δτ in Algorithm 17.1, we obtain

∫ τi+1

τi

μ2
norm(pτ , ζτ ) dτ ≥

∫ τi+1

τi

μ2
norm(pi, ζi)

(1 + ε)2
dτ = μ2

norm(pi, ζi)

(1 + ε)2
(τi+1 − τi)

≥ μ2
norm(pi, zi)

(1 + ε)4
(τi+1 − τi)
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= μ2
norm(pi, zi)

(1 + ε)4

λ

αD3/2μ2
norm(pi, zi)

= λ

(1 + ε)4αD3/2
= ε(1 − ε)

8(1 + ε)8

1

αD3/2

≥ 1

188

1

αD3/2
.

This implies
∫ 1

0
μ2

norm(pτ , ζτ ) dτ ≥ K

188

1

αD3/2
,

which proves the stated upper bound on K . The lower bound follows from
∫ τi+1

τi

μ2
norm(pτ , ζτ ) dτ ≤

∫ τi+1

τi

μ2
norm(pi, ζi)(1 + ε)2 dτ

= μ2
norm(pi, ζi)(1 + ε)2(τi+1 − τi)

≤ μ2
norm(pi, zi)(1 + ε)4(τi+1 − τi)

= λ(1 + ε)4

αD3/2
= ε(1 − ε)

8

1

αD3/2
≤ 1

74

1

αD3/2
. �

Remark 17.4

(a) The proof of Theorem 17.3 gives a rationale for the choice of the value ε. It is

the one minimizing the expression F(ε) := 8(1+ε)8

ε(1−ε)
on the interval [0,1/7] that

produces the constant 188. A computation shows that F is minimized at εm =
3
4 − 1

12

√
57 = 0.120847 . . . and F(εm)= 187.568 . . . We have approximated εm

by ε = 1/8 = 0.125, which yields F(ε)= 187.668 . . . < 188.
(b) Algorithm 17.1 requires the computation of μnorm, which, in turn, requires the

computation of the operator norm of a matrix. This cannot be done exactly
with rational operations and square roots only. We can do, however, with a suf-
ficiently good approximation of μ2

norm(q, z), and there exist several numerical
methods efficiently computing such an approximation. We will therefore neglect
this issue, pointing out, however, for the skeptical reader that another course of
action is possible. Indeed, one may replace the operator by the Frobenius norm
in the definition of μnorm and use the bounds ‖M‖ ≤ ‖M‖F ≤√

rank(M)‖M‖
to show that this change preserves the correctness of Algorithm 17.1 and adds a
multiplicative factor n to the right-hand side of Theorem 17.3. A similar com-
ment applies to the computation of α and cot(τα) in Algorithm 17.1, which
cannot be done exactly with rational operations.

For applying Theorem 17.3, it will be central in our development to calculate
the integral (17.1) of the squared condition number with respect to the parameter-
ization t of Ef,g introduced in Proposition 17.2. Abusing notation, we shall write



17.1 The Adaptive Linear Homotopy for Hd 339

Fig. 17.2 An elementary
geometric argument

qt = (1 − t)g + tf . For this parameterization we have the following bound on the
norm of the speed of the spherical curve t �→ pt := qt

‖qt‖ .

Lemma 17.5 We have
∥∥∥∥
dpt

dt

∥∥∥∥≤
‖f ‖‖g‖
‖qt‖2

.

Proof Note that dqt
dt

= f − g. Hence, if P denotes the orthogonal projection of Hd
onto the tangent space TqtS(Hd), we have by Lemma 14.10,

dpt

dt
= 1

‖qt‖P(f − g).

We show now by some elementary geometry that ‖P(f − g)‖ ≤ ‖f ‖‖g‖. For this,
as for Proposition 17.2, we introduce Cartesian coordinates in the plane spanned
by f and g and assume that g has the coordinates (s,0) and f has the coordinates
(r cosα, r sinα); see Fig. 17.2.

We write q := qt and L := ‖f − g‖. Then ‖q − g‖ = tL, and trigonometry tells
us that

sinϕ

sin(τα)
= s

tL
.

Hence
∥∥P(f − g)

∥∥= L sinϕ = s

t
sin(τα)= s

t

y

‖q‖ .

We have
y

t
= L sinβ ≤ r,

and therefore

‖P(f − g)‖
‖q‖ = 1

‖q‖2

y

t
s ≤ ‖f ‖‖g‖

‖qt‖2

as claimed. �
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The following result is an immediate consequence of Theorem 17.3, (17.1), and
Lemma 17.5.

Corollary 17.6 The algorithm ALH stops after at most K steps with

K ≤ 188D3/2
∫ 1

0

‖f ‖‖g‖
‖qt‖2

μ2
norm(qt , ζt ) dt.

Its output z is an approximate zero of f with associated zero ζ1. �

Algorithm 17.1 together with Theorem 17.3, or Corollary 17.6, provides the de-
tails of how a linear path is followed in V and how many iterations are needed to do
so. It now becomes imperative to deal with an issue we have neglected thus far: the
choice of the initial pair.

17.2 Interlude: Randomization

17.2.1 Randomized Algorithms

We start this section, for a change, with a problem in algorithmic number theory—
primality testing—which does not appear to bear any relation with conditioning. It
consists in, given an integer n≥ 3, deciding whether n is prime. The most obvious
algorithm to do so checks for all numbers d from 2 to 0√n1 whether d divides n.
If such a d is found, the algorithm halts and returns COMPOSITE. Otherwise, it
returns PRIME. The simplicity of this algorithm is shadowed by its poor complexity.
The size s = size(n) of the input n is the number of bits needed to write n, which is
approximately logn. And the number of candidate divisors we may need to consider
is, in the worst case, about 0√n1, i.e., about 2

s
2 . By the 1970s, variants of this naive

approach had been proposed that improved this behavior but not in any substantial
manner: the cost was still exponential.

It is at this time that a new idea entered the stage, proposed by Robert Solovay
and Volker Strassen. To understand this idea let us return to the naive algorithm. If a
number d , 2 ≤ d ≤ 0√n1, divides n, then d is a “certificate” of n’s compositeness.
Given n and d , to decide whether d is such a certificate (i.e., whether d divides n)
can be quickly done. The shortcoming of the naive algorithm is the possible large
number of certifications to be checked. What Solovay and Strassen came up with
was a different manner by which a number a ∈ {2, . . . , n− 1} could certify that n is
composite, namely, to check the identity

a
n−1

2 �≡
(
a

n

)
(mod n), (17.7)

where ( a
n
) denotes the Jacobi symbol. We write certif_C(a,n) when (17.7) holds.

Again, if n is prime, then there is no a ∈ {2, . . . , n − 1} such that certif_C(a,n)
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holds. In contrast with the naive certification, however, if n is composite, at least
half of the candidates a in {2, . . . , n− 1} are certificates for that. Furthermore, Ja-
cobi’s symbol can be quickly computed (with cost O(log2 n)=O(s2)). Solovay and
Strassen therefore proposed the following algorithm.

Algorithm 17.2 Randomized_Primality_Testing

Input: n, k ∈N

Preconditions: n≥ 3 odd, k ≥ 1

repeat k times
draw a at random from {2, . . . , n− 1}
if certif_C(a,n) then return COMPOSITE and halt

return PRIME and halt

Output: a tag in {PRIME,COMPOSITE}
Postconditions: if the tag is COMPOSITE, then n is composite; if the tag is
PRIME, then n is prime with probability at least 1 − 2−k

Algorithm 17.2 presents some features that are new in our exposition. The most
noticeable is the presence of the instruction draw...at random. Up to now, all
algorithms we have described rely on the basic arithmetic operations, on compar-
isons, and on occasionally taking a square root. Algorithm 17.2 uses a new tool:
randomization. To be precise, it assumes at hand a function random_bit( ) returning
an element in {0,1}, each of them with probability 1

2 . Note that the number a in the
algorithm can be obtained with s calls to this function (corresponding to the n first
bits in the binary expansion of a). It is out of our scope to describe how this func-
tion is implemented. Suffice it for our purposes to note that many implementations
exist (usually called pseudorandom number generators) and are widely accepted as
appropriate for their task.

A second new feature in Algorithm 17.2 is the possibility of a wrong answer
for some composite numbers. Indeed, if the algorithm returns COMPOSITE then its
input n is so. But there is a possibility of returning PRIME on a composite input n.
Yet, since the k draws of a are independent, this happens with a probability of
at most 1

2k . And for moderate values of k, say around 100, this probability of a
mistaken output is certainly negligible.

In 1992, Leonard Adleman and Ming-Deh Huang devised a new randomized
algorithm (this is how algorithms making random draws are called) that differed
from Algorithm 17.2 in an important aspect: the certificate now was for primality.
Consequently, the possibility of a wrong output was now associated with returning
COMPOSITE. Let us denote by certif_P(b,n) the fact that b is a certificate of primal-
ity for n and assume that for a random b ∈ {0,1}q(s) the probability that b certifies
n’s primality, if n is prime, is at least 1

2 . Here q is some low-degree polynomial.
Consider now the following algorithm.
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Algorithm 17.3 Randomized_Primality_Testing_2

Input: n ∈N

Preconditions: n≥ 3 odd

repeat
draw a at random from {2, . . . , n− 1}
if certif_C(a,n) then return COMPOSITE and halt
draw b at random from {0,1}q(s)
if certif_P(b,n) then return PRIME and halt

Output: a tag in {PRIME,COMPOSITE}
Postconditions: the tag is PRIME iff n is prime

This algorithm never gives a wrong output. But its running time is no longer
bounded by a function of s. Each iteration is done in time polynomial in s, but
the number of iterations itself is a random variable. The probability of performing
more than k iterations is at most 1

2k . Consequently, the expectation of the number of
iterations performed is (use Lemma 15.6)

∞∑

k=1

k

2k
= 2.

Algorithm 17.3 belongs to a class commonly referred to as Las Vegas algorithms,
as opposed to Monte Carlo algorithms. In the latter, the running time is bounded by
a function of the input size but incorrect outputs occur with a small probability. In
the former, it is the opposite. Outputs are always correct, but the running time is a
random variable.

Because of this, we consider for Las Vegas algorithms a notion of randomized
cost, which consists of the expectation of the cost over all possible random draws.

17.2.2 A Las Vegas Homotopy Method

With this new set of ideas in mind, let us return to the problem of computing an
approximate zero of a system f ∈Hd.

All the efforts to couple linear homotopies (such as Algorithm 17.1) with some
deterministically constructed initial pair (g, ζ ) to produce zero-finding algorithms
working on average polynomial time have, as of today, failed. A way out to deal with
the manifest difficulty of the problem, recently proposed by Carlos Beltrán and Luis
Miguel Pardo, is to randomly draw the initial pair (g, ζ ). For this, they endowed V

with a probability distribution ρst and described an efficient procedure for drawing
a pair from ρst. With such a procedure at hand, the following Las Vegas algorithm
is a natural way of proceeding.
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Algorithm 17.4 LV

Input: f ∈Hd

Preconditions: f �= 0

draw (g, ζ ) ∈ V from ρst

run ALH on input (f, g, ζ )

Output: z ∈ (Cn+1)∗
Postconditions: The algorithm halts if the lifting of Ef,g at ζ does not cut Σ ′. In
this case, [z] ∈ P

n is an approximate zero of f .

Due to our analysis of ALH we know that for an input f ∈ Hd, algorithm LV
either outputs an approximate zero z of f or loops forever (in case the lifting of
the segment Ef,g intersects Σ ′). Furthermore, the number of iterations performed
by ALH depends on the initial pair (g, ζ ). The analysis of LV will therefore pass
through the notion of randomized cost described above.

At this moment it becomes apparent that the probabilistic framework we have
been using thus far, based on Euclidean spaces, spheres, and their products, is too
narrow to accommodate the measure ρst, supported on V . A new installment of our
crash course is called for.

17.3 A Crash Course on Probability: IV

In Sect. 2.1 we gave a brief introduction to integration on “data spaces,” which
were defined in an ad hoc manner as open subsets of a finite product of Euclidean
spaces and spheres. The study of these particular spaces turned out to be sufficient
for the purposes of the first two parts of this book. Now we need to extend the
scope of this theory to the framework of Riemannian manifolds. For background
information on this concept we refer to Sect. A.2. Note that a data space by definition
is a submanifold of a Euclidean space and thus inherits the structure of a Riemannian
manifold, i.e., an inner product in each of its tangent spaces from the inner product
of the ambient space.

It is important that on a Riemannian manifold M there is a well-defined measure
volM obtained by integrating the indicator functions 1A of Borel-measurable subsets
A⊆M against the volume form dM of M :

vol
M

(A)=
∫

M

1A dM

(for the definition of the volume form see Sect. A.2.5). This is clearly an extension
of the natural measure volM for data spaces encountered in Sect. 2.1, and dividing
1 by volM(M) if volM(M) <∞, it leads to a natural notion of uniform distribution
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on M . More generally, we will call any measurable function f : M → [0,∞] such
that

∫
M

f dM = 1 a probability density on M .
The most fundamental tool encountered in Sect. 2.1 was the transformation for-

mula in Theorem 2.1 for diffeomorphisms between data spaces. The extension of
this result to not necessarily bijective smooth maps between Riemannian manifolds,
called the coarea formula, is of paramount importance for us. In order to state this
result, we first need to generalize the notion of Jacobians.

Suppose that M,N are Riemannian manifolds of dimensions m, n, respectively
such that m ≥ n. Let ψ : M → N be a smooth map. By definition, the derivative
Dψ(x) : TxM → Tψ(x)N at a regular point x ∈M is surjective. Hence the restric-
tion of Dψ(x) to the orthogonal complement of its kernel yields a linear isomor-
phism. The absolute value of its determinant is called the normal Jacobian of ψ at
x and denoted by NJψ(x). We set NJψ(x) := 0 if x is not a regular point.

Remark 17.7 In the special case that m = n, the kernel of Dψ(x) reduces to zero
and its orthogonal complement is therefore all of TxM . Therefore, NJψ(x) =
Jψ(x).

If y is a regular value of ψ , then the fiber Fy := ψ−1(y) is a Riemannian sub-
manifold of M of dimension m − n (see Theorem A.9). Sard’s lemma states that
almost all y ∈N are regular values.

We can now state the coarea formula.

Theorem 17.8 (Coarea formula) Suppose that M,N are Riemannian manifolds of
dimensions m, n, respectively, and let ψ : M →N be a surjective smooth map. Put
Fy = ψ−1(y). Then we have for any function χ : M → R that is integrable with
respect to the volume measure of M that

∫

M

χ dM =
∫

y∈N

(∫

Fy

χ

NJψ
dFy

)
dN.

It should be clear that this result contains the transformation formula (Theo-
rem 2.1). as a special case. Moreover, if we apply the coarea formula to the pro-
jection π2 : M × N → N, (x, y) �→ y, we retrieve Fubini’s equality (2.2), since
NJπ2 = 1. For this reason, the coarea formula is sometimes also called Fubini’s
theorem for Riemannian manifolds. It tells us how probability distributions on Rie-
mannian manifolds transform.

Example 17.9 The natural projection R
2n+2 \ {0} ∼= C

n+1 \ {0} → P
n factors

through a projection πS : S2n+1 → P
n with fibers isometric to S

1. Theorem 17.8
allows us to reduce the computation of integrals on P

n to the computation of inte-
grals on S

2n+1. In Lemma 14.9 we showed that the derivative DπS(x) : TvS
2n+1 →

T[v]Pn equals the orthogonal projection onto Tv = T[v]Pn. Hence the normal Ja-
cobian of πS equals 1. By Theorem 17.8, we have for any integrable function
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f : Pn →R and measurable U ⊆ P
n,

∫

U

f d Pn = 1

2π

∫

π−1
S

(U)

(f ◦ π)d S2n+1. (17.8)

Taking f = 1 and U = P
n yields the volume of complex projective space,

volPn = 1

2π
volS2n+1 = O2n+1

2π
= πn

n! . (17.9)

For later use we note the following immediate consequence of Theorem 17.8.

Corollary 17.10 Let M,N be Riemannian manifolds of the same dimension and
let ψ : M →N be a surjective smooth map. Suppose that

∫
M
|detDψ |dM is finite.

Then the fiber ψ−1(y) is finite for almost all y ∈N , and we have

∫

M

|detDψ |dM =
∫

y∈N
#
(
ψ−1(y)

)
dN(y).

Here and in what follows, # denotes cardinality. �

In Sect. 2.2 we studied probability densities on data spaces and looked at the
concepts of marginal and conditional distributions for densities defined on a product
space M × N . We shall now see how these notions generalize to the setting of
probability densities on Riemannian manifolds.

Suppose that we are in the situation described in the statement of Proposition 17.8
and we have a probability measure on M with density ρM . For a regular value y ∈N

we set

ρN(y) :=
∫

Fy

ρM

NJψ
dFy. (17.10)

The coarea formula implies that for all measurable sets B ⊆N we have

∫

ψ−1(B)

ρM dM =
∫

B

ρN dN.

Hence ρN is a probability density on N . We call it the pushforward of ρM with
respect to ψ . Note that this generalizes Proposition 2.11.

Further, for a regular value y ∈N and x ∈ Fy we define

ρFy (x) :=
ρM(x)

ρN(y)NJψ(x)
. (17.11)

Clearly, this defines a probability density on Fy . In the special case that ψ : M ×
N → N, (x, y) �→ y, is the projection, we have NJψ = 1, and we retrieve the for-
mula (2.9) for the conditional density.
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The coarea formula implies that for all measurable functions χ : M →R,
∫

M

χ ρM dM =
∫

y∈N

(∫

Fy

χ ρFy dFy

)
ρN(y)dN,

provided the left-hand integral exists. Therefore, we can interpret ρFy as the density
of the conditional distribution of x on the fiber Fy and briefly express the formula
above in probabilistic terms as

E
x∼ρM

χ(x)= E
y∼ρN

E
x∼ρFy

χ(x). (17.12)

Remark 17.11 In the context of a map ψ : M → N , we started with a probability
density ρM on M and derived both its pushforward density ρN on N and, for every
y ∈N , the conditional density ρFy on the fiber Fy ⊆M .

Conversely, we can start with a density ρN on N and densities ρFy on the fibers
Fy of ψ . The operational process of first drawing y from ρN and then x from ρFy

determines a distribution ρM on M , which, following (17.11), has the form

ρM(x) := ρN(y)ρFy (x)NJψ(x).

These two processes are inverse to each other and hence, for instance, the push-
forward of the derived ρM(x) above is the original ρN . In order to emphasize its
possible primary character, and by analogy with the case of product spaces, we will
call it the marginal density on N .

In summary, any density on M “decomposes” as a marginal density on N and
conditional densities on the fibers, and we can recover the distribution on M from
this decomposition.

17.4 Normal Jacobians of Projections

We shall determine here the normal Jacobians of various projection maps. Let us
start with a few general comments. The R-linear map C→ C, z �→ λz, with λ ∈ C

has determinant |λ|2.
Later on, we will need the following observation, whose easy proof is left to the

reader.

Lemma 17.12 For some fixed nonzero λ ∈R let G⊆C×C denote the graph of the
linear map C→ C, z �→ λz. Then the R-linear isomorphism C→G, z �→ (z, λz),
has determinant 1 + λ2. �

We shall distinguish points in P
n from their representatives ζ in the sphere

S(Cn+1) := {ζ ∈C
n+1 | ‖ζ‖ = 1}. The lifting

V̂ := {
(f, ζ ) ∈Hd × S

(
C

n+1) | f (ζ )= 0
}

(17.13)
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of the solution variety V is a smooth submanifold of Hd×S(Cn+1) by Lemma 16.9.
Our goal is to determine the normal Jacobians of the projections

π1 : V̂ �→Hd, (q, ζ ) �→ q, and π2 : V̂ �→ S
(
C

n+1), (q, ζ ) �→ ζ.

(No confusion should arise from the fact that in Sect. 16.5 we denoted the projec-
tions V →Hd and V → P

n by the same symbols π1,π2.)
Recall from Sect. 16.2 that the unitary group U (n+ 1) acts on Hd × S(Cn+1),

leaving invariant the solution variety V̂ . It is clear that the projections π1 and π2
are U (n+ 1)-equivariant. This implies that the normal Jacobians of π1 and π2 are
constant on U (n+ 1)-orbits. Let us explicitly state this important insight.

Lemma 17.13 For all (q, ζ ) ∈ V̂ and all u ∈U (n+ 1) we have

NJπ1(q, ζ )= NJπ1(uq,uζ ), NJπ2(q, ζ )= NJπ2(uq,uζ ). �

We shall first investigate the special case in which all the degrees di equal 1.
Consider the vector space M :=C

n×(n+1) of matrices and define

Ŵ := {
(M, ζ ) ∈M × S

(
C

n+1) |Mζ = 0
}
. (17.14)

Note that in the special case di = 1, we can indeed identify Hd with M and V̂

specializes to Ŵ . In particular, Ŵ is a smooth manifold. If M ∈M has rank n, then
the linear system Mζ = 0 has a unique solution ζ ∈ S(Cn+1) up to scaling by a
complex number of modulus 1. That is, the fiber of the projection

p1 : Ŵ →M , (M, ζ ) �→M,

over M then equals the unit circle {(M,eiθ ζ ) | θ ∈ R}. We also note that the fibers
of the projection p2 : Ŵ → P

n, (M, ζ ) �→ ζ , are vector spaces of complex dimen-
sion n2.

The group U = U (n) × U (n + 1) acts on M = C
n×(n+1) via (v,u)M :=

vMu−1, and it acts on S(Cn+1) by (v,u)ζ := uζ . Hence, by the complex singular
value decomposition, every (M, ζ ) ∈ Ŵ can be transformed into the special form in
which ζ = e0 = (1,0, . . . ,0) and M consists of the zero column and the diagonal
matrix diag(σ1, . . . , σn), where σ1, . . . , σn are the singular values of M .

It is clear that the projections p1 and p2 are U -equivariant. This implies that the
normal Jacobians of p1 and p2 are constant on U -orbits. Therefore, NJp1 and NJp2
must be functions of the singular values σ1, . . . , σn of M only. We now determine
these functions.

Lemma 17.14 Let σ1, . . . , σn be the singular values of M ∈ M of full rank. Then
we have

NJp1(M, ζ )=
n∏

i=1

σ 2
i

1 + σ 2
i

, NJp2(M, ζ )=
n∏

i=1

1

1 + σ 2
i

,
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and
NJp1

NJp2
(M, ζ )= det

(
MM∗).

Proof The tangent space to the sphere S(Cn+1) at ζ is given by TζS(C
n+1)= {ζ̇ ∈

C
n+1 | Re〈ζ, ζ̇ 〉 = 0}; compare (14.11). Lemma 16.9 implies that the tangent space

T(M,ζ )Ŵ consists of the (Ṁ, ζ̇ ) ∈M × TζS(C
n+1)n such that Ṁζ +Mζ̇ = 0.

As already explained before, by unitary invariance, we may assume that ζ =
(1,0, . . . ,0). Then the first column of M vanishes, and using the singular value
decomposition, we may assume that the remaining part A ∈C

n×n of M equals A=
diag(σ1, . . . , σn).

Let u̇ ∈ C
n denote the first column of Ṁ and Ȧ ∈ C

n×n its remaining part. We
may thus identify T(M,ζ )Ŵ with the product E × C

n×n via (Ṁ, ζ̇ ) �→ ((u̇, ζ̇ ), Ȧ),
where E denotes the subspace

E := {
(u̇, ζ̇ ) ∈C

n ×C
n+1 | u̇i + σi ζ̇i = 0,1 ≤ i ≤ n, ζ̇0 ∈ iR

}
.

We also note that E � graph(−A)× iR. The derivative of p1 is described by the
following commutative diagram:

T(M,ζ )Ŵ
�−→ (graph(−A)× iR)×C

n×n

Dp1(M,ζ )

⏐⏐⏐?

⏐⏐⏐?pr1×I

M
�−→ C

n ×C
n×n,

where pr1(u̇, ζ̇ ) = u̇. Note that pr1 has kernel iR. Since A = diag(σ1, . . . , σn), the
pseudoinverse of the projection pr1 is given by the linear map

ϕ : Cn → graph(−A), (u̇1, . . . , u̇n) �→
(
u̇1, . . . , u̇n,−σ−1

1 u̇1, . . . ,−σ−1
n u̇n

)
.

Lemma 17.12 implies that detϕ =∏n
i=1(1 + σ−2

i ), where the determinant refers to
ϕ as an R-linear map. Noting that 1/NJp1(M, ζ )= detϕ, the first assertion follows.

For the second assertion we consider the following commutative diagram:

T(M,ζ )Ŵ
�−→ (graph(−A)× iR)×C

n×n

Dp2(M,ζ )

⏐⏐⏐
?

⏐⏐⏐
?pr2

TζS(C
n+1)

�−→ C
n × iR,

where pr2(u̇, ζ̇ , Ȧ)= ζ̇ . The map pr2 has the kernel Cn×n, and its pseudoinverse is
given by

ψ : Cn × iR→ graph(−A)× iR, (ζ̇1, . . . , ζ̇n, ζ̇0) �→ (−σ1ζ̇1, . . . ,−σnζ̇n, ζ̇0).

As before, we conclude that 1/NJp2(M, ζ ) = detψ =∏n
j=1(1 + σ 2

j ), proving the
second assertion.

The third assertion follows immediately from the first and second. �
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We next show that the normal Jacobians of the projections πj can be expressed
in terms of the normal Jacobians of the projections pj that we just determined.

Lemma 17.15 For (q, ζ ) ∈ V̂ and N :=Dq(ζ ) we have

NJπ1(q, ζ )= NJp1(N, ζ ), NJπ2(q, ζ )= NJp2(N, ζ ).

Proof By unitary invariance we may assume without loss of generality that ζ =
(1,0, . . . ,0). If we write N = (nij ) = Dq(ζ ) ∈ M , we must have ni0 = 0, since
Nζ = 0. Moreover, according to the orthogonal decomposition (16.9) and Proposi-
tion 16.16, we have for 1 ≤ i ≤ n,

qi =X
di−1
0

n∑

j=1

nijXj + hi

for some h= (h1, . . . , hn) ∈Rζ . We express q̇i ∈ TqHd =Hd as

q̇i = u̇iX
di
0 +√

diX
di−1
0

n∑

j=1

ȧijXj + ḣi

in terms of the coordinates u̇ = (u̇i) ∈ C
n, Ȧ = (ȧij ) ∈ C

n×n, and ḣ = (ḣi ) ∈ Rζ .
The reason to put the factor

√
di here is that

‖q̇‖2 =
∑

i

|u̇i |2 +
∑

ij

|ȧij |2 +
∑

i

‖ḣi‖2 (17.15)

by the definition of Weyl’s inner product.
The tangent space T(q,ζ )V̂ consists of the (q̇, ζ̇ ) ∈Hd × TζS(C

n+1)n such that
q̇(ζ )+Nζ̇ = 0; see Lemma 16.9. This condition can be expressed in coordinates as

u̇i +
n∑

j=1

nij ζ̇j = 0, i = 1, . . . , n. (17.16)

By (17.15) the inner product on T(q,ζ )V̂ is given by the standard inner product in
the chosen coordinates u̇i , ȧij , ζ̇j if ḣi = 0. Thinking of the description of T(N,ζ )W

given in the proof of Lemma 17.14, we may therefore isometrically identify T(q,ζ )V

with the product T(N,ζ )W ×Rζ via (q̇, ζ̇ ) �→ ((u̇, Ȧ, ζ̇ ), ḣ). The derivative of π1 is
then described by the commutative diagram

T(q,ζ )V̂
�−→ T(N,ζ )Ŵ ×Rζ

Dπ1(q,ζ )

⏐⏐⏐?

⏐⏐⏐?Dp1(N,ζ )×I

Hd
�−→ M ×Rζ .

(17.17)
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The claim NJπ1(q, ζ )= NJp1(N, ζ ) is now immediate.
Similarly, we have the commutative diagram

T(q,ζ )V̂
�−→ T(N,ζ )Ŵ ×Rζ

Dπ2(q,ζ )

⏐⏐⏐?

⏐⏐⏐?Dp2(N,ζ )×zero

TζS(C
n+1)

�−→ TζS(C
n+1),

(17.18)

where zero : Rζ → 0 is the zero map. Hence NJπ2(q, ζ )= NJp2(N, ζ ). �

The following corollary will be crucial for the proof of the main result of this
chapter.

Corollary 17.16 For (q, ζ ) ∈ V̂ we have

NJπ1

NJπ2
(q, ζ )=D det

(
MM∗),

where M := diag(
√
di)

−1Dq(ζ ) and D = d1 · · ·dn.

Proof Lemma 17.15 implies that

NJπ1

NJπ2
(g, ζ )= NJp1

NJp2
(N, ζ ),

where N :=Dq(ζ ). Moreover, Lemma 17.14 says that

NJp1

NJp2
(N, ζ )= det

(
NN∗).

If we put Δ := diag(
√
di), then N =ΔM and hence

det
(
NN∗)= det

(
ΔMM∗Δ

)= det
(
Δ2)det

(
MM∗)=D det

(
MM∗).

Combining these equations, the assertion follows. �

Remark 17.17 One obtains the same formulas for the normal Jacobians of the pro-
jections V →Hd and V → P

n.

17.5 The Standard Distribution on the Solution Variety

We may now return to the probability distribution ρst. The most immediate approach
to ρst defines it via the following procedure (recall that N denotes the complex
dimension of Hd, so that 2N equals its real dimension):

• draw g ∈Hd from N(0, I2N);
• draw one of the D zeros of g from the uniform distribution on {1, . . . ,D}.
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The goal of this section is to provide an explicit density function for ρst and
to prove some properties that will simplify the computation of expectations for this
measure. To do so it will be more convenient to work with a standard distribution ρ̂st

on the lifted solution variety V̂ ⊆Hd × S(Cn+1) considered in (17.13). This distri-
bution arises from drawing (q, [ζ ]) ∈ V from the standard distribution as described
above and further drawing a representative ζ uniformly at random from the circle
[ζ ] ∩ S(Cn+1).

Recall that ZP(q) denotes the set of zeros in P
n of q ∈Hd. Bézout’s theorem tells

us that ZP(q) is finite of cardinality D = d1 · · ·dn if q does not lie in the discriminant
variety Σ . This implies that the fiber over q �∈Σ ,

V̂ (q) := {
ζ ∈ S

(
C

n+1) | (q, ζ ) ∈ V̂
}
,

of the projection π1 : V̂ → Hd, (q, ζ ) �→ q , consists of D disjoint circles. Hence
the volume of such fibers is 2πD.

With the help of the coarea formula, we can now give a formal definition of these
standard distributions by specifying their densities. If ϕHd denotes the density of
the standard Gaussian distribution on Hd, we have (cf. Sect. 2.2.2)

ϕHd(q) :=
1

(2π)N
e−

‖q‖2

2 .

A naive attempt to define the density ρ̂st would be to take the product 1
2πD ϕHd .

However, this function is not even a density function on V̂ , since its integral over V̂
differs from 1. As it happens, we have to take into account the normal Jacobian of
the projection π1. We define the density ρ̂st of the standard distribution on V̂ as
follows:

ρ̂st(q, ζ ) := 1

2πD ϕHd(q)NJπ1(q, ζ ). (17.19)

This definition is justified by the following lemma.

Lemma 17.18

(a) The function ρ̂st is a probability density on V̂ .
(b) The pushforward of ρ̂st with respect to π1 : V̂ →Hd equals ϕHd .
(c) The pushforward of ρ̂st with respect to the projection π2 : V̂ → S(Cn+1) equals

the density of the uniform distribution on S(Cn+1).
(d) For q �∈Σ , the conditional distribution on the fiber V̂ (q) is the uniform distri-

bution on V̂ (q).
(e) The expectation of a function F : V̂ → R with respect to ρ̂st can be expressed

as

E
(q,ζ )∼ρ̂st

F(q, ζ )= E
q∼ϕHd

Fâv(q),

where Fâv(q) := 1
2πD

∫
ζ∈V̂ (q)

F (q, ζ ) dζ .
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Proof The coarea formula (Theorem 17.8) applied to π1 : V̂ →Hd implies

∫

V̂

F ρ̂st dV̂ =
∫

q∈Hd

(∫

ζ∈V̂ (q)

F (q, ζ )
ρ̂st(q, ζ )

NJπ1(q, ζ )
dV̂ (q)

)
dHd

=
∫

q∈Hd

Fâv(q)ϕHd(q) dHd,

where F : V̂ →R is a function that is integrable with respect to the volume measure
on V̂ . Taking F = 1 reveals that ρ̂st is a density, proving the first assertion. The
above formula also proves the fifth assertion.

By eq. (17.10) the pushforward density ρ1 of ρ̂st with respect to π1 satisfies

ρ1(q)=
∫

ζ∈V̂ (q)

ρ̂st(q, ζ )

NJπ1(q, ζ )
dV̂ (q)= ϕHd(q).

This establishes the second assertion.
For the third assertion we first note that by its definition and Lemma 17.13, ρ̂st is

unitarily invariant. Since π2 is an equivariant map, it follows that the pushforward
density of ρ̂st is unitarily invariant on S(Cn+1). Hence it must be the uniform distri-
bution.

Finally, by (17.11) the conditional density satisfies

ρ
V̂ (q)

(ζ )= ρ̂st(q, ζ )

ϕHd(q)NJπ1(q, ζ )
= 1

2πD ,

which proves the fourth assertion. �

We may now recover the density ρst on the original solution variety V as
the pushforward of ρ̂st under the canonical map V̂ → V . As in the proof of
Lemma 17.18, one shows that

ρst(q, ζ )= 2πρ̂st(q, ζ )= 1

D ϕHd(q)NJπ1(q, ζ ).

Moreover, the expectation of an integrable function F : V → R with respect to ρst

can be expressed as

E
(g,ζ )∼ρst

F = E
g∼N(0,I)

Fav, (17.20)

where Fav(q) := 1
D
∑

ζ |g(ζ )=0 F(q, ζ ).

Recall from (17.14) the manifold Ŵ , which naturally arises as a special case of
V̂ in the case di = 1. We put Δ := diag(d

1/2
i ) and consider the linearization map

Ψ : V̂ → Ŵ , (q, ζ ) �→ (M, ζ ), where M :=Δ−1Dq(ζ ). (17.21)

The proof of the following result is postponed to Sect. 18.1.3 in the next chapter,
where it will be a consequence of more general results.
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Lemma 17.19 The pushforward density of the standard distribution ρ̂st on V̂ with
respect to the map Ψ equals the standard distribution on Ŵ .

17.6 Beltrán–Pardo Randomization

Our next goal is to describe an efficient sampling procedure for the standard distri-
bution ρst on the solution variety V ⊆Hd × P

n.
An immediate difference with the context of Sect. 17.2.1 is the inadequacy of

random_bit( ) as the fundamental building block for randomized algorithms deal-
ing with continuous distributions. We will instead rely on the basic procedure
rand_Gaussian( ), which returns, with no input and with unit cost, a real number
z drawn from N(0,1). It is obvious how to draw z ∈ C from N(0, I2) using this
procedure. And it is equally easy to use these draws to draw systems in Hd from
N(0, I2N) (recall that N denotes the complex dimension of Hd, so that 2N equals
its real dimension). See Algorithm 17.5 below.

Algorithm 17.5 random_system

Input: d1, . . . , dn ∈N

Preconditions: n≥ 1 and di ≥ 1 for i = 1, . . . , n

for i = 1, . . . , n do
for α ∈N

n+1 with |α| = di do
draw fi,α ∈C from N(0, I2)

fi :=∑
|α|=di

fi,α

(
di
α

)1/2
Xα

return f := (f1, . . . , fn) and halt

Output: f ∈Hd

Postconditions: f ∼N(0, I)

Recall that the standard distribution arises as follows: we first draw q ∈ Hd at
random from the standard Gaussian distribution N(0, I2N) on Hd, and then uni-
formly draw one of the (almost surely) D zeros of q . Algorithm 17.5 allows one
to do the first task. But to do the second once q has been obtained appears to be
difficult, since we do not have the zeros of q at hand. Actually, computing one such
zero is the problem we wanted to solve in the first place!

Beltrán and Pardo’s idea to turn around this obstruction is very elegant. We have
shown in Sect. 16.3 that for any [ζ ] ∈ P

n, the space Hd is written as a direct sum
Cζ ⊕ Lζ ⊕ Rζ and any system q correspondingly decomposes as kζ + gζ + hζ .
If [ζ ] is going to be a zero of q , then kζ needs to equal 0. Furthermore, Proposi-
tion 16.16(a) shows that Lζ is isometrically bijected with the space Mζ = {M ∈
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C
n×(n+1) | M[ζ ] = 0}. More precisely, given a representative ζ ∈ (Cn+1)∗ of [ζ ]

and M ∈Mζ , we compute gζ ∈ Lζ by taking

gζ = gM,ζ :=
(
√
di 〈X,ζ 〉di−1

n∑

j=0

mijXj

)

. (17.22)

To draw (q, ζ ) ∈ V , we can therefore first draw M ∈ M = C
n×(n+1) from a stan-

dard Gaussian distribution, then compute [ζ ] ∈ P
n such that M[ζ ] = 0, then gζ us-

ing (17.22), and finally draw hζ ∈Rζ also from a Gaussian distribution. The system
q = gζ + hζ satisfies q(ζ ) = 0—that is (q, ζ ) ∈ V —and is certainly random (we
have randomized both M and hζ ). The somehow surprising fact is that the resulting
distribution on V is precisely ρst.

The following is a high-level description of the Beltrán–Pardo randomization
scheme.

Algorithm 17.6 BP_Randomization_scheme

Input: d1, . . . , dn ∈N

Preconditions: n≥ 1 and di ≥ 1 for i = 1, . . . , n

draw M ∈M from the standard Gaussian distribution
# almost surely M has rank n #

compute the unique [ζ ] ∈ P
n such that M[ζ ] = 0

choose ζ uniformly at random in [ζ ] ∩ S(Cn+1)

compute gM,ζ according to (17.22)
draw h ∈Rζ from the standard Gaussian distribution
compute q = gM,ζ + h

return (q, ζ ) and halt

Output: (q, ζ ) ∈Hd × (Cn+1)∗
Postconditions: (q, [z]) ∈ V , (q, [ζ ])∼ ρst

It is obvious how to draw M ∈M in the first line of Algorithm 17.6 using 2(n2+
n) calls to rand_Gaussian( ). A representative of the class [ζ ] ∈ P

n such that M[ζ ] =
0 can be computed by standard algorithms in linear algebra. The drawing of ζ from
the uniform distribution in [ζ ] ∩ S(Cn+1) is done by drawing z ∈ C from N(0, I2)

and then multiplying the representative of [ζ ] obtained above by z
|z| .

The drawing of h ∈Rζ requires more thought but is nonetheless simple. The idea
is to draw f ∈Hd from N(0, I) and then compute the image h of f under the orthog-
onal projection Hd →Rζ . Since the orthogonal projection of a standard Gaussian is
a standard Gaussian, this amounts to drawing h from a standard Gaussian in Rζ . For
computing the projection h we use the orthogonal decomposition f = kζ + gζ + h

with kζ ∈ Cζ , and gζ ∈ Lζ given by Proposition 16.16(b). A precise description is
given in Algorithm 17.7 (random_h) below.
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Algorithm random_h returns a system h ∈ Rζ randomly drawn from a Gaussian
in this space performing 2N calls to rand_Gaussian( ). Furthermore, its overall cost
is low.

Lemma 17.20 Algorithm random_h can be implemented such that it uses only
O(DnN) arithmetic operations.

Proof First recall that by Lemma 16.31, a polynomial fi ∈ Hdi can be evaluated
with O(Ni) arithmetic operations, where Ni =

(
n+di
n

)
equals the number of its coef-

ficients. This implies that one can evaluate fi and all of its first-order partial deriva-
tives with O(nNi) arithmetic operations. This implies that the entries of the matrix
M can be computed with O(nN) arithmetic operations (recall N =∑

i Ni ).
Let fi ∈Hdi and let � ∈H1 be a linear form. Then the coefficients of the product

� · fi can be obtained from the coefficients of � and fi with O(nNi) arithmetic
operations. It follows that the coefficients of 〈X,ζ 〉k for k = 1,2, . . . , di can be
computed with a total of O(dinNi) arithmetic operations. This implies that we can
compute the coefficients of the polynomials k1, . . . , kn as well as those of gM,ζ with
O(DnN) arithmetic operations, where we recall D = maxi di . �

Algorithm 17.7 random_h

Input: d1, . . . , dn ∈N and ζ ∈ (Cn+1)∗
Preconditions: n≥ 1, di ≥ 1 for i = 1, . . . , n, and ‖ζ‖ = 1

draw f ∈Hd from N(0, I)
for i = 1, . . . , n do

ki := fi(ζ )〈X,ζ 〉di
for j = 0, . . . , n do

mij := d
−1/2
i (∂Xj

fi(ζ )− difi(ζ )ζ̄j )

(gM,ζ )i := √
di〈X,ζ 〉di−1 ∑n

j=0 mijXj

h :=: f − k− gM,ζ

return h and halt

Output: h ∈Hd

Postconditions: h ∈Rζ , h∼N(0, I)

More importantly, we have the following result for the overall behavior of Algo-
rithm 17.6.

Proposition 17.21

(a) Algorithm 17.6 returns a random pair (g, ζ ) ∈ V̂ according to the density ρ̂st.
(b) The routine in Algorithm 17.7 performs 2(N + n2 + n + 1) draws of random

real numbers from the standard Gaussian distribution and can be implemented
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with O(DnN + n3) arithmetic operations (including square roots of positive
numbers).

Proof We delay the proof of part (a) to Sect. 18.1.3 in the next chapter, where it will
follow from more general results.

For part (b), we note that the total number of calls to rand_Gaussian( ) is 2(N +
n2 + n+ 1), of which 2(n2 + n) are to draw M , 2 to draw z, and the remaining 2N
to draw h. The claim on the operation count follows from Lemma 17.20, noting that
O(n3) operations suffice for the computation of a representative of [ζ ] in solving
M[ζ ] = 0. �

17.7 Analysis of Algorithm LV

Recall from Sect. 5.1 that costALH(f, g, ζ ) is the number of elementary operations
(i.e., arithmetic operations, elementary functions, and comparisons) performed by
algorithm ALH with input (f, g, ζ ). The randomized cost r_costLV(f ) of LV on input
f ∈Hd is given by

r_costLV(f ) :=O
(
DnN + n3)+ E

(g,ζ )∼ρst

costALH(f, g, ζ ),

where the first term is the cost of drawing a pair (g, ζ ) from ρst (Proposition 17.21).
We next focus on the second term.

For all f,g, ζ0, the quantity costALH(f, g, ζ ) is given by the number of iterations
K(f,g, ζ ) of ALH with input this triple times the cost of an iteration. The latter is
dominated by the computation of one Newton iterate (which is O(N) independently
of the triple (f, g, ζ ); see Proposition 16.32). It therefore follows that analyzing the
expected cost of LV amounts to doing so for the expected value—over (g, ζ ) ∈ V

drawn from ρst—of K(f,g, ζ ). We denote this expectation by

K(f ) := E
(g,ζ )∼ρst

(
K(f,g, ζ )

)
.

To compute bounds for K(f ), the following quantity (suggested by the form of
Fav in (17.20)) will be of the essence. For q ∈Hd \Σ we define its mean square
condition number by

μ2
av(q) :=

1

D
∑

ζ |q(ζ )=0

μ2
norm(q, ζ ). (17.23)

If q ∈Σ , then we set μav(q) :=∞.

Remark 17.22 Note that μ2
av is Fav for F = μ2

norm. In this sense, we should write
(μ2

norm)av. But we will use μ2
av for the sake of simplicity, and we may even abuse

notation and write μav for
√
μ2

av.
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The definition of μ2
av(q) as an average is an example for the discussion in

Sect. 6.8 (see also Remark 14.14).

The use of μav, together with Corollary 17.6, yields an upper bound for K(f ).

Proposition 17.23 The expected number of iterations of ALH on input f ∈Hd \Σ
is bounded as

K(f )≤ 188D3/2
E

g∼N(0,I)

∫ 1

0

‖f ‖‖g‖
‖qt‖2

μ2
av(qt ) dt.

Proof Fix f ∈Hd \Σ . Consider any g ∈Hd such that the segment Ef,g does not
intersect the discriminant variety Σ . By Lemma 16.28, this is the case for almost all
g ∈Hd. To each of the zeros ζ (a) of g there corresponds a lifting [0,1] → V, τ �→
(qt , ζ

(a)
t ), of Ef,g such that ζ (a)

0 = ζ (a). Corollary 17.6 states that

K
(
f,g, ζ (a)

)≤ 188D3/2
∫ 1

0

‖f ‖‖g‖
‖qt‖2

μ2
norm

(
qt , ζ

(a)
t

)
dt.

Since ζ
(a)
t , . . . , ζ

(D)
t are the zeros of qt , we have, by the definition (17.23),

1

D

D∑

i=1

K
(
f,g, ζ (a)

)≤ 188D3/2
∫ 1

0

‖f ‖‖g‖
‖qt‖2

μ2
av(qt ) dt.

The assertion follows now from (17.20), since

K(f )= E
(g,ζ )∼ρst

(
K(f,g, ζ )

)= E
g∼N(0,I)

(
1

D

D∑

i=1

K
(
f,g, ζ (a)

)
)

.
�

Remark 17.24 Let HR

d denote the subspace of Hd with real coefficients and let
f ∈Hd \Σ . Were we to try to take the average of K(f,g, ζ ) over all real standard
Gaussian g ∈HR

d and its zeros ζ ∈ P(Rn+1), then the argument of Proposition 17.23
would break down. The reason is that Σ ∩HR

d has codimension one. Hence, for
random g ∈HR

d , the line segment Ef,g intersects Σ ∩HR

d with positive probability.
(Compare Lemma 16.28.) Therefore, ALH will fail with positive probability.

We can further take the expectation of K(f ) for f ∼N(0, I) to obtain the aver-
age expected cost (or average randomized cost) of LV. Because of Proposition 17.23,
this quantity is bounded as

E
f∼N(0,I)

K(f )≤ 188D3/2
E

f∼N(0,I)
E

g∼N(0,I)

∫ 1

0

‖f ‖‖g‖
‖qt‖2

μ2
av(qt ) dt. (17.24)

At this point it is perhaps befitting to stress a difference between the two expecta-
tions in the formula above. From a technical point of view, they have exactly the
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same nature: both f and g are drawn (independently) from N(0, I). Yet, the two
drawings play very different roles. In the case of g or, more precisely, of (g, ζ ),
the nature of the underlying probability distribution is irrelevant as long as one can
efficiently draw elements from it. In contrast, in the case of f , the underlying distri-
bution is supposed to model the (elusive) notion of “frequency in practice,” and the
appropriateness of the Gaussian for this purpose, recall the discussion in Sect. 2.2.7,
is not without contention.

But let us return to the bound (17.24). It is tempting to swap the integral and the
expectations in this expression because, for a fixed t ∈ [0,1], qt is Gaussian and we
know its mean and variance (by Proposition 2.17). We could then replace the two
expectations for a single one in qt . An obstruction to doing so is the presence of
‖f ‖‖g‖, but this obstruction can be easily overcome.

We consider, for T ,σ > 0, the truncated Gaussian NT (0, σ 2I) on Hd given by
the density (recall Sect. 2.2.2)

ρσ
T (f )=

{
ϕσ

2N (f )

PT,σ
if ‖f ‖ ≤ T ,

0 otherwise,
(17.25)

where PT,σ := Probf∼N(0,σ 2I){‖f ‖ ≤ T }, and as usual, ϕσ
2N is the density of

N(0, σ 2I2N). In the following we set the threshold T := √
2N .

Lemma 17.25 We have PT,σ ≥ 1
2 for all 0 < σ ≤ 1.

Proof Clearly it suffices to assume σ = 1. The statement follows from Proposi-
tion 2.22 and the fact that the random variable ‖f ‖2 is chi-square distributed with
2N degrees of freedom. �

Proposition 17.26 The average randomized number of iterations of LV satisfies

E
f∼N(0,I)

K(f )≤ 752π D3/2N E
q∼N(0,I)

μ2
av(q)

‖q‖2
.

Proof By (17.24) we have

E
f∼N(0,I)

K(f ) ≤ 188D3/2
E

f∼N(0,I)
E

g∼N(0,I)

∫ 1

0

‖f ‖‖g‖
‖qt‖2

μ2
av(qt ) dt

= 188D3/2
E

f∼NT (0,I)
E

g∼NT (0,I)

∫ 1

0

‖f ‖‖g‖
‖qt‖2

μ2
av(qt ) dt.

The equality follows from the fact that since both ‖f ‖‖g‖
‖qt‖2 and μ2

av(qt ) are homo-
geneous of degree 0 in both f and g, we may replace the standard Gaussian by
any rotationally invariant distribution on Hd, in particular by the centered truncated
Gaussian NT (0, I). The last expression can be bounded (we use, as usual, ϕ to de-
note the density of N(0, I)) as follows:
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188D3/2 T 2

P 2
T ,1

∫

‖f ‖≤T

∫

‖g‖≤T

∫ 1

0

μ2
av(qt )

‖qt‖2
dtϕ(g)ϕ(f )dg df

≤ 188D3/2 T 2

P 2
T ,1

E
f∼N(0,I)

E
g∼N(0,I)

∫ 1

0

μ2
av(qt )

‖qt‖2
dt

= 188D3/2 T 2

P 2
T ,1

∫ 1

0

(
E

qt∼N(0,(t2+(1−t)2)I)

μ2
av(qt )

‖qt‖2

)
dt,

where the last equality follows from the fact that for fixed t , the random polyno-
mial system qt = tf + (1 − t)g has a Gaussian distribution with law N(0, σ 2

t I),
where σ 2

t := t2 + (1 − t)2 (by Proposition 2.17). Note that we deal with nonnega-
tive integrands, so the interchange of integrals is justified by Tonelli’s theorem (cf.

Sect. 2.1). We next note that by Lemma 17.25, we have T 2

P 2
T ,1

≤ 8N , and we use the

homogeneity (of degree −2) of μ2
av(q)

‖q‖2 to obtain

E
f∼N(0,I)

K(f ) ≤ 1504D3/2N

∫ 1

0

(
E

qt∼N(0,(t2+(1−t)2)I)

μ2
av(qt )

‖qt‖2

)
dt

= 1504D3/2N E
q∼N(0,I)

μ2
av(q)

‖q‖2

∫ 1

0

1

t2 + (1 − t)2
dt

= 1504D3/2N E
q∼N(0,I)

μ2
av(q)

‖q‖2

π

2
. (17.26)

�

We can now complete the average analysis of LV. The remaining step is achieved
in the following result.

Proposition 17.27 We have

E
q∼N(0,I)

μ2
av(q)

‖q‖2
≤ e(n+ 1)

2
.

Proof By the definition (17.23) of μ2
av(q) we have

E
Hd

μ2
av(q)

‖q‖2
=
∫

q∈Hd

μ2
av(q)

‖q‖2
ϕHd(q) dq

=
∫

q∈Hd

1

D
∑

[ζ ]∈Z(q)

μ2
norm(q, ζ )

‖q‖2
ϕHd(q) dq

=
∫

q∈Hd

1

2πD

( ∑

[ζ ]∈Z(q)

∫

S1

μ2
norm(q, ζ )

‖q‖2
dθ

)
ϕHd(q) dq
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=
∫

q∈Hd

1

2πD

(∫

(q,ζ )∈π−1
1 (q)

μ2
norm(q, ζ )

‖q‖2
dπ−1

1 (q)

)
ϕHd(q) dq

=
∫

(q,ζ )∈V̂
μ2

norm(q, ζ )

‖q‖2

NJπ1(q, ζ )

2πD ϕHd(q) dV̂ ,

the last equality by the coarea formula applied to π1 : V̂ →Hd. We next apply the
coarea formula to the projection π2 : V̂ → S(Cn+1) and obtain that the last expres-
sion above equals

∫

ζ∈S(Cn+1)

1

2πD

∫

(q,ζ )∈π−1
2 (ζ )

μ2
norm(q, ζ )

‖q‖2

NJπ1(q, ζ )

NJπ2(q, ζ )
ϕHd(q) dπ

−1
2 (ζ ) dS

(
C

n+1).

Recall the orthogonal decompositions Hd = Cζ ⊕Lζ ⊕Rζ from (16.9). For fixed
ζ ∈ S(Cn+1), the fiber π−1

2 (ζ ) can be identified with the linear subspace

V̂ζ :=
{
q ∈Hd | q(ζ )= 0

}= Lζ ⊕Rζ .

For q ∈ V̂ζ let us write q = 0 + g + h corresponding to the orthogonal sum above.
Factoring the standard Gaussian density as in (2.12), we obtain

ϕHd(q)= ϕCζ (0)ϕLζ (g)ϕRζ (h)=
1

(2π)n
ϕLζ (g)ϕRζ (h),

since Cζ �C
n �R

2n. Furthermore, we put

M := diag(
√
di)

−1Dq(ζ )= diag(
√
di)

−1Dg(ζ ). (17.27)

Note that Mζ = 0. By the definition (16.11) of the condition number μnorm, we have

μ2
norm(q, ζ )

‖q‖2
= ∥∥M†

∥∥2
. (17.28)

Moreover, Corollary 17.16 tells us that

NJπ1

NJπ2
(q, ζ )=D det

(
MM∗).

Fubini’s theorem (Theorem 2.2) implies now, using
∫
h∈Rζ

ϕRζ (h) dh= 1,

∫

(q,ζ )∈π−1
2 (ζ )

μ2
norm(q, ζ )

‖q‖2

NJπ1

NJπ2
(q, ζ )ϕHd(q) dπ

−1
2 (ζ )

= D
(2π)n

∫

g∈Lζ

∥∥M†
∥∥2 det

(
MM∗)ϕLζ (g) dg.
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By unitary invariance, this expression is independent of ζ ∈ S(Cn+1), so that we
may assume that ζ = e0; cf. Lemma 16.15. Hence we obtain that

E
Hd

μ2
av(q)

‖q‖2
= volS(Cn+1)

(2π)n+1

∫

g∈Le0

∥∥M†
∥∥2 det

(
MM∗)ϕLe0

(g) dg, (17.29)

where M is determined by (17.27). Proposition 16.16 reveals that

Le0 →Me0, g �→M = diag
(√

di
)−1

Dg(ζ )

is a linear isometry, where Me0 := {M ∈ M |Me0 = 0}. This space can be identi-
fied with C

n×n, since it consists of the matrices in M whose first column is zero.
Corollary 4.23 states that

∫

A∈Cn×n

∥∥A−1
∥∥2∣∣det(A)

∣∣2ϕ2n2(A)dA≤ 2nn!e(n+ 1)

2
. (17.30)

Moreover, cf. Proposition 2.19,

volS
(
C

n+1)= volS2n+1 = 2πn+1

n! . (17.31)

Combining (17.29)–(17.31), we get

E
Hd

μ2
av(q)

‖q‖2
≤ e(n+ 1)

2
,

as claimed. �

We close this section by proving the main result in this chapter.

Proof of Theorem 17.1 We already know that the algorithm LV described in
Sect. 17.2 returns an approximate zero of its input f , since ALH does so. In ad-
dition, it follows from Propositions 17.26 and 17.27, and the O(N) cost of each
iteration of ALH established in Proposition 16.32 that the average cost of ALH over
random f ∼N(0, I) and random (g, ζ )∼ ρst is bounded as

E
f∼N(0,I)

E
(g,ζ )∼ρst

costALH(f, g, ζ )≤O
(
D3/2nN2).

Proposition 17.21 further ensures that the cost of the initial randomization in LV,
i.e., O(DnN + n3), is dominated by this bound. �

17.8 Average Analysis of μnorm, μav, and μmax

It is clear that for successfully applying the algorithm ALH, one needs a starting pair
(g, ζ ) in the solution variety V having small condition μnorm(g, z). It is therefore of
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interest to understand the distribution of μnorm on V . For instance, what is the order
of magnitude of the expectation Eμnorm with respect to the standard distribution?

In order to analyze this, recall from (17.14) the special case

Ŵ := {
(M, ζ ) ∈M × S

(
C

n+1) |Mζ = 0
}

of the solution manifold, where M := C
n×(n+1). We put Δ := diag(d

1/2
i ) and con-

sider the linearization map

Ψ : V̂ → Ŵ , (q, ζ ) �→ (M, ζ ), where M :=Δ−1Dq(ζ ),

already introduced in (17.21). We claim that if (q, ζ ) ∈ V̂ is random following ρ̂st,
then M ∈ M is a standard Gaussian matrix. Indeed, Lemma 17.19 states that the
pushforward of the standard distribution ρ̂st on V̂ under the map Ψ equals the
standard distribution on Ŵ . Moreover, Lemma 17.18(b), applied to the projection
p1 : Ŵ →M , implies that the pushforward of the standard distribution on Ŵ under
p1 equals the standard Gaussian on M .

According to (16.11), the condition number μnorm(q, ζ ) can be described in
terms of Ψ as follows:

μnorm(q, ζ )

‖q‖ = ∥
∥M†

∥
∥, where (M, ζ )= Ψ (q, ζ ). (17.32)

In Sect. 4.4 we already analyzed the distribution of ‖M†‖ for a standard Gaus-
sian. Putting things together, it is now easy to prove the following result.

Theorem 17.28 For t ≥√
nN we have

Prob
(q,ζ )∼ρst

{
μnorm(q, ζ )≥ t

}≤ 24n2N2 ln2 t

t4
.

Moreover,

E
(q,ζ )∼ρst

μnorm(q, ζ )≤ 5
√
nN ln2(nN)

and

E
(q,ζ )∼ρst

μ2
norm(q, ζ )=O

(
nN ln2(nN)

)
.

Proof Proposition 4.27 implies that for any ε > 0,

Prob
M∼N(0,I)

{∥∥M†
∥∥≥ n

1
2

(8e)
1
4

ε−
1
4

}
≤ ε.

Moreover, Corollary 4.6 implies that for any ε > 0,

Prob
q∼N(0,I)

{
‖q‖ ≥√

2N +
√

2 ln
1

ε

}
≤ ε.
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Using the observation (4.17), we combine the above two tail estimates to obtain

Prob
{∥∥M†

∥∥‖q‖ ≥ t (ε)
}≤ 2ε, (17.33)

where

t (ε) := n
1
2 ε− 1

4

(8e)
1
4

(√
2N +

√

2 ln
1

ε

)
.

Clearly, the function t (ε) is strictly monotonically decreasing on (0,1) and
limε→0 t (ε) =∞. Hence for all t ≥ t (a) there exists a unique ε = ε(t) such that
t = t (ε). In order to bound ε(t) from above in terms of ε, we note that

t (ε)≥ n
1
2 ε− 1

4

(8e)
1
4

√
2N

and hence

1

ε
≤ 2e

(nN)2
t (ε)4 ≤ t (ε)4.

Using this bound in (17.33), we get for ε = ε(t),

t ≤ n
1
2

(8e)
1
4

ε−
1
4
(√

2N +
√

2 ln t4
)≤ n

1
2

(8e)
1
4

ε−
1
4 4

√
N ln t,

where we have used that a + b ≤ ab for a, b ≥ 2. This implies

ε ≤ 44

8e
n2N2 ln2 t

t4
.

Since t (a)=
√

2nN

(8e)
1
4
≤√

nN , this bound is valid for any t ≥√
nN . Hence we obtain

from (17.33) that

Prob
{∥∥M†

∥∥‖q‖ ≥ t
}≤ 2ε ≤ 24n2N2 ln2 t

t4
,

proving the tail estimate.
The bound on the expectation follows from

Eμnorm =
∫ ∞

1
Prob{μnorm ≥ t}dt ≤√

nN + 24n2N2
∫ ∞
√
nN

ln2 t

t4
dt,

noting that
∫ ∞

t0

ln2 t

t4
dt = ln2 t0

3t3
0

+ 2 ln t0

9t3
0

+ 2

27t3
0

≤ 17

27

ln2 t0

t3
0

.



364 17 Smale’s 17th Problem: I

Therefore,

Eμnorm ≤√
nN + 24 · 17

27 · 4
(nN)

1
2 ln2(nN)≤ 5(nN)

1
2 ln2(nN).

We can argue similarly for the expectation of μ2
norm(q), where q ∈Hd is standard

Gaussian. �

The previous result easily implies information on the distribution of μav.

Corollary 17.29 For t ≥ 1 we have

Prob
q∼N(0,I)

{
μav(q)≥ t

}=O
(
nN

t2
ln2(nN)

)

and

E
q∼N(0,I)

μ2
av(q)=O

(
nN ln2(nN)

)
.

Proof Lemma 17.18(e) implies Eμ2
av = Eμ2

norm. Hence the bound on the expecta-
tion of μ2

av follows from Theorem 17.28. The tail bound is now a consequence of
Markov’s inequality (Corollary 2.9). �

Remark 17.30 The t−2 tail decay in Corollary 17.29 results from a simple appli-
cation of Markov’s inequality and does not describe the true behavior. This can be
seen be comparing the tail bound with such a bound in Theorem 17.28 in the case
di = 1 for all i, in which μnorm = μav.

We finish this chapter with a brief discussion of the distribution of the maximum
condition number μmax defined, for q ∈Hd \Σ , by

μmax(q) := max
i≤D

μnorm
(
q, ζi(q)

)
,

where ζ1(q), . . . , ζD(q) are the zeros of q . By definition, μmax(q)≥ t iff there exists
j ≤D such that μnorm(q, ζj (q))≥ t . Hence, for standard Gaussian q ,

Prob
q∼N(0,I)

{
μmax(q)≥ t

}≤
D∑

j=1

Prob
{
μnorm

(
q, ζj (q)

)≥ t
}
.

If we could assume that (q, ζj (q)) follows the standard distribution, for all j , then
we could deduce from Theorem 17.28 that

Prob
q∼N(0,I)

{
μmax(q)≥ t

}=O
(
Dn2N2 ln2 t

t4

)
.

While it is not clear that the latter assumption is in fact true, the following result can
be rigorously proven. We omit the proof.
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Proposition 17.31 In the case n > 1 we have for t ≥√
n,

Prob
q∼N(0,I)

{
μmax(q)≥ t

}=O
(Dn3N2

t4

)

and

E
q∼N(0,I)

μ2
max(q)=O

(
D

1
2 n

3
2 N

)
.

In the case n= 1 we have for t ≥ 1,

Prob
q∼N(0,I)

{
μmax(q)≥ t

}≤ d

(
1 −

(
1 − 1

t2

)d−1(
1 + d − 1

t2

))
. �

Remark 17.32 In the special case n = 1, Proposition 17.31 implies that for a ran-
dom q of degree d we have μmax(q)=O(d) with probability at least 1/2. Remark-
ably, as of today, no deterministic polynomial-time procedure is known to produce
a family (qd) of univariate polynomials such that degqd = d and μmax(q)=O(d).



Chapter 18
Smale’s 17th Problem: II

In the preceding chapter we described Smale’s 17th problem and a probabilistic so-
lution for it, namely, a randomized algorithm whose average cost is polynomially
bounded. The present chapter continues with this theme, adding further understand-
ing of the behavior of Algorithm LV (introduced in Sect. 17.2.2). Also, getting closer
to the original formulation of Smale’s problem, this chapter exhibits a deterministic
algorithm whose average cost is nearly polynomial.

Our first result here is an extension of Theorem 17.1 providing a smoothed
analysis for the randomized cost of Algorithm LV. For this result we use a trun-
cated Gaussian as defined in (17.25) but noncentered. For f ∈ Hd we define
N(f ,σ 2I) := f +N(0, σ 2I).

Theorem 18.1 For any 0 < σ ≤ 1, Algorithm LV satisfies

sup
f∈S(Hd)

E

f∼NT (f ,σ 2I)
r_costLV(f )=O

(
D3/2nN2 1

σ

)
.

Our second result is a condition-based cost analysis of Algorithm LV. We are
here interested in estimating K(f ) for a fixed input system f ∈Hd \Σ . Such an
estimate will have to depend on, besides D, n, and N , the condition of f . We take
for the latter the maximum condition number (which we met in Sect. 17.8)

μmax(f ) := max
ζ |f (ζ )=0

μnorm(f, ζ ), (18.1)

which, we note in passing, provides an example for the third (and last) form of
measuring condition in terms of solutions discussed in Sect. 6.8.

Our condition-based analysis of LV is summarized in the following statement.

Theorem 18.2 The randomized cost of Algorithm LV with input f ∈ Hd \ Σ is
bounded as

r_costLV(f )=O
(
D3nN2 μ2

max(f )
)
.
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We finally want to consider deterministic algorithms for finding zeros of poly-
nomial systems. One such algorithm with polynomial average cost would provide a
positive answer to Smale’s 17th problem. As of today, this answer has proved to be
elusive. The last main result in this chapter is just a step in this direction.

Theorem 18.3 There is a deterministic real-number algorithm that on input
f ∈Hd computes an approximate zero of f in average time NO(log logN). More-
over, if we restrict data to polynomials satisfying

D ≤ n
1

1+ε or D ≥ n1+ε,

for some fixed ε > 0, then the average time of the algorithm is polynomial in the
input size N .

A common characteristic of the contexts of the three results above is the fact
that the systems qt occurring in their corresponding homotopy paths, while still
random because of the randomness of either f or g, follow distributions that are
no longer centered at 0. Gaussianity remains, but centrality doesn’t. Consequently,
variance plays a role. This characteristic adds a degree of intricacy to the arguments
of the preceding chapter. In particular, it requires the consideration of extensions
of the measure ρst. We therefore begin this chapter with some probability results
including, among others, the postponed proof of Proposition 17.21.

18.1 The Main Technical Result

The technical heart of the proof of the results in this chapter is the following
smoothed analysis of the mean square condition number μav. Note that this result
extends Proposition 17.27.

Theorem 18.4 For q ∈Hd and σ > 0 we have

E
q∼N(q,σ 2I)

(
μ2

av(q)

‖q‖2

)
≤ e(n+ 1)

2σ 2
.

We note that no bound on the norm of q is required here. Indeed, using
μav(λq)= μav(q), it is easy to see that the assertion for a pair (q, σ ) implies the
assertion for (λq,λσ), for any λ > 0.

18.1.1 Outline of the Proof

We shall now give an outline of the proof of Theorem 18.4. Let ρHd denote the
density of the Gaussian N(q,σ 2I) on Hd, where q ∈Hd and σ > 0. For fixed ζ ∈
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S(Cn+1) we decompose the mean q as

q = kζ + gζ + hζ ∈ Cζ ⊕Lζ ⊕Rζ

according to the orthogonal decomposition (16.9). If we denote by ρCζ , ρLζ , and
ρRζ the densities of the Gaussian distributions in the spaces Cζ , Lζ , and Rζ with
covariance matrices σ 2I and means kζ ,Mζ , and hζ , respectively, then the density
ρHd factors as

ρHd(k + g+ h)= ρCζ (k) · ρLζ (g) · ρRζ (h); (18.2)

compare (2.12).
Recall from (17.14) the manifold

Ŵ := {
(M, ζ ) ∈M × S

(
C

n+1) |Mζ = 0
}
,

whose projection p2 : Ŵ → S(Cn+1), (M, ζ ) �→ ζ , has the fibers

Wζ := {M ∈M |Mζ = 0}.

Proposition 16.16 tells us that we have the isometric linear maps

Wζ → Lζ , M �→ gM,ζ :=
(√

di 〈X,ζ 〉di−1
∑

j

mijXj

)
. (18.3)

Thus the Gaussian density ρLζ on Lζ induces a Gaussian density ρWζ on the
fiber Wζ with covariance matrix σ 2I via this map, so that ρWζ (M)= ρLζ (gM,ζ ).

We derive now from the given Gaussian distribution ρHd on Hd a probability
distribution on the solution variety V as follows (naturally extending ρst introduced
in Sect. 17.5). Think of choosing (q, ζ ) at random from V̂ by first choosing q ∈Hd
from N(q,σ 2I), then choosing one of its D zeros [ζ ] ∈ P

n at random from the uni-
form distribution on {1, . . . ,D}, and finally choosing a representative ζ in the unit
circle [ζ ] ∩ S

n uniformly at random. (An explicit expression of the corresponding
probability density ρ

V̂
on V̂ is given in (18.16); compare the special case (17.19).)

The road map to proving Theorem 18.4 is as follows. By the definition of ρHd

and as in Lemma 17.18, we have

E
q∼N(q,σ 2I)

(
μ2

av(q)

‖q‖2

)
= E

(q,ζ )∼ρ
V̂

(
μ2

norm(q, ζ )

‖q‖2

)
. (18.4)

Recall from (17.13) the lifting V̂ ⊆Hd ×S(Cn+1) of the solution variety V ⊆Hd ×
P
n. Put Δ := diag(d

1/2
i ). In (17.32) we already noted that the condition number

μnorm(q, ζ ) can be described in terms of the linearization map

Ψ : V̂ → Ŵ , (q, ζ ) �→ (M, ζ ), where M :=Δ−1Dq(ζ ),
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as follows:

μnorm(q, ζ )

‖q‖ = ∥
∥M†

∥
∥, where (M, ζ )= Ψ (q, ζ ).

Hence

E
(q,ζ )∼ρ

V̂

(
μ2

norm(q, ζ )

‖q‖2

)
= E

M∼ρM

(∥∥M†
∥
∥2)

, (18.5)

where ρM denotes the pushforward density of ρ
V̂

with respect to the map

p1 ◦Ψ : V̂ →M .
It will turn out that the density ρM has the following explicit description. For

M ∈M of rank n and ζ ∈ S(Cn+1) with Mζ = 0 we have

ρM (M)= ρCζ (0) ·
1

2π

∫

λ∈S1
ρWλζ (M)dS1. (18.6)

By (17.12) we have

E
M∼ρM

(∥∥M†
∥∥2)= E

ζ∼ρ
S(Cn+1)

(
E

M∼ρ̃Wζ

(∥∥M†
∥∥2))

, (18.7)

where ρS(Cn+1) is the pushforward density of ρV with respect to p2 ◦ Ψ : V →
S(Cn+1) and ρ̃Wζ denotes the conditional density on the fiber Wζ . This conditional
density will turn out to be of the form

ρ̃Wζ (M)= c−1
ζ · det

(
MM∗)ρWζ (M), (18.8)

with cζ denoting a normalization factor possibly depending on ζ . In the case ζ =
(1,0, . . . ,0) we can identify Wζ with C

n×n, and ρ̃Wζ takes the form (4.21) studied
in Sect. 4.4. Proposition 4.22 and unitary invariance imply that for all ζ ∈ S(Cn+1),

E
M∼ρ̃Wζ

(∥∥M†
∥∥2)≤ e(n+ 1)

2σ 2
. (18.9)

This implies by (18.7) that

E
M∼ρM

(∥∥M†
∥∥2)≤ e(n+ 1)

2σ 2
,

and this bound, replaced in (18.5) and back in (18.4), completes the outline of the
proof of Theorem 18.4.

The formal proof of the stated facts (18.6) and (18.8) is quite involved and will
be given in the remainder of this section.
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18.1.2 Normal Jacobians of Linearizations

In (17.32) we saw that the condition number μnorm(q, ζ ) can be described in terms
of the linearization map Ψ : V̂ → Ŵ . As a stepping stone towards the analysis of
the normal Jacobian of Ψ we introduce now the related linearization map

Φ : V̂ → Ŵ , (q, ζ ) �→ (N, ζ )= (
Dq(ζ ), ζ

)
. (18.10)

Lemma 18.5 The derivative of DΦ(q, ζ ) : T(q,ζ )V → T(N,ζ )W is determined by

DΦ(q, ζ )(q̇, ζ̇ )= (Ṅ, ζ̇ ), where Ṅ =Dq̇(ζ )+D2q(ζ )(ζ̇ , ·).
Proof Consider a smooth curve t �→ (q(t), ζ(t)) in V̂ with (q(0), ζ(0)) = (q, ζ )

and put N(t) = Dq(t)(ζ(t)). In coordinates, nij (t) = ∂Xj
qi(t)(ζ(t)). Differentiat-

ing this with respect to t at zero, we obtain

ṅij = ∂Xj
q̇i(ζ )+

n∑

k=0

∂Xk
∂Xj

qi(ζ ) ζ̇k.

This is nothing but the claimed assertion, written in coordinates. �

It is a crucial observation that the normal Jacobian of Φ is constant.

Proposition 18.6 We have NJΦ(q, ζ )=Dn for all (q, ζ ) ∈ V̂ .

Proof We adopt the notation from the proof of Lemma 17.15. Using the shorthand
∂kq for the partial derivative ∂Xk

q , etc., a short calculation yields, for j > 0,

∂0q̇i (ζ )= diu̇i , ∂j q̇i(ζ )=
√
di ȧij , ∂2

0j qi(ζ )= (di − 1) nij . (18.11)

Similarly, we obtain ∂0qi(ζ )= 0 and ∂j qi(ζ )= nij for j > 0.
Introducing the coordinates Ṅ = (ṅij ), the formula of Lemma 18.5 can be written

as

ṅij = ∂j q̇i(ζ )+
n∑

k=1

∂2
jkq̇i(ζ ) ζ̇k. (18.12)

For j > 0 this gives, using (18.11),

ṅij =
√
di ȧij +

n∑

k=1

∂2
jkq̇i(ζ ) ζ̇k. (18.13)

For j = 0 we obtain from (18.12), using (18.11) and (17.16),

ṅi0 = ∂0q̇i (ζ )+
n∑

k=1

∂2
0kq̇i(ζ ) ζ̇k = diu̇i + (di − 1)

n∑

k=1

nik ζ̇k = u̇i . (18.14)

Note the crucial cancellation taking place here!
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From (18.13) and (18.14) we see that the kernel K of DΦ(q, ζ ) is determined by
the conditions ζ̇ = 0, u̇= 0, Ȧ= 0. Hence, recalling T(q,ζ )V � T(N,ζ )W ×Rζ from
the proof of Lemma 17.15, we have K � 0×Rζ and K⊥ � T(N,ζ )W ×0. Moreover,
as in the proof of Lemma 17.14 (but replacing M by N ), we write

E :=
{

(u̇, ζ̇ ) ∈C
n ×C

n+1 | u̇i +
n∑

j=1

nij ζ̇j = 0,1 ≤ i ≤ n, ζ̇0 ∈ iR

}

and identify T(N,ζ )W with E × C
n×n. Using this identification of spaces, (18.13)

and (18.14) imply that DΦ(q, ζ )K⊥ has the following structure:

DΦ(q, ζ )K⊥ : E ×C
n×n → E ×C

n×n,
(
(u̇, ζ̇ ),Ȧ

) �→ (
(u̇, ζ̇ ), λ(Ȧ)+ ρ(ζ̇ )

)
,

where the linear map λ : Cn×n →C
n×n, Ȧ �→ (

√
di ȧij ), multiplies the ith row of Ȧ

by
√
di and ρ : Cn+1 →C

n×n is given by ρ(ζ̇ )ij =∑n
k=1 ∂

2
jkq̇i(ζ ) ζ̇k .

By definition we have NJΦ(q, ζ ) = |detDΦ(q, ζ )|K⊥|. The triangular form of
DΦ(q, ζ )|K⊥ shown above implies that |detDΦ(q, ζ )|K⊥| = detλ. Finally, using

the diagonal form of λ, we obtain detλ=∏n
i=1

∏n
j=1

√
di

2 =Dn, which completes
the proof. �

Remark 18.7 Denote by HR

d the linear space of homogeneous polynomial systems
with degree pattern d = (d1, . . . , dn) and real coefficients. The real solution variety
VR ⊆HR

d ×S
n is defined in the obvious way and so is WR ⊆MR×S

n, where MR =
R

n×(n+1). The same proof as for Proposition 18.6 shows that the normal Jacobian
of the map ΦR : VR →WR, (q, ζ ) �→ (Dq(ζ ), ζ ), has the constant value Dn/2. As
the only change in the proof we notice that the R-linear map C→ C, z �→ √

diz,
has determinant di , while the map R→R, x �→√

dix, has determinant
√
di .

The normal Jacobian of the map Ψ : V̂ → Ŵ is not constant and takes a more
complicated form in terms of the normal Jacobians of the projection p1 : Ŵ →M .
For obtaining an expression for NJΨ we need the following lemma.

Lemma 18.8 The scaling map γ : Ŵ → Ŵ , (N, ζ ) �→ (M, ζ ), with M =Δ−1N of
rank n satisfies

detDγ (N, ζ )= 1

Dn+1
· NJp1(N, ζ )

NJp1(M, ζ )
.

Proof Note that T(M,ζ )Ŵ = T(M,ζ )W ⊕Riζ , where W denotes the solution variety
in M × P

n. Let p′
1 : W → M denote the projection. The derivative DγP(N, ζ )

of the corresponding scaling map γP : W → W is determined by the commutative
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diagram

T(N,ζ )W
DγP(N,ζ )−−−→ T(M,ζ )W

| |
Dp′

1(N,ζ ) | | Dp′
1(M,ζ )↓ ↓

M
sc−−−→ M ,

where the vertical arrows are linear isomorphisms. The assertion follows by observ-
ing that NJp1(N, ζ )= detDp′

1(N, ζ ), NJγ (N, ζ )= detDγP(N, ζ ), and using that
the R-linear map sc : M →M ,N �→M =Δ−1N , has determinant 1/Dn+1. �

Proposition 18.6 combined with Lemma 18.8 immediately gives

NJΨ (q, ζ )= 1

D · NJp1(N, ζ )

NJp1(M, ζ )
(18.15)

for N =Dq(ζ ), M =Δ−1N .

Remark 18.9 Here is a sketch of an alternative proof of Proposition 18.6. For given
(q, ζ ) ∈ V̂ we decompose q = g + h with g ∈ Lζ and h ∈ Rζ according to the
orthogonal decomposition (16.9). It turns out that NJΦ(q, ζ ) depends only on the
component g, so that we may assume that h= 0 and q = g.

The map Φ is equivariant under the action of U (n+ 1). Hence NJΦ is constant
on U -orbits. We may therefore assume that ζ = e0 = (1,0, . . . ,0). The elements
g = (gi) of Le0 are of the form gi = X

di−1
0

∑n
j=1 nijXj and in bijection with the

matrices N = [nij ] ∈ M having zero as their first column. The action of the stabi-
lizer Ue0 � U (n) of e0 corresponds to the multiplication of N by unitary matrices
from the right. However, we also have an action of U (n) on M given by multi-
plication from the left. This defines a U (n)-action on Le0 . (Note that this action
does not extend to Hd unless all the degrees di are equal.) It can be shown that
Φ is also equivariant with respect to this action. As a consequence, NJΦ is con-
stant on U (n)×Ue0 -orbits. By the singular value decomposition of the matrix N ,
we may therefore assume that N consists of the zero column and the diagonal ma-
trix diag(σ1, . . . , σn), where σ1, . . . , σn are the singular values of N . Summarizing,
(g, ζ ) is of the special form

g1 = σ1X
di−1
0 X1, . . . , gn = σnX

di−1
0 Xn, ζ = (1,0, . . . ,0),

that we already encountered in Remark 16.18. A closer look then reveals that
NJΦ(g, ζ ) does not depend on the singular values σi . Using this fact, it is pos-
sible to derive the actual value NJΦ by an indirect argument as follows. As
in the proof of Theorem 19.2, one can derive the following complex analogue
of (19.11):

∫

q∈Hd

#C(q)ϕHd(q) dHd = Dn+1

NJΦ
,
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where #C(q) denotes the number of zeros of q in P
n(C) and ϕHd is the standard

Gaussian distribution on Hd. Bézout’s theorem implies that #C(q)= D for almost
all q ∈Hd. Therefore, NJΦ =Dn.

18.1.3 Induced Probability Distributions

By Bézout’s theorem, the fiber V̂ (q) of the projection π1 : V̂ →Hd at q ∈Hd \Σ

is a disjoint union of D = d1 · · ·dn unit circles and therefore has volume 2πD.
Recall that ρHd denotes the density of the Gaussian distribution N(q,σ 2I) for

fixed q ∈Hd and σ > 0. We associate with ρHd the function ρ
V̂
: V̂ → R defined

by

ρ
V̂
(q, ζ ) := 1

2πD ρHd(q)NJπ1(q, ζ ). (18.16)

By the same proof as for the standard distribution dealt with in Lemma 17.18 we
can prove the following.

Lemma 18.10

(a) The function ρ
V̂

is a probability density on V̂ .

(b) The expectation of a function F : V̂ → R with respect to ρ
V̂

can be expressed
as

E
(q,ζ )∼ρ

V̂

F (q, ζ )= E
q∼ρHd

Fsav(q),

where Fsav(q) := 1
2πD

∫
V̂ (q)

F dV̂ (q).

(c) The pushforward of ρ
V̂

with respect to π1 : V̂ →Hd equals ρHd .

(d) For q /∈Σ , the conditional density on the fiber V̂ (q) is the density of the uniform
distribution on V̂ (q). �

We can now determine the various probability distributions induced by ρ
V̂

.

Proposition 18.11 Let ζ ∈C
n+1∗ . For h ∈Rζ we have

ρ
V̂

NJΨ
(gM,ζ + h, ζ )= ρ

Ŵ
(M, ζ ) · ρRζ (h),

where the pushforward density ρ
Ŵ

of ρ
V̂

with respect to Ψ : V̂ → Ŵ satisfies

ρ
Ŵ
(M, ζ )= 1

2π
ρCζ (0) · ρWζ (M) · NJp1(M, ζ ).
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Proof Using the factorization of Gaussians (18.2) and Lemma 17.15, the density ρ
V̂

can be written as

ρ
V̂
(gM,ζ + h, ζ )= 1

2πD ρCζ (0) ρWζ (M)ρRζ (h)NJp1(N, ζ ),

where N =ΔM . It follows from (18.15) that

ρ
V̂

NJΨ
(gM,ζ + h, ζ )= 1

2π
ρCζ (0) ρWζ (M)ρRζ (h)NJp1(M, ζ ). (18.17)

This implies, using (17.10) for Ψ : V →W and the isometry Ψ−1(M, ζ )� Rζ for
the fiber at ζ , that

ρ
Ŵ
(M, ζ ) =

∫

h∈Rζ

ρ
V̂

NJΨ
(gM,ζ + h, ζ ) dRζ

= 1

2π
ρCζ (0) · ρWζ (M) · NJp1(M, ζ )

∫

h∈Rζ

ρRζ (h) dRζ

= 1

2π
ρCζ (0) · ρWζ (M) · NJp1(M, ζ )

as claimed. Replacing in (18.17), we therefore obtain

ρ
V̂

NJΨ
(gM,ζ + h, ζ )= ρ

Ŵ
(M, ζ ) ρRζ (h). �

Lemma 18.12 Let cζ denote the expectation of det(MM∗) with respect to ρWζ . We
have

ρ
Ŵ

NJp2
(M, ζ )= ρS(Cn+1)(ζ ) · ρ̃Wζ (M),

where ρS(Cn+1)(ζ ) = cζ
2π ρCζ (0) is the pushforward density of ρ

Ŵ
with respect to

p2 : W → S(Cn+1), and where the conditional density ρ̃Wζ on the fiber Wζ of p2 is
given by

ρ̃Wζ (M)= c−1
ζ · det

(
MM∗)ρWζ (M).

Proof Lemma 17.16 states that

NJp1

NJp2
(M, ζ )= det

(
MM∗).

Combining this with Proposition 18.11, we get

ρ
Ŵ

NJp2
(M, ζ )= 1

2π
ρCζ (0) · ρWζ (M) · det

(
MM∗).
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Integrating over Wζ we get ρS(Cn+1)(ζ )= 1
2π ρCζ (0) · cζ , and finally (cf. (17.11))

ρ̃Wζ (M)= ρ
Ŵ
(M, ζ )

ρS(Cn+1)(ζ )NJp2(M, ζ )
= c−1

ζ · ρWζ (M) · det
(
MM∗),

as claimed. �

We can finally complete the proof of the main technical result of this chapter.

Proof of Theorem 18.4 The claimed formula (18.6) for the pushforward density ρM

of ρ
Ŵ

with respect to p1 : Ŵ →M immediately follows from Proposition 18.11 by
integrating ρ

Ŵ
/NJp1 over the fibers of p1; compare (17.10).

Moreover, Lemma 18.12 shows that the conditional density ρ̃Wζ has the form
stated in (18.8). We have thus filled the two gaps in the outline of the proof given in
Sect. 18.1.1. �

We close this section by providing a proof of Lemma 17.19 as well as of Propo-
sition 17.21(a), both tasks that we postponed in the previous chapter.

We begin by noting that the fibers of Ψ allow for a transparent description. In-
deed, for (q, ζ ) ∈ V̂ we have the decomposition q = g + h with g ∈ Lζ and h ∈Rζ

according to (16.9). If Ψ (q, ζ )= (M, ζ ), then g is uniquely determined by (M, ζ )

(by (18.3)). It follows that the fiber of Ψ over (M, ζ ) is in bijective correspondence
with the space Rζ as follows:

Rζ → Ψ−1(M, ζ ), h �→ (gM,ζ + h, ζ ). (18.18)

Proposition 18.13 The conditional distribution on the fiber of Ψ over (M, ζ ) ∈ Ŵ

is induced from the Gaussian in Rζ via the bijection (18.18).

Proof By the definition (17.11) of the conditional distributions on fibers we have
that the density ρ̃

V̂ζ
satisfies, for (q, ζ ) ∈ψ−1(M, ζ )= V̂ζ ,

ρ̃
V̂ζ

(q, ζ )= ρ
V̂
(q, ζ )

ρ
Ŵ
(M, ζ )NJΨ (q, ζ )

= ρRζ (h),

where q decomposes as q = gM,ζ + h ∈ Lζ ⊕ Rζ , the last equality following by
Proposition 18.11. This proves (a). �

Proof of Lemma 17.19 Since we assume here ρHd to be standard Gaussian, the
induced distributions on Cζ ,Lζ , and Rζ are standard Gaussian as well. Hence
ρWζ equals the standard Gaussian distribution on the fiber Wζ . Moreover, ρCζ (0)=



18.2 Smoothed Analysis of LV 377

(
√

2π)−2n. Therefore, using the second statement in Proposition 18.11, we get

ρ
Ŵ
(M, ζ ) = 1

2π
ρCζ (0) · ρWζ (M) · NJp1(M, ζ )

= 1

2π

1

(2π)n

1

(2π)n
2 exp

(
−1

2
‖M‖2

F

)
· NJp1(M, ζ )

= 1

2π
ϕM (M) · NJp1(M, ζ ),

where ϕM denotes the standard Gaussian distribution on M . It follows from the
definition (17.19) of standard distribution (taking D = 1 there, since we are dealing
with Ŵ ) that ρ

Ŵ
is the density of this distribution on Ŵ . �

Proof of Proposition 17.21(a) Let us denote by ρBP the density for the distribution
of the pairs (q, ζ ) ∈ V̂ returned by Algorithm 17.6.

Pairs are drawn from ρBP by first drawing (M, ζ ) from a marginal distribution

ρŴ
BP on Ŵ and then drawing (q, ζ ) from the conditional distribution on the fiber

Ψ−1(M, ζ ) (recall Remark 17.11). Draws from the marginal ρŴ
BP are likewise ob-

tained by first drawing M from the standard Gaussian ϕM on M and then draw-
ing ζ from the uniform distribution on M−1(0) ∩ S(Cn+1) (which is almost cer-

tainly S
1). From here it follows that ρŴ

BP is the standard distribution on Ŵ . Indeed,
Lemma 17.18(b) applied to Ŵ states that the pushforward of the standard distribu-
tion on Ŵ with respect to p1 : Ŵ → M equals the standard Gaussian distribution
on M , and part (d) of the same lemma ensures that the conditional distribution
on the fiber p−1

1 (M) equals the uniform distribution on M−1(0)∩ S(Cn+1). Hence
the standard distribution on Ŵ decomposes with respect to p1 in the same manner

as ρŴ
BP.

A similar argument shows that ρst and ρBP decompose in the same manner with
respect to the linearization Ψ : V̂ → Ŵ . Indeed, the pushforward of ρst with respect
to Ψ is, by Lemma 17.19, the standard distribution on Ŵ , showing that the marginals
coincide. The conditionals for pairs (M, ζ ) coincide as well, since in the case of ρBP

these are the standard Gaussian in Rζ by construction and in the case of ρst they are
the same distribution by Proposition 18.13. �

18.2 Smoothed Analysis of LV

The smoothed analysis of LV, that is, Theorem 18.1, is shown similarly to its
average-case analysis.

Proof of Theorem 18.1 Fix f ∈ S(Hd). Reasoning as in the proof of Proposi-
tion 17.26 and using ‖f ‖ ≤ ‖f ‖ + ‖f − f ‖ ≤ 1 + T , we show that
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E

f∼NT (f ,σ 2I)
K(f )≤ 188D3/2 (T + 1)T

PT,σPT,1
E

f∼N(f ,σ 2I)
E

g∼N(0,I)

(∫ 1

0

μ2
2(qt )

‖qt‖ dt

)

= 188D3/2 (T + 1)T

PT,σPT,1

∫ 1

0
E

qt∼N(qt ,σ
2
t I)

(
μ2

2(qt )

‖qt‖
)
dt

with qt = tf and σ 2
t = (1 − t)2 + σ 2t2. We now apply Theorem 18.4 to deduce

∫ 1

0
E

qt∼N(qt ,σ
2
t I)

(
μ2

2(qt )

‖qt‖2

)
dt ≤ e(n+ 1)

2

∫ 1

0

dt

(1 − t)2 + σ 2t2
= eπ(n+ 1)

4σ
.

Consequently, using Lemma 17.25, we get

Ef∼NT (f ,σ 2I)K(f )≤ 188D3/2 · 4 · (2N +√
2N

) eπ(n+ 1)

4σ
,

which, combined with the O(N) cost of each iteration in LV, proves the assertion. �

18.3 Condition-Based Analysis of LV

The last two results stated in the introduction of this chapter involve homotopies
on which one endpoint of the homotopy segment is fixed, not randomized. The
following result provides the major stepping stone in their proofs.

Theorem 18.14 For g ∈ S(Hd) \Σ we have

E
f∼N(0,I)

(
dS(f, g)

∫ 1

0
μ2

av(qτ ) dτ

)
≤ 639D3/2N(n+ 1)μ2

max(g)+ 0.02.

The idea for proving Theorem 18.14 is simple. For small values of τ the system
qτ is close to g, and therefore, the value of μ2

av(qτ ) can be bounded by a small
multiple of μ2

max(g). For the remaining values of τ , the corresponding t = t (τ )

is bounded away from 0, and therefore, so is the variance σ 2
t in the distribution

N(qt , σ
2
t I) for qt . This allows one to control the denominator on the right-hand side

of Theorem 18.4 when using this result. Here are the precise details.
In the following fix g ∈ S(Hd) \ Σ . First note that we may again replace

the Gaussian distribution of f on Hd by the truncated Gaussian NT (0, I).
As in Sect. 17.7 we choose T := √

2N . Recall also from this section the proba-
bility PT,1, which is at least 1/2; cf. Lemma 17.25. We therefore need to bound the
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quantity

Qg := E
f∼NT (0,I)

(
d(f,g)

∫ 1

0
μ2

av(qτ ) dτ

)
.

To simplify notation, we set ε := 1
8 ,C := 1

32 , λ := 0.00853 . . . as in the proof of
Theorem 17.3 and define

δ0 := λ

D3/2μ2
max(g)

, tT := 1

1 + T + 1.00001 T
δ0

.

Proposition 18.15 We have

Qg ≤ (1 + ε)2δ0 μ
2
max(g)+

T

PT,1

∫ 1

tT

E
qt∼N(qt ,t

2I)

(
μ2

av(qt )

‖qt‖2

)
dt,

where qt = (1 − t)g.

Proof Let ζ (a), . . . , ζ (D) be the zeros of g and denote by (qτ , ζ
(j)
τ )τ∈[0,1] the lifting

of Ef,g in V corresponding to the initial pair (g, ζ (j)) and final system f ∈Hd \Σ .
Equation (17.5) for i = 0 in the proof of Theorem 17.3 shows the following: for

all j and all τ ≤ λ

dS(f,g)D
3/2μ2

norm(g,ζ (j))
we have

μnorm
(
qτ , ζ

(j)
τ

)≤ (1 + ε)μnorm
(
g, ζ (j)

)≤ (1 + ε)μmax(g).

In particular, this inequality holds for all j and all τ ≤ δ0
dS(f,g)

, and hence for all
such τ , we have

μav(qτ )≤ (1 + ε)μmax(g). (18.19)

Splitting the integral in Qg at τ0(f ) := min{1, δ0
dS(f,g)

}, we obtain

Qg = E
f∼NT (0,I)

(
dS(f, g)

∫ τ0(f )

0
μ2

av(qτ ) dτ

)

+ E
f∼NT (0,I)

(
dS(f, g)

∫ 1

τ0(f )

μ2
av(qτ ) dτ

)
.

Using (18.19) we bound the first term on the right-hand side as follows:

E
f∼NT (0,I)

(
dS(f, g)

∫ τ0(f )

0
μ2

av(qτ ) dτ

)
≤ (1 + ε)2 δ0μmax(g)

2.

For bounding the second term, we assume without loss of generality that τ0(f )≤ 1.
It then follows from (17.1) and Lemma 17.5 that for a fixed f ,

dS(f, g)

∫ 1

τ0(f )

μ2
av(qτ ) dτ ≤

∫ 1

t0(f )

‖f ‖μ
2
av(qt )

‖qt‖2
dt,
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where t0(f ) is given by

t0(f )= 1

1 + ‖f ‖(sinα cot δ0 − cosα)
, α := dS(f, g).

Now note that ‖f ‖ ≤ T , since we draw f from NT (0, I). This will allow us to bound
t0(f ) from below by a quantity independent of f . For ‖f ‖ ≤ T we have

0 ≤ sinα cot δ0 − cosα ≤ 1

sin δ0
− cosα ≤ 1

sin δ0
+ 1,

and moreover, sin δ0 ≥ 0.9999978 δ0, since δ0 ≤ 2−3/2λ≤ 0.0037. We can therefore
bound t0(f ) as

t0(f )≥ 1

1 + T + T
sin δ0

≥ 1

1 + T + 1.00001 T
δ0

= tT .

We can now bound the second term in Qg as follows:

E
f∼NT (0,I)

(
dS(f, g)

∫ 1

τ0(f )

μ2
av(qτ ) dτ

)

≤ E
f∼NT (0,I)

(
T

∫ 1

tT

μ2
av(qt )

‖qt‖2
dt

)

= T

∫ 1

tT

Ef∼NT (0,I)

(
μ2

av(qt )

‖qt‖2

)
dt ≤ T

PT,1

∫ 1

tT

E
f∼N(0,I)

(
μ2

av(qt )

‖qt‖2

)
dt.

To conclude, note that for fixed t and when f is distributed following N(0, I), the
variable qt = (1− t)g+ tf follows the Gaussian N(qt , t

2I), where qt = (1− t)g. �

Proof of Theorem 18.14 We only need to estimate Qg , for which we use the right-
hand side of Proposition 18.15. In order to bound the first term there, we note that

(1 + ε)2δ0 μ
2
max(g)= (1 + ε)2λD−3/2 ≤ (1 + ε)2λ≤ 0.02.

For bounding the second term we apply Theorem 18.4 to deduce that

∫ 1

tT

E
qt∼N(qt ,t

2I)

(
μ2

av(qt )

‖qt‖2

)
dt ≤

∫ 1

tT

e(n+ 1)

2t2
dt = e(n+ 1)

2

(
1

tT
− 1

)

= e(n+ 1)T

2

(
1 + 1.00001

δ0

)
.

Replacing this bound in Proposition 18.15, we obtain

Qg ≤ eT 2(n+ 1)

2PT,1

(
1 + 1.00001

λ
D3/2μ2

max(g)

)
+ 0.02
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≤ 2eN(n+ 1)D3/2μ2
max(g)

(
1

D3/2
+ 1.00001

λ

)
+ 0.02

≤ 639N(n+ 1)D3/2μ2
max(g)+ 0.02,

where we used D ≥ 2 for the last inequality. �

Proof of Theorem 18.2 The result follows immediately by combining Proposi-
tion 17.23 with Theorem 18.14, with the roles of f and g swapped. �

18.4 A Near-Solution to Smale’s 17th Problem

In this section we prove the last main result of this chapter, namely Theorem 18.3.

18.4.1 A Deterministic Homotopy Continuation

The analysis of the previous section allows one to eliminate the randomness from
the system in one of the extremes of the homotopy segment. Unfortunately, though,
it does not, in principle, allow one to do so for the choice of the zero (or, equiv-
alently, of the lifting of this segment in V ) of this system. Therefore, it cannot be
directly used to analyze the average complexity of a homotopy with a given initial
pair (g, ζ ).

There is one particular case, however, in which this analysis can be used. Recall
the system Ū introduced in Example 16.20,

Ūi = 1√
2n

(
X

di
0 −X

di
i

)
, i = 1, . . . , n,

along with its zeros z1, . . . , zD ∈ P
n, where the ith components of the z’s run

through all possible di th roots of unity. We set z1 = [(1, . . . ,1)].
The various invariances we saw for this system are now helpful. Denote by

KŪ(f ) the number of iterations performed by ALH with input (f, Ū , z1). The fol-
lowing result is an immediate consequence of Lemma 16.21.

Lemma 18.16 Let g ∈Hd, ζ ∈ P
n be a zero of g, and u ∈ U (n+ 1). Then, for all

f ∈Hd, we have K(f,g, ζ )=K(uf,ug,uζ ). �

Proposition 18.17 KŪ(f )=K(f, Ū , z1) satisfies

E
f∼N(0,I)

KŪ (f )= E
f∼N(0,I)

1

D

D∑

j=1

K(f, Ū , zj ).
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Proof Let uj ∈U (n+1) be such that zj = uj z1. Then uj Ū = Ū and Lemma 18.16
implies that

K(f, Ū , z1)=K(ujf,uj Ū , uj z1)=K(ujf, Ū , zj ).

It follows that

KŪ(f )=K(f, Ū , z1)= 1

D

D∑

j=1

K(ujf, Ū , zj ).

The assertion follows now, since for all integrable functions F : Hd → R and all
u ∈U (n+ 1), we have

E
f∼N(0,I)

F (f )= E
f∼N(0,I)

F (uf ),

due to the unitary invariance of N(0, I). �

We consider the following algorithm MD (moderate degree).

Algorithm 18.1 MD
Input: f ∈Hd

Preconditions: f �= 0

run ALH on input (f, Ū , z1)

Output: z ∈ (Cn+1)∗
Postconditions: The algorithm halts if the lifting of Ef,Ū at z1 does not cut Σ ′. In this

case, [z] ∈ P
n is an approximate zero of f .

Proposition 18.17, together with the bound for μnorm(Ū , z1) we derived in
Sect. 16.4, yields bounds for the average cost of MD.

Theorem 18.18 Let costMD(f ) denote the cost of Algorithm MD with input f ∈Hd.
Then

E
f∼N(0,I)

costMD(f )=O
(
D3 N2nD+1).

Proof Theorem 17.3, together with the definition of μ2
av, implies for g = Ū that

1

D

D∑

i=1

K(f, Ū , zi )≤ 188D3/2 dS(f, Ū )

∫ 1

0
μ2

av(qτ ) dτ.
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Using Proposition 18.17 we get

E
f∼N(0,I)

KŪ (f )≤ 188D3/2
E

f∼N(0,I)

(
dS(f, Ū)

∫ 1

0
μ2

av(qτ ) dτ

)
.

Applying Theorem 18.14 with g = Ū we obtain

E
f∼N(0,I)

KŪ (f )=O
(
D3Nnμ2

max(Ū)
)
.

We now plug in the bound μ2
max(Ū)≤ 2(n+ 1)D of Lemma 16.22 to obtain

E
f∼N(0,I)

KŪ (f )=O
(
D3NnD+1).

Multiplying by O(N) to take into account the cost of each iteration completes the
proof. �

Algorithm MD is efficient when D is small, say, when D ≤ n. Otherwise, it has a
cost exponential in D. This is an unusual feature. The common cost of zero-finding
algorithms is polynomial in D but exponential in n. We will take advantage of this
fact to use, for D > n, a different approach with this kind of complexity bound. The
combination of both procedures yields the desired near-polynomial cost.

18.4.2 An Elimination Procedure for Zero-Finding

For our second procedure we will rely on an algorithm due to Jim Renegar.
Before giving the specification of Renegar’s algorithm, we need to fix some nota-

tion. We shall identify P
n
0 := {[(z0, . . . , zn)] ∈ P

n | z0 �= 0} with C
n via the bijection

[(z0, . . . , zn)] �→ z := (z1/z0, . . . , zn/z0). For z ∈ P
n
0 we shall denote by ‖z‖aff the

Euclidean norm of z ∈C
n, that is,

‖z‖aff := ‖z‖ =
(

n∑

i=1

∣∣∣∣
zi

z0

∣∣∣∣

2
) 1

2

,

and we put ‖z‖aff = ∞ if z ∈ P
n \ Pn

0 . Furthermore, for z, y ∈ P
n
0 we shall write

daff(z, y) := ‖z−y‖, and we set daff(z, y) :=∞ otherwise. An elementary argument
shows that

dP(z, y)≤ daff(z, y) for all z, y ∈ P
n
0 .

By a δ-approximation of a zero ζ ∈ P
n
0 of f ∈Hd we understand a z ∈ P

n
0 such that

daff(z, ζ )≤ δ.
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Renegar’s algorithm Ren takes as input f ∈ Hd and R,δ ∈ R with R ≥ δ >

0, decides whether its zero set ZP(f ) ⊆ P
n is finite, and if so, computes δ-

approximations z to at least all zeros ζ of f satisfying ‖ζ‖aff ≤R. We may formally
specify this algorithm as follows.

Algorithm 18.2 Ren
Input: f ∈Hd, R,δ ∈R

Preconditions: f �= 0, R ≥ δ > 0

Output: Either � ∈N and z1, . . . , z� ∈ P
n
0 or tag INFINITE

Postconditions: If tag INFINITE is returned, then ZP(f ) is infinite. Otherwise, we have
{ζ ∈ZP(f ) | ‖ζ‖aff ≤R} = {ζ1, . . . , ζ�}, daff(ζi , zi )≤ δ for i = 1, . . . , �.

It is known that the cost of Ren on input (f,R, δ) is bounded by

O
(
nD4(logD)

(
log log

R

δ

)
+ n2D4

(
1 +∑

i di

n

)4)
. (18.20)

Algorithm Ren finds δ-approximations, not necessarily approximate zeros in the
sense of Definition 16.34. This is not a hindrance; the following result relates these
two forms of approximation.

Proposition 18.19 Let z ∈ P
n
0 be a δ-approximation of a zero ζ ∈ P

n
0 of f .

If D3/2μnorm(f, z)δ ≤ 1
28 , then z is an approximate zero of f .

Proof From the hypothesis and Proposition 16.2 with g = f we obtain that
μnorm(f, ζ )≤ (1+ ε)μnorm(f, z) with ε = 1

7 . We are going to apply Theorem 16.38
with r = 0.99500, δ(r)= 0.17333 . . . , u(r)= 0.17486 . . . (see Table 16.1). Writing
C := ε

4 = 1
28 , we can bound d := dP(z, ζ )≤ daff(z, ζ )≤ δ by

δ ≤ C

D3/2μnorm(f, z)
≤ C

23/2
< 0.0127 ≤ δ(r).

Moreover,

1

2
D3/2μnorm(f, ζ )d ≤ 1

2
(1 + ε)D3/2μnorm(f, z)d ≤ 1

2
(1 + ε)C < 0.021 ≤ u(r).

Hence γproj(f, ζ )dP(z, ζ )≤ u(r) by Theorem 16.1. It follows from Theorem 16.38
that z is an approximate zero of f . �

To find an approximate zero of f we may therefore use Ren(R, δ) iteratively
for R = 4k and δ = 2−k for k = 1,2, . . . until we are successful. More precisely,
we consider the following algorithm (here, and for the rest of this section, ε = 1

7
and C = 1

28 ):
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Algorithm 18.3 ItRen
Input: f ∈Hd

Preconditions: f �= 0

for k = 1,2, . . . do
run Ren(4k,2−k) on input f

for all δ-approximations z found
if D3/2μnorm(f, z)δ ≤ C return z and halt

Output: z ∈ (Cn+1)∗
Postconditions: The algorithm halts if f /∈Σ and ZP(f ) ∩ P

n
0 �= ∅. In this case [z] ∈ P

n

is an approximate zero of f .

Let Σ0 :=Σ ∪{f ∈Hd | Z(f )∩P
n
0 = ∅}. It is obvious that ItRen stops on inputs

f /∈ Σ0. In particular, ItRen stops almost surely. We next show that it does so, on
average, with cost polynomial in N and D.

Proposition 18.20 Let costItRen(f ) denote the running time of algorithm ItRen on
input f . Then,

E
f∼N(0,I)

costItRen(f )= (DNn)O(1).

Towards the proof of Proposition 18.20 we first bound the probability Probfail
that the main loop of ItRen, with parameters R and δ, fails to output an approximate
zero for a standard Gaussian input f ∈Hd. We do so in a sequence of lemmas.

Lemma 18.21 Let E denote the set of f ∈Hd such that at least one z on the output
list of Ren(R, δ) on input f satisfies D3/2μnorm(f, z)δ > C. Then

Probfail ≤ Prob
f∈Hd

{
min

ζ∈Z(f )
‖ζ‖aff ≥R

}
+ ProbE .

Proof We may assume that Z(f ) is finite. Let z1, . . . , z� be the output of Ren(R, δ)

on input f . If � = 0, then by the specification of ItRen, all the zeros ζ of f sat-
isfy ‖ζ‖aff > R. Otherwise, � ≥ 1. If ItRen fails, then all zi fail the test, so that
D3/2μnorm(f, zi)δ > C for i = 1, . . . , �. In particular, at least one z on the output
list satisfies this, and hence f ∈ E . �

Lemma 18.22 For R > 0 and standard Gaussian f ∈Hd we have

Prob
f∈Hd

{
min

ζ∈Z(f )
‖ζ‖aff ≥R

}
≤ n

R2
.

Proof Choose f ∈ Hd standard Gaussian and pick one of the D zeros ζ
(a)
f of f

uniformly at random; call it ζ . Then the resulting distribution of (f, ζ ) in V has
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density ρst. Lemma 17.18 (adapted to V ) implies that ζ is uniformly distributed
in P

n. Therefore,

Prob
f∈Hd

{
min
i

∥∥ζ (a)
f

∥∥
aff ≥R

}
≤ Prob

ζ∈Pn

{‖ζ‖aff ≥R
}
.

To estimate the right-hand-side probability we set Pn−1 := {z ∈ P
n | z0 = 0}, and we

define θ by R = tan θ . It is straightforward to check that

‖ζ‖aff ≥R ⇐⇒ dP
(
ζ,Pn−1)≤ π

2
− θ.

Therefore,

Prob
ζ∈Pn

{‖ζ‖aff ≥R
}= vol{z ∈ P

n | dP(z,Pn−1)≤ π
2 − θ}

vol(Pn)
.

In Lemma 20.8 we shall provide bounds on the volume of the tubes in P
n around

P
n−1. Using this and vol(Pn)= πn/n!, cf. (17.9), we see that

Prob
ζ∈Pn

{‖ζ‖aff ≥R
} ≤ vol(Pn−1) vol(P1)

vol(Pn)
sin2

(
π

2
− θ

)

= n cos2 θ = n

1 +R2
≤ n

R2
. �

Lemma 18.23 We have ProbE =O(DN2n3D6δ4).

Proof Assume that f ∈ E . Then, there exist ζ, z ∈ P
n
0 such that f (ζ ) = 0,

‖ζ‖aff ≤R, daff(ζ, z)≤ δ, Ren returns z, and D3/2μnorm(f, z)δ > C.
We proceed by cases. Suppose first that δ ≤ C

D3/2μnorm(f,ζ )
. Then, by Proposi-

tion 16.2 (with ε = 1/7, C = 1/28),

(1 + ε)−1C < (1 + ε)−1D3/2μnorm(f, z)δ ≤D3/2μnorm(f, ζ )δ,

and hence

μmax(f )≥ μnorm(f, ζ )≥ (1 + ε)−1CD−3/2δ−1.

If, on the other hand, δ > C

D3/2μnorm(f,ζ )
, then we have

μmax(f )≥ μnorm(f, ζ )≥ CD−3/2δ−1.

Therefore, for any f ∈ E ,

μmax(f )≥ (1 + ε)−1CD−3/2δ−1 = 1

32
D−3/2δ−1.
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Proposition 17.31 shows that Probf {μmax(f ) ≥ ρ−1} = O(DN2n3ρ4) for all
ρ > 0. Therefore, we get

ProbE ≤ Prob
f∈Hd

{
μmax(f )≥ 1

32
D−3/2δ−1

}
=O

(
DN2n3D6δ4),

as claimed. �

From Lemma 18.22 and Lemma 18.23 we immediately obtain the following.

Lemma 18.24 We have Probfail =O(DN2n3D6δ4 + nR−2). �

Proof of Proposition 18.20 The probability that ItRen stops in the (k + 1)th loop is
bounded above by the probability pk that Ren(4k,2−k) fails to produce an approxi-
mate zero. Lemma 18.24 tells us that

pk =O
(
DN2n3D6 16−k

)
.

If Ak denotes the running time of the (k + 1)th loop, we conclude that

E
f∼N(0,I)

costItRen(f )≤
∞∑

k=0

Akpk.

According to (18.20), Ak is bounded by

O
(
nD4(logD)(log k)+ n2D4

(
1 +∑

i di

n

)4

+ (
N + n3)D

)
,

where the last term accounts for the cost of the tests. The assertion now fol-
lows by distributing the products Akpk and using that the series

∑
k≥1 16−k , and

∑
k≥1 16−k log k have finite sums. �

18.4.3 Some Inequalities of Combinatorial Numbers

Theorem 18.18 and Proposition 18.20 yield bounds (exponential in D and n, respec-
tively) for the cost of computing an approximate zero. We next relate these bounds
to bounds purely in terms of the input size N .

Lemma 18.25

(a) For D ≤ n, n≥ 4, we have

nD ≤
(
n+D

D

)lnn

.
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(b) For D2 ≥ n≥ 1 we have

lnn≤ 2 ln ln

(
n+D

n

)
+ 4.

(c) For 0 < c < 1 there exists K such that for all n,D,

D ≤ n1−c =⇒ nD ≤
(
n+D

n

)K

.

(d) For D ≤ n we have

nD ≤N2 ln lnN+O(1).

(e) For n≤D we have

Dn ≤N2 ln lnN+O(1).

Proof Stirling’s formula states that n! = √
2πnn+ 1

2 e−ne
Θn
12n with Θn ∈ (0,1). Let

H(x)= x ln 1
x
+ (1 − x) ln 1

1−x
denote the binary entropy function, defined for 0 <

x < 1. By a straightforward calculation we get from Stirling’s formula the following
asymptotics for the binomial coefficient: for any 0 <m< n we have

ln

(
n

m

)
= nH

(
m

n

)
+ 1

2
ln

n

m(n−m)
− 1 + εn,m, (18.21)

where −0.1 < εn,m < 0.2. This formula holds as well for the extension of binomial
coefficients on which m is not necessarily integer.

(a) The first claim is equivalent to eD ≤ (
n+D
D

)
. The latter is easily checked for

D ∈ {1,2,3} and n≥ 4. So assume n≥D ≥ 4. By monotonicity it suffices to show
that eD ≤ (2D

D

)
for D ≥ 4. Equation (18.21) implies

ln

(
2D

D

)
> 2D ln 2 + 1

2
ln

2

D
− 1.1,

and the right-hand side is easily checked to be at least D, for D ≥ 4.
(b) Put m := √

n. If D ≥m, then
(
n+D
n

) ≥ (
n+�m�

n

)
, so it is enough to show that

lnn≤ 2 ln ln
(
n+�m�

n

)+ 4. Equation (18.21) implies

ln

(
n+ �m�

n

)
≥ ln

(
n+m

n

)
≥ (n+m)H

(
m

n+m

)
+ 1

2
ln

1

m
− 1.1.

The entropy function can be bounded as

H

(
m

n+m

)
≥ m

n+m
ln

(
1 + n

m

)
≥ m

n+m
lnm.
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It follows that

ln

(
n+ �m�

n

)
≥ 1

2

√
n lnn− 1

4
lnn− 1.1 ≥ 1

4

√
n lnn,

the right-hand inequality holding for n≥ 10. Hence

ln ln

(
n+ �m�

n

)
≥ 1

2
lnn+ ln lnn− ln 4 ≥ 1

2
lnn− 2,

the right-hand inequality holding for n≥ 2. This proves the second claim for n≥ 10.
The cases n≤ 9 are easily directly checked.

(c) Writing D = nδ, we obtain from (18.21),

ln

(
n+D

n

)
= (n+D)H

(
δ

1 + δ

)
− 1

2
lnD +O(1).

Estimating the entropy function yields

H

(
δ

1 + δ

)
≥ δ

1 + δ
ln

(
1 + 1

δ

)
≥ δ

2
ln

1

δ
= δε

2
lnn,

where ε is defined by δ = n−ε . By assumption, ε ≥ c. From the last two lines we get

1

D lnn
ln

(
n+D

n

)
≥ c

2
− 1 − c

2D
+O

(
1

lnn

)
.

In the case c ≤ 3
4 we have D ≥ n1/4, and we bound the above by

c

2
− 1

2n1/4
+O

(
1

lnn

)
,

which is greater than c/4 for sufficiently large n. In the case c ≥ 3
4 we bound as

follows:

1

D lnn
ln

(
n+D

n

)
≥ c

2
− 1 − c

2
+O

(
1

lnn

)
= c− 1

2
+O

(
1

lnn

)
≥ 1

5

for sufficiently large n.
We have shown that for 0 < c < 1 there exists nc such that for n≥ nc, D ≤ n1−c ,

we have

nD ≤
(
n+D

n

)Kc

,

where Kc := max{4/c,5}. By increasing Kc we can achieve that the above inequal-
ity holds for all n,D with D ≤ n1−c.
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(d) Clearly, N ≥ (
n+D
n

)
. If D ≤√

n, then by part (c), there exists K such that

nD ≤
(
n+D

n

)K

≤NK.

Otherwise, D ∈ [√n,n], and the desired inequality is an immediate consequence of
parts (a) and (b).

(e) Use
(
n+D
n

)= (
n+D
D

)
and swap the roles of n and D in part (d) above. �

We finally proceed to the proof of Theorem 18.3.

Proof of Theorem 18.3 We use Algorithm MD if D ≤ n and Algorithm ItRen if
D > n.

Theorem 18.18 combined with Lemma 18.25(d) implies that

E
f∼N(0,I)

costMD(f )=N2 ln lnN+O(1) if D ≤ n. (18.22)

Note that this bound is nearly polynomial in N . Moreover, if D ≤ n1−c for some
fixed 0 < c < 1, then Lemma 18.25(c) implies

E
f∼N(0,I)

(f )=NO(1). (18.23)

In this case, the average cost is polynomially bounded in the input size N .
For the case D > n we use Proposition 18.20 together with the inequality

DO(1) ≤ DO(n) ≤ NO(log logN), which follows from Lemma 18.25(e). Moreover,
in the case D ≥ n1+ε , Lemma 18.25(c) implies D ≤Dn ≤NO(1). �



Chapter 19
Real Polynomial Systems

The development of the preceding three chapters focused on complex systems of
homogeneous polynomial equations. The main algorithmic results in these chapters
were satisfying: we can compute an approximate zero of a system f in average
(and even smoothed) randomized polynomial time. Central in these results were the
consideration of complex numbers for both the coefficients of the input system and
the components of the computed approximate zero.

For a variety of purposes, however, one is interested in real zeros of systems with
real coefficients. An observation previous to any consideration about the computa-
tion of any such zero is that in this context there are systems having no zeros at all.
For instance, the polynomial X2

0 + X2
1 + X2

2 has no zeros in P(R3). Furthermore,
this absence of zeros is not a phenomenon occurring almost nowhere. The simplest
example is given by the quadratic polynomials

aX2
1 + bX0X1 + cX2

0

with a, b, c ∈ R, not all three of them zero. Such a polynomial has two zeros in
P(R2) if b2 > 4ac, one zero if b2 = 4ac, and no zeros at all if b2 < 4ac. Therefore—
and this is a situation we have already met when dealing with linear programming—
the issue of feasibility precedes that of computing zeros.

For systems of n homogeneous polynomials in n+ 1 variables one can consider
a problem more demanding than feasibility, namely, to count how many zeros the
system has. Let us denote by HR

d the linear space of these systems for a fixed de-
gree pattern d = (d1, . . . , dn). The goal of this chapter is to exhibit and analyze an
algorithm for zero-counting. Even though we will not pursue the issue here, the
motivating idea for this algorithm was the possibility to implement it with finite
precision (see Remark 19.28 at the end of the chapter). A measure of conditioning
was therefore a must, and not unexpectedly, this measure appears in the complexity
analysis of the algorithm as well.

This measure follows a pattern we have already studied. Recall the discussion in
Sect. 6.1 on conditioning for problems with a discrete set of values. In accordance
with it, we say that a system f ∈HR

d is ill-posed when arbitrary small perturbations
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of f can change its number of real zeros. We observe that this is the case if and
only if f has multiple real zeros in P(Rn+1). Let ΣR ⊂HR

d be the set of ill-posed
systems. We define

κ(f ) := ‖f ‖
d(f,ΣR)

. (19.1)

In Sect. 19.2 below we will relate κ(f ) to the quantities μnorm(f, x) via a charac-
terization of the former akin to a condition number theorem.

Otherwise, the main result of this chapter is the following.

Theorem 19.1 There exists an iterative algorithm that given an input f ∈ HR

d \
ΣR:

(a) Returns the number of real zeros of f in P(Rn+1).
(b) Performs O(log2(nDκ(f ))) iterations and has a total cost (number of arith-

metic operations) of

O
((

C(n+ 1)D2κ(f )2)2(n+1)
N log2

(
nDκ(f )

))

for some universal constant C.
(c) It can be modified to return, in addition, at the same cost, and for each real zero

ζ ∈ P(Rn+1) of f , an approximate zero x of f with associated zero ζ .

In addition to Theorem 19.1 we present in this chapter some additional results
related to real polynomial systems. Firstly, we profit from the tools developed in
Sects. 17.5 and 18.1 to give a short proof of a well-known result of Shub and Smale
giving the expected value for the output of the counting problem.

Theorem 19.2 The average number of zeros of a standard Gaussian random f ∈
HR

d (with respect to Weyl’s basis) in real projective space P(Rn+1) equals
√
D.

Secondly, we briefly describe and analyze an algorithm to decide feasibility of
underdetermined systems of real polynomials.

19.1 Homogeneous Systems with Real Coefficients

We will use for real systems of polynomials the same notation we used for com-
plex systems. Furthermore, we observe that a number of the notions and results we
proved for the latter carry over, with only natural modifications, to the real setting. In
particular, we may endow HR

d with the Weyl inner product defined in Sect. 16.1 and
consider for f ∈HR

d and x ∈ R
n+1 the quantity μnorm(f, x) defined in Sect. 16.7.

The arguments used to show unitary invariance for both 〈 , 〉 and μnorm carry over
to show invariance, now under the action of the orthogonal group O(n+ 1).
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Fig. 19.1 Newton’s operator
on S

n

Newton’s method can be defined to act on the sphere Sn. Indeed, for f ∈HR

d and
x ∈ S

n we let

x := x −Df (x)|−1
TxS

nf (x)

and put Nf (x) := x
‖x‖ ; see Fig. 19.1. In this way we get the operator Nf : Sn \ΛR

f →
S
n, where ΛR

f := {x ∈ S
n |Df (x)|TxS

n not invertible}.
The invariant γproj(f, x) is defined as in Sect. 16.6, and Theorem 16.1 carries

over unchanged. The notion of approximate zero is defined in the same manner
(part (c) of Theorem 19.1 above refers to this notion), and the projective γ -theorem
(Theorem 16.38) holds as well.

The covering map S
n → P(Rn+1) has degree 2. Hence, real projective zeros of

polynomial systems f ∈HR

d correspond to pairs of zeros (−ζ, ζ ) of the restriction
f|Sn of f to S

n. We will thus consider a system f ∈HR

d to be a (centrally symmetric)
mapping of Sn into R

n. In particular, the number #R(f ) of real projective zeros of
f ∈HR

d is equal to half the number of zeros of f in S
n. That is,

#R(f ) := ∣∣ZP(f )
∣∣= 1

2

∣∣ZS(f )
∣∣.

Our algorithm will thus compute #R(f ) by counting the number of points in ZS(f ).
The same reason is behind the use of dS(x, y) instead of dP(x, y), a choice that

has no consequences as long as the angle between x and y is at most π
2 .

The tangent spaces of Pn and S
n at x can be identified, and it will be convenient

to denote them by Tx := x⊥ = TxS
n = TxP

n.
For the rest of this chapter all systems f ∈HR

d considered are different from 0.

19.2 On the Condition for Real Zero-Counting

The goal of this section is to provide an explicit characterization of κ(f ) that will
be useful in calculations. We have similarly done so for C (A) (Theorems 6.27 and
Propositions 6.28 and 6.30) and for K (d) (Theorem 11.7).

The development in the previous chapters suggests that the condition numbers
μnorm(f, ζ ) for the zeros ζ ∈ S

n of f should play a role. But it is apparent that these
quantities cannot be the only ingredient. For in the first place, it may happen that
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Fig. 19.2 A poorly
conditioned system f

ZS(f )= ∅, in which case there would be no ingredient at all, but also because the
poor conditioning of a system f may be caused by the behavior of f away from
its zeros. Figure 19.2 gives an idea. Here f has only one zero ζ , and it is well
conditioned (has a small value of μnorm). Yet, a small perturbation of f will make
ξ a zero as well. That is, d(f,ΣR) is small, or equivalently, κ(f ) is large.

The situation is clear: f is poorly conditioned when there are points x for which
both ‖f (x)‖ is small and μnorm(f, x) is large. This inspires the following measure
of condition.

We define ν(f, x) ∈ (0,∞] by

ν(f, x) := ‖f ‖
(‖f ‖2μnorm(f, x)−2 + ‖f (x)‖2

2)
1/2

, (19.2)

the ∞ corresponding to division by 0, and

ν(f ) := max
x∈Sn

ν(f, x).

Note that ν(f, x)≥ μnorm(f, x) with ν(f, x)= μnorm(f, x) if and only if f (x)= 0.
Furthermore, ν(f ) =∞ if and only if there exists a zero ζ of f with μnorm(f, ζ )

=∞. The fact that we allow ν(f, x) to take the value ∞ is what allows us to use a
maximum in the definition of ν(f ). For ill-posed systems this maximum is attained
at an ill-posed zero of f .

Our characterization is the following.

Theorem 19.3 We have κ(f )= ν(f ) for all f ∈HR

d .

A first consequence of Theorem 19.3 is the following result.

Corollary 19.4 For all f ∈HR

d , ν(f )≥ 1.

Proof Since ΣR has points arbitrarily close to 0, we have d(f,ΣR) ≤ ‖f ‖ and
hence κ(f )≥ 1. Now use Theorem 19.3. �

Remark 19.5 It is worth noting that although ν(f ) is somehow related to the con-
dition number μmax(f ) or μav(f ) for complex polynomial systems, a result like
Theorem 19.3 does not hold for the latter. As we have seen (in Theorem 16.19),
a result of this kind holds for μnorm on the fibers of the zeros. It can be shown,
however, that it does not hold globally.
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Consider a point x ∈ S
n and a system f ∈HR

d . One may define a notion of ill-
posedness relative to the point x by taking

ΣR(x)=
{
f ∈HR

d | x is a multiple zero of f
}
,

the set of systems that are ill-posed at x. Note that ΣR(x) �= ∅ for all x ∈ S
n and that

ΣR = {
f ∈HR

d | f has a multiple zero in S
n
}=

⋃

x∈Sn

ΣR(x).

Note that for all λ �= 0, ν(λf )= ν(f ) and d(λf,ΣR)= |λ|d(f,ΣR). The same is
true relative to a point x ∈ S

n. We will therefore assume, without loss of generality,
that ‖f ‖ = 1, and denote by S(HR

d ) the unit sphere in HR

d .

Proposition 19.6 For all x ∈ S
n and f ∈ S(HR

d ),

ν(f, x)= 1

d(f,ΣR(x))
.

Proof For 0 ≤ i ≤ n, let ei = (0, . . . ,0,1,0, . . . ,0) denote the ith standard basis
vector. The group O(n+1) acts on HR

d ×S
n and leaves μnorm, κ and the distance to

ΣR( ) invariant. Therefore, we may assume without loss of generality that x = e0.
This implies that Te0S

n � span{e1, . . . , en}, and we may write the singular value
decomposition

diag

(
1√
di

)
Df (e0)|Te0S

n = [u1 . . . un]︸ ︷︷ ︸
U

⎡

⎢
⎣

σ1
. . .

σn

⎤

⎥
⎦V T

with U and V orthogonal and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Recall from Sect. 16.3 that
the stabilizer Oe0 is the subgroup of O(n + 1) leaving e0 invariant. Since Oe0 is
isomorphic to O(n) and acts on Te0S

n, we may as well assume that V = I. Note that
μnorm(f, e0)= σ−1

n , and therefore κ(f, e0)= (σ 2
n + ‖f (e0)‖2

2)
−1/2.

In what follows, for the sake of simplicity, we write Dgi(e0) instead of
Dgi(e0)|Te0S

n and we denote by Δ the matrix diag(
√
di).

For i = 1, . . . , n, let gi(x) := fi(x)−fi(e0)x
di
0 −√

diσnuinx
di−1
0 xn, where un =

(u1n, . . . , unn)
T.

Clearly, gi(e0) = 0 and Dgi(e0)en = 0, since ∂gi/∂xn(e0) = ∂fi/∂xn(e0) −√
diuinσn = 0. Thus, g = (g1, . . . , gn) ∈ΣR(e0). Moreover,

‖fi − gi‖2 =
(
di

di

)−1

fi(e0)
2 +

(
di

di − 1,1

)−1(√
diσnuin

)2 = fi(e0)
2 + σ 2

nu
2
in,

and hence, using ‖un‖ = 1,

‖f − g‖2 = ∥∥f (e0)
∥∥2

2 + σ 2
n = κ(f, e0)

−2.
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It follows that

d
(
f,ΣR(e0)

)≤ ‖f − g‖ = κ(f, e0)
−1.

For the reverse inequality, let g ∈ΣR(e0). Then, g(e0)= 0 and Dg(e0) is singu-
lar. We want to show that ‖f − g‖ ≥ κ(f, e0)

−1. To this end, we write

fi(x)= fi(e0)x
di
0 + ∂fi

∂x1
(e0)x

di−1
0 x1 + · · · + ∂fi

∂xn
(e0)x

di−1
0 xn +Qi(x)

with degx0
Qi ≤ di − 2 and, similarly,

gi(x)= ∂gi

∂x1
(e0)x

di−1
0 x1 + · · · + ∂gi

∂xn
(e0)x

di−1
0 xn +Ri(x).

Then

‖fi − gi‖2 ≥ fi(e0)
2 + 1

di

∥
∥Dfi(e0)−Dgi(e0)

∥
∥2

2

and hence

‖f − g‖2 ≥ ∥∥f (e0)
∥∥2

2 +
∥∥Δ−1Df (e0)−Δ−1Dg(e0)

∥∥2
F
.

By assumption, Δ−1Dg(e0) is singular. Hence, denoting by Singn the set of singular
n× n matrices and by dF the Frobenius distance on this set of matrices, we get

dF
(
Δ−1Df (e0),Δ

−1Dg(e0)
)≥ dF

(
Δ−1Df (e0),Singn

)= σn,

the equality holding by Corollary 1.19. It follows that

‖f − g‖2 ≥ ∥∥f (e0)
∥∥2

2 + σ 2
n = κ(f, e0)

−2. �

Proof of Theorem 19.3 Again we can assume f ∈ S(HR

d ). Note that

d(f,ΣR)= min
g∈ΣR

d(f,g)= min
x∈Sn

d
(
f,ΣR(x)

)
,

since ΣR =⋃
x∈Sn ΣR(x). Therefore, using Proposition 19.6,

ν(f )= max
x∈Sn

ν(f, x)= max
x∈Sn

1

d(f,ΣR(x))
= 1

minx∈Sn d(f,ΣR(x))
= 1

d(f,ΣR)
.

�

19.3 Smale’s α-Theory

The projective γ -theorem shows that the quantity γproj(f, ζ ) can be used to estimate
the size of the basin of quadratic attraction of a zero ζ of f . It cannot, however, be
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directly used to check that a point z is an approximate zero of f associated to ζ . For
checking this, Steve Smale introduced another quantity αproj(f, x). We define

βproj(f, x) =
∥∥Df (x)|−1

TxS
nf (x)

∥∥,

αproj(f, x) = βproj(f, x) γproj(f, x).

Recall that Nf (x) = x
‖x‖ , where x = x −Df (x)|−1

TxS
nf (x). Then, by construction,

βproj(f, x)= ‖x − x‖ is the tangent of the Newton step dS(x,Nf (x)); cf. Fig. 19.1.
In particular, dS(x,Nf (x))≤ βproj(f, x). We have, in addition, the following bound.

Proposition 19.7 Let f ∈HR

d and x, ζ ∈ S
n. If x is an approximate zero of f with

associated zero ζ , then dS(x, ζ )≤ 2βproj(f, x).

Proof Let x1 := Nf (x). By the definition of approximate zero, dS(x1, ζ ) ≤
1
2dS(x, ζ ). This implies

dS(x, ζ )≤ dS(x, x1)+ dS(x1, ζ )≤ dS(x, x1)+ 1

2
dS(x, ζ ),

from which it follows that dS(x, ζ )≤ 2dS(x, x1)≤ 2βproj(f, x). �

We should next turn to the meaning of αproj, which, roughly speaking, guaran-
tees the existence of zeros near points x where αproj(f, x) is small enough. For
ease of computation, though, we will use slight modifications of the quantities αproj

and γproj. We set

β(f, x) := μnorm(f, x)
‖f (x)‖
‖f ‖ ,

γ (f, x) := 1

2
D3/2μnorm(f, x),

α(f, x) := β(f, x)γ (f, x)= 1

2
D3/2μ2

norm(f, x)
‖f (x)‖
‖f ‖ .

We will also use, for technical reasons, the quantity

α̃(f, x) := βproj(f, x)γ (f, x).

Lemma 19.8 For f ∈HR

d and x ∈ S
n we have

(a) αproj(f, x)≤ α̃(f, x)≤ α(f, x), βproj(f, x)≤ β(f, x), γproj(f, x)≤ γ (f, x),
(b) β(f, x)≤ μnorm(f, x) and γ (f, x)≥ 1

2

√
nD3/2,

(c) ‖Df (x)|−1
Tx

Df (x)(x)‖ ≤√
Dβ(f,x).
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Proof (a) The inequality γproj(f, x) ≤ γ (f, x) is just a restatement of the higher
derivative estimate (Theorem 16.1). Further,

βproj(f, x) =
∥∥Df (x)|−1

TxS
nf (x)

∥∥≤ ∥∥Df (x)|−1
TxS

n

∥∥∥∥f (x)
∥∥

≤ μnorm(f, x)
‖f (x)‖
‖f ‖ = β(f, x).

The inequalities αproj(f, x)≤ α̃(f, x)≤ α(f, x) are then immediate.
(b) This is a consequence of ‖f (x)‖ ≤ ‖f ‖ (see Lemma 16.6) and of Lemma 16.44.
(c) Euler’s formula (16.3) implies Df (x)(x)= diag(di)f (x). Writing

Df (x)|−1
Tx

Df (x)(x)=Df (x)|−1
Tx

diag
(√

di
)
diag

(√
di
)
f (x)

and bounding norms, the third assertion follows. �

In what follows we set, for f ∈HR

d and x ∈ S
n,

Bf (x) :=
{
y ∈ S

n | dS(x, y)≤ 2β(f, x)
}
.

The following result is a version of Smale’s α-theorem.

Theorem 19.9 There exists a universal constant α0 := 0.02 such that for all f ∈
HR

d and x ∈ S
n, if α(f, x) < α0, then:

(a) x is an approximate zero of f .
(b) If ζ denotes its associated zero, then ζ ∈ Bf (x).
(c) Furthermore, for each point y in Bf (x), y is an approximate zero of f with

associated zero ζ . In particular, the Newton sequence starting at y converges
to ζ .

The proof of Theorem 19.9 requires some preliminary steps. The first such step
is the kth-derivative version of Lemma 15.6.

Lemma 19.10 For −1 < u< 1 and a positive integer k we have

∞∑

�=0

(k + �)!
k!�! u� = 1

(1 − u)k+1
.

Proof We compute the kth derivative on both sides of the geometric series∑∞
i=0 u

i = 1
1−u

. By induction it is easy to see that

( ∞∑

i=1

ui

)(k)

=
∞∑

�=0

(k + �)!u�

�! and that

(
1

1 − u

)(k)

= k!
(1 − u)k+1

.
�

Recall from Sect. 16.6 the family of functions ψδ as well as the quantities δ(r)

and u(r) defined for r ∈ [π2 ,1].
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Lemma 19.11 Fix 2
π
≤ r ≤ 1 such that u(r)≤ 1

8 . Let x, y ∈ S
n, δ := dS(x, y), and

u := δγ (f, x), and assume that δ ≤ δ(r) and u ≤ u(r). Then ψδ(u) > 0, the map
Df (y)|Ty is invertible, and

∥∥Df (x)|−1
Tx

f (y)
∥∥≤ βproj(f, x)+ ‖y − x‖

(
1

1 − u
+√

Dβ(f,x)

)
.

Proof First note that Df (x)|Tx is invertible since we assume γproj(f, x) to be finite.
Lemma 16.37 gives ψδ(u) > 0. Lemma 16.41 implies that Df (y)|Ty is invertible.

Using the Taylor expansion of f at y around x, we obtain
∥∥Df (x)|−1

Tx
f (y)

∥∥ ≤ ∥∥Df (x)|−1
Tx

f (x)
∥∥+ ∥∥Df (x)|−1

Tx
Df (x)(y − x)

∥∥

+
∥∥∥∥∥

∞∑

k=2

Df (x)|−1
Tx

Dkf (x)

k! (y − x)k

∥∥∥∥∥
. (19.3)

The first term on the right-hand side equals βproj(f, x). In order to estimate the
second contribution, we decompose y − x = p + λx with p ∈ Tx (similarly as in
Fig. 19.1). Then 〈x, y − x〉 = λ and hence |λ| ≤ ‖y − x‖. Further, ‖p‖ ≤ ‖y − x‖.
Using this decomposition we get

Df (x)|−1
Tx

Df (x)(y − x)= p+ λDf (x)|−1
Tx

Df (x)(x)

and hence, using Lemma 19.8(c),
∥∥Df (x)|−1

Tx
Df (x)(y − x)

∥∥ ≤ ‖p‖ + |λ|∥∥Df (x)|−1
Tx

Df (x)(x)
∥∥

≤ ‖y − x‖(1 +√
Dβ(f,x)

)
.

We can estimate the third term in (19.3) by

‖y − x‖
( ∞∑

k=2

γproj(f, x)
k−1‖y − x‖k−1

)

≤ ‖y − x‖
(

1

1 − u
− 1

)
,

taking into account that γproj(f, x)‖y− x‖ ≤ γ (f, x)‖y− x‖ ≤ u≤ u(r) < 1 due to
Lemma 19.8(a) and using ‖y − x‖ ≤ δ. Putting these estimates together, the asser-
tion follows. �

The next proposition estimates α̃, βproj, and γ for a point y near x in terms of the
values of these quantities at x.

Proposition 19.12 Under the hypotheses of Lemma 19.11 we have:

(a) βproj(f, y)≤ (1−u)
ψδ(u)

((1 − u)βproj(f, x)+ (1 +√
Dβ(f,x))‖y − x‖),

(b) γ (f, y)≤ γ (f,x)
1−4u ,

(c) α̃(f, y)≤ 1−u
(1−4u)ψδ(u)

((1 − u)̃α(f, x)+ u+√
Dα(f,x)‖y − x‖).
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Proof (a) We have

βproj(f, y) =
∥∥Df (y)|−1

Ty
f (y)

∥∥≤ ∥∥Df (y)|−1
Ty

Df (x)|Tx

∥∥∥∥Df (x)|−1
Tx

f (y)
∥∥

≤ (1 − u)2

ψδ(u)
·
(
βproj(f, x)+ ‖y − x‖

(
1

1 − u
+√

Dβ(f,x)

))
,

where we used Lemmas 16.41(b) and 19.11 for the last inequality.
(b) Let ε = 2u. Then ε ≤ 1

4 and D3/2μnorm(f, x)δ = 2γ (f, x)δ = 2u = ε.
Hence the hypotheses of Corollary 16.54 are satisfied, from which it follows that
μnorm(f, y)≤ 1

1−2εμnorm(f, x). Multiplying both sides by 1
2D

3/2 yields the desired
inequality.

(c) Multiplying the inequalities in (a) and (b) and noting that ‖y − x‖ ≤ δ

proves (c). �

A zero x of f is the same as a fixed point of Nf (provided Df (x)|TxS
n has full

rank). For studying the latter, the Banach fixed-point theorem is a standard tool.

Definition 19.13 Let (X,d) be a metric space and 0 ≤ c < 1. A map F : X → X

satisfying d(F (x),F (y)) ≤ c d(x, y) for all x, y in X is called a contraction map
with contraction constant c.

Theorem 19.14 (Banach fixed-point theorem) Suppose that (X,d) is a complete
metric space and let F :X →X be a contraction map with contraction constant c.
Then F has a unique fixed point p ∈X. For any start value x ∈X, the nth iteration
Fn(x) of F converges to p as n→∞. Moreover,

1

1 + c
d
(
x,F (x)

)≤ d(x,p)≤ 1

1 − c
d
(
x,F (x)

)
.

Proof Note first that F can have at most one fixed point: namely, if F(p) = p

and F(q)= q , then d(p,q)= d(F (p),F (q))≤ cd(p, q) implies that p = q , since
c < 1.

Let x ∈ X. By induction it follows that d(Fn(x),F n+1(x)) ≤ cnd(x,F (x)) for
n≥ 1. By summing the geometric series, we have for all m≥ n≥ 1,

d
(
Fn(x),Fm(x)

) ≤
n−1∑

i=m

d
(
F i(x),F i+1(x)

)≤
n−1∑

i=m

cid
(
x,F (x)

)

≤ cm

1 − c
d
(
x,F (x)

)
.

Hence (F n(x))n≥1 is a Cauchy sequence that converges to a point p in X, since
X is complete. The sequence {Fn+1(x)}n≥1 also converges to p, so by conti-
nuity of F we have F(p) = p. Thus p is the unique fixed point of F . Since
d(x,p) ≤ d(x,F (x)) + d(F (x),F 2(x)) + · · · ≤∑∞

i=0 c
id(x,F (x)), by summing
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the geometric sequence once again, it follows that d(x,p) ≤ 1
1−c

d(x,F (x)). Fi-
nally, by the triangle inequality,

d
(
x,F (x)

) ≤ d(x,p)+ d
(
p,F (x)

)

= d(x,p)+ d
(
F(p),F (x)

)≤ (1 + c)d(x,p). �

In our case X will be a closed spherical cap in S
n and d will be dS. To follow

standard notation we will write BS(x, δ) instead of cap(x, δ), since this set is the
closed ball of radius δ around x in S with respect to its Riemannian distance.

Lemma 19.15 Suppose g : BS(x, δ)→ BS(x, δ) is continuously differentiable with
‖Dg(y)‖ ≤ c for all y ∈ BS(x, δ). Then dS(g(y), g(z)) ≤ c dS(y, z) for all y, z ∈
BS(x, δ).

Proof Let γ : [0,1] → S
n be a parameterization of the segment of the great circle

connecting y and z. Then γ̃ := g ◦ γ is a parameterization of a curve connecting
g(y) with g(z). We have d

dt
γ̃ (t)=Dg(γ (t)) d

dt
γ (t) and hence

∥∥∥∥
d

dt
γ̃ (t)

∥∥∥∥≤ c

∥∥∥∥
d

dt
γ (t)

∥∥∥∥.

Hence the length of γ̃ can be bounded as

L(γ̃ )=
∫ 1

0

∥∥∥∥
d

dt
γ̃ (t)

∥∥∥∥dt ≤ c

∫ 1

0

∥∥∥∥
d

dt
γ (t)

∥∥∥∥dt = cL(γ )= c dS(y, z).

This implies dS(g(y), g(z))≤ c dS(y, z). �

As we pointed out above, we will take Nf as the function F . We next bound the
derivative of this map in terms of α.

Proposition 19.16 We have ‖DNf (x)‖ ≤ 3.71 α̃(f, x) for all x ∈ S
n.

Proof We may assume ‖f ‖ = 1 without loss of generality. Consider the map

ϕ : Rn+1 \ΛR

f →R
n+1, x �→ x −Df (x)|−1

Tx
f (x),

where ΛR

f denotes the set of x ∈ R
n+1 such that Df (x)|Tx is not invertible;

cf. Fig. 19.1. Note that ‖ϕ(x)‖ ≥ ‖x‖ = 1.
Moreover, consider the map π : (Rn+1)∗ → S

n, y �→ y
‖y‖ . We can factor the

Newton operator as Nf = π ◦ ϕ and hence DNf (x)=Dπ(ϕ(x))Dϕ(x).
It is easy to check that Dπ(y) is given by the orthogonal projection onto Ty ,

followed by multiplication by the scalar ‖y‖−1. This implies ‖Dπ(y)‖ ≤ ‖y‖−1

and hence ‖Dπ(ϕ(x))‖ ≤ 1, since ‖ϕ(x)‖−1 ≤ 1. Therefore, it is sufficient to prove
that ‖Dϕ(x)‖ ≤ 4 α̃(f, x).
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Take a smooth curve x(t) in S
n and consider the corresponding curves z(t) :=

Df (x(t))|Tx(t)
f (x(t)) and y(t) := ϕ(x(t)) = x(t)− z(t) in R

n+1. By differentiat-
ing Df (x(t))(z(t)) = f (x(t)) with respect to t (and omitting the argument t for
notational simplicity), we obtain

Df (x)(ż)+D2f (x)(z, ẋ)=Df (x)(ẋ). (19.4)

We also have 〈ż, x〉 + 〈z, ẋ〉 = 0, since 〈z, x〉 = 0.
Let p : Rn+1 → Tx denote the orthogonal projection onto Tx . We decompose

ż= p(ż)+ λx,

where λ= 〈ż, x〉 = −〈z, ẋ〉. Since β := βproj(f, x)= ‖z‖, we have

|λ| ≤ β‖ẋ‖. (19.5)

Inserting ż= p(ż)+ λx into (19.4) and taking the inverse Df (x)|−1
Tx

, we obtain

p(ż)+ λDf (x)|−1
Tx

Df (x)(x)+Df (x)|−1
Tx

D2f (x)(z, ẋ)= ẋ.

Therefore,

∥∥ẋ − p(ż)
∥∥≤ |λ|∥∥Df (x)|−1

Tx
Df (x)(x)

∥∥+ ∥∥Df (x)|−1
Tx

D2f (x)
∥∥‖z‖‖ẋ‖. (19.6)

To simplify notation, in the rest of this proof we write γ := γproj(f, x) and similarly
for γ ,β,β,α, α̃, α, and μnorm.

Using this convention, Lemma 19.8, and the definition of γproj, we bound

∥∥Df (x)|−1
Tx

Df (x)(x)
∥∥≤ β

√
D,

∥∥Df (x)|−1
Tx

D2f (x)
∥∥≤ 2γ.

Combining these two bounds with (19.5) and (19.6), we get

∥∥ẋ − p(ż)
∥∥≤ β‖ẋ‖β√D + 2γβ‖ẋ‖

and hence, using (19.5) again,

‖ẏ‖ = ‖ẋ − ż‖ ≤ ∥∥ẋ − p(ż)
∥∥+ |λ| ≤ β‖ẋ‖β√D+ 2γβ‖ẋ‖ + β‖ẋ‖.

Since ẏ =Dϕ(x)(ẋ), we have shown that

∥∥Dϕ(x)
∥∥≤ 2α + (β

√
D + 1)β ≤ 2α̃ + (

β
√
D + 1

)
β.

Since α̃ = βγ , the right-hand side equals

2α̃ + (β
√
D+ 1)

α̃

γ
= 2α̃ + (

β
√
D + 1

) 2α̃

D3/2μnorm
,
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which equals

2α̃

(
1 + β

√
D

D3/2μnorm
+ 1

D3/2μnorm

)
≤ 2α̃

(
1 + 1

D
+ 1

D3/2

)

≤ 2α̃

(
1 + 1

2
+ 1

23/2

)
≤ 3.71α̃,

where we have used β ≤ μnorm for the first inequality; cf. Lemma 19.8(b). Hence
‖Dϕ(x)‖ ≤ 4α̃, as claimed. �

Theorem 19.17 Fix 2
π
≤ r ≤ 1 such that u(r)≤ 1

8 . Further, let δ ≤ δ(r) and x ∈ S
n

be given such that u := δγ (f, x)≤ u(r). Put

c := 3.71(1 − u)

(1 − 4u)ψδ(u)

(
α(f, x)+ u

)
.

Then we have

(a) ‖DNf (y)‖ ≤ c for all y with dS(y, x)≤ δ,
(b) Nf (BS(x, δ))⊆ BS(Nf (x), cδ).

Proof By Proposition 19.16 we have ‖DNf (y)‖ ≤ 3.71α̃(f, y). We can estimate
the latter with Proposition 19.12(c). Using u ≥ γ (f, x)‖y − x‖ ≥ 1

2D
3/2‖y − x‖,

we can bound as follows:

(1 − u)̃α(f, x)+√
Dα(f,x)‖y − x‖ + u

≤ (1 − u)α(f, x)+√
Dα(f,x)‖y − x‖ + u

≤ (1 − u)α(f, x)+√
Dα(f,x)

2

D3/2
u+ u

≤ (1 − u)α(f, x)+ 2

D
uα(f, x)+ u≤ α(f, x)+ u,

and part (a) follows.
For part (b) we note that by part (a) and Lemma 19.15,

dS
(
Nf (y),Nf (x)

)≤ cdS(y, x)≤ cδ

for all y in BS(x, δ). �

Corollary 19.18 Under the hypotheses of Theorem 19.17, we assume that c < 1
and α(f, x)≤ (1− c)u. Then Nf is a contraction map of the ball BS(x,

u
γ (f,x)

) into
itself with contraction constant c.

Proof Write γ = γ (f, x) and α = α(f, x). For all y ∈ BS(Nf (x), cδ) we have

dS(y, x)≤ dS
(
y,Nf (x)

)+ dS
(
Nf (x), x

)≤ cδ+ β ≤ δ,
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the last by dividing the hypothesis α+cu≤ u by γ . It follows that BS(Nf (x), cδ)⊆
BS(x, δ). Hence, by Theorem 19.17(b),

Nf

(
BS(x, δ)

)⊆ BS

(
Nf (x), cδ

)⊆ BS(x, δ),

and we deduce that Nf maps BS(x, δ) into itself. Furthermore, c is a contrac-
tion constant for this map by Lemma 19.15, Theorem 19.17(a), and the hypothesis
c < 1. �

We can finally prove the main result of this section.

Proof of Theorem 19.9 Let r∗ := 0.888. Then (recall Table 16.1) δ∗ := δ(r∗) =
0.834 . . . and u∗ := u(r∗)= 0.1246 · · ·< 1

8 satisfy u∗ <
√

2 δ∗.
Now we take α0 := 0.02 and let u0 := 2α0 = 0.04. These constants satisfy

c0 := 3.71(1 − u0)

(1 − 4u0)ψδ∗(u0)

(
u0

2
+ u0

)
≤ 1

2
. (19.7)

Furthermore, ψδ∗(u0)= 0.54 . . . and u0 ≤ u∗.
The numbers α0, u0, and c0 are universal constants. They depend neither on f ∈

HR

d nor on x ∈ S
n. Now consider such a pair (f, x) and assume that α(f, x)≤ α0.

Then the bound γ (f, x)≥ D3/2

2 ≥√
2 (cf. Lemma 19.8) together with u0 ≤ u∗ im-

plies that

δ(x) := u0

γ (f, x)
≤ u0√

2
≤ u∗√

2
≤ δ∗.

Also, let

c := 3.71(1 − u0)

(1 − 4u0)ψδ(x)(u0)

(
α(f, x)+ u0

)
.

Then, α(f, x) ≤ α0 = u0
2 , ψδ(x)(u0) ≥ ψδ∗(u0), together with (19.7) imply c ≤

c0 ≤ 1
2 and therefore

α(f, x)≤ α0 = u0

2
≤ (1 − c)u0.

We see that the hypotheses of Corollary 19.18 hold for r = r∗, and δ = δ(x).
Hence Nf is a contraction map on BS(x, δ(x)) with contraction constant c0. The
Banach fixed point theorem then implies that there exists a zero ζ ∈ BS(x, δ(x)) of
f , and for all points y ∈ BS(x, δ(x)) we have dS(Nf (y), ζ )≤ 1

2dS(y, ζ ). Hence by

induction, dS(Ni
f (y), ζ ) ≤ ( 1

2 )
2i−1dS(y, ζ ), which means that y is an approximate

zero of f with associated zero ζ .
It remains to show that BS(x, δ(x))⊆ Bf (x). This follows from the fact that

δ(x)= u0

γ (f, x)
= 2α0

γ (f, x)
≥ 2β(f, x). �
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Remark 19.19

(a) Note that the proof above gives a ball of approximate zeros with a radius δ(x)=
2α0

γ (f,x)
, inversely proportional to γ (f, x). This is reminiscent of Theorems 15.5

and 16.38, but with the basin of attraction now centered at the point x at hand.
(b) Using the Moore–Penrose inverse Df (x)† instead of Df (x)|−1

Tx
in the definition

of the Newton operator leads to the so-called Moore–Penrose Newton’s itera-
tion. The algebraic properties of the Moore-Penrose inverse, close to those of
the common inverse for matrices, would lead to versions of Lemma 19.11 and
Propositions 19.12 and 19.16 with simpler proofs. We will briefly return to the
Moore–Penrose Newton’s iteration in Sect. 19.6 below.

19.4 An Algorithm for Real Zero-Counting

In this section we will describe an algorithm for zero-counting, Algorithm 19.1
below, and show that it satisfies the statements claimed in Theorem 19.1.

19.4.1 Grids and Graphs

Our algorithm works on a grid on S
n, which we construct by projecting onto S

n

a grid on the cube Cn := {y | ‖y‖∞ = 1}. We make use of the (easy to compute)
bijections φ : Cn → S

n and φ−1 : Sn → Cn given by φ(y) = y
‖y‖ and φ−1(x) =

x
‖x‖∞ .

Given η := 2−k for some k ≥ 1, we consider the uniform grid Uη of mesh η

on Cn. This is the set of points in Cn whose coordinates are of the form i2−k for
i ∈ {−2k,−2k+1, . . . ,2k}, with at least one coordinate equal to 1 or −1. We denote
by Gη its image by φ in S

n. An argument in elementary geometry shows that for
y1, y2 ∈ Cn,

dS
(
φ(y1),φ(y2)

)≤ π

2
‖y1 − y2‖ ≤ π

2

√
n+ 1‖y1 − y2‖∞. (19.8)

Given η as above, we associate to it a graph Gη as follows. We set A(f ) :=
{x ∈ S

n | α(f, x) < α0}. The vertices of the graph are the points in Gη ∩A(f ). Two
vertices x, y ∈ Gη are joined by an edge if and only if B(x) ∩ B(y) �= ∅. We have
here (and we will in the rest of this section) dropped the index f in the balls Bf (x).

Note that as a simple consequence of Theorem 19.9, we obtain the following
lemma.

Lemma 19.20

(a) For each x ∈ A(f ) there exists ζx ∈ ZS(f ) such that ζx ∈ B(x). Moreover, for
each point z in B(x), the Newton sequence starting at z converges to ζx .

(b) Let x, y ∈A(f ). Then ζx = ζy ⇐⇒ B(x)∩B(y) �= ∅. �
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We define W(Gη) :=⋃
x∈Gη

B(x)⊂ S
n, where x ∈Gη has to be understood as

x running over all the vertices of Gη. Similarly, for a connected component U of
Gη, we define

W(U) :=
⋃

x∈U
B(x).

The following lemma implies that the connected components of the graph Gη are of
a very special nature: they are cliques. It also implies that

∣∣ZS(f )
∣∣≥ # connected components of Gη. (19.9)

Lemma 19.21

(a) For each component U of Gη, there is a unique zero ζU ∈ ZS(f ) such that
ζU ∈W(U). Moreover, ζU ∈⋂

x∈U B(x).
(b) If U and V are different components of Gη, then ζU �= ζV .

Proof (a) Let x ∈ U . Since x ∈ A(f ), by Lemma 19.20(a) there exists a zero
ζx of f in B(x) ⊆ W(U). This shows the existence. For the uniqueness and
the second assertion, assume that there exist zeros ζ and ξ of f in W(U). Let
x, y ∈ U be such that ζ ∈ B(x), and ξ ∈ B(y). Since U is connected, there ex-
ist x0 = x, x1, . . . , xk−1, xk := y in A(f ) such that (xi, xi+1) is an edge of Gη for
i = 0, . . . , k−1, that is, B(xi)∩B(xi+1) �= ∅. If ζi and ζi+1 are the associated zeros
of xi and xi+1 in ZS(f ) respectively, then by Lemma 19.20(b) we have ζi = ζi+1,
and thus ζ = ξ ∈ B(x)∩B(y).

(b) Let ζU ∈ B(x) and ζV ∈ B(y) for x ∈U and y ∈ V . If ζU = ζV , then B(x)∩
B(y) �= ∅ and x and y are joined by an edge; hence U = V . �

If equality holds in (19.9), we can compute |ZS(f )| by computing the number
of connected components of Gη. The reverse inequality in (19.9) amounts to the
fact that there are no zeros of f in S

n that are not in W(Gη). To verify that this
is the case, we want to find, for each point x ∈ Gn \ A(f ), a ball centered at x

such that f �= 0 on this ball. In addition, we want the union of these balls to cover
S
n \W(Gη). The next result is the key ingredient towards this goal, since it provides

radii for these balls.

Lemma 19.22 (Exclusion lemma) Let f ∈ HR

d and x, y ∈ S
n be such that 0 <

dS(x, y)≤
√

2. Then,

∥∥f (x)− f (y)
∥∥< ‖f ‖√DdS(x, y).

In particular, if f (x) �= 0, there is no zero of f in the ball BS(x,
‖f (x)‖
‖f ‖√D

).
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Proof Because of (16.1), for all fi ∈HR

di
and x ∈R

n+1,

fi(x)=
〈
fi(X), 〈x,X〉di 〉. (19.10)

Because of orthogonal invariance, we can assume that x = e0 and y = e0 cos θ +
e1 sin θ , where θ = dS(x, y) > 0. Equation (19.10) implies that

fi(x)− fi(y) =
〈
fi(X), 〈x,X〉di 〉− 〈

fi(X), 〈y,X〉di 〉

= 〈
fi(X), 〈x,X〉di − 〈y,X〉di 〉

= 〈
fi(X),X

di
0 − (X0 cos θ +X1 sin θ)di

〉
.

Hence, by Cauchy–Schwarz,
∣∣fi(x)− fi(y)

∣∣≤ ‖fi‖
∥∥Xdi

0 − (X0 cos θ +X1 sin θ)di
∥∥.

Since

X
di
0 − (X0 cos θ +X1 sin θ)di

=X
di
0

(
1 − (cos θ)di

)−
di∑

k=1

(
di

k

)
(cos θ)di−k(sin θ)kX

di−k
0 Xk

1,

we have
∥∥Xdi

0 − (X0 cos θ +X1 sin θ)di
∥∥2

≤ (
1 − (cos θ)di

)2 +
di∑

k=1

(
di

k

)
(cos θ)2(di−k)(sin θ)2k

= (
1 − (cos θ)di

)2 + 1 − (cos θ)2di = 2
(
1 − (cos θ)di

)

< 2

(
1 −

(
1 − θ2

2

)di
)

≤ 2

(
1 −

(
1 − di

θ2

2

))

≤ diθ
2.

Here the first inequality is due to the fact that for g =∑
gkX

d−k
0 Xk

1, we have ‖g‖2 =
∑(

d
k

)−1
g2
k . Also, the second inequality follows from the bound cos θ > 1 − θ2

2 ,

which is true for all 0 < θ ≤√
2, and the third from the bound (1 − a)d ≥ 1 − da,

for a ≤ 1. We conclude that
∣∣fi(x)− fi(y)

∣∣< ‖fi‖ θ
√
di

and hence
∥∥f (x)− f (y)

∥∥< ‖f ‖ θ√max
i

di .
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For the second assertion, we have, for all y ∈ B(x,
‖f (x)‖
‖f ‖√D

),

∥∥f (y)
∥∥ ≥ ∥∥f (x)

∥∥− ∥∥f (x)− f (y)
∥∥

>
∥
∥f (x)

∥
∥− ‖f ‖√DdS(x, y)

≥ ∥∥f (x)
∥∥− ‖f ‖√D

‖f (x)‖
‖f ‖√D

= 0. �

19.4.2 Proof of Theorem 19.1

We begin by describing our zero-counting algorithm (see Algorithm 19.1 below).

Remark 19.23 Algorithm 19.1 uses a routine for computing the connected compo-
nents of a graph from the description of this graph. This is a standard task in discrete
algorithmics. We will not enter into a discussion of this aspect of Algorithm 19.1
(but see the Notes for pointers to appropriate references).

Algorithm 19.1 Zero_Counting

Input: f ∈HR

d

Preconditions: f �= 0

let η := 1
2

repeat
let U1, . . . ,Ur be the connected components of Gη

if
(a) for 1 ≤ i < j ≤ r

for all xi ∈Ui and all xj ∈Uj

dS(xi, xj ) > πη
√
n+ 1

and
(b) for all x ∈ Gη \A(f )

‖f (x)‖> π
4 η

√
(n+ 1)D‖f ‖

then return r/2 and halt
else η := η/2

Output: r ∈N

Postconditions: The algorithm halts if f �∈ΣR. In this case f has exactly r zeros
in P(Rn+1).

We will now show that Algorithm 19.1 satisfies the claims (a)–(c) of the state-
ment of Theorem 19.1.
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(a) This part claims the correctness of Algorithm 19.1. To prove it, we will use
the notions of spherical convexity introduced in Sect. 13.2.

Let Hn be an open hemisphere in S
n and x1, . . . , xq ∈Hn. Recall that the spher-

ical convex hull of {x1, . . . , xq} is defined by

sconv(x1, . . . , xq) := cone(x1, . . . , xq)∩ S
n,

where cone(x1, . . . , xq) is the smallest convex cone with vertex at the origin and
containing the points x1, . . . , xq .

Lemma 19.24 Let x1, . . . , xq ∈ Hn ⊂ R
n+1. If

⋂q

i=1 BS(xi, ri) �= ∅, then
sconv(x1, . . . , xq)⊆⋃q

i=1 BS(xi, ri).

Proof Let x ∈ sconv(x1, . . . , xq) and y ∈⋂q

i=1 BS(xi, ri). We will prove that x ∈
BS(xi, ri) for some i. Without loss of generality we assume x �= y. Let H be the
open half-space

H := {
z ∈R

n+1 : 〈z, y − x〉< 0
}
.

We have

z ∈H ⇐⇒ 〈z, y − x〉< 0 ⇐⇒ −〈z, x〉<−〈z, y〉
⇐⇒ ‖z‖2 + ‖x‖2 − 2〈z, x〉 < ‖z‖2 + ‖y‖2 − 2〈z, y〉
⇐⇒ ‖z− x‖2 < ‖z− y‖2,

the second line following from ‖x‖ = ‖y‖ = 1. Therefore the half-space H is the
set of points z in R

n+1 such that the Euclidean distance ‖z−x‖ is less than ‖z−y‖.
On the other hand, H must contain at least one point of the set {x1, . . . , xq},

since if this were not the case, the convex set cone(x1, . . . , xq) would be contained
in {z : 〈z, y− x〉 ≥ 0}, contradicting x ∈ sconv(x1, . . . , xq). Therefore, there exists i

such that xi ∈H . It follows that

‖x − xi‖< ‖y − xi‖.
Since the function z �→ 2 arcsin( x2 ) giving the length of an arc as a function of its
chord is nondecreasing, we obtain

dS(x, xi) < dS(y, xi)≤ ri . �

We can now proceed. Assume that Algorithm 19.1 halts. We want to show that
if r equals the number of connected components of Gη, then #R(f )= #ZS(f )/2 =
r/2. We already know by Lemma 19.21 that each connected component U of Gη

determines uniquely a zero ζU ∈ ZS(f ). Thus it is enough to prove that ZS(f ) ⊆
W(Gη). This would prove the reverse inequality in (19.9).

Assume, by way of contradiction, that there is a zero ζ of f in S
n such

that ζ is not in W(Gη). Let B∞(φ−1(ζ ), η) := {y ∈ Uη | ‖y − φ−1(ζ )‖∞ ≤
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η} = {y1, . . . , yq}, the set of all neighbors of φ−1(ζ ) in Uη , and let xi = φ(yi),
i = 1, . . . , q . Clearly, φ−1(ζ ) is in the cone spanned by {y1, . . . , yq}, and hence
ζ ∈ sconv(x1, . . . , xq).

We claim that there exists j ≤ q such that xj �∈A(f ). Indeed, assume this is not
the case. We consider two cases.

(i) All the xi belong to the same connected component U of Gη . In this case
Lemma 19.21 ensures that there exists a unique zero ζU ∈ S

n of f in W(U)

and ζU ∈⋂
i B(xi). Since x1, . . . , xq lie in an open half-space of Rn+1, we may

apply Lemma 19.24 to deduce that

sconv(x1, . . . , xq)⊆
⋃

B(xi).

It follows that for some i ∈ {1, . . . , q}, ζ ∈ B(xi) ⊆ W(U), contradicting that
ζ �∈W(Gη).

(ii) There exist � �= s and 1 ≤ j < k ≤ r such that x� ∈ Uj and xs ∈ Uk . Since
condition (a) in the algorithm is satisfied, dS(x�, xs) > πη

√
n+ 1. But by the

bounds (19.8),

dS(x�, xs) ≤ π

2

√
n+ 1‖y� − ys‖∞

≤ π

2

√
n+ 1

(∥∥y� − φ−1(ζ )
∥∥∞ + ∥∥φ−1(ζ )− ys

∥∥∞
)≤ πη

√
n+ 1,

a contradiction.

We have thus proved the claim. Let then 1 ≤ j ≤ q be such that xj �∈A(f ). Then,
using Lemma 19.22,

∥∥f (xj )
∥∥= ∥∥f (xj )− f (ζ )

∥∥≤ ‖f ‖√DdS(xj , ζ )≤ π

2
η
√
(n+ 1)D‖f ‖.

This is in contradiction with condition (b) in the algorithm being satisfied.
(b) We next prove the bound for the cost claimed in part (b) of Theorem 19.1.

The idea is to show that when η becomes small enough, as a function of κ(f ), n,N

and D, then conditions (a) and (b) in Algorithm 19.1 are satisfied. We spread this
task over a few lemmas, the first two of them being extensions of the bounds for
separation of zeros we saw in Sect. 16.6.

Lemma 19.25 For all 2
π
≤ r ≤ 1, if ζ1 �= ζ2 ∈ZS(f ), then

dS(ζ1, ζ2)≥ min

{
δ(r),

2u(r)

D3/2κ(f )

}
.

Proof The statement follows from Corollary 16.42, the estimate γproj(f, z) ≤
D3/2

2 μnorm(f, z), and the fact that max{μnorm(f, ζ ),μnorm(f, ξ)} ≤ ν(f )= κ(f ). �
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Lemma 19.26 Let x1, x2 ∈Gη with associated zeros ζ1 �= ζ2. Let r∗, δ∗, and u∗ be
as in the proof of Theorem 19.9. If

η ≤ 2u∗
3D3/2πκ(f )

√
n+ 1

,

then dS(x1, x2) > πη
√
n+ 1.

Proof Assume dS(x1, x2) ≤ πη
√
n+ 1. Since x2 �∈ B(x1), dS(x1, x2) > 2β(f, x1).

Consequently,

dS(x1, ζ1)≤ 2β(f, x1) < dS(x1, x2)≤ πη
√
n+ 1,

and similarly, dS(x2, ζ2) < πη
√
n+ 1. But then,

dS(ζ1, ζ2)≤ dS(ζ1, x1)+ dS(x1, x2)+ dS(x2, ζ2) < 3πη
√
n+ 1 ≤ 2u∗

D3/2κ(f )
.

In particular, dS(ζ1, ζ2) <
u∗√

2
≤ δ∗, since κ(f ) ≥ 1. These two inequalities are in

contradiction with Lemma 19.25 for r = r∗. �

Lemma 19.27 Let x ∈ S
n be such that x �∈ A(f ). Suppose η ≤ α0

(n+1)D2κ(f )2 . Then

‖f (x)‖> π
4 η

√
(n+ 1)D‖f ‖.

Proof Since x �∈ A(f ), we have α(f, x) ≥ α0. Also, κ(f ) = ν(f ) ≥ ν(f, x). This
implies, by (19.2),

κ(f )−2 ≤ 2 max

{
μnorm(f, x)−2,

‖f (x)‖2

‖f ‖2

}
.

We accordingly divide the proof into two cases.

Assume firstly that max{μnorm(f, x)−2,
‖f (x)‖2

‖f ‖2 } = ‖f (x)‖2

‖f ‖2 .
In this case

η ≤ α0

(n+ 1)D2κ(f )2
≤ 2α0‖f (x)‖2

(n+ 1)D2‖f ‖2
,

which implies

∥∥f (x)
∥∥≥

√
η
√
n+ 1D‖f ‖√

2α0
>

π

4
η
√
(n+ 1)D‖f ‖,

the second inequality since η ≤ 1
2 < 8D

π2α0
.

Now assume instead that max{μnorm(f, x)−2,
‖f (x)‖2

‖f ‖2 } = μnorm(f, x)−2.
In this case

η ≤ α0

(n+ 1)D2κ(f )2
≤ 2α0

(n+ 1)D2μnorm(f, x)2
,
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which implies α0 ≥ 1
2η(n+ 1)D2μnorm(f, x)2. Also,

α0 ≤ α(f, x)= 1

2
β(f, x)μnorm(f, x)D3/2 ≤ 1

2‖f ‖μnorm(f, x)2D3/2
∥
∥f (x)

∥
∥.

Putting both inequalities together, we obtain

1

2
η(n+ 1)D2μnorm(f, x)2 ≤ 1

2‖f ‖μnorm(f, x)2D3/2
∥∥f (x)

∥∥,

which implies

∥
∥f (x)

∥
∥≥ η(n+ 1)D1/2‖f ‖>

π

4
η
√
(n+ 1)D‖f ‖. �

We can now conclude the proof of part (b) of Theorem 19.1. Assume

η ≤ η0 := min

{
2u∗

3πD3/2
√
n+ 1κ(f )

,
α0

(n+ 1)D2κ(f )2

}
.

Then the hypotheses of Lemmas 19.26 and 19.27 hold. The first of these lemmas en-
sures that condition (a) in Algorithm 19.1 is satisfied, the second, that condition (b)
is satisfied as well. Therefore, the algorithm halts as soon as η ≤ η0. This gives a
bound of O(log2(nDκ(f ))) for the number of iterations.

At each iteration there are K := 2(n+ 1)( 2
η
)n points in the grid. For each such

point x we evaluate μnorm(f, x) and ‖f (x)‖, both with cost O(N), by Propo-
sition 16.45 and Lemma 16.31, respectively. We can therefore decide with cost
O(KN) which of these points are vertices of Gη and for those points x compute the
radius 2β(f, x) of the ball Bf (x). Therefore, with cost O(K2N) we can compute
the edges of Gη . The number of connected components of Gη is then computed
with O(K2N) operations as well by standard algorithms in graph theory (see the
Notes for references).

Since dS is computed with O(n) operations, the total cost of verifying condi-
tion (a) is at most O(K2n), and the additional cost of verifying (b) is O(K). It
follows that the cost of each iteration is O(K2N). Furthermore, since at these it-
erations η ≥ η0, we have K ≤ (C(n+ 1)D2κ(f )2)n+1. Using this estimate in the
O(K2N) cost of each iteration and multiplying by the bound O(log2(nDκ(f ))) for
the number of iterations, the claimed bound for the total cost follows.

(c) To prove part (c) of Theorem 19.1 just note that for i = 1, . . . , r , any vertex
xi of Ui is an approximate zero of the only zero of f in W(Ui). �

Remark 19.28 A finite-precision version of Algorithm 19.1 can be implemented as
well. The running time remains the same (with α0 replaced by a smaller universal
constant α∗), and the returned value is #R(f ) as long as the round-off unit satisfies

εmach ≤ 1

O(D2n5/2κ(f )3(log2 N + n3/2D2κ(f )2))
.
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19.5 On the Average Number of Real Zeros

The real solution variety V̂R ⊆ HR

d × S
n is defined in the obvious way, and so is

ŴR ⊆MR×S
n, where MR =R

n×(n+1). Let #R(q) denote the number of real zeros
in P

n(R) of q ∈ HR

d . Thus the number of real zeros in the sphere S
n = S(Rn+1)

equals 2#R(q). In what follows we denote the density of the standard Gaussian
distribution on HR

d by ϕHR

d
.

Theorem 19.2 states that the expectation of #R equals the square root of the
Bézout number D. We now provide the proof.

Proof of Theorem 19.2 Applying the coarea formula (Theorem 17.8) to the projec-
tion π1 : V̂R →HR

d yields
∫

HR

d

#R ϕHR

d
dHR

d =
∫

q∈HR

d

ϕHR

d
(q)

1

2

∫

π−1
1 (q)

dπ−1
1 (q) dHR

d

=
∫

V̂R

1

2
ϕHR

d
NJπ1 dV̂R.

We can factor the standard Gaussian ϕR

Hd
into standard Gaussian densities ϕCζ and

ϕLζ on Cζ and Lζ , respectively, as was done in (18.2) over C (denoting them by the
same symbol will not cause any confusion). We also have an isometry Wζ → Lζ as
in (18.3), and ϕLζ induces the standard Gaussian density ϕWζ on Wζ . The fiber of

ΦR : V̂R → ŴR, (q, ζ ) �→ (N, ζ ), over (N, ζ ) has the form Φ−1
R

(N, ζ )= {(gM,ζ +
h, ζ ) | h ∈Rζ }, where M =Δ−1N ; cf. (18.18). We therefore have ϕHR

d
(gM,ζ +h)=

ϕCζ (0)ϕWζ (M)ϕRζ (h).
Remark 18.7 states that the normal Jacobian of the map

ΦR : V̂R → ŴR, (q, ζ ) �→ (
Dq(ζ ), ζ

)
,

has the constant value Dn/2. The coarea formula applied to ΦR, using Lemma 17.13,
yields

∫

V̂R

1

2
ϕHR

d
NJπ1 dV̂R

= 1

2 NJΦR

∫

(N,ζ )∈ŴR

ϕCζ (0)ϕWζ (M)NJp1(N, ζ )

∫

h∈Rζ

ϕRζ (h) dRζ dŴR

= 1

2 NJΦR

∫

(N,ζ )∈ŴR

ϕCζ (0)ϕWζ (M)NJp1(N, ζ ) dŴR.

Applying the coarea formula to the projection p1 : ŴR →MR, we can simplify the
above to

1

NJΦR

∫

N∈MR

ϕCζ (0)ϕWζ (M)
1

2

∫

ζ∈p−1
1 (N)

dp−1
1 (N)dMR
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= 1

NJΦR

∫

N∈MR

ϕCζ (0)ϕWζ (M)dMR

= D n+1
2

NJΦR

∫

M∈MR

ϕCζ (0) ρWζ (M)dMR,

where the last equality is due to the change of variables MR → MR,N �→ M ,

which has Jacobian determinant D− n+1
2 . Now we note that

ρCζ (0) · ρWζ (M)= (2π)−n/2 (2π)−n2/2 exp

(
−1

2
‖M‖2

F

)

is the density of the standard Gaussian distribution on MR � R
n×(n+1), so that the

last integral (over M ∈MR) equals one. Altogether, we obtain, using NJΦR =Dn/2,

∫

HR

d

#R ϕHR

d
dHR

d = D n+1
2

NJΦR

=√
D. (19.11)

This finishes the proof. �

19.6 Feasibility of Underdetermined and Semialgebraic Systems

The grid method used in Algorithm 19.1 can be put to use as well to decide feasi-
bility of underdetermined systems. For m≤ n we denote by HR

d [m] the linear space
of systems f = (f1, . . . , fm) of m homogeneous polynomials in n+ 1 variables.

We want to decide whether a system f ∈HR

d [m] is feasible, that is, whether there
exists x ∈ P

n (or equivalently, x ∈ S
n) such that f (x) = 0. In the complex setting

this would always be the case. Over the reals, it does not need to be so; for instance,
the polynomial X2

0 +X2
1 +X2

2 has no zeros on S
n and this is also true for any small

perturbation of it.
A first observation on our way towards an algorithm for this problem is that the

projective Newton’s method cannot be used in this context. But it turns out that a
slightly different form of this method works. For f ∈ HR

d [m] and x ∈ R
n+1 such

that Df (x) is surjective define

MPf (x) := x −Df (x)†f (x).

This Moore–Penrose Newton’s iteration satisfies the basic property of Newton’s
method, namely, that if we start at a point x close enough to a simple zero ζ of f , the
sequence of iterates converges to ζ immediately, quadratically fast. In particular, we
can define approximate zeros as in Definition 16.34. Furthermore, versions γ†, β†,
and α† of γproj, βproj, and αproj, respectively, are defined in the obvious manner, as
well as the natural extension

μ†(f, x) := ‖f ‖ · ∥∥Df (x)†diag
(√

di‖x‖di−1)∥∥
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of μnorm to this context. The main results we proved for the projective versions of
these quantities in Chapter 16 can be extended to their Moore–Penrose counterparts.
In particular, the following Moore–Penrose α-theorem holds.

Theorem 19.29 There exists a universal positive constant α∗ such that if α†(f, x)≤
α∗, then x is an approximate zero of f . �

Furthermore, if we define α†(f, x) := D3/2

2 μ2
†(f, x)

‖f (x)‖
‖f ‖ , the bound α†(f, x)≤

α†(f, x) holds as well, so that the computation of the bound α†(f, x) for α†(f, x)

reduces to that of μ†(f, x).
We also have the following counterpart of Corollary 16.54.

Proposition 19.30 There exist constants C,ε > 0 such that the following is true.
For all ε ∈ [0, ε], all f ∈HR

d [m], and all x, y ∈ S
n, if D3/2μ†(f, y)dS(x, y)≤ Cε,

then

1

1 + ε
μ†(f, x)≤ μ†(f, y)≤ (1 + ε)μ†(f, x). �

The constants α∗, ε, and C in Theorem 19.29 and Proposition 19.30 may be dif-
ferent from those occurring in Theorem 19.9 and Corollary 16.54, but the methods
of proof are the same (and some proofs may become simpler; cf. Remark 19.19(b)).
We therefore omit these proofs.

The algorithm deciding feasibility is the following (recall Algorithm 19.1 for the
notation; see below for the meaning of κfeas(f )).

Algorithm 19.2 Underdetermined_Feasibility

Input: f ∈HR

d [m]
Preconditions: f1, . . . , fm �= 0

let η := 1
2

repeat
if α†(f, x)≤ α0 for some x ∈ Uη

then return “feasible” and halt
if ‖f (x)‖> π

2 η
√
(n+ 1)D‖f ‖ for all x ∈ Uη

then return “infeasible” and halt
η := η/2

Output: a tag in {feasible,infeasible}
Postconditions: The algorithm halts if κfeas(f ) < ∞. In this case the tag is
feasible iff f has a zero in P(Rn+1).
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To analyze this algorithm we need a notion of condition for the input system. For
f ∈HR

d [m] we define

κfeas(f )=
{

minζ∈ZS(f ) μ†(f, ζ ) if ZS(f ) �= ∅,
maxx∈Sn

‖f ‖
‖f (x)‖ otherwise.

We call f well-posed when κfeas(f ) <∞. Note that κfeas(f )=∞ if and only if f

is feasible and all its zeros are multiple.
For feasible systems f the condition number κfeas is reminiscent of the GCC con-

dition number C . In both cases, condition is defined in terms of the best-conditioned
solution (recall the discussion in Sect. 6.8). The absence of a “dual” for the feasibil-
ity problem of real polynomial systems forces a different approach for the condition
in the infeasible case.

Theorem 19.31 Algorithm 19.2 works correctly: with input a well-posed system it
returns “feasible” (resp. “infeasible”) if and only if the system is so. The number of
iterations is bounded by O(log2(Dnκfeas(f ))).

Proof The correctness in the feasible case is a trivial consequence of Theorem 19.29
and the inequality α†(f, x) ≤ α†(f, x). The correctness in the infeasible case fol-
lows from Lemma 19.22 along with the inequalities (19.8).

To see the complexity bound, assume first that f is feasible and let ζ in the cube
Cn, ζ ∈ Z(f ), be such that κfeas(f )= μ†(f, ζ ). Let k be such that

η= 2−k ≤ min{4α∗,2C ε}
πD2

√
n+ 1 κ2

feas(f )
.

Here C and ε are the constants in Proposition 19.30. Let x ∈ Uη be such that ‖x −
ζ‖∞ ≤ η. Then, by (19.8),

dS(x, ζ )≤ min{2α∗,C ε}
D2κ2

feas(f )
.

Proposition 19.30 applies, and we have

μ†(f, x)≤ (1 + ε)μ†(f, ζ )= (1 + ε)κfeas(f ). (19.12)

Also, by Lemma 19.22,

∥∥f (x)
∥∥≤ ‖f ‖√DdS(x, ζ )≤ ‖f ‖ 2α∗

D3/2κ2
feas(f )

.

We then have

α†(f, x)= D3/2

2
μ2

†(f, x)
‖f (x)‖
‖f ‖ ≤ D3/2

2
κ2

feas(f )
2α∗

D3/2κ2
feas(f )

= α∗.
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It follows that Algorithm 19.2 halts at this point, and therefore the number k of
iterations performed is at most O(log2(Dnκfeas(f ))).

Assume finally that f is infeasible and let k be such that

η= 2−k <
2

π
√
(n+ 1)D κfeas(f )

.

Then, at any point y ∈ Uη we have

∥∥f (x)
∥∥≥ ‖f ‖

κfeas(f )
>

π

2
η
√
(n+ 1)D‖f ‖.

Again, Algorithm 19.2 halts for this value of η, and the number k of iterations
performed is also bounded by O(log2(Dnκfeas(f ))). �

Remark 19.32 We finish this section by noting that the ideas above can be used to
further decide feasibility of semialgebraic systems. These are systems of the form

fi(x)= 0, i = 1, . . . , s,

gi(x)≥ 0, i = s + 1, . . . , t,

hi(x) > 0, i = t + 1, . . . ,m,

with fi, gi, hi ∈R[X1, . . . ,Xn]. A solution for such a system is a point x ∈R
n sat-

isfying the equalities and inequalities above, and we say that the system is feasible
when solutions for it exist. Details of an algorithm deciding feasibility of semial-
gebraic systems and its analysis in terms of a condition number close to κfeas are
in [70].



Chapter 20
Probabilistic Analysis of Conic Condition
Numbers: I. The Complex Case

The smoothed analysis of condition numbers in the preceding chapters was done
on a case-by-case basis. For each considered condition number we proved a result
giving bounds on either expectation or probability tails or both. In this chapter and
the next we proceed differently—the theme of both chapters is the same, but the
focus of this is on problems over C, while the focus on the next is on problems
over R. We will consider a reasonably large class of condition numbers and obtain
smoothed analysis estimates for elements in this class depending only on geometric
invariants of the corresponding sets of ill-posed inputs.

This class is a subclass of the condition numbers à la Renegar introduced in In-
termezzo II. To be precise, assume that Σ �= {0} is an algebraic cone included in the
data space C

p+1, i.e., a Zariski closed subset that is closed under multiplication by
complex scalars. We call a function C : Cp+1 \ {0}→ R a conic condition number
when it has the form

C (a)= ‖a‖
d(a,Σ)

,

where the norm and distance d in the quotient above are those induced by the stan-
dard Hermitian product on C

p+1. We call Σ the set of ill-posed inputs for C .
The fact that Σ is a cone implies that for all a ∈ C

p+1 and all λ ∈ C∗, we have
C (a) = C (λa). Hence, we may restrict attention to data a ∈ P

p := P(Cp+1) in
complex projective space for which the condition number takes the form

C (a)= 1

dsin(a,Σ)
, (20.1)

where abusing notation, Σ is interpreted now as a subset of Pp and dsin = sindP
denotes the sine distance in P

p (cf. Fig. 20.1).
Since P

p is a Riemannian manifold (cf. Sect. 14.2), we have a well-defined vol-
ume measure on it. The total volume of Pp for this measure is finite (recall Exam-
ple 17.9). Hence, it makes sense to talk about the uniform probability distribution
on the closed ball B(a,σ ) of radius σ around a ∈ P

p with respect to dsin. So it is
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Fig. 20.1 Three distances

natural to ask for a smoothed analysis of C whereby a random perturbation a of
a ∈ P

p is modeled by a ∈ B(a,σ ) chosen from the uniform distribution on B(a,σ ).
Because Σ is a projective variety, it has associated with it a number of geometric

invariants, notably a (complex) dimension m = dimCΣ and a degree d = degΣ
(see Sect. A.3.4 for the definition). It is remarkable that a smoothed analysis of C
can be done in terms of these invariants only.

Our main result holds for any conic condition number for which the set of ill-
posed inputs Σ is purely dimensional, that is, all of its irreducible components have
the same dimension.

Theorem 20.1 Let C be a conic condition number with set of ill-posed inputs Σ ⊆
P
p , of pure dimension m, 0 < m < p. Let K(p,m) := 2 p3p

m3m(p−m)3(p−m) . Then, for

all a ∈ P
p , all σ ∈ (0,1], and all t ≥ p

√
2m

p−m
, we have

Prob
a∈B(a,σ )

{
C (a)≥ t

}≤K(p,m)degΣ

(
1

tσ

)2(p−m)(
1 + p

p−m

1

tσ

)2m

,

as well as

E
a∈B(a,σ )

(
C (a)

)≤ 2eK(p,m)
1

2(p−m) (degΣ)
1

2(p−m)
pm

p−m

1

σ

and

E
a∈B(a,σ )

(
logβ C (a)

)

≤ 1

2(p−m)

(
logβ K(p,m)+ logβ degΣ + 3 logβ e

)+ logβ

pm

p−m
+ logβ

1

σ
.

Taking σ = 1, one obtains an average-case analysis.
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We will devote Sect. 20.6 to deriving applications of Theorem 20.1 to a few
condition numbers, some of which we have already encountered in the preceding
chapters.

In most of our applications, the set of ill-posed inputs Σ is a hypersurface. That
is, Σ is the zero set ZP(f ) of a nonzero homogeneous polynomial f , and thus degΣ
is at most the degree of f . In this case, we have the following corollary.

Corollary 20.2 Let C be a conic condition number with set of ill-posed inputs
Σ ⊆ P

p . Assume Σ ⊆ ZP(f ) with f ∈ C[X0, . . . ,Xp] homogeneous of degree d .
Then, for all a ∈ P

p , all σ ∈ (0,1], and all t ≥√
2p3/2,

Prob
a∈B(a,σ )

{
C (a)≥ t

}≤ 2e3p3d

(
1

tσ

)2(
1 + p

1

tσ

)2(p−1)

as well as

E
a∈B(a,σ )

(
C (a)

)≤ 4
(
2e5) 1

2 p
3
2 d

1
2

1

σ

and

E
a∈B(a,σ )

(
logβ C (a)

)≤ 3

2
logβ p+ 1

2
logβ d + logβ

1

σ
+ 3 logβ e+ 3

2
.

Taking σ = 1, one obtains an average case analysis.

Remark 20.3 The results above have the beauty of generality. We pay for this beauty
with a loss of sharpness. A comparison of the bounds obtained as a consequence of
these results with bounds obtained with ad hoc arguments reveals this loss (compare,
e.g., the bounds in Sect. 20.6.1 for the condition number κF (A) with those obtained
in Sect. 4.4 for κ(A); see also Remark 20.20 at the end of Sect. 20.6.3).

20.1 The Basic Idea

The basic idea towards the proof of Theorem 20.1 is not new to us. We can trace
it back to the proof of Theorem 2.39—where we performed a smoothed analysis
for the simple example of Sect. O.4—and we find it again at several points in the
previous chapters. It consists in reformulating the probability distribution of a conic
condition number in terms of a quotient of volumes.

In Sect. 2.2.6 we already introduced caps and tubes in spheres in very special
situations and obtained both exact formulas and estimates for the volumes of these
sets. We now need to extend these results and to replace the sphere as ambient space
by a complex projective space. We start with the obvious definitions.

The volume of a measurable subset A ⊆ P
p is given by volA = ∫

A
dPp , where

dPp denotes the volume form induced by the Riemannian metric on P
p . For a ∈
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P
p and σ ∈ [0,1] we denote by B(a,σ ) := {a ∈ P

p | dsin(a, a) ≤ σ } the closed
ball of radius σ around a in P

p with respect to the metric dsin = sindP introduced
in Sect. 14.2.2. For a nonempty subset V ⊆ P

p and 0 ≤ ε ≤ 1 we define the ε-
neighborhood around U in P

p as

T (U, ε) := {
x ∈ P

p | dsin(x,U)≤ ε
}
,

where as usual, dsin(x,U) := inf{dsin(x, y) | y ∈U}. With this notation, we have

Prob
a∈B(a,σ )

{
C (a)≥ ε−1}= Prob

a∈B(a,σ )

{
dsin(a,Σ)≤ ε

}= vol(T (Σ, ε)∩B(a,σ ))

vol(B(a,σ ))
.

The first claim in Theorem 20.1 will thus follow from the following purely geomet-
ric statement.

Theorem 20.4 Let V be a projective variety in P
p of pure dimension m, 0 <m<p.

Moreover, let a ∈ P
p , σ ∈ (0,1], and 0 < ε ≤ 1√

2m
p−m
p

. Then we have

vol(T (V, ε)∩B(a,σ ))

volB(a,σ )
≤K(p,m)degV

(
ε

σ

)2(p−m)(
1 + p

p−m

ε

σ

)2m

,

where K(p,m) is defined as in Theorem 20.1.

As a first goal towards the proof of Theorem 20.4 we shall first study the case
that V = P

m is a projective linear subspace of Pp .

20.2 Volume of Tubes Around Linear Subspaces

We first study the corresponding situation in a sphere S
p . In Lemma 2.36 we deter-

mined the volume of the ε-neighborhood of a subsphere of Sp codimension one. We
now generalize this result to subspheres of higher codimension. Thus we determine
the volume Op,k(ε) of the ε-neighborhood

T
(
S
k, ε

) := {
x ∈ S

p | dsin
(
x,Sk

)≤ ε
}

of Sk := {x ∈ S
p | xk+1 = · · · = xp = 0} embedded in S

p . Recall that Op denotes
the p-dimensional volume of Sp .

Lemma 20.5 For 0 ≤ k ≤ p− 1 and 0 < ε ≤ 1 we have

Op,k(ε) := volT
(
S
k, ε

)=OkOp−1−k

∫ arcsin ε

0
(cosρ)k (sinρ)p−1−k dρ.
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Proof Let U ⊆R
p+1 denote the subspace of dimension k+1 given by xk+1 = · · · =

xp = 0 and let U⊥ be its orthogonal complement. The unit spheres of these spaces
satisfy S(U)= S

k and S(U⊥)� S
p−1−k . Consider the open subset Tε := {x ∈ S

p |
0 < dsin(x,S

k) < ε} of Sp , which has the same volume as T (Sk, ε). Moreover, set
α := arcsin ε. We claim that the map

ψ : S(U)× S
(
U⊥)× (0, α)→ Tε, (p, q,ρ) �→ x = p cosρ + q sinρ,

is a bijection. In order to see this, let (p, q,ρ) ∈ S(U) × S(U⊥) × (0, α). Then
x − q sinρ = p cosρ equals the orthogonal projection of x onto U ; hence
dS(x,S(U)) = ρ, and so x ∈ Tε . Conversely, for given x ∈ Tε , let x′ be its or-
thogonal projection onto U . Then x′ �= 0 and x′ �= x, since x is not contained
in U ∪ U⊥. Hence we can define p := x′

‖x′‖ ∈ S(U) and q := x−x′
‖x−x′‖ ∈ S(U⊥).

Then x = p cosρ + q sinρ, where ρ is the angle between x and p.
In order to compute the derivative of ψ at the point (p, q,ρ), take a smooth curve

t �→ (p(t), q(t), ρ(t)) in S(U)×S(U⊥)× (0, α) passing through this point for t = 0
and differentiate γ (t) :=ψ(p(t), q(t), ρ(t)) at t = 0. This yields

γ̇ = ṗ cosρ + q̇ sinρ + (−p sinρ + q cosρ)q̇.

Moreover, note that we have the orthogonal decomposition

TxS
p = TpS(U)⊕ TqS

(
U⊥)⊕R(−p sinρ + q cosρ).

It follows that the Jacobian of ψ is given by

Jψ(p,q,ρ)=
∣∣∣∣∣∣
det

⎛

⎝
(cosρ)Ik

(sinρ)Ip−1−k

1

⎞

⎠

∣∣∣∣∣∣
= (cosρ)k(sinρ)p−1−k.

Hence, using the transformation formula (Theorem 2.1), we obtain

volTε =
∫

Tε

dSp =
∫

S(U)×S(U⊥)×(0,α)
(cosρ)k(sinρ)p−1−k dρ

= volS(U) volS
(
U⊥)

∫ α

0
(cosρ)k(sinρ)p−1−k dρ,

which completes the proof, as volS(U)=Ok and volS(U⊥)=Op−1−k . �

As a consequence we retrieve a formula for the volume of a spherical cap, a result
we had already obtained in Lemma 2.31:

volB(a, ε)= 1

2
volT

(
S0, ε

)= 1

2
Op,0(ε)=Op−1

∫ α

0
(sinρ)p−1 dρ.

Recall that Lemma 2.34 states the following bounds on volB(a, ε):

1√
2π(p+ 1)

Opε
p ≤ volB(a, ε)≤ 1

2
Opε

p. (20.2)
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The next result provides upper bounds on Op,k if k > 0.

Lemma 20.6 For 0 < k ≤ p− 1 and 0 ≤ ε ≤ 1 we have

Op,k(ε)≤ 1

p− k
OkOp−1−k ε

p−k.

Moreover, equality holds if k = 1.

Proof Putting α := arcsin ε, we have
∫ α

0
(cosρ)k(sinρ)p−1−k dρ ≤

∫ α

0
(cosρ)(sinρ)p−1−k dρ

=
∫ ε

0
up−1−k du= εp−k

p− k
.

In the case k = 1 the inequality is actually an equality. �

Remark 20.7 Since T (Sk,1)= S
p , we get from Lemma 20.5 the following formula:

∫ π/2

0
(cosρ)k (sinρ)p−1−k dρ = Op

OkOp−1−k

. (20.3)

We now extend the estimates above to complex projective space. Let us consider
P
m ⊆ P

p as the subset given by the equations zm+1 = · · · = zp = 0.

Lemma 20.8 For Pm embedded in P
p and 0 < ε ≤ 1 we have

volT
(
P
m, ε

)≤ volPm volPp−m ε2(p−m).

For the volume of a ball of radius ε around a ∈ P
p we have

volB(a, ε)= volPp ε2p.

Proof By definition, S2m+1 equals the inverse image of the linear subspace P
m un-

der the natural projection πS : S2p+1 → P
p . Moreover, by Proposition 14.12 we

have

π−1
S

(
T
(
P
m, ε

))= T
(
S

2m+1, ε
)
.

Therefore, Eq. (17.8) implies

volT
(
P
m, ε

)= 1

2π
volT

(
S

2m+1, ε
)= 1

2π
O2p+1,2m+1(ε).

Now note that using (17.9),

volPp−m = π

p−m
volPp−m−1 = π

p−m

1

2π
O2p−2m−1 = O2p−2m−1

2p− 2m
.
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Using Lemma 20.6 and the above identity, we obtain

1

2π
O2p+1,2m+1(ε) ≤ 1

2π
O2m+1

O2p−2m−1

2p− 2m
ε2p−2m

= volPm volPp−m ε2p−2m.

This proves the first assertion. In the case m = 0, Lemma 20.5 actually gives an
equality, so that

volT
(
P

0, ε
)= volP0 volPp ε2p.

But volP0 = 1 and volT (P0, ε)= volB(a, ε). �

20.3 Volume of Algebraic Varieties

Let V ⊆ P
p be an irreducible m-dimensional subvariety. To goal of this section is

to define a volume measure on V .
Assume first that V does not have singular points. Then V is a smooth subman-

ifold of Pp of dimension 2m. Moreover, V inherits a Riemannian metric from the
ambient space P

p . In particular, there is an associated volume element dV on V ,
which allows us to define the 2m-dimensional volume vol2mA := ∫

A
dV of a mea-

surable subset A⊆ V . Clearly, if V equals the projective linear subspace P
m of Pp ,

then vol2m coincides with the usual volume on P
m.

Suppose now that V is singular. Then the set Reg(V ) of regular points of V is a
smooth submanifold of V with real dimension 2m (cf. Theorem A.33). Hence we
have a well-defined volume measure vol2m on Reg(V ), which we extend to V by
setting vol2m(A) := vol2m(A∩Reg(V )) for all measurable A⊆ V . In particular, the
set Sing(V ) := V \ Reg(V ) of singular points satisfies vol2m(Sing(V ))= 0 and can
be neglected. This definition is motivated by the fact that Sing(V ) is a projective
subvariety of (complex) dimension strictly less than m.

We shall see shortly that vol2m V is closely related to the degree degV of the
projective variety V . Recall from Sect. A.3.4 that for almost all projective linear
subspaces L⊆ P

p of (complex) dimension p−m, the intersection V ∩L is finite and
contains exactly degV points. If we replace V by a Euclidean open subset U , then
this assertion is not true anymore. Still, a quantitative statement in a probabilistic
sense can be made. For this, we need to put a probability measure on the set of m-
dimensional linear subspaces L of Pp . Since any such L is obtained as the image
uPm of the fixed subspace Pm under some element u of the unitary group U (p+1),
it suffices to define a probability measure on the latter.

For the following compare Sect. A.2.6. The group U (p + 1) is a compact Lie
group. Indeed, it is a smooth submanifold of C

(p+1)×(p+1), and hence it inherits
from the ambient space a Riemannian metric with a corresponding volume element
(cf. Sect. A.2.5). Normalizing the corresponding volume measure, we obtain the
uniform probability measure on U (p + 1), which is referred to as the normalized
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Haar measure. We shall denote it by vol. It is important that vol is invariant under
the action of U (p+ 1) on itself: we have voluB = volB for all measurable subsets
B ⊆U (p+ 1) and u ∈U (p+ 1).

20.4 A Crash Course on Probability: V

Suppose that U is a measurable subset of an m-dimensional irreducible projec-
tive variety V ⊆ P

p . From the definition of degree we know that for almost all
u ∈ U (p + 1), the intersection V ∩ uPp−m has exactly degV points. In particular,
U ∩ uPp−m is finite for almost all u ∈ U (p + 1) and it makes sense to ask about
the expectation of the random variable E#(U ∩ uPp−m). A fundamental result in
integral geometry (or geometric probability) of “Crofton type” provides a close link
of this expectation to the m-dimensional volume of U . The proof of this result will
be provided in Sect. A.4.1.

Theorem 20.9 Let V ⊆ P
p be an m-dimensional irreducible projective variety and

U ⊆ V an open subset in the classical topology. Then we have

E
u∈U (p+1)

#
(
U ∩ uPp−m

)= vol2mU

vol2m Pm
. �

The following beautiful result is an immediate consequence of Theorem 20.9
(with U = V ) and the characterization of degree.

Corollary 20.10 For an m-dimensional irreducible projective variety V ⊆ P
p

we have

vol2m V = degV volPm = degV
πm

m! . �

In essentially the same way we can find an upper bound on vol2m(V ∩ B(a, ε)).
But first we need to prove a lemma.

Lemma 20.11 Let a ∈ P
p and consider the orbit map ϕ : U (p + 1) → P

p, u �→
ua. Then the pushforward ν of the normalized Haar measure on U (p + 1) with
respect to ϕ equals the uniform measure on P

p .

Proof First note that ϕ is equivariant under the action of the unitary group, that is,
ϕ(uv)= uϕ(e) for all u,v ∈U (p+ 1). Hence for a measurable subset A⊆ P

p and
u ∈ U (p + 1) we have ϕ−1(uA)= uϕ−1(A). Since the normalized Haar measure
on U (p+ 1) is invariant, we get

ν(uA)= vol
(
ϕ−1(uA)

)= vol
(
uϕ−1(A)

)= vol
(
ϕ−1(A)

)= ν(A).
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On the other hand, ϕ is a surjective smooth map, so that the pushforward measure ν

has a continuous density ρ; see Sect. 17.3. The invariance of ν implies that
∫

A

ρ dPp = ν(A)= ν(uA)=
∫

uA

ρ dPp =
∫

A

ρ ◦ u−1 dPp,

where the last equality is due to the fact that u−1 : Pp → P
p, a �→ u−1a, preserves

the volume. Since the above equality holds for arbitrary A, we get ρ = ρ ◦ g−1.
Hence ρ must be constant, and hence ν is the uniform measure on P

p . �

The following lemma is in the spirit of Corollary 20.10.

Lemma 20.12 Let V ⊆ P
p be an irreducible m-dimensional variety, a ∈ P

p ,
and 0 < ε ≤ 1. Then

vol2m(V ∩B(a, ε))

vol2m Pm
≤
(
p

m

)
degV ε2m.

Proof Let U denote the interior of V ∩ B(a, ε). According to Theorem 20.9, it is
sufficient to show that Eu∈U (p+1)#(U ∩ uPp−m) ≤ (

p
m

)
degV ε2m, since we have

vol2mU = vol2m(V ∩B(a, ε)).
To estimate this expectation, note that

E
u∈U (p+1)

#
(
U ∩ uPp−m

)≤ degV Prob
u∈U (p+1)

{
U ∩ uPp−m �= ∅},

since #(U ∩ uPp−m)≤ #(V ∩ uPp−m)≤ degV for almost all u ∈U (p+ 1). More-
over, since U ⊆ B(a, ε), we have

Prob
u∈U (p+1)

{
U ∩ uPp−m �= ∅} ≤ Prob

u∈U (p+1)

{
B(a, ε)∩ uPp−m �= ∅}

= Prob
u∈U (p+1)

{
B(u−1a, ε)∩ P

p−m �= ∅}

= Prob
x∈Pp

{
B(x, ε)∩ P

p−m �= ∅},

where the last equality is due to Lemma 20.11. By definition, B(x, ε) ∩ P
p−m �= ∅

iff x ∈ T (Pp−m, ε), whence

Prob
x∈Pp

{
B(x, ε)∩ P

p−m �= ∅}= volT (Pp−m, ε)

volPp
.

We can bound the latter by Lemma 20.8, which yields

volT (Pp−m, ε)

volPp
≤ volPp−m volPm

volPp
ε2m =

(
p

m

)
ε2m,

where we have used (17.9) for the last equality. �
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In Theorem 20.9 we intersected a subset U of an irreducible variety V with a
random linear subspace of complementary dimension. We also need a variant of this
theorem in which we intersect U with a ball B(a, ε) of fixed radius ε and random
center a. Both these results are special cases of Poincaré’s formula (Theorem A.55),
which is a fundamental result of spherical integral geometry that will be proven
in Sect. A.4.1.

Theorem 20.13 Let V ⊆ P
p be an m-dimensional irreducible projective variety

and U ⊆ V an open subset in the classical topology. Then we have for 0 < ε ≤ 1,

E
a∈Pp

vol2m
(
U ∩B(a, ε)

)= ε2p vol2m U. �

We also need a lower bound on vol2m(V ∩B(a, ε)), which is provided in the fol-
lowing result. Its proof, which is a consequence of Wirtinger’s inequality, is outlined
in Sect. A.3.6.

Theorem 20.14 Let V ⊆ P
p be an m-dimensional irreducible projective variety

and a ∈ V , 0 < ε ≤ 1√
m

. Then we have

vol2m
(
V ∩B(a, ε)

)≥ ε2m(1 −mε2) vol2m P
m. �

Remark 20.15 The assertions of Theorems 20.9 and 20.13 are not confined to C and
hold in much more generality. However, the above Theorem 20.14 fails to be true
over R.

20.5 Proof of Theorem 20.1

Proof of Theorem 20.4 We first show that it suffices to prove the assertion for an
irreducible V . Indeed, suppose that V = V1 ∪ · · · ∪ Vs is the decomposition of V

into its irreducible components Vi . We have T (V, ε) = T (V1, ε) ∪ · · · ∪ T (Vs, ε).
Moreover, the degree of V is defined as degV =∑

i degVi , since we assume that
dimVi =m for all i. Hence it is clear that the bounds (in the statement) for Vi imply
the bound for V .

We therefore assume that V is irreducible and fix a ∈ P
p . We shall see that

we can bound the 2p-dimensional volume of T (V, ε) ∩ B(a,σ ) in terms of the
2m-dimensional volume of the intersection U := V ∩ B(a,σ + ε1) of V with
a ball of slightly larger radius σ + ε1. Here ε1 ∈ (0,1] is assumed to satisfy
0 < ε1 − ε ≤ 1√

2m
; its actual value will be specified later on.

We claim that

inf
z∈T (V,ε)∩B(a,σ )

vol2m(U ∩B(z, ε1))

vol2m Pm
≥ 1

2
(ε1 − ε)2m. (20.4)
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Fig. 20.2 The thick curve segment is U := V ∩ B(a,σ + ε1), and the shaded region is
T (V, ε)∩B(a,σ )

In order to see this, let z ∈ T (V, ε)∩B(a,σ ). For x ∈ V ∩B(z, ε1) we have

dsin(x, a)≤ dsin(x, z)+ dsin(z, a)≤ ε1 + σ.

Hence V ∩B(z, ε1)⊆U ; see also Fig. 20.2.
Further, there exists y ∈ V such that dsin(z, y) ≤ ε, and hence for x′ ∈

B(y, ε1 − ε) we have

dsin
(
x′, z

)≤ dsin
(
x′, y

)+ dsin(y, z)≤ ε1 − ε+ ε = ε1.

Therefore, B(y, ε1 − ε)⊆ B(z, ε1); see also Fig. 20.3. So we have the inclusions

V ∩B(y, ε1 − ε)⊆ V ∩B(z, ε1)⊆U ∩B(z, ε1).

Theorem 20.14 implies

vol2m
(
U ∩B(z, ε1)

)≥ vol2m
(
V ∩B(y, ε1 − ε)

)≥ 1

2
(ε1 − ε)2m vol2m P

m,

since 1 −m(ε1 − ε)2 ≥ 1
2 , which proves the claim (20.4).
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Fig. 20.3 The thick curve segment is V ∩B(y, ε1 − ε)

Using (20.4) and Theorem 20.13 we now argue as follows:

1

2
(ε1 − ε)2m vol2p(T (V, ε)∩B(a,σ ))

vol2p Pp

= 1

vol2p Pp

∫

z∈T (V,ε)∩B(a,σ )

1

2
(ε1 − ε)2m dPp(z)

(20.4)≤ 1

vol2p Pp

∫

z∈T (V,ε)∩B(a,σ )

vol2m(U ∩B(z, ε1))

vol2m Pm
dPp(z)

≤ 1

vol2m Pm

1

vol2p Pp

∫

z∈Pp

vol2m
(
U ∩B(z, ε1)

)
dPp(z)

Theorem 20.13= 1

vol2m Pm
ε2m

1 vol2mU.

It follows that

vol2p(T (V, ε)∩B(a,σ ))

vol2p Pp
≤ 2ε2p

1

(ε1 − ε)2m
· vol2mU

vol2m Pm
.

Lemma 20.12 tells us that

vol2mU

vol2m Pm
≤
(
p

m

)
degV (σ + ε1)

2m.
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So we obtain

vol2p(T (V, ε)∩B(a,σ ))

vol2p Pp
≤ 2ε2p

1

(ε1 − ε)2m

(
p

m

)
degV (σ + ε1)

2m.

Using vol(B(a,σ ))= vol(Pp)σ 2p (Lemma 20.8) it follows that

vol2p(T (V, ε)∩B(a,σ ))

vol2p(B(a,σ ))
≤ 2

(ε1 − ε)2m

(
ε1

σ

)2p(
p

m

)
deg(V ) (σ + ε1)

2m.

We finally choose ε1 := p
p−m

ε. Then the required inequality

ε1 − ε = m

p−m
ε ≤ 1√

2m

holds due to the assumption ε ≤ 1√
2m

p−m
m

. We obtain now

vol2p(T (V, ε)∩B(a,σ ))

vol2p(B(a,σ ))

≤ 2

(
p−m

m

)2m 1

ε2m

(
p

p−m

)2p(
ε

σ

)2p(
p

m

)
deg(V )σ 2m

(
1 + p

p−m

ε

σ

)2m

= 2p2p

m2m(p−m)2(p−m)

(
p

m

)
deg(V )

(
ε

σ

)2(p−m)(
1 + p

p−m

ε

σ

)2m

.

Taking into account the estimate
(
p
m

)≤ pp

mm(p−m)p−m , which readily follows from the
binomial expansion of pp = (m+ (p−m))p , the assertion follows. �

We remark for future use the following estimate from the end of the proof:

1

2
K(p,m)≥

(
p

m

)3

. (20.5)

Proof of Theorem 20.1 The inequality for the tail follows directly from Theo-
rem 20.4. For the expectation estimates, let ε∗ := p−m

pm
σ and t∗ := ε−1∗ . Note that

for ε ≤ ε∗,
(

1 + p

p−m

ε

σ

)2m

≤
(

1 + 1

m

)2m

≤ e2,

and thus

vol(T (V, ε)∩B(a,σ ))

vol(B(a,σ ))
≤K(p,m)degΣ

(
ε

σ

)2(p−m)

e2.
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Therefore, for all t ≥ t∗, writing ε = 1/t ,

Prob
a∈B(a,σ )

{
C (a)≥ t

}≤K(p,m)degΣ
1

σ 2(p−m)
e2 · t−2(p−m).

Now write α := 2(p−m)≥ 2 and put

K :=K(p,m)degΣ
1

σα
e2, t0 :=K

1
α

pm

p−m
.

Note that t0 ≥ t∗ (use that K(p,m) ≥ 1 due to (20.5)). Then we have
Proba∈B(a,σ ){C (a) ≥ t} ≤ Kt−α for all t ≥ t0. Since in addition, tα0 ≥ K , we can
apply Proposition 2.26 to bound Ez∈B(a,σ )(logβ C (z)) from above by

1

2(p−m)

(
logβ K(p,m)+ logβ degΣ + 3 logβ e

)+ logβ

pm

p−m
+ logβ

1

σ
.

For the expectation of C take again α = 2(p−m) and define the new value

K :=K(p,m)deg(Σ)e2 1

σα

(
pm

p−m

)α

and set B := t∗. Then, Probz∈B(a,σ ){C (z)≥ t} ≤Kt−α , for all t ≥ B , and B ≤K
1
α .

We can therefore use Proposition 2.27 with k = 1 to deduce

E
z∈B(a,σ )

(
C (z)

)≤ α

α− 1
K

1
α .

The claimed bound now follows from the fact that 2(p−m)
2(p−m)−1 ≤ 2 and e

2
α ≤ e. �

Proof of Corollary 20.2 Put Σ ′ = ZP(f ) and note that since Σ ⊆ Σ ′, we have
C (a) = 1

dsin(a,Σ)
≤ 1

dsin(a,Σ ′) . Moreover, degΣ ′ ≤ d . The assertion then follows
from Theorem 20.1 applied to Σ ′ and the inequality

K(p,p− 1)= 2
p3p

(p− 1)3p−3
= 2

[(
1 + 1

p− 1

)p−1]3

p3 ≤ 2e3p3.

The bounds on the expectations follow from the corresponding bounds in Theo-
rem 20.1, using p/(p− 1)≤ 2 and logβ 8 ≤ log2 8 = 3. �

20.6 Applications

20.6.1 Linear Equation-Solving

The first natural application of our results should be for the classical condition num-
ber κ(A). We note, however, that κ(A) is not conic, since in Corollary 1.8 both the
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norm ‖A‖rs and the distance drs(A,Σ) are induced by an operator norm, and this
norm is not induced by a Hermitian product on C

n×n.
We can nevertheless consider, for A ∈C

n×n, the Frobenius condition number

κF (A) := ‖A‖F
∥∥A−1

∥∥= ‖A‖F
dF (A,Σ)

,

the last equality following from Corollary 1.19. This condition number does not
arise from perturbation considerations, but it satisfies κ(A) ≤ κF (A) ≤ √

nκ(A)

and is amenable to our analysis, since ‖ ‖F is induced by the Hermitian product
(A,B) �→ trace(AB∗). In other words, κF is conic.

Proposition 20.16 For all n≥ 1, 0 < σ ≤ 1, and A ∈C
n×n we have

E

A∈B(A,σ)

(
κF (A)

)≤ 4
(
2e5) 1

2 n
7
2

1

σ

and

E

A∈B(A,σ)

(
logβ κF (A)

)≤ 7

2
logβ n+ logβ

1

σ
+ 3 logβ e+ 3

2
,

where the expectations are over A uniformly distributed in the disk of radius σ

centered at A in projective space P
n2−1 with respect to dsin.

Proof The variety Σ of singular matrices is the zero set of the determinant and
hence a hypersurface in P

n2−1 of degree n. We now apply Corollary 20.2. �

Note that the bound in Proposition 20.16 for the logarithm of κF (A) is of the
same order of magnitude as the one obtained (for real matrices, but this is of no
relevance) in Theorem 2.46 for the logarithm of κ2∞(A).

20.6.2 Eigenvalue Computations

Let A ∈C
n×n and let λ ∈C be a simple eigenvalue of C. Let v,u ∈C

n be the right
and left eigenvectors associated to λ, respectively, that is, Av = λv and u∗A= λu∗,
cf. Sect. 14.3.1. We saw in Proposition 14.15 (with r = s = 2) that the absolute
condition number for computing the eigenvalue λ satisfies

acondG2(A,λ)= ∥∥DG2(A)
∥∥= ‖u‖‖v‖

|〈u,v〉| .

Following the lines of thought in Sect. 6.8, we can then define the (absolute) condi-
tion number of A for eigenvalue computations by taking

κeigen(A) := max
λ

acondG2(A,λ),
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where the maximum is over all the eigenvalues λ of A and is taken to be ∞ if one
of them is not simple. Note that κeigen(A) is homogeneous of degree 0 in A. Also,
the set Σ where κeigen is infinite is the set of matrices having multiple eigenvalues.

Proposition 20.17 For all nonzero A ∈C
n×n we have

κeigen(A)≤
√

2‖A‖F
dF (A,Σ)

.

Proof The statement is true if κeigen(A)=∞. We can therefore assume that all the
eigenvalues of A are simple.

We consider two cases. If κeigen(A) ≤ √
2, then the statement is true, since

‖A‖F
dF (A,Σ)

≥ 1. If instead κeigen(A) >
√

2, then there exists an eigenvalue λ such that

κeigen(A)= acondG2(A,λ) >
√

2.
Let v and u be right and left eigenvectors of λ, respectively. Lemma 14.17(a)

states that 〈u,v〉 �= 0. Without loss of generality we may assume ‖v‖ = ‖u‖ = 1 and
ε := 〈u,v〉 ∈ (0,1]. Since acondG2(A,λ)= ε−1, we actually have ε < 1√

2
.

Our argument is based essentially on the unitary invariance of Σ : if A′ ∈Σ and
M ∈U (n), then MA′M∗ ∈Σ .

Let M ∈U (n) be such that Mv = e1 and put z :=Mu. Then,

〈z, e1〉 = 〈u,v〉 = ε and z= (ε,w) (20.6)

for some w ∈ C
n−1 such that ‖w‖2 = (1 − ε2). Let now B := MAM∗. Then the

relations Av = λv and u∗A = λu∗ (along with the equality MM∗ = M∗M = I)
imply

MAM∗Mv = λMv and u∗M∗MAM∗ = λu∗M∗,

that is,

Be1 = λe1 and z∗B = λz∗. (20.7)

From the first of these equalities it follows that B has the form

B =
[
λ b∗
0 B1

]

for some b ∈ C
n−1 and B1 ∈ C

(n−1)×(n−1). This form, together with the right-hand
equalities in (20.6) and (20.7), yields

[
ε,w∗]

[
λ b∗
0 B1

]
= λ

[
ε,w∗],

which implies εb∗ +w∗B1 = λw∗. We can rewrite this equality as

w∗
[
B1 + ε

w∗w
wb∗

]
= λw∗.
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This shows that λ is an eigenvalue of B1 +E1 for the rank-one perturbation E1 :=
ε

w∗wwb∗ and hence that λ is a double eigenvalue of B +E with

E =
[

0 0
0 E1

]
.

From the unitary invariance of Σ it follows that

dF (A,Σ)= dF (B,Σ)≤ ‖E‖F = ‖E1‖F = ε‖w‖‖b‖
‖w‖2

.

Using ‖b‖ ≤ ‖B‖F = ‖A‖F as well as ‖w‖ = (1 − ε2)1/2, we get

dF (A,Σ)≤ ε‖A‖F
(1 − ε2)1/2

,

and finally, using ε < 1√
2

,

κeigen(A)= acondG2(A,λ)= 1

ε
≤ ‖A‖F

dF (A,Σ)

1

(1 − ε2)1/2
<

√
2‖A‖F

dF (A,Σ)
. �

The right-hand side in the bound of Proposition 20.17 is conic. We can therefore
obtain smoothed analysis estimates for this quantity.

Proposition 20.18 For all n≥ 1, 0 < σ ≤ 1, and A ∈C
n×n we have

E

A∈B
(
A,σ

)
(
logβ κeigen(A)

)≤ 4 logβ n+ logβ

1

σ
+ 3 logβ e+ 3

2
.

Proof Let χA(z)= det(zI−A) be the characteristic polynomial of A. Clearly, A has
multiple eigenvalues if and only if χA has multiple roots. This happens if and only
if the discriminant disc(χA) of A is zero. Therefore, the set of ill-posed matrices
A equals the zero set of the discriminant. It remains to show that disc(χA) is a
homogeneous polynomial in the entries of A and to determine its degree.

The discriminant disc(χA) is a polynomial in the entries of A, which can be
expressed in terms of the eigenvalues λ1, . . . , λn of A as follows:

disc(χA)=
∏

i<j

(λi − λj )
2.

Note that αλ1, . . . , αλn are the eigenvalues of αA, for α ∈C. Hence

disc(χαA)=
∏

i<j

(αλi − αλj )
2 = αn2−n

∏

i<j

(λi − λj )
2.

We conclude that disc(χA) is homogeneous of degree n2 − n in the entries of A.
We now apply Corollary 20.2 with p = n2 − 1 and d = n2 − n to get the asser-

tion. �
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20.6.3 Complex Polynomial Systems

Fix a degree pattern d = (d1, . . . , dn) and recall the setting of systems f ∈ Hd
of multivariate polynomials treated in Chap. 16. Recall also the condition number
μmax(f ) introduced in Eq. (18.1), which was shown in Theorem 18.2 to control the
randomized cost of Algorithm LV for finding an approximate zero of f . In Proposi-
tion 17.31 we stated bounds for the tail of μmax(f ) for f ∈Hd chosen according to
the standard Gaussian distribution. We can now easily obtain a smoothed analysis
of μmax(f ). To do so, we first bound μmax(f ) by a conic condition number.

Recall the discriminant variety Σ ⊆ P(Hd), which consists of the systems f ∈
P(Hd) having multiple zeros; see Remark 16.26. This variety is the zero set of
the discriminant polynomial discd, which is an irreducible polynomial with integer
coefficients. Moreover,

deg discd =D
(

1 +
(

n∑

i=1

di + 1 − n

)
n∑

i=1

1

di

)

≤Dn2D; (20.8)

see Corollary A.48 and Remark A.49.
Theorem 16.19 states that for (f, ζ ) ∈ V we have

μnorm(f, ζ )= 1

dsin(f,Σζ )
,

where Σζ consists of the f̃ ∈Hd for which ζ is a multiple zero (we identify f with
[f ] ∈ P(Hd)). In particular, Σζ ⊆ Σ and hence dsin(f,Σζ ) ≥ dsin(f,Σ). We can
now estimate μmax by the conic condition number associated with Σ :

μmax(f )= max
ζ |f (ζ )=0

μnorm(f, ζi)= max
ζ |f (ζ )=0

1

dsin(f,Σζ )
≤ 1

dsin(f,Σ)
. (20.9)

Proposition 20.19 For all f ∈Hd, f �= 0, all σ ∈ (0,1], and all t ≥N
√

2,

Prob
f∈B(f ,σ )

{
μmax(f )≥ t

}≤ 2e3N3Dn2D

(
1

tσ

)2(
1 +N

1

tσ

)2(N−2)

and

E

f∈B(f ,σ )

(
logβ μmax(f )

) ≤ 3

2
logβ N + 1

2
logβ D+ logβ n+ 1

2
logβ D

+ logβ

1

σ
+ 3 logβ e+ 3

2
.

Proof We apply Corollary 20.2 to the zero set Σ in P(Hd) of the discriminant
discd and the associated conic condition number. Recall that N := dimCHd so that
p =N − 1. Further, deg discd ≤ n(D − 1)+ 1 by (20.8). �
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Remark 20.20 There is a noticeable difference between the tail estimate in Proposi-
tion 17.31 and that in Proposition 20.19. The former decays as t−4, whereas the lat-
ter decays as t−2. This difference arises from the inequality in (20.9) which bounds
μmax by the relativized inverse of the distance to a complex hypersurface. It appears
that this bound is too generous.



Chapter 21
Probabilistic Analysis of Conic Condition
Numbers: II. The Real Case

Our final goal can be succinctly stated: we want to extend the main result of the
preceding chapter to problems with real data. Again this boils down to providing
bounds on the volume of tubes. However, the technical development will be quite
different. One of the key constituents of the proof of Theorem 20.1, Lemma 20.14, is
false over the reals. For this reason, a more sophisticated line of argument involving
integrals of curvature and the kinematic formula will be required.

We assume that our data space is R
p+1 and fix a subset Σ �= {0} of “ill-posed

inputs” that we assume to be closed under multiplication with real scalars. In other
words, Σ is a cone satisfying the symmetry condition −Σ = Σ . (Note that we
don’t assume Σ to be convex.) Again, we call a function C : Rp+1 \ {0} → R a
conic condition number when it has the form

C (a)= ‖a‖
d(a,Σ)

,

where ‖ ‖ and d are the norm and distance induced by the standard inner product
〈 , 〉. Similarly as in the previous chapter, we may restrict to data a lying in the
sphere S

p = {x ∈R
p+1 | ‖x‖ = 1} and express the conic condition number C as

C (a)= 1

dsin(a,Σ ∩ Sp)
.

Note that C (−a)= C (a) due to −Σ =Σ .
Let Bsin( a, σ ) := {x ∈ S

p | dsin(x, a ) ≤ σ } denote the closed ball of radius σ ,
with respect to dsin, around a in S

p . We have Bsin( a, σ ) = B(a,σ ) ∪ B(−a,σ ),
where B(a,σ ) denotes the spherical cap around a with angular radius arcsinσ ;
compare Sect. 2.2.6.

We will endow Bsin( a, σ ) with the uniform probability measure. The main result
in this chapter is the following.

Theorem 21.1 Let C be a conic condition number with set of ill-posed inputs Σ .
Assume that Σ is contained in a real algebraic hypersurface, given as the zero set

P. Bürgisser, F. Cucker, Condition,
Grundlehren der mathematischen Wissenschaften 349,
DOI 10.1007/978-3-642-38896-5_21, © Springer-Verlag Berlin Heidelberg 2013
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of a homogeneous polynomial of degree d . Then, for all 0 < σ ≤ 1 and all t ≥
(2d + 1)p

σ
, we have

sup
a∈Sp

Prob
a∈Bsin( a,σ )

{
C (a)≥ t

}≤ 4e dp
1

σ t

and

sup
a∈Sp

E
a∈Bsin( a,σ )

logβ C (a)≤ logβ p+ logβ d + logβ

1

σ
+ logβ

(
4e2).

In particular (take σ = 1), for all t ≥ (2d + 1)p,

Prob
a∈Sp

{
C (a)≥ t

}≤ 4e dp
1

t

and

E
a∈Sp

(
logβ C (a)

)≤ logβ p+ logβ d + logβ

(
4e2).

Remark 21.2 (a) In Theorem 21.1 we could replace Bsin( a, σ ) by B(a,σ ). This is
because C (−a)= C (a) and hence

Prob
a∈Bsin( a,σ )

{
C (a)≥ t

}= Prob
a∈B(a,σ )

{
C (a)≥ t

}
.

In fact, Theorem 21.1 could be stated for real projective space P
p with the same

bounds. While such a statement is the most natural over the complex numbers, it
does not follow the tradition over the reals.

(b) The extension of Theorem 21.1 from hypersurfaces to higher codimension is
an open problem.

The techniques developed in this chapter will also provide a proof of Theo-
rem 13.18 bounding the volume of tubes around spherical convex sets.

Let us point out that this chapter is mathematically more demanding than the
previous ones, since the proofs rely on various techniques from differential and
integral geometry. For this reason, in a few places, we just give a sketch of the
arguments and refer to the Appendix or the Notes for more details.

21.1 On the Volume of Tubes

Recall from Definition 13.16 the notion T (U, ε) of the ε-neighborhood around a
subset U of Sp , for 0 < ε ≤ 1.

We have, for a ∈ S
p and σ ∈ (0,1],

Prob
a∈Bsin( a,σ )

{
C (a)≥ ε−1}= vol(T (Σ ∩ S

p, ε)∩Bsin( a, σ ))

volBsin(a, σ )
.
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Clearly, our task is to provide bounds on the volume of T (Σ ∩ S
p, ε)∩Bsin( a, σ ).

As a first step towards this goal we shall derive in this section a general formula
for the volume of the ε-neighborhood around a smooth hypersurface in S

p .
In Sect. 2.2.6 we introduced the notion of an ε-tube T ⊥(U, ε) around a closed

subset of a subsphere S
p−1 of Sp (see Fig. 2.1). We now extend this notion. Let M

be a compact smooth hypersurface in S
p , U ⊆M a subset, and 0 < ε ≤ 1. We define

the ε-tube T ⊥(U, ε) around U by

T ⊥(U, ε) := {
x ∈ S

p | there is an arc of a great circle in S
p from x to a point

in U of length ≤ arcsin ε that intersects M orthogonally
}
.

Lemma 21.3 We have T ⊥(U, ε) ⊆ T (U, ε) with equality holding in the case
U =M .

Proof Let q ∈ T (M,ε) and assume that x0 ∈ M minimizes dS(q, x) for x ∈
M . Then, for any smooth curve x(t) in M with x(0) = x0, the function t �→
θ(t) = dS(q, x(t)), defined in a neighborhood of 0, has a minimum at t = 0, and
hence θ̇ (0) = 0. On the other hand, 〈q, x(t)〉 = cos θ(t), which implies 〈q, ẋ〉 =
−θ̇ sin θ = 0 by differentiating at 0. Hence ẋ is orthogonal to q − x0. This implies
that q ∈ T ⊥(M,ε). �

Remark 21.4 If U is a submanifold of M with a smooth boundary, then T (U, ε)

equals the union of T ⊥(U, ε) and a “half-tube” around the boundary of U (cf.
Fig. 2.1).

21.1.1 Curvature Integrals

For a short review of the few elementary concepts from differential geometry needed
for this section we refer to Sect. A.2.7.

Let M be a compact smooth oriented hypersurface of S
p . Assume that a unit

normal vector field ν : M → R
p+1 has been chosen on M that corresponds to

the choice of the orientation of M . Consider the Weingarten map (see (A.4))
LM(x) : TxM → TxM , LM(x) := −Dν(x), which is a well-defined self-adjoint lin-
ear map (cf. Lemma A.20). The eigenvalues κ1(x), . . . , κp−1(x) of the Weingarten
map LM(x) are called the principal curvatures of the hypersurface M at x. For
1 ≤ i ≤ p − 1 one defines the ith curvature KM,i(x) of M at x as the ith elemen-
tary symmetric polynomial in κ1(x), . . . , κp−1(x), and one puts KM,0(x) := 1. We
remark that the ith curvatures are the coefficients of the characteristic polynomial
of the Weingarten map:

det
(
Ip−1 + tLM(x)

)=
p−1∑

i=0

KM,i(x) t
i . (21.1)
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Note that for i = p− 1 one gets

KM,p−1(x)= κ1(x) · · ·κp−1(x)= detLM(x)= (−1)p−1 detDv(x), (21.2)

which is called the Gaussian curvature of M at x.

Example 21.5 Consider the case of M = S
p−1, the subsphere of Sp given by the

equation xp = 0. Then LM(x) = 0 for all x ∈ M ; see Example A.22. Hence all
the principal curvatures of M are zero. This example makes clear that the principal
curvatures are relative to the ambient space Sp . (Of course, Sp−1 is curved; however,
its “curvature relative to the ambient sphere” is zero.)

Recall that a hypersurface M in S
p has a Riemannian metric inherited from

the ambient space S
p and that dM denotes the corresponding volume element,

cf. Sect. A.2.5. We continue with a fundamental definition.

Definition 21.6 Let U be a measurable subset of the given oriented compact smooth
hypersurface M of S

p . The normalized integral μi(U) of the ith curvature of U

in M , for 0 ≤ i ≤ p− 1, is defined as

μi(U) := 2

OiOp−i−1

∫

U

KM,i dM.

Moreover, we define the normalized integral |μi |(U) of the ith absolute curvature
of U by

|μi |(U) := 2

OiOp−i−1

∫

U

|KM,i |dM. (21.3)

The reason for the choice of the scaling factors will become clear soon. We note
thats for i = 0,

μ0(U)= |μ0|(U)= volp−1 U

Op−1
,

equals the ratio of the (p− 1)-dimensional volume of U to the volume of Sp−1. We
also note that the normalized integral of the top absolute curvature (i = p− 1),

|μp−1|(U)= 1

Op−1

∫

U

|detDν|dM, (21.4)

equals the integral of the absolute value of the Gaussian curvature over U , normal-
ized by the factor 1

Op−1
.

Let us summarize some basic properties of these notions. Their obvious proofs
are left to the reader.
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Lemma 21.7

(a) |μi(U)| ≤ |μi |(U).
(b) |μi |(U1)≤ |μi |(U2) for U1 ⊆U2.
(c) For g ∈ O(p + 1) we have μi(U) = μi(gU) and |μi |(U) = |μi |(gU), where

gU is interpreted as a subset of the smooth hypersurface gM .
(d) |μi |(Sp−1)= 0 for i > 0; see Example 21.5. �

Example 21.8 In Example A.22 we will show that the boundary Mα of a spher-
ical cap cap( a,α) in S

p of radius 0 < α ≤ π/2 has an isotropic Weingarten
map given by LMα = (cotα) ITxM . Therefore the ith curvature of Mα satisfies
KMα,i(x)=

(
p−1
i

)
(cotα)i , a quantity independent of x ∈Mα . Hence we obtain for

the normalized integral of the ith curvature

μi(Mα)= 2KMα,i volp−1 Mα

OiOp−1−i

= 2Op−1

OiOp−1−i

(
p− 1

i

)
(sinα)p−i−1(cosα)i,

(21.5)
using that volp−1 Mα =Op−1(sinα)p−1. We note that μi(U)= |μi |(U) for all mea-
surable subsets U of Mα , since all the principal curvatures are nonnegative.

21.1.2 Weyl’s Tube Formula

We show now that the volume of the tube T ⊥(U, ε) around a measurable subset U
of the smooth hypersurface M in S

p can be bounded in terms of the integrals of
absolute curvature |μi |(U). Recall the definition of Op,k(ε) in Lemma 20.5.

Theorem 21.9 Let M be a compact smooth oriented hypersurface of Sp and let U
be a measurable subset of M . Then we have for all 0 < ε ≤ 1,

volT ⊥(U, ε)≤
p−1∑

i=0

|μi |(U)Op,p−1−i (ε).

Proof Let ν : M → S
p be the unit normal vector field on M corresponding to its

orientation. For x ∈M we consider the parameterization

ϕx : R→ S
p, ϕx(t)= x + tν(x)

‖x + tν(x)‖ = x + tν(x)

(1 + t2)
1
2

,

of the half great circle intersecting M at x orthogonally (cf. Fig. 21.1). Note that if
we set ρ := dS(x,ϕx(t)), then t = tanρ.

Consider the following smooth map:

ϕ : M ×R→ S
p, (x, t) �→ ϕx(t).
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Fig. 21.1 The point ϕx(t)

and the quantities t and α

Let α := arcsin ε and put τ = tanα. We denote by T +(U, ε) and T −(U, ε) the
images of U × (0, τ ) and U × (−τ,0) under the map ϕ, respectively. Clearly,
T ⊥(U, ε)=U ∪ T +(U, ε)∪ T −(U, ε).

We apply the transformation formula of Corollary 17.10 to the surjective differ-
entiable map ϕ : U × (0, τ )→ T +(U, ε) of Riemannian manifolds. This yields

∫

U×(0,τ )

∣∣detDϕ
∣∣d(M ×R)=

∫

y∈T +(U,α)

∣∣ϕ−1(y)
∣∣dSp ≥ volT +(U,α).

By Fubini’s theorem,
∫
U×(0,τ ) |detDϕ|d(M ×R)= ∫ τ

0 g(t) dt , where

g(t) :=
∫

x∈U
|detDϕ|(x, t) dM(x). (21.6)

Claim A. The determinant of the derivative Dϕ(x, t) of ϕ at (x, t) ∈M×R satisfies

∣∣detDϕ(x, t)
∣∣= 1

(1 + t2)(p+1)/2

∣∣det
(
ITxM − tLM(x)

)∣∣, (21.7)

where, we recall from (A.4), LM(x) is the Weingarten map.
Using this claim, whose proof is postponed, we obtain from (21.6)

g(t) =
∫

x∈U
1

(1 + t2)(p+1)/2

∣∣det
(
ITxM − tLM(x)

)∣∣dM(x) (by Claim A)

≤
p−1∑

i=0

|t |i
(1 + t2)(p+1)/2

∫

U

|KM,i |dM (by (21.1))

=
p−1∑

i=0

|t |i
(1 + t2)(p+1)/2

1

2
OiOp−1−i |μi |(U) (by (21.3)).

By making the substitution t = tanρ (recall τ = tanα) we get

∫ τ

0

t i

(1 + t2)(p+1)/2
dt =

∫ α

0
(cosρ)p−1−i (sinρ)i dρ

= 1

OiOp−1−i

Op.p−1−i (ε).
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Altogether we conclude that

volT +(U,α)≤
∫ τ

0
g(t) dt ≤ 1

2

p−1∑

i=0

|μi |(U)Op,p−1−i (ε).

The same estimate can be proved for volp T −(U,α), which implies the desired esti-
mate of volT ⊥(U,α).

It remains to prove Claim A. Fix x ∈M and choose a local parameterization of
M around x. More specifically, let O ⊆ R

p−1 and O ′ ⊆ M be open subsets such
that 0 ∈O and x ∈O ′ and let

O →O ′, v = (v1, . . . , vp−1) �→ x(e)

be a diffeomorphism with x(0) = x. Then the partial derivatives ∂v1x, . . . , ∂vp−1x

form a basis of TxM . We extend the above map to the diffeomorphism

γ : O ×R→O ′ ×R, (v, t) �→ (
x(e), t

)
.

Note that the (p − 1)-dimensional volume volp−1(∂v1x, . . . , ∂vp−1x) of the par-
allelepiped spanned by the vectors ∂v1x, . . . , ∂vp−1x equals the absolute value of
the determinant of Dγ (v, t), that is, |detDγ (v, t)| = volp−1(∂v1x, . . . , ∂vp−1x). Put
R(v, t) := x(e)+ tν(e) ∈R

p+1. Then the map

ψ : O ×R→ S
p, (v, t) �→ψ(v, t) := ϕ

(
x(e), t

)= R(v, t)

(1 + t2)
1
2

,

is a local parameterization of S
p . Since ψ = ϕ ◦ γ , we can characterize

|detDϕ(x, t)| by

∣∣detDϕ
(
x(e), t

)∣∣= |detDψ(v, t)|
|detDγ (v, t)| =

|detDψ(v, t)|
volp−1(∂v1x, . . . , ∂vp−1x)

. (21.8)

We compute now the determinant |detDψ(v, t)|. It equals the p-dimensional
volume of the parallelepiped spanned by the vectors ∂tψ, ∂v1ψ, . . . , ∂vp−1ψ . Since
ψ is orthogonal to TxM and ‖ψ‖ = 1, we have

∣∣detDψ(v, t)
∣∣= ∣∣det(ψ, ∂tψ, ∂v1ψ, . . . , ∂vp−1ψ)

∣∣,

where (ψ, ∂tψ, ∂v1ψ, . . . , ∂vp−1ψ) denotes the square matrix of size p + 1 whose
rows are ψ and the partial derivatives of ψ . Using

∂viψ = (
1 + t2)−1/2

∂viR, ∂tψ = (
1 + t2)−1/2

∂tR − t
(
1 + t2)−3/2

R,

and the multilinearity of the determinant, we obtain
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∣∣det(ψ, ∂tψ, ∂v1ψ, . . . , ∂vp−1ψ)
∣∣

= 1

(1 + t2)(p+1)/2

∣∣det
(
R,∂tR − t

(
1 + t2)−1

R,∂v1R, . . . , ∂vp−1R
)∣∣

= 1

(1 + t2)(p+1)/2

∣∣det(R, ∂tR, ∂v1R, . . . , ∂vp−1R)
∣∣.

By the definition (A.4) of the Weingarten map, the equation

−∂vi ν =−Dν(x)∂vi x =
∑

j

λij (x)∂vj x

defines the matrix (λij (x)) of LM(x) with respect to the basis (∂vj x) of TxM . Using
this, we get

∂viR = ∂vi x + t∂vi ν =
∑

j

(
δij − tλij (x)

)
∂vj x.

Hence we obtain now, using ∂tR = ν,

det(R, ∂tR, ∂v1R, . . . , ∂vp−1R) = det(x + tν, ν, ∂v1R, . . . , ∂vp−1R)

= det(x, ν, ∂v1R, . . . , ∂vp−1R)

= det
(
δij − tλij (x)

)
det(x, ν, ∂v1x, . . . , ∂vp−1x)

= det
(
δij − tλij (x)

)
vol
p−1

(∂v1x, . . . , ∂vp−1x),

where the second-to-last equality follows from the multiplicativity of the determi-
nant and the last equality is due to the fact that x and ν have norm 1 and are orthog-
onal to TxM .

Summarizing, we have shown that

∣∣detDψ(v, t)
∣∣= 1

(1 + t2)(p+1)/2

∣∣det
(
δij − tλij (x)

)∣∣ vol
p−1

(∂v1x, . . . , ∂vp−1x).

The claim follows now by comparing this with (21.8). �

21.2 A Crash Course on Probability: VI

This is the last installment of our crash course. We recall in it a basic formula of
integral geometry; cf. Sect. A.4 for more details.

The discussion of the Lie group U (p+1) in Sect. 20.3 carries over to the orthog-
onal group O(p + 1). In fact, O(p + 1) is a smooth submanifold of R(p+1)×(p+1);
hence it inherits from the ambient space the structure of a compact Riemannian man-
ifold and thus has a volume form that defines a volume measure vol on O(p+1) (cf.
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Sect. A.2.6). This volume measure is invariant under the action of O(p+1) on itself:
we have volgB = volB for all measurable subsets B ⊆O(p+1) and g ∈O(p+1).
Since O(p+1) has finite volume, we can normalize it such that volO(p+1)= 1 to
obtain a uniform probability measure on O(p + 1), which is called the normalized
Haar measure of O(p+ 1).

Note that if M is a smooth hypersurface of Sp and g ∈O(p+ 1) is random, then
gM ∩ S

1 is almost surely finite by Proposition A.18. In this setting, the following
Crofton-type formula holds.

Proposition 21.10 Let U be an open subset of a smooth hypersurface M of Sp and
let 0 ≤ i < p. Then we have

volp−1 U

Op−1
= E

g∈O(p+1)

(
#(gU ∩ S

1)

2

)
.

�

Proposition 21.10 is an immediate consequence of Poincaré’s formula (Theo-
rem A.55) proved in Sect. A.4.1. The reader should note the similarity of this result
with Theorem 20.9.

We now fix a compact smooth oriented hypersurface M of Sp . For i < p we will
interpret Si+1 as the submanifold of Sp given by the equations xi+1 = · · · = xp = 0.
We now take a uniformly random g ∈ O(p + 1) and intersect gM with S

i+1. By
Proposition A.18, for almost all g ∈O(p+ 1), the intersection gM ∩ S

i+1 is either
empty or a smooth hypersurface of Si+1.

Suppose that gM∩S
i+1 is a smooth hypersurface. We fix an orientation on gM∩

S
i+1 as follows. Let ν be the distinguished unit normal vector field of M ; we require

that the distinguished unit normal vector of the hypersurface gM ∩S
i+1 in S

i+1 at x
lie in the positive half-space of TxM determined by ν. Let now U be a measurable
subset of M . Then gU ∩S

i+1 is a measurable subset of the hypersurface gM ∩S
i+1

of Si+1, and hence the integral of the ith curvature μi(gU ∩ S
i+1) is well defined.

After setting μi(∅) := 0, we see that μi(gU ∩ S
i+1) is well defined for almost

all g ∈O(p+ 1).
The following result is a special case of the principal kinematic formula of inte-

gral geometry for spheres. We refer to Sect. A.4.2 for a discussion of this result and
its context.

Theorem 21.11 Let U be an open subset of a compact smooth oriented hypersur-
face M of Sp and 0 ≤ i < p. Then we have

μi(U)= E
g∈O(p+1)

(
μi

(
gU ∩ S

i+1)).
�

We remark that Proposition 21.10 is obtained for i = 0 as a special case.
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21.3 Bounding Integrals of Curvature

In this section let f ∈ R[X0, . . . ,Xp] be homogeneous of degree d ≥ 1 with
nonempty zero set V ⊆ S

p such that the derivative of the restriction of f to S
p

does not vanish on V . Then V is a compact smooth hypersurface of Sp; cf. Theo-
rem A.9. We orient V by the following unit normal vector field, which is called the
Gauss map:

ν : V → S
p, ν(x)= ∥∥gradf (x)

∥∥−1
gradf (x). (21.9)

We next show that the integral of the top absolute curvature of V can be bounded
in terms of the dimension p and the degree d only.

Lemma 21.12 We have |μp−1|(V )≤ d(d − 1)p−1.

Sketch of proof. For simplicity, we assume that the image N of the Gauss map
ν : V → S

p is a smooth hypersurface of S
p (this can be achieved by removing

lower-dimensional parts). Theorem A.9 combined with Theorem A.12 implies that
for almost all y ∈N , the fibers ν−1(y) are zero-dimensional.

Using (21.4) and applying Corollary 17.10 to the Gauss map ν yields

Op−1 |μp−1|(V )=
∫

M

|detDν|dV =
∫

y∈N
#ν−1(y) dN. (21.10)

We decompose N according to the cardinality of the fibers, obtaining N =∪�∈NF�,
where F� := {y ∈N | #ν−1(y)= �}. If F ◦

� denotes the interior of F� in N , we have

∫

y∈N
#ν−1(y) dN =

∑

�∈N

∫

y∈F�

#ν−1(y) dN =
∑

�∈N
� vol

p−1
F ◦
� . (21.11)

Proposition 21.10 applied to the open subset F ◦
� of N implies

vol
p−1

F ◦
� = Op−1

2
E

g∈O(p+1)
#
(
F ◦
� ∩ gS1)= Op−1

2
E

g∈O(p+1)
#
(
F� ∩ gS1).

The last equality is a consequence of the fact that F� \ F ◦
� is a finite union of sub-

manifolds of dimension strictly less than dimN (which is true because F� is semi-
algebraic; cf. [39, Chap. 9]). Therefore,

∑

�∈N
� vol

p−1
F ◦
� = Op−1

2
E

g∈O(p+1)

(∑

�∈N
�#

(
F� ∩ gS1)

)
. (21.12)

But we have

ν−1(gS1)= ν−1(N ∩ gS1)=
⋃

�∈N
ν−1(F� ∩ gS1),
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where the union is disjoint and hence #ν−1(gS1) =∑
� �#(F� ∩ gS1). Combined

with (21.12) this gives

Op−1

2
E

g∈O(p+1)
#ν−1(gS1)= Op−1

2

∑

�∈N
� vol
p−1

F�.

From this we conclude with (21.10) and (21.11) that

|μp−1|(V )= 1

2
E

g∈O(p+1)

(
#ν−1(gS1)). (21.13)

A point x ∈R
n+1 lies in ν−1(S1) iff it satisfies the following system of equations:

n∑

i=0

x2
i − 1 = 0, f (x)= 0, ∂2f (x)= · · · = ∂nf (x)= 0.

By a variant of Bézout’s theorem, stated as Corollary A.46 in the Appendix, the
number of complex simple solutions to this system of equations is bounded by
2d(d − 1)n−1.

Proposition A.18 states that gS1 intersects N transversally for almost all
g ∈O(p+ 1). In this case, all the zeros of this system in S

p are simple. Combined
with the above reasoning, we conclude that

#ν−1(gS1)≤ 2d(d − 1)n−1

for almost all g ∈O(p+ 1). The assertion follows now from (21.13). �

Example 21.13 Let Vε denote the zero set of f =∑p

i=1 X
2
i − ε2X2

0 in S
p . Then

Vε = M+
α ∪ M−

α , where M+
α denotes the boundary of the spherical cap of angu-

lar radius α = arctan ε centered at (1,0, . . . ,0), and M−
α denotes the cap of ra-

dius α centered at (−1,0, . . . ,0). In Example 21.8 we have seen that μp−1(M
±
α )=

|μp−1|(M±
α )= (cosα)p−1. Hence μp−1(Vε)= 2(cosα)p−1, which converges to 2,

as ε → 0. This shows that the bound in Lemma 21.12 is sharp for d = 2.

We now extend Lemma 21.12 and give bounds for the integrals of absolute cur-
vature of V intersected with a ball.

Proposition 21.14 For a ∈ S
p , 0 < σ ≤ 1, and 0 ≤ i < p− 1 we have

|μi |
(
V ∩Bsin( a, σ )

)≤ 2d(d − 1)i
Op,i+1(σ )

Op

.

Proof Put U := V ∩ Bsin( a, σ ) and let U+ be the set of points of U where KV,i is
positive and let U− be the set of points of U where KV,i is negative. Then |μi |(U)=
|μi(U+)| + |μi(U−)|.
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Put G := O(p + 1) and let g ∈ G be such that gV intersects S
i+1 transver-

sally. Proposition A.18 states that this is the case for almost all g ∈ G. We apply
Lemma 21.12 to the hypersurface gV ∩ S

i+1 of the sphere gSi+1, which yields
|μi |(V ∩ gSi+1)≤ d(d − 1)i . By monotonicity, we obtain

∣
∣μi

(
U+ ∩ gSi+1)∣∣≤ |μi |

(
U+ ∩ gSi+1)≤ |μi |

(
V ∩ gSi+1)≤ d(d − 1)i .

The kinematic formula, Theorem 21.11, applied to the interior U◦+ of U+ in V ,
implies that

μi(U+)= μi

(
U◦+

) = E
g∈G

(
μi

(
gU◦+ ∩ S

i+1)) = E
g∈G

(
μi

(
gU+ ∩ S

i+1)).

For the right-hand equality, note that the boundary ∂U+ of U+ is a finite union
of submanifolds of dimension strictly less than dimN , since U+ is semialgebraic
(cf. [39, Chap. 9]). Therefore, g∂U+ ∩ S

i+1 is empty for almost all g ∈G.
We estimate now as follows:

∣∣μi(U+)
∣∣ ≤ E

g∈G
(∣∣μi

(
gU+ ∩ S

i+1)∣∣)

≤ d(d − 1)i Prob
g∈G

{
gU+ ∩ S

i+1 �= ∅}

≤ d(d − 1)i Prob
g∈G

{
Bsin(ga,σ )∩ S

i+1 �= ∅}.

The pushforward distribution of the normalized Haar measure on G under the orbit
map G→ S

p, g �→ ga, is the uniform distribution on S
p; see Lemma 20.11. Hence,

Prob
g∈G

{
Bsin(ga,σ )∩ S

i+1 �= ∅} = Prob
a∈Sp

{
Bsin( a, σ )∩ S

i+1 �= ∅}

= volT (Si+1, σ )

Op

= Op,i+1(σ )

Op

.

We have shown that

∣∣μi(U+)
∣∣≤ d(d − 1)i

Op,i+1(σ )

Op

.

The same upper bound holds for |μi(U−)|, and hence the assertion follows. �

21.4 Proof of Theorem 21.1

21.4.1 The Smooth Case

As in the previous section, let f ∈R[X0, . . . ,Xp] be homogeneous of degree d ≥ 1
and assume that the derivative of the restriction of f to S

p does not vanish on the
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zero set V = ZS(f ). Then V is a smooth hypersurface in S
p that we orient as before

with the Gauss map (21.9).
By combining Theorem 21.9 with the bounds on the integrals of absolute cur-

vature in Proposition 21.14 we can now derive bounds on the volume of the ε-tube
over V ∩Bsin( a, σ ).

But first we need to verify an identity involving the Ok .

Lemma 21.15 For 1 ≤ k ≤ p− 1 we have

Ok−1OkOp−1−kOp−k = 2(p− k)

(
p− 1

k − 1

)
Op−1Op.

Proof Using Proposition 2.19, we see that the claim is equivalent to the following
identity:

2(p− k)

(
p− 1

k − 1

)
Γ

(
k

2

)
Γ

(
k+ 1

2

)
Γ

(
p− k

2

)
Γ

(
p− k + 1

2

)

= 4
√
π Γ

(
p

2

)
Γ

(
p+ 1

2

)
. (21.14)

We define the double factorials k!! by k!! := k(k − 2) · · ·2 if k ≥ 2 is even and
k!! := k(k − 2) · · ·3 · 1 if k ≥ 1 is odd. Moreover, we set 0!! := 1. Note that k!! ·
(k − 1)!! = k!.

From the functional equation Γ (x + 1) = xΓ (x) it is straightforward to derive
the following formula:

Γ

(
r + 1

2

)
=
{√

π
2 (k − 1)!!2 1−k

2 if k is even,

(k − 1)!!2 1−k
2 if k is odd.

This implies

Γ

(
k

2

)
· Γ

(
k+ 1

2

)
=√

π
(k − 1)!

2k−1
.

Using this identity, (21.14) is easily verified. �

Proposition 21.16 Let a ∈ S
p and 0 < ε,σ ≤ 1. Then

volT ⊥(V ∩Bsin( a, σ ), ε
)≤ 4Op−1

p

p−1∑

k=1

(
p

k

)
dkεkσp−k +Opd

pεp.

Proof Put U := V ∩Bsin( a, σ ). Theorem 21.9 implies

volT ⊥(U, ε)≤
p−2∑

i=0

|μi |(U)Op,p−1−i (ε)+ |μp−1|(U)Op,0(ε).
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Estimating this with Proposition 21.14 and Lemma 21.12, which gives |μp−1(U)| ≤
|μp−1(V )| ≤ dp , we get

volT ⊥(U, ε)≤ 2

Op

p−2∑

i=0

di+1Op,i+1(σ )Op,p−1−i (ε)+ dpOp,0(ε).

Setting k = i + 1 and using the estimates of Lemma 20.6, as well as the bound
Op,0(ε)≤Opε

p (cf. Lemma 2.34), we obtain

volT ⊥(U, ε)≤ 2

Op

p−1∑

k=1

dk OkOp−1−kOp−kOk−1

(p− k)k
σp−kεk + dpOp εp.

Simplifying this last expression with Lemma 21.15, we get

volT ⊥(U, ε)≤ 2

Op

p−1∑

k=1

dk

(
p− 1

k− 1

)
2

k
Op−1Op σp−kεk + dpOp εp.

Finally, using
(
p−1
k−1

)= k
p

(
p
k

)
, the assertion follows. �

21.4.2 The General Case

We now extend Proposition 21.16 to the case that the real algebraic variety may
have singularities, and we also replace tubes by neighborhoods.

Theorem 21.17 Let W ⊆ S
p be a real algebraic variety defined by homogeneous

polynomials of degree at most d ≥ 1 such that W �= S
p . Then we have for a ∈ S

p

and 0 < ε,σ ≤ 1,

vol(T (W,ε)∩Bsin( a, σ ))

volBsin( a, σ )

≤ 2
p−1∑

k=1

(
p

k

)
(2d)k

(
1 + ε

σ

)p−k(
ε

σ

)k

+ 2
√
p (2d)p

(
ε

σ

)p

.

Proof Assume W = ZS(f1, . . . , fr ) with homogeneous polynomials fi of de-
gree di . Then W is the zero set in S

p of the polynomial

f (X) :=
r∑

i=1

fi(X)2‖X‖2d−2di ,

which is homogeneous of degree 2d . Our assumption W �= S
p implies that

dimW <p.
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Let δ > 0 be smaller than any positive critical value (cf. Definition A.7) of the
restriction of f to S

p . Then Dδ := {ξ ∈ S
p | f (ξ) ≤ δ} is a compact domain in S

p

with smooth boundary

∂Dδ =
{
ξ ∈ S

p | f (ξ)= δ
}
.

Indeed, by Euler’s relation
∑

i xi∂if (x) = 2df (x), the derivative of f does not
vanish on ∂Dδ . Moreover, note that W = ∩δ>0Dδ and Dδ ⊆Dδ′ for δ ≤ δ′; hence
limδ→0 volp Dδ = volp(W). Moreover, volp(W)= 0, since dimW <p.

Claim A. We have T (W,ε)⊆Dδ ∪ T (∂Dδ, ε) for 0 < ε ≤ 1.

In order to see this, let x ∈ T (W,ε) \ Dδ and γ : [0,1] → S
p be a segment

of Riemannian length less than arcsin ε such that γ (a) = x and γ (0) ∈ W . Con-
sider F : [0,1] → R,F (t) := f (γ (t)). By assumption, F(a) = f (x) > δ and
F(0)= 0. Hence there exists τ ∈ (0,1) such that F(τ) = δ. Thus γ (τ) ∈ ∂Dδ and
dsin(x, ∂Dδ)≤ dsin(x, γ (τ ))≤ ε, which proves the claim.

Claim B. We have T (∂Dδ, ε)∩Bsin( a, σ )⊆ T ⊥(∂Dδ ∩Bsin( a, σ + ε), ε).

Indeed, assume x ∈ T (∂Dδ, ε) ∩ Bsin( a, σ ). We have T (∂Dδ, ε)= T ⊥(∂Dδ, ε)

by Lemma 21.3. Hence there exists y ∈ ∂Dδ with dsin(x, y)≤ ε such that the great
circle segment [x, y] intersects ∂Dδ orthogonally at y. By the triangle inequality
for the projective distance, dsin(y, a )≤ dsin(y, x)+ dsin(x, a )≤ ε + σ . Hence y ∈
∂Dδ ∩ Bsin( a, σ + ε), and it follows that x ∈ T (∂Dδ ∩ Bsin( a, σ + ε), ε), which
establishes the claim. (Compare Fig. 20.2 for a related situation.)

Combining Claims A and B, we arrive at

T (W,ε)∩Bsin( a, σ )⊆Dδ ∪ T ⊥(∂Dδ ∩Bsin( a, σ + ε), ε
)
. (21.15)

We now apply Proposition 21.16 to the smooth hypersurface V = ∂Dδ = ZS(f −
δ‖x‖2d) intersected with the ball Bsin( a, σ + ε). This implies

volT ⊥(∂Dδ ∩Bsin( a, σ + ε), ε
)

≤ 4Op−1

p

p−1∑

k=1

(
p

k

)
(2d)k εk (σ + ε)p−k +Op(2d)

p εp.

Lemma 2.34 states that

volBsin( a, σ )≥ 2Op−1

p
σp ≥ 1

2
√
p
Opσ

p.

Using this, we obtain from (21.15),
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vol(T (W,ε)∩Bsin( a, σ ))

volBsin( a, σ )

≤ volDδ

volBsin( a, σ )
+ volT ⊥(∂Dδ ∩Bsin( a, σ + ε), ε)

volBsin( a, σ )

≤ volDδ

volBsin( a, σ )
+ 2

p−1∑

k=1

(
p

k

)
(2d)k

(
1 + ε

σ

)p−k(
ε

σ

)k

+ 2
√
p(2d)p

(
ε

σ

)p

.

Taking the limit for δ → 0, the first term vanishes and the assertion follows. �

21.4.3 Proof of Theorem 21.1

Assume that we are in the situation of Theorem 21.1. By Theorem 21.17, the prob-
ability tail Proba∈Bsin( a,σ ){C (a)≥ ε−1} is bounded by

2

[
p−1∑

k=1

(
p

k

)
(2d)k

(
1 + ε

σ

)p−k(
ε

σ

)k

+√
p (2d)p

(
ε

σ

)p
]

≤ 4d
ε

σ

[
p−1∑

k=1

(
p

k

)
(2d)k−1

(
1 + ε

σ

)p−k(
ε

σ

)k−1

+ p (2d)p−1
(

ε

σ

)p−1
]

≤ 4dpε

σ

[
p−2∑

i=0

(
p− 1

i

)
(2d)i

(
1 + ε

σ

)p−1−i(
ε

σ

)i

+ (2d)p−1
(

ε

σ

)p−1
]

= 4dpε

σ

(
2dε

σ
+
(

1 + ε

σ

))p−1

= 4dpε

σ

(
1 + (2d + 1)ε

σ

)p−1

.

Here we used in the third line
(
p
k

)= p
k

(
p−1
k−1

)≤ p
(
p−1
k−1

)
, and we have set i = k − 1.

We assume now that ε ≤ σ
(1+2d)p . Then the above can be bounded by

Prob
{
C (a)≥ ε−1}≤ 4dpε

σ

(
1 + 1

p− 1

)p−1

≤ 4e
dpε

σ
,

which proves the asserted tail bound.
For the bound on the expectation we put K := 4e dp

σ
and t0 :=K . We have shown

above that Prob{C (a)≥ ε−1} ≤Kt−1 for all t ≥ t0 ≥ (2d + 1)p
σ

. Proposition 2.26
implies E logβ C ≤ logβ K + logβ e, which proves the asserted tail bound. �
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21.5 An Application

In Sect. 20.6 we discussed applications to the Frobenius condition number, to eigen-
value computations, and to complex polynomial equation-solving, all for complex
data. With the help of Theorem 21.1, all these applications extend now to real data
with minimal modifications. We won’t be repetitious. Instead, we will limit this sec-
tion to a single application: probabilistic estimates for the condition number κ(f )

introduced in Chap. 19 for the problem of counting real zeros of systems of real
polynomials. This application implies a smoothed analysis for the number of iter-
ations of the algorithm in Theorem 19.1 as well as for the largest number of bits,
or digits, required in the finite-precision version of this algorithm (recall, by Re-
mark 19.28, that this number is bounded as O(logκ(f ))+O(log(Dn logN))).

Proposition 21.18 For all d1, . . . , dn ∈N \ {0} and all σ ∈ (0,1] we have

sup
f∈S(Hd)

E

f∈Bsin(f ,σ )

(
logβ κ(f )

)≤ logβ N + logβ D+ logβ

(
Dn2)+ logβ

1

σ
+ 5,

where N = dimRHd and D = d1 · · ·dn is the Bézout number.

Proof Let Σ ⊆Hd denote the set of complex polynomial systems having a multiple
zero. From Sect. 20.6.3 we know that Σ is the zero set of the discriminant discd,
which is a homogeneous polynomial with integer coefficients. Moreover, by (20.8),
we have deg discd ≤Dn2D.

On the other hand, by Definition 19.1, κ(f ) = ‖f ‖
d(f,ΣR)

, where ΣR denotes the

set of systems in HR

d having a multiple real zero. Since ΣR ⊆ ΣC, we can apply
Theorem 21.1 to the real zero set W of discd. The assertion follows immediately,
using logβ(4e

2)≤ log2(4e
2) < 5. �

21.6 Tubes Around Convex Sets

We fill here a gap by providing a proof of Theorem 13.18, stated in Sect. 13.3. In
fact, this proof will be similar to that for Theorem 21.17, but considerably simpler.
The overall idea is to replace the degree argument involving Bézout’s theorem by
the simple geometric fact that the boundary of a spherically convex subset of S

1

consists of at most two points.

21.6.1 Integrals of Curvature for Boundaries of Convex Sets

By a convex body K in S
p we will understand a closed convex set K such that

both K and its dual K̆ have nonempty interior, i.e., both are properly convex. In
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Sect. 13.2 we have also seen that the map K �→ K̆ is an involution on the set of
convex bodies in S

p .
By a smooth convex body K in S

p we will understand a convex body such that
its boundary V := ∂K is a smooth hypersurface in S

p and its Gaussian curvature
does not vanish at any point of V . We denote by ν : V → S

p the unit normal vector
field of the hypersurface V that points towards the interior of K . Then TxS

p =
TxV ⊕Rν(x) for x ∈ V , and we have −ν(x) ∈ K̆ . That is, 〈y, ν0〉 ≥ 0 for all y ∈K .

Lemma 21.19 Let K be a smooth convex body in S
p with boundary V := ∂K and

unit normal vector field ν. Then, for all x ∈ V , the Weingarten map LM(x) is posi-
tive definite. In particular, the principal curvatures of V at x are positive.

Proof Let x0 ∈ V and ν0 := ν(x0). For all x ∈ K we have 〈x, ν0〉 ≥ 0. Let x(t)

denote a smooth curve in K such that x(0) = x0 and put f (t) := 〈x(t), ν0〉. Then
f (0)= 0 and f ′(0)= 〈ẋ, ν0〉 = 0. Since f (t)≥ 0 for all t , we must have f ′′(0)≥ 0.
On the other hand, since 〈ẋ(t), ν(x(t))〉 = 0, we have f ′′(0) = 〈ẍ, ν0〉 = −〈ẋ, ν̇〉.
It follows that 〈ẋ,−ν̇〉 ≥ 0. Since −ν̇ = LM(x)(ẋ), this implies that LM(x) is posi-
tive semidefinite. �

This lemma implies that the ith curvatures of V at x are positive, and hence
μi(U)= |μi |(U) for any measurable subset U of V .

The following observation is obvious, but essential.

Lemma 21.20 If K ⊆ S
1 is spherically convex, nonempty, and K �= S

1, then we
have #(∂K)= 2. �

Using some integral geometry, we can quickly derive from this observation the
following bound. Considering spherical caps with angular radius almost π/2 shows
that the bound is in fact sharp.

Corollary 21.21 Any smooth convex body K in S
p satisfies vol ∂K ≤Op−1.

Proof By Proposition A.18, for almost all g ∈ O(p + 1), the intersection ∂K ∩
gS1 is zero-dimensional. Then, by Lemma 21.20, it consists of at most two points.
Proposition 21.10 now implies the assertion. �

Lemma 21.22 We have −ν(∂K)= ∂K̆ for a smooth convex body K .

Proof It is clear that −ν(∂K)⊆ ∂K̆ from the definition of ν. For the other inclusion,
let −v ∈ ∂K̆ . From (13.3) we get dS(−v,K)= π/2. Hence there exists x ∈K such
that 〈v, x〉 = 0 and hence v ∈ TxS

p . From the assumption −v ∈ ∂K̆ it follows that
−v = ν(x). �

The following bound will be crucial. Again, considering spherical caps with ra-
dius almost π/2 shows the optimality of the bound.
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Proposition 21.23 If K is a smooth convex body in S
p , then μp−1(∂K)≤ 1.

Proof Again put V := ∂K . The map ν : V → ∂K̆ is surjective by Lemma 21.22.
By (21.2) we have KV,p−1(x)= det(−Dν(x)) for x ∈ V . Since we assume that the
Gaussian curvature does not vanish, the map ν has no singular values.

We claim that ν is injective. Otherwise, we would have ν(x)= ν(y) for distinct
x, y ∈ V . Since 〈ν(x), x〉 = 0 and 〈ν(y), y〉 = 0, we would have 〈ν(x), z〉 = 0 for
all z ∈ [x, y]. Hence ν would be constant along this segment. Therefore, the deriva-
tive Dν(x) would vanish in the direction towards y. This implies detDν(x) = 0,
contradicting our assumption.

We conclude that −ν : V → ν(V ) is a diffeomorphism onto the smooth hyper-
surface ∂K̆ . The transformation theorem yields

∫

V

KV,p−1 dV =
∫

V

det(−Dν)dV = vol ∂K̆.

Corollary 21.21 now implies the assertion. �

Here is an analogue of Proposition 21.14, with a similar proof.

Lemma 21.24 Let K be a smooth convex body in S
p . For a ∈ S

p , 0 < σ ≤ 1, and
0 ≤ i < p− 1 we have

μi

(
∂K ∩Bsin( a, σ )

)≤ Op,i+1(σ )

Op

.

Proof Put U := V ∩Bsin( a, σ ) and G :=O(p+ 1). Let g ∈G be such that gV in-
tersects Si+1 transversally. By Proposition A.18, this is the case for almost all g ∈G.
We apply Lemma 21.23 to the smooth convex body gK ∩S

i+1 of the sphere gSi+1,
which yields |μi |(V ∩ gSi+1)≤ 1. Theorem 21.11 applied to U implies that

μi(U) = E
g∈G

(
μi

(
gU ∩ S

i+1))

≤ Prob
g∈G

{
gU ∩ S

i+1 �= ∅}

≤ Prob
g∈G

{
Bsin(ga,σ )∩ S

i+1 �= ∅}.

As in the proof of Proposition 21.14, we have

Prob
g∈G

{
Bsin(ga,σ )∩ S

i+1 �= ∅}= volT (Si+1, σ )

Op

= Op,i+1(σ )

Op

and the assertion follows. �
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21.6.2 Proof of Theorem 13.18

Let K be a smooth convex body in S
p and let U be a measurable subset of ∂K . For

0 < ε ≤ 1 we define the outer ε-tube T ⊥
o (U, ε) and the inner ε-tube T ⊥

i (U, ε) of U
as follows:

T ⊥
o (U, ε) := T ⊥(U, ε) \K and T ⊥

i (U, ε) := T ⊥(U, ε)∩K.

The following is similar to Proposition 21.16.

Lemma 21.25 Let K be a smooth convex body with boundary V = ∂K . Further, let
a ∈ S

p and 0 < σ,ε ≤ 1. Then,

volT ⊥
o

(
V ∩Bsin( a, σ ), ε

)≤ Op−1

p

p−1∑

k=1

(
p

k

)
εkσp−k + 1

2
Opε

p.

The same upper bound holds for the volume of T ⊥
i (V ∩Bsin( a,α), ε).

Proof Put U := V ∩Bsin( a, σ ). The proof of Theorem 21.9 actually yields separate
bounds for the inner and outer tubes, having the same magnitude. Thus,

volT ⊥
o (U, ε)≤ 1

2

p−2∑

i=0

μi(U)Op,p−1−i (ε)+ 1

2
μp−1(U)Op,0(ε).

We insert the bound μi(U) ≤ Op,i+1(σ )/Op from Lemma 21.24 as well as
μp−1(U) ≤ μp−1(∂K) ≤ 1 from Lemma 21.23. The assertion follows by arguing
as in the proof of Proposition 21.16. �

We define the Hausdorff distance dH (K,K ′) of two convex sets K and K ′
in S

p as the infimum of the real numbers δ ≥ 0 satisfying K ⊆ T (K ′, δ) and
K ′ ⊆ T (K, δ). This defines a metric and allows us to speak about convergence of
sequences of convex sets.

We state the following result without proof.

Lemma 21.26 Any properly convex set K in S
p is the limit of a sequence of smooth

convex bodies. �

Proof of Theorem 13.18 We assume first that K is a smooth convex body in S
p . Let

a ∈ S
p and 0 < σ,ε ≤ 1. We claim that

To(∂K, ε)∩Bsin( a,α)⊆ T ⊥
o

(
∂K ∩Bsin( a, σ + ε), ε

)
. (21.16)

In order to see this, note that To(∂K, ε) = T ⊥
o (∂K, ε) by Lemma 21.3. Suppose

now that x ∈ To(∂K, ε) ∩ Bsin( a,α). Then there exists y ∈ ∂K with dsin(x, y) ≤ ε
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such that the arc [x, y] of a great circle intersects ∂K orthogonally at y. The triangle
inequality for projective distance implies dsin(a, y) < dsin(a, x)+dsin(x, y)≤ σ+ε.
Hence y ∈ ∂K ∩Bsin( a, σ + ε), which proves the claim.

By combining (21.16) with the bound of Lemma 21.25 we get

vol
(
To(∂K, ε)∩Bsin( a, σ )

)≤ Op−1

p

p−1∑

k=1

(
p

k

)
εk (σ + ε)p−k + 1

2
Op εp.

Lemma 2.34 states that

volBsin( a, σ )≥ 2Op−1

p
σp ≥ 1

2
√
p
Opσ

p.

Using this, we obtain

vol(To(∂K, ε)∩Bsin( a, σ ))

volBsin( a, σ )
≤ 1

2

p−1∑

k=1

(
p

k

)(
1 + ε

σ

)p−k(
ε

σ

)k

+√
p

(
ε

σ

)p

.

Bounding this as in Sect. 21.4.3 we obtain

vol(To(∂K, ε)∩Bsin( a, σ ))

volBsin( a, σ )
≤ pε

σ

(
1 + 2ε

σ

)p−1

≤ e
pε

σ
,

the second inequality holding when ε ≤ σ
2p .

This proves the assertion of Theorem 13.18 for the outer neighborhood in the
case that K is a smooth convex body. The bound for the inner neighborhood is
proved similarly.

The general case, in which K is any properly convex set in S
p , follows now by a

perturbation argument using Lemma 21.26. �

21.7 Conic Condition Numbers and Structured Data

We may now return to a discussion we pursued in our first Intermezzo. We described
there two ways of approaching condition for structured data: either by considering
structured perturbations or by taking a relativized inverse of the distance to struc-
tured ill-posedness. In the latter case, letting Triang be the class of lower triangular
real n× n matrices, definition (I.2) becomes

QTriang(L)= ‖L‖
d(L,Σ ∩ Triang)

,

where Σ denotes the set of singular matrices. We can apply Theorem 21.1 to this

condition number: using that Triang �R
n2+n

2 and the fact that Σ ∩Triang is the zero
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set of the polynomial
∏n

i=1 xii having degree n, we obtain

E
L∈S(Triang)

(
logβ QTriang(L)

)=O(logβ n).

Note that the restriction to structured ill-posedness is crucial here. If we take
Q(L)= ‖L‖

d(L,Σ)
, we obtain instead

E
L∈S(Triang)

(
logβ Q(L)

) = E
L∈S(Triang)

(
logβ ‖L‖

∥∥L−1
∥∥)

= E
L∈S(Triang)

(
logβ κ(L)

)=Ω(n),

the first equality by the condition number theorem (Theorem 1.7) and the inequal-
ity by Theorem 3.1. We conclude that, broadly speaking, triangular matrices are
generally close to singular matrices but not to triangular singular matrices.

Regarding the first (and most basic) definition of structured condition number
for triangular matrices we can say little. For, say, the problem of linear-equation
solving, definition (I.1) becomes

condTriang(L,b)= lim
δ→0

sup
RelError(L,b)≤δ

ã∈Triang

RelError(L−1b)

RelError(L,b)
.

We did not need to estimate this quantity, because the backward error analysis in
Proposition 3.5 revealed a dependence on the componentwise condition number,
which, by its definition, is structured for triangular matrices (and, more generally,
for all structures given by sparsity patterns).

Remark 21.27 We finally observe that probability bounds for conic condition num-
bers Q, as obtained in this and in the previous chapter, readily imply probability
bounds for their structured counterparts QS , when the subclass S of input data is
defined by a sparsity pattern. This is due to the fact that the degree of the set of
structured ill-posed data Σ ∩ S is in this case bounded above by the degree of Σ .

Triangular matrices are but one instance of this phenomenon.

21.8 Smoothed Analysis for Adversarial Distributions

We close this chapter, and with it the third and last part of this book by returning
to a statement we made at the end of Sect. 2.2.7. We mentioned there that “there
is an emerging impression that smoothed analysis is robust in the sense that its
dependence on the chosen family of measures is low.” We may now give substance
to this statement.
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We will do so while remaining in the context of this chapter, that is, a conic
condition number

C (a)= ‖a‖
dist(a,Σ)

,

induced by a cone of ill-posed inputs Σ ⊆R
p+1 satisfying the symmetry condition

Σ =−Σ . The main result in this chapter, Theorem 21.1, provided a smoothed anal-
ysis for the uniform measures on the balls B(a,σ ) (or equivalently, Bsin( a, σ )), for
a ∈ S

p and σ ∈ [0,1]. The goal in this section is to show similar bounds when we
replace this uniform measure by one denser around a. Indeed, we will consider an
adversarial distribution, that is, one given by a continuous probability density f ,
radially symmetric, and having a pole of order −γ at a for some γ > 0. To formally
define this class of distributions it will be helpful to introduce some notation. For
s ∈R with s > 0 and 0 ≤ σ ≤ 1 we define

Js(σ ) :=
∫ σ

0

rs−1

√
1 − r2

dr.

This is a well-defined quantity in the sense that the integral is finite. Moreover,

when s ≥ 1 is an integer, we have Js(σ )= Os,0(σ )

2Os−1
(cf. Lemma 20.5). Furthermore,

by Lemma 2.31, and writing α := arcsinσ , α ∈ [0, π
2 ],

volB(a,σ )= vol cap( a,α)=Op−1 ·
∫ α

0
(sin θ)p−1 dθ =Op−1 · Jp(σ ), (21.17)

the last equality following from the change of variables r = sin θ .

Definition 21.28 Fix a ∈ S
p and σ ∈ [0,1]. An adversarial distribution on B(a,σ )

of order γ , for 0 ≤ γ < p, is a probability measure given by a density f :
B(a,σ )→[0,∞) of the form f (x)= g(dsin(x, a )), with a monotonically decreas-
ing function g : [0, σ ]→ [0,∞] of the form

g(r)= r−γ · h(r).
Here h : [0, σ ] → R+ is a continuous function satisfying h(0) �= 0. We require that∫
B(a,σ )

f (x) dx = 1, the integral being with respect to the volume measure on S
p .

The simplest choice of h is a constant function h = C. In this case, we can use
polar coordinates on S

p to deduce (cf. Theorem 2.3)

∫

B(a,σ )

f (x) dx =
∫

u∈Sp−1
du

∫ arcsinσ

0
g(sin θ)(sin θ)p−1 dθ

= Op−1C

∫ σ

0

rp−γ−1

√
1 − r2

dr =Op−1CJp−γ (σ )= 1.

So we must have C = Cγ,σ := (Op−1Jp−γ (σ ))−1.
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In what follows, we fix an adversarial distribution with density f and denote by μ

the corresponding probability measure on B(a,σ ). We associate to this distribution
the quantity H := sup0≤r≤σ h(r)/Cγ,σ . Note that H ≥ 1, since otherwise, using
Theorem 2.3 as above,

μ
(
B(a,σ )

)=
∫

B(a,σ )

f (x) dx <Op−1Cγ,σ

∫ σ

0

rp−γ−1

√
1 − r2

dr = 1,

and f would not be a density. This also shows that H = 1 implies h= Cγ,σ .
The main result of this section is the following.

Theorem 21.29 Let C be a conic condition number with set of ill-posed inputs
Σ ⊆ S

p . Assume that Σ is contained in a real algebraic hypersurface, given as
the zero set of a homogeneous polynomial of degree d . Then, for all a ∈ S

p , all
0 < σ ≤ 1, and all adversarial distributions μ on B(a,σ ),

E
a∼μ

logC (a) ≤ 2 logp+ logd + | logσ | + log(6π)

+ 2

1 − γ
p

log

(
eH

√
2p

ln(πp/2)

)
.

Here log stands for logβ , γ is the order of μ, and H is as above.

The proof of Theorem 21.29 relies on Proposition 21.30 below, which allows
us to bound the μ-measure of “small sets” B ⊆ B(a,σ ) in terms of their uniform
measure on B(a,σ ). To distinguish between the two measures, we will denote the
latter by ν, i.e.,

ν(B) := vol(B ∩B(a,σ ))

volB(a,σ )
.

Proposition 21.30 For 0 < ε < 1 − γ
p

there exists 0 < δε ≤ σ such that for all

B ⊆ S
p with ν(B)≤ δε we have μ(B)≤ ν(B)

1− γ
p
−ε . Moreover, we may take δε :=

Jp(ρε)/Jp(σ )≤ 1, where

ρε := σ ·
(

1

H
·
√

1 −
(

2

πp

)(1− γ
p
−ε)/(pε)) 1

εp
(√

2

πp

)(1− γ
p
−ε) 1

εp

.

The following result is similar to Lemma 2.34. We omit the proof.

Lemma 21.31 We have for 0 ≤ σ < 1,

σp

p
≤ Jp(σ )≤ min

{
1√

1 − σ 2
,

√
πp

2

}
· σ

p

p
. �
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Using Proposition 21.30, it is not hard to give a proof of the main result in this
section.

Proof of Theorem 21.29 From Theorem 21.1 it follows that for all 0 < σ ≤ 1, all
a ∈ S

p , and all t ≥ t∗ := 12dp
σ

, we have

Prob
a∼ν

{
C (a)≥ t

}≤ 4e dp
1

σ t
.

Set ε := 1
2 (1 − γ

p
) and tε := t∗

δε
. Then we have 1 − γ

p
− ε = ε and hence

ρε = σ ·
(

1

H
·

√√√√
1 −

(
2

πp

) 1
p

) 1
εp
(√

2

πp

) 1
p

. (21.18)

Since δε ≤ 1, we have tε ≥ t∗. Moreover,

4edp

σ tε
= 4edp

δε

σ t∗
= 4edp

12dp
δε ≤ δε.

Therefore, we may apply Proposition 21.30 to deduce, for all t ≥ tε ,

Prob
a∼μ

{
C (a)≥ t

}≤
(

Prob
a∼ν

{
C (a)≥ t

})ε ≤
(

4edp

σ t

)ε

.

Thus the hypotheses of Proposition 2.26 are satisfied with α = ε, K = (
4edp
σ

)ε , and
t0 = tε . Clearly, tα0 ≥K . Therefore, this proposition implies that

E
a∼μ

logC (a)≤ log t0 + 1

ε
log e, (21.19)

where log denotes logβ . Furthermore,

log t0 = logp+ logd + | logσ | + log(12)+ log
1

δε
, (21.20)

so we only need to bound the last term on the right-hand side. But Lemma 21.31
implies that

δε = Jp(ρε)

Jp(σ )
≥
√

2

πp

(
ρε

σ

)p

.

Hence, using (21.18), we get

δε ≥ 2

πp

(
1

H
·
√√√√

1 −
(

2

πp

) 1
p

) 1
ε

.
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A small calculation shows that (1 − ( 2
πp

)
1
p )−1/2 ≤

√
2p

ln(πp/2) . Consequently,

log
1

δε
≤ logp+ log

π

2
+ 1

ε
log

(

H

√
2p

ln(πp/2)

)

. (21.21)

We conclude from (21.19), (21.20), and (21.21) that

E
a∼μ

logC (a)≤ 2 logp+ logd + | logσ | + log(6π)+ 1

ε
log

(

eH

√
2p

ln(πp/2)

)

.

�

It remains to prove Proposition 21.30. The next lemma shows that we may restrict
attention to the case that B is a ball centered at a.

Lemma 21.32 Let 0 < δ < 1. Then among all measurable sets B ⊆ B(a,σ ) with
0 < ν(B) ≤ δ, the quantity μ(B) is maximized by B(a,ρ), where ρ ∈ (0, σ ) is
chosen so that ν(B(a,ρ))= δ.

Proof It clearly suffices to show that
∫

B

f (x)dx ≤
∫

B(a,ρ)

f (x) dx

for all B ⊆ B(a,σ ) such that ν(B)= δ. To prove this inequality, first note that

ν
(
B \B(a,ρ)

) = ν(B)− ν
(
B ∩B(a,ρ)

)= δ − ν
(
B ∩B(a,ρ)

)

= ν
(
B(a,ρ)

)− ν
(
B ∩B(a,ρ)

)= ν
(
B(a,ρ) \B

)
. (21.22)

Then,
∫

B

f (x)dx =
∫

B∩B(a,ρ)

f (x) dx +
∫

B\B(a,ρ)

f (x) dx

≤
∫

B∩B(a,ρ)

f (x) dx + g(ρ)ν
(
B \B(a,ρ)

)

(21.22)=
∫

B∩B(a,ρ)

f (x) dx + g(ρ) ν
(
B(a,ρ) \B

)

≤
∫

B∩B(a,ρ)

f (x) dx +
∫

B(a,ρ)\B
f (x)dx

=
∫

B(a,ρ)

f (x) dx,

where we have used the monotonicity of g in the two inequalities. This proves our
claim. �
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Proof of Proposition 21.30 According to Lemma 21.32 we may take B = B(a,ρ).
The uniform measure of B is given by (cf. (21.17))

ν
(
B(a,ρ)

)= Jp(ρ)

Jp(σ )
. (21.23)

To estimate the μ-measure of B we again use spherical coordinates on S
p . Recalling

the definition of the parameters Cγ,σ and H , we obtain

μ
(
B(a,ρ)

) =
∫

B(a,ρ)

f (x) dx =Op−1

∫ ρ

0
r−γ h(r)

rp−1

√
1 − r2

dr

= 1

Jp−γ (σ )

∫ ρ

0

h(r)

Cγ,σ

rp−γ−1

√
1 − r2

dr ≤H · Jp−γ (ρ)

Jp−γ (σ )
. (21.24)

By (21.23) and (21.24) our task amounts to showing that

H · Jp−γ (ρ)

Jp−γ (σ )
≤
(
Jp(ρ)

Jp(σ )

)1− γ
p
−ε

for ρ ≤ ρε . And indeed, using Lemma 21.31, we get

H · Jp−γ (ρ)

Jp−γ (σ )
≤ H

1
√

1 − ρ2
·
(
ρ

σ

)p−γ

≤ H
1

√
1 − ρ2

·
((

ρ

σ

)p)1− γ
p
−ε(

ρε

σ

)εp

≤
√

1 − ( 2
πp

)
(1− γ

p
−ε)/(pε)

√
1 − ρ2

·
(√

2

πp

(
ρ

σ

)p
)1− γ

p
−ε

≤
√

1 − ( 2
πp

)
(1− γ

p
−ε)/(pε)

√
1 − ρ2

·
(
Jp(ρ)

Jp(σ )

)1− γ
p
−ε

,

where for the last inequality we used Lemma 21.31 again, and for the one before
the last, the definition of ρε . Moreover, we have

ρ ≤ ρε ≤
(√

2

πp

)(1− γ
p
−ε) 1

εp

.

Therefore,

√

1 − ( 2
πp

)
(1− γ

p
−ε) 1

εp ≤√
1 − ρ2, completing the proof. �

Remark 21.33 Theorem 21.29 admits a complex version extending Theorem 20.1.
We will not spell out the details of this result.
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A.1 Big Oh, Little Oh, and Other Comparisons

The possibility of having more than one algorithm available for solving a given
problem raises the matter of a comparison between these algorithms. Such a com-
parison may be difficult to do, due to the conflicting nature of some of the criteria
one wants to optimize, but simplifying to an extreme, we may assume that we are
interested here in comparing speed, that is, the number of arithmetic operations per-
formed by these algorithms. Suppose therefore that we have two algorithms F and
G and let us denote by f (n) and g(n) the cost of these algorithms over inputs of
size n (these costs can be worst-case or average-case: this is irrelevant to our present
discussion). Ideally, we would like to compare f and g, but as soon as we try to do
so we face two obstacles:

(a) Both f and g may be hard to determine exactly, so that the best we can do is to
approximate them.

(b) Even if we had exact expressions for f and g, the sequences of values
(f (n))n∈N and (g(n))n∈N may be difficult to compare because neither of these
sequences dominates the other.

A way out of both obstacles is to compare the behaviors of f and g “near in-
finity.” For this, one first replaces f and g by approximations that are simple to
manipulate and, hopefully, accurate enough for large values of n. In what follows
we provide the definitions and notation commonly used to carry out this procedure.

Given functions f,h :N→R such that h(n) > 0 for all sufficiently large values
of n, we say that f is big oh of h—and we write f =O(h)—when

∃n0,C > 0 s.t. ∀n≥ n0
∣∣f (n)

∣∣≤ Ch(n). (A.1)

In fact, the condition f =O(h) just means that |f (n)|/h(n) is bounded. But some-
times we may want to speak about the implicit constant C in (A.1): note that the
infimum of the possible constants C > 0 equals lim supn→∞

|f (n)|
h(n)

.
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Similarly, we say that f is big omega of h—and we write f =Ω(h)— when

lim inf
n→∞

|f (n)|
h(n)

> 0.

In our initial discussion, if, for instance, f =O(n2) and g =Ω(n3), then we should
choose algorithm F . This does not mean that F will necessarily be faster in prac-
tice than G . The constants n0 and C in (A.1) could be both so large as to make
the comparison n2 < n3 irrelevant. But while it is important to keep this warning in
mind, it is also true that much more often than not, asymptotic estimates are useful
in practice.

There are other notations that are worth introducing. We say that f is theta of
h—and we write f =Θ(h)—when f =O(h) and f =Ω(h). Finally, we say that
f is little oh of h—and we write f = o(h)—when

lim
n→∞

f (n)

h(n)
= 0.

In particular, a function f is o(1) when limn→∞ f (n)= 0.
These definitions allow one to concisely express the growth of some functions

such as

f (n)= 6n3 +O(n logn).

This means that there exists a function g : N→R such that f (n)= 6n3 + g(n) and
g(n)=O(n logn). Roughly, the error incurred in approximating f (n) by 6n3 grows
at most as a multiple of n logn. Similarly, one defines

f (n)= 6n3 + o
(
n2),

which asserts that this error is (asymptotically) negligible when compared with n2.
In the discussion above there are two issues that deserve to be pointed out. Firstly,

there is no need for the argument of the function at hand to be a natural number. It
can perfectly well be a real argument, and the definitions above apply with only
the obvious modifications. Secondly, there is no need to consider asymptotics for
the argument approaching infinity. An often occurring case is that of the argument
approaching 0 (from the right). Again, the definitions above apply mutatis mutandis.
It is a must, however, to specify, in using asymptotic notation, which argument we
are considering and which limit this argument is approaching.

We won’t elaborate more on this topic. The interested reader can find a more
detailed exposition in [110, Chap. 9].

A.2 Differential Geometry

We briefly outline the concepts from differential geometry that were used in Part III
of this book. The reader should be familiar with basic notions from calculus, in
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particular with the derivative Df (x) : Rm → R
n of a multivariate map f : Rm →

R
n.

A.2.1 Submanifolds of Rn

By a smooth map O →R
n defined on an open subset O of Rm we shall understand

a map that has continuous partial derivatives of every order. A diffeomorphism is a
smooth bijective map such that its inverse is smooth (i.e., C∞) as well.

The implicit function theorem is a fundamental result in analysis; see, for in-
stance, [209].

Theorem A.1 (Implicit function theorem) Let F : O → R
n2 be a smooth map

defined on an open subset O ⊆ R
n1 × R

n2 and let (x0, y0) ∈ O be such that
F(x0, y0)= 0. Further, assume that the matrix

∂F

∂y
(x0, y0) :=

[
∂Fi

∂yj
(x0, y0)

]

1≤i,j≤n2

is invertible. Then there exist open subsets O1 ⊆ R
n1 and O2 ⊆ R

n2 such that
(x0, y0) ∈O1×O2 ⊆O and with the property that for all x ∈O1 there exists exactly
one y ∈O2 such that F(x, y)= 0. Moreover, the function G : O1 →O2 mapping x

to y is smooth. �

A k-dimensional submanifold M of the Euclidean space R
n is a subset that,

locally around any point of M , looks like R
k embedded in R

n. Here is the formal
definition.

Definition A.2 A nonempty subset M ⊆R
n is called a k-dimensional submanifold

if for all x ∈M , there exists a diffeomorphism ϕ from an open neighborhood U ⊆
R

n of x to an open neighborhood V ⊆R
n of 0 such that ϕ(M∩U)= (Rk×{0})∩V .

Let M ⊆ R
n be a submanifold and p ∈ M . A smooth map γ : R → M such

that γ (0) = p parameterizes a curve on M passing through p. Its derivative γ̇ :=
d
dt
γ (0) ∈R

n shall be called a tangent vector of M at p. We define the tangent space
TpM of M at p as the set of all tangent vectors of M at p. In order to see that TpM

is a k-dimensional linear subspace of M , suppose that ϕ(M ∩U)= (Rk × {0})∩ V

as in Definition A.2 and ϕ(p)= 0. Let ψ be the restriction of ϕ−1 to R
k ×{0}. Then

it is easy to check that the derivative Dψ(0) is nonsingular and that TpM equals the
image of Dψ(0).

Corollary A.3 Let F : O →R
n2 be a smooth map defined on the open subset O ⊆

R
n and assume M := F−1(0) to be nonempty. Further, assume that 0 is a regular

value of F , that is, the derivative DF(p) is surjective for all p ∈M . Then M is a
submanifold of Rn of dimension n− n2. Moreover, TpM = kerDϕ(x).



470 Appendix

Proof Let (x0, y0) ∈ F−1(0). After a permutation of the coordinates, we may as-
sume without loss of generality that ∂F

∂y
(x0, y0) is invertible. In the setting of

Theorem A.1, we have the diffeomorphism O1 × R
n2 → O1 × R

n2 , (x, y) �→
(x,G(x) + z), which maps O1 × {0} to M ∩ (O1 × O2). This shows that M is
an n1-dimensional submanifold of Rn.

Suppose that γ : R→ M is smooth and γ (0) = p. Then F ◦ γ = 0 and hence,
by the chain rule, DF(γ̇ ) = 0. This implies that TpM ⊆ kerDF(p). Comparing
dimensions we see that equality holds. �

For a first application of this corollary, consider F : Rn → R, x �→ ‖x‖2 − 1.
Since DF(x) �= 0 for all x �= 0, the sphere S

n−1 = F−1(0) is a submanifold of Rn

with dimension n− 1.
We analyze two further important examples of submanifolds using Corollary A.3

Proposition A.4 Let 1 ≤ m ≤ n. The set Stn,m of n × m matrices A satisfying
ATA = Im is a compact submanifold of Rn×m of codimension m(m + 1)/2. It is
called a Stiefel manifold. The tangent space of Stn,m at A = (Im,0)T is the set of
matrices (Ḃ, Ċ)T where Ḃ + ḂT = 0 and Ċ ∈R

m×(n−m) is arbitrary.

Proof Let S denote the vector space of symmetric m×m matrices and consider the
map F : Rm×n → S, A �→ATA− Im. Note that Stn,m = F−1(0), which is compact,
since the columns of A have norm 1. The derivative of F at A is given by R

m×n →
S, Ȧ �→ ȦTA+ATȦ. We claim that this derivative is surjective if A has full rank.
In order to see this, write A= (B,C)T and assume without loss of generality that B
is invertible. Further, put Ȧ= (Ḃ,0)T. Now it is easy to see that Ḃ �→ ḂTB +BTḂ

surjectively maps R
m×m onto S. Hence Im is a regular value of F . Corollary A.3

implies the assertion. �

An important special case is the orthogonal group O(n) := {A ∈ R
n×n | ATA=

In} = Stn,n, which is, by Proposition A.4, a compact submanifold of Rn×n having
dimension n(n− 1)/2.

Proposition A.5 The set Mr of m× n real matrices of rank r is a submanifold of
R

m×n of codimension (m− r)(n− r).

Proof Let U denote the open subset of Mr given by the matrices A having the block
form

A=
(
B C

D E

)
,

where B ∈ C
r×r is invertible and C ∈ R

r×(n−r), D ∈ R
(m−r)×r , E ∈ R

(m−r)×(n−r)

are arbitrary. By multiplying A by the nonsingular matrix
(

Ir −B−1C

0 In−r

)
,
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we see that rankA= r iff E −DB−1C = 0. Hence Mr ∩U is obtained as the fiber
over zero of the smooth map R

m×n → R
m−r(n−r), A �→ E −DB−1C. It is easy to

check that 0 is a regular value of this map. Corollary A.3 implies that Mr ∩ U is
a submanifold of Rm×n with codimension (m− r)(n − r). Since Mr is the union
of the sets U ′ obtained by requiring the nonvanishing of other r × r minors, the
assertion follows. �

A.2.2 Abstract Smooth Manifolds

Complex projective space and its relatives play an important role in Part III of this
book. They are not naturally embedded as submanifolds of Euclidean spaces. For
this reason, we briefly introduce the abstract concept of smooth manifolds. The
emphasis here is on the definition of concepts—the proofs of the stated facts are
all straightforward consequences of the corresponding facts for Euclidean spaces.
A more detailed treatment can be found, for instance, in [133] or [40].

Let M be a topological space. By a n-dimensional chart (U,ϕ) of M we un-
derstand a homeomorphism ϕ : U → V of a nonempty open subset U ⊆ M to an
open subset V ⊆ R

n. Note that ϕ allows us to represent points in p ∈ U by their
coordinates x(p)= (x1(p), . . . , xn(p)) in n-dimensional Euclidean space R

n. Two
charts (U1, ϕ1) and (U2, ϕ2) are called compatible if the transition map

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩U2)→ ϕ2(U1 ∩U2)

is a diffeomorphism. An n-dimensional atlas is a family (Ui, ϕi), i ∈ I , of n-
dimensional charts that are pairwise compatible and such that the Ui cover M , i.e.,⋃

i∈I Ui =M . Two atlases of M are called equivalent if each chart of one atlas is
compatible to each chart of the other atlas.

Definition A.6 A (smooth) n-dimensional manifold M is a topological space that
is Hausdorff and has a countable basis, together with an equivalence class of n-
dimensional atlases on it. One writes dimM = n for the dimension of M .

The assumptions on the topology on M are required to exclude bizarre situations
and need not bother us.

Here are two obvious examples of this general concept. A nonempty open subset
U of Rn naturally becomes an n-dimensional manifold: just take the atlas consisting
of the identity map on U . Further, a submanifold M of Rn is a manifold. Indeed,
let M ⊆ R

n be a k-dimensional submanifold. By definition, it comes with a family
of diffeomorphisms ϕ : U → V such that ϕ(M ∩U)= (Rk × {0})∩ V . Restricting
those ϕ to M ∩U yields an atlas for M .

The complex projective spaces P(Cn+1) discussed in Sect. 14.2 provide an inter-
esting family of manifolds. We note that the charts exhibited there for P(Cn+1) have
an additional structure: they map to an open subset of Cn � R

2n, and the transition
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maps are even complex differentiable. In this case, one speaks about a holomorphic
atlas, and manifolds M endowed with it are called complex manifolds. One calls
dimCM := n the complex dimension of M . Clearly, complex manifolds are smooth
manifolds and dimM = 2 dimCM . Another family of natural examples of mani-
folds are the real projective spaces P(Rn+1), which are constructed similarly to the
complex ones.

Oriented manifolds are obtained as in Definition A.6 but requiring a stronger
compatibility condition between charts (U1, ϕ1) and (U2, ϕ2), namely, that the tran-
sition maps ϕ2 ◦ ϕ−1

1 be orientation-preserving diffeomorphisms, i.e., that their Ja-
cobians be positive. Complex manifolds are always naturally oriented. The reason
is that if we interpret A ∈GL(Cn) as a linear isomorphism of R2n, then its determi-
nant is given by |detA|2, which is positive.

Let f : M → N be a map between two manifolds. We define f to be a smooth
map if the map

fU,V :=ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ϕ(V )

is smooth for all charts (U,ϕ) of an atlas of M and all charts (V ,ψ) of an atlas
of N . We call f a diffeomorphism if it is bijective and f and its inverse are both
smooth.

The concept of a submanifold M of a manifold Ω is now an immediate extension
of Definition A.2, replacing R

n by Ω . We call codimΩM := dimΩ − dimM the
codimension of M in Ω .

It is important to define the concept of the tangent space TpM of a manifold M

at a point p ∈M without reference to any possible embedding. There are different,
but equivalent, ways of doing so and we just outline one.

Let (U1, ϕ1) be a chart of M such that p ∈U1. Just as an element in ϕ1(U1)⊆R
n

represents a point in U1 by coordinates, we can also let a vector v1 ∈R
n represent a

tangent vector as follows. Let (U2, ϕ2) be another chart of M such that p ∈ U2 and
v2 ∈ R

n. We say that (U1, ϕ1, v1) and (U2, ϕ2, v2) are equivalent if the derivative
D(ϕ2 ◦ ϕ−1

1 )(ϕ1(p)) maps v1 to v2. An equivalence class is called a tangent vector
of M at p. The set of such tangent vectors is called the tangent space of M at p and
denoted by TpM . Note that each chart (U1, ϕ1) determines a bijection of TpM with
R

n via (U1, ϕ1, v) �→ v. The resulting vector space structure on TpM is easily seen
to be independent of the choice of the chart.

Now, if f : M → N is a smooth map and p ∈ M , we can define the deriva-
tive Df (p) : TpM → Tf (p)N , which maps the equivalence class of (U,ϕ, v) to the
equivalence class of (V ,ψ,w), where w := DfU,V (ϕ(p))(e). Of course, (V ,ψ)

stands here for a chart of N with f (p) ∈ V . It is immediate to check that Df (p) is
a well-defined linear map. The functorial property

D(g ◦ f )(p)=Dg
(
f (p)

) ◦Df (p)

for smooth maps f : M → N and g : N → P is an immediate consequence of the
chain rule.

It goes without saying that the tangent spaces of a complex manifold M are
complex vector spaces and the corresponding derivatives are C-linear.
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Definition A.7 Let f : M → N be a smooth map between smooth manifolds and
x ∈M,y ∈ N . We call x a regular point of f if rankDf (x)= dimN . Further, we
call y a regular value of f if all x ∈ f−1(y) are regular points of f . Finally, y is
called a critical value of f if it is not a regular value of f .

We observe that if dimM < dimN , then f has no regular points (and hence, no
regular values).

Example A.8 Let ζ ∈ C
n+1 be a zero of f ∈ Hd. By (16.5), ζ is a simple zero

of f iff rankDf (ζ ) = n. This just means that ζ is a regular value for the map
f : Cn+1 →C

n.

The following result follows immediately from Corollary A.3 (applied to the
maps fU,V ).

Theorem A.9 Let M,N be smooth manifolds with m= dimM ≥ n= dimN , and
let f : M → N be a smooth map. Suppose that y ∈ f (M) is a regular value of f .
Then the fiber f−1(y) over y is a smooth submanifold of M of dimension m− n.
Further, the tangent space of f−1(y) at x equals the kernel of Df (x). �

Remark A.10 Any submanifold of a manifold M can be obtained locally as the in-
verse image of a regular value as in Theorem A.9. (This is almost immediate from
the definition of submanifolds.)

Finally, we note that the Cartesian product M ×N of manifolds M,N is a man-
ifold and the tangent space T(x,y)M ×N can be identified with TxM × TyN .

A.2.3 Integration on Manifolds

Let V be an n-dimensional real vector space. It is a well-known fact from linear al-
gebra that the vector space Ωn(V ) of alternating multilinear forms V n →R is one-
dimensional. Moreover, Ωn(Rn) is generated by the determinant det, interpreted as
the multilinear map (v1, . . . , vn) �→ det[v1, . . . , vn]. A linear map f : V →W of n-
dimensional vector spaces induces a linear map f ∗ : Ωn(W)→Ωn(V ), called the
pullback of f , which is defined by

f ∗(ω)(v1, . . . , vn) := ω(f (v1), . . . , f (vn).

Clearly, the functorial property (f ◦ g)∗ = g∗ ◦ f ∗ holds.
Let now M be an n-dimensional manifold and ω a function associating to any

p ∈M an n-form ω(p) ∈Ωn(TpM). Let (U,ϕ) be a chart of M and ψ : V →U the
inverse of ϕ. Then the pullback of ω(ψ(x)) under the linear map Dψ(x) : TxR

n →
Tψ(x)M defines the n-form Dψ(x)∗ω(ψ(x)) ∈ Ωn(TxR

n). Since we can identify
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TxR
n with R

n, there is a function ρ : V →R such that Dψ(x)∗ω(ψ(x))= ρ(x)det.
If for all charts (U,ϕ), the resulting function ρ is smooth, then we say that ω is an
n-form of M . The vector space of n-forms on M is denoted by Ωn(M).

It is obvious that by the same procedure as above, a smooth map f : M →N of
n-dimensional manifolds induces a linear map f ∗ : Ωn(N) → Ωn(M), called the
pullback of f . In the special case that M and N are open subsets of Rn, it is easy to
check that f ∗(det)(x)= detDf (x) · det.

We next define the integral of a continuous function a : M → R with compact
support supp (a) with respect to the absolute value |ω| of an n-form ω ∈Ωn(M).

Suppose first that supp (a) ⊆ U for a chart (U,ϕ). Let ψ := ϕ−1 and write
ψ∗(ω)= ρ det with ρ as above. Then we define

∫

M

a|ω| :=
∫

Rn

a
(
ψ(x)

)∣∣ρ(x)
∣∣dx,

where the right-hand integral is the usual (Lebesgue) integral. The crucial obser-
vation is that this value does not change when we replace the chart ϕ : U → V

by another chart ϕ̃ : U → Ṽ . Indeed, let ψ̃ := ϕ̃−1, ψ̃∗(ω) = ρ̃ det, and set Φ :=
ϕ̃ ◦ψ : V → Ṽ . Then we have ψ = ψ̃ ◦Φ , and hence by functoriality,

ψ∗(ω)=Φ∗(ψ̃∗(ω)
)=Φ∗(ρ̃ det)= (ρ̃ ◦Φ)Φ∗(det)= (ρ̃ ◦Φ)detDΦ det,

which implies |ρ| = |ρ̃ ◦Φ|JΦ with the Jacobian JΦ := |detDΦ|. Hence
∫

V

a
(
ψ(x)

)∣∣ρ(x)
∣∣dx =

∫

Ṽ

a
(
ψ̃(x̃)

)∣∣ρ̃(x̃)
∣∣dx̃

by the transformation formula (Theorem 2.1).
If the manifold M is oriented, then one can omit absolute values and define the

integral
∫
M

aω := ∫
Rn a(ψ(x)ρ(x)) dx. This is well defined by the same reasoning

as above.
Suppose now that supp (a) is not contained in a chart. If M is compact, then one

can show that there is a finite collection of smooth functions χ1, . . . , χr on M with
values in [0,1] such that

∑
i χi = 1, and such that each supp (χi) is contained in

some chart of M . (This collection is called a partition of unity; see [209].) Then we
can define

∫

M

a|ω| :=
∑

i

∫

M

(aχi)|ω|,

which is easily seen to be independent of the choice of the partition of unity. In the
case that M is not compact, one can proceed by a slightly more general notion of
partition of unity [209].

Actually, to define
∫
M

a|ω|, it is sufficient to require that a be measurable and
that

∫
M

a+|ω| and
∫
M

a−|ω| both be finite (a+ := max{a,0}, a− := max{−a,0}), in
which case we say that a is integrable with respect to |ω|.

Again, all these definitions and facts extend to integrals
∫
M

aω when M is ori-
ented.
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A.2.4 Sard’s Theorem and Transversality

A subset A of Rn is said to have measure zero if for every ε > 0, there exists a count-
able collection R1,R2, . . . of rectangles such that A⊆⋃

i Ri and
∑∞

i=1 volRi < ε.
By a rectangle R we understand here a Cartesian product of intervals, and volR is
defined as the product of its lengths.

It is not difficult to show that if f : U → R
n is a smooth map defined on an

open subset U ⊆R
n and A has measure zero, then f (A) has measure zero as well;

cf. [209]. We define a subset A of a manifold M to be of measure zero in M if for
all charts (U,ϕ), ϕ(A ∩ U) has measure zero. This is well defined by the above
observation.

Proposition A.11 Let M be a k-dimensional submanifold of a manifold Ω of di-
mension n and assume k < n. Then M has measure zero in Ω .

Proof Since a manifold can be covered by countably many charts, it suffices to
prove the assertion in a chart. By the definition, it is enough to show that (Rk ×
{0})∩ V has measure zero in V for an open subset V of Rn. But this is obvious. �

The following is a deep and important result; see [145] for a proof.

Theorem A.12 (Sard’s theorem) Let ϕ : M →N be a smooth map between mani-
folds. Then the set of singular values of f has measure zero in N . �

We note that in the case dimM < dimN , the theorem just states that f (M) has
measure zero in N . Here is a first application of this observation.

Proposition A.13 Let M ⊆ R
n be a submanifold with dimM ≤ n − 2. Further,

assume 0 �∈M . Then the set B := {v ∈R
n |Rv ∩M �= ∅} has measure zero in R

n.

Proof We obtain B as the image of the smooth map R∗ ×M → R
n, (λ, x) �→ λx.

Since dim(R∗ × M) = 1 + dimM < n, the image B has measure zero in R
n by

Theorem A.12. �

Theorem A.9 states that the inverse image of a regular value under a smooth map
f : M → Ω is a submanifold of M . But when is the inverse image f−1(N) of a
submanifold N of Ω a submanifold of M? For analyzing this question, the concept
of transversality is useful.

Definition A.14 Let f : M → Ω be a smooth map between manifolds and N a
submanifold of Ω . We call f transversal to N if for all x ∈ f−1(N),

ImDf (x)+ Tf (x)N = Tf (x)Ω.
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Theorem A.15 Let f : M → Ω be a smooth map between manifolds that is
transversal to the submanifold N of Ω . Then f−1(N) is a submanifold of M

and codimMf−1(N) = codimΩN , unless f−1(N) = ∅. Moreover, Txf
−1(N) =

Df (x)−1(Tf (x)N) for x ∈ f−1(N).

Sketch of proof. We first note that the assertion is local: it suffices to prove it for
the restrictions f−1(Ui) → Ui and the submanifolds N ∩ Ui , for a covering of
Ω by open sets Ui . So we are allowed to replace Ω by a small open subset. By
Remark A.10 we may further assume that N = g−1(0) �= ∅ for a smooth map
g : Ω →R

� such that 0 is a regular value for g. Moreover, TyN = kerDg(y) for all
y ∈N and �= codimΩN ; cf. Theorem A.9.

Setting h := g ◦ f , we have f−1(N)= h−1(0). Now note that for x ∈ f−1(N),
by the transversality assumption, we have ImDf (x)+kerDg(f (x))= Tf (x)Ω , and
hence Dh(x) : TxM → R

� is surjective. Hence 0 is a regular value of h and The-
orem A.9 implies that h−1(0) is a submanifold of codimension � in M . Moreover,
Txf

−1(N)= kerDh(0)=Df (x)−1(Tf (x)N). �

The most important special case concerns the transversality of the inclusion map
i : M →Ω to another submanifold N of Ω , in which case we call the submanifolds
M and N transversal. This means that TxM + TxN = TxΩ for all x ∈M ∩N . This
implies dimM + dimN ≥ dimΩ if M ∩N �= ∅. Note that M and N are considered
transversal if they don’t meet.

Theorem A.15 immediately implies the following.

Corollary A.16 Let M and N be transversal submanifolds of the manifold Ω such
that M ∩ N �= ∅. Then their intersection M ∩ N is a submanifold and Tx(M ∩
N)= TxM ∩ TxN for all x ∈M ∩N . Moreover, codimΩ(M ∩N)= codimΩM +
codimΩN . �

We next derive a result that will be crucial for integral geometry. We already
noted in Sect. A.2.1 that the orthogonal group G := O(n + 1) is a compact sub-
manifold of R(n+1)×(n+1). It is clear that G acts transitively on the sphere S

n. The
stabilizer of x ∈ S

n is defined as Gx := {g ∈G | gx = x}, which is a subgroup of G
isomorphic to O(n). Clearly, Gx acts on TxS

n.

Lemma A.17

(a) Let x0 ∈ S
n. Then the orbit map G→ S

n, g �→ gx0, is a submersion, that is, all
of its derivatives are surjective.

(b) The derivative of the map μ : G× S
n → S

n, (g, x) �→ g−1x, at (g, x) ∈G× S
n

is given by

Dμ(g,x) : TgG× TxS
n → TxS

n, (ġ, ẋ) �→ g−1ẋ − g−1ġg−1x.

Proof (a) Let v ∈ Tx0S
n and let D(t) ∈ G denote the rotation with angle t in the

plane spanned by x0 and v. Then x(t) :=D(t)x0 = x0 cos t + v sin t and dx
dt

(0)= v.



A.2 Differential Geometry 477

Hence the derivative of the orbit map is surjective at the identity in G. By homo-
geneity, all the derivatives must be surjective as well.

(b) In Example 14.2 we showed that G→G, g �→ g−1, has derivative TgG→
TgG, ġ �→ −g−1ġg−1, at g ∈G. From this, the assertion about the derivative of μ

easily follows. �

A property is said to hold for almost all points of a manifold when the set of
points for which it fails to hold has measure zero.

Proposition A.18 Let M and N be submanifolds of Sn. Then M and gN intersect
transversally, for almost all g ∈ G. In particular, for almost all g ∈ G, the inter-
section M ∩ gN is either empty or a smooth submanifold of Sn with dimension
dimM + dimN − n.

Proof By Lemma A.17, the map f : G×M → S
n, (g, x) �→ g−1x, has surjective

derivatives. In particular, f is transversal to N . Hence Theorem A.15 implies that
R := f−1(N)= {(g, x) ∈G×M | g−1x ∈ N} is a submanifold of G×M . More-
over, setting y = g−1x, we have

T(g,x)R =Df (g,x)−1(TyN)= (TgG× TxM)∩Dμ(g,x)−1(TyN), (A.2)

where μ : G× S
n → S

n, (g, x) �→ g−1x.
Consider the projection p1 : R → G, (g, x) �→ g, and note that p−1

1 (g) =
{g} × (M ∩ gN). Suppose that Dp1(g, x) is surjective. Then, using (A.2), we see
that for all ġ ∈ TgG there exist ẋ ∈ TxM , ẏ ∈ TyN such that Dμ(g,x)(ġ, ẋ) = ẏ.
By Lemma A.17, this means g−1ẋ − g−1ġy = ẏ. Hence −ġy = −ẋ + gẏ. Since
TgG→ TxS

n, ġ �→ ġy, is surjective, we conclude that TxS
n = TxM+TxgN . (Note

that this argument is reversible.) Hence, Theorem A.9 implies that M and gN are
transversal if g is a regular value of p1. Sard’s theorem completes the proof. �

A.2.5 Riemannian Metrics

In R
n we have the standard inner product 〈x, y〉st =∑

i xiyi that allows us to de-
fine the length of vectors, the angle between vectors, the length of curves, etc.
These concepts can be extended to abstract manifolds as follows. Recall that an
inner product 〈 , 〉 on R

n is given by a positive definite matrix (gij ) by taking
〈x, y〉 =∑

i,j gij xiyj .
Let M be an n-dimensional manifold and suppose that 〈 , 〉p is an inner product

on TpM for each p ∈ M . If (U,ϕ) is a chart of M , then this induces a family of
inner products 〈 , 〉x on R

n for x ∈ ϕ(U) by setting ψ := ϕ−1 and

〈v1, v2〉x :=
〈
Dψ(x)(v1),Dψ(x)(v2)

〉
ψ(x)

.
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We require now that the symmetric matrix corresponding to 〈 , 〉x be a smooth
function of x ∈ ϕ(U). If this is the case for all charts of M , then we say that the
inner product 〈 , 〉p varies smoothly with p ∈M .

Definition A.19 A Riemannian manifold is a manifold together with a family of
inner products 〈 , 〉p on TpM that varies smoothly with p ∈M . This family of inner
products is called a Riemannian metric on M . Thus a tangent vector v ∈ TpM has a
well-defined norm ‖v‖p :=√〈v, v〉p .

The most natural examples are provided by the submanifolds M of Rn. For 〈 , 〉p
we just take the restriction of the standard inner product to TpM .

A more interesting example is provided by the real projective space P(Rn+1),
which is obtained from S

n by identifying antipodal points via the canonical map
π : Sn → P(Rn+1), p �→ [p] := {p,−p}. Since π is a local diffeomorphism,
Dπ(p) provides an isomorphism of TpS

n with T[p]P(Rn+1). We define the Rieman-
nian metric on P(Rn+1) by requiring Dπ(p) to be isometric. An example of great
importance in Part III of this book is the complex projective space P(Cn+1), which
is turned into a Riemannian manifold by the Fubini–Study metric; see Sect. 14.2.

We note that the product M ×N of two Riemannian manifolds has the Rieman-
nian metric defined by 〈(v,w), (v′,w′)〉(x,y) := 〈v, v′〉x + 〈w,w′〉y for v, v′ ∈ TxM

and w,w′ ∈ TyN .
In any Riemannian manifold M , we have a well-defined notion of length of

curves. Let γ : [0,1]→M be a continuous map that is piecewise smooth. We define
the length of γ as

L(γ ) :=
∫ 1

0

∥∥∥∥
d

dt
γ (t)

∥∥∥∥
γ (t)

dt. (A.3)

The Riemannian distance dM(x, y) between points x, y ∈M is defined as dM(x, y)

:= infγ L(γ ), where the infimum is over all piecewise smooth curves γ connecting
x and y. Clearly, dM turns M into a metric space.

It is a well-known fact that for the sphere S
n, the Riemannian distance

dS(x, y) between x, y ∈ S
n equals the angle between x and y, that is, dS(v,w) =

arccos〈v,w〉. The Riemannian distance for P(Cn+1) is described in Proposi-
tion 14.12.

Before discussing volumes on Riemannian manifolds, we proceed with a general
observation from linear algebra. Let V be an n-dimensional real vector space with
an inner product 〈 , 〉. Fix an orthonormal basis (v1, . . . , vn), so that 〈vi, vj 〉 = δij .
This basis determines an orientation of V in the following sense. If (v′1, . . . , v′n)
is another orthonormal basis, then we have v′k =

∑
j akj vj with a transformation

matrix A= (akj ) that is easily seen to be orthogonal. By the multiplicativity of the
determinant,

det
[
v′1, . . . , v′n

]= det(A)det[v1, . . . , vn].
We say that (v′j ) is positively oriented if the corresponding transformation ma-
trix A satisfies detA= 1. Since Ωn(V ) is one-dimensional, there is a unique n-form
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Ω ∈Ωn(V ) satisfying Ω(v1, . . . , vn)= 1 for positively oriented orthonormal bases.
Thus we have assigned to the inner product 〈 , 〉 an n-form Ω .

Let now M be an n-dimensional Riemannian manifold M . We further as-
sume that M is oriented; hence it is possible to orient each of the tangent spaces
TpM such that the induced orientations on R

n in the charts are positive. Then, as
above, the Riemannian metric defines a distinguished n-form ΩM(x) on each tan-
gent space TxM . The resulting differential form ΩM on M is called the volume
form of M . Its absolute value dM := |ΩM | is called the volume element of M .
In Sect. A.2.3 we defined the integral

∫
M

a dM with respect to dM . We note that the
volume element is still defined when M is not orientable and the integral

∫
M

a dM

can still be defined. The volume B of a measurable subset B ⊆ M is defined as
volB := ∫

M
1B dM with 1B denoting the indicator function of B . If M is oriented,

we have
∫
M

1B ΩM = ∫
M

1B |ΩM |.

A.2.6 Orthogonal and Unitary Groups

We already observed in Sect. A.2.1 that the orthogonal group O(n) is a compact sub-
manifold of Rn×n. Hence it inherits a Riemannian metric from the ambient space.
Consider the multiplication φ : O(n) → O(n), h �→ gh, with a fixed group ele-
ment g. Since φ is the restriction of an isometric linear map, the derivative Dφ(h) is
isometric as well. Hence Jφ(h)= |detDφ(h)| = 1. The coarea formula (along with
Remark 17.7) implies that φ preserves the volume on O(n) induced by the Rieman-
nian metric. Since O(n+1) is compact, it has a finite volume, and we can introduce
the normalized volume rvolB := volB/ volO(n + 1), which defines a probability
measure on O(n+ 1). This is called the normalized Haar measure on O(n+ 1).

One calls O(n) a Lie group, since the inverse O(n)→ O(n), g �→ g−1, and the
group multiplication O(n)×O(n)→O(n), (g,h) �→ gh, are smooth maps.

Similar observations apply to the unitary group, which is defined as U (n) :=
{A ∈ C

n×n | AA∗ = In}, where A∗ denotes the complex transpose of A. As in
Proposition A.4 one can prove that U (n) is a compact submanifold of Cn×n with
dimension n2. It is a Lie group, and its tangent space at In consists of the matrices
Ḃ ∈C

n×n such that Ḃ + Ḃ∗ = 0.

A.2.7 Curvature of Hypersurfaces

Let M be a hypersurface of Sn, that is, a submanifold of codimension 1. Hence the
orthogonal complement of TxM in TxS

n is one-dimensional. We assume that it is
possible to select one of the two unit normal vectors in this complement such that
it depends continuously on x ∈M . (This assumption is easily seen to be equivalent
to the orientability of M .) Let ν denote the resulting unit normal vector field on M .
This defines the smooth map ν : M →R

n+1, from which we can take the derivative
Dν(x) : TxM →R

n+1.
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Lemma A.20 We have ImDν(x) ⊆ TxM . The resulting linear map TxM → TxM

induced by Dν(x) is self-adjoint.

Proof Let x(t) be a parameterization of a smooth curve in M passing through
x = x(0). From 〈ν(x(t)), ν(x(t))〉 = 1 we obtain by taking the derivative that
〈ν(x(t)), d

dt
ν(x(t))〉 = 0. Hence Dν(x(t))(ẋ) = d

dt
ν(x(t)) is indeed contained in

Tx(t)M , which proves the first claim.
For the second claim let (U,ϕ) be a chart around x, denote the resulting coor-

dinates by (v1, . . . , vn−1), and write x = ψ(e) for the inverse of ϕ. If we fix all but
the j th coordinate, then vj parameterizes a curve in M via ψ . Its derivative ∂x

∂vj
is a

tangent vector, and hence
〈
ν,

∂x

∂vj

〉
= 0.

Taking the derivative on both sides of this equality, now with respect to vi , we obtain

〈
∂ν

∂vi
,
∂x

∂vj

〉
+
〈
ν,

∂2x

∂vi∂vj

〉
= 0.

Since Dν(x)( ∂x
∂vi

)= ∂ν
∂vi

, we get

〈
Dν(x)

(
∂x

∂vi

)
,
∂x

∂vj

〉
=−

〈
ν,

∂2x

∂vi∂vj

〉
= 0 =

〈
Dν(x)

(
∂ν

∂vj

)
,
∂x

∂vi

〉
.

But ∂x
∂v1

, . . . , ∂x
∂vn−1

form a basis of TxM . So we conclude that 〈Dν(x)(e),w〉 =
〈v,Dν(x)(w)〉 for v,w ∈ TxM . �

The Weingarten map of M at x is the self-adjoint map defined as

LM(x) : TxM → TxM, LM(x) := −Dν(x). (A.4)

Definition A.21 Let M be a compact smooth oriented hypersurface of S
n. The

eigenvalues κ1(x), . . . , κn−1(x) of the Weingarten map LM(x) are called the prin-
cipal curvatures of the hypersurface M at x. For 1 ≤ i ≤ n − 1 one defines the
ith curvature KM,i(x) of M at x as the ith elementary symmetric polynomial in
κ1(x), . . . , κn−1(x), and one puts KM,0(x) := 1.

Example A.22 Let a = (1,0, . . . ,0) ∈ S
n. Consider the boundary

Mα :=
{
cosαa + sinα(0, y) | y ∈ S

n−1}

of the spherical cap cap(a,α) in S
n of radius 0 < α ≤ π/2 centered at a. We orient

Mα by the unit normal vector field on S
n pointing towards a, namely

ν(x)= sinαa − cosα(0, y), where x = cosαa + sinα(0, y).
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Take a smooth curve in Mα given by a smooth curve y(t) in S
n−1. Then,

ν̇ =− cosα(0, ẏ)=− cotα sinα(0, ẏ)=− cotαẋ.

Hence LMα = (cotα) ITxM , and all the principal curvatures of Mα at x are equal
to cotα. Therefore the ith curvature of Mα satisfies KMα,i(x) =

(
n−1
i

)
(cotα)i , a

quantity independent of x ∈Mα .

For more information on this we refer to the textbooks [218] and [88, p. 129].

A.3 Algebraic Geometry

Here we outline the basic concepts from complex algebraic geometry needed in
Part III of the book. We have to be brief, and so we omit most of the proofs.
An excellent reference for the material introduced here is Mumford’s classic text-
book [148]. Another good and appropriate reference is Shafarevich [186].

A.3.1 Varieties

The basic objects of study in algebraic geometry are the sets of solutions of systems
of polynomial equations.

Definition A.23 An (affine) algebraic variety Z in C
n is defined as the set of zeros

of finitely many polynomials f1, . . . , fs ∈C[X1, . . . ,Xn], that is,

Z = Z(f1, . . . , fs) :=
{
x ∈C

n | f1(x)= 0, . . . , fs(x)= 0
}
.

More generally, one writes Z(I) := {x ∈ C
n | ∀f ∈ I f (x) = 0} for the zero

set of a subset I of C[X] := C[X1, . . . ,Xn]. It is clear that Z(f1, . . . , fs)= Z(I),
where I = {∑s

i=1 gifi | gi ∈C[X]} denotes the ideal in the ring C[X] generated by
f1, . . . , fs . The vanishing ideal I (Z) of Z is defined as I (Z) := {f ∈ C[X] | ∀x ∈
Z f (x)= 0}. It is not hard to check that Z = Z(I (Z)).

A fundamental result providing the first link between algebra and geometry is the
following.

Theorem A.24 (Hilbert’s Nullstellensatz)

(Weak form) For an ideal I ⊆C[X] we have

Z(I)= ∅ ⇐⇒ 1 ∈ I.

(Strong form) If a polynomial f vanishes on the zero set Z(I) of some ideal I ,
then f e ∈ I for some e ∈N. �
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Another fundamental result in algebraic geometry is Hilbert’s basis theorem,
which states that any ideal in C[X] is finitely generated. Hence, using infinitely
many fi ’s in Definition A.23 does not lead to a different notion of algebraic variety.

The following properties are easy to check:

Z(I1)∪Z(I2)= Z(I1 ∩ I2),
⋂

α∈A
Z(Iα)= Z

(
⋃

α∈A
Iα

)

.

As a consequence, the sets Z(I) satisfy the axioms for the closed sets of a topology
on C

n, called Zariski topology. So Zariski closed subsets of Cn, by definition, are
the same as affine algebraic varieties in C

n. For instance, the nonempty Zariski open
subsets of C1 are the complements of finite subsets of C1. So the Zariski topology
violates the Hausdorff separation axiom. It is clear that Zariski closed subsets are
also closed in the classical topology, which is the one defined by the Euclidean
distance metric.

Definition A.25 A Zariski closed subset Z is called irreducible if it is nonempty
and cannot be written as the union Z = Z1 ∪ Z2 of two Zariski closed proper sub-
sets Zi .

We note that the above definition of irreducibility could be given for any topo-
logical space. However, this concept is not interesting for a Hausdorff space, since
there, the only irreducible sets are those consisting of a point only.

An ideal I in C[X] is called prime if I �= C[X] and f1f2 ∈ I implies either
f1 ∈ I or f2 ∈ I . It is easy to check that Z(I) is irreducible iff I is a prime
ideal. This implies that Cn = Z(0) is irreducible. More generally, one concludes
that the complex linear subspaces of Cn are irreducible. It is a nontrivial fact that
irreducible varieties are connected in the classical topology; see Theorem A.28 be-
low for a more general statement. The converse is false, as shown by the example
Z = Z(X1X2) = Z(X1) ∪ Z(X2) of two intersecting lines in C

2, which is con-
nected, but not irreducible.

The Hilbert basis theorem implies that there are no infinite strictly descending
chains Z1 ⊃ Z2 ⊃ Z2 ⊃ · · · of Zariski closed sets in C

n. The following result is a
straightforward consequence of this fact.

Proposition A.26 Any Zariski closed subset Z can be written as a finite union Z =
Z1 ∪ · · · ∪ Zr of irreducible Zariski closed sets. Moreover, if we require that Zi �⊆
Zj for i �= j , then the Zi are uniquely determined. They are called the irreducible
components of Z. �

Example A.27 Let f ∈ C[X1, . . . ,Xn] \ C. Then Z(f ) is irreducible iff f is irre-
ducible, i.e., f = f1f2 implies f1 ∈ C or f2 ∈ C. Moreover, if f = f1 · · ·fr is the
factorization of f into irreducible polynomials fi , then Z(f )= Z(f1)∪· · ·∪Z(fs)

and the Z(fi) are the irreducible components of Z(f ).
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If we assume in Definition A.23 that the polynomials fi are homogeneous, then
the resulting zero set Z is a cone, i.e., it satisfies λx ∈ Z for all λ ∈ C and x ∈ Z.
We call the corresponding subset

ZP(f1, . . . , fs) :=
{[x] ∈ P

n−1 | f1(x)= 0, . . . , fs(x)= 0
}

of the complex projective space P
n−1 a projective variety and say that Z is its affine

cone (cf. Sect. 14.2). One defines the Zariski topology on P
n−1 as the topology

whose closed sets are the projective varieties. Then Proposition A.26 extends from
C

n to P
n−1. Also, there is a version of Example A.27 for homogeneous polynomials.

The classical topology on P
n−1 is the one induced from the classical topology on

C
n∗ via the canonical map C

n∗ → P
n−1. A proof of the following result can be found

in ([148, Cor. 4.16] or [187, VII.2]).

Theorem A.28 A Zariski open subset of an irreducible projective algebraic variety
is connected in the classical topology. �

A.3.2 Dimension and Regular Points

In general, varieties are considerably more complicated objects than just submani-
folds of Cn or Pn. Here we investigate this difference. We start with a topological
definition of the fundamental notion of dimension.

Definition A.29 The dimension dimZ of a Zariski closed set Z is defined as the
maximum length n of a chain Z0 ⊂ Z1 ⊂ · · · ⊂ Zn of distinct irreducible Zariski
closed subsets contained in Z.

Looking at the chain C
1 ⊂ C

2 ⊂ · · · ⊂ C
n, we see that dimC

n ≥ n, and one can
show that equality holds. Similarly, dimP

n = n. More generally, if Z ⊆ P
n−1 is a

projective variety and Ẑ ⊆ C
n denotes the corresponding affine cone, then one can

prove that dimZ = dim Ẑ − 1.
The above definition of dimension implies the following important observation:

suppose that Z is an irreducible variety and Y ⊆ Z is a Zariski closed subset. Then
dimY = dimZ implies Y = Z.

Definition A.29 implies that dimZ equals the maximum of the dimensions of
the irreducible components of Z. A variety Z is called pure dimensional if all of its
irreducible components have the same dimension.

We discuss now the notion of a regular point of a variety. Let Z ⊆C
n be a Zariski

closed subset with vanishing ideal I (Z). Then we have Z =⋂
f∈I (Z) Z(f ). Now we

fix p ∈ Z and replace any Z(f ) in this intersection by the zero set of its linearization
Df (p) :=∑n

i=1 ∂Xi
f (p)(X− pi) at p. The vector space

TpZ :=
⋂

f∈I (Z)

Z
(
Df (p)

)
(A.5)
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is called the Zariski tangent space of Z at p. If Z ⊆ P
n−1 is a Zariski closed subset

and Ẑ its affine cone, p ∈ Ẑ, then we call the projective linear space correspond-
ing to TpẐ the projective tangent space of Z at [p] and denote it by T[p]Z. The
following result is well known.

Theorem A.30 We have dimZ ≤ dimTpZ for an irreducible variety Z and any
p ∈Z. Moreover, equality holds for at least one point p. �

We can now proceed with the definition of regular points.

Definition A.31 A point p of an irreducible variety Z is called regular if dimZ =
dimTpZ. Otherwise, p is called a singular point of Z. One denotes by Reg(Z) the
set of regular points and by Sing(Z) the set of singular points of Z.

The next result is a useful criterion for showing that a point of a variety is regular,
based on linear independence. It will provide a link to the concepts introduced in
Sect. A.2 on differential geometry. For a proof, see [148, Thm. 1.16].

Lemma A.32 Let f1, . . . , fs ∈ C[X1, . . . ,Xn] and p ∈ Z(f1, . . . , fs) be such that
the derivatives Df1(p), . . . ,Dfs(p) are linearly independent. Then

I :=
{
f ∈C[X] | ∃g1, . . . , gr , h ∈C[X] s.t. h(p) �= 0, hf =

∑

i

gifi

}

is a prime ideal and W = Z(I) is an irreducible variety W of dimension n − s

containing p as a regular point. Moreover, there is a Zariski closed set Y not con-
taining p such that Z(f1, . . . , fs)=W ∪ Y . �

The next result clarifies the relation of varieties to complex manifolds.

Theorem A.33 Let Z be an irreducible variety. Then Sing(Z) is a Zariski closed
subset of dimension strictly less than dimZ. Furthermore, Reg(Z) is a complex
manifold of dimension dimZ and hence a smooth manifold of dimension 2 dimZ.

Proof Let Z ⊆C
n be an irreducible affine variety of dimension d and let f1, . . . , fs

be generators of its vanishing ideal I (Z). Then the Zariski tangent space TpZ

defined in (A.5) is the kernel of the Jacobian matrix [∂Xj
fi(p)] at p. It follows

that {p ∈ Z | dimTpZ ≥ n − k} is a Zariski closed set. Indeed, dimTpZ ≥ n − k

means that rank[∂Xj
fi(p)] ≤ k, and the latter can be expressed by the vanish-

ing of all of the k × k minors of the Jacobian matrix of (f1, . . . , fs) at p. It
follows that Sing(Z) = {p ∈ Z | dimTpZ ≥ d + 1} is a Zariski closed subset.
Since Reg(Z) �= ∅ by Theorem A.30, Sing(Z) is strictly contained in Z and hence
dim Sing(Z) < dimZ.

It remains to analyze Reg(Z). Let p be a regular point. So d = dimTpZ,
and we may assume without loss of generality that TpZ is the zero set of



A.3 Algebraic Geometry 485

Df1(p), . . . ,Dfn−d(p). By Lemma A.32 the zero set Z′ := Z(f1, . . . , fn−d) de-
composes as Z′ = W ∪ Y for Zariski closed sets W,Y , where W is irreducible,
dimW = d , and p �∈ Y . Since Z ⊆ Z′ and Z is irreducible, we must have Z ⊆W ,
since Z ⊆ Y is impossible. Since dimZ = dimW , we get Z = W . So we obtain
Z′ ∩U = Z ∩U for the Zariski open neighborhood U :=C

n \Y of p. After shrink-
ing U , we may assume that Df1(x), . . . ,Dfn−d(x) are linearly independent for
all x ∈ U . Hence 0 is a regular value of the polynomial map U → C

n−d, x �→
(f1(x), . . . , fn−d(x)). Its fiber over 0 equals Z ∩U . The complex version of Corol-
lary A.3 implies that Z ∩U is a complex manifold of complex dimension d .

If Z is a projective variety, one can argue similarly. �

Corollary A.34 Any affine or projective variety Z is a disjoint union of finitely
many complex manifolds. The largest complex dimension of the manifolds occur-
ring in this decomposition equals the dimension of Z as a variety.

Proof Let Z = Z1 ∪ · · · ∪ Zr be the decomposition of Z into irreducible compo-
nents and further decompose Zi = Reg(Zi)∪Sing(Zi). Proposition A.33 states that
Reg(Zi) is a complex manifold of dimension dimZi , and we note that dimZ =
maxi dimZi . We apply the same procedure to the varieties Sing(Zi), which satisfy
dim Sing(Zi) < dimZi by the same proposition, and iterate. The procedure stops
after finitely many steps. �

Corollary A.34 combined with Proposition A.11 implies the following.

Corollary A.35 Any Zariski closed set Z properly contained in C
n has measure

zero in C
n. Similarly for a Zariski closed set in Z in P

n. �

This is a good juncture to introduce a common terminology: a property of points
in C

n (or Pn) is said to hold for Zariski almost all points if the property holds for
all points outside a Zariski closed subset Z of Cn (or Pn). By Corollary A.35, this
implies that the property holds for all points outside a subset of measure zero.

At some moment in this book we also have to deal with real algebraic varieties.
They are defined as in Definition A.23, with C replaced by R. Many of the concepts
defined over C extend to R, for instance the notion of dimension. Again it is true
that dimZ < n for an algebraic variety Z properly contained in R

n. Also, we state
without proof the following fact: any real algebraic variety Z ⊆ R

n is a disjoint
union of smooth submanifolds of Rn having dimension at most dimZ. Proofs of
these facts can be found in [39].

Corollary A.36

(a) A real algebraic variety Z ⊆R
n such that Z �=R

n has measure zero in R
n.

(b) Let Z ⊆ R
n be a real algebraic variety of dimension at most n − 2. Further,

assume 0 �∈Z. Then the set {v ∈R
n \ {0} |Rv∩Z �= ∅} has measure zero in R

n.
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Proof The first assertion follows from Proposition A.11, using the stratification of
Z into a union of submanifolds.

The second assertion is an immediate consequence of Proposition A.13, using
the stratification of Z into submanifolds. �

Remark A.37 Real algebraic varieties are wilder than their complex counterparts.
For instance, Theorem A.28 fails to hold over the reals. The plane curve given as
the zero set of Y 2 −X3 +X2 is irreducible but has two connected components. To
aggravate things, one of these components is an isolated point.

A.3.3 Elimination Theory

We begin with a homogeneous version of Hilbert’s Nullstellensatz. Recall that Hd

denotes the complex vector space of homogeneous polynomials of degree d in
X0, . . . ,Xn.

Proposition A.38 Let I denote the ideal generated by the homogeneous polyno-
mials f1, . . . , fs ∈ C[X0, . . . ,Xn]. Then ZP(I )= ∅ iff there exists d ∈ N such that
Hd ⊆ I .

Proof Consider the dehomogenizations f̃i := fi(1,X1, . . . ,Xn) and note that fi =
X

di
0 f̃i (X1/X0, . . . ,Xn/X0), where di = degfi . Since the zero set of f̃1, . . . , f̃s in

C
n is empty, the weak form of Hilbert’s Nullstellensatz (Theorem A.24) implies

that there are polynomials g̃i such that 1 =∑
i g̃i f̃i . Substituting Xi by Xi/X0 and

multiplying by a sufficiently high power X
d0
0 we obtain that Xd0

0 =∑
i gifi , where

gi denotes the homogenization of gi . Hence X
d0
0 ∈ I . The same argument shows

that Xdi
i ∈ I . Now put d := (n+ 1)maxi di . It follows that I contains all monomials

of degree d . �

One defines the Zariski topology on the product Pm × P
n of complex projective

spaces by taking for the closed sets the zero sets of polynomials that are homoge-
neous in both groups of variables X0, . . . ,Xm and Y0, . . . , Yn.

The following result is sometimes called the main theorem of elimination theory.
It is the algebraic counterpart of the compactness of Pn in the classical topology. Let
us point out that this result was essential in our proof of Bézout’s theorem; compare
Proposition 16.25.

Theorem A.39 The projection π2 : Pm × P
n → P

n maps Zariski closed subsets of
P
m × P

n to Zariski closed subsets of Pn.
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Proof Consider the zero set Z ⊆ P
m×P

n of polynomials f1, . . . , fs that are homo-
geneous in both the X and the Y variables. For all y ∈C

n+1∗ , we have

y �∈ π2(Z) ⇐⇒ f1(X,y), . . . , fs(X,y) have no common zero in P
m

⇐⇒ ∃d ∈N such that Hd ⊆
(
f1(X,y), . . . , fs(X,y)

)
,

where the last equivalence is a consequence of Proposition A.38. It therefore suffices
to prove that for each d ∈N, the set

Ad :=
{
y ∈C

n+1 |Hd ⊆
(
f1(X,y), . . . , fs(X,y)

)}

is an open subset of Cn+1 in the Zariski topology.
Fix y ∈C

m+1. We have Hd ⊆ (f1(X,y), . . . , fs(X,y)) iff the linear map

T y : Hd−d1 × · · · ×Hd−ds →Hd , (g1, . . . , gs) �→
s∑

i=1

gifi(X,y),

is surjective, or rankT y ≥ dimHd =: N . The matrix My of T y with respect to
the monomial bases has entries that are homogeneous polynomials in y. Moreover,
rankT y ≥ N if there is an N ×N submatrix with nonvanishing determinant. This
shows that Ad is Zariski open. �

The Zariski topology on a projective variety Z ⊆ P
n is defined as the one in-

duced by the Zariski topology on P
n. Similarly, one defines the Zariski topology

on a Zariski open subset U ⊆ Z. The following is an immediate consequence of
Theorem A.39.

Corollary A.40 Let V1 and V2 be projective varieties and U a Zariski open subset
of V2. Then the projection π2 : V1 × U → U, (x, y) �→ y, maps closed subsets to
closed subsets (with respect to the Zariski topologies). �

A.3.4 Degree

In Chap. 20 we encountered the notion of the degree of an algebraic variety. We
now give a very brief introduction to this concept. For more details we refer to [148,
Chap. 5].

Let G(m,n) denote the set of m-dimensional projective linear subspaces of Pn

(known as a Grassmann manifold or Grassmannian). Alternatively, this may be seen
as the set of complex linear subspaces of Cn+1 having dimension m+ 1. Note that
G(0, n)= P

n. An extension of the construction in Sect. 14.2 shows that G(m,n) is
a complex manifold of dimension (m+ 1)(n−m); compare also Sect. 14.3.2. It is
possible to view G(m,n) as a projective variety; cf. [186].
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Recall that in Sect. A.2.4 we introduced the general notion of transversality for
submanifolds of a manifold. It therefore makes sense to talk about the transversal
intersection of a complex linear subspace of Pn with a submanifold of Pn, such as
the set Reg(Z) of regular points of an irreducible projective variety Z.

The degree degZ of the irreducible projective variety Z is defined as the natural
number d characterized in the theorem below. While this theorem usually is proved
by algebraic methods, it is possible to give a differential-topological proof, much as
we did for Bézout’s theorem. We shall indicate this proof below, leaving out some
details.

Theorem A.41 Let Z ⊆ P
n be an irreducible projective variety and assume m +

dimZ = n. There is a uniquely determined d ∈ N such that for all L ∈G(m,n), if
L is transversal to Reg(Z) and L∩ Sing(Z)= ∅, then #(L∩Z)= d .

Sketch of proof. The set R := {(L,x) ∈ G(m,n) × Z | z ∈ L} is a Zariski closed
subset of G(m,n) × Z. Moreover, R′ := R ∩ (G(m,n) × Reg(Z)) is a complex
manifold of the same dimension as G(m,n).

Consider the projection ϕ : R → G(m,n), (L,x) �→ L, and its restriction
ϕ′ : R′ →G(m,n), which is a smooth map between manifolds. Let S′ be the set of
singular points of ϕ′. Then S′ ∪ Sing(Z) is a Zariski closed subset of G(m,n)×Z.
Corollary A.40 implies that S := ϕ(S ∪ Sing(Z)) is a Zariski closed subset of
G(m,n). Theorem A.28 implies that U :=G(m,n) \ S is connected in the classical
topology.

As in the proof of Theorem 16.23, we can argue that for L ∈U , the fibers ϕ−1(L)

are finite, and moreover, by the inverse function theorem, the function U → N,
L �→ #(ϕ−1(L)), is locally constant (with respect to the classical topology). Hence,
since U is connected, this function must be constant.

Finally, we note that for x ∈ L∩Reg(Z), L is transversal to Reg(Z) iff (L,x) is
a regular point of ϕ′. So for L ∈U we have #(ϕ−1(L))= #(L∩Z). �

It is clear that degPm = 1 for a projective linear subspace P
m of Pn. One can

also show that degZ ≥ 1 for every projective algebraic variety Z.
The unitary group U (n+ 1) acts transitively on G(m,n). Thus, if Pm denotes

a fixed linear subspace of P
n, then uPm runs through all of G(m,n) when u ∈

U (n+ 1).

Corollary A.42 Let Z ⊆ P
n be an irreducible projective variety and assume

dimZ +m = n. Then, for almost all u ∈ U (n+ 1), the intersection Z ∩ uPm has
exactly degZ points.

Proof The proof of Proposition A.18 immediately extends from spheres to complex
projective space with the transitive action of U (n+ 1) on P

n. Therefore, for almost
all u ∈U (n+ 1), uPm is transversal to Reg(Z).

Let Sing(Z) = M1 ∪ · · · ∪ Mr be a stratification into complex manifolds as in
Corollary A.34. Then dimCMi ≤ dim Sing(Z) < dimZ. By the same reasoning as
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above, for almost all u ∈U (n+ 1), uPm is transversal to each of the Mi . But since
dimCMi+m< n, this means that uPm does not meet Mi . Hence uPm∩Sing(Z)= ∅
for almost all u ∈U (n+ 1). Theorem A.41 now completes the proof. �

The degree of a hypersurface is what we would expect it to be.

Proposition A.43 Let f ∈C[X0, . . . ,Xn] be an irreducible, homogeneous polyno-
mial of degree d ≥ 1. Then degZP(f )= d .

Sketch of proof Let L ∈ G(1, n) satisfy the assumptions of Theorem A.41. To
simplify notation, assume without loss of generality that L = ZP(X0,X1) and
[(0,1,0, . . . ,0)] �∈ L. Then the univariate polynomial g(X1) := f (1,X1,0, . . . ,0)
has degree d and #(L ∩ZP(f )) equals the number of complex zeros of g. One can
check that by assumption, all the zeros of g are simple. Thus #(L∩ZP(f ))= d by
the fundamental theorem of algebra. �

In Sect. 16.5 we proved a version of Bézout’s theorem, stating that #(ZP(f1) ∩
· · · ∩ ZP(fn)) = d1 · · ·dn if f ∈ Hd \ Σ . The latter condition means that the hy-
persurfaces ZP(fi) intersect transversally (cf. Sect. A.2.4, where this notion was
defined for the intersection of two submanifolds).

For the sake of completeness let us mention a more general version of Bézout’s
theorem. The degree of a projective variety of pure dimension is defined as the sum
of the degrees of its irreducible components.

Theorem A.44 Suppose that Z and W are irreducible projective varieties in P
n

such that dimZ + dimW ≥ n. If Z ∩ W = Reg(Z) ∩ Reg(W) and Reg(Z) and
Reg(W) intersect transversally, then Z∩W is of pure dimension dimZ+dimW−n

and deg(Z ∩W)= degZ · degW . �

When the assumptions on Z and W are violated, subtle phenomena may appear.
Not only may intersections of higher multiplicities arise: it may also be the case that
Z ∩ W contains irreducible components of different dimensions. For the purpose
of estimation, the so-called Bézout’s inequality has proven to be of great value in
algebraic complexity theory; cf. [47, Sect. 8.2]. Let us state it in full generality for
the sake of completeness. We define the (cumulative) degree of a Zariski closed
subset in P

n as the sum of the degrees of its irreducible components. A subset V of
P
n is called locally closed if it is the intersection of an open with a closed subset in

the Zariski topology. We define the degree of V as the degree of its closure in the
Zariski topology.

Theorem A.45 (Bézout’s inequality) Suppose that Z and W are locally closed sub-
sets of Pn. Then deg(Z ∩W)≤ degZ · degW . �

In Sect. 21.3 we shall need a corollary of Bézout’s inequality.
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Corollary A.46 Let f ∈Hd and recall that di = degfi . The number of simple zeros
in P

n of the system f1(ζ )= 0, . . . , fn(ζ )= 0 is bounded by d1 · · ·dn.

Proof Proposition A.43 implies that degZP(fi)≤ di (use the factorization of fi into
irreducible polynomials). Theorem A.45 implies that degZP(f )≤∏

i degZP(fi)≤
d1 · · ·dn. Now note that by the implicit function theorem (Theorem A.1), each sim-
ple zero of f is isolated and thus constitutes an irreducible component of ZP(f ). �

A.3.5 Resultant and Discriminant

We study now the solvability of overdetermined systems of polynomial equations,
where we have n+ 1 equations in n+ 1 homogeneous variables.

For a degree pattern d = (d0, . . . , dn) consider the set Sd := {f ∈ Hd | ∃ζ ∈
P
n f (ζ ) = 0} of feasible polynomial systems. Theorem A.39 implies that Sd is a

Zariski closed subset of Hd, since it is obtained as the projection over Hd of the
Zariski closed set {(f, ζ ) ∈Hd × P

n | f (ζ )= 0}. But much more can be said. (For
a proof see [222, Chap. XI] or [134, Chap. IX §3].)

Theorem A.47 For any fixed degree pattern d = (d0, . . . , dn), the set Sd is a hyper-
surface. It is the zero set of an irreducible polynomial resd(f ) in the coefficients of
f ∈Hd. Moreover, for all i, resd is homogeneous of degree

∏
j �=i dj in the coeffi-

cients of fi . �

The polynomial resd is uniquely determined up to a scalar, and it is called the
multivariate resultant corresponding to the degree pattern d.

We return to systems of n homogeneous polynomial equations in n+ 1 variables
and ask for a criterion to determine whether f has a multiple zero. In other words,
we seek a more explicit characterization of the discriminant variety Σ introduced
in Proposition 16.25. The following corollary was needed for the application in
Sect. 20.6.3.

Corollary A.48 For any fixed degree pattern d = (d1, . . . , dn), the discriminant va-
riety Σ is a hypersurface in Hd, given as the zero set of a polynomial discd of
degree

deg discd =D
(

1 +
(

n∑

i=1

di + 1 − n

)
n∑

i=1

1

di

)

.

So for all f = (f1, . . . , fn) ∈ Hd, the system f = 0 has a multiple zero in P
n iff

discd(f )= 0.

Proof Consider the (n+ 1)× (n+ 1) matrix M obtained from the Jacobian matrix
[∂Xj

fi]1≤i≤n,0≤j≤n by appending the vector [X0, . . . ,Xn] as the last row. We put
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g := detM and note that g is a homogeneous polynomial of degree

degg = 1 +
n∑

i=1

(di − 1)=
n∑

i=1

di + 1 − n.

Now we define

discd(f1, . . . , fn) := res(g, f1, . . . , fn).

A solution ζ to the system f = 0 is degenerate if and only if the first n rows
[∂Xj

fi]0≤j≤n(ζ ), for 1 ≤ i ≤ n, are linearly dependent, which is the case if and
only if g(ζ ) = 0 (here we used Euler’s identity (16.3)). It follows that the zero set
of discd equals the discriminant variety Σ . We thus obtain

deg discd(f1, . . . , fn)=D+ degg

n∑

i=1

D
di

.
�

Remark A.49 One can show that discd is irreducible and uniquely determined up to
scaling. It is called the discriminant corresponding to the degree pattern d.

A.3.6 Volumes of Complex Projective Varieties

The goal of this subsection is to outline a proof of Theorem 20.14. We achieve this
by adapting the proof in Stolzenberg [215] for Cn to the situation of Pn.

We shall assume here a basic familiarity with differential forms and Stokes’s
Theorem; see [209] for more information.

We begin with a result from multilinear algebra. Let V be a complex vector space
of dimension n with a Hermitian inner product H on it. Then the real part q := .H

of H defines an inner product of the real vector space V , and the imaginary part
ω := /H defines a 2-form on V , i.e., an alternating real bilinear form. The volume
form Ω associated with q (cf. Sect. A.2.5) can be expressed by the n-fold wedge
product of ω with itself as follows (cf. [187, chap. VIII, §4.1]):

Ω = 1

n! ω ∧ · · · ∧ω= 1

n! ω
∧n. (A.6)

We can now state a fundamental inequality.

Lemma A.50 (Wirtinger’s inequality) Let V be a complex vector space of dimen-
sion n with a Hermitian inner product H on it. Put q := .H and ω := /H . Further,
let W ⊆ V be a real 2k-dimensional subspace and let ΩW denote the volume form
corresponding to the restriction of q to W . Then we have for any w1, . . . ,w2k ∈W ,

1

k!
∣∣ω∧k(w1, . . . ,w2k)

∣∣≤ ∣∣ΩW(w1, . . . ,w2k)
∣∣.
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Proof First we note that it is sufficient to verify the stated inequality for a basis
w1, . . . ,w2k .

A standard result on the normal forms of skew-symmetric linear maps (cf. [134])
implies that there exist an orthonormal basis e1, . . . , ek, f1, . . . , fk of W and αi ∈R,
such that for all 1 ≤ i, j ≤ k,

ω(ei, ej )= 0, ω(fi, fj )= 0, ω(ei, fj )= αiδij .

We can therefore decompose ω as a sum ω = ω1 + · · · + ωk , where ωj is obtained
as the pullback of a 2-form on Vj := Rej ⊕ Rfj via the orthogonal projection. In
particular, ωj ∧ωj = 0. Therefore (note that ωj ∧ω� = ω�∧ωj , since we deal with
2-forms),

ω∧k = (ω1 + · · · +ωk)
∧k = k!ω1 ∧ · · · ∧ωk.

It follows that

1

k!ω
∧k(e1, f1, . . . , ek, fk)= ω1(e1, f1) · · ·ωk(ek, fk)= α1 · · ·ak.

The restriction of H on Vj has the matrix

M :=
(

1 iαj

−iαj 1

)

with respect to the basis (ej , fj ). Since M must be positive semidefinite, we have
detM = 1 − α2

j ≥ 0. This implies |αj | ≤ 1.

We obtain 1
k! |ω∧k(e1, f1, . . . , ek, fk)| ≤ |α1 · · ·αk| ≤ 1 = |Ω(e1, . . . , fk)|, which

proves the lemma. �

We can define a Hermitian inner product on the tangent spaces T[x]Pn of the
projective space P

n by setting, for a, b ∈ Tx ,

Hx(a, b) := 〈a, b〉
‖x‖2

,

where 〈 , 〉 is the standard Hermitian inner product on C
n+1. Note that the Rie-

mannian metric defined in (14.13) is just the real part of this inner product. We now
define ωx(a, b) := /Hx(a, b) and thus obtain a 2-form ω on P

n. It can be shown that
ω is closed, that is, its exterior derivative dω vanishes (see [148, Lemma (5.20)] for
an elegant proof). This is commonly expressed by saying that Pn is a Kähler mani-
fold.

We proceed with a brief discussion of the exponential maps of P
n. Fix a rep-

resentative a ∈ S(Cn+1) of a point in P
n (denoted by the same symbol) and recall

that Ta := {z ∈ C
n+1 | 〈z, a〉 = 0} is a model for the tangent space of Pn at a (cf.

Sect. 14.2). Consider the map

ψ : S(Ta)×R→ P
n, (w,ϕ) �→ expa(ϕw) := [a cosϕ +w sinϕ].



A.3 Algebraic Geometry 493

It is clear that B(a, ε) \ {a} is obtained as the diffeomorphic image of S(Ta)× (0, α]
under ψ , where ε = sinα. Further, S(a, ε) := {x ∈ P

n | dP(x, a)= ε} is obtained as
the image of S(Ta). We can thus define a projection map by

B(a, ε) \ {a}→ S(a, ε), ψ(w,ϕ) �→ψ(w,α).

The cone over a subset A⊆ S(a, ε), denoted by cone(A), is defined as the inverse
of A under this projection map.

Lemma A.51 Let A⊆ S(a, ε) be a submanifold of dimension m−1. Then cone(A)

is a submanifold of dimension m and

vol
m

cone(A)≤ ε

m

1

1 − ε2
vol
m−1

A.

Proof We shall apply the coarea formula to ψ . First we calculate the derivative of ψ
(compare the proof of Lemma 20.5). Put q := a cosϕ+w sinϕ and ν := −a sinϕ+
w cosϕ. If Tw,a denotes the orthogonal complement of Cw+Ca in C

n+1, we have
the following orthogonal decompositions of the tangent spaces:

TwS(Ta)= Tw,a ⊕Riw, Tq = Tq,ν ⊕Cν = Tw,a ⊕Riν ⊕Rν

(for the first decomposition see Lemma 14.9). We claim that Dψ(w,ϕ) splits ac-
cording to the above decompositions as follows: for ẇ1 ∈ Tw,a and λ1, λ2 ∈R,

Dψ(w,ϕ)(ẇ1 ⊕ λ1iw,λ2)= ẇ1 sinϕ ⊕ iνλ1 sinϕ cosϕ ⊕ νλ2. (A.7)

In order to see this, take curves w(t), ϕ(t) and differentiate

q(t) :=ψ
(
w(t), ϕ(t)

)= a cosϕ(t)+w(t) sinϕ(t)

with respect to t . This gives

q̇ =−aϕ̇ sinϕ +wϕ̇ cosϕ + ẇ sinϕ = ẇ sinϕ + νϕ̇.

To complete the proof of the claim, recall from Lemma 14.8 that d
dt
[q(t)] = π(q̇),

where π : Cn+1 → Tq denotes the orthogonal projection. Further, it is immediate to
check that π(iw)= iν cosϕ.

Let A′ denote the inverse image of the submanifold A⊆ S(a, ε) under the map
w �→ψ(w,α). Then A′ × [0, α] =ψ−1(cone(A)) by the definition of cone(A). Let
ψres denote the restriction of ψ to A′ × [0, α] and recall that dimA=m− 1. The
Jacobian Jψres of ψres can, due to Eq. (A.7), be bounded as follows:

(sinϕ)m−1 cosϕ ≤ Jψres (w,ϕ)≤ (sinϕ)m−1.

Thus, using the coarea formula, we get

vol
m

cone(A)=
∫

A′×[0,α]
Jψres dA′ dϕ ≤ vol

m−1
A′

∫ α

0
(sinϕ)m−1 dϕ
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and

vol
m−1

A=
∫

w∈A
Jψres (w,α)dA′ ≥ vol

m−1
A′(sinα)m−1 cosα.

This implies

volm cone(A)

volm−1 A
≤ 1

(sinα)m−1 cosα

∫ α

0
(sinϕ)m−1 dϕ.

Further,
∫ α

0
(sinϕ)m−1 dϕ ≤

∫ α

0
(sinϕ)m−1 cosϕ

cosα
dϕ = 1

cosα

(sinα)m

m
.

We conclude that

volm cone(A)

volm−1 A
≤ sinα

m

1

(cosα)2
= ε

m

1

1 − ε2
. �

Let M ⊆ P
n be an m-dimensional submanifold of complex projective space P

n.
We fix a ∈M and define for 0 < ε ≤ 1 the level sets

M≤ε :=
{
x ∈M | dP(x, a)≤ ε

}
, Mε :=

{
x ∈M | dP(x, a)= ε

}
.

If ε is a regular value of the map M →R, x �→ dP(x, a), then, by a variant of Theo-
rem A.9, M≤ε is a smooth manifold with boundary Mε (cf. [209] for a definition of
this notion). By Sard’s theorem, this is the case for almost all ε > 0. Moreover, an
orientation of M induces an orientation of M≤ε .

One can check that the normal Jacobian of M → R, x �→ dP(x, a), equals 1.
Hence F(ε) := volmM≤ε =

∫ ε

0 volm−1 Mρ dρ and F ′(ε)= volm−1 Mε .

Proposition A.52 Let V ⊆ P
n be a complex submanifold of complex dimension k

and a ∈ V . Then, for almost all 0 < ε < 1,

vol
2k

V≤ε ≤ ε

2k

1

1 − ε2
vol

2k−1
Vε.

Proof Let ω denote the 2-form on P
n defined as the imaginary part of the Hermitian

metric on P
n. Since dω= 0, we have dω∧k = 0 by the product rule for the exterior

differentiation of differential forms. Since B(a, ε) is contractible to a, there is a
(2k+1)-form Φ on B(a, ε) such that dΦ = ω∧k , due to Poincaré’s lemma; cf. [209].

We can express the volume form ΩV of V as 1
k! ω

∧k ; cf. (A.6). We thus obtain

vol
2k

V≤ε =
∫

V≤ε

ΩV = 1

k!
∫

V≤ε

ω∧k = 1

k!
∫

Vε

Φ,

where we used Stokes’s theorem for the last equality, noting that Vε is the boundary
of the manifold with boundary V≤ε . One can show that the singularity of the apex a
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of cone(Vε) does not harm, so that we can apply Stokes’s theorem again to obtain

1

k!
∫

Vε

Φ = 1

k!
∫

cone(Vε)

ω∧k.

Wirtinger’s inequality (Lemma A.50) applied to the real subspaces Txcone(Vε) of
TxP

n implies that 1
k! |ω∧k| ≤ |Ωcone(Vε)|, where Ωcone(Vε) denotes the volume form

of cone(Vε). Therefore,

∣∣∣∣
1

k!
∫

cone(Vε)

ω∧k

∣∣∣∣≤
1

k!
∫

cone(Vε)

∣∣ω∧k
∣∣≤

∫

cone(Vε)

|Ωcone(Vε)| = vol
2k

cone(Vε).

Bounding the latter with Lemma A.51, the assertion follows. �

The proof of the next lemma is straightforward and therefore omitted.

Lemma A.53 Let V ⊆ P
n be a complex submanifold of complex dimension k and

a ∈ V . Then, for any k-dimensional projective linear subspace P
k of Pn containing

a, we have

lim
ε→0

vol2k Vε

vol2k(B(a, ε)∩ Pk)
= 1. �

Proof of Theorem 20.14 Suppose first that a is a regular point of V . Then there
exists ε0 > 0 such that F(ε) := vol2k V≤ε is well defined for almost all 0 < ε ≤ ε0.
We already noted that F(ε)= ∫ ε

0 vol2k−1 Vρ dρ and hence F ′(ε)= vol2k−1 Vε .

Put G(ε) := F(ε)

ε2k(1−kε2)
. Lemma A.53 combined with vol2k(B(a, ε) ∩ P

k) =
ε2k vol2k Pk (cf. Lemma 20.8) implies that limε→0 G(ε)ε−2k = vol2k Pk . It is there-
fore sufficient to prove that G is monotonically increasing. By calculating its deriva-
tive we get

G′(ε) = 1

ε2k(1 − kε2)

(
F ′(ε)− 2k

ε

(1 − (k + 1)ε2)

(1 − kε2)
F (ε)

)

≥ 1

ε2k(1 − kε2)

(
F ′(ε)− 2k

ε

(
1 − ε2)F(ε)

)
≥ 0,

where we used Proposition A.52 for the last inequality.
The case in which a is a singular point of V can be reduced to the above case by

a continuity argument, whose details are harmless, but shall be omitted. �

Remark A.54 In a similar way one can prove the bound

vol
2k

(
V ∩B(a, r)

)≥ r2k vol
2k

(
C

k ∩B(a, r)
)
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for a k-dimensional irreducible affine variety V ⊆ C
n, a ∈ V , and r > 0. Here C

k

stands for any k-dimensional linear subspace of Cn containing a, and B(a, r) de-
notes the Euclidean ball of radius r and center a in C

n or C
k , respectively. See

Stolzenberg [215, Thm. B], who attributes the result to Federer.

A.4 Integral Geometry

For the reader’s convenience, we collect here the results from integral geometry that
are relevant in the last two chapters of this book. For those used in Chap. 20, we
shall be able to provide complete proofs.

A.4.1 Poincaré’s Formula

Suppose that M,N ⊆ S
p are smooth submanifolds of dimension m and n, respec-

tively, such that m+n≥ p. Pick a uniform random g ∈O(p+ 1). Proposition A.18
states that the intersection of M with the random translate gN of N is almost
surely a submanifold of dimension m+ p − n, or empty. In particular, the volume
volm+p−n(M ∩ gN) is almost surely well defined. Poincaré’s formula gives a beau-
tifully simple expression for the expectation of this volume in terms of the volumes
of M and N , respectively.

Theorem A.55 (Poincaré’s formula) Suppose that M,N ⊆ S
p are smooth subman-

ifolds of dimension m and n, respectively, such that m+ n≥ p. Then, for a uniform
random g ∈G :=O(p+ 1), we have

E
g∈G

(
volm+n−p(M ∩ gN)

Om+n−p

)
= volmM

Om

· voln N

On

.

The proof relies on the coarea formula (Theorem 17.8) and the following obvious
transitivity property of the action of the orthogonal group O(p + 1) on the sphere
S
p and its tangent spaces.

Lemma A.56 Let x0, y0 ∈ S
p and U0 ⊆ Tx0S

p , V0 ⊆ Ty0S
p be n-dimensional lin-

ear subspaces. Then there exists g ∈O(p+ 1) such that gx0 = y0 and gU0 = V0. �

Proof of Theorem A.55 Consider the smooth map μ : G × S
p → S

p , (g, x), �→
g−1x, and its restriction f : G×M → S

p . We define

R := f−1(N)= {
(g, x) ∈G×M | g−1x ∈N

}
.

In the proof of Proposition A.18 it was shown that R is a submanifold, and we
determined its tangent spaces T(g,x)R; see (A.2). We will consider the surjective
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projections

p1 : R →G, (g, x) �→ g, and p2 : R →M, (g, x) �→ x.

Note that the fibers of p1 are given by p−1
1 (g) = {g} × (M ∩ gN). Moreover, the

fibers of p2,

p−1
2 (x)= {

g ∈G | g−1x ∈N
}× {x},

are submanifolds (this follows by taking M = {x} in the above argument). Note
also that by (A.2), the normal Jacobians NJp1(g, x) and NJp2(g, x) depend on the
submanifolds M and N only through their tangent spaces TxM and TyN , where
y = g−1x. (See Sect. 17.3 for the definition of normal Jacobians.)

The orthogonal group G acts isometrically on G× S
p via h(g, x) := (hg,hx).

Also, the submanifold R is invariant under the action of G, since (hg)−1hx =
g−1h−1hx = g−1x ∈ N for (g, x) ∈ R and h ∈ G. It is clear that both p1 and p2
are G-equivariant. This easily implies that their normal Jacobians NJp1 and NJp2
are G-invariant.

The coarea formula applied to the smooth map p1 implies
∫

R

NJp1 dR =
∫

g∈G
vol

m+n−p
(M ∩ gN)dG. (A.8)

Moreover, the coarea formula applied to the smooth map p2 yields
∫

R

NJp1 dR =
∫

x∈M

∫

p−1
2 (x)

NJp1

NJp2
dp−1

2 (x) dM. (A.9)

The function F := NJp1
NJp2

is G-invariant, since the normal Jacobians of p1 and p2 are
G-invariant.

Fix x0 ∈M . Any x ∈M is of the form x = hx0 for some h ∈G. Moreover, we
have the isometric bijection p−1

2 (x0)→ p−1
2 (x), (g, x0) �→ h(g, x0), which implies

that
∫

p−1
2 (x0)

F dp−1
2 (x0)=

∫

p−1
2 (x)

F dp−1
2 (x),

using that F is G-equivariant. Hence Eq. (A.9) translates to
∫

R

NJp1 dR = vol
m

M ·
∫

p−1
2 (x0)

F dp−1
2 (x0). (A.10)

We now consider the smooth map

ψ : p−1
2 (x0)→N, (g, x0) �→ g−1x0.

Note that ψ(hg,x0)= ψ(g,x0) for h lying in the stabilizer Gx0 := {h ∈G | hx0 =
x0} of x0. It follows that NJψ(hg,x0)= NJψ(g,x0). The coarea formula applied to
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ψ yields

∫

p−1
2 (x0)

F dp−1
2 (x0)=

∫

y∈N

∫

ψ−1(y)

F

NJψ
dψ−1(y) dN.

Fix y0 ∈N . We have the isometry ψ−1(y0)→ψ−1(h−1y0), (g, x0) �→ (gh, x0), for
any h ∈G, which implies that

∫

p−1
2 (x0)

F dp−1
2 (x0)= vol

n
N ·

∫

ψ−1(y0)

F

NJψ
dψ−1(y0). (A.11)

Fix g0 ∈G such that y0 = g−1
0 x0. Then

ψ−1(y0)=
{
g ∈G | g−1x0 = y0

}× {x0} =
{
(hg0, x0) | h ∈Gx0

}
.

By the Gx0 -invariance of the normal Jacobians of p1,p2 and of ψ , we obtain

C :=
∫

ψ−1(y0)

F

NJψ
dψ−1(y0)= F

NJψ
(g0, x0) ·

∫

Gx0

dGx0 .

Combining this with (A.8), (A.10), and (A.11), we obtain

∫

g∈G
vol

m+n−p
(M ∩ gN)dG= C · vol

m
M · vol

n
N. (A.12)

It remains to investigate the dependence of the value C on the manifolds M

and N . We already noted that NJp1(g0, x0) and NJp2(g0, x0) depend only on the
tangent spaces Tx0M and Ty0N . Similarly, NJψ(g0, x0) depends only on Ty0N .
In order to determine C we may therefore realize M as an m-dimensional sphere
through x0 having the prescribed tangent space at x0, see Lemma A.56. Similarly,
we choose N as an n-dimensional sphere through y0 with the prescribed tangent
space at y0. Then we have M ∩ gN � S

m+n−p for almost all g. Equation (A.12) for
this particular choice of M and N implies that

Om+n−p =Om ·On ·C,

yielding C = Om+n−p

Om·On
, and the same equation, now with arbitrary M and N , com-

pletes the proof. �

By essentially the same proof one obtains the following version of Poincaré’s
formula for submanifolds of the complex projective space Pp . Recall that the unitary
group U (p+ 1) acts on P

p .

Theorem A.57 Suppose that M,N ⊆ P
p are smooth submanifolds of real dimen-

sion 2m and 2n, respectively, such that m + n ≥ p. Then, for a uniform random



A.4 Integral Geometry 499

u ∈G :=U (p+ 1), we have

E
u∈G

(
vol2m+2n−2p(M ∩ uN)

vol2m+2n−2p P
2m+2n−2p

)
= vol2mM

vol2m Pm
· vol2n N

vol2n Pn
.

�

We can now provide the missing proofs from Chap. 20.

Proof of Theorem 20.9 Let V ⊆ P
p be an m-dimensional irreducible projective

variety and U ⊆ V an open subset in the Euclidean topology. By Theorem A.33,
Reg(V ) is a manifold of real dimension 2m and Sing(V ) is a manifold of dimen-
sion less than 2m. We put U0 := U ∩ Reg(V ) and U1 := U ∩ Sing(V ). Then U0 is
a submanifold of dimension 2m (or empty). Theorem A.57 applied to M :=U0 and
N := P

p−m implies

E
u∈G

#
(
U0 ∩ uPp−m

) = vol2m U0

vol2m Pm
= vol2mU

vol2m Pm
.

On the other hand, by Proposition A.18, Sing(V ) ∩ uPp−m is empty for almost all
u ∈G. We conclude that

E
u∈G

#
(
U ∩ uPp−m

) = E
u∈G

#
(
U0 ∩ uPp−m

) = vol2m U

vol2m Pm
. �

Proof of Theorem 20.13 Let V ⊆ P
p be an m-dimensional irreducible projective

variety and U ⊆ V an open subset in the Euclidean topology. We put U0 := U ∩
Reg(V ) and U1 :=U ∩ Sing(V ) as before. Then U0 is a submanifold of dimension
2m (or empty). Fix a ∈ P

p and let N be the open ball around a of radius ε (with
respect to dsin). Lemma 20.8 tells us that vol2p N = vol2p B(a, ε) = ε2p vol2p Pp .
Theorem A.57 applied to M :=U0 and N implies

E
u∈G

vol2m(U0 ∩ uN)

vol2m Pm
= vol2m U0

vol2m Pm
· vol2p N

vol2p Pp
= vol2mU

vol2m Pm
· εp.

Let ∂N denote the boundary of the ball B(a, ε). By Proposition A.18, U0∩u∂N is a
manifold of dimension strictly less than 2m, for almost all u ∈G. Hence vol2m(U0 ∩
u∂N)= 0 for almost all u; cf. Proposition A.11. We thus obtain

E
u∈G

vol
2m

(
U0 ∩ uB(a, ε)

)= E
u∈G

vol
2m

(U0 ∩ uN)= εp vol
2m

U.

In the same way we see that vol2m(U1 ∩ uB(a, ε))= 0 for almost all u ∈G. So we
obtain, using Lemma 20.11,

E
a∈Pp

vol
2m

(
U ∩B(a, ε)

)= E
u∈G

vol
2m

(
U ∩ uB(a, ε)

)= εp vol
2m

U. �
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A.4.2 The Principal Kinematic Formula

The integral geometric result stated in Theorem 21.11 was essential in Chap. 21.
We cannot provide its proof for lack of space, but we would like to indicate briefly
how this result is related with the so-called principal kinematic formula of spherical
integral geometry.

For the following compare Sect. 21.1. Let M ⊆ S
p be a smooth submanifold of

dimension m. For x ∈M let Sx := S(TxM
⊥) denote the sphere of unit normal vec-

tors v in TxS
n that are orthogonal to TxM . Let us denote by KM,i(x, v) the ith ele-

mentary symmetric polynomial in the eigenvalues of the second fundamental form
of the embedding M ↪→ S

p at x in the direction v; see [88, p. 128]. Definition 21.6
dealt with the case of an oriented hypersurface. There we had a well-defined unit
normal direction v, and up to scaling, we defined the normalized integral μi(M)

of the ith curvature of M by integrating KM,i(x, v) over M . In general, we don’t
have a distinguished direction v, but we can eliminate this deficiency by averaging
over all normal directions in Sx . We thus define the (modified) normalized integral
μ̃i(M) of the ith curvature of M (0 ≤ i ≤m) as follows:

μ̃i(M) := 1

Om−iOp−m+i−1

∫

x∈M

∫

v∈Sx

KM,i(x, v) dSx(e) dM(x). (A.13)

Note that μ̃0(M) = volm M
Om

. Since KM,i(x,−v) = (−1)iKM,i(x, v), we have
μ̃i(M) = 0 if i is odd. So the quantities μ̃i(M) are of interest for even i only.
Note also that if M is a hypersurface (m = p − 1), then we retrieve the quantities
from Definition 21.6: we have μ̃i(M)= μi(M), provided i is even. (However, the
values μi(M) for odd i are not captured by the μ̃j (M).)

Remark A.58 One can show that μ̃i(M) does not change when we embed M in a
sphere S

p′
of larger dimension via S

p ↪→ S
p′

. This is a main reason for the choice
of the normalizing factors.

The extension of Weyl’s tube formula (N.6) from hypersurfaces to submanifolds
of higher codimension states that for sufficiently small ε, we have

volT ⊥(M,ε)=
∑

0≤i≤m
i even

μ̃i(M)Op,m−i (ε). (A.14)

We define the curvature polynomial μ̃(M;X) of M by

μ̃(M;X) :=
m∑

i=0

μ̃i(M)Xi,

where X denotes a formal variable. Note that the degree of μ̃(M;X) is at most the
dimension m of M . For example, we have μ̃(Sm;X)= 1.
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The principal kinematic formula for spheres is the following result. It is consid-
ered the most important result of spherical integral geometry.

Theorem A.59 Let M and N be submanifolds of Sp having dimension m and n,
respectively, and assume m+ n≥ p. Then we have

E
g∈G

(
μ̃(M ∩ gN;X)

)≡ μ̃(M;X) · μ̃(N;X) modXm+n−p+1,

where the expectation on the left-hand side is defined coefficientwise, and on the
right-hand side we have polynomial multiplication modulo Xm+n−p+1. �

This result contains Poincaré’s formula (Theorem A.55) as a special case (con-
sider the constant coefficients of the curvature polynomials). Moreover, choos-
ing N = S

n in Theorem A.59, we obtain Eg∈G(μ̃(M ∩ gSn;X)) ≡ μ̃(M;X) mod
Xm+n−p+1. This means that Eg∈G(μ̃i(M ∩ gSn)) = μ̃i(M;X) for 0 ≤ i ≤ m +
n − p. In particular, if m = p − 1, so that M is a hypersurface, we obtain
Eg∈G(μ̃i(M ∩ gSn))= μ̃i(M;X) for 0 ≤ i ≤ n− 1. These equalities recover The-
orem 21.11 for even indices i.



Notes

Overture Although the loss of accuracy due to an accumulation of round-off er-
rors in a computation had been mentioned before (the initial quotation from Gauss
is an example), the systematic analysis of this subject begins with two papers pub-
lished independently by Herman Goldstine and John von Neumann [226] and by
Alan Turing [221]. Both these papers dealt with the solution of linear systems of
equations. The latter introduced most of the subject’s terminology such as the term
“condition number” and the adjective “ill-conditioned.” However, it appears that
the notion of “ill-posedness” had been in use long before in the context of partial
differential equations; see Courant and Hilbert [67].

Backward-error analysis is also present in these two papers, but its place in con-
temporary numerical analysis is due to the strong advocacy of it made by James
Wilkinson in the 1960s and 70s. A concise exposition of Wilkinson’s views appears
in his 1970 SIAM John von Neumann lecture [237]. A detailed treatment of these
views is found in his books [235, 236].

The themes we have collected under the heading The Many Faces of Condition
in Sect. O.5 arose in the last 60 years in a somehow unordered manner. A goal
of this book is to attempt a unified presentation. Some of these themes—e.g., the
computation of condition numbers—obey an immediate need demanded by appli-
cations. Others grew up out of a need of understanding. An example of the lat-
ter is the relation of condition to distance to ill-posedness. Probably the first in-
stance of this phenomenon is the fact that for an invertible square matrix A one has
‖A−1‖−1 = d(A,Σ). While this result is usually attributed to Carl Eckart and Gale
Young [91], it actually dates back to much earlier work by Erhard Schmidt [182]
and Hermann Weyl [230], as pointed out by Stewart [213]. The systematic search
for relations between condition and distance to ill-posedness was promoted by Jim
Demmel in [84]. A further twist on these relations was pioneered by Jim Rene-
gar, who proposed to define condition as the relativized inverse to the distance to
ill-posedness for those problems in which the usual definition is meaningless (e.g.,
decision problems; see the notes to Chap. 6 below).

An early attempt at a general theory of condition appears in the paper [170] by
John Rice.
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The idea of randomizing the data and looking for the expected condition (or the
tail of the condition number) was, as we mentioned in Sect. O.5.3, introduced by
Goldstine and von Neumann in the sequel [108] to their paper [226] and subse-
quently strongly advocated by Steve Smale [201].

As for the relations between complexity and conditioning, one can identify spe-
cific instances as early as in the 1950s (see Notes of Chap. 5 below). The sugges-
tion of a complexity theory for numerical algorithms parameterized by a condition
number C (a) for the input data (in addition to input size) was first made, to the
best of our knowledge, by Lenore Blum in [35]. It was subsequently supported by
Smale [201, Sect. 1], who extended it, as pointed out above, by proposing to obtain
estimates on the probability distribution of C (a). By combining both ideas, he ar-
gued, one can give probabilistic bounds on the complexity of numerical algorithms.

Chapter 1 Linear algebra is doubtless the most highly cultivated part of numeri-
cal analysis. This is unsurprising, since ultimately, most of the problems for which
a numerical solution is available are so because they reduce to a linear algebra prob-
lem. Due to this prominence, there is no short supply of books on the subject. A
classic reference is by Gene Golub and Charles van Loan [109]. Three excellent
modern books are those by Jim Demmel [86], by Nick Higham [121], and by Lloyd
Trefethen and David Bau [219]. A book with a focus on perturbation theory is that
by Pete Stewart and Ji-Guang Sun [214].

Theorem 1.1 is a particular case of Theorem 19.3 of [121] and is due to Nick
Higham, who first published it in a technical report [118].

The characterization of the normwise condition number for linear equation solv-
ing goes back to the work of Turing, von Neumann, and Goldstine that we men-
tioned above. Early results in componentwise analysis were obtained by Oettli and
Prager [153]. The first mixed perturbation analysis appears in the paper [198] by
Robert Skeel, where a mixed error analysis of Gaussian elimination is performed.
In this work Skeel defined a condition number of mixed type: it uses component-
wise perturbations on the input data and the infinity norm in the solution. In [172],
Jiří Rohn introduced a new relative condition number measuring both perturbation
in the input data and error in the output componentwise. It was Gohberg and Koltra-
cht [107] who named Skeel’s condition number mixed to distinguish it from compo-
nentwise condition numbers such as those in [172]. They also gave explicit expres-
sions for both mixed and componentwise condition numbers.

The paragraph above refers to square systems of linear equations. Perturbation
theory for rectangular matrices and linear least squares problems has existed quite
a while for the normwise case (cf. [211, 227]) and has been further studied in
[103, 112, 143]. In particular, the bounds in (1.13) follow from a result of Per-Åke
Wedin in [227] (see also [121, Theorem 19.1]). For the mixed and componentwise
settings for the problem of linear least squares, bounds for both condition numbers
(or first-order perturbation bounds) and unrestricted perturbation bounds appear in
[9, 34, 119]. A characterization of these condition numbers is given in [72].

Theorem 1.7 for spectral norms is usually attributed to Eckart and Young, but as
we pointed out before, it actually dates back much earlier. See Stewart’s survey [213]



Notes 505

for this and on the history of the fundamental singular value decomposition. The
more general version we presented in Theorem 1.7 was proved by Kahan [124],
who attributes it to Gastinel (cf. Higham [121, Thm. 6.5]).

The inclusion in this chapter of the characterization of condition in Sect. 1.4 was
suggested to us by Javier Peña. It follows a line of thought that has proved to be
useful in conic programming [137, 157, 167].

A notion we have not mentioned in this book is that of stochastic condition num-
ber. Condition numbers as defined in the Overture measure the worst-case mag-
nification of the output error with respect to a small input perturbation. An idea
advanced by Fletcher [97] is to replace “worst-case” by “average” in this measure.
This idea was further pursued in [10, 212, 228]. The bottom line of the results in
these works, however, is somehow disappointing: stochastic condition numbers are
smaller than their worst-case counterparts but not substantially so.

The vast amount of work in numerical linear algebra in general, and of condition-
ing in this context in particular, makes it infeasible for us to do justice to its authors.
Readers interested in history and references for numerical linear algebra will find a
carefully wrought account in the set of “Notes and References” closing each of the
chapters in [121].

Chapter 2 We relied on many sources to write the crash courses in this chapter,
taking just the minimum we needed to proceed with the probabilistic analyses of
condition numbers. In particular, we tailored the notion of data space, since this
notion was well fitted to cover these minima.

A detailed exposition of integration theory, including proofs of the theorems by
Fubini and Tonelli, can be found, e.g., in [17]. For a proof of the transformation
formula we refer to [209].

There are many books on probability, but few seem to be at the same time ele-
mentary (avoiding measure theory) and yet containing sufficient information about
continuous distributions. In this respect we found [96] helpful.

We remark that Proposition 2.22 is a nontrivial result from [65, Corollary 6].
Smoothed analysis was proposed by Daniel Spielman and Shang-Hua Teng [206,

207] and initially used to give an explanation of the superb performance of the sim-
plex algorithm in practice [208]. This kind of explanation has gained currency since
its introduction, as witnessed by the fact that Spielman and Teng were awarded the
Gödel 2008 and Fulkerson 2009 prizes for it (the former by the theoretical computer
science community and the latter by the optimization community). Also, in 2010,
Spielman was awarded the Nevanlinna prize, and smoothed analysis appears in the
laudatio of his work.

A smoothed analysis of Turing’s condition number was first performed by Sankar
et al. [179] and later improved by Mario Wschebor [244] to Theorem 2.50. Its opti-
mality follows from [14]. These results rely on the assumption of (isotropic) Gaus-
sian perturbations, and the proofs make essential use of orthogonal invariance (see
also the notes of Chap. 4 for more information). For random matrices with entries
from discrete distributions (e.g., independent Bernoulli ±1), the situation is consid-
erably more complicated. Recently, a general “average-case” result in this direction
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was obtained by Terence Tao and Van Vu [216], which was subsequently extended
to a smoothed analysis [217] by the same authors.

The average and smoothed analysis presented in Sect. 2.3 is, to the best of our
knowledge, one of the simplest instances of such analyses. It goes back to discus-
sions with Martin Lotz.

Proposition 2.44 is often referred to as “Renegar’s trick.” It was communicated
in a personal letter to Shub and Smale in 1985. The letter mentions that “the bound
could be made better with more sophisticated arguments,” clearly pointing out that
the goal was simplicity.

Chapter 3 The fact that random triangular matrices are poorly conditioned (with
respect to normwise condition) was given a precise statement by Viswanath and
Trefethen in [225]: if Ln denotes a random triangular n× n matrix (whose entries
are independent standard Gaussians) and κn = ‖Ln‖‖L−1

n ‖ is its condition number,
then

n
√
κn → 2 almost surely

as n→∞. A straightforward consequence of this result is that the expected value
of logκn satisfies E(logκn)=Ω(n).

Theorem 3.1 is a less ambitious version of this result with an equally devastating
lower bound and a much simpler proof.

The probabilistic analysis of sparse matrices that occupies most of the rest of the
chapter is taken from [59]. An extension with a smoothed analysis can be found
in [53].

Chapter 4 Clearly, the probabilistic analysis of condition numbers is linked to
understanding the eigenvalues (or singular values) of random matrices. For Gaus-
sian distributions, this is a thoroughly studied topic that originated from multivariate
statistics (John Wishart [239]) and later was taken up in physics by Eugene Wigner;
see [233]. Recall that AAT is called Wishart distributed if A ∈ R

m×n is standard
Gaussian, and that the singular values of A are just the square roots of the eigen-
values of AAT. An excellent treatment of random matrices in multivariate statistics
can be found in Muirhead [147].

Even though the joint distribution of the eigenvalues of Wishart distributed ran-
dom matrices is known in closed form, deriving from this the distribution of the
largest eigenvalue σ 2

max or the smallest one σ 2
min is a nontrivial task. Early prob-

abilistic analyses of σmax and σmin for rectangular random matrices appear in the
work of Geman [102] and Silverstein [197], respectively. Their results imply that for
a sequence (mn) of integers such that limn→∞mn/n= λ ∈ (0,1) and a sequence of
standard Gaussian random matrices An ∈R

mn×n, we have

κ(An)−→ 1 +√
λ

1 −√
λ

almost surely. (N.1)

Alan Edelman [92] made a thorough study of the distribution of the smallest
eigenvalue of a Wishart matrix AAT. He gave closed formulas for its density in the
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cases n = m and n = m + 1, a recurrence for computing the density for n > m,
and also derived asymptotic limit distributions. As a consequence of this, Edelman
obtained that for both real and complex standard Gaussian n× n matrices,

E
(
logκ(A)

)= logn+C + o(1), as n→∞, (N.2)

where C = 1.537 in the real case and C = 0.982 in the complex case.
For rectangular matrices, explicit nonasymptotic tail estimates for the condition

number κ(A) were derived by Zizhong Chen and Jack Dongarra [51], who showed
that for A ∈R

m×n with n≥m and x ≥ n−m+ 1 we have

1√
2π

(
1

5x

)n−m+1

≤ Prob
A∼N(0,I)

{
κ(A)≥ x

1 − λ

}
≤ 1√

2π

(
7

x

)n−m+1

. (N.3)

Here λ= m−1
n

is the elongation of A.
We note that Mark Rudelson and Roman Vershynin [174] have a recent result

on the distribution of the smallest singular value of a random rectangular matrix for
very general distributions.

All the results mentioned above are average-case analyses. As for smoothed anal-
ysis, we already reviewed in the notes of Chap. 2 what is known about the condition
number of square matrices.

Our Chap. 4, which is taken from [45], provides a smoothed analysis of the con-
dition number of rectangular matrices. Theorem 4.16 can be seen as an extension
to smoothed analysis of the upper bound in (N.3). We note that the decay in z in
this tail bound is the same as in (N.3) up to the logarithmic factor

√
ln z. We believe

that the latter is an artefact of the proof that could be omitted. In fact, the expo-
nent n−m+ 1 is just the codimension of the set Σ := {A ∈ R

m×n | rkA < m} of
rank-deficient matrices; cf. [115]. From the interpretation of Prob{κ(A)≥ t} as the
volume of a tube around Σ , as discussed in Chaps. 20 and 21, one would there-
fore expect a decay of order 1/zn−m+1. (Compare Theorem 20.1, which, however,
is over C.)

The proof techniques employed for the proof of Theorem 4.16 are an extension
of methods by Sankar et al. [179]. In particular, the proof of Proposition 4.19 is
based on an idea in [179]. The proof of Theorem 4.4 is taken from [136].

We remark that the bounds in Sect. 4.1.3 can be slightly improved: Let σmax(X)

and σmin(X) denote the maximal and minimal singular values of X ∈R
m×n, m≤ n.

For standard Gaussian X it is known that
√
n−√

m ≤ Eσmin(X) ≤ Eσmax(X) ≤√
n + √

m; cf. [78]. This implies Q(m,n) ≤ 1 + √
m/n ≤ 2, which improves

Lemma 4.14.

Chapter 5 Complexity theory aims at proving lower bounds on the cost of all al-
gorithms belonging to a certain class that solve a particular problem. This requires a
formal development of models of computation that we do not address in this book,
since we have not dealt here with the issue of lower complexity bounds. Instead we
have limited ourselves to estimating costs of algorithms (which provide upper com-
plexity bounds for the underlying problem). The primer in Sect. 5.1 succinctly sets
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up the context for these estimates. In particular, it implicitly fixes a model of com-
putation whose associated cost is the algebraic, that is, one that performs arithmetic
operations and comparisons of real numbers with unit cost. For more information
on these models and on the complexity theories built upon them we refer to the
books [38, 47]. The monographs [12, 156] are excellent expositions of complexity
theory for discrete computations.

The method of conjugate gradients is an important algorithm for solving large
sparse linear systems. It is due to Hestenes and Stiefel [117]. Our treatment fol-
lows [141].

The cost analyses for the steepest descent and conjugate gradient algorithms may
have been the first examples of condition-based complexity analysis. We could not,
however, confirm (or refute) this fact in the literature.

Intermezzo I Literature on the issue of structured condition is scattered. A central
reference regarding linear algebra are the papers by Siegfried Rump [175, 176],
which show that for a significant number of matrix structures, the condition numbers
obtained by restricting perturbations to those respecting the structure coincide with
their unrestricted versions. The two papers deal with normwise and componentwise
perturbations, respectively. Another example is the paper [59] cited above, where
the emphasis is on probabilistic analysis and the structures considered are given by
sparsity patterns.

Other instances of condition for structured data occur, for instance, in [127, 158].

Chapter 6 Carathéodory’s theorem, the separating hyperplane theorem, and
Helly’s theorem are classic results in convex analysis. One can find proofs for them
in [171].

The idea of defining condition numbers for feasibility problems in terms of dis-
tance to ill-posedness goes back to Jim Renegar [165–167]. The condition number
C (A) in Sect. 6.4 can be seen as a variant of this idea. It had been introduced before
Renegar’s series of papers by Jean-Louis Goffin [106] for dual feasible problems
only. Goffin’s definition was in terms of the quantities ξ(A,y) as in Sect. 6.7. The
extension of C (A) to infeasible data as well, along with the characterization as the
inverse of the distance to ill-posedness, was part of the PhD thesis of Dennis Che-
ung and appeared in [54]. Goffin’s use of C (A) was for the analysis of relaxation
methods such as the perceptron algorithm presented in Sect. 6.9. This explains the
fact that he considered only feasible data.

The characterization of C (A) in terms of spherical caps making the substance of
Sect. 6.5 is taken from [63]. That in Sect. 6.6 was suggested to us by Javier Peña.

The perceptron algorithm was introduced in [173]. It is a relaxation method in
the sense of [2, 146]. In Sect. 6.9 we showed that its complexity is quadratically
bounded in C (A). A more efficient version, known as rescaled perceptron, has re-
cently been devised by Alexandre Belloni, Bob Freund, and Santosh Vempala [21].
Its complexity’s dependence on condition is O(logC (A)).

Besides C (A), several condition numbers have been proposed (and used) to an-
alyze algorithms for polyhedral feasibility problems. Renegar’s C(A) is paramount
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among them and features in many condition-based analyses in the literature.
Other condition measures are Steve Vavasis and Yinyu Ye’s χ̄A [223, 224], Ye’s
σ(A) [245], and Marina Epelman and Freund’s μA [94]. A comparison between
many of these measures can be found in [62].

Chapter 7 The possible polynomial cost of linear programming problems
(with integer data) had been an open question for several years when Leonid
Khachiyan [129] gave a positive answer in 1979. The idea his proof relied on,
the ellipsoid method, had been used in the Soviet Union by Naum Shor, Arkady
Nemirovsky, and David Yudin since early in that decade for other purposes, but it
was Khachiyan’s result that brought the ellipsoid method into the limelight.

Our treatment in Sect. 7.1 is brief. A more detailed exposition on ellipsoids can
be found in Grötschel, Lovász, and Schrijver [114]. The exposition in Sect. 7.2
was inspired by Bob Freund and Jorge Vera [98]. The idea of analyzing a real data
algorithm in terms of its condition number and then proving a “gap result” (such
as Proposition 7.9) when the data is restricted to integer coefficients goes back to
Renegar [167].

Chapter 8 Books on linear programming are legion. Most of them, moved by the
understandable goal of providing an elementary exposition, are based on the simplex
method, which allows for short, clear developments. There is a price, however, in
both conciseness and clarity, because, on the one hand, the complexity analysis
of simplex is not easy. Its worst-case complexity is exponential, and the analyses
of its average-case complexity, which in general are not condition-based, inherit
the complication of many ad hoc arguments. On the other hand, simplex does not
generalize to nonpolyhedral contexts.

A goal of Part II of this book is to provide an exposition of linear programming
with a condition-based approach to algorithmic analysis (and amenable to more
general contexts). Because of this, our account in this chapter does not follow any
existing exposition. In particular, some of the terminology we used has been intro-
duced by us. For additional material on linear programming the reader might find
useful the textbooks [33, 144, 178].

The origins of linear programming can be traced back to the work of Joseph
Fourier, who in 1827 published a method for solving systems of linear inequalities
(see [111] for a history of this contribution). The first algorithm for solving linear
programs, the simplex method, was announced in 1947 by George Dantzig. In that
same year, John von Neumann is credited with the development of duality theory.
An authoritative account of these early years of linear programming is in [77].

Chapter 9 Modern interior-point methods were developed by Narendra Karmar-
kar [126]. The first goal, as the title of Karmarkar’s paper reveals, was to give an-
other algorithm solving linear programming problems in polynomial time. As with
Khachiyan’s work, one of the key ideas in Karmarkar’s algorithm was much older—
Karmarkar’s choice of projection’s direction was given by a steepest descent after
making a projective transformation, but this turned out to be equivalent to a New-
ton direction for an earlier barrier function, introduced in the barrier methods of
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the 1950s and 60s (see [243]). Shortly after Karmarkar’s paper it was realized that
interior-point methods were both faster and more stable than the ellipsoid method.
Furthermore, fundamental work of Yury Nesterov and Arkady Nemirovsky [149]
extended the use of this method to general convex programming problems. These
discoveries created a substantial interest in interior-point methods whose effects
have lasted till today.

An overview of the history of interior-point methods is given in [243]. Two books
devoted to the subject are [168, 242].

Regarding our exposition, the relaxation scheme in Sect. 9.4 has its origins in
work by Peña and Renegar [159], and a variant of it was also used in [69]. The
simple form presented in Sect. 9.4 was suggested to us by Javier Peña. The primal–
dual perspective is partly motivated by Vavasis and Ye’s formulation in [223]. The
proof in Sect. 9.2 follows [242].

As in many other parts in this book, in proving Lemma 9.6 we aimed for sim-
plicity and not for optimality. We remark that with a little more work, the factor 2−1

in that lemma can be improved to 2−3/2; see [151, Lemma 14.1].

Chapter 10 The condition number C(S) was introduced by Renegar [166, 167],
and it has been extensively used in relation to several aspects of interior-point meth-
ods (see, e.g., [99, 152, 159]). Its history is interwoven with that of the GCC condi-
tion number, and they are closely related when the data has been adequately normal-
ized. Proposition 10.3 is an instance of this relationship. We have taken it from [58].

Chapter 11 The condition number K (d) was introduced in [56]. Most of the
results shown in this chapter are taken either from this paper or from its sequel [58].
Actually, it is in this sequel where Theorem 11.21 is proved. Also, Algorithm 11.2
is an infinite-precision (and hence simplified) version of the main algorithm in this
paper.

Problems in linear programming are related in the sense that they often reduce
to each other. Different problems, however, have associated different measures of
condition. The relations between these measures are studied in [61], where a single
problem is stated whose condition number yields a host of condition measures as
particular cases.

In the acronym RCC, the two last letters refer to the authors of [56, 58] and the
initial letter to Jim Renegar, who was the first to suggest using relativized inverses
to the distance to ill-posedness as a condition number for finite-valued problems.

Chapter 12 This short chapter is taken from [60], a paper that one may say was
crafted with the idea of completing the second part of this book. An issue conspicu-
ously left open in [60] is the smoothed analysis of K (d). Such an analysis is yet to
be done.

Chapter 13 In recent years there has been a stream of results around the prob-
ability analysis of the GCC condition number C (A). A bound for E(lnC (A)) of
the form O(min{n,m lnn}) was shown in [55]. This bound was improved in [71]
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to max{lnm, ln lnn} + O(1), assuming that n is moderately larger than m. Still,
in [63], the asymptotic behavior of both C (A) and lnC (A) was exhaustively stud-
ied, and these results were extended in [116] to matrices A ∈ (Sm)n drawn from
distributions more general than the uniform. Independently of this stream of results,
in [89], a smoothed analysis for Renegar’s condition number C(A) was performed
from which it follows that E(lnC(A))=O(lnn) (and hence, a similar bound holds
for E(lnC (A))). The finest bound for the average analysis of lnC (A) was recently
given in [50], namely, E(lnC (A))≤ 2 ln(m+ 1)+ 3.31.

Theorem 13.1 shows a result of this kind (a bound for E(lnC (A)) linear in logm

and independent of n). The constant in the O notation is not made explicit, and we
can expect it to be greater than the 2 of the bound in [50], but the result extends to a
smoothed analysis (cf. Corollary 13.4).

Dunagan et al. [89] were the first to provide a smoothed analysis of Renegar’s
condition number. They proved that for A ∈R

m×n,

sup
‖A‖=1

E

A∼N(A,σ 2I )

(
lnC(A)

)=O
(

ln
mn

σ

)
. (N.4)

In [7], Amelunxen and Bürgisser derived a robust variant of this result for the GCC
condition number in the model of radially symmetric probability distributions sup-
ported on a spherical disk. Their proof combined ideas from [49] on the volume of
tubes (cf. Chap. 21) with techniques in [89].

The exposition of Chap. 13 is based on [7]. Theorem 13.3 and Corollary 13.4 are
special cases of the main result obtained there. Theorem 13.6 is due to Wendel [229].
The reductions in Sect. 13.4 are inspired by [89].

Intermezzo II The level-2 condition number was introduced by Jim Demmel
in [84], where he proved, for some specific problems, that their level-2 condi-
tion numbers coincide with their original condition numbers up to a multiplicative
constant. Subsequently, Des Higham [120] improved this result by sharpening the
bounds for the problems of matrix inversion and linear systems solving. He actu-
ally proved Theorem II.1 for these two problems. The full version of this result was
shown in [57].

We called à la Renegar the class of condition numbers dealt with in the inter-
mezzo to acknowledge the role of Jim Renegar in the definition of condition as rel-
ativized distance to ill-posedness. The relation between these two notions had been
noticed previously for a number of problems. It was Jim Demmel, in [84], who first
suggested that this was a general phenomenon and considered a class of condition
numbers given as inverses to distance to ill-posedness, doubtless with the general
probabilistic analysis of his subsequent paper [85] in view (more on this in the notes
to Chaps. 20 and 21). A few years after that, as mentioned in the notes to Chap. 6,
Jim Renegar gave additional strength to this view by proposing to define condition
as relativized distance to ill-posedness for problems in which the usual definition is
meaningless.
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Chapter 14 The paper by John Rice [170] defines absolute and relative condi-
tion numbers in the general abstract framework of a smooth map between smooth
manifolds. Condition numbers for computing zeros of polynomials were studied by
Wilkinson [235], Woźniakowski [241], Demmel [84], and in the so-called Bézout
series authored by Mike Shub and Steve Smale [192–196] in the early 1990s. The
presentation of this chapter mainly follows [196].

For some basic information on the geometry of complex projective spaces, the
reader may consult Mumford [148].

The condition of computing eigenvalues and eigenvectors was studied in detail
by Wilkinson [235, 236]. For a comprehensive treatment of the perturbation theory
for eigenvalues we refer to Stewart and Sun [214]. The material in Sect. 14.3.2 on
the computation of the kernel is based on a paper by Diego Armentano [10].

Chapter 15 The idea of homotopy has been fundamental in the development of
algebraic topology. As a construction for equation solving, it goes back at least to
E. Lahaye [132] in 1934, and it got impetus in the 1970s and 1980s. The practical
success of homotopy methods triggered the appearance of a number of books on the
subject such as [101, 128, 169]. A more recent account on these methods is in [205]
and a comprehensive survey article in [138].

Newton’s method is due, no surprises here, to Sir Isaac Newton. He applied
it to polynomial equations in 1669 (De analysi per æquationes numero termino-
rum infinitas) and to nonpolynomial analytic functions in 1687 (Philosophiæ Nat-
uralis Principia Mathematica). A careful historical description of the development
of Newton’s method (and of the work of other actors playing a role in this develop-
ment) is in [246].

The modern approach to Newton’s method, in which estimates on the size of the
basin of quadratic attraction are sought, was initiated by Leonid Kantorovich [125].
The state of the art on this theme is Smale’s γ -theory, which first appeared in [200].
Theorem 15.5 is taken from there. This theory was accompanied in [200] by another
body of results, known as Smale’s α-theory, providing conditions for a point z to
be an approximate zero that can be measured at the point z itself (instead of at its
associated zero ζ ). This theory occupies us in Chap. 19, and we will return to it in the
notes to that chapter. Up-to-date expositions of Newton’s method include [8, 81, 87].

Chapter 16 A fundamental reference for our exposition of the material in this
chapter is the Bézout series [192–196] by Shub and Smale mentioned above. All
the basic ingredients in our exposition—the space Hd endowed with a unitarily in-
variant Hermitian product, homotopy continuation, projective Newton’s method, the
condition numbers μnorm(f, ζ ) and μmax(f ), etc.—are present in these papers and
play a role equally basic. Some of these ingredients predate the Bézout series; see
Shub and Smale’s earlier works [190, 191]. We point out that our account omits an
interesting relationship, established in [194], between condition and dense packings
on the sphere S

2. The latter is closely related to Smale’s 7th Problem [202].
Weyl’s Hermitian product was introduced by Weyl; see e.g., [231]. The orthogo-

nal decomposition in Sect. 16.3 was introduced by Beltrán and Pardo [28].
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Bézout’s theorem is a classic result in algebraic geometry. The proof for it in
Sect. 16.5 is taken from [38, Chap. 10]. We remark that the underlying idea to
prove the fundamental theorem of algebra via a homotopy goes back to Gauss (see
Smale [199] for a detailed account). There exist more sophisticated versions of Bé-
zout’s theorem, e.g., dealing with multiplicities [148, 186]. We did not need this
version for our purposes.

Projective Newton was proposed by Shub in [188], and its γ - and α-theories
were developed within the Bézout series. The sustained need for results from these
theories for the development of the algorithmic content of the series gave rise to an
exposition of them that is fragmented, notationally inconsistent, and at times repeti-
tious. A cleaner exposition is given in [38, Chap. 14] but is limited to the γ -theorem,
which is stated in terms of the function dT defined by dT (x, y)= tandP(x, y). This
approach yields a result that corresponds, word by word, with the Euclidean γ -
theorem (Theorem 15.5) but pays for this by relying on a function that is not a
distance: dT does not satisfy the triangle inequality. In particular, proceeding to an
extension to an α-theorem does not appear to be easy.

A different, and more general, approach to these issues was proposed by Jean-
Pierre Dedieu, Pierre Priouret, and Gregorio Malajovich [82]. They tailored a ver-
sion of Newton’s method that works in Riemannian manifolds. The underlying idea
is to measure the Newton step not on the tangent space but on the manifold itself.
In Fig. 19.1 this corresponds to moving the distance ‖x − x̄‖ directly on the circle.
The resulting point is therefore more distant from x than the point Nf (x) in that
figure. That is, Newton’s steps in this approach are longer than in the projective
Newton’s method. An obvious benefit of this Newton’s method on manifolds is its
generality. Another advantage is the elegance of the statements corresponding to its
γ - and α-theories. A possible drawback is its technical difficulty.

Yet one more approach consists in replacing the inverse Df (z)|−1
Tz

in the defini-

tion of the projective Newton operator by the Moore–Penrose inverse Df (x)†. This
is sometimes referred to as the Moore–Penrose Newton’s method, and an early ex-
position of it is in [3]. Subsequent accounts of this variant are in [81, 196]. We use
Moore–Penrose Newton in Sect. 19.6.

The contents of Sect. 16.6 are based on the projective Newton’s method as pro-
posed by Shub. Its γ -theory (and its α-theory as described in Sect. 19.3) is based on
the distance dP together with a parameter r ∈ [ 2

π
,1] and some functions of it that

are used to bound how much the resulting γ -theorem departs from that of the Eu-
clidean case. This compromise allows for a short development whose proofs follow
the same lines as those in the Euclidean setting.

The Lipschitz estimate in Proposition 16.2 first appeared in [189, Theorem 1],
without attention to the constants.

The O(N) algorithm for computing the Jacobi matrix mentioned in the proof of
Proposition 16.32 was first found by Linnainmaa [139] and then rediscovered by
Baur and Strassen [20].

Chapter 17 There is a vast body of work on polynomial equation-solving by ex-
act symbolic algorithms that we haven’t discussed at all in this monograph: we can-
not even attempt to survey this multifaceted theory here. But let us point out some
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common features of these symbolic algorithms as well as the differences from the
numerical approaches.

Suppose that the polynomials f1, . . . , fs ∈ C[X1, . . . ,Xn] of degree at most D

are given by their lists of coefficients. The Hilbert Nullstellensatz problem is to de-
cide whether these polynomials have a common zero in C

n. This problem is known
to be NP-complete over C in the sense of Blum, Shub, and Smale [37]. Algorithms
solving this feasibility problem, with a very high cost, have long been known. The
first one having only exponential complexity was exhibited in [64] by Alexander
Chistov and Dimitri Grigoriev. Marc Giusti and Joos Heintz [104] designed a ran-
domized (Monte Carlo) algorithm for deciding the Hilbert Nullstellensatz problem
with (sDn)O(1) arithmetic operations and tests for equality (if the polynomials fi

have integer coefficients of bit-size at most �, then (�sDn)O(1) bit operations suf-
fice). It is also possible to decide finiteness of the set of solutions and to compute
exact representations of the zeros (described as zeros of univariate polynomials)
within these bounds. We refer to the surveys [90, 177] for more information and ref-
erences. These algorithms have running time exponential in n. In the case D ≥ n1+ε

(for fixed ε > 0) the running time is polynomially bounded in the input size N ;
cf. Lemma 18.25. However, in the more interesting case of bounded D, the run-
ning time is exponential in the input size N . In view of the above mentioned NP-
completeness result, this seems unavoidable. There are similar results for solving
systems of polynomial equations over the reals, going back to Grigoriev and Vorob-
jov [113]; see Renegar [163] and the monograph by Basu, Pollack, and Roy [18] for
detailed information and references.

In contrast with the numerical algorithms discussed in this monograph, the run-
ning times of these symbolic algorithms do not depend on a notion of condition that
measures the well-posedness of the given instance, and they have a worst-case ex-
ponential complexity. But a closer look at them reveals that in the presence of finite
precision, they are likely to be unstable (due to their work with exponentially large
matrices). This is also in contrast with numerical algorithms, most of which have
been designed with accuracy as a goal.

We now turn attention to numerical algorithms.
The fifth paper in the Bézout series concludes with a nonuniform algorithm that

computes approximate zeros of systems in Hd within average polynomial time. The
qualifier “nonuniform,” unfortunately, makes the algorithm inapplicable, and the
series stops short of producing an implementable algorithm. The main obstruction
to doing so is identified to be the difficulty in constructing a well-conditioned initial
pair for the homotopy (that is, a pair (g, ζ ) with μmax(g) small).

A measure of the importance that Smale attached to this problem is given by the
fact that when requested to propose a list of problems for the mathematicians of
the 21st century, Smale included two problems in the list whose possible solution
would lead to the desired algorithm: the 17th, which plainly asks for the algorithm,
and the 7th, which asks for an algorithm producing sets of points well separated
on S

2 (a set that then could be used to produce the desired initial pair (g, ζ )). The
list, with technical descriptions of the problems and the state of the art for them in
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the year 1998, appeared in [202]. A regular update of the state of the art for these
problems appears at the page “Smale’s problems” in Wikipedia.

The first breakthrough in the 17th problem was announced at the Foundations of
Computational Mathematics conference in 2005 [24] and expanded in [26]. This ar-
ticle was subsequently improved (both in terms of quality of results and readability)
in [27] and then in [28].

One of the advances making possible the improvements in [28] was the publica-
tion of [189], a new installment in the Bézout series authored by Mike Shub. Besides
the Lipschitz estimate for μnorm mentioned in the notes to the previous chapter, the
most important result of this paper was an upper bound on the necessary steps in the
homotopy with origin at (g, ζ ) and end at f in terms of the integral of μ2

norm(qτ , ζτ )

along the lifting on V of the segment Eg,f . This result was not constructive, but
constructive versions of it could be easily derived. Such versions occur for instance
in [22] and [46]. Our exposition of Sect. 17.1 follows the second of these references,
which is less general but considerably shorter.

The papers of Beltrán and Pardo introduced an idea that is absent in the formula-
tion of Smale’s 17th problem: randomizing the initial pair of the homotopy. While
this absence prevents their main result from being a positive answer to the problem
as stated, it removes none of the applicability of a deterministic uniform algorithm.
Furthermore, it brought a wave of fresh air to the problem, triggering a new stream
of research on the subject.

Together with the idea of randomizing the initial pair, Beltrán and Pardo proposed
the randomization procedure we described in Sect. 17.6 with only one essential
difference (compare with [28]). Their routine for drawing the system h proceeds in
a different manner from that of random_h. They observe that given ζ , one can easily
construct a unitary matrix Hζ such that Hζ (e0)= ζ , also, that it is trivial to draw a
system in

Re0 = {q ∈Hd | qi,α = 0 if α0 < 2}
from N(0, I). They further note that if q ∈Re0 , then h :=Hζ (q) ∈Rζ , and that since
Hζ : Re0 → Rζ preserves standard Gaussianity, the system h follows the standard
Gaussian distribution in Rζ .

This procedure possesses the elegance that most invariance arguments have. Un-
fortunately, though, its cost is comparable to the average cost of the homotopy con-
tinuation. Indeed, the computation of Hζ (q) requires the evaluation of q not at a
point in C

n+1 but on an (n+ 1)-tuple of linear forms, and this appears to have cost
Ω(N2). This cost would become prohibitive if the attempts to reduce the cost of the
homotopy continuation to O(DnN logN) were successful. The ideas behind these
attempts are laid down in the latest (as of today) issue of the Bézout series [29].

The routine random_h presented in Sect. 17.6 is taken from [46].
The complexity analysis in Sect. 17.7 is taken mostly from [46]. The proof of

Proposition 17.27 is, however, simpler and relies on the ideas of [193]. It was sug-
gested to us by Diego Armentano.

Theorem 17.28 is a variation of the results obtained in [193] (in that paper the
distribution of μnorm was studied with respect to the uniform distribution of V em-
bedded in P(Hd)× P

n). A proof of Proposition 17.31 can be found in [193].
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Algorithm LV has been implemented and a number of experiments run over this
implementation. Details are in [23].

The coarea formula (Theorem 17.8) is due to Federer [95, Thm. 3.1], who stated
this result in more generality. A proof of Theorem 17.8, avoiding the measure-
theoretic machinery needed in the case of Lipschitz maps can be found in [123,
Appendix]. The results by Solovay and Strassen and Adleman and Huang that we
mentioned in Sect. 17.2.1 appeared in [1, 203, 204]. Another early instance of the
use of randomization for primality testing, by Michael Rabin, is [160].

Our treatment focuses on numerical polynomial equation-solving in the case of
many variables. For the case of one variable, considerably more can be said; see
Schönhage [185] and Pan [155].

Chapter 18 Smoothed analysis was not an issue at the time Smale published his
list of problems, in 1998. It would make its first public appearance in 2001 [206]. By
the end of that decade, however, the consideration of a smoothed analysis version
of Smale’s 17th problem was all but natural.

The extension of the results in [28] from average analysis to smoothed analysis
was carried out in [46]. All the results in this chapter are taken from this paper.
A remarkable difference with the previous work in the subject is the systematic use
of Gaussians. This choice of distribution simplified the exposition of many results
(by eliminating the use of integral geometry) and allowed for the unified treatment
in Sects. 17.7, 18.3, and 18.4.

The important Proposition 18.6 first appears in [28].
Renegar’s Algorithm Ren, which is based on the factorization of the u-resultant,

is described and analyzed in [162]. The algorithm even finds the multiplicities of the
zeros ζ ; see [162] for the precise statement.

Chapter 19 The bounds in Theorem 19.1 are not precisely of the kind that encour-
ages implementation. Yet this order of magnitude was somehow to be expected. The
reasons for this have a complexity-theoretic nature, and therefore, the following ex-
planation barely hints at them.

The most elementary way of comparing the complexity of two problems is to
compare the costs of algorithms solving these problems. A drawback of this ap-
proach is that these algorithms may not be (and in general aren’t) optimal. Hence,
a dramatic improvement in the algorithmics for one of the problems can completely
change the outcome of this comparison. Complexity theorists use a more intrinsic
way to compare problems—the so-called reductions—which allows one to group
computational problems in classes and to identify, within these classes, the most dif-
ficult problems: those for which a dramatic improvement in the algorithmics means
the same improvement for all problems in the class. Such problems are said to be
complete in their classes. The reader can find textbook expositions of these ideas—in
the context of discrete computations—in [12, 156] or—in the context of numerical
computations—in [38].

A class that appears to be hopeless with regard to efficient computations is the
class #PR (this is the real counterpart of the discrete counting class #P). And the
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discouraging news is that the problem of counting the real zeros of a polynomial
system is complete in #PR (see [44]).

Our exposition in this chapter is based on [74, 75] for Sects. 19.2 to 19.4, on [46]
for Sect. 19.5, and on [70] for Sect. 19.6.

Smale’s α-theory, just like his γ -theorem, was first published in [200]. The de-
velopment in Sect. 19.3 adapts the general lines in this paper to our context.

The condition number κfeas(f ) was introduced in [70] to analyze a finite-
precision version of Algorithm 19.2. The condition number ν(f ) was introduced
shortly thereafter, in [68], where it was used to strengthen this algorithm to make it
return an approximate zero of the input f when it is feasible. The condition number
theorem for ν(f ) (Theorem 19.3) is proved in [75].

Theorem 19.2 is due to Shub and Smale [193]. Our proof, taken from [46], is
perhaps less involved. A different proof, based on the Rice formula, was given by
Jean-Marc Azaïs and Mario Wschebor [13]. An early proof for the case of all de-
grees equal (di =D for i = 1, . . . , n) was given by Eric Kostlan [131].

The exposition in Sect. 19.6 relies on the extension of Newton’s method (both
the iteration and its corresponding α-theory) to surjective mappings and the derived
use of Moore–Penrose inversion. As we mentioned earlier, an exposition of Moore–
Penrose Newton’s iteration is in [3].

A standard reference for algorithms that deal, among others, with graph problems
is [66].

Chapter 20 The idea of reformulating probability distributions as quotients of
volumes to estimate condition measures goes back at least to Smale’s influential pa-
per [199]. There we can already find the core idea of estimating the volume of tubes
by means of Poincaré’s formula from integral geometry combined with Bézout’s
theorem.

Blum and Shub [36] took up these ideas in [199] for establishing bounds on
the average loss of precision in evaluating rational functions. Renegar [161] further
extended the ideas in [199]. In particular, he proved bounds on the probability dis-
tribution of a certain random variable in the average-case analysis of the complexity
of Newton’s method. Central to his argument is the fact that this random variable
can be bounded by a conic condition number. The set of ill-posed inputs in [161] is
a hypersurface. An affine version of Theorem 20.14 (stated as Remark A.54) was
already used by Renegar [161].

An extension of these results to the case of codimension greater than one was
done by Demmel in [85], where in addition, an average-case analysis of several
conic condition numbers is performed. Most of these results are for problems over
the complex numbers. An extension in another direction, namely, to possibly sin-
gular ambient spaces, was done by Beltrán and Pardo [25]. Another extension of
Demmel’s result, now to smoothed analysis for complex problems, was achieved
in [48], an article that has been the main source for the exposition of this chapter.

A version of Theorem 20.14 with the slightly better correction factor 1/2 was de-
duced in [25] from the corresponding bound for Cn, which can be found in Stolzen-
berg [215, Thm. B] (see Remark A.54 for its statement). Stolzenberg attributes the
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idea of the proof to Federer. We have included in the Appendix a direct derivation
of Theorem 20.14 based on similar ideas.

Luís Santaló’s monograph [181], which is the standard reference on integral ge-
ometry, refers to Theorem A.55 as Poincaré’s formula (cf. §7.1 in [181]). Appar-
ently, Henri Poincaré stated this result for the case of S2, and in such form it was also
known to Joseph-Émile Barbier [15]. This result is close in spirit to Buffon’s needle
problem [135], which is the earliest appearance of a problem in geometric probabil-
ity. Even though Theorem A.55 is stated in Sect. 18.6 of Santaló’s book, a proof is
given there in Sect. 15.2 only for an analogous statement for Euclidean space. John
Brothers [42] has proved versions of Poincaré’s formula for homogeneous spaces
in great generality. We refer to the book by Ralph Howard [123] for a more ac-
cessible treatment. In particular, Poincaré’s formula holds for complex projective
space (Theorem A.57), as was first shown in [180]. We used Poincaré’s formula for
complex projective space in this chapter to derive Theorems 20.9 and 20.13.

The Frobenius condition number κF (A) = ‖A‖F ‖A−1‖ was first studied by
Demmel [85]. Edelman [93] obtained the following beautiful exact formula for its
tail probability:

Prob
{
κF (A)≥ t

}= 1 −
(

1 − n

t2

)n2−1

, for t >
√
n, (N.5)

where A is a standard Gaussian complex n× n matrix.
Proposition 20.17 is due to James Wilkinson [238].

Chapter 21 Demmel’s paper [85] dealt with both complex and real problems.
For complex problems he provided complete proofs. For real problems, Demmel’s
bounds relied on an unpublished (and apparently unavailable) result by Adrian Oc-
neanu on the volumes of tubes around real algebraic varieties. In [240], Richard
Wongkew gave a bound for the volume of these tubes. A number of constants in his
bounds, however, are not explicit and only shown to be independent of the variety.
The first explicit bounds were given, to the best of our knowledge, in [49], from
where Theorem 21.1, along with most of this chapter, is taken.

Theorem 21.9 is from [49], but the proof closely follows the lines of a seminal
paper of Hermann Weyl [232], in which he determined the volume of small tubes
around submanifolds in Euclidean spaces and in spheres. Weyl showed that in the
setting of Theorem 21.9 there exists εM > 0 such that for all 0 < ε ≤ εM and all
measurable subsets U ⊆M we have the equality

volT ⊥(U, ε)=
∑

i

μi(U)Op,p−1−i (ε), (N.6)

where the sum runs over all even indices i such that 0 ≤ i ≤ p − 1. (There is a
cancellation effect between the contributions of “outer” and “inner” neighborhoods
that results in the sum being only over even indices i.) In fact, Weyl’s result is more
general, since it applies also to submanifolds of higher codimension; see (A.14) in
the Appendix. We remark that Jakob Steiner [210] had already discovered a related
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formula for the volume of the ε-neighborhood around a convex body in Euclidean
space. There one gets a polynomial in ε and the arising coefficients (up to scaling)
are called the inner volumes of the convex body. These quantities were investigated
in detail by Hermann Minkowski, who called them Quermass integrals; see the
book by Rolf Schneider [183] for detailed information. When M is the boundary
of a smooth convex body K in S

p , one also calls the μi(M) the spherical inner
volumes of K ; cf. [100, 130].

In this chapter, besides Poincaré’s formula (Theorem A.55), we also relied on an-
other result from integral geometry, Theorem 21.11, whose relation to the principal
kinematic formula for spheres (Theorem A.59) is explained in Theorem A.59.

To the best of our knowledge, the principal kinematic formula, along with the
corresponding degree-based estimations of (absolute) integrals of curvature, was
applied in [49] for the first time in the context of the probabilistic analysis of condi-
tion numbers.

In spite of its importance, it is not at all easy to locate the kinematic formula
for spheres in the literature. Santaló in his book attributes the principal kinematic
formula in the plane to Wilhelm Blaschke, and in Euclidean spaces to Shiing-Shen
Chern [52] and Herbert Federer [95]. The normalization of integrals of curvatures
leading to the simple formula of reduced polynomial multiplication was discovered
by Albert Nijenhuis [150], again for Euclidean space. Santaló [181] derives the prin-
cipal kinematic formula for the special case of intersections of domains in spheres,
but he does not care about the scaling coefficients. In fact, the principal kinematic
formulas for submanifolds of spheres and Euclidean spaces take exactly the same
form. An indication of this at first glance astonishing fact can be found, somewhat
hidden, in Santaló’s book on page 320. The situation was clarified by Howard [123],
who gave a unified treatment of kinematic formulas in homogeneous spaces. But
Howard does not care about the scaling constants either. For the purpose of explic-
itly bounding the volumes of tubes, a good understanding of the scaling factors is
relevant. The thesis of Stefan Glasauer [105] contains a detailed treatment of the
principal kinematic formulas for spheres, however only in the special case of spher-
ically convex sets. The recent book by Rolf Schneider and Wolfgang Weil [184,
Sect. 6.5] contains an account of this work. To the best of our knowledge, the kine-
matic formula for spheres was first stated in the form of Theorem A.59 in [43]. An
elementary and unconventional introduction to geometric probability and the kine-
matic formula for Euclidean spaces can be found in the textbook by Daniel Klain
and Gian-Carlo Rota [130].

The application in Sect. 21.5 is taken from [75]. Improved bounds for the average
analysis case appear in [76].

The PhD thesis by Dennis Amelunxen [4], cf. [5, 6], provides a detailed analysis
of the notion of condition for the feasibility problem for any regular closed con-
vex cone C ⊆ R

n. It rephrases the feasibility problem in a coordinate-free way as
deciding the alternative

(P) W ∩C �= 0 or (D) W⊥ ∩ C̆ �= 0,
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for an input W in the Grassmann manifold G(m,n) of m-dimensional linear sub-
spaces of Rn. The set ΣG of ill-posed instances consists of the subspaces W touch-
ing the cone C. Amelunxen defines the Grassmann condition number of W ∈G as

CG(W) := 1

sind(W,ΣG)
, (N.7)

where d denotes the geodesic distance in G. By extending the framework of this
chapter, replacing the ambient space S

p by the Grassmann manifold G (and con-
sidering the special hypersurface ΣG therein), Amelunxen manages to provide a
satisfactory average analysis of the Grassmann condition showing that for W ∈ G

chosen uniformly at random,

Prob
W∈G

{
CG(W)≥ t

}≤ 6
√
m(n−m)

1

t
if t > n

1
2 (N.8)

and

E
W∈G

(
lnCG(W)

)≤ 1.5 lnn+ 2. (N.9)

The result on adversarial distributions, Theorem 21.29, is taken from [73] but
has its roots in a paper [116] by Raphael Hauser and Tobias Müller, where a more
general result is shown.



Coda: Open Problems

We do not want to bring this book to a close leaving an impression of a finished edi-
fice. Whereas we believe that the general lines of this edifice are elegant, we have no
doubts that it has, as of now, an uncompleted character. Indeed, the understanding of
the role played by condition in the performance of numerical algorithms has had a
phenomenal advance in the last decades, but our understanding of the performance
of these algorithms—and of other possible algorithms for the same problems—has
still more shadow than light. In what follows we point to some of these shadows by
drawing a list with some open problems. All these problems are related to themes
exposed in the previous chapters, but otherwise, there is no homogeneity in their
(perceived) level of difficulty nor in the role played by condition in a possible solu-
tion.

P.1. Probabilistic Analysis of Growth Factors

“The problem of stability of Gaussian elimination is an embarrassing theoretical
gap at the heart of numerical analysis.” Thus wrote Trefethen and Schreiber in
1990 [220]. The origins of the embarrassment go back to an early perception, back
in the 1940s, of Gaussian elimination as a numerically unstable method [16, 122].
Computational experience provided evidence to the contrary, and in 1961, Wilkin-
son [234] proved a bound on the relative error of a solution x̄ of Ax = b computed
with Gaussian elimination, namely

‖x̄ − x‖∞
‖x‖∞ ≤ 4n2κ∞(A)ρ εmach. (P.1)

Here x =A−1b, and ρ is the growth factor of A, which is defined as

ρ := ‖U‖max‖L‖max

‖A‖max
, (P.2)
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where L is lower triangular, U upper triangular, and A= LU is the result of Gaus-
sian elimination on A (without pivoting). We used ‖ ‖max to denote the ‖ ‖1∞ norm
(recall Corollary 1.3). In practice, Gaussian elimination is performed with partial
pivoting (that is, the pivot is chosen to be the entry of largest absolute value in the
column considered at each step). In this case, at the end of Gaussian elimination we
obtain PA= LU with L and U as before and P a permutation matrix. Furthermore,
Wilkinson’s bound (P.1) is still valid with the growth factor ρ also given by (P.2).

Wilkinson’s result set a framework for understanding stability of Gaussian elim-
ination. It also showed a hopeless worst-case scenario, since there are examples of
n× n matrices A for which (with partial pivoting) ρ = 2n−1. The obvious way out
was to prove a stable behavior of Gaussian elimination in a probabilistic sense. The
paper by Trefethen and Schreiber mentioned above provides ample experimental
evidence of such behavior for Gaussian elimination with partial pivoting in the av-
erage case. More recently, Sankar, Spielman, and Teng [179] performed a smoothed
analysis of ρ that shows stability for Gaussian elimination without pivoting. This is
a puzzling result, since on the one hand, Gaussian elimination with partial pivoting
is widely accepted to be more stable than without pivoting at all, whereas on the
other hand, examples of matrices A for which the growth factor without pivoting is
smaller than with partial pivoting are known to exist. Hence, a smoothed analysis
for Gaussian elimination with partial pivoting cannot be deduced from [179]. Since
this is the algorithm used in practice, the following problem is posed:

Prove average and/or smoothed polynomial bounds for the growth factor ρ

for Gaussian elimination with partial pivoting.

P.2. Eigenvalue Problem

The computation of eigenvalues and eigenvectors is, in practice, amazingly suc-
cessful. Yet we know of no analysis showing both low cost and numerical sta-
bility, not even in an average-case setting. In a naive approach, given a matrix
A ∈ C

n×n, one computes the characteristic polynomial χA(z) := det(zI − A) and
then approximates its zeros λ1, . . . , λn up to a predetermined precision δ. These
approximations can be obtained with low complexity. (For instance, we can ap-
ply Algorithm Ren for one polynomial in one variable and the bound (18.20), to-
gether with the fact that |λi | ≤ ‖A‖ for all i ≤ n, which yields a cost bounded by
O(n4 log(n) log log(‖A‖/δ)+ n8). Algorithms tailored to the one-variable situation
yield bounds that have lower degree in n; see [154, Thm. 1.1(d)].) This approach,
however, is hardly ever used. The reason is that the map A �→ χA may destroy sta-
bility. To see this, consider the matrix

A=

⎡

⎢⎢⎢
⎣

1 0 . . . 0
0 2 . . . 0

0 0
. . . 0

0 0 . . . 20

⎤

⎥⎥⎥
⎦

.
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Its characteristic polynomial χA(z) =∏20
i=1(z − i) is referred to as the Wilkinson

polynomial and is well known to behave badly under small perturbations (see,
e.g., [235, Ch.2, §9]). Yet Example 14.16 shows that all the eigenvalues of A are
well-conditioned. Trefethen and Bau [219, p. 190] summarize this in their textbook:

Perhaps the first method one might think of would be to compute the coeffi-
cients of the characteristic polynomial and use a rootfinder to extract its roots.
Unfortunately [. . . ] this strategy is a bad one, because polynomial rootfinding
is an ill-conditioned problem in general, even when the underlying eigenvalue
problem is well-conditioned.

The results in Chap. 17 (see Proposition 17.31 and Remark 17.32) give one rea-
sons to doubt that, at least over the complex numbers, “polynomial rootfinding is
an ill-conditioned problem in general.” Nonetheless, it appears that in practice, the
polynomials arising as characteristic polynomials of complex matrices are indeed
ill-conditioned. One may guess that for the pushforward measure on C[t] induced
by the standard Gaussian on C

n×n and the map A �→ χA(t), the expectation of μmax
is large (in contrast with the results just mentioned, which hold for the standard
Gaussian in C[t] with respect to the Weyl Hermitian product, and in spite of the
small expected condition for Gaussian matrices A with respect to the eigenvalue
problem (Proposition 20.18)). In simpler words, this map amplifies, in general, con-
dition.

In any case, one is left with the need to use a different approach, and many have
been proposed that work efficiently in practice. But a theoretical explanation of
their success is still due, as pointed out by Demmel [86, p. 139] when describing
the performance of one of the most commonly used (the QR iteration with implicit
shifts):

It is interesting that after more than 30 years of dependable service, conver-
gence failures of this algorithm have quite recently been observed, analyzed,
and patched [. . . ]. But there is still no global convergence proof, even though
the current algorithm is considered quite reliable. So the problem of devising
an algorithm that is numerically stable and globally (and quickly!) convergent
remains open.

We now note that on top of this lack of results for eigenvalue computations, there
is the issue of computing eigenvectors from approximations of the eigenvalues. We
thus state the following open problem.

Provide a rigorous analysis of the eigenpair problem. That is, exhibit an algo-
rithm computing one eigenpair (or all eigenpairs) (λ, v) of a matrix A along
with an analysis showing, on average, low cost and numerical stability.

The word “average” here refers to a Gaussian distribution. Low cost may refer
to a bound polynomial in n and log log(‖A‖/δ), but other forms of approximation
(e.g., à la Smale) will entail different forms for the cost bounds. A similar remark
applies to numerical stability.

A step towards the solution of this problem was recently made by Diego Ar-
mentano, who described and analyzed a homotopy method for the computation of
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eigenpairs [11]. His analysis provides an estimate of the cost of following a path
with extremities the data A and an initial triple (B,λ, v) that is strongly reminiscent
of Theorem 17.3. As in the case of complex polynomial systems that occupied us in
Chaps. 17 and 18, the problem remains to find good initial triples, with the differ-
ence that as of today, we don’t even know whether there is an efficient randomized
procedure to do so. One can also expect that a stability analysis for this homotopy
method could be done along the lines of that done for the algorithm MD in [41].

The eigenpair problem in the real case presents, needless to say, additional diffi-
culties.

P.3. Smale’s 9th Problem

Provide a solution to Smale’s 9th problem. That is, give an answer to the following
question:

Is there a polynomial-time algorithm over the real numbers that decides, on
input A ∈ R

m×n, b ∈ R
m, the feasibility of the linear system of inequalities

Ax = b, x ≥ 0?

Here the model of computation is the real Turing machine (BSS model), and the run-
ning time counts the number of arithmetic operations with real numbers (including
comparisons). For rational input data, polynomial time is a well-known result [129]
in the model of Turing machines, measuring the number of bit operations (see also
Remark 10.5). This problem was posed by Steve Smale [202].

P.4. Smoothed Analysis of RCC Condition Number

In Chap. 11 we introduced the RCC condition number K (d) for a data triple
d = (A,b, c) ∈ R

m×n × R
m × R

n specifying a pair of primal and dual linear pro-
gramming problems in standard form (n≥m), and in Chap. 12 an average analysis
of K (d) was shown, conditioned to d ∈W , where, we recall, W denotes the set of
feasible well-posed data triples for this problem. This average result, Theorem 12.1,
suggests the following question:

Is it true that

sup
‖d̄‖≤1

E

d∼N
(
d̄,σ 2I

)
(
lnK (d) | d ∈W

)=O
(

log
n

σ

)
?

Note that the bound in Theorem 12.1 is consistent with this equality when d̄ = 0
and σ = 1.
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P.5. Improved Average Analysis of Grassmann Condition

Let G(m,n) denote the Grassmann manifold of m-dimensional linear subspaces of
R

n. The Grassmann condition number CG(W) of W ∈ G(m,n) naturally arises in
analyzing the feasibility problem for a regular closed convex cone C ⊆R

n; see (N.7)
in the Notes for its definition. In [5] the average analysis stated in (N.8)–(N.9) was
achieved. We conjecture the following:

For the uniform distribution on G(m,n) and all t > m,

Prob
W∈G(m,n)

{
CG(W)≥ t

}≤O
(
v(C)

√
m

1

t

)

with a quantity v(C) depending only on the cone C.

This conjecture is due to Amelunxen and Bürgisser; compare [5, Theorem 1.4].

P.6. Smoothed Analysis of Grassmann Condition

For W ∈ G(m,n) and 0 < σ ≤ 1 let B(W,σ) denote the ball of radius σ in the
Grassmann manifold G(m,n) with respect to the sine of the geodesic distance in
G(m,n).

Is it true that

sup
W∈G(m,n)

E

W∼B(W,σ)

(
lnCG(W)

)=O
(

log
n

σ

)
?

This question was posed by Amelunxen and Bürgisser [5]. The average analysis
in [5] proves that this is the case for σ = 1.

P.7. Robustness of Condition Numbers

The probabilistic analyses of condition numbers done in this book were based on
the assumption of either Gaussian distributions or uniform distributions in spher-
ical disks, the only exception being the discussion of adversarial distributions in
Sect. 21.8. It would be valuable to have corresponding results for more general dis-
tributions, e.g., for input matrices whose entries are chosen independently from a
fixed (say discrete) distribution.

Provide probabilistic analyses for condition numbers of linear optimization
(like Renegar’s, GCC, or RCC) for such general distributions.

For Turing’s condition number, results for such general distributions have been
obtained by Terence Tao and Van Vu [216, 217]; compare the notes of Chap. 2.
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P.8. Average Complexity of IPMs for Linear Programming

The bound for the number of interior-point iterations in Theorem 9.10 is propor-
tional to

√
n. This is due to the choice of the centering parameter σ = 1− ξ√

n
(with

0 < ξ ≤ 1
4 ) and the fact that the duality gap μ is decreased by a factor of σ at

each iteration of Algorithm 9.1. Our average (or smoothed) complexity bounds for
the different applications of this algorithm invariably relied on the following two
steps. Firstly, to bound, in terms of a relevant condition number, how small the du-
ality gap should be to guarantee a correct output. Secondly, to make an average (or
smoothed) analysis for this condition number. On these complexity bounds, there-
fore, the worst-case

√
n factor for the number of iterations is intrinsic and cannot be

removed.
A number of different IPM schemes to follow the central path (known as “long-

step” as opposed to the one described in Chap. 9 referred to as “short-step”) have
been proposed, which, even though they do not remove the worst-case

√
n factor in

their complexity bounds, certainly behave much better in practice, with a number
of iterations that appears to be bounded as O(logn). This observation suggests the
following problem:

Show average, and/or smoothed, bounds for the number of iterations of “long-
step” interior-point methods of order logn.

For reasons similar to those behind the proof of Theorem 17.3, it is conjectured
that the number of iterations in long-step methods is a function of the total curvature
of the central path. Estimates for the average value of this total curvature have been
consequently sought and can be found in [79, 83]. These estimates do not solve the
problem above but may provide a step towards its solution.

P.9. Smale’s 17th Problem

Provide a complete solution to Smale’s 17th problem. That is, give a solution to the
following:

Describe a deterministic algorithm that finds an approximate zero of a given
system of n complex polynomial equations in n unknowns (or n homogeneous
equations in n+ 1 unknowns) in average polynomial time.

This problem was posed by Steve Smale [202]; see Chaps. 17 and 18 for partial
solutions.

P.10. The Shub–Smale Starting System

For a degree pattern d = (d1, . . . , dn) consider the system g = (g1, . . . , gn) ∈Hd,
where gi := X

di−1
0 Xi . Remark 16.18 tells us that the system g is the only one, up



P.11. Equivariant Morse Function 527

to scaling and unitary invariance, having a zero that is best possibly conditioned,
namely e0 := (1,0, . . . ,0).

Run the algorithm ALH with the starting system (g, e0). Does this algorithm
run in average polynomial time on input f ∈Hd?

If the answer is yes, then this would solve Smale’s 17th problem in the affirmative,
indeed in a beautifully explicit way. Computational experiments suggest that this is
in fact the case [23].

We note that in [195] it was conjectured that the starting system (g, e0) leads
to an average polynomial-time algorithm for finding an approximate zero for given
f ∈Hd, although using an algorithm different from ALH.

P.11. Equivariant Morse Function

For (g, ζ ) ∈ V and f ∈Hd we connect f and g by the straight-line segment qt :=
(1 − t)g + tf , 0 ≤ t ≤ 1. If none of the qt has a multiple zero, we can uniquely
extend the zero ζ of g to a zero ζt of qt . Consider the function

I (f, g, ζ ) :=
∫ 1

0
μnorm(qt , ζt )

∥∥∥∥
d

dt
(qt , ζt )

∥∥∥∥dt. (P.3)

In [189] it is shown that O(D3/2I (f, g, ζ )) Newton steps are sufficient to continue
the zero ζ from g to f ; compare Sect. 17.1. Put A(g, ζ ) := Ef I (f, g, ζ ), where
the expectation is taken with respect to the standard Gaussian on Hd. Recall from
Sect. 16.2 the solution manifold V := {(f, ζ ) ∈Hd × P

n | f (ζ )= 0} and its subset
Σ ′ ⊆ V of ill-posed solutions.

The following conjecture is due to Beltrán and Shub [30]:

The map A : V \Σ ′ →R is a Morse function that is equivariant with respect
to the action of the unitary group U (n+ 1). Further, A has exactly one orbit
of nondegenerate minima and no other critical points. The latter is the orbit
of (g, e0).

This conjecture would answer the previous problem: it would imply that ALH
runs in average polynomial time on the starting system (g, e0). In particular, it would
solve Smale’s 17th problem. The conjecture is consistent with the topology of V \
Σ ′, as analyzed in [30].

P.12. Good Starting Pairs in One Variable

In Remark 17.32 we noted that most univariate polynomials q of degree d satisfy
μmax(q)=O(d).
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Is there an algorithm computing on input d ∈ N, in time polynomial in d , a
univariate complex polynomial gd , and ξ ∈ C, such that μmax(gd) = dO(1)

and ξ is an approximate zero of gd?

This question was raised in [194]. It is related to Smale’s 7th problem on computing
well-distributed points on the 2-dimensional sphere [202].

P.13. Approximating Condition Geodesics

Recall the (normalized) condition number μnorm : V \Σ ′ → [1,∞) from (16.11).
The condition metric on the Riemannian manifold V \ Σ ′ is obtained by multi-
plying its Riemannian metric by the square of the condition number μnorm. How-
ever, the condition metric is not a metric in the usual sense, since μ2

norm is not a
smooth function. Still, we can define the condition length LC(γ ) of an absolutely
continuous curve γ : [0,1] → V \ Σ ′ connecting two pairs (g, ζ ) and (f, ξ) by
LC(γ ) := ∫ 1

0 ‖γ̇ (t)‖μnorm(γ (t)) dt . In [189] it is shown that O(D3/2LC(γ )) New-
ton steps are sufficient to continue the zero ζ from g to f along γ . In fact, the
quantity I (f, g, ζ ) defined in (P.3) is nothing but the condition length of the solu-
tion curve (qt , ζt )0≤t≤1 obtained using a linear homotopy.

We call a curve γ in V \Σ ′ a condition geodesic if it minimizes the condition
length between any two of its points.

Beltrán and Shub [29] constructed for any two pairs (f, ξ) and (g, ζ ) in V \Σ ′
a curve γ in V \Σ ′ connecting those pairs with a condition length bounded by

LC(γ )=O
(
nD3/2 +√

n ln
μnorm(f, ξ)μnorm(g, ζ )

n

)
.

Note that in contrast with Theorem 18.2, the dependence on the condition numbers
is only logarithmic here. But unfortunately, the construction of the curve in [29] is
not efficient.

Find efficient numerical algorithms to approximately follow condition geodesics.

P.14. Self-Convexity of μnorm in Higher Degrees

A condition geodesic joining two pairs (g, ζ ) and (f, ξ) in V \ Σ ′ has the prop-
erty that it strikes a balance between moving efficiently in V from one pair to the
other and keeping the condition number small. As pointed out by Shub in [189], un-
derstanding the properties of condition geodesics should help in understanding and
designing efficient homotopy algorithms. Beltrán et al. [31, 32] raised the following
question:

Let γ be an arbitrary condition geodesic of V \Σ ′. Is t �→ logμnorm(γ (t)) a
convex function?
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An affirmative answer to this question would imply, for any condition geodesic γ ,
that LC(γ ) ≤ Lmax{μnorm(g, ζ ),μnorm(f, ξ)}, where LC(γ ) is the condition
length and L denotes the length of γ in the usual Riemannian metric of V .

In the linear case d1 = · · · = dn = 1 the self-convexity property stated above
was confirmed in [31, 32]. As an additional indication of why to expect a positive
answer, we note the following observation from [31]. Let M ⊂ R

n be a smooth
submanifold and U ⊆ R

n \M the largest open set such that every point in U has
a unique closest point in M with respect to the Euclidean distance d . Then the
function μ(x) := d(x,M)−1 has the property that t �→ logμ(γ (t)) is convex for
any geodesic in U with respect to the Riemannian metric μ2〈 , 〉 of U .

P.15. Structured Systems of Polynomial Equations

Systems of polynomial equations arising in practice often have a special structure.
For instance, they lie in a linear subspace of Hd that depends on a few parameters.
An important case is provided by “sparse polynomials” having only a few mono-
mial terms. Dedieu [80] has defined condition numbers for structured systems of
polynomials and analyzed the cost of homotopy methods in terms of this condition.
However, there are very few probabilistic analyses of such condition numbers; see
Malajovich and Rojas [142] for a result in this direction.

Provide probabilistic analyses of condition numbers for structured polynomial
systems.

Such results would help to explain the success of numerical practice, as in the
software package “Bertini”; see [19].

P.16. Systems with Singularities

The homotopy methods described in this book focus on systems of polynomial equa-
tions with simple zeros only. However, as pointed out by Andrew Sommese, poly-
nomial systems in practice often have singularities, and algorithms can benefit from
this information. Insofar as it is misleading to consider all polynomial systems in
the discriminant variety Σ as ill-posed, one may consider the following problem:

Extend the Shub–Smale theory from Chaps. 15–17 to systems with multiple
zeros.

P.17. Conic Condition Numbers of Real Problems with High
Codimension of Ill-posedness

The main result in Chap. 20, Theorem 20.1, exhibits a bound for the probability tail
Prob{C (a)≥ t} that decays as t2(m−p), where p−m is the (complex) codimension
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of the set Σ of ill-posed data. This decay ensures the finiteness of E(C (a)k) for all
k < 2(p−m).

In contrast with the above, the main result in Chap. 21, Theorem 21.1, exhibits
a bound for Prob{C (a) ≥ t} that decays as t−1, independently of the (now real)
codimension of the set Σ . In particular, no matter what this codimension is, we
cannot deduce a finite bound for E(C (a)).

For a real conic condition number C associated to a set of ill-posed data Σ ,
prove tail bounds (both average-case and smoothed analysis) that decay as
t−s , where s is the codimension of Σ .

The article [85] we cited in the notes to Chap. 21 states a result of this kind in the
case that Σ is a complete intersection. As we mentioned in these notes, that result
relied on an unpublished and apparently unavailable result by Adrian Ocneanu. A
proof can now be found in [140]. Since most Σ of interest for applications are not
complete intersections, the challenge remains to derive good bounds on C for these
cases.

P.18. Feasibility of Real Polynomial Systems

In Sect. 19.6 we briefly described a numerical algorithm to detect feasibility of
real polynomial systems. The cost analysis of this algorithm featured the condition
number κfeas, which, for a system f ∈HR

d [m], is defined by

κfeas(f )=
⎧
⎨

⎩

minζ∈ZS(f ) μ†(f, ζ ) if ZS(f ) �= ∅,
maxx∈Sn

‖f ‖
‖f (x)‖ otherwise.

Recall that κfeas(f )=∞ if and only if f is feasible and all its zeros are multiple.
As of today, there are no known bounds for either the probability tail

Prob{κfeas(f )≥ t} or the expectations E(κfeas(f )) and E(logκfeas(f )). An obstacle
to obtaining such bounds is the fact that κfeas(f ) is defined in two different ways
according to whether f is feasible or not. The set Σ of ill-posed data for the feasi-
bility problem is, however, an algebraic cone, and the problem has therefore a conic
condition number C (f ) naturally associated to it. This fact suggest the following
problem.

Can κfeas(f ) be bounded by a polynomial function in C (f )?

Note that a positive answer to this question would immediately yield (via
Theorem 21.1) bounds for both Prob{κfeas(f ) ≥ t} and E(logκfeas(f )). Further-
more, should Problem P.17 above be solved as well, one could deduce bounds for
E(κfeas(f )k) for a wide range of values of k. This is so because the set Σ con-
sists of the systems all of whose zeros are multiple, and this is a set having high
codimension in HR

d [m].
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Bsin(a, σ ), 439
BS(x, δ), 401
B∞(x, η), 409
β(f, x), 397
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C (A), 134
C(d), 194
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condϕ
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condϕ
st(f ), 264

condϕ
W (f ), 265

condG(x), 266
cone{a1, . . . , an}, 126
cone(M), 126
conv{a1, . . . , an}, 125
conv(M), 125
costA (a), 102
Cwϕ(a), xix, 65

D
D, 310
degZ, 488
det, 473
diag, 12
dims, xxiv
disc(f ), 435
discd(f ), 436, 491
daff(x, y), 383
dH (K,K ′), 458
dM(x, y), 478
dP(x, y), 273
dS(x, y), 135, 272
dsin(x, y), 42, 52, 274
∂K , 127

E
E, 29
en, 25
en, 175
Error, xxiii
εmach, xxii
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F
F, xxii
fl(q), xxiii
FP(d), 171
ϕHR

d
, 413

ϕn, 33
ϕ
a,σ
n , 33

G
GLn(R), 26
Gn, 225
G(m,n), 487
Γ , 36
γk , xxii
γn, 33
γ

a,σ
n , 33

γ (f, z), 288
γ (f, x), 397
γproj(f, z), 315
γ†(f, x), 414

H
Hd , 297
Hd, 299
HR

d , 372, 391
HR

d [m], 414

I
int(M), 130

J
Js(σ ), 461

K
K (d), 204
KM,i(x), 441
KM,i(x, v), 500
κeigen(A), 433
κ(f ), 392
κF (A), 433
κfeas(f ), 416, 530
κrs(A), 7, 50

L
Lζ , 305
Lk(V1, . . . , Vk;W), 287
LM(x), 441, 480
LoP, xxiii, xxiv

M
M , 347
MR, 372, 413

median, 37
M≤ε , 494
Mε , 494
Mϕ(a), xix
MPf (x), 414
μ(f, ζ ), 302
μav(f ), 356
μmax(f ), 364
μnorm(f, ζ ), 307, 321
μ†(f, x), 414
μ̃i (M), 500
μi(U), 442
μ̃(M;X), 500

N
N(a,σ 2In), 33
NT (0, σ 2In), 358
NT (a,σ

2In), 367
Nf (z), 286, 313
NJψ(x), 344
ν(f ), 394
ν(f, x), 394

O
OB(d), 169
o(h), 468
O(h), 467
On, 36
O(n), 26, 446
Op,k(ε), 422
Ω(h), 468
Ωn(M), 474
Ωn(V ), 473

P
PCFP, 131, 184
Pk , 111
P
n, 269

P
n
0 , 383

p(n,m), 235
p(n,m,α), 236
Prob, 29
P(V ), 269
ψδ(u), 316
ψ(u), 289

Q
QD , 160
Qk , 111
QP , 160
Q(L), 460
QS , 460
QTriang(L), 459
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R
Rζ , 304
r_costA (a), 356
Reg(Z), 484
RelError, xviii
relint(K), 127
resd, 490
round, xxii
ρ(A), 136
&(d), 204
ρdeg(d), 205
ρD

deg(d), 205

ρP
deg(d), 205

ρHd , 368
ρsing(S), 204
ρst, 350
ρ̂st, 351
ρ
V̂

, 369

S
sconv(M), 239
SD , 160, 193
Sing(Z), 484
size(a), xxiv, 102
SLI, 144, 147
S
n, 21

S◦, 174
Sol(a), 143
SP , 160, 193
Stn,k , 280, 470
Σ ′, 265, 275, 302
ΣFP, 171
ΣI , 168
ΣOB, 169, 203
Σopt, 168, 203
Σζ , 308

T
Ti(∂K, ε), 240
T ⊥
i (U, ε), 458

Tk , 113

To(∂K, ε), 240
T ⊥
o (U, ε), 458

T (Sn−2, ε), 44
T (U, ε), 240, 422, 440
T ⊥(U, ε), 44, 441
Triang, 459
Θ(h), 468
θk , xxii

U
U , 309
U (n), 94, 297
U(Sn), 38

V
V̂ , 346
Vζ , 308
Var, 29
Vε , 449
vol, 23
volRm , 23
volSn−1 , 23
VR, 372
V̂R, 413

W
Ŵ , 347
W(m,n), 83
WR, 372
ŴR, 413
W , 202
WB , 203

X
χ2
n , 35

Z
Z(f ), 481
ZP(f ), 310
ZS(f ), 393



. . . Concepts . . .

Symbols
δ-approximation, 383
ε-neighborhood, 44, 240, 422, 440
ε-tube, 44, 441
U (n)-equivariance, 301

A
affine cone, 483
affine hull, 125
algebraic cone, 419
algebraic variety

affine, 481
irreducible, 482
projective, 483
pure dimensional, 483
real, 485

algorithm
Ren, 384
Adaptive_Homotopy, 285
ALH, 334
backward-stable, xx
BP_Randomization_scheme, 354
Conj_Grad, 110
Ellip_Method, 151
FEAS_LP, 195
forward-stable, xxi
FS, 64
Homotopy_Continuation, 284
ItRen, 385
Las Vegas, 342
LV, 342
MD, 382
Monte-Carlo, 342
nonuniform, 514
OB, 212
OB2, 216
Perceptron, 144

Primal–Dual IPM, 177
Primal-Dual_IPM_for_PCFP, 188
random_h, 355
Randomized_Primality_Testing, 341
Randomized_Primality_Testing_2, 341
random_system, 353
Underdetermined_Feasibility, 415
Zero_Counting, 408

almost all, 477
almost everywhere, 23
approximate zero, 287, 315
associated zero, 287, 315
atlas, 471

holomorphic, 472
average-case analysis, 21, 46

B
backward-error analysis, xx
balls

in Euclidean space, 37
in spheres, 42

Banach fixed point theorem, 400
barrier function, 178
basin of quadratic attraction, 287
Bézout number, 310
Bézout series, 512
Bézout’s inequality, 489
Bézout’s theorem, 310
big oh, 467
big omega, 468
blocking set, 136
Borel-measurable set, 23

C
Carathéodory’s theorem, 127
centering parameter, 174
central limit theorem, 81
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central neighborhood, 182
central path, 174
chart, 471
Chebyshev polynomials, 113
chi-square distribution, 35
classical topology, 482
coarea formula, 344
complementary slackness

condition, 158
theorem, 158

complete problem, 516
complexity, xxviii, 102
concentration inequalities, 80
condition geodesic, 528
condition length, 528
condition map, 266, 275
condition matrix, 266
condition metric, 528
condition number, xix

à la Renegar, 125, 256
absolute normwise, 262, 266, 276
componentwise, xix, 65
conic, 419, 439
Frobenius, 433
GCC, 134
Grassmann, 520
level-2, 256
maximum, 364
mean square, 356
mixed, xix
normalized, 307
normwise, xix
of a differentiable function, 262
RCC, 204, 524
relative normwise, 266
stochastic, 505

condition number theorem, 10
condition-based complexity analysis, xxviii
conditional density, 29, 250, 346
conditional expectation, 32
conditional probability, 251
continuation methods, 283
contraction

constant, 400
map, 400

convex body
in S

p , 239, 455
smooth, in S

p , 456
convex cone, 126

pointed, 238
convex hull, 125
convex set, 125
correct digits, xxii
cost, 102

algebraic, 103
average expected, 357
average randomized, 357
bit, 103
of conjugate gradient, 109, 111, 116
of Gaussian elimination, 102
randomized, 342, 356

covariance matrix, 34
covering processes, 236
critical value, 473
curvature, ith, 441, 480
curvature polynomials, 500

D
data space, 22
degree of an algebraic variety

cumulative, 489
of a pure dimensional, 489
of an irreducible, 488

degree pattern, 299
diffeomorphism, 24, 469

between manifolds, 472
dimension

of a convex set, 125
of a manifold, 471
of an algebraic variety, 483

direct methods, 102
discriminant polynomial, 435, 436, 491
discriminant variety, 311
distance

on projective space, 273, 478
on the sphere, 272, 478

distance to singularity, 204
distribution

adversarial, 461
of a random variable, 31

double factorial, 451
dual cone, 126
dual set, 239
duality gap, 158
duality measure, 174
duality theorem of linear programming, 157

E
ellipsoid, 147
ellipsoid method, 147, 151
error

componentwise, xviii
in a computation, xvii
normwise, xviii
relative, xviii

Euler’s formula, 300
event, 28
expectation, 29
expected value, 29
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F
Farkas’s lemma, 126
floating-point numbers, xxii
forms on a manifold, 474
forward-approximate solution, 192
Fubini–Study metric, 273, 478
Fubini’s theorem, 24
function

concave, 41
integrable, 24
measurable, 23

G
gamma function, 36
Gauss map, 448
Gaussian curvature, 442
Gaussian distribution

center of, 34
centered, 34
isotropic multivariate, 33
standard, 33
truncated, 358
variance, 34

Gaussian elimination, 74, 102
general linear group, 26
general position

of a hyperplane arrangement, 235
gradient method, 103
Grassmann manifold, 280, 487, 520
great circle segment, 238
group invariance, 225
growth factor, 521

H
Haar measure (normalized), 426, 447, 479
Hadamard’s formula, 288
Hadamard’s inequality, 153
half-space

closed, 126
open, 126

Hausdorff distance, 458
Helly’s theorem, 127
Hilbert’s basis theorem, 482
Hilbert’s Nullstellensatz, 481

homogeneous, 486
problem, 514

Hölder inequality, 4
homotopy methods, 283
Householder matrix, 81

I
ideal, 481

prime, 482
ill-posed solution pair, 265, 275

ill-posedness, xxx, 7
distance to, xxxi, 10, 16, 125, 204

implicit function theorem, 469
independence

of data spaces, 28
of random variables, 32

indicator function, 23
inner ε-tube, 458
inner neighborhood, 240
inner volumes, 519

spherical, 519
integration in polar coordinates

in Euclidean space, 25
on a sphere, 26

integration on manifolds, 474
interior-point method

primal–dual, 173
iterative methods, 102

J
Jacobian, 25
Jacobian matrix, 25
Jensen’s inequality, 41

K
Kähler manifold, 492
Kantorovich’s inequality, 107
Karush–Kuhn–Tucker matrix, 176
Krylov spaces, 110

L
Lagrange multipliers, 179
least squares, 18, 101
length of curves on a manifold, 478
level sets, 494
Lie group, 479
linear program

basic optimal solution, 163
basis of, 163
bounded, 156
constraint, 155
degenerate solution, 166
dual, 156
dual basic solution, 163
dual degenerate, 166

basis, 205
dual heavy, 161
dual light, 161
extremal optimal solution, 162
feasible ill-posed, 202
feasible set, 156
feasible well-posed, 202
in standard form, 155, 159
nearly infeasible, 162
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linear program (cont.)
objective function, 156
optimal solution, 156
optimal value, 156, 201
optimizer, 156, 201
primal basic solution, 163
primal degenerate, 166

basis, 205
primal heavy, 161
primal light, 161

linear programming, 155
feasibility problem, 171
ill-posedness, 168
optimal basis problem, 169
optimal solution problem, 168
optimal value problem, 171

linearization map, 371
Lipschitz property of μnorm, 296
little oh, 468
locally closed set, 489
loss of precision, xxiii
Löwner–John ellipsoid, 150
LU factorization, 74

M
machine epsilon, xxii
manifold, 471

complex, 472
oriented, 472, 479
submanifold, 469, 472

marginal density, 28, 346
Markov’s inequality, 30
measurable

function, 23
set, 23

measure
on a data space, 23

median, 37
Moore–Penrose inverse, 17
Moore–Penrose Newton’s iteration, 414, 513,

517
multinomial coefficients, 297
multiple zero, 302
multivariate discriminant, 311

N
Newton’s method, 174, 286

cost, 313
on Riemannian manifolds, 513
on the sphere, 393

norm
dual, 4
Frobenius, 6
of a matrix, 5

of a vector, 4
spectral, 5

normal Jacobian, 344
normalized integrals

of absolute curvature, 442
of curvature, 442
of curvature (modified), 500

O
optimality conditions, 158
orthogonal group, 26, 446, 479
orthogonal invariance, 26, 34
outer ε-tube, 458
outer neighborhood, 240
overflow, xxi

P
partial pivoting, 522
partition of unity, 474
path-following method, 174
perturbation, xviii
Poincaré’s formula, 496, 518

in complex projective space, 498
polyhedral cone feasibility problem, 131
polyhedral system, 193
polyhedron, 128

face of, 128
proper face of, 128
vertices of, 128

preconditioning, 51
primality testing, 340
principal curvatures, 441, 480
principal kinematic formula, 447, 501
probability density

on a data space, 28
on a manifold, 344

probability distribution
on a data space, 28

probability measure, 28
problem

decision, 124
discrete-valued, 124

product measure, 23
projective γ -theorem, 317
projective Newton’s operator, 314
projective space, 269

tangent space, 270, 484
pseudorandom generators, 341
pushforward measure, 31, 345

Q
QR factorization, 3, 74

loss of precision, 9, 22
Quermass integrals, 519
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R
Rand_Gaussian( ), 353
random data

average case, 21
smoothed analysis, 21

random variable, 29
random vector, 34
Random_bit( ), 341
randomization, 341
realization set, 235
reduction, 516
regular point

of a function, 473
of an algebraic variety, 484

regular value, 473
relative boundary, 127
relative interior, 127
Renegar’s trick, 506
representation

basis, xxi
exponent, xxi
mantissa, xxi
precision, xxi

reproducing kernel Hilbert space, 298
reproducing property, 298
rescaled perceptron, 508
resultant, 490
Riemannian

distance, 478
manifold, 478
metric, 478

round-off unit, xxii
rounding map, xxii
running time, 102

S
Sard’s theorem, 475
scale invariance, 38
semialgebraic system, 417
separating hyperplane theorem, 125
separation of zeros, 293, 320
separation oracle, 151
set of ill-posed inputs, xxx, 120, 124, 256, 276,

419, 439
set of ill-posed solutions, 302
sign pattern, 235
simple zero, 302
sine distance, 42

on P(V ), 274
on product spaces, 52

singular point of an algebraic variety, 484
singular value decomposition, 12
singular values, 13

singular vectors, 13
size, xxiv, 102
slack variables, 157
Smale’s

17th problem, 331, 526
7th problem, 514, 528
9th problem, 524
α-theorem, 398
γ -theorem, 289

smallest including cap, 136
smooth map, 469

on a manifold, 472
smoothed analysis, 21, 46
solution manifold, 265, 276, 300
solution map, 266, 275
space of inputs, 265
space of outputs, 265
sparse matrix, 65
spherical cap, 42
spherical convex hull, 239
spherically convex set, 238

proper, 238
stability

backward, xx
forward, xxi

stabilizer, 476
standard chart, 25
standard distribution, 350
standard normal, 33
steepest descent, 103
Stiefel manifold, 280, 470
Stirling bounds, 36
strict complementarity theorem, 159
structured

data, 119
ill-posedness, 119
perturbations, 119

submanifold
of Rn, 469
of an abstract manifold, 472

system
of linear inequalities, 144

T
tangent space, 469

of a manifold, 472
tangent vector, 469

on a manifold, 472
theta, 468
Tonelli’s theorem, 24
topology

classical, 482
Zariski, 482

transformation formula, 24
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transversality, 475, 476
triangular systems, 59

backward error analysis, 64
componentwise condition, 65

U
underdetermined linear systems, 18
underflow, xxi
uniform distribution

on a manifold, 343
on data spaces, 28
on spheres, 38
on spherical caps, 42

unitary group, 94, 297, 479

V
vanishing ideal, 481
variance, 29
vectors

A-orthogonal, 108
conjugated, 108

volume
of a ball, 37
of a measurable set on a manifold, 479
of a sphere, 36
of a spherical cap, 42, 461

of a tube, 44, 422, 443
of an ellipsoid, 148
of complex projective space, 345
of irreducible varieties in projective space,

426
on algebraic varieties, 425

volume element, 479
volume form, 479

W
Weingarten map, 441, 480
well-posed solution pair, 265
Weyl’s basis, 297
Weyl’s tube formula, 443, 500, 518
Weyl’s inner product

on Hd, 299
on Hd , 297

Wirtinger’s inequality, 491
Wishart distribution, 83, 116
worst-case analysis, 47

Z
Zariski almost all, 485
Zariski tangent space, 484
Zariski topology, 482
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