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Foreword

Although computer vision is such a relatively young field of study, it has matured

immensely over the last 25 years or so—from well-constrained, targeted applica-

tions to systems that learn automatically from examples.

Such progress over these 25 years has been spurred not least by mind-boggling

advances in vision and computational hardware, making possible simple tasks

that could take minutes on small images, now integrated as part of real-time sys-

tems that do far more in a fraction of a second on much larger images in a video

stream.

This all means that the focus of research has been in a perpetual state of

change, marked by near-exponential advances and achievements, and witnessed

by the quality, and often quantity, of outstanding contributions to the field pub-

lished in key conferences and journals such as ICCV and PAMI. These advances

are most clearly reflected by the growing importance of the application areas in

which the novel and real-time developments in computer vision have been applied

to or developed for. Twenty-five years ago, industrial quality inspection and sim-

ple military applications ruled the waves, but the emphasis has since spread its

wings, some slowly and some like wildfire, to many more areas, for example,

from medical imaging and analysis to surveillance and, inevitably, complex mili-

tary and space applications.

So how does Roy’s book reflect this shift? Naturally, there are many funda-

mental techniques that remain the same, and this book is a wonderful treasure

chest of tools that provides the fundamentals for any researcher and teacher.

More modern and state-of-the-art methodologies are also covered in the book,

most of them pertinent to the topical application areas currently driving not only

the research agenda, but also the market forces. In short, the book is a direct

reflection of the progress and key methodologies developed in computer vision

over the last 25 years and more.

Indeed, while the third edition of this book was already an excellent, success-

ful, and internationally popular work, this fourth edition is greatly enhanced and

updated. All its chapters have been substantially revised and brought up to date

by the inclusion of many new references covering advances in the subject made

even in the past year. There are now also two entirely new chapters (to reflect the

great strides that have been made in the area of video analytics) on surveillance

and in-vehicle vision systems. The latter is highly relevant to the coming era of

advanced driver assistance systems, and the former’s importance and role requires

no emphasis in this day and age where so many resources are dedicated to crimi-

nal and terrorist activity monitoring and prevention.

The material in the book is written in a way that is both approachable and

didactic. It is littered with examples and algorithms. I am sure that this volume

will be welcomed by a great many students and workers in computer and machine

vision, including practitioners in academia and industry—from beginners who are
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starting out in the subject to advanced researchers and workers who need to gain

insight into video analytics. I will also welcome it personally, for use by my own

undergraduate and postgraduate students, and will value its presence on my book-

shelf as an up-to-date reference on this important subject.

Finally, I am very happy to go on record as saying that Roy is the right person

to have produced this substantial work. His long experience in the field of com-

puter and machine vision surpasses even the “big bang” in computer vision

around 25 years ago in the mid-80s when the Alvey Vision Conference (UK) and

CVPR (USA) were only inchoates of what they have become today and reaches

back to when ICPR and IAPR began to be dominated by image processing in the

late 70s.

September 2011

Majid Mirmehdi

University of Bristol, UK
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Preface

PREFACE TO THE FOURTH EDITION
The first edition came out in 1990, and was welcomed by many researchers and

practitioners. However, in the subsequent two decades, the subject moved on at a

rapidly accelerating rate, and many topics that hardly deserved a mention in the

first edition had to be solidly incorporated in subsequent editions. It seemed par-

ticularly important to bring in significant amounts of new material on mathemati-

cal morphology, 3-D vision, invariance, motion analysis, object tracking, artificial

neural networks, texture analysis, X-ray inspection, foreign object detection, and

robust statistics. There are thus new chapters or appendices on these topics, and

they have been carefully integrated with the existing material. The greater propor-

tion of the new material has been included in Parts 3 and 4. So great has been the

growth in work on 3-D vision and its applications that the original single chapter

on 3-D vision had to be expanded into the set of five chapters on 3-D vision and

motion forming Part 3, together with a further two chapters on surveillance and

in-vehicle vision systems in Part 4. Indeed, these changes have been so radical

that the title of the book has had to be modified to reflect them. At this stage,

Part 4 encompasses such a range of chapters—covering applications and the com-

ponents needed for constructing real-time visual pattern recognition systems—

that it is difficult to produce a logical ordering for them: notably, the topics

interact with each other at a variety of different levels—theory, algorithms, meth-

odologies, practicalities, design constraints, and so on. However, this should not

matter in practice, as the reader will be exposed to the essential richness of the

subject, and his/her studies should be amply rewarded by increased understanding

and capability.

It is worth remarking that, at this point in time, computer vision has attained a

level of maturity that has made it substantially more rigorous, reliable, generic,

and—in the light of the improved hardware facilities now available for its imple-

mentation (not least, FPGA and GPU types of solution)—capable of real-time

performance. This means that workers are more than ever before using it in seri-

ous applications, and with fewer practical difficulties. It is intended that this edi-

tion of the book will reflect this radically new and exciting state of affairs at a

fundamental level.

A typical final-year undergraduate course on vision for electronic engineering

or computer science students might include much of the work of Chapters 1�10

and 14, 15, plus a selection of sections from other chapters, according to require-

ments. For MSc or PhD research students, a suitable lecture course might go on
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to cover Part 3 in depth, including several of the chapters in Part 4,1 with many

practical exercises being undertaken on an image analysis system. Here, much

will depend on the research program being undertaken by each individual student.

At this stage, the text will have to be used more as a handbook for research, and

indeed, one of the prime aims of the volume is to act as a handbook for the

researcher and practitioner in this important area.

As mentioned in the original Preface, this book leans heavily on experience I

have gained from working with postgraduate students: in particular, I would like to

express my gratitude to Mark Edmonds, Simon Barker, Daniel Celano, Darrel

Greenhill, Derek Charles, Mark Sugrue, and Georgios Mastorakis, all of whom have

in their own ways helped to shape my view of the subject. In addition, it is a special

pleasure to recall very many rewarding discussions with my colleagues Barry Cook,

Zahid Hussain, Ian Hannah, Dev Patel, David Mason, Mark Bateman, Tieying Lu,

Adrian Johnstone, and Piers Plummer, the last two named having been particularly

prolific in generating hardware systems for implementing my research group’s

vision algorithms. Next, I am immensely grateful to Majid Mirmehdi for reading

much of the manuscript and making insightful comments and valuable suggestions.

Finally, I am indebted to Tim Pitts of Elsevier Science for his help and encourage-

ment, without which this fourth edition might never have been completed.

SUPPORTING MATERIALS
Elsevier’s website for the book contains resources to help students and other read-

ers using this text. For further information, go to the publisher’s website:

http://www.elsevierdirect.com/companion.jsp?ISBN5 9780123869081

E. R. DAVIES
Royal Holloway,

University of London

PREFACE TO THE FIRST EDITION (1990)
Over the past 30 years or so, machine vision has evolved into a mature subject

embracing many topics and applications: these range from automatic (robot)

assembly to automatic vehicle guidance, from automatic interpretation of docu-

ments to verification of signatures, and from analysis of remotely sensed images

to checking of fingerprints and human blood cells; currently, automated visual

inspection is undergoing very substantial growth, necessary improvements in

1The importance of the appendix on robust statistics should not be underestimated once one gets

onto serious work, although this will probably be outside the restrictive environment of an under-

graduate syllabus.
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quality, safety and cost-effectiveness being the stimulating factors. With so much

ongoing activity, it has become a difficult business for the professional to keep up

with the subject and with relevant methodologies: in particular, it is difficult to

distinguish accidental developments from genuine advances. It is the purpose of

this book to provide background in this area.

The book was shaped over a period of 10�12 years, through material I have

given on undergraduate and postgraduate courses at London University, and con-

tributions to various industrial courses and seminars. At the same time, my own

investigations coupled with experience gained while supervising PhD and post-

doctoral researchers helped to form the state of mind and knowledge that is now

set out here. Certainly it is true to say that if I had had this book 8, 6, 4, or even

2 years ago, it would have been of inestimable value to myself for solving practi-

cal problems in machine vision. It is therefore my hope that it will now be of use

to others in the same way. Of course, it has tended to follow an emphasis that is

my own—and in particular one view of one path toward solving automated visual

inspection and other problems associated with the application of vision in indus-

try. At the same time, although there is a specialism here, great care has been

taken to bring out general principles—including many applying throughout the

field of image analysis. The reader will note the universality of topics such as

noise suppression, edge detection, principles of illumination, feature recognition,

Bayes’ theory, and (nowadays) Hough transforms. However, the generalities lie

deeper than this. The book has aimed to make some general observations and

messages about the limitations, constraints, and tradeoffs to which vision algo-

rithms are subject. Thus, there are themes about the effects of noise, occlusion,

distortion and the need for built-in forms of robustness (as distinct from less suc-

cessful ad hoc varieties and those added on as an afterthought); there are also

themes about accuracy, systematic design, and the matching of algorithms and

architectures. Finally, there are the problems of setting up lighting schemes

which must be addressed in complete systems, yet which receive scant attention

in most books on image processing and analysis. These remarks will indicate that

the text is intended to be read at various levels—a factor that should make it of

more lasting value than might initially be supposed from a quick perusal of the

Contents.

Of course, writing a text such as this presents a great difficulty in that it is

necessary to be highly selective: space simply does not allow everything in a sub-

ject of this nature and maturity to be dealt with adequately between two covers.

One solution might be to dash rapidly through the whole area mentioning every-

thing that comes to mind, but leaving the reader unable to understand anything in

detail or to achieve anything having read the book. However, in a practical sub-

ject of this nature, this seemed to me a rather worthless extreme. It is just possible

that the emphasis has now veered too much in the opposite direction, by coming

down to practicalities (detailed algorithms, details of lighting schemes, and so

on): individual readers will have to judge this for themselves. On the other hand,

an author has to be true to himself and my view is that it is better for a reader or
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student to have mastered a coherent series of topics than to have a mish-mash of

information that he is later unable to recall with any accuracy. This, then, is my

justification for presenting this particular material in this particular way and for

reluctantly omitting from detailed discussion such important topics as texture

analysis, relaxation methods, motion, and optical flow.

As for the organization of the material, I have tried to make the early part of

the book lead into the subject gently, giving enough detailed algorithms (espe-

cially in Chapters 2 and 6) to provide a sound feel for the subject—including

especially vital, and in their own way quite intricate, topics such as connectedness

in binary images. Hence, Part 1 provides the lead-in, although it is not always

trivial material and indeed some of the latest research ideas have been brought in

(e.g., on thresholding techniques and edge detection). Part 2 gives much of the

meat of the book. Indeed, the (book) literature of the subject currently has a sig-

nificant gap in the area of intermediate-level vision; while high-level vision (AI)

topics have long caught the researcher’s imagination, intermediate-level vision

has its own difficulties which are currently being solved with great success (note

that the Hough transform, originally developed in 1962, and by many thought to

be a very specialist topic of rather esoteric interest, is arguably only now coming

into its own). Part 2 and the early chapters of Part 3 aim to make this clear, while

Part 4 gives reasons why this particular transform has become so useful. As a

whole, Part 3 aims to demonstrate some of the practical applications of the basic

work covered earlier in the book, and to discuss some of the principles underlying

implementation: it is here that chapters on lighting and hardware systems will be

found. As there is a limit to what can be covered in the space available, there is a

corresponding emphasis on the theory underpinning practicalities. Probably, this

is a vital feature, since there are many applications of vision both in industry and

elsewhere, yet listing them and their intricacies risks dwelling on interminable

detail, which some might find insipid; furthermore, detail has a tendency to date

rather rapidly. Although the book could not cover 3-D vision in full (this topic

would easily consume a whole volume in its own right), a careful overview of

this complex mathematical and highly important subject seemed vital. It is there-

fore no accident that Chapter 16 is the longest in the book. Finally, Part 4 asks

questions about the limitations and constraints of vision algorithms and answers

them by drawing on information and experience from earlier chapters. It is tempt-

ing to call the last chapter the Conclusion. However, in such a dynamic subject

area, any such temptation has to be resisted, although it has still been possible to

draw a good number of lessons on the nature and current state of the subject.

Clearly, this chapter presents a personal view but I hope it is one that readers will

find interesting and useful.
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1-D one dimension/one-dimensional
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BMVA British Machine Vision Association

BRAM block of RAM
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CHAPTER

1Vision, the Challenge

1.1 INTRODUCTION—MAN AND HIS SENSES
Of the five senses—vision, hearing, smell, taste, and touch—vision is undoubtedly

the one that man has come to depend upon above all others, and indeed the

one that provides most of the data he receives. Not only do the input pathways

from the eyes provide megabits of information at each glance but the data rates for

continuous viewing probably exceed 10 megabits per second (mbit/s). However,

much of this information is redundant and is compressed by the various layers of

the visual cortex, so that the higher centers of the brain have to interpret abstractly

only a small fraction of the data. Nonetheless, the amount of information the higher

centers receive from the eyes must be at least two orders of magnitude greater than

all the information they obtain from the other senses.

Another feature of the human visual system is the ease with which interpretation

is carried out. We see a scene as it is—trees in a landscape, books on a desk,

widgets in a factory. No obvious deductions are needed and no overt effort is

required to interpret each scene: in addition, answers are effectively immediate

and are normally available within a tenth of a second. Just now and again some

doubt arises—e.g. a wire cube might be “seen” correctly or inside out. This and

a host of other optical illusions are well known, although for the most part we

can regard them as curiosities—irrelevant freaks of nature. Somewhat surprisingly,

illusions are quite important, since they reflect hidden assumptions that the brain is

making in its struggle with the huge amounts of complex visual data it is receiving.

We have to pass by this story here (although it resurfaces now and again in various

parts of this book). However, the important point is that we are for the most part

unaware of the complexities of vision. Seeing is not a simple process: it is just that

vision has evolved over millions of years, and there was no particular advantage

in evolution giving us any indication of the difficulties of the task (if anything,
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to have done so would have cluttered our minds with irrelevant information and

slowed our reaction times).

In the present day and age, man is trying to get machines to do much of his

work for him. For simple mechanistic tasks this is not particularly difficult, but

for more complex tasks the machine must be given the sense of vision. Efforts

have been made to achieve this, sometimes in modest ways, for well over 30 years.

At first, schemes were devised for reading, for interpreting chromosome images,

and so on, but when such schemes were confronted with rigorous practical tests,

the problems often turned out to be more difficult. Generally, researchers react

to finding that apparent “trivia” are getting in the way by intensifying their efforts

and applying great ingenuity, and this was certainly so with early efforts at vision

algorithm design. Hence, it soon became evident that the task really is a complex

one, in which numerous fundamental problems confront the researcher, and the

ease with which the eye can interpret scenes turned out to be highly deceptive.

Of course, one of the ways in which the human visual system gains over the

machine is that the brain possesses more than 1010 cells (or neurons), some of

which have well over 10,000 contacts (or synapses) with other neurons. If each

neuron acts as a type of microprocessor, then we have an immense computer in

which all the processing elements can operate concurrently. Taking the largest

single man-made computer to contain several hundred million rather modest

processing elements, the majority of the visual and mental processing tasks that

the eye�brain system can perform in a flash have no chance of being performed

by present-day man-made systems. Added to these problems of scale, there is

the problem of how to organize such a large processing system, and also how to

program it. Clearly, the eye�brain system is partly hard-wired by evolution but

there is also an interesting capability to program it dynamically by training during

active use. This need for a large parallel processing system with the attendant

complex control problems shows that machine vision must indeed be one of the

most difficult intellectual problems to tackle.

So what are the problems involved in vision that make it apparently so easy

for the eye, yet so difficult for the machine? In the next few sections an attempt

is made to answer this question.

1.2 THE NATURE OF VISION
1.2.1 The Process of Recognition
This section illustrates the intrinsic difficulties of implementing machine vision,

starting with an extremely simple example—that of character recognition. Consider

the set of patterns shown in Fig. 1.1(a). Each pattern can be considered as a set of

25 bits of information, together with an associated class indicating its interpretation.

In each case imagine a computer learning the patterns and their classes by rote.

Then any new pattern may be classified (or “recognized”) by comparing it with
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this previously learnt “training set,” and assigning it to the class of the nearest

pattern in the training set. Clearly, test pattern (1) (Fig. 1.1(b)) will be allotted to

class U on this basis. Chapter 24 shows that this method is a simple form of the

nearest-neighbor approach to pattern recognition.

The scheme outlined above seems straightforward and is indeed highly effective,

even being able to cope with situations where distortions of the test patterns occur or

where noise is present: this is illustrated by test patterns (2) and (3). However, this

approach is not always foolproof. First, there are situations where distortions or noise

are excessive, so errors of interpretation arise. Second, there are situations where

(a)

(b)

B C D I

J O T U

(1) (2) (3)

(4) (5) (6)

FIGURE 1.1

Some simple 25-bit patterns and their recognition classes used to illustrate some of

the basic problems of recognition: (a) training set patterns (for which the known classes

are indicated); (b) test patterns.
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patterns are not badly distorted or subject to obvious noise, yet are misinterpreted:

this seems much more serious, since it indicates an unexpected limitation of the

technique rather than a reasonable result of noise or distortion. In particular, these

problems arise where the test pattern is displaced or misorientated relative to

the appropriate training set pattern, as with test pattern (6).

As will be seen in Chapter 24, there is a powerful principle that indicates why

the unlikely limitation given above can arise: it is simply that there are insufficient

training set patterns, and that those that are present are insufficiently representative

of what will arise in practical situations. Unfortunately, this presents a major diffi-

culty, since providing enough training set patterns incurs a serious storage problem,

and an even more serious search problem when patterns are tested. Furthermore,

it is easy to see that these problems are exacerbated as patterns become larger and

more real (obviously, the examples of Fig. 1.1 are far from having enough resolution

even to display normal type-fonts). In fact, a combinatorial explosion1 takes place.

Forgetting for the moment that the patterns of Fig. 1.1 have familiar shapes, let

us temporarily regard them as random bit patterns. Now the number of bits in these

N3N patterns is N2, and the number of possible patterns of this size is 2N
2

: even in

a case where N5 20, remembering all these patterns and their interpretations would

be impossible on any practical machine, and searching systematically through

them would take impracticably long (involving times of the order of the age of

the universe). Thus, it is not only impracticable to consider such brute-force means

of solving the recognition problem, it is effectively also impossible theoretically.

These considerations show that other means are required to tackle the problem.

1.2.2 Tackling the Recognition Problem
An obvious means of tackling the recognition problem is to standardize the images

in some way. Clearly, normalizing the position and orientation of any 2-D picture

object would help considerably: indeed this would reduce the number of degrees of

freedom by three. Methods for achieving this involve centralizing the objects—

arranging their centroids at the center of the normalized image—and making their

major axes (deduced by moment calculations, for example) vertical or horizontal.

Next, we can make use of the order that is known to be present in the image—and

here it may be noted that very few patterns of real interest are indistinguishable

from random dot patterns. This approach can be taken further: if patterns are to be

nonrandom, isolated noise points may be eliminated. Ultimately, all these methods

help by making the test pattern closer to a restricted set of training set patterns

(although care must also be taken to process the training set patterns initially so

that they are representative of the processed test patterns).

It is useful to consider character recognition further. Here, we can make additional

use of what is known about the structure of characters—namely, that they consist of

1This is normally taken to mean that one or more parameters produce fast-varying (often exponential)

effects, which “explode” as the parameters increase by modest amounts.
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limbs of roughly constant width. In that case the width carries no useful information,

so the patterns can be thinned to stick figures (called skeletons—see Chapter 9); then,

hopefully, there is an even greater chance that the test patterns will be similar to

appropriate training set patterns (Fig. 1.2). This process can be regarded as another

instance of reducing the number of degrees of freedom in the image, and hence of

helping to minimize the combinatorial explosion—or, from a practical point of view,

to minimize the size of the training set necessary for effective recognition.

Next, consider a rather different way of looking at the problem. Recognition is

necessarily a problem of discrimination—i.e. of discriminating between patterns of

different classes. However, in practice, considering the natural variation of patterns,

including the effects of noise and distortions (or even the effects of breakages or

occlusions), there is also a problem of generalizing over patterns of the same class.

In practical problems there is a tension between the need to discriminate and the

need to generalize. Nor is this a fixed situation. Even for the character recognition

task, some classes are so close to others (n’s and h’s will be similar) that less gener-

alization is possible than in other cases. On the other hand, extreme forms of gener-

alization arise when, e.g., an A is to be recognized as an A whether it is a capital or

small letter, or in italic, bold, suffix or other form of font—even if it is handwritten.

The variability is determined largely by the training set initially provided. What we

emphasize here, however, is that generalization is as necessary a prerequisite to

successful recognition as is discrimination.

At this point it is worth considering more carefully the means whereby gener-

alization was achieved in the examples cited above. First, objects were positioned

and orientated appropriately; second, they were cleaned of noise spots; and third,

they were thinned to skeleton figures (although the latter process is relevant only

for certain tasks such as character recognition). In the last case we are generaliz-

ing over characters drawn with all possible limb widths, width being an irrelevant

degree of freedom for this type of recognition task. Note that we could have gen-

eralized the characters further by normalizing their size and saving another degree

of freedom. The common feature of all these processes is that they aim to give

the characters a high level of standardization against known types of variability

before finally attempting to recognize them.

FIGURE 1.2

Use of thinning to regularize character shapes. Here, character shapes of different limb

widths—or even varying limb widths—are reduced to stick figures or skeletons. Thus,

irrelevant information is removed and at the same time recognition is facilitated.
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The standardization (or generalization) processes outlined above are all realized

by image processing, i.e. the conversion of one image into another by suitable means.

The result is a two-stage recognition scheme: first, images are converted into more

amenable forms containing the same numbers of bits of data; and second, they are

classified, with the result that their data content is reduced to very few bits (Fig. 1.3).

In fact, recognition is a process of data abstraction, the final data being abstract and

totally unlike the original data. Thus, we must imagine a letter A starting as an array

of perhaps 20 bits3 20 bits arranged in the form of an A, and then ending as the

7 bits in an ASCII representation of an A, namely 1000001 (which is essentially a

random bit pattern bearing no resemblance to an A).

The last paragraph reflects to a large extent the history of image analysis. Early

on, a good proportion of the image analysis problems being tackled were envisaged

as consisting of an image “preprocessing” task carried out by image processing tech-

niques, followed by a recognition task undertaken by statistical pattern recognition

methods (Chapter 24). These two topics—image processing and statistical pattern

recognition—consumed much research effort and effectively dominated the subject

of image analysis, while “intermediate-level” approaches such as the Hough trans-

form were, for the time, slower to develop. One of the aims of this book is to ensure

that such intermediate-level processing techniques are given due emphasis, and

indeed the best range of techniques is applied to any machine vision task.

1.2.3 Object Location
The problem that was tackled in the previous section—that of character recognition—

is a highly constrained one. In a great many practical applications it is necessary to

search pictures for objects of various types, rather than just interpreting a small area

of a picture.

Search is a task that can involve prodigious amounts of computation and

which is also subject to a combinatorial explosion. Imagine the task of searching

for a letter E in a page of text. An obvious way of achieving this is to move a

suitable “template” of size n3 n over the whole image, of size N3N, and to find

where a match occurs (Fig. 1.4). A match can be defined as a position where

C G
i i

P R
a

FIGURE 1.3

The two-stage recognition paradigm: C, input from camera; G, grab image (digitize

and store); P, preprocess; R, recognize (i, image data; a, abstract data). The classical

paradigm for object recognition is that of (i) preprocessing (image processing) to suppress

noise or other artifacts and to regularize the image data, and (ii) applying a process

of abstract (often statistical) pattern recognition to extract the very few bits required

to classify the object.
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there is exact agreement between the template and the local portion of the image

but, in keeping with the ideas of Section 1.2.1, it will evidently be more relevant

to look for a best local match (i.e. a position where the match is locally better

than in adjacent regions) and where the match is also good in some more absolute

sense, indicating that an E is present.

One of the most natural ways of checking for a match is to measure the

Hamming distance between the template and the local n3 n region of the image,

i.e. to sum the number of differences between corresponding bits. This is essen-

tially the process described in Section 1.2.1. The places with a low Hamming

distance are places where the match is good. These template matching ideas can

be extended to cases where the corresponding bit positions in the template and

the image do not just have binary values but may have intensity values over a

range 0�255. In that case the sums obtained are no longer Hamming distances

but may be generalized to the form:

D5
X
t

Ii 2 Itj j (1.1)

where It is the local template value, Ii is the local image value, and the sum is

taken over the area of the template. This makes template matching practicable

in many situations: the possibilities are examined in more detail in subsequent

chapters.

We referred above to a combinatorial explosion in this search problem too.

The reason this arises is as follows. First, when a 53 5 template is moved over

an N3N image in order to look for a match, the number of operations required is

of the order of 52N2, totaling some 1 million operations for a 2563 256 image.

The problem is that when larger objects are being sought in an image, the number

of operations increases as the square of the size of the object, the total number of

FIGURE 1.4

Template matching, the process of moving a suitable template over an image to determine

the precise positions at which a match occurs—hence revealing the presence of objects

of a particular type.
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operations being N2n2 when an n3 n template is used.2 For a 303 30 template

and a 2563 256 image, the number of operations required rises to B60 million.

Next, recall that in general, objects may appear in many orientations in an

image (E’s on a printed page are exceptional). If we imagine 360 possible orienta-

tions (i.e. one per degree of rotation), then a corresponding number of templates

will in principle have to be applied in order to locate the object. This additional

degree of freedom pushes the search effort and time to enormous levels, so far

away from the possibility of real-time3 implementation that new approaches must

be found for tackling the task. Fortunately, many researchers have applied their

minds to this problem and there are a good many ideas for tackling it. Perhaps

the most important general means for saving effort on this sort of scale is that

of two-stage (or multistage) template matching. The principle is to search for

objects via their features. For example, we might consider searching for E’s by

looking for characters that have horizontal line segments within them. Similarly,

we might search for hinges on a manufacturer’s conveyor by looking first for the

screw holes they possess. In general, it is useful to look for small features, since

they require smaller templates and hence involve significantly less computation,

as demonstrated above. This means that it may be better to search for E’s by

looking for corners instead of horizontal line segments.

Unfortunately, noise and distortions give rise to problems if we search for

objects via small features—there is a risk of missing the object altogether. Hence,

it is necessary to collate the information from a number of such features. This is

the point where the many available methods start to differ from each other. How

many features should be collated? Is it better to take a few larger features than

a lot of smaller ones? And so on. Also, we have not answered in full the question

of what types of feature are the best to employ. These and other questions are

considered in the following chapters.

Indeed, in a sense, these questions are the subject of this book. Search is one

of the fundamental problems of vision, yet the details and the application of the

basic idea of two-stage template matching give the subject much of its richness:

to solve the recognition problem the dataset needs to be explored carefully.

Clearly, any answers will tend to be data-dependent but it is worth exploring to

what extent there are generalized solutions to the problem.

1.2.4 Scene Analysis
The last subsection considered what is involved in searching an image for objects

of a certain type: the result of such a search is likely to be a list of centroid

2Note that, in general, a template will be larger than the object it is used to search for, because

some background will have to be included to help demarcate the object.
3A commonly used phrase meaning that the information has to be processed as it becomes available:

this contrasts with the many situations (such as the processing of images from space-probes) where

the information may be stored and processed at leisure.
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coordinates for these objects, although an accompanying list of orientations

might also be obtained. This subsection considers what is involved in scene

analysis—the activity we are continually engaged in as we walk around, negotiating

obstacles, finding food, and so on. Scenes contain a multitude of objects, and it is

their interrelationships and relative positions that matter as much as identifying

what they are. There is often no need for a search per se and we could in principle

passively take in what is in the scene. However, there is much evidence (e.g. from

analysis of eye movements) that the eye�brain system interprets scenes by continu-

ally asking questions about what is there. For example, we might ask the following

questions: Is this a lamp-post? How far away is it? Do I know this person? Is it

safe to cross the road? And so on. It is not the purpose here to dwell on these

human activities or introspection about them but merely to observe that scene

analysis involves enormous amounts of input data, complex relationships between

objects within scenes and, ultimately, descriptions of these complex relationships.

The latter no longer take the form of simple classification labels, or lists of object

coordinates, but have a much richer information content: indeed, a scene will, to

a first approximation, be better described in English than as a list of numbers.

It seems likely that a much greater combinatorial explosion is involved in determin-

ing relationships between objects than in merely identifying and locating them.

Hence, all sorts of props must be used to aid visual interpretation: there is a consid-

erable evidence of this in the human visual system, where contextual information

and the availability of immense databases of possibilities clearly help the eye to a

considerable degree.

Note also that scene descriptions may initially be at the level of factual

content but will eventually be at a deeper level—that of meaning, significance,

and relevance. However, we shall not be able to delve further into these areas in

this book.

1.2.5 Vision as Inverse Graphics
It has often been said that vision is “merely” inverse graphics. There is a certain

amount of truth in this. Computer graphics is the generation of images by

computer, starting from abstract descriptions of scenes and a knowledge of the

laws of image formation. Clearly, it is difficult to quarrel with the idea that vision

is the process of obtaining descriptions of sets of objects, starting from sets of

images and a knowledge of the laws of image formation (indeed, it is good to see

a definition that explicitly brings in the need to know the laws of image forma-

tion, since it is all too easy to forget that this is a prerequisite when building

descriptions incorporating heuristics that aid interpretation).

However, this similarity in formulation of the two processes hides some

fundamental points. First, graphics is a “feedforward” activity, i.e. images can

be produced straightforwardly once sufficient specification about the viewpoint and

the objects, and knowledge of the laws of image formation, has been obtained. True,

considerable computation may be required but the process is entirely determined
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and predictable. The situation is not so straightforward for vision because search is

involved and there is an accompanying combinatorial explosion. Indeed, some vision

packages incorporate graphics (or CAD) packages (Tabandeh and Fallside, 1986)

that are inserted into feedback loops for interpretation: the graphics package is then

guided iteratively until it produces an acceptable approximation to the input image,

when its input parameters embody the correct interpretation (there is a close parallel

here with the problem of designing analog-to-digital converters by making use of

digital-to-analog converters). Hence, it seems inescapable that vision is intrinsically

more complex than graphics.

We can clarify the situation somewhat by noting that, as a scene is observed,

a 3-D environment is compressed into a 2-D image and a considerable amount of

depth and other information is lost. This can lead to ambiguity of interpretation

of the image (both a helix viewed end-on and a circle project into a circle), so the

3-D to 2-D transformation is many-to-one. Conversely, the interpretation must be

one-to-many, meaning that there are many possible interpretations, yet we know

that only one can be correct: vision involves not merely providing a list of all

possible interpretations but providing the most likely one. Hence, some additional

rules or constraints must be involved in order to determine the single most likely

interpretation. Graphics, in contrast, does not have these problems, as the above

ideas show it to be a many-to-one process.

1.3 FROM AUTOMATED VISUAL INSPECTION
TO SURVEILLANCE

So far we have considered the nature of vision but not what man-made vision

systems may be used for. There is in fact a great variety of applications for artificial

vision systems—including, of course, all of those for which man employs his visual

senses. Of particular interest in this book are surveillance, automated inspection,

robot assembly, vehicle guidance, traffic monitoring and control, biometric mea-

surement, and analysis of remotely sensed images. By way of example, fingerprint

analysis and recognition have long been important applications of computer vision,

as have the counting of red blood cells, signature verification and character recogni-

tion, and aeroplane identification (both from aerial silhouettes and from ground

surveillance pictures taken from satellites). Face recognition and even iris recogni-

tion have become practical possibilities, and vehicle guidance by vision will, in

principle, soon be sufficiently reliable for urban use.4

Among the main applications of vision considered in this book are those of

manufacturing industry—particularly, automated visual inspection and vision for

4Whether the public will accept this, with all its legal implications, is another matter, but note

that radar blind-landing aids for aircraft have been in wide use for some years. In fact, last-minute

automatic action to prevent accidents is a good compromise (see Chapter 23 for a related discussion

on driver assistance schemes).
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automated assembly. In these cases, much the same manufactured components

are viewed by cameras: the difference lies in how the resulting information is

used. In assembly, components must be located and orientated so that a robot can

pick them up and assemble them. For example, the various parts of a motor or

brake system need to be taken in turn and put into correct positions, or a coil may

have to be mounted on a TV tube, an integrated circuit placed on a printed circuit

board, or a chocolate placed into a box. At the time of inspection, objects may

pass the inspection station on a moving conveyor at rates typically between

10 and 30 items per second and it has to be ascertained whether they have any

defects. If any defects are detected, the offending parts will usually have to

be rejected, i.e. the feedforward solution. In addition, a feedback solution may be

instigated—i.e. some parameter may have to be adjusted to control plant further

back down the production line (this is especially true for parameters that control

dimensional characteristics such as product diameter). Inspection also has the

potential for amassing a wealth of information that is useful for management, on

the state of the parts coming down the line: the total number of products per day,

the number of defective products per day, the distribution of sizes of products,

and so on. The important feature of artificial vision is that it is tireless and that

all products can be scrutinized and measured; thus, quality control can be main-

tained to a very high standard. In automated assembly too, a considerable amount

of on-the-spot inspection can be performed and this may help to avoid the prob-

lem of complex assemblies being rejected, or having to be subjected to expensive

repairs, because (for example) a proportion of screws was threadless and could

not be inserted properly.

An important feature of most industrial tasks is that they take place in real time:

if it is used, machine vision must be able to keep up with the manufacturing

process. For assembly, this may not be too exacting a problem, since a robot may

not be able to pick up and place more than one item per second—leaving the vision

system a similar time to do its processing. For inspection, this supposition is rarely

valid: even a single automated line (e.g. one for stoppering bottles) is able to keep

up a rate of 10 items per second (and, of course, parallel lines are able to keep up

much higher rates). Hence, visual inspection tends to press computer hardware very

hard. Note in addition that many manufacturing processes operate under severe

financial constraints so it is not possible to employ expensive multiprocessing

systems or supercomputers. Hence, great care must be taken while designing of

hardware accelerators for inspection applications. Chapter 26 aims to give some

insight into these hardware problems.

Finally, we return to the starting discussion, about the huge variety of

applications of machine vision—and it is interesting to consider surveillance

tasks as the outdoor analogs of automated inspection (indeed, it is amusing to

imagine that cars speeding along a road are just as subject to inspection as pro-

ducts speeding along a product line!). In fact, they have recently been acquiring

close to exponentially increasing application. Thus, the techniques used for

inspection have acquired an injection of vitality, and many more techniques
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have been developed. Naturally, this has meant the introduction of whole

tranches of new subject matter, such as motion analysis and perspective invar-

iants (see Part 3). It is also interesting that such techniques add a new richness

to such old topics as face recognition (Section 17.10.1).

1.4 WHAT THIS BOOK IS ABOUT
The foregoing sections have examined something of the nature of machine

vision and have briefly considered its applications and implementation. It is

already clear that implementing machine vision involves considerable practical

difficulties but, more important, these practical difficulties embody substantial

fundamental problems: these include various factors giving rise to excessive

processing load and time. Practical problems may be overcome by ingenuity

and care; however, by definition, truly fundamental limitations cannot be over-

come by any means—the best that we can hope for is that we will be able to

minimize their effects following a complete understanding of their nature.

Understanding is thus a cornerstone for success in machine vision. It is often

difficult to achieve, since the dataset (i.e. all pictures that could reasonably be

expected to arise) is highly variegated. Indeed, much investigation is required to

determine the nature of a given dataset, including not only the objects being

observed but also the noise levels, degrees of occlusion, breakage, defect, and

distortion that are to be expected, and the quality and nature of the lighting.

Ultimately, sufficient knowledge might be obtained in a useful set of cases

so that a good understanding of the milieu can be attained. Then it remains to

compare and contrast the various methods of image analysis that are available.

Some methods will turn out to be quite unsatisfactory for reasons of robustness,

accuracy, or cost of implementation, or other relevant variables: and who is to

say in advance what a relevant set of variables is? This, too, needs to be ascer-

tained and defined. Finally, among the methods that could reasonably be used,

there will be competition: tradeoffs between parameters such as accuracy, speed,

robustness, and cost will have to be worked out first theoretically and then in

numerical detail to find an optimal solution. This is a complex and long process

in a situation where workers have in the past aimed to find solutions for their own

particular (often short-term) needs. Clearly, there is a need to ensure that practical

machine vision advances from an art to a science. Fortunately, this process has

been developing for some years, and it is one of the aims of this book to throw

additional light on the problem.

Before proceeding further, there are one or two more pieces to fit into the

jigsaw. First, there is an important guiding principle: if the eye can do it, so can

the machine. Thus, if an object is fairly well hidden in an image, yet the eye

can see it and track it, then it should be possible to devise a vision algorithm that

can do the same. Next, although we can expect to meet this challenge, should we
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set our sights even higher and aim to devise algorithms that can beat the eye?

There seems no reason to suppose that the eye is the ultimate vision machine: it

has been built through the vagaries of evolution, so it may be well adapted for

finding berries or nuts, or for recognizing faces, but ill-suited for certain other

tasks. One such task is that of measurement. The eye probably does not need to

measure the sizes of objects, at a glance, to better than a few percent accuracy.

However, it could be distinctly useful if the robot eye could achieve remote size

measurement, at a glance, and with an accuracy of say 0.001%. Clearly, the robot

eye could acquire capabilities superior to those of biological systems. Again, this

book aims to point out such possibilities where they exist.

Finally, it will be useful to clarify the terms “Machine Vision” and “Computer

Vision.” In fact, these arose a good many years ago when the situation was quite

different from what it is today. Over time, computer technology has advanced

hugely and at the same time knowledge about the whole area of vision has been

radically developed. In the early days, Computer Vision meant the study of the

science of vision and the possible design of the software—and to a lesser extent

with what goes into an integrated vision system, whereas Machine Vision meant

the study not only of the software but also of the hardware environment and of

the image acquisition techniques needed for real applications—so it was a much

more engineering-orientated subject. At the present point in time, computer tech-

nology has advanced so far that a sizeable proportion of real-world and real-time

applications can be realized on unaided PCs. This and many other developments

in knowledge in this area have led to significant convergence between the terms,

with the result that they are often used more or less interchangeably. But bear

in mind that certain implementation tools such as those of embedded systems

(Chapter 26) require expertise that only a limited number of vision practitioners

possess. Overall, the present volume aims to embody a comprehensive view

of the whole subject, which explains the combined title Computer and Machine

Vision.

Broadly, Computer Vision is the science of vision and Machine Vision is the study of
methods, techniques and hardware whereby artificial vision systems can be constructed for
practical applications. Recently, the advent of faster computers has led to significant
convergence in the use of these terms.

1.5 THE FOLLOWING CHAPTERS
On the whole, the early chapters of the book (Chapters 2�4) cover rather simple

concepts, such as the nature of image processing, how image processing algorithms

may be devised, and the restrictions on intensity thresholding techniques. The next

three chapters (Chapters 5�8) discuss edge detection and some classic binary image

analysis techniques (although topics such as graph cuts and affine invariant feature

detectors are quite recent and are still developing). Then, Chapters 9�14 move on
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to intermediate-level processing that has developed significantly in the past two

decades, particularly in the use of transform techniques to deduce the presence of

objects. Intermediate-level processing is important for the inference of complex

objects, both in 2-D (Chapter 14) and subsequently in 3-D (Chapter 15). It also

enables automated inspection to be undertaken efficiently (Chapter 20). Chapter 24

enlarges on the process of recognition that is fundamental to many inspection and

other processes—as outlined earlier in this chapter. Chapters 25 and 26, respec-

tively, outline the enabling technologies of image acquisition and vision hardware

design; finally, Chapter 27 reiterates and highlights some of the lessons and topics

dealt within the book, while Appendix A develops the subject of Robust Statistics

that relates to a large proportion of the methods that are covered here.

To help give the reader more perspective on the 27 chapters, the main text

has been divided into four parts: Part 1 (Chapters 2�8) is entitled “Low-Level

Vision,” Part 2 (Chapters 9�14) is called “Intermediate-Level Vision,” Part 3

(Chapters 15�19) is entitled “3-D Vision and Motion,” and Part 4 (Chapters

20�27) is headed “Towards Real-Time Pattern Recognition Systems.” This last

heading is used to emphasize real-world applications with immutable data flow

rates, and the need to integrate all the necessary recognition processes into reliable

working systems.

Although the sequence of chapters follows the somewhat logical order just

described, the ideas outlined in the previous section—understanding of the visual pro-

cess, constraints imposed by realities such as noise and occlusion, tradeoffs between

relevant parameters, and so on—are mixed into the text at relevant junctures, as they

reflect all-pervasive issues.

Finally, there are many topics that would ideally have been included in the

book, yet space did not permit this. The chapter bibliographies, the main list of

references and the indexes are intended to make good some of these deficiencies.

1.6 BIBLIOGRAPHICAL NOTES
The purpose of this chapter is to introduce the reader to some of the problems

of machine vision, showing the intrinsic difficulties but not getting into details

at this stage. For detailed references the reader should consult the later chapters.

Meanwhile, some background on the world of pattern recognition can be obtained

from Duda et al. (2001). In addition, some insight into human vision can be

obtained from the fascinating monograph by Hubel (1995).

14 CHAPTER 1 Vision, the Challenge



PART

1
Low-Level Vision

This part of the book introduces images and image processing, and then proceeds

to show how image processing may be developed in order to start the process of

image analysis. By the end of Chapter 8, image analysis has been taken, via this

“traditional” route, far enough to achieve a good many useful practical aims. The

main topics to be developed are noise suppression, feature detection, object seg-

mentation, and region analysis with the aid of morphology—itself a development

of basic procedures defined and elaborated in the first two chapters of Part 1.
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CHAPTER

2Images and Imaging
Operations

p �i x 0 �ellat _ed, a. picture broken into a regular tiling

p �i x 0 �i lat _ed, a. pixie-like, crazy, deranged

Images are at the core of vision, and there are many ways—from simple to

sophisticated—for processing and analyzing them. This chapter concentrates on

simple algorithms, which nevertheless need to be treated carefully as there are

important subtleties to be learnt. Above all, the chapter aims to show that quite a

lot can be achieved with such algorithms, which can readily be programmed and

tested by the reader.

Look out for:

• the different types of image—binary, grayscale, and color.

• a compact notation for presenting image processing operations.

• basic pixel operations—clearing, copying, inverting, thresholding.

• basic window operations—shifting, shrinking, expanding.

• grayscale brightening and contrast-stretching operations.

• binary edge location and noise removal operations.

• multi-image and convolution operations.

• the distinction between sequential and parallel operations, and complications

that can arise in the sequential case.

• problems that arise around the edge of the image.

Although elementary, this chapter actually provides basic methodology for

the whole of Part 1 and much of Part 2 of the book, and its importance should not

be underestimated: nor should the subtleties be ignored. Full understanding at this

stage will save many complications later, while programming more sophisticated

algorithms.
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2.1 INTRODUCTION
This chapter is concerned with images and simple image processing operations.

It is intended to lead on to more advanced image analysis operations that are of

use for machine vision in an industrial environment. Perhaps the main purpose

of the chapter is to introduce the reader to some basic techniques and notations

that will be of use throughout the book. However, the image processing algo-

rithms introduced here are of value in their own right in disciplines ranging

from remote sensing to medicine, and from forensic to military and scientific

applications.

This chapter deals with images that have already been obtained from suitable

sensors: sensors are covered in Chapter 25. Typical of such images is that shown in

Fig. 2.1(a). This is a gray-tone image that at first sight appears to be a normal “black

and white” photograph. However, closer inspection shows that it is composed of a

large number of individual picture cells, or “pixels.” In fact, the image is a

1283 128 array of pixels. To get a better feel for the limitations of such a digitized

image, Fig. 2.1(b) shows a 423 42 section that has been subjected to a three-fold

magnification so that the pixels can be examined individually.

It is not easy to see that these gray-tone images are digitized into a gray

scale containing just 64 gray levels. To some extent high spatial resolution com-

pensates for lack of grayscale resolution, and as a result it is difficult to see the

difference between an individual shade of gray and the shade it would have had

in an ideal picture. In addition, when we look at the magnified section of image

in Fig. 2.1(b), it is difficult to understand the significance of the individual pixel

intensities—the whole is becoming lost in a mass of small parts. Early TV cam-

eras typically gave a grayscale resolution that was accurate only to about 1 part

in 50, corresponding to about 6 bits of useful information per pixel. Modern

solid-state cameras commonly give less noise and may allow 8 or even 9 bits of

information per pixel. However, there are many occasions when it is not worth-

while to aim for such high grayscale resolutions, particularly when the result

will not be visible to the human eye, or when there is an enormous amount of

other data that a robot can use to locate objects within the field of view. Note

that if the human eye can see an object in a digitized image of particular spatial

and grayscale resolution, it is in principle possible to devise a computer algo-

rithm to do the same thing.

Nevertheless, there is a range of applications for which it is valuable to

retain good grayscale resolution, so that highly accurate measurements can be

made from a digital image. This is the case in many robotic applications, where

high-accuracy checking of components is critical. More will be said about this

later. In addition, it will be seen in Part 2 that certain techniques for locating

components efficiently require local edge orientation to be estimated to better

than 1�, and this can be achieved only if at least 6 bits of grayscale information

are available per pixel.

18 CHAPTER 2 Images and Imaging Operations



2.1.1 Gray Scale Versus Color
Returning now to the image of Fig. 2.1(a), we might reasonably ask whether it

would be better to replace the gray scale with color, using an RGB color camera

(a)

(b)

FIGURE 2.1

Typical grayscale image: (a) grayscale image digitized into a 1283 128 array of pixels;

(b) section of image shown in (a) subjected to three-fold linear magnification: the

individual pixels are now clearly visible.
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and three digitizers for the three main colors. There are two aspects of color that

are important for the present discussion. One is the intrinsic value of color in

machine vision and the other is the additional storage and processing penalty

it might bring. It is tempting to say that the latter aspect is of no great importance

given the cheapness of modern computers which have both high storage and high

speed. On the other hand, high-resolution images can arrive from a collection

of CCTV cameras at huge data rates, and it will be many years before it will be

possible to analyze all the data arriving from such sources as they come in.

Hence, if color adds substantially to the storage and processing load, this will

need to be justified.

Against this, the potential of color for helping with many aspects of inspection,

surveillance, control, and a wide variety of other applications including medicine

(color playing a crucial role in images taken during surgery) is enormous. This is

illustrated with regard to robot navigation and driving in Figs. 2.2 and 2.3; and

FIGURE 2.2

Value of color for segmentation and recognition. In natural outdoor scenes such as this,

color helps with segmentation and with recognition. While it may have been important

to the early human when discerning sources of food in the wild, robot drones may benefit

by using color to aid navigation (see also color Plate 2).
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for food inspection in Figs. 2.4 and 2.5; for color filtering see Figs. 3.12 and 3.13.

Note that some of these images almost have color for color’s sake (especially in

Figs. 2.4 and 2.5), although none of them are artificially generated. In others the

color is more subdued (Fig. 2.3), and in Fig. 2.5 (excluding the tomatoes), it is

quite subtle. The point to be made here is that for color to be useful it need not be

garish, but can be subtle as long as it brings the right sort of information to bear on

the task in hand. Suffice it to say that in some of the simpler inspection applica-

tions, where mechanical components are scrutinized on a conveyor or workbench,

it is quite likely to be the shape that is in question rather than the color of the

object or its parts. On the other hand, if an automatic fruit picker is to be devised,

it will probably be more crucial to check color than specific shape. We leave it to

the reader to imagine when and where color is particularly useful, or merely an

unnecessary luxury.

FIGURE 2.3

Value of color in the built environment. Color plays an important role for the human

in managing the built environment. In a vehicle, a plethora of bright lights, road

signs, and markings (such as yellow lines) are coded to help the driver: they may

likewise help a robot to drive more safely by the provision of crucial information

(see also color Plate 3).
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Next, it is useful to consider the processing aspect of color. In many cases,

good color discrimination is required to separate and segment two types of

object from each other. Typically this will mean not using one or other specific

color channel,1 but subtracting two, or combining three in such a way as to

foster discrimination. In the worst case of combining three color channels by

simple arithmetic processing in which each pixel is treated identically, the pro-

cessing load will be very light. In contrast, the amount of processing required

to determine the optimal means of combining the data from the color channels,

and to carry out different operations dynamically on different parts of the

image, may be far from negligible, and some care will be needed in the analy-

sis. These problems arise because color signals are inhomogeneous: this con-

trasts with the situation for grayscale images, where the bits representing the

gray scale are all of the same type and take the form of a number representing

the pixel intensity: they can thus be processed as a single entity on a digital

computer.

FIGURE 2.4

Value of color for food inspection. Much food is brightly colored, as with this Japanese

meal. While this may be attractive to the human, it could also help the robot to check

quickly for foreign bodies or toxic substances (see also color Plate 4).

1Here we use the term “channel” not just to refer to the red, green, or blue channel, but any derived

channel obtained by combining the colors into a single-color dimension.
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2.2 IMAGE PROCESSING OPERATIONS
In what follows, the images of Figs. 2.1(a) and 2.7(a) are considered in some

detail, examining some of the many image processing operations that can be per-

formed on them. The resolution of these images reveals a considerable amount of

detail and at the same time shows how it relates to the more “meaningful” global

information. This should help to make it clear how simple imaging operations

contribute to image interpretation.

When performing image processing operations, we start with an image in one

storage area and generate a new processed image in another storage area. In prac-

tice, these storage areas may either be in a special hardware unit called a frame

store that is interfaced to the computer or they may be in the main memory of the

computer or on one of its disks. In the past a special frame store was required

to store images, since each image contains a good fraction of a megabyte of infor-

mation and this amount of space was not available for normal users in the

computer main memory. Nowadays this is less of a problem, but for image

FIGURE 2.5

Subtle shades of color in food inspection. While much food is brightly colored, as for the

tomatoes in this picture, green salad leaves show much more subtle combinations of color

and may indeed provide the only reliable means of identification. This could be important

for inspection both of the raw product and its state when it reaches the warehouse or the

supermarket.
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acquisition and display a frame store is still required. However, we shall not

worry about such details here. Instead it will be assumed that all images are inher-

ently visible and that they are stored in various image “spaces” P, Q, R, etc.

Thus, we might start with an image in space P and copy it to space Q, for

example.

2.2.1 Some Basic Operations on Grayscale Images
Perhaps the simplest of imaging operations is that of clearing an image or setting

the contents of a given image space to a constant level. We need some way of

arranging this, and accordingly the following C11 routine may be written for

implementing it:2

for ðj50; j,5127; j11Þ
for ði50; i,5127; i11Þ

P½j�½i�5alpha;
ð2:1Þ

In this routine the local pixel intensity value is expressed as P[j][i], since P-space

is taken to be a two-dimensional array of intensity values (Table 2.1). In what fol-

lows, it will be advantageous to rewrite such routines in the more succinct form:

for all pixels in image do fP05alpha; g ð2:2Þ
as this will aid understanding by removing irrelevant programming detail. The

reason for calling the pixel intensity P0 will become clear later.

Another simple imaging operation is to copy an image from one space to

another. This is achieved, without changing the contents of the original space P,

by the routine:

for all pixels in image do fQ05P0; g ð2:3Þ
A more interesting operation is that of inverting the image, as in the process

of converting a photographic negative to a positive. This process is represented as

follows:

for all pixels in image do fQ05255� P0; g ð2:4Þ
In this case, it is assumed that pixel intensity values lie within the range

0�255, as is commonly true for frame stores that represent each pixel as one byte

of information. Note that such intensity values are commonly unsigned and this is

assumed generally in what follows.

There are many operations of these types. Some other simple operations are

those that shift the image left, right, up, down, or diagonally. They are easy to

implement if the new local intensity is made identical to that at a neighboring

location in the original image. It is evident how this would be expressed in the

double suffix notation used in the original C11 routine. In the new shortened

2Readers who are unfamiliar with C11 or Java, which is similar at this level of programming,

should refer to Stroustrup (1991) and Schildt (1995).

24 CHAPTER 2 Images and Imaging Operations



Table 2.1 C11 Notation

Notation Meaning

11 increment the preceding variable.
[ ] add array index after a variable.
[ ][ ] add two array indices after a variable; the last is the

faster running index.
(int) changes the following variable to integer type.
(float) changes the following variable to floating point.
{ } encloses a sequence of instructions.
if ( ) { }; basic conditional statement: ( ) encloses the condition;

{ } encloses the instructions to be executed.
if ( ) { }; else if ( ) { };
. . . ; else { };

the most general type of conditional statement.

while ( ) { } common type of iterated loop.
do { } while ( ); another common type of iterated loop.
do { } until ( ); “until” means the same as “while not.” This is often a

convenient notation, although it is not strict C11 .
for ( ; ; ) { }; here the conditional statement ( ) has three arguments

separated by semicolons: they are respectively the initial
condition; the terminating condition; and the
incrementation operation.

5 forces equality (literally: “takes the value”).
55 tests for equality in a conditional expression.
,5 #

.5 $

!5 6¼
! logical not.
&& logical and.
jj logical or.
// indicates that the remainder of the line is a comment.
/* . . . */ brackets enclosing a comment.
A0 . . . A8
B0 . . . B8
C0 . . . C8

)
bit image variables in 33 3 window.a

P0 . . . P8
Q0 . . . Q8
R0 . . . R8

)
byte image variables in 33 3 window.a

P[0], . . . equivalent to P0, . . .

aThese predefined variables denote special syntax not available in C11, but useful for simplifying the
image processing algorithms presented in Chapters 2, 3, 4, 7 and 9.
Note: The purpose of this table is to show what is meant by the various C11 commands and
instructions used in this book. It is not intended to be comprehensive. The aim is merely to be helpful
to the reader. In general, only notation that differs between C11 and other commonly used languages
such as Pascal is included, in order to eliminate possible ambiguity or confusion.
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notation, it is necessary to name neighboring pixels in some convenient way, and

we here employ the following simple scheme:

P8P7P6

P1P0P5

P2P3P4

with a similar scheme for other image spaces. With this notation, it is easy to

express a left shift of an image as follows:

for all pixels in image do fQ05P1;g ð2:5Þ

Similarly, a shift down to the bottom right is expressed as:

for all pixels in image do fQ05P4;g ð2:6Þ
It will now be clear why P0 and Q0 were chosen for the basic notation of pixel

intensity: the “0” denotes the central pixel in the “neighborhood” or “window,” and

corresponds to zero shift when copying from one space to another. However, the

type of window operation presented above is much more powerful than single-pixel

operations, and we shall see many examples of it in what follows. Meanwhile, note

that it can give rise to difficulties around the boundaries of the image: we shall

return to this point in Section 2.4.

There is a whole range of possible operations associated with modifying

images in such a way as to match them to the requirements of a human viewer.

For example, adding a constant intensity makes the image brighter:

for all pixels in image do fQ05P01beta; g ð2:7Þ
and the image can be made darker in the same way. A more interesting operation

is to stretch the contrast of a dull image:

for all pixels in image do fQ05P0 � gamma1beta; g ð2:8Þ
where gamma. 1. In practice (as for Fig. 2.6), it is necessary to ensure that inten-

sities do not result that are outside the normal range, e.g., by using an operation

of the form:

for all pixels in image do f
QQ5P0 � gamma1beta;
if QQ,0ð Þ Q050;
else if QQ.255ð Þ Q05255;
else Q05QQ;

g

ð2:9Þ

Most practical situations demand more sophisticated transfer functions—either

nonlinear or piecewise linear—but such complexities are ignored here.
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A further simple operation that is often applied to grayscale images is that of

thresholding to convert to a binary image. This topic is covered in more detail

later, since it is widely used to detect objects in images. However, our purpose

here is to look on it as another basic imaging operation. It can be implemented

using the routine:3

for all pixels in image do f
if P0.threshð Þ A051; else A050;

g
ð2:10Þ

If, as very often happens, objects appear as dark objects on a light background,

it is easier to visualize the subsequent binary processing operations by inverting

the thresholded image using a routine such as:

for all pixels in image do fA0512A0; g ð2:11Þ

FIGURE 2.6

Contrast stretching: effect of increasing the contrast in the image of Fig. 2.1(a) by a factor of

two and adjusting the mean intensity level appropriately. The interior of the jug can now be

seen more easily. Note, however, that there is no additional information in the new image.

3The first few letters of the alphabet (A, B, C, . . .) are used consistently to denote binary image spaces,

and later letters of the alphabet (P, Q, R, . . .) to denote grayscale images (Table 2.1). In software, these

variables are assumed to be predeclared, and in hardware (e.g., frame store) terms they are taken to

refer to dedicated memory spaces containing only the necessary 1 or 8 bits per pixel. The intricacies of

data transfer between variables of different types are important considerations that are not addressed in

detail here. It is sufficient to assume that both A05P0 and P05A0 correspond to a single-bit transfer,

except that in the latter case the top 7 bits are assigned the value 0.
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However, it would be more usual to combine the two operations into a single

routine of the form:

for all pixels in image do f
if P0.threshð Þ A050; else A05l;

g
ð2:12Þ

To display the resulting image in a form as close as possible to the original,

it can be reinverted and given the full range of intensity values (intensity values

0 and 1 being scarcely visible):

for all pixels in image do fR05255 � ð12A0Þ; g ð2:13Þ
Figure 2.7 shows the effect of these two operations.

2.2.2 Basic Operations on Binary Images
Once the image has been thresholded, a wide range of binary imaging operations

become possible. Only a few such operations are covered here, with the aim of

being instructive rather than comprehensive. With this in mind, a routine may be

written for shrinking dark-thresholded objects (Fig. 2.8(a)) that are here repre-

sented by a set of 1’s in a background of 0’s:

for all pixels in image do f
sigma5A11A21A31A41A51A61A71A8;
if A0550ð Þ B050;
else if sigma,8ð Þ B050;
else B051;

g

ð2:14Þ

(a) (b)

FIGURE 2.7

Thresholding of grayscale images: (a) 1283 128 pixel grayscale image of a collection

of parts; (b) effect of thresholding the image.
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In fact, the logic of this routine can be simplified to give the following more

compact version:

for all pixels in image do f
sigma5A11A21A31A41A51A61A71A8;
if sigma,8ð Þ B050; else B05A0;

g
ð2:15Þ

Note that the process of shrinking dark objects also expands light objects,

including the light background. It also expands holes in dark objects. The opposite

(a) (b)

(c)

FIGURE 2.8

Simple operations applied to binary images: (a) effect of shrinking the dark-thresholded

objects appearing in Fig. 2.7(b); (b) effect of expanding these dark objects; (c) result

of applying an edge location routine. Note that the shrink, expand, and edge routines

are applied to the dark objects: this implies that the intensities are initially inverted

as part of the thresholding operation and then reinverted as part of the display operation

(see text).
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process, that of expanding dark objects (or shrinking light ones), is achieved

(Fig. 2.8(b)) with the routine:4

for all pixels in image do f
sigma5A11A21A31A41A51A61A71A8;
if sigma.0ð Þ B051; else B05A0;

g
ð2:16Þ

Each of these routines employs the same technique for interrogating neighboring

pixels in the original image: as will be apparent on numerous occasions in this book,

the sigma value is a useful and powerful descriptor for 33 3 pixel neighborhoods.

Thus, “if (sigma. 0)” can be taken to mean “if next to a dark object” and the conse-

quence can be read as “then expand it.” Similarly, “if (sigma, 8)” can be taken to

mean “if next to a light object” or “if next to light background,” and the consequence

can be read as “then expand the light background into the dark object.”

The process of finding the edge of a binary object has several possible inter-

pretations. Clearly, it can be assumed that an edge point has a sigma value in

the range l�7 inclusive. However, it may be defined as being within the object,

within the background or in either position. Taking the definition that the edge

of an object has to lie within the object (Fig. 2.8(c)), the following edge-finding

routine for binary images results:

for all pixels in image do f
sigma5A11A21A31A41A51A61A71A8;
if sigma558ð Þ B050; else B05A0;

g
ð2:17Þ

This strategy amounts to canceling out object pixels that are not on the edge. For

this and a number of other algorithms (including the shrink and expand algorithms

already encountered), a thorough analysis of exactly which pixels should be set to

1 and 0 (or which should be retained and which eliminated) involves drawing up

tables of the form:

sigma

0�7 8

A0 0 0 0
1 1 0

This reflects the fact that algorithm specification includes a recognition phase

and an action phase, i.e., it is necessary first to locate situations within an image

where (for example) edges are to be marked or noise eliminated, and then action

must be taken to implement the change.

4The processes of shrinking and expanding are widely known by the respective terms “erosion” and

“dilation.” (See also Chapter 7.)
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Another function that can usefully be performed on binary images is the

removal of “salt and pepper” noise, i.e., noise which appears as a light spot on a

dark background or a dark spot on a light background. The first problem to be

solved is that of recognizing such noise spots; the second is the simpler one of

correcting the intensity value. For the first of these tasks the sigma value is again

useful. To remove salt noise (which has binary value 0 in our convention), we

arrive at the following routine:

for all pixels in image do f
sigma5A11A21A31A41A51A61A71A8;
if ðsigma558Þ B051; else B05A0;

g
ð2:18Þ

which can be read as leaving the pixel intensity unchanged unless it is proven to

be a salt noise spot. The corresponding routine for removing pepper noise (binary

value 1) is:

for all pixels in image do f
sigma5A11A21A31A41A51A61A71A8;
if ðsigma550Þ B050; else B05A0;

g
ð2:19Þ

Combining these two routines into one operation (Fig. 2.9(a)) gives:

for all pixels in image do f
sigma5A11A21A31A41A51A61A71A8;
if sigma550ð Þ B050;
else if sigma558ð Þ B05l;
else B05A0;

g

ð2:20Þ

(a) (b)

FIGURE 2.9

Simple binary noise removal operations: (a) result of applying a “salt and pepper”

noise removal operation to the thresholded image in Fig. 2.7(b). (b) Result of applying

a less stringent noise removal routine: this is effective in cutting down the jagged spurs

that appear on some of the objects.
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The routine can be made less stringent in its specification of noise pixels, so

that it removes spurs on objects and background: this is achieved (Fig. 2.9(b)) by

a variant such as:

for all pixels in image do f
sigma5A11A21A31A41A51A61A71A8;
if sigma,2ð Þ B050;
else if sigma.6ð Þ B051;
else B05A0;

g

ð2:21Þ

As before, if there is any doubt about the algorithm, its specification should

be set up rigorously—as in the following table:

sigma

0 or 1 2�6 7 or 8

A0 0 0 0 1
1 0 1 1

There are many other simple operations that can usefully be applied to binary

images and some of them are dealt with in Chapter 9.

2.3 CONVOLUTIONS AND POINT SPREAD FUNCTIONS
Convolution is a powerful and widely used technique in image processing

and other areas of science. It appears in many applications throughout this book

and it is therefore useful to introduce it at an early stage. We start by defining the

convolution of two functions f(x) and g(x) as the integral:

f ðxÞ � gðxÞ5
ðN
2N

f ðuÞgðx2 uÞ du (2.22)

The action of this integral is normally described as the result of applying a point

spread function g(x) to all points of a function f(x) and accumulating the contribu-

tions at every point. It is significant that if the point spread function (PSF) is very

narrow,5 then the convolution is identical to the original function f(x). This makes it

natural to think of the function f(x) as having been spread out under the influence of

g(x). This argument may give the impression that convolution necessarily blurs the

original function but this is not always so if, for example, the PSF has a distribution

of positive and negative values.

When convolution is applied to digital images, the above formulation changes

in two ways: (i) a double integral must be used in respect of the two dimensions

5Formally, it can be a delta function, which is infinite at one point and zero elsewhere while having

an integral of unity.
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and (ii) integration must be changed into discrete summation. The new form of

the convolution is:

Fðx; yÞ5 f ðx; yÞ � gðx; yÞ5
X
i

X
j

f ði; jÞgðx2 i; y2 jÞ (2.23)

where g is now referred to as a spatial convolution mask. The fact that the mask

has to be inverted before it is applied is inconvenient for visualizing the process

of convolution—particularly when matching operations are involved, e.g., for corner

location (see Chapter 6). In this book, we therefore present only pre-inverted masks

of the form:

hðx; yÞ5 gð2x; 2yÞ (2.24)

Convolution can then be calculated using the more intuitive formula:

Fðx; yÞ5
X
i

X
j

f ðx1i; y1jÞhði; jÞ (2.25)

which involves multiplying corresponding values in the modified mask and the

neighborhood under consideration. Re-expressing this result for a 33 3 neighborhood

and writing the mask coefficients in the form:

h4 h3 h2

h5 h0 h1

h6 h7 h8

2
4

3
5

the algorithm can be obtained in terms of our earlier notation:

for all pixels in image do f
Q05P0 � h01P1 � h11P2 � h21P3 � h31P4 � h4

1P5 � h51P6 � h61P7 � h71P8 � h8;
g

ð2:26Þ

We are now in a position to apply convolution to a real situation. At this stage

we attempt to suppress noise by averaging over nearby pixels. A simple way of

achieving this is to use the convolution mask:

1

9

1 1 1

1 1 1

1 1 1

2
4

3
5

where the number in front of the mask weighs all the coefficients in the mask and

is inserted to ensure that applying the convolution does not alter the mean intensity

in the image. As hinted above, this particular convolution has the effect of blurring

the image as well as reducing the noise level (Fig. 2.10). More will be said about

this in the next chapter.
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The above discussion makes it clear that convolutions are linear operators. In fact,

they are the most general spatially invariant linear operators that can be applied to

a signal such as an image. Note that linearity is often of interest in that it permits

mathematical analysis to be performed that would otherwise be intractable.

2.4 SEQUENTIAL VERSUS PARALLEL OPERATIONS
It will be noticed that most of the operations defined so far have started with an

image in one space and finished with an image in a different space. Unfortunately,

many of the operations will not work satisfactorily if we do not use separate input

and output spaces in this way. This is because they are inherently “parallel proces-

sing” routines. This term is used as these are the types of process that would be

performed by a parallel computer possessing a number of processing elements

equal to the number of pixels in the image, so that all the pixels are processed

simultaneously. If a serial computer is to simulate the operation of a parallel com-

puter, then it must have separate input and output image spaces and rigorously

work in such a way that it uses the original image values to compute the output

FIGURE 2.10

Noise suppression by neighborhood averaging achieved by convolving the original image

of Fig. 2.1(a) with a uniform mask within a 33 3 neighborhood. Note that noise is

suppressed only at the expense of introducing significant blurring.
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pixel values. This means that an operation such as the following cannot be an ideal

parallel process:

for all pixels in image do f
sigma5A11A21A31A41A51A61A71A8;
if sigma,8ð Þ A050; else A05A0;

g
ð2:27Þ

This is so because, when the operation is half completed, the output pixel

intensity will depend not only on some of the unprocessed pixel values but also

on some that have already been processed. For example, if the computer makes a

normal (forward) TV raster scan through the image, the situation at a general

point in the scan will be

√ √ √
√ × ×
× × ×

where the ticked pixels have already been processed and the others have not. As

a result, the above operation will shrink all objects to nothing.

A much simpler illustration of this is obtained by attempting to shift an image

to the right using the following routine:

for all pixels in image do fP05P5; g ð2:28Þ
In fact, all this achieves is to fill up the image with values corresponding

to those off its left edge,6 whatever they are assumed to be. Thus, we have shown

that the shifting process is inherently parallel.

It will be seen in Chapter 9 that there are some processes that are inherently

sequential—i.e., the processed pixel has to be returned immediately to the original

image space. Meanwhile, note that not all of the routines described so far need to be

restricted rigorously to parallel processing. In particular, all single-pixel routines

(essentially those that only refer to the single pixel in a 131 neighborhood) can val-

idly be performed as if they were sequential in nature. Such routines include the fol-

lowing intensity adjustment and thresholding operations:

for all pixels in image do fP05P0 � gamma1beta; g ð2:29Þ
for all pixels in image do fif ðP0.threshÞ P051; else P050; g ð2:30Þ
These remarks are intended to act as a warning. In general, it is safest to

design algorithms that are exclusively parallel processes unless there is a definite

need to make them sequential. It will be seen later how this need can arise.

6Note that when the computer is performing a 33 3 (or larger) window operation, it has to assume

some value for off-image pixel intensities: usually whatever value is selected will be inaccurate,

and so the final processed image will contain a border that is also inaccurate. This will be so

whether the off-image pixel addresses are trapped in software or in specially designed circuitry in

the frame store.
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2.5 CONCLUDING REMARKS
This chapter has introduced a compact notation for representing imaging

operations and has demonstrated some basic parallel processing routines. The

following chapter extends this work to see how noise suppression can be

achieved in grayscale images. This leads on to more advanced image analysis

work that is directly relevant to machine vision applications. In particular,

Chapter 4 studies in more detail the thresholding of grayscale images, build-

ing on the work of Section 2.2.1, while Chapter 9 studies object shape analy-

sis in binary images.

Pixel�pixel operations can be used to make radical changes in digital images. However,
this chapter has shown that window�pixel operations are far more powerful, and capable
of performing all manner of size- and shape-changing operations, as well as eliminating
noise. But caveat emptor—sequential operations can have some odd effects if
adventitiously applied.

2.6 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Since the aim of this chapter is not to cover the most recent material but to

provide a succinct overview of basic techniques, it will not be surprising that

most of the topics discussed were developed well over 20 years ago and have

been used by a large number of workers in many areas. For example, thresholding

of grayscale images was first reported at least as long ago as 1960, while shrink-

ing and expanding of binary picture objects date from a similar period.

Discussion of the origins of other techniques is curtailed: for further detail the

reader is referred to the texts by, e.g., Gonzalez and Woods (2008), Nixon and

Aguado (2008), Petrou and Petrou (2010), and Sonka et al. (2007). We also refer

to two texts that cover programming aspects of image processing in some depth:

Parker (1994), which covers C programming, and Whelan and Molloy (2001),

which covers Java programming. More specialized texts will be referred to in the

following chapters.

2.7 PROBLEMS
1. Derive an algorithm for finding the edges of binary picture objects by apply-

ing a shrink operation and combining the result with the original image. Is the

result the same as that obtained using the edge-finding routine (Eq. 2.17)?

Prove your statement rigorously by drawing up suitable algorithm tables as in

Section 2.2.2.
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2. In a certain frame store, each off-image pixel can be taken to have either

the value 0 or the intensity of the nearest image pixel. Which of the two

will give the more meaningful results for (a) shrinking, (b) expanding, and

(c) a blurring convolution?

3. Suppose the noise elimination routines of equations (2.20) and (2.21) were

reimplemented as sequential algorithms. Show that the action of the first

would be unchanged, whereas the second would produce very odd effects on

some binary images.
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CHAPTER

3 Basic Image Filtering
Operations

Image filtering involves the application of window operations that achieve useful

effects, such as noise removal or image enhancement. This chapter is concerned

particularly with what can be achieved with quite basic approaches, such as

application of local mean, median, or mode filters to digital images. The focus

is on grayscale images, although some aspects of color processing are also

covered.

Look out for:

• what can be achieved by low-pass filtering in the spatial frequency domain.

• how the same process can be carried out by convolution in the spatial domain.

• the problem of impulse noise and what can be achieved with a limiting filter.

• the value of median, mode, and rank order filters.

• how computational load can be reduced.

• the distinction between image enhancement and image restoration.

• the distortions produced by standard filters—mean, Gaussian, median, mode,

and rank order filters.

This chapter takes pain to delve into the properties of a variety of standard types

of filter, because it is necessary to know both what they can achieve and what their

limitations are. In fact, the edge shifts produced by most of these filters are small

but predictable, and therefore correctable in principle. The exception is the rank

order filter, for which the shifts can be large—but this is the advantage of this type

of filter, which is at the core of mathematical morphology (see Chapter 7).

3.1 INTRODUCTION
Chapter 2 is concerned with simple imaging operations, including such problems

as thresholding grayscale images and suppressing noise in binary images. In this

chapter, the discussion is extended to noise suppression and enhancement in

Computer and Machine Vision.
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grayscale images. Although these types of operation can for the most part be

avoided in industrial applications of vision, it is useful to examine them in some

depth because of their wide use in a variety of other image processing applica-

tions and because they set the scene for much of what follows. In addition, some

fundamental issues come to light which are of vital importance.

It has already been seen that noise can arise in real images and it is hence nec-

essary to have sound techniques for suppressing it. Commonly, in electrical engi-

neering applications, noise is removed by means of low-pass or other filters that

operate in the frequency domain (Rosie, 1966). Applying these filters to 1-D

time-varying analog signals is straightforward, since it is necessary only to place

them at suitable stages in the sequence of black boxes through which the signals

pass. For digital signals the situation is more complicated, since the frequency

transform of the signal must first be computed, then the low-pass filter applied,

and finally the signal obtained from the modified transform by converting back to

the time domain. Thus, two Fourier transforms have to be computed, although

modifying the signal while it is in the frequency domain is a straightforward task

(Fig. 3.1). In fact, the amount of processing involved in computing the discrete

Fourier transform of a signal represented by N samples is of order N2 (we shall

write this as O(N2)), although the amount of computation can be cut down to

O(N log2N) by employing the fast Fourier transform (FFT) (Gonzalez and Woods,

1992). This then becomes a practical approach for the elimination of noise.

When applying these ideas to images we must first note that the signal is a

spatial rather than a time-varying quantity and must be filtered in the spatial fre-

quency domain. Mathematically this makes no real difference, but there are nev-

ertheless significant problems. First, there is no satisfactory analog shortcut and

the whole process has to be carried out digitally (we here ignore optical proces-

sing methods despite their obvious power, speed, and high resolution, because

they are by no means trivial to marry with digital computer technology). Second,

Fourier
transforms s

ss

(b)

(a)

f f

(inverse)
Fourier
transform

FIGURE 3.1

Low-pass filtering for noise suppression: s, spatial domain; f, spatial frequency domain;

3 , multiplication by low-pass characteristic; *, convolution with Fourier transform of

low-pass characteristics. (a) Low-pass filtering achieved most simply, by a process of

multiplication in the (spatial) frequency domain; (b) low-pass filtering achieved by a

process of convolution. Note that (a) may require more computation overall, because

of the two Fourier transforms that have to be performed.
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for an N3N pixel image, the number of operations required to compute a Fourier

transform is O(N3) and the FFT only reduces this to O(N2 log2 N), so the amount

of computation is quite considerable (here it is assumed that the 2-D transforms

are implemented by successive passes of 1-D transforms: see Gonzalez and

Woods, 1992). Note also that two Fourier transforms are required for the purpose

of noise suppression (Fig. 3.1). Nevertheless, in many imaging applications it is

worth proceeding in this way, because not only noise can be removed but also

TV scan lines and other artifacts can be filtered out. This situation applies particu-

larly in remote sensing and space technology. However, in industrial applications

the emphasis is always on real-time processing, so in many cases it is not practi-

cable to remove noise by spatial frequency domain operations. A further problem

is that low-pass filtering is suited to removing Gaussian noise, but distorts the

image if it is used to remove impulse noise.

Section 3.2 discusses Gaussian smoothing, in both the spatial frequency and

the spatial domains. The subsequent three sections introduce median filters, mode

filters, and then general rank order filters, and contrast their main properties and

uses. In Section 3.6, consideration is given to reducing computational load, with

particular reference to the median filter. Section 3.7 introduces the sharp�unsharp

masking technique, which provides a rather simple route to image enhancement.

Then follow a number of sections that concentrate on the edge shifts produced by

the various filters. In the case of the median filter, the discrete theory

(Section 3.9) is much more exact than the continuum model (Section 3.8). All

edge shifts are quite small, except for rank order filters (Section 3.12): these are

treated fairly fully because of their relevance to widely used morphological opera-

tors (Chapter 7) where the shifts are turned to advantage. Finally, Section 3.14

gives a brief discussion on the application of filters to color images.

3.2 NOISE SUPPRESSION BY GAUSSIAN SMOOTHING
Low-pass filtering is normally thought of as the elimination of signal components

with high spatial frequencies, and it is therefore natural to carry it out in the spa-

tial frequency domain. Nevertheless, it is possible to implement it directly in the

spatial domain. That this is possible is due to the well-known fact (Rosie, 1966)

that multiplying a signal by a function in the spatial frequency domain is equiva-

lent to convolving it with the Fourier transform of the function in the spatial

domain (Fig. 3.1). If the final convolving function in the spatial domain is suffi-

ciently narrow, then the amount of computation involved will not be excessive: in

this way a satisfactory implementation of the low-pass filter can be sought. It

now remains to find a suitable convolving function.

If the low-pass filter is to have a sharp cut-off, then its transform in image

space will be oscillatory: an extreme example of this is the sinc (sin x/x) function,

which is the spatial transform of a low-pass filter of rectangular profile (Rosie,
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1966). Oscillatory convolving functions are unsatisfactory since they can intro-

duce halos around objects, hence distorting the image quite grossly. Marr and

Hildreth (1980) suggested that the right types of filter to apply to images are those

that are well-behaved (nonoscillatory) both in the frequency and in the spatial

domain. Gaussian filters are able to fulfill this criterion optimally: they have iden-

tical forms in the spatial and spatial frequency domains. In 1-D, these forms are:

f ðxÞ5 1

ð2πσ2Þ1=2
exp 2

x2

2σ2

� �
(3.1)

FðωÞ5 exp 2
1

2
σ2ω2

� �
(3.2)

Thus, the type of spatial convolving operator required for the purpose of noise

suppression by low-pass filtering is one that approximates to a Gaussian profile.

Many such approximations appear in the literature: these vary with the size of the

neighborhood chosen and in the precise values of the convolution mask

coefficients.

One of the most common is the following mask, first introduced in Chapter 2,

which is used more for simplicity of computation than for its fidelity to a

Gaussian profile:

1

9

1 1 1

1 1 1

1 1 1

2
4

3
5

Another commonly used mask, which approximates more closely to a Gaussian

profile, is the following:

1

16

1 2 1

2 4 2

1 2 1

2
4

3
5

In both cases, the coefficients that precede the mask are used to weight all the

mask coefficients: as mentioned in Section 2.3, these weights are chosen so that

applying the convolution to an image does not affect the average image intensity.

These two convolution masks probably account for over 80% of all discrete

approximations to a Gaussian. Note that as they operate within a 33 3 neighbor-

hood, they are reasonably narrow and hence incur a relatively small computa-

tional load.

Let us next study the properties of this type of operator, deferring for now con-

sideration of Gaussian operators in larger neighborhoods. First, imagine such an

operator is applied to a noisy image whose intensity is inherently uniform. Then

clearly noise is suppressed, as it is now averaged over nine pixels. This averaging

model is obvious for the first of the two masks above but in fact applies equally to

the second mask, once it is accepted that the averaging effect is differently distrib-

uted in accordance with the improved approximation to a Gaussian profile.
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Although this example shows that noise is suppressed, it is clear that the signal

will also be affected. This problem arises only where the signal is initially non-

uniform: indeed, if the image intensity is constant, or if the intensity map approxi-

mates to a plane, there is again no problem. However, if the signal is uniform

over one part of a neighborhood and rises in another part of it, as is bound to

occur adjacent to the edge of an object, then the object will make itself felt at the

center of the neighborhood in the filtered image (see Fig. 3.2). As a result, the

edges of objects become somewhat blurred. Looking at the operator as a “mixing

operator” that forms a new picture by mixing together the intensities of pixels

fairly close to each other, it is intuitively obvious why blurring occurs.

It is also apparent from a spatial frequency viewpoint why blurring should

occur. Basically, we are aiming to give the signal a sharp cut-off in the spatial

frequency domain, and as a result it will become slightly blurred in the spatial

domain. Clearly, the blurring effect can be reduced by using the narrowest possi-

ble approximation to a Gaussian convolution filter, but at the same time the noise

suppression properties of the filter are lessened. Assuming that the image was ini-

tially digitized at roughly the correct spatial resolution, it will not normally be

appropriate to smooth it using convolution masks larger than 33 3 or at most

53 5 pixels (here we ignore methods of analyzing images that use a number of

versions of the image with different spatial resolutions: see for example, Babaud

et al., 1986).

Overall, low-pass filtering and Gaussian smoothing are not appropriate for the

applications considered here because of the blurring effects they introduce. Note

also that where interference occurs, it can give rise to impulse or “spike” noise

(corresponding to a number of individual pixels having totally the wrong intensi-

ties): merely averaging this noise over a larger neighborhood can make the situa-

tion worse, since the spikes will be smeared over a sizeable number of pixels and

will distort the intensity values of all of them. This consideration is important as

it leads naturally to the concepts of limit and median filtering.

I

x

FIGURE 3.2

Blurring of object edges by simple Gaussian convolutions. The simple Gaussian

convolution can be regarded as a grayscale neighborhood “mixing” operator, hence

explaining why blurring arises.
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3.3 MEDIAN FILTERS
The idea explored here is to locate the pixels in the image that have extreme and

therefore highly improbable intensities and to ignore their actual intensities, repla-

cing them with more suitable values. This is akin to drawing a graph through a

set of plots and ignoring the plots that are evidently a long way from the best fit

curve. An obvious way of achieving this is to apply a “limit” filter that prevents

any pixel having an intensity outside the intensity range of its neighbors:

for all pixels in image do f
minP5min ðPl; P2; P3; P4; P5; P6; P7; P8Þ;
maxP5max Pl; P2; P3; P4; P5; P6; P7; P8ð Þ;
if P0,minPð Þ Q05minP;
else if P0.maxPð Þ Q05maxP;
else Q05P0;

g

ð3:3Þ

To develop this technique, it is necessary to examine the local intensity distribu-

tion within a particular neighborhood. Points at the extremes of the distribution

are quite likely to have arisen from impulse noise. So it is sensible not only to

eliminate these points, as in the limit filter, but also to try taking the process fur-

ther, removing equal areas at either end of the distribution and ending with the

median. Thus, we arrive at the median filter, which takes all the local-intensity

distributions and generates a new image corresponding to the set of median

values. As the preceding argument indicates, the median filter is excellent at

impulse noise suppression and this is amply confirmed in practice (see Fig. 3.3).

FIGURE 3.3

Effect of applying a 33 3 median filter to the image of Fig. 2.1(a). Note the slight loss of

fine detail and the rather “softened” appearance of the whole image.
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In view of the blurring caused by Gaussian smoothing operators, it is pertinent

to ask whether the median filter also induces blurring. In fact, Fig. 3.3 shows that

any blurring is only marginal, although there is some slight loss of fine detail that

can give the resulting pictures a “softened” appearance. Theoretical discussion of

this point is deferred for now; the lack of blur makes good the main deficiency of

the Gaussian smoothing filter and results in the median filter being perhaps the

most widely used filter in general image processing applications.

There are many ways of implementing the median filter: Table 3.1 reproduces

only an obvious algorithm that essentially implements the above description. The

notation of Chapter 2 is used but is augmented in order to permit the nine pixels

in a 33 3 neighborhood to be accessed in turn with a running suffix (specifically,

P0 to P8 are written as P[m] where m runs from 0 to 8).

The operation of the algorithm is as follows: first, the histogram array is

cleared and the image is scanned, generating a new image in Q-space; then, for

each neighborhood, the histogram of intensity values is constructed; then the

median is found; and, finally, points in the histogram array that have been incre-

mented are cleared. This last feature eliminates the need to clear the whole histo-

gram and hence saves computation. Unlike the general situation in which the

median of a distribution is being located, only one (half) scan through the distri-

bution is required, since the total area is known in advance (in this case it is 9).

As is clear from the above discussion, methods of computing the median

involve pixel intensity sorting operations. If a bubble sort (Gonnet, 1984) were

used for this purpose, then up to O(n4) operations would be required for an n3 n

neighborhood, compared with some 256 operations for the histogram method

described above. Thus, sorting methods such as the bubble sort are faster for

small neighborhoods where n is 3 or 4 but not for neighborhoods where n is

greater than 5, or where pixel intensity values are more restricted.

Much of the discussion of the median filter in the literature is concerned with

saving computation (Narendra, 1978; Huang et al., 1979; Danielsson, 1981). In

Table 3.1 An Implementation of the Median Filter

for i50; i,5255; i11ð Þ hist i½ �50;
for all pixels in image do f

for m50; m,58; m11ð Þ hist½ P½m� �11 ;

i50; sum50;
while sum,5ð Þ f

sum5sum1hist i½ �;
i5i1l;

g
Q05i� 1;
for m50; m,58; m11ð Þ hist½ P½m� �50;

g
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particular, it has been noticed that, on proceeding from one neighborhood to the

next, relatively few new pixels are encountered: this means that the new median

value can be found by updating the old value rather than starting from scratch

(Huang et al., 1979).

3.4 MODE FILTERS
Having considered the mean and the median of the local intensity distribution as

candidate intensity values for noise smoothing filters, it also seems relevant to

consider the mode of the distribution. Indeed, we might imagine that this is if

anything more important than the mean or the median, since the mode represents

the most probable value of any distribution.

However, a tedious problem arises as soon as we attempt to apply this idea.

The local intensity distribution is calculated from relatively few pixel intensity

values (Fig. 3.4). This means that instead of a smooth intensity distribution whose

mode is easily located, we are almost certain to have a multimodal distribution

whose highest point does not indicate the position of the underlying mode.

Clearly the distribution needs to be smoothed out considerably before the mode is

computed. Another tedious problem is that the width of the distribution varies

widely from neighborhood to neighborhood (e.g., from close to zero to close to

256), so that it is difficult to know quite how much to smooth the distribution in

any instance. For these reasons, it is likely to be better to choose an indirect mea-

sure of the position of the mode rather than to attempt to measure it directly.

In fact, the position of the mode can be estimated with reasonable accuracy

once the median has been located (Davies, 1984a, 1988c). To understand the

technique, it is necessary to consider how local intensity distributions of various

sorts arise in practical situations. At most positions in an image, variations in

pixel intensity are generated by steady changes in background illumination, or by

steady variations in surface orientation, or else by noise. Thus, a symmetrical

unimodal local intensity distribution is to be expected. It is well known that the

mean, median, and mode are coincident in such cases. More problematic is what

f

I

FIGURE 3.4

The sparse nature of the local intensity histogram for a small neighborhood. This situation

clearly causes significant problems for estimation of the mode. It also has definite

implications for rigorous estimation of the underlying median, assuming that the observed

intensities are only noisy samples of the ideal intensity pattern (see Section 3.8.3).

Source: r IEEE 1984
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happens to the intensity variation near the edge of an object in the image. Here

the local intensity distribution is unlikely to be symmetrical and, more important,

it may not even be unimodal. In fact, near an edge the distribution is in general

inherently bimodal, since the neighborhood contains pixels with intensities corre-

sponding to the values they would have on either side of the edge (Fig. 3.5).

Considering the image as a whole, this will be the most likely alternative to a

symmetrical unimodal distribution, any further possibilities such as trimodal dis-

tributions being rare and of varied causes (e.g., odd glints on the edges of metal

objects) which are outside the scope of the present discussion.1

If the neighborhood straddles an edge and the local intensity distribution is

bimodal, the larger peak position should clearly be selected as the most probable

intensity value. A good strategy for finding the larger peak is to eliminate the

smaller peak. If we knew the position of the mode, we could find where to trun-

cate the smaller peak by first finding which extreme of the distribution was closer

to the mode, and then moving an equal distance to the opposite side of the mode

x
I

(a) (b) (c)

f f

FIGURE 3.5

Local models of image data near the edge of an object: (a) cross-sections of an edge

falling in the vicinity of a filter neighborhood; (b) corresponding local intensity distributions

when very little image noise is present; (c) situation when the noise level is increased.

Source: r IEEE 1984

1Here we are ignoring the effects of noise and just considering the underlying image signal.
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(Fig. 3.6). Since we start off not knowing the position of the mode, one option is

to use the position of the median as an estimator of the position of the mode, and

then to use that position to find where to truncate the distribution. Since it invari-

ably happens that the three means take the order mean, median, and mode (see

Fig. 3.7), except when distributions are badly behaved or multimodal, this method

f

0 T1

Median

Mode

t2

t1 t1

t2

T2
I

FIGURE 3.6

Rationale for the method of truncation. The obvious position at which to truncate the

distribution is T1. Since the position of the mode is not initially known, it is suboptimal

but safe to truncate instead at T2.

Mode
Median

Mean

f

t t I

FIGURE 3.7

Relative positions of the mode, median, and mean for a typical unimodal distribution.

This ordering is unchanged for a bimodal distribution, as long as it can be approximated

by two Gaussian distributions of similar width.

Source: r IEEE 1984
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is cautious in the sense that it truncates less of the distribution than the required

amount: this makes it a safe method to use. When we now find the median of the

truncated distribution, the position is much closer to the mode than the original

median was, a good proportion of the second peak being removed (Fig. 3.8).

Iteration could be used to find an even closer approximation to the position of the

mode. However, the method gives a marked enhancement in the image even

when this is not done (Fig. 3.9).

We next examine more closely the properties of the “truncated median filter”

(TMF) described above. The median filter is highly successful at removing noise,

f

0

32 21 1

I

FIGURE 3.8

Iterative truncation of the local intensity distribution. Here the median converges on the

mode within three iterations of the truncation procedure. This is possible since at each

stage the mode of the new truncated distribution remains the same as that of the previous

distribution.

FIGURE 3.9

Effect of a single application of 33 3 truncated median filter to the image of Fig. 2.1(a).
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whereas the TMF not only removes noise but also enhances the image so that

edges become sharper. Figure 3.10 makes it clear why this should happen.

Basically, at a location even very slightly to one side of an edge, a majority of

the pixel intensities contribute to the larger peak and the TMF ignores the pixel

intensities contributing to the smaller peak. Thus, the TMF makes an informed

binary choice about which side of the edge it is on. At first this seems to mean

that it pushes a nearby edge further away. However, it must be remembered that

it actually “pushes the edge away” from both sides, and the result is that its sides

are made sharper and object outlines are crispened up. Particularly striking is the

effect of applying the TMF to an image a number of times, when objects start to

become segmented into regions of fairly uniform intensity (Fig. 3.11). The com-

plete algorithm for achieving this is outlined in Table 3.2.

This problem has been dealt with at some length for a number of reasons.

First, the mode filter has not hitherto received the attention it deserves. Second,

the median filter seems to be used fairly universally, often without very much jus-

tification or thought. Third, all these filters show what markedly different charac-

teristics are available merely by analyzing the contents of the local intensity

distribution and ignoring totally where in the neighborhood the different intensi-

ties appear: it is perhaps remarkable that there is sufficient information in the

local intensity distribution for this to be possible. All this shows the danger of

applying operators that have been derived in an ad hoc manner without first mak-

ing a specification of what is required and then designing an operator with the

required characteristics. In fact, the situation appears to be that if we want a filter

that has maximum impulse noise suppression capability, then we should use a

median filter; and if we want a filter that enhances images by sharpening edges,

I

x

FIGURE 3.10

Image enhancement performed by the mode filter. Here the onset of the edge is pushed

laterally by the action of the mode filter within one neighborhood; since the same happens

from the other side within an adjacent neighborhood, the actual position of the edge is

unchanged in first order. The overall effect is to sharpen the edge.
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then we should use a mode filter or TMF (note that the TMF should be an

improvement on the mode filter in that it is more cautious very close to an edge

transition, where noise prevents an exact judgement being made as to which side

of the edge a pixel is on: see Davies (1984a, 1988c)).

(a) (b)

(c) (d)

(e) (f)

FIGURE 3.11

Results of repeated action of the truncated median filter: (a) the original, moderately noisy

picture; (b) effect of a 33 3 median filter; (c)�(f) effect of 1�4 passes of the basic

truncated median filter, respectively.

Source: r IEEE 1984
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While considering enhancement, attention has been restricted to filters based

on the local intensity distribution: there are many filters that enhance images

without the aid of the local intensity distribution (Lev et al., 1977; Nagao and

Matsuyama, 1979), but they are not within the scope of this chapter. Note that the

method of “sharp�unsharp masking” (Section 3.7) performs an enhancement

function, although its main purpose is to restore images that have inadvertently

become blurred, e.g., by a hazy atmosphere or defocussed camera.

Finally, while this section has concentrated on the grayscale properties of

mode filters, Charles and Davies (2003a, 2004) have shown how to devise ver-

sions of the TMF that operate on color images. Typical results are shown in

Fig. 3.12. In addition, Fig. 3.13 shows that the TMF has the useful property of

being able to eliminate very large amounts of impulse noise from images—signif-

icantly more than a median filter—in spite of being designated as an image

enhancement filter.

Table 3.2 Outline of Algorithm for Implementing the Truncated Median Filter

do { // as many passes over image as necessary
for all pixels in image do {

compute local intensity distribution;
do { // iterate to improve estimate of mode

find minimum, median, and maximum intensity values;
decide from which end local intensity distribution should
be truncated;

deduce where local intensity distribution should be
truncated;

truncate local intensity distribution;
find median of truncated local intensity distribution;

} until median sufficiently close to mode of local distribution;
transfer estimate of mode to output image space;

}
} until sufficient enhancement of image;

Comments:
(i) The outermost and innermost loops can normally be omitted (i.e., they need to be

executed once only).
(ii) The final estimate of the position of the mode can be performed by simple averaging

instead of computing the median: this has been found to save computation with
negligible loss of accuracy.

(iii) Instead of the minimum and maximum intensity values, the positions of the outermost
octiles (for example) may be used to give more stable estimates of the extremes of
the local intensity distribution.
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3.5 RANK ORDER FILTERS
The principle employed in rank order filters is to take all the intensity values in a

given neighborhood, to place these in order of increasing value, and finally to

select the rth of the n values and return this value as the filter local output value.

Clearly, n rank order filters can be specified in terms of the value r that is used,

but these filters are intrinsically nonlinear, i.e., the output intensity cannot be

expressed as a linear sum of the component intensities within the neighborhood.

In particular, the median filter (for which r5 (n11)/2, and which is only defined

(a) (b)

(c) (d)

FIGURE 3.12

Color filtering of brightly colored objects. (a) Original color image of some sweets. (b)

Vector median filtered version. (c) Vector mode filtered version. (d) Version to which a

mode filter has been applied to each color channel separately. Note that (b) and (c) show

no evidence of color bleeding, although it is strongly evident in (d). It is most noticeable as

isolated pink pixels, plus a few green pixels, around the yellow sweets. For further details

on color bleeding, see Section 3.14 (see also color Plate 5).

Source: r RPS 2004
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if n is odd)2 does not normally give the same output image as a mean filter:

indeed, it is well known that the mean and median of a distribution are in general

only coincident for symmetrical distributions. Note that minimum and maximum

filters (corresponding to r5 1 and r5 n, respectively) are also often classed as

morphological filters (see Chapter 7).

2If n is even, it is usual to take the mean of the central two values in the distribution as representing

the median.

(a)

(c)

(b)

FIGURE 3.13

Color filtering of images containing substantial impulse noise. (a) Version of the Lena

image containing 70% random color impulse noise. (b) Effect of applying a vector median

filter, and (c) effect of applying a vector mode filter. While the mode filter is designed more

for enhancement than for noise suppression, it has been found to perform remarkably

well at this task when the noise level is very high (see also color Plate 6).

Source: r RPS 2004
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3.6 REDUCING COMPUTATIONAL LOAD
Significant efforts have been made to speedup the operation of the Gaussian filter

since implementations in large neighborhoods require considerable amounts of

computation (Wiejak et al., 1985). For example, smoothing an image of

2563 256 pixels using a 303 30 Gaussian convolution mask involves 64 million

basic operations. For such a basic operation as smoothing, this is unacceptable.

However, it is possible to cut down the amount of computation drastically, since

a 2-D Gaussian convolution can be factorized into two 1-D Gaussian convolu-

tions, which can be applied in turn:

exp 2
r2

2σ2

� �
5 exp 2

x2

2σ2

� �
exp 2

y2

2σ2

� �
(3.4)

It is important to realize that the decomposition is rigorously provable and is not

an approximation: we shall refer to this below in the context of the median filter.

Meanwhile, the decompositions for the two 33 3 Gaussian filters we discussed

earlier are:
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Overall, this approach replaces a single n3 n operator whose load is O(n2) with

two operators of load O(n), and ignoring scanning and other overheads, the saving

factor is n/2. Hence, for n. 2, there will always be a useful saving.

In fact, it is not possible to decompose the median filter in the same way with-

out making approximations. However, it is quite common to try to perform a sim-

ilar function by applying two 1-D median filters in turn (Narendra, 1978).

Although the effect is similar in its outlier rejection properties to the standard 2-D

median filter, the following example confirms that the two are not exactly

equivalent:

Original image segment:

0 0 0 0 0 0

0 0 1 1 2 0

0 0 2 2 0 0

0 0 0 0 0 0
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After applying a 33 3 filter:

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 0 0

After applying a 33 1 and then a 13 3 filter:

0 0 0 0 0 0

0 0 1 1 1 0

0 0 2 2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 0 0

After applying a 33 1 and then a 13 3 filter:

0 0 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 0 0

By chance, the final results in the last two cases are the same, but this is a rel-

atively rare occurrence.

In general, spots and streaks not more than one pixel wide are eliminated quite

effectively by the original or by the separated forms of the filter. Larger filters

should effectively eliminate wider spots and streaks, although exact functional

equivalence between the original and its separated forms is not to be expected, as

has been indicated.

Finally, the problem of inexact decomposition is not an exclusive property of

nonlinear filters; many linear filters cannot be decomposed exactly either: this is

evident because the number of independent coefficients in an n3 n mask is n2,

which is much greater than the total number in an n3 1 and a 13 n component

mask.

3.7 SHARP�UNSHARP MASKING
When images are blurred either before or as part of the process of acquisition, it

is possible frequently to restore them substantially to their ideal state. Properly,

this is achieved by making a model of the blurring process and applying an

inverse transformation that is intended to cancel the blurring. This is a complex

task to carry out rigorously, but in some cases a rather simple method called

sharp�unsharp masking is able to produce significant improvement (Gonzalez

and Woods, 1992). As indicated in Fig. 3.14, this technique involves first obtain-

ing an even more blurred version of the image (e.g., with the aid of a Gaussian

filter) and then subtracting this image from the original. Note that the amount of
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artificial blurring to apply and the proportion of the blurred image to subtract are

rather arbitrary quantities that are normally adjusted by eye. Thus, the method is

better categorized under the heading “enhancement” than “restoration,” as it is

not the precise mathematical technique normally understood by the latter term. Of

such enhancement techniques, Hall (1979) states: “Much of the art of enhance-

ment is knowing when to stop.”

3.8 SHIFTS INTRODUCED BY MEDIAN FILTERS
Despite knowing the main characteristics of the different types of filter there are

still some unknown factors. In particular, it is often important (especially when

making precision measurements on manufactured components) to ensure that

noise is removed in such a way that object locations and sizes are unchanged.

However, at this point the following two problems arise.

First, it has been assumed that the intensity profile of an edge is symmetrical.

If this is so, then the mean, median, and mode of the local intensity distribution

will be coincident and there will clearly be no overall bias for any of them.

However, when the edge profile is asymmetrical, it will not be obvious in the

absence of a detailed model of the situation what the result will be for any of the

(a)

(b)

(c)

(d)

I

x

FIGURE 3.14

The principle of sharp�unsharp masking: (a) cross-section of an idealized edge;

(b) observed edge; (c) artificially blurred version of (b); (d) result of subtracting a

proportion of (c) from (b).
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filters. The situation is even more involved when significant noise is present

(Yang and Huang, 1981; Bovik et al., 1987). Since the problem is so data-depen-

dent, it is not profitable to consider it further here.

The second problem concerns the situation for a curved edge. In this case,

there is again a variety of possibilities, and filters employing the different means

will modify the edge position in ways that depend markedly on its shape. In robot

vision applications, the median filter is the one we are most likely to use because

its main purpose is to suppress noise without introducing blurring. Hence, the

bias produced by this type of filter is worth considering in some detail. This is

done in the next subsection.

3.8.1 Continuum Model of Median Shifts
This section takes the case of a continuous image (i.e., a nondiscrete lattice),

assuming (i) that the image is binary, (ii) that neighborhoods are exactly circular,

and (iii) that images are noise-free. To proceed we notice that binary edges have

symmetrical cross-sections, while straight edges extend this symmetry into 2-D:

hence applying a median filter in a (symmetrical) circular neighborhood cannot

pull a straight edge to one side or the other.

Now consider what happens when the filter is applied to an edge that is not

straight. If, for example, the edge is circular, the local intensity distribution will

contain two peaks whose relative sizes will vary with the precise position of the

neighborhood (Fig. 3.15). At some position the sizes of the two peaks will be

identical. Clearly, this happens when the center of the neighborhood is situated at

a point where the output of the median filter changes from dark to light (or vice

versa). Thus, the median filter produces an inward shift toward the center of a cir-

cular object (or the center of curvature), whether the object is dark on a light

background or light on a dark background.

To calculate the magnitude of this effect, we need to find at what distance d

from the center of a circular object (of radius b) the area of a circular neighbor-

hood (of radius a) is bisected by the object boundary.

(a) (b) (c) (d)

a f f f

b

FIGURE 3.15

Variation in local intensity distribution with position of neighborhood: (a) neighborhood of

radius a overlapping a dark circular object of radius b; (b)�(d) intensity distributions I

when the separations of the centers are respectively less than, equal to, or greater than

the distance d for which the object bisects the area of the neighborhood.
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From Fig. 3.16 the area of the sector of angle 2β is βb2, while the area of the tri-
angle of angle 2β is b2sinβcosβ. Hence, the area of the segment shown shaded is:

B5 b2ðβ2 sinβ cosβÞ (3.7)

Making a similar calculation of the area A of a circular segment of radius a and

angle 2α, the area of overlap (Fig. 3.16) between the circular neighborhood of

radius a and the circular object of radius b may be deduced as:

C5A1B (3.8)

For a median filter this is equal to πa2=2. Hence:

F5 a2ðα2 sinα cosαÞ1 b2ðβ2 sinβ cosβÞ2πa2

2
5 0 (3.9)

where

a2 5 b2 1 d2 22bd cosβ (3.10)

and

b2 5 a2 1 d2 2 2ad cosα (3.11)

To solve this set of equations, we take a given value of d, deduce values of α
and β, calculate the value of F, and then adjust the value of d until F5 0. Since d

is the modified value of b obtained after filtering, the shift produced by the filter-

ing process is:

D5 b2 d (3.12)

The results of doing this computation numerically have been found by Davies

(1989b). As expected, D-0 as b-N or a-0. Conversely, the shift becomes

very large as a first approaches and then exceeds b. Note, however, that when

d

b
a

βα

FIGURE 3.16

Geometry for calculating neighborhood and object overlap.
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a.
ffiffiffi
2

p
b the object is ignored, being small enough to be regarded as irrelevant

noise by the filter: beyond this point it has no effect at all on the final image. The

maximum edge shift before the object finally disappears is ð22
ffiffiffi
2

p
Þb � 0:586b.

It is instructive to approximate the above equations for the case when edge

curvature is small, i.e., a{b. Under these conditions, β is small, α � π=2 and

d � b. Hence, we find:

β � a

b
(3.13)

After some manipulation the edge shift D is obtained in the form:

D � a2

6b
5

κa2

6
(3.14)

κ5 1=b being the local curvature. In Chapter 6, this equation is found to be use-

ful for estimating the signals from a median-based corner detector.

3.8.2 Generalization to Grayscale Images
To extend these results to grayscale images, first consider the effect of applying a

median filter near a smooth step edge in l-D. Here the median filter gives zero

shift, since for equal distances from the center to either end of the neighborhood

there are equal numbers of higher and lower intensity values and hence equal

areas under the corresponding portions of the intensity histogram. Clearly this is

always valid where the intensity increases monotonically from one end of the

neighborhood to the other—a property first pointed out by Gallagher and Wise

(1981) [for more recent discussions on related “root” (invariance) properties of

signals under median filtering, see Fitch et al. (1985) and Heinonen and Neuvo

(1987)].

Next, it is clear that for 2-D images, the situation is again unchanged in the

vicinity of a straight edge, since the situation remains highly symmetrical. Hence

the median filter gives zero shift, as in the binary case.

For curved boundaries, the situation has to be considered carefully for gray-

scale edges, which, unlike binary edges, have finite slope. When boundaries are

roughly circular, contours of constant intensity often appear as in Fig. 3.17. To

find how a median filter acts, we merely need to identify the contour of median

intensity (in 2-D the median intensity value labels a whole contour) that divides

the area of the neighborhood into two equal parts. The geometry of the situation

is identical to that already examined in Section 3.8.1: the main difference here is

that for every position of the neighborhood, there is a corresponding median con-

tour with its own particular value of shift depending on the curvature.

Intriguingly, the formulae already deduced may immediately be applied for calcu-

lating the shift for each contour. Figure 3.17 shows an idealized case in which the

contours of constant intensity have similar curvature, so that they are all moved
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inward by similar amounts. This means that, to a first approximation, the edges of

the object retain their cross-sectional profile as it becomes smaller.

For grayscale images, the shifts predicted by this theory (with certain addi-

tional corrections: see Davies (1989b)) agree with experimental shifts within

approximately 10% for a large range of circle sizes in a discrete lattice (see

Fig. 3.18). Paradoxically, the agreement is less perfect for binary images, since

circles of certain sizes show stability effects (akin to median root behavior): these

effects tend to average out for grayscale images, owing to the presence of many

contours of different sizes at different gray levels. Overall, the edge shifts

obtained with median filters are now quite well understood. Figures 3.19 and 3.20

give some indication of the magnitudes of these shifts in practical situations. Note

that once image detail such as a small hole or screw thread has been eliminated

by a filter, it is not possible to apply any edge shift correction formula to recover

it, although for larger features such formulae are useful for deducing true edge

positions.

3.8.3 Problems with Statistics
Thus far it has been seen that computations of the position of the mode are made

more difficult because of the sparse statistics of the local intensity distribution. In

fact this also affects the median calculation. Suppose the median value happens to

be well spaced near the center of the distribution (Fig. 3.4). Then a small error in

FIGURE 3.17

Contours of constant intensity on the edge of a large circular object, as seen within a small

circular neighborhood.
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this one intensity value is immediately reflected in full when calculating the

median: i.e., the poor statistics have biased the median in a particular way.

Ideally, what is required is a stable estimator of the median of the underlying dis-

tribution. Thus, the distribution should be made smoother before arriving at a spe-

cific value for the median. In practice, this procedure adds significant

computational load to the filter calculation and is commonly not carried out. As a

consequence the median filter tends to result in runs of constant intensity, thereby

giving images the “softened” appearance noted earlier. This is apparent on study-

ing the following 1-D example:

Original:
Filtered:

0 0 1 0 0 1 1 2 1 2 2 1 2 3 3 4 3 2 2 3

? 0 0 0 0 1 1 1 2 2 2 2 2 3 3 3 3 2 2 ?

Although histogram smoothing is not commonly carried out, some workers

have felt it necessary to adjust the relative weights of the various pixels in the

neighborhood according to their distance from the central pixel (Akey and

Mitchell, 1984). This mimics what happens for a Gaussian filter and is theoretically

0.8
D

0.6

0.4

0.2

0.1
0 2 4 6 8 b

FIGURE 3.18

Edge shifts for 53 5 median filter applied to a grayscale image. The upper set of plots

represents the experimental results and the upper continuous curve is derived from the

theory of Section 3.8.1. The lower continuous curve is derived from a more accurate

model (Davies, 1989b). The lower set of plots represents the much reduced shifts

obtained with the “detail-preserving” type of filter (see Section 3.16).
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necessary, although it is not generally implemented. However, there have recently

been further developments on this front (e.g., see Charles and Davies, 2003b).

3.9 DISCRETE MODEL OF MEDIAN SHIFTS
To produce a discrete model of median shifts we need to recognize explicitly the

positions of the pixels within the chosen neighborhood. We approximate by

assuming that the intensity of any pixel is the mean intensity over the whole pixel

and is represented by a sample positioned at the center of the pixel. We start by

examining the case of a 33 3 neighborhood, and proceed by taking the underly-

ing analog intensity variation to have contours of curvature κ, as shown in

(a) (b)

(c)

FIGURE 3.19

Edge smoothing property of the median filter: (a) Original image; (b) median filter

smoothing of irregularities, in particular those around the boundaries (note how the

threads on the screws are virtually eliminated although detail larger in scale than half the

filter area is preserved), using a 21-element filter operating within a 53 5 neighborhood

on a 1283 128 pixel image of 6-bit gray scale; (c) effect of the detail-preserving filter (see

Section 3.16).
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Fig. 3.17. Following what happened in the continuum case, it will not matter

whether the contours of constant intensity are those of a step edge or those of a

slowly varying slant edge: it is what happens at the median contour that deter-

mines the shift that arises.

The starting point is that zero shift occurs for κ5 0. Next, if κ is even

minutely greater than zero, the center pixel will not necessarily be the median

pixel. Consider the case when the circular median intensity contour passes close

to the center of the neighborhood at a small angle θ to the positive x-axis

(Figs. 3.21 and 3.22(a)). In that case, the filter will produce a definite shift, whose

value is:

Dθ �
1

2
κa20 2 a0θ5

1

2
κ2 θ (3.15)

(a) (b)

(c)

FIGURE 3.20

Circular holes in metal objects before and after filtering: (a) original 1283 128 pixel image

with 6-bit gray scale; (b) 53 5 median-filtered image: the diminution in size of the hole is

clearly visible and such distortions would have to be corrected for when taking

measurement from real filtered images of this type; (c) result using a detail-preserving

filter: some distortions are present although the overall result is much better than in (b).
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(a) (b)

(c)

FIGURE 3.22

Geometry for calculation of median shifts at low κ. These three diagrams show the

positions of the median pixels and the ranges of orientations of circular intensity contours

for which they apply, (a) for low θ, (b) for intermediate θ, and (c) for high θ.
Source: r IEE 1999

θ

FIGURE 3.21

Geometry for calculation of median shifts on the discrete model.

Source: r IEE 1999
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where a0 is the inter-pixel separation—here taken as unity. The first term arises

from the following simple result for the geometry of the circle of radius b5 1/κ
in Fig. 3.23:

a20 5D3 ð2b2DÞ � 2Db (3.16)

It is too tedious to recount here the complete analysis for the variation in Dθ

for all θ. Suffice it to say that when it has been carried out, it is necessary to aver-

age it over all θ for each value of κ. When this is done (Davies, 1999f) the agree-

ment between theory and experiment is essentially exact over a wide range of

values of κ, as shown in Fig. 3.24: the reason for the discrepancy of high values of

κ is due to the limited intensity gradients that occur at edges in grayscale images.

Overall, the problem of median shifts is now well understood, and is fully

explained using the discrete model. The continuum model turns out to be capable

of giving accurate results only in the limiting case where a and b (5 1/κ) are

many pixels in size.

3.10 SHIFTS INTRODUCED BY MODE FILTERS
In this section we consider the shifts produced by mode filters in continuous

images. As in the cases of median filters, straight edges with symmetrical profiles

cannot be shifted by mode filters, because of symmetry. We proceed to the two

paradigm cases—step edges and slant edges with circular boundaries. Again, the

effects of noise will be ignored as we are considering the intrinsic rather than the

noise-induced behavior of the mode filtering operation.

The situation for a curved step edge can again be understood by appealing to

Fig. 3.15. The result for the mode also has to be identical to that for the median,

a0

a0

D

FIGURE 3.23

Geometry for calculation of shift when the median contour passes through the centers of

two pixels.
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because the local intensity distribution is exactly symmetric and bimodal at the

point where the median filter switches from a left-hand to a right-hand decision:

at that point the mode must give the same result, since the median and the mode

are coincident for a symmetric distribution. Hence, we conclude that the mode

also gives a shift of 1=6 κa2 for a curved step edge.

Next, we calculate edge shifts in the case where smoothly varying intensity

functions exist—or within the confines of a small neighborhood—appear to be

smoothly varying. In this case the calculation is especially simple (Davies,

1997a). Using the geometry of Fig. 3.17, we consider the intensity pattern within

a circular neighborhood C. Of all the circular intensity contours appearing within

C, the one possessing the most frequently occurring intensity, as selected by a

mode filter, is the longest. Clearly, this is the one (M) whose ends are at opposite

ends of a diameter of C. To estimate the shift in this case, all we need to do is to

calculate the position of M, and determine its distance from the center of C. To

proceed, we use the well-known formula relating the lengths of parts of intersect-

ing chords of a circle, which gives:3

a2 5Dð2b� DÞ � 2Db (3.17)

3This equation is a more general form of equation (3.16), as a can have any value; the proof fol-

lows similarly, on replacing a0 by a in Fig. 3.23.

0.2 0.4 0.6 0.8
κ

D

0.0

0.2

0.4

0.1

0.3

0.5

0.0

FIGURE 3.24

Comparisons of 33 3 median shifts. The lower solid curve shows the nonapproximated

results of the discrete model (Davies, 1999f): the upper solid curve shows the results of

experiments on grayscale circles.

Source: r IEE 1999
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Hence:

D5
1

2
κa2 (3.18)

i.e., there is a right shift of the contour, toward the local center of curvature, of

1=2 κa2. If we regard this set of contours as forming part of a grayscale edge profile,

then the mode filter shifts the edge through 1=2 κa2 toward the center of curvature.
Some comments on the marked difference between the cases of step edges

and linear intensity profiles are called for. This is all the more interesting as the

median filter produces identical shifts, of 1=6 κa2, for the two profiles (see

Table 3.3). In fact, of all the cases listed in Table 3.3, the outstanding one is the

large shift for a mode filter operating on a linear intensity profile: what is special

in this case is that the result relies on a single extreme contour length rather than

an average of lengths amounting to an area measure. Hence, it is not surprising

that the mode filter gives an exceptionally large shift in this case.

Finally, we note that edge shifts are not avoided merely by choosing an alter-

native method of neighborhood averaging, but rather that they are intrinsic to the

averaging process, and can be avoided only by specially designed operators (e.g.,

see Greenhill and Davies, 1994a).

3.11 SHIFTS INTRODUCED BY MEAN AND
GAUSSIAN FILTERS

In this section, we consider the shifts produced by mean and Gaussian filters in

continuous images. As in the cases of median and mode filters, straight edges

with symmetrical profiles cannot be shifted by mean and Gaussian filters,

because of symmetry. We again consider the two paradigm cases—step edges

and slant edges with circular boundaries. Again, we will ignore the effects of

noise as we are considering the intrinsic rather than the noise-induced behavior

of the filters.

Table 3.3 Summary of Edge Shifts for Neighborhood Averaging Filters

Edge Type Filter

Mean Median Mode

Step 1
6κa

2 1
6κa

2 1
6κa

2

Intermediate B1
7κa

2 1
6κa

2 1
2κa

2

Linear 1
8κa

2 1
6κa

2 1
2κa

2

r IEE 1999.
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The situation for a curved step edge can again be understood by appealing to

Fig. 3.15, and is identical to that for the median and mode filters, and follows

because of the symmetry of the local intensity distribution at the point where the

filter switches from a left-hand to a right-hand decision: at that point the mean fil-

ter must give the same result, since all three statistics coincide for a symmetric

distribution. Hence, it also gives a shift of 1=6 κa2 for a curved step edge.

In the case of a smoothly varying slant edge, the result for the mean filter has

to be calculated by integrating over the area of the neighborhood. The results can-

not be obtained by intuitive or simple geometric or intuitive arguments, and here

we merely quote the shift for the mean filter as being 1=8 κa2.
These considerations complete the entries in Table 3.3. The results for

Gaussian filters do not differ substantially from those for mean filters, but have to

be obtained by integration, taking account of the Gaussian weighting function

(Davies, 1991b). A general point is that all such filters have similar shifting

effects because they all incorporate a measure of signal averaging: the shifting

effect is not avoided simply by employing a different central-seeking statistic to

perform the averaging.

3.12 SHIFTS INTRODUCED BY RANK ORDER FILTERS
This section is particularly concerned with rank order filters (Bovik et al., 1983),

which form a whole family of filters that can be applied to digital images—often

in combination with other filters of the family—in order to give a variety of

effects (Goetcherian, 1980; Hodgson et al., 1985): other notable members of the

family are max and min filters. Because rank order filters generalize the concept

of the median filter, it is relevant to study the types of distortion they produce on

straight and curved intensity contours. It should also be pointed out that these

filters are of central importance in the design of filters for morphological image

analysis and measurement. In addition, it has been pointed out that they have

some advantages when used for this purpose in that they help to suppress noise

(Harvey and Marshall, 1995) (although the effect vanishes in the special cases of

max and min filters).

Section 3.12.1 examines the reasons underlying the shifts produced by rank

order filters and makes calculations of their extent for rectangular neighborhoods.

It then generalizes these results to circular neighborhoods and goes on to examine

the extent to which the theoretical predictions are borne out in practice by mea-

surements of the shifts produced by 53 5 rank order filters on circular disks of

varying sizes. It will be taken as axiomatic that the application of rank order fil-

ters produces edge shifts on real images (they are well attested in the case of

max, min, and median filters): the main question to be answered here is the exact

numerical extent of these shifts and how they may be modeled for general rank

order filters.
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3.12.1 Shifts in Rectangular Neighborhoods
In common with previous work in this area we here concentrate on the ideal

noiseless case, in which the filter operates within a small neighborhood, over

which the signal is basically a monotonically increasing intensity function in

some direction. The most complex intensity variation that will be considered is

that in which the intensity contours are curved with curvature κ. In spite of this

simplified configuration, valuable statements can still be made about the level of

distortion likely to be produced in practice by rank order filters.

Because of the complexity of the calculations that arise in the case of rank

order filters, which involve an additional parameter vis-à-vis the median filter, it

is worth studying their properties first for the simple case of rectangular neighbor-

hoods (Davies, 2000f). Let us presume that a rank order filter is being applied in

a situation in which straight intensity contours are aligned parallel to the short

sides of a rectangular neighborhood that we initially take to be a 13 n array of

pixels (Fig. 3.25). In this case, we can assume without loss of generality that the

successive pixels within the neighborhood will have increasing values of inten-

sity. We next take the basic property of the rank order filter (effectively or in

fact) to construct an intensity histogram of the local intensity distribution and

return the value of the rth of the n intensity values within the neighborhood. This

means that the rank order filter selects an intensity that has physical separation B

from the lowest intensity pixel of the neighborhood and C from the highest inten-

sity pixel, where:

B5 r � 1 (3.19)

C5 n� r (3.20)

A5B1C5 n� 1 (3.21)

I

x

(a) (b)

FIGURE 3.25

Basic situation for a rank order filter in a rectangular neighborhood. This figure illustrates

the problem of applying a rank order filter within a rectangular neighborhood consisting of

a 13 n array of pixels. The intensity is taken to increase monotonically from left to right,

as in (b); the intensity contours in (a) are taken to be parallel to the short sides of the

neighborhood.

Source: r RPS 2000
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These definitions underline that a rank order filter will in general produce a

D-pixel shift, whose value is:

D5
1

2
ðn1 1Þ2 r (3.22)

Before proceeding further, it will be useful to introduce a parameter η that is

more symmetric than r, and has value 11 at r5 1 and 21 at r5 n:

η5 ðn� 2r1 1Þ=ðn2 1Þ (3.23)

Using this parameter in preference to r, we can write down new formulae for

B, C, D:

B5
1

2
Að12 ηÞ (3.24)

C5
1

2
Að11 ηÞ (3.25)

D5
1

2
ηðn2 1Þ (3.26)

The properties of the three paradigm filters are summarized in Table 3.4 in

terms of these parameters.

We now proceed to a continuum model, assuming a large number of pixels in

any neighborhood (i.e., n-N). The main difference will be that we shall specify

distance in terms of the half-length a of the neighborhood rather than in terms of

numbers of pixels:

D5 ηa (3.27)

Next note that this formulation is independent of the width of the neighbor-

hood, so long as the latter is rectangular. We now generalize the situation by tak-

ing the neighborhood to be rectangular and of dimensions 2a by 2ã (Fig. 3.26).

Table 3.4 Properties of the Three Paradigm Filters

Filter r η B C D

Median 1
2ðn1 1Þ 0 1

2 A
1
2 A 0

Max n �1 A 0 21
2ðn2 1Þ

Min 1 1 0 A 1
2ðn21Þ

r RPS 2000.
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The next task is to determine the result of a curvature κ5 1/b in the intensity

contours. Here we approximate the equation of a circle of radius b, with its diam-

eter on the positive x-axis and passing through the origin, as:

x5
y2

2b
(3.28)

We can integrate the area under an intensity contour (see Fig. 3.26) as

follows:

K5

ð ã
2ã

x dy5
1

2b

� � ðã
2ã

y2 dy5
1

2b

� �
y3

3

� �ã
2ã

5
ã3

3b
5

1

3
κã3

(3.29)

We deduce that the shift D is given by:

B5 2ã ða� DÞ1 1

3
κã 3 (3.30)

C5 2ãða1DÞ � 1

3
κã 3 (3.31)

η5
ðC � BÞ

A
5

4ãD� ð2=3Þκã 3

A
(3.32)

y

x
D

a0

B C

ã

ã

FIGURE 3.26

Geometry of a rectangular neighborhood with curved intensity contours. Here the

neighborhood is a general rectangular neighborhood of dimensions 2a3 2ã. Again, the

intensity is taken to increase monotonically from left to right; the intensity contours are

taken to be parallel and in this case are curved with identical curvature κ. x and y axes

needed for area calculations are also shown. B and C represent the areas of the two

shaded regions on either side of the thick intensity contour.

Source: r RPS 2000
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where

A5 4aã (3.33)

Hence:

D5
ηA
4ã

1
1

6
κã2 5 ηa1

1

6
κã2 (3.34)

What is important about this equation is that it shows that the effects of rank

order and curvature can be calculated and summed separately, the first term being

that obtained above for the case of zero curvature and the second term being

exactly that calculated for a median filter when the intensity contour is of length

2ã (the earlier calculation (Davies, 1989b) related to a circular neighborhood).

Thus, in principle we merely need to recompute the first term for any appropriate

shape of neighborhood. However, various complications arise, particularly in the

case of high curvature contours. These have been dealt with successfully, with the

results shown in Figs. 3.27 and 3.28 (Davies, 2000f).

1

D

η

0

0 1−1−1

FIGURE 3.27

Graphs of shift D against rank order parameter η for various κ. This diagram summarizes

the operation of rank order filters, with graphs, bottom to top, respectively, for κ5 0, 0.2/a,

0.5/a, 1/a, 2/a, 5/a. Note that graphs for which b, a ðκ. 1=aÞ apply for restricted ranges

of η and D (see Section 3.12.1). A multiplier of a must be included in the D-values.

Source: r RPS 2000
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As the above theory is based on a continuum model, it is not perfect, and it does

indicate only the main features of the practical situation. In particular, when the cur-

vatures are very high, they may arise from spots that are entirely within the neigh-

borhood, and then there is the possibility that they will be completely eliminated by

the rank order filter (note that noise points are entirely eliminated by a median filter,

which indeed is the prime practical use of that type of filter). Correspondingly, the

assumptions made in the model break down when there is no intersection of the cir-

cular neighborhood and the intensity contour of radius b5 1/κ.
Some of the conclusions of this work are quite important. In particular, the result

for a median filter is the special case that arises when η5 0 and is in agreement

2.5

−2.5
−1 0 1

D

η

0

FIGURE 3.28

Shifts obtained for a typical discrete neighborhood. These shifts were obtained for rank

order filters operating within a truncated 53 5 neighborhood when applied to eight

discrete circular disks with radii ranging from 10.0 down to 1.25 pixels, the mean

curvatures being 0.1�0.8 in steps of 0.1; the lowest curve was obtained by averaging the

responses from circular disks of radius 620.0 pixels, with curvatures 60.05, and to

the given scale are indistinguishable from the result that would be obtained with zero

curvature. The uppermost curve represents the theoretical limiting value. However,

because of the directional effects that occur in the discrete case, the upper limit is

actually lower than indicated by this curve (see text).

Source: r RPS 2000
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with the calculations of Section 3.8. Next, the max and min filters are also special

cases and occur for η5�1 and 1, respectively. In these limiting cases, the shifts are

D5�a and a, respectively, the results being independent of κ: this is as might be

expected since the value of ã is zero in each case. Between the max and min filters

and the median filter, there is a continuous gradation of performance, with very sig-

nificant but opposite shifts for the max and min filters, and the two basic effects can-

celing out for median filters—although the cancellation is only exact for straight

contours. The full situation is summarized in Fig. 3.27.

3.13 THE ROLE OF FILTERS IN INDUSTRIAL APPLICATIONS
OF VISION

It has been shown above how the median filter can successfully remove noise and

artifacts such as spots and streaks from images. Unfortunately, many useful fea-

tures such as fine lines and important points and holes are effectively indistin-

guishable from spots and streaks. In addition, it has been seen that the median

filter “softens” pictures by removing fine detail. It is also found to clip corners of

objects—another generally undesirable trait (but see Chapter 6). Finally, although

it does not blur edges, it can still shift them slightly. In fact, shifting of curved

edges seems to be a general characteristic of noise suppression filters.

Such distortions are quite alarming and mitigate against the indiscriminate use

of filters. If applied in situations where accurate measurements are to be made on

images, particular care must be taken to test whether the data are being biased in

any way. Although it is possible to make suitable corrections to the data, it seems

a good general policy to employ noise removal filters only where they are abso-

lutely essential for object visibility. The alternative is to employ edge detection

and other operators that automatically suppress noise as an integral part of their

function. This is the general approach taken in subsequent chapters: indeed, it is

one of the principles underlined in this book that algorithms should be “robust”

against noise or other artifacts that might upset measurements. There is quite sig-

nificant scope for the design of robust algorithms, since images contain so much

information that it is normally possible to arrange for erroneous information to be

ignored.

3.14 COLOR IN IMAGE FILTERING
In Chapter 2, it was indicated that color often adds to the complexity of image

analysis algorithms, and could also add to the associated computational costs.

From these points of view color might, except for applications such as assessing

the ripeness of fruit, be regarded as an irrelevant luxury. Nevertheless, in the field

of image processing and image filtering, where good quality images have to be
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presented to human operators, it is a vital concern. In fact, in recent years much

effort has been devoted to the development of effective color filtering algorithms.

Here we shall consider mainly median and related impulse noise filtering

procedures.

Perhaps the first point to note is that median filtering is defined in terms of

sorting operations and is thus undefined in the color domain, which normally con-

tains three dimensions. However, a simple solution is to apply a standard median

filter to each of the color channels, and then to reassemble the color image.

Unfortunately, this approach leads to certain problems, the most obvious one

being that of color “bleeding” (Fig. 3.12). This occurs when an impulse noise

point appears in just one of the channels and is situated near an edge or other

image feature. The case of an impulse noise point near an edge is hereby illus-

trated in simplified form:

Original : 0 0 0 0 1 0 1 1 1 1 1 1

Filtered : ? 0 0 0 0 1 1 1 1 1 1 ?

We see that a 3-element median filter eliminates the impulse noise point but

at the same time moves the edge toward it. The end result for a color image is

that the edge will be tinted with the color of the impulse noise point.

Fortunately, there is a standard solution to this problem. First, note that it is

possible to express single-channel median filtering as the minimization of a dis-

tance metric, and this metric is trivially extendible to three color channels (or

indeed any number of channels). The relevant single channel metric is:4

median5 arg mini
X

j
jdijj (3.35)

where dij is the distance between sample points i and j in the single-channel (gray

scale) space. In the three-color domain, the metric is readily extended to:

median5 arg mini
X

j
jd̃ijj (3.36)

where d̃ij is the generalized distance between sample points i and j, and we typi-

cally take the L2 norm to define the distance measure for three colors:

d~ij 5
X3
k5 1

ðIi;k 2 Ij;kÞ2
" #1=2

(3.37)

Here Ij, Ij are RGB vectors and Ii,k, Ij,k (k5 1, 2, 3) are their color components.

4“arg min” is a standard mathematical term that means the argument (here pixel intensity) corre-

sponding to the index (here i) giving rise to the minimum value of the expression in Eq. (3.36)

(here Σj jdijj).
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While the resulting vector median filter (VMF) no longer treats the individual

color components separately, it is by no means guaranteed to eliminate color

bleeding completely. In fact, like the standard median, it replaces any noisy inten-

sity In, (including color) by the intensity Ij of another pixel that exists in the same

window—rather than by an ideal intensity I. Hence, color bleeding is only

reduced, but not eliminated. If indeed there is a confluence of colors at any one

point in an image, even in the absence of any impulse noise there is the possibil-

ity that these sorts of algorithms will become confused and inadvertently intro-

duce small amounts of color bleeding: ultimately, the effect is due to the

increased dimensionality of the data, which means that the algorithm has to con-

tend with a greatly increased number of possible outcomes in spite of being an ad

hoc procedure that does not embody specific understanding of images.

Figure 3.12 demonstrates the nature of color bleeding, albeit in the case of

mode filtering: this figure shows vector median and vector mode filters to be

remarkably free from color bleeding, but the same does not apply to scalar mode

filters—for similar reasons to those indicated above for median filters.

3.15 CONCLUDING REMARKS
Although this chapter has dwelt on the implementation of noise suppression and

image enhancement operators based on the local intensity distribution, it has

made certain other points. In particular, it has shown the need to make a specifi-

cation of the required imaging process and only then to work out the algorithm

design strategy. Not only does this ensure that the algorithm will perform its func-

tion effectively, but also it should make it possible to optimize the algorithm for

various practical criteria including speed, storage, and other parameters of inter-

est. In addition, this chapter has demonstrated that any undesirable properties of

the particular design strategy chosen (such as the inadvertent shifting of edges)

should be sought and dealt with. Next, it has demonstrated a number of funda-

mental problems to do with imaging in discrete lattices—not least being problems

of statistics that arise with small pixel neighborhoods. Finally, the large edge

shifts of certain types of rank order filter are particularly important because they

are turned to advantage in morphological operators (Chapter 7).

The next chapter moves on to a particularly vital problem in machine vision—

that of segmenting images in order to find where objects are situated. This work

builds on what has been learnt in the present chapter about edge profiles and how

they are “seen” by neighborhood operators.

Median filters have long been used to eliminate impulse noise without blurring edges.
However, this chapter has shown that significant shifting of edges can result from use of
median filters, and this property extends to mode filters and a fortiori to rank order filters—
so much so that the latter form the basis of morphological processing.
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3.16 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Much of the work of this chapter has built on a paper by the author (Davies,

1988c), which rests on considerable earlier work on Gaussian, median, and other

rank order filters (Hodgson et al., 1985; Duin et al., 1986). Note that the edge

shifts that occur for median filters are not limited to this type of filter but apply

almost equally to mean filters (Davies, 1991b). In addition, other inaccuracies

have been found with median filters and methods have been found to correct

them (Davies, 1992e).

The early literature hardly mentions mode filters, presumably because of the

difficulty of finding simple mode estimators that are not unduly confused by noise

and which still operate rapidly. Indeed, only one early reference has been found

(Coleman and Andrews, 1979), although it has been backed up by later work

(e.g., Evans and Nixon, 1995; Griffin, 2000). Other work referred to here is that

on decomposing Gaussian and median filters (Narendra, 1978; Wiejak et al.,

1985), and the many papers on fast implementation of median filters (e.g.,

Narendra, 1978; Huang et al., 1979; Danielsson, 1981; Davies, 1992a).

Considerable efforts have been devoted to studying the “root” behavior of the

median filter, i.e., the result of applying median filtering operations until no fur-

ther change occurs. In fact, much of this work has been carried out on 1-D sig-

nals, including cardiac and speech waveforms, rather than on images (Gallagher

and Wise, 1981; Fitch et al., 1985; Heinonen and Neuvo, 1987). Root behavior is

of interest as it relates to the underlying structure of signals, although its realiza-

tion involves considerable amounts of processing. Some of the work on filtering

aims to improve on rather than to emulate the median filter. Work of this type

includes the detail-preserving filters of Heinonen and others (Nieminen et al.,

1987) and relates to the lower set of plots in Fig. 3.18. See also the neural net-

work approach to this topic (e.g., Greenhill and Davies, 1994a). More recent

work on nonlinear filtering appears in Marshall et al. (1998): see Marshall (2004)

for a new design method for weighted order statistics filters.

The author (Davies, 1987c) has reported methods of optimizing linear smooth-

ing filters in small neighborhoods by minimizing the total error in fitting them to

a continuous Gaussian function: a balance has to be struck between subpixel

errors within the neighborhood and errors that arise from the proportion of the

distribution that lies outside the neighborhood (Fig. 3.29).

With the advent of extremely low cost color frame grabbers on PCs, and the

widespread use of digital cameras, digital color images have become ubiquitous,

and this has extended to (or even necessitated) much research on color filtering.

A useful summary of work in this area up to 1998 appears in Sangwine and

Horne (1998). More recent work on vector (color) filtering includes that of Lukac

(2003). Charles and Davies (2003b) describe new distance-weighted median fil-

ters and their application to color images. They also extend the author’s earlier

mode filter work to color images (Charles and Davies, 2003a, 2004). Davies’s

(2000e) theorem shows that restricting a multichannel (color) filter output to the
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vector value of one of the input sample points (i.e., from the current window in

the image) will increase the inaccuracy present in the final image, for a large pro-

portion of pixels: since this represents the usual vector median strategy that is

employed to minimize color bleeding, the effectiveness of the current generation

of color filter algorithms needs to be looked at further.

Davies has further analyzed the distortions and edge shifts produced by a

range of rank order, mean, and mode filters, and has produced a unified review of

the subject (Davies, 2003e). In the case of median filters, it proved possible, and

necessary for high accuracy, to produce a discrete model of the situation (Davies,

2003c), rather than extending the continuum model described much earlier

(Davies, 1989b).

3.16.1 More Recent Developments
The 2000s have seen a new approach to filtering via “switched” types of filter

that judge whether or not any pixel is corrupted by impulse noise: if the latter,

they use a method such as the median or vector-median filter to eliminate it; if

the former, they adopt a policy of zero change by using the original pixel inten-

sity or color. The zero change policy is useful because it helps maintain image

sharpness and fidelity. An early example of this approach was the work of Eng

and Ma (2001): see Chen et al. (2009) and Smolka (2010) for recent, more

sophisticated versions of this concept (Smolka’s version falls in the category of a

“peer group switching filter”).

Davies (2007b) has studied the properties of the generalized (nonvector)

median filter that has the capability for eliminating even more noise than the

VMF while not being targeted so specifically at eliminating color bleeding. He

demonstrates ways of implementing the filter so that it runs sufficiently rapidly to

make it a viable alternative to the VMF.

Celebi (2009) has shown how to reduce the computational needs of directional

vector filters based on order statistics without significant loss of accuracy. At

another end of the scale, Rabbani and Gazor (2010) have shown how to reduce

FIGURE 3.29

Approximating a discrete to a continuous Gaussian. This diagram shows how a balance

needs to be struck between subpixel errors and those arising from the truncated part of

the function.
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additive Gaussian noise by using local mixture models; they find that of the

wavelet types of local representation, the discrete complex wavelet transform is

preferable in terms of both peak noise performance and computational cost.

3.17 PROBLEMS
1. Draw up a table showing the numbers of operations required to implement a

median filter in various sizes of the neighborhood. Include in your table (i)

results for a straight bubble sort of all n2 pixels, (ii) results for bubble sorts in

separated 13 n and n3 1 neighborhoods, and (iii) results for the histogram

method of Section 3.3. Discuss the results, taking account of possible compu-

tational overheads.

2. Show how to perform a median filtering operation on a binary image. Show

also that if a set of binary images is formed by thresholding a grayscale image

at various levels, and each of these binary images is median filtered, then a

grayscale image can be reconstructed that is a median filtered version of the

original grayscale image. Consider to what extent the reduced amount of com-

putation in filtering a binary image compensates for the number of separate

thresholded images to be filtered.

3. An “extremum” filter is an image-parallel operation that assigns every pixel

the intensity value closer to the two extreme values in its local intensity distri-

bution. Show that it should be possible to use such a filter to enhance images.

What would be the disadvantage of such a filter?

4. Under what conditions is a 1-D signal that has been filtered once by a median fil-

ter a root signal? What truth is there in the statement that a straight edge in an

image is neither shifted nor blurred by a median filter, whatever its cross-section?

5. a. Explain the action of the following median filtering algorithm:

for all pixels in image dof
for ði50; i,5255; i11 Þ hist½i�50;
for ðm50; m,58; m11 Þ hist½P½m��11 ;
i50; sum50;
while ðsum,5Þ f
sum5sum1hist½i�;
i5i1l;

g
Q05i� 1;
g

b. Show how this algorithm can be speeded up (i) by a more efficient histo-

gram clearing technique and (ii) by calculating the minimum intensity in

each 33 3 window. In each case, estimate approximately how much the

algorithm will be speeded up.

c. Explain why a median filter is able to smooth images without introducing

blurring.
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d. A 1-D cross-section of an image has the following intensity profile:

1 2 1 1 2 3 0 2 2 3 1 1 2 2 9 2 2 8 8 8 7 8 8 7 9 9 9

Apply (i) a 3-element median filter and (ii) a 5-element median filter to

this profile. With the aid of these examples, show that median filters tend

to produce “runs” of constant values in 1-D profiles. Show also that under

some circumstances an edge in the profile can be shifted by a nearby

spike: give a rule showing when this is likely to occur for an n-element

median filter in one dimension.

6. a. A mode filter is defined as one in which the new pixel intensity at any

pixel takes the most probable value in the local intensity distribution of a

window placed around that pixel in the original image space. Show for a

grayscale image that a mode filter will, if anything, sharpen the image,

while a mean filter will tend to blur the image.

b. A max filter is one that takes the maximum value of the local intensity dis-

tribution in a window around each pixel. Explain what will be seen when a

max filter is applied to an image. Consider whether any similar effects are

liable to happen when a mode filter is applied to an image.

c. Explain the purpose of a median filter. Why are 2-D median filters some-

times implemented as two 1-D median filters applied in sequence?

d. Contrast the behavior of 5-element 1-D mean, max, and median filters as

applied to the following waveform:5

0 1 1 2 3 2 2 0 2 3 9 3 2 4 4 6 5 6 7 0 8 8 9 1 1 8 9

e. Work out what would happen if the 1-D median filter were applied many

times, starting with this waveform.

7. a. Determine the effect of applying (i) a 33 3 median filter and (ii) a 53 5

median filter to the portion of an image shown in Fig. 3.30.

5For the mean filter, give the nearest integer value in each case.

0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 9 9 9 9 9 9
0 0 0 0 9 9 8 9 9 9
0 0 1 0 9 8 9 9 7 9
0 0 0 0 7 9 9 8 9 9
0 1 0 8 9 9 9 9 9 9
0 0 0 0 9 9 9 9 9 9
0 0 0 0 8 9 9 9 9 9

FIGURE 3.30

Portion of image for tests of median filter.
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b. Show that it should be possible to develop a corner detector based on the

properties of these median filters. What advantages or disadvantages might

result from employing this design strategy?

8. a. Distinguish between mean and median filtering. Explain why a mean filter

would be expected to blur an image, while a median filter would not have

this effect. Illustrate your answer by showing what happens in the follow-

ing 1-D case with a window of size 13 3:

1 1 1 1 2 1 1 2 3 4 4 0 4 4 4 5 6 7 6 5 4 3 3

b. Give a complete median filter algorithm based on histograms and operating

within a 33 3 window. Explain why it operates relatively slowly.

c. A computer language has the max(a, b) operation as standard. Show how it

may be used to find the maximum intensity within a 33 3 window. Show

also how it may be used to find the median by successively replacing the

maximum values by zeros. If the max(a, b) operation is about the same

speed as the a1 b operation, determine whether the median can be found

any faster by this method.

d. Discuss whether splitting a 33 3 median operation into 13 3 and 33 1

median operations is likely to be effective at eliminating impulse noise in

images. How would the speed of this approach be affected by use of the

max(a, b) operation?

9. a. Determine the result of applying a 3-element median filter to the following

1-D signals:

i. 0 0 0 0 0 1 0 1 1 1 1 1 1 1

ii. 2 1 2 3 2 1 2 2 3 2 4 3 3 4

iii. 1 1 2 3 3 4 5 8 6 6 7 8 9 9

b. What general lessons can be learnt from the results? In the first case, con-

sider also the corresponding situation for a grayscale edge in a 2-D image.

c. 2-D median filters are sometimes implemented as two 1-D median filters

applied in sequence in order to improve the speed of processing. Estimate

the gain in speed that could be achieved in this way for (i) a 33 3 median

filter, (ii) a 73 7 median filter, and (iii) in the general case.
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CHAPTER

4 Thresholding Techniques

One of the important practical aims of image processing is the demarcation of

objects appearing in digital images. This process is called segmentation, and a

good approximation to it can often be achieved by thresholding. Broadly, this

involves separating the dark and light regions of the image, and thus identifying

dark objects on a light background (or vice versa). This chapter discusses the

effectiveness of this idea and the means for achieving it.

Look out for:

• the segmentation, region-growing and thresholding concepts.

• the problem of threshold selection.

• the limitations of global thresholding.

• problems in the form of shadows or glints (highlights).

• the possibility of modeling the image background.

• the idea of adaptive thresholding.

• the rigorous Chow and Kaneko approach.

• what can be achieved with simple local adaptive thresholding algorithms.

• more thoroughgoing variance, entropy-based, and maximum likelihood

methods.

• the possibility of modeling images by multilevel thresholding.

• the value of the global valley transformation.

• how thresholds can be found in unimodal distributions.

Thresholding is limited in what it can achieve, and there are severe difficulties

in automatically estimating the optimum threshold—as evidenced by the many

available techniques that have been devised for the purpose. In fact, segmentation

is an ill-posed problem, and it is misleading that the human eye appears to per-

form thresholding reliably. Nevertheless, there are instances where the task can

be simplified, for example, by suitable lighting schemes, so that thresholding

becomes effective. Hence, it is a useful technique that needs to be included in the

toolbox of available algorithms for use when appropriate. However, edge detec-

tion (Chapter 5) provides an alternative highly effective means to key into com-

plex image data.
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4.1 INTRODUCTION
One of the first tasks to be undertaken in vision applications is to segment objects

from their backgrounds. When objects are large and do not possess very much

surface detail, segmentation can be imagined as splitting the image into a number

of regions each having a high level of uniformity in some parameter such as

brightness, color, texture or even motion. Hence, it should be straightforward to

separate objects from one another and from their background, and also to discern

the different facets of solid objects such as cubes.

Unfortunately, the concept of segmentation presented above is an idealization

that is sometimes reasonably accurate, but more often in the real world, it is an

invention of the human mind, generalized inaccurately from certain simple cases.

This problem arises because of the ability of the eye to understand real scenes at

a glance, and hence to segment and perceive objects within images in the form

they are known to have. Introspection is not a good way of devising vision algo-

rithms, and it must not be overlooked that segmentation is actually one of the cen-

tral and most difficult practical problems of machine vision.

Thus, the common view of segmentation as looking for regions possessing

some degree of uniformity is to a large extent invalid. There are many examples of

this in the world of 3-D objects: one is a sphere lit from one direction, the bright-

ness in this case changes continuously over the surface so that there is no distinct

region of uniformity; another is a cube where the direction of the lighting may lead

to several of the facets having equal brightness values so that it is impossible from

intensity data alone to segment the image completely as desired.

Nevertheless, there is sufficient correctness in the concept of segmentation

by uniformity measures for it to be worth pursuing for practical applications.

The reason is that in many (especially industrial) applications, only a very

restricted range and number of objects are involved, and in addition it is poss-

ible to have almost complete control over the lighting and the general environ-

ment. The fact that a particular method may not be completely general need not

be problematic, since by employing tools that are appropriate for the task in

hand, a cost-effective solution will have been achieved in that case at least.

However, in practical situations, there is clearly a tension between simple cost-

effective solutions and general-purpose but more computationally expensive

solutions; this tension must always be kept in mind in severely practical subjects

such as machine vision.

4.2 REGION-GROWING METHODS
The segmentation idea outlined in Section 4.1 leads naturally to the region-grow-

ing technique (Zucker, 1976b). Here, pixels of like intensity (or other

suitable property) are successively grouped together to form larger and larger
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regions until the whole image has been segmented. Clearly, there have to be rules

about not combining adjacent pixels that differ too much in intensity, while per-

mitting combinations for which intensity changes gradually because of variations

in background illumination over the field of view. However, this is not enough to

make a viable strategy, and in practice the technique has to include the facility

not only to merge regions together but also to split them if they become too large

and inhomogeneous (Horowitz and Pavlidis, 1974). Particular problems are noise

and sharp edges and lines that form disconnected boundaries, and for which it is

difficult to formulate simple criteria to decide whether they form true region

boundaries. In remote sensing applications, for example, it is often difficult to

separate fields rigorously when hedges are broken and do not give continuous

lines: in such applications, segmentation may have to be performed interactively,

with a human operator helping the computer. Hall (1979) found that in practice

regions tend to grow too far,1 so that to make the technique work well it is neces-

sary to limit their growth with the aid of edge detection schemes.

Thus, the region-growing approach to segmentation turns out to be quite com-

plex to apply in practice. In addition, region-growing schemes usually operate

iteratively, gradually refining hypotheses about which pixels belong to which

regions. The technique is complicated because, carried out properly, it involves

global as well as local image operations. Thus, each pixel intensity will in princi-

ple have to be examined many times, and as a result the process tends to be quite

computation intensive. For this reason, it is not considered further here, since we

are often more interested in methods involving low computational load that are

amenable to real-time implementation.

4.3 THRESHOLDING
If background lighting is arranged so as to be fairly uniform, and we are looking

for rather flat objects that can be silhouetted against a contrasting background,

segmentation can be achieved simply by thresholding the image at a particular

intensity level. This possibility was apparent from Fig. 2.2. In such cases, the

complexities of the region-growing approach are bypassed. The process of thresh-

olding has already been covered in Chapter 2, the basic result being that the initial

grayscale image is converted into a binary image in which objects appear as black

figures on a white background, or as white figures on a black background.

Further analysis of the image then devolves into analysis of the shapes and

dimensions of the figures: at this stage, object identification should be straightfor-

ward. Chapter 9 concentrates on such tasks. Meanwhile, there is one outstanding

problem—how to devise an automatic procedure for determining the optimum

thresholding level.

1Clearly, there is a danger that even one small break could join two regions into a single larger one.
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4.3.1 Finding a Suitable Threshold
One simple technique for finding a suitable threshold arises in situations such

as optical character recognition (OCR) where the proportion of the background

that is occupied by objects (i.e., print) is relatively constant in a variety of con-

ditions. A preliminary analysis of relevant picture statistics then permits subse-

quent thresholds to be set by insisting on a fixed proportion of dark and light

in a sequence of images (Doyle, 1962). In practice, a series of experiments is

performed in which the thresholded image is examined as the threshold is

adjusted, and the best result ascertained by eye: at that stage, the proportions

of dark and light in the image are measured. Unfortunately, any changes in

noise level following the original measurement will upset such a scheme, since

they will affect the relative amounts of dark and light in the image. However,

this is frequently a useful technique in industrial applications, especially when

particular details within an object are to be examined: typical examples of this

are holes in mechanical components such as brackets (note that the mark�
space ratio for objects may well vary substantially on a production line, but the pro-

portion of hole area within the object outline would not be expected to vary).

The technique that is most frequently employed for determining thresholds

involves analyzing the histogram of intensity levels in the digitized image

(Fig. 4.1): if a significant minimum is found, it is interpreted as the required

threshold value (Weska, 1978). Clearly, the assumption being made here is that

the peak on the left of the histogram corresponds to dark objects, and the peak on

the right corresponds to light background (here it is assumed that, as in many

industrial applications, objects appear dark on a light background).

This method is subject to the following major difficulties:

1. the valley may be so broad that it is difficult to locate a significant minimum.

2. there may be a number of minima because of the type of detail in the image,

and selecting the most significant one will be difficult.

3. noise within the valley may inhibit location of the optimum position.

4. there may be no clearly visible valley in the distribution because noise may be

excessive or because the background lighting may vary appreciably over the

image.

5. either of the major peaks in the histogram (usually due to the background)

may be much larger than the other and this will then bias the position of the

minimum.

6. the histogram may be inherently multimodal, making it difficult to determine

which is the relevant thresholding level.

Perhaps the worst of these problems is the last point: that is, if the histogram

is inherently multimodal, and we are trying to employ a single threshold, then we

are applying what is essentially an ad hoc technique to obtain a meaningful result.

In general, such efforts are unlikely to succeed, and this is clearly a case where

full image interpretation must be performed before we could be sure that the

results are valid. Ideally, thresholding rules have to be formed after many images
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have been analyzed. In what follows such problems of meaningfulness are

eschewed and attention is concentrated on how best to find a genuine single

threshold when its position is obscured as indicated by problems 1�5 above

(which can be ascribed to image “clutter,” noise, and lighting variations).

4.3.2 Tackling the Problem of Bias in Threshold Selection
This section considers problem 5 of Section 4.3.1—that of eliminating the bias in

the selection of thresholds that arises when one peak in the histogram is larger

than the other. First, note that if the relative heights of the peaks are known, this

effectively eliminates the problem, since the “fixed proportion” method of thresh-

old selection outlined above can be used. However, this is not normally possible.

A more useful approach is to prevent bias by weighting down the extreme values

of the intensity distribution and weighting up the intermediate values in some

way. To achieve this, note that the intermediate values are special in that they

correspond to object edges. Hence, a good basic strategy is to find positions in

the image where there is a significant intensity gradient—corresponding to pixels

in the regions of edges—and to analyze the intensity values of these locations

while ignoring other points in the image.

One way of dealing with this is to construct “scattergrams” in which pixel

properties are plotted on a 2-D map with intensity variation along one axis and

FIGURE 4.1

Idealized histogram of pixel intensity levels in an image. The large peak on the right

results from the light background; the smaller peak on the left is due to dark foreground

objects. The minimum of the distribution provides a convenient intensity value to use as a

threshold.
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intensity gradient magnitude variation along the other. As indicated in Fig. 4.2,

there are three main populated regions on the map: (1) a low-intensity, low-

gradient region corresponding to the dark objects; (2) a high-intensity, low-

gradient region corresponding to the background; and (3) a medium-intensity,

high-gradient region corresponding to object edges (Panda and Rosenfeld,

1978). By analyzing how these regions merge into each other, it is sometimes

possible to obtain better results than can be obtained using simple threshold-

ing. In particular, by examining the situation for moderate values of gradient,

bias may be reduced, as indicated above. However, instead of constructing a

scattergram, we can try weighting the plots in the intensity histogram in such a

way as to minimize threshold bias: this possibility is discussed in the following

section.

4.3.2.1 Methods Based on Finding a Valley in the Intensity Distribution
This section considers how to weight the intensity distribution using a parameter

other than the intensity gradient, in order to locate accurately the valley in the

intensity distribution. A simple strategy is first to locate all pixels that have a

significant intensity gradient, and then to find the intensity histogram not only of

these pixels but also of nearby pixels. This means that the two main modes in

the intensity distribution are still attenuated very markedly and hence the bias in

the valley position is significantly reduced. Indeed, the numbers of background

and foreground pixels that are now being examined are very similar, so the bias

g

0 I

2

3

1

FIGURE 4.2

Scattergram showing the frequency of occurrence of various combinations of pixel

intensity I and intensity gradient magnitude g in an idealized image. There are three main

populated regions of interest: (1) a low-I, low-g region; (2) a high-I, low-g region; and

(3) a medium-I, high-g region. Analysis of the scattergram sometimes provides useful

information on how to segment the image.
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from the relatively large number of background pixels is virtually eliminated

(note that if the modes are modeled as two Gaussian distributions of equal widths

and they also have equal heights, then the minimum lies exactly halfway

between them).

Although obvious, this approach clearly includes the edge pixels themselves,

which tend to fill the valley between the two modes. For the best results, the

points of highest gradient must actually be removed from the intensity histo-

gram. A well-attested way of achieving this is to weight pixels in the intensity

histogram according to their response to a Laplacian filter (Weska et al., 1974).

Since such a filter gives an isotropic estimate of the second derivative of the

image intensity (i.e., the magnitude of the first derivative of the intensity gradi-

ent), it is zero where intensity gradient magnitude is high: hence, it gives such

locations zero weight, but it nevertheless weights up those locations on the

shoulders of edges. It has been found that this approach is very good at estimat-

ing where to place a threshold within a wide valley in the intensity histogram

(Weska et al., 1974).

4.3.3 Summary
It has been shown that available techniques are able to provide values at which

intensity thresholding can be applied, but they do not themselves solve the pro-

blems caused by uneven lighting. They are even less capable of coping with

glints, shadows and image clutter. Unfortunately, these artifacts are common in

most real situations (Figs. 4.3�4.5) and are only eliminated with difficulty in

practice. Indeed, in industrial applications where shiny metal components are

involved, glints are the rule rather than the exception, while shadows can seldom

be avoided with any sort of object. Even flat objects are liable to have quite

strong shadow contours around them because of the particular placement of lights.

Lighting problems are studied in detail in Chapter 25. Meanwhile, note that glints

and shadows can only be allowed for properly in a two-stage image analysis sys-

tem, where tentative assignments are made first, and these are firmed up by exact

explanation of all pixel intensities. We now return to the problem of making the

most of the thresholding technique, by finding how variations in background

lighting can be allowed for.

4.4 ADAPTIVE THRESHOLDING
The problem that arises when illumination is not sufficiently uniform may be

tackled by permitting the threshold to vary adaptively (or “dynamically”) over

the whole image. In principle, there are several ways of achieving this. One

involves modeling the background within the image. Another is to work out a

local threshold value for each pixel by examining the range of intensities in its

neighborhood. A third approach is to split the image into subimages and deal
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with them independently. Although “obvious,” the last method will clearly run

into problems at the boundaries between subimages, and by the time these pro-

blems have been solved, it will look more like one of the other two methods.

The problem can sometimes be solved rather neatly in the following way. On

some occasions—such as in automated assembly applications—it is possible to

(a) (b)

FIGURE 4.3

Histogram for the image shown in Fig. 2.7(a). Note that the histogram is not particularly

close to the ideal form of Fig. 4.1. Hence, the threshold obtained from (a) (indicated by

the short line beneath the scale) does not give ideal results with all the objects in the

binarized image (b). Nevertheless, the results are better than for the arbitrarily

thresholded image of Fig. 2.7(b).

(a) (b)

FIGURE 4.4

Histogram for the image shown in Fig. 2.1(a). The histogram is not at all close to the

idealized form, and the results of thresholding (b) are not a particularly useful aid to

interpretation.
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obtain an image of the background in the absence of any objects. This appears to

solve the problem of adaptive thresholding in a rigorous manner, since the tedious

task of modeling the background has already been carried out. However, caution

is needed because objects bring with them not only shadows (which can in some

sense be regarded as part of the objects) but also an additional effect due to the

reflections they cast over the background and other objects. This additional effect

is nonlinear in the sense that it is necessary to add not only the difference

between the object and the background intensity in each case but also an intensity

that depends on the products of the reflectances of pairs of objects. These consid-

erations mean that using the no-object background as the equivalent background

when several objects are present is ultimately invalid. However, as a first approxi-

mation, it is frequently possible to assume an equivalence. If this proves impracti-

cable, there is no option but to model the background from the actual image to be

segmented.

(a)

(c)

(b)

FIGURE 4.5

A picture with more ideal properties. (a) Image of a plug that has been lit fairly uniformly.

The histogram (c) approximates to the ideal form, and the result of thresholding (b) is

acceptable. However, much of the structure of the plug is lost during binarization.
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On other occasions, the background intensity may be rather slowly varying, in

which case it may be possible to model it by the following technique (this is a

form of Hough transform—see Chapter 11). First, an equation is selected, which

can act as a reasonable approximation to the intensity function, for example, a

quadratic variation:

I5 a1 bx1 cy1 dx2 1 exy1 fy2 (4.1)

Next, a parameter space for the six variables a, b, c, d, e, f is constructed; then

each pixel in the image is taken in turn and all sets of values of the parameters

that could have given rise to the pixel intensity value are accumulated in parameter

space. Finally, a peak is sought in parameter space, which represents an optimal fit

to the background model. So far it appears that this has been carried out only for a

linear variation, the analysis being simplified initially by considering only the dif-

ferences in intensities of pairs of points in image space (Nixon, 1985). Note that a

sufficient number of pairs of points must be considered so that the peak in parame-

ter space resulting from background pairs is sufficiently well populated.

4.4.1 The Chow and Kaneko Approach
As early as 1972, Chow and Kaneko introduced what is widely recognized as the

standard technique for dynamic thresholding: the technique performs a thoroughgo-

ing analysis of the background intensity variation, making few compromises to

save computation (Chow and Kaneko, 1972). In this method, the image is divided

into a regular array of overlapping subimages and individual intensity histograms

are constructed for each one. Those that are unimodal are ignored since they are

assumed not to provide any useful information that can help in modeling the back-

ground intensity variation. However, the bimodal distributions are well suited to

this task: these are individually fitted to pairs of Gaussian distributions of

adjustable height and width and the threshold values are located. Thresholds are

then found, by interpolation, for the unimodal distributions. Finally, a second stage

of interpolation is necessary to find the correct thresholding value at each pixel.

One problem with this approach is that if the individual subimages are made

very small in an effort to model the background illumination more exactly, the

statistics of the individual distributions become worse, their minima become less

well defined and the thresholds deduced from them are no longer statistically sig-

nificant. This means that it does not pay to make subimages too small and that

ultimately only a certain level of accuracy can be achieved in modeling the back-

ground in this way. Clearly, the situation is highly data dependent, but it might be

expected that little would be gained by reducing the subimage size below 323 32

pixels. Chow and Kaneko employed 2563 256 pixel images and divided these

into a 73 7 array of 643 64 pixel subimages with 50% overlap.

Overall, this approach involves considerable computation, and in real-time

applications it may well not be viable for this reason.

914.4 Adaptive Thresholding



4.4.2 Local Thresholding Methods
The other approach mentioned earlier is particularly useful for finding local

thresholds. It involves analyzing intensities in the neighborhood of each pixel to

determine the optimum local thresholding level. Ideally, the Chow and Kaneko

histogramming technique would be repeated at each pixel, but this would signifi-

cantly increase the computational load of this already computationally intensive

technique. Thus, it is necessary to obtain the vital information by an efficient

sampling procedure. One simple means for achieving this is to take a suitably

computed function of nearby intensity values as the threshold: often the mean of

the local intensity distribution is taken because this is a simple statistic and gives

good results in some cases. For example, in astronomical images, stars have been

thresholded in this way. Niblack (1985) reported a case in which a proportion of

the local standard deviation was added to the mean to give a more

suitable threshold value, the reason (presumably) being to help suppress noise

(clearly, addition is appropriate where bright objects such as stars are to be

located, whereas subtraction is more appropriate in the case of dark objects).

Another statistic that is frequently used is the mean of the maximum and mini-

mum values in the local intensity distribution. The justification for this is that

whatever the sizes of the two main peaks of the distribution, this statistic often

gives a reasonable estimate of the position of the histogram minimum. The theory

presented earlier shows that this method will only be accurate if (a) the intensity

profiles of object edges are symmetrical, (b) noise acts uniformly everywhere in

the image so that the widths of the two peaks of the distribution are similar, and

(c) the heights of the two distributions do not differ markedly. Sometimes these

assumptions are definitely invalid—e.g., when looking for (dark) cracks in eggs

or other products. In such cases, the mean and maximum of the local intensity

distribution can be found and a threshold deduced using the statistic

T 5mean2ðmaximum2meanÞ (4.2)

where the strategy is to estimate the lowest intensity in the bright background

assuming the distribution of noise is symmetrical (Fig. 4.6): use of the mean here is

realistic only if the crack is narrow and does not affect the value of the mean signif-

icantly. If it does, then the statistic can be adjusted by use of an ad hoc parameter:

T 5mean2 k maximum2meanð Þ (4.3)

where k may be as low as 0.5 (Plummer and Dale, 1984).

This method is essentially the same as that of Niblack (1985), but the compu-

tational load in estimating the standard deviation is minimized. Each of the last

two techniques relies on finding local extrema of intensity. Using these measures

helps save computation, but they are clearly somewhat unreliable because of the

effects of noise. If this is a serious problem, quartiles or other statistics of the dis-

tribution may be used. The alternative of prefiltering the image to remove noise

is unlikely to work for crack thresholding, since cracks will almost certainly be

removed at the same time as the noise. A better strategy is to form an image of
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T-values obtained using Eq. (4.2) or (4.3): smoothing this image should then per-

mit the initial image to be thresholded effectively.

Unfortunately, all these methods work well only if the size of the neighbor-

hood selected for estimating the required threshold is large enough to span a sig-

nificant amount of foreground and background. In many practical cases, this is

not possible and the method then adjusts itself erroneously, for example, so that it

finds darker spots within dark objects as well as segmenting the dark objects

themselves. However, there are certain applications where there is little risk of

this occurring. One notable case is that of OCR. Here the widths of character

limbs are likely to be known in advance and should not vary substantially. If this

is so, then a neighborhood size can be chosen to span or at least sample both

character and background, and it is thus possible to threshold the characters

highly efficiently using a simple functional test of the type described above. The

effectiveness of this procedure (Table 4.1) is demonstrated in Fig. 4.7.

Finally, before leaving this topic, note that hysteresis thresholding is a type of

adaptive thresholding—effectively permitting the threshold value to vary locally:

this topic is investigated in Section 5.10.

4.5 MORE THOROUGHGOING APPROACHES TO THRESHOLD
SELECTION

At this point, we return to global threshold selection and describe some important

approaches that have a rigorous mathematical basis. The first of these is variance-

based thresholding, the second is entropy-based thresholding, and the third is

maximum likelihood thresholding. All three are widely used, the second having

achieved an increasingly wide following over the past 20�30 years, and the third

is a more broad-based technique that has its roots in statistical pattern recogni-

tion—a subject that is covered in Chapter 24.

xd

b

c

aI

FIGURE 4.6

Method for thresholding the crack in an egg. a, Intensity profile of an egg in the vicinity

of a crack: the crack is assumed to appear dark (e.g., under oblique lighting); b, local

maximum of intensity on the surface of the egg; c, local mean intensity. Eq. (4.2) gives

a useful estimator T of the thresholding level d.

934.5 More Thoroughgoing Approaches to Threshold Selection



Table 4.1 A Simple Algorithm for Adaptively Thresholding Print

minrange5255 / 5;
/* minimum likely difference in intensity between print and background:
this parameter can be preset manually or “learnt” by a previous routine */
for all pixels in image do {

find minimum and maximum of local intensity distribution;
range5maximum � minimum;
if (range.minrange)

T5(minimum1maximum)/2; // print is visible in neighborhood
else T5maximum � minrange/2; // neighborhood is all white
if (P0.T) Q05255; else Q050; // now binarize print

}

(a) (b)

(c)

FIGURE 4.7

Effectiveness of local thresholding on printed text. Here, a simple local thresholding

procedure (Table 4.1), operating within a 33 3 neighborhood, is used to binarize the

image of a piece of printed text (a). Despite the poor illumination, binarization is

performed quite effectively (b). Note the complete absence of isolated noise points in (b),

while by contrast the dots on all the i’s are accurately reproduced. The best that could be

achieved by uniform thresholding is shown in (c).
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4.5.1 Variance-Based Thresholding
The standard approach to thresholding outlined earlier involved finding the neck

of the global image intensity histogram. However, this is impracticable when the

dark peak of the histogram is minuscule in size, as it will then be hidden among

the noise in the histogram and it will not be possible to extract it with the usual

algorithms.

A good many investigators have studied this sort of problem (e.g., Otsu, 1979;

Kittler et al., 1985; Sahoo et al., 1988; Abutaleb, 1989): among the most well-

known approaches are the variance-based methods. In these methods, the image

intensity histogram is analyzed to find where it can best be partitioned to optimize

criteria based on ratios of the within-class, between-class, and total variance. The

simplest approach (Otsu, 1979) is to calculate the between-class variance, as will

now be described.

First, we assume that the image has a grayscale resolution of L gray levels.

The number of pixels with gray level i is written as ni, so the total number of pix-

els in the image is N5 n1 1 n2 1 . . . 1 nL. Thus, the probability of a pixel having

gray level i is:

pi 5
ni

N
(4.4)

where

pi $ 0
XL
i51

pi 5 1 (4.5)

For ranges of intensities up to and above the threshold value k, we can now

calculate the between-class variance σ2
B and the total variance σ2

T :

σ2
B 5π0 μ0 2μT

	 
2
1π1 μ1 2μT

	 
2
(4.6)

σ2
T 5

XL
i51

i2μT

	 
2
pi (4.7)

where

π0 5
Xk
i5 1

pi π1 5
XL

i5k1 1

pi 5 12π0 (4.8)

μ0 5
Xk
i5 1

ipi=π0 μ1 5
XL

i5k1 1

ipi=π1 μT 5
XL
i51

ipi (4.9)

Making use of the latter definitions, the formula for the between-class vari-

ance can be simplified to:

σ2
B 5π0π1 μ1 2μ0

	 
2
(4.10)
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For a single threshold, the criterion to be maximized is the ratio of the

between-class variance to the total variance:

η5
σ2
B

σ2
T

(4.11)

However, the total variance is constant for a given image histogram, so maxi-

mizing η simplifies to maximizing the between-class variance.

The method can readily be extended to the dual threshold case

1# k1 # k2 # L, where the resultant classes, C0;C1; and C2, have respective gray-

level ranges of ½1; :::; k1�; ½k1 1 1; . . . ; k2� ; and ½k2 1 1; . . . ;L�.
In some situations (e.g., Hannah et al., 1995), this approach is still not sensi-

tive enough to cope with histogram noise, and more sophisticated methods must

be used. One such technique is that of entropy-based thresholding, which has

become firmly embedded in the subject (Pun, 1980; Kapur et al., 1985; Abutaleb,

1989; Brink, 1992). For further insight into the performance of the between-class

variance method (BCVM), see Section 4.7.

4.5.2 Entropy-Based Thresholding
Entropy measures of thresholding are based on the concept of entropy. The

entropy statistic is high if a variable is well distributed over the available range,

and low if it is well ordered and narrowly distributed: specifically, entropy is a

measure of disorder, and is zero for a perfectly ordered system. The concept of

entropy thresholding is to threshold at an intensity for which the sum of the entro-

pies of the two intensity probability distributions thereby separated is maximized.

The reason for this is to obtain the greatest reduction in entropy—i.e., the greatest

increase in order—by applying the threshold: in other words, the most appropriate

threshold level is the one that imposes the greatest order on the system, and thus

leads to the most meaningful result.

To proceed, the intensity probability distribution is again divided into two

classes—those with gray levels up to the threshold value k and those with gray

levels above k (Kapur et al., 1985). This leads to two probability distributions A

and B:

A:
p1

Pk

;
p2

Pk

; . . . ;
pk

Pk

(4.12)

B:
pk11

12Pk

;
pk12

12Pk

; . . . ;
pL

12Pk

(4.13)

where

Pk 5
Xk
i5 1

pi 12Pk 5
XL

i5k1 1

pi (4.14)
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The entropies for each class are given by:

HðAÞ52
Xk
i5 1

pi

Pk

ln
pi

Pk

(4.15)

HðBÞ52
XL

i5 k1 1

pi

12Pk

ln
pi

12Pk

(4.16)

and the total entropy is:

HðkÞ5HðAÞ1HðBÞ (4.17)

Substitution leads to the final formula:

HðkÞ5 ln
Xk
i5 1

pi

 !
1 ln

XL
i5 k1 1

pi

 !
2

Pk
i5 1

piln pi

Pk
i5 1

pi

2

PL
i5 k1 1

piln pi

PL
i5 k1 1

pi

(4.18)

and it is this parameter that has to be maximized.

This approach can give very good results—see, e.g., Hannah et al. (1995).

Again, it is straightforwardly extended to dual thresholds, but we shall not go into

the details here (Kapur et al., 1985). In fact, probabilistic analysis to find mathe-

matically ideal dual thresholds may not be the best approach in practical situa-

tions: an alternative technique for determining dual thresholds sequentially has

been devised by Hannah et al. (1995), and applied to an X-ray inspection task—

as described in Chapter 20.

4.5.3 Maximum Likelihood Thresholding
When dealing with distributions such as intensity histograms, it is important to

compare the actual data with the data that might be expected from a previously

constructed model based on a training set: this is in agreement with the methods

of statistical pattern recognition (see Chapter 24), which takes full account of

prior probabilities. For this purpose, one option is to model the training set data

using a known distribution function such as a Gaussian. The latter has many

advantages, including its accessibility to relatively straightforward mathematical

analysis. In addition, it is specifiable in terms of two well-known parameters—the

mean and standard deviation—which are easily measured in practical situations.

Indeed, for any Gaussian distribution, we have:

piðxÞ5
1

ð2πσ2
i Þ1=2

exp 2
ðx2μiÞ2

2σ2
i

� �
(4.19)
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where the suffix i refers to a specific distribution, and of course when threshold-

ing is being carried out, there is a supposition that two such distributions are

involved. Applying the respective a priori class probabilities P1;P2 (Chapter 24),

careful analysis (Gonzalez and Woods, 1992) shows that the condition

p1ðxÞ5 p2ðxÞ reduces to the form:

x2
1

σ2
1

2
1

σ2
2

� �
22x

μ1

σ2
1

2
μ2

σ2
2

� �
1

μ2
1

σ2
1

2
μ2
2

σ2
2

� �
1 2 log

P2σ1

P1σ2

� �
5 0 (4.20)

Note that, in general, this equation has two solutions,2 implying the need for two

thresholds, although when σ1 5σ2 there is a single solution:

x5
1

2
μ1 1μ2

	 

1

σ2

μ1 2μ2

ln
P2

P1

� �
(4.21)

In addition, when the prior probabilities for the two classes are equal, the equation

reduces to the altogether simpler and more obvious form:

x5
1

2
μ1 1μ2

	 

(4.22)

Of all the methods described in this chapter, only the maximum likelihood

method makes use of a priori probabilities. While this makes it look as if it is the

only rigorous method, and indeed that all other methods are automatically errone-

ous and biased in their estimations, this is not the actual position. The reason lies

in the fact that the other methods incorporate actual frequencies of sample data,

which embody the a priori probabilities (see Section 24.4). Hence, the other

methods should give correct results. Nevertheless, it is refreshing to see a priori

probabilities brought in explicitly, as this gives a greater confidence of getting

unbiased results in any doubtful situations.

4.6 THE GLOBAL VALLEY APPROACH TO THRESHOLDING
An important disadvantage of the many approaches to threshold estimation,

including particularly entropy thresholding and its variants, is that it is often

unclear how they will react to unusual or demanding situations, such as where

multiple thresholds have to be found in the same image (Kapur et al., 1985;

2The reason for the existence of two solutions is that one solution represents a threshold in the area

of overlap between the two Gaussians; the other solution is mathematically unavoidable, and lies at

either very high or very low intensities. It is this latter solution that disappears when the two

Gaussians have equal variance, as the distributions clearly never cross again. In any case, it seems

unlikely that the distributions being modeled would in practice approximate so well to Gaussians

that the non-central solution could ever be important—i.e. it is essentially a mathematical fiction

that needs to be eliminated from consideration.
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Hannah et al., 1995; Tao et al., 2003; Wang and Bai, 2003; Sezgin and Sankur,

2004). Added to this, there is the risk that the more complex approaches will miss

important aspects of the original data. The global valley approach (Davies,

2007a) aimed to provide a rigorous means of going back to basics to find global

valleys of intensity histograms in such a way as to embody the intrinsic meaning

of the data.

The top trace of Fig. 4.8(a) shows the basic situation—where thresholding is

effective and the optimum threshold should be simple to locate. However, the

intensity histogram often contains such a welter of peaks and valleys that even

the human eye, with its huge capability for analysis “at a glance,” can be con-

fused—especially when it is necessary to identify global valley positions rather

than local minima of lesser significance. The situation is made clearer by the

example shown in the top trace of Fig. 4.8(b). Here valley 1 (numbering from the

left) is lower than valley 3, but valley 3 is deeper in the sense that it has two high

peaks immediately around it; however, valley 1 also lies between the highest two

peaks, and in that sense it is the globally deepest valley in the distribution.

Clearly, to judge global valley deepness, we need a mathematical criterion so

that comparisons between all the valleys can be carried out unambiguously. To

proceed, for any potential global valley point (call it point j), we need to look at

all points (i) on the left of it to find the highest peak to the left and all points (k)

on the right of it to find the highest peak to the right, before we can construct a

suitable criterion value for point j. Hence, we need to take the maximum over all

points i and the maximum over all points k. Furthermore, we need to do this for

all points j, and for each of them we need to consider only points i (i, j) and

points k (k. j), and take account of the corresponding heights hi, hj, hk in the dis-

tribution. The maximum must then be taken for a criterion function Cj of general

(a) (b) 

FIGURE 4.8

Result of applying global minimization algorithm to 1-D data sets. (a) A basic two-peak

structure. (b) A basic multimode structure. Top trace: original 1-D data sets. Middle trace:

results from Eq. (4.23). Bottom trace: results from Eq. (4.24).

Source: r IET 2008
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form max
i;k

{Q(hi2hj, hk2hj)}. An obvious criterion function of this form employs

the arithmetic mean. However, to avoid complications from negative heights, we

introduce a sign function s( � ) such that s(u)5 u if u. 0 and s(u)5 0 if u# 0.

The result is the following function:

Fj 5 max
i;k

1
2
sðhi2hjÞ1 sðhk2hjÞ
� �� �

(4.23)

When this is applied to the top trace of Fig. 4.8(a), the result is a distribution

(middle trace of Fig. 4.8(a)) that has a maximum at the required valley position.

In addition, the values of i and k corresponding to this maximum are the first and

third peak positions in the original intensity distribution. The sign function s( � )
has the effect of preventing negative responses that would complicate the situa-

tion unnecessarily.

While the function F used above is straightforward to apply and employs lin-

ear expressions that are often attractive in permitting in-depth analysis, it results

in pedestals at either end of the output distribution: these could complicate the sit-

uation when there are many peaks and valleys. Fortunately, the geometric mean is

not subject to this problem, and so it is the one that is adopted in the global valley

method (GVM). Thus, we use the following function instead of Fj:

Kj 5 max
i;k

sðhi � hjÞsðhk � hjÞ
� �1=2n o

(4.24)

Note that the arithmetic and geometric means are very similar when the two

arguments are nearly equal, but deviate a lot when the two arguments are dissimi-

lar: it is the dissimilar case that applies at the ends of the distribution, where it is

required to suppress a potential valley that has only one peak near to it, and the

geometric mean then offers a sound advantage over the arithmetic mean. These

ideas are further made clear in Fig. 4.8(b).

Overall, the rationale for this approach is that we are looking for the most signif-

icant valley in an intensity distribution, corresponding to an optimum discriminating

point between, for example, dark objects and light background in the original image.

While in some cases the situation is obvious (Fig. 4.8(a)), in general it is difficult to

sort out a confusing set of peaks and valleys and in particular to identify global val-

leys. So the concept embodied in Eq. (4.24) is that of aiming to guarantee an opti-

mal global solution by automatic means. Clearly, by analysis of the output

distribution, it is also possible to find a whole range of maxima corresponding to

global valley positions in the input distribution: to this extent, the method is able to

cope with multimode distributions and to find multiple threshold positions.

With all histogramming methods, it is necessary to take due account of local

noise in the distribution, as it could lead to inaccurate results. Hence, the K

distribution is smoothed before proceeding with further analysis to locate

thresholds.
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Another important factor is the amount of computation required for this

approach. While it at first appears that a computationally intensive scan over all

possible sets of sampling points i, j, k is required to obtain the optimal solution, it

turns out that with care the computational load can be reduced from O(N3) to

O(N), where N is the number of gray levels in the intensity distribution.

4.7 PRACTICAL RESULTS OBTAINED USING THE
GLOBAL VALLEY METHOD

The ideas presented in Section 4.6 are next tested using Fig. 4.9(a). Starting with

this image, the following sequence of operations is applied: (a) an intensity histo-

gram is generated (top trace in Fig. 4.9(d)); (b) the function K is applied (middle

trace in Fig. 4.9(d)); (c) the output distribution is smoothed (bottom trace in

Fig. 4.9(d)); (d) peaks are located (see the short vertical lines at the bottom of

Fig. 4.9(d)); (e) the most significant peaks are chosen as threshold levels (here all

eight are selected); (f) a new image is generated by applying the mean of the adja-

cent threshold intensity levels. The result (Fig. 4.9(b)) is a reasonably segmented

likeness of the original image, albeit with clear limitations in the cloud regions—

simply because accurate renditions of these would require a rather full range of

gray levels, and thresholding is not appropriate in such regions. However, what is

significant is the ease with which the approach automatically incorporates multi-

level thresholding of multimode intensity distributions—a point that has been a dif-

ficulty with entropy thresholding, for example (Hannah et al., 1995). Finally,

Fig. 4.9(c) gives a comparison with the maximum BCVM of Otsu (1979), which

has recently undergone something of a resurgence of popularity and use, partly as a

result of the ease with which it can be used for the systematic generation of multi-

level thresholds (Liao et al., 2001; Otsu, 1979).

The reconstructability of the method (in the sense that much of the image is

reconstructed so well that it is difficult to distinguish from the original) is an indi-

cation of success in that it is clear that the information removed was by no means

arbitrary, but was actually redundant and unhelpful. This property is also evident

in Fig. 4.10, which shows the application of the method to the well-known Lena

image.

The basic criterion used for smoothing is that of reducing noise as far as poss-

ible without eliminating relevant thresholding points. To achieve this, repeated

convolutions of the K distributions are made with a three-element 1
4
[1 2 1] kernel

until an appropriate amount of smoothing is obtained. Note that the GVM peaks

are by no means static. In particular, as smoothing progresses, they gradually

move and then merge, as can be seen in the bottom traces in Fig. 4.10(f�h). Just

before merger, there is often a rapid movement to align the merging peaks. To

cope with this and to find suitable thresholding levels, a useful heuristic was to

move one quarter of the way from the merged position to the next merger position
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(a) (b)

(c) (d)

FIGURE 4.9

Result of applying the global valley algorithm to a multimode intensity distribution. (a) Original grayscale

image. (b) Reconstituted image after multiple thresholding using the eight peaks in the output distribution.

(d) Top: original intensity histogram for (a). Middle: result of applying the global valley transformation.

Bottom: result of smoothing. The eight short vertical lines at the very bottom indicate the peak positions. In

(d), the intensity scale is 0�255; the vertical scale is normalized to a maximum height indicated by the

height of the vertical axis. Note: the three traces are computed 25 times more accurately than the rounded

values displayed, so the peak locations are determined as accurately as indicated. For comparison, (c)

shows the result of applying the between-class variance method to the same image: the eight thresholds

are indicated by vertical lines in the top trace of (d).

Source: r IET 2008
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*http://sipi.usc.edu/database/database.php (website accessed 13 December 2011).

(a) (b)

(c) (d)

FIGURE 4.10

Multilevel thresholding of the Lena image. For the original Lena grayscale image, see ‘Miscellaneous’ at the

USC-SIPI Image Database*. (a) Result of applying the between-class variance method (BCVM) to original

image. (b)�(d) Results of applying the global valley method to original image, producing, respectively, bi-

level, tri-level, and five-level images. (e) Top: intensity histogram of original image: the vertical line indicates

the bi-level threshold selected by the BCVM. Bottom: the resulting K distribution. (f)�(h) The upper traces

show smoothed versions of the K distribution, with short vertical lines indicating, respectively, one, two, or

four threshold positions; the lower traces show threshold positions resulting from progressive smoothing of

the K distribution: note that these are scaled and some are truncated as indicated by the horizontal gray line

at the top; the horizontal dotted lines show how sets of threshold values are selected automatically (see text).

Source: r IET 2008



(see horizontal dotted lines in Fig. 4.10(f�h)). To clarify the process, the basic

GVM algorithm is given in Fig. 4.11.

Figure 4.10(f�h) gives three examples of smoothing until 1, 2 or 4 threshold-

ing points are produced (these give bi-level, tri-level, and five-level threshold-

ing).3 These lead to the images shown in Fig. 4.10(b�d) (note particularly that

the light shaded region on Lena’s nose is very stable and noise-free).

We concentrate next on a specific advantage of the GVM: that it produces

robust judgments of minority intensities at the ends of the intensity range.

Effectively, it amplifies such regions of the distribution and provides highly

stable image segmentations: see, in particular, the under-vehicle shadows located

in Fig. 23.1(d) and the ergot contaminant located in Fig. 21.2(d).4 That the

(e) (f)

(g) (h)

FIGURE 4.10

(Continued)

3There is a potential confusion here: as smoothing proceeds, the number of GVM thresholds

progressively decreases. Hence the ordering of the respective images and traces in subfigures

(f)�(h) appears inverted from this point of view. However, it is the logical order for the BCVM for

which computation increases approximately exponentially with the number of thresholds.
4Note that these represent important vehicle guidance and inspection tasks: (1) use of under-vehicle

shadows is a promising technique for locating vehicles on the road ahead (Liu et al., 2007);

(2) ergot is poisonous and it is important to locate it amongst wheat or other grains that are to be

used for human consumption (Davies, 2003b).
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GVM is able to make sense of the exceptionally noisy K distribution shown in

Fig. 21.2(d) seems rather remarkable.

Comparing the GVM results with those of the BCVM (see Fig. 4.10(a, e)), we

see that the bi-level BCVM threshold appears to lie in an a priori quite reasonable

position in the intensity histogram: however, closer examination shows that the

performance of the BCVM approximates to splitting the active area of the histo-

gram into equal parts, corresponding to finding an approximate median. This

means that for nearly unimodal histograms, it has much less chance of leading to

optimal segmentations. This view of its operation is supported by tests (Fig. 4.12)

made on idealized histograms, which show that it is unable to locate the bottom

of the valley. It is also noteworthy that, unlike the GVM, the multilevel BCVM

sometimes misses thresholds at the ends of the range of intensities (see, e.g., the

vertical lines in the top trace of Fig. 4.9(d)).

Overall, it has been found that the GVM produces significantly more

stable thresholds than the BCVM, that it is less prone to producing noisy bound-

aries in the thresholded images, and that its results tend to be more meaningful.

scan = 0; 
do { 
numberofpeaks = 0; 

 for (all intensity values in distribution) { 
  if (peak found) { 
   peakposition[scan, numberofpeaks] = intensity; 
   numberofpeaks ++; 
  } 
 } 
 if (numberofpeaks == requirednumber) { 
  if (previousnumberofpeaks > numberofpeaks) lowestscan = scan; 
  else highestscan = scan; 
 } 
 previousnumberofpeaks = numberofpeaks; 
 apply incremental smoothing kernel to distribution; 
 scan ++; 
} while (numberofpeaks > 0); 

optimumscan = (lowestscan*3 + highestscan)/4; 
for (all peaks up to requirednumber) 
 bestpeakposition[peak] = peakposition[optimumscan, peak]; 

FIGURE 4.11

Basic global valley algorithm. This version of the algorithm assumes that the required

number of peaks (required number) is known in advance, although the optimum amount

of smoothing is unknown. Here, the latter is estimated by taking a weighted mean of the

lowest and highest numbers of smoothing scans that yield the required number of peaks.

The final line of the algorithm gives the required number of peaks in the best positions.

While this form of the algorithm obtains positions for a specific required number of peaks,

the underlying process also maps out a complete set of stability graphs because it

proceeds until the number of peaks is zero. For further details, see Section 4.7.

Source: r IET 2008
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In fact, the BCVM tends to split intensity distributions rather blindly into approxi-

mately equal areas: although its mathematical formulation does not explicitly aim

at this, it often seems to have essentially this effect.

4.8 HISTOGRAM CONCAVITY ANALYSIS
In this section, we briefly consider previous work on histogram concavity analysis.

Rosin (2001) described how a simple geometrical construction (Fig. 4.12(c)) could

be used to identify a suitable bi-level threshold. The technique depends on the histo-

gram having a “corner,” which is then easily identified, but when the corner is less

well defined, bias can creep in and it becomes necessary to model the histogram dis-

tributions to obtain systematic corrections to the thresholding point. The approach

will work for true unimodal distributions (including those produced by grey-scale

edge images) or for “nearly” unimodal distributions where there is a very weak

mode in addition to the main mode. For true unimodal distributions, the GVM will

not work because one of the component signals in function K is zero: in such cases,

it is imperative to use a method such as that described by Rosin—although others

have been described over a long period—by Rosenfeld and de la Torre (1983), Tsai

(1995), and others. For nearly unimodal distributions, the Rosin approach gives

some intrinsic bias, as indicated in Fig. 4.12(c): but it is presumably possible in

many applications to perform modeling to overcome this problem. However, the

need for modeling does not seem to arise with the GVM—as has already been dem-

onstrated (see particularly Figs. 21.2 and 23.1).

(a)

(c)

(b)

FIGURE 4.12

Results of applying the between-class variance method (BCVM) and concavity analysis in

idealized cases. Applying the BCVM to (a) a triangular histogram and (b) a parabolic

histogram. The vertical lines indicate the bi-level threshold selected by the BCVM: note

that in each case it lies well away from the obvious global minimum of the histogram.

(c) Finding thresholds by concavity analysis. The technique forms the convex hull of the

distribution, takes each joining line, and uses the foot of the longest normal as an

indicator of the threshold position. This approach is often highly effective but tends to give

a result closer to the main peak than the optimum minimum location.

Source: r IET 2008
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4.9 CONCLUDING REMARKS
Sections 4.3 and 4.4 have revealed a number of factors that are crucial to the pro-

cess of thresholding. First, the need to avoid bias in threshold selection by arrang-

ing roughly equal populations in the dark and light regions of the intensity

histogram; second, the need to work with a small subimage (or neighborhood)

size so that the intensity histogram has a well-defined valley despite variations in

illumination; and third, the need for subimages to be sufficiently large so that sta-

tistics are reliable, permitting the valley to be located accurately.

Unfortunately, these conditions are not compatible and compromises are

needed in practical situations. In particular, it is generally not possible to find a

neighborhood size that can be applied everywhere in an image, on all occasions

yielding roughly equal populations of dark and light pixels. Indeed, if the chosen

size is small enough to span edges ideally, hence yielding unbiased local thresh-

olds, it will be valueless inside large objects. Attempting to avoid this situation

by resorting to alternative methods of threshold calculation does not solve the

problem since inherent to such methods is a built-in region size. It is therefore

not surprising that a number of workers have opted for variable resolution and

hierarchical techniques in an attempt to make thresholding more effective (Wu

et al., 1982; Wermser et al., 1984; Kittler et al., 1985).

At this stage, we call into question the complications involved in such thresh-

olding procedures—which become even worse when intensity distributions start

to become multimodal. Note that the overall procedure is to find local intensity

gradients in order to obtain accurate, unbiased estimates of thresholds so that it

then becomes possible to take a horizontal slice through a grayscale image and

hence, ultimately, find “vertical” (i.e., spatial) boundaries within the image. Why

not use the gradients directly to estimate the boundary positions? Such an

approach, for example, leads to no problems from large regions where intensity

histograms are essentially unimodal, although it would be foolish to pretend that

there are no other problems (see Chapters 5 and 10).

On the whole, the author takes the view that many approaches (region-growing,

thresholding, edge detection, etc.), taken to the limits of approximation, will give

equally good results. After all, they are all limited by the same physical effects—

image noise, variability of lighting, presence of shadows, etc. However, some meth-

ods are easier to coax into working well, or need minimal computation, or have

other useful properties such as robustness. Thus, thresholding can be a highly effi-

cient means of aiding the interpretation of certain types of image: but as soon as

image complexity rises above a certain critical level, it suddenly becomes more

effective and considerably less complicated to rely on edge detection. This is stud-

ied in the next chapter. Meanwhile, we must not overlook the possibility of easing

the thresholding task by optimizing the lighting system and ensuring that any

worktable or conveyor is kept clean and white: this turns out to be a viable

approach in a surprisingly large number of industrial applications.
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The end result of thresholding is a set of silhouettes representing the shapes

of objects: these constitute a “binarized” version of the original image. Many

techniques exist for performing binary shape analysis, and some of these are

described in Chapter 9. Meanwhile, note that many features of the original

scene—e.g., texture, grooves or other surface structure—will not be present in the

binarized image. Although the use of multiple thresholds to generate a number of

binarized versions of the original image can preserve relevant information present

in the original image, this approach tends to be clumsy and impracticable, and

sooner or later one may be forced to return to the original grayscale image for the

required data.

Thresholding is among the simplest of image processing operations and is an intrinsically
appealing way of performing segmentation. While the approach is clearly limited, it would
be a mistake to ignore it and its recent developments, which provide useful tools for the
programmer’s toolkit.

4.10 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Segmentation by thresholding started many years ago from simple beginnings,

and in recent years has been refined into a set of mature procedures. Among the

notable early methods is the paradigm but computation-intensive Chow and

Kaneko method (1972), which has been outlined in Section 4.4.1. Nakagawa and

Rosenfeld (1979) studied the method and developed it for cases of trimodal distri-

butions but without improving computational load.

Fu and Mui (1981) provided a useful general survey on image segmentation:

which was updated by Haralick and Shapiro (1985). These papers review many

topics that could not be covered in this chapter due to space reasons—which also

applies for Sahoo et al.’s (1988) valuable survey of thresholding techniques.

Nevertheless, it is worth emphasizing the point made by Fu and Mui (1981) that

“All the region extraction techniques process the pictures in an iterative manner

and usually involve a great expenditure in computation time and memory.”

As hinted in Section 4.4, thresholding (particularly local adaptive threshold-

ing) has had many applications in optical character recognition. Among the earli-

est were the algorithms described by Bartz (1968) and Ullmann (1974): also two

highly effective algorithms have been described by White and Rohrer (1983).

During the 1980s, the entropy approach to automatic thresholding evolved

(e.g., Pun, 1981; Kapur et al., 1985; Abutaleb, 1989; Pal and Pal, 1989): this

approach (Section 4.5.2) proved highly effective, and its development continued

during the 1990s (e.g., Hannah et al., 1995).

In the 2000s, the entropy approach to threshold selection has remained impor-

tant, in respect both of conventional region location and ascertaining the transition
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region between objects and background to make the segmentation process more

reliable (Yan et al., 2003). In one instance, it was found useful to employ fuzzy

entropy and genetic algorithms (Tao et al., 2003). Wang and Bai (2003) have

shown how threshold selection may be made more reliable by clustering the

intensities of boundary pixels, while ensuring that a continuous rather than a dis-

crete boundary is considered (the problem is that in images that approximate to

binary images over restricted regions, the edge points will lie preferentially in the

object or the background, not neatly between both). However, in complex outdoor

scenes and for many medical images such as brain scans, thresholding alone will

not be sufficient, and resort may even have to be made to graph matching

(Chapter 14) to produce the best results—reflecting the important fact that seg-

mentation is necessarily a high-level rather than a low-level process (Wang and

Siskind, 2003). In rather less demanding cases, deformable model-guided split-

and-merge techniques may, on the other hand, still be sufficient (Liu and

Sclaroff, 2004).

4.10.1 More Recent Developments
Sezgin and Sankur (2004) give a thorough review and assessment of work on

thresholding prior to 2004. More recently, there has been continued interest in

thresholding in the case of unimodal (Coudray et al., 2010; Medina-Carnicer

et al., 2011) and near-unimodal histograms (Davies, 2007a, 2008b): the latter case

is covered fairly fully in Sections 4.6 and 4.7. In the case of Coudray et al.

(2010), the aim is to threshold intensity gradient histograms in order to locate

edges reliably: the approach taken is to model the contribution from noise as a

Rayleigh distribution and then to devise heuristics for analyzing the overall distri-

bution. With the same aim, Medina-Carnicer et al. (2011) show that applying a

histogram transformation improves the performance of the Otsu (1979) and Rosin

(2001) methods. Li et al. (2011) adopt the novel approach of constraining the

gray-level ranges considered by the thresholding algorithm in such a way as to

weaken gray-level changes in both foreground and background, thus simplifying

the original image and making the intensity histogram more closely bimodal.

After that several thresholding methods are found to operate more reliably. Ng

(2006) describes a revised version of the Otsu (1979) method that operates well

for unimodal distributions, and which is useful for defect detection. This “valley

emphasis” method works by applying a weight to the Otsu threshold calculation.

Overall, several of the recent developments can be construed as applying transfor-

mations or other improvements to older methods to make them more sophisticated

and accurate: in fact none is highly complex in any theoretical way. Finally, it

may seem somewhat surprising that, after so many decades, thresholding is still

something of a “hot” subject: the driving force for this is its extreme simplicity

and high level of utility.
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4.11 PROBLEMS
1. Using the ideas outlined in Section 4.3.2, model the intensity distribution

obtained by finding all the edge pixels in an image and including also all pix-

els adjacent to these pixels. Show that while this gives a sharper valley than

for the original intensity distribution, it is not as sharp as for pixels located by

the Laplacian operator.

2. Consider whether it is more accurate to estimate a suitable threshold for a

bimodal, dual-Gaussian distribution by (a) finding the position of the mini-

mum, or (b) finding the mean of the two peak positions. What corrections

could be made by taking account of the magnitudes of the peaks?

3. Obtain a complete derivation of Eq. (4.20). Show that, in general (as stated in

Section 4.5.3), it has two solutions. What is the physical reason for this? How

can it have only one solution when σ15σ2?
4. Prove the statement made in Section 4.6 that the computational load of the

histogram analysis for the global value method can be reduced from O(N3) to

O(N). Show also that the number of passes over the histogram required to

achieve this is at most 2.
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CHAPTER

5Edge Detection

Edge detection provides an intrinsically more rigorous means than thresholding for

initiating image segmentation. However, there is a large history of ad hoc edge

detection algorithms, and this chapter aims to distinguish what is principled from

what is ad hoc and to provide theoretical and practical knowledge underpinning

available techniques.

Look out for:

• the variety of template matching operators that have been used for edge detec-

tion—e.g., the Prewitt, Kirsch, and Robinson operators.

• the differential gradient approach to edge detection—exemplified by the

Roberts, Sobel, and Frei�Chen operators.

• theory explaining the performance of the template matching operators.

• methods for the optimal design of differential gradient operators and the value

of “circular” operators.

• tradeoffs between resolution, noise suppression capability, location accuracy,

and orientation accuracy.

• the distinction between edge enhancement and edge detection.

• outlines of more modern operators—the Canny and Laplacian-based operators.

• the use of active contour models (snakes) for modeling object boundaries.

• the “graph cut” approach to object segmentation.

In discussing the process of edge detection, this chapter shows that it is possi-

ble to estimate edge orientation with surprising accuracy within a small

window—the secret being the considerable information residing in the grayscale

values. High orientation accuracy turns out to be of particular value when using

the Hough transform to locate extended objects in digital images—as will be seen

in several chapters in Part 2 of this book.

Computer and Machine Vision.
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5.1 INTRODUCTION
In Chapter 4, segmentation has been tackled by the general approach of finding

regions of uniformity in images—on the basis that the areas found in this

way would have a fair likelihood of coinciding with the surfaces and facets of

objects. The most computationally efficient means of following this approach was

that of thresholding but for real images. This turns out to be failure-prone or quite

difficult to implement satisfactorily. Indeed, to make it work well seems to

require a multiresolution or hierarchical approach, coupled with sensitive mea-

sures for obtaining suitable local thresholds. Such measures have to take account

of local intensity gradients as well as pixel intensities, and the possibility of pro-

ceeding more simply—by taking account of intensity gradients alone—was

suggested.
In fact, edge detection has long been an alternative path to image segmenta-

tion and is the method pursued in this chapter. Whichever way is inherently the

better approach, edge detection has the additional advantage in that it immediately

reduces by a large factor (typically around 100) the considerable redundancy of

most image data: this is useful because it significantly reduces both the space

needed to store the information and the amount of processing subsequently

required to analyze it.

Edge detection has gone through an evolution spanning well over 30 years.

Two main methods of edge detection have been apparent over this period, the

first of these being the template matching (TM) approach and the second being

the differential gradient (DG) approach. In either case the aim is to find where

the intensity gradient magnitude g is sufficiently large to be taken as a reliable

indicator of the edge of an object. Then g can be thresholded in a similar way in

which intensity has been thresholded in Chapter 4 (in fact, we shall see that it is

possible to look for local maxima of g instead of, or as well as, thresholding it).

The TM and DG methods differ mainly in how they proceed to estimate g locally;

however, there are also important differences in how they determine local edge

orientation, which is an important variable in certain object detection schemes.

Later in the chapter we look at the Canny operator, which was much more rig-

orously designed than previous edge detectors. Then we consider Laplacian-based

operators before moving on to study active contour models or “snakes.” Finally,

we outline the “graph cut” approach to object segmentation: this makes use of

intensity gradient information to zone in on object regions, thereby in a sense

embodying both the edge detection and the region growing paradigms and ending

up with ideal, provably unique solutions.

Before proceeding to discuss the performance of the various edge detection

operators, note that there are a variety of types of edge, including in particular the

“sudden step” edge, the “slanted step” edge, the “planar” edge, and various inter-

mediate edge profiles (see Fig. 5.1). This chapter considers edges of the types

shown in Fig. 5.1(a)�(d): edges of the types shown in Fig. 5.1(e) and (f) are much

rarer; an example being shown in Fig. 11.4(a).
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5.2 BASIC THEORY OF EDGE DETECTION
Both DG and TM operators estimate local intensity gradients with the aid of

suitable convolution masks. In the case of the DG type of operator, only two such

masks are required—for the x and y directions. In the TM case, it is usual to

employ up to 12 convolution masks capable of estimating local components of

gradient in different directions (Prewitt, 1970; Kirsch, 1971; Robinson, 1977;

Abdou and Pratt, 1979).

In the TM approach, the local edge gradient magnitude (for short, the edge

“magnitude”) is approximated by taking the maximum of the responses for the

component masks:

g5max ðgi : i5 1; . . . ; nÞ (5.1)

where n is usually 8 or 12.

In the DG approach, the local edge magnitude may be computed vectorially

using the nonlinear transformation:

g5 g2x 1 g2y

 �1=2
(5.2)

(a) (b)

(c) (d)

(e) (f)

FIGURE 5.1

Edge models: (a) sudden step edge; (b) slanted step edge; (c) smooth step edge;

(d) planar edge; (e) roof edge; and (f) line edge. The effective profiles of edge models

are nonzero only within the stated neighborhood. The slanted step and the smooth step

are approximations to realistic edge profiles: the sudden step and the planar edge are

extreme forms that are useful for comparisons (see text).
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To save computational effort, it is common practice (Abdou and Pratt, 1979)

to approximate this formula by one of the simpler forms:

g5 gx
�� ��1 gy

�� �� (5.3)

or

g5max gx
�� ��; gy�� ��	 


(5.4)

which are, on average, equally accurate (Föglein, 1983).

In the TM approach, edge orientation is estimated simply as that of the mask

giving rise to the largest value of gradient in Eq. (5.1). In the DG approach, it is

estimated vectorially by the more complex equation:

θ5 arctan
gy

gx
(5.5)

Clearly, DG equations ((5.2) and (5.5)) require considerably more computation

than TM equation (5.1), although they are more accurate. However, in some situa-

tions orientation information is not required; in addition, image contrast may vary

widely, so there may appear to be little gain from thresholding a more accurate

estimate of g. This may explain why so many workers have employed the TM

instead of the DG approach. Since both approaches essentially involve estimation

of local intensity gradients, it is not surprising that TM masks often turn out to be

identical to DG masks (see Tables 5.1 and 5.2).

Table 5.1 Masks of Well-known Differential Edge Operators

(a) Masks for the Roberts 23 2 operator

Rx0 5
0 1

21 0

� �
Ry0 5

1 0
0 21

� �

(b) Masks for the Sobel 33 3 operator

Sx 5
21 0 1
22 0 2
21 0 1

2
4

3
5 Sy 5

1 2 1
0 0 0

21 22 21

2
4

3
5

(c) Masks for the Prewitt 33 3 “smoothed gradient” operator

Px 5
21 0 1
21 0 1
21 0 1

2
4

3
5 Py 5

1 1 1
0 0 0

21 21 21

2
4

3
5

In this table masks are presented in an intuitive format (viz. coefficients increasing in the
positive x and y directions) by rotating the normal convolution format through 180�.
This convention is employed throughout this chapter. The Roberts 232 operator masks
(a) can be taken as being referred to axes x0 and y0 at 45� to the usual x and y axes.
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5.3 THE TEMPLATE MATCHING APPROACH
Table 5.2 shows four sets of well-known TM masks for edge detection. These masks

were originally (Prewitt, 1970; Kirsch, 1971; Robinson, 1977) introduced on an intui-

tive basis, starting in two cases from the DG masks shown in Table 5.1. In all cases

the eight masks of each set are obtained from a given mask by permuting the mask

coefficients cyclically. By symmetry, this is a good strategy for even permutations,

but symmetry alone does not justify it for odd permutations: the situation is explored

in more detail below.

Note first that four of the “3-level” and four of the “5-level” masks can be gen-

erated from the other four of their set by sign inversion. This means that in either

case only four convolutions need to be performed at each pixel neighborhood,

thereby saving computation. This is an obvious procedure if the basic idea of the

TM approach is regarded as one of comparing intensity gradients in the eight

directions. The two operators that do not employ this strategy were developed

much earlier on some unknown intuitive basis.

Before proceeding, we note the rationale behind the Robinson “5-level”

masks. These were intended (Robinson, 1977) to emphasize the weights of diago-

nal edges in order to compensate for the characteristics of the human eye, which

tends to enhance vertical and horizontal lines in images. Normally, image analysis

is concerned with computer interpretation of images, and an isotropic set of

responses is required. Thus, the “5-level” operator is a special-purpose one that

need not be discussed further.

Table 5.2 Masks of Well-known 333 Template Matching Edge Operators

0� 45�

(a) Prewitt masks
21 1 1
21 22 1
21 1 1

2
4

3
5 1 1 1

21 22 1
21 21 1

2
4

3
5

(b) Kirsch masks
23 23 5
23 0 5
23 23 5

2
4

3
5 23 5 5

23 0 5
23 23 23

2
4

3
5

(c) Robinson “3-level” masks
21 0 1
21 0 1
21 0 1

2
4

3
5 0 1 1

21 0 1
21 21 1

2
4

3
5

(d) Robinson “5-level” masks
21 0 1
22 0 2
21 0 1

2
4

3
5 0 1 2

21 0 1
22 1 0

2
4

3
5

The table illustrates only two of the eight masks in each set; the remaining masks can in each case be
generated by symmetry operations. For the 3-level and 5-level operators, four of the eight available
masks are inverted versions of the other four (see text).
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These considerations show that the four template operators mentioned above

have limited theoretical justification. It is therefore worth studying the situation in

more depth (see Section 5.4).

5.4 THEORY OF 33 3 TEMPLATE OPERATORS
In what follows, it is assumed that eight masks are to be used, with angles differ-

ing by 45�. In addition, four of the masks differ from the others only in sign, since

this seems unlikely to result in any loss of performance. Symmetry requirements

then lead to the following masks for 0� and 45�, respectively.

2A 0 A

2B 0 B

2A 0 A

2
4

3
5 0 C D

2C 0 C

2D 2C 0

2
4

3
5

It is clearly of great importance to design masks so that they give consistent

responses in different directions. To find how this affects the mask coefficients,

we employ the strategy of ensuring that intensity gradients follow the rules of

vector addition. If the pixel intensity values within a 33 3 neighborhood are:

ihg
fed
cba

the above masks will give the following estimates of gradient in the 0�, 90�, and
45� directions:

g0 5Aðc1 i2 a2 gÞ1Bðf 2 dÞ (5.6)

g90 5Aða1 c2 g2 iÞ1Bðb2 hÞ (5.7)

g45 5Cðb1 f 2 d2 hÞ1Dðc2 gÞ (5.8)

If vector addition is to be valid, then:

g45 5
g0 1 g90ffiffiffi

2
p (5.9)

Equating coefficients of a, b, . . . , i leads to the self-consistent pair of

conditions:

C5
Bffiffiffi
2

p (5.10)

D5A
ffiffiffi
2

p
(5.11)
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A further requirement is for the 0� and 45� masks to give equal responses at

22.5�. This can be shown to lead to the formula:

B

A
5

ffiffiffi
2

p 9t2 2 142 4
ffiffiffi
2

p	 

t1 1

t2 2 102 4
ffiffiffi
2

p	 

t1 1

(5.12)

where t5 tan 22.5�, so that:

B

A
5

13
ffiffiffi
2

p
2 4

7
5 2:055 (5.13)

We can now summarize our findings with regard to the design of TM masks.

First, obtaining sets of masks by permuting coefficients “cyclically” in a square

neighborhood is ad hoc and cannot be relied upon to produce useful results. Next,

following the rules of vector addition and the need to obtain consistent responses

in different directions, we have shown that ideal TM masks need to closely match

the Sobel coefficients; we have also rigorously derived an accurate value for the

ratio B/A.

Having obtained some insight into the process of designing TM masks for

edge detection, we next move on to study the design of DG masks.

5.5 THE DESIGN OF DIFFERENTIAL GRADIENT OPERATORS
This section studies the design of DG operators. These include the Roberts 23 2

operator and the Sobel and Prewitt 33 3 operators (Roberts, 1965; Prewitt,

1970; for the Sobel operator see Pringle, 1969, Duda and Hart, 1973, p. 271)

(see Table 5.1). The Prewitt or “gradient smoothing” type of operator has

been extended to larger pixel neighborhoods by Prewitt (1970) and others (Brooks,

1978; Haralick, 1980) (see Table 5.3). In these instances the basic rationale is to

model local edges by the best fitting plane over a convenient size of neighborhood.

Mathematically, this amounts to obtaining suitably weighted averages to estimate

slope in the x and y directions. As pointed out by Haralick (1980), the use of

equally weighted averages to measure slope in a given direction is incorrect: the

proper weightings to use are given by the masks listed in Table 5.3. Thus, the

Roberts and Prewitt operators are apparently optimal, whereas the Sobel operator is

not. This point is discussed in more detail below.

A full discussion of the edge detection problem involves consideration of the

accuracy with which edge magnitude and orientation can be estimated when the

local intensity pattern cannot be assumed to be planar. In fact, there have been a

number of analyses of the angular dependencies of edge detection operators for a

step edge approximation. In particular, O’Gorman (1978) considered the variation

of estimated versus actual angle resulting from a step edge observed within a
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square neighborhood (see also Brooks, 1978): note that the case considered was

that of a continuum rather than a discrete lattice of pixels. This was found to lead

to a smooth variation with angular error varying from zero at 0� and 45� to a

maximum of 6.63� at 28.37� (where the estimated orientation was 21.74�), the
variation for angles outside this range being replicated by symmetry. Abdou and

Pratt (1979) obtained similar variations for the Sobel and Prewitt operators in a

discrete lattice, the respective maximum angular errors being 1.36� and 7.38�

(Davies, 1984b). It seems that the Sobel operator has angular accuracy that is

close to optimal because it is close to being a “truly circular” operator. This point

is discussed in more detail in Section 5.6.

5.6 THE CONCEPT OF A CIRCULAR OPERATOR
It has been stated above that when step edge orientation is estimated in a square

neighborhood, an error of up to 6.63� can result. Such an error does not arise with

a planar edge approximation, since fitting of a plane to a planar edge profile

within a square window can be carried out exactly. Errors appear only when the

edge profile differs from the ideal planar form, within the square neighborhood—

with the step edge probably being something of a “worst case.”

Table 5.3 Masks for Estimating Components of Gradient in Square Neighborhoods

Mx My

(a) 232 neighborhood
21 1
21 1

� �
1 1

21 21

� �

(b) 33 3 neighborhood
21 0 1
21 0 1
21 0 1

2
4

3
5 1 1 1

0 0 0
21 21 21

2
4

3
5

(c) 434 neighborhood

23 21 1 3
23 21 1 3
23 21 1 3
23 21 1 3

2
664

3
775

3 3 3 3
1 1 1 1

21 21 21 21
23 23 23 23

2
664

3
775

(d) 53 5 neighborhood

22 21 0 1 2
22 21 0 1 2
22 21 0 1 2
22 21 0 1 2
22 21 0 1 2

2
66664

3
77775

2 2 2 2 2
1 1 1 1 1
0 0 0 0 0

21 21 21 21 21
22 22 22 22 22

2
66664

3
77775

The masks provided in this table can be regarded as extended Prewitt masks. The 33 3 masks are
Prewitt masks, included in this table for completeness. In all cases weighting factors have been
omitted in the interests of simplicity, as they are throughout this chapter.
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One way to limit errors in the estimation of edge orientation might be to

restrict observation of the edge to a circular neighborhood. In the continuous case

this is sufficient to reduce the error to zero for all orientations, since symmetry

dictates that there is only one way of fitting a plane to a step edge within a circu-

lar neighborhood, assuming that all planes pass through the same central point;

the estimated orientation θ is then equal to the actual angle ϕ. A rigorous calcula-

tion along the lines indicated by Brooks (1976), which results in the following

formula for a square neighborhood (O’Gorman, 1978):

tan θ5
2 tan ϕ

32 tan2ϕ
0� #ϕ# 45� (5.14)

leads to the following formula:

tan θ5 tan ϕ; i:e:; θ5ϕ (5.15)

for a circular neighborhood (Davies, 1984b). Similarly, zero angular error results

from fitting a plane to an edge of any profile within a circular neighborhood, in

the continuous approximation. Indeed, for an edge surface of arbitrary shape, the

only problem is whether the mathematical best fit plane coincides with one that is

subjectively desirable (and, if not, a fixed angular correction will be required).

Ignoring such cases, the basic problem is how to approximate a circular neighbor-

hood in a digitized image of small dimensions, containing typically 33 3 or 53 5

pixels.

To proceed systematically, we first recall a fundamental principle stated by

Haralick (1980):

the fact that the slopes in two orthogonal directions determine the slope in any

direction is well known in vector calculus. However, it seems not to be so well

known in the image processing community.

Essentially, appropriate estimates of slopes in two orthogonal directions permit

the slope in any direction to be computed. For this principle to apply, appropriate

estimates of the slopes have first to be made: if the components of slope are inap-

propriate, they will not act as components of true vectors and the resulting esti-

mates of edge orientation will be in error. This appears to be the main source of

error with the Prewitt and other operators—it is not so much that the components

of slope are in any instance incorrect, but rather that they are inappropriate for the

purpose of vector computation since they do not match one another adequately in

the required way (Davies, 1984b).

Following the arguments for the continuous case discussed earlier, slopes

must be rigorously estimated within a circular neighborhood. Then the operator

design problem devolves into determining how best it is to simulate a circular

neighborhood on a discrete lattice so that errors are minimized. To carry this out,

it is necessary to apply a close to circular weighting while computing the masks,

so that correlations between the gradient weighting and circular weighting factors

are taken properly into account.
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5.7 DETAILED IMPLEMENTATION OF CIRCULAR OPERATORS
In practice, the task of computing angular variations and error curves has to be

tackled numerically, dividing each pixel in the neighborhood into arrays of suit-

ably small subpixels. Each subpixel is then assigned a gradient weighting (equal to

the x or y displacement) and a neighborhood weighting (equal to 1 for inside and 0

for outside a circle of radius r). Clearly, the angular accuracy of “circular” differ-

ential gradient edge detection operators must depend on the radius of the circular

neighborhood. In particular, poor accuracy would be expected for small values of

r and reasonable accuracy for large values of r, as the discrete neighborhood

approaches a continuum.

The results of such a study are presented in Fig. 5.2. The variations depicted rep-

resent RMS angular errors (Fig. 5.2(a)) and maximum angular errors (Fig. 5.2(b))

in the estimation of edge orientation. The structures on each variation are surpris-

ingly smooth: they are so closely related and systematic that they can only represent

statistics of the arrangement of pixels in neighborhoods of various sizes. Details of

these statistics are discussed in the next section.

a

1.0   6.04
1.1   4.45
1.2   3.08
1.3   1.87
1.4   0.89
1.5   0.60
1.6   1.11
1.7   1.28
1.8   1.17
1.9   0.94
2.0   0.66
2.1   0.47
2.2   0.52
2.3   0.57
2.4   0.53
2.5   0.48
2.6   0.46
2.7   0.40
2.8   0.28
2.9   0.20
3.0   0.25
3.1   0.30
3.2   0.31
3.3   0.27
3.4   0.21
3.5   0.16
3.6   0.18
3.7   0.18

b

r
rms
error

FIGURE 5.2

Variations in angular error as a function of radius r: (a) RMS angular error and

(b) maximum angular error.
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Overall, three features of Fig. 5.2 are noteworthy. First, as expected, there is a

general trend to zero angular error as r tends to infinity. Second, there is a very

marked periodic variation, with particularly good accuracy resulting where the

circular operators best match the tessellation of the digital lattice. The third fea-

ture of interest is the fact that errors do not vanish for any finite value of r—

clearly, the constraints of the problem do not permit more than the minimization

of errors. These curves show that it is possible to generate a family of optimal

operators (at the minima of the error curves), the first of which corresponds

closely to an operator (the Sobel operator) that is known to be nearly optimal.

The variations shown in Fig. 5.2 can be explained (Davies, 1984b) as pixel cen-

ters lying in well-packed or “closed” bands approximating to continua—indicated

by the low error points in Fig. 5.2—between which centers would be more loosely

packed. Thus, we get the “closed band” operators listed in Table 5.4; their angular

variations appear in Table 5.5. It is seen that the Sobel operator, which is already

the most accurate of the 33 3 edge gradient operators suggested previously, can be

made some 30% more accurate by adjusting its coefficients to make it more circular.

In addition, the closed bands idea indicates that the corner pixels of 53 5 or larger

operators are best removed altogether: not only does this require less computation,

but also it actually improves performance. It also seems likely that this situation

would apply for many other operators and would not be specific to edge detection.

Table 5.4 Masks of “Closed Band” Differential Gradient Edge Operators

(a) Band containing shells a�c (effective radius5 1.500)
20:464 0:000 0:464
20:959 0:000 0:959
20:464 0:000 0:464

2
4

3
5

(b) Band containing shells a�e (effective radius5 2.121)

0:000 20:294 0:000 0:294 0:000
20:582 21:000 0:000 1:000 0:582
21:085 21:000 0:000 1:000 1:085
20:582 21:000 0:000 1:000 0:582
0:000 20:294 0:000 0:294 0:000

2
66664

3
77775

(c) Band containing shells a�h (effective radius52.915)

0:000 0:000 20:191 0:000 0:191 0:000 0:000
0:000 21:085 21:000 0:000 1:000 1:085 0:000

20:585 22:000 21:000 0:000 1:000 2:000 0:585
21:083 22:000 21:000 0:000 1:000 2:000 1:083
20:585 22:000 21:000 0:000 1:000 2:000 0:585
0:000 21:085 21:000 0:000 1:000 1:085 0:000
0:000 0:000 20:191 0:000 0:191 0:000 0:000

2
666666664

3
777777775

In all cases only the x-mask is shown: the y-mask may be obtained by a trivial symmetry operation.
Mask coefficients are accurate to B0.003 but would in normal practical applications be rounded to
one- or two-figure accuracy.
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Before leaving this topic, note that the optimal 33 3 masks obtained above

numerically by consideration of circular operators are very close to those obtained

purely analytically in Section 5.4, for TM masks, following the rules of vector addi-

tion. In the latter case a value of 2.055 was obtained for the ratio of the two mask

coefficients, whereas for circular operators the value 0.959/0.4645 2.0676 0.015 is

obtained. Clearly this is no accident, and it is very satisfying that a coefficient that

was formerly regarded as ad hoc (Kittler, 1983) is in fact optimizable and can be

obtained in closed form (see Section 5.4).

5.8 THE SYSTEMATIC DESIGN OF DIFFERENTIAL
EDGE OPERATORS

The family of “circular” differential gradient edge operators studied in Sections

5.6 and 5.7 incorporates only one design parameter—the radius r. Only a limited

number of values of this parameter permit optimum accuracy for estimation of

edge orientation to be attained.

It is worth considering what additional properties this one parameter can con-

trol and how it should be adjusted during operator design. In fact, it affects

signal-to-noise ratio, resolution, measurement accuracy, and computational load.

To understand this, note first that signal-to-noise ratio varies linearly with the

radius of the circular neighborhood, since signal is proportional to area and

Table 5.5 Angular Variations for the Best Operators Tested

Actual Angle (�) Estimated Angle (�)a

Prew Sob a�c circ a�e a�h

0 0.00 0.00 0.00 0.00 0.00 0.00
5 3.32 4.97 5.05 5.14 5.42 5.22

10 6.67 9.95 10.11 10.30 10.81 10.28
15 10.13 15.00 15.24 15.52 15.83 14.81
20 13.69 19.99 20.29 20.64 20.07 19.73
25 17.72 24.42 24.73 25.10 24.62 25.00
30 22.62 28.86 29.14 29.48 29.89 30.02
35 28.69 33.64 33.86 34.13 35.43 34.86
40 35.94 38.87 39.00 39.15 40.30 39.71
45 45.00 45.00 45.00 45.00 45.00 45.00
RMS error 5.18 0.73 0.60 0.53 0.47 0.19

Prew, Prewitt; Sob, Sobel; a�c, theoretical optimum—closed band containing shells a�c; circ, actual
optimum circular operator (as defined by the first minimum in Fig. 5.2); a�e, theoretical optimum—

closed band containing shells a�e; a�h, theoretical optimum—closed band containing shells a�h.
aValues are accurate to within B0.02� in each case.
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Gaussian noise is proportional to the square root of area. Likewise, the measure-

ment accuracy is determined by the number of pixels over which averaging occurs

and hence is proportional to operator radius. Resolution and “scale” also vary with

radius, since relevant linear properties of the image are averaged over the active

area of the neighborhood. Finally, computational load, and the associated cost of

hardware for speeding up the processing, is generally at least in proportion to the

number of pixels in the neighborhood, and hence proportional to r2.

Overall, the fact that four important parameters vary in a fixed way with the

radius of the neighborhood means that there are exact tradeoffs between them and

that improvements in some are only obtained by losses to others: from an engi-

neering point of view, compromises between them will have to be made accord-

ing to circumstances.

5.9 PROBLEMS WITH THE ABOVE APPROACH—SOME
ALTERNATIVE SCHEMES

Although the above ideas may be interesting, they have their own inherent problems.

In particular, they take no account of the displacement E of the edge from the center

of the neighborhood, or of the effects of noise in biasing the estimates of edge mag-

nitude and orientation. In fact, it is possible to show that a Sobel operator gives zero

error in the estimation of step edge orientation under the following condition:

θj j# arctan
1

3

� �
and Ej j# cos θ2 3 sin θj jð Þ

2
(5.16)

Furthermore, for a 33 3 operator of the form

21 0 1

2B 0 B

21 0 1

2
4

3
5 1 B 1

0 0 0

21 2B 21

2
4

3
5

applied to the edge

a + ha + h(0.5 − E sec θ − tan θ)a

a + ha + h(0.5 − E sec θ)a

a + ha + h(0.5 − E sec θ + tan θ)a

Lyvers and Mitchell (1988) found that the estimated orientation is:

ϕ5 arctan
2B tan θ
B1 2

� �
(5.17)

which immediately shows why the Sobel operator should give zero error for a spe-

cific range of θ and E. However, this is somewhat misleading, since considerable

errors arise outside this region. Not only do they arise when E5 0, as assumed in

the foregoing sections, but also they vary strongly with E. Indeed, the maximum
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errors for the Sobel and Prewitt operators rise to 2.90� and 7.43�, respectively in

this more general case (the corresponding RMS errors are 1.20� and 4.50�).
Hence, a full analysis should be performed to determine how to reduce the maxi-

mum and average errors. Lyvers and Mitchell (1988) carried out an empirical anal-

ysis and constructed a lookup table with which to correct the orientations

estimated by the Sobel operator, the maximum error being reduced to 2.06�.
Another scheme that reduces the error is the moment-based operator of

Reeves et al. (1983). This leads to Sobel-like 33 3 masks, which are essentially

identical to the 33 3 masks of Davies (1984b), both having B5 2.067 (for

A5 1). However, the moment method can also be used to estimate the edge posi-

tion E if additional masks are used to compute second-order moments of inten-

sity. Hence, it is possible to make a very significant improvement in performance

by using a 2-D lookup table to estimate orientation: the result is that the maxi-

mum error is reduced from 2.83� to 0.135� for 33 3 masks and from 0.996� to

0.0042� for 53 5 masks.

However, Lyvers and Mitchell (1988) found that much of this additional

accuracy is lost in the presence of noise, and RMS standard deviations of edge

orientation estimates are already around 0.5� for 33 3 operators at 40 dB signal-

to-noise ratios. The reasons for this are quite simple. Each pixel intensity has a

noise component that induces errors in its weighted mask components; the com-

bined effects of these errors can be estimated assuming that they arise indepen-

dently, so that their variances add (Davies, 1987c). Thus, noise contributions

to the x and y components of gradient can be computed. These provide estimates

for the components of noise along and perpendicular to the edge gradient

vector (Fig. 5.3): the edge orientation for a Sobel operator turns out to be affected

by an amount
ffiffiffiffiffi
12

p
σ=4h radians, where σ is the standard deviation on the pixel

intensity values and h is the edge contrast. This explains the angular errors given

by Lyvers and Mitchell, if Pratt’s (2001) definition of signal-to-noise ratio (in dB)

is used:

S=N5 20 log10
h

σ

� �
(5.18)

A totally different approach to edge detection was developed by Canny

(1986). He used functional analysis to derive an optimal function for edge detec-

tion, starting with three optimization criteria—good detection, good localization,

and only one response per edge under white noise conditions. The analysis is too

technical to be discussed in detail here. However, the 1-D function found by

Canny is accurately approximated by the derivative of a Gaussian: this is then

combined with a Gaussian of identical σ in the perpendicular direction, truncated

at 0.001 of its peak value, and split into suitable masks. Underlying this method

is the idea of locating edges at local maxima of gradient magnitude for a

Gaussian-smoothed image. In addition, the Canny implementation employs a hys-

teresis operation (Section 5.10) on edge magnitude in order to make edges
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reasonably connected. Finally, a multiple-scale method is employed to analyze

the output of the edge detector. It is discussed in more detail below. Lyvers and

Mitchell (1988) tested the Canny operator and found it to be significantly less

accurate for orientation estimation than for the moment and IDD operators

described above. In addition, it needed to be implemented using 180 masks

and hence took enormous computation time, although many practical implementa-

tions of this operator are much faster than this early paper indicates.1 One such

implementation is described in Section 5.11.

An operator that has been of great historical importance is that of Marr and

Hildreth (1980). The motivation for the design of this operator was the modeling

of certain psychophysical processes in mammalian vision. The basic rationale is

to find the Laplacian of the Gaussian-smoothed (r2G) image and then to obtain a

“raw primal sketch” as a set of zero-crossing lines. The Marr�Hildreth operator

does not use any form of threshold since it merely assesses where the r2G image

passes through zero. This feature is attractive, since working out threshold values

is a difficult and unreliable task. However, the Gaussian smoothing procedure can

be applied at a variety of scales, and in one sense the scale is a new parameter

that substitutes for the threshold. In fact, a major feature of the Marr�Hildreth

approach, which has been very influential in later work (Witkin, 1983; Bergholm,

θn

nn

n

g

k

FIGURE 5.3

Calculating angular errors arising from noise: g, intensity gradient vector; n, noise vector;

k, resultant of intensity gradient and noise vector; nn, normal component of noise;

θn, noise-induced orientation error.

1In fact, it is nowadays necessary to ask “Which Canny?”, as there are a great many implementations

of it, and this leads to problems for any realistic comparison between operators.
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1986), is the fact that zero crossings can be obtained at several scales, giving the

potential for more powerful semantic processing: clearly, this necessitates finding

means for combining all the information in a systematic and meaningful way.

This may be carried out by a bottom-up or top-down approach, and there has been

much discussion in the literature about methods for carrying out these processes.

However, it is worth remarking that in many (especially industrial inspection) appli-

cations, one is interested in working at a particular resolution, and considerable sav-

ings in computation can then be made. It is also noteworthy that the Marr�Hildreth

operator is reputed to require neighborhoods of at least 353 35 for proper imple-

mentation (Brady, 1982). Nevertheless, other workers have implemented the opera-

tor in much smaller neighborhoods, down to 53 5. Wiejak et al. (1985) showed

how to implement the operator using linear smoothing operations to save computa-

tion. Lyvers and Mitchell (1988) reported orientation accuracies using the

Marr�Hildreth operator that are not especially high (2.47� for a 53 5 operator and

0.912� for a 73 7 operator, in the absence of noise).

It has been noted above that those edge detection operators that are applied at

different scales lead to different edge maps at different scales. In such cases, cer-

tain edges that are present at lower scales disappear at larger scales; in addition,

edges that are present at both low and high scales appear shifted or merged at

higher scales. Bergholm (1986) demonstrated the occurrence of elimination, shift-

ing, and merging, whereas Yuille and Poggio (1986) showed that edges that are

present at low resolution should not disappear at some higher resolution. These

aspects of edge location are by now well understood.

In what follows, we first consider hysteresis thresholding, a process already

mentioned with regard to the Canny operator. In Section 5.11 we give a fuller

appraisal of the Canny operator and show detailed results on real images. Then in

Section 5.12 we consider the Laplacian type of operator. In Sections 5.13 and 5.14,

we show how the well-known active contour (snake) concept can be used to lead to

connected object boundaries. In Section 5.15 we outline the level set approach.

Finally, in Section 5.16 we discuss the aims and methodology of the graph cut

approach to producing connected object boundaries: it should be noticed that this

method essentially dispenses with the usual ideas of edge detection and regional

analysis and aims to give an integrated, generalized methodology for segmentation.

5.10 HYSTERESIS THRESHOLDING
The concept of hysteresis thresholding is a general one and can be applied in a range

of applications, including both image and signal processing. In fact, the Schmitt trig-

ger is a very widely used electronic circuit for converting a varying voltage into a

pulsed (binary) waveform. In the latter case there are two thresholds, and the input

has to rise above the upper threshold before the output is allowed to switch on, and

has to fall below the lower threshold before the output is allowed to switch off. This

gives considerable immunity against noise in the input waveform—far more than
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where the difference between the upper and lower switching thresholds is zero (the

case of zero hysteresis), since then a small amount of noise can cause an undue

amount of switching between the upper and lower output levels.

When the concept is applied in image processing it is usually with regard to

edge detection, in which case there is an exactly analogous 1-D waveform to be

negotiated around the boundary of an object—although, as we shall see, some

specifically 2-D complications arise. The basic rule is to threshold the edge at a

high level, and then to allow extension of the edge down to a lower level thresh-

old, but only adjacent to points that have already been assigned edge status.

Figure 5.4 shows the results of making tests on the edge gradient image in

Fig. 7.4(b). Figure 5.4(a) and (b) shows the result of thresholding at the upper and

lower hysteresis levels respectively and Fig. 5.4(c) shows the result of hysteresis

thresholding using these two levels. For comparison, Fig. 5.4(d) shows the effect

of thresholding at a suitably chosen intermediate level. Note that isolated edge

points within the object boundaries are ignored by hysteresis thresholding,

although noise spurs can occur and are retained. We can envision the process of

hysteresis thresholding in an edge image as the location of points that:

1. form a superset of the upper threshold edge image.

2. form a subset of the lower threshold edge image.

3. form that subset of the lower threshold image that is connected to points in

the upper threshold image via the usual rules of connectedness (Chapter 9).

Clearly, edge points survive only if they are seeded by points in the upper

threshold image.

Although the result in Fig. 5.4(c) is better than in Fig. 5.4(d), in that gaps in

the boundaries are eliminated or reduced in length, in a few cases noise spurs are

introduced. Nevertheless, the aim of hysteresis thresholding is to obtain a better

balance between false positives and false negatives by exploiting connectedness

in the object boundaries. Indeed, if managed correctly, the additional parameter

will normally lead to a net (average) reduction in boundary pixel classification

error. However, there are few simple guidelines for selection of hysteresis thresh-

olds, apart from the following:

1. Use a pair of hysteresis thresholds that provides immunity against the known

range of noise levels.

2. Choose the lower threshold to limit the possible extent of noise spurs (in prin-

ciple, the lowest threshold subset that contains all true boundary points).

3. Select the upper threshold to guarantee as far as possible the seeding of impor-

tant boundary points (in principle, the highest threshold subset that is con-

nected to all true boundary points).

Unfortunately, in the limit of high signal variability, rules 2 and 3 appear to sug-

gest eliminating hysteresis altogether! Ultimately, this means that the only rigorous

way of treating the problem is to perform a complete statistical analysis of false

positives and false negatives for a large number of images in any new application.

1275.10 Hysteresis Thresholding



5.11 THE CANNY OPERATOR
Since its publication in 1986 the Canny operator (Canny, 1986) has become one

of the most widely used edge detection operators—and for good reason, as it

seeks to get away from a tradition of mask-based operators, many of which can

hardly be regarded as “designed”, into one that is entirely principled and fully

integrated. Intrinsic to the method is that of carefully specifying the spatial band-

width within which it is expected to work, and also the exclusion of unnecessary

thresholds, while permitting thin line structures to emerge and ensuring that they

(a) (b)

(c) (d)

FIGURE 5.4

Effectiveness of hysteresis thresholding. This figure shows tests made on the edge

gradient image of Fig. 7.4(b). (a) Effect of thresholding at the upper hysteresis level.

(b) Effect of thresholding at the lower hysteresis level. (c) Effect of hysteresis thresholding.

(d) Effect of thresholding at an intermediate level.
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are connected together as far as possible and indeed are meaningful at the particu-

lar scale and bandwidth. As a result of these considerations, the method involves

a number of stages of processing:

1. Low-pass spatial frequency filtering

2. Application of first-order differential masks

3. Nonmaximum suppression involving subpixel interpolation of pixel intensities

4. Hysteresis thresholding

In principle, low-pass filtering needs to be carried out by Gaussian convolu-

tion operators for which the standard deviation (or spatial bandwidth) σ is known

and prespecified. Then first-order differential masks need to be applied: for this

purpose, the Sobel operator is acceptable. In this context note that the Sobel oper-

ator masks can be regarded as convolutions (�) of a basic 21 1
� �

type of

mask with a 1 1
� �

smoothing mask. Thus, taking the Sobel x-derivative we

have:

21 0 1

22 0 2

21 0 1

2
4

3
55 1

2

1

2
4
3
5 21 0 1
� �

(5.19)

where

1 2 1
� �

5 1 1
� �� 1 1

� �
(5.20)

and

21 0 1
� �

5 21 1
� �� 1 1

� �
(5.21)

These equations make it clear that the Sobel operator itself includes a consid-

erable amount of low-pass filtering, so the amount of additional filtering needed

in stage 1 can reasonably be reduced. Another thing to bear in mind is that low-

pass filtering can itself be carried out by a smoothing mask of the type shown in

Fig. 5.5(b), and it is interesting how close this mask is to the full 2-D Gaussian

shown in Fig. 5.5(a). Note also that the bandwidth of the mask in Fig. 5.5(b) is

exactly known (it is 0.707), and when combined with that of the Sobel the overall

bandwidth becomes almost exactly 1.0.

Next, we turn our attention to stage 3—that of nonmaximum suppression. For

this purpose we need to determine the local edge normal direction using

Eq. (5.5), and move either way along the normal to determine whether the current

location is or is not a local maximum along it. If it is not, we suppress the edge

output at the current location, only retaining edge points that are proven local

maxima along the edge normal. Since only one point along this direction should

be a local maximum, this procedure will necessarily thin the grayscale edges to

unit width. Here a slight problem arises in that the edge normal direction will in

general not pass through the centers of the adjacent pixels, and the Canny method

requires the intensities along the normal to be estimated by interpolation. In a
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33 3 neighborhood this is simply achieved, as the edge normal in any octant will

have to lie within a given pair of pixels, as shown in Fig. 5.6(a). In a larger neigh-

borhood, interpolation can take place between several pairs of pixels. For exam-

ple, in a 53 5 neighborhood, it will have to be determined which one of the two

pairs is relevant (Fig. 5.6(b)), and an appropriate interpolation formula applied.

However, it could be construed that there is no need to use larger neighborhoods,

as a 33 3 neighborhood will contain all the relevant information, and given

enough presmoothing in stage 1, negligible loss of accuracy will result. Of course,

if impulse noise is present, this could lead to serious error, but low-pass filtering

is in any case not guaranteed to eliminate impulse noise, so no special loss results

from using the smaller neighborhood for nonmaximum suppression. Such consid-

erations need to be examined carefully in the light of the particular image data

and the noise it contains. Figure 5.6 shows the two distances l1 and l2 that have to

be determined. The pixel intensity along the edge normal is given by weighting

the corresponding pixel intensities in inverse proportion to the distances:

I5
l2I1 1 l1I2

l1 1 l2
5 ð12 l1ÞI1 1 l1I2 (5.22)

where

l1 5 tan θ (5.23)

This brings us to the final stage, that of hysteresis thresholding. By this point

as much as possible has been achieved without applying thresholds, and it

becomes necessary to take this final step. However, by applying the two hystere-

sis thresholds, it is intended to limit the damage that can be caused by a single

threshold and repair it with another: that is to say, select the upper threshold to

ensure capturing edges that are reliable and then select other points that have high

likelihood of being viable edge points because they are adjacent to edge points of

0.000 0.000 0.004 0.008 0.004 0.000 0.000
0.000 0.016 0.125 0.250 0.125 0.016 0.000
0.004 0.125 1.000 2.000 1.000 0.125 0.004 1 2 1
0.008 0.250 2.000 4.000 2.000 0.250 0.008 2 4 2
0.004 0.125 1.000 2.000 1.000 0.125 0.004 1 2 1
0.000 0.016 0.125 0.250 0.125 0.016 0.000
0.000 0.000 0.004 0.008 0.004 0.000 0.000

(a) (b)

FIGURE 5.5

Exactness of the well-known 33 3 smoothing kernel. This figure shows the Gaussian-based

smoothing kernel (a) that is closest to the well-known 33 3 smoothing kernel (b) over the

central (33 3) region. For clarity, neither is normalized by the factor 1/16. The larger

Gaussian envelope drops to 0.000 outside the region shown and integrates to 18.128

rather than 16. Hence, the kernel in (b) can be said to approximate a Gaussian within

B13%. Its actual standard deviation is 0.707 compared with 0.849 for the Gaussian.
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known reliability. In fact, this is still somewhat ad hoc, but in practice it gives

quite good results. A simple rule for choice of the lower threshold is that it should

be about half the upper threshold. Again, this is only a rule of thumb, and it has

to be examined carefully in the light of the particular image data.

Figures 5.7 and 5.8 show results for the Canny operator at various stages. They

also show comparisons for various thresholds. In particular, both figures show the

effects of (e) hysteresis thresholding, (f) single thresholding at the lower level, and (g)

single thresholding at the upper level. The evidence is that hysteresis thresholding is

usually more reliable and more coherent than single-level thresholding, in the sense of

giving fewer false or misleading results.

5.12 THE LAPLACIAN OPERATOR
An edge detector such as the Sobel is a first derivative operator, whereas the

Laplacian is a second derivative operator, and as such it is sensitive only to changes

in intensity gradient. In 2-D its standard (mathematical) definition is given by:

r2 5
@2

@x2
1

@2

@y2
(5.24)

Localized masks for computing Laplacian output can be derived by taking dif-

ference of Gaussian (DoG) kernels using two Gaussians of different bandwidths;

for details of this procedure, see Section 6.7.3. This gives them an isotropic 2-D

(a)

l1 l2

(b)
l1 l2

FIGURE 5.6

Pixel interpolation in the Canny operator. (a) Interpolation between the two highlighted

pixels at the bottom right in a 33 3 neighborhood. (b) Interpolation in a 53 5 neighborhood:

note that two possibilities exist for interpolating between pairs of adjacent pixels, the relevant

distances being marked for the one on the right.
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(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 5.7

Application of the Canny edge detector. (a) Original image. (b) Smoothed image. (c) Result of applying

Sobel operator. (d) Result of nonmaximum suppression. (e) Result of hysteresis thresholding. (f) Result of

thresholding only at the lower threshold level. (g) Result of thresholding at the upper threshold level. Note

that there are fewer false or misleading outputs in (e) than would result from using a single threshold.



(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 5.8

Another application of the Canny edge detector. (a) Original image. (b) Smoothed image. (c) Result of applying

Sobel operator. (d) Result of nonmaximum suppression. (e) Result of hysteresis thresholding. (f) Result of

thresholding only at the lower threshold level. (g) Result of thresholding at the upper threshold level. Again

there are fewer false or misleading outputs in (e) than would result from using a single threshold.



profile, with a positive center and a negative surround. This shape can be approxi-

mated in 33 3 windows by masks such as the following:

21 21 21

21 8 21

21 21 21

2
4

3
5 (5.25)

Clearly, this mask is far from isotropic: nevertheless it exhibits many of the

properties of larger masks, such as DoG kernels, that are much more accurately

isotropic.

Here we present only an outline of the properties of this type of operator. These

can be seen in Fig. 5.9. First, note that the Laplacian output ranges from positive to

negative: hence, in Fig. 5.9(c) it is presented on a medium-gray background, which

indicates that on the exact edge of an object the Laplacian output is actually zero,

as stated earlier. This is made clearer in Fig. 5.9(d), where the magnitude of the

Laplacian output is shown. It is seen that edges are highlighted by strong signals

just inside and just outside the edge locations that are located by a Sobel or Canny

operator (see Fig. 5.9(b)). Ideally this effect is symmetrical, and if the Laplacian is

to be used for edge detection, zero crossings of the output will have to be located.

However, in spite of preliminary smoothing of the image (Fig. 5.9(a)), the back-

ground in Fig. 5.9(d) has a great deal of noise in the background, and attempting to

find zero crossings will therefore lead to a lot of noise being detected in addition to

the edge points: in fact, it is well known that differentiation (especially double dif-

ferentiation, as here) tends to accentuate noise. Nevertheless, this approach has

been used highly successfully, usually with DoG operators working in much larger

windows. Indeed, with much larger windows there will be a good number of pixels

lying very near the zero crossings, and it will be possible to discriminate much

more successfully between them and the pixels merely having low Laplacian out-

put. A particular advantage of using Laplacian zero crossings is that theoretically

they are bound to lead to closed contours around objects (albeit noise signals will

also have their own separate closed contours).

5.13 ACTIVE CONTOURS
Active contour models (also known as “deformable contours” or “snakes”) are

widely used for systematically refining object contours. The basic concept is to

obtain a complete and accurate outline of an object that may be ill-defined in

places, whether through lack of contrast, or noise or fuzzy edges. A starting approx-

imation is made, either by instituting a large contour that may be shrunk to size, or

a small contour that may be expanded suitably, until its shape matches that of the

object. In principle, the initial boundary can be rather arbitrary, whether mostly out-

side or within the object in question. Then its shape is made to evolve subject to an

energy minimization process: on the one hand it is desired to minimize the external
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(a) (b)

(c) (d)

FIGURE 5.9

Comparison of Sobel and Laplacian outputs. (a) Pre-smoothed version of original image. (b) Result of

applying Sobel operator. (c) Result of applying Laplacian operator. Because the Laplacian output can be

positive or negative, the output in (c) is displayed relative to a medium (128)-gray-level background. (d)

Absolute magnitude Laplacian output. For clarity, (c) and (d) have been presented at increased contrast.

Note that the Laplacian output in (d) gives double edges—one just inside and one just outside the edge

position indicated by a Sobel or Canny operator. (To find edges using a Laplacian, zero crossings have to be

located.) Both the Sobel and the Laplacian used here operate within a 33 3 window.



energy corresponding to imperfections in the degree of fit, and on the other hand it

is desired to minimize the internal energy, so that the shape of the snake does not

become unnecessarily intricate, e.g., by taking on any of the characteristics of

image noise. There are also model constraints that are represented in the formula-

tion as contributions to the external energy: typical of such constraints is that of

preventing the snake from moving into prohibited regions, such as beyond the

image boundary, or, for a moving vehicle, off the region of the road.

The snake’s internal energy includes elastic energy, which might be needed to

extend or compress it, and bending energy. If no bending energy terms were

included, sharp corners and spikes in the snake would be free to occur with no

restriction. Similarly, if no elastic energy terms were included, the snake would

be permitted to grow or shrink without penalty.

The image data are normally taken to interact with the snake via three main

types of image feature—lines, edges, and terminations (the last can be line termi-

nations or corners). Various weights can be given to these features according to

the behavior required of the snake. For example, it might be required to hug edges

and go around corners, and only to follow lines in the absence of edges: so the

line weights would be made much lower than the edge and corner weights.

These considerations lead to the following breakdown of the snake energy:

Esnake 5Einternal 1Eexternal

5Einternal 1Eimage 1Econstraints

5Estretch 1Ebend 1Eline 1Eedge 1Eterm 1Erepel

(5.26)

The energies are written down in terms of small changes in position

xðsÞ5 ðxðsÞ; yðsÞÞ of each point on the snake, the parameter s being the arc length

distance along the snake boundary. Thus, we have:

Estretch 5

ð
κðsÞ:xsðsÞ:2ds (5.27)

and

Ebend 5

ð
λðsÞ:xssðsÞ:2ds (5.28)

where the suffices s and ss imply first- and second-order differentiation, respec-

tively. Similarly, Eedge is calculated in terms of the intensity gradient magnitude

grad I
�� ��, leading to:

Eedge 52

ð
μðsÞ:grad I:2ds (5.29)

where μ(s) is the edge weighting factor.

The overall snake energy is obtained by summing the energies for all positions

on the snake: a set of simultaneous differential equations is then set up to mini-

mize the total energy. This process is not discussed in detail due to the space limi-

tation. Suffice it to say that the equations cannot be solved analytically, and

recourse has to be made to iterative numerical solution, during which the shape of
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the snake evolves from some high-energy initialization state to the final low-

energy equilibrium state, defining the contour of interest in the image.

In the general case, there are several possible complications to be tackled:

1. Several snakes may be required to locate an initially unknown number of rele-

vant image contours.

2. Different types of snake will need different initialization conditions.

3. Snakes will sometimes have to split up as they approach contours that turn out

to be fragmented.

There are also procedural problems. The intrinsic snake concept is that of

well-behaved differentiability. However, lines, edges, and terminations are usually

highly localized, so there is no means by which a snake even a few pixels away

could be expected to learn about them and hence to move toward them. In these

circumstances the snake would “thrash around” and fail to systematically zone in

on a contour representing a global minimum of energy. To overcome this prob-

lem, smoothing of the image is required, so that edges can communicate with the

snake some distance away, and the smoothing must gradually be reduced as the

snake nears its target position. Ultimately, the problem is that the algorithm has

no high-level appreciation of the overall situation, but merely reacts to a con-

glomerate of local pieces of information in the image: this makes segmentation

using snakes somewhat risky despite the intuitive attractiveness of the concept.

In spite of these potential problems, a valuable feature of the snake concept is

that, if set up correctly, the snake can be rendered insensitive to minor discontinu-

ities in a boundary: it is important as this makes the snake capable of negotiating

practical situations such as fuzzy or low contrast edges, or places where small

artifacts get in the way (this may happen with resistor leads, for example); this

capability is possible because the snake energy is set up globally—quite unlike

the situation for boundary tracking where error propagation can cause wild devia-

tions from the desired path. The reader is referred to the abundant literature

on the subject, not only to clarify the basic theory (Kass and Witkin, 1987;

Kass et al., 1988), but also to find how it may be made to work well in real

situations.

5.14 PRACTICAL RESULTS OBTAINED USING
ACTIVE CONTOURS

In this section we briefly explore a simple implementation of the active contour con-

cept. Arguably, the implementation chosen is among the simplest that will work in

practical situations while still adhering to the active contour concept. To make it

work without undue complication or high levels of computation, a “greedy” algo-

rithm is used, i.e., one that makes local optimizations (energy minimizations) in the

expectation that this will result in global optimization. Naturally, it could lead to
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solutions that do not correspond to absolute minima of the energy function, although

this is by no means a problem that is caused solely by using a greedy algorithm, as

almost all forms of iterative energy minimization method can fall into this trap.

The first thing to do when devising such an algorithm is to interpret the theory

in practical terms. Thus, we rewrite the snake stretch function (Eq. (5.27)) in the

discrete form:

Estretch 5
XN
i51

κ:xi 2 xi11:
2

(5.30)

where there are N snake points xi, i5 1, . . . , N: note that this set must be accessed

cyclically. In addition, when using a greedy algorithm and updating the position of

the ith snake point, the following local form of Eq. (5.30) has to be used:

εstretch;i 5κ :xi 2 xi21:
2
1 :xi 2 xi11:

2
 �

(5.31)

Unfortunately, although this function causes the snake to be tightened, it can

also result in clustering of snake points. To avoid this, the following alternative

form can be useful:

εstretch;i 5κ d2 :xi 2 xi21:
	 
2

1 d2 :xi 2 xi11:
	 
2h i

(5.32)

where d is a fixed number representing the smallest likely value of the mean dis-

tance between adjacent pairs of snake points for the given type of target object.

In the implementation used in Fig. 5.10, d had the noncritical value of 8 pixels;

interestingly, this also resulted in faster convergence toward the final form of the

snake, as it was encouraged to move further to minimize the magnitudes of the

terms in round brackets.

The contour shown in Fig. 5.10 fills the concavity at the top right, but hardly moves

into the concavity at the bottom because of a low contrast shadow edge: note that

more or less influence by weak edges can readily be obtained by adjusting the grad2

coefficient μ in Eq. (5.29). Elsewhere the snake ends up with almost exact adherence

to the object boundary. The snake shown in the figure employs p5 40 points, and

r5 60 iterations are needed to bring it to its final position. In each iteration, the greedy

optimization for each snake point is over an n3 n pixel region with n5 11. Overall,

the computation time is controlled by and essentially proportional to the quantity prn2.

The final contour in Fig. 5.10(d) shows the result of using an increased num-

ber of initialization points and joining the final locations to give a connected

boundary: some of the remaining deficiencies could be reduced by fitting with

splines or other means instead of simply joining the dots.

As indicated earlier, this was a simple implementation—so much so that no

attempt was made to take corners and bends into account, although in the case

shown in Fig. 5.10 no disadvantages or deviations can be seen, except in Fig. 5.10

(d). Clearly, a suitable redesign involving additional energy terms would have to

be included to cope with more complex image data. It is interesting that so much
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(a) (b)

(c) (d)

FIGURE 5.10

Generation of active contour models (snakes). (a) Original picture with snake initialization points near the image

boundary; the final snake locations hug the outside of the object but hardly penetrate the large concavity at the

bottom: they actually lie approximately along a weak shadow edge. (b) Result of smoothing and application of Sobel

operator to (a); the snake algorithm used this image as its input. The snake output is superimposed in black on (b),

so that the high degree of co-location with the edge maxima can readily be seen. (c) Intermediate result, after half

(30) the total number of iterations (60): this illustrates that after one edge point has been captured, it becomes

much easier for other such points to be captured. (d) Result of using an increased number of initialization points

and joining the final locations to give a connected boundary: some remanent deficiencies are evident.



can be achieved by just two terms, viz. the stretch and edge terms in Eq. (5.26).

However, an important factor in getting the greedy algorithm to work optimally

one snake point at a time is the need to include the energies for both adjacent links

(as in Eqs. (5.31) and (5.32)) so as to limit bias and other complications.

5.15 THE LEVEL SET APPROACH TO OBJECT SEGMENTATION
Although the active contour approach described in the previous two sections can

be effective in many situations, it nevertheless has several drawbacks (Cremers

et al., 2007):

1. There is the possibility of snake self-intersection.

2. Topological changes like splitting or merging of the evolving contour are not

allowed.

3. The algorithm is highly dependent on the initialization, and this can result in

the snake being biased or getting stuck in local minima.

4. Snakes lack meaningful probabilistic interpretation, so generalizing their

action to cover color, texture, or motion is not straightforward.

The level set approach is intended to remedy these deficiencies. The basic

approach is to work with whole regions rather than edges, and to evolve an

“embedding function” in which contours are represented implicitly rather than

directly. In fact, the embedding function is a function ϕðx; tÞ and the contour is

defined as the zero level of this function:

CðtÞ5 fxjϕðx; tÞ5 0g (5.33)

For a contour that evolves (by gradient descent) along each local normal n

with a speed F, we have:

ϕðCðtÞ; tÞ5 0 (5.34)

which leads to:

d

dt
ϕðCðtÞ; tÞ5rϕ @C

@t
1

@ϕ
@t

5F rϕUn1 @ϕ
@t

5 0 (5.35)

Substituting for n using:

n5
rϕ
jrϕj (5.36)

we obtain:

@ϕ
@t

52 jrϕjF (5.37)
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Next we need to substitute for F. Following Caselles et al. (1997), we have:

@ϕ
@t

5 jrϕj div gðIÞ rϕ
jrϕj

� �
(5.38)

where g(I) is a generalized version of jrϕj in the snake potential.

Note that because the contour C is not mentioned explicitly, the updating takes

place over all pixels, thereby involving a great many useless calculations: thus, the

“narrow band” method was devised to overcome this problem, and involves updat-

ing only in a narrow strip around the current contour. However, the need to contin-

ually update this strip means that the computational load remains considerable. An

alternative approach is the “fast marching” method, which essentially propagates a

solution rapidly along an active wavefront, while leaving pixel values frozen

behind it. As a result, this method involves maintaining the sign of the speed

values F. The Hermes algorithm of Paragios and Deriche (2000) seeks to combine

the two approaches. It aims at a final solution where all the necessary constraints

are fulfilled while maintaining these constraints only loosely at intermediate

stages. The overall front propagation algorithm overcomes the four problems

mentioned above: in particular, it is able to track nonrigid objects, copes with split-

ting and merging, and has low computational cost. The paper confirms these

claims by showing traffic scenes in which vehicles and pedestrians are successfully

tracked.

5.16 THE GRAPH CUT APPROACH TO OBJECT
SEGMENTATION

It has been stated several times in both Chapter 4 and this chapter that image seg-

mentation tends to be an unreliable ad hoc process if simple uniformity measures

are used for locating the extents of regions. For example, region growing techni-

ques are prone to problems such as leaking through weak points in object bound-

aries, whereas thresholding techniques are sensitive to problems of variable

illumination, so again one region will elide into another. Edge-based methods can

also become confused at breaks, and edge linking (using hysteresis thresholding

or more sophisticated techniques) cannot be relied upon to improve the situation

dramatically. The reason for the widespread use of such techniques is their sim-

plicity and speed. However, modern computers are nowadays capable of handling

much more powerful segmentation algorithms, and it is key that such algorithms

should be robust, effective, and accurate even if they involve increased computa-

tion. Hence, there is a trend for segmentation and other vision algorithms to be

designed to optimize carefully selected energy functions. We have already seen

this with the active contour formalism covered in Section 5.13. The snake algo-

rithm employed in Section 5.14 is “greedy,” so it involves many local processes

and therefore is not guaranteed to find a single global optimum: however, to a

lesser extent this also applies with more rigorously conceived active contour
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models. Neural network techniques (whether used for segmentation, recognition,

or other purposes) normally operate by minimizing energy functions, but again

have a tendency to be trapped by local energy minima.

In this context, the graph cut approach to segmentation has become an espe-

cially attractive one because its aim is to guarantee exact convergence to the min-

imum of a global energy function. This is because, in a carefully chosen

mathematical milieu, it can be proven that only a single global solution exists. Of

course, it is also necessary to relate the particular mathematical milieu to the type

of reality arising for practical segmentation tasks.

To achieve this, we first describe an ideal traffic flow problem where every road

has an exact, known maximum flow capacity. (It will be most people’s experience

that any road has a fairly well-defined maximum flow capacity.) Taking a network

of roads joining a source s to a sink t, we aim to determine the maximum flow rate

between these two terminals. It turns out that there is a theorem (Ford and Fulkerson,

1962) that gives a unique answer to this. We first define a “cut,” which is a line pass-

ing across the roads between s and t and partitioning the junctions between them into

two sets S and T. We then work out the capacity of the cut, this being defined as the

sum of the (s to t) capacities of the roads intersected by the cut (Fig. 5.11(a) and (b)).

Next, we assess which of all possible cuts has the minimum capacity c: this is

called the “minimum cut” C. Interestingly, c is equal to the maximum flow capacity

f allowed by the network between s and t. To understand why this is so, suppose

first that f. c. Then there must be another route between s and t, which is able to

carry additional flow. But by definition, any cut has to partition all the junctions into

two sets S and T, so it has to cross all possible routes between s and t. Hence, the

premise is violated and the maximum network capacity f cannot be greater than

the minimum cut capacity c. Suppose now that f, c, then there is no reason why the

flow through at least one road cut by C—in particular one that is not saturated—can-

not be augmented until the condition no longer holds. (Note that increasing the

flow will violate the condition for C first as, by definition, C is the minimum cut.)

Hence, by the end of this process, f will be equal to c. Thus, we finally conclude

that max flow5min cut. Fig. 5.11(c) and (d) shows how the maximum flow rates

can be worked out intuitively by identifying a suitable sequence of paths: the process

can be carried out more systematically using the augmenting paths approach outlined

below.

Since the max flow�min cut theorem is guaranteed to give a unique global

solution, it is worth trying to map it onto the object segmentation task. To achieve

this we take all neighbor links (n-links) between pixels (we can envisage these as

being nearest neighbor links between pixels, which is highly practical but not

essential) and see whether we can identify the minimum cut with the boundary of

an object. First, it is clearly necessary to place s inside the object and t outside it,

in each case with suitable terminal links (t-links) between the terminal (s or t) and

a number of pixels inside and outside the object. It also has to be arranged for the

links between pixels to be weighted in such a way as to regulate the flow pattern.

Denoting the ith pixel intensity by Ii, the flow capacity can be minimized at edges
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FIGURE 5.11

Achieving maximum flow in a network. (a) A network of roads with a source s, a sink t,

and a set of junctions k, l, m, and n. Each road is marked with a number representing its

maximum flow capacity. (b) Five cuts C1�C5 are defined, each of which intersects a set

of roads and partitions the junctions into two sets S and T. The respective cuts have

capacities 24, 22, 16, 22, and 19, making C3 the minimum cut, with capacity c 5 16.

(c) A flow of 7 is initiated via path s�k�t: this is the maximum possible as the capacity of

road kt is 7 (the notation “u/v” next to a road means that the actual flow is u and the

capacity is v). (d) It is easy to augment the total flow by initiating a maximal flow of 4 in

path s�l�n�t. (e) Further thought shows that dual use of road sk is permissible, allowing

an additional flow of 3 in path s�k�m�t. (f) A further, longer augmenting path

s�l�k�m�t is possible, involving dual use of roads sl, km, and mt. This increases the net

flow through the network to 16, as predicted. The actual flow through each of the five cuts

shown in (b) is seen to be 16: in case C1 the result is not 18 because we are now

considering actual flows rather than capacities (conservation of flow applies to actual

flows, but not to capacities). Note that road mn is not useful for optimizing flow.
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where jIi � Ijj is large and maximized where Ii � Ij. For this purpose a convenient

energy function (Boykov and Jolly, 2001) is:

Eij 5
1

dij
exp

2ðIi 2 IjÞ2
2σ2

� �
(5.39)

where dij is the distance between pixels i and j, and is introduced to give greater

relevance for pairs of pixels that are closer together. Note that Eij tends to zero

for high-intensity gradients, but is low for pairs of pixels with similar intensities.

In fact, one of the main requirements is to prevent noise from influencing the

locations of object boundaries, so σ2 can be taken to correspond to the local

Gaussian noise energy.

Overall, the idea is to penalize the formation of boundaries in regions of uni-

formity and to encourage it at locations of high-intensity gradient. Note that the

mapping between the max flow�min cut milieu and the optimization of object

boundaries is slightly arbitrary, and corresponds to an analogy—albeit with a sen-

sible choice of intensity mapping function, a single global solution is still guaran-

teed to exist (this is mediated more by the algorithm than by the data). In fact,

there is another problem as well: that finding a fast algorithm to determine the

min cut is nontrivial, so it is possible that approximations might have to be made

that are incompatible with identifying an exact global minimum.

The classic Ford and Fulkerson (1962) algorithm worked by starting with a

single complete path P from s to t, and determining the n-link (p, q) with the min-

imum capacity, and then incrementing the flow along path P until link (p, q) was

saturated and became the bottleneck for the whole path P. Then “augmenting”

paths from s to t were sought in turn, each time incrementing the flow until

another bottleneck link became saturated. At each stage the algorithm is most

conveniently presented in the form of a residual network R consisting of all the

unsaturated links in the network (this is essentially a subset of the original net-

work N) and an augmenting path is a path within R. Clearly, one link in the resid-

ual network R becomes saturated and is lost to R in each successful iteration:

eventually R will become disconnected (no paths from s to t will exist in R) and

the total flow from s to t will be a maximum. (Here we ignore the mathematical

complication that R will have acquired oppositely orientated (reverse) flows in

many of its links: these arise because the residual network is a representation in

which the flows in the saturated links are canceled by oppositely directed flows.)

The Ford and Fulkerson (1962) algorithm was long known to be quite slow,

and not to be guaranteed to run in polynomial time, except for integer flows.

However, two routes for speeding it up came to light later on—first the Dinic

(1970) algorithm and second the push-relabel algorithm (Goldberg and Tarjan,

1988). The former uses an augmentation strategy similar to that of the Ford and

Fulkerson algorithm, but uses breadth-first search to tackle short paths first. The

latter aims to push flows as far as possible from s toward t, taking account of the

fact that various links will become saturated. The two approaches give similar

flow rates, so here we concentrate on the former.
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In fact, the shortest path strategy of the Dinic algorithm is important in permit-

ting it to achieve a worst-case running time complexity of O(mn2), where n is the

number of junctions and m is the number of links in the network. Boykov and

Jolly (2001), and others (Boykov and Kolmogorov, 2004; Boykov and Funka-

Lea, 2006) developed an even faster algorithm based on the augmented paths

approach. Although it has essentially the same worst-case complexity as the Dinic

algorithm, it is found to be far faster in practice (at least when applied in typical

vision applications). This is because the search trees it uses in each iteration do

not have to be developed from scratch but on the contrary capitalize on their pre-

vious forms—albeit incorporating novelties such as pruning “orphan” nodes,

which turn out to be efficient in practice. This means that graph cut algorithms

have now achieved a high degree of efficiency for practical energy minimization

tasks. Nevertheless, they have not yet attained absolute supremacy for image seg-

mentation—which may be due partly to the fact that seeds have to be selected to

act as terminal nodes, thereby making the approach best suited for interactive use.

(Interactive use is not necessarily overly disadvantageous, e.g., when analyzing

medical data such as that from MRI brain scans.)

5.17 CONCLUDING REMARKS
The above sections make it clear that the design of edge detection operators has

by now been taken to quite an advanced stage, so that edges can be located to

subpixel accuracy and orientated to fractions of a degree. In addition, edge maps

may be made at several scales and the results correlated to aid image interpreta-

tion. Unfortunately, some of the schemes that have been devised to achieve these

things (and especially that outlined in the previous section) are fairly complex

and tend to consume considerable computation. In many applications this com-

plexity may not be justified because the application requirements are, or can rea-

sonably be made, quite restricted. Furthermore, there is often the need to save

computation for real-time implementation. For these reasons, it will often be use-

ful to explore what can be achieved using a single high-resolution detector such

as the Sobel operator, which provides a good balance between computational load

and orientation accuracy. Indeed, several of the examples in Part 2 of the book

have been implemented using this type of operator, which is able to estimate edge

orientation to within about 1�. This does not in any way invalidate the latest

methods, particularly those involving studies of edges at various scales: such

methods come into their own in applications such as general scene analysis,

where vision systems are required to cope with largely unconstrained image data.

This chapter has completed another facet of the task of low-level image segmen-

tation. Later chapters move on to consider the shapes of objects that have been found

by the thresholding and edge detection schemes discussed in the last two chapters. In

particular, Chapter 9 studies shapes by analysis of the regions over which objects

extend, whereas Chapter 10 studies shapes by considering their boundary patterns.
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Edge detection is perhaps the most widely used means of locating and identifying objects
in digital images. Although different edge detection strategies vie with each other for
acceptance, this chapter has shown that they obey fundamental laws, such as sensitivity,
noise suppression capability, and computation cost all increasing with footprint size.

5.18 BIBLIOGRAPHICAL AND HISTORICAL NOTES
As seen in the first few sections of this chapter, early attempts at edge detection

tended to employ numbers of template masks that could locate edges at various

orientations. Often these masks were ad hoc in nature, and after 1980 this

approach finally gave way to the differential gradient approach that had already

existed in various forms for a considerable period (see the influential paper by

Haralick, 1980).

The Frei�Chen approach is of interest in that it takes a set of nine 33 3

masks forming a complete set within this size of neighborhood—of which one

test for brightness, four test for edges, and four test for lines (Frei and Chen,

1977). Although interesting, the Frei�Chen edge masks do not correspond to

those devised for optimal edge detection: Lacroix (1988) makes further useful

remarks about the approach.

Meanwhile, psychophysical work by Marr (1976), Wilson and Giese (1977),

and others provided another line of development for edge detection. This led to

the well-known paper by Marr and Hildreth (1980), which was highly influential

in the following few years. This spurred others to think of alternative schemes,

and the Canny (1986) operator emerged from this vigorous milieu. In fact, the

Marr�Hildreth operator was among the first to preprocess images in order to

study them at different scales—a technique that has expanded considerably (see,

e.g., Yuille and Poggio, 1986) and which will be considered in more depth in

Chapter 6. The computational problems of the Marr�Hildreth operator kept

others thinking along more traditional lines, and the work by Reeves et al. (1983),

Haralick (1984), and Zuniga and Haralick (1987) fell into this category. Lyvers

and Mitchell (1988) reviewed many of these papers and made their own sugges-

tions. Another study (Petrou and Kittler, 1988) carried out further work on opera-

tor optimization. The work of Sjöberg and Bergholm (1988), which found rules

for discerning shadow edges from object edges, is also of interest.

More recently, there was a move to achieving greater robustness and confi-

dence in edge detection by careful elimination of local outliers: in Meer and

Georgescu’s (2001) method, this was achieved by estimating the gradient vector,

suppressing nonmaxima, performing hysteresis thresholding, and integrating with

a confidence measure to produce a more general robust result; in fact, each pixel

was assigned a confidence value before the final two steps of the algorithm. Kim

et al. (2004) took this technique a step further and eliminated the need for setting

a threshold by using a fuzzy reasoning approach. Similar sentiments were
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expressed by Yitzhaky and Peli (2003), and they aimed to find an optimal param-

eter set for edge detectors by ROC and chi-square measures, which actually gave

very similar results. Prieto and Allen (2003) designed a similarity metric for edge

images, which could be used to test the effectiveness of a variety of edge detec-

tors. They pointed to the fact that metrics need to allow slight latitude in the posi-

tions of edges, in order to compare the similarity of edges reliably. They reported

a new approach that took into account both displacement of edge positions and

edge strengths in determining the similarity between edge images.

Not content with hand-crafted algorithms, Suzuki et al. (2003) devised a back-

propagation neural edge enhancer, which undergoes supervised learning on model

data to permit it to cope well (in the sense of giving clear, continuous edges) with

noisy images: it was found to give results superior to those of conventional algo-

rithms (including Canny, Heuckel, Sobel, and Marr�Hildreth) in similarity tests

relative to the desired edges. The disadvantage was a long learning time, although

the final execution time was short.

5.18.1 More Recent Developments
Among the most recent developments, Shima et al. (2010) have described the

design of more accurate gradient operators on hexagonal lattices. Although the

latter are not commonly used, there has long been a special interest in this area

because of the greater number of nearest neighbors at equal distances from a

given pixel in a hexagonal lattice: this makes certain types of window operation

and algorithm more accurate and efficient, and is particularly useful for edge

detection and thinning. Ren et al. (2010) have described an improved edge detec-

tion algorithm that operates via the fusion of intensity and chromatic difference,

thereby making better use of inter-component information in color images.

Cosı́o et al. (2010) used simplex search in active shape models for improved

boundary segmentation: this involves fast numerical optimization to find the most

suitable values of nonlinear functions without the need to calculate function deri-

vatives. Their approach typically employs 4 pose parameters and 10 shape para-

meters for defining a shape such as the prostate. The method significantly

increases the range of object poses, and thus results in more accurate boundary

segmentation. Chiverton et al. (2008) describe a method that is closely related to

the active contour concept: it zones in on objects using parameters relating to

foreground similarity and background dissimilarity, and employs a new varia-

tional logistic maximum a posteriori (MAP) contextual modeling schema. In this

case the (achieved) aim is to permit tracking of moving objects by iterative adap-

tive matching. Mishra et al. (2011) identify five basic limitations of preexisting

active contour methods. Their solution is to decouple the internal and external

active contour energies and to update for each of them separately. The method is

shown to be faster and to have at least comparable segmentation accuracy to five

earlier methods.
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Papadakis and Bugeau (2011) underline the power of the graph cut approach

(see Section 5.16) by showing that it can be applied to tracking partially occluded

objects if predictions to allow for this are included in the formalism. They make

the key point that the advantages of the graph cut approach are “its low computa-

tional cost and the fact that it converges to the global minimum without getting

stuck in local minima.”

5.19 PROBLEMS
1. Prove Eqs. (5.12) and (5.13).

2. Check the results quoted in Section 5.9 giving the conditions under which the

Sobel operator leads to zero error in the estimation of edge orientation.

Proceed to prove Eq. (5.17).

148 CHAPTER 5 Edge Detection



CHAPTER

6Corner and Interest Point
Detection

Corner detection is valuable for locating complex objects and for tracking them

in 2-D or 3-D. This chapter discusses this detection problem and considers meth-

ods that are best suited for the task.

Look out for:

• the ways in which corner features are useful.

• the variety of methods available for corner detection—template matching, the

second-order derivative method, the median-based method, the Harris interest

point detector.

• where the corner signal is a maximum: how detector bias arises.

• how corner orientation may be estimated.

• why invariant feature detectors are needed: the hierarchy of relevant types of

invariance.

• how feature detectors may be made invariant to similarity and affine

transformations.

• the need for invariant detectors to embody multiparameter descriptors to help

with subsequent matching tasks.

• what criteria can be developed for measuring the performance of conventional

and invariant types of feature and feature detector.

Note the variety of methods available for performing interrelated detection

tasks. However, different methods have different speeds, accuracies, sensitivities,

and degrees of robustness: this chapter aims to bring out all these aspects of the

problem.

Computer and Machine Vision.
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6.1 INTRODUCTION
This chapter is concerned with the efficient detection of corners. It has been noted

in previous chapters that objects are generally located most efficiently from their

features. Prominent features include straight lines, circles, arcs, holes, and cor-

ners. Corners are particularly important since they may be used to locate and

orientate objects and to provide measures of their dimensions; for example,

knowledge about orientation will be vital if a robot is to find the best way of

picking up an object, while dimensional measurement will be necessary in most

inspection applications. Hence efficient, accurate corner detectors are of great rel-

evance in machine vision.

We start this chapter by considering what is perhaps the most obvious detec-

tion scheme—that of template matching. Then we move on to other types of

detectors, based on the second-order derivatives of the local intensity function;

subsequently, we find that median filters can lead to useful corner detectors, with

properties similar to those for the second-order derivative based detectors. Next,

we consider detectors based on the second moments of the first derivatives of the

local intensity function. While this will complete the traditional approach to cor-

ner detection, it opens the door for consideration of the highly important invariant

local feature detectors that have in the past decade or so been developed for

matching widely separated views of 3-D scenes, including those containing rap-

idly moving objects. By the end of the chapter the vital task of considering per-

formance criteria for the various types of corner and feature detector will also be

undertaken.

6.2 TEMPLATE MATCHING
Following our experience with template matching methods for edge detection

(Chapter 5), it would appear to be straightforward to devise suitable templates for

corner detection. These would have the general appearance of corners, and in a

333 neighborhood would take forms such as the following:

24 5 5

24 5 5

24 24 24

2
4

3
5 5 5 5

24 5 24

24 24 24

2
4

3
5

The complete set of eight templates would be generated by successive 90� rota-

tions of the first two shown. An alternative set of templates was suggested by

Bretschi (1981). As for edge detection templates, the mask coefficients are made

to sum to zero, so that corner detection is insensitive to absolute changes in light

intensity. Ideally, this set of templates should be able to locate all corners and to

estimate their orientation to within 22.5�.
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Unfortunately, corners vary very much in a number of their characteristics,

including in particular their degree of pointedness,1 internal angle and the inten-

sity gradient at the boundary. Hence it is quite difficult to design optimal corner

detectors. In addition, corners are generally insufficiently pointed for good results

to be obtained with the 33 3 template masks shown above. Another problem is

that in larger neighborhoods, not only do the masks become larger but also more

of them are needed to obtain optimal corner responses, and it rapidly becomes

clear that the template matching approach is likely to involve excessive computa-

tion for practical corner detection. The alternative is to approach the problem ana-

lytically, somehow deducing the ideal response for a corner at any arbitrary

orientation, and thereby bypassing the problem of calculating many individual

responses to find the one that gives maximum signal. The methods described in

the remainder of this chapter embody this alternative philosophy.

6.3 SECOND-ORDER DERIVATIVE SCHEMES
Second-order differential operator approaches have been used widely for corner

detection and to mimic the first-order operators used for edge detection. Indeed,

the relationship lies deeper than this. By definition, corners in grayscale images

occur in regions of rapidly changing intensity levels. By this token they are

detected by the same operators that detect edges in images. However, corner pix-

els are much rarer2 than edge pixels—by one definition, they arise where two rel-

atively straight-edged fragments intersect. Thus, it is useful to have operators that

detect corners directly, i.e. without unnecessarily locating edges. To achieve this

sort of discriminability it is clearly necessary to consider local variations in image

intensity up to at least second order. Hence, the local intensity variation is

expanded as follows:

Iðx; yÞ5 Ið0; 0Þ1Ixx1Iyy1Ixx
x2

2
1Ixyxy1Iyy

y2

2
1? (6.1)

where the suffices indicate partial differentiation with respect to x and y and the

expansion is performed about the origin X0 (0,0). The symmetrical matrix of sec-

ond derivatives is:

Ið2Þ 5
Ixx Ixy
Iyx Iyy

� �
; where Ixy 5 Iyx (6.2)

1The term “pointedness” is used as the opposite to “bluntness,” the term “sharpness” being reserved

for the total angle η through which the boundary turns in the corner region, i.e. π minus the internal

angle.
2We might imagine a 2563 256 image of 64K pixels, of which 1000 (B2%) lie on edges and a

mere 30 (B0.06%) are situated at corner points.
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This gives information on the local curvature at X0. In fact, a suitable rotation

of the coordinate system transforms Ið2Þ into diagonal form:

Ĩð2Þ 5
Ix~x~ 0

0 Iy~y~

� �
5

κ1 0

0 κ2

� �
(6.3)

where appropriate derivatives have been reinterpreted as principal curvatures at X0.

We are particularly interested in rotationally invariant operators and it is sig-

nificant that the trace and determinant of a matrix such as Ið2Þ are invariant under

rotation. Thus, we obtain the Beaudet (1978) operators:

Laplacian5 Ixx 1 Iyy 5κ1 1κ2 (6.4)

and

Hessian5 detðIð2ÞÞ5 IxxIyy 2 I2xy 5κ1κ2 (6.5)

It is well known that the Laplacian operator gives significant responses along

lines and edges and hence is not particularly suitable as a corner detector. On the

other hand, Beaudet’s “DET” operator does not respond to lines and edges but

gives significant signals in the vicinity of corners: it should therefore form a use-

ful corner detector. However, DET responds with one sign on one side of a corner

and with the opposite sign on the other side of the corner: at the point of real

interest—on the point of the corner—it gives a null response. Hence, rather more

complicated analysis is required to deduce the presence and exact position of

each corner (Dreschler and Nagel, 1981; Nagel, 1983). The problem is clarified

in Fig. 6.1. Here the dotted line shows the path of maximum horizontal curvature

P

C

Q

FIGURE 6.1

Sketch of an idealized corner, taken to give a smoothly varying intensity function. The

dotted line shows the path of maximum horizontal curvature for various intensity values up

the slope. The DET operator gives maximum responses at P and Q, and it is required to

find the ideal corner position C where DET gives a null response.
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for various intensity values up the slope. The DET operator gives maximum

response at positions P and Q on this line, and the parts of the line between P and

Q must be explored to find the “ideal” corner point C where DET is zero.

Perhaps to avoid rather complicated procedures of this sort, Kitchen and

Rosenfeld (1982) examined a variety of strategies for locating corners, starting

from the consideration of local variation in the directions of edges. They found a

highly effective operator that estimates the projection of the local rate of change

of gradient direction vector along the horizontal edge tangent direction, and

showed that it is mathematically identical to calculating the horizontal curvature

κ of the intensity function I. To obtain a realistic indication of the strength of a

corner they multiplied κ by the magnitude of the local intensity gradient g:

C5κg5κðI2x 1 I2y Þ1=2

5
IxxI

2
y 2 2IxyIxIy 1 IyyI

2
x

I2x 1 I2y

(6.6)

Finally, they used the heuristic of nonmaximum suppression along the edge

normal direction to localize the corner positions further.

In 1983, Nagel was able to show that the Kitchen and Rosenfeld (KR) corner

detector using nonmaximum suppression is mathematically virtually identical to

the Dreschler and Nagel (DN) corner detector. A year later, Shah and Jain (1984)

studied the Zuniga and Haralick (ZH) corner detector (1983) based on a bicubic

polynomial model of the intensity function: they showed that this is essentially

equivalent to the KR corner detector. However, the ZH corner detector operates

rather differently in that it thresholds the intensity gradient and then works with

the subset of edge points in the image, only at that stage applying the curvature

function as a corner strength criterion. By making edge detection explicit in the

operator, the ZH detector eliminates a number of false corners that would other-

wise be induced by noise.

The inherent near-equivalence of these three corner detectors need not be overly

surprising, since in the end the different methods would be expected to reflect the

same underlying physical phenomena (Davies, 1988d). However, it is gratifying that

the ultimate result of these rather mathematical formulations is interpretable by some-

thing as easy to visualize as horizontal curvature multiplied by intensity gradient.

6.4 A MEDIAN FILTER-BASED CORNER DETECTOR
An entirely different strategy for detecting corners was developed by Paler et al.

(1984). It adopts an initially surprising and rather nonmathematical approach

based on the properties of the median filter. The technique involves applying a

median filter to the input image, and then forming another image that is the dif-

ference between the input and the filtered images. This difference image contains

a set of signals that are interpreted as local measures of corner strength.
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Clearly, it seems risky to apply such a technique since its origin suggests that,

far from giving a correct indication of corners, it may instead unearth all the noise

in the original image and present this as a set of “corner” signals. Fortunately,

analysis shows that these worries may not be too serious. First, in the absence of

noise, strong signals are not expected in areas of background; nor are they

expected near straight edges, since median filters do not shift or modify such

edges significantly (see Chapter 3). However, if a window is moved gradually

from a background region until its central pixel is just over a convex object cor-

ner, there is no change in the output of the median filter: hence, there is a strong

difference signal indicating a corner.

Paler et al. (1984) analyzed the operator in some depth and concluded that the

signal strength obtained from it is proportional to (a) the local contrast, and

(b) the “sharpness” of the corner. The definition of sharpness they used was that

of Wang et al. (1983), meaning the angle η through which the boundary turns.

Since it is assumed here that the boundary turns through a significant angle (per-

haps the whole angle η) within the filter neighborhood, the difference from the

second-order intensity variation approach is a major one. Indeed, it is an implicit

assumption in the latter approach that first- and second-order coefficients describe

the local intensity characteristics reasonably rigorously, the intensity function

being inherently continuous and differentiable. Thus, the second-order methods

may give unpredictable results with pointed corners where directions change

within the range of a few pixels. Although there is some truth in this, it is worth

looking at the similarities between the two approaches to corner detection before

considering the differences. We proceed with this in the next subsection.

6.4.1 Analyzing the Operation of the Median Detector
This subsection considers the performance of the median corner detector under con-

ditions where the grayscale intensity varies by only a small amount within the

median filter neighborhood region. This permits the performance of the corner

detector to be related to low-order derivatives of the intensity variation, so that

comparisons can be made with the second-order corner detectors mentioned earlier.

To proceed we assume a continuous analog image and a median filter operat-

ing in an idealized circular neighborhood. For simplicity, since we are attempting

to relate signal strengths and differential coefficients, noise is ignored. Next,

recall (Chapter 3) that for an intensity function that increases monotonically with

distance in some arbitrary direction x~ but which does not vary in the perpendicu-

lar direction y~, the median within the circular window is equal to the value at the

center of the neighborhood. This means that the median corner detector gives

zero signal if the horizontal curvature is locally zero.

If there is a small horizontal curvature κ, the situation can be modeled by

envisaging a set of constant-intensity contours of roughly circular shape and

approximately equal curvature, within a circular window of radius a (Fig. 6.2).

Consider the contour having the median intensity value. The center of this
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contour does not pass through the center of the window but is displaced to one

side along the negative x~-axis. Furthermore, the signal obtained from the corner

detector depends on this displacement. If the displacement is D, it is easy to see

that the corner signal is Dgx~ because gx~ allows the intensity change over the dis-

tance D to be estimated (Fig. 6.2). The remaining problem is to relate D to the

horizontal curvature κ. A formula giving this relation has already been obtained

in Chapter 3. The required result is:

D5
1

6
κa2 (6.7)

Median contour

(b)

(a)

Dgx~

x~

D

I

y~

FIGURE 6.2

(a) Contours of constant intensity within a small neighborhood: ideally, these are parallel,

circular and of approximately equal curvature (the contour of median intensity does not

pass through the center of the neighborhood); (b) cross-section of intensity variation,

indicating how the displacement D of the median contour leads to an estimate of corner

strength.

Source: r Springer 1988
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so the corner signal is

C5Dgx~5
1

6
κgx~a2 (6.8)

Note that C has the dimensions of intensity (contrast), and that the equation

may be re-expressed in the form:

C5
1

12
gx~ að ÞU 2aκð Þ (6.9)

so that, as in the formulation of Paler et al. (1984), corner strength is closely

related to corner contrast and corner sharpness.

To summarize, the signal from the median-based corner detector is proportional

to horizontal curvature and to intensity gradient. Thus, this corner detector gives an

identical response to the three second-order intensity variation detectors discussed in

Section 6.3, the closest practically being the KR detector. However, this comparison

is valid only when second-order variations in intensity give a complete description

of the situation. Clearly, the situation might be significantly different where corners

are so pointed that they turn through a large proportion of their total angle within

the median neighborhood. In addition, the effects of noise might be expected to be

rather different in the two cases, as the median filter is particularly good at suppres-

sing impulse noise. Meanwhile, for small horizontal curvatures, there ought to be no

difference in the positions at which median and second-order derivative methods

locate corners, and accuracy of localization should be identical in the two cases.

6.4.2 Practical Results
Experimental tests with the median approach to corner detection have shown that

it is a highly effective procedure (Paler et al., 1984; Davies, 1988d). Corners are

detected reliably and signal strength is indeed roughly proportional both to local

image contrast and to corner sharpness (see Fig. 6.3). Noise is more apparent for

33 3 implementations and this makes it better to use 53 5 or larger neighbor-

hoods to give good corner discrimination. However, the fact that median opera-

tions are slow in large neighborhoods, and that background noise is still evident

even in 53 5 neighborhoods, means that the basic median-based approach gives

poor performance by comparison with the second-order methods. However, both

of these disadvantages are virtually eliminated by using a “skimming” procedure,

in which edge points are first located by thresholding the edge gradient, and the

edge points are then examined with the median detector to locate the corner

points (Davies, 1988d). With this improved method, performance is found to be

generally superior to that for the KR method in that corner signals are better

localized and accuracy is enhanced. Indeed, the second-order methods appear to

give rather fuzzy and blurred signals that contrast with the sharp signals obtained

with the improved median approach (Fig. 6.4).

At this stage the reason for the more blurred corner signals obtained using

the second-order operators is not clear. Basically, there is no valid rationale for
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(a) (b)

FIGURE 6.3

(a) Original off-camera 1283 128 6-bit grayscale image; (b) result of applying the

median-based corner detector in a 53 5 neighborhood. Note that corner signal strength

is roughly proportional both to corner contrast and to corner sharpness.

(a) (b)

(c) (d)

FIGURE 6.4

Comparison of the median and KR corner detectors: (a) original 1283 128 grayscale

image; (b) result of applying a median detector; (c) result of including a suitable gradient

threshold; (d) result of applying a KR detector. The considerable amount of background

noise is saturated out in (a) but is evident from (b). To give a fair comparison between

the median and KR detectors, 53 5 neighborhoods are employed in each case,

and nonmaximum suppression operations are not applied: the same gradient threshold

is used in (c) and (d).

Source: r Springer 1988
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applying second-order operators to pointed corners, since higher derivatives of the

intensity function will become important and will at least in principle interfere with

their operation. However, it is evident that the second-order methods will probably

give strong corner signals when the tip of a pointed corner appears anywhere in

their neighborhood, so there is likely to be a minimum blur region of radius a for

any corner signal. This appears to explain the observed results adequately.

However, note that the sharpness of signals obtained by the KR method may be

improved by nonmaximum suppression (Kitchen and Rosenfeld, 1982; Nagel,

1983). Furthermore, this technique can also be applied to the output of median-

based corner detectors: hence, the fact remains that the median-based method gives

inherently better localized signals than the second-order methods.

Overall, the inherent deficiencies of the median-based corner detector can be

overcome by incorporating a skimming procedure, and then the method becomes

superior to the second-order approaches in giving better localization of corner signals.

The underlying reason for the difference in localization properties appears to be that

the median-based signal is ultimately sensitive only to the particular few pixels whose

intensities fall near the median contour within the window, whereas the second-order

operators use typical convolution masks that are in general sensitive to the intensity

values of all the pixels within the window. Thus, the KR operator tends to give a

strong signal when the tip of a pointed corner is present anywhere in the window.

6.5 THE HARRIS INTEREST POINT OPERATOR
Earlier in this chapter, we considered the second-order derivative type of corner

detector that was designed on the basis that corners are ideal, smoothly varying

differentiable intensity profiles. We also examined median filter-based detectors:

these had a totally different modus operandi and were found to be suitable for

processing curved step edges whose profiles were quite likely not to be smoothly

varying and differentiable. At this point we consider what other strategies are

available for corner detection. An important one that has become extremely

widely used is the Harris operator. Far from being a second-order derivative type

of detector, the Harris operator only takes account of first-order derivatives of the

intensity function. Thus, there is a question of how it can acquire enough informa-

tion to detect corners. In this section, we construct a model of its operation in

order to throw light on this crucial question.

The Harris operator is defined very simply, in terms of the local components

of intensity gradient Ix, Iy in an image. The definition requires a window region to

be defined and averages hUi are taken over this whole window. We start by com-

puting the following matrix:

Δ5
hI2x i hIxIyi
hIxIyi hI2y i
� �

(6.10)
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where the suffixes indicate partial differentiation of the intensity I; we then use

the determinant and trace to estimate the corner signal:

C5
detΔ
traceΔ

(6.11)

While this definition involves averages, we shall find it more convenient to

work with sums of quadratic products of intensity gradients:

Δ5
Σ I2x Σ IxIy
Σ IxIy Σ I2y

� �
(6.12)

To understand the operation of the detector, first consider its response for a

single edge (Fig. 6.5(a)). In fact:

detΔ5 0 (6.13)

because Ix is zero over the whole window region. Note that there is no loss in

generality from selecting a horizontal edge, as detΔ and traceΔ are invariant

under rotation of axes.

Next consider the situation in a corner region (Fig. 6.5(b)). Here:

Δ5
l2g

2sin2 θ l2g
2sin θ cos θ

l2g
2sin θ cos θ l2g

2cos2 θ1 l1g
2

� �
(6.14)

where l1, l2 are the lengths of the two edges bounding the corner, and g is the

edge contrast, assumed constant over the whole window. We now find:

detΔ5 l1l2g
4sin2 θ (6.15)

and

traceΔ5 ðl1 1 l2Þg2 (6.16)

l1

θ

l2

(a) (b)

FIGURE 6.5

Case of a straight edge and a general corner. (a) A single straight edge appearing in a

circular window. (b) A general corner appearing in a circular window. Circular windows are

taken as ideal, in that they will not favor any direction over any other.

Source: r IET 2005

1596.5 The Harris Interest Point Operator



so

C5
l1l2

l1 1 l2
g2 sin2 θ (6.17)

which may be interpreted as the product of (1) a strength factor λ, which depends

on the edge lengths within the window, (2) a contrast factor g2, and (3) a shape

factor sin2 θ, which depends on the edge “sharpness” θ. Clearly, C is zero for

θ5 0 and θ5π, and is a maximum for θ5π/2, all these results being intuitively

correct and appropriate.

There is a useful theorem about the sets of lengths l1, l2 for which the strength

factor λ, and thus C, is a maximum. Suppose we set L5 l11 l25 constant. Then

l15 L2 l2, and substituting for l1 we find:

λ5
l1l2

l1 1 l2
5

Ll2 2 l 2

2

L

" #
(6.18)

‘
dλ
dl2

5
1� 2l2

L
(6.19)

which is zero for l25 L/2, at which point l15 l2. This means that the best way of

obtaining maximum corner signal is to place the corner symmetrically within the

window, following which the signal can be increased further by moving the cor-

ner so that L is maximized (Fig. 6.6).

(a)

(c)

(b)

(d)

FIGURE 6.6

Possible geometries for a sharp corner being sampled by a circular window. (a) General case.

(b) Symmetrical placement with l15 l2 (see notation in Fig. 6.5(b)). (c) Case of maximum signal.

(d) Case where the signal is reduced in size as the tip of the corner goes outside the window.

Source: r IET 2005

160 CHAPTER 6 Corner and Interest Point Detection



Next, if li is small (for either value of i), the corner signal at first increases lin-

early with li, and as noted earlier, the corner detector will ignore a single straight

edge on its own.

Finally, the fact that we are exploring the properties of a symmetric matrix,

which can be represented using any convenient set of orthogonal axes, means that

we can find the eigenvalues and eigenvectors. However, it is illuminating to note

that these arise automatically when a symmetrically aligned set of axes is selected

along the corner bisectors, as then the off-diagonal elements of the modified Δ
matrix acquire two components (L/2)g2 sin (θ/2) cos (θ/2) of opposite sign and

therefore cancel out. The on-diagonal elements are thus the eigenvalues them-

selves, and are (L/2)g23 2 cos2 (θ/2), (L/2)g23 2 sin2 (θ/2). Again, if θ5 0 or π,
one or the other eigenvalue is zero, so the determinant is zero and the corner sig-

nal vanishes; also, the maximum signal occurs for θ5π/2.

6.5.1 Corner Signals and Shifts for Various Geometric
Configurations

In this section, we seek the conditions for maximum corner signal for corners of

different degrees of sharpness. We shall make use of the observation made in the

previous section that maximum signal requires that l15 l25 L/2.

First, we take the case when θ5 0: we have already seen that this leads to C5 0.

Next, when θ is small, i.e. less than π/2, we can go on increasing L by moving

the corner symmetrically. The optimum is reached exactly as the tip of the corner

reaches the far side of the window (Fig. 6.6). We could envisage the corner mov-

ing even further, but then the portions of the sides that lie within the window

will be moved laterally, so they will become shorter, and the signal will fall

(Fig. 6.6(d)).

Now take the case θ5π/2. Then we can again proceed as above, and the opti-

mum will still occur when the tip of the corner lies on the far side of the window

(Fig. 6.7(a)). However, further increase of θ will result in a different optimum

condition (Fig. 6.7(b�d)). In that case the optimum occurs for a reduced shift of

the tip of the corner, and occurs when the visible ends of the edges are exactly at

opposite ends of a window diameter (Fig. 6.7(d)). Formally, we can see this in

the symmetrical case (l15 l2) from the following equation:

λsym 5
L2=4

L
5

L

4
(6.20)

so reduction of L will reduce λsym and C will fall. This situation continues until

θ5π, at which point C again falls to zero.

We can now calculate the corner shift produced by the Harris detector.

Specifically, the detector places the maximum output signal at the center of the

window in the cases where the signal is stated to be “optimum” above. The shift

produced has a size equal to radius a of the window for small corner angles, as
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then the tip of the corner is symmetrically placed on the boundary of the window.

When θ rises above π/2, simple geometry (Fig. 6.8(a)) shows that the shift is

given by:

δ5 a cot
θ
2

� �
(6.21)

Hence δ starts with value a at θ5π/2, and falls to zero as θ-π (see Fig. 6.8(b)).

6.5.2 Performance with Crossing Points and Junctions
In this section we consider the performance of the Harris operator on other types

of feature, which are not normally classed as simple corners. Examples are shown

in Figs. 6.9 and 6.10. It turns out that the Harris operator picks these out with

much the same efficiency as for corners. We start by considering crossing points.

One of the most important points to note is that many of the same equations

apply as for corners, and in particular Eq. (6.17) still applies. However, l1, l2 must

now be taken as the sum of the edge lengths in each of the two main directions.

Here, there is an important point to note that along the two edge directions the

signs of the contrast values both reverse at the crossing point. Nevertheless, this

does not alter the response, because in Eq. (6.17) the contrast g is squared. So,

(a)

(c)

(b)

(d)

FIGURE 6.7

Possible geometries for right-angle and obtuse corners. (a) Optimum case for a right-angle

corner. This is the right-angle case corresponding to that shown in Fig. 6.6(c). (b) General

case for an obtuse corner. (c) Symmetrical placement with l15 l2. (d) Case of maximum

signal. In (d) the edges bounding the corner cross the boundary of the circular window at

opposite ends of a diameter.

Source: r IET 2005
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(a)

(c)

(b)

(d)

1

2

2

1 1

2

2

1

FIGURE 6.9

Other types of interest point. The types of interest point shown in this figure are those that

cannot be classed as simple corner points. (a) Crossing point. (b) Oblique crossing point.

(c) T-junction. (d) Oblique T-junction. In (a) and (b) the numbers indicate regions of

equal, or different, intensity.

Source: r IET 2005

a

a

l1

l2

0
0 π/2 πθ

θ

δ

δ

a

FIGURE 6.8

Geometry for calculating obtuse corner shifts and actual results. (a) Detailed geometry for

calculating corner shift for the case shown in Fig. 6.7(d). (b) Graph showing corner shift δ
as a function of corner sharpness θ. The left of the graph corresponds to the constant

shift of a obtained for sharp corners, while the right shows the varying results for obtuse

angles.

Source: r IET 2005
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when the window is centered at the crossing point, which is the tip of both con-

stituent corners, the values of l1, l2 are doubled.

Another relevant factor is that the corner configuration is now symmetric

about the crossing point, so by symmetry this must also be the position of maxi-

mum signal. In fact, the global maximum signal must occur when there is a maxi-

mum length of both edges within the window, and they must therefore be closely

aligned along window diameters. These remarks apply both for π/2 and for obli-

que crossovers (Fig. 6.9(a and b) and 6.10(a)).

We now consider another case that arises fairly often—the T-junction interest

point. This can be either a π/2 or an oblique junction. Such cases are more gen-

eral than corners and the crossing point junctions discussed above, in that they

are mediated by three regions with three different intensities (Figs. 6.9(c and d)

and 6.10(b)). A complete analysis of the situation for all these cases cannot be

undertaken here. Instead, we consider the interesting case of a high contrast edge

that is reached but not crossed by a low contrast edge. In this case, the additional

intensity breaks the symmetry of the junction, so that not only does the corner

peak not lie on the junction point, but also there will be a small lateral movement

of the peak. However, if the low contrast edge has much lower contrast than the

other two, the lateral shift will be minimal. To calculate the corner signal, we first

generalize Eq. (6.17) to take into account the fact that one line will have higher

contrast than the other:

C0 5
l1l2g

2
1g

2
2

l1g
2
1 1 l2g

2
2

sin2 θ (6.22)

(a) (b)

FIGURE 6.10

Effect of the Harris corner detector. (a) A checker-board pattern that gives high responses

at each of the edge crossover points. Because of symmetry, the location of the peaks is

exactly at the crossover locations. (b) Example of a T-junction. The black dot shows a

typical peak location: in this case there is no symmetry to dictate that the peak must

occur exactly at the T-junction.
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where l1 is taken as the straight edge with high contrast g1 and l2 is the straight

edge with low contrast g2. Proceeding as before we find that the optimal signal

occurs where l1jg1j5 l2jg2j. Interestingly, this can mean that the maximum signal

occurs on the low contrast edge, in a highly asymmetric way (Fig. 6.10(b)). Part

of the motivation of this study was the observation that the Harris operator peaks

shown in the literature (e.g. Shen and Wang, 2002) often seem to be localized at

such points, though oddly this does not seem to have been remarked upon before

2005 when the author noted and explained the phenomenon (Davies, 2005).

While apparently trivial it is actually important, as measurement bias can mislead

and/or be the cause of error in subsequent algorithms. However, here the bias is

known, systematic and calculable, and can be allowed for when the operator is

used in practice.

Note that the Harris operator3 is often called an “interest” operator, as it

detects not only corners but also other interesting points such as crossovers and

T-junctions: and we have seen that there is good reason why this happens.

Indeed, it is difficult to imagine that a second-order derivative signal would give

sizeable signals in these other cases, as the coherence of the second derivative

would be largely absent, or even identically zero in the case of a crossover.

6.5.3 Different Forms of the Harris Operator
In this section we consider the different forms the Harris operator can take. The

form in Eq. (6.11) is due to Noble (1988) who actually gave the inverse of this

expression and included a small positive constant in the denominator to prevent

divide-by-zero situations. However, the original Harris operator had the rather dif-

ferent form:

C5 detΔ� kðtraceΔÞ2 (6.23)

where k � 0.04. Ignoring the constant, we find that the analysis presented above

remains virtually unchanged, particularly concerning the optimal signal and the

localization bias. The term involving k was added by Harris and Stevens (1988)

in order to limit the number of false positives due to prominent edges. In princi-

ple, isolated edges should have no such effect, because as shown earlier, they

lead to det Δ5 0. However, noise or clutter can affect this by introducing short

extraneous edges that interact with any existing strong edges to constitute pseudo-

corners:4 so k is adjusted empirically to minimize the number of false positives.

Searching the literature shows that in practice workers almost invariably give k a

value close to 0.04 or 0.05: in fact, Rocket has investigated this, and has found

that: (a) making k equal to 0.04 rather than zero drastically cuts down the number

3Note also that the Harris operator often used to be called the Plessey operator, after the company

at which it was originally developed.
4In the absence of explanations in the literature, this seems to be the most reasonable interpretation

of the situation.
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of false positives due to edges; (b) there appears to be an optimum value for k

that is actually much closer to 0.05 than to 0.04, but definitely below 0.06, the k

response function being a smoothly varying curve (Rocket, 2003). Nevertheless,

we must expect the optimum value of k to vary with the image data.

Interestingly, in tests carried out using the Harris operator, the form given in

Eq. (6.11) was used without any attempt to introduce a term in k (though divide-

by-zero was taken care of), with the results shown in Fig. 6.11. Excessive num-

bers of false positives due to edges were not evident, though possibly this was so

because of the lack of sensitivity to that effect with this particular type of data.

Finally, it should be pointed out that, when making direct theoretical compari-

sons between the Harris and other operators (such as the second-order derivative

and median-based operators), the square roots of the expressions in Eqs. (6.11)

and (6.17) will need to be taken to ensure that the result is directly proportional

to edge contrast g.

6.6 CORNER ORIENTATION
This chapter has so far considered the problem of corner detection as relating

merely to corner location. However, of the possible point features by which

objects might be detected, corners differ from holes in that they are not isotropic,

and hence are able to provide orientation information. Such information can be

used by procedures that collate the information from various features in order to

deduce the presence and positions of objects containing them. In Chapter 14, it

will be seen that orientation information is valuable in immediately eliminating a

large number of possible interpretations of an image, and hence of quickly nar-

rowing down the search problem and saving computation.

Clearly, when corners are not particularly pointed (Fig. 6.12), or are detected

within rather small neighborhoods, the accuracy of orientation will be somewhat

restricted.5 However, orientation errors will seldom be worse than 45�, and will

generally be less than 20�. Although these accuracies are far worse than those

(around 1�) for edge orientation (see Chapter 5), nonetheless they provide valu-

able constraints on possible interpretations of an image.

Here we consider only simple means of estimating corner orientation.

Basically, once a corner has been located accurately, it is a rather trivial matter to

estimate its orientation from that of the intensity gradient at that location. This

estimate can be made more accurate by finding the mean intensity gradient over a

small region surrounding the estimated corner position, i.e. using the components

hIxi and hIyi.

5Clearly, accuracy of corner location will also suffer. However, a way of overcoming this problem

will be described in Chapter 13, by making use of the generalized Hough transform.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 6.11

Application of the Harris interest point detector. (a) Original image. (b) Interest point feature strength. (c)

Map of interest points showing only those giving greatest response over a distance of 5 pixels: (d) their

placement in the original image. (e and f) Corresponding results for interest points giving greatest response



6.7 LOCAL INVARIANT FEATURE DETECTORS AND
DESCRIPTORS

The discussion in the foregoing sections covered corner and interest point detec-

tors useful for general-purpose object location, i.e. finding objects from their fea-

tures. The specifications of the detectors were that they should be sensitive,

reliable and accurate, so that there would be little chance of missing any object

containing them, and so that object location would be accurate. In the context of

the object inference schemes described in Part 2—and particularly in

Chapter 14—it does not matter if some features are missing or whether additional

noise or clutter features arise, as the inferential schemes are sufficiently robust to

be able to find the objects in spite of this. However, the whole context was essen-

tially the 2-D situation where it was good enough to imagine that the objects

were nearly flat, or had nearly flat faces, so that 3-D perspective types of distor-

tion could be avoided. Even so, in 3-D, corners appear as corners from almost

any viewpoint, so robust inference algorithms should still be able to perform

object location. However, when viewing objects from quite different directions in

(a) (b) (c)

FIGURE 6.12

Types of corner: (a) pointed; (b) rounded; (c) chipped. Corners of type (a) are normal with

metal components, those of type (b) are usual with biscuits and other food products,

whereas those of type (c) are common with food products but rarer with metal parts.

Source: r IEE 1988

FIGURE 6.11 (Continued)

over a distance of 7 pixels. (g and h) Later frames in the sequence (also using maximum responses

over a distance of 7 pixels), showing a high consistency of feature identification, which is important

for tracking purposes. Note that interest points really do indicate locations of interest—corners,

people’s feet, ends of white road markings, and castle window and battlement features. Also, the

greater the significance as measured by the pixel suppression range, the greater relevance the

feature tends to have.
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3-D, appearance can change dramatically, so it becomes extremely difficult to

recognize them, even if all the features are present in the images. Thus, we arrive

at the concept of viewing over wide baselines. In the case of binocular vision that

takes two views over quite a narrow baseline (B7 cm for human eyes), the differ-

ence between the views is necessary in order to convey depth information, but it

is rarely so great that features recognized in one view cannot be re-identified in

the second view (though when huge numbers of similar, e.g. textural, features

occur, as when viewing a piece of material, this may not apply). On the other

hand, when objects are viewed on a wide baseline, as happens after significant

motion has occurred, the angular separation between the views may be as large as

50�. If even larger angular separations occur, there will be much less possibility

of recognition. While this sort of situation can be tackled by memorizing

sequences of views of objects, here we concentrate primarily on what can be dis-

cerned from local features that are seen in wide baseline views of up to B50�.
At this point we have established the need to be able to recognize local fea-

tures from wide baseline views as far apart as 50� so that objects can be recog-

nized and tracked or found in databases without especial difficulty. Clearly, the

corner and interest point detectors described thus far have no special provision for

this. To achieve this aim, additional criteria have to be fulfilled. The first is that

feature detection must be consistent and repeatable in spite of substantial change

of viewpoint. The second is that features must embody descriptions of their local-

ities so that there is high probability that the same physical feature will be posi-

tively identified in each of the views. Imagine that each image contains B1000

corner features. Then there will be B1 million potential feature matches between

two views. While a robust inference scheme could perform the match in the case

of flat objects, the situation becomes so much more demanding for general views

of 3-D objects that matching might not be possible, either at all, or more likely,

within a reasonable time—or without large numbers of ambiguities occurring. So,

it is highly important to minimize the feature matching task. Indeed, ideally, if a

rich enough descriptor is provided for each feature, feature matching might be

reducible to one-to-one between views. At this stage we are extremely far from

this possibility, as the corners that we have detected can so far only be character-

ized on the basis of their enclosed angle and intensity or color (and note that the

first of these parameters will generally be substantially changed by the altered

viewing angle). In what follows we consider in turn the two requirements of con-

sistent, repeatable feature detection, and feature description.

Broadly speaking, obtaining consistent, repeatable feature detection involves

allowing for and normalizing the variations between views. The obvious candi-

dates for normalization are scale, affine distortion and perspective distortion. Of

these, the first is straightforward, the second difficult, and the third impractical to

implement. This is because of the number of parameters that need to be estimated

for each feature. Bearing in mind that local features are necessarily small, the

accuracy with which the parameters can be estimated decreases rapidly with

increase in their number. Figure 6.13 shows how various transformations affect a

1696.7 Local Invariant Feature Detectors and Descriptors



2-D shape. The following equations respectively define Euclidean, similarity

(scale variation), and affine transformations:

x0

y0

� �
5

r11 r12
r21 r22

� �
x

y

� �
1

t1
t2

� �
(6.24)

x0

y0

� �
5

sr11 sr12
sr21 sr22

� �
x

y

� �
1
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t2

� �
(6.25)

x0

y0

� �
5

a11 a12
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� �
x

y
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1

t1
t2

� �
(6.26)

where rotation takes place through an angle theta, and the rotation matrix is:

r11 r12
r21 r22

� �
5

cos θ 2sin θ
sin θ cos θ

� �
(6.27)

Euclidean transformations allow translation and rotation operations and have

three degrees of freedom (DoF); additionally, similarity transformations include

scaling operations and have four DoF; additionally, affine transformations include

stretching and shearing operations, have six DoF, and are the most complex of the

transformations that make parallel lines transform into parallel lines; projective

transformations are much more complex, have eight DoF, and include operations

that (a) make parallel lines nonparallel, and (b) change ratios of lengths on straight

(a) (b) (c)

(d)

(e)

FIGURE 6.13

Effects of various transformations on a convex 2-D shape. (a) Original shape. (b) Effect of

Euclidean transform (translation1 rotation). (c) Effect of similarity transform (change of

scale). (d) Effect of affine transform (stretch1 shear). (e) Effect of perspective transform.

Note that in (d) parallel lines still remain parallel: this is not in general the case after a

projective transform, as indicated in (e). Overall, each of the transforms illustrated is a

generalization of the previous one. The respective numbers of degrees of freedom are

3, 4, 6, 8: in the last case each of the four points is independent and has two degrees

of freedom, though there are constraints, such as convexity having to be maintained.
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lines. The steady increase in the number of parameters is what mitigates against

estimation of perspective distortions in the feature points: in fact, it also tends to

reduce accuracy for the scale parameter when estimating full affine distortion.

6.7.1 Harris Scale and Affine-Invariant Detectors and Descriptors
Before proceeding to consider the above ideas in more detail, note that feature

detectors such as the Harris operator already estimate location and orientation, so

normalization for translation and rotation is already allowed for. This leaves scale

as the next candidate for normalization. Here, the basic concept is to apply a

given feature detector at various scales, using larger and larger masks. In the case

of the Harris operator, there are two relevant scales: one is the edge detection

(differentiation) scale σD and the other is the overall feature (integration) scale σI.
In practice, these need to be linked together (this involves little loss of generality)

so that σI5 γσD, where γ has a suitable value in the range 0�1 (typically B0.5).

σI then represents the scale of the overall operator. The approach is now to vary

σI and to find the value that provides the best match of the operator to the local

image data: the best match (extremum value) is the one representing the local

image structure: it is intended to be independent of image resolution, which is

arbitrary. In fact, the resulting “scale-adapted” Harris operator rarely attains true

maxima over scales in such a (“scale-space”) representation (Mikolajczyk and

Schmid, 2004); this is because a corner appears as a corner over a wide range of

scales (Tuytelaars and Mikolajczyk, 2008). To achieve an optimal scale for

matching, a totally different approach is applied: that is to use the Harris operator

to locate a suitable feature point, and then to examine its surroundings to find the

ideal scale, using a Laplacian operator. The scale of the latter is then adjusted to

determine, in a matched filter (i.e. optimum signal-to-noise ratio) way, when the

profile of the Laplacian most accurately matches the local image structure

(Fig. 6.14). The required operator is called a Laplacian of Gaussian (LoG). It cor-

responds to smoothing the image using a Gaussian and then applying the

Laplacian r2 5 @2=@x2 1 @2=@y2 (see Chapter 5), and results in the following

combined isotropic convolution operator:6

LoG5
ðr2 2 2σ2Þ
σ4ð2πσ2Þ exp 2

r2

2σ2

� �
5

ðr2 2 2σ2Þ
σ4

GðσÞ (6.28)

where

GðσÞ5 1

2πσ2
exp 2

r2

2σ2

� �
(6.29)

Having optimized this operator, we know the scale of the corner, and also its

location and 2-D orientation. This means that when comparing two such corner

6Note that convolution (�) is associative, so we have r2 � ðG� IÞ5 ðr2 � GÞ � I5LoG� I.
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features we can maintain translation, rotation, and scale invariance. To obtain

affine invariance we estimate the affine shape of the corner neighborhood.

Examining the Harris matrix Eq. (6.10), we rewrite it in the scale-adapted form:

Δ5σ2
DGðσIÞ � I2x ðσDÞ IxðσDÞIyðσDÞ

IxðσDÞIyðσDÞ I2y ðσDÞ
� �

(6.30)

where

IxðσDÞ5
@

@x
GðσDÞ � I (6.31)

and similarly for Iy(σD). These equations take full account of the differentiation and

integration scales σD, σI. Then for each scale of the scale-adapted Harris operator,

we repeat the process that was applied while determining the scale using the

Laplacian, this time iteratively determining the best-fit ellipse (rather than

circle) profile that fits the local intensity pattern. In fact, in spite of starting at sepa-

rate scales, the resulting elliptic fits are, for well-defined corner structures, highly

consistent and a robust average can be selected. The corresponding ellipse will

(compared with the original circle) be stretched by different amounts in two perpen-

dicular directions: the degrees of stretch and skew are the output affine parameters.

The final step is to normalize the feature by transforming it so that the elliptic

profile becomes isotropic, circular and therefore affine invariant (i.e. the affine

deformation is nullified). This corresponds to equalizing the eigenvalues of the

optimum scale-adapted second-order matrix, Eq. (6.30).

When comparing two corners we require invariant parameters. To obtain these

descriptors, it is necessary to determine Gaussian derivatives of the local neigh-

borhood of the interest points, computed on the transformed isotropic feature pro-

file. Clearly, the Gaussian derivatives have to be adjusted for a standardized

1 2 3 4 5 6 7 8 9 10

Scale

1 2 3 4 5 6 7 8 9 10

Scale

FIGURE 6.14

Scaling graphs for two objects that are being matched. The scaling graph on the left has

an extremum at 4.7, and the one on the right has an extremum at 2.2. This shows that

the best match occurs when the ratios of their scaling factors are approximately 2.14:1.

The vertical scales of the graphs do not come into the optimization calculation.
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isotropic profile size, and they have to be normalized to intensity variations by

dividing the higher order derivatives by the first-order derivative (i.e. the average

intensity gradient in the neighborhood). In the work of Mikolajczyk and Schmid

(2004), descriptors of dimension 12 were obtained by using derivatives up to

fourth order. (There are two first-order derivatives, three second order, four third

order, and five fourth order: excluding the first-order derivatives, this leaves a

total of 12 up to fourth order.) This set of descriptors proved highly effective for

identifying corresponding pairs of features in widely different views of up to

B40� angular separation with better than 40% repeatability, and in the affine

case up to B70� with up to 40% repeatability. In addition, the localization accu-

racy for Harris�Laplace dropped off more or less linearly with angular separa-

tion, becoming excessive above 40�, whereas that for Harris�Affine remained at

an acceptable level (B1.5 pixel error). The Harris�Laplace was described as hav-

ing a breakdown point at a viewpoint change of 40�.

6.7.2 Hessian Scale and Affine-Invariant Detectors and
Descriptors

Over the same period that scale and affine-invariant detectors and descriptors

based on the Harris operator were developed, investigations of similar operators

based on the Hessian operator were being undertaken. Here it is useful to recall

that the Harris operator is defined in terms of first derivatives of the intensity

function I, while the Hessian operator (see Eq. (6.5)) is defined in terms of the

second derivatives of I. Thus, we can consider the Harris operator as being edge-

based, and the Hessian operator as being blob-based. This matters for two

reasons. One is that the two types of operator might, and do, bring in different

information about objects and hence to some extent they are complementary.

The other is that the Hessian is better matched than the Harris to the Laplacian

scale estimator: indeed, the Hessian arises from the determinant and the

Laplacian from the trace of the matrix of second-order derivatives (Eq. (6.2)).

The better matching of the Hessian to the Laplacian results in improved scale

selection accuracy for this operator (Mikolajczyk and Schmid, 2005). The other

details of the Hessian�Laplacian and Hessian�Affine operators are similar to

those for the corresponding Harris operators and will not be discussed in

more detail here. However, it is worth remarking that in all four cases there are

typically 200�3000 detected regions per image depending on the content

(Mikolajczyk and Schmid, 2005).

6.7.3 The SIFT Operator
Lowe’s scale invariant feature transform (widely known as “SIFT”) was first

introduced in 1999, a much fuller account being given by Lowe (2004). While

being restricted to a scale invariant version, it is important for two reasons: (1)

for impressing on the vision community the existence, importance, and value of
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invariant types of detector; and (2) for demonstrating the richness that feature

descriptors can bring to feature matching. For estimating scale, the SIFT operator

uses the same basic principle as for the Harris and Hessian-based operators out-

lined above. However, it differs in using the Difference of Gaussians (DoG)

instead of the Laplacian of Gaussians (LoG), in order to save computation. This

possibility is seen by differentiating G with respect to σ in Eq. (6.29):

@G

@σ
5

r2

σ3
2

2

σ

� �
GðσÞ5σ LoG (6.32)

which means that we can approximate LoG as the difference of Gaussians of two

scales:

LoG � Gðσ0Þ2GðσÞ
σðσ0 2σÞ 5

GðkσÞ2GðσÞ
ðk2 1Þσ2

(6.33)

where use of the constant scale factor k permits scale normalization to be carried

out easily between scales.

In fact, it is in the design of the descriptors that SIFT is particularly different

from the Harris and Hessian-based detectors. Here the operator divides the sup-

port region, at each scale, into a 163 16 sample array and estimates the intensity

gradient orientations for each of these. They are then grouped into sets of sixteen

43 4 sub-arrays and orientation histograms are generated for each of these, the

directions being restricted to one of eight directions. The final output is a 43 4

array of histograms each containing entries for eight directions—amounting to a

total output dimensionality of 43 43 85128.

The overall detector is found (Mikolajczyk, 2002) to be more repeatable

than Harris�Affine and to retain a final matching accuracy above 50% out to a

50� angular separation. However, because of the limited stability of

Harris�Affine, Lowe (2004) recommends the approach of Pritchard and Heidrich

(2003) of including additional SIFT features with 60� viewpoint separation during

training. We defer further discussion of the performance of this detector to

Section 6.7.6.

6.7.4 The SURF Operator
The development of SIFT stimulated efforts to produce an effective invariant fea-

ture detector that was also highly efficient and required a smaller descriptor than

the large one employed by SIFT. An important operator in this mold was the

speeded-up robust features (SURF) method of Bay et al. (2006, 2008). This was

based on the Hessian�Laplace operator. In order to increase speed, several mea-

sures were taken: (1) the integral image approach was used to perform rapid com-

putation of the Hessian and was also used during scale-space analysis; (2) the

DoG was used in place of the LoG for assessing scale; (3) sums of Haar wavelets

were used in place of gradient histograms, resulting in a descriptor dimensionality
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of 64—half that of SIFT; (4) the sign of the Laplacian was used at the matching

stage; (5) various reduced forms of the operator were used to adapt it to different

situations, notably an “upright” version capable of recognizing features within

615� of those pertaining to an upright stance, as occurs for outdoor buildings and

other objects. By maintaining a rigorous, robust design, the operator was

described as outperforming SIFT, and also proved capable of estimating 3-D

object orientation within fractions of a degree and certainly more accurately than

SIFT, Harris�Laplace, and Hessian�Laplace.

Of some importance for this implementation is the integral image approach

(Simard et al., 1999): this was brought prominently to light by Viola and Jones

(2001), but maybe not utilized as much as one might expect since then. This is

extremely simple, yet radical in the levels of speedup it can bring. It involves

computing an integral image IΣ, which is an image that retains sums of all pixel

intensities encountered so far in a single scan over the input image:

IΣðx; yÞ5
Xi# x

i50

Xj# y

j50

Iði; jÞ (6.34)

This not only permits any pixel intensity in the original image to be

recovered:

Iði; jÞ5 IΣði; jÞ2 IΣði2 1; jÞ2 IΣði; j2 1Þ1 IΣði2 1; j2 1Þ (6.35)

but also allows the sum of the pixel intensities in any upright rectangular block,

such as those ranging from x5 i to i1 a and y5 j to j1 b within block D in

Fig. 6.15, to be utilized:X
D

I5
X
A

I2
X
A;B

I2
X
A;C

I1
X

A;B;C;D

I

5 IΣði; jÞ2 IΣði1 a; jÞ2 IΣði; j1 bÞ1 IΣði1 a; j1 bÞ
(6.36)

The method is exceptionally well adapted to computing Haar filters that typi-

cally consist of arrays containing blocks of identical values, for example:

21 21 1 1 1 1 21 21

21 21 1 1 1 1 21 21

21 21 1 1 1 1 21 21

21 21 1 1 1 1 21 21

2
664

3
775

Note that once the integral image has been computed, it permits summations

to be made over any block merely by performing four additions—taking a minis-

cule time that is independent of the size of the block. A simple generalization to

the 3-D box filter (Simard et al., 1999) is also possible, and this is used in com-

puting within scale-space in the SURF implementation.
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6.7.5 Maximally Stable Extremal Regions
There is one class of invariant feature that does not fall into the pattern covered

in the preceding sections—the invariant region type of feature. Among the most

important examples of this type of feature is the maximally stable extremal region

(MSER). The method analyzes regions with increasing ranges of intensity, and

aims to determine those that are extremal in a particularly stable way. (Recall that

finding extrema is a powerful general method for locating invariant features, as

we have already seen in Section 6.7.1.)

The method (Matas et al., 2002) starts by taking pixels of zero intensity and

progressively adding pixels with higher intensity levels, at each stage monitoring

the regions that form. At each stage largest connected regions or “connected com-

ponents” will represent extremal regions.7 As more and more gray levels are added,

the connected component regions will grow and some initially separate ones will

merge. Maximally stable extremal regions are those connected components that are

close to stable (as conveniently measured by their area) over a range of intensities,

i.e. each MSER is represented by the position of a local intensity minimum in the

rate of change of the area function. Interestingly, relative area change is an affine-

invariant property, so finding MSER regions guarantees both scale and affine

A B

C D

i 

j + b

j

i + a

FIGURE 6.15

The integral image concept. Here block D can be considered as made up by taking block

A1B1C1D, then subtracting block A1B and block C, in the latter case by subtracting

A1C and adding A: see text for an exact mathematical treatment.

7See Section 9.3 for a full explanation of connected components and their computation.

Meanwhile, assume that a “connected component” means a region containing everything that is

connected to any part of that region. Hence, by definition, a connected component is an extremal

region.
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invariance. In fact, because of the way intensities are handled in this method, the

results are also independent of monotonic transformation of image intensities.

While every MSER can be regarded as a connected component of a threshold

image, global thresholding is not carried out, and optimality is judged on the

basis of the stability of the connected components that are located. Intrinsically,

MSERs have arbitrary shapes, though for matching purposes they can be

converted into ellipses of appropriate areas, orientations and moments. Perhaps

surprisingly for affine features, they can be computed highly efficiently in

times that are nearly linear in the number of pixels; they also have good repeat-

ability, though they are quite sensitive to image blur. This last problem is to

be expected, given the dependence on individual gray levels and the

precision with which connected components analysis is carried out; in fact,

this difficulty has been addressed in a recent extension of the work (Perdoch

et al., 2007).

6.7.6 Comparison of the Various Invariant Feature Detectors
While there are many more invariant feature detectors than we have been able to

cover here (salient regions, IBR, FAST, SFOP, . . .) and many variants of them

(GLOH, PCA-SIFT, . . .), we next concentrate on comparisons between them. In

fact, most of the papers describing new detectors make comparisons with older

detectors, but often with limited datasets. Here we outline the conclusions of

Ehsan et al. (2010), who compared SIFT, SURF, Harris�Laplace, Harris�Affine,

Hessian�Laplace, and Hessian�Affine, using the following datasets: Bark, Bikes,

Boat, Graffiti, Leuven, Trees, UBC, and Wall (viz. eight sequences of six

images).8 Table 6.1 presents the results in a modified form with SURF placed

after Hessian�Laplace, as it is based on the latter.

Apart from Table 6.1, Ehsan et al. (2010) showed the results of using three

different criteria for judging repeatability of feature detector performance. The

first was the standard repeatability criterion:

C0 5
Nrep

minðN1;N2Þ
(6.37)

where N1 is the total number of points detected in the first image, N2 is the total num-

ber of points detected in the second image, and Nrep is the number of repeated points.

They emphasized that it has been remarked (Tuytelaars and Mikolajczyk,

2008) that repeatability “does not guarantee high performance in a given applica-

tion.” They reasoned that this was due in part to comparing features within adja-

cent pairs of images rather than over whole image sequences: specifically, they

8See Oxford DataSets at: http://www.robots.ox.ac.uk/Bvgg/research/affine/ (website accessed 19

April 2011).
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recommended that each image should be compared taking the first frame of the

sequence as a reference and using the following criterion:

C1 5
Nrep

Nref

(6.38)

Nevertheless, they also proposed a more symmetric measure of repeatability:

C2 5
Nrep

ðNref 1NcÞ
(6.39)

where Nc is the total number of points detected in the current frame. This proved

to be a less harsh and more realistic criterion when compared with the trends of

the observed ground truth for an image sequence. Further evidence for moving

away from the standard repeatability criterion C0 is that it rewards failure to

detect features (because decrease in N1 or N2 will, if anything, raise the value of

C0). This suggests altering C0 to use the maximum instead of the minimum.

However, using either the maximum or the minimum tends to emphasize extreme

results, leading to nonrobust measures. From this point of view the most appropri-

ate measure has to be C2. In fact, this criterion gave optimal results and low error

probability measures when run against ground truth using Pearson’s correlation

coefficients (Ehsan et al., 2010). Using C2, an important result was the dominance

of the Hessian-based detectors, which is already very evident in Table 6.1

(derived from their Table 2), where the three Hessian-based totals are 18, 18, 20,

vis-à-vis 14, 15, 16 for the others (interestingly, the situation is even more polar-

ized in favor of Hessian-based detectors when the datasets giving the best and

worst results—Bark and UBC—are ignored). Note that Tuytelaars and

Mikolajczyk (2008) did not come out so strongly in favor of the Hessian-based

Table 6.1 Comparison of Invariant Feature Detectors

Datasets SIFT Harris�
Laplace

Hessian�
Laplace

SURF Harris�
Affine

Hessian�
Affine

Total

Bark >>> > > >> > > 9

Bikes > >> >>> >>> >> >>> 14

Boat >> >> >>> >> > >> 12

Graffiti > > > > >>> >>> 10

Leuven >>> > >> >>> > >> 12

Trees > >> >>> >>> >> >> 13

UBC >> >>> >>> >>> >>> >>> 17

Wall >>> >> >> >>> >> >> 14

total 16 14 18 20 15 18 101

The totals give some indication of the overall capabilities of the detectors, and of the complexity of the individual datasets.
However, the detector totals must be interpreted in the light of the highest level of invariance achievable—viz. scale or affine.
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detectors, but this was probably because their analysis of datasets was not so

extensive; also, Ehsan et al. (2010) were the first to look at image sequences so

rigorously using C2.

The review by Tuytelaars and Mikolajczyk (2008) is of great value in evaluat-

ing performance using several disparate criteria, viz. repeatability, localization

accuracy, robustness and efficiency. Some of their results are shown in Table 6.2—

notably those for all the feature detectors covered in Table 6.1 and those for the

single-scale Harris and Hessian, and for the MSER detector (Matas et al., 2002)

mentioned earlier. They also make the following valuable observations:

1. Scale invariant operators can normally be dealt with adequately by a robust-

ness capability for viewpoint changes of less than 30�, as affine deformations

only rise above those due to variations in object appearance beyond that level.

2. In different applications, different feature properties may be important, and

thus success depends largely on appropriate selection of features.

3. Repeatability may not always be the most important feature performance char-

acteristic: not only is it hard to define and measure but robustness to small

appearance variations matters more.

4. There is a need for work focussing on complementarity of features, leading either

to complementary detectors or to detectors providing complementary features.

In the last respect, note that some ground work has recently been carried out

by Ehsan et al. (2011) to measure the coverage of interest point detectors. They

identify the recent SFOP scale invariant feature transform (Förstner et al., 2009)

as the most outstanding detector in this respect, either used on its own or in

Table 6.2 Performance Evaluation of Various Feature Detectors

Detector Invariance Repeatability Accuracy Robustness Efficiency Total

Harris Rotation >>> >>> >>> >> 11

Hessian Rotation >> >> >> > 7

SIFT Scale >> >> >> >> 8

Harris�
Laplace

Scale >>> >>> >> > 9

Hessian�
Laplace

Scale >>> >>> >>> > 10

SURF Scale >> >> >> >>> 9

Harris�
Affine

Affine >>> >>> >> >> 10

Hessian�
Affine

Affine >>> >>> >>> >> 11

MSER Affine >>> >>> >> >>> 11

The totals give some indication of the overall capabilities of the detectors: however, they must be interpreted in the light of

the highest level of invariance achievable (column 2).
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conjunction with others. Ehsan et al.’s new criterion for coverage C is based on

the harmonic mean so as not to overemphasize nearby features:

C5
NðN2 1ÞPN21

i51

PN
j.1ð1=dijÞ

(6.40)

(In this formula dij is the Euclidean distance between feature points i and j.)

Note that a detector which has high coverage is not guaranteed to be sound:

after all, a detector giving a random selection of feature points might fare well on

this count. Hence, a coverage criterion can only come into its own when it is used

to select complementary types of feature and feature detector, or a detector that

provides a good mix of types of feature, for which the output selection is known

to be sound on other counts (repeatability, robustness, and so on).

6.8 CONCLUDING REMARKS
Corner detection provides a useful start to the process of object location, and to

this end is often used in conjunction with the abstract pattern matching

approaches discussed in Chapter 14. Apart from the obvious template matching

procedure, which is of limited applicability, three main approaches have been

described. The first was the second-order derivative approach that includes the

KR, DN, and ZH methods—all of which embody the same basic schema; the sec-

ond was the median-based method, which turned out to be equivalent to the

second-order derivative methods in situations where corners have smoothly

varying intensity functions; and the third was the Harris detector which is based

on the matrix of second moments of the first derivatives of the intensity function.

Perhaps surprisingly, the latter is able to extract much the same information as

the other two approaches, though there are differences, in that the Harris detector

is better described as an interest point detector than as a corner detector. In fact,

the Harris detector has probably been the most widely used corner and interest

point detector of all, and for general purpose (non-3-D) operation this still seems

to be the case—in spite of the advent of the SUSAN detector (Smith and Brady,

1997), which is known to be faster and more efficient, but somewhat less resistant

to noise.

Interestingly, the situation presented above started changing radically from

about 1998, when workers started looking for approaches to object location that

were not merely robust to noise, distortion, partial occlusion, and extraneous fea-

tures, but were able to overcome problems of gross distortion due to viewing the

same scene from widely different directions. This “wide baseline” problem, which

is prominent with 3-D and motion applications, including tracking moving

objects, became the driving force for radical new thinking and development. As

we have seen, attempts were made to adapt the Harris operator to this scenario,

making it invariant to similarity (scale) and affine transformations, though in the
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end somewhat more success was achieved by returning to the Hessian operator

discussed early in the chapter. Alternative approaches included the MSER

approach, which is by no means based on the location of any sort of corner or

interest point. Indeed, it harks back to the thresholding methods of Chapter 4. But

this is all to the good, as the underlying task is that of segmentation coupled with

recognition and identification/matching: division of the subject into watertight

topics, such as thresholding, edge detection, and corner detection, has limited

validity or at least it is too restrictive to offer the best solutions to the real pro-

blems of the subject. In this context it is relevant that the newly evolved feature

detectors embody multiparameter descriptors, making them far better suited not

only to detection per se but also to the more exacting task of wide baseline 3-D

matching.

Overall, in this chapter we have seen the corner detector approach transmog-

rify itself to overcome the problems of viewing objects from directions as far

apart as 70�—and with a great deal of success. Remarkably, all this was achieved

in little more than a decade—evidence that progress in this subject has been

accelerating. Importantly, the old computer adage “garbage in�garbage out” is

relevant, because feature detection forms a crucial link between the original pic-

tures and their high-level interpretation.

This chapter has studied how objects may be detected and located from their corners and
interest points. It has developed both the classic approach to detector design and the more
recent invariant approaches, which result in multiparameter feature descriptors to aid
matching between widely separated views of objects.

6.9 BIBLIOGRAPHICAL AND HISTORICAL NOTES
The subject of corner detection has been developing for over three decades. The

scene was set for the development of parallel corner detection algorithms by

Beaudet’s (1978) work on rotationally invariant image operators. This was soon

followed by Dreschler and Nagel’s (1981) more sophisticated second-order corner

detector: the motivation for this research was to map the motion of cars in traffic

scenes, corners providing the key to unambiguous interpretation of image

sequences. One year later, Kitchen and Rosenfeld (1982) had completed their

study of corner detectors based mainly on edge orientation, and had developed

the second-order KR method described in Section 6.3. Years 1983 and 1984 saw

the development of the second-order ZH detector and the median-based detector

(Zuniga and Haralick, 1983; Paler et al., 1984). Subsequently, the author pub-

lished work on the detection of blunt corners (see Chapter 13) and on analyzing

and improving the median-based detector (Davies, 1988a,d, 1992a). Meanwhile,

other methods had been developed, such as the Harris algorithm (Harris and

Stephens, 1988; see also Noble, 1988). The Smith and Brady (1997) “SUSAN”
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algorithm marked a further turning point, needing no assumptions on the corner

geometry, as it works by making simple comparisons of local gray levels: this is

one of the most cited of all corner detection algorithms.

In the year 2000s further corner detectors were developed. Lüdtke et al.

(2002) designed a detector based on a mixture model of edge orientation: in addi-

tion to being effective in comparison with the Harris and SUSAN operators, par-

ticularly at large opening angles, the method provides accurate angles and

strengths for the corners. Olague and Hernández (2002) worked on a unit step

edge function (USEF) concept, which is able to model complex corners well: this

resulted in adaptable detectors that are able to detect corners with subpixel accu-

racy. Shen and Wang (2002) described a Hough transform-based detector: as this

works in a 1-D parameter space it is fast enough for real-time operation; a useful

feature of the paper is the comparison with, and between, the Wang and Brady

detector, the Harris detector, and the SUSAN detector. The several example

images show that it is difficult to be sure exactly what one is looking for in a cor-

ner detector (i.e. corner detection is an ill-posed problem), and that even the well-

known detectors sometimes inexplicably fail to find corners in obvious places.

Golightly and Jones (2003) present a practical problem in outdoor country scen-

ery: they discuss not only the incidence of false positives and false negatives but

also the probability of correct association in corner matching, e.g. during motion.

Rocket (2003) gives a performance assessment of three corner detection algo-

rithms—the KR detector, the median-based detector, and the Harris detector: the

results are complex, and the three detectors are found to have very different char-

acteristics. The paper is valuable in showing how to optimize the three methods

(not least showing that the Harris detector parameter k should be B0.05), and

also because it concentrates on careful research rather than “selling” a new detec-

tor. Tissainayagam and Suter (2004) gave an assessment of the performance of

corner detectors, with vitally important coverage of point feature (motion) track-

ing applications. Interestingly, it finds that, in image sequence analysis, the Harris

detector is more robust to noise than the SUSAN detector, a possible explanation

being that it “has a built-in smoothing function as part of its formulation.”

Finally, Davies (2005) analyzed the localization properties of the Harris operator:

see Section 6.5 for the main results of this work.

While the above discussion covers many of the developments on corner detec-

tion, it is not the whole story. This is because in many applications it is not spe-

cific corner detectors that are needed but “interest point” detectors, which are

capable of detecting any characteristic patterns of intensity that can be used as

reliable feature points. In fact, the Harris detector is often called an interest point

detector—with good reason, as indicated in Section 6.5.2. Moravec (1977) was

among the first to refer to interest points and was followed by Schmid et al.

(2000) and many others. However, Sebe and Lew (2003) and Sebe et al. (2003)

call them salient points—a term more often reserved for points that attract the

attention of the human visual system. Overall, it is probably safest to use the

Haralick and Shapiro (1993) definition: a point being “interesting” if it is both
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distinctive and invariant—i.e. it stands out and is invariant to geometric distor-

tions such as might result from moderate changes in scale or viewpoint (note that

Haralick and Shapiro also list other desirable properties—stability, uniqueness,

and interpretability). The invariance aspect is taken up by Kenney et al. (2003)

who show how to remove ill-conditioned points from consideration, to make

matching more reliable.

The subject of invariant feature detectors and descriptors has taken little over a

decade to develop and over that period it has come a long way. It started with

papers by Lindeberg (1998) and Lowe (1999) that indicated the way forward and

provided basic techniques. It arose largely because of difficulties in wide baseline

stereo work, and with tracking object features over many video frames—because

features change their appearance over time and correspondences are easily lost. To

proceed, it was necessary first to eliminate the relatively simple problem of features

changing in size, thereby necessitating scale invariance (it being implicit that trans-

lation and rotation invariance have already been dealt with). Later, improvements

became necessary to cope with affine invariance. Thus, Lindeberg’s pioneering the-

ory (1998) was soon followed by Lowe’s work (1999, 2004) on scale invariant fea-

ture transforms (SIFT). This was followed by affine-invariant methods developed

by Tuytelaars and Van Gool (2000), Mikolajczyk and Schmid (2002, 2004),

Mikolajczyk et al. (2005) and others. In parallel with these developments, work

was published on maximally stable extremal regions (Matas et al., 2002) and other

extremal methods (e.g. Kadir and Brady, 2001; Kadir et al., 2004).

Much of this work capitalized on the interest point work of Harris and

Stephens (1988), and was underpinned by careful in-depth experimental investiga-

tions and comparisons (Schmid et al., 2000; Mikolajczyk and Schmid, 2005;

Mikolajczyk et al., 2005). Next, the tide turned in other directions, in particular

the design of feature detectors that aim at real-time operation—as in the case of

the speeded-up robust features (SURF) approach (Bay et al., 2006, 2008).

A review article summarizing the main approaches was published by

Tuytelaars and Mikolajczyk in 2008. However, that was by no means the end of

the story. As outlined in Section 6.7.6, Ehsan et al. (2010) briefly reviewed the

status quo on repeatability of the main features and detectors, and reported on

experiments to assess it: their work included two new repeatability criteria, which

more realistically reflected the underlying requirements for invariant detectors. In

addition, they presented new work (Ehsan et al., 2011) on the coverage of invari-

ant feature detectors, reflecting poignant remarks made in Tuytelaars and

Mikolajczyk’s (2008) review. It is clear that, with the passing of the first decade

of the 2000s, an even more exacting phase of development is under way, with

more rigorous performance evaluation: it will no longer be sufficient to produce

new invariant feature detectors; instead it will be necessary to integrate them

much more fully with the target applications, following rigorous design to ensure

that all relevant criteria are being met, and that the tradeoffs between the criteria

are much more transparent.
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6.9.1 More Recent Developments
Since the Tuytelaars and Mikolajczyk’s (2008) review, further relevant work on

feature detectors and descriptors has emerged. Rosten et al. (2010) have presented

the FAST family of corner detectors, which is designed on a new heuristic to be

especially fast while at the same time to be highly repeatable; they also review

methods for comparing feature detectors and call for less concentration on how a

feature detector should do its job than on what performance measure it is required

to optimize. Cai et al. (2011) work on a “linear discriminant projections” proce-

dure for reducing the dimensionality of local image descriptors, and manage to

bring the SIFT tally down from 128 to just 30. However, they warn that this

seems to be achievable only by making the projections specific to the type of

image data. With a similar motivation, Teixeira and Corte-Real (2009) quantize

the SIFT descriptor to form visual words using a predefined vocabulary, though

in this case the vocabulary is structured in the form of a tree; it is constructed

using a generic dataset related to the type of object tracking being performed. van

de Sande et al. (2010) discuss the generation of color object descriptors. They

find that the choice of a single color descriptor for all categories of data is subop-

timal: but for unknown data, “OpponentSIFT” (using three sets of SIFT features

for the three opponent colors) showed the highest degree of invariance with

respect to photometric variations. Zhou et al. (2011) proposed a method to per-

form descriptor combination and classifier fusion. They cast the problem of object

classification into a learning setting, which again means that the method is adap-

tive and not applicable to new data without retraining. Overall, we see that trying

to reduce the original 128 SIFT features (or the equivalent) tends to make such

methods specific to particular training data.

6.10 PROBLEMS
1. By examining suitable binary images of corners, show that the median corner

detector gives a maximal response within the corner boundary rather than

half-way down the edge outside the corner. Show how the situation is modi-

fied for grayscale images. How will this affect the value of the gradient noise-

skimming threshold to be used in the improved median detector?

2. Prove Eq. (6.6), starting with the following formula for curvature:

κ5
d2y=dx2

½11 ðdy=dxÞ2�3=2

Hint: First express dy/dx in terms of the components of intensity gradient,

remembering that the intensity gradient vector (Ix, Iy) is oriented along the edge

normal; then replace the x, y variation by Ix, Iy variation in the formula for κ.
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CHAPTER

7Mathematical Morphology

Historically, the study of shape took place over a long period of time and resulted

in a highly variegated set of algorithms and methods. Over the past 30 years the

formalism of mathematical morphology was set up, and provided a background

theory into which many of the individual advances could be slotted. This chapter

takes a journey through this interesting subject, but aims to steer an intuitive path

between the many mathematical theorems, concentrating on finding practically

useful results.

Look out for:

• how the concepts of expanding and shrinking are transformed into the more

general concepts of dilation and erosion.

• how dilation and erosion operations may be combined to form more complex

operations whose properties may be predicted mathematically.

• how the concepts of closing and opening are defined, and how they are used

to find defects in binary object shapes, via residue (or “top hat”) operations.

• how mathematical morphology is generalized to cover grayscale processing.

• how noise affects morphological grouping operations.

This theory in the present chapter is especially valuable because of the way in

which it integrates a range of topics. Once the methodology has been learnt, mor-

phology should be of distinct value in taking the earlier ideas forward and opti-

mizing algorithms that use them.

7.1 INTRODUCTION
In Chapter 2, we have discussed the operations of erosion and dilation: in

Chapter 9 we will apply them to the filtering of binary images, and will show that

with suitable combinations of these operators it is possible to eliminate certain

types of object from images, and also to locate other objects. These possibilities

are not fortuitous, but on the contrary reflect fundamental properties of shape,

which are dealt with in the subject known as mathematical morphology. This
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subject has grown up over the past two or three decades, and over the past few

years knowledge in this area has become consolidated and is now understood in

considerable depth. It is the purpose of this chapter to give some insight into this

vital area of study. Note that mathematical morphology is especially important

because it provides a backbone for the whole study of shape and thus is able to

unify techniques as disparate as noise suppression, shape analysis, feature recog-

nition, skeletonization, convex hull formation, and a host of other topics.

Section 7.2 starts the discussion by extending the concepts of expanding and

shrinking first encountered in Section 2.2. Section 7.3 then develops the theory of

mathematical morphology, arriving at many important results—with emphasis

deliberately being placed on understanding of concepts rather than mathematical

rigor. Section 7.4 goes on to show how morphology can be generalized to cope

with grayscale images. The chapter also includes a discussion (Section 7.5) on the

noise behavior of morphological grouping operations and arrives at a formula

explaining the shifts introduced by noise.

7.2 DILATION AND EROSION IN BINARY IMAGES
7.2.1 Dilation and Erosion
As we have seen in Chapter 2, dilation expands objects into the background and

is able to eliminate “salt” noise within an object. It can also be used to remove

cracks in objects that are less than 3 pixels in width.

In contrast, erosion shrinks binary picture objects, and has the effect of remov-

ing “pepper” noise. It also removes thin object “hairs” whose widths are less than

3 pixels.

As we shall see in more detail below, erosion is strongly related to dilation, in

that a dilation acting on the inverted input image acts as an erosion, and vice versa.

7.2.2 Cancellation Effects
An obvious question is whether erosions cancel out dilations, or vice versa. We

can easily answer this question: for if a dilation has been carried out, salt noise

and cracks will have been removed, and once they are gone, erosion cannot bring

them back; hence, exact cancellation will not occur in general. Thus, for the set S

of object pixels in a general image I, we may write:

erode ðdilateðSÞÞ 6¼ S (7.1)

equality only occurring for certain specific types of image (these will lack salt

noise, cracks, and fine boundary detail). Similarly, pepper noise or hairs that are

eliminated by erosion will not in general be restored by dilation:

dilate ðerodeðSÞÞ 6¼ S (7.2)
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Overall, the most general statements that can be made are:

erode ðdilateðSÞÞ+S (7.3)

dilate ðerodeðSÞÞDS (7.4)

We may note, however, that large objects will be made 1 pixel larger all round

by dilation, and will be reduced by 1 pixel all round by erosion, so a considerable

amount of cancellation will normally take place when the two operations are

applied in sequence. This means that sequences of erosions and dilations provide

a good basis for filtering noise and unwanted detail from images.

7.2.3 Modified Dilation and Erosion Operators
It sometimes happens that images contain structures that are aligned more or less

along the image axes’ directions, and in such cases it is useful to be able to pro-

cess these structures differently. For example, it might be useful to eliminate fine

vertical lines, without altering broad horizontal strips. In that case the following

“vertical erosion” operator will be useful:

for all pixels in image do f
sigma5A11A5;
if ðsigma,2Þ B050; else B05A0;

g
ð7:5Þ

although it will be necessary to follow it with a compensating dilation operator1

so that horizontal strips are not shortened:

for all pixels in image do f
sigma5A11A5;
if ðsigma.0Þ B051; else B05A0;

g
ð7:6Þ

This example demonstrates some of the potential for constructing more power-

ful types of image filter. To realize these possibilities, we next develop a more

general mathematical morphology formalism.

7.3 MATHEMATICAL MORPHOLOGY
7.3.1 Generalized Morphological Dilation
The basis of mathematical morphology is the application of set operations to

images and their operators. We start by defining a generalized dilation mask as a

set of locations within a 33 3 neighborhood. When referred to the center of the

neighborhood as origin, each of these locations causes a shift of the image in the

direction defined by the vector from the origin to the location. When several

1Here and elsewhere in this chapter, any operations required to restore the image to the original

image space are not considered or included.
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shifts are prescribed by a mask, the 1 locations in the various shifted images are

combined by a set union operation.

The simplest example of this type is the identity operation I, which leaves the

image unchanged:

1

(Note that we leave the 0s out of this mask, as we are now focussing on the set of

elements at the various locations, and set elements are either present or absent.)

The next operation to consider is:

1

which is a left shift, equivalent to the one discussed in Section 2.2. Combining

the above two operations into a single mask:

1 1

leads to a horizontal thickening of all objects in the image, by combining it with

its left-shifted version. An isotropic thickening of all objects is achieved by the

operator:

1 1 1
1 1 1

1 1 1

(clearly, this is equivalent to the dilation operator discussed in Sections 2.2 and

7.2), whereas a symmetrical horizontal thickening operation (see Section 7.2.3) is

achieved by the mask:

1 1 1

A rule of such operations is that if we want to guarantee that all the original

object pixels are included in the output image, then we must include a 1 at the

center (origin) of the mask.

Finally, there is no compulsion for all masks to be 33 3. Indeed, all but one

of those listed above are effectively smaller than 33 3, and in more complex

cases larger masks could be used. To emphasize this point, and to allow for asym-

metrical masks in which the full 33 3 neighborhood is not given, we shall shade

the origin—as shown in the above cases.

7.3.2 Generalized Morphological Erosion
We now move on to describe erosion in terms of set operations. The definition is

somewhat peculiar in that it involves reverse shifts, but the reason for this
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will become clear as we proceed. Here the masks define directions as before,

but in this case we shift the image in the reverse of each of these directions

and perform intersection operations to combine the resulting images. For

masks with a single element (as for the identity and shift left operators in

Section 7.3.1), the intersection operation is improper and the final result is as

for the corresponding dilation operator, but with a reverse shift. For more com-

plex cases, the intersection operation results in objects being reduced in size.

Thus, the mask:

1 1

has the effect of stripping away the left sides of objects (the object is moved right

and anded with itself). Similarly, the mask:

1 1 1
1 1 1

1 1 1

results in an isotropic stripping operation, and is hence identical to the erosion

operation described in Section 7.2.1.

7.3.3 Duality Between Dilation and Erosion
We shall write the dilation and erosion operations formally as A"B and A~B,

respectively, where A is an image and B is the mask of the relevant operation:

A"B5,bABAb (7.7)

A~B5-bABA�b (7.8)

In these equations, Ab indicates a basic shift operation in the direction of element

b of B and A2b indicates the reverse shift operation.

We next prove an important theorem relating the dilation and erosion operations:

ðA~BÞc 5Ac"Br (7.9)

where Ac represents the complement of A, and Br represents the reflection of B

in its origin. We first note that:2

xAAc3x=2A (7.10)

and

bABr3�bAB (7.11)

2The sign “3” means “if and only if,” i.e., the statements so connected are equivalent.
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We now have:3

xA ðA~BÞc3x =2 A~B

3' b such that x =2 A�b

3' b such that x1 b =2 A

3' b such that x1 bAAc

3' b such that xAðAcÞ�b

3xA,bAB ðAcÞ�b

3xA,bABr ðAcÞb
3xAAc"Br

(7.12)

This completes the proof. The related theorem:

ðA"BÞc 5Ac~Br (7.13)

is proved similarly.

The fact that there are two such closely related theorems, following the related

union and intersection definitions of dilation and erosion given above, indicates

an important duality between the two operations. Indeed, as stated earlier, erosion

of the objects in an image corresponds to dilation of the background, and vice

versa. However, the two theorems indicate that this relation is not absolutely triv-

ial, on account of the reflections of the masks required in the two cases. It is per-

haps curious that in contrast with the case of the de Morgan rule for

complementation of an intersection:

ðP-QÞc 5Pc,Qc (7.14)

the effective complementation of the dilating or eroding mask is its reflection rather

than its complement per se, while that for the operator is the alternate operator.

7.3.4 Properties of Dilation and Erosion Operators
Dilation and erosion operators have some very important and useful properties.

First, note that successive dilations are associative:

ðA"BÞ"C5A"ðB"CÞ (7.15)

whereas successive erosions are not. In fact, the corresponding relation for erosions is:

ðA~BÞ~C5A~ðB"CÞ (7.16)

Clearly, the apparent symmetry between the two operators is more subtle than

their simple origins in expanding and shrinking might indicate.

Next, the property:

X"Y 5 Y"X (7.17)

3This proof is based on that of Haralick et al. (1987). The sign “'” means “there exists,” and in

this context should be interpreted as “there is a value of.” The symbol “A ” means “is a member of

the following set”: the symbol “=2” means “is not a member of the following set.”
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means that the order in which dilations of an image are carried out does not mat-

ter, and the same applies to the order in which erosions are carried out:

ðA"BÞ"C5 ðA"CÞ"B (7.18)

ðA~BÞ~C5 ðA~CÞ~B (7.19)

In addition to the above relations, which use only the morphological operators

" and ~, there are many more relations that involve set operations. In the

examples that follow, great care must be exercised to note which particular dis-

tributive operations are actually valid:

A"ðB,CÞ5 ðA"BÞ,ðA"CÞ (7.20)

A~ðB,CÞ5 ðA~BÞ-ðA~CÞ (7.21)

ðA-BÞ~C5 ðA~CÞ-ðB~CÞ (7.22)

In certain other cases, where equality might a priori have been expected, the

strongest statements that can be made are typified by the following:

A~ðB-CÞ+ðA~BÞ,ðA~CÞ (7.23)

Note that the associative relations are of value in showing how large dilations

and erosions might be factorized so that they can be implemented more efficiently

as two smaller dilations and erosions applied in sequence. Similarly, the distributive

relations show that a large mask may be split into two separate masks, which may

then be applied separately and the resulting images ored together to create the

same final image. These approaches can be useful for providing efficient imple-

mentations, especially in cases where very large masks are involved. For example,

we could dilate an image horizontally and vertically by two separate operations,

which would then be merged together—as in the following instance:

1 1 1
1

followed by =1
1

1
1
1

1
1
1

1
1
1

Next, let us consider the importance of the identity operation I, which corre-

sponds to a mask with a single 1 at the central (A0) position:

1

By way of example, we take Eqs. (7.20) and (7.21) and replace C by I in each

of them. If we write the union of B and I as D, so that mask D is bound to contain

a central 1 (i.e., D+I), we have:

A"D5A"ðB,IÞ5 ðA"BÞ,ðA"IÞ5 ðA"BÞ,A (7.24)

which always contains A:

A"D+A (7.25)
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Similarly:

A~D5A~ðB,IÞ5 ðA~BÞ-ðA~IÞ5 ðA~BÞ-A (7.26)

which is always contained within A:

A~DDA (7.27)

Operations (such as dilation by a mask containing a central 1) which give out-

puts that are guaranteed to contain the inputs are termed extensive, whereas those

(such as erosion by a mask containing a central 1) for which the outputs are

guaranteed to be contained by the inputs are termed antiextensive. Clearly, exten-

sive operations extend objects and antiextensive operations contract them, or in

either case, leave them unchanged.

Another important type of operation is the increasing type of operation. An

increasing operation is one, such as union, which preserves order in the size of

the objects on which it operates. If object F is small enough to be contained

within object G, then applying erosions or dilations will not affect the situation,

even though the objects change their sizes and shapes considerably. We can write

these conditions in the form:

if FDG (7.28)

then F"BDG"B (7.29)

and F~BDG~B (7.30)

Next, we note that erosion can be used for locating the boundaries of objects

in binary images:4

P5A� ðA~BÞ (7.31)

There are many practical applications of dilation and erosion, which follow

particularly from using them together, as we shall see below.

Finally, we explore why the morphological definition of erosion involves a

reflection. The idea is so that dilation and erosion are able, under the right cir-

cumstances, to cancel each other out. Take the left-shift dilation operation and the

right-shift erosion operation. These are both achieved via the mask:

11

but in the erosion operation it is applied in its reflected form, thereby producing

the right shift required to erode the left edge of any object. This makes it clear

why an operation of the type (A"B)~B has a chance of canceling to give A.

4Technically, we are here dealing with sets, and the appropriate set operation is the andnot function / rather

than minus. However, the latter admirably conveys the required meaning without ambiguity.
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More specifically, there must be shifts in opposite directions as well as appropri-

ate subtractions produced by anding instead or oring in order for cancellation to be

possible. Of course, in many cases the dilation mask will have 180� rotation sym-

metry, and then the distinction between Br and B will be purely academic.

7.3.5 Closing and Opening
Dilation and erosion are basic operators from which many others can be derived.

Earlier, we were interested in the possibility of an erosion canceling a dilation

and vice versa. Hence, it is an obvious step to define two new operators that

express the degree of cancellation: the first is called closing since it often has the

effect of closing gaps between objects and the other is called opening because it

often has the effect of opening gaps (Fig. 7.1). Closing (•) and opening (3) are for-
mally defined by the formulae:

A	B5 ðA"BÞ~B (7.32)

A3B5 ðA~BÞ"B (7.33)

Closing is able to eliminate salt noise, narrow cracks or channels, and small

holes or concavities.5 Opening is able to eliminate pepper noise, fine hairs, and

small protrusions. Thus, these operators are extremely important for practical

applications. Furthermore, by subtracting the derived image from the original

image, it is possible to locate many sorts of defect, including those cited above as

being eliminated by opening and closing: this possibility makes the two opera-

tions even more important. For example, we might use the following operation to

locate all the fine hairs in an image:

Q5A� A3B (7.34)

This operator and its dual using opening:

R5A 	B� A (7.35)

are extremely important for defect detection tasks. They are often, respectively,

called the white and black top-hat operators.6 (Practical applications of these two

operators include location of solder bridges and cracks in printed circuit board

tracks.)

Closing and opening have the interesting property that they are idempotent:

this means that repeated application of either operation has no further effect.

5Here we continue to take the convention that dark objects have become 1s in binary images, and

light background or other features have become 0s.
6It is dubious whether “top hat” is a very appropriate name for this type of operator: a priori, the

term “residue function” (or simply “residue”) would appear to be better, as it conjures up the right

functional connotations.
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(This property contrasts strongly with what happens when dilation and erosion are

applied a number of times.) We can write these results formally as follows:

ðA 	BÞ 	B5A 	B (7.36)

ðA3BÞ 3B5A3B (7.37)

From a practical point of view these properties are to be expected, since any

hole or crack that has been filled in remains filled in, and there is no point in

(a)
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· · · 1 1 · · 1 · · · ·
· · · 1 1 1 1 1 · · · ·
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· · 1 1 1 1 1 1 1 · · ·
· · · 1 1 1 1 1 1 · · ·
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· · 1 1 1 1 1 1 1 · · ·
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· · · · · · · 1 1 1 · ·
· · · · · · · · · · · ·
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· · 1 1 1 1 1 1 1 1 1 ·
· · 1 1 1 1 1 1 1 1 1 ·
· · 1 1 1 · 1 1 1 1 1 ·
· · · · · · 1 1 1 1 1 ·
· · · · · · · · · · · · (c)

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
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· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
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· · · · · · · · · · · ·

FIGURE 7.1

Results of morphological operations. (a) The original image, (b) the dilated image, (c) the

eroded image, (d) the closed image, and (e) the opened image.

Source: r World Scientific 2000
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repeating the operation. Similarly, once a hair or protrusion has been removed, it

cannot again be removed without first recreating it. Not quite so obvious is the

fact that the combined closing and opening operation is idempotent:

f½ðA 	BÞ3C� 	Bg3C5 ðA 	BÞ3C (7.38)

The same applies to the combined opening and closing operation. A simpler

result is the following:

ðA"BÞ3B5 ðA"BÞ (7.39)

which shows that there is no point in opening with the same mask that has already

been used for dilation: essentially, the first dilation produces some effects that are

not reversed by the erosion (in the opening operation), and the second dilation

then merely reverses the effects of the erosion. The dual of this result is also

valid:

ðA~BÞ 	B5 ðA~BÞ (7.40)

There are a number of other properties of closing and opening; among the

most important ones are the following set containment properties, which apply

when D+I:

A"D+A	D+A (7.41)

A~DDA3DDA (7.42)

Thus, closing an image will, if anything, increase the sizes of objects, while open-

ing an image will, if anything, make objects smaller, although there are clear limits

on how much change closing and opening operations can induce.

Finally, note that closing and opening are subject to the same duality as for

dilation and erosion:

ðA 	BÞc 5Ac3Br (7.43)

ðA3BÞc 5Ac 	Br (7.44)

7.3.6 Summary of Basic Morphological Operations
The past few sections have by no means exhausted the properties of the morpho-

logical operations, dilate, erode, close, and open. However, these sections have

outlined some of their properties and have demonstrated some of the practical

results obtained using them. Perhaps the main aim of including the mathematical

analysis has been to show that these operations are not ad hoc and that their prop-

erties are mathematically provable. Furthermore, the analysis has also indicated

(a) how sequences of operations can be devised for a number of eventualities and

(b) how sequences of operations can be analyzed to save computation (for

instance) by taking care not to use idempotent operations repeatedly and by

breaking masks down into smaller more efficient ones.
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Overall, the operations devised here can help to eliminate noise and irrelevant

artifacts from images so as to obtain more accurate recognition of shapes; they

can also help to identify defects on objects by locating specific features of inter-

est. In addition, they can perform grouping functions such as locating regions

of images where small objects such as seeds may reside (Section 7.5). In general,

elimination of artifacts is carried out by operations such as closing and opening,

while location of such features is carried out by finding how the results of these

operations differ from the original image (cf. Eqs. (7.20) and (7.21)); and locating

regions where clusters of small objects occur may be achieved by larger scale

closing operations. Clearly, care in the choice of scales and mask sizes is

of vital importance in the design of complete algorithms for all these tasks.

Figures 7.2 and 7.3 illustrate some of these possibilities in the case of a pepper-

corn image: some of the interest in this image relates to the presence of a twiglet

and how it is eliminated from consideration and/or identified.

(a) (b)

(c) (d)

FIGURE 7.2

Use of the closing operation. (a) A peppercorn image, (b) the result of thresholding,

(c) the result of applying a 33 3 dilation operation to the object shapes, and (d) the effect

of subsequently applying a 33 3 erosion operation. The overall effect of the two

operations is a “closing” operation. In this case closing is useful for eliminating the small

holes in the objects: this would, e.g., be useful for helping to prevent misleading loops

from appearing in skeletons. For this picture, extremely large window operations would be

required to group peppercorns into regions.

Source: r World Scientific 2000
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7.4 GRAYSCALE PROCESSING
The generalization of morphology to grayscale images can be achieved in a num-

ber of ways. A particularly simple approach is to employ “flat” structuring ele-

ments. These perform morphological processing in the same way for each of the

gray levels, acting as if the shapes at each level were separate, independent binary

images. If dilation is carried out in this way, the result turns out to be identical to

the effect of applying a maximum intensity operation of the same shape: i.e., we

replace set inclusion by a magnitude comparison; needless to say, this is mathe-

matically identical in action for a normal binary image, but when applied to a

grayscale image it neatly generalizes the dilation concept. Similarly, erosion can

(a) (b) (c)

(d) (e)

FIGURE 7.3

Use of the opening operation. (a) A thresholded peppercorn image. (b) The result of

applying a 73 7 erosion operation to the object shapes. (c) The effect of subsequently

applying a 73 7 dilation operation. The overall effect of the two operations is an “opening”

operation. In this case, opening is useful for eliminating the twiglet. (d) and (e) The same

respective operations when applied within an 113 11 window. Here some size filtering of

the peppercorns has been achieved and all the peppercorns have been separated—

thereby helping with subsequent counting and labeling operations.

Source: r World Scientific 2000
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be carried out by applying a minimum intensity structuring element of the same

shape as the original binary structuring element. This discussion assumes that we

focus on light objects against dark backgrounds7: these will be dilated when the

maximum intensity operation is applied, and eroded when the minimum intensity

operation is applied; we could of course reverse the convention, depending on

what type of objects we are concentrating on at any moment, or in any applica-

tion. We can summarize the situation as follows:

A"B5maxbAB Ab (7.45)

A~B5minbAB A�b (7.46)

There are other more complex grayscale analogs of dilation and erosion: these

take the form of 3-D structuring elements whose output at any gray level depends

not only on the shape of the image at that gray level, but also on the shapes at a

number of nearly gray levels. Although such “nonflat” structuring elements are use-

ful, for a good many applications they are not necessary, as flat structuring ele-

ments already embody a very considerable amount of generalization relative to the

binary case.

Next we consider how edge detection is carried out using grayscale morphology.

7.4.1 Morphological Edge Enhancement
In Section 2.2.2, we have shown how edge detection can be carried out in binary

images. We have defined edge detection asymmetrically, in the sense that the

edge is the part of the object that is next to the background. This is useful because

including the part of the background next to the object would merely have served

to make the boundary wider and less precise. However, edge detection in gray-

scale images does not need to embody such an asymmetry,8 because it starts by

performing edge enhancement and then carrying out a thresholding type of opera-

tion—the width being controlled largely by the manner of thresholding and

whether nonmaximum suppression or other factors are brought to bear. Here we

start by formulating the original binary edge detector in morphological form.

Then we make it more symmetric. Finally we generalize it to grayscale operation.

The original binary edge detector may be written in the form (cf. Eq. (7.31)):

E5A� ðA~BÞ (7.47)

7In fact, this is the opposite convention to that employed in Chapter 2, but, as we shall see below,

in grayscale processing it is probably more general to focus on intensities rather than on specific

objects.
8Indeed, any asymmetry would lead to an unnecessary bias and hence inaccuracy in the location of

edges.
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Making it symmetrical merely involves adding the background edge

((A"B)2A):

G5 ðA"BÞ � ðA~BÞ (7.48)

To convert to grayscale operation involves employing maximum and minimum

operations in place of dilation and erosion. In this case we are concentrating on

intensity per se, and so these respective assignments of dilation and erosion are

used (the alternate arrangement would result in negative edge contrast). Thus, we

here use Eqs. (7.45) and (7.46) to define dilation and erosion for grayscale proces-

sing, so Eq. (7.48) already represents morphological edge enhancement for gray-

scale images. The argument G is often called the morphological gradient of an

image (Fig. 7.4). Note that it is not accompanied by an accurate edge orientation

value, although approximate orientations can, of course, be computed by determin-

ing which part of the structuring element gives rise to the maximum signal.

7.4.2 Further Remarks on the Generalization to
Grayscale Processing

In the previous subsection we found that reinterpreting Eq. (7.48) permitted edge

detection to be generalized immediately from binary to gray scale. This is a con-

sequence of the extremely powerful umbra homomorphism theorem. This starts

with the knowledge that intensity I is a single-valued function of position within

the image. This means that it represents a surface in a 3-D (grayscale) space.

However, as we have seen, it is useful to take into account the individual gray

levels. In particular, we note that the set of pixels of gray level gi is a subset of

the set of pixels of gray level gi21, where gi$ gi21. The important step forward

is to interpret the 3-D volume containing all these gray levels under the intensity

(a) (b)

FIGURE 7.4

Determination of the morphological gradient of an image. The original image is that of

Fig. 7.2(a). (a) The morphological gradient, obtained using 33 3 window operations.

(b) The result for a Sobel operator: note that the latter gives less diffuse responses.

Source: r World Scientific 2000
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surface as constituting an umbra—a 3-D shadow region for the relevant part of

the surface. In fact, we write the umbra volume of I as U(I), and clearly we also

have I5 T(U(I)), where the operator T( � ) recalculates the top surface.

The umbra homomorphism theorem then states that a dilation has to be

defined and interpreted as an operation on the umbras:

UðI"KÞ5UðIÞ"UðKÞ (7.49)

To find the relevant intensity function we merely need to apply the top-surface

operator to the umbra:

I"K5 TðUðI"KÞÞ5 TðUðIÞ"UðKÞÞ (7.50)

A similar statement applies for erosion.

The next step is to note that the generalization from binary to grayscale dila-

tion using flat structuring elements involved applying a maximum operation in

place of a set union operation. The operation can, for the simple case of a 1-D

image, be rewritten in the form:

ðI"KÞðxÞ5maxðIðx� zÞ1KðzÞÞ (7.51)

where K(z) takes value 0 or 1 only, and x2 z, z must lie within the domains of I

and K. However, another vital step is to notice that this form generalizes to nonbi-

nary K(z), whose values can, e.g., be the integer gray-level values. This makes the

dilation operation considerably more powerful, yielding the nonflat structuring ele-

ment concept—which will clearly also work for 2-D images with full gray scale.

It can be tedious working out the responses of this sort of operation, but it is

susceptible to a neat geometric interpretation. If the function K(z) is inverted and

turned into a template, this may be run over the image I(x) in such a way as to

remain just in contact with it. Thus, the origin of the inverted template will trace

out the top surface of the dilated image. The process is depicted in Fig. 7.5 for

the case of a triangular structuring element in a 1-D image.

Similar relations apply for erosion, closing, opening, and a variety of set func-

tions. This means that the standard binary morphological relations, Eqs. (7.15)�
(7.23), apply for grayscale images as well as for binary images. Furthermore, the

dilation�erosion and closing�opening dualities (Eqs. (7.9), (7.13), (7.43), and

(7.44)) also apply for grayscale images. These are extremely powerful results, and

allow one to apply morphological concepts in an intuitive manner. In that case

the practically important factor devolves into choosing the right grayscale struc-

turing element for the application.

Another interesting factor is the possibility of using morphological operations

instead of convolutions in the many places where the latter are employed through-

out image analysis. We have already seen how edge enhancement and detection

can be performed using morphology in place of convolution. In addition, noise

suppression by Gaussian smoothing can be replaced by opening and closing

operations. However, it must always be borne in mind that convolutions are linear

operations, and are thereby grossly restricted, whereas morphological operations
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are highly nonlinear, their very structure embodying multiple “if” statements, so

outward appearances of similarity are bound to hide deep differences of operation,

effectiveness, and applicability. Consider, e.g., the optimality of the mean filter

for suppressing Gaussian noise and the optimality of the median filter (a morpho-

logical operator) for eliminating impulse noise.

One example of this is worth including here: when performing edge enhance-

ment prior to edge detection, it is possible to show that if both a differential gradi-

ent (e.g., Sobel) operator and a morphological gradient operator are applied to a

noise-free image with a steady intensity gradient, the results will be identical,

within a constant factor. However, if one impulse noise pixel arises, the maxi-

mum or minimum operations of the morphological gradient operator will select

this value in calculating the gradient, whereas the differential gradient operator

will average its effect over the window, giving significantly less error.

Space prevents grayscale morphological processing from being considered in

more detail here (see, e.g., Haralick and Shapiro (1992) and Soille (2003)).

7.5 EFFECT OF NOISE ON MORPHOLOGICAL GROUPING
OPERATIONS

Texture analysis is an important area of machine vision, and is relevant not only

for segmenting one region of an image from another (as in many remote sensing

(a)

(b)

FIGURE 7.5

Dilation of 1-D grayscale image by triangular structuring element. (a) The structuring

element, with the vertical line at the bottom indicating the origin of coordinates. (b) The

original image (continuous black line), several instances of the inverted structuring

element being applied, and the output image (continuous gray line). This geometric

construction automatically takes account of the maximum operation in Eq. (7.51). Note

that as no part of the structuring element is below the origin in (a), the output intensity is

increased at every point in the image.
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applications), but also for characterizing regions absolutely—as is necessary when

performing surface inspection (e.g., when assessing the paint finish on automo-

biles). Many methods have been employed for texture analysis. These range from

the widely used gray-level co-occurrence matrix approach to Law’s texture

energy approach and from the use of Markov random fields to fractal modeling

(Chapter 8).

In fact, there are approaches that involve even less computation and which are

applicable when the textures are particularly simple and the shapes of the basic

texture elements are not especially critical. For example, if it is required to locate

regions containing small objects, simple morphological operations applied to

thresholded versions of the image are often appropriate (Fig. 7.6) (Haralick and

Shapiro, 1992; Bangham and Marshall, 1998). Such approaches can be used for

locating regions containing seeds, grains, nails, sand, or other materials, either for

assessing the overall quantity or spread or for determining whether there are

regions that have not yet been covered. The basic operation to be applied is the

dilation operation, which combines the individual particles into fully connected

regions. This method is suitable not only for connecting individual particles but

also for separating regions containing high and low densities of such particles.

The expansion characteristic of the dilation operation can be largely canceled by

a subsequent erosion operation, using the same morphological kernel. Indeed, if

the particles are always convex and well separated, the erosion should exactly

cancel the dilation, although in general the combined closing operation is not a

null operation, and this is relied upon in the above connecting operation.

FIGURE 7.6

Idealized grouping of small objects into regions such as might be attempted using closing

operations.

Source: r IEE 2000
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Closing operations have been applied to images of cereal grains containing

dark rodent droppings in order to consolidate the droppings (which contain signif-

icant speckle—and therefore holes when the images are thresholded) and thus to

make them more readily recognizable from their shapes (Davies et al., 1998a).

However, the initial result was rather unsatisfactory as dark patches on the grains

tend to combine with the dark droppings: this has the effect of distorting

the shapes and also makes the objects larger. This problem was partially over-

come by a subsequent erosion operation so that the overall procedure is

dilate1 erode1 erode (for further details, see Chapter 21). Originally, adding this

final operation seemed to be an ad hoc procedure, but on analysis it was found

that the size increase actually applies quite generally when segmentation of tex-

tures containing different densities of particles is carried out. It is this general

effect that we now consider.

7.5.1 Detailed Analysis
Let us take two regions containing small particles with occurrence densities ρ1
and ρ2, where ρ1. ρ2. In region 1, the mean distance between particles will be d1
and in region 2, the mean distance will be d2, where d1, d2. If we dilate using a

kernel of radius a, where d1, 2a, d2, this will tend to connect the particles in

region 1 but should leave the particles in region 2 separate. To ensure connecting

the particles in region 1, we can make 2a larger than 1
2
ðd11d2Þ, but this may risk

connecting the particles in region 2 (the risk will be reduced when the subsequent

erosion operation is taken into account). Selecting an optimum value of a clearly

depends not only on the mean distances d1 and d2 but also on their distributions.

This is not discussed in detail due to space limitation: here we assume that a

suitable selection of a is made, and that it is effective. The problem that is tackled

next is whether the size of the final regions matches the a priori desired segmen-

tation, i.e., whether any size distortion takes place. We start by taking this to be

an essentially 1-D problem, which can be modeled as in Fig. 7.7 (in what follows,

the 1-D particle densities are given an x suffix).

Suppose first that ρ2x5 0. Then in region 2, the initial dilation will be counter-

acted exactly (in 1-D) by the subsequent erosion. Next take ρ2x. 0: when dilation

occurs, a number of particles in region 2 will be enveloped, and the erosion pro-

cess will not exactly reverse the dilation. If a particle in region 2 is within 2a of

an outermost particle in region 1, it will merge with region 1, and will remain

merged when erosion occurs. The probability P that this will happen is the inte-

gral over a distance 2a of the probability density for particles in region 2. In addi-

tion, when the particles are well separated we can take the probability density as

being equal to the mean particle density ρ2x. Hence:

P5

ð2a
0

ρ2xdx5 2aρ2x (7.52)
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If such an event occurs, then region 1 will be expanded by amounts ranging from

a to 3a, or 0 to 2a after erosion, although these figures must be increased by b for

particles of width b. Thus, the mean increase in size of region 1 after dila-

tion1 erosion is 2aρ2x3 (a1 b), where we have assumed that the particle density

in region 2 remains uniform right up to region 1.

Next we consider what additional erosion operation will be necessary to can-

cel this increase in size. In fact, we just make the radius ã1-D of the erosion kernel

equal to the increase in size:

ã1-D 5 2aρ2xða1 bÞ (7.53)

Finally, we must recognize that the required process is 2-D rather than 1-D,

and take y to be the lateral axis, normal to the original (1-D) x-axis. For simplic-

ity, we assume that the dilated particles in region 2 are separated laterally, and

are not touching or overlapping (Fig. 7.8). As a result, the change of size of

region 1 given in Eq. (7.53) will be diluted relative to the 1-D case by the reduced

density along the direction (y) of the border between the two regions: i.e., we

must multiply the right-hand side of Eq. (7.53) by bρ2y. We now obtain the rele-

vant 2-D equation:

ã2-D 5 2abρ2xρ2yða1 bÞ5 2abρ2ða1 bÞ (7.54)

where we have finally reverted to the appropriate 2-D area particle density ρ2.
Clearly, for low values of ρ2 an additional erosion will not be required,

whereas for high values of ρ2 substantial erosion will be necessary, particularly if

b is comparable to or larger than a. If ã2-D , 1, it will be difficult to provide an

accurate correction by applying an erosion operation, and all that can be done is

x

ρx

1

2

x

z

FIGURE 7.7

1-D particle distribution. z indicates the presence of a particle, and ρx shows the densities

in the two regions.

Source: r IEE 2000
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to bear in mind that any measurements made from the image will require correc-

tion. (Note that if, as often happens, a
1, ã2-D could well be at least 1.)

7.5.2 Discussion
The work of the author described above (Davies, 2000c) was motivated by analy-

sis of cereal grain images containing rodent droppings, which had to be consoli-

dated by dilation operations to eliminate speckle, followed by erosion operations

to restore size.9 It has been found that if the background contains a low density of

small particles that tend, upon dilation, to increase the sizes of the foreground

objects, additional erosion operations will in general be required to accurately

represent the sizes of the regions. The effect would be similar if impulse noise

were present, although theory shows what is observed in practice—that the effect

is enhanced if the particles in the background are not negligible in size. The

increases in size are proportional to the occurrence density of the particles in the

background, and the kernel for the final erosion operation is calculable, the over-

all process being a necessary measure rather than an ad hoc technique.

7.6 CONCLUDING REMARKS
Binary images contain all the data needed to analyze the shapes, sizes, positions,

and orientations of objects in two dimensions, and thereby to recognize them

FIGURE 7.8

Model of the incidence of particles in two regions. Region 2 (on the right) has sufficiently

low density that the dilated particles will not touch or overlap.

Source: r IEE 2000

9For further background on this application, see Chapter 21.
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and even to inspect them for defects. As we shall see in Chapters 9 and 10,

many simple small neighborhood operations exist for processing binary images

and moving toward the goals stated earlier. At first sight these may appear a

somewhat random set, reflecting historical development rather than systematic

analytic tools. However, in the past few years, mathematical morphology has

emerged as a unifying theory of shape analysis: we have aimed to give the fla-

vor of the subject in this chapter. In fact, mathematical morphology, as its name

suggests, is mathematical in nature, and this can be a source of difficulty,10 but

there are a number of key theorems and results, which are worth remembering:

a few of these have been considered here and placed in context. For example,

generalized dilation and erosion have acquired a central importance, since fur-

ther vital concepts and constructs are based on them—closing, opening, tem-

plate matching, and even connectedness properties (although space has

prevented a detailed discussion of its application to the last two topics). For fur-

ther information on grayscale morphological processing, see Haralick and

Shapiro (1992) and Soille (2003).

Mathematical morphology is one of the standard methodologies that has evolved over the
past few decades. This chapter has demonstrated how the mathematical aspects make the
subject of shape analysis rigorous and less ad hoc. Its extensions to grayscale image
processing are interesting and useful, although at this stage they have not ousted more
traditional approaches.

7.7 BIBLIOGRAPHICAL AND HISTORICAL NOTES
The book by Serra (1982) was an important early landmark in the development of

morphology. Many subsequent papers helped to lay the mathematical foundations,

perhaps the most important and influential being that by Haralick et al. (1987);

see also Zhuang and Haralick (1986) for methods for decomposing morphological

operators, and Crimmins and Brown (1985) for more practical aspects of shape

recognition. The papers by Dougherty and Giardina (1988), Heijmans (1991), and

Dougherty and Sinha (1995a, 1995b) were important in the development of meth-

ods for grayscale morphological processing, while the work of Huang and

Mitchell (1994) on grayscale morphology decomposition and that of Jackway and

Deriche (1996) on multiscale morphological operators gave further impetus to the

subject.

10The rigor of mathematics is a cause for celebration, but at the same time it can make the argu-

ments and the results obtained from them less intuitive. On the other hand, the real benefit of math-

ematics is to leapfrog what is possible by intuition alone and to arrive at results that are new and

unexpected.
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One problem is that it is by no means obvious how to decide on the sequence

of morphological operations that is required in any application. This is an area

where genetic algorithms have contributed to the systematic generation of com-

plete systems (see, e.g., Harvey and Marshall, 1994).

Work up to 1998 is reviewed in a useful tutorial paper by Bangham and

Marshall (1998): more recently Soille (2003) produced a thoroughgoing volume

on the subject. Gil and Kimmel (2002) address the problem of rapid implementa-

tion of dilation, erosion, opening, and closing algorithms, and arrive at a new

approach based on deterministic calculations: these give low computational com-

plexity for calculating max and min functions, and similar complexities for the

four cited filters and other derived filters. The paper goes on to state some open

problems, and to suggest how they might be tackled: it is clear that some appar-

ently simple tasks that ought perhaps to have been dealt with before the 2000s are

still unsolved—such as how to compute the median in better than O(log2 p) time

per filtered point (in a p3 p window) or how to optimally extend 1-D morpholog-

ical operations to circular rather than square window (2-D) operations. Note that

the new implementation is immediately applicable to determining the morpholog-

ical gradient of an image.

7.7.1 More Recent Developments
More recently, Bai and Zhou (2010) have designed a top-hat selection transforma-

tion for locating and enhancing small dim infrared targets typified by aircraft in

the sky. The selection transformation is based on the classical top-hat (residue)

operator. A necessary parameter in the analysis is the value of n, the minimum

difference in intensity between the target and the background, and methods are

given for estimating it. Jiang et al. (2007) also use a residue operator to find thin

low-contrast edges. The method uses five basic 53 5 masks to detect edges of

the right widths. Very high resistance to noise is demonstrated by the particular

combination of techniques applied in this approach. Soille and Vogt (2009) show

how binary images may be segmented to identify a range of different types of pat-

tern. These include the following mutually exclusive foreground categories: core,

islet, connector (loop and bridge), boundary (perforation and edge), branch, and

segmented binary pattern. Lézoray and Charrier (2009) describe a new approach

to color image segmentation, by analysis of color projections in 2-D histograms

to find the dominant colors: the important factor is that clustering in 2-D histo-

grams can proceed very effectively using standard image processing techniques,

including morphological processing. Valero et al. (2010) use directional mathe-

matical morphology to detect roads in remote sensing images. The paper starts by

taking roads to be linear connected paths; however, curved road segments and

other network details can be dealt with using “path openings” and “path closings”

in order to obtain the required structural information.
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7.8 PROBLEM
1. A morphological gradient binary edge enhancement operator is defined by the

formula:

G5 ðA"BÞ � ðA~BÞ

Using a 1-D model of an edge, or otherwise, shows that this will give wide

edges in binary images. If grayscale dilation (") is equated to taking a local

maximum of the intensity function within a 33 3 window, and grayscale ero-

sion (~) is equated to taking a local minimum within a 33 3 window, sketch

the result of applying the operator G. Show that it is similar in effect to a

Sobel edge enhancement operator, if edge orientation effects are ignored by

taking the Sobel magnitude:

g5 ðg2x 1 g2yÞ1=2
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CHAPTER

8Texture

It is quite easy to understand what a texture is, although somewhat less easy to

define it. For many reasons it is useful to be able to classify textures and to distin-

guish them from one another; it is also useful to be able to determine the bound-

aries between different textures, as they often signify the boundaries of real

objects. This chapter studies the means for achieving these aims.

Look out for:

• basic measures by which textures can be classified—such as regularity, ran-

domness, and directionality.

• problems that arise with “obvious” texture analysis methods, such as

autocorrelation.

• the long-standing graylevel co-occurrence matrix method.

• Laws’ method and Ade’s generalization of it.

• the fact that textures have to be analyzed statistically, because of the random

element in their construction.

Texture analysis is a core element in the vision repertoire, just as textures are

core components of most images. It therefore seemed most appropriate to include

this topic in Part 1 of the book.

8.1 INTRODUCTION
In the foregoing chapters, many aspects of image analysis and recognition have

been studied. At the core of these matters has been the concept of segmentation,

which involves the splitting of images into regions that have some degree of

Computer and Machine Vision.
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uniformity, whether in intensity, color, texture, depth, motion, or other relevant

attributes. Care has been taken in Chapter 4 to emphasize that such a process will

be largely ad hoc, since the boundaries produced will not necessarily correspond

to those of real objects. Nevertheless, it is important to make the attempt, either

as a preliminary to more accurate or iterative demarcation of objects and their

facets, or as an end in itself—e.g., to judge the quality of surfaces.

In this chapter, we move on to the study of texture and its measurement.

Texture is a difficult property to define: indeed, in 1979, Haralick reported that

no satisfactory definition of it had up till then been produced. Perhaps we should

not be surprised by this, as the concept has rather separate meanings in the con-

texts of vision, touch, and taste: furthermore, the ways in which different people

understand the terms are highly individual and subjective. Nevertheless, we

require a working definition of texture, and in vision the particular aspect we

focus on is the variation in intensity of a particular surface or region of an image.

Even with this statement we are being indecisive about whether it is the physical

object being observed which is being described or the image derived from it. This

reflects the fact that it is the roughness of the surface or the structure or composi-

tion of the material that originally gives rise to its visual properties. However, in

this chapter, we are mainly interested in the interpretation of images, and so we

define texture as the characteristic variation in intensity of a region of an image,

which should allow us to recognize and describe it and to outline its boundaries

(Fig. 8.1).

This definition of texture implies that texture is nonexistent in a surface of

uniform intensity and does not say anything about how the intensity might be

expected to vary or how we might recognize and describe it. In fact, there are

many ways in which intensity might vary, but if the variation does not have suffi-

cient uniformity, the texture may not be characterized sufficiently close to permit

recognition or segmentation.

We next consider ways in which intensity might vary. Clearly, it can vary rap-

idly or slowly, markedly or with low contrast, with a high or low degree of direc-

tionality, and with greater or lesser degrees of regularity. This last characteristic

is often taken as key: either the textural pattern is regular as for a piece of cloth,

or it is random as for a sandy beach or a pile of grass cuttings. However, this

ignores the fact that a regular textural pattern is often not wholly regular (again,

as for a piece of cloth), or not wholly random (as for a mound of potatoes of simi-

lar size). Thus, the degrees of randomness and of regularity will have to be mea-

sured and compared when characterizing a texture.

There are more profound things to say about the textures described earlier in

this section. Often textures are derived from tiny objects or components that are

themselves similar, but that are placed together in ways ranging from purely ran-

dom to purely regular—be they bricks in a wall, grains of sand, blades of grass,

strands of material, stripes on a shirt, wickerwork on a basket, or a host of other

items. In texture analysis it is useful to have a name for the similar textural
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 8.1

The variety of textures obtained from real objects. (a) Bark, (b) wood grain, (c) fir leaves,

(d) chick peas, (e) carpet, (f) fabric, (g) stone chips, (h) water. These textures

demonstrate the wide variety of familiar textures that are easily recognized from their

characteristic intensity patterns.
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elements that are replicated over a region of the image: such textural elements are

called texels. These considerations lead us to characterize textures in the follow-

ing ways:

1. The texels will have various sizes and degrees of uniformity.

2. The texels will be orientated in various directions.

3. The texels will be spaced at varying distances in different directions.

4. The contrast will have various magnitudes and variations.

5. Various amounts of background may be visible between texels.

6. The variations composing the texture may each have varying degrees of regu-

larity vis-à-vis randomness.

It is quite clear from this discussion that a texture is a complicated entity to

measure. The reason is primarily that many parameters are likely to be required

to characterize it: in addition, when so many parameters are involved, it is diffi-

cult to disentangle the available data and measure the individual values or decide

the ones that are most relevant for recognition. And of course, the statistical

nature of many of the parameters is by no means helpful. However, we have so

far only attempted to show how complex the situation can be. In what follows,

we attempt to show that quite simple measures can be used to recognize and seg-

ment textures in practical situations.

Before proceeding, it is useful to recall that in the analysis of shape, there is a

dichotomy between available analysis methods. We could, e.g., use a set of mea-

sures such as circularity, aspect ratio, and so on, which would permit a description

of the shape, but which would not allow it to be reconstructed; or else we could

use descriptors such as skeletons with distance function values, or moments, which

would permit full and accurate reconstruction—although the set of descriptors

might have been curtailed so that only limited but predictable accuracy was avail-

able. In principle, such a reconstruction criterion should be possible with texture.

However, in practice there are two levels of reconstruction. In the first, we could

reproduce a pattern which, to human eyes, would be indistinguishable from the off-

camera texture until one compared the two on a pixel-by-pixel basis. In the second,

we could reproduce a textured pattern exactly. The point is that textures are nor-

mally partially statistical in nature, so it will not be easy to obtain a pixel-by-pixel

match in intensities: nor, in general, will it be worth aiming to do so. Thus, texture

analysis generally only aims at obtaining accurate statistical descriptions of tex-

tures, from which apparently identical textures can be reproduced, if desired.

Very many workers have contributed to, and used, a wide range of approaches

for texture analysis over a period of 40 years. The sheer weight of the available

material and the statistical nature of it can be daunting for many. Note that

Section 8.4 is particularly relevant to practitioners because it describes the Laws’

texture energy approach which is intuitive, straightforward to apply in both soft-

ware and hardware, and highly effective in many application areas. However,

Section 8.3 on graylevel co-occurrence matrices (which were important histori-

cally) can be omitted on a first reading.
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8.2 SOME BASIC APPROACHES TO TEXTURE ANALYSIS
In Section 8.1, texture was defined as the characteristic variation in intensity of a

region of an image that should allow us to recognize and describe it and to outline

its boundaries. In view of the likely statistical nature of textures, this prompts us

to characterize texture by the variance in intensity values taken over the whole

region of the texture.1 However, such an approach will not give a rich enough

description of the texture for most purposes and will certainly not provide any

possibility of reconstruction: it will also be especially unsuitable in cases where

the texels are well defined, or where there is a high degree of periodicity in the

texture. On the other hand, for highly periodic textures such as that arise with

many textiles, it is natural to consider the use of Fourier analysis. Indeed, in the

early days of image analysis, this approach was tested thoroughly, although the

results were not always encouraging.

Bajcsy (1973) used a variety of ring and orientated strip filters in the Fourier

domain to isolate texture features—an approach that was found to work successfully

on natural textures such as grass, sand, and trees. However, there is a general diffi-

culty in using the Fourier power spectrum in that the information is more scattered

than might be expected at first. In addition, strong edges and image boundary effects

can prevent accurate texture analysis by this method. Perhaps more important is the

fact that the Fourier approach is a global one that is difficult to apply successfully to

an image that is to be segmented by texture analysis (Weszka et al., 1976).

Autocorrelation is another obvious approach to texture analysis, since it should

show up both local intensity variations and also the repeatability of the texture (see

Fig. 8.2). An early study was carried out by Kaizer (1955). He examined how

many pixels an image has to shift before the autocorrelation function drops to 1/e

of its initial value and produced a subjective measure of coarseness on this basis.

However, Rosenfeld and Troy (1970a, 1970b) later showed that autocorrelation is

not a satisfactory measure of coarseness. In addition, autocorrelation is not a very

good discriminator of isotropy in natural textures. Hence, workers were quick to

take up the co-occurrence matrix approach introduced by Haralick et al. (1973): in

fact, this approach not only replaced the use of autocorrelation but during the 1970s

also became to a large degree the “standard” approach to texture analysis.

8.3 GRAYLEVEL CO-OCCURRENCE MATRICES
The graylevel co-occurrence matrix approach2 is based on studies of the statistics

of pixel intensity distributions. As hinted above with regard to the variance in

1We defer for now the problem of finding the region of a texture so that we can compute its char-

acteristics in order to perform a segmentation function. However, some preliminary training of a

classifier may clearly be used to overcome this problem for supervised texture segmentation tasks.
2This is also frequently called the spatial graylevel dependence matrix (SGLDM) approach.
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pixel intensity values, single-pixel statistics do not provide rich enough descrip-

tions of textures for practical applications. Thus, it is natural to consider second-

order statistics obtained by considering pairs of pixels in certain spatial relations

to each other. Hence, co-occurrence matrices are used, which express the relative

frequencies (or probabilities) P(i, jjd,θ) with which two pixels having relative

polar coordinates (d, θ) appear with intensities i, j. The co-occurrence matrices

provide raw numerical data on the texture, although this data must be condensed

to relatively few numbers before it can be used to classify the texture. The early

paper by Haralick et al. (1973) gave 14 such measures, and these were used suc-

cessfully for classification of many types of material (including, e.g., wood, corn,

grass, and water). However, Conners and Harlow (1980a) found that only five of

these measures were normally used, viz. “energy,” “entropy,” “correlation,” “local

homogeneity,” and “inertia” (note that these names do not provide much indica-

tion of the modes of operation of the respective operators).

To obtain a more detailed idea of the operation of the technique, consider the

co-occurrence matrix shown in Fig. 8.3. This corresponds to a nearly uniform

image containing a single region in which the pixel intensities are subject to an

approximately Gaussian noise distribution, the attention being on pairs of pixels

at a constant vector distance d5 (d, θ) from each other. Next, consider the co-

occurrence matrix shown in Fig. 8.4, which corresponds to an almost noiseless

image with several nearly uniform image regions. In this case, the two pixels in

each pair may correspond either to the same image regions or to different ones,

although if d is small they will only correspond to adjacent image regions. Thus,

we have a set of N on-diagonal patches in the co-occurrence matrix, but only a

limited number L of the possible number M of off-diagonal patches linking them,

where M5 NC2 and L#M (typically L will be of order N rather than N2). With

textured images, if the texture is not too strong, it may be modeled as noise, and

I

x0

FIGURE 8.2

Use of autocorrelation function for texture analysis. This diagram shows the possible 1-D

profile of the autocorrelation function for a piece of material in which the weave is subject

to significant spatial variation: note that the periodicity of the autocorrelation function is

damped down over quite a short distance.
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i

j

0 255

255

FIGURE 8.3

Co-occurrence matrix for a nearly uniform grayscale image with superimposed Gaussian noise.

Here the intensity variation is taken to be almost continuous: normal convention is followed by

making the j index increase downward, as for a table of discrete values (cf. Fig. 8.4).

i

j

0 255

255

FIGURE 8.4

Co-occurrence matrix for an image with several distinct regions of nearly constant intensity.

Again, the leading diagonal of the diagram is from top left to bottom right (cf. Figs. 8.2 and 8.5).
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the N1 L patches in the image will be larger but still not overlapping. However,

in more complex cases, the possibility of segmentation using the co-occurrence

matrices will depend on the extent to which d can be chosen to prevent the

patches from overlapping. Since many textures are directional, careful choice of θ
will clearly help with this task, although the optimum value of d will depend on

several other characteristics of the texture.

As a further illustration, we consider the small image shown in Fig. 8.5(a). To

produce the co-occurrence matrices for a given value of d, we merely need to cal-

culate the numbers of cases for which pixels, a distance d apart, have intensity

values i and j. Here, we content ourselves with the two cases d5 (1, 0) and

d5 ð1;π=2Þ. We thus obtain the matrices shown in Fig. 8.5(b) and (c).

This simple example demonstrates that the amount of data in the matrices is

liable to be many times more than in the original image—a situation which is

exacerbated in more complex cases by the number of values of d and θ that are

required to accurately represent the texture. In addition, the number of gray levels

will normally be closer to 256 than to 6, and the amount of matrix data varies as

the square of this number. Finally, we should notice that the co-occurrence

0 0 0 1
1 1 1 1
2 2 2 3
3

(a)

(b)

(c)

3 4 5

0 1 2 3 4 5
20 1 0 0 0 0
11 3 0 0 0 0
02 0 2 1 0 0
03 0 1 1 1 0
04 0 0 1 0 1
05 0 0 0 1 0

0 1 2 3 4 5
00 3 0 0 0 0
31 1 3 1 0 0
02 3 0 2 1 0
03 1 2 0 0 1
04 0 1 0 0 0
05 0 0 1 0 0

FIGURE 8.5

Co-occurrence matrices for a small image. (a) The original image; (b) the resulting

co-occurrence matrix for d5 (1, 0); and (c) the matrix for d5 (1, π/2). Note that even in

this simple case, the matrices contain more data than the original image.
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matrices merely provide a new representation: they do not themselves solve the

recognition problem.

These factors mean that the gray scale has to be compressed into a much

smaller set of values and careful choice of specific sample d, θ values must be

made: in most cases, it is not at all obvious how such a choice should be made,

and it is even more difficult to arrange for it to be made automatically. In addi-

tion, various functions of the matrix data must be tested before the texture can be

properly characterized and classified.

These problems with the co-occurrence matrix approach have been tackled in

many ways: just two are mentioned here. The first is to ignore the distinction

between opposite directions in the image, thereby reducing storage by 50%. The

second is to work with differences between gray levels; this amounts to perform-

ing a summation in the co-occurrence matrices along axes parallel to the main

diagonal of the matrix. The result is a set of first-order difference statistics. While

these modifications have given some additional impetus to the approach, the

1980s saw a highly significant diversification of methods for the analysis of tex-

tures. Of these, Laws’ approach (1979, 1980a, 1980b) is important in that it has

led to other developments which provide a systematic, adaptive means of tackling

texture analysis. This approach is covered in Section 8.4.

8.4 LAWS’ TEXTURE ENERGY APPROACH
In 1979 and 1980 Laws presented his novel texture energy approach to texture

analysis (Laws, 1979, 1980a, 1980b). This involved the application of simple fil-

ters to digital images. The basic filters he used were common Gaussian, edge

detector, and Laplacian-type filters, and were designed to highlight points of high

“texture energy” in the image. By identifying these high energy points, smoothing

the various filtered images, and pooling the information from them, he was able

to characterize textures highly efficiently. As remarked earlier, Laws’ approach

has strongly influenced much subsequent work and it is therefore worth consider-

ing it here in some detail.

The Laws’ masks are constructed by convolving together just three basic

13 3 masks:

L35 1 2 1
� �

(8.1)

E35 �1 0 1
� �

(8.2)

S35 �1 2 �1
� �

(8.3)

The initial letters of these masks indicate Local averaging, Edge detection, and

Spot detection. In fact, these basic masks span the entire 13 3 subspace and form
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a complete set. Similarly, the 13 5 masks obtained by convolving pairs of these

13 3 masks together form a complete set:3

L55 1 4 6 4 1
� �

(8.4)

E55 �1 �2 0 2 1
� �

(8.5)

S55 �1 0 2 0 �1
� �

(8.6)

R55 1 �4 6 �4 1
� �

(8.7)

W55 �1 2 0 �2 1
� �

(8.8)

In Eqs. (8.7) and (8.8), the initial letters indicate Ripple detection and Wave

detection. We can also use matrix multiplication (see also Section 3.6) to combine

the 13 3 and a similar set of 33 1 masks to obtain nine 33 3 masks—e.g.:

1

2

1

2
4
3
5 21 2 21
� �

5
21 2 21

22 4 22

21 2 21

2
4

3
5 (8.9)

The resulting set of masks also forms a complete set (Table 8.1): note that two of

these masks are identical to the Sobel operator masks. The corresponding 53 5

masks are entirely similar but are not considered in detail here as all relevant

principles are illustrated by the 33 3 masks.

All such sets of masks include one whose components do not average to zero.

Thus, it is less useful for texture analysis since it will give results dependent more

on image intensity than on texture. The remainder are sensitive to edge points,

spots, lines, and combinations of these.

3In principle nine masks can be formed in this way, but only five of them are distinct.

Table 8.1 The Nine 333 Laws Masks

L3TL3 L3TE3 L3TS3
1 2 1
2 4 2
1 2 1

21 0 1
22 0 2
21 0 1

21 2 21
22 4 22
21 2 21

E3TL3 E3TE3 E3TS3
21 22 21
0 0 0
1 2 1

1 0 21
0 0 0

21 0 1

1 22 1
0 0 0

21 2 21

S3TL3 S3TE3 S3TS3

21 22 21
2 4 2

21 22 21

1 0 21
22 0 2
1 0 21

1 22 1
22 4 22
1 22 1
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Having produced images that indicate, e.g., local edginess, the next stage is

to deduce the local magnitudes of these quantities. These magnitudes are then

smoothed over a fair-sized region rather greater than the basic filter mask size

(e.g., Laws used a 153 15 smoothing window after applying his 33 3 masks):

the effect of this is to smooth over the gaps between the texture edges and other

microfeatures. At this point the image has been transformed into a vector image,

each component of which represents energy of a different type. Although Laws

(1980b) used both squared magnitudes and absolute magnitudes to estimate tex-

ture energy, the former correspond to true energy and give a better response,

while the latter are useful in requiring less computation:

Eðl;mÞ5
Xl1p

i5 l2p

Xm1p

j5m2p

jFði; jÞj (8.10)

where F(i, j) is the local magnitude of a typical microfeature, which is smoothed

at a general scan position (l, m) in a (2p11)3 (2p11) window.

A further stage is required to combine the various energies in a number of dif-

ferent ways, providing several outputs that can be fed into a classifier to decide

upon the particular type of texture at each pixel location (Fig. 8.6). If necessary,

principal components analysis is used at this point to help select a suitable set of

intermediate outputs.

I

SEM

C

FIGURE 8.6

Basic form for a Laws’ texture classifier. Here, I is the incoming image, M represents the

microfeature calculation, E the energy calculation, S the smoothing, and C the final

classification.
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Laws’ method resulted in excellent classification accuracy quoted at, e.g.,

87% compared with 72% for the co-occurrence matrix method, when applied to a

composite texture image of grass, raffia, sand, wool, pigskin, leather, water, and

wood (Laws, 1980b). He also found that the histogram equalization normally

applied to images to eliminate first-order differences in texture field grayscale dis-

tributions gave little improvement in this case.

Research was undertaken by Pietikäinen et al. (1983) to determine whether the

precise coefficients used in the Laws’ masks are responsible for the performance of

his method. They found that so long as the general forms of the masks were

retained, performance did not deteriorate, and could in some instances be improved.

They were able to confirm that Laws’ texture energy measures are more powerful

than measures based on pairs of pixels (i.e., co-occurrence matrices).

8.5 ADE’S EIGENFILTER APPROACH
In 1983, Ade investigated the theory underlying the Laws’ approach and devel-

oped a revised rationale in terms of eigenfilters.4 He took all possible pairs of pix-

els within a 33 3 window, and characterized the image intensity data by a 93 9

covariance matrix. He then determined the eigenvectors required to diagonalize

this matrix. These correspond to filter masks similar to the Laws’ masks, i.e., use

of these “eigenfilter” masks produces images that are principal component images

for the given texture. Furthermore, each eigenvalue gives the part of the variance

of the original image that can be extracted by the corresponding filter.

Essentially, the variances give an exhaustive description of a given texture in

terms of the texture of the images from which the covariance matrix was origi-

nally derived. Clearly, the filters that give rise to low variances can be taken to

be relatively unimportant for texture recognition.

It will be useful to illustrate the technique for a 33 3 window. Here, we fol-

low Ade (1983) in numbering the pixels within a 33 3 window in scan order:

1 2 3 

4 5 6 

7 8 9 

This leads to a 93 9 covariance matrix for describing relationships between pixel

intensities within a 33 3 window, as stated above. At this point, we recall that

we are describing a texture and assuming that its properties are not synchronous

with the pixel tessellation, we would expect various coefficients of the covariance

matrix C to be equal: e.g., C24 should equal C57; in addition, C57 must equal C75.

4Before reading further, the reader may find it helpful to refer to Section 24.10, where principal

components analysis and eigenvalue problems are discussed.
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It is worth pursuing this matter, as a reduced number of parameters will lead to

increased accuracy in determining the remaining ones. In fact, there are 9 C25 36

ways of selecting pairs of pixels, but there are only 12 distinct spatial relation-

ships between pixels if we disregard translations of whole pairs—or 13 if we

include the null vector in the set (see Table 8.2). Thus, the covariance matrix (see

Section 24.10), whose components include the 13 parameters a�m, takes the

form:

C5

a b f c d k g m h

b a b e c d l g m

f b a j e c i l g

c e j a b f c d k

d c e b a b e c d

k d c f b a j e c

g l i c e j a b f

m g l d c e b a b

h m g k d c f b a

2
6666666666664

3
7777777777775

(8.11)

C is symmetric, and the eigenvalues of a real symmetric covariance matrix are

real and positive, and the eigenvectors are mutually orthogonal (see

Section 24.10). In addition, the eigenfilters thus produced reflect the proper struc-

ture of the texture being studied and are ideally suited to characterizing it. For

example, for a texture with a prominent highly directional pattern, there will be

one or more high energy eigenvalues with eigenfilters having strong directionality

in the corresponding direction.

8.6 APPRAISAL OF THE LAWS AND ADE APPROACHES
At this point, it will be worthwhile to compare the Laws and Ade approaches

more carefully. In the Laws approach, standard filters are used, texture energy

images are produced, and then principal component analysis may be applied to

lead to recognition, whereas in the Ade approach, special filters (the eigenfilters)

are applied, incorporating the results of principal component analysis, following

Table 8.2 Spatial Relationships Between Pixels in a 333 Window

a b c d e f g h i j k l m
9 6 6 4 4 3 3 1 1 2 2 2 2

This table shows the number of occurrences of the spatial relationships between pixels in a 33 3
window. Note that a is the diagonal element of the covariance matrix C, and that all others appear
twice as many times in C as indicated in the table.
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which texture energy measures are calculated, and a suitable number of these are

applied for recognition.

The Ade approach is superior to the extent that it permits low-value energy

components to be eliminated early on, thereby saving computation. For example,

in Ade’s application, the first five of the nine components contain 99.1% of the

total texture energy, so the remainder can be ignored. In addition, it would appear

that another two of the components containing respectively 1.9% and 0.7% of the

energy could also be ignored, with little loss of recognition accuracy. However,

in some applications textures could vary continually, and it may well be inadvis-

able to fine-tune a method to the particular data pertaining at any one time.5

In 1986, Unser developed a more general version of the Ade technique that

also covered the methods of Faugeras (1978), Granlund (1980), and Wermser and

Liedtke (1982). In this approach, performance is optimized not only for texture

classification, but also for discrimination between two textures by simultaneous

diagonalization of two covariance matrices. The method was developed further by

Unser and Eden (1989, 1990): this work makes a careful analysis of the use of

nonlinear detectors. As a result, two levels of nonlinearity are employed, one

immediately after the linear filters are designed (by employing a specific

Gaussian texture model) to feed the smoothing stage with genuine variance or

other suitable measures, and the other after the spatial smoothing stage to counter-

act the effect of the earlier filter and aiming to provide a feature value that is in

the same units as the input signal. In practical terms, this means having the capa-

bility for providing an RMS texture signal from each of the linear filter channels.

Overall, the originally intuitive Laws approach emerged during the 1980s as a

serious alternative to the co-occurrence matrix approach. It is as well to note that

alternative methods that are potentially superior have also been devised—see e.g.,

the local rank correlation method of Harwood et al. (1985), and the forced-choice

method of Vistnes (1989) for finding edges between different textures, which

apparently has considerably better accuracy than the Laws approach. Vistnes’s

(1989) investigation concludes that the Laws approach is limited by (a) the small

scale of the masks that can miss larger-scale textural structures and (b) the fact

that the texture energy smoothing operation blurs the texture feature values across

the edge. The latter finding (or even the worse situation where a third class of tex-

ture appears to be located in the region of the border between two textures) has

also been noted by Hsiao and Sawchuk (1989, 1990) who applied an improved

technique for feature smoothing; they also used probabilistic relaxation for enfor-

cing spatial organization on the resulting data.

5For example, these remarks apply (1) to textiles, for which the degree of stretch will vary continu-

ously during manufacture, (2) to raw food products, such as beans, whose sizes will vary with the

source of supply, and (3) to processed food products, such as cakes, for which the crumbliness will

vary with cooking temperature and water vapor content.
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8.7 CONCLUDING REMARKS
In this chapter, we have seen the difficulties of analyzing textures: these arise

from the potential, and in many cases the frighteningly real complexities of tex-

tures—not least from the fact that their properties are often largely statistical in

nature. The erstwhile widely used grayscale co-occurrence matrix approach has

been seen to have distinct computational shortcomings. First, many co-occurrence

matrices are in principle required (with different values of d and θ) in order to

adequately describe a given texture; second, the co-occurrence matrices can be

very large and, paradoxically, may hold more data than the images they are char-

acterizing—especially if the range of grayscale values is large. In addition, many

sets of co-occurrence matrices may be needed to allow for variation of the texture

over the image, and if necessary, to initiate segmentation. Hence, co-occurrence

matrices need to be significantly compressed, although in most cases it is not at

all obvious a priori how this should be achieved, and it is even more difficult to

arrange for it to be carried out automatically. This probably explains why atten-

tion shifted during the 1980s to other approaches, including particularly Laws’

technique and its variations (especially that of Ade). Other developments were

fractal-based measures, Markov approaches and the Gabor filter technique,

although space has prevented a discussion of these methods here: see Section 8.8

for further reading on these topics.

Textures are recognized and segmented by humans with the same apparent ease as
for plain objects. This chapter has shown that texture analysis needs to be sensitive to
microstructures and then pulled into macrostructures—with PCA (principal components
analysis) being a natural means of finding the optimum structure. The subject has great
importance for new applications, such as iris recognition.

8.8 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Early work on texture analysis was carried out by Haralick et al. (1973) and in

1976, Weska and Rosenfeld applied textural analysis to materials’ inspection. The

area was reviewed by Zucker (1976a) and Haralick (1979), and excellent accounts

appear in the books by Ballard and Brown (1982) and Levine (1985).

At the end of the 1970s, the Laws technique (1979, 1980a, 1980b) arrived

upon the scene (which had up till then been dominated by the co-occurrence

matrix approach) and led to the principal components approach of Ade (1983),

which was further developed by Dewaele et al. (1988), Unser and Eden (1989,

1990), and others. The direction taken by Laws was particularly valuable as it

showed how texture analysis could be implemented straightforwardly and in a

manner consistent with real-time applications such as inspection.
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The 1980s also saw other new developments, such as the fractal approach led

by Pentland (1984), and a great amount of work on Markov random field models

of texture. Here the work of Hansen and Elliott (1982) was very formative,

although the names G.R. Cross, H. Derin, D. Geman, S. Geman, and A.K. Jain

come up repeatedly in this context. Bajcsy and Liebermann (1976), Witkin

(1981), and Kender (1983) pioneered the shape from texture concept, which has

received considerable attention ever since. Later, much work appeared on the

application of neural networks to texture analysis, e.g., Greenhill and Davies

(1993) and Patel et al. (1994). A number of reviews and useful comparative stud-

ies have been made including Van Gool et al. (1985), du Buf et al. (1990),

Ohanian and Dubes (1992), and Reed and du Buf (1993). For further work on tex-

ture analysis related to inspection of faults and foreign objects, see Chapter 20.

More recent developments include further work with automated visual inspec-

tion in mind (Davies, 2000c; Tsai and Huang, 2003; Ojala et al., 2002;

Manthalkar et al., 2003; Pun and Lee, 2003), although several of these papers

also cite medical, remote sensing, and other applications. Of these papers, the last

three are specifically aimed at rotation invariant texture classification and the last

one also aims at scale invariance. In previous years, there has not been quite

enough emphasis on rotation invariance, although it was by no means a new

topic. Other work (Clerc and Mallat, 2002) was concerned with recovering shape

from texture via a texture gradient equation, while Ma et al. (2003) were particu-

larly concerned with person identification based on iris textures. Mirmehdi and

Petrou (2000) described an in-depth investigation of color texture segmentation.

In this context, the importance of “wavelets”6 as an increasingly used technique

of texture analysis with interesting applications (such as, human iris recognition)

should be noted (e.g., Daugman, 1993, 2003).

Then, in a particularly exciting advance, Spence et al. (2004) managed to

eliminate texture by using photometric stereo to find the underlying surface shape

(or “bump map”), following which they were able to perform impressive recon-

structions, including texture, from a variety of viewpoints; McGunnigle and

Chantler (2003) have shown that this sort of technique is also able to reveal hid-

den writing on textured surfaces, where only pen pressure marks have been made.

Similarly, Pan et al. (2004) have shown how texture can be eliminated from

ancient tablets (in particular those made of lead and wood) to reveal clear images

of the writing underneath.

8.8.1 More Recent Developments
Over the 2000s, the trend to scale and rotation invariant texture analysis men-

tioned above has continued, the paper by Janney and Geers (2010) describing an

6Wavelets are directional filters reminiscent of the Laws edges, bars, waves, and ripples, but have

more rigorously defined shapes and envelopes, and are defined in multiresolution sets (Mallat,

1989).
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“invariant features of local textures” approach, using a strictly circular 1-D array

of sampling, positions around any given position. The method employs Haar

wavelets and as a result is computationally efficient. It is applied at multiple

scales in order to achieve scale invariance; in addition, intensity normalization is

used to make the method illumination as well as scale and rotation invariant.

Two new books have recently been published on this rather specialist sub-

ject—by Petrou and Sevilla (2006) and Mirmehdi et al. (2008). The first is a very

sound textbook, starting from a low level and progressing through topics not cov-

ered in the present volume, such as fractals, Markov random fields, Gibbs distri-

butions, Gabor functions, wavelets, and the Wigner distribution. The second is an

edited volume containing chapters by various researchers and providing much

new information—as indicated by some of the more novel chapter titles:

“TEXEMS: random texture representation and analysis,” “3-D texture analysis,”

“Texture for appearance models,” “From dynamic texture to dynamic shape and

appearance models,” “Divide-and-texture: Hierarchical feature description,”

“Practical implementation of the trace transform,” and “Face analysis using local

binary patterns.”
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PART

2
Intermediate-Level
Vision

In Part 2, we study intermediate-level image analysis, which is concerned with

obtaining abstract information about images, starting with the images themselves.

At this stage, we are less interested in converting one image into another, as in

the subject of image processing. In particular, transform methods that have been

designed systematically for the purpose will be used.

For the most part, the chapters in Part 2 result in abstract information on the

positions and orientations of various image features; they do not aim to provide

real-world data, a function that is left to Parts 3 and 4 (thus Part 2 may indicate

that a circle exists in one part of an image; it is left to later parts to interpret this

as a wheel and to find any defects it may have). However, an exception to this

general strategy is the relational descriptor analysis of scenes that appears toward

the end of Chapter 14. This approach may be regarded as constituting the foot-hills

of “high-level” vision.
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CHAPTER

9Binary Shape Analysis

While binary images contain much less information than their grayscale counter-

parts, they embody shape and size information that is highly relevant for object

recognition. However, this information resides in a digital lattice of pixels, and

this results in intricacies appearing in the geometry. This chapter resolves these

problems and explores a number of important algorithms for processing shapes.

Look out for:

• the connectedness paradox and how it is resolved.

• object labeling and how labeling conflicts are resolved.

• problems related to measurement in binary images.

• size filtering techniques.

• the convex hull as a means of characterizing shape, and methods for deter-

mining it.

• distance functions and how they are obtained using parallel and sequential

algorithms.

• the skeleton and how it is found by thinning: the crucial role played by the

crossing number, both in determining the skeleton and in analyzing it.

• simple measures for shape recognition, including circularity, and aspect ratio.

• more rigorous measures of shape, including moments and boundary descriptors.

In reality, this chapter almost exclusively covers area-based methods of shape

analysis, leaving boundary-based procedures to Chapter 10—though circularity

measures and boundary tracking are both covered. However, chapter boundaries

cannot be completely exclusive, as any method requires “hooks” that have been

laid down in a variety of places, and indeed, it is often valuable to meet a concept

before finding out in detail how to put flesh on it.

Computer and Machine Vision.
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Returning to the present chapter, it is interesting to note how intricate some of

the algorithmic processes are: connectedness, in particular, pervades the whole

subject of digital shape analysis and comes with a serious health warning.

9.1 INTRODUCTION
Over the past few decades 2-D shape analysis has provided the main means by

which objects are recognized and located in digital images. Fundamentally, 2-D

shape has been important because it uniquely characterizes many types of object,

from keys to characters, from gaskets to spanners, and from fingerprints to chro-

mosomes, while in addition it can be represented by patterns in simple binary

images. Chapter 1 showed how the template matching approach leads to a combi-

natorial explosion even when fairly basic patterns are to be found, so preliminary

analysis of images to find features constitutes a crucial stage in the process of

efficient recognition and location. Thus, the capability for binary shape analysis is

a very basic requirement for practical visual recognition systems.

In fact, 40 years of progress have provided an enormous range of shape analysis

techniques and a correspondingly large range of applications. Clearly, it will be

impossible to cover the whole field within the confines of a single chapter—so com-

pleteness will not even be attempted (the alternative of a catalog of algorithms and

methods, all of which are covered only in brief outline, is eschewed). At one level,

the main topics covered are examples with their own intrinsic interest and practical

application, and at another level they introduce matters of fundamental principle.

Recurring themes are the central importance of connectedness for binary images; the

contrasts between local and global operations on images and between different

representations of image data; the need to optimize accuracy and computational effi-

ciency; and the compatibility of algorithms and hardware. The chapter starts with a

discussion of how connectedness is measured in binary images.

9.2 CONNECTEDNESS IN BINARY IMAGES
This section begins with the assumption that objects have been segmented, by thresh-

olding or other procedures, into sets of 1’s in a background of 0’s (see Chapters 2�4).

At this stage it is important to realize that a second assumption is already being made

implicitly—that it is easy to demarcate the boundaries between objects in binary

images. However, in an image that is represented digitally in rectangular tessellation,

a problem arises with the definition of connectedness. Consider a dumbell-shaped

object:1

1All unmarked image points are taken to have the binary value 0.
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1 1

1 1 1 1

1 1

1

1

1

1 1

1 1 1 1

1 1

At its center, this object has a segment of the form

0 1

1 0

which separates two regions of background. At this point diagonally adjacent 1’s

are regarded as being connected, whereas diagonally adjacent 0’s are regarded as

disconnected—a set of allocations that seems inconsistent. However, we can

hardly accept a situation where a connected diagonal pair of 0’s crosses a con-

nected diagonal pair of 1’s without causing a break in either case. Similarly, we

cannot accept a situation in which a disconnected diagonal pair of 0’s crosses a

disconnected diagonal pair of 1’s without there being a join in either case. Hence,

a symmetrical definition of connectedness is not possible and it is conventional to

regard diagonal neighbors as connected only if they are foreground, i.e. the fore-

ground is “8-connected” and the background is “4-connected”. This convention is

followed in the subsequent discussion.

9.3 OBJECT LABELING AND COUNTING
Now we have a consistent definition of connectedness, we can unambiguously

demarcate all objects in binary images and should be able to devise algorithms

for labeling them uniquely and counting them. Labeling may be achieved by

scanning the image sequentially until a 1 is encountered on the first object; a note

is then made of the scanning position, and a “propagation” routine is initiated to

label the whole of the object with a 1; since the original image space is already in

use, a separate image space has to be allocated for labeling. Next, the scan is

resumed, ignoring all points already labeled, until another object is found; this is

labeled with a 2 in the separate image space. This procedure is continued until

the whole image has been scanned and all the objects have been labeled

(Fig. 9.1). Implicit in this procedure is the possibility of propagating through a

connected object. Suppose at this stage no method is available for limiting the
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field of the propagation routine, so that it has to scan the whole image space.

Then the propagation routine takes the form:

do f
for all points in image

if point is in an object
and next to a propagating region labelled N

assign it the label N
g until no further change;

ð9:1Þ

the kernel of the do�until loop being expressed more explicitly as:

==original image in A-space; labels to be inserted in P-space
for all pixels in image do f
ifððA0551Þ

&&ððP155NÞjjðP255NÞjjðP355NÞjjðP455NÞ
jjðP555NÞjjðP655NÞjjðP755NÞjjðP855NÞÞÞ

P05N;
g

ð9:2Þ

At this stage a fairly simple type of algorithm for object labeling is obtained,

as shown in Table 9.1: the for forward scan over image do {?} notation denotes

a sequential forward raster scan over the image.

Note that the above object counting and labeling routine requires a minimum

of 2N1 1 passes over the image space, and in practice the number will be closer

to NW/2, where W is the average width of the objects: hence, the algorithm is

inherently rather inefficient. This prompts us to consider how the number of

passes over the image could be reduced to save computation. One possibility

would be to scan forward through the image, propagating new labels through

objects as they are discovered. While this would work mostly straightforwardly

with convex objects, problems would be encountered with objects possessing

concavities—e.g. “U” shapes—since different parts of the same object would end

with different labels, and also means would have to be devised for coping with

“collisions” of labels (e.g. the largest local label could be propagated through the

remainder of the object: see Fig. 9.2). Then inconsistencies could be resolved by

a reverse scan through the image. However, this procedure will not resolve all

problems that can arise, as in the case of more complex (e.g. spiral) objects. In

such cases a general parallel propagation, repeatedly applied until no further

FIGURE 9.1

A process in which all binary objects are labeled.
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Table 9.1 A Simple Algorithm for Object Labeling

==start with binary image containing objects in A-space
==clear label space
for all pixels in image do fP050; g
==start with no objects
N50;
=� look for objects using a sequential scan and propagate

labels through them �=
do f ==search for an unlabeled object
found5false;
for forward scan over image do f

if ððA0551Þ&&ðP0550Þ&&not foundÞ f
N5N11;
P05N;
found5true;

g
g
if ðfoundÞ ==label the object just found

do f
finished5true;
for all pixels in image do f

if ððA0551Þ&&ðP0550Þ
&&ððP155NÞjjðP255NÞjjðP355NÞjjðP455NÞ
jjðP555NÞjjðP655NÞjjðP755NÞjjðP855NÞÞÞ f

P05N;
finished5false;

g
g

g until finished;
g until not found; ==i:e: no ðmoreÞ objects
==N is the number of objects found and labeled

FIGURE 9.2

Labeling U-shaped objects: a problem that arises in labeling certain types of object if a

simple propagation algorithm is used. Some provision has to be made to accept “collisions”

of labels although the confusion can be removed by a subsequent stage of processing.
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labeling occurs, might be preferable—though as we have seen, such a process is

inherently rather computation intensive. However, it is implemented very conve-

niently on certain types of parallel SIMD processor (see Chapter 26).

Ultimately, the least computationally intensive procedures for propagation

involve a different approach: objects and parts of objects are labeled on a single

sequential pass through the image, at the same time noting which labels coexist

on objects. Then the labels are sorted separately, in a stage of abstract information

processing, to determine how the initially rather ad hoc labels should be inter-

preted. Finally, the objects are relabeled appropriately in a second pass over the

image (in fact, this latter pass is sometimes unnecessary, since the image data are

merely labeled in an overcomplex manner and what is needed is simply a key to

interpret them). The improved labeling algorithm now takes the form shown in

Table 9.2. Clearly this algorithm with its single sequential scan is intrinsically far

more efficient than the previous one, although the presence of particular dedicated

hardware or a suitable SIMD processor might alter the situation and justify the

use of alternative procedures.

Table 9.2 The Improved Algorithm for Object Labeling

==clear label space
for all pixels in image do P050; gf
==start with no objects
N50;
==clear the table that is to hold the label coexistence data
forði51;i,5Nmax;i11 Þ

forðj51;j,5Nmax;j11 Þ
coexist½i�½j�5false;

==label objects in a single sequential scan
for forward scan over image do f

ifððA0551Þ
ifððP2550Þ&&ðP3550Þ&&ðP4550Þ&&ðP5550ÞÞ f

N5N11;
P05N;

g
else f

P05maxðP2;P3;P4;P5Þ;
==now note which labels coexist in objects
coexist½P0�½P2�5true;
coexist½P0�½P3�5true;
coexist½P0�½P4�5true;
coexist½P0�½P5�5true;

g
g
analyze the coexist table and decide ideal labeling scheme;
relabel image if necessary;
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It will be clear that minor amendments to the above algorithms permit the

areas and perimeters of objects to be determined: thus, objects may be labeled by

their areas or perimeters instead of by numbers representing their order of appear-

ance in the image. More important, the availability of propagation routines means

that objects can be considered in turn in their entirety—if necessary by transfer-

ring them individually to separate image spaces or storage areas ready for unen-

cumbered independent analysis. Evidently, if objects appear in individual binary

spaces, maximum and minimum spatial coordinates are trivially measurable, cen-

troids can readily be found and more detailed calculations of moments (see

below) and other parameters can easily be undertaken.

9.3.1 Solving the Labeling Problem in a More Complex Case
In this section, we add substance to the all too facile statement at the end of

Table 9.2—“analyze the coexist table and decide ideal labeling scheme.” First, we

have to make the task nontrivial by providing a suitable example. Figure 9.3 shows

an example image, in which sequential labeling has been carried out in line with

the algorithm of Table 9.2. However, one variation has been adopted—of using a

minimum rather than a maximum labeling convention, so that the values are in

general slightly closer to the eventual ideal labels. (This also serves to demonstrate

that there is not just one way of designing a suitable labeling algorithm.) The algo-

rithm itself indicates that the coexist table should now appear as in Table 9.3.

1 2 2

1 2 2

1 2 2

1 1 1

3 3 1 1 1

4 4 3 3 1 1 1

4 4 3 3 1 1 1

4 4 3 3 1 1 1

5 6

5 7 7 8 8 6

5 7 7 8 8 6

5 7 7 8 6

5 5 7 7

FIGURE 9.3

Solving the labeling problem in a more complex case.
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However, the whole process of calculating ideal labels can be made more efficient

by inserting numbers instead of ticks, and also adding the right numbers along the

leading diagonal, as in Table 9.4; for the same reason, the numbers below the lead-

ing diagonal, which are technically redundant, are retained here.

The next step is to minimize the entries along the individual rows of the table,

as in Table 9.5. Then we minimize along the individual columns (Table 9.6).

Then we minimize along rows again (Table 9.7). This process is iterated to

Table 9.4 Coexist Table with Additional Numerical

Information

1 2 3 4 5 6 7 8

1 1 1 1

2 1 2

3 1 3 3

4 3 4

5 5 5

6 6 6

7 5 7 7

8 6 7 8

This coexist table is an enhanced version of Table 9.3.
Technically, the numbers along, and below, the leading diagonal
are redundant, but nevertheless they speed up the subsequent
computation.

Table 9.3 Coexist Table for the Image of Fig. 9.3

1 2 3 4 5 6 7 8

1 O O
2 O
3 O O
4 O
5 O
6 O
7 O O
8 O O

The ticks correspond to clashes of labels.
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completion, which has already happened here after three stages of minimization.

We can now read off the final result from the leading diagonal. Note that a further

stage of computation is needed to make the resulting labels consecutive integers,

starting with unity. However, the procedure needed to achieve this is much more

basic and does not need to manipulate a 2-D table of data: this will be left as a

simple programming task for the reader.

At this point, some comment on the nature of the process described above will

be appropriate. What has happened is that the original image data has effectively

been condensed into the minimum space required to express the labels—namely

just one entry per original clash. This explains why the table retains the 2-D format

Table 9.5 Coexist Table Redrawn with Minimized Rows

1 2 3 4 5 6 7 8

1 1 1 1

2 1 1

3 1 1 1

4 3 3

5 5 5

6 6 6

7 5 5 5

8 6 6 6

At this stage the table is no longer symmetric.

Table 9.6 Coexist Table Redrawn Again with Minimized

Columns

1 2 3 4 5 6 7 8

1 1 1 1

2 1 1

3 1 1 1

4 1 1

5 5 5

6 6 5

7 5 5 5

8 6 5 5
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of the original image: lower dimensionality would not permit the image topology to

be represented properly. It also explains why minimization has to be carried out, to

completion, in two orthogonal directions. On the other hand, the particular imple-

mentation, including both above- and below-diagonal elements, is able to minimize

computational overheads and finalize the operation in remarkably few iterations.

Finally, it might be felt that too much attention has been devoted to finding con-

nected components of binary images. In fact, this is a highly important topic in practi-

cal applications such as industrial inspection, where it is crucial to locate all the objects

unambiguously before they can individually be identified and scrutinized. In addition,

Fig. 9.3 makes it clear that it is not only U-shaped objects that give problems, but also

those that have shape subtleties—as is seen at the left of the upper object in this figure.

9.4 SIZE FILTERING
Before proceeding to study size filtering, we draw attention to the fact that the 8-

connected and 4-connected definitions of connectedness lead to the following

measures of distance (or “metrics”) that apply to pairs of pixels, labeled i and j,

in a digital lattice:

d8 5maxðjxi 2 xjj; jyi 2 yjjÞ (9.3)

and

d4 5 jxi 2 xjj1 jyi 2 yjj (9.4)

While the use of the d4 and d8 metrics is bound to lead to certain inaccuracies,

there is a need to see what can be achieved with the use of local operations in

Table 9.7 Coexist Table Redrawn Yet Again with

Minimized Rows

1 2 3 4 5 6 7 8

1 1 1 1

2 1 1

3 1 1 1

4 1 1

5 5 5

6 5 5

7 5 5 5

8 5 5 5

At this stage the table is in its final form, and is once again
symmetric.
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binary images. This section studies how simple size filtering operations can be

carried out, using merely local (33 3) operations. The basic idea is that small

objects may be eliminated by applying a series of shrink operations. In fact, N

shrink operations will eliminate an object (or those parts of an object) that are 2N

or fewer pixels across their narrowest dimension. Of course this process shrinks

all the objects in the image, but in principle a subsequent N expand operations

will restore the larger objects to their former size.

If complete elimination of small objects is required but perfect retention of

larger objects, this will, however, not be achieved by the above procedure, since

in many cases the larger objects will be distorted or fragmented by these opera-

tions (Fig. 9.4). To recover the larger objects in their original form, the proper

(a)

(b)

FIGURE 9.4

The effect of a simple size filtering procedure. When size filtering is attempted by a set of N

shrink and N expand operations, larger objects are restored approximately to their original size

but their shapes frequently become distorted or even fragmented. In this example, (b) shows

the effect of applying two shrink and then two expand operations to the image in (a).
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approach is to use the shrunken versions as “seeds” from which to grow the origi-

nals via a propagation process. The algorithm of Table 9.8 is able to achieve this.

Having seen how to remove whole (connected) objects that are everywhere

narrower than a specified width, it is possible to devise algorithms for removing

any subset of objects that are characterized by a given range of widths: large

objects may be filtered out by first removing lesser-sized objects and then per-

forming a logical masking operation with the original image, while intermediate-

sized objects may be filtered out by removing a larger subset and then restoring

small objects that have previously been stored in a separate image space.

Ultimately, all these schemes depend on the availability of the propagation tech-

nique, which in turn depends on the internal connectedness of individual objects.

Finally, note that expand operations followed by shrink operations may be

useful for joining nearby objects, filling in holes, and so on. Numerous refine-

ments and additions to these simple techniques are possible. A particularly inter-

esting one is to separate the silhouettes of touching objects such as chocolates by

a shrinking operation: this then permits them to be counted reliably (Fig. 9.5).

9.5 DISTANCE FUNCTIONS AND THEIR USES
The distance function of an object is a very simple and useful concept in shape

analysis. Essentially, each pixel in the object is numbered according to its

Table 9.8 Algorithm for Recovering Original Forms of Shrunken Objects

==save original image
for all pixels in image do C05A0; gf
==now shrink the original objects N times
for ði51; i, 5N; i11Þ f
for all pixels in image do f

sigma5A11A21A31A41A51A61A71A8;
ifðsigma,8ÞB050; else B05A0;

g
for all pixels in image do A05B0; gf

g
==next propagate the shrunken objects using the original image
do f

finished5true;
for all pixels in image do f

sigma5A11A21A31A41A51A61A71A8;
if ððA0550Þ&&ðsigma.0Þ&&ðC0551ÞÞ f

A051;
finished5false;

g
g

g until finished;
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distance from the background. As usual, background pixels are taken as 0’s; then

edge pixels are counted as 1’s; object pixels next to 1’s become 2’s; next to those

are the 3’s; and so on throughout all the object pixels (Fig. 9.6).

The parallel algorithm of Table 9.9 finds the distance function of binary objects

by propagation. Note that this algorithm performs a final pass in which nothing hap-

pens; this is inevitable if we are to be certain that the process will run to completion.

It is possible to perform the propagation of a distance function with far fewer

operations if sequential processing is used. In 1-D, the basic idea would be to

build up ramps within objects using a routine like the following:

for all pixels in a row of pixels do fQ05A0 � 255; g
for forward scan over the row of pixels do
if Q0.Q511ð Þ Q05Q511;

(a) (b)

FIGURE 9.5

Separation of touching objects by shrink operations. Here objects (chocolates) in (a) are

shrunk (b) in order to separate them so that they may be counted reliably.

FIGURE 9.6

The distance function of a binary shape: the value at every pixel is the distance (in the d8
metric) from the background.
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Next, we need to insist on double-sided ramps within objects, both horizontally

and vertically. This is elegantly achieved using two sequential operations, one

being a normal forward raster scan and the other being a reverse raster scan:

for all pixels in image do fQ05A0 � 255; g
for forward scan over image do f
minplusone5minðQ2;Q3;Q4;Q5Þ11;
ifðQ0.minplusoneÞ Q05minplusone;

g
for reverse scan over image do f
minplusone5minðQ6;Q7;Q8;Q1Þ11;
if Q0.minplusoneð Þ Q05minplusone;

g

ð9:5Þ

Note the compact notation being used to distinguish between forward and reverse

raster scans over the image: for forward scan over image do {?} denotes a for-

ward raster scan, while for reverse scan over image do {?} denotes a reverse

raster scan. A more succinct version of this algorithm is the following:

for all pixels in image do fQ05A0 � 255; g
for forward scan over image do f
Q05minðQ0� 1;Q2;Q3;Q4;Q5Þ11;

g
for reverse scan over image do f
Q05minðQ0� 1;Q6;Q7;Q8;Q1Þ11;

g

ð9:6Þ

Before moving on, it will be useful to emphasize the value of sequential pro-

cessing for propagating distance functions. In fact, when this sequential algorithm

is run on a serial computer, it will be O(N) times faster than the corresponding

parallel algorithm running on a serial computer, but O(N) times slower than the

Table 9.9 A parallel Algorithm for Propagating Distance Functions

==Start with binary image containing objects in A-space
for all pixels in image do Q05A0 � 255; gf
N50;
do f

finished5true;
for all pixels in image do f

ifððQ055255Þ ==in object and no answer yet
&&ððQ155NÞjjðQ255NÞjjðQ355NÞjjðQ455NÞ
jjðQ555NÞjjðQ655NÞjjðQ755NÞjjðQ855NÞÞÞ f

==next to an N
Q05N11;
finished5false; ==some action has been taken

g
g
N5N1l;

g until finished;
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same parallel algorithm running on a parallel computer, for an N3N image.

While this statement is specific to propagation of distance functions, similar state-

ments can be made about a good many other operations. (For further discussion

relating to parallel computers such as SIMD machines, see Chapter 26.)

9.5.1 Local Maxima and Data Compression
An interesting application of distance functions is that of data compression. To

achieve this, operations are carried out to locate the pixels that are local maxima of

the distance function (Fig. 9.7), since storing these pixel values and positions permits

the original image to be regenerated by a process of downward propagation, as

shown at the end of this section. Note that although finding the local maxima of the

distance function provides the basic information for data compression, the actual

compression occurs only when the data are stored as a list of points rather than in the

original picture format. In order to locate the local maxima, the following parallel

routine may be employed:

for all pixels in image do f
maximum5maxðQ1;Q2;Q3;Q4;Q5;Q6;Q7;Q8Þ;
ifððQ0.0Þ&&ðQ0.5maximumÞÞ B051;else B050;

g
ð9:7Þ

Alternatively, the compressed data can be transferred to a single image space:

for all pixels in image do f
maximum5maxðQ1;Q2;Q3;Q4;Q5;Q6;Q7;Q8Þ;
ifððQ0.0Þ&&ðQ0.5maximumÞÞ P05Q0; else P050;

g
ð9:8Þ

FIGURE 9.7

Local maxima of the distance function of the shape shown in Fig. 9.6, the remainder of

the shape being indicated by dots and the background being blank. Notice that the local

maxima group themselves into clusters each containing points of equal distance function

value, while clusters of different values are clearly separated.
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Note that the local maxima that are retained for the purpose of data compression

are not absolute maxima but are maximal in the sense of not being adjacent to larger

values. If this were not so, insufficient numbers of points would be retained for

completely regenerating the original object. As a result of this, it is found that the

local maxima group themselves into clusters of connected points, each cluster hav-

ing a common distance value and being separated from points of different distance

values (Fig. 9.7). Thus, the set of local maxima of an object is not a connected sub-

set. This fact has an important bearing on skeleton formation (see Section 9.6.3).

Having seen how data compression may be performed by finding local max-

ima of the distance function, it is relevant to consider a parallel downward propa-

gation algorithm (Table 9.10) for recovering the shapes of objects from an image

into which the values of the local maxima have been inserted. Note again that if

it can be assumed that at most N passes are needed to propagate through objects

of known maximum width, then the algorithm becomes simply:

forði51;i,5N;i11 Þ
for all pixels in image do f

Q05maxðQ011;Q1;Q2;Q3;Q4;Q5;Q6;Q7;Q8Þ21;
g

ð9:9Þ

9.6 SKELETONS AND THINNING
The skeleton is a powerful analog concept that may be employed for the analysis

and description of shapes in binary images. A skeleton may be defined as a con-

nected set of medial lines along the limbs of a figure: for example, in the case of

thick hand-drawn characters the skeleton may be supposed to be the path actually

traveled by the pen. In fact, the basic idea of the skeleton is that of eliminating

redundant information while retaining only the topological information concerning

Table 9.10 A Parallel Algorithm for Recovering Objects From Local Maxima of the

Distance Functions

==assume that input image is in Q-space;and that non-maximum
values have value 0

do f
finished5true;
for all pixels in image do f
maxminusone5maxðQ011;Q1;Q2;Q3;Q4;Q5;Q6;Q7;Q8Þ21;
ifðQ0,maxminusoneÞ f

Q05maxminusone;
finished5false; ==some action has been taken

g
g

g until finished;
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the shape and structure of the object that can help with recognition. In the case of

hand-drawn characters, the thickness of the limbs is taken to be irrelevant: it may

be constant and therefore carry no useful information, or it may vary randomly

and again be of no value for recognition (Fig. 1.2).

The definition presented above leads to the idea of finding the loci of the

centers of maximal disks inserted within the object boundary. First, suppose

the image space to be a continuum. Then the disks are circles and their centers

form loci that may be modeled very conveniently when object boundaries are

approximated by linear segments. In fact, sections of the loci fall into three

categories:

1. They may be angle bisectors, i.e. lines which bisect corner angles and reach

right up to the apexes of corners.

2. They may be lines that lie half-way between boundary lines.

3. They may be parabolas that are equidistant from lines and from the nearest

points of other lines—namely, corners where two lines join.

Clearly, categories 1 and 2 are special forms of a more general case.

These ideas lead to unique skeletons for objects with linear boundaries, and

the concepts are easily generalizable to curved shapes. In fact, this approach tends

to give rather more detail than is commonly required, even the most obtuse corner

having a skeleton line going into its apex (Fig. 9.8). Hence, a thresholding scheme

is often employed such that skeleton lines only reach into corners having a speci-

fied minimum degree of sharpness.

We now have to see how the skeleton concept will work in a digital lattice.

Here we are presented with an immediate choice: which metric should we

employ? If we select the Euclidean metric (i.e. lattice distance is measured as the

Euclidean distance between pairs of pixels), there may be a considerable compu-

tational load. If we select the d8 metric we will immediately lose accuracy but the

computational requirements should be more modest (we do not here consider the

d4 metric, since we are dealing with the shapes of foreground objects). In what

follows we concentrate on the d8 metric.

At this stage some thought shows that the application of maximal disks in

order to locate skeleton lines amounts essentially to finding the positions of local

maxima of the distance function. Unfortunately, as seen in the previous section,

the set of local maxima does not form a connected graph within a given object:

nor is it necessarily composed of thin lines, and indeed it may at places be 2 pix-

els wide. Thus, problems arise in trying to use this approach to obtain a connected

unit-width skeleton that can conveniently be used to represent the shape of the

object. We shall return to this approach again in Section 9.6.3. Meanwhile, how-

ever, we pursue an alternative idea—that of thinning.

Thinning is perhaps the simplest approach to skeletonization. It may be

defined as the process of systematically stripping away the outermost layers of a

figure until only a connected unit-width skeleton remains (see, for example,

Fig. 9.9). A number of algorithms are available to implement this process, with
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varying degrees of accuracy, and we discuss below how a specified level of preci-

sion can be achieved and tested for. First, however, it is necessary to discuss the

mechanism by which points on the boundary of a figure may validly be removed

in thinning algorithms.

FIGURE 9.9

Typical result of a thinning algorithm operating in a discrete lattice.

(a) (b)

(c) (d)

FIGURE 9.8

Four shapes whose boundaries consist entirely of straight line segments. The idealized

skeletons go right to the apex of each corner, however obtuse. In certain parts of shapes

(b)�(d), the skeleton segments are parts of parabolas rather than straight lines. As a

result, the detailed shape of the skeleton (or the approximations produced by most

algorithms operating in discrete images) is not exactly what might initially be expected or

what would be preferred in certain applications.
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9.6.1 Crossing Number
The exact mechanism for examining points to determine whether they can be

removed in a thinning algorithm must now be considered. This may be decided

by reference to the crossing number χ (chi) for the 8 pixels around the outside of

a particular 33 3 neighborhood. χ is defined as the total number of 0-to-1 and

1-to-0 transitions on going once round the outside of the neighborhood: this num-

ber is in fact twice the number of potential connections joining the remainder of

the object to the center of the neighborhood (Fig. 9.10). Unfortunately, the for-

mula for χ is made more complex by the 8-connectedness criterion. Basically, we

would expect2:

badchi5 ðintÞðA1 !5A2Þ1ðintÞðA2 !5A3Þ1ðintÞðA3 !5A4Þ
1ðintÞðA4 !5A5Þ1ðintÞðA5 !5A6Þ1ðintÞðA6 !5A7Þ
1ðintÞðA7 !5A8Þ1ðintÞðA8 !5A1Þ;

ð9:10Þ

However, this is incorrect because of the 8-connectedness criterion. For example,

in the case

0 1 0

0 1 1

1 1 1

the formula gives the value 4 for χ instead of 2. The reason is that the isolated 0

in the top right-hand corner does not prevent the adjacent 1’s from being joined.

It is therefore tempting to use the modified formula:

wrongchi5 ðintÞðA1 !5A3Þ1ðintÞðA3 !5A5Þ1ðintÞðA5 !5A7Þ1ðintÞðA7 !5A1Þ; ð9:11Þ
However, this too is wrong, since in the case

0 0 1

0 1 0

1 1 1
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FIGURE 9.10

Some examples of the crossing number values associated with given pixel neighborhood

configurations (0, background; 1, foreground).

2In this section, as in the case of C11, the “(int)” construct is used to convert logical outcomes

true and false to integer outcomes 1 and 0.
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it gives the answer 2 instead of 4. It is therefore necessary to add four extra terms

to deal with isolated 1’s in the corners:

chi5 ðintÞðA1 !5A3Þ1 ðintÞðA3 !5A5Þ1 ðintÞðA5 !5A7Þ
1 ðintÞðA7 !5A1Þ
12 � ððintÞððA2.A1Þ&&ðA2.A3ÞÞ1 ðintÞððA4.A3Þ&&ðA4.A5ÞÞ
1 ðintÞððA6.A5Þ&&ðA6.A7ÞÞ1 ðintÞððA8.A7Þ&&ðA8.A1ÞÞÞ;

ð9:12Þ

This (now correct) formula for crossing number gives values 0, 2, 4, 6 or 8 in

different cases (Fig. 9.10). The rule for removing points during thinning is that

points may only be removed if they are at those positions at the boundary of an

object where χ is 2. When χ is greater than 2, the point must be retained, as it

forms a vital connected point between two or more parts of the object; in addi-

tion, when it is 0 it must be retained since removing it would create a hole.

Finally, there is one more condition that must be fulfilled before a point can be

removed during thinning—that the sum σ (sigma) of the eight pixel values around

the outside of the 33 3 neighborhood (see Chapter 2) must not be equal to 1. The

reason for this is to preserve line ends, as in the following cases:

0 0 0

0 1 0

0 1 0

0 0 0

0 1 0

0 0 1

Clearly, if line ends are eroded as thinning proceeds, the final skeleton will not

represent the shape of an object (including the relative dimensions of its limbs) at

all accurately (however, it is possible that we might sometimes wish to shrink an

object while preserving connectedness, in which case this extra condition need

not be implemented). Having covered these basics, we are now in a position to

devise complete thinning algorithms.

9.6.2 Parallel and Sequential Implementations of Thinning
Thinning is “essentially sequential” in that it is easiest to ensure that connected-

ness is maintained by arranging that only one point may be removed at a time. As

indicated above, this is achieved by checking before removing a point that it has

a crossing number of 2. Now imagine applying the “obvious” sequential algo-

rithm of Table 9.11 to a binary image. Assuming a normal forward raster scan,

the result of this process is to produce a highly distorted skeleton, consisting of

lines along the right-hand and bottom edges of objects. It may now be seen that

the χ5 2 condition is necessary but not sufficient, since it says nothing about the

order in which points are removed. To produce a skeleton that is unbiased, giving

a set of truly medial lines, it is necessary to remove points as evenly as possible

around the object boundary. A scheme that helps with this involves a novel pro-

cessing sequence: mark edge points on the first pass over an image; on the second

pass, strip points sequentially as in the above algorithm, but only where they have

already been marked; then mark a new set of edge points; then perform another

stripping pass; then repeat this marking and stripping sequence until no further

248 CHAPTER 9 Binary Shape Analysis



change occurs. An early algorithm working on this principle is that of Beun

(1973).

While the novel sequential thinning algorithm described above can be used to

produce a reasonable skeleton, it would be far better if the stripping action could

be performed symmetrically around the object, thereby removing any possible

skeletal bias. In this respect a parallel algorithm should have a distinct advantage.

However, parallel algorithms result in several points being removed at once: this

means that lines 2 pixels wide will disappear (since masks operating in a 33 3

neighborhood cannot “see” enough of the object to judge whether a point may

validly be removed or not), and as a result shapes can become disconnected. The

general principle for avoiding this problem is to strip points lying on different

parts of the boundary in different passes, so that there is no risk of causing breaks.

In fact, there is a very large number of ways of achieving this, by applying differ-

ent masks and conditions to characterize different parts of the boundary. If bound-

aries were always convex the problem would no doubt be reduced; however,

boundaries can be very convoluted and are subject to quantization noise, so the

problem is a complex one. With so many potential solutions to the problem, we

concentrate here on one that can conveniently be analyzed and which gives

acceptable results.

The method discussed is that of removing north, south, east, and west points

cyclically until thinning is complete. North points are defined as the following:

3 0 3
3 1 3
3 1 3

Table 9.11 An “Obvious” Sequential Thinning Algorithm

do f
finished5true;
for forward scan over image do f
sigma5A11A21A31A41A51A61A71A8;
chi5 ðintÞðA1 !5A3Þ1 ðintÞðA3 !5A5Þ1 ðintÞðA5 !5A7Þ

1 ðintÞðA7!5A1Þ
12 � ððintÞððA2.A1Þ&&ðA2.A3ÞÞ1ðintÞððA4.A3Þ&&ðA4.A5ÞÞ
1 ðintÞððA6.A5Þ&&ðA6.A7ÞÞ1ðintÞððA8.A7Þ&&ðA8.A1ÞÞÞ;

ifððA0551Þ&&ðchi552Þ&&ðsigma !51ÞÞ f
A050;
finished5false; ==some action has been taken

g
g

g until finished;
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where 3 means either a 0 or a 1: south, east, and west points are defined simi-

larly. It is easy to show that all north points for which χ5 2 and σ 6¼ 1 may be

removed in parallel without any risk of causing a break in the skeleton—and simi-

larly for south, east, and west points. Thus, a possible format for a parallel thin-

ning algorithm in rectangular tessellation is the following:

do f
strip appropriate north points;
strip appropriate south points;
strip appropriate east points;
strip appropriate west points;

g until no further change;

ð9:13Þ

where the basic parallel routine for stripping “appropriate” north points is:

for all pixels in image do f
sigma5A11A21A31A41A51A61A71A8;
chi5 ðintÞðA1 !5A3Þ1ðintÞðA3 !5A5Þ1ðintÞðA5 !5A7Þ

1 ðintÞðA7 !5A1Þ
12 � ððintÞððA2.A1Þ&&ðA2.A3ÞÞ1ðintÞððA4.A3Þ&&ðA4.A5ÞÞ
1 ðintÞððA6.A5Þ&&ðA6.A7ÞÞ1ðintÞððA8.A7Þ&&ðA8.A1ÞÞÞ;

ifððA3550Þ&&ðA0551Þ&&ðA7551Þ==north point
&&ðchi552Þ&&ðsigma !51ÞÞ
B050;

else B05A0;
g

ð9:14Þ

(but extra code needs to be inserted to detect whether any changes have been

made in a given pass over the image).

Algorithms of the above type can be highly effective, although their design

tends to be rather intuitive and ad hoc. In a survey made by the author in 1981

(Davies and Plummer, 1981), a great many such algorithms exhibited problems.

Ignoring cases where the algorithm design was insufficiently rigorous to maintain

connectedness, four other problems were evident:

1. the problem of skeletal bias;

2. the problem of eliminating skeletal lines along certain limbs;

3. the problem of introducing “noise spurs”;

4. the problem of slow speed of operation.

In fact, problems 2 and 3 are opposites in many ways: if an algorithm is

designed to suppress noise spurs, it is liable to eliminate skeletal lines in some

circumstances; contrariwise, if an algorithm is designed never to eliminate skele-

tal lines, it is unlikely to be able to suppress noise spurs. This situation arises

since the masks and conditions for performing thinning are intuitive and ad hoc,

and therefore have no basis for discriminating between valid and invalid skeletal

lines: ultimately this is because it is difficult to build overt global models of real-

ity into purely local operators. In a similar way, algorithms that proceed with cau-

tion, i.e. which do not remove object points in the fear of making an error or

causing bias, tend to be slower in operation than they might otherwise be. Again,
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it is difficult to design algorithms that can make correct global decisions rapidly

via intuitively designed local operators. Hence, a totally different approach is

needed if solving one of the above problems is not to cause difficulties with the

others. Such an alternative approach is discussed in the next section.

9.6.3 Guided Thinning
This section returns to the ideas of Section 9.5.1, where it was found that the local

maxima of the distance function do not form an ideal skeleton because they appear

in clusters and are not connected. In addition, the clusters are often two pixels

wide. On the plus side, the clusters are accurately in the correct positions and

should therefore not be subject to skeletal bias. Hence, an ideal skeleton should

result if (a) the clusters could be reconnected appropriately and (b) the resulting

structure could be reduced to unit width—though, of course, a unit-width skeleton

can only be perfectly unbiased where the object is an odd number of pixels wide.

A simple means of reconnecting the clusters is to use them to guide a conven-

tional thinning algorithm (see Section 9.6.2). As a first stage, thinning is allowed

to proceed normally but with the proviso that no cluster points may be removed.

This gives a connected graph which at certain places is 2 pixels wide. Then a rou-

tine is applied to strip the graph down to unit width. At this stage an unbiased

skeleton (within 1/2 pixel) should result. The main problem here is the presence

of noise spurs. The opportunity now exists to eliminate these systematically by

applying suitable global rules. A simple rule is that of eliminating lines on the

skeletal graph that terminate in a local maximum of value (say) 1 (or, better,

stripping them back to the next local maximum), since such a local maximum

corresponds to fairly trivial detail on the boundary of the object. Thus, the level

of detail that is ignored can be programmed into the system (Davies and

Plummer, 1981). The whole guided thinning process is shown in Fig. 9.11.

9.6.4 A Comment on the Nature of the Skeleton
At the beginning of Section 9.6, the case of character recognition was taken as an

example and it was stated that the skeleton may be supposed to be the path trav-

eled by the pen in drawing out the character. However, in one important respect

this is not valid. The reason is seen both in the analog reasoning and from the

results of thinning algorithms. Take the case of a letter K. The vertical limb on

the left of the skeleton theoretically consists of two linear segments joined by two

parabolic segments leading into the junction (Fig. 9.8). This limb will only

become straight if a higher level model is used to constrain the result.

9.6.5 Skeleton Node Analysis
Skeleton node analysis may be carried out very simply with the aid of the cross-

ing number concept. Points in the middle of a skeletal line have a crossing

2519.6 Skeletons and Thinning



number of 4; points at the end of a line have crossing number 2; points at skeletal

“T” junctions have a crossing number of 6; and points at skeletal “X” junctions

have a crossing number of 8. However, there is a situation to beware of—places

which look like a “1” junction:

0 1 0

1 1 1

0 1 0

In such places the crossing number is actually 0 (see formula), although the pat-

tern is definitely that of a cross. At first the situation seems to be that there is

insufficient resolution in a 33 3 neighborhood to identify a “1 ” cross, the best

option being to look for this particular pattern of 0’s and 1’s and use a more

sophisticated construct than the 33 3 crossing number to check whether or not a

(a) (b)

(c) (d)

FIGURE 9.11

Results of a guided thinning algorithm: (a) distance function on the original shape; (b) set

of local maxima; (c) set of local maxima now connected by a simple thinning algorithm;

(d) final thinned skeleton. The effect of removing noise spurs systematically, by cutting

limbs terminating in a 1 back to the next local maximum, is easily discernible from the

result in (d): the general shape of the object is not perturbed by this process.
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cross is present. The problem is that of distinguishing between two situations

such as:

0 0 0 0 0

0 0 1 0 0

0 1 1 1 0

0 0 1 0 0

0 0 0 0 0

and

0 0 1 0 0

1 0 1 0 0

1 1 1 1 1

0 0 1 0 0

0 0 0 1 0

However, further analysis shows that the first of these two cases would be

thinned down to a dot (or a short bar), so that if a “1” node appears on the final

skeleton (as in the second case) it actually signifies that a cross is present despite

the contrary value of χ. Davies and Celano (1993) have shown that the proper

measure to use in such cases is the modified crossing number χskel5 2σ, this
crossing number being different from χ because it is required not to test whether

points can be eliminated from the skeleton, but to ascertain the meaning of points

that are at that stage known to lie on the final skeleton. Note that χskel can have

values as high as 16—it is not restricted to the range 0�8!

Finally, note that sometimes insufficient resolution really is a problem, in that

a cross with a shallow crossing angle appears as two “T” junctions:

0 0 0 0 0 0 0 1

1 1 1 0 0 1 1 0

0 0 0 1 1 0 0 0

0 1 1 0 0 1 1 1

1 0 0 0 0 0 0 0

Clearly, resolution makes it impossible to recognize an asterisk or more complex

figure from its crossing number, within a 33 3 neighborhood. Probably, the best

solution is to label junctions tentatively, then to consider all the junction labels in

the image, and to analyze whether a particular local combination of junctions

should be reinterpreted—e.g. two “T” junctions may be deduced to form a cross.

This is especially important in view of the distortions that appear on a skeleton in

the region of a junction (see Section 9.6.4).

9.6.6 Application of Skeletons for Shape Recognition
Shape analysis may be carried out simply and conveniently by analysis of skele-

ton shapes and dimensions. Clearly, study of the nodes of a skeleton (points for

which there are other than two skeletal neighbors) can lead to the classification of

simple shapes but not, for example, discrimination of all block capitals from each

other. Many classification schemes exist which can complete the analysis, in

terms of limb lengths and positions, and methods for achieving this are touched

on in later chapters.

A similar situation exists for the analysis of the shapes of chromosomes,

which take the form of a cross or a “V”. For small industrial components, more
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detailed shape analysis is called for; this can still be approached with the skeleton

technique, by examination of distance function values along the lines of the skele-

ton. In general, shape analysis using the skeleton proceeds by examination in turn

of nodes, limb lengths and orientations, and distance function values, until the

required level of characterization is obtained.

The particular importance of the skeleton as an aid in the analysis of con-

nected shapes is not only that it is invariant under translations and rotations but

also that it embodies what is for many purposes a highly convenient representa-

tion of the figure that (with the distance function values) essentially carries all the

original information. If the original shape of an object can be deduced exactly

from a representation, this is generally a good sign since it means that it is not

merely an ad hoc descriptor of shape but that considerable reliance may be placed

on it (compare other methods such as the circularity measure—see Section 9.7).

9.7 OTHER MEASURES FOR SHAPE RECOGNITION
There are many simple tests of shape that can be made to confirm the identity of

objects or to check for items such as defects. These include measurements of

product area and perimeter, length of maximum dimension, moments relative to

the centroid, number and area of holes, area and dimensions of the convex hull

(see below) and enclosing rectangle, number of sharp corners, number of intersec-

tions with a check circle and angles between intersections (Fig. 9.12), and num-

bers and types of skeleton nodes.

The list would not be complete without a mention of the widely used shape

measure C5 area/perimeter2. This quantity is often called “circularity” or “com-

pactness,” since it has a maximum value of 1/4π for a circle, decreases as shapes

become more irregular, and approaches zero for long narrow objects: alterna-

tively, its reciprocal is sometimes used, being called “complexity” since it

increases in size as shapes become more complex. Note that both measures are

dimensionless so that they are independent of size and are therefore sensitive only

C

FIGURE 9.12

Rapid product inspection by polar checking.
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to the shape of an object. Other dimensionless measures of this type include rect-

angularity and aspect ratio.

All these measures have the property of characterizing a shape but not of

describing it uniquely. Thus, it is easy to see that there are in general many differ-

ent shapes having the same values of parameters such as circularity. Hence, these

rather ad hoc measures are on the whole less valuable than approaches such as

skeletonization (Section 9.6) or moments (see below) that can be used to repre-

sent and reproduce a shape to any required degree of precision. Nevertheless, rig-

orous checking of even one measured number to high precision often permits a

machined part to be identified positively.

The use of moments for shape analysis was mentioned above: these are widely

used and should be covered in more detail. In fact, moment approximations pro-

vide a rigorous means of describing 2-D shapes, and take the form of series

expansions of the type:

Mpq 5
X
x

X
y

xpyqf ðx; yÞ (9.15)

for a picture function f(x,y); such a series may be curtailed when the approxima-

tion is sufficiently accurate. By referring axes to the centroid of the shape,

moments can be constructed that are position-invariant: they can also be normal-

ized so that they are invariant under rotation and change of scale (Hu, 1962; see

also Wong and Hall, 1978). The main value of using moment descriptors is that

in certain applications the number of parameters may be made small without sig-

nificant loss of precision—although the number required may not be clear without

tests being made on a range of relevant shapes. Moments can prove particularly

valuable in describing shapes such as cams and other fairly round objects,

although they have also been used in a variety of other applications including

aeroplane silhouette recognition (Dudani et al., 1977).

The convex hull was also mentioned above and has also been used as the basis

for sophisticated, complete descriptions of shapes. The convex hull is defined as

the smallest convex shape that contains the original shape (it may be envisaged as

the shape contained by an elastic band placed around the original shape). The

convex deficiency is defined as the shape that has to be added to a given shape to

create the convex hull (Fig. 9.13). The convex hull may be used as a simple

approximation providing a rapid indication of the extent of an object. A fuller

description of the shape of an object may be obtained by means of concavity

trees: here the convex hull of an object is first obtained with its convex deficien-

cies, then the convex hulls and deficiencies of the obtained convex deficiencies

are found, then the convex hulls and deficiencies of these convex deficiencies—

and so on until all the derived shapes are convex, or until an adequate approxima-

tion to the original shape is obtained. Thus, a tree is formed that can be used for

systematic shape analysis and recognition (Fig. 9.14). We shall not dwell on this

approach beyond noting its inherent utility and that at its core is the need for a

reliable means of determining the convex hull of a shape.
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A simple strategy for obtaining the convex hull is to repeatedly fill in the center

pixel of all neighborhoods that exhibit a concavity, including each of the following:

1 1 1

1 0 0

0 0 0

0 1 1

1 0 0

0 0 0

until no further change occurs. In fact, the shapes obtained by the above approach

are larger than ideal convex hulls and approximate to octagonal (or degenerate

octagonal) shapes. Hence more complex algorithms are required to generate con-

vex hulls, a useful approach involving the use of boundary tracking to search for

positions on the boundary that have common tangent lines.

(a) (b)

FIGURE 9.14

A simple shape and its concavity tree. The shape in (a) has been analyzed by repeated

formation of convex hulls and convex deficiencies until all the constituent regions are

convex (see text). The tree representing the entire process as shown in (b): at each node,

the branch on the left is the convex hull and the branches on the right are convex

deficiencies.

FIGURE 9.13

Convex hull and convex deficiency. The convex hull is the shape enclosed on placing an

elastic band around an object. The shaded portion is the convex deficiency that is added

to the shape to create the convex hull.
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9.8 BOUNDARY TRACKING PROCEDURES
The preceding sections have described methods of analyzing shape on the

basis of body representations such as skeletons and moments. However, an

important approach has so far been omitted—the use of boundary pattern analysis.

This approach has the potential advantage of requiring considerably reduced

computation, since the number of pixels to be examined is equal to the number of

pixels on the boundary of any object rather than the much larger number of

pixels within the boundary. Before proper use can be made of boundary pattern

analysis techniques, means must be found for tracking systematically around the

boundaries of all the objects in an image: in addition, care must be taken not to

ignore any holes that are present or any objects within holes.

In one sense the problem has been analyzed already, in that the object

labeling algorithm of Section 9.3 systematically visits and propagates through

all objects in the image. All that is required now is some means of tracking

round object boundaries once they have been encountered. Quite clearly it

will be useful to mark in a separate image space all points that have been

tracked: alternatively, an object boundary image may be constructed and the

tracking performed in this space, all tracked points being eliminated as they are

passed.

In the latter procedure, objects having unit width in certain places may

become disconnected. Hence, we ignore this approach and adopt the previous

one. There is still a problem when objects have unit-width sections, since these

can cause badly designed tracking algorithms to choose a wrong path, going back

around the previous section instead of on to the next (Fig. 9.15). To avoid this cir-

cumstance it is best to adopt the following strategy:

1. track round each boundary, keeping to the left path consistently;

2. stop the tracking procedure only when passing through the starting point in

the original direction (or passing through the first two points in the same

order).

Apart from necessary initialization at the start, a suitable tracking procedure is

given in Table 9.12.

Having seen how to track around the boundaries of objects in binary images,

we are now in a position to embark on boundary pattern analysis. This is done in

Chapter 10.

9.9 CONCLUDING REMARKS
This chapter has concentrated on rather traditional methods of performing image

analysis—using image processing techniques. This has led naturally to area repre-

sentations of objects, including for example moment and convex hull-based
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schemes, although the skeleton approach appeared as a rather special case in that

it converts objects into graphical structures. An alternative schema is to represent

shapes by their boundary patterns, after applying suitable tracking algorithms: this

latter approach is considered in the following chapter. Meanwhile, connectedness

has been an underlying theme in the present chapter, objects being separated from

each other by regions of background, thereby permitting objects to be considered

and characterized individually. Connectedness has been seen to involve rather

more intricate computations than might have been expected, and this necessitates

great care in the design of algorithms: this must partly explain why after so many

Table 9.12 Basic Procedure for Tracking Around a Single Object

do f
==find direction to move next
start with current tracking direction;
reverse it;
do f

rotate tracking direction clockwise
g until the next 1 is met on outer pixels of 333 neighborhood;
record this as new current direction;
move one pixel along this direction;
increment boundary index;
store current position in boundary list;

guntil ðposition55original positionÞ&&ðdirection55original directionÞ

FIGURE 9.15

A problem with an over-simple boundary tracking algorithm: the boundary tracking

procedure takes a short-cut across a unit-width boundary segment instead of continuing

and keeping to the left path at all times.
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years, new thinning algorithms are still being developed (e.g. Kwok, 1989; Choy

et al., 1995) (ultimately, these complexities arise because global properties of

images are being computed by purely local means).

Although it will turn out that boundary pattern analysis is in certain ways

more attractive than region pattern analysis, this comparison cannot be completely

divorced from considerations of the hardware the algorithms have to run on. In

this respect, note that many of the algorithms of this chapter can be performed

efficiently on SIMD processors, which have one processing element per pixel

(see Chapter 26), whereas boundary pattern analysis will be seen to match better

the capabilities of more conventional serial computers.

Shape analysis can be attempted by boundary or region representations. Both are deeply
affected by connectedness and related metric issues for a digital lattice of pixels. This
chapter has shown that these issues are only solved by carefully incorporating global
knowledge alongside local information—e.g. by use of distance transforms.

9.10 BIBLIOGRAPHICAL AND HISTORICAL NOTES
The development of shape analysis techniques has been particularly extensive:

hence, only a brief perusal of the history is attempted here. The all-important the-

ory of connectedness and the related concept of adjacency in digital images was

developed largely by Rosenfeld (see for example, Rosenfeld, 1970). The connect-

edness concept led to the idea of a distance function in a digital picture

(Rosenfeld and Pfaltz, 1966, 1968), and the related skeleton concept (Pfaltz and

Rosenfeld, 1967). However, the basic idea of a skeleton dates from the classic

work by Blum (1967)—see also Blum and Nagel (1978). Important work on thin-

ning has been carried out by Arcelli et al. (1975, 1981), Arcelli and di Baja

(1985) and parallels work by Davies and Plummer (1981). The latter paper

demonstrates possibilities for limb pruning, and a rigorous method for testing the

results of any thinning algorithm, however generated, and in particular for detect-

ing skeletal bias. More recently, Arcelli and Ramella (1995) have reconsidered

the problem of skeletons in grayscale images. There have also been important

developments to generalize the distance function concept and to make distance

functions uniform and isotropic: see for example Huttenlocher et al. (1993). The

design of a modified crossing number χskel for the analysis of skeletal shape dates

from the same period: as pointed out in Section 9.6.5, χskel is different from χ
since it evaluates the remaining (i.e. skeletal) points rather than points that might

be eliminated from the skeleton (Davies and Celano, 1993).

Sklansky has carried out much work on convexity and convex hull determina-

tion (see for example, Sklansky, 1970; Sklansky et al., 1976), while Batchelor

(1979) developed concavity trees for shape description. Haralick et al. (1987)

have generalized the underlying mathematical (morphological) concepts,
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including the case of grayscale analysis. Use of invariant moments for pattern rec-

ognition dates from the two seminal papers by Hu (1961, 1962). Pavlidis has

drawn attention to the importance of unambiguous (“asymptotic”) shape represen-

tation schemes (Pavlidis, 1980)—as distinct from ad hoc sets of shape measures.

In the early 2000s, skeletons maintained their interest and utility, becoming if

anything more precise by reference to exact analog shapes (Kégl and Krzyżak,

2002), and giving rise to the concept of a shock graph, which characterizes the

result of the much earlier grass-fire transformation (Blum, 1967) more rigorously

(Giblin and Kimia, 2003). Wavelet transforms have also been used to implement

skeletons more accurately in the discrete domain (Tang and You, 2003). In contrast,

shape matching has been carried out using self-similarity analysis coupled with tree

representation—an approach that has been especially valuable for tracking articu-

lated object shapes, including human profiles and hand motions (Geiger et al.,

2003). It is interesting to see graphical analysis of skeletonized hand-written charac-

ter shapes performed taking account of catastrophe theory (Chakravarty and

Kompella, 2003): this is relevant because (a) critical points—where points of inflec-

tion exist—can be deformed into pairs of points each corresponding to a curvature

maximum plus a minimum; (b) crossing of t’s can be actual or non-crossing; and

(c) loops can turn into cusps or corners (many other possibilities also exist). The

point is that methods are needed for mapping between variations of shapes rather

than making snap judgements as to classification (this corresponds to the difference

between scientific understanding of process and ad hoc engineering).

9.10.1 More Recent Developments
More recently, increased attention has been devoted to processing skeletons and

using them for object matching and classification. Bai and Latecki (2008) discuss

how to prune skeletons meaningfully, by ensuring that endpoints of skeleton

branches correspond to visual parts of objects (such as all the legs of a horse).

Once this has been achieved, it should be possible to match objects (such as

horses) in spite of any articulations or contour deformations that may have taken

place. The method is found to permit much more efficient matching and to be

more resistant to partial occlusion: this is because meaningfulness is built into the

final skeleton, while minor intricacies (which may originally have been due to

noise forming tiny holes in the object) will have been eliminated. This approach

is potentially useful for tracking, stereo matching, and database matching. Ward

and Hamarneh (2010) attend to the order in which skeleton branches should be

pruned. They report on several pruning algorithms and quantify their performance

in terms of denoizing, classification, and within-class skeleton similarity mea-

sures. The work is important because of the well-known fact that the medial axis

transform is unstable with respect to minor perturbations on the boundary of a

shape: this means that before skeletons can be used reliably, noise spurs need to

be pruned so that they correspond to the underlying shapes.
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9.11 PROBLEMS
1. Write the full C11 routine required to sort the lists of labels, to be inserted

at the end of the algorithm of Table 9.2.

2. Show that, as stated in Section 9.6.2 for a parallel thinning algorithm, all

north points may be removed in parallel without any risk of causing a break

in the skeleton.

3. Describe methods for locating, labeling and counting objects in binary

images. You should consider whether methods based on propagation from a

“seed” pixel, or those based on progressively shrinking a skeleton to a point,

would provide the more efficient means for achieving the stated aims. Give

examples for objects of various shapes.

4. a. Give a simple one-pass algorithm for labeling the objects appearing in a

binary image, making clear the role played by connectedness. Give exam-

ples showing how this basic algorithm goes wrong with real objects:

illustrate your answer with clear pixel diagrams, which show the numbers

of labels that can appear on objects of different shapes.

b. Show how a table-orientated approach can be used to eliminate multiple

labels in objects. Make clear how the table is set up and what numbers

have to be inserted into it. Are the number of iterations needed to analyze

the table similar to the number that would be needed in a multi-pass

labeling algorithm taking place entirely within the original image?

Consider how the real gain in using a table to analyze the labels arises.

5. a. Using the following notation for a 33 3 window:

A2A3A4

A5

A6 A7 A8

A0 A1

work out the effect of the following algorithm on a binary image contain-

ing small foreground objects of various shapes:

dof
for all pixels in image do f
sum5 ðintÞðA11A3552Þ1 ðintÞðA31A5552Þ

1 ðintÞðA51A7552Þ1 ðintÞðA71A1552Þ;
ifðsum.0Þ B051;else B05A0;

g
for all pixels in image do fA05B0; g

g until no further change;

b. Show in detail how to implement the do ... until no further change func-

tion in this algorithm.

6. a. Give a simple algorithm operating in a 33 3 window for generating a

rectangular convex hull around each object in a binary image. Include
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in your algorithm any necessary code for implementing the required

do ... until no further change function.

b. A more sophisticated algorithm for finding accurate convex hulls is to be

designed. Explain why this would employ a boundary tracking procedure.

State the general strategy of an algorithm for tracking around the bound-

aries of objects in binary images and write a program for implementing it.

c. Suggest a strategy for designing the complete convex hull algorithm and

indicate how rapidly you would expect it to operate, in terms of the size

of the image.

7. a. Explain the meaning of the term distance function. Give examples of the

distance functions of simple shapes, including that shown in Fig. 9.16.

b. Rapid image transmission is to be performed by sending only the coordinates

and values of the local maxima of the distance functions. Give a complete

algorithm for finding the local maxima of the distance functions in an image,

and devise a further algorithm for reconstructing the original binary image.

c. Discuss which of the following sets of data would give more compressed

versions of the binary picture object shown in Fig. 9.16:

i. The list of local maxima coordinates and values.

ii. A list of the coordinates of the boundary points of the object.

iii. A list consisting of one point on the boundary and the relative direc-

tions (each expressed as a 3-bit code) between each pair of boundary

points on tracking round the boundary.

8. a. What is the distance function of a binary image? Illustrate your answer

for the case where a 1283 128 image P contains just the object shown in

Fig. 9.17. How many passes of (i) a parallel algorithm and (ii) a sequen-

tial algorithm would be required to find the distance function of the

image?

FIGURE 9.16

Binary picture object for shape analysis tests.
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b. Give a complete parallel or sequential algorithm for finding the distance

function, and explain how it operates.

c. Image P is to be transmitted rapidly by determining the coordinates of

locations where the distance function is locally maximum. Indicate the

positions of the local maxima, and explain how the image could be recon-

stituted at the receiver.

d. Determine the compression factor η if image P is transmitted in this way.

Show that η can be increased by eliminating some of the local maxima

before transmission, and estimate the resulting increase in η.
9. a. The local maxima of the distance function can be defined in the follow-

ing two ways:

i. Pixels whose values are greater than those of all the neighboring

pixels.

ii. Pixels whose values are greater than or equal to the values of all

the neighboring pixels. Which definition of the local maxima would

be more useful for reproducing the original object shapes? Why is

this?

b. Give an algorithm that is capable of reproducing the original object

shapes from the local maxima of the distance function, and explain how

it operates.

c. Explain the run-length encoding approach to image compression.

Compare the run-length encoding and local maxima methods for com-

pressing binary images. Explain why the one method would be expected

to lead to a greater degree of compression with some types of image

while the other method would be expected to be better with other types

of image.

10. a. Explain how propagation of a distance function may be carried out using

a parallel algorithm. Give in full a simpler algorithm that operates using

two sequential passes over the image.

FIGURE 9.17

Binary picture object for distance function analysis.
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b. It has been suggested that a four-pass sequential algorithm will be even

faster than the two-pass algorithm, as each pass can use just a 1-D win-

dow involving at most three pixels. Write down the code for one typical

pass of the algorithm.

c. Estimate the approximate speeds of these three algorithms for computing

the distance function, in the case of an N3N pixel image. Assume a con-

ventional serial computer is used to perform the computation.

11. Small dark insects are to be located among cereal grains. The insects approx-

imate to rectangular bars of dimensions 203 7 pixels, and the cereal grains

are approximately elliptical with dimensions 403 24 pixels. The proposed

algorithm design strategy is: (i) apply an edge detector which will mark all

the edge points in the image as 0’s in a 1’s background, (ii) propagate a dis-

tance function in the background region, (iii) locate the local maxima of the

distance function, (iv) analyze the values of the local maxima, and (v) carry

out necessary further processing to identify the nearly parallel sides of the

insects. Explain how to design stages (iv) and (v) of the algorithm in order

to identify the insects, ignoring the cereal grains. Assume that the image is

not so large that the distance function will overflow the byte limit.

Determine how robust the method will be if the edge is broken in a few

places.

12. Give the general strategy of an algorithm for tracking around the boundaries

of objects in binary images. If the tracker has reached a boundary point with

crossing number χ5 2 and neighborhood

111
110
100

decide in which direction it should now proceed. Hence, give a complete

procedure for determining the direction code of the next position on the

boundary for cases where χ5 2. Take the direction codes starting from the

current pixel (*) as being specified by the following diagram:

876
1*5
234

How should the procedure be modified for cases where χ 6¼2?

13. a. Explain the principles involved in tracking around the boundaries of

objects in binary images to produce reliable outlines. Outline an algo-

rithm which can be used for this purpose, assuming it is to get its infor-

mation from a normal 33 3 window.

b. A binary image is obtained and the data in it is to be compressed as

much as possible. The following range of algorithms is to be tested for

this purpose:
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i. the boundary image;

ii. the skeleton image;

iii. the image of the local maxima of the distance function;

iv. the image of a suitably chosen subset of the local maxima of the dis-

tance function;

v. a set of run-length data, i.e. a series of numbers obtained by counting

runs of 0’s, then runs of 1’s, then runs of 0’s, and so on, in a continu-

ous line-by-line scan over the image.

c. In (i) and (ii) the lines may be encoded using chain code, i.e. giving the

coordinates of the first point met, and the direction of each subsequent

point using the direction codes 1�8 defined relative to the current posi-

tion C by:

4 3 2

5 C 1

6 7 8

d. With the aid of suitably chosen examples, discuss which of the methods

of data compression should be most suitable for different types of data.

Wherever possible, give numerical estimates to support your arguments.

e. Indicate what you would expect to happen if noise were added to initially

noise-free input images.

14. Test the two-mask strategy outlined in Section 9.7 for obtaining the convex

hulls of binary picture objects. Confirm that it operates consistently, and

give a geometrical construction that predicts the final shapes it produces.

What happens if either the first or the second mask is used on its own? Show

that the two-mask strategy will operate both as a sequential and as a parallel

algorithm. Devise a version of the algorithm that does not permit nearby

shapes to be merged.
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CHAPTER

10 Boundary Pattern Analysis

Recognition of binary objects by boundary pattern analysis should be a straightfor-

ward process, but this chapter shows that there are a number of problems to be

overcome. In particular, any boundary distortions such as those due to breakage or

several objects being in contact may result in total failure of the matching process.

This chapter discusses the problems and their solution.

Look out for:

• the centroidal profile approach and its limitations.

• how the method may be speeded up.

• how recognition based on the (s, ψ) boundary plot is significantly more robust.

• how the (s, ψ) plot leads on to the more convenient (s, κ) plot.
• the relation between κ and ψ.
• more rigorous ways of dealing with the occlusion problem.

• discussion of the accuracy of boundary length measures.

Disparate ways are available for representing object boundaries and for mea-

suring and recognizing objects using them. All the methods are subject to the

same ultimate difficulties—particularly that of managing occlusion (which neces-

sarily removes relevant data), and that of inaccuracy in the pixel-based descrip-

tion. Sound ways of managing occlusion are indicated in Section 10.6. This work

presages later chapters where methods such as the Hough transform are widely

employed for robust object recognition.

10.1 INTRODUCTION
Chapter 4 has shown how thresholding may be used to binarize grayscale images

and hence to present objects as 2-D shapes. However, that method of segmenting

objects is successful only when considerable care is taken with lighting and when

the object can be presented conveniently, e.g., as dark patches on a light
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background. In other cases, adaptive thresholding may help to achieve the same

end: as an alternative, edge detection schemes can be applied, which are generally

rather more resistant to problems of lighting. Nevertheless, thresholding of edge-

enhanced images still gives certain problems: in particular, edges may peter out

in some places and may be thick in others (Fig. 10.1). For many purposes, the

output of an edge detector is ideally a connected unit-width line around the

periphery of an object and steps need to be taken to convert edges to this form—

if this has not already been achieved using a Canny or other operator employing

nonmaximum suppression (see Chapter 5).

(a) (b)

(c) (d)

FIGURE 10.1

Some problems with edges. The edge-enhanced image (b) from an original image (a) is thresholded as in

(c). The edges so detected are found to peter out in some places and to be thick in other places. A thinning

algorithm is able to reduce the edges to unit thickness (d) but ad hoc (i.e., not model-based) linking

algorithms are liable to produce erroneous results (not shown).
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Thinning algorithms can be used to reduce edges to unit thickness while main-

taining connectedness (Fig. 10.1(d)). Many algorithms have been developed for

this purpose, and the main problems here are: (a) slight bias and inaccuracy due to

uneven stripping of pixels, especially in view of the fact that even the best algo-

rithm can only produce a line that is locally within 1/2 pixel of the ideal position;

and (b) introduction of a certain number of noise spurs. The first problem can be

minimized by using grayscale edge thinning algorithms, which act directly on the

original grayscale edge-enhanced image (e.g., Paler and Kittler, 1983). Noise spurs

around object boundaries can be eliminated quite efficiently by removing lines

that are shorter than (say) 3 pixels. Overall, the major problem to be dealt with is

that of reconnecting boundaries that have become fragmented during thresholding.

A number of rather ad hoc schemes are available for relinking broken bound-

aries: e.g., line ends may be extended along their existing directions—a very lim-

ited procedure since there are (at least for binary edges) only eight possible

directions, and it is quite possible for the extended line ends not to meet. Another

approach is to join line ends that are sufficiently close together and point in simi-

lar directions, both to each other and to the direction of the vector between the

two ends. In fact, this approach can be made quite credible in principle, but in

practice it can lead to all sorts of problems as it is still ad hoc and not model

driven. Hence, adjacent lines that arise from genuine surface markings and sha-

dows may be arbitrarily linked together by such algorithms. In many situations, it

is therefore best if the process is model driven—e.g., by finding the best fit to

some appropriate idealized boundary such as an ellipse. Yet another approach is

that of relaxation labeling, which iteratively enhances the original image, progres-

sively making decisions as to where the original gray levels reinforce each other.

Thus, edge linking is permitted only where evidence is available in the original

image that this is appropriate. A similar but computationally more efficient line

of attack is the hysteresis thresholding method described in Chapter 5. Here inten-

sity gradients above a certain upper threshold are taken to give definite indication

of edge positions, whereas those above a second, lower threshold are taken to

indicate edges only if they are adjacent to positions that have already been

accepted as edges (for a more detailed analysis, see Section 5.10).

It may be thought that the Marr�Hildreth and related (Laplacian-based) edge

detectors do not run into these problems, because they give edge contours that are

necessarily connected. However, the result of using methods that force connected-

ness is that sometimes (e.g., when edges are diffuse, or of low contrast, so that

image noise is an important factor) parts of a contour will lack meaning; indeed, a

contour may meander over such regions following noise rather than useful object

boundaries. Furthermore, it is as well to note that the problem is not merely one of

pulling low-level signals out of noise, but rather that sometimes there is no signal at

all present that could be enhanced to a meaningful level. Reasons for this include

lighting being such as to give zero contrast (as, e.g., when a cube is lit in such a

way that two faces have equal brightness) and occlusion. Lack of spatial resolution

can also cause problems by merging together several lines on an object.
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In what follows, it is assumed that all of these problems have been overcome

by sufficient care with the lighting scheme, appropriate digitization, and other

means. It is also assumed that suitable thinning and linking algorithms have been

applied so that all objects are outlined by connected unit-width boundary lines.

At this stage, it should be possible to locate the objects from the boundary image,

and to identify and orientate them accurately.

10.2 BOUNDARY TRACKING PROCEDURES
Before objects can be matched with their boundary patterns, means must be found

for tracking systematically around the boundaries of all the objects in an image.

Means have already been demonstrated for achieving this in the case of regions

such as those that result from intensity thresholding routines (Chapter 9).

However, if a connected unit-width boundary is formed by an alternative process

such as edge detection, the problem of tracking is much simpler, since it is neces-

sary only to move repeatedly to the next edge pixel. Clearly, it is necessary to

ensure that we (a) never reverse direction, (b) know when we have been round

the whole boundary once, and (c) record which object boundaries have been

encountered. As when tracking around regions, we must ensure that in each case

we end by passing through the starting point in the same direction.

10.3 CENTROIDAL PROFILES
The substantial matching problems that occur with 2-D template matching make

it attractive to attempt to locate objects in a less demanding search space. In fact,

it is possible to achieve this very simply by matching the boundary of each object

in a single dimension. Perhaps the most obvious such scheme uses an (r, θ) plot.
Here the centroid of the object is first located,1 and then a polar coordinate sys-

tem is set up relative to this point and the object boundary is plotted as an (r, θ)
graph—often called a “centroidal profile” (Fig. 10.2). Next, the 1-D graph so

obtained is matched against the corresponding graph for an idealized object of the

same type. Since objects generally have arbitrary orientation, it is necessary to

“slide” the idealized graph along that obtained from the image data until the best

match is obtained. The match for each possible orientation αj of the object is

commonly tested by measuring the differences in radial distance between the

boundary graph B and the template graph T for various values of θ and summing

their squares to give a difference measure Dj for the quality of the fit:

Dj 5
X
i

½rBðθiÞ2 rTðθi 1αjÞ�2 (10.1)

1Note that the position of the centroid is deducible directly from the list of boundary pixel coordina-

tes—there is no need to start with a region-based description of the object for this purpose.
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Alternatively, the absolute magnitudes of the differences are used:

Dj 5
X
i

rBðθiÞ2 rTðθi 1αjÞ
�� �� (10.2)

The latter measure has the advantage of being easier to compute and less biased by

extreme or erroneous difference values. Note that the basic 2-D matching operation

has now been reduced to 1-D, and if we need work in 1� steps, the orientation indices

i and j will each have to range over 360 values. The result is that the number of

operations that are required to test each object drops to around 3602 (i.e., B100,000),

so boundary pattern analysis should give a very substantial saving in computation.

The 1-D boundary pattern matching approach described above is able to identify

objects and also to find their orientations. In fact, initial location of the centroid of

the object also solves one other part of the problem as specified at the end of

Section 10.1. At this stage, it may be noted that the matching process also leads to

the possibility of inspecting the object’s shape as an inherent part of the process

(Fig. 10.2). In principle, this combination of capabilities makes the centroidal profile

technique quite powerful.

Finally, note that the method is able to cope with objects of identical shapes

but different sizes. This is achieved by using the maximum value of r to normalize

the profile, giving a variation (ρ, θ) where ρ5 r/rmax.

10.4 PROBLEMS WITH THE CENTROIDAL
PROFILE APPROACH

In practice, there are several problems with the procedure outlined in

Section 10.3. First, any major defect or occlusion of the object boundary can

cause the centroid to be moved away from its true position, and the matching pro-

cess will be largely spoiled (Fig. 10.3). Thus, instead of concluding that this is an

object of type X with a specific part of its boundary damaged, the algorithm will

most probably not recognize it at all. Such behavior would be inadequate in many

(a) (b)

0

r

π 2π θ

FIGURE 10.2

Centroidal profiles for object recognition and scrutiny: (a) hexagonal nut shape in which

one corner has been damaged; (b) centroidal profile, which permits both straightforward

identification of the object and detailed scrutiny of its shape.
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automated inspection applications, where positive identification and fault-finding

are required, and the object would have to be rejected without a satisfactory diagnosis

being made.

Second, the (r, θ) plot will be multivalued for a certain class of object

(Fig. 10.4). This has the effect of making the matching process partly 2-D and

leads to complication and excessive computation.

Third, the very variable spacing of the pixels when plotted in (r, θ) space is a

source of complication. It leads to the requirement for considerable smoothing of

the 1-D plots, especially in regions where the boundary comes close to the cen-

troid—as for elongated objects such as spanners or screwdrivers (Fig. 10.5); how-

ever, in other places accuracy will be greater than necessary and the overall

process will be wasteful. The problem arises because quantization should ideally

be uniform along the θ-axis so that the two templates can be moved conveniently

relative to one another to find the orientation of best match.

Finally, computation times can still be quite significant, so some timesaving

procedure is required.

10.4.1 Some Solutions
All four of the above-described problems can be tackled in one way or another,

with varying degrees of success. The first problem, that of coping with occlusions

0 π/2 π 3π/2 2π
θ

0 π/2 π 3π/2 2π
θ

(a) (b)

rr

C′

C

FIGURE 10.3

Problems with the centroidal profile descriptor. (a) A circular object with a minor defect on

its boundary; its centroidal profile appears beneath it. (b) The same object, this time with

a gross defect: because the centroid is shifted to C0, the whole of the centroidal profile is

grossly distorted.
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and gross defects, is probably the most fundamental and the most resistant to sat-

isfactory solution. For the method to work successfully, a stable reference point

must be found within the object. The centroid is naturally a good candidate for

this since the averaging inherent in its location tends to eliminate most forms of

FIGURE 10.5

A problem in obtaining a centroidal profile for elongated objects. This figure highlights the

pixels around the boundary of an elongated object—a spanner—showing that it will be

difficult to obtain an accurate centroidal profile for the region near the centroid.

r

0

0
P s

κ
π θ2π

FIGURE 10.4

Boundary pattern analysis via (r, θ) and (s, κ) plots.
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noise or minor defect: however, major distortions such as those arising from

breakages or occlusions are bound to affect it adversely. The centroid of the

boundary is no better, and may also be less successful at suppressing noise. Other

possible candidates are the positions of prominent features such as corners, holes,

centers of arcs, and so on. In general, the smaller such a feature, the more likely

it is to be missed altogether in the event of a breakage or occlusion, although the

larger such a feature, the more likely it is to be affected by the defect. In fact, cir-

cular arcs can be located accurately (at their centers) even if they are partly

occluded (see Chapter 12), so these features are very useful for leading to

suitable reference points. A set of symmetrically placed holes may sometimes be

suitable, since even if one of them is obscured, one of the others is likely to be

visible and can act as a reference point.

Clearly, such features can help the method to work adequately but their pres-

ence also calls into question the value of the 1-D boundary pattern matching pro-

cedure, since they make it likely that superior methods can be used for object

recognition (see later chapters in Part 2). For the present, we therefore accept that

(a) severe complications arise when part of an object is missing or occluded and

(b) it may be possible to provide some degree of resistance to such problems by

using a prominent feature as a reference point instead of the centroid. Indeed, the

only significant further change that is required to cope with occlusions is that dif-

ference (rB2 rT) values greater than (say) 3 pixels should be ignored, and the

best match then becomes one for which the greatest number of values of θ gives

good agreement between B and T.

The second problem, of multivalued (r, θ) plots, is solved very simply by

employing the heuristic of taking the smallest value of r for any given θ and then

proceeding with matching as normal (here it is assumed that the boundaries of

any holes present within the boundary of the object are dealt with separately,

information about any object and its holes being collated at the end of the recog-

nition process). This ad hoc procedure should in fact be acceptable when making

a preliminary match of the object to its 1-D template, and may be discarded at a

later stage when the orientation of the object is known accurately.

The third problem described above arises because of uneven spacing of the

pixel boundaries along the θ dimension of the (r, θ) graph. To some extent this

problem can be avoided by deciding in advance on the permissible values of θ
and querying a list of boundary points to find which has the closest θ to each per-

missible value. Some local smoothing of the ordered set of boundary points can

be undertaken but this is in principle unnecessary, since for a connected bound-

ary, there will always be 1 pixel, which is closest to a line from the centroid at a

given value of θ.
The two-stage approach to matching hinted in Section 10.3 can also be used

to help with the last of the problems mentioned above—the need to speed up the

processing. First, a coarse match is obtained between the object and its 1-D tem-

plate by taking θ in relatively large steps of (say) 5� and ignoring intermediate

angles in both the image data and the template, and then a better match is
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obtained by making fine adjustments to the orientations, obtaining a match to

within 1�. In this way, the coarse match is obtained perhaps 20 times faster than

the previous full match, whereas the final fine match takes a relatively short time,

since very few distinct orientations have to be tested.

This two-stage process can be optimized by making a few simple calculations.

The coarse match is given by increasing the θ incrementation step to δθ, so the

computational load is proportional to (360/δθ)2, whereas the load for the fine

match is proportional to 360δθ, giving a total load of:

λ5
360

δθ

� �2

1 360δθ (10.3)

This should be compared with the original load of:

λ0 5 3602 (10.4)

Hence, the load is reduced (and the algorithm speeded up) by the factor:

η5
λ0

λ
5

1

ð1=δθÞ2 1ðδθ=360Þ (10.5)

This is a maximum for dη=dδθ5 0, giving:

δθ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 360

3
p

� 9� (10.6)

In practice, this value of δθ is rather large and there is a risk that the coarse

match will give such a poor fit that the object will not be identified: hence, values

of δθ in the range 2�5� are more usual (see, e.g., Berman et al., 1985). Note that

the optimum value of η is 26.8 and this reduces only to 18.6 for δθ5 5�, although
it goes down to 3.9 for δθ5 2�.

Another way of approaching the problem is to search the (r, θ) graph for some

characteristic feature such as a sharp corner (this step constituting the coarse

match), and then to perform a fine match around the object orientation so

deduced. Clearly, there are possibilities of error here, in situations where objects

have several similar features—as in the case of a rectangle: however, the individ-

ual trials are relatively inexpensive and so it is worth invoking this procedure if

the object possesses appropriate well-defined features. Note that it is possible to

use the position of the maximum value, rmax, as an orientating feature, but this is

frequently inappropriate because a smooth maximum gives a relatively large

angular error.

10.5 THE (s, ψ) PLOT
It can be seen from the above considerations that boundary pattern analysis

should usually be practicable except when problems from occlusions and gross

defects can be expected. However, these latter problems do give motivation for
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employing alternative methods if these can be found. In fact, the (s, ψ) graph has

proved particularly popular since it is inherently better suited than the (r, θ) graph
to situations where defects and occlusions may occur. In addition, it does not suffer

from the multiple values encountered by the (r, θ) method.

The (s, ψ) graph does not require prior estimation of the centroid or some other

reference point since it is computed directly from the boundary, in the form of a plot

of the tangential orientation ψ as a function of boundary distance s. The method is

not without its problems and, in particular, distance along the boundary needs to be

measured accurately. The commonly used approach is to count horizontal and verti-

cal steps as unit distance and to take diagonal steps as distance
ffiffiffi
2

p
; in fact, this idea

must be regarded as a rather ad hoc solution, and the situation is discussed further in

Section 10.7.

When considering application of the (s, ψ) graph for object recognition, it will

immediately be noticed that the graph has a ψ value that increases by 2π for each cir-

cuit of the boundary, i.e., ψ(s) is not periodic in s. The result is that the graph

becomes essentially 2-D, i.e., the shape has to be matched by moving the ideal object

template both along the s-axis and along the ψ-axis directions. Ideally, the template

could be moved diagonally along the direction of the graph. However, noise and

other deviations of the actual shape relative to the ideal shape mean that in practice

the match must be at least partly 2-D, hence adding to the computational load.

One way of tackling this problem is to make a comparison with the shape of a

circle of the same boundary length P. Thus, an (s, Δψ) graph is plotted, which

reflects the difference Δψ between the ψ expected for the shape and that expected

for a circle of circumference P:

Δψ5ψ 2
2πs
P

� �
(10.7)

This expression helps to keep the graph 1-D, since Δψ automatically resets

itself to its initial value after one circuit of the boundary (i.e., Δψ is periodic in s).

Next note that the Δψ(s) variation depends on the starting position where

s5 0 and this is randomly sited on the boundary. It is useful to eliminate this

dependence, and this may be achieved by subtracting from Δψ its mean value μ.
This gives the new variable:

ψ~5ψ2
2πs
P

� �
2μ (10.8)

At this stage, the graph is completely 1-D and is also periodic, being similar in

these respects to an (r, θ) graph. Matching should now reduce to the straightfor-

ward task of sliding the template along the ψ~ ðsÞ graph until a good fit is achieved.

At this point, there should be no problems so long as (a) the scale of the object

is known and (b) occlusions or other disturbances cannot occur. Suppose next that

the scale is unknown: then the perimeter P may be used to normalize the value of

s. If, however, occlusions can occur, then no reliance can be placed on P for

27510.5 The (s, ψ) PLOT



normalizing s and hence the method cannot be guaranteed to work. This problem

does not arise if the scale of the object is known, since a standard perimeter PT

can be assumed. However, the possibility of occlusion gives further problems,

which are discussed in the Section 10.6.

Another way in which the problem of nonperiodic ψ(s) can be solved is by

replacing ψ by its derivative dψ/ds. Then the problem of constantly expanding

ψ (which results in its increase by 2π after each circuit of the boundary) is

eliminated—the addition of 2π to ψ does not affect dψ/ds locally, since

d(ψ12π)/ds5 dψ/ds. Note that dψ/ds is actually the local curvature function

κ(s) (see Fig. 10.4), so the resulting graph has a simple physical interpretation.

Unfortunately, this version of the method has its own problems in that κ
approaches infinity at any sharp corner. For industrial components, which fre-

quently have sharp corners, this is a genuine practical difficulty and may be

tackled by approximating adjacent gradients and ensuring that κ integrates to

the correct value in the region of a corner (Hall, 1979).

Many workers take the (s, κ) graph idea further and expand κ(s) as a Fourier

series:

κðsÞ5
XN

n52N

cnexp
2πins
P

� �
(10.9)

This results in the well-known Fourier descriptor method. In this method,

shapes are analyzed in terms of a series of Fourier descriptor components, which

are truncated to zero after a sufficient number of terms. Unfortunately, the amount

of computation involved in this approach is considerable and there is a tendency

to approximate curves with relatively few terms. In industrial applications, where

computations have to be performed in real time, this can generate problems, so it

is often more appropriate to match to the basic (s, κ) graph. In this way, critical

measurements between object features can be made with adequate accuracy in

real time.

10.6 TACKLING THE PROBLEMS OF OCCLUSION
Whatever means are used for tackling the problem of continuously increasing ψ,
problems still arise when occlusions occur. However, the approach is not immedi-

ately invalidated by missing sections of boundary as it is for the basic (r, θ)
method. As noted in Section 10.5, a major effect of occlusions is that the perimeter

of the object is altered, so P can no longer be used to indicate its scale. Hence, the

latter has to be known in advance: this is assumed in what follows. Another practi-

cal result of occlusions is that certain sections correspond correctly to parts of the

object, whereas other sections correspond to parts of occluding objects; alterna-

tively, they may correspond to unpredictable boundary segments where damage

has occurred. Note that if the overall boundary is that of two overlapping objects,

the observed perimeter PB will be greater than the ideal perimeter PT.
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Segmenting the boundary between relevant and irrelevant sections is, a priori,

a difficult task. However, a useful strategy is to start by making positive matches

wherever possible and to ignore irrelevant sections—i.e., try to match as usual,

ignoring any section of the boundary that is a bad fit. We can imagine achieving

a match by sliding the template T along the boundary B. However, a problem

arises since T is periodic in s and should not be cut off at the ends of the range

0# s#PT. As a result, it is necessary to attempt to match over a length 2PT. At

first sight, it might be thought that the situation ought to be symmetrical between

B and T. However, T is known in advance, whereas B is partly unknown, there

being the possibility of one or more breaks in the ideal boundary into which for-

eign boundary segments have been included. Indeed, the positions of the breaks

are unknown, so it is necessary to try matching the whole of T at all positions on

B. Taking a length 2PT in testing for a match effectively permits the required

break to arise in T at any relevant position: (see Fig. 10.6).

When carrying out the match, we basically use the difference measure:

Djk 5
X
i

½ψBðsiÞ2ðψTðsi 1 skÞ1αjÞ�2 (10.10)

where j and k are the match parameters for orientation and boundary displace-

ment, respectively. Note that the resulting Djk is roughly proportional to the

length L of the boundary over which the fit is reasonable. Unfortunately, this

means that the measure Djk appears to improve as L decreases; hence, when vari-

able occlusions can occur, the best match must be taken as the one for which the

greatest length L gives good agreement between B and T (this may be measured

0

κB

κT

PB

PT 2PT

s

s0

(a) (b)

T B

FIGURE 10.6

Matching a template against a distorted boundary. When a boundary B is broken (or partly

occluded) but continuous, it is necessary to attempt to match between B and a template

T that is doubled to length 2PT, to allow for T being severed at any point: (a) the basic

problem and (b) matching in (s, κ) space.
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as the greatest number of values of s in the sum of Eq. (10.10), which gives good

agreement between B and T, i.e., the sum over all i such that the difference in

square brackets is numerically less than, say, 5�).
If the boundary is occluded in more than one place, then L is at most the largest

single length of unoccluded boundary (not the total length of unoccluded boundary),

since the separate segments will in general be “out of phase” with the template.

This is a disadvantage when trying to obtain an accurate result, since extraneous

matches add noise, which degrades the fit that is obtainable—hence adding to the

risk that the object will not be identified and reducing accuracy of registration. This

suggests that it might be better to use only short sections of the boundary template

for matching. Indeed, this strategy can be advantageous since speed is enhanced

and registration accuracy can be retained or even improved by careful selection of

salient features (note that nonsalient features such as smooth curved segments could

have originated from many places on object boundaries and are not very helpful for

identifying and accurately locating objects: hence, it is reasonable to ignore them).

In this version of the method, we now have PT,PB, and it is necessary to match

over a length PT rather than 2PT, since T is no longer periodic (Fig. 10.7). Once

various segments have been located, the boundary can be reassembled as closely as

possible into its full form, and at that stage defects, occlusions, and other distortions

can be recognized overtly and recorded. Reassembly of the object boundaries can

be performed by techniques such as the Hough transform and relational pattern

matching techniques (see Chapters 13 and 14). Work of this type has been carried

out by Turney et al. (1985), who found that the salient features should be short

boundary segments where corners and other distinctive “kinks” occur.

Before leaving this topic, note that ψ~ can no longer be used when occlusions

are present, since although the perimeter can be assumed to be known, the mean

value of Δψ (Eq. (10.8)) cannot be deduced. Hence, the matching task reverts to

B

T

PB0

ψ

s

FIGURE 10.7

Matching a short template to part of a boundary. A short template T, corresponding to part

of an idealized boundary, is matched against the observed boundary B. Strictly speaking,

matching in (s, ψ) space is 2-D, although there is very little uncertainty in the vertical

(orientation) dimension.
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a 2-D search (although, as stated earlier, very little unrestrained search in the ψ
direction need be made). However, in the case when small salient features are

being sought, it is a reasonable working assumption that no occlusion occurs in

any of the individual cases—a feature is either entirely present or entirely absent.

Hence, the average slope ψ over T can validly be computed (Fig. 10.7) and this

again reduces the search to 1-D (Turney et al., 1985).

Overall, missing sections of object boundaries necessitate a fundamental

rethink as to how boundary pattern analysis should be carried out. For quite small

defects the (r, θ) method is sufficiently robust but in less trivial cases it is vital to use

some form of the (s, ψ) approach, while for really gross occlusions it is not particu-

larly useful to try to match for the full boundary: rather it is better to attempt to match

small salient features. This sets the scene for the Hough transform and relational

pattern matching techniques of later chapters.

10.7 ACCURACY OF BOUNDARY LENGTH MEASURES
Next we examine the accuracy of the idea expressed earlier, that adjacent pixels

on an 8-connected curve should be regarded as separated by 1 pixel if the vector

joining them is aligned along the major axes and by
ffiffiffi
2

p
pixels if the vector is in a

diagonal orientation. In general, this estimator overestimates the distance along the

boundary. The reason for this is quite simple to see by appealing to the following

pair of situations:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
?

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
?

In either case we are considering only the top of the object. In the first example, the

boundary length along the top of the object is exactly that given by the rule. However,

in the second case the estimated length is increased by amount
ffiffiffi
2

p
21 because of the

step. Now as the length of the top of the object tends to large values, say p pixels, the

actual length approximates to p, whereas the estimated length is p1
ffiffiffi
2

p
21; thus, a

definite error exists. Indeed, this error initially increases in importance as p decreases,

since the actual length of the top of the object (when there is one step) is still:

L5 ð11 p2Þ1=2� p (10.11)

so the fractional error is:

ξ �
ffiffiffi
2

p
2 1

p
(10.12)

which increases as p becomes smaller.
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This result can be construed as meaning that the fractional error ξ in estimating

boundary length increases initially as the boundary orientation ψ increases from zero.

A similar effect occurs as the orientation decreases from 45�. Thus, the ξ variation

possesses a maximum between 0� and 45�. This systematic overestimation of bound-

ary length may be eliminated by employing an improved model in which the length

per pixel is sm along the major axis directions and sd in diagonal directions. A com-

plete calculation (Kulpa, 1977; see also Dorst and Smeulders, 1987) shows that:

sm 5 0:948 (10.13)

and

sd 5 1:343 (10.14)

It is perhaps surprising that this solution corresponds to a ratio sd/sm that is still

equal to
ffiffiffi
2

p
; although the arguments given above make it obvious that sm should

be less than unity.

Unfortunately, an estimator that has just two free parameters can still permit

quite large errors in estimating the perimeters of individual objects. To reduce

this problem, it is necessary to perform more detailed modeling of the step pattern

around the boundary (Koplowitz and Bruckstein, 1989), which seems certain to

increase the computational load significantly.

It is important to underline that the basis of this work is to estimate the length

of the original continuous boundary rather than that of the digitized boundary: fur-

thermore, it must be noted that the digitization process loses information, so the

best that can be done is to obtain the best estimate of the original boundary length.

Thus, employing the values 0.948 and 1.343 given above, rather than the values

1 and
ffiffiffi
2

p
; reduces the estimated errors in boundary length measurement from 6.6%

to 2.3%—but then only under certain assumptions about correlations between orien-

tations at neighboring boundary pixels (Dorst and Smeulders, 1987).

10.8 CONCLUDING REMARKS
This chapter is concerned with boundary pattern analysis. The boundary patterns

were imagined to arise from edge detection operations that have been processed

to make them connected and of unit width. However, if intensity thresholding

methods were employed for segmenting images, boundary tracking procedures

would also permit the boundary pattern analysis methods of this chapter to be

used. Conversely, if edge detection operations led to the production of connected

boundaries, these could be filled in by suitable algorithms (which are more tricky

to devise than might at first be imagined) (Ali and Burge, 1988) and converted to

regions to which the binary shape analysis methods of Chapter 9 could be applied.

Hence, shapes are representable in region or boundary form: if they initially arise

in one representation, they may be converted to the alternate representation. This

means that boundary or regional means may be employed for shape analysis, as

appropriate.
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An important factor here is that a positive advantage is often gained by

employing boundary pattern analysis, since computation should be inherently

lower (in proportion to the numbers of pixels that are required to describe the

shapes in the two representations). Another important determining factor that is

discussed in the present chapter is that of occlusion. If occlusions are present, then

several of the methods described in Chapter 9 will operate incorrectly—as also

happens for the basic centroidal profile method described in Section 10.3. The

(s, ψ) method then provides a good starting point. As has been seen, this is best

applied to detect small salient boundary features, which can then be reassembled

into whole objects by relational pattern matching techniques (see especially

Chapter 14).

A variety of boundary representations is available for shape analysis. However, this chapter
has shown that intuitive schemes raise fundamental robustness issues: these will only be
resolved later on by forgoing deduction in favor of inference. Underlying analog shape
estimation in a digital lattice is also an issue.

10.9 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Many of the techniques described in this chapter have been known since the early

days of image analysis. Boundary tracking has been known since 1961 when

Freeman introduced his chain code. Indeed, Freeman (1974) is responsible for

much subsequent work in this area. Freeman (1978) introduced the notion of seg-

menting boundaries at “critical points” in order to facilitate matching:

suitable critical points were corners (discontinuities in curvature), points of inflec-

tion, and curvature maxima. This work is clearly strongly related to that of Turney

et al. (1985). Early work on Fourier boundary descriptors using the (r, θ) and (s, ψ)
approaches was carried out by Rutovitz (1970), Barrow and Popplestone (1971),

and Zahn and Roskies (1972); another notable paper in this area is by Persoon and

Fu (1977). In an interesting development, Lin and Chellappa (1987) were able to

classify partial (i.e., nonclosed) 2-D curves using Fourier descriptors.

At the beginning of the chapter it was noted that there are significant problems

in obtaining a thin connected boundary for every object in an image. Since 1988,

the concept of active contour models (or “snakes”) solved many of these problems.

See Chapter 5 for an introduction to snakes and Chapter 22 for their application to

vehicle location.

It is worth remarking on the increased attention to accuracy evident over the

past 20�30 years: this is seen, e.g., in the length estimators for digitized bound-

aries discussed in Section 10.7 (see Kulpa, 1977; Dorst and Smeulders, 1987;

Beckers and Smeulders, 1989; Koplowitz and Bruckstein, 1989; Davies, 1991).

For a later update on the topic, see Coeurjolly and Klette (2004).

In recent times, there has been an emphasis on characterizing and classifying

families of shapes rather than just individual isolated shapes: (see in particular

Cootes et al. (1992), Amit (2002), and Jacinto et al. (2003)). Klassen et al. (2004)
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provide a further example of this in their analysis of planar (boundary) shapes using

geodesic paths between the various shapes of the family. In their work, they employ

the Surrey fish database (Mokhtarian et al., 1996). The same general idea is also

manifest in the self-similarity analysis and matching approach of Geiger et al.

(2003), which they used for human profile and hand motion analysis. Horng (2003)

describes an adaptive smoothing approach for fitting digital planar curves with line

segments and circular arcs. The motivation for this approach is to obtain signifi-

cantly greater accuracy than can be achieved with the widely used polygonal

approximation, yet with lower computational load than the spline fitting type of

approach. It can also be imagined that any fine accuracy restriction imposed by a

line plus circular arc model will have little relevance in a discrete lattice of pixels.

da Gama Leitão and Stolfi (2002) have developed a multiscale contour-based

method for matching and reassembling 2-D fragmented objects. Although this

method is targeted at reassembly of pottery fragments in archeology, the authors

imply that it is also likely to be of value in forensic science, in art conservation and

in assessing the causes of failure of mechanical parts following fatigue and the like.

Two useful books are available that cover the subjects of shape and shape anal-

ysis in rather different ways: one is by Costa and Cesar (2000) and the other is by

Mokhtarian and Bober (2003). The former is fairly general in coverage, but

emphasizes Fourier methods, wavelets, and multiscale methods. The latter sets up

a scale-space (especially curvature scale-space) representation (which is multiscale

in nature), and develops the subject quite widely from there.

10.9.1 More Recent Developments
Ghosh and Petkov (2005) have described problems relating to the robust interpre-

tation of incomplete object boundaries. They discuss the problems in relation to

the ICR test—viz. assessing recognition rate performance as a function of the per-

centage of the contour retained, where deletions may occur either as segment dele-

tions, or as occlusions, or as random pixel deletions. Experiments showed that

occlusion was the most, and random pixel deletion the least, serious problem. Mori

et al. (2005) considered problems relating to 3-D shape recognition from multiple

2-D views. They found that “shape contexts” were particularly important for effi-

cient matching in such situations, shape contexts corresponding to representing

shapes by a set of n samples on an object and examining the distribution of relative

positions. This technique permitted shape matching to take place efficiently in two

stages—fast pruning of possibilities followed by detailed matching.

10.10 PROBLEMS
1. Devise a program for finding a thinned (8-connected) boundary of an object

in a binary image.
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2. a. Describe the centroidal profile approach to shape analysis. Illustrate your

answer for a circle, a square, a triangle, and defective versions of these

shapes.

b. Obtain a general formula expressing the shape a straight line presents in

the centroidal profile.

c. Show that there are two means of recognizing objects from their centroidal pro-

files, one involving analysis of the profile and the other involving comparison

with a template.

d. Show how the latter approach can be speeded up by implementing it in

two stages, first at low resolution, and then at full resolution. If the low

resolution has 1/n of the detail of the full resolution, obtain a formula for

the total computational load. Estimate from the formula for what value of

n the load will be minimized. Assume that the full angular resolution

involves 360 one-degree steps.

3. a. Give a simple algorithm for eliminating salt and pepper noise in binary

images, and show how it can be extended to eliminate short spurs on objects.

b. Show that a similar effect can be achieved by a “shrink”1 “expand” type

of procedure. Discuss how much such procedures affect the shapes of

objects: give examples illustrating your arguments, and try to quantify

exactly what sizes and shapes of object would be completely eliminated by

such procedures.

c. Describe the (r, θ) graph method for describing the shapes of objects.

Show that applying 1-D median filtering operations to such graphs can be

used to smooth the described object shapes. Would you expect this

approach to be more or less effective at smoothing object boundaries than

methods based on shrinking and expanding?

4. a. Outline the (r, θ) graph method for recognition of objects in two dimen-

sions, and state its main advantages and limitations. Describe the shape of

the (r, θ) graph for an equilateral triangle.

b. Write down a complete algorithm, operating in a 33 3 window, for pro-

ducing an approximation to the convex hull of a 2-D object. Show that a

more accurate approximation to the convex hull can be obtained by joining

humps with straight lines in an (r, θ) graph of the object. Give reasons

why the result for the latter case will only be an approximation, and sug-

gest how an exact convex hull might be obtained.

5. An alternative approach to shape analysis involves measuring distance around

the boundary of any object and estimating increments of distance as 1 unit

when progressing to the next pixel in a horizontal or vertical direction andffiffiffi
2

p
; units when progressing in a diagonal direction. Taking a square of side

20 pixels, which is aligned parallel to the image axes, and rotating it through

small angles show that distance around the boundary of the square is not esti-

mated accurately by the 1:
ffiffiffi
2

p
; model. Show that a similar effect occurs when

the square is orientated at about 45� to the image axes. Suggest ways in which

this problem might be tackled.
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CHAPTER

11 Line Detection

Detection of macroscopic features is an important part of image analysis and

visual pattern recognition. Of particular interest is the identification of straight

lines in images, as these are ubiquitous—appearing both on manufactured parts

and in the built environment. The Hough transform (HT) provides the means for

locating these features highly robustly in digital images. This chapter describes

the processes and principles needed to achieve this.

Look out for:

• the basic HT technique for locating straight lines in images.

• alternative parametrizations of the HT.

• how lines can be localized along their length.

• how final line fitting can be made more accurate.

• why the HT is robust against noise and background clutter.

• how speed of processing can be improved.

• the RANSAC approach to line fitting.

• the relative efficiencies of RANSAC and the HT.

• how laparoscopic tools may be located.

While this chapter provides interesting methods for detecting line features in

images, they may appear somewhat specialized. However, later chapters will

show that both the HT and RANSAC (RANdom SAmpling Consensus) have

much wider applicability than such arguments might suggest.

11.1 INTRODUCTION
Straight edges are among the most common features of the modern world, arising

in perhaps the majority of manufactured objects and components, not least in the

very buildings in which we live. Yet it is arguable whether true straight lines ever

arise in the natural state: possibly the only example of their appearance in virgin
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outdoor scenes is the horizon—although even this is clearly seen from space as a

circular boundary. The surface of water is essentially planar, although it is impor-

tant to realize that this is a deduction. The fact remains that straight lines seldom

appear in completely natural scenes. Be all this as it may, it is clearly vital both in

city pictures and in the factory to have effective means of detecting straight edges.

This chapter studies available methods for locating these important features.

Historically, the Hough transform (HT) has been the main means of detecting

straight edges, and since the method was originally invented (Hough, 1962) it has

been developed and refined for this purpose. Hence this chapter concentrates on

this particular technique; it also prepares the ground for applying the HT to the

detection of circles, ellipses, corners, etc. in the next few chapters. We start by

examining the original Hough scheme, even though it is now seen to be wasteful

in computation, since important principles are involved. By the end of the chapter

we shall see that the HT is not alone in its capabilities for line detection:

RANSAC is also highly capable in this direction. In fact, both approaches have

their advantages and limitations, as the discussion in Section 11.6 will show.

11.2 APPLICATION OF THE HOUGH TRANSFORM TO LINE
DETECTION

The basic concept involved in locating lines by the HT is point2line duality. A

point P can be defined either as a pair of coordinates or in terms of the set of lines

passing through it. The concept starts to make sense if we consider a set of collin-

ear points Pi, then list the sets of lines passing through each of them, and finally

note that there is just one line that is common to all these sets. Thus, it is possible

to find the line containing all the points Pi merely by eliminating those that are

not multiple hits. Indeed, it is easy to see that if a number of noise points Qj

are intermingled with the signal points Pi, the method will be able to discriminate

the collinear points from among the noise points at the same time as finding

the line containing them, merely by searching for multiple hits. Thus, the method

is inherently robust against noise, as indeed it is in discriminating against cur-

rently unwanted signals such as circles.

In fact, the duality goes further. For just as a point can define (or be defined by)

a set of lines, so a line can define (or be defined by) a set of points, as is obvious

from the above argument. This makes the above approach to line detection a math-

ematically elegant one and it is perhaps surprising that the Hough detection scheme

was first published as a patent (Hough, 1962) of an electronic apparatus for detect-

ing the tracks of high-energy particles, rather than as a paper in a learned journal.

The form in which the method was originally applied involves parametrizing

lines using the slope�intercept equation:

y5mx1 c (11.1)
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Every point on a straight edge is then plotted as a line in (m, c) space corre-

sponding to all the (m, c) values consistent with its coordinates, and lines are

detected in this space. The embarrassment of unlimited ranges of the (m, c) values

(near-vertical lines require near-infinite values of these parameters) is overcome

by using two sets of plots, the first corresponding to slopes of less than 1.0 and

the second to slopes of 1.0 or more; in the latter case, Eq. (11.1) is replaced by

the form:

x5 ~mx1 ~c (11.2)

where

~m5
1

m
(11.3)

The need for this rather wasteful device was removed by the Duda and Hart

(1972) approach, which replaces the slope�intercept formulation with the so-called

“normal” (θ, ρ) form for the straight line (see Fig. 11.1):

ρ5 x cos θ1 y sin θ (11.4)

To apply the method using this form, the set of lines passing through each

point Pi is represented as a set of sine curves in (θ, ρ) space: for example, for

point P1ðx1; y1Þ, the sine curve has equation:

ρ5 x1 cos θ1 y1 sin θ (11.5)

Then multiple hits in (θ, ρ) space indicate, via their (θ, ρ) values, the presence

of lines in the original image.

y

0
x

θ

ρ

FIGURE 11.1

Normal (θ, ρ) parametrization of a straight line.
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Each of the methods described above has the feature that it employs an

“abstract” parameter space in which multiple hits are sought. Above we talked

about “plotting” points in parameter space, but in fact the means of looking for

hits is to seek peaks that have been built by accumulation of data from various

sources. Although it might be possible to search for hits by logical operations

such as use of the AND function, the Hough method gains considerably by accu-

mulating evidence for events by a voting scheme. It will be seen below that this is

the source of the method’s high degree of robustness.

Although the methods described above are mathematically elegant and are

capable of detecting lines (or sets of collinear points—which may be completely

isolated from each other) amid considerable interfering signals and noise, they are

subject to considerable computational problems. The reason for this is that every

prominent point1 in the original image gives rise to a great many votes in parame-

ter space, so for a 2563 256 image the (m, c) parametrization requires 256 votes

to be accumulated, while the (θ, ρ) parametrization requires a similar number—

360 if the θ quantization is to be fine enough to resolve 1� changes in line

orientation.

A vital key to overcoming this problem was discovered by O’Gorman and

Clowes (1976), who noted that points on lines are usually not isolated but instead

are joined in fragments that are sufficiently long that their directions can be mea-

sured. Supposing that direction is known with high accuracy, it is then sufficient to

accumulate just one vote in parameter space for every potential line point (in fact, if

the local gradient is known with lesser accuracy then parameter space can be quan-

tized more coarsely—say in 10� steps (O’Gorman and Clowes, 1976)—and again a

single vote per point can be accumulated). Clearly, this method is much more mod-

est in its computational requirements and it was soon adopted by other workers.

However, the computational load is still quite substantial: not only is a large

two-dimensional (2-D) storage area needed but this must be searched carefully

for significant peaks—a tedious task if short line segments are being sought.

Various means have been tried for cutting down computation further. Dudani and

Luk (1978) tackled the problem by trying to separate out the θ and ρ estimations.

They accumulated votes first in a 1-D parameter space for θ—i.e., a histogram

of θ values (it must not be forgotten that such a histogram is itself a simple form

of HT).2 Having found suitable peaks in the θ histogram, they then built a ρ histo-

gram for all the points that contributed votes to a given θ peak, and repeated this

for all θ peaks. Thus, two 1-D spaces replace the original 2-D parameter space,

with very significant savings in storage and load. However, two-stage methods of

1For the present purpose it does not matter in what way these points are prominent. They may in

fact be edge points, dark specks, centers of holes, and so on. Later we shall consistently take them

to be edge points.
2It is now common for any process to be called an HT if it involves accumulating votes in a param-

eter space, with the intention of searching for significant peaks to find properties of the original

data.
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this type tend to be less accurate since the first stage is less selective: biased θ
values may result from pairs of lines that would be well separated in a 2-D space.

In addition, any error in estimating θ values is propagated to the ρ determination

stage, making values of ρ even less accurate. For this reason Dudani and Luk

added a final least-squares fitting stage to complete the accurate analysis of

straight edges present in the image.

From a practical point of view, to proceed with either of the above methods of

line detection, it is first necessary to obtain the local components of intensity gradi-

ent, and then to deduce the gradient magnitude g and threshold it to locate each

edge pixel in the image. θ may be estimated using the arctan function in conjunc-

tion with the local edge gradient components gx, gy:

θ5 arctan
gy

gx

� �
(11.6)

As the arctan function has period π, 6π may have to be added to obtain a

principal value in the range �π to 1π: this can be decided from the signs of gx
and gy.

3 Once θ is known, ρ can be found from Eq. (11.4).

Finally, note that straight lines and straight edges are different and need to be

detected differently. (Straight edges are probably more common and appear as

object boundaries, whereas straight lines are typified by telephone wires in outdoor

scenes.) In fact, we have concentrated above on using the HT to locate straight

edges, starting with edge detectors. Straight line segments may be located using

Laplacian-type operators and their orientations are defined over a range 0�180�

rather than 0�360�: this makes HT design subtly different. For concreteness, in

the remainder of this chapter, we concentrate on straight edge detection.

11.3 THE FOOT-OF-NORMAL METHOD
An alternative means of saving computation (Davies, 1986b) eliminates the use of

trigonometric functions such as arctan by employing a different parametrization

scheme. As noted earlier, the methods so far described all employ abstract param-

eter spaces in which points bear no immediately obvious visual relation to image

space. In the alternative scheme, the parameter space is a second image space,

which is congruent4 to image space.

This type of parameter space is obtained in the following way. First, each edge

fragment in the image is produced much as required previously so that ρ can be mea-

sured, but this time the foot of the normal from the origin is itself taken as a voting

3Note that in C11, the basic arctan function is atan, with a single argument, which should be gy/gx
used as indicated above. However, the C11 atan2 function has two arguments, and if gy and gx
are used respectively for these, the function automatically returns an angle in the range �π to π.
4That is, parameter space is like image space, and each point in parameter space holds information

that is immediately relevant to the corresponding point in image space.
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position in parameter space (Fig. 11.1). Clearly, the foot-of-normal position embodies

all the information previously carried by the ρ and θ values, and mathematically the

methods are essentially equivalent. However, the details differ, as will be seen.

The detection of straight edges starts with the analysis of (a) local pixel coordinates

(x, y) and (b) the corresponding local components of intensity gradient (gx, gy) for each

edge pixel. Taking ðx0; y0Þ as the foot of the normal from the origin to the relevant

line (produced if necessary—see Fig. 11.2), it is found that

gy

gx
5

y0

x0
(11.7)

ðx2 x0Þx0 1ðy2 y0Þy0 5 0 (11.8)

These two equations are sufficient to compute the two coordinates (x0, y0).

Solving for x0 and y0 gives

x0 5 vgx (11.9)

y0 5 vgy (11.10)

where

v5
xgx 1 ygy

g2x 1 g2y
(11.11)

(x, y)

y

y

e

0 0
x x

(gx, gy)

(x0, y0)

ρ ρ

θ θ

(a) (b)

FIGURE 11.2

Image space parametrization of a straight line: (a) parameters involved in the calculation

(see text); (b) buildup of foot-of-normal positions in parameter space for a more practical

situation, where the line is not exactly straight: e is a typical edge fragment leading to a

single vote in the parameter space.

Source: (b) r Unicom 1988
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Note that these expressions involve only additions, multiplications, and just

one division, so voting can be carried out efficiently using this formulation.

11.3.1 Application of the Foot-of-Normal Method
Although the foot-of-normal method is mathematically similar to the (θ, ρ)
method, it is unable to determine line orientation directly with quite the same

degree of accuracy. This is because the orientation accuracy depends on the frac-

tional accuracy in determining ρ—which in turn depends on the absolute magni-

tude of ρ. Hence, for small ρ the orientation of a line that is predicted from the

position of the peak in parameter space will be relatively inaccurate, even though

the position of the foot-of-normal is known accurately. However, accurate values

of line orientation can always be found by identifying the points that contributed

to a given peak in the foot-of-normal parameter space and making them contribute

to a θ histogram, from which line orientation may be determined accurately.

Typical results with the above method are shown in Fig. 11.3. Here, it was

applied in subimages of size 643 64 within 1283 128 images. Clearly, some of the

objects in these pictures are grossly overdetermined by their straight edges, so low ρ
values are not a major problem. For those peaks where ρ. 10, line orientation is

estimated within approximately 2�; as a result, these objects are located within 1

pixel and orientated within 1� by this technique, without the necessity for θ histo-

grams. Figure 11.4(a) and (b) contain some line segments that are not detected. This

is due partly to their relatively low contrast, higher noise levels, above average fuzz-

iness, or short length. However, it is also due to the thresholds set on the initial edge

detector and on the final peak detector: when these were set at lower values, addi-

tional lines were detected but other noise peaks also became prominent in parameter

space, and each of these needed to be checked in detail to confirm the presence of

the corresponding line in the image. This is one aspect of a general problem that

arises right through the field of image analysis.

11.4 LONGITUDINAL LINE LOCALIZATION
The preceding sections have provided a variety of means for locating lines in digital

images and finding their orientations. However, these methods are insensitive to where

along an infinite idealized line an observed segment appears. The reason for this is

that the fit includes only two parameters. There is some advantage to be gained in

this, in that partial occlusion of a line does not prevent its detection. Indeed, if several

segments of a line are visible, they can all contribute to the peak in parameter space,

hence improving sensitivity. On the other hand, for full image interpretation, it is use-

ful to have information about the longitudinal placement of line segments.

This is achieved by a further stage of processing. The additional stage

involves finding which points contributed to each peak in the main parameter

space and carrying out connectivity analysis in each case. Dudani and Luk (1978)
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called this process “xy�grouping.” It is not vital that the line segments should be

4- or 8-connected—just that there should be sufficient points on them so that

adjacent points are within a threshold distance apart, i.e., groups of points are

merged if they are within the prespecified distance (typically, 5 pixels). Finally,

segments shorter than a certain minimum length (also typically B5 pixels) can be

ignored as too insignificant to help with image interpretation.

(a)

(b)

FIGURE 11.3

Results of image space parametrization of mechanical parts. The dot at the center of each

quadrant is the origin used for computing the image�space transform. The crosses are

the positions of peaks in parameter space that mark the individual straight edges

(produced if necessary). For further explanation, see text.

Source: (a) r Unicom 1988
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11.5 FINAL LINE FITTING
Dudani and Luk (1978) found it useful to include a least-squares fitting stage to

complete the analysis of the straight edges present in an image. This is carried

out by taking the x, y coordinates of points on the line as input data and minimiz-

ing the sum of squares of distances from the data points to the best fit line. Their

reason for adding such a stage was to eliminate local edge orientation accuracy as

(a) (b)

(c) (d)

FIGURE 11.4

Straight line location using the RANSAC technique. (a) An original grayscale image with various straight edges

located using the RANSAC technique; (b) the edge points fed to RANSAC for (a). These were isolated points that

were local maxima of the gradient image. (c) The straight edges of a pair of laparoscopic tools—a cutter and a

gripper—which have been located by RANSAC. (d) The points fed to RANSAC for (c). In (a) three edges of the

icosahedron are missed. This is because they are roof edges with low-contrast and low-intensity gradient.

RANSAC missed a fourth edge because of a lower limit placed on the level of support (see text).

292 CHAPTER 11 Line Detection



a source of error. This motivation is generally reasonable if the highest possible

accuracy is required (e.g., obtaining line orientation to significantly better

than 1�). However, many workers have criticized the use of the least-squares tech-

nique, since it tends to weight up the contribution of less accurate points—including

those points that have nothing to do with the line in question, but which arise from

image “clutter.” This criticism is probably justified, although the least-squares tech-

nique is convenient in yielding to mathematical analysis and in this case in giving

explicit equations for θ and ρ in terms of the input data (Dudani and Luk, 1978).

Dudani and Luk obtained the endpoints by reference to the best-fit line thus

obtained. To understand the limitations of the least-squares technique, see the

Appendix A.

11.6 USING RANSAC FOR STRAIGHT LINE DETECTION
RANSAC is an alternative model-based search schema that can often be used

instead of the HT. In fact, it is highly effective when used for line detection, which

is why the method is introduced here. The strategy can be construed as a voting

scheme, but it is used in a different way from that in the HT. The latter operates by

building up the evidence for instances of target objects in the form of votes in

parameter space, and then making decisions about their existence (or by making

hypotheses about their existence that are then finally checked out). RANSAC oper-

ates by making a sequence of hypotheses about the target objects, and determines

the support for each of them by counting how many data points agree with them.

As might be expected, for any potential target object, only the hypotheses with the

maximum support are retained at each stage. This results in more compact informa-

tion storage than for the HT: i.e., for RANSAC a list of hypotheses is held in cur-

rent memory, whereas for the HT a whole parameter space, which is usually only

sparsely populated, is held in memory. Thus, the RANSAC data are abstract lists,

whereas the HT data can often be viewed as pictures in parameter space—as in the

case of the foot-of-normal line detector. None of this prevents the RANSAC output

being displayed (e.g., as straight lines) in image space, nor does it prevent the HT

being accumulated using a list representation.

To explain RANSAC in more detail, we take the case of line detection. As for

the HT, we start by applying an edge detector and locating all the edge points in

the image. As we shall see, RANSAC operates best with a limited number of

points, so it is useful to find the edge points that are local maxima of the intensity

gradient image. (This does not correspond to the type of nonmaximum suppres-

sion used in the Canny operator, which produces thin connected strings of edge

points but to individual isolated points: we shall return to this point below.) Next,

to form a straight line hypothesis, all that is necessary is to take any pair of edge

points from the list of N that remain after applying the local maximum operation.

For each hypothesis we run through the list of N points finding how many points

M support the hypothesis. Then we take more hypotheses (more pairs of edge
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points) and at each stage retain only the one giving maximum support Mmax. This

process is shown in Table 11.1.

The algorithm in Table 11.1 corresponds to finding the center of the highest

peak in parameter space in the case of the HT. To find all the lines in the image,

the most obvious strategy is the following: find the first line, then eliminate

all the points that gave it support; then find the next line and eliminate all the

points that gave it support; and so on until all the points have been eliminated

from the list. The process may be written more compactly in the form:

repeat f
find line;
eliminate support;

g
until no data points remain;

Such a strategy carries the problem that if lines cross each other, support for the

second line (which will necessarily be the weaker one) could be lesser support than it

deserves. However, this should only be a serious disadvantage if the image is

severely cluttered with lines. Nevertheless, the process is sequential and as such the

results (i.e., the exact line locations) will depend on the order in which lines are elim-

inated, as the support regions will be minutely altered at each stage. Overall, the

interpretation of complex images almost certainly has to proceed sequentially, and

there is significant evidence that the human eye�brain system interprets images in

this way, following early cues in order to progressively make sense of the data.

Interestingly, the HT seems to escape from this by the potential capability for parallel

Table 11.1 Basic RANSAC Algorithm for Finding the Line with Greatest Support

Mmax5 0;
for all pairs of edge points do f

find equation of line defined by the two points i; j;
M5 0;
for all N points in list do

if ðpoint k is within threshold distance d of lineÞ M11;
if ðM.MmaxÞ f

Mmax5M;
imax5 i;
jmax5 j;
==this records the hypothesis giving the maximum support so far

g
g
=� if Mmax.0; ðx½imax�; y½imax�Þ and ðx½jmax�; y½jmax�Þ will be the coordinates of
the points defining the line having greatest support �=

This algorithm only returns one line: in fact it returns the specific line model that has greatest support,
for the line that has greatest support. Lines with less support are in the end ignored.
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identification of peaks. While for simple images this may well be true, for compli-

cated images containing many overlapping edges, there will again be the need for

sequential analysis of the type envisaged above (e.g., see the back-projection method

of Gerig and Klein, described in Section 13.11). The point is that with the particular

list representation employed by RANSAC, we are immediately confronted with the

problem of how to identify multiple targets, whereas for the reasons given above

this does not immediately happen with the HT. Finally, on the plus side, succes-

sive elimination of support points necessarily makes it progressively easier and

less computation intensive to find subsequent target objects. But the process itself

is not cost-free, as the whole RANSAC procedure in Table 11.1 has to be run

twice per line in order to identify the support points that have to be eliminated.

Next, we consider the computational load of the RANSAC process. If there

are N edge points, the number of potential lines will be NC2, corresponding to a

computational load of O(N2). However, finding the support for each line will

involve O(N) operations, so the overall computational load will be O(N3). In addi-

tion, the need to eliminate the support points for each line found will require com-

putation proportional to the number of lines n, amounting to only O(nN), and this

will have little effect on the overall computational load.

One point that has not yet been made is that all N edge points will not arise

from straight lines: some will arise from lines, some from curves, some from

general background clutter, and some from noise. To limit the number of false

positives, it will be useful to set a support threshold Mthr such that potential

lines for which M.Mthr are most likely to be true straight lines, while others are

most likely to be artifacts, such as parts of curves or noise points. Thus, the

RANSAC procedure can be terminated when Mmax drops below Mthr. Of course, it

may be required to retain only “significant” lines, e.g., those having length greater

than L pixels. In that case, analysis of each line could allow many more points to

be eliminated as the RANSAC algorithm proceeds. Another factor is whether

hypotheses corresponding to pairs whose points are too close together should be

taken into account. In particular, it might be considered that points closer together

than 5 pixels would be superfluous as they would be likely to have much reduced

chance of pointing along the direction of a line. However, it turns out that

RANSAC is fail-safe in this respect, and there is some gain from keeping pairs

with quite small separations, as some of the resulting hypotheses can actually be

more accurate than any others. Overall, restricting pairs by their separations can be

a useful way of reducing computational load, bearing in mind that O(N3) is rather

high. Here, we should recall that the load for the HT is O(N2) during voting, if

pairs of points are used, or O(N), if single edge points and their gradients are used

instead.

As we have just seen, RANSAC does not compare well with the HT regarding

computational load, so it is better to employ RANSAC when N can be reduced in

some way. This is why it is useful to use N local maxima rather than a full list of

edge points in the form of strings of edge points generated by nonmaximum sup-

pression or a fortiori, those existing before nonmaximum suppression. Indeed,
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there is much to be gained by repeated random sampling5 from the full list until

sufficient hypotheses have been tested to be confident that all significant lines

have been detected. In this way, the computational load is reduced from O(N3)

to O(N2) or even O(N) (it is difficult to predict the resulting computational com-

plexity: in any case, the achievable computational load will be highly data

dependent). Confidence that all significant lines have been detected can be

obtained by estimating the risk that a significant line will be missed because no

representative pair of points lying on the line was considered. This aspect of the

problem will be examined more fully in Section A.6 of the appendix on Robust

Statistics.

Before proceeding further, we shall briefly consider another way of reducing

computational load. That is, by using the connected strings of edge points resulting

from nonmaximum suppression, but eliminating those that are very short and cod-

ing the longer ones as isolated points every p pixels, where p�10. In this way,

there would be far fewer points than for our earlier paradigm, and also those that

are employed would have increased coherence and probability of lying on straight

edges; hence there would be a concentration on high quality data, while the O(N3)

computation factor would be dramatically reduced. Clearly, in high noise situations

this would not work well. It is left to the reader to judge how well it would work

for the sets of edges located by the Canny operator in Figs. 5.7 and 5.8.

We are now in a position to consider actual results obtained by applying

RANSAC to straight line detection. In the tests described, pairs of points were

employed as hypotheses, and all edge points were local maxima of the intensity

gradient. The cases shown in Fig. 11.4 correspond to detection of a block of wood

in the shape of an icosahedron, and a pair of laparoscopic tools with parallel sides.

Note that one line on the right of Fig. 11.4(a) was missed because a lower limit had

to be placed on the level of support for each line. This was necessary because

below this level of support the number of chance collinearities rose dramatically

even for the relatively small number of edge points shown in Fig. 11.4(b), leading

to a sharp rise in the number of false-positive lines. Figs. 23.2 and 23.3 show

RANSAC being used to locate road lane markings. The same version of RANSAC

was used in all the above cases, albeit in the case of Fig. 23.3 a refinement was

added to allow improved elimination of points on lines that had already been

located (this point will be clarified at the end of this section). Overall, this set of

examples shows that RANSAC is a highly important contender for location of

straight lines in digital images. Not discussed here is the fact that RANSAC is use-

ful for obtaining robust fits to many other types of shape in 2-D and in 3-D.

It should be mentioned that one characteristic of RANSAC is that it is less

influenced by aliasing along straight lines than the HT. This is because HT peaks

tend to be fragmented by aliasing, so the best hypotheses can be difficult to obtain

5This corresponds to the original reason for the term RANSAC, which stands for RANdom

SAmpling Consensus, “consensus” indicating that any hypothesis has to form a consensus with the

available support data.
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without excessive smoothing of the image. The reason why RANSAC wins in

this context is that it does not rely on individual hypotheses being accurate: rather

it relies on enough hypotheses easily being generatable, and by the same token,

discardable.

Finally, we return to the above comment about obtaining improved deletion of

points on lines that have already been located. Suppose the cross-section of a line

is characterized by a (lateral) Gaussian distribution of edge points. As a true

Gaussian extends to infinity in either direction, the support region is not well

defined, but for high accuracy it is reasonable to take it as the region within 6σ
of the centerline of the line. However, if just these points are eliminated, the

remaining points near the line could later on give rise to alternative lines or com-

bine with other points to lead to false positives. It is therefore better (Mastorakis

and Davies, 2011) to make the “delete distance” dd larger than the “fit distance”

df that is used for support during detection, e.g., dd5 2σ or 3σ, where df5σ.
(dd� 3σ can be considered to be close to optimal because 99.9% of the samples

in a Gaussian distribution lie within 63σ.) Figure 23.3 shows instances in which

the fit distance is 3 pixels and the delete distance has values of 3, 6, 10, and 11

pixels, showing the advantages that can be gained by making dd significantly

greater than df. Figure 23.4 shows a flowchart of the algorithm used in this case.

11.7 LOCATION OF LAPAROSCOPIC TOOLS
Section 11.6 showed how RANSAC can provide a highly efficient means for

locating straight edges in digital pictures, and gave an example of its use to locate

the handles of laparoscopic tools. These are used for various forms of “keyhole”

surgery: specifically, one tool (e.g., a cutter) might be inserted through one inci-

sion and another (e.g., a gripper) through a second incision. Additional incisions

are needed for viewing via a laparoscope that employs optical fiber technology,

and for inflating the cavity—e.g., the abdominal or chest cavity. In this section,

we consider what information can be obtained via the laparoscope.

Figure 11.4(c) shows laparoscopic gripper and cutter tools being located in a

simulated flesh background. The latter will normally be a wet surface that is largely

red and will exhibit many regions that are close to being specularly reflective. The

large variations in intensity that occur under these conditions make the scene quite

difficult to interpret. While the surgeon who is in control of the instruments can

learn a lot about the scene through tactile feedback and thus bolster his understand-

ing of it, other people viewing the scene, e.g., on a TV monitor or computer, are lia-

ble to find it highly confusing. The same will apply for any computer attempting to

interpret, analyze, or record the progress of an operation. These latter tasks are

potentially important for logging operations, for training other doctors, for communi-

cating with specialists elsewhere, or for analyzing the progress of the operation dur-

ing any subsequent debriefing. It would therefore be useful if the exact locations,
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orientations, and other parameters of the tools could be determined at least relative

to the frame of reference of the laparoscope. To this end, RANSAC has provided

important 2-D data on the location of the tool handles. Assessing the vanishing

points of the pairs of lines from the handles also provides 3-D information. Clearly,

further information can be obtained from the coordinates of the ends of the tools.

To identify the ends of the tools, the ends of the handles are first located. This

is a straightforward task requiring knowledge of the exact ends of the RANSAC

support regions for the tool handle edges. The remainder of the tool ends can now

be located by initial approximate prediction, adaptive thresholding, and connected

components analysis (Fig. 11.5), special attention being paid to accurate location of

the tips of the tool ends. In Fig. 11.5, this is achieved within B1 pixel for the grip-

per on the left, and slightly less accurately for the closed cutter on the right. If the

gripper had been open, accuracy would have been similar to that for the gripper.

Note that, because of the complex intensity patterns in the background, it would

have been difficult to locate the tool ends without first identifying the tool handles.

Each of the laparoscopic tools referred to above has (X, Y, Z) position coordi-

nates, together with rotations ψ within the image plane (x, y), θ away from the

image plane (toward the Z-axis), and ϕ about the axis of the handle; in addition,

each tool end has an opening angle α (Fig. 11.6). It is bound to be difficult to obtain

all seven parameters with any great accuracy from a single monocular view.

However, in principle, using an exact CAD model of the tool end, this should be

possible with B15�20� accuracy for the angles. The 2-D information about the cen-

terlines and widths of the handles, the convergence of the handle edges, and the

exact positions of the tips of the tools, should together permit such a 3-D analysis to

be carried out. Here, we have concentrated on the 2-D analysis: details of the rele-

vant 3-D background theory needed to proceed further can be found in Part 3.

FIGURE 11.5

Tips of laparoscopic tools located from the parts highlighted in gray.
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11.8 CONCLUDING REMARKS
This chapter has described a variety of techniques for finding straight lines and

straight edges in digital images. Several of these were based on the HT, which is

important because it permits systematic extraction of global data from images and

has the capability to ignore “local” problems, due for example to occlusions and

noise. This is what is required for “intermediate-level” processing, as will be seen

repeatedly in later chapters.

The specific techniques covered have involved various parametrizations of a

straight line, and means for improving efficiency and accuracy. In particular,

speed is improved by using a two-stage line finding procedure—a method that is

useful in other applications of the HT, as will be seen in later chapters. Accuracy

tends to be cut down by such two-stage processing because of error propagation

and because the first stage is liable to be subject to too many interfering signals.

However, it is possible to improve the accuracy of approximate solutions by using

least-squares refinement procedures.

In fact, by the end of the chapter it became clear that the RANSAC approach

also has line fitting capabilities, which are for some purposes superior to those of

the HT, although RANSAC tends to be more computation intensive (with N edge

points it has a computational load of O(N3) rather than O(N2)). Suffice it to say

that the choice of which approach to use will depend on the exact type of image

data, including levels of noise and background clutter.

(a) (b)

(c) (d)

(e)

FIGURE 11.6

Orientation parameters for a laparoscopic tool. (a) A gripper tool with closed jaws.

(b) Gripper with jaws separated by an angle α. (c) Gripper rotated through an angle ϕ
about a horizontal axis. (d) Gripper tipped through an angle θ away from the image plane.

(e) Gripper rotated through an angle ψ about the camera optical axis.
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The Hough transform is one way of inferring the presence of objects from their feature points,
and RANSAC is another. Both methods can be said to use voting schemes to select best-fit
lines, although only the HT employs a parameter space representation; and both methods are
highly robust as they focus only on positive evidence for the existence of objects.

11.9 BIBLIOGRAPHICAL AND HISTORICAL NOTES
The HT was developed in 1962 (Hough, 1962) with the aim of finding (straight)

particle tracks in high-energy nuclear physics and was brought into the mainstream

image analysis literature much later by Rosenfeld (1969). Duda and Hart (1972)

developed the method further and applied it to the detection of lines and curves in

digital pictures. O’Gorman and Clowes (1976) soon developed a Hough-based

scheme for finding lines efficiently, by making use of edge orientation information,

at much the same time that Kimme et al. (1975) applied the same method (appar-

ently independently) to the efficient location of circles. Many of the ideas for fast

effective line finding described in this chapter arose in a paper by Dudani and Luk

(1978). The author’s foot-of-normal method (Davies, 1986b) was developed much

later. During the 1990s, work in this area progressed further—see for example

Atiquzzaman and Akhtar’s (1994) method for the efficient determination of lines

together with their end coordinates and lengths; Lutton et al.’s (1994) application

of the transform to the determination of vanishing points; and Kamat-Sadekar and

Ganesan’s (1998) extensions of the technique to cover the reliable detection of

multiple line segments, particularly in relation to road scene analysis. Other

applications of the HT are covered in the next two chapters.

Some mention should be made of the related Radon transform. This is formed

by integrating the picture function I(x, y) along infinitely thin straight strips of the

image, with normal coordinate parameters (θ, ρ), and recording the results in a

(θ, ρ) parameter space. The Radon transform is a generalization of the Hough

transform for line detection (Deans, 1981). In fact, for straight lines the Radon

transform reduces to the Duda and Hart (1972) form of the HT that, as remarked

earlier, involves considerable computation. For this reason the Radon transform is

not covered in depth in this book. The transforms of real lines have a characteris-

tic “butterfly” shape (a pencil of segments passing through the corresponding

peak) in parameter space. This phenomenon has been investigated by Leavers and

Boyce (1987), who have devised special 33 3 convolution filters for sensitively

detecting these peaks.

Contrary to the view of some that the HT is completely worked over and no

longer a worthwhile topic for research, there has been strong continuing interest

in it. Indeed, the computational difficulties of the method reflect underlying

matching problems that are inescapable in computer vision, so development of

methods must continue. Thus, Schaffalitsky and Zisserman (2000) carried out an

interesting extension of earlier ideas on vanishing lines and points by considering

the case of repeated lines, such as those occurring on certain types of fences and
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brick buildings; Song et al. (2002) developed HT methods for coping with the

problems of fuzzy edges and noise in large-sized images; and Guru et al. (2004)

demonstrated viable alternatives to the HT, based for example on heuristic search

achieved by small eigenvalue analysis.

11.9.1 More Recent Developments
In 2010, advances were still being made in the application of the HT. In particu-

lar, Chung et al. (2010) developed an orientation-based elimination strategy that

they have shown to be more efficient than previous line-determination methods

based on the HT. It operates by dividing edge pixels into sets with small (typi-

cally 10�) ranges of orientation, and for each of these, it carries out the process of

line detection. Since this process involves a parameter space of reduced size, both

storage and search times are reduced.

The RANSAC procedure was published by Fischler and Bolles in 1981. This

must be one of the most cited papers in computer vision, and the method must be

one of the most used (more even than the HT, because it only relies on the existence

of suitable hypotheses, however obtained). The original paper used it for tackling the

full perspective n-point fitting problem in 3-D (see Chapter 16). Clarke et al. (1996)

used it for locating and tracking straight lines. Borkar et al. (2009) used it for locating

lane markings on roads, and Mastorakis and Davies (2011) developed it further for

the same purpose. Interestingly, Borkar et al. used a low-resolution HT to feed

RANSAC and followed it by least-squares fitting of the inliers. The paper does not

report on how much was gained by this three-stage approach, either in accuracy or in

reliability. (If enough hypotheses are employed—and there is certainly no lack of

these in such an application—both the HT and least-squares fitting might be avoided,

but here optimization for speed may make the inclusion of least squares essential.)

For further discussion of RANSAC, see Chapter 23 and Appendix A.

11.10 PROBLEMS
1. a. In the foot-of-normal HT, straight edges are found by locating the foot of

the normal F (xf, yf) from an origin O (0, 0) at the center of the image to

an extended line containing each edge fragment E (x, y), and placing a

vote at F in a separate image space.

b. By examining the possible positions of lines within a square image and the

resulting foot-of-normal positions, determine the exact extent of the param-

eter space that is theoretically required to form the HT.

c. Would this form of the HT be expected to be (i) more or less robust and

(ii) more or less computation intensive than the (ρ, θ) HT for line location?

2. a. Why is it sometimes stated that a HT generates hypotheses rather than

actual solutions for object location? Is this statement justified?
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b. A new type of HT is to be devised for detecting straight lines. It will take

every edge fragment in the image and extend it in either direction until it

meets the boundary of the image, and then accumulate a vote at each posi-

tion. Thus two peaks should result for every line. Explain why finding

these peaks will require less computation than for the standard HT, but

that deducing the presence of lines will then require extra computation.

How will these amounts of computation be likely to vary with (i) the size

of the image and (ii) the number of lines in the image?

c. Discuss whether this approach would be an improvement on the standard

approach for straight line location, and whether it would have any

disadvantages.

3. a. Describe the Hough transform approach to object location. Explain its

advantages relative to the centroidal (r, θ) plot approach. Illustrate your

answer with reference to location of circles of known radius R.

b. Describe how the Hough transform may be used to locate straight edges.

Explain what is seen in the parameter space if many curved edges also

appear in the original image.

c. Explain what happens if the image contains a square object of arbitrary

size and nothing else. How would you deduce from the information in

parameter space that a square object is present in the image? Give the

main features of an algorithm to decide that a square object is present and

to locate it.

d. Examine in detail whether an algorithm using the strategy described in (c)

would become confused if (i) parts of some sides of the square were

occluded; (ii) one or more sides of the square were missing; (iii) several

squares appeared in the image; (iv) several of these complications occurred

together.

e. How important is it to this type of algorithm to have edge detectors that

are capable of accurately determining edge orientation? Describe a type of

edge detector that is capable of achieving this.
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CHAPTER

12Circle and Ellipse
Detection

As in the case of straight lines, circle features occur very widely in digital images

of manufactured objects. In fact, they can conveniently be located using the

Hough transform approach. This also applies for ellipses, which may appear in

their own right or as oblique views of circular objects. However, locating ellipses

is more complicated than locating circles because of the greater number of para-

meters that are involved.

Look out for:

• the basic Hough transform technique for locating circular objects in images.

• how the method can be adapted when circle radius is unknown.

• how accuracy of center location can be improved.

• how speed of processing can be increased.

• the basic diameter bisection method for ellipse detection.

• the chord�tangent method for ellipse detection.

• means of testing a shape to confirm that it is an ellipse.

• how small holes may be detected.

• how the human iris may be located.

This chapter shows how the Hough transform is able to provide a useful

means for detecting objects of selected shape in digital images. Again the method

is seen to rely on the accumulation of votes in a parameter space and the robust-

ness of the technique to result from concentration on positive evidence for the

objects.

Computer and Machine Vision.
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12.1 INTRODUCTION
Location of round objects is important in many areas of image analysis but it is

especially important in industrial applications such as automatic inspection and

assembly. In the food industry alone, a very sizable number of products are

round—biscuits, cakes, pizzas, pies, jellies, oranges, and so on (Davies, 1984c).

In the automotive industry, many circular components are used—washers, wheels,

pistons, heads of bolts, and so on, while round holes of various sizes appear in

such items as casings and cylinder blocks. In addition, buttons and many other

everyday objects are round. Of course, when round objects are viewed obliquely,

they appear elliptical; furthermore, certain other objects are actually elliptical.

This makes it clear that we need algorithms that are capable of finding both cir-

cles and ellipses. Finally, objects can frequently be located by their holes, so find-

ing round holes or features is part of the larger problem: this chapter addresses

various aspects of this problem.

An important facet of this work is how well object location algorithms cope in

the presence of artifacts such as shadows and noise. In particular, the paradigm

represented by Table 12.1 has been shown in Chapter 10 to be insufficiently robust

to cope in such situations. This chapter shows that the Hough transform (HT) tech-

nique is able to overcome many of these problems. Indeed, it is found to be partic-

ularly good at dealing with all sorts of difficulties, including quite severe

occlusions. It achieves this not by adding robustness but by having robustness built

in as an integral part of the technique.

The application of the HT to circle detection is one of the most straightfor-

ward uses of the technique. However, there are several enhancements and adapta-

tions that can be applied in order to improve accuracy and speed of operation,

and in addition to make the method work efficiently when detecting circles with a

range of sizes. These modifications are studied after covering the basic HT tech-

nique. Versions of the Hough transform that can perform ellipse detection are

then considered. Finally, after a short section on an important application—that of

human iris location—the topic of hole detection is considered.

Table 12.1 Procedure for Finding Objects Using (r, θ) Boundary Graphs

1. Locate edges within the image
2. Link broken edges
3. Thin thick edges
4. Track around object outlines
5. Generate a set of (r, θ) plots
6. Match (r, θ) plots to standard templates

This procedure is not sufficiently robust with many types of real data, e.g., in the presence of noise,
distortions in product shape, and so on: in fact, it is quite common to find the tracking procedure
veering off and tracking around shadows or other artifacts.
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12.2 HOUGH-BASED SCHEMES FOR CIRCULAR
OBJECT DETECTION

In the original HT method for finding circles (Duda and Hart, 1972), the intensity

gradient is first estimated at all locations in the image and then thresholded to give

the positions of significant edges. Then the positions of all possible center loca-

tions—namely all points a distance R away from every edge pixel—are accumu-

lated in parameter space, R being the anticipated circle radius. Parameter space can

be a general storage area but when looking for circles it is convenient to make it

congruent to image space: in that case, possible circle centers are accumulated in a

new plane of image space. Finally, parameter space is searched for peaks that corre-

spond to the centers of circular objects. Since edges have nonzero width and noise

will always interfere with the process of peak location, accurate center location

requires the use of suitable averaging procedures (Davies, 1984c; Brown, 1984).

This approach clearly requires a very large number of points to be accumu-

lated in parameter space and so a revised form of the method has now become

standard: in this approach, locally available edge orientation information at each

edge pixel is used to enable the exact positions of circle centers to be estimated

(Kimme et al., 1975). This is achieved by moving a distance R along the edge

normal at each edge location. Thus, the number of points accumulated is equal to

the number of edge pixels in the image:1 this represents a significant saving in

computational load. For this to be possible, the edge detection operator that is

employed must be highly accurate. Fortunately, the Sobel operator is able to esti-

mate edge orientation to 1� and is very simple to apply (Chapter 5). Thus, the

revised form of the transform is viable in practice.

As was seen in Chapter 5, once the Sobel convolution masks have been

applied, the local components of intensity gradient gx and gy are available, and

the magnitude and orientation of the local intensity gradient vector can be com-

puted using the formulae:

g5 g2x 1 g2y

 �1=2
(12.1)

and

θ5 arctan
gy

gx

� �
(12.2)

However, use of the arctan operation is not necessary when estimating center

location coordinates (xc, yc) since the trigonometric functions can be made to can-

cel out:

xc 5 x2R
gx

g

� �
(12.3)

1We assume that objects arc known to be either lighter or darker than the background, so that it is

only necessary to move along the edge normal in one direction.
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yc 5 y2R
gy

g

� �
(12.4)

the values of cos θ and sin θ being given by:

cosθ5
gx

g
(12.5)

sinθ5
gy

g
(12.6)

In addition, the usual edge thinning and edge linking operations—which normally

require considerable amounts of processing—can be avoided if a little extra

smoothing of the cluster of candidate center points is performed (Davies, 1984c)

(Table 12.2). Thus, this Hough-based approach can be a very efficient one for

locating the centers of circular objects, virtually all the superfluous operations

having been eliminated, leaving only edge detection, location of candidate center

points, and center point averaging to be carried out. In addition, the method is

highly robust, so if part of the boundary of an object is obscured or distorted, the

object center is still located accurately. In fact, the results are often quite impres-

sive (see, e.g., Figs. 12.1 and 12.2). The reason for this useful property is clear

from Fig. 12.3.

The efficiency of the above technique means that it takes slightly less time to

perform the actual HT part of the calculation than to evaluate and threshold the

intensity gradient over the whole image. Part of the reason for this is that the

edge detector operates within a 33 3 neighborhood and necessitates some 12

pixel accesses, four multiplications, eight additions, two subtractions, and an

operation for the evaluation of the square root of sum of squares (Eq. (12.1)). As

seen in Chapter 5, the latter type of operation is commonly approximated by tak-

ing a sum or maximum of absolute magnitudes of the component intensity gradi-

ents in order to estimate the magnitude of the local intensity gradient vector.

Table 12.2 A Hough-Based Procedure for Locating Circular Objects

1. Locate edges within the image
2. Link broken edges
3. Thin thick edges
4. For every edge pixel, find a candidate center point
5. Locate all clusters of candidate centers
6. Average each cluster to find accurate center locations

This procedure is particularly robust. It is largely unaffected by shadows, image noise, shape
distortions, and product defects. Note that stages 1�3 of the procedure are identical to stages 1�3
in Table 12.1. However, in the Hough-based method, computation can be saved, and accuracy
actually increased, by omitting stages 2 and 3.
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FIGURE 12.1

Location of broken and overlapping biscuits, showing the robustness of the center location

technique. Accuracy is indicated by the black dots, which are each within 1/2 pixel of the

radial distance from the center.

Source: r IFS Publications Ltd 1984

FIGURE 12.2

Location of a biscuit with a distortion, showing a chocolate-coated biscuit with excess

chocolate on one edge. Note that the computed center has not been “pulled” sideways by

the protuberances. For clarity, the black dots are marked 2 pixels outside the normal

radial distance.

Source: r IFS Publications Ltd 1984
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However, this type of shortcut is not advisable in the present context, since an

accurate value for the magnitude of this vector is required in order to compute the

position of the corresponding candidate center location with sufficient precision.

Overall, the dictates of accuracy imply that candidate center location requires

significant computation. However, substantial increases in speed are still possible

by software means alone, as will be seen later in the chapter. Meanwhile, we con-

sider the problems that arise when images contain circles of many different radii,

or for one reason or another radii are not known in advance.

12.3 THE PROBLEM OF UNKNOWN CIRCLE RADIUS
There are a number of situations where circle radius is initially unknown. One

such situation is where a number of circles of various sizes are being sought—as

in the case of coins, or different types of washer. Another is where the circle size

is variable—as for food products such as biscuits—so that some tolerance must

be built into the system. In general, all circular objects have to be found and their

radii measured. In such cases, the standard technique is to accumulate candidate

center points simultaneously in a number of parameter planes in a suitably aug-

mented parameter space, each plane corresponding to one possible radius value.

The centers of the peaks detected in parameter space give not only the location of

FIGURE 12.3

Robustness of the Hough transform when locating the center of a circular object. The

circular part of the boundary gives candidate center points that focus on the true center,

whereas the irregular broken boundary gives candidate center points at random positions.

Source: r Unicom 1988
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each circle in two dimensions but also its radius. Although this scheme is entirely

viable in principle, there are several problems in practice:

1. Many more points have to be accumulated in parameter space.

2. Parameter space requires much more storage.

3. Significantly greater computational effort is involved in searching parameter

space for peaks.

To some extent this is to be expected, since the augmented scheme enables more

objects to be detected directly in the original image.

It is shown below that the last two problems may largely be eliminated. This

is achieved by using just one parameter plane to store all the information for

locating circles of different radii, i.e., accumulating not just one point per edge

pixel but a whole line of points along the direction of the edge normal in this one

plane. In practice, the line need not be extended indefinitely in either direction

but only over the restricted range of radii over which circular objects or holes

might be expected.

Even with this restriction, a large number of points are being accumulated in a

single parameter plane, and it might be thought initially that this would lead to

such a proliferation of points that almost any “blob” shape would lead to a peak

in parameter space, which might be interpreted as a circle center. However, this is

not so and significant peaks normally result only from genuine circles and some

closely related shapes.

To understand the situation, consider how a sizeable peak can arise at a partic-

ular position in parameter space. This can happen only when a large number of

radial vectors from this position meet the boundary of the object normally. In the

absence of discontinuities in the boundary, a contiguous set of boundary points

can only be normal to radius vectors if they lie on the arc of a circle (indeed, a

circle could be defined as a locus of points that are normal to the radius vector

and form a thin connected line). If a limited number of discontinuities are permit-

ted in the boundary, it may be deduced that shapes like that of a fan2 will also be

detected using this scheme. Since it is in any case useful to have a scheme that

can detect such shapes, the main problem is that there will be some ambiguity in

interpretation—i.e., does peak P in parameter space arise from a circle or a fan?

In practice, it is quite straightforward to distinguish between such shapes with rel-

atively little additional computation, the really important problem being to cut

down the amount of computation needed to key into the initially unstructured

image data. Indeed, it is often a good strategy to prescreen the image to eliminate

most of it from further detailed consideration and then to analyze the remaining

data with tools having much greater discrimination: this two-stage template

matching procedure frequently leads to significant savings in computation

(VanderBrug and Rosenfeld, 1977; Davies, 1988g).

2A four-blade fan shape bounded by two concentric circles with eight equally spaced radial lines

joining them.
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A more significant problem arises because of errors in the measurement of

local edge orientation. As stated earlier, edge detection operators such as the

Sobel introduce an inherent inaccuracy of about 1�. Image noise typically adds a

further 1� error, and for objects of radius 60 pixels, the result is an overall uncer-

tainty of about 2 pixels in the estimation of center location. This makes the

scheme slightly less specific in its capability for detecting objects.

Overall, the scheme is likely to accept the following object shapes during its

prescreening stage:

1. Circles of various sizes

2. Shapes such as fans, which contain arcs of circles

3. Partly occluded or broken versions of these shapes

Sometimes, objects of type 2 will be known not to be present. Alternatively, they

may readily be identified, e.g., with the aid of corner detectors. Hence, problems

of ambiguity may be nonexistent or easy to eliminate in practice. As the situation

is highly application-dependent, we will eschew further discussion of this point

here.

Next, note that the information on radial distance has been lost by accumulat-

ing all votes in a single parameter plane. Hence, a further stage of analysis is

needed to measure object radius. This extra stage of analysis normally involves

negligible additional computation, because the search space has been narrowed

down so severely by the initial circle location procedure. The radial histogram

technique (Chapter 20) can be used to measure the radius: in addition, it can be

used to perform a final object inspection function.

12.3.1 Some Practical Results
The method described above works much as expected, the main problems arising

with small circular objects (of radii less than about 20 pixels) at low resolution

(Davies, 1988b). Essentially, the problems are those of lack of discrimination in

the precise shapes of small objects (see Figs. 12.4 and 12.5), as anticipated above.

As suggested earlier, this can frequently be turned to advantage in that the method

becomes a circular feature detector for small radii (see Fig. 12.5, where a wing

nut is located).

As required, objects are detected reliably even when they are partly occluded.

However, occlusions can result in the centers of small objects being “pulled” lat-

erally (Fig. 12.4). More generally, it is clear from Figs. 12.4 and 12.5 that high

accuracy of center location cannot be expected when a single parameter plane is

used to detect objects over a large range of sizes: hence, it is best to cut down the

voting range as far as possible.

Overall, there is a tradeoff between speed and accuracy with this approach.

However, the results confirm that it is possible to locate objects of various radii

within a significantly conflated parameter space, thereby making substantial
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savings in storage and computation—even though the total number of votes that

have to be accumulated in parameter space is not itself reduced.

12.4 THE PROBLEM OF ACCURATE CENTER LOCATION
Section 12.3 analyzed the problem of how to cope efficiently with images con-

taining circles of unknown or variable size. This section examines how centers of

circles may be located with high (preferably subpixel) accuracy. This problem is

relevant since the alternative of increased resolution would entail the processing

of many more pixels. Hence, it will be of advantage if high accuracy can be

attained with images of low or moderate resolution.

There are a number of causes of inaccuracy in locating the centers of circles

using the HT:

1. Natural edge width may add errors to any estimates of the location of the center.

2. Image noise may cause the radial position of the edge to become modified.

3. Image noise may cause variation in the estimates of local edge orientation.

4. The object itself may be distorted, in which case the most accurate and robust

estimate of circle center is what is required (i.e., the algorithm should be able

to ignore the distortion and take a useful average from the remainder of the

boundary).

(a) (b)

FIGURE 12.4

(a) Simultaneous location of coins and a key with the modified Hough scheme: the various

radii range from 10 to 17 pixels and (b) transform used to compute the centers indicated

in (a). Detection efficiency is unimpaired by partial occlusions, shape distortions, and

glints. However, displacements of some centers are apparent; in particular, one coin (top

left) has only two arcs showing the fact that one of these is distorted, giving a lower

curvature, leads to a displacement of the computed center. The shape distortions are due

to rather uneven illumination.
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5. The object may appear distorted because of inadequacies in the method of

illumination.

6. The edge orientation operator will have a significant inherent inaccuracy of its

own, which contributes to inaccuracy in the estimation of center location.

Evidently, it is necessary to minimize the effects of all these potential sources

of error. In applying the HT, it is usual to bear in mind that all possible center

locations that could have given rise to the currently observed edge pixel should

be accumulated in parameter space. Therefore, we should accumulate in parame-

ter space not a single candidate center point corresponding to the given edge

pixel, but a point spread function (PSF), which may be approximated by a

Gaussian error function: this will generally have different radial and transverse

(c)

(a) (b)

FIGURE 12.5

(a) Accurate simultaneous detection of a lens cap and a wing nut when radii are assumed

to range from 4 to 17 pixels; (b) response in parameter space that arises with such a

range of radii: note the overlap of the transforms from the lens cap and the bracket; (c)

hole detection in the image of (a) when radii are assumed to fall in the range 226 to 29

pixels (negative radii are used since holes are taken to be objects of negative contrast):

clearly, in this image a smaller range of negative radii could have been employed.
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standard deviations. The radial standard deviation will commonly be 1 pixel—

corresponding to the expected width of the edge—whereas the transverse standard

deviation will frequently be at least 2 pixels, and for objects of moderate (60 pixels)

radius the intrinsic orientation accuracy of the edge detection operator contributes

at least 1 pixel to this standard deviation.

When the center need only be estimated to within 1 pixel, these considerations

hardly matter. However, when it is desired to locate center coordinates to within

0.1 pixel, each PSF will have to contain 100 points, all of which will have to be

accumulated in a parameter space of much increased spatial resolution, or its

equivalent,3 if the required accuracy is to be attained. However, the following

section outlines a technique that can cut down the amount of computation from

this sort of level, without significant loss of accuracy.

12.4.1 A Solution Requiring Minimal Computation
A potential key to increasing accuracy of center location arises from the observa-

tion that most of the inaccuracy in calculating the position of the center is due to

transverse rather than radial errors. Hence, it is reasonable to concentrate on elim-

inating transverse errors.

This immediately leads to the following strategy: find a point D in the region of

the center and use it to obtain a better approximation A to the center by moving

from the current edge pixel P a distance equal to the expected radius r in the direc-

tion of D (Fig. 12.6). Then repeat the process 1 edge pixel at a time until all edge

pixels have been taken into account. Although intuition indicates that this strategy

will lead to a good final approximation to the center, the edge points need to be

taken in random order to prevent the bias of the initial center approximation from

P (r cos θ, r sin θ)

r
C

D
A

d
s

r

FIGURE 12.6

Arrangement for obtaining improved center approximation.

3For example, some abstract list structure might be employed, which effectively builds up to high

resolution only where needed (see also the adaptive HT scheme described in Chapter 13).
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permanently affecting the final result.4 In addition, some averaging of the interme-

diate results is needed to minimize the effects of boundary noise, and edge points

that give extreme predictions for the center approximation (e.g., deviations of

more than B2 pixels) have to be discounted.

Overall, there are two main stages of calculation in the whole algorithm:

1. Find the position of the center to within B1 pixel by the usual Hough technique.

2. Use the iterative procedure to obtain the final result, with an accuracy of 0.1 pixels.

Tests of this algorithm on accurately made circular objects led to accuracies

of center location in the region of 0.1 pixels (Davies, 1988e). It proved difficult

to increase the accuracy further because of the problem of setting up lighting sys-

tems of sufficient uniformity, i.e., the limit was set by practicalities of illumina-

tion rather than by the algorithm itself.

Finally, a by-product of the approach is that radius r can be obtained with

exceptionally high accuracy—generally within 0.05 pixels (Davies, 1988e).

12.5 OVERCOMING THE SPEED PROBLEM
Section 12.4 studied how the accuracy of the HT circle detection scheme could

be improved substantially, with modest additional computational cost. This sec-

tion examines how circle detection may be carried out with significant improve-

ment in speed. To achieve this, two methods are tried: (1) sampling the image

data and (2) using a simpler edge detector. The most appropriate strategy for (1)

appears to be to look only at every nth line in the image, whereas that for (2)

involves using a small two-element neighborhood while searching for edges

(Davies, 1987f). Although this approach will lose the capability for estimating

edge orientation, it will still permit horizontal and vertical chords of a circle to be

bisected, thereby leading to values for the center coordinates xc, yc. It also

involves much less computation, the multiplications and square root calculations,

and most of the divisions being eliminated or replaced by two-element differenc-

ing operations, thereby giving a further gain in speed.

12.5.1 More Detailed Estimates of Speed
To help understand the situation, this section estimates the gain in speed that should

result by applying the strategy described above. First, the amount of computation

involved in the original Hough-based approach is modeled by:

T0 5N2s1 St0 (12.7)

4This problem arises because the method is intrinsically sequential rather than parallel, and it is

necessary to compensate for this.
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where T0 is the total time taken to run the algorithm on an N3N pixel image; s

is the time taken per pixel to compute the Sobel operator and to threshold the

intensity gradient g; S is the number of edge pixels that are detected; and t0 is the

time taken to compute the position of a candidate center point.

Next, the amount of computation in the basic chord bisection approach is

modeled as:

T 5 2ðN2q1QtÞ (12.8)

where T is the total time taken to run the algorithm; q is the time taken per pixel

to compute a two-element x or y edge detection operator and to perform threshold-

ing; Q is the number of edge pixels that are detected in one or other scan direction;

and t is the time taken to compute the position of a candidate center point coordi-

nate (either xc or yc). In Eq. (12.8), the factor 2 results because scanning occurs in

both horizontal and vertical directions. If the image data are now sampled by

examining only a proportion α of all possible horizontal and vertical scan lines,

the overall gain in speed from using the chord bisection scheme should be:

G5
N2s1 St0

2αðN2q1QtÞ (12.9)

Typical values of relevant parameters for (say) a biscuit of radius 32 pixels in a

1283 128 pixel image are listed below:

N2516,384 t0/s�1

S�Q�200 s/q�6

α�1/3 t0/t�5

Hence

G � s

2αq
� 9 (12.10)

Broadly, this corresponds to a gain B3 from sampling and a further gain B3 from

applying a much simplified edge detector. However, if the sampling factor l/α
could be increased further, greater gains in speed could be obtained—in principle

without limit, but in practice the situation is governed by how robust the algorithm

really is.

12.5.2 Robustness
Robustness can be considered relative to two factors. The first is the amount of

noise in the image and the second is the amount of signal distortion that can be

tolerated. Fortunately, both the original HT and the chord bisection approach lead

to peak finding situations, and if there is any distortion of the object shape, then

points are thrown into relatively random locations in parameter space and conse-

quently do not have a significant direct impact on the accuracy of peak location.
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However, they do have an indirect impact in that the signal-to-noise ratio is

reduced, so that accuracy is impaired. In fact, if a fraction β of the original signal

is removed, leaving a fraction γ5 12β, either due to such distortions or occlu-

sions or else by the deliberate sampling procedures already outlined, then the

number of independent measurements of the center location drops to a fraction γ
of the optimum. This means that the accuracy of estimation of the center location

drops to a fraction
ffiffiffi
γ

p
of the optimum. Since noise affects the optimum accuracy

directly, we have shown the result of both major factors governing robustness.

What is important here is that the effect of sampling is substantially the same

as that of signal distortion, so that the more distortion that must be tolerated, the

higher the value α has to have. This principle applies both to the original Hough

approach and to the chord bisection algorithm. However, the latter does its peak

finding in a different way—via 1-D rather than 2-D averaging processes. As a

result, it turns out to be somewhat more robust than the standard HT in its capa-

bility for accepting a high degree of sampling.

This gain in capability for accepting sampling carries with it a set of related dis-

advantages: highly textured objects may not easily be located by the method; high

noise levels may confuse it via the production of too many false edges; and (since it

operates by specific x and y scanning mechanisms) there must be a sufficiently small

amount of occlusion and other gross distortion that a significant number of scans

(both horizontally and vertically) pass through the object. Ultimately, this means

that the method will not tolerate more than about one-quarter of the circumference

of the object being absent.

12.5.3 Practical Results
Tests (Davies, 1987f) with the image in Fig. 12.7 show that gains in speed of

more than 25 can be obtained, with values of α down to less than 0.1 (i.e., every

10th horizontal and vertical line scanned). The results for broken circular products

(Figs. 12.8 and 12.9) are self-explanatory; they indicate the limits to which the

method can be taken. An outline of the complete algorithm is given in Table 12.3

(note the relatively straightforward problem of disambiguating the results if there

happen to be several peaks).

Figure 12.10 shows the effect of adjusting the threshold in the two-element

edge detector. The result of setting it too low is seen in Fig. 12.10(a). Here the sur-

face texture of the object has triggered the edge detector, and the chord midpoints

give rise to a series of false estimates of the center coordinates. Figure 12.10(b)

shows the result of setting the threshold at too high a level, so that the number of

estimates of center coordinates is reduced and sensitivity suffers. Although the

images in Fig. 12.7 were obtained with the threshold adjusted intuitively, a more

rigorous approach can be taken by optimizing a suitable criterion function. There

are two obvious functions: (1) the number of accurate center predictions n and (2)

the speed�sensitivity product. The latter can be written in the form
ffiffiffi
n

p
=T , where T

is the execution time. The two methods of optimization make little difference in the
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example shown in Fig. 12.10. However, had there been a strong regular texture on

the object, the situation would have been rather different.

12.5.4 Summary
The center location procedure described above is more than an order of magni-

tude faster than the standard Hough-based approach and often as much as 25

times faster. This could be quite important in exacting real-time applications.

Robustness is so good that the method tolerates at least one-quarter of the circum-

ference of an object being absent, making it adequate for many real applications.

In addition, it is entirely clear what types of image data would be likely to confuse

the algorithm.

(a) (b)

(c)

FIGURE 12.7

Successful object location using the chord bisection algorithm for the same initial image,

using successive step sizes of 2, 4, and 8 pixels. The black dots show the positions of the

horizontal and vertical chord bisectors, and the white dot shows the position found for the

center.
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FIGURE 12.8

Successful location of a broken object using the chord bisection algorithm: only about

one-quarter of the ideal boundary is missing.

FIGURE 12.9

A test on overlapping and broken biscuits: the overlapping objects are successfully

located, albeit with some difficulty, but there is no chance of finding the center of the

broken biscuit since over one-half of the ideal boundary is missing.
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Table 12.3 Outline of the Fast Center-Finding Algorithm

y5 0;
do f

scan horizontal line y looking for start and end of each object;
calculate midpoints of horizontal object segments;
accumulate midpoints in 1-D parameter space x spaceð Þ;
== note that the same space; x space; is used for all lines y
y5 y1d;

g until y. ymax;

x5 0;
do f

scan vertical line x looking for start and end of each object;
calculate midpoints of vertical object segments;
accumulate midpoints in 1-D parameter space ðy spaceÞ;
== note that the same space; y space; is used for all lines x
x5 x1d;

g until x. xmax;

find peaks in x space;
find peaks in y space;
test all possible object centres arising from these peaks;
== the last step is necessary only if '. 1 peak in each space
== d is the horizontal and vertical step-size ð5 1=αÞ

(a) (b)

FIGURE 12.10

Effect of misadjustment of the gradient threshold: (a) effect of setting the threshold too

low, so that surface texture confuses the algorithm and (b) loss of sensitivity on setting the

threshold too high.
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Not only is robustness built into the algorithm in such a way as to emulate the

standard Hough-based approach, but it is possible to interpret the method as being

a Hough-based approach, since the center coordinates are each accumulated in

their own 1-D “parameter spaces.” These considerations give further insight into

the robustness of the standard Hough technique.

12.6 ELLIPSE DETECTION
The problem of detecting ellipses may seem only marginally more complex than

that of detecting circles—as eccentricity is only a single parameter. However, eccen-

tricity destroys the symmetry of the circle, so the direction of the major axis also

has to be defined. As a result, five parameters are required to describe an ellipse,

and ellipse detection has to take account of this, either explicitly or implicitly. In

spite of this, one method for ellipse detection is especially simple and straightfor-

ward to implement, i.e., the diameter bisection method, which is described next.

12.6.1 The Diameter Bisection Method
The diameter bisection method of Tsuji and Matsumoto (1978) is very simple in

concept. First, a list is compiled of all the edge points in the image. Then, the list

is sorted to find those that are antiparallel, so that they could lie at opposite ends

of ellipse diameters; next, the positions of the center points of the connecting

lines for all such pairs are taken as voting positions in parameter space

(Fig. 12.11). As for circle location, the parameter space that is used for this pur-

pose is congruent to image space. Finally, the positions of significant peaks in

parameter space are located to identify possible ellipse centers.

FIGURE 12.11

Principle of the diameter bisection method. A pair of points is located for which the edge

orientations are antiparallel. If such a pair of points lies on an ellipse, the midpoint of the

line joining the points will be situated at the center of the ellipse.
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Naturally, in an image containing many ellipses and other shapes, there will be

very many pairs of antiparallel edge points and for most of these the center points

of the connecting lines will lead to nonuseful votes in parameter space. Clearly,

such clutter leads to wasted computation. However, it is a principle of the HT that

votes must be accumulated in parameter space at all points that could in principle

lead to correct object center location: it is left to the peak finder to find the voting

positions that are most likely to correspond to object centers.

Not only does clutter lead to wasted computation, but the method itself also is

computationally expensive. This is because it examines all pairs of edge points, and

there are many more such pairs than there are edge points (m edge points lead to
mC2 � m2=2 pairs of edge points). Indeed, since there are likely to be at least 1000

edge points in a typical image, the computational problems can be formidable.

Interestingly, the basic method is not particularly discriminating about ellipses.

It picks out many symmetrical shapes—any indeed that possess 180� rotation

symmetry, including rectangles, ellipses, circles, or superellipses (these have

equations of the form xs/as1 ys/bs5 1, ellipses being a special case). In addition,

the basic scheme sometimes gives rise to a number of false identifications even in

an image in which only ellipses are present (Fig. 12.12). However, Tsuji and

Matsumoto (1978) also proposed a technique by which true ellipses can be distin-

guished. The basis of the technique is the property of an ellipse that the lengths

of perpendicular semidiameters OP, OQ obey the relation:

1

OP2
1

1

OQ2
5

1

R2
5 constant (12.11)

To proceed, the set of edge points that contribute to a given peak in parameter

space is used to construct a histogram of R values (the latter being obtained from

FIGURE 12.12

Result of using the basic diameter bisection method. The larger dots show true ellipse

centers found by the method, whereas the smaller dots show positions at which false

alarms commonly occur. Such false alarms are eliminated by applying the test described

in the text.
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Eq. (12.11)). If a significant peak is found in this histogram, then there is clear

evidence of an ellipse at the specified location in the image. If two or more such

peaks are found, then there is evidence of a corresponding number of concentric

ellipses in the image. If, however, no such peaks are found, then a rectangle,

superellipse, or other symmetrical shape may be present and each of these would

need its own identifying test.

The method obviously relies on there being an appreciable number of pairs of

edge points on an ellipse lying at opposite ends of diameters: hence, there are

strict limits on the amount of the boundary that must be visible (Fig. 12.13).

Finally, it should not go unnoticed that the method wastes the signal available

from unmatched edge points. These considerations have led to a search for further

methods of ellipse detection.

12.6.2 The Chord�Tangent Method
The chord�tangent method was devised by Yuen et al. (1988) and makes use of

another simple geometric property of the ellipse. Again pairs of edge points are

taken in turn, and for each point of the pair, tangents to the ellipse are constructed

and found to cross at T, the midpoint of the connecting line is found at M, and

then the equation of line TM is calculated and all points that lie on the portion

MK of this line are accumulated in parameter space (Fig. 12.14) (clearly, T and

the center of the ellipse lie on the opposite sides of M). Finally, peak location

proceeds as before.

The proof that this method is correct is trivial. Symmetry ensures that the

method works for circles, and projective properties then ensure that it also works

for ellipses: under projection, straight lines project into straight lines, midpoints

into midpoints, tangents into tangents, and circles into ellipses; in addition, it is

FIGURE 12.13

Limitations of the diameter bisection method: of the three ellipses shown, only the lowest

one cannot be located by the diameter bisection method.

Source: r Unicom 1988
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always possible to find a viewpoint such that a circle can be projected into a

given ellipse.

Unfortunately, this method suffers from significantly increased computation,

since so many points have to be accumulated in parameter space. This is obvi-

ously the price to be paid for greater applicability. However, computation can be

minimized in at least three ways: (1) cutting down the lengths of the lines of

votes accumulated in parameter space by taking account of the expected sizes and

spacings of ellipses; (2) not pairing edge points initially if they are too close

together or too far apart; and (3) eliminating edge points once they have been

identified as belonging to a particular ellipse.

12.6.3 Finding the Remaining Ellipse Parameters
Although the methods described above are designed to locate the center coordi-

nates of ellipses, a more formal approach is required to determine other ellipse

parameters. Accordingly, we write the equation of an ellipse in the form:

Ax2 1 2Hxy1By2 1 2Gx1 2Fy1C5 0 (12.12)

an ellipse being distinguished from a hyperbola by the additional condition:

AB.H2 (12.13)

This condition guarantees that A can never be zero and that the ellipse equation

may without loss of generality be rewritten with A5 1. This leaves five para-

meters, which can be related to the position of the ellipse, its orientation, and its

size and shape (or eccentricity).

P1

P2

T

M

K

FIGURE 12.14

Principle of the chord�tangent method. The tangents at P1 and P2 meet at T and the

midpoint of P1P2 is M. The center C of the ellipse lies on the line TM produced. Note that

M lies between C and T. Hence, the transform for points P1 and P2 need only include the

portion MK of this line.

32312.6 Ellipse Detection



Having located the center of the ellipse, we may select a new origin of coordinates

at its center (xc, yc); the equation then takes the form:

x02 1 2Hx0y0 1By02 1 C0 5 0 (12.14)

where

x0 5 x2 xc; y0 5 y2 yc (12.15)

It now remains to fit to Eq. (12.14) the edge points that gave evidence for the ellipse

center under consideration. The problem will normally be vastly overdetermined.

Hence, an obvious approach is the method of least squares. Unfortunately, this tech-

nique tends to be very sensitive to outlier points and is therefore liable to be inaccu-

rate. An alternative is to employ some form of Hough transformation. Here we

follow Tsukune and Goto (1983) by differentiating Eq. (12.14):

x0 1
By0

dx0
1H y0 1

x0dy0

dx0

� �
5 0 (12.16)

Then dy0/dx0 can be determined from the local edge orientation at (x0, y0) and a set

of points accumulated in the new (H, B) parameter space. When a peak is eventu-

ally located in (H, B) space, the relevant data (a subset of a subset of the original

set of edge points) can be used with Eq. (12.14) to obtain a histogram of C0

values, from which the final parameter for the ellipse can be obtained.

The following formulae are needed to determine the orientation θ and semi-axes

a and b of an ellipse in terms of H, B, and C0:

θ5
1

2
arctan

2H

12B

� �
(12.17)

a2 5
22C0

ðB1 1Þ2 ½ðB21Þ2 1 4H2�1=2 (12.18)

b2 5
22C0

ðB1 1Þ1 ½ðB21Þ2 1 4H2�1=2 (12.19)

Mathematically, θ is the angle of rotation that diagonalizes the second-order terms

in Eq. (12.14); having performed this diagonalization, the ellipse is then essen-

tially in the standard form ~x2=a2 1 ~y2=b2 5 1, so a and b are determined.

Note that the above method finds the five ellipse parameters in three stages:

first the positional coordinates are obtained, then the orientation, and finally the

size and eccentricity.5 This three-stage calculation involves less computation but

compounds any errors—in addition, edge orientation errors, although low,

become a limiting factor. For this reason, Yuen et al. (1988) tackled the problem

by speeding up the HT procedure itself rather than by avoiding a direct assault on

5Strictly, the eccentricity is e5 (12 b2/a2)1/2, but in most cases we are more interested in the ratio

of semiminor to semimajor axes, b/a.
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Eq. (12.14): i.e., they aimed at a fast implementation of a thoroughgoing second

stage, which finds all the parameters of Eq. (12.14) in one 3-D parameter space.

It is now clear that reasonably optimal means are available for finding the orien-

tation and semi-axes of an ellipse once its position is known: the weak point in the

process appears to be that of finding the ellipse initially. Indeed, the two approaches

for achieving this that have been described above are particularly computation inten-

sive, mainly because they examine all pairs of edge points; a possible alternative is

to apply the generalized Hough transform (GHT), which locates objects by taking

edge points singly: this possibility will be considered in Chapter 13.

12.7 HUMAN IRIS LOCATION
Human iris location is an important application of computer vision for three rea-

sons: (1) it provides a useful cue for human face analysis; (2) it can be used for

the determination of gaze direction; and (3) it is useful in its own right for biomet-

ric purposes, that is to say, for identifying individuals almost uniquely. The latter

possibility has already been noted in Chapter 8 where textural methods for iris rec-

ognition are outlined and some key references are given. More details of human

face location and analysis will be given in Chapter 17. Here we concentrate on iris

location using the Hough transform.

In fact, we can tackle the iris location and recognition task reasonably straight-

forwardly. First, if the head has been located with reasonable accuracy, then it can

form a region of interest, inside which the iris can be sought. In a front view with

the eyes looking ahead, the iris will be seen as a round often high-contrast object,

and can be located straightforwardly with the aid of a HT (Ma et al., 2003). In

some cases, this will be less easy because the iris is relatively light and the color

may not be distinctive—although a lot will depend on the quality of the illumina-

tion. Perhaps more important, in some human subjects, the eyelid and lower con-

tour of the eye may partially overlap the iris (Fig. 12.15(a)), making it more

difficult to identify, although, as confirmed below, HTs are capable of coping with

a fair degree of occlusion.

Note that the iris will appear elliptical if the eyes are not facing directly ahead;

in addition, the shape of the eye is far from spherical and the horizontal diameter

is larger than the vertical diameter—again making the iris appear elliptical

(Wang and Sung, 2001). In either case, the iris can still be detected using a

Hough transform. Furthermore, once this has been done, it should be possible to

estimate the direction of gaze with a reasonable degree of accuracy (Gong et al.,

2000), thereby taking us further than mere recognition. (The fact that measure-

ment of ellipse eccentricity would lead to an ambiguity in the gaze direction can

be offset by measuring the position of the ellipse on the eyeball.) Finally,

Toennies et al. (2002) showed that the HT can be used to localize the irises for

real-time applications, in spite of quite substantial partial occlusion by the eyelid

and lower contour of the eye.
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A number of the points made above are illustrated by the example in Fig. 12.15.

Far from being a trivial application of the HT, there are a surprisingly large number of

edges in the eye region: these produce significant numbers of additional votes, which

interfere with those from the irises. These arise from the upper and lower eyelids and

the folds of skin around them. Hence, the accuracy of the method is not assured: this

makes gradient weighting (see Section 13.6) especially valuable. The radii of the irises

shown in Fig. 12.15 are about 17.5 pixels, and there is no particular evidence of ellip-

ticity in their shape. However, more accurate location of the iris and measurement of

ellipticity in order to estimate orientation (e.g., to determine the angle of gaze) require

considerably greater resolution, with iris radii approaching 100 pixels, whereas pictures

that analyze iris texture patterns for biometric purposes require even larger radii.

(a) (b)

(c) (d)

(e)

FIGURE 12.15

Iris location using the Hough transform. (a) Original image of the eye region of the face with irises located

by a uniformly weighted Hough transform (HT). (b) Irises located using a gradient-weighted HT. (c) and (d)

The respective HTs used to locate the irises in (a) and (b). (e) The Canny operator (incorporating

smoothing, nonmaximum suppression, and hysteresis) is used to obtain the initial edge image in both

cases. The sharper peaks obtained using the gradient weighting permit the irises to be located significantly

more robustly and accurately. Note the number of additional edges in (e) that are able to produce

substantive numbers of additional votes, which interfere with those from the irises.
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12.8 HOLE DETECTION
At this stage, an obvious question is whether the usual methods for circular object

detection can be applied to hole detection. In principle, this is undoubtedly practi-

cable, in many cases the only change arising because holes have negative contrast.

This means that if the HT technique is used, votes will have to be accumulated on

moving a distance 2R along the direction of the local edge normal. There is no diffi-

culty with this for large holes, but as the holes become smaller, complications tend to

occur because of poor lighting inside the holes. As a result, large regions of shadow

are likely to occur, and the contrast is liable to be weak and variable. We shall not

consider the general situation further as it is so dependent on size, illumination, and

other factors, such as 3-D shape and the material within which the hole appears.

Nevertheless, for small holes a few pixels across, detection can be important,

as they constitute point features, and these can be valuable for precise object loca-

tion, as happens for biscuits, hinges, brackets, and a host of other manufactured

parts (see Chapter 14). In fact, circular holes may even be preferable to corners

for object location, as they are, ideally, isotropic and thus less liable to bias when

used for measurement.

Very small holes can be detected using template matching. This involves

applying a Laplacian type of operator, and in a 33 3 neighborhood this may take

the form of one of the following convolution masks:

21 21 21

21 8 21

21 21 21

2
4

3
5 22 23 22

23 20 23

22 23 22

2
4

3
5

Having applied the convolution, the resulting image is thresholded to indicate regions

where holes might be present. Note that the coefficients in each of the above masks

sum to zero so that they are insensitive to varying levels of background illumination.

If the holes in question are larger than 1�2 pixels in diameter, the above

masks will prove inadequate. Clearly, larger masks are required if larger holes are

to be detected efficiently at their centers. For much larger holes, the masks that

are required become impracticably large, and the HT approach becomes a more

attractive option.

12.9 CONCLUDING REMARKS
This chapter has described techniques for circle and ellipse detection, starting

with the HT approach. Although the HT is found to be effective and highly robust

against occlusions, noise, and other artifacts, it incurs considerable storage and

computation—especially if it is required to locate circles of unknown radius or if

high accuracy is required. Techniques have been described whereby the latter two

problems can be tackled much more efficiently; in addition, a method has been

32712.9 Concluding Remarks



described for markedly reducing the computational load involved in circle detec-

tion. The general circle location scheme is a type of HT but although the other

two methods are related to the HT, they are distinct methods, which draw on the

HT for inspiration. As with the HT, these methods achieve robustness as an inte-

gral part of their design—i.e., robustness is not included as an afterthought—so

they achieve known levels of robustness.

Two HT-based schemes for ellipse detection have also been described—the

diameter bisection method and the chord�tangent method. A further approach

to ellipse detection, based on the generalized HT, will be covered in Chapter 13.

At that point, further lessons will be drawn on the efficacies of the various

methods.

As in the case of line detection, a trend running through the design of circle

and ellipse detection schemes is the deliberate splitting of algorithms into two or

more stages. This is useful for keying into the important and relevant parts of an

image prior to finely discriminating one type of object or feature from another, or

prior to measuring dimensions or other characteristics accurately. Indeed, the con-

cept can be taken further, in that the efficiencies of all the algorithms discussed in

this chapter have been improved by searching first for edge features in the image.

The concept of two-stage template matching is therefore deep seated in the meth-

odology of the subject and is developed further in later chapters. Although

two-stage template matching is a standard means of increasing efficiency

(VanderBrug and Rosenfeld, 1977; Davies, 1988g), it is not obvious that effi-

ciency can always be increased in this way. It appears to be in the nature of the

subject that ingenuity is needed to discover means of achieving this.

The Hough transform is very straightforwardly applied to circle detection, for which it
achieves an impressive level of robustness. It is also easily applied to ellipse detection.
Practical issues include accuracy, speed, and storage requirements—some of which can be
improved by employing parameter spaces of reduced dimension, although this can affect
the specificity that can be achieved.

12.10 BIBLIOGRAPHICAL AND HISTORICAL NOTES
The Hough transform was developed in 1962 and first applied to circle detection

by Duda and Hart (1972). However, the now standard HT technique, which

makes use of edge orientation information to reduce computation, only emerged 3

years later (Kimme et al., 1975). The author’s work on circle detection for auto-

mated inspection required real-time implementation and also high accuracy. This

spurred the development of the three main techniques described in Sections

12.3�12.5 (Davies, 1987f, 1988b, 1988e). In addition, the author has considered

the effect of noise on edge orientation computations, showing in particular their

effect in reducing the accuracy of center location (Davies, 1987e).
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Yuen et al. (1989) reviewed various existing methods for circle detection

using the HT. In general, their results confirmed the efficiency of the method

described in Section 12.3 when circle radius is unknown, although they found

that the two-stage process that was involved can sometimes lead to slight loss of

robustness. It appears that this problem can be reduced in some cases by using a

modified version of the algorithm of Gerig and Klein (1986). Note that the Gerig

and Klein approach is itself a two-stage procedure: it is discussed in detail in

Chapter 13. More recently, Pan et al. (1995) have increased the speed of compu-

tation of the HT by prior grouping of edge pixels into arcs, for an underground

pipe inspection application.

The two-stage template matching technique and related approaches for

increasing search efficiency in digital images were known by 1977 (Nagel and

Rosenfeld, 1972; Rosenfeld and VanderBrug, 1977; VanderBrug and Rosenfeld,

1977) and have undergone further development since then—especially in relation

to particular applications such as those described in this chapter (Davies, 1988g).

Later, Atherton and Kerbyson (1999) (see also Kerbyson and Atherton, 1995)

showed how to find circles of arbitrary radius in a single parameter space using

the novel procedure of coding radius as a phase parameter and then performing

accumulation with the resulting phase-coded annular kernel. Using this approach,

they attained higher accuracy with noisy images; Goulermas and Liatsis (1998)

showed how the HT could be fine tuned for the detection of fuzzy circular objects

such as overlapping bubbles by using genetic algorithms. In effect, the latter are

able to sample the solution space with very high efficiency and hand over cleaner

data to the following HT.

The ellipse detection sections are based particularly on the work of Tsuji and

Matsumoto (1978), Tsukune and Goto (1983), and Yuen et al. (1988); for a fourth

method (Davies, 1989a) using the GHT idea of Ballard (1981) in order to save

computation, see Chapter 13. The contrasts between these methods are many and

intricate, as this chapter has shown. In particular, the idea of saving dimensional-

ity in the implementation of the GHT appears also in a general circle detector

(Davies, 1988b). At that point in time, the necessity for a multistage approach to

determination of ellipse parameters seemed proven, although somewhat surpris-

ingly the optimum number of such stages was just two.

Later algorithms represented moves to greater degrees of robustness with real

data by explicit inclusion of errors and error propagation (Ellis et al., 1992);

increased attention was subsequently given to the verification stage of the Hough

approach (Ser and Siu, 1995). In addition, work was carried out on the detection

of superellipses, which are shapes intermediate in shape between ellipses and rec-

tangles, although the technique used (Rosin and West, 1995) was that of segmen-

tation trees rather than HTs (nonspecific detection of superellipses can of course

be achieved by the diameter bisection method (see Section 12.6.1); see also Rosin

(2000)).

For cereal grain inspection, with typical flow rates in excess of 300 grains per

second, ultrafast algorithms were needed and the resulting algorithms were
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limiting cases of chord-based versions of the HT (Davies, 1999b, 1999d); a

related approach was adopted by Xie and Ji (2002) for their efficient ellipse

detection method; Lei and Wong (1999) employed a method that was based on

symmetry, and this was found to be able to detect parabolas and hyperbolas as

well as ellipses:6 it was also reported as being more stable than other methods

since it does not have to calculate tangents or curvatures; the latter advantage has

also been reported by Sewisy and Leberl (2001). The fact that even in the 2000s,

basic new ellipse detection schemes are being developed says something about

the science of image analysis: even today the toolbox of algorithms is incomplete,

and the science of how to choose between items in the toolbox, or how, systemati-

cally, to develop new items for the toolbox, is immature. Further, although all the

parameters for specification of such a toolbox may be known, knowledge about

the possible tradeoffs between them is still limited.

12.10.1 More Recent Developments
Much work has recently been carried out on iris detection using the HT. Jang

et al. (2008) were particularly concerned with overlap of the iris region by the

upper and lower eyelids, and used a parabolic version of the HT to accurately

locate their boundaries, taking special care to limit the computational load. Li

et al. (2010) used a circular HT to locate the iris and a RANSAC-like technique

for locating the upper and lower eyelids, again using a parabolic model for the

latter: their approach was designed to cope with very noisy iris images. Chen

et al. (2010) used a circular HT to locate the iris and a straight line HT to locate

up to two line segment approximations to the boundaries of each of the eyelids.

Cauchie et al. (2008) produced a new version of the HT to accurately locate com-

mon circle centers from circular or partial circle segments, and demonstrated its

value for iris location. Min and Park (2009) used a circular HT for iris detection,

a parabolic HT for eyelid detection, and followed this with eyelash detection

using thresholding.

Finally, we summarize the work carried out by Guo et al. (2009) to overcome

the problems of dense sets of edges in textured regions. To reduce the impact of

such edges, a measure of isotropic surround suppression was introduced: the

resulting algorithm gave small weights to edges in texture regions and large

weights to edges on strong and clear boundaries when accumulating votes in

Hough space. The approach gave good results when locating straight lines in

scenes containing man-made structures such as buildings.

6Note that while this is advantageous in some applications, the lack of discrimination could prove

to be a disadvantage in other applications.
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12.11 PROBLEMS
1. Prove the result of Section 12.4.1 that as D approaches C and d approaches

zero, the shape of the locus becomes a circle on DC as diameter.

2. a. Describe the use of the Hough transform for circular object detection,

assuming that object size is known in advance. Show also how a method

for detecting ellipses could be adapted for detecting circles of unknown

size.

b. A new method is suggested for circle location that involves scanning the

image both horizontally and vertically. In each case, the midpoints of

chords are determined and their x or y coordinates are accumulated in sep-

arate 1-D histograms. Show that these can be regarded as simple types of

Hough transform, from which the positions of circles can be deduced.

Discuss whether any problems would arise with this approach; consider

also whether it would lead to any advantages relative to the standard

Hough transform for circle detection.

c. A further method is suggested for circle location. This again involves scan-

ning the image horizontally, but in this case, for every chord that is found,

an estimate is immediately made of the two points at which the center

could lie, and votes are placed at those locations. Work out the geometry

of this method, and determine whether this method is faster than the

method outlined in (b). Determine whether the method has any disadvan-

tages compared with method described in (b)?

3. Determine which of the methods described in this chapter will detect (a)

hyperbolas, (b) curves of the form Ax31By35 1, and (c) curves of the form

Ax41Bx1Cy45 1.

4. Prove Eq. (12.11) for an ellipse. Hint: Write the coordinates of P and Q in

suitable parametric forms, and then use the fact that OP\OQ to eliminate one

of the parameters from the left-hand side of the equation.

5. Describe the diameter bisection and chord�tangent methods for the location

of ellipses in images, and compare their properties. Justify the use of the

chord�tangent method by proving its validity for circle detection and then

extending the proof to cover ellipse detection.

6. Round coins of a variety of sizes are to be located, identified, and sorted in a

vending machine. Discuss whether the chord�tangent method should be used

for this purpose instead of the usual form of Hough transform circle location

scheme operating within a 3D (x, y, r) parameter space.

7. Outline each of the following methods for locating ellipses using the Hough

transform: (a) the diameter bisection method and (b) the chord�tangent

method. Explain the principles on which these methods rely. Determine which

is more robust and compare the amounts of computation each requires.

8. For the diameter bisection method, searching through lists of edge points with

the right orientations can take excessive computation. It is suggested that a
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two-stage approach might speed up the process: (a) load the edge points into a

table, which may be addressed by orientation and (b) look up the right edge

points by feeding appropriate orientations into the table. Estimate how much

this would be likely to speed up the diameter bisection method.

9. It is found that the diameter bisection method sometimes becomes confused

when several ellipses appear in the same image, and generates false “centers”

that are not situated at the centers of any ellipses. It is also found that certain

other shapes are detected by the diameter bisection method. Ascertain in each

case quite what the method is sensitive to, and consider ways in which these

problems might be overcome.
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CHAPTER

13The Hough Transform and
Its Nature

It has already been seen that the Hough transform can be used to locate straight

line, circle, and ellipse features in digital images. It would be useful to know

whether the method can be generalized to cover all shapes and whether it is

always as robust as it is for the original three examples. This chapter discusses

these questions, showing that the method can be generalized and is broadly able

to retain its robustness properties.

Look out for:

• the generalized Hough transform technique.

• its relation to spatial matched filtering.

• how sensitivity is optimized by gradient rather than uniform weighting.

• use of the generalized HT for ellipse detection.

• how speed can be improved by the use of a universal lookup table.

• how the computational loads of the various HT techniques can be estimated.

• the value of the Gerig and Klein back-projection technique in cutting down

the effects of extraneous clutter.

This chapter describes the generalized Hough transform and generalizes our view of

the HT as a generic computer vision technique. It also makes order calculations of

computational load for three HT-based methods of ellipse detection.

13.1 INTRODUCTION
In Chapters 11 and 12, it has been seen that the Hough transform (HT) is of great

importance for the detection of features such as lines, circles, and ellipses, and for

finding relevant image parameters. This makes it worthwhile to see the extent to

which the method can be generalized so that it can detect arbitrary shapes. The
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works of Merlin and Farber (1975) and Ballard (1981) were crucial historically and

led to the development of the generalized Hough transform (GHT). The GHT is

studied in this chapter, showing first how it is implemented and then examining

how it is optimized and adapted to particular types of image data. This requires us

to go back to first principles, taking spatial matched filtering as a starting point.

Having developed the relevant theory, it is applied to the important case of

ellipse detection, showing in particular how computational load may be mini-

mized. Finally, the computational problems of the GHT and HT are examined

more generally.

13.2 THE GENERALIZED HOUGH TRANSFORM
This section shows how the standard Hough technique is generalized so that it can

detect arbitrary shapes. In principle, it is trivial to achieve this. First, we need to

select a localization point L within a template of the idealized shape. Then, we

need to arrange such that, instead of moving from an edge point a fixed distance R

directly along the local edge normal to arrive at the center, as for circles, we move

an appropriate variable distance R in a variable direction ϕ so as to arrive at L: R

and ϕ are now functions of the local edge normal direction θ (Fig. 13.1). Under

these circumstances, votes will peak at the preselected object localization point L.

The functions R(θ) and ϕ(θ) can be stored analytically in the computer algorithm,

or for completely arbitrary shapes they may be stored as lookup tables. In either

case, the scheme is beautifully simple in principle but two complications arise in

practice. The first arises because some shapes have features such as concavities

and holes, so several values of R and ϕ are required for certain values of θ
(Fig. 13.2). The second arises because we are going from an isotropic shape (a cir-

cle) to an anisotropic shape, which may be in a completely arbitrary orientation.

To cope with the first of these complications, the lookup table (usually called

the “R-table”) must contain a list of the positions r, relative to L, of all points on

R L
ϕ

θ

FIGURE 13.1

Computation of the generalized Hough transform.
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the boundary of the object for each possible value of edge orientation θ (or a sim-

ilar effect must be achieved analytically). Then, on encountering an edge frag-

ment in the image whose orientation is θ, estimates of the position of L may be

obtained by moving a distance (or distances) R52r from the given edge frag-

ment. Clearly, if the R-table has multivalued entries (i.e., several values of r for

certain values of θ), only one of these entries (for given θ) can give a correct esti-

mate of the position of L. However, at least the method is guaranteed to give opti-

mum sensitivity, since all relevant edge fragments contribute to the peak at L in

parameter space. This property of optimal sensitivity reflects the fact that the

GHT is a form of spatial matched filter: it is analyzed in more detail below.

The second complication arises because any shape other than circle is aniso-

tropic. Since in most applications (including industrial applications such as auto-

mated assembly) object orientations are initially unknown, the algorithm has to

obtain its own information on object orientation. This means adding an extra

dimension in parameter space (Ballard, 1981). Then each edge point contributes a

vote in each plane in parameter space at a position given by that expected for an

object of given shape and orientation. Finally, the whole of parameter space is

searched for peaks, the highest points indicating both the locations of objects and

their orientations. Clearly, if object size is also a parameter, the problem becomes

far worse but this complication is ignored here (although the method described in

Section 12.3 is clearly relevant).

The changes made in proceeding to the GHT leave it just as robust as the HT

circle detector described previously. This gives an incentive to improve the GHT so

as to limit the computational problems in practical situations. In particular, the size

of the parameter space must be cut down drastically both to save storage and to cur-

tail the associated search task. Considerable ingenuity has been devoted to devising

alternative schemes and adaptations to achieve this. Important cases are those of

ellipse detection and polygon detection, and in each of these, definite advances have

been made: ellipse detection is covered in Chapter 12 and for polygon detection, see

Davies (1989a). Here we proceed with some more basic studies of the GHT.

P1

P2

FIGURE 13.2

A shape exhibiting a concavity: certain values of θ correspond to several points on the

boundary and hence require several values of R and ϕ—as for points: P1 and P2.
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13.3 SETTING UP THE GENERALIZED HOUGH TRANSFORM—
SOME RELEVANT QUESTIONS

The next few sections explore the theory underpinning the GHT, with the aim of

clarifying how to optimize it systematically for specific circumstances. It is rele-

vant to ask what is happening when a GHT is being computed. Although the HT

has been shown to be equivalent to template matching (Stockman and Agrawala,

1977) and also to spatial matched filtering (Sklansky, 1978), further clarification

is required. In particular, the following three problems (Davies, 1987a) need to be

addressed:

1. The parameter space weighting problem: In introducing the GHT, Ballard

mentioned the possibility of weighing points in parameter space according to

the magnitudes of the intensity gradients at the various edge pixels. But when

should gradient weighting be used in preference to uniform weighting?

2. The threshold selection problem: When using the GHT to locate an object,

edge pixels are detected and used to compute candidate positions for the local-

ization point L (see Section 13.2). To achieve this, it is necessary to threshold

the edge gradient magnitude. How should the threshold be chosen?

3. The sensitivity problem: Optimum sensitivity in detecting objects does not

automatically provide optimum sensitivity in locating objects, and vice versa.

How should the GHT be optimized for these two criteria?

To understand the situation and solve these problems, it is necessary to go back

to first principles. Section 13.4 starts discussion on this.

13.4 SPATIAL MATCHED FILTERING IN IMAGES
To discuss the questions posed in Section 13.3, it is necessary to analyze the pro-

cess of spatial matched filtering. In principle, this is the ideal method of detecting

objects, since it is well known (Rosie, 1966) that a filter that is matched to a

given signal detects it with optimum signal-to-noise ratio under white noise1 con-

ditions (North, 1943; Turin, 1960). (For a more recent discussion of this topic,

see Davies (1993).)

Mathematically, using a matched filter is identical to correlation with a signal

(or “template”) of the same shape as the one to be detected (Rosie, 1966). Here

“shape” is a general term meaning the amplitude of the signal as a function of

time or spatial location.

1White noise is noise that has equal power at all frequencies. In image science, white noise is

understood to have equal power at all spatial frequencies. The significance of this is that noise at

different pixels is completely uncorrelated but is subject to the same grayscale probability distribu-

tion, i.e., it has potentially the same range of amplitudes at all pixels.
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When applying correlation in image analysis, changes in background illumina-

tion cause large changes in signal from one image to another and from one part of

an image to another. The varying background level prevents straightforward peak

detection in convolution space. The matched filter optimizes signal-to-noise ratio

only in the presence of white noise. This is likely to be a good approximation in

the case of radar signals, whereas this is not generally true in the case of images.

For ideal detection, the signal should be passed through a “noise-whitening filter”

(Turin, 1960), which in the case of objects in images is usually some form of

high-pass filter: this must be applied prior to correlation analysis. However, this is

likely to be a computationally expensive operation.

If we are to make correlation work with near optimal sensitivity but without

introducing a lot of computation, other techniques must be employed. In the tem-

plate matching context, the following possibilities suggest themselves:

1. Adjust templates so that they have a mean value of zero to suppress the effects

of varying levels of illumination in first order.

2. Break up templates into a number of smaller templates each having a zero

mean. Then as the sizes of subtemplates approach zero, the effects of varying

levels of illumination will tend to zero in second order.

3. Apply a threshold to the signals arising from each of the subtemplates so as to

suppress those that are less than the expected variation in signal level.

If these possibilities fail, only two further strategies appear to be available:

1. Readjust the lighting system—an important option in industrial inspection

applications, although it may give little improvement when a number of

objects can cast shadows or reflect light over each other.

2. Use a more “intelligent” (e.g., context sensitive) object detection algorithm,

although this will almost certainly be computation intensive.

13.5 FROM SPATIAL MATCHED FILTERS TO GENERALIZED
HOUGH TRANSFORMS

To proceed, we note that items 1�3 listed in Section 13.3 essentially amount to a

specification of the GHT. First, breaking up the templates into small subtemplates

each having a zero mean and then thresholding them are analogous, and in many

cases identical, to a process of edge detection (see, e.g., the templates used in the

Sobel and similar operators). Next, locating objects by peak detection in parame-

ter space clearly corresponds to the process of reconstructing whole template

information from the subtemplate (edge location) data. What is important here is

that these ideas reveal how the GHT is related to the spatial matched filter.

Basically, the GHT can be described as a spatial matched filter that has been

modified, with the effect of including integral noise whitening, by breaking down
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the main template into small zero-mean templates and thresholding the individual

responses before object detection.

Small templates do not permit edge orientation to be estimated as accurately

as large ones. Although the Sobel edge detector is in principle accurate to about

1� (see Chapter 5), there is a deleterious effect if the edge of the object is fuzzy.

In such a case, it is not possible to make the subtemplates very small, and an

intermediate size should be chosen that gives a suitable compromise between

accuracy and sensitivity.

Employing zero-mean templates results in the absolute signal level being

reduced to zero and only local relative signal levels being retained. Thus, the

GHT is not a true spatial matched filter: in particular, it suppresses the signal

from the bulk of the object, retaining only that which is near its boundary. As a

result, the GHT is highly sensitive to object position but is not optimized for

object detection.

Thresholding of subtemplate responses has much the same effect as employing

zero-mean templates, although it may remove a small proportion of the signal

giving positional information. This makes the GHT even less like an ideal spatial

matched filter and further reduces the sensitivity of object detection. The thresh-

olding process is particularly important in the present context since it provides a

means of saving computational effort without losing significant positional infor-

mation. On its own this characteristic of the GHT would correspond to a type of

perimeter template around the outside of an object (see Fig. 13.3). This must not

be taken as excluding all of the interior of the object, since any high-contrast

edges within the object will facilitate location.

0

(a) (b)

0

FIGURE 13.3

The idea of a perimeter template: both the original spatial matched filter template (a) and

the corresponding “perimeter template” (b) have a zero mean (see text). The lower

illustrations show the cross-sections along the dashed lines.

338 CHAPTER 13 The Hough Transform and Its Nature



13.6 GRADIENT WEIGHTING VERSUS UNIFORM WEIGHTING
The first problem described in Section 13.3 is that of how best to weight plots

in parameter space in relation to the respective edge gradient magnitudes. To

find an answer to this problem, it should now only be necessary to go back to

the spatial matched filter case to find the ideal solution, and then to determine the

corresponding solution for the GHT in the light of the discussion in Section 13.4.

First, note that the responses to the subtemplates (or to the perimeter template)

are proportional to edge gradient magnitude. With a spatial matched filter, signals

are detected optimally by templates of the same shape. Each contribution to the

spatial matched filter response is then proportional to the local magnitude of the

signal and to that of the template. In view of the correspondence between (a)

using a spatial matched filter to locate objects by looking for peaks in convolution

space and (b) using a GHT to locate objects by looking for peaks in parameter

space, we should use weights proportional to the gradients of the edge points and

the a priori edge gradients.

There are two ways in which the choice of weighting is important. First, the

use of uniform weighting implies that all edge pixels whose gradient magnitudes

are above threshold will effectively have them reduced to the threshold value, so

that the signal will be curtailed: this can mean that the signal-to-noise ratio of

high-contrast objects will be reduced significantly. Second, the widths of edges

of high-contrast objects will be broadened in a crude way by uniform weighting

(see Fig. 13.4) but under gradient weighting this broadening will be controlled,

giving a roughly Gaussian edge profile. Thus, the peak in parameter space will be

narrower and more rounded, and the object reference point L can be located more

easily and with greater accuracy. This effect is visible in Fig. 13.5, which also

shows the relatively increased noise level that results from uniform weighting.

Note also that low gradient magnitudes correspond to edges of poorly known

location, whereas high values correspond to sharply defined edges. Thus, the

accuracy of the information relevant to object location is proportional to the mag-

nitude of the gradient at each of the edge pixels, and appropriate weighting should

therefore be used.

13.6.1 Calculation of Sensitivity and Computational Load
The aim of this subsection is to underline the above-described ideas by working

out formulae for sensitivity and computational load. It is assumed that p objects

of size around n3 n are being sought in an image of size N3N.

Correlation requires N2n2 operations to compute the convolutions for all poss-

ible positions of the object in the image. Using the perimeter template, the num-

ber of basic operations is reduced to BN2n, corresponding to the reduced number

of pixels in the template. The GHT requires BN2 operations to locate the edge

pixels, plus a further Bpn operations to accumulate the points in parameter

space.
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The situation for sensitivity is rather different. With correlation, the results for

n2 pixels are summed, giving a signal proportional to n2, although the noise

(assumed to be independent at every pixel) is proportional to n: this is because of

the well-known result that the noise powers of various independent noise compo-

nents are additive (Rosie, 1966). Overall, this results in the signal-to-noise ratio

being proportional to n. The perimeter template possesses only Bn pixels, and

here the overall result is that the signal-to-noise ratio is proportional to
ffiffiffi
n

p
. The

situation for the GHT is inherently identical to that for the perimeter template

method, so long as plots in parameter space are weighted proportional to edge

gradient g multiplied by a priori edge gradient G. It is now necessary to compute

the constant of proportionality α. Take s as the average signal, equal to the inten-

sity (assumed to be roughly uniform) over the body of the object, and S as the

magnitude of a full matched filter template. In the same units, g (and G) is the

magnitude of the signal within the perimeter template. Then α5 1/sS. This means

that the perimeter template method and the GHT method lose sensitivity for two

reasons—first they look at less of the available signal and second they look where

the signal is low. For a high value of gradient magnitude, which occurs for a step

edge (where most of the variation in intensity takes place within the range of 1

pixel), the values of g and G saturate out, so that they are nearly equal to s and S

(see Fig. 13.6). Under these conditions, the perimeter template method and the

GHT have sensitivities that depend only on the value of n.

(a)

(b)

Gradient
threshold

(c)

FIGURE 13.4

Effective gradient magnitude as a function of position within a section across an object of

moderate contrast, thresholded at a fairly low level: (a) gradient magnitude for original

image data and gradient thresholding level; (b) uniform weighting: the effective widths of

edges are broadened rather crudely, adding significantly to the difficulty of locating the

peak in parameter space; (c) gradient weighting: the position of the peak in parameter

space can be estimated in a manner that is basically limited by the shape of the gradient

profile for the original image data.
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Table 13.1 summarizes the situation discussed above. The oft-quoted state-

ment that the computational load of the GHT is proportional to the number of

perimeter pixels, rather than to the much greater number of pixels within

the body of an object, is only an approximation. In addition, this saving is

not obtained without cost: in particular, the sensitivity (signal-to-noise ratio)

is reduced (at best) as the square root of object area/perimeter (note that

area and perimeter are measured in the same units, so it is valid to find their

ratio).

(c)(b)

(a)

FIGURE 13.5

Results of applying the two types of weighting to a real image: (a) original image;

(b) results in parameter space for uniform weighting; and (c) results for gradient

weighting. The peaks (which arise from the outer edges of the washer) are normalized to

the same levels in the two cases: the increased level of noise in (b) is readily apparent. In

this example, the gradient threshold is set at a low level (around 10% of the maximum

level) so that low-contrast objects can also be detected.
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Finally, the absolute sensitivity for the GHT varies as gG. As contrast changes

so that g-g0, we see that gG-g0G, i.e., sensitivity changes by a factor of g0/g.
Hence, theory predicts that sensitivity is proportional to contrast. Although this

result might have been anticipated, we now see that it is valid only under conditions

of gradient weighting.

13.7 SUMMARY
The above sections examined the GHT and found a number of factors involved in

optimizing it, as follows.

1. Each point in parameter space should be weighted in proportion to the inten-

sity gradient at the edge pixel giving rise to it, and in proportion to the a

(a)

(b)

s

s

0

0

~s

FIGURE 13.6

Effect of edge gradient on perimeter template signal: (a) low edge gradient: signal is

proportional to gradient and (b) high edge gradient: signal saturates at value of s.

Table 13.1 Formulae for Computational Load and Sensitivitya

Template
Matching

Perimeter Template
Matching

Generalized Hough
Transform

Number of
operations

OðN2n2Þ OðN2nÞ OðN2Þ1OðpnÞ

Sensitivity OðnÞ O
ffiffiffi
n

p
gG

sS

� �
O

ffiffiffi
n

p
gG

sS

� �
Maximum
sensitivityb

OðnÞ Oð ffiffiffi
n

p Þ Oð ffiffiffi
n

p Þ

aThis table gives formulae for computational load and sensitivity when p objects of size n3 n are
sought in an image of size N3N. The intensity of the image within the whole object template is taken
as s and the value for the ideal template is taken as S: corresponding values for intensity gradient
within the perimeter template are g and G.
bMaximum sensitivity refers to the case of a step edge, for which g � s and G � S (see Fig. 13.6).
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priori gradient, if sensitivity is to be optimized, particularly for objects of

moderate-to-high contrast.

2. The ultimate reason for using the GHT is to save computation. The main

means by which this is achieved is by ignoring pixels having low magnitudes

of intensity gradient. If the threshold of gradient magnitude is set too high,

fewer objects are in general detected; if it is set too low, computational savings

are diminished. Suitable means are required for setting the threshold but little

reduction in computation is possible if the highest sensitivity in a low-contrast

image is to be retained.

3. The GHT is inherently optimized for the location of objects in an image but is

not optimized for the detection of objects. This means that it may miss low-

contrast objects, which are detectable by other methods that take the whole

area of an object into account. However, this consideration is often unimportant

in applications where signal-to-noise ratio is less of a problem than finding

objects quickly in an uncluttered environment.

Overall, it is clear that the GHT is a spatial matched filter only in a particular

sense, and as a result it has suboptimal sensitivity. The main advantage of the tech-

nique is that it is highly efficient, overall computational load in principle being

proportional to the relatively few pixels on the perimeters of objects rather than to

the much greater numbers of pixels within them. In addition, by concentrating on

the boundaries of objects, the GHT retains its power to locate objects accurately. It

is thus important to distinguish clearly between sensitivity in detecting objects and

sensitivity in locating them.

13.8 USE OF THE GHT FOR ELLIPSE DETECTION
It has already been seen that when the GHT is used to detect anisotropic objects,

there is an intrinsic need to employ a large number of planes in parameter space.

However, it is shown below that by accumulating the votes for all possible orien-

tations in a single plane in parameter space, significant savings in computation

can sometimes be made. Basically, the idea is largely to reduce the considerable

storage requirements of the GHT by using only one instead of 360 planes in

parameter space while significantly reducing the computation involved in the final

search for peaks. Such a scheme could have concomitant disadvantages such as

the production of spurious peaks, and this aspect will have to be examined

carefully.

To achieve these aims, it is necessary to analyze the shape of the point spread

function (PSF) to be accumulated for each edge pixel. To demonstrate this, we

take the case of ellipses of unknown orientation. We start by taking a general

edge fragment at a position defined by ellipse parameter ψ and deducing the bear-

ing of the center of the ellipse relative to the local edge normal (Fig. 13.7).
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Working first in an ellipse-based axis system, for an ellipse with semimajor and

semiminor axes a and b, respectively, it is clear that:

x5 acosψ (13.1)

y5 bsinψ (13.2)

Hence

dx

dψ
52asinψ (13.3)

dy

dψ
5 bcosψ (13.4)

giving

dy

dx
52

b

a

� �
cotψ (13.5)

Hence, the orientation of the edge normal is given by:

tanθ5
a

b

 �
tanψ (13.6)

At this point, we wish to deduce the bearing of the center of the ellipse relative

to the local edge normal. From Fig. 13.7:

ϕ5 θ2 η (13.7)

0

r

y

x

ψ

η θ

ϕ

FIGURE 13.7

Geometry of an ellipse and its edge normal.
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where

tanη5
y

x
5

b

a

� �
tanψ (13.8)

and

tanϕ5 tan ðθ2 ηÞ

5
tanθ2 tanη
11 tanθ tanη

(13.9)

Substituting for tan θ and tan η, and then rearranging, gives:

tanϕ5
ða2 2 b2Þ

2ab
sin2ψ (13.10)

In addition:

r2 5 a2 cos2ψ1 b2 sin2ψ (13.11)

To obtain the PSF for an ellipse of unknown orientation, we now simplify matters

by taking the current edge fragment to be at the origin and orientated with its normal

along the u-axis (Fig. 13.8). The PSF is then the locus of all possible positions of the

center of the ellipse. To find its form, it is merely required to eliminate ψ between

Eqs. (13.10) and (13.11). This is facilitated by re-expressing r2 in double angles (the

significance of double angles lies in the 180� rotation symmetry of an ellipse):

r2 5
a2 1 b2

2
1

a2 2 b2

2
cos2ψ (13.12)

u0

v

r

ϕ

FIGURE 13.8

Geometry for finding the PSF for ellipse detection by forming the locus of the centers of

ellipses touching a given edge fragment.
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After some manipulation, the locus is obtained as:

r4 2 r2ða2 1 b2Þ1 a2b2 sec2ϕ5 0 (13.13)

which can, in the edge-based coordinate system, also be expressed in the form:

v2 5 ða2 1 b2Þ2 u2 2 a2b2=u2 (13.14)

In fact, this is a complex and variable shape, as shown in Fig. 13.9, although for

ellipses of low eccentricity, the PSF approximates to an ellipse. This is seen by

defining two new parameters:

c5
ða1 bÞ

2
(13.15)

(a) (b)

(c) (d)

v

u u

u u

v

v v

FIGURE 13.9

Typical PSF shapes for detection of ellipses with various eccentricities: (a) ellipse with

a/b5 21.0 and c/d5 1.1, (b) ellipse with a/b5 5.0, c/d5 1.5, (c) ellipse with a/b5 2.0

and c/d5 3.0, (d) ellipse with a/b5 1.4 and c/d5 6.0. Note how the PSF shape

approaches a small ellipse of aspect ratio 2.00 as eccentricity tends to zero. The

semimajor and semiminor axes of the PSF are 2d and d, respectively.
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d5
ða2 bÞ

2
(13.16)

and taking an approximation of small d, the locus is obtained in the form:

ðu1 cÞ2
d2

1
v2

4d2
5 1 (13.17)

As stated above, this approximates to an ellipse, and has semimajor axis 2d and

semiminor axis d. However, this approximation has restricted validity, applying

only when dv0:1c, so that av1:2b. However, in practice, where ellipses are

small and the PSF is only a few pixels across, it is a reasonable approximation to

insist only that a, 2b.

Implementation is simplified since a universal lookup table (ULUT) for ellipse

detection can be compiled, which is independent of the size and eccentricity of

the ellipse to be detected so long as the eccentricity is not excessive. Since ellip-

ses are common features in industrial and other applications—arising both from

elliptical objects and from oblique views of circles—this factor should be an

important consideration in many applications. Thus, a single ULUT is compiled

and stored and it then needs only to be scaled and positioned to produce the PSF

in a given instance of ellipse detection.

13.8.1 Practical Details
Having constructed a ULUT for ellipse detection, the detection algorithm has to

scale it, position it, and rotate it so that points can be accumulated in parameter

space. A priori, it would be imagined that a considerable amount of trigonometric

computation is involved in this process. However, it is possible to avoid calculat-

ing angles directly (e.g., using the arctan function) by always working with sines

and cosines; this is rendered possible partly because such edge orientation opera-

tors as the Sobel give two components (gx, gy) for the intensity gradient vector

(this has already been seen to happen in several line and circle detection

schemes—see Chapters 11 and 12). Hence, a lot of computation can be saved.

Figure 13.10 shows the result of testing the above scheme on an image of

some O-rings lying on a slope of arbitrary direction, whereas Fig. 13.11 shows

the result obtained for an elliptical object; the two cases used PSFs containing 50

and 100 votes, respectively. In Fig. 13.10, the O-rings are found accurately and

with a fair degree of robustness, i.e., despite overlapping and partial occlusion (up

to 40% in one case). In several cases, incidental transforms from points on the

inner edges of the O-rings overlap other transforms from points on the outer

edges, although only the latter are actually employed usefully here for peak find-

ing. Hence, the scheme is able to overcome problems resulting from additional

clutter in parameter space.

Figure 13.10 also shows the arrangement of points in parameter space

that results from applying the PSF to every edge point on the boundary of an
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ellipse: the pattern is somewhat clearer in Fig. 13.11. In either case, it is seen to

contain a high degree of structure (curiously, the votes seem to form approximate

“four-leaved clover” patterns). For an ideal transform, there would be no structure

apart from the main peak, and all points on the PSF not falling on the peak at the

center of the ellipse would be randomly distributed nearby. Nevertheless, the peak

at the center is very well defined and shows that this compressed form of GHT

represents a viable solution.

(a) (b)

FIGURE 13.10

Applying the PSF to detection of tilted circles: (a) off-camera 1283 128 image of a set of

circular O-rings on a 45� slope of arbitrary direction; (b) transform in parameter space:

note the peculiar shape of the ellipse transform, which is close to a “four-leaf clover”

pattern. (a) also indicates the positions of the centers of the O-rings as located from (b):

accuracy is limited by the presence of noise, shadows, clutter, and available resolution, to

an overall standard deviation of about 0.6 pixels.

(a) (b)

FIGURE 13.11

Applying the PSF to detection of elliptical objects: (a) off-camera 1283 128 image of an

elliptical bar of soap of arbitrary orientation; (b) transform in parameter space: in this

case, the clover-leaf pattern is better resolved. Accuracy of location is limited partly by

distortions in the shape of the object but the peak location procedure results in an overall

standard deviation of the order of 0.5 pixels.
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13.9 COMPARING THE VARIOUS METHODS
This section briefly compares the computational loads for the methods of ellipse

detection discussed in Section 13.8 and in Chapter 12. To make fair comparisons,

we concentrate on ellipse detection per se and ignore any additional procedures

concerned with (a) finding other ellipse parameters, (b) distinguishing ellipses

from other shapes, or (c) separating concentric ellipses. We start by examining

the GHT method and the diameter bisection method.

First, suppose that an N3N pixel image contains p ellipses of identical size

given by the parameters a, b, c, and d defined in Section 13.8. By ignoring noise

and general background clutter, we shall be favoring the diameter bisection

method, as will be seen below. Next, the discussion is simplified by supposing

that the computational load resides mainly in the calculation of the positions at

which votes should be accumulated in parameter space—the effort involved in

locating edge pixels and in locating peaks in parameter space is much smaller.

Under these circumstances, the load for the GHT method may be approxi-

mated by the product of the number of edge pixels and the number of points per

edge pixel that have to be accumulated in parameter space, the latter being equal

to the number of points on the PSF. Hence, the load is proportional to:

LG � p3 2πc3 2πð2d1 dÞ
2

5 6π2pcd

� 60pcd

(13.18)

where the ellipse has been taken to have relatively low eccentricity so that the

PSF itself approximates to an ellipse of semiaxes 2d and d.

For the diameter bisection method, the actual voting is a minor part of the

algorithm—as indeed it is in the GHT method (see the snippet of code listed in

Table 13.1). In either case, most of the computational load concerns edge orienta-

tion calculations or comparisons. Assuming that these calculations and compari-

sons involve similar inherent effort, it is fair to assess the load for the diameter

bisection method as:

LD � p3 2πc C2 �
ð2πpcÞ2

2
� 20p2c2 (13.19)

Hence

LD

LG
� pc

3d
(13.20)

when a is close to b, as for a circle, LG-0 and then the diameter bisection

method becomes a poor option. However, in some cases, it is found that a is close

to 2b, so that c is close to 3d. The ratio of the loads then becomes:

LD

LG
� p (13.21)
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It is possible that p will be as low as 1 in some cases: however, such cases are

likely to be rare and are offset by applications where there is significant back-

ground image clutter and noise, or where all p ellipses have other edge detail giv-

ing irrelevant signals that can be considered as a type of self-induced clutter (see

the O-ring example in Fig. 13.10).

It is also possible that some of the pairs of edge points in the diameter bisection

method can be excluded before they are considered, e.g., by giving every edge

point a range of interaction related to the size of the ellipses. This would tend to

reduce the computational load by a factor of the order of (but not as small as) p.

However, the computational overhead required for this would not be negligible.

Overall, the GHT method should be significantly faster than the diameter

bisection method in most real applications, the diameter bisection method being

at a definite disadvantage when image clutter and noise are strong. By compari-

son, the chord�tangent method always requires more computation than the diam-

eter bisection method, since not only does it examine every pair of edge points

but also it generates a line of votes in parameter space for each pair.

Against these computational limitations, the different characteristics of the

methods must be noted. First, the diameter bisection method is not particularly

discriminating, in that it locates many symmetrical shapes, as remarked earlier.

The chord�tangent method is selective for ellipses but is not selective about their

size or eccentricity. The GHT method is selective about all of these factors.

These types of discriminability, or lack of it, can turn out to be advantageous or

disadvantageous, depending on the application: hence, we do no more here than

draw attention to these different properties. It is also relevant that the diameter

bisection method is rather less robust than the other methods. This is so since if

one edge point of an antiparallel pair is not detected, then the other point of the

pair cannot contribute to detection of the ellipse—a factor that does not apply for

the other two methods since they take all edge information into account.

13.10 FAST IMPLEMENTATIONS OF THE
HOUGH TRANSFORM

The foregoing sections have shown that the GHT requires considerable computa-

tion. The problem arises particularly in respect of the number of planes needed in

parameter space to accommodate transforms for different object orientations and

sizes. Clearly, significant improvements in speed are needed before the GHT can

achieve its potential in practical instances of arbitrary shapes. This section consid-

ers some important developments in this area.

The source of the computational problems in the HT is the huge size the

parameter space can take. Typically, a single plane parameter space has much the

same size as an image plane (this will normally be so in those instances where

parameter space is congruent to image space), but when many planes are required
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to cope with various object orientations and sizes, the number of planes is likely

to be multiplied by a factor of around 300 for each extra dimension. Hence, the

total storage area will then involve some 10,000 million accumulator cells.

Clearly, reducing the resolution might just make it possible to bring this down to

100 million cells, although accuracy will start to suffer. Further, when the HT is

stored in such a large space, the search problem involved in locating significant

peaks becomes formidable.

Fortunately, data are not stored at all uniformly in parameter space and this

provides a key to solving both the storage problem and the subsequent search

problem. Indeed, the fact that parameter space is to be searched for the most prom-

inent peaks—in general, the highest and the sharpest ones—means that the process

of detection can start during accumulation. Furthermore, initial accumulation can

be carried out at relatively low resolution, and then resolution can be increased

locally as necessary in order to provide both the required accuracy and the separa-

tion of nearby peaks. In this context, it is natural to employ a binary splitting pro-

cedure, i.e., to repeatedly double the resolution locally in each of the dimensions

of parameter space (e.g., the x dimension, the y dimension, the orientation dimen-

sion, and the size dimension, where these exist) until resolution is sufficient: a tree

structure may conveniently be used to keep track of the situation.

Such a method (the “fast” HT) was developed by Li and Lavin (1986) and Li

et al. (1985). Illingworth and Kittler (1987) found this method to be insufficiently

flexible in dealing with real data and produced a revised version (the “adaptive”

HT), which permits each dimension in parameter space to change its resolution

locally in tune with whatever the data demand, rather than insisting on some pre-

viously devised rigid structure. In addition, they employed a 93 9 accumulator

array at each resolution rather than the theoretically most efficient 23 2 array,

since this was found to permit better judgments to be made on the nature of the

local data. This approach seemed to work well with fairly clean images but later,

doubts were cast on its effectiveness with complex images (Illingworth and

Kittler, 1988). The most serious problem to be overcome here is that at coarse

resolutions, extended patterns of votes from several objects can overlap, giving

rise to spurious peaks in parameter space. Since all of these peaks have to be

checked at all relevant resolutions, the whole process can consume more compu-

tation than it saves. Clearly, optimization in multiresolution peak-finding schemes

is complex2 and data-dependent, and so discussion is curtailed here. The reader is

2Ultimately, the problem of system optimization for analysis of complex images is a difficult one,

since in conditions of low signal-to-noise ratio even the eye may find it difficult to interpret an

image and may “lock on” to an interpretation that is incorrect. Note that in general image interpre-

tation work, there are many variables to be optimized—sensitivity, efficiency/speed, storage, accu-

racy, robustness, and so on—and it is seldom valid to consider any of these individually. Often

tradeoffs between just two such variables can be examined and optimized but in real situations mul-

tivariable tradeoffs should be considered. This is a complex task and it is one of the purposes of

this book to show clearly the serious nature of these types of optimization problem, although at the

same time it can only guide the reader through a limited number of basic optimization processes.
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referred to the original research papers (Li et al., 1985; Li and Lavin, 1986;

Illingworth and Kittler, 1987) for implementation details.

An alternative scheme is the hierarchical HT (Princen et al., 1989a); so far it

has been applied only to line detection. The scheme can most easily be envisaged

by considering the foot-of-normal method of line detection described in

Section 11.3. Rather small subimages of just 163 16 pixels are taken first of all,

and the foot-of-normal positions determined. Then each foot-of-normal is tagged

with its orientation and an identical HT procedure is instigated to generate the foot-

of-normal positions for line segments in 323 32 subimages, this procedure being

repeated as many times as necessary until the whole image is spanned at once. The

paper by Princen et al. discusses the basic procedure in detail and also elaborates

necessary schemes for systematically grouping separate line segments into full-

length lines in a hierarchical context. An interesting detail is that successful opera-

tion of the method requires subimages with 50% overlap to be employed at each

level. The overall scheme appears to be as accurate and reliable as the basic HT

method but does appear to be faster and to require significantly less storage.

13.11 THE APPROACH OF GERIG AND KLEIN
The Gerig and Klein approach was first demonstrated in the context of circle

detection but was only mentioned in passing in Chapter 12. This is because it is

an important approach that has much wider application than merely to circle

detection. The motivation for it has already been noted in Section 13.10—namely,

the problem of extended patterns of votes from several objects giving rise to spu-

rious peaks in parameter space.

Ultimately, the reason for the extended pattern of votes is that each edge point in

the original image can give rise to a large number of votes in parameter space. The

tidy case of detection of circles of known radius is somewhat unusual, as will be

seen particularly in Chapters 12 and 17. Hence, in general most of the votes in

parameter space are in the end unwanted and serve only to confuse. Ideally, we

would like a scheme in which each edge point gives rise only to the single vote cor-

responding to the localization point of the particular boundary on which it is situ-

ated. Although this ideal is not initially realizable, it can be engineered by the

“back-projection” technique of Gerig and Klein (1986). Here all peaks and other

positions in parameter space to which a given edge point contributes are examined,

and a new parameter space is built in which only the vote at the strongest of these

peaks is retained (there is the greatest probability, but no certainty, that it belongs to

the largest such peak). This second parameter space thus contains no extraneous

clutter and weak peaks are hence found much more easily: this gives objects with

highly fragmented or occluded boundaries much more chance of being detected.

Overall, the method avoids many of the problems associated with setting arbitrary

thresholds on peak height—in principle, no thresholds are required in this approach.
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The scheme can be applied to any HT detector that throws multiple votes for

each edge point. Thus, it appears to be widely applicable and is capable of

improving robustness and reliability at an intrinsic expense of approximately dou-

bling computational effort (however, set against this is the relative ease with

which peaks can be located—a factor which is highly data-dependent). Note that

the method is another example in which a two-stage process is used for effective

recognition.

Other interesting features of the Gerig and Klein method must be omitted here

for reasons of space, except to note that, rather oddly, the published scheme

ignores edge orientation information as a means of reducing computation.

13.12 CONCLUDING REMARKS
The Hough transform was introduced in Chapter 11 as a line detection scheme

and then used in Chapter 12 for detecting circles and ellipses. In both chapters, it

appeared as a rather cunning method for aiding object detection; although it was

seen to offer various advantages, particularly in its robustness in the face of noise

and occlusion, there appeared to be no real significance in its rather novel voting

scheme. The present chapter has shown that, far from being a trick method, the

HT is much more general an approach than originally supposed: indeed, it embo-

dies the properties of the spatial matched filter and is therefore capable of close-

to-optimal sensitivity for object detection. However, this does not prevent its

implementation from entailing considerable computational load, and significant

effort and ingenuity have been devoted to overcoming this problem, both in gen-

eral and in specific cases. The general case is tackled by the schemes discussed in

Sections 13.9 and 13.10. It is important not to underestimate the value of specific

solutions, both because such shapes as lines, circles, ellipses, and polygons cover a

large proportion of (or approximations to) manufactured objects and because meth-

ods for coping with specific cases have a habit (as for the original HT) of becoming

more general as workers see possibilities for developing the underlying techniques.

Finally, to further underline the generality of the GHT, it has also been used

for optimal location of lines of known length, by emulating a spatial matched fil-

ter detector; this result has been applied to the optimal detection of polygons and

of corners: for an example of the latter, see Fig. 13.12 (Davies, 1988a, 1989a).

For further discussion and critique of the whole HT and GHT approach, see

Chapter 27.

Although the Hough transform may appear to have a somewhat arbitrary design, this chapter
has shown that it has solid roots in matched filtering, which in turn implies that votes
should be gradient weighted for optimal sensitivity. The chapter also contrasts three
methods for ellipse detection, showing how computational load may be estimated and
minimized.
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13.13 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Although the HT was introduced as early as 1962, a number of developments—

including especially those of Merlin and Farber (1975) and Kimme et al.

(1975)—were required before the GHT was developed (Ballard, 1981). By that

time, the HT was already known to be formally equivalent to template matching

(Stockman and Agrawala, 1977) and to spatial matched filtering (Sklansky,

1978). However, the questions posed in Section 13.3 were only answered much

later (Davies, 1987a), the necessary analysis being reproduced in Sections

13.4�13.7. The author’s work (Davies, 1987b, 1987d, 1989b) on line detection

by the GHT (not covered here) was aimed particularly at optimizing sensitivity of

line detection, although deeper issues of tradeoffs between sensitivity, speed, and

accuracy are also involved.

By 1985, the computational load of the HT became the critical factor prevent-

ing its more general use—particularly as it could be used for most types of

(a) (b)

(c)

FIGURE 13.12

Example of the generalized Hough transform approach to corner detection. (a) Original

image of a biscuit (1283 128 pixels, 64 gray levels). (b) Transform with lateral

displacement around 22% of the shorter side. (c) Image with transform peaks located

(white dots) and idealized corner positions deduced (black dots). The lateral displacement

employed here is close to the optimum for this type of object.

Source: (a,b) r IEE 1988, (c) r Unicom 1988
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arbitrary shape detection, with well-attested sensitivity and considerable robust-

ness. Following preliminary work by Brown (1984), with the emphasis on hard-

ware implementations of the HT, Li et al. (1985) and Li and Lavin (1986)

showed the possibility of much faster peak location by using nonuniformly quan-

tized parameter spaces. This work was developed further by Illingworth and

Kittler (1987) and others (see, e.g., Illingworth and Kittler, 1988; Princen et al.,

1989a, 1989b; Davies, 1992g). An important development has been the random-

ized Hough transform (RHT), pioneered by Xu and Oja (1993) among others: it

involves casting votes until specific peaks in parameter space become evident,

thereby saving unnecessary computation.

Accurate peak location remains an important aspect of the HT approach.

Properly, this is the domain of robust statistics, which handles the elimination of

outliers (see Appendix A). Davies (1992f) has shown a computationally efficient

means of accurately locating HT peaks, and has found why peaks sometimes

appear narrower than a priori considerations would indicate (Davies, 1992b).

Kiryati and Bruckstein (1991) have tackled aliasing effects, which can arise with

the HT, and which have the effect of cutting down accuracy.

Over time, the GHT approach has been broadened by geometric hashing,

structural indexing, and other approaches (e.g., Lamdan and Wolfson, 1988;

Gavrila and Groen, 1992; Califano and Mohan, 1994). At the same time, a proba-

bilistic approach to the subject has been developed (Stephens, 1991), which puts

it on a firmer footing. Grimson and Huttenlocher (1990) warn (possibly over-

pessimistically) against the blithe use of the GHT for complex object recognition

tasks, because of the false peaks that can appear in such cases. For further review

of the state of the subject up to 1993, see Leavers (1993).

In various chapters of Part 2, the statement has been made that the HT3 carries

out a search leading to hypotheses that should be checked before a final decision

about the presence of an object can be made. However, Princen et al. (1994)

show that the performance of the HT can be improved if it is itself regarded as a

hypothesis testing framework: this is in line with the concept that the HT is a

model-based approach to object location. Other studies have been made about the

nature of the HT. In particular, Aguado et al. (2000) consider the intimate rela-

tionship between the HT and the principle of duality in shape description: the

existence of this relationship underlines the importance of the HT and provides a

means for a more general definition of it. Kadyrov and Petrou (2001) have devel-

oped the trace transform, which can be regarded as a generalized form of the

Radon transform—itself closely related to the Hough transform.

Other workers have used the HT for affine-invariant search: Montiel et al.

(2001) made an improvement to reduce the incidence of erroneous evidence in

the gathered data, whereas Kimura and Watanabe (2002) made an extension for

2-D shape detection that is less sensitive to the problems of occlusion and broken

3A similar statement can be made in the case of graph matching methods such as the maximal cli-

que approach to object location (see Chapter 14).
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boundaries. Kadyrov and Petrou (2002) have adapted the trace transform to cope

with affine parameter estimation.

In a generalization of the work of Atherton and Kerbyson (1999) and of

Davies (1987a) on gradient weighting (see Section 13.6), Anil Bharath and his

colleagues have examined how to optimize the sensitivity of the HT (private com-

munication, 2004). Their method is particularly valuable in solving the problems

of early threshold setting that limit many HT techniques. Similar sentiments come

out in a different way in the work of Kesidis and Papamarkos (2000), which

maintains the grayscale information throughout the transform process, thereby

leading to more exact representations of the original images.

Olson (1999) has shown that localization accuracy can be improved efficiently

by transferring local error information into the HT and handling it rigorously. An

important finding is that the HT can be subdivided into many sub-problems with-

out decrease in performance. This finding is elaborated in a 3-D model-based

vision application where it is shown to lead to reduced false positive rates (Olson,

1998). Wu et al. (2002) extend the 3-D possibilities further by using a 3-D HT to

find glasses: first a set of features are located that lie on the same plane, and this

is then interpreted as the glasses’ rim plane. This approach allows the glasses to

be separated from the face, and then they can be located in their entirety.

van Dijck and van der Heijden (2003) develop the geometric hashing method

of Lamdan and Wolfson (1988) to perform 3-D correspondence matching using

full 3-D hashing. This is found to have advantages in that knowledge of 3-D struc-

ture can be used to reduce the number of votes and spurious matches. Tuytelaars

et al. (2003) describe how invariant-based matching and HTs can be used to iden-

tify regular repetitions in planes appearing within visual (3-D) scenes in spite of

perspective skew. The overall system has the ability to reason about consistency

and is able to cope with periodicities, mirror symmetries, and reflections about a

point.

13.13.1 More Recent Developments
Among the most recent developments are the following. Aragon-Camarasa and

Siebert (2010) considered using the GHT for clustering SIFT feature matches.

However, it turned out that a continuous rather than discretized HT space was

needed for this application. This meant that each matched point had to be stored

at the full machine precision in a Hough space consisting of a list data structure.

Therefore, peak location had to take the form of standard unsupervised clustering

algorithms. This was an interesting case where the intended GHT could not fol-

low the standard voting and accumulating procedure. Assheton and Hunter (2011)

also deviated sharply from the standard GHT approach when performing pedes-

trian detection and tracking: they used a shape-based voting algorithm based on

Gaussian mixture models. The algorithm was stated to be highly effective for

detecting pedestrians based on the silhouette shape. Chung et al. (2010) studied the

problem of information retrieval from databases. They produced a region-based
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solution for object retrieval using the GHT and adaptive image segmentation. A

key aspect of the overall scheme was the location of affine-invariant maximally

stable extremal regions (MSERs) (see Chapter 6) in the database and query images.

Roy et al. (2011) applied the GHT to the detection and verification of seals

(stamps) containing lettering and geometric patterns. This is a difficult problem

because of the likely presence of noise, interfering text, and signatures as well as

incompleteness due to the application of uneven pressure to the stamp. In practice,

a seal has to be located using scale and rotation invariant features (particularly text

characters); it is then detected as a GHT peak resulting from application of a spatial

feature descriptor of neighboring connected component pairs, i.e., in this applica-

tion, the text characters in the seal are used as basic features for seal detection

instead of individual edge or feature points. Memory demands are limited by split-

ting the R-table into two different lookup tables—the character pair table and the

distance table.

13.14 PROBLEMS
1. a. Describe the main stages in the application of the HT to locate objects in

digital images. What are the particular advantages offered by the HT tech-

nique? Give reasons why they arise.

b. It is said that the HT only leads to hypotheses about the presence of objects

in images and that they should all be checked independently before making

a final decision about the contents of any image. Comment on the accuracy

of this statement.

2. Devise a GHT version of the spatial matched filter for detecting lines of

known length L. Show that when used to detect an ideal line of length L, it

gives a distributed response of length 2L that peaks at the center of the line,

but when used to detect a partially occluded version of the line, it gives a

response that is flat-topped over a range that includes the center of the line.

3. Show how a GHT version of the spatial matched filter can be devised to

detect an equilateral triangle, leading to a star-shaped transform that peaks at

the center of the triangle. How may this approach be adapted for (a) a general

triangle and (b) a regular polygon having N sides?
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CHAPTER

14 Pattern Matching
Techniques

Abstract pattern matching involves stepping back from the image itself and work-

ing at a higher level, grouping features in an abstract way to infer the presence of

objects. Graph matching has long been a standard approach for achieving this, but

in certain circumstances, a suitable adaptation of the generalized Hough transform

can actually outperform it. This chapter discusses inference procedures, and goes

on to consider relational descriptions of scenes and the various types of search

that can be used with image data.

Look out for:

• the match graph approach for identifying objects from their point features.

• how the need for robustness against noise, clutter, and occlusion translates

into the requirement for subgraph�subgraph isomorphism.

• the maximal clique paradigm.

• how symmetry can be used to simplify the matching task.

• how the generalized Hough transform can be used for point pattern matching.

• how order calculations can be used to compare the speeds of matching algorithms.

• how relational descriptors may be used for logical analysis of scenes.

• the different types of search algorithm that may be used in scene analysis.

This chapter completes the work of Part 2 by showing how the presence of

objects can be inferred from point features as an alternative to edge features.

Even with point features, it is found that the Hough transform may sometimes be

used with advantage. However, all inference techniques need to be analyzed for

computational complexity and suitable optimizations made. The latter lesson car-

ries on with even more force in subsequent work—not least the more complex

algorithms used for processing 3-D images in Part 3 of this book.

Computer and Machine Vision.
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14.1 INTRODUCTION
In the foregoing chapters, it has been seen how objects having quite simple shapes

may be located in digital images via the Hough transform. For more complex

shapes, this approach tends to require excessive computation: in general, the way

this problem may be overcome is to locate objects by their features. Suitable salient

features include small holes, corners, straight, circular, or elliptical segments, and

indeed any readily localizable sub-patterns: earlier chapters have shown how such

features may be located. However, at some stage, it becomes necessary to find

methods for collating the information from the various features, in order to recog-

nize and locate the objects containing them. This task is studied in the present

chapter.

It is perhaps easiest to envisage the feature collation problem when the fea-

tures themselves are unstructured points carrying no directional information—nor

indeed any attributes other than their x, y coordinates in the image. Then the

object recognition task is often called “point pattern matching.”1 The features that

are closest to unstructured points are small holes, such as the “docker” holes in

many types of biscuit. Corners can also be considered as points if their other attri-

butes—including sharpness, orientation, etc.—are ignored. In what follows, we

start with point features and then see how the attributes of more complex types of

feature can be included in recognition schemes.

Overall, it is most efficient to use small high-contrast features for object

detection, since the computation involved in searching an image decreases as

the template becomes smaller. As is clear from the preceding chapters, the main

disadvantage resulting from such an approach to object detection is the loss in

sensitivity (in a signal-to-noise sense) due to the greatly impoverished informa-

tion content of the point feature image. However, the task of identifying objects

from a rather small number of point features is far from trivial and frequently

involves considerable computation, as will be seen in Sections 14.2�14.4. We

start by studying a graph-theoretic approach to point pattern matching, which

involves the “maximal clique” concept.

14.2 A GRAPH-THEORETIC APPROACH TO OBJECT LOCATION
This section considers a commonly occurring situation that involves considerable

constraints—objects appearing on a horizontal worktable or conveyor at a known

distance from the camera. It is also assumed that (a) objects are flat or can appear

in only a restricted number of stances in three dimensions, (b) objects are viewed

from directly overhead, and (c) perspective distortions are small. In such

1Note that this term is sometimes used not just for object recognition but also for initial matching

of two stereo views of the same scene.
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situations, the objects may in principle be identified and located from very few

point features. Since such features are taken to have no structure of their own, it

will be impossible to locate an object uniquely from a single feature, although

positive identification and location would be possible using two features if these

were distinguishable and if their distance apart were known. For truly indistin-

guishable point features, an ambiguity remains for all objects not possessing

180� rotation symmetry. Hence, at least three point features are in general

required to locate and identify objects at known range. Clearly, noise and other

artifacts such as occlusions modify this conclusion. In fact, when matching a

template of the points in an idealized object with the points present in a real

image, we may find that:

1. a great many feature points may be present because of multiple instances of

the chosen type of object in the image.

2. additional points may be present because of noise or clutter from irrelevant

objects and structure in the background.

3. certain points that should be present are missing because of noise or occlusion,

or because of defects in the object being sought.

These problems mean that we should in general be attempting to match a sub-

set of the points in the idealized template to various subsets of the points in the

image. If the point sets are considered to constitute graphs with the point features

as nodes, the task devolves into the mathematical problem of subgraph�subgraph

isomorphism, i.e., finding which subgraphs in the image graph are isomorphic2 to

subgraphs of the idealized template graph. Of course, there may be a large num-

ber of matches involving rather few points: these would arise from sets of features

that happen (see, e.g., item 2 above) to lie at valid distances apart in the original

image. The most significant matches will involve a fair number of features and

will lead to correct object identification and location. Clearly, a point feature

matching scheme will be most successful if it finds the most likely interpretation

by searching for solutions with the greatest internal consistency, i.e., with the

greatest number of point matches per object.

Unfortunately, the scheme of things presented above is still too simplistic in

many applications as it is insufficiently robust against distortions. In particular,

optical (e.g., perspective) distortions may arise, or the objects themselves may be

distorted, or by resting partly on other objects they may not be quite in the

assumed stance: hence, distances between features may not be exactly as

expected. These factors mean that some tolerance has to be accepted in the dis-

tances between pairs of features and it is common to employ a threshold such that

interfeature distances have to agree within this tolerance before matches are

accepted as potentially valid. Clearly, distortions lay more strain on the point

matching technique and make it all the more necessary to seek solutions with the

greatest possible internal consistency. Thus, as many features as possible should

2Of the same basic shape and structure.
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be taken into account in locating and identifying objects. The maximal clique

approach is intended to achieve this.

As a start, as many features as possible are identified in the original image

and these are numbered in some convenient order such as the order of appearance

in a normal TV raster scan. The numbers then have to be matched against the let-

ters corresponding to the features on the idealized object. A systematic way of

achieving this is by constructing a match graph (or association graph) in which

the nodes represent feature assignments and arcs joining nodes represent pairwise

compatibilities between assignments. To find the best match, it is then necessary

to find regions of the match graph where the cross-linkages are maximized. To

achieve this, cliques are sought within the match graph. A clique is a complete

subgraph—i.e., one for which all pairs of nodes are connected by arcs. However,

the previous arguments indicate that if one clique is completely included within

another clique, it is likely that the larger clique represents a better match—and

indeed maximal cliques can be taken as leading to the most reliable matches

between the observed image and the object model.

Figure 14.1(a) illustrates the situation for a general triangle: for simplicity, the

figure takes the observed image to contain only one triangle and assumes that

lengths match exactly and that no occlusions occur. The match graph in this

example is shown in Fig. 14.1(b): there are nine possible feature assignments, six

A
B

A1

C3

C2

C1

B3 B2

B1

A3

A2

C

1

3

2

(a)

(b) (c)

FIGURE 14.1

A simple matching problem—a general triangle: (a) basic labeling of model (left) and

image (right); (b) match graph; (c) placement of votes in parameter space. In (b) the

maximal cliques are (1) A1, B2, C3, (2) A2, B1, (3) B3, C2, and (4) C1, A3. In (c) the

following notation is used: (x) positions of observed features; (•) positions of votes; (K)

position of main voting peak.

Source: r AVC 1988 and Elsevier 1991
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valid compatibilities, and four maximal cliques, only the largest corresponding to

an exact match.

Figure 14.2(a) shows the situation for the less trivial case of a quadrilateral,

the match graph being shown in Fig. 14.2(b). In this case, there are 16 possible

feature assignments, 12 valid compatibilities, and 7 maximal cliques. If occlusion

of a feature occurs, this will (taken on its own) reduce the number of possible fea-

ture assignments and also the number of valid compatibilities: in addition, the

number of maximal cliques and the size of the largest maximal clique will be

reduced. On the other hand, noise or clutter can add erroneous features. If the lat-

ter are at arbitrary distances from existing features, then the number of possible

feature assignments will be increased but there will not be any more compatibil-

ities in the match graph, so the latter will have only trivial additional complexity.

However, if the extra features appear at allowed distances from existing features,

this will introduce extra compatibilities into the match graph and make it more

tedious to analyze. In the case shown in Fig. 14.3, both types of complication—

an occlusion and an additional feature—arise: there are now eight pairwise

assignments and six maximal cliques, rather fewer overall than in the original

case of Fig. 14.2. However, the important factor is that the largest maximal clique

still indicates the most likely interpretation of the image and that the technique is

inherently highly robust.

(a)

(b) (c)

A1

A 1

4
3

2B

C
D

D4
D3

D2

D1

C4

C3
C2

C1 B4
B3

B2

B1

A4

A3
A2

FIGURE 14.2

Another matching problem—a general quadrilateral: (a) basic labeling of model (left) and

image (right), (b) match graph, and (c) placement of votes in parameter space (notation

as in Figure 14.1).

Source: r AVC 1988 and Elsevier 1991
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When using methods such as the maximal clique approach that involve repeti-

tive operations, it is useful to look for means of saving computation. In fact,

when the objects being sought possess some symmetry, economies can be made.

Consider the case of a parallelogram (Fig. 14.4). Here the match graph has 20

valid compatibilities and there are 10 maximal cliques. Of these, the largest two

have equal numbers of nodes and both identify the parallelogram within a sym-

metry operation. This means that the maximal clique approach is doing more

computation than absolutely necessary: this can be avoided by producing a new

“symmetry-reduced” match graph after relabeling the model template in accor-

dance with the symmetry operations (see Fig. 14.5). This gives a much smaller

match graph with half the number of pairwise compatibilities and half the number

of maximal cliques. In particular, there is only one nontrivial maximal clique:

note, however, that its size is not reduced by the application of symmetry.

14.2.1 A Practical Example—Locating Cream Biscuits
Figure 14.6(a) shows one of a pair of cream biscuits, which are to be located

from their “docker” holes—this strategy being advantageous since it has the

potential for highly accurate product location prior to detailed inspection (in this

case the purpose is to locate the biscuits accurately from the holes, and then to

A
B

1
2

3

4C
D

A1 A2
A3

A4

B1

B2

B3
B4C1C2

C3

C4

D1

D2

D3
D4

(a)

(b) (c)

FIGURE 14.3

Matching when one feature is occluded and another is added: (a) basic labeling of model

(left) and image (right), (b) match graph, and (c) placement of votes in parameter space

(notation as in Fig. 14.1).
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check the alignment of the biscuit wafers and detect any excess cream around the

sides of the product). The holes found by a simple template matching routine are

indicated in Fig. 14.6(b): the template used is rather small and, as a result, the

routine is fairly fast but fails to locate all holes; in addition, it can give false

(A)

(B) (C)

A

C
D

A1D4
D3

A2
A3

A4

B1

B2

B3
B4C1

C2
C3

C4

D1

D2

B
1

3

2

4

FIGURE 14.4

Matching a figure possessing some symmetry: (a) basic labeling of model (left) and image

(right), (b) match graph, and (c) placement of votes in parameter space (notation as in

Fig. 14.1).

(a)

β

β
α

α

α1

α2

α3

α4

β1

β3

β4

β2

(b)

FIGURE 14.5

Using a symmetry-reduced match graph: (a) relabeled model template and (b) symmetry-

reduced match graph.
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(a)

(b)

(c)

FIGURE 14.6

(a) A typical cream sandwich biscuit; (b) a pair of cream sandwich biscuits with crosses

indicating the result of applying a simple hole detection routine; and (c) the two biscuits

reliably located by the GHT from the hole data in (b): the isolated small crosses indicate

the positions of single votes.

Source: r AVC 1988 and Elsevier 1991
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alarms. Hence, an “intelligent” algorithm must be used to analyze the hole loca-

tion data.

Clearly, this is a highly symmetrical type of object, and so it should be beneficial

to employ the symmetry-reduced match graph described above. To proceed, it is

helpful to tabulate the distances between all pairs of holes in the object model

(Fig. 14.7(b)). Then this table can be regrouped to take account of symmetry opera-

tions (Fig. 14.7(d)). This will help when we come to build the match graph for a

particular image. Analysis of the data in the above example shows that there are two

nontrivial maximal cliques, each corresponding correctly to one of the two biscuits

in the image. Note, however, that the reduced match graph does not give a complete

interpretation of the image: it locates the two objects but it does not confirm

uniquely which hole is which. In particular, for a given starting hole of type α, it is
not known which is which of the two holes of type β. This can be ascertained by

applying simple geometry to the coordinates in order to determine (say) which hole

of type β is reached by moving around the center hole γ in a clockwise sense.

14.3 POSSIBILITIES FOR SAVING COMPUTATION
In these examples, the checking of which subgraphs are maximal cliques is a sim-

ple problem. However, in real matching tasks it can quickly become

α = {A,C}
β = {B,D}
γ = {E}
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FIGURE 14.7

Inter-feature distances for holes on cream biscuits: (a) basic labeling of model (left) and

image (right); (b) allowed distance values; (c) revised labeling of model using symmetric

set notation; and (d) allowed distance values. The cases of zero interfeature distance in

the final table can be ignored as they do not lead to useful matches.
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unmanageable (the reader is encouraged to draw the match graph for an image

containing two objects of seven points!).

Table 14.1 shows what is perhaps the most obvious type of algorithm for find-

ing maximal cliques. It operates by examining in turn all cliques of a given num-

ber of nodes and finding what cliques can be constructed from them by adding

additional nodes (bearing in mind that any additional nodes must be compatible

with all existing nodes in the clique). This permits all cliques in the match graph

to be identified. However, an additional step is needed to eliminate (or relabel) all

cliques that are included as subgraphs of a new larger clique before it is known

which cliques are maximal.

In view of the evident importance of finding maximal cliques, many algo-

rithms have been devised for the purpose. It is probable that the best of these is

now close to the fastest possible speed of operation. Unfortunately, the optimum

execution time is known to be bounded not by a polynomial in M (for a match

graph containing maximal cliques of up to M nodes) but by a much faster varying

function. Specifically, the task of finding maximal cliques is akin to the well-

known traveling salesman problem and is known to be “NP-complete,” implying

that it runs in exponential time (see Section 14.4.1). Thus, whatever the run-time

is for values of M up to about 6, it will typically be 100 times slower for values

of M up to about 10, and 100 times slower again for M greater than B14. In

practical situations, there are several ways of tackling this problem:

1. Use the symmetry-reduced match graph wherever possible.

2. Choose the fastest available maximal clique algorithm.

Table 14.1 A simple Maximal Clique Algorithm

set clique size to 2;
== this is the size already included by the match graph
while ðnewcliques5trueÞ f == new cliques still being found

increment clique size;
set newcliques5false;
for all cliques of previous size f
set all cliques of previous size to status maxclique;
for all possible extra nodes

if extra node is joined to all existing nodes in clique f
store as a clique of current size;
set newcliques5true;

g
g
== the larger cliques have now been found
for all cliques of current size
for all cliques of previous size

if all nodes of smaller clique are included in current clique
set smaller clique to status not maxclique;

== the subcliques have now been relabelled
g
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3. Write critical loops of the maximal clique algorithm in machine code.

4. Build special hardware or multiprocessor systems to implement the algorithm.

5. Use the LFF method (see below: this means searching for cliques of small M

and then working with an alternative method).

6. Use an alternative sequential strategy, which may however not be guaranteed

to find all the objects in the image.

7. Use the GHT approach (see Section 14.4).

Of these methods, the first should be used wherever applicable. Methods 2�4

amount to improving the implementation and are subject to diminishing returns:

note that the execution time varies so rapidly with M that even the best software

implementations are unlikely to give a practical increase in M of more than 2

(i.e., M-M12). Likewise, dedicated hardware implementations may only give

increases in M of the order of 4�6. Method 5 is a “shortcut” approach, which

proves highly effective in practice. The idea is to search for specific subsets of

the features of an object, and then to hypothesize that the object exists and go

back to the original image to check that it is actually present. Bolles and Cain

(1982) devised this method when looking for hinges in quite complex images. In

principle, the method has the disadvantage that the particular subset of an object

that is chosen as a cue may be missing because of occlusion or some other arti-

fact. Hence, it may be necessary to look for several such cues on each object.

This is an example of further deviation from the matched filter paradigm, which

reduces detection sensitivity yet again. The method is called the local-feature-

focus (LFF) method because objects are sought by cues or local foci.

The maximal clique approach is a type of exhaustive search procedure and is

effectively a parallel algorithm. This has the effect of making it highly robust but

is also the source of its slow speed. An alternative is to perform some sort of

sequential search for objects, stopping when sufficient confidence is attained in

the full or partial interpretation of the image. For example, the search process

may be terminated when a match has been obtained for a certain minimum num-

ber of features on a given number of objects. Such an approach may be useful in

some applications and will generally be considerably faster than the full maximal

clique procedure when M is greater than about 6. An analysis of several tree-

search algorithms for subgraph isomorphism was carried out by Ullmann (1976):

the paper tests algorithms using artificially generated data and it is not clear how

they relate to real images. The success or otherwise of all nonexhaustive search

algorithms must, however, depend critically on the particular types of image data

being analyzed: hence, it is difficult to give further general guidance on this mat-

ter (but see Section 14.7 for additional comments on search procedures).

The final method listed above is based on the GHT. In many ways, this pro-

vides an ideal solution to the problem since it presents an exhaustive search tech-

nique that is essentially equivalent to the maximal clique approach while not

falling into the NP-complete category. This may seem contradictory, since any

approach to a well-defined mathematical problem should be subject to the
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mathematical constraints known to be involved in its solution. However, although

the abstract maximal clique problem is known to be NP-complete, the subset of

maximal clique problems that arises from 2-D image-based data may well be

solved with less computation by other means, and in particular by a 2-D tech-

nique. This special circumstance does appear to be valid but unfortunately it

offers no possibility of solving general NP-complete problems by reference to the

specific solutions found using the GHT approach! The GHT approach is described

in Section 14.4.

14.4 USING THE GENERALIZED HOUGH TRANSFORM FOR
FEATURE COLLATION

This section describes how the GHT can be used as an alternative to the maximal

clique approach, to collate information from point features in order to find

objects. Initially, we consider situations where objects have no symmetries—as

for the cases of Figs. 14.1�14.3.

To apply the GHT, we first list all features and then accumulate votes in

parameter space at every possible position of a localization point L consistent

with each pair of features (Fig. 14.8). This strategy is particularly suitable in the

present context, as it corresponds to the pairwise assignments used in the maximal

clique method. To proceed, it is necessary merely to use the interfeature distance as a

lookup parameter in the GHT R-table. For indistinguishable point features, this means

that there must be two entries for the position of L for each value of the interfeature

distance. Note that we have assumed that no symmetries exist and that all pairs of

FIGURE 14.8

Method for locating L from pairs of feature positions: each pair of feature points gives two

possible voting positions in parameter space, when objects have no symmetries. When

symmetries are present, certain pairs of features may give rise to up to four voting

positions: this is confirmed on careful examination of Fig. 14.6(c).

Source: r Unicom 1988
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features have different interfeature distances. If this were not so, then more than two

vectors would have to be stored in the R-table per interfeature distance value.

To illustrate the GHT approach outlined above, we first apply it to the triangle

example shown in Fig. 14.1. Figure 14.1(c) shows the positions at which votes

are accumulated in parameter space. There are four peaks with heights of 3, 1, 1,

and 1, it being clear that, in the absence of complicating occlusions and defects,

the object is locatable at the peak of maximum size. Next, the method is applied

to the general quadrilateral example shown in Fig. 14.2: this leads to seven peaks

in parameter space, whose sizes are 6, 1, 1, 1, 1, 1, and 1 (Fig. 14.2(c)).

Close examination of Figs. 14.1�14.3 indicates that every peak in parameter

space corresponds to a maximal clique in the match graph. Indeed, there is a one-

to-one relation between the two. In the uncomplicated situation being examined

here, this is bound to be so for any general arrangement of features within an

object, since every pairwise compatibility between features corresponds to two

potential object locations, one correct and one that can be correct only from the

point of view of that pair of features. Hence, the correct locations all add to give

a large maximal clique and a large peak in parameter space, whereas the incorrect

ones give maximal cliques each containing two wrong assignments and each cor-

responding to a false peak of size 1 in parameter space. This situation still applies

even when occlusions occur or additional features are present (see Fig. 14.3). The

situation is slightly more complicated when symmetries are present, the two

methods each deviating in a different way: space does not permit the matter to be

explored in depth here but the solution for the case of Fig. 14.4(a) is presented in

Fig. 14.4(c). Overall, it seems simplest to assume that there is still a one-to-one

relationship between the solutions from the two approaches.

Finally, consider again the example discussed in Section 14.2.1 (Fig. 14.6(a)),

this time obtaining a solution by the GHT. Figure 14.6(c) shows the positions of

candidate object centers as found by the GHT. The small isolated crosses indicate

the positions of single votes, and those very close to the two large crosses lead to

voting peaks of weights 10 and 6 at these respective positions. Hence, object loca-

tion is both accurate and robust, as required.

14.4.1 Computational Load
This subsection compares the computational requirements of the maximal clique

and GHT approaches to object location. For simplicity, imagine an image that

contains just one wholly visible example of the object being sought. Also, sup-

pose that the object possesses n features and that we are trying to recognize it by

seeking all possible pairwise compatibilities, whatever their distance apart (as for

all examples discussed in Section 14.2).

For an object possessing n features, the match graph contains n2 nodes (i.e.,

possible assignments), and there are n2C25 n2ðn2 � 1Þ=2 possible pairwise com-

patibilities to be checked in building the graph. The amount of computation at

this stage of the analysis is O(n4). To this must be added the cost of finding the
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maximal cliques. Since the problem is NP-complete, the load rises at a rate that is

faster than that of polynomial, and probably exponential in n2 (Gibbons, 1985).

Now consider the cost of getting the GHT to find objects via pairwise compat-

ibilities. As has been seen, the total height of all the peaks in parameter space is

in general equal to the number of pairwise compatibilities in the match graph.

Hence, the computational load is of the same order, O(n4). Next comes the prob-

lem of locating all the peaks in parameter space. In this case, parameter space is

congruent to image space. Hence, for an N3N image only N2 points have to be

visited in parameter space and the computational load is O(N2). Note, however,

that an alternative strategy is available in which a running record is kept of the

relatively small numbers of voting positions in parameter space. The computa-

tional load for this strategy will be O(n4): although of a higher order, this often

represents less computation in practice.

The reader may have noticed that the basic GHT scheme as outlined so far is

able to locate objects by their features but does not determine their orientations.

However, orientations can be computed by running the algorithm a second time

and finding all the assignments that contribute to each peak. Alternatively, the

second pass can aim to find a different localization point within each object. In

either case, the overall task should be completed in little over twice the time, i.e.,

still in O(n41N2) time.

Although the GHT at first appears to solve the maximal clique problem in

polynomial time, what it actually achieves is to solve a real-space template

matching problem in polynomial time: it does not solve an abstract graph-theo-

retic problem in polynomial time. The overall lesson is that the graph theory

representation is not well matched to real space, not that real space can be used to

solve abstract NP-complete problems in polynomial time.

14.5 GENERALIZING THE MAXIMAL CLIQUE AND OTHER
APPROACHES

This section considers how the graph matching concept can be generalized to

cover alternative types of features and also various attributes of features. The ear-

lier discussion was restricted to point features and in particular to small holes,

which were supposed to be isotropic. Corners were also taken as point features by

ignoring attributes other than position coordinates. Both holes and corners seem

to be ideal, in that they give maximum localization and hence maximum accuracy

for object location. Straight lines and straight edges at first appear to be rather

less well suited to the task. However, more careful thought shows that this is not

so. One possibility is to use straight lines to deduce the positions of corners,

which can then be used as point features, although this approach is not as power-

ful as might be hoped because of the abundance of irrelevant line crossings that

are thrown up (in this context, note that the maximal clique method is inherently
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capable of sorting the true corners from the false alarms). A more elegant solution

is simply to determine the angles between pairs of lines, referring to a lookup

table for each type of object to determine whether each pair of lines should be

marked as compatible in the match graph. Once the match graph has been built,

an optimal match can be found as before (although ambiguities of scale will arise,

which will have to be resolved by further processing). These possibilities signifi-

cantly generalize the ideas of the foregoing sections.

Other types of feature generally have more than two specifying parameters,

one of which may be contrast and the other size. This applies for most holes and

circular objects, although for the smallest (i.e., barely resolvable) holes it is some-

times most practicable to take the central dip in intensity as the measured parame-

ter. For straight lines, the relevant size parameter is the length (we here count the

line ends, if visible, as points that already have been taken into account). Corners

may have a number of attributes, including contrast, color, sharpness, and orienta-

tion—none of which is likely to be known to high accuracy. Finally, more com-

plex shapes such as ellipses have orientation, size, and eccentricity, and again

contrast or color may be a usable attribute (generally, contrast is an unreliable

measure because of possible variations in the background).

In fact, so much information is available that we need to consider how best to

use it for locating objects. For convenience, this is discussed in relation to the maxi-

mal clique method. In fact, the answer is very simple. When compatibilities are

being considered and the arcs are being drawn in the match graph, any available

information may be taken into account in deciding whether a pair of features in the

image matches a pair of features in the object model. In Section 14.2, the discus-

sion was simplified by taking interfeature distances as the only relevant measure-

ments. However, it is quite acceptable to describe the features in the object model

more fully and to insist that they all match within prespecified tolerances. For

example, holes and corners may be permitted to lead to a match only if the former

are of the correct size, the latter are of the correct sharpness and orientation, and

the distances between these features are also appropriate. All relevant information

has to be held in suitable lookup tables. In general, the gains easily outweigh the

losses, since a considerable number of potential interpretations will be eliminated—

hence making the match graph significantly simpler and reducing, in many cases

by a large factor, the amount of computation that is required to find the maximal

cliques. Note, however, that there is a limit to this, since in the absence of occlu-

sions and erroneous tolerances on the additional attributes, the number of nodes in

the match graph cannot be less than the square of the number of features in an

object, and the number of nodes in a maximal clique will be unchanged.

Thus, extra feature attributes are of very great value in cutting down computa-

tion: they are also useful in making interpretation less ambiguous. This latter prop-

erty is “obvious” but not always realizable. In particular, extra attributes help in this

way only if (a) some of the features on an object are missing, through occlusion or

for other reasons such as breakage or (b) if the distance tolerances are so large as to

make it unclear which features in the image match with those in the model.
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Suppose next that the distance attributes become very imprecise, either

because of shape distortions or because of unforeseen rotations in 3-D. It is worth

enquiring how far we can proceed under these circumstances. In fact, in the limit

of low distance accuracy, we may only be able to employ an “adjacent to”

descriptor. This parallels the situation in general scene analysis, where use is

made of a number of relational descriptors such as “on top of,” “to the left of,”

and so on. Such possibilities are considered in Section 14.6.

14.6 RELATIONAL DESCRIPTORS
The previous section showed how additional attributes could be incorporated into

the maximal clique formalism so that the effects of diminishing accuracy of dis-

tance measurement could be accommodated. This section considers what happens

when the accuracy of distance measurement drops to zero and we are left just

with relational attributes such as “adjacent to,” “near,” “inside,” “underneath,”

“on top of,” and so on. We start by taking adjacency as the basic relational attri-

bute. To illustrate the approach, imagine a simple outdoor scene where various

rules apply to segmented regions. These rules will be of the type “sky may be

adjacent to forest,” “forest may be adjacent to field,” and so on. Note that “adja-

cent to” is not transitive, i.e., if P is adjacent to Q, and Q is adjacent to R, this

does not imply that P is adjacent to R (in fact, it is quite likely that P will not be

adjacent to R, as Q may well separate the two regions completely!).

The rules for a particular type of scene may be summarized as in Table 14.2.

Now consider the scene shown in Fig. 14.9. Applying the rules for adjacency

from Table 14.2 will be seen to permit four different solutions, in which regions

1�3 may be interpreted as:

1. sky, forest, field (the correct interpretation).

2. sky, forest, sky.

3. field, forest, sky.

4. field, forest, field.

Evidently, there are too few constraints. Possible constraints are the following:

sky is above field and forest, sky is blue, field is green, and so on. Of these, the

first is a binary relation like adjacency, whereas the other two are unary con-

straints. It is easy to see that two such constraints are required to resolve

completely the ambiguity in this particular example.

Paradoxically, adding further regions can make the situation inherently less

ambiguous. This is because other regions are less likely to be adjacent to all the

original regions, and in addition may act in such a way as to label them uniquely.

This is seen in Fig. 14.10, which is interpreted by reference to Table 14.3,

although the keys to unique interpretation are the notions that any small white

objects must be sheep, and any small dark objects must be birds. On analyzing
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the available data, the whole scene can now be interpreted unambiguously. As

expected, the maximal clique technique can be applied successfully, although to

achieve this, assignments must be taken to be compatible not only when image

regions are adjacent and their interpretations are marked as adjacent, but also

when image regions are nonadjacent and their interpretations are marked as non-

adjacent (the reason for this is easily seen by drawing an analogy between adja-

cency and distance, adjacent and nonadjacent corresponding respectively to zero,

and a significant distance apart). Note that in this scene analysis type of situation,

it is very tedious to apply the maximal clique method manually because there

tend to be a fair number of trivial solutions (i.e., maximal cliques with just a few

nodes).

Perhaps oddly, some of the trivial solutions that the maximal clique technique

gives rise to are provably incorrect. For example, in the above problem, one solu-

tion appears to include regions 1 and 2 being forest and sky, respectively, whereas

it is clear from the presence of birds that region 1 cannot be forest and must be

Table 14.2 Adjacency Table for Simple Scene

Sky Forest Field

Sky — O —

Forest O — O
Field — O —

This table is relevant to the scene in Figure 14.9. Ticks indicate that
regions must be adjacent: dashes indicate that regions must not be
adjacent (i.e., adjacency is not optional).

1

2

3

FIGURE 14.9

Regions in a simple scene: 1, sky; 2, forest; 3, field.
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sky. Here logic appears to be a stronger arbiter of correctness than an evidence

building scheme such as the maximal clique technique. However, on the plus

side, the maximal clique technique will take contradictory evidence and produce

the best possible response. For example, if noise appears and introduces an

invalid “bird” in the forest, it will simply ignore it, whereas a purely logic-based

scheme will be unable to find a satisfactory solution: clearly, much depends on

the accuracy and universality of the assertions on which these schemes are based.

Logical problems such as the ones outlined above are commonly tackled with

the aid of declarative languages such as PROLOG, in which the rules are written

explicitly in a standard form not dissimilar to IF statements in English. PROLOG

is not discussed in detail here due to the space limitation. However, note that

Table 14.3 Adjacency Table for more Complex Scene

Sky Forest Field Road Sheep Bird

Sky — O — — — O
Forest O — O O — —

Field — O — O O —

Road — O O — — —

Sheep — — O — — —

Bird O — — — — —

This table is relevant to the scene in Figure 14.10. Ticks again indicate
adjacency and dashes indicate nonadjacency.

1

2

3

5

6

4

7

FIGURE 14.10

Regions in a more complex scene: 1, sky; 2, forest; 3, field; 4, road; 5, field; 6, sheep;

and 7, bird.
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PROLOG is basically designed to obtain a single “logical” solution where one

exists. It can also be instructed to search for all available solutions or for any given

number of solutions. When instructed to search for all solutions, it will finally

arrive at the same main set of solutions as the maximal clique approach (although,

as indicated above, noise can make the situation more complicated). Thus, despite

their apparent differences, these approaches are quite similar: it is the implementa-

tion of the underlying search problem that is different (PROLOG uses a “depth-

first” search strategy (see Section 14.7)). Next, we move on to another scheme—

that of relaxation labeling—which has a quite different formulation.

Relaxation labeling is an iterative technique in which evidence is gradually built

up for the proper labeling of the solution space—in this case, of the various regions

in the scene. Two main possibilities exist. In the first, called discrete relaxation,

evidence for pairs of labels is examined and a label discarding rule is instigated

that eliminates at each iteration those pairs of labels that are currently inconsistent;

this technique is applied until no further change in the labeling occurs. The second

possibility is that of probabilistic relaxation; here the labels are set up numerically

to correspond to the probabilities of a given interpretation of each region, i.e., a

table is compiled of regions against possible interpretations, each entry being a

number representing the probability of that particular interpretation. After providing

a suitable set of starting probabilities (possibly all being weighted equally), these

are updated iteratively, and in the ideal case, they converge on the value 0 or 1 to

give a unique interpretation of the scene. Unfortunately, convergence is by no

means guaranteed and can depend on the starting probabilities and the updating

rule. A prearranged constraint function defines the underlying process, and this

could in principle be either better or worse at matching reality than (for example)

the logic programming techniques that are used in PROLOG. Relaxation labeling is

a complex optimization process and is not discussed further here. Suffice it to say

that the technique often runs into problems of excessive computation. The reader is

referred to the seminal paper by Rosenfeld et al. (1976) and other papers mentioned

in Section 14.9 for further details.

14.7 SEARCH
The above sections have shown how the maximal clique approach may be used to

locate objects in an image, or alternatively to label scenes according to predefined

rules about what arrangements of regions are expected in scenes. In either case,

the basic process being performed is that of search for solutions that are compati-

ble with the observed data. This search takes place in assignment space, i.e., a

space in which all combinations of assignments of observed features with possible

interpretations exist. The problem is that of finding one or more valid sets of

observed assignments.

It generally happens that the search space is very large, so that an exhaustive

search for all solutions would involve enormous computational effort and would take
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considerable time. Unfortunately, one of the most obvious and appealing methods of

obtaining solutions, the maximal clique approach, is NP-complete and can require

impracticably large amounts of time to find all the solutions. It is therefore useful to

clarify the nature of the maximal clique approach: to achieve this, we first describe

the two main categories of search—breadth-first search and depth-first search.

Breadth-first search is a form of search that systematically works down a tree

of possibilities, never taking shortcuts to nearby solutions. Depth-first search, in

contrast, involves taking as direct a path as possible to individual solutions, stop-

ping the process when a solution is found and backtracking up the tree whenever

a wrong decision is found to have been made. It is normal to curtail the depth-

first search when sufficient solutions have been found and this means that much

of the tree of possibilities will not have been explored. Although breadth-first

search can be curtailed similarly when enough solutions have been found, the

maximal clique approach as described earlier is in fact a form of breadth-first

search that is exhaustive and runs to completion.

In addition to being an exhaustive breadth-first search, the maximal clique

approach may be described as being “blind” and “flat”—i.e., it involves neither

heuristic nor hierarchical means of guiding the search. In fact, faster search meth-

ods involve guiding the search in various ways. First, heuristics are used to spec-

ify at various stages in which direction to proceed (which node of the tree to

expand), or which paths to ignore (which nodes to prune). Second, the search can

be made more “hierarchical,” so that it searches first for outline features of a solu-

tion, returning later (perhaps in several stages) to fill in the details. Details of

these techniques are omitted here. However, an interesting approach was used by

Rummel and Beutel (1984): they searched images for industrial components using

features such as corners and holes, alternating at various stages between breadth-

first and depth-first search by using a heuristic based on a dynamically adjusted

parameter: this being computed on the basis of how far the search is still away

from its goal and the quality of the fit so far. Rummel and Beutel noted the exis-

tence of a tradeoff between speed and accuracy as a “guide factor,” based on the

number of features required for recognition, is adjusted—the problem being that

trying to increase speed introduces some risk of not finding the optimum solution.

14.8 CONCLUDING REMARKS
This chapter has discussed the problem of recognizing objects by their features,

and has also considered the related task of scene analysis. The maximal clique

approach is seen to be capable of finding solutions to both of these tasks,

although ultimately these are search problems, so a much greater range of meth-

ods is applicable to each. In particular, blind, flat exhaustive breadth-first search

(i.e., the maximal clique method) involves considerable computation and is often

best replaced by guided depth-first search, with suitable heuristics being devised

to guide the search. In addition, languages such as PROLOG can implement
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depth-first search, and rather different procedural techniques such as relaxation

labeling are available and should be considered (although these are subject to

their own complexities and computational problems).

The task of recognizing objects by their features tends to involve considerable

computation and the GHT can in some cases provide a satisfactory solution to

these problems. When this happens, it is because the graph theory representation

is not well matched to the relevant real-space template matching task in the way

that the GHT is. Here, recall what was noted in Chapter 13—that the GHT is par-

ticularly well suited to object detection in real space as it is one type of spatial

matched filter. Indeed, the maximal clique approach can be regarded as a rather

inefficient substitute for the GHT form of the spatial matched filter. Furthermore,

the LFF method takes a shortcut to save computation and this makes it less like a

spatial matched filter, thereby adversely affecting its ability to detect objects

among noise and clutter. Note that for scene analysis, where relational descriptors

rather than precise dimensional (binary) attributes are involved, the GHT does not

provide any very obvious possibilities—probably because we are here dealing

with much more abstract data that are linked to real space only at a very high

level (but see the work of Kasif et al., 1983).

Finally, note that, on an absolute scale, the graph matching approach takes

very little note of detailed image structure, using at most only pairwise feature

attributes. This is adequate for 2-D image interpretation but inadequate for situa-

tions such as 3-D image analysis where there are more degrees of freedom to con-

tend with (normally three degrees of freedom for position and three for

orientation, for each object in the scene). Hence, more specialized and complex

approaches need to be taken in such cases: these are examined in Part 3.

Searching for objects via their features is far more efficient than template matching. This
chapter has shown that this raises the need to infer the presence of objects—a process that
can still be computation intensive. Graph matching and generalized Hough transform
approaches are robust, although each can lead to ambiguities, so tests of potential solutions
need to be made.

14.9 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Graph matching and clique finding algorithms started to appear in the literature

around 1970: for an early solution to the graph isomorphism problem, see Corneil

and Gottlieb (1970). The subgraph isomorphism problem was tackled soon after

by Barrow et al. (1972): see also Ullmann (1976). The double subgraph isomor-

phism (or subgraph�subgraph isomorphism) problem was commonly tackled by

seeking maximal cliques in the match graph, and algorithms for achieving this

have been described by Bron and Kerbosch (1973), Osteen and Tou (1973), and

Ambler et al. (1975) (note that in 1989, Kehtarnavaz and Mohan reported
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preferring the algorithm of Osteen and Tou on the grounds of speed). Improved

speed has also been achieved using the minimal match graph concept (Davies,

1991a).

Bolles (1979) applied the maximal clique technique to real-world problems

(notably the location of engine covers) and showed how operation could be made

more robust by taking additional features into account. By 1982, Bolles and Cain

had formulated the local-feature-focus method, which (a) searches for restricted

sets of features on an object, (b) takes symmetry into account to save computa-

tion, and (c) reconsiders the original image data in order to confirm a valid match:

the paper gives various criteria for ensuring satisfactory solutions with this type

of method.

Not satisfied with the speed of operation of maximal clique methods, other

workers have tended to use depth-first search techniques. Rummel and Beutel

(1984) developed the idea of alternating between depth-first and breadth-first

search as dictated by the data—a powerful approach, although the heuristics that

they used for this may well lack generality. Meanwhile, Kasif et al. (1983)

showed how a modified GHT (the “relational HT”) could be used for graph

matching, although their paper gives few practical details. A somewhat different

application of the GHT to perform 2-D matching was described in Section 14.4,

and has been extended to optimize accuracy (Davies, 1992c). Geometric hashing

has been developed to perform similar tasks on objects with complex polygonal

shapes (Tsai, 1996).

Relaxation labeling in scenes dates from the seminal paper by Rosenfeld et al.

(1976); for later work on relaxation labeling and its use for matching, see Kitchen

and Rosenfeld (1979), Hummel and Zucker (1983), and Henderson (1984); for

rule-based methods in image understanding, see for example, Hwang et al.

(1986); and for preparatory discussion and careful contrasting of these

approaches, see Ballard and Brown (1982).

Over the past decades, inexact matching algorithms have acquired increasing

predominance over exact matching methods, because of the ubiquitous presence

of noise, distortions, and missing or added feature points, together with inaccura-

cies and thus mismatches of feature attributes. One class of work on inexact (or

“error-tolerant”) matching considers how structural representations should be

compared (Shapiro and Haralick, 1985); this early work on similarity measures

shows how the concept of “string edit distance” can be applied to graphical struc-

tures (Sanfeliu and Fu, 1983); the formal concept of edit distance was later

extended by Bunke and Shearer (1998) and Bunke (1999), who considered and

rationalized the cost functions for methods such as graph isomorphisms, subgraph

isomorphisms, and maximum common subgraph isomorphisms: choice of cost

functions was shown to be of crucial importance to success in each particular

dataset, although detailed analysis demonstrated important subtleties in the situa-

tion (Bunke, 1999).

Yet another class of work is that on optimization. This has included work on

simulated annealing (Herault et al., 1990), genetic search (Cross et al., 1997), and
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neural processing (Pelillo, 1999). The work of Umeyama (1988) develops the

least squares approach using a matrix eigendecomposition method to recover the

permutation matrix relating the two graphs being matched. One of the most recent

developments has been the use of spectral graph theory3 to recover the permuta-

tion structure. In fact, the Umeyama (1988) approach only matches graphs of the

same size. Other related methods have emerged (e.g., Horaud and Sossa, 1995),

but they have all suffered from an inability to cope with graphs of different sizes.

However, Luo and Hancock (2001) have demonstrated how this particular prob-

lem can be overcome—by showing how the graph matching task can be posed as

maximum likelihood estimation using the EM algorithm formalism. Hence, singu-

lar value decomposition is used efficiently to solve correspondence problems.

Ultimately, the method is important because it helps to move graph matching

away from a discrete process in which a combinatorial search problem exists

toward a continuous optimization problem, which moves systematically towards

the optimum solution. It ought to be added that the method works under consider-

able levels of structural corruption—such as when 50% of the initial entries in the

data-graph adjacency matrix are in error (Luo and Hancock, 2001). In a later

development, Robles-Kelly and Hancock (2002) managed to achieve the same

end, and to achieve even better performance within the spectral graph formalism

itself.

Meanwhile, other developments included a fast, phased approach to inexact

graph matching (Hlaoui and Wang, 2002), a reproducible kernel Hilbert space

(RKHS) interpolator-based graph matching algorithm capable of efficiently

matching huge graphs of more than 500 vertices (e.g., those extracted from aerial

scenes) on a PC (van Wyk et al., 2002). For a more detailed appraisal of inexact

matching algorithms, see Lladós et al. (2001): note that the latter appears in a spe-

cial section of IEEE Trans. PAMI on Graph Algorithms and Computer Vision

(Dickinson et al., 2001).

14.9.1 More Recent Developments
Silletti et al. (2011) have devised a variant approach to spectral graph matching

in which new similarity measures are applied. The approach permits application

to a variety of types of image and yields results that are said to show significant

improvements over certain preexisting methods. Gope and Kehtarnavaz (2007)

have demonstrated a new method for affine matching between planar point sets.

The method makes use of the convex hulls of the point sets and performs match-

ing between them: this is a useful approach because (a) convexity is affine invari-

ant and (b) use of the convex hull is intrinsically robust. Property (b) follows

from the fact that convex hulls are only locally altered by point perturbations

including insertions and deletions. The method makes use of an enhanced

3This subject involves analysis of the structural properties of graphs using the eigenvalues and

eigenvectors of the adjacency matrix.
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modified Haussdorff distance and achieves better results in the presence of noise

and occlusion than a number of standard methods. Aguilar et al. (2009) have

developed a new “graph transformation matching” algorithm to match points

between pairs of images. It validates each match through the spatial configuration

of the points by constructing a k-nearest-neighbor graph for each image; vertices

that introduce structural dissimilarity between the graphs are iteratively elimi-

nated, thereby yielding a consensus graph representing a correct set of point

matches between the images.

14.10 PROBLEMS
1. Find the match graph for a set of features arranged in the form of an isosce-

les triangle. Find how much simplification occurs by taking account of sym-

metry and using the symmetry-reduced match graph. Extend your results to

the case of a kite (two isosceles triangles arranged symmetrically base to

base).

2. Two lino-cutter blades (trapeziums) are to be located from their corners.

Consider images in which two corners of one blade are occluded by the other

blade. Sketch the possible configurations, counting the number of corners in

each case. If corners are treated like point features with no other attributes,

show that the match graph will lead to an ambiguous solution. Show further

that the ambiguity can in general be eliminated if proper account is taken of

corner orientation. Specify how accurately corner orientation would need to

be determined for this to be possible.

3. In Problem 2, would the situation be any better if the GHT were used?

4. a. Metal flanges are to be located from their holes using a graph matching

(maximal clique) technique. Each bar has four identical holes at distances

from the narrow end of the bar of 1, 2, 3, and 5 cm, as shown in

Fig. 14.11. Draw match graphs for the four different cases in which one

of the four holes of a given flange is obscured: determine in each case

whether the method is able to locate the metal flange without any error,

and whether any ambiguity arises.

scale (cm)

0 1 2 3 4 5 6

FIGURE 14.11

Metal flanges for location using the GHT.
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b. Do your results tally with the results for human perception? How would

any error or ambiguity be resolved in practical situations?

5. a. Describe the maximal clique approach to object location. Explain why

the largest maximal clique will normally represent the most likely solu-

tion to any object location task.

b. If symmetrical objects with four feature points are to be located, show

that suitable labeling of the object template will permit the task to be

simplified. Does the type of symmetry matter? What happens in the case

of a rectangle? What happens in the case of a parallelogram? (In the latter

case, see points A, B, C, and D in Fig. 14.12.)

c. A nearly symmetrical object with five feature points (see Fig. 14.12) is to

be located. This is to be achieved by looking initially for the feature

points A, B, C, and D and ignoring the fifth point E. Discuss how the

fifth point may be brought into play to finally determine the orientation

of the object, using the maximal clique approach. What disadvantage

might there be in adopting this two-stage approach?

6. a. What is template matching? Explain why objects are normally located by

their features rather than using whole object templates. What are the fea-

tures that are commonly used for this purpose?

b. Describe templates that can be used for corner and hole detection.

c. An improved type of lino-cutter blade (Fig. 14.13) is to be placed into

packs of six by a robot. Show how the robot vision system could locate

the blades either from their corners or from their holes by applying the

maximal clique method (i.e., show that both schemes would work).

d. After a time it appears that the robot is occasionally confused when the

blades overlap. It is then decided to locate the blades from their holes

and their corners. Show why this helps to eliminate any confusion. Show

also how finally distinguishing the corners from the holes can help in

extreme cases of overlap.

A B

CD

E

FIGURE 14.12

Object with five feature points.
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7. a. A certain type of lino-cutter blade has four corners and two fixing holes

(Fig. 14.14). Blades of this type are to be located using the maximal cli-

que technique. Assume the objects lie on a worktable and that they are

viewed orthogonally at a known distance.

b. Draw match graphs for the following situations:

i. The objects are to be located by their holes and their corners, regard-

ing these as indistinguishable point features.

ii. The objects are to be located solely by their corners (i.e., matching

corners in the image with corners on an idealized object).

iii. The objects are to be located solely by their holes.

iv. The objects are to be located by their holes and their corners, but

these are to be regarded as distinguishable features.

c. Discuss your results with particular reference to:

i. the robustness that can be achieved.

ii. the speed of computation.

d. In the latter case, distinguish the time taken to build the basic match

graph from the time taken to find all the maximal cliques in it. State any

assumptions you make about the time taken to find a maximal clique of

m nodes in a match graph of n nodes.

8. a. Decorative biscuits are to be inspected after first locating them from their

holes. Show how the maximal clique graph matching technique can be

applied to identify and locate the biscuits shown in Fig. 14.15(a), which

are of the same size and shape.

CD

A B

E F

FIGURE 14.14

Non-symmetrical lino-cutter blade.

FIGURE 14.13

Symmetrical lino-cutter blade.

38314.10 Problems



b. Show how the analysis will be affected for biscuits that have an axis of

symmetry, as shown in Fig. 14.15(b). Show also how the technique may

be modified to simplify the computation for such a case.

c. A more detailed model of the first type of biscuit shows it has holes of

three sizes, as shown in Fig. 14.15(c). Analyze the situation, and show

that a much simplified match graph can be produced from the image

data, leading to successful object location.

d. A further matching strategy is devised to make use of the hole size infor-

mation: matches are only shown in the match graph if they arise between

pairs of holes of different sizes. Determine how successful this strategy

is, and discuss whether it is likely to be generally useful, e.g., for objects

with increased numbers of features.

e. Work out an optimal object identification strategy, which will be capable

of dealing with cases where holes and/or corners are to be used as point

features, the holes might have different sizes, the corners might have dif-

ferent angles and orientations, the object surfaces might have different col-

ors or textures, and objects might have larger numbers of features. Make

clear what the term “optimal” should be taken to mean in such cases.

9. a. Figure 14.16 shows a 2-D view of a widget with four corners. Explain

how the maximal clique technique can be used to locate widgets even if

they are partly obscured by various types of object including other

widgets.

(b)

(c)

(a)

FIGURE 14.15

Decorative biscuits for inspection.

384 CHAPTER 14 Pattern Matching Techniques



b. Explain why the basic algorithm will not distinguish between widgets

that are normally presented from those that are upside down. Consider

how the basic method could be extended to ensure that a robot only picks

up those that are the right way up.

c. The camera used to view the widgets is accidentally jarred and then reset

at a different, unknown height above the worktable. State clearly why the

usual maximal clique technique will now be unable to identify the wid-

gets. Discuss how the overall program could be modified to make sense

of the data and make correct interpretations in which all the widgets are

identified. Assume first that widgets are the only objects appearing in the

scene, and second that a variety of other objects may appear.

d. The camera is jarred again and this time is set at a small, unknown angle

to the vertical. To be sure of detecting such situations and of correcting

for them, a flat calibration object of known shape is to be stuck on the

worktable. Decide on a suitable shape and explain how it should be used

to make the necessary corrections.

10. Show that flat convex shapes remain convex under affine transformations.

FIGURE 14.16

Diagram of a widget.
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PART

3
3-D Vision and
Motion

Part 3 covers the developments needed for an understanding of real scenes, which

necessarily contain 3-D objects—a number of which may be in motion. 3-D

vision is considerably more complex than 2-D vision, not least because the num-

ber of degrees of freedom of an object will typically have increased from three to

six, with an accompanying combinatorial increase in the number of scene config-

urations to be considered.

This part of the book starts (Chapter 15) by airing the problems, before consider-

ing the complexities of full perspective projection (Chapter 16). Next, it is useful to

see what short cuts can be achieved by taking invariants into account (Chapter 17).

Chapter 18 not only deals with camera calibration but also shows how recent

research has attempted to avoid the need for explicit calibration by making careful

computations that interrelate multiple scenes: here the emphasis is on taking opportu-

nities that permit some of the complexities to be by-passed. Finally, Chapter 19

examines the problems of motion in the context of 3-D vision.
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CHAPTER

15The Three-Dimensional
World

3-D VISION

Humans are able to employ 3-D vision with consummate ease, and according to

conventional wisdom, binocular vision is the key to this success. The truth is

more complex than this, and this chapter demonstrates why.

Look out for:

• what can be achieved using binocular vision.

• how the shading of surfaces can be used in place of binocular vision to

achieve similar ends.

• how these basic methods provide dimensional information for 3-D scenes but

do not immediately lead to object recognition.

• how the process of 3-D object recognition can be tackled by studies of 3-D

geometry.

Note that this is an introductory chapter on 3-D vision, designed to give the

flavor of the subject and to show its origins in human vision. It will be followed

by the other four chapters (Chapters 16�19) that comprise Part 3 of this volume.

At a more detailed level, notice the importance of the epipolar line approach in

solving the correspondence problem. The concept is deservedly taken considerably

further in Chapter 18, in conjunction with the required mathematical formulation.

15.1 INTRODUCTION
In the foregoing chapters, it has generally been assumed that objects are essen-

tially flat and are viewed from above in such a way that there are only three
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degrees of freedom—namely, the two associated with position and a further one

concerned with orientation. While this approach was adequate for carrying out

many useful visual tasks, it is inadequate for interpreting outdoor or factory

scenes or even for helping with quite simple robot assembly and inspection tasks.

Indeed, over the past few decades a considerable amount of quite sophisticated

theory has been developed and backed up by experiment, to find how scenes com-

posed of real 3-D objects can be understood in detail.

In general, this means attempting to interpret scenes in which objects may

appear in totally arbitrary positions and orientations—corresponding to six

degrees of freedom. Interpreting such scenes, and deducing the translation and

orientation parameters of arbitrary sets of objects, takes a substantial amount of

computation—partly because of the inherent ambiguity in inferring 3-D informa-

tion from 2-D images.

A variety of approaches are now available for proceeding with 3-D vision. A

single chapter will be unable to describe all of them but the intention here is to

provide an overview, outlining the basic principles and classifying the methods

according to generality, applicability, and so on. While computer vision need not

necessarily mimic the capabilities of the human eye�brain system, much research

on 3-D vision has been aimed at biological modeling. This type of research shows

that the human visual system makes use of a number of different methods simulta-

neously, taking appropriate cues from the input data and forming hypotheses about

the content of a scene, progressively enhancing these hypotheses until a useful

working model of what is present is produced. Thus, individual methods are not

expected to work in isolation: rather, they need to provide the model generator

with whatever data become available. Clearly, biological machinery of various

types will lie idle for much of the time until triggered by specific input stimuli.

Computer vision systems are currently less sophisticated than this and tend to be

built on specific processing models, so that they can be applied efficiently to more

restricted types of image data. In this chapter, we adopt the pragmatic view that

particular methods need to be (or have been) developed for specific types of situa-

tion, and that they should be used only when appropriate—although some care is

taken to elucidate what the appropriate types of applications are.

15.2 3-D VISION—THE VARIETY OF METHODS
One of the most obvious characteristics of the human visual system is that it

employs two eyes, and it is well known to the layman that binocular (or “stereo”)

vision permits depth to be discerned within a scene. However, the loss of vision

that results when one eye is shut is relatively insignificant and is by no means a

disqualification from driving a car or even an aeroplane. On the contrary, depth

can readily be deduced in monocular vision from a plethora of cues that are bur-

ied in an image. Naturally, to achieve this, the eye�brain system is able to call
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on a huge amount of pre-stored data about the physical world and about the types

of object in it, be they man-made or natural entities. For example, the size of any

car being viewed is strongly constrained; likewise, most objects have highly

restricted sizes, both absolutely and in their depths relative to their frontal dimen-

sions. Nevertheless, in a single view of a scene, it is normally impossible to

deduce absolute sizes—all the objects and their depths can be scaled up or down

by arbitrary factors and this cannot be discerned from a monocular view.

While it is clear that the eye�brain system makes use of a huge database

relating to the physical world, there is much that can be learned with negligible

prior knowledge, even from a single monocular view. The main key to this is the

“shape from shading” concept. For 3-D shape to be deducible from shading infor-

mation (i.e., from the grayscale intensities in an image), something has to be

known about how the scene is lit—the simplest situation being when the scene is

illuminated by a single point light source at a known position. Note that indoors a

single overhead tungsten light is still the most usual illuminator, while outdoors

the sun performs a similar function. In either case, an obvious result is that a sin-

gle source will illuminate one part of an object and not another—which then

remains in shadow—and parts that are orientated in various ways relative to the

source and the observer appear with different brightness values, so that orientation

can in principle be deduced. In fact, as will be seen below, deduction of orienta-

tion and position is not at all trivial and may even be ambiguous. Nevertheless,

successful methods have been developed for carrying out this task. One problem

that often arises is that the position of the light source is unknown but this infor-

mation can generally be extracted (at least by the eye) from the scene being

examined, so a bootstrapping procedure is then able to unlock the image data

gradually and proceed to an interpretation.

While these methods enable the eye to interpret real scenes, it is difficult to

say quite to what degree of precision they are carried out. With computer vision,

the required precision levels are liable to be higher, although the machine will be

aided by knowing exactly where the source of illumination is. However, with

computer vision, we can go further and arrange artificial lighting schemes that

would not appear in nature, so the computer can acquire an advantage over the

human visual system. In particular, a set of light sources can be applied in

sequence to the scene—an approach known as photometric stereo—which can in

certain cases help the computer to interpret the scene more rigorously and effi-

ciently. In other cases, structured light may be applied. This means projecting

onto the scene a pattern of spots or stripes, or even a grid of lines, and measuring

their positions in the resulting image. By this means the depth information can be

obtained much as for pairs of stereo images.

Finally, a number of methods have been developed for analyzing images on

the basis of readily identifiable sets of features. These methods are the 3-D ana-

logs of the graph matching and GHT approaches of Chapter 14. However, they

are significantly more complex because they generally involve six degrees of

freedom in place of the three assumed throughout Chapter 14. It should also be
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noted that such methods make strong assumptions about the particular objects to

be located within the scene. In general situations, it is unlikely that such assump-

tions could be made, and so initial analysis of any images must be made on the

basis that the entire scene must be mapped out in 3-D, then 3-D models built up,

and finally deductions must be made by noticing what relation one part of the

scene bears to another part. Note that if a scene is composed from an entirely

new set of objects, all that can be done is to describe what is present and say per-

haps what the set most closely resembles: recognition per se cannot be performed.

Note that scene analysis is—at least from a single monocular image—an inher-

ently ambiguous process: every scene can have a number of possible interpreta-

tions and there is evidence that the eye looks for the simplest and most probable

explanation rather than an absolute interpretation. Indeed, it is underlined by the

many illusions to which the eye�brain system is subject, that decisions must

repeatedly be made concerning the most likely interpretation of a scene and that

there is some risk that its internal model builder will lock on to an interpretation

or part-interpretation that is suboptimal (see the paintings of Escher).

This section has indicated that methods of 3-D vision can be categorized

according to whether they start by mapping out the shapes of objects in 3-D space

and then attempt to interpret the resulting shapes, or whether they try to identify

objects directly from their features. In either case, a knowledge base is ultimately

called for. It has also been seen that methods of mapping objects in real space

include monocular and binocular methods, although structured lighting can help

to offset the deficiencies of employing a single “eye.” Laser scanning and ranging

techniques must also be included in methods of 3-D mapping, although space

precludes detailed discussion of these techniques in this book.

15.3 PROJECTION SCHEMES FOR THREE-DIMENSIONAL
VISION

It is common in engineering drawings to provide three views of an object to be

manufactured—the plan, the side view, and the elevation. Traditionally these

views are simple orthographic (nondistorting) projections of the object—i.e., they

are made by taking sets of parallel lines from points on the object to the flat plane

on which it is being projected.

However, when objects are viewed by eye or from a camera, rays converge to

the lens and so images formed in this way are subject not only to change of scale

but also to perspective distortions (Fig. 15.1). This type of projection is called

perspective projection, although it includes orthographic projection as the special

case of viewing from a distant point. Unfortunately, perspective projections have

the disadvantage that they tend to make objects appear more complex than they

really are by destroying simple relationships between their features. Thus, parallel

edges no longer appear parallel and midpoints no longer appear as such (although
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many useful geometric properties still hold—e.g., a tangent line remains a tangent

line and the order of points on a straight line remains unchanged).

In outdoor scenes, it is very common to see lines that are known to be parallel

apparently converging toward a vanishing point on the horizon line (Fig. 15.2). In

fact, the horizon line is the projection onto the image plane of the line at infinity

on the ground plane G: it is the set of all possible vanishing points for parallel

lines on G. In general, the vanishing points of a plane P are the projections onto

the image plane corresponding to points at infinity in different directions on P.

Thus, any plane Q within the field of view may have vanishing points in the

image plane, and these will lie on a vanishing line, which is the analog of the

horizon line for Q.

Figure 15.3(a) shows how an image is projected into the image plane by a

convex (eye or camera) lens at the origin. It is inconvenient to have to consider

inverted images and it is a commonly used convention in image analysis to set

the center of the lens at the origin (0, 0, 0) and to imagine the image plane to be

the plane Z5 f, f being the focal length of the lens; with this simplified geometry

(Fig. 15.3(b)), images in the image plane appear noninverted. Taking a general

point in the scene as (X, Y, Z), which appears in the image as (x1, y1), perspective

projection now gives:

ðx1; y1Þ5
fX

Z
;
fY

Z

� �
(15.1)

15.3.1 Binocular Images
Figure 15.4 shows the situation when two lenses are used to obtain a stereo pair

of images. In general, the two optical systems do not have parallel optical axes

but exhibit a “vergence” (which may be variable, as it is for human eyes), so that

they intersect at some point within the scene. Then a general point (X, Y, Z) in

the scene has two different pairs of coordinates, (x1, y1) and (x2, y2), in its two

images, which differ both because of the vergence between the optical axes and

(a) (b)

FIGURE 15.1

(a) Image of a rectangular box taken using orthographic projection; (b) the same box

taken using perspective projection. In (b), note that parallel lines no longer appear

parallel, although paradoxically the box appears more realistic.

39315.3 Projection Schemes for Three-Dimensional Vision



F

(a)

(b)

F

C

C

FIGURE 15.3

(a) Projection of an image into the image plane by a convex lens; note that a single

image plane only brings objects at a single distance into focus but that for far-off objects

the image plane may be taken to be the focal plane, a distance F from the lens;

(b) a commonly used convention that imagines the projected image to appear noninverted

at a focal plane F in front of the lens. The center of the lens is said to be the center of

projection for image formation.

HV1 V2 V3

FIGURE 15.2

Vanishing points and the horizon line. This figure shows how parallel lines on the ground

plane appear, under perspective projection, to meet at vanishing points Vi on the horizon

line H. (Note that Vi and H lie in the image plane.) If two parallel lines do not lie on the

ground plane, their vanishing point will lie on a different vanishing line. Hence, it should

be possible to determine whether any roads are on an incline by computing all the

vanishing points for the scene.
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because the baseline b between the lenses causes relative displacement or “dispar-

ity” of the points in the two images.

For simplicity, we now take the vergence to be zero, i.e., the optic axes are

parallel. Then, with suitable choice of Z-axis on the perpendicular bisector of the

baseline b, we obtain two equations:

x1 5
ðX1 b=2Þf

Z
(15.2)

x2 5
ðX2 b=2Þf

Z
(15.3)

so that the disparity is

D5 x1 2 x2 5
bf

Z
(15.4)

Rewriting this equation in the form:

Z5
bf

x1 2 x2
(15.5)

now permits the depth Z to be calculated. In fact, computation of Z only requires

the disparity for a stereo pair of image points to be found and parameters of the

optical systems to be known. However, confirming that both points in a stereo

pair actually correspond to the same point in the original scene is in general not

at all trivial, and much of the computation in stereo vision is devoted to this task.

In addition, to obtain good accuracy in the determination of depth, a large base-

line b is required. Unfortunately as b is increased, the correspondence between

the images decreases, so it becomes more difficult to find matching points.

(x
1 , y

1)

(x
2, y

2)

(X, Y, Z )

C1

C2

FIGURE 15.4

Stereo imaging using two lenses. The axes of the optical systems are parallel, i.e., there is

no “vergence” between the optical axes.
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15.3.2 The Correspondence Problem
There are two important approaches to finding pairs of points that match in the

two images of a stereo pair. One is that of “light striping” (one form of structured

lighting), which encodes the two images so that it is easy to see pairs of corre-

sponding points. If a single vertical stripe is used, for every value of y there is in

principle only one light stripe point in each image and so the matching problem is

solved. We return to this problem in a later section.

The second important approach is to employ epipolar lines. To understand

this approach, imagine that we have located a distinctive point in the first image

and that we are marking all possible points in the object field which could have

given rise to it. This will mark out a line of points at various depths in the scene

and, when viewed in the second image plane, a locus of points can be con-

structed in that plane. This locus is the epipolar line corresponding to the origi-

nal image point in the alternate image (Fig. 15.5). If we now search along the

epipolar line for a similarly distinctive point in the second image, the chance of

finding the correct match is significantly enhanced. This method has the advan-

tage not only of cutting down the amount of computation required to find corre-

sponding points, but also of reducing significantly the chance of false alarms.

Note that the concept of an epipolar line applies to both images—a point in one

image gives an epipolar line in the other image. Note also that in the simple

geometry of Fig. 15.4, all epipolar lines are parallel to the x-axis, although this is

not so in general (in fact, the general situation is that all epipolar lines in one

image plane pass through the point that is the image of the projection point of

the alternate image plane).

C2

C1

P1

E2

FIGURE 15.5

Geometry of epipolar lines. A point P1 in one image plane may have arisen from any one

of a line of points in the scene, and may appear in the alternate image plane at any point

on the so-called epipolar line E2.
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The correspondence problem is rendered considerably more difficult by the

fact that there will be points in the scene that give rise to points in one image but

not in the other. Such points are either occluded in the one image, or else are so

distorted as not to give a recognizable match in the two images (e.g., the different

background might mask a corner point in one image while permitting it to stand

out in the other). Any attempt to match such points can then only lead to false

alarms. Thus, it is necessary to search for consistent sets of solutions in the form

of continuous object surfaces in the scene. For this reason, iterative “relaxation”

schemes are widely used to implement stereo matching.

Broadly speaking, correspondences are sought by two methods: one is the

matching of near-vertical edge points in the two images (near-horizontal edge

points do not give the required precision); the other is the matching of local inten-

sity patterns using correlation techniques. Correlation is an expensive operation

and in this case is relatively unreliable—principally because intensity patterns

frequently appear significantly foreshortened1 in one or other image and hence

are difficult to match reliably. In such cases, the most practical solution is to

reduce the baseline; as noted earlier, this has the effect of reducing the accuracy

of depth measurement. Further details of these techniques are to be found in

Shirai (1987).

Before leaving this topic, we consider in slightly more detail how the pro-

blems of visibility mentioned above arise. Figure 15.6 shows a situation in which

an object is being observed by two cameras giving stereo images. Clearly, much

of the object will not be visible in either image because of self-occlusion, while

some feature points will only be visible in one or the other image. Now, consider

the order in which the points appear in the two images (Fig. 15.7). The points

that are visible appear in the same order as in the scene, and the points that are

just going out of sight are those for which the order between the scene and the

image is just about to change. Points that provide information about the front sur-

face of the object can thus only bear a simple geometrical relation to each other:

in particular, for points not to obscure, or be obscured by, a given point P, they

must not lie within a double angular sector defined by P and the centers of projec-

tion C1, C2 of the two cameras. This region is shown shaded in Fig. 15.7. A sur-

face passing through P for which full depth information can be retrieved must lie

entirely within the nonshaded region. (Of course, a new double sector must be

considered for each point on the surface being viewed.) Note that the possibility

of objects containing holes, or having transparent sections, must not be forgotten

(such cases can be detected from differences in the ordering of feature points in

the two views—see Fig. 15.7); neither must it be ignored that the foregoing

figures represent a single horizontal cross-section of an object that can have

totally different shapes and depths in different cross-sections.

1That is, distorted by the effects of perspective.
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15.4 SHAPE FROM SHADING
It was mentioned in Section 15.2 that it is possible to analyze the pattern of inten-

sities in a single (monocular) image and to deduce the shapes of objects from the

shading information. The principle underlying this technique is that of modeling

the reflectance of objects in the scene as a function of the angles of incidence i

and emergence e of light from their surfaces. In fact, a third angle is also

involved, and it is called the “phase” g (Fig. 15.8).

A general model of the situation gives the radiance I (light intensity in the

image) in terms of the irradiance E (energy per unit area falling on the surface of

the object) and the reflectance R:

Iðx1; y1Þ5Eðx; y; zÞRðn; s; vÞ (15.6)

It is well known that a number of matt surfaces approximate reasonably well

to an ideal Lambertian surface whose reflectance function depends only on the

angle of incidence i—i.e., the angles of emergence and phase are immaterial:

I5
1

π

� �
E cos i (15.7)

A
B

P
D

E

C2C1

FIGURE 15.6

Visibility of feature points in two stereo views. Here an object is viewed from two

directions. Only feature points that appear in both views are of value for depth estimation.

This eliminates all points in the shaded region, such as E, from consideration.
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For the present purpose, E is regarded as a constant and is combined with other

constants for the camera and the optical system (including, e.g., the f-number). In

this way, a normalized reflectance is obtained, which in this case is:

R5R0 cos i5R0 s � n

5
R0ð11 pps 1 qqsÞ

ð11 p2 1 q2Þ1=2ð11 p2s 1 q2s Þ1=2
(15.8)

where we have used the standard convention of writing orientations in 3-D in

terms of p and q values. These are not direction cosines but correspond to the

coordinates of the point (p, q, l) at which a particular direction vector from the

origin meets the plane z5 1: hence they need suitable normalization, as in

Eq. (15.8).

A
B

P
D

E

C1 C2

D2P2B2A2D1
P1

B1
A1

FIGURE 15.7

Ordering of feature points on an object. In the two views of the object shown here, the

feature points all appear in the same order A, B, P, D as on the surface of the object.

Points for which this would not be valid, such as E, are behind the object and are

obscured from view. Relative to a given visible feature P, there is a double sector (shaded)

in which feature points must not appear if they are not to obscure the feature under

consideration. An exception to these rules might be if the object had a semi-transparent

window through which an additional feature T were visible: in that case interpretation

would be facilitated by noting that the orderings of the features seen in the two views were

different—e.g., A1, T1, B1, P1, D1 and A2, B2, T2, P2, D2.
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Equation (15.8) gives a reflectance map in gradient (p, q) space. We now tem-

porarily set the absolute reflectance value R0 equal to unity. The reflectance map

can be drawn as a set of contours of equal brightness, starting with a point having

R5 1 at s5 n, and going down to zero for n perpendicular to s. When s5 v, so
that the light source is along the viewing direction (here taken to be the direction

p5 q5 0), zero brightness occurs only for infinite distances on the reflectance

map ((p21 q2)1/2 approaching infinity) (Fig. 15.9(a)). In a more general case,

when s 6¼ v, zero brightness occurs along a straight line in gradient space

(Fig. 15.9(b)). To find the exact shapes of the contours, we can set R at a constant

value a, which results in:

að11 p2 1 q2Þ1=2ð11 p2s 1 q2s Þ1=2 5 11 pps 1 qqs (15.9)

Squaring this equation clearly gives a quadratic in p and q, which could be

simplified by a suitable change of axes. Thus, the contours must be curves of

conic section, namely, circles, ellipses, parabolas, hyperbolas, lines, or points (the

case of a point arises only when a5 1, when we get p5 ps, q5 qs; and that of a

line only if a5 0, when we get the equation 11 pps1 qqs5 0: both of these solu-

tions were implied above).

Unfortunately, object reflectances are not all Lambertian, and an obvious

exception is for surfaces that approximate to pure specular reflection. In that case,

e5 i and g5 i1 e (s, n, v are coplanar); the only nonzero reflectance position in

gradient space is the point representing the bisector of the angle between the

s

n

v

i e

g

FIGURE 15.8

Geometry of reflection. An incident ray from source direction s is reflected along the

viewer direction v by an element of the surface whose local normal direction is n; i, e,

and g are defined respectively as the incident, emergent, and phase angles.
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FIGURE 15.9

Reflectance maps for Lambertian surfaces: (a) contours of constant intensity plotted in

gradient (p, q) space for the case where the source direction s (marked by a black dot) is

along the viewing direction v (0, 0) (the contours are taken in steps of 0.125 between the

values shown); (b) the contours that arise where the source direction (ps, qs) is at a point

(marked by a black dot) in the positive quadrant of (p, q) space: note that there is a well-

defined region, bounded by the straight line 11 pps1 qqs5 0, for which the intensity is

zero (the contours are again taken in steps of 0.125).
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source direction s (p, q) and the viewing direction v (0, 0)—i.e., n is along

s1 v—and very approximately:

p � ps

2
(15.10)

q � qs

2
(15.11)

For less perfect specularity, a peak is obtained around this position. A good

approximation to the reflectance of many real surfaces is obtained by modeling

them as basically Lambertian but with a strong additional reflectance near the spec-

ular reflectance position. Using the Phong (1975) model for the latter component

gives:

R5R0 cos i1R1 cos
m θ (15.12)

θ being the angle between the actual emergence direction and the ideal specular

reflectance direction.

The resulting contours now have two centers around which to peak: the first is

the ideal specular reflection direction (p� ps/2, q� qs/2) and the second is that of

the source direction (p5 ps, q5 qs). When objects are at all shiny—such as metal,

plastic, liquid, or even wood surfaces—the specular peak is quite sharp and rather

intense: casual observation may not even indicate the presence of another peak,

since Lambertian reflection is so diffuse (Fig. 15.10). In other cases, the specular

peak can broaden and become more diffuse: hence it may merge with the

Lambertian peak and effectively disappear.

Some remarks should be made about the Phong model employed above. First,

it is adapted to different materials by adjusting the values of R0, R1, and m. Phong

remarks that R1 typically lies between 10% and 80%, while m is in the range

1�10. However, Rogers (1985) indicates that m may be as high as 50. Note that

there is no physical significance in these numbers—the model is simply a

phenomenological one. This being so, care should be taken to prevent the cosm θ
term from contributing to reflectance estimates when jθj. 90�. The Phong model

is reasonably accurate but has been improved by Cook and Torrance (1982). This

is important in computer graphics applications, but the improvement is difficult to

apply in computer vision, because of lack of data concerning the reflectances of

real objects and because of variability in the current state (cleanliness, degree of

polish, etc.) of a given surface. However, the method of photometric stereo gives

some possibility of overcoming these problems.

15.5 PHOTOMETRIC STEREO
Photometric stereo is a form of structured lighting that increases the information

available from surface reflectance variations. Basically, instead of taking a single

monocular image of a scene illuminated from a single source, several images are
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taken, from the same vantage point, with the scene illuminated in turn by separate

light sources. These light sources are ideally point sources some distance away in

various directions, so that there is in each case a well-defined light source direction

from which to measure surface orientation.

The basic idea of photometric stereo is that of cutting down the number of

possible positions in gradient space for a given point on the surface of an object.

It has already been seen that, for known absolute reflectance R0, a constant bright-

ness in one image permits the surface orientation to be limited to a curve of conic

cross-section in gradient space. This would also be true for a second such image,

the curve being a new one if the illuminating source is different. In general, two

such conic curves meet at two points, so there is now only a single ambiguity in

the gradient of the surface at any given point in the image. To resolve this ambi-

guity a third source of illumination can be employed (this must not be in the

plane containing the first two and the surface point being examined), and the third

image gives another curve in gradient space that should pass through the appro-

priate crossing point of the first two curves (Fig. 15.11). If a third source of
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FIGURE 15.10

Reflectance map for a non-Lambertian surface: a modified form of Fig. 15.9(b) for the

case where the surface has a marked specular component (R05 1.0, R15 0.8). Note that

the specular peak can have very high intensity (much greater than the maximum value of

unity for the Lambertian component). In this case, the specular component is modeled

with a cos8θ variation (the contours are again taken in steps of 0.125).
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illumination cannot be used, it is sometimes possible to arrange that the inclina-

tion of each of the sources is so high that (p21 q2)1/2 on the surface is always

lower than ðp2s 1 q2s Þ1=2 for each of the sources, so that only one interpretation of

the data is possible. This method is prone to difficulty, however, since it means

that parts of the surface could be in shadow, thereby preventing the gradient for

these parts of the surface from being measured. Another possibility is to assume

that the surface is reasonably smooth, so that p and q vary continuously over it.

This itself ensures that ambiguities are resolved over most of the surface.

However, there are other advantages to be gained from using more than two

sources of illumination. One is that information on the absolute surface reflec-

tance can be obtained. Another is that the assumption of a Lambertian surface can

be tested. Thus, three sources of illumination ensure that the remaining ambiguity

is resolved and permit absolute reflectivity to be measured: this is obvious, since

if the three contours in gradient space do not pass through the same point, then

the absolute reflectivity cannot be unity, so corresponding contours should be

sought that do pass through the same point. In practice, the calculation is

normally carried out by defining a set of nine matrix components of irradiance, sij
being the jth component of light source vector si. Then, in matrix notation:

E5R0Sn (15.13)
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FIGURE 15.11

Obtaining a unique surface orientation by photometric stereo. Three contours of constant

intensity arise for different light sources of equal strength: all three contours pass through

a single point in (p, q) space and result in a unique solution for the local gradient.
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where

E5 ðE1;E2;E3ÞT (15.14)

and

S5
s11 s12 s13
s21 s22 s23
s31 s32 s33

2
4

3
5 (15.15)

Provided that the three vectors s1, s2, s3 are not coplanar, so that S is not a sin-

gular matrix, R0 and n can now be determined from the formulas:

R0 5 S21E
�� �� (15.16)

n5
S21E

R0

(15.17)

An interesting special case arises if the three source directions are mutually

perpendicular; taking them to be aligned along the respective major axes direc-

tions, S is now the unit matrix, so that:

R0 5 ðE2
1 1E2

2 1E2
3Þ1=2 (15.18)

and

n5
ðE1;E2;E3ÞT

R0

(15.19)

If four or more images are obtained using further illumination sources, more

information can be obtained: e.g., the coefficient of specular reflectance, R1. In

practice, this coefficient varies somewhat randomly with the cleanliness of the

surface and it may not be relevant to determine it accurately. More probably, it

will be sufficient to check whether significant specularity is present, so that the

corresponding region of the surface can be ignored for absolute reflectance calcu-

lations. Nonetheless, finding the specularity peak can itself give important surface

orientation information, as will be clear from Section 15.4. Note that, although

the information from several illumination sources should ideally be collated using

least-squares analysis, this method requires significant computation. Hence, it

seems better to use the images resulting from further illumination sources as con-

firmatory—or, instead, to select the three that exhibit the least evidence of specu-

larity as giving the most reliable information on local surface orientation.

15.6 THE ASSUMPTION OF SURFACE SMOOTHNESS
It was hinted above that the assumption of a reasonably smooth surface permits

ambiguities to be removed in situations where there are two illuminating sources.
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In fact, this method can be used to help analyze the brightness map even for situa-

tions where a single source is employed: indeed, the fact that the eye can perform

this feat of interpretation indicates that it should be possible to find computer

methods for achieving it. Much research has been carried out on this topic and a

set of methods is available, although the calculations are complex, iterative, com-

putation intensive procedures. For this reason, they are not studied in depth here:

the reader is referred to the volume by Horn (1986) for detailed information on

this topic. However, one or two remarks are in order.

First, consider the representation to be employed for this type of analysis. In

fact, normal gradient (p, q) space is not very appropriate for the purpose. In

particular, it is necessary to average gradient (i.e., the n-values) locally within

the image; however, (p, q) space is not “linear”, in that a simple average of

(p, q) values within a window would give biased results. It turns out that a con-

formal representation of gradient (i.e., one which preserves small shapes) is

closer to the ideal, in that the distances between points in such a representation

provide better approximations to the relative orientations of surface normals:

averaging in such a representation gives reasonably accurate results. The

required representation is obtained by a stereographic projection, which maps

the unit (Gaussian) sphere onto a plane (z5 1) through its north pole but this

time using as a projection point not its center but its south pole. This projection

has the additional advantage that it projects all possible orientations of a sur-

face onto the plane, not merely those from the northern hemisphere. Hence,

backlit objects can be represented conveniently in the same map as used for

frontlit objects.

Second, the relaxation methods used to estimate surface orientation have to be

provided with accurate boundary conditions: in principle, the more correct the

orientations that are presented initially to such procedures, the more quickly and

accurately the iterations proceed. There are normally two sets of boundary condi-

tions that can be applied in such programs. One is the set of positions in the

image where the surface normal is perpendicular to the viewing direction. The

other is the set of positions in the image where the surface normal is perpendicu-

lar to the direction of illumination: this set of positions corresponds to the set of

shadow edges (Fig. 15.12). Careful analysis of the image must be undertaken to

find each set of positions, but once they have been located they provide valuable

cues for unlocking the information content of the monocular image, and mapping

out surfaces in detail.

Finally, all shapes from shading techniques provide information that initially

takes the form of surface orientation maps. Dimensions are not obtainable directly

but these can be computed by integration across the image from known starting

points. In practice this tends to mean that absolute dimensions are unknown and

that dimensional maps are obtainable only if the size of an object is given or if its

depth within the scene is known.
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15.7 SHAPE FROM TEXTURE
Texture can be very helpful to the human eye in permitting depth to be perceived.

Although textured patterns can be very complex, even the simplest textural ele-

ments can carry depth information. Ohta et al. (1981) showed how circular

patches on a flat surface viewed more and more obliquely in the distance become

first elliptical and then progressively flatter and flatter. At infinite distance, on the

horizon line (here defined as the line at infinity in the given plane), they would

clearly become very short line segments. To disentangle such textured images suf-

ficiently to deduce depths within the scene, it is first necessary to find the horizon

line reliably. This is achieved by taking all pairs of texture elements and deducing

from their areas where the horizon line would have to be. To proceed, we make

use of the rule:

d31
d32

5
A1

A2

(15.20)

which applies since circles at various depths would give a square law, although the

progressive eccentricity also reduces the area linearly in proportion to the depth.

This information is accumulated in a separate image space and a line is then fitted to

these data: false alarms are eliminated automatically by this Hough-based procedure.

P

P

P

Q

Q

Q

FIGURE 15.12

The two types of boundary condition that can be used in shape-from-shading

computations of surface orientation: (i) positions P where the surface normal is

perpendicular to the viewing direction; (ii) positions Q where the surface normal is

perpendicular to the direction of illumination (i.e., shadow boundaries).
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At this stage the original data—the ellipse areas—provide direct information on

depth, although some averaging is required to obtain accurate results. Although

this type of method has been demonstrated in certain instances, it is in practice

highly restricted unless very considerable amounts of computation are performed.

Hence it is doubtful whether it can be of general practical use in machine vision

applications.

15.8 USE OF STRUCTURED LIGHTING
Structured lighting has already been considered briefly in Section 15.2 as an alter-

native to stereo for mapping out depth in scenes. Basically, a pattern of light

stripes, or other arrangement of light spots or grids, is projected onto the object

field. Then these patterns are enhanced in a (generally) single monocular image

and analyzed to extract the depth information. To obtain the maximum information

the light pattern must be close-knit and the received images must be of very high

resolution. When shapes are at all complex, the lines can in places appear so close

together that they are unresolvable. It then becomes necessary to separate the ele-

ments in the projected pattern, trading resolution and accuracy for reliability of

interpretation. Even so, if parts of the objects are along the line of sight, the lines

can merge and even cross back and fore, so unambiguous interpretation is never

assured. In fact, this is part of a larger problem, in which parts of the object will

be obscured from the projected pattern by occluding bodies or by self-occlusion.

The method has this feature in common with the shape from shading technique

and with stereo vision, which relies on both cameras being able to view various

parts of the objects simultaneously. Hence, the structured light approach is subject

to similar restrictions to those found for other methods of 3-D vision and is not a

panacea. Nevertheless, it is a useful technique that is generally simple to set up so

as to acquire specific 3-D information that can enable a computer to start the pro-

cess of cueing into complex images.

Light spots provide perhaps the most obvious form of structured light.

However, they are restricted because for each spot, an analysis has to be performed

to determine which spot is being viewed: connected lines, in contrast, carry a

large amount of coding information with them so that ambiguities are less likely

to arise. Grids of lines carry even more coding information but do not necessarily

give any more depth information. Indeed, if a pattern of light stripes can be pro-

jected, e.g., from the left of the camera so that they are parallel to the y-axis in

the observed image, then there is no point in projecting another set of lines paral-

lel to the x-axis, since these merely replicate information that is already available

from the rows of pixels in the image—all the depth information is carried by the

vertical lines and their horizontal displacements in the image. This analysis

assumes that the camera and projected beams are carefully aligned and that no

perspective or other distortions are present. In fact, most practical structured
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lighting systems in current use employ light stripe patterns rather than spot pat-

terns or full grid patterns.

This section ends with an analysis of the situations that can arise when a sin-

gle stripe is incident on objects as simple as rectangular blocks. Figure 15.13

shows three types of structure in observed stripes: (a) the effect of a sharp angle

being encountered; (b) the effect of “jump edges” at which light stripes jump hor-

izontally and vertically at the same time; and (c) the effect of discontinuous edges

at which light stripes jump horizontally but not vertically. The reasons for these

circumstances will be obvious from Fig. 15.13. Basically, the problem to be tack-

led with jump and discontinuous edges is to find whether a given stripe end marks

an occluding edge or an occluded edge. The importance of this distinction is that

occluding edges mark actual edges of the object being observed, whereas

occluded edges may be merely edges of shadow regions and are then not directly

significant.2 A simple rule is that, if stripes are projected from the left, the left-

hand component of a discontinuous edge will be the occluding edge and the

right-hand component will be the occluded edge. Angle edges are located by

DD

B

B

B

B

J
J

FIGURE 15.13

Three of the structures that are observed when a light stripe is incident on even quite

simple shapes: bends (B), jumps (J), and discontinuities (D).

2More precisely, they involve interactions of light with two objects rather than with one, and are

therefore more complex to interpret.
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applying a Laplacian type of operator that detects the change in orientation of the

light stripe.

The ideas outlined above correspond to possible 1-D operators that interpret

light stripe information to locate nonvertical edges of objects. The method pro-

vides no direct information concerning vertical edges. To obtain such information

it is necessary to analyze the information from sets of light stripes. For this pur-

pose 2-D edge operators are required, which collect sufficient data from at least

two or three adjacent light stripes. Further details are beyond the scope of this

chapter.

Overall, light stripes provide a very useful means of recognizing planes form-

ing the faces of polyhedra and other types of manufactured object. The character-

istic sets of parallel lines can be found and demarcated relatively easily, and the

fact that the lines usually give rather strong signals means that line tracking tech-

niques can be applied and that algorithms can operate quite rapidly. However,

whole-scene interpretation, including inferring the presence and relative positions

of different objects, remains a more complex task, as will be seen below.

15.9 THREE-DIMENSIONAL OBJECT RECOGNITION
SCHEMES

The methods described so far in this chapter employ various means for finding

depth at all places in a scene, and are hence able to map out 3-D surfaces in a fair

amount of detail. However, they do not give any clue as to what these surfaces

represent. In some situations it may be clear that certain planar surfaces are parts

of the background, e.g., the floor and the walls of a room, but in general individ-

ual objects will not be inherently identifiable. Indeed, objects tend to merge with

each other and with the background, so specific methods are needed to segment

the 3-D space map3 and finally recognize the objects, giving detailed information

on their positions and orientations.

Before proceeding to study this problem, notice that further general processing

can be carried out to analyze the 3-D shapes. Agin and Binford (1976) and others

have developed techniques for likening 3-D shapes to “generalized cylinders,”

these being like normal (right circular) cylinders but with additional degrees of

freedom so that the axes can bend and the cross-sections can vary, both in size

and in detailed shape: even an animal like a sheep can be likened to a distorted

cylinder. On the whole, this approach is elegant but may not be well adapted to

describe many industrial objects, and it is therefore not pursued further here. A

simpler approach may be to model the 3-D surfaces as planar, quadratic, cubic,

and quartic, and then to try to understand these model surfaces in terms of what

3This may be defined as an imagined 3-D map showing, without interpretation, the surfaces of all

objects in the scene and incorporating all the information from depth or range images. Note that it

will generally include only the front surfaces of objects seen from the vantage point of the camera.
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is known about existing objects. This approach was adopted by Hall et al. (1982)

and was found to be viable, at least for certain quite simple objects such as cups.

Shirai (1987) has taken the approach even further so that a whole range of objects

can be found and identified in quite complex indoor scenes.

We next consider what we are trying to achieve regarding recognition. First,

can recognition be carried out directly on the mapped out 3-D surfaces, just as it

could for the 2-D images of earlier chapters? Second, if we can bypass the 3-D

modeling process, and still recognize objects, might it not be possible to save

even more computation and omit the stage of mapping out 3-D surfaces, instead

identifying 3-D objects directly in 2-D images? It might even be possible to locate

3-D objects from a single 2-D image.

Consider the first of these problems. When we studied 2-D recognition, many

instances were found where the HT approach was of great help. It turned out to

give trouble in more complex cases, particularly when attempts were made to

find objects where there were more than two or at most three degrees of freedom.

Here, however, we have situations where objects normally have six degrees of

freedom—three degrees of freedom for translation and another three for rotation.

This doubling of the number of free parameters on going from 2-D to 3-D makes

the situation far worse, since the search space is proportional in size not to the

number of degrees of freedom, but to its exponent: e.g., if each degree of freedom

in translation or rotation can have 256 values, the number of possible locations in

parameter space changes from 2563 in 2-D to 2566 in 3-D. This will be seen to

have a very profound effect on object location schemes and tends to make the HT

technique difficult to implement. In Section 15.10, we study an interesting

approach to the 3-D recognition problem, which uses a subtle combination of 2-D

and 3-D techniques.

15.10 HORAUD’S JUNCTION ORIENTATION TECHNIQUE4

Horaud’s (1987) technique is special in that it uses as its starting point 2-D

images of 3-D scenes and “backprojects” them into the scene, with the aim of

making interpretations in 3-D rather than 2-D frames of reference. This has the

initial effect of increasing mathematical complexity, although in the end useful,

more accurate results emerge.

Initially the boundaries of planar surfaces on objects are backprojected. Each

boundary line is thus transformed into an “interpretation plane” defined by the

center of the camera projection system and the boundary line in the image plane:

clearly, the interpretation plane must contain the line that originally projected into

the boundary line in the image. Similarly, angles between boundary lines in the

image are backprojected into two interpretation planes, which must contain the

original two object lines. Finally, junctions between three boundary lines are

4This and related techniques are sometimes referred to as “shape from angle.”
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backprojected into three interpretation planes which must contain a corner in the

space map (Fig. 15.14). The paper focusses on the backprojection of junctions

and shows how measurements of the junction angles in the image relate to those

of the original corner; it also shows how the space orientation of the corner can

be computed. In fact, it is interesting that the orientation of an object in 3-D can

in general be deduced from the appearance of just one of its corners in a single

image. This is a powerful result and in principle permits objects to be recognized

and located from extremely sparse data.

To understand the method, the mathematics first needs to be set up with some

care. Assume that lines L1, L2, L3 meet at a junction in an object, and appear as

lines l1, l2, l3 in the image (Fig. 15.14). Take respective interpretation planes con-

taining the three lines and label them by unit vectors P1, P2, P3 along their nor-

mals, so that:

P1UL1 5 0 (15.21)

P2UL2 5 0 (15.22)

P3UL3 5 0 (15.23)

l3 l1
l2

P3

P2

P1

L2

S

F

L1
L′

3

θ

ψ
ϕ

L3

J

FIGURE 15.14

Geometry for backprojection from junctions: a junction of three lines in an image may be

backprojected into three planes, from which the orientation in space of the original corner

J may be deduced.
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In addition, take the space plane containing L1 and L2, and label it by a unit

vector S along its normal, so that:

S1UL1 5 0 (15.24)

S2UL2 5 0 (15.25)

Since L1 is perpendicular to S and P1, and L2 is perpendicular to S and P2, it

is found that:

L1 5 S3P1 (15.26)

L2 5 S3P2 (15.27)

Note that S is not in general perpendicular to P1 and P2, so L1 and L2 are not in

general unit vectors. Defining ϕ as the angle between L1 and L2, we now have:

L1UL2 5 L1L2cos ϕ (15.28)

which can be re-expressed in the form:

ðS3P1ÞUðS3P2Þ5 S3P1j j S3P2j jcos ϕ (15.29)

Next we need to consider the junction between L1, L2, L3. To proceed, it is

necessary to specify the relative orientations in space of the three lines. θ is the

angle between L1 and the projection L3
0
of L3 on plane S, while ψ is the angle

between L3
0
and L3 (Fig. 15.14). Thus, the structure of the junction J is described

completely by the three angles ϕ, θ, ψ. L3 can now be found in terms of other

quantities:

L3 5 S sin ψ1L1 cos θ cos ψ1 ðS3L1Þsin θ cos ψ (15.30)

Applying Eq. (15.23), we find:

SUP3 sin ψ1L1UP3 cos θ cos ψ1 ðS3L1ÞUP3sin θ cos ψ5 0 (15.31)

Substituting for L1 from Eq. (15.26), and simplifying, we finally obtain:

ðSUP3ÞjS3P1jsin ψ1 SUðP1 3P3Þcos θ cos ψ
1ðSUP1ÞðSUP3Þsin θ cos ψ5 ðP1UP3Þsin θ cos ψ

(15.32)

Equations (15.31) and (15.34) now exclude the unknown vectors L1, L2, L3

but they retain S, P1, P2, P3 and the three angles ϕ, θ, ψ. P1, P2, P3 are known

from the image geometry, and the angles ϕ, θ, ψ are presumed to be known from

the object geometry; in addition, only two components (α, β) of the unit vector S

are independent, so the two equations should be sufficient to determine the orien-

tation of the space plane S. Unfortunately, the two equations are highly nonlinear

and it is necessary to solve them numerically. Horaud (1987) achieved this by

re-expressing the formulas in the forms:

cos ϕ5 f ðα;βÞ (15.33)
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sin θ cos ψ5 g1ðα; βÞsin ψ1 g2ðα;βÞcos θ cos ψ
1 g3ðα;βÞsin θ cos ψ

(15.34)

For each image junction, P1, P2, P3 are known and it is possible to evaluate

f, g1, g2, g3. Then, assuming a particular interpretation of the junction, values

are assigned to ϕ, θ, ψ and curves giving the relation between α and β are plot-

ted for each equation. Possible orientations for the space plane S are then given

by positions in (α, β) space where the curves cross. Horaud showed that, in gen-

eral, 0, 1, or 2 solutions are possible. The case of no solutions corresponds to

trying to make an impossible match between a corner and an image junction

when totally the wrong angles ϕ, θ, ψ are assumed; one solution is the normal

situation; and two solutions arise in the interesting special case when ortho-

graphic or near-orthographic projection permits perceptual reversals—i.e., a

convex corner is interpreted as a concave corner or vice versa. In fact, under

orthographic projection the image data from a single corner are insufficient,

taken on their own, to give a unique interpretation. In this situation, even the

human visual system makes mistakes—as in the case of the well-known Necker

cube illusion (see Chapter 16). However, when such cases arise in practical

situations, it may be better to take the convex rather than the concave corner

interpretation as a working assumption, as it has slightly greater likelihood of

being correct.

Horaud has shown that such ambiguities are frequently resolved if the space

plane orientation is estimated simultaneously for all the junctions bordering the

object face in question, by plotting the α and β values for all such junctions on

the same α, β graph. For example, with a cube face on which there are three such

junctions, nine curves are coincident at the correct solution, and there are nine

points where only two curves cross, indicating false solutions. On the other hand,

if the same cube is viewed under conditions approximating very closely to ortho-

graphic projection, two solutions with nine coincident curves appear and the situa-

tion remains unresolved, as before.

Overall, this technique is important in showing that although lines and angles

individually lead to virtually unlimited numbers of possible interpretations of 3-D

scenes, junctions lead individually to at most two solutions and any remaining

ambiguity can normally be eliminated if junctions on the same face are consid-

ered together. As has been seen, the exception to this rule occurs when projection

is accurately orthographic, although this is a situation that can often be avoided in

practice.

So far we have considered only how a given hypothesis about the scene may

be tested: nothing has been said about how assignments of the angles ϕ, θ, ψ are

made to the observed junctions. Horaud’s paper discussed this aspect of the work

in some depth. In general, the approach is to use a depth-first search technique in

which a match is “grown” from the initial most promising junction assignment. In

fact, considerable preprocessing of sample data is carried out to find how to rank

image features for their utility during depth-first search interpretation. The idea is
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to order possible alternatives such as linear or circular arcs, convex or concave

junctions, and short or long lines. In this way, the tree search becomes more

planned and efficient at run time. Generally, the more frequently occurring types

of feature should be weighted down in favor of the rarer types of feature, for

greater search efficiency. In addition, remember that hypothesis generation is rela-

tively expensive in that it demands a stage of back-projection, as described above.

Ideally, this stage need be employed only once for each object (in the case that

only a single corner is, initially, considered). Subsequent stages of processing

then involve hypothesis verification in which other features of the object are pre-

dicted and their presences are sought in the image: if found they are used to refine

the existing match; if the match at any stage becomes worse, then the algorithm

backtracks and eliminates one or more features and proceeds with other ones.

This process is unavoidable, since more than one image feature may be present

near a predicted feature.

One of the factors that has been found to make the method converge quickly

is the use of grouped rather than individual features, since this tends to decrease

the combinatorial explosion in the size of the search. In the present context, this

means that attempts should be made to match first all junctions or angles border-

ing a given object face, and further that a face should be selected that has the

greatest number of matchable features around it.

In summary, this approach is successful since it backprojects from the image

and then uses geometrical constraints and heuristic assumptions for matching in

3-D space. It is suitable for matching objects that possess planar faces and straight

line boundaries, hence giving angle and junction features. However, extending the

backprojection technique to situations where object faces are curved and have

curved boundaries could be significantly more difficult.

15.11 AN IMPORTANT PARADIGM—LOCATION OF
INDUSTRIAL PARTS

In this section, we consider the location of a common class of industrial part: this

constitutes an important example that has to be solved in one way or another.

Here we go along with the Bolles and Horaud (1986) approach as it leads to sen-

sible solutions and embodies a number of useful didactic lessons. The method

starts with a depth map of the scene (obtained in this case using structured

lighting).

Figure 15.15 shows in simplified form the type of industrial part being sought

in the images. In typical scenes several of these parts may appear jumbled on a

worktable, with perhaps three or four being piled on top of each other in some

places. In such cases, it is vital that the matching scheme be highly robust if most

of the parts are to be found, since even when a part is unoccluded, it appears

against a highly cluttered and confusing background. However, the parts them-

selves have reasonably simple shapes and possess certain salient features. In the
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particular problem cited, each has a cylindrical base with a concentric cylindrical

head, and also a planar shelf is attached symmetrically to the base. To locate such

objects, it is natural to attempt to search for circular and straight dihedral edges.

In addition, because of the type of data being used, it is useful to search for

straight tangential edges, which appear where the sides of curved cylinders are

viewed obliquely.

In general, circular dihedral edges appear elliptical, and parameters for five of

the six degrees of freedom of the part can be determined by analyzing these

edges. The parameter that cannot be determined in this way corresponds to rota-

tion about the axis of symmetry of the cylinder.

Straight dihedral edges also permit five free parameters to be determined,

since location of one plane eliminates three degrees of freedom and location of an

adjacent plane eliminates a further two degrees of freedom. The parameter that

remains undetermined is that of linear motion along the direction of the edge.

However, there is also a further ambiguity in that the part may appear either way

around on the dihedral edge.

Straight tangential edges determine only four free parameters, since the part is

free to rotate about the axis of the cylinder and can also move along the tangential

edge. Note that these edges are the most difficult to locate accurately, since range

data are subject to greater levels of noise as surfaces curve away from the sensor.

All three of these types of edge are planar. They also provide useful additional

information that can help to identify where they are on a part. For example,

straight and curved dihedral edges both provide information on the size of the

T

S

C

FIGURE 15.15

The essential features of the industrial components located by the 3DPO system of Bolles

and Horaud (1986). S, C and T indicate respectively straight and circular dihedral edges

and straight tangential edges, all of which are searched for by the system.
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included angle, and the curved edges also give radius values. In fact, curved dihe-

dral edges provide significantly more parametric information about a part than

either of the other two types of edge, and therefore they are of most use to form

initial hypotheses about the pose (position and orientation) of a part. Having

found such an edge, it is necessary to try out various hypotheses about which

edge it is, e.g., by searching for other circular dihedral edges at specific relative

positions: this is a vital hypothesis verification step. Next, the problem of how to

determine the remaining free parameter is solved by searching for the linear

straight dihedral edge features from the planar shelf on the part.

At this stage hypothesis generation is complete and the part is essentially

found, but hypothesis verification is required (a) to confirm that the part is genuine

and not an accidental grouping of independent features in the image, (b) to refine

the pose estimate, and (c) to determine the “configuration” of the part, i.e., to what

extent it is buried under other parts (making it difficult for a robot to pick it up).

When the most accurate pose has been obtained, the overall degree of fit can be

considered and the hypothesis rejected if some relevant criterion is not met.

In common with other researchers (Faugeras and Hebert, 1983; Grimson and

Lozano-Perez, 1984), Bolles and Horaud took a depth-first tree search as the basic

matching strategy. Their scheme uses a minimum number of features to key into

the data, first generating hypotheses and then taking care to ensure verification

(note that Bolles and Cain (1982) had earlier used this technique in a 2-D part

location problem). This contrasts with much work (especially that based on the

HT) that makes hypotheses but does not check them. (Note that forming the initial

hypotheses is the difficult and computation intensive part of the work.

Researchers will therefore write about this aspect of their work and perhaps not

state the minor amount of computation that went into confirming that objects had

indeed been located. Note also that in much 2-D work, images can be significantly

simpler and the size of the peak in parameter space can be so large as to make

it virtually certain that an object has been located—thus rendering verification

unnecessary.)

15.12 CONCLUDING REMARKS
To the layman, 3-D vision is an obvious and automatic result of the fact that the

human visual system is binocular, and presumes both that binocular vision is

the only way to arrive at depth maps and that once they have been obtained the

subsequent recognition process is trivial. However, what this chapter has actually

demonstrated is that neither of these commonly held views is valid. First, there

are a good many ways of arriving at depth maps, and some of them are available

using monocular vision. Second, the complexity of the mathematical calculations

involved in locating objects and the amount of abstract reasoning involved in

obtaining robust solutions—plus the need to ensure that the latter are not
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ambiguous—are taxing even in simple cases, including those where the objects

have well-defined salient features.

Despite the diversity of methods covered in this chapter, there are certain

important themes: the use of “trigger” features, the value of combining features

into groups that are analyzed together, the need for working hypotheses to be

generated at an early stage, the use of depth-first heuristic search (combined

where appropriate with more rigorous breadth-first evaluation of the possible

interpretations), and the detailed verification of hypotheses. All these can be

taken as parts of current methodology; details, however, vary with the dataset.

More specifically, if a new type of industrial part is to be considered, some study

must be made of its most salient features: then this causes not only the feature

detection scheme to vary but also the heuristics of the search employed—and

also the mathematics of the hypothesis mechanism. The reader is referred to the

following chapter for further discussion of object recognition under perspective

projection.

While the previous two sections have concentrated on object recognition and

have perhaps tended to eschew the value of range measurements and depth maps,

it is possible that this might give a misleading impression of the situation. In fact,

there are many situations where recognition is largely irrelevant but where it is

mandatory to map out 3-D surfaces in great detail. Turbine blades, automobile

body parts, or even food products such as fruit may need to be measured accu-

rately in 3-D. In such cases, it is known in advance what object is in what posi-

tion, but some inspection or measurement function has to be carried out and a

diagnosis made. In such instances, the methods of structured lighting, stereopsis,

or photometric stereo come into their own and are highly effective methods.

Ultimately also, one might expect that a robot vision system will have to use all

the tricks of the human visual system if it is to be as adaptable and useful when

operating in an unconstrained environment rather than at a particular worktable.

This has been a preliminary chapter on 3-D vision, setting the scene for Parts

3 and 4. In particular, Chapter 16 will be devoted to a careful analysis of the

distinction between weak and full perspective projection and how this affects

the object recognition process; Chapter 17 will aim to show something of the

elegance and value of invariants in providing short cuts around some of the

complexities of full perspective projection; Chapter 18 will consider camera cal-

ibration and will also consider how recent research on interrelating multiple

views of a scene has allowed some of the tedium of camera calibration to be

by-passed; and Chapter 19 will introduce the topic of motion analysis in 3-D

scenes.

Conventional wisdom indicates that binocular vision is the key to understanding the 3-D
world. This chapter has shown that the correspondence problem makes the practice of
binocular vision tedious, while the solutions it provides are only depth maps and require
further intricate analysis before the 3-D world can fully be understood.
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15.13 BIBLIOGRAPHICAL AND HISTORICAL NOTES
As noted earlier in the chapter, the most obvious approach to 3-D perception is to

employ a binocular camera system. Burr and Chien (1977) and Arnold (1978)

showed how a correspondence could be set up between the two input images by

use of edges and edge segments. Forming a correspondence can involve consider-

able computation. Barnea and Silverman (1972) showed how this problem could

be alleviated by passing quickly over unfavorable matches. Likewise, Moravec

(1980) devised a coarse-to-fine matching procedure that arrives systematically at

an accurate correspondence between images. Marr and Poggio (1979) formulated

two constraints—those of uniqueness and continuity—that have to be satisfied in

choosing global correspondences: these constraints are important in leading to the

simplest available surface interpretation. Ito and Ishii (1986) found that there is

something to be gained from three-view stereo in offsetting ambiguity and the

effects of occlusions.

The structured lighting approach to 3-D vision was introduced independently

by Shirai (1972) and Agin and Binford (1973, 1976) in the form of a single plane

of light, while Will and Pennington (1971) developed the grid coding technique.

Nitzan et al. (1977) employed an alternative LIDAR (light detecting and ranging)

scheme for mapping objects in 3-D; here short light pulses were timed as they

traveled to the object surface and back.

Meanwhile, other workers were attempting monocular approaches to 3-D

vision. Some basic ideas underlying shape from shading date from as long ago as

1929, with Fesenkov’s investigations of the lunar surface: (see also van Digellen,

1951). However, the first shape-from-shading problem to be solved both theoreti-

cally and in an operating algorithm appears to have been that of Rindfleisch

(1966), also relating to lunar landscapes. Thereafter, Horn systematically tackled

the problem both theoretically and with computer investigations, starting with a

notable review (1975) and resulting in prominent papers (e.g., Horn, 1977;

Ikeuchi and Horn, 1981; Horn and Brooks, 1986), an important book (Horn,

1986) and an edited work (Horn and Brooks, 1989). Interesting papers by other

workers in this area include Blake et al. (1985), Bruckstein (1988), and Ferrie and

Levine (1989). Woodham (1978, 1980, 1981) must be credited with the photomet-

ric stereo idea. Finally, the vital contributions made by workers on computer gra-

phics in this area must not be forgotten—see e.g., Phong (1975) and Cook and

Torrance (1982).

The concept of shape-from-texture arose from the work of Gibson (1950) and

was developed by Bajcsy and Liebermann (1976), Stevens (1980), and notably by

Kender (1980), who carefully explored the underlying theoretical constraints.

The paper by Barrow and Tenenbaum (1981) provides a very readable review

of much of this earlier work. The year 1980 marked a turning point, when the

emphasis in 3-D vision shifted from mapping out surfaces to interpreting images

as sets of 3-D objects. Possibly, this segmentation task could not be tackled
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earlier because basic tools such as the HT were not sufficiently well developed.

The work of Koenderink and van Doorn (1979) and Chakravarty and Freeman

(1982) was probably also crucial in providing a framework for interpretation

schemes to be developed by using potential 3-D views of objects. The work of

Ballard and Sabbah (1983) provided an early breakthrough in segmentation of

real objects in 3-D and this was followed by vital further work by Faugeras and

Hebert (1983), Silberberg et al. (1984), Bolles and Horaud (1986), Horaud

(1987), Pollard et al. (1987), and many others.

Other interesting work includes that of Horaud et al. (1989) on solving the

perspective four-point problem (finding the position and orientation of the camera

relative to known points): for further references on this topic, see Section 16.6.

Although already a well worked-through topic, research on finding vanishing

points proceeded further in the 1990s (e.g., Lutton et al., 1994; Straforini et al.,

1993; Shufelt, 1999). Similarly, stereo correlation matching techniques were still

under development, to maintain robustness in real-time applications (Lane et al.,

1994).

Since 2000, work on stereo vision has continued unabated as a main-line topic

(e.g., Lee et al., 2002; Brown et al., 2003), but Horn’s approach to shape from

shading has been largely superseded. One new technique is the Green’s function

approach to shape from shading (Torreão, 2001, 2003), while local shape from

shading has been used to improve the photometric stereo technique (Sakarya and

Erkmen, 2003). Photometric stereo has itself been developed considerably further

in a new four-source technique capable of coping with highlights and shadows

(Barsky and Petrou, 2003). Another development is the application of shape from

shading to radar data—a translation that required significant new theory (Frankot

and Chellappa, 1990; Bors et al., 2003). Finally, a thoroughgoing new approach

to the whole study of 3-D vision and its dependence on the light field has been

initiated (Baker et al., 2003). This paper starts by comparing what can be learned

from (a) stereo vision and (b) a shape from silhouette approach (observing object

silhouettes from all directions in the given light field). An important conclusion is

that the shapes of Lambertian objects can be uniquely determined with n-camera

stereo, unless there are regions of constant intensity present. Indeed, constant

intensity is found always to lead to ambiguity.5 This paper is important not only

in giving a fresh view of the problems of 3-D vision in general, and shape from

shading in particular, but also in demonstrating certain open questions.

15.13.1 More Recent Developments
While the complexity of the image acquisition needed for photometric stereo

should perhaps have made it relevant only during the early stages of the subject,

the opposite now seems to be the case. First, Hernandez et al. (2011) indicate

5Essentially, this is because there may be a concavity whose light properties outside the concavity

hull will be indistinguishable from those of the hull itself (Laurentini, 1994).
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why this could be so: if a set of lights of different colors is arranged, there is no

need to switch them, as the different color channels can be handled indepen-

dently. However, this means that normally only three lights can be used, so the

Barsky and Petrou (2003) four-light technique cannot be employed, and this

makes it difficult to confirm the interpretations obtained using the (usual) mini-

mum number of three lights—an especially important factor when shadows occur.

Nevertheless, Hernandez et al. (2011) are able to use regularization methods that

cope with as few as two light sources. Wu and Tang (2010) employ the opposite

approach of using a dense image set and exploit the resulting data redundancy to

determine how well the observations fit a Lambertian model. An expectation

maximization approach is used to interpret the data in two stages, concentrating

first on surface normals and then on surface properties including orientation dis-

continuities. The approach is robust and produces good reconstruction results.

Goldman et al. (2010) note that most objects are composed of only a small num-

ber of fundamental materials: they therefore constrain pixel representations to at

most two such materials, and thereby recover not only the shape but also material

bidirectional reflectance distribution functions (BRDFs) and weight maps.

McGunnigle and Dong (2011) propose a photometric stereo method in which a

conventional four-light scheme is augmented with coaxial illumination. Their

investigations show that coaxial illumination makes photometric stereo more

robust to shadow and specularity.

Chen et al. (2011) devise a fast stereo matching algorithm that uses a global

graph-cuts framework, but which is as efficient as some local approaches. By

concentrating on region boundaries and cleverly limiting the number of disparity

candidates, the number of vertices in the constructed graph is significantly

reduced. As a result, promising disparities can readily be selected and partial

occlusions can be handled efficiently, thereby improving stereo matching speed.

15.14 PROBLEMS
1. Prove that all epipolar lines in one image plane pass through the point that is

the image of the projection point of the alternate image plane.

2. What is the physical significance of the straight line contour in gradient

space (see Fig. 15.9(b))?

3. Sketch a curve of the function cosm θ. Estimate what the value of m would

have to be for 90% of the R1 component to be reflected within 10� of the

direction for pure specular reflection.

4. An alien has three eyes. Does this permit it to perceive or estimate depth

more accurately than a human? What would be the best placement for a third

eye?

5. A cube is viewed in orthographic projection. Show that although the cube

is opaque, it is easy to compute the theoretical position of its centroid in
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the image. Show also that the orientation of the cube can be deduced by

considering the apparent areas of its faces. If the contrast between the faces

becomes so low that only a hexagonal outline is seen, show that ambigui-

ties will arise in our knowledge of the orientation of the cube. Are ambigui-

ties specific to cubes, or do they arise with other shapes? Why?

6. a. A feature at (X, Y, Z) appears at locations (x1, y1) and (x2, y2) in the two

images of a binocular imaging system. The image planes of both cameras

lie in the same plane, f is the focal length of both camera lenses, and b

is the separation of the optical axes of the lenses. Label Fig. 15.16

appropriately; by considering pairs of similar triangles, show that:

Z

f
5

X1 b=2

x1
5

X2 b=2

x2

b. Hence derive a formula that can be used to determine depth Z from the

observed disparity.

7. Give a full proof that the error with which the fractional depth Z in a scene

can be computed is (a) proportional to pixel size, (b) proportional to Z, and

(c) inversely proportional to the baseline b between the stereo cameras. What

other parameter appears in the final formula? Determine under what pair of

conditions two very tiny cameras fabricated by nanotechnological methods

could still perform viable depth measurement.

8. a. Draw a diagram that shows that the ordering of visible points is normally

the same in both images seen by a binocular vision system.

FIGURE 15.16

Geometry of a binocular imaging system.
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b. An object has a semi-transparent front surface through which an interior

feature F is just visible. Show that the ordering of the features in the two

views of the object may be sufficient to prove that F is inside, or perhaps

behind, the object.

9. a. State the conditions under which matt surfaces may properly be described

as “Lambertian.” Show that the normal at a point on a Lambertian sur-

face must lie on a cone of directions whose axis points to the point source

of illumination. Show that a minimum of three independent light sources

will be needed to identify the exact orientation of a matt surface. Why

might four light sources help to determine surface orientation for a sur-

face of unknown or non-ideal properties?

b. Compare the effectiveness of binocular vision and photometric stereo if it

is desired to obtain a depth map for each object in a scene. In each case,

consider the properties of the object surface and the distance from the

observer.

10. a. Compare the properties of matt surfaces with those that exhibit “normal”

specular reflection. Matt surfaces are sometimes described as

“Lambertian.” Describe how the brightness of the surface varies accord-

ing to the Lambertian model.

b. Show that for a given surface brightness, the orientation of any point on a

Lambertian surface must lie on a certain cone of orientations.

c. Three images of a surface are obtained on illuminating it in sequence by

three independent point light sources. Show with the aid of a diagram

how this can lead to unambiguous estimates of surface orientation.

Would surface orientation of any points on the surface not be estimated

by this method? Are there any constraints on the allowable positions of

the three light sources? Would it help if four independent point light

sources were used instead of three?

d. Discuss whether the surface map that is obtained by shape from shading

is identical to that obtained by stereo (binocular) vision. Are the two

approaches best applied in the same or different applications? To what

extent is the application of structured light able to give better or more

accurate information than these basic approaches?

e. Consider what further processing is required before 3-D objects can be

recognized by any of these approaches.
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CHAPTER

16 Tackling the Perspective
n-point Problem

It is possible to recognize 3-D objects from very few point features, even when

they are seen in a single view. In fact, the pose of the 3-D object can also be

ascertained from a single view. However, ambiguities of interpretation do arise

and this chapter discusses the disambiguation problem.

Look out for:

• the distinction between weak and full perspective projection.

• how the “perspective inversion” type of ambiguity arises under weak perspec-

tive projection.

• how more serious ambiguities arise under full perspective projection.

• how full perspective projection has the capability to provide more interpreta-

tive information than weak perspective projection.

• how coplanarity can impose quite strong constraints on 3-D data, which can

be sometimes helpful and at other times an impediment.

• how symmetry can help with 3-D image interpretation.

Note that while this chapter considers only one aspect of 3-D vision, it raises very

important issues that are relevant right through the subject of 3-D object recognition.

16.1 INTRODUCTION
This chapter follows on from the previous introductory chapter, and tackles a

problem of central importance in the analysis of images from 3-D scenes. It has

been kept separate and fairly short so as to focus carefully on relevant factors in

the analysis. First, we look at the phenomenon of perspective inversion, which

has already been alluded to several times in Chapter 15. Then we refine our ideas

on perspective, and proceed to consider the determination of object pose from
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salient features that are located in the images. It will be useful to consider how

many salient features are required for unambiguous determination of pose.

16.2 THE PHENOMENON OF PERSPECTIVE INVERSION
In this section, we study first the phenomenon of perspective inversion. This is

actually a rather well-known effect that appears in the following “Necker cube”

illusion. Consider a wire cube made from 12 pieces of wire welded together at

the corners. Looking at it from approximately the direction of one corner, it is dif-

ficult to tell which way round the cube is, i.e., which of the opposite corners of

the cube is the nearer (Fig. 16.1). Indeed, on looking at the cube for a time, one

gradually comes to feel one knows which way round it is, but then it suddenly

appears to reverse itself; then that perception remains for some time, until it too

reverses itself.1 This illusion reflects the fact that the brain is making various

hypotheses about the scene, and even making decisions based on incomplete evi-

dence about the situation (Gregory, 1971, 1972).

The wire cube illusion could perhaps be regarded as somewhat artificial. But

consider instead an aeroplane (Fig. 16.2(a)) that is seen in the distance (Fig. 16.2(b))

against a bright sky. The silhouetting of the object means that its surface details are

not visible. In that case interpretation requires that a hypothesis be made about the

scene, and it is possible to make the wrong one. Clearly (Fig. 16.2(c)), the aeroplane

could be at an angle α (as for P), although it could equally well be at an angle 2α
(as for Q). The two hypotheses about the orientation of the object are related by the

fact that the one can be obtained from the other by reflection in a plane R normal to

the viewing direction D.

Strictly, there is only an ambiguity in this case if the object is viewed under

orthographic or scaled orthographic projection.2 However, in the distance, per-

spective projection approximates to scaled orthographic projection, and it is often

difficult to detect the difference.3 If the aeroplane in Fig. 16.2 were quite near, it

would be obvious that one part of the silhouette was nearer, as the perspective

would distort it in a particular way. In general, perspective projection will break

down symmetries, so searching for symmetries that are known to be present in

the object should reveal which way around it is: however, if the object is in the

distance, as in Fig. 16.2(b), it will be virtually impossible to see the breakdown.

1In psychology, this shifting of attention is known as perceptual reversal, which is unfortunately

rather similar to the term perspective inversion, but is actually a much more general effect that

leads to a host of other types of optical illusion—see Gregory (1971) and the many illustrations

produced by M.C. Escher.
2Scaled orthographic projection is orthographic projection with the final image scaled in size by a

constant factor.
3In this case, the object is said to be viewed under weak perspective projection. For weak perspec-

tive, the depth ΔZ within the object has to be much less than its depth Z in the scene. On the other

hand, the perspective scaling factor can be different for each object and will depend on its depth in

the scene: so the perspective can validly be locally weak and globally normal.
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(a)
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FIGURE 16.2

Perspective inversion for an aeroplane. Here an aeroplane (a) is silhouetted against the sky

and appears as in (b). (c) shows the two planes P and Q in which the aeroplane could lie,

relative to the direction D of viewing: R is the reflection plane relating the planes P and Q.

FIGURE 16.1

The phenomenon of perspective inversion. This figure shows a wire cube viewed

approximately from the direction of one corner. The phenomenon of perspective inversion

makes it difficult to see which of the opposite corners of the cube is the nearer: in fact

there are two stable interpretations of the cube, either of which may be perceived at

any moment.
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Unfortunately, a short-term study of the motion of the aeroplane will not help

with interpretation in the case shown in Fig. 16.2(b). Eventually, however, the

aeroplane will appear to become smaller or larger, and this will give the addi-

tional information needed to resolve the issue.

16.3 AMBIGUITY OF POSE UNDER WEAK PERSPECTIVE
PROJECTION

It is instructive to examine to what extent the pose of an object can be deduced

under weak perspective projection. We can reduce the above problem to a sim-

plest case in which three points have to be located and identified. Any set of three

points is coplanar, and the common plane corresponds to that of the silhouette

shown in Fig. 16.2(a) (we assume here that the three points are not collinear, so

that they do in fact define a plane). The problem then is to match the correspond-

ing points on the idealized object (Fig. 16.2(a)) with those on the observed object

(Fig. 16.2(b)). It is not yet completely obvious that this is possible, or that the

solution is unique, even apart from the reflection operation noted earlier. It could

be that more than three points will be required—especially if the scale is

unknown—or it could be that there are several solutions, even if we ignore the

reflection ambiguity. It will be important to see whether it is possible to distin-

guish the three points in the observed image.

To understand the degree of difficulty, let us briefly consider full perspective

projection. In this case, any set of three noncollinear points can be mapped into

any other three. This means that it may not be possible to deduce much about the

original object just from this information: we will certainly not be able to deduce

which point maps to which other point. However, we shall see that the situation

is rather less ambiguous when viewing the object under weak perspective

projection.

Perhaps the simplest approach (due to Huang et al. as recently as 1995) is to

imagine a circle drawn through the original set of points P1, P2, P3 (Fig. 16.3(a)).

We then find the centroid C of the set of points and draw additional lines through

the points, all passing through C and meeting the circle in another three points

Q1, Q2, Q3 (Fig. 16.3(a)). Now in common with orthographic projection, scaled

orthographic projection maintains ratios of distances on the same straight line,

and weak perspective projection approximates to this. Thus, the distance ratio

PiC:CQi remains unchanged after projection. Thus, when we project the whole

figure, as in Fig. 16.3(b), we find that the circle has become an ellipse, although

all lines remain lines, and all linear distance ratios remain unchanged. The signifi-

cance of this is as follows. When the points P1
0, P20, P30 are observed in the image,

the centroid C0 can be computed, as can the positions of Q1
0, Q2

0, Q3
0. Thus, we

have six points from which to deduce the position and parameters of the ellipse (in

fact, five are sufficient). Once the ellipse is known, the orientation of its major axis

gives the axis of rotation of the object; while the ratio of the lengths of the minor to
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major axes immediately gives the value of cos α. (Notice how the ambiguity in the

sign of α comes up naturally in this calculation.) Finally, the length of the major

axis of the ellipse permits the depth of the object in the scene to be deduced.

We have now shown that observing three projected points permits a unique

ellipse to be computed passing through them, and when this is back-projected into

a circle, the axis of rotation of the object and the angle of rotation can be deduced,

but not the sign of the angle of rotation. There are two important comments to be

P3

Q2

Q1

P1

P2

Q3

C

P'3

Q'2

Q'1

P'1 P'2

Q'3

C'

(a) (b)

P3

P1

P2Q2

Q3

Q1

C

(c)

FIGURE 16.3

Determination of pose for three points viewed under weak perspective projection.

(a) shows three feature points P1, P2, P3 that lie on a known type of object. The circle

passing through P1, P2, P3 is drawn, and lines through the points and their centroid C

meet the circle in Q1, Q2, Q3. The ratios PiC:CQi are then deduced. (b) shows the three

points observed under weak perspective as P1
0, P2

0, P3
0, together with their centroid C0

and the three points Q1
0, Q2

0, Q3
0 located using the original distance ratios. An ellipse

drawn through the six points P1
0, P2

0, P3
0, Q1

0, Q2
0, Q3

0 can now be used to determine the

orientation of the plane in which P1, P2, P3 must lie, and also (from the major axis of the

ellipse) the distance of viewing. (c) shows how an erroneous interpretation of the three

points does not permit a circle to be drawn passing through P1, P2, P3, Q1, Q2, Q3 and

hence no ellipse can be found that passes through the observed and the derived points

P1
0, P2

0, P3
0, Q1

0, Q2
0, Q3

0.
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made about the above calculation. The first is that the three distance ratios must be

stored in memory, before interpretation of the observed scene can begin. The sec-

ond is that the order of the three points apparently has to be known before interpre-

tation can be undertaken: otherwise, we will have to perform six computations in

which all possible assignments of the distance ratios are tried; furthermore, it might

appear from the earlier introductory remarks that several solutions are possible.

While there are some instances in which feature points might be distinguishable,

there are many cases when they are not (especially in 3-D situations where corner

features might vary considerably when viewed from different positions). Thus, the

potential ambiguity is important. However, if we can try out each of the six cases,

little difficulty will generally arise. For, immediately we deduce the positions Q1
0,

Q2
0, Q3

0, we will find that it is not possible in general to fit the six resulting points

to an ellipse. The reason is easily seen on returning to the original circle. In that

case, if the wrong distance ratios are assigned, the Qi will clearly not lie on the cir-

cle, since the only values of the distance ratios for which the Qi do lie on the circle

are the correctly assigned ones (Fig. 16.3(c)). This means that although computa-

tion is wasted testing the incorrect assignments, there appears to be no risk of their

leading to ambiguous solutions. Nevertheless, there is one contingency under which

things could go wrong. Suppose the original set of points P1, P2, P3 forms an

almost perfect equilateral triangle. Then the distance ratios will be very similar,

and, taking numerical inaccuracies into account, it may not be clear which ellipse

provides the best and most likely fit. This mitigates against taking sets of feature

points that form approximately isosceles or equilateral triangles. However, in prac-

tice more than three coplanar points will generally be used to optimize the fit, mak-

ing fortuitous solutions rather unlikely.

Overall, it is fortunate that weak perspective projection requires such weak

conditions for the identification of unique (to within a reflection) solutions, espe-

cially as full perspective projection demands four points before a unique solution

can be found (see below). However, under weak perspective projection additional

points lead to greater accuracy but no reduction in the reflection ambiguity: this

is because the information content from weak perspective projection is impover-

ished in the lack of depth cues that could (at least in principle) resolve the ambi-

guity. To understand this lack of additional information from more than three

points under weak perspective projection, note that each additional feature point

in the same plane is predetermined once three points have been identified (here

we are assuming that the model object with the correct distance ratios can be

referred to).

These considerations indicate that we have two potential routes to unique loca-

tion of objects from limited numbers of feature points. The first is to resort to

use of noncoplanar points viewed still under weak perspective projection. The

second is to use full perspective projection to view coplanar or noncoplanar sets

of feature points. We shall see below that whichever of these options we take, a

unique solution demands that a minimum of four feature points be located on any

object.
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16.4 OBTAINING UNIQUE SOLUTIONS TO THE
POSE PROBLEM

The overall situation is summarized in Table 16.1. Looking first at the case of

weak perspective projection, the number of solutions only becomes finite for three

or more point features. Once three points have been employed, in the coplanar

case there is no further reduction in the number of solutions, since (as noted ear-

lier) the positions of any additional points can be deduced from the existing ones.

However, this does not apply when the additional points are noncoplanar since

they are able to provide just the right information to eliminate any ambiguity (see

Fig. 16.4). (Although this might appear to contradict what was said earlier about

perspective inversion, note that we are assuming here that the body is rigid and

that all its features are at known fixed points on it in three dimensions; hence this

particular ambiguity no longer applies, except for objects with special symmetries

that we shall ignore here—see Fig. 16.4(d).)

Considering next the case of full perspective projection, the number of solu-

tions again becomes finite only for three or more point features. The lack of infor-

mation provided by three point features means that four solutions are in principle

possible (see the example in Fig. 16.5 and the detailed explanation in

Section 16.4.1), but the number of solutions drops to one as soon as four coplanar

points are employed (the correct solution can be found by making cross checks

between subsets of three points, and eliminating inconsistent solutions); when the

Table 16.1 Ambiguities When Estimating Pose from Point Features

Arrangement of the Points n WPP FPP

Coplanar # 2 N N
3 2 4
4 2 1
5 2 1

$ 6 2 1
Noncoplanar # 2 N N

3 2 4
4 1 2
5 1 2

$ 6 1 1

This table summarizes the numbers of solutions that will be obtained when estimating the pose of
a rigid object from point features located in a single image. It is assumed that n point features are
detected and identified correctly and in the correct order. The columns WPP and FPP signify weak
perspective projection and full perspective projection, respectively. The upper half of the table applies
when all n points are coplanar; the lower half of the table applies when the n points are noncoplanar.
Note that when n# 3, the results strictly apply only in the coplanar case. However, the top two lines
in the lower half of the table are retained for easy comparison.
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points are noncoplanar, it is only when six or more points are employed that there

is sufficient information to unambiguously determine the pose: there is necessar-

ily no ambiguity with six or more points, as all eleven camera calibration para-

meters can be deduced from the twelve linear equations that then arise (see

Chapter 18). Correspondingly, it is deduced that five noncoplanar points will in

general be insufficient for all eleven parameters to be deduced, so there will still

be some ambiguity in this case.

Next, it should be questioned why the coplanar case is at first (n5 3) better4

under weak perspective projection and then (n. 3) better under full perspective

projection, while the noncoplanar case is always better, or as good, under weak

perspective projection. The reason must be that intrinsically full perspective pro-

jection provides more detailed information, but is frustrated by lack of data when

there are relatively few points: however, the exact stage at which the additional

(a)
(b)

(c) (d)

FIGURE 16.4

Determination of pose for four points viewed under weak perspective projection. (a) shows

an object containing four noncoplanar points, as seen under weak perspective projection.

(b) shows a side view of the object. If the first three points (connected by nonarrowed gray

lines) were viewed alone, perspective inversion would give rise to a second interpretation (c).

However, the fourth point gives additional information about the pose that permits only one

overall interpretation. This would not be the case for an object containing an additional

symmetry as in (d), since its reflection would be identical to the original view (not shown).

4In this context “better” means less ambiguous, and leading to fewer solutions.
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information becomes available is different in the coplanar and noncoplanar cases.

In this respect, it is important to note that when coplanar points are being

observed under weak perspective projection, there is never enough information to

eliminate the ambiguity.

It should be emphasized that the above discussion assumes that the correspon-

dences between object and image features are all known, i.e., n point features are

detected and identified correctly and in the correct order. If this is not so, the

number of possible solutions could increase substantially, considering the number

of possible permutations of quite small numbers of points. This makes it attractive

to use the minimum number of features for ascertaining the most probable match

(Horaud et al., 1989). Other workers have used heuristics to help reduce the num-

ber of possibilities. For example, Tan (1995) used a simple compactness measure

(see Section 9.7) to determine which is the most likely geometric solution:

extreme obliqueness is perhaps unlikely, and the most likely solution is taken to

be the one with highest compactness value. This idea follows on from the extremum

DA

B

A

C

D0

DC

DB

FIGURE 16.5

Ambiguity for three points viewed under full perspective projection. Under full perspective

projection, the camera sees three points A, B, C as three directions in space, and this can

lead to four-fold ambiguity in interpreting a known object. The figure shows the four

possible viewing directions and centers of projection of the camera (indicated by the

directions and tips of the bold arrows): in each case the image at each camera is

indicated by a small triangle. DA, DB, DC correspond approximately to views from the

general directions of A, B, C, respectively.
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principle of Brady and Yuille (1984), which states that the most probable solutions

are those nearest to extrema of relevant (e.g., rotation) parameters.5 In this context,

note that coplanar points viewed under weak or full perspective projection always

appear in the same cyclic order: this is not trivial to check given the possible distor-

tions of an object, although if a convex polygon can be drawn through the points,

the cyclic order around its boundary will not change on projection.6 However, for

noncoplanar points, the pattern of the perceived points can re-order itself almost ran-

domly: this means that a considerably greater number of permutations of the points

have to be considered for noncoplanar points than for coplanar points.

Finally, note that the above discussion has concentrated on the existence and

uniqueness of solutions to the pose problem. The stability of the solutions has not

so far been discussed. However, the concept of stability gives a totally different

dimension to the data presented in Table 16.1. In particular, noncoplanar points

tend to give more stable solutions to the pose problem. For example, if the plane

containing a set of coplanar points is viewed almost head-on (α� 0), there will be

very little information on the exact orientation of the plane, because the changes in

lateral displacement of the points will vary as cos α (see Section 16.2) and there

will be no linear term in the Taylor expansion of the orientation dependence.

16.4.1 Solution of the Three-Point Problem
Figure 16.5 showed how four solutions can arise when three point features are

viewed under full perspective projection. Here, we briefly explore this situation

by considering the relevant equations. Figure 16.5 shows that the camera sees the

points as three image points representing three directions in space. This means

that we can compute the angles α, β, γ between these three directions. If the dis-

tances between the three points A, B, C on the object are the known values DAB,

DBC, DCA, we can now apply the cosine rule in an attempt to determine the dis-

tances RA, RB, RC of the feature points from the center of projection:

D2
BC 5R2

B 1R2
C � 2RBRCcos α (16.1)

D2
CA 5R2

C 1R2
A � 2RCRAcos β (16.2)

D2
AB 5R2

A 1R2
B � 2RARBcos γ (16.3)

Eliminating any two of the variables RA, RB, RC yields an eighth degree equa-

tion in the other variable, indicating that eight solutions to the system of equations

could be available (Fischler and Bolles, 1981). However, the above cosine rule

equations contain only constants and second degree terms: hence, for every posi-

tive solution there is another solution that differs only by a sign change in all the

5Perhaps the simplest way of understanding this principle is obtained by considering a pendulum,

whose extreme positions are also its most probable. However, in this case the extremum occurs

when the angle α (see Fig. 16.1) is close to zero.
6The reason for this is that planar convexity is an invariant of projection.
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variables. These solutions correspond to inversion through the center of projection

and are hence unrealizable. Thus, there are at most four realizable solutions to the

system of equations. In fact, we can quickly demonstrate that there may some-

times be fewer than four solutions: since in some cases, for one or more of the

“flipped” positions shown in Fig. 16.5, one of the features could be on the nega-

tive side of the center of projection, and hence would be unrealizable.

Before leaving this topic, note that the homogeneity of Eqs. (16.1)�(16.3)

implies that observation of the angles α, β, γ permits the orientation of the object

to be estimated independently of any knowledge of its scale: in fact, estimation of

scale depends directly on estimation of range, and vice versa. Thus, knowledge of

just one range parameter (e.g., RA) will permit the scale of the object to be

deduced. Alternatively, knowledge of its area will permit the remaining para-

meters to be deduced. This concept provides a slight generalization of the main

results of Sections 16.2 and 16.3, which generally start with the assumption that

all the dimensions of the object are known.

16.4.2 Using Symmetric Trapezia for Estimating Pose
One more example will be of interest here. That is the case of four points arranged

at the corners of a symmetric trapezium (Tan, 1995). When viewed under weak

perspective projection, the mid-points of the parallel sides are easily measured, but

under full perspective projection midpoints do not remain midpoints, so the axis of

symmetry cannot be obtained in this way. However, producing the skewed sides to

meet at S0 and forming the intersection I0 of the diagonals permit the axis of sym-

metry to be located as the line I0S0 (Fig. 16.6). Thus, we now have not four points

but six to describe the perspective view of the trapezium. What is more important

is that the axis of symmetry has been located and this is known to be perpendicular

to the parallel sides of the trapezium. This is a great help in making the mathemat-

ics more tractable and in obtaining solutions quickly so that, e.g., object motion

can be tracked in real time. Again, this is a case where object orientation can be

deduced straightforwardly, even when the situation is one of strong perspective,

and even when the size of the object is unknown. This result is a generalization

from that of Haralick (1989) who noted that a single view of a rectangle of

unknown size is sufficient to determine its pose. In either case, the range of the

object can be found if its area is known, or its size can be deduced if a single

range value can be found from other data (see also Section 16.4.1).

16.5 CONCLUDING REMARKS
This chapter has aimed to cover certain aspects of 3-D vision that were not stud-

ied in depth in the previous chapter. In particular, it was worth investigating the

topic of perspective inversion in some detail and exploring how it was affected

by the method of projection. Orthographic projection, scaled orthographic
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projection, weak perspective projection, and full perspective projection were con-

sidered, and the numbers of object points that would lead to correct or ambigu-

ous interpretations were analyzed. It was found that scaled orthographic

projection and its approximation, weak perspective projection, led to straightfor-

ward interpretation when four or more noncoplanar points were considered,

A B

CD

A′

B′

C′

D′

I′

S′

(a)

(b)

FIGURE 16.6

Trapezium viewed under full perspective projection. (a) shows a symmetrical trapezium,

and (b) shows how it appears when viewed under full perspective projection. In spite

of the fact that midpoints do not project into midpoints under perspective projection,

the two points S0 and I0 on the symmetry axis can be located unambiguously as the

intersection of two nonparallel sides and two diagonals, respectively. This gives six points

(from which the two midpoints on the symmetry axis can be deduced if necessary),

which is sufficient to compute the pose of the object, albeit with a single ambiguity of

interpretation (see text).
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although the perspective inversion ambiguity remained when all the points were

coplanar. This latter ambiguity was resolved with four or more points viewed

under full perspective projection. However, in the noncoplanar case, some ambi-

guity remained until six points were being viewed. The key to understanding the

situation is the fact that full perspective projection makes the situation more

complex, although at the same time it provides more information, ultimately, to

resolve the ambiguity.

Additional problems were found to arise when the points being viewed are

indistinguishable, and then a good many solutions may have to be tried before a

minimally ambiguous result is obtained. With coplanar points fewer possibilities

arise and this leads to less computational complexity: the key to success here is

the natural ordering that can arise for points in a plane—e.g., when they form a

convex set that can be ordered uniquely around a bounding polygon. In this con-

text, the role that can be played by the extremum principle of Brady and Yuille

(1984) in reducing the number of solutions is significant (for further insight on

the topic, see Horaud and Brady, 1988).

It is of great relevance to devise methods for rapid interpretation in real-time

applications. To achieve this, it is important to work with a minimal set of points

and to obtain analytic solutions that move directly to solutions without computa-

tionally expensive iterative procedures: for example, Horaud et al. (1989) found

an analytic solution for the perspective four-point problem that works both in the

general noncoplanar case and in the planar case. Other low computation methods

are still being developed, as with pose determination for symmetrical trapezia

(Tan, 1995). It should also be noted that understanding is still advancing, as dem-

onstrated by Huang et al.’s (1995) neat geometrical solution to the pose determi-

nation problem for three points viewed under weak perspective projection.

This chapter has covered a specific 3-D recognition problem. Chapter 17 cov-

ers another—that of invariants, which provides speedy and convenient means of

by-passing the difficulties associated with full perspective projection. Chapter 18

aims to finalize the study of 3-D vision by showing how camera calibration can

be achieved or, to some extent, circumvented.

Perspective makes interpretation of images of 3-D scenes intrinsically difficult. However,
this chapter has demonstrated that “weak perspective” views of distant objects are much
simplified, so objects are commonly located using fewer features: for planar objects a pose
ambiguity remains, although it is eliminated under full perspective.

16.6 BIBLIOGRAPHICAL AND HISTORICAL NOTES
The development of solutions to the so-called perspective n-point (PnP) problem

(finding the pose of objects from n features under various forms of perspective)

has been proceeding for more than two decades, and is by no means complete.
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Fischler and Bolles summarized the situation as they saw it in 1981, and several

new algorithms were described by them. However, they did not discuss pose deter-

mination under weak perspective, and perhaps surprizingly, considering its reduced

complexity, this has subsequently been the subject of much research (e.g., Alter,

1994; Huang et al., 1995). Horaud et al. (1989) discussed the problem of finding

rapid solutions to the PnP problem by reducing n as far as possible: they also

obtained an analytic solution for the case n5 4 which should help considerably

with real-time implementations. Their solution is related to Horaud’s earlier

(1987) corner interpretation scheme—described in Section 15.10, while Haralick

et al. (1984) provided useful basic theory for matching wire frame objects.

In a later paper, Liu and Wong (1999) described an algorithm for pose estima-

tion from four corresponding points under FPP when the points are not coplanar.

Strictly, according to Table 16.1, this will lead to an ambiguity. However, Liu

and Wong made the point “that the possibility for the occurrence of multiple solu-

tions in the perspective 4-point problem is much smaller than that in the perspec-

tive 3-point problem,” so that “using a 4-point model is much more reliable than

using a 3-point model;” and they actually only claim “good results.” Also, much

of the emphasis of the paper is on errors and reliability. Hence, it seems that it is

the scope for making errors in the sense of misinterpreting the situation that is

significantly reduced. Added to this, Liu and Wong’s (1999) work involves track-

ing a known object within a somewhat restricted region of space: this must again

cut down the scope for error considerably. Hence it is not clear that their work

violates the relevant (FPP; noncoplanar; n5 4)7 entry in Table 16.1, rather than

merely making it unlikely that a real ambiguity will arise.

Between them, Faugeras (1993), Hartley and Zisserman (2000), Faugeras and

Luong (2001), and Forsyth and Ponce (2003) provide good coverage of the whole

area of 3-D vision; for an interesting viewpoint on the subject, with particular

emphasis on pose refinement, see Sullivan (1992). For further references on spe-

cific aspects of 3-D vision, see Sections 15.13, 17.13, and 18.16. (Section 19.10

gives references on motion, but also covers aspects of 3-D vision.)

16.6.1 More Recent Developments
Xu et al. (2008) present a new method for tackling the PnP problem. The linear

method for the case of four coplanar points is extended to find coarse solutions

for the general P3P problem. Once all the accurate solutions for the P3P prob-

lem have been found, the algorithm is applied to the general PnP problem.

Solution stability issues and possible ambiguities are investigated and experi-

ments are performed to verify the effectiveness of the proposed method.

Interestingly, the case of four coplanar points has to be divided into two mutu-

ally exclusive cases, in which one point lies, or does not lie, within the triangle

presented by the other three points. Lepetit et al. (2008) propose an O(n)

7See Fischler and Bolles (1981) for the original evidence for this particular ambiguity.
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noniterative solution to the PnP problem that is far faster and more accurate

than earlier methods and also more stable. The central idea is to express the 3-D

points as a weighted sum of four virtual control points and to solve this case in

terms of the coordinates. (The computational load of previous methods can be

as high as O(n5) or even O(n8).)

16.7 PROBLEMS
1. Draw up a complete table of pose ambiguities that arise for weak perspective

projection, for various numbers of object points identified in the image. Your

answer should cover both coplanar points and noncoplanar points, and should

make clear in each case how much ambiguity would remain in the limit of an

infinite number of object points being seen. Give justification for your results.

2. Distinguish between full perspective projection and weak perspective projec-

tion. Explain how each of these projections presents oblique views of the fol-

lowing real objects: (i) straight lines, (ii) several concurrent lines (i.e., lines

meeting in a single point), (iii) parallel lines, (iv) midpoints of lines, (v) tan-

gents to curves, (vi) circles whose centers are marked with a dot. Give justifi-

cation for your results.

3. Explain each of the following: (i) Why weak perspective projection leads to

an ambiguity in viewing an object such as that in Fig. 16.7(a). (ii) Why the

ambiguity doesn’t disappear for the case of Fig. 16.7(b). (iii) Why the ambigu-

ity does disappear in the case of Fig. 16.7(c), if the true nature of the object is

known. (iv) Why the ambiguity doesn’t occur in the case of Fig. 16.7(b)

viewed under full perspective projection. In the last case, illustrate your

answer by means of a sketch.

(a) (b) (c)

FIGURE 16.7

In this diagram the gray edges are construction lines, not parts of the objects. (a) and (b)

are completely planar objects.
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CHAPTER

17Invariants and Perspective

Invariants are important for achieving recognition in both 2-D and 3-D. The basic

idea is to identify any parameters that do not vary between different instances of

the same object. Unfortunately, perspective projection makes the issue far harder

in the general 3-D case. This chapter explores the problem and demonstrates a

number of useful techniques. At the same time it explores the problems of per-

spective projection, with some interesting outcomes.

Look out for:

• how a ratio of distances between features along the same straight line can act

as a convenient invariant under weak perspective projection.

• how a ratio of ratios (or “cross-ratio”) can act as a convenient invariant under

full perspective projection.

• how the cross-ratio type of invariant can rather cunningly be generalized to

cover many wider possibilities.

• how the cross-ratio type of invariant seems largely unable to provide invari-

ance outside any given plane.

• vanishing point detection and its relevance to image interpretation.

• use of invariance for initiating face recognition.

• how to optimize views of 2-D pictures to limit perspective distortions.

• problems involved in “stitching” photographs.

While this chapter considers only one aspect of 3-D vision, it is extremely

useful both in helping to cue into complex images (see particularly the egomotion

example in Fig. 17.4 and the facial analysis example in Section 17.10) and in tak-

ing shortcuts around the tedious analysis of 3-D geometry (see, e.g., Sections 17.8

and 17.9).

Computer and Machine Vision.
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17.1 INTRODUCTION
Pattern recognition is a complex task and, as stated in Chapter 1, involves the

twin processes of discrimination and generalization. Indeed, the latter process is

in many ways more important than the first—especially in the initial stages of

recognition—since there is so much redundant information in a typical image.

Thus, we need to find ways of helping to eliminate invalid matches. This is where

the study of invariants comes into its own.

An invariant is a property of an object or class of objects that does not

change with changes of viewpoint or object pose and which can therefore be

used to help distinguish it from other objects. The procedure is to search for

objects with a specific invariant, so that those which do not possess the invariant

can immediately be discarded from consideration. An invariant property can be

regarded as a necessary condition for an object to be in the chosen class,

although in principle only detailed subsequent analysis will confirm the presence

of that object in the chosen class. In addition, if an object is found to possess

the correct invariant, it will then be profitable to pursue the analysis further and

find its pose, size, or other relevant data. Ideally an invariant would uniquely

identify an object as being of a particular type or class. Thus, an invariant

should not merely be a property that leads to further hypotheses being made

about the object, but one that fully characterizes it. However, the difference is a

subtle one, more a matter of degree and purpose than an absolute criterion. We

shall see later in this chapter the extent of the difference by appealing to a num-

ber of specific cases.

Let us first consider an object being viewed from directly overhead at a known

distance by a camera whose optical axis is normal to the plane on which the

object is lying. We shall assume that the object is flat. Take two-point features on

the object, such as corners or small holes. If we measure the image distance

between these features, this acts as an invariant, in that:

1. it has a value independent of the translation and orientation parameters of the

object;

2. it will be unchanged for different objects of the same type; and

3. it will in general be different from the distance parameters of other objects

that might be on the object plane.

Thus, measurement of distance provides a certain lookup or indexing quality

that ideally identifies the object uniquely, although further analysis will be

required to fully locate it and ascertain its orientation. Hence, distance has all the

requirements of an invariant, although it could also be argued that it is only a fea-

ture that helps to classify objects. Clearly, we are here ignoring an important

factor—the effect of imprecision in measurement—due to spatial quantization (or

inadequate spatial resolution), noise, lens distortions, and so on; in addition, the

effects of partial occlusion or breakage are also being ignored. Most definitely,

there is a limit to what can be achieved with a single invariant measure, although
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in what follows we attempt to reveal what is possible and demonstrate the advan-

tages of employing an invariant-orientated approach.

The above ideas relating to distance as an invariant measure showed it to be use-

ful in suppressing the effects of translations and rotations of objects in 2-D. Hence,

it is of little direct value when considering translations and rotations in 3-D.

Furthermore, it is not even able to cope with scale variations of objects in 2-D.

Moving the camera closer to the object plane and refocussing totally change the sit-

uation, and all values of the distance invariant residing in the object indexing

table must be changed and the old values ignored. However, a little thought will

show that this last problem could be overcome. All we need to do is to take ratios

of distances. This requires a minimum of three point features to be identified in the

image and the inter-feature distances measured. If we call two of these distances d1
and d2, then the ratio d1/d2 will act as a scale-independent invariant, i.e., we will be

able to identify objects using a single indexing operation whatever their 2-D transla-

tion, orientation, or apparent size or scale. An alternative to this idea is to measure

the angle between pairs of distance vectors, cos21 (d1.d2/jd1jjd2j), which will again

be scale invariant.

Of course, this consideration has already been invoked in our earlier work on

shape analysis. If objects are subject only to 2-D translations and rotations but not

to changes of scale, they can be characterized by their perimeters or areas as well

as their normal linear dimensions; furthermore, parameters such as compactness

and aspect ratio, which employ dimensionless ratios of image measurements,

have been acknowledged in Chapter 9 to overcome the size/scale problem.

Nevertheless, the main motivation for using invariants is to obtain mathemati-

cal measures of configurations of object features that are carefully designed to be

independent of the viewpoint or coordinate system used, and indeed to not require

specific setup or calibration of the image acquisition system. However, it must be

emphasized that camera distortions are assumed to be absent or to have been

compensated for by suitable post-camera transformations (see Chapter 18).

This chapter proceeds to develop the above ideas and later applies them to

vanishing point detection (Sections 17.7�17.9), face recognition (Section 17.10),

obtaining optimal views of 2-D pictures, and the “stitching” of digital photo-

graphs (Section 17.11). Interestingly, with the small intellectual outlay of the ini-

tial sections, these applications emerge with very little additional effort

demonstrating the value of the basic theory presented here.

17.2 CROSS-RATIOS: THE “RATIO OF RATIOS” CONCEPT
It would be most useful if we could extend the above ideas to permit indexing for

general transformations in 3-D. Indeed, an obvious question is whether finding

ratios of ratios of distances will provide suitable invariants and lead to such a gen-

eralization. The answer is that ratios of ratios do provide useful further invariants,
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although going further than this leads to considerable complication, and there are

restrictions on what can be achieved with limited computation. In addition, noise

ultimately becomes a limiting factor, since so many parameters become involved

in the computation of complex invariants that the method ultimately loses steam

(it becomes just one of many ways of raising hypotheses and therefore has to

compete with other approaches in a manner appropriate to the particular problem

application being studied).

We now consider the ratio of ratios approach. Initially, we only examine a set

of four collinear points on an object. Figure 17.1 shows such a set of four points

(P1, P2, P3, P4) and a transformation of them (Q1, Q2, Q3, Q4) such as that pro-

duced by an imaging system with optical center C (c, d). Choice of a suitable pair

of oblique axes permits the coordinates of the points in the separate sets to be

expressed respectively as:

ðx1; 0Þ; ðx2; 0Þ; ðx3; 0Þ; ðx4; 0Þ
ð0; y1Þ; ð0; y2Þ; ð0; y3Þ; ð0; y4Þ

Taking points Pi, Qi, we can write the ratio CQi:PQi both as c/(2xi) and as

(d2 yi)/yi. Hence:

c

xi
1

d

yi
5 1 (17.1)

which must be valid for all i. Subtraction of the ith and jth relations now gives:

cðxj 2 xiÞ
xixj

5
2dðyj 2 yiÞ

yiyj
(17.2)

y

x
0

Q4
Q3

C

Q2

Q1

P1 P2 P3 P4

FIGURE 17.1

Perspective transformation of four collinear points. This figure shows four collinear points

(P1, P2, P3, P4) and a transformation of them (Q1, Q2, Q3, Q4) similar to that produced by

an imaging system with optical center C. Such a transformation is called a perspective

transformation.
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Forming a ratio between two such relations will now eliminate the unknowns

c and d. For example, we will have:

x3ðx2 2 x1Þ
x2ðx3 2 x1Þ

5
y3ðy2 2 y1Þ
y2ðy3 2 y1Þ

(17.3)

However, the result still contains factors such as x3/x2 that depend on absolute

position. Hence, it is necessary to form a suitable ratio of such results, which can-

cels out the effects of absolute positions:

ðx2 2 x4Þ=ðx3 2 x4Þ
ðx2 2 x1Þ=ðx3 2 x1Þ

5
ðy2 2 y4Þ=ðy3 2 y4Þ
ðy2 2 y1Þ=ðy3 2 y1Þ

(17.4)

Thus, our original intuition that a ratio of ratios type of invariant might exist

that would cancel out the effects of a perspective transformation is correct. In par-

ticular, four collinear points viewed from any perspective viewpoint yield the

same value of the cross-ratio, defined as above. The value of the cross-ratio of the

four points is written:

CðP1; P2; P3;P4Þ5 ðx3 2 x1Þðx2 2 x4Þ
ðx2 2 x1Þðx3 2 x4Þ

(17.5)

For clarity, we shall write this particular cross-ratio as κ in what follows. Note

that there are 4!5 24 possible ways in which 4 collinear points can be ordered on

a straight line, and hence there could be 24 cross-ratios. However, they are not all

distinct, and in fact there are only six different values. To verify this we start by

interchanging pairs of points:

CðP2;P1;P3;P4Þ5
ðx3 2 x2Þðx1 2 x4Þ
ðx1 2 x2Þðx3 2 x4Þ

5 12κ (17.6)

CðP1;P3;P2;P4Þ5 ðx2 2 x1Þðx3 2 x4Þ
ðx3 2 x1Þðx2 2 x4Þ

5
1

κ
(17.7)

CðP1;P2;P4;P3Þ5
ðx4 2 x1Þðx2 2 x3Þ
ðx2 2 x1Þðx4 2 x3Þ

5 12κ (17.8)

CðP4;P2;P3;P1Þ5
ðx3 2 x4Þðx2 2 x1Þ
ðx2 2 x4Þðx3 2 x1Þ

5
1

κ
(17.9)

CðP3;P2;P1;P4Þ5 ðx1 2 x3Þðx2 2 x4Þ
ðx2 2 x3Þðx1 2 x4Þ

5
κ

κ2 1
(17.10)

CðP1;P4;P3;P2Þ5
ðx3 2 x1Þðx4 2 x2Þ
ðx4 2 x1Þðx3 2 x2Þ

5
κ

κ2 1
(17.11)

These cases provide the main possibilities, but of course interchanging more

points will yield a limited number of further values—in particular:

CðP3; P1; P2;P4Þ5 12CðP1;P3; P2; P4Þ5 12
1

κ
5

κ2 1

κ
(17.12)
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CðP2;P3;P1;P4Þ5
1

CðP2;P1;P3;P4Þ
5

1

12κ
(17.13)

This covers all six cases, and a little thought (based on trying further inter-

changes of points) will show there can be no others (we can only repeat κ, 12κ,
κ/(κ2 1), and their inverses). Of particular interest is the fact that numbering the

points in reverse (which would correspond to viewing the line from the other

side) leaves the cross-ratio unchanged. Nevertheless, it is inconvenient that the

same invariant has six different manifestations, as this implies that six different

index values have to be looked up before the class of an object can be ascer-

tained. On the other hand, if points are labeled in order along the line rather than

randomly, it should generally be possible to circumvent this situation.

So far we have been able to produce only one projective invariant, and this

corresponds to the rather simple case of four collinear points. The usefulness of

this measure is augmented considerably when it is noted that four collinear points,

taken in conjunction with another point, define a pencil1 of concurrent coplanar

lines passing through the latter point. Clearly, we can assign a unique cross-ratio

to this pencil of lines, equal to the cross-ratio of the collinear points on any line

passing through them. We can clarify the situation by considering the angles

between the various lines (Fig. 17.2). Applying the sine rule four times to deter-

mine the four distances in the cross-ratio C(P1, P2, P3, P4) gives:

x3 2 x1

sinα13

5
OP1

sinβ3

(17.14)

x2 2 x4

sinα24

5
OP4

sinβ2

(17.15)

x2 2 x1

sinα12

5
OP1

sinβ2

(17.16)

x3 2 x4

sinα34

5
OP4

sinβ3

(17.17)

Substituting in the cross-ratio formula (Eq. (17.5)) and canceling the factors

OP1, OP4, sin β2, and sin β3 now give:

CðP1; P2;P3;P4Þ5
sinα13 sinα24

sinα12 sinα34

(17.18)

Thus, the cross-ratio depends only on the angles of the pencil of lines. It is

interesting that appropriate juxtaposition of the sines of the angles gives the final

1It is a common nomenclature of projective geometry to call a set of concurrent lines a pencil (e.g.,

Semple and Kneebone, 1952).
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formula for invariance under perspective projection: using the angles themselves

would not give the desired degree of mathematical invariance. Indeed, we can

immediately see one reason for this: inversion of the direction of any line must

leave the situation unchanged, so the formula must be tolerant to adding π to

each of the two angles linking the line; this could not be achieved if the angles

appeared without suitable trigonometric functions.

We can extend this concept to four concurrent planes since the concurrent

lines can be projected into four concurrent planes once a separate axis for the

concurrency has been defined. As there are infinitely many such axes, there

are infinitely many ways in which sets of planes can be chosen. Thus, the original

simple result on collinear points can be extended to a much more general case.

Finally, note that we started by trying to generalize the case of four

collinear points, but what we achieved was first to find a dual situation in which

points become lines also described by a cross-ratio, and then to find an extension

in which planes are described by a cross-ratio. We now return to the case of four

collinear points and see how we can extend it in other ways.

17.3 INVARIANTS FOR NONCOLLINEAR POINTS
First, imagine that not all the points are collinear: specifically, let us assume that

one point is not in the line of the other three. If this is the case, there is not

O

P1

α12

P2

α13

P3

α24

P4

α34

β2

β3

FIGURE 17.2

Geometry for calculation of the cross-ratio of a pencil of lines. The figure shows the

geometry required to calculate the cross-ratio of a pencil of lines in terms of the angles

between them.
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enough information to calculate a cross-ratio. However, if a further coplanar point

is available, we can draw an imaginary line between the noncollinear points to

intersect their common line in a unique point, which will then permit a cross-ratio

to be computed (Fig. 17.3(a)). Nevertheless, this is some way from a general

solution to the characterization of a set of noncollinear points. We might inquire

how many point features in general position2 on a plane will be required to

calculate an invariant. In fact, the answer is five, since the fact that we can form

a cross-ratio from the angles between four lines immediately means that

forming a pencil of four lines from five points defines a cross-ratio invariant

(Fig. 17.3(b)).

(a) (b)

(c)

FIGURE 17.3

Calculation of invariants for a set of noncollinear points. Part (a) shows how the addition of

a fifth point to a set of four points, one of which is not collinear with the rest, permits the

cross-ratio to be calculated. Part (b) shows how the calculation can be extended to any

set of noncollinear points; also shown is an additional (gray) point that a single cross-ratio

fails to distinguish from other points on the same line. Part (c) shows how any failure to

identify a point uniquely can be overcome by calculating the cross-ratio of a second pencil

generated from the five original points.

2Points on a plane that are chosen at random, and that are not collinear or in any special pattern

such as a regular polygon, are described as being in general position.
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While the value of this cross-ratio provides a necessary condition for a match

between two sets of five general coplanar points, it could be a fortuitous match

because the condition depends only on the relative directions between the various

points and the reference point, i.e., any of the nonreference points is only defined

to the extent that it lies on a given line. Clearly, two cross-ratios formed by taking

two reference points will define the directions of all the remaining points uniquely

(Fig. 17.3(c)).

We can now summarize the general result, which stipulates that for five gen-

eral coplanar points, no three being collinear, two different cross-ratios are

required to characterize the shape. These cross-ratios correspond to taking in turn

two separate points and producing pencils of lines passing through them and (in

each case) the remaining four points (Fig. 17.3(c)). While it might appear that at

least five cross-ratios result from this sort of procedure, there are only two func-

tionally independent cross-ratios—essentially because the position of any point is

defined once its direction relative to two other points is known.

Next, we consider the problem of finding the ground plane in practical situa-

tions—especially that of egomotion including vehicle guidance (Fig. 17.4). Here

a set of four collinear points can be observed from one frame to the next. If they

are on a single plane, then the cross-ratio will remain constant, but if one is ele-

vated above the ground plane (as, e.g., a bridge or another vehicle), then the

cross-ratio will vary over time. Taking a larger number of points, it should

clearly be possible to deduce which are on the ground plane and which are not,

by using a process of elimination; however, the amount of noise and clutter will

determine the computational complexity of the task. Note that this is possible

without any calibration of the camera, this being perhaps the main value of con-

centrating attention on projective invariants. Note also that there is a potential

problem regarding irrelevant planes, such as the vertical faces of buildings. The

cross-ratio test is so resistant to viewpoint and pose that it merely ascertains

whether the points being tested are coplanar. It is only by using a sufficiently

large number of independent sets of points that one plane can be discriminated

from another (for simplicity we ignore here any subsequent stages of pose analy-

sis that might be carried out).

17.3.1 Further Remarks About the Five-Point Configuration
The above description outlines the principles for solving the five-point invariance

problem, but does not show clearly the conditions under which it is guaranteed to

operate properly. In fact, these are straightforward to demonstrate. First, the

cross-ratio can be expressed in terms of the sines of the angles α13, α24, α12, α34.

Next, these can be re-expressed in terms of areas of relevant triangles, using equa-

tions typified by the following to express area:

Δ513 5
1

2
a51a53sinα13 (17.19)
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Finally, the area can be re-expressed in terms of the point coordinates in the

following way:

Δ513 5
1

2

p5x p1x p3x
p5y p1y p3y
p5z p1z p3z

������
������5

1

2
jp5 p1 p3j (17.20)

(a)

(b)

(c)

(d)

FIGURE 17.4

Use of cross-ratio for egomotion guidance. Part (a) shows how the cross-ratio for a set of

four collinear points can be tracked to confirm that the points are collinear. This suggests

that they lie on the ground plane. Part (b) shows a case where the cross-ratio will not be

constant. Part (c) shows a case where the cross-ratio is constant, although they actually

lie on a plane that is not the ground plane. Part (d) shows a case where all four points lie

on planes, yet the cross-ratio will not be constant.
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Using this notation, a suitable final pair of cross-ratio invariants for the con-

figuration of five points may be written:

Ca 5
Δ513Δ524

Δ512Δ534

(17.21)

Cb 5
Δ124Δ135

Δ123Δ145

(17.22)

While three more such equations may be written down, these will not be inde-

pendent of the other two and will not carry any further useful information.

Note that a determinant will go to zero or infinity if the three points it relates

to are collinear, corresponding to the situation when the area of the triangle is

zero. Clearly, when this happens, any cross-ratio containing this determinant will

no longer be able to pass on any useful information. On the other hand, there is

actually no further information to pass on, as this now constitutes a special case

that is describable by a single cross-ratio: we have reverted to the situation shown

in Fig. 17.3(a).

Finally, Fig. 17.3 misses out one further interesting case: the situation of two

points and two lines (Fig. 17.5). Constructing a line joining the two points and

producing it until it meets the two lines, we then have four points on a single

line; thus, the configuration is characterized by a single cross-ratio. Note also that

the two lines can be extended until they intersect, and further lines can be con-

structed from the intersection to meet the two points. This gives a pencil of lines

characterized by a single cross-ratio (Fig. 17.5(c)); the latter must have the same

value as that computed for the four collinear points.

17.4 INVARIANTS FOR POINTS ON CONICS
These discussions clearly help to build up an understanding of how geometric

invariants can be designed to cope with sets of points, lines, and planes in 3-D.

Significantly more difficult is the case of curved lines and surfaces, although

much headway has now been made with regard to the understanding of conics

and certain other surfaces (see Mundy and Zisserman, 1992a). It will not be possi-

ble to examine all such cases in depth here. However, it will be useful to consider

conic sections and particularly ellipses in more detail.

First, we consider Chasles’ theorem, which dates from the 19th century. (The

history of projective geometry is quite rich and was initially carried out totally

independently of the requirements of machine vision.) Suppose we have four fixed

coplanar points F1, F2, F3, F4 on a conic section curve and one variable point P in

the same plane (Fig. 17.6). Then the four lines joining P to the fixed points form a

44917.4 Invariants for Points on Conics



(a) (b)

(c)

FIGURE 17.5

Cross-ratio for two lines and two points. (a) Basic configuration. (b) How the line joining

the two points introduces four collinear points to which a cross-ratio may be applied.

(c) How joining the two points to the junction of the two lines creates a pencil of four lines

to which a cross-ratio may be applied.

P

F2

F1

F3

F4

FIGURE 17.6

Definition of a conic using a cross-ratio. Here P is constrained to move so that the

cross-ratio of the pencil from P to F1, F2, F3, F4 remains constant. By Chasles’ theorem,

P traces out a conic curve.
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pencil whose cross-ratio will in general vary with the position of P. Chasles’ theo-

rem states that if P now moves so as to keep the cross-ratio constant, then P will

trace out a conic section. This clearly provides a means of checking whether a set

of points lies on a planar curve such as an ellipse. Note the close analogy with the

problem of ground plane detection already mentioned. Again the amount of compu-

tation could become excessive if there were a lot of noise or clutter in the image.

When the image contains N boundary features that need to be checked out, the prob-

lem complexity is intrinsically O(N5), since there are O(N4) ways of selecting the

first four points, and for each such selection, N�4 points must be examined to deter-

mine whether they lie on the same conic. However, choice of suitable heuristics

would be expected to limit the computation. Note the problem of ensuring that the

first four points are tested in the same order around the ellipse, which is liable to be

tedious (a) for point features and (b) for disconnected boundary features.

While Chasles’ theorem gives an excellent opportunity to use invariants to

locate conics in images, it is not at all discriminatory in this. The theorem applies

to a general conic, hence it does not immediately permit circles, ellipses, parabo-

las, or hyperbolas to be distinguished, a fact that would sometimes be a distinct

disadvantage. This is an example of a more general problem in pattern recogni-

tion system design—of deciding exactly how and in what sequence one object

should be differentiated from another. Because of the space constraint, this point

is not considered further here.

Finally, we state without proof that conic section curves can all be trans-

formed under perspective projection to other types of conic section, and thus into

ellipses; subsequently they can be transformed into circles. Thus, any conic sec-

tion curve can be transformed projectively into a circle, while the inverse trans-

formation can transform it back again (Mundy and Zisserman, 1992b). This

means that simple properties of the circle can frequently be generalized to ellipses

or other conic sections. In this context, points to bear in mind are that, after per-

spective projection, lines intersecting curves do so in the same number of points,

and thus tangents transform into tangents and chords into chords, three-point con-

tact (in the case of non-conic curves) remains three-point contact, and so on.

Returning to Chasles’ theorem, a simple proof in the case of circles will automati-

cally generalize to more complex conic section curves.

In response to this assertion, we can in fact derive Chasles’ theorem almost

trivially for a circle. Appealing to Fig. 17.7, we see that the angles ϕ1, ϕ2, ϕ3 are

equal to the respective angles γ1, γ2, γ3 (angles in the same segment of a circle).

Thus, the pencils PF1, PF2, PF3, PF4 and QF1, QF2, QF3, QF4 have equal angles,

their relative directions being superposable. This means that they will have the

same cross-ratio, defined by Eq. (17.18). Hence, the cross-ratio of the pencil will

remain constant as P traces out the circle. As stated above, the property will auto-

matically generalize to any other conic.
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17.5 DIFFERENTIAL AND SEMI-DIFFERENTIAL INVARIANTS
There have been many attempts to characterize continuous curves by invariants.

The obvious way forward is to represent points on a curve in terms of local curve

derivatives. If a sufficient number of these can be obtained, invariants can be

formed and computed. However, the noise (including digitization noise) that

always exists on curves limits the accuracy of higher derivatives, and as a result

it is difficult to form useful invariants in this way. In general, the second deriva-

tive of the curve function is the highest that can normally be used, and this corre-

sponds to curvature, which is only an invariant for Euclidean transformations

(translation and rotation without change of scale).

As a result of this problem, semi-differential invariants are often used instead

of differential invariants. They involve considering only a few “distinguished”

points on curves, and using these to generate invariants. The most common distin-

guished points to be used in this way are (Fig. 17.8) the following:

1. Points of inflection

2. Sharp corners on curves

3. Cusps on curves (corners where the bounding tangents are coincident)

4. Bitangent points (points of contact of a line that touches the curve twice)

5. Other points whose locations can be derived from existing distinguished points

by geometric constructions

F1

F2

F4

P

Q

F3

γ3

γ2
γ1

ϕ1

ϕ2ϕ3

FIGURE 17.7

Proof of Chasles’ theorem. This diagram shows that the four points F1, F2, F3, F4 subtend

the same angles at P as they do at the fixed point Q. Thus, the cross-ratio is the same for

all points on the circle. This means that Chasles’ theorem is valid for a circle.
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Tangent points are unlikely to be suitable, and hence are not included in this

list, as a smooth curve will have tangents along its entire length. This is because

they are characterized merely by two-point contact between a limiting chord and

the curve. However, a point of inflection represents a three-point contact, and this

means that it will be reasonably well localized, and its tangent will have a well-

defined direction. On the other hand, bitangent points will be even more accu-

rately represented, as the tangent direction will be accurately defined by two

well-separated points on the curve (Fig. 17.8): nevertheless bitangent points will

still incur some longitudinal error.

Bitangents can be of several sorts: in particular, they can contact the same

shape on the same side; they can also cross the body and contact it on both sides.

This latter case is more complex and is therefore sometimes discounted in

machine vision applications. Nevertheless, it provides a means of finding further

invariant reference points on an object. Note that this clearly happens directly, in

that the bitangent points are already distinguished points. It also happens indi-

rectly, as the bitangent may cross other reference lines, thereby defining further

distinguished points. Figure 17.9 shows several cases of direct and indirect distin-

guished points, the most accurate of which arise from bitangents, while slightly

less accurate ones arise from points of inflection.

Once enough distinguished points and reference lines between them have

been found, cross-ratio invariants may be obtained (a) from the incidence of dis-

tinguished points lying along suitable reference lines and (b) from pencils of

lines drawn from distinguished points to line crossings or to other distinguished

points.

I

I

I

B

B

J

FIGURE 17.8

Means for finding distinguished points on a curve. The two bitangents contact the curve

in a total of four bitangent points. Three points of inflection I provide another three

distinguished points. A cusp and a corner provide a further two distinguished points (the

latter also being a bitangent point). The line marked J contributes a further distinguished

point on the curve, as does one of the bitangents: these are marked as large dots rather

than as short lines.
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A remark is needed to confirm that points of inflection can act as suitable distin-

guished points that are invariant under perspective transformations. Starting from

the premise that perspective transformations preserve straight lines and points aris-

ing from crossings between curves and lines, we note that a chord that crosses a

curve three times will also cross it three times under perspective projection. This

will still apply even when the three crossing points merge into three-point contact.3

Hence, points of inflection are suitable distinguished points and are perspective-

invariant.

This treatment has only dealt with planar curves, and has not covered spatial

nonplanar curves. The latter is a significantly more difficult area, as concepts

such as bitangents and points of inflection have to be assigned new meaning in

this more general domain. It is a subject we shall not be able to broach here.

17.6 SYMMETRIC CROSS-RATIO FUNCTIONS
When applying a cross-ratio to a set of points on a line, it frequently happens that

the order of the points on the line is known. For example, this will almost cer-

tainly be the case if feature detection of an image is carried out in a forward raster

scan. Hence, the only confusion in the ordering will be the direction in which the

3Three-point contact is distinguishable from two-point contact in that the tangent crosses the curve

at the point of contact.

B

I

I

B

B

B

J J

FIGURE 17.9

Means for finding direct and indirect distinguished points for an object. The four lines

marked B are bitangents, which contribute twelve bitangent points: two of the bitangents

contact the object on opposite sides of its boundary. The two lines marked I arise from

points of inflection. The two lines marked J are joins of bitangent points. The nine large

dots are indirect distinguished points, which do not lie on the object boundary. Clearly, a

good many more indirect distinguished points could be generated, although not all would

have accurately defined locations.
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line has been traversed. However, the cross-ratio is independent of the end from

which the line is scanned, since C(P1, P2, P3, P4)5C(P4, P3, P2, P1). Nevertheless,

there are situations in which the ordering of the cross-ratio features will not be

known with certainty. This may occur for the situations shown in Figs. 17.3 and

17.5, where the features themselves do not all lie on a single line, where the fea-

tures are angles, or where the points lie on a conic whose equation is as yet

unknown. In such circumstances, it will be useful to have an invariant that takes in

all possible orders of the features.

To derive such an invariant, note first that if there is a confusion in the order-

ing of the points such that the value could be either κ or (12κ), then we could

apply the function f(κ)5κ(12κ), which has the property f(κ)5 f(12κ), and
this will solve the problem. Alternatively, if there is confusion between κ and

1/κ, then we could apply the function g(κ)5κ1 1/κ, which has the property

g(κ)5 g(1/κ), and again this will solve the problem.

However, if there is potential confusion between the values κ, (12κ), and
1/κ, the situation becomes more complicated. It is difficult to write down any

obvious function that satisfies the double condition h(κ)5 h(12κ)5 h(1/κ),
although we may have a soundly based intuition that it will involve symmetric

functions such as f(κ) and g(κ). In fact, the simplest answer seems to be:

jðκÞ5 ð12κ1κ2Þ3
κ2ð12κÞ2 (17.23)

which obeys the symmetry idea as it can be re-expressed in the two forms:

jðκÞ5 ½ð12κð12κÞ�3
½κð12κÞ�2 5

ðκ1 1=κ21Þ3
κ1 1=κ22

(17.24)

Fortunately, we need to go no further in our quest to obey the six conditions

required to recognize all six cross-ratio values κ, (12κ), 1/κ, 1/(12κ), (κ2 1)/κ,
κ/(κ2 1). The reason is that they are all deducible from each other by further

applications of the initial negation and inversion rules. (The ultimate reason for

this is that the operations to transform the function from one to another of the six

forms form a group of order six, which is generated from the negation and inver-

sion transforms.)

While this is a powerful result, it does not come without loss. The reason is

that there is now a sixfold ambiguity inherent in the solution, so that once we have

shown that the set of points satisfies the symmetric cross-ratio function, we still

have to make tests to determine which of the six possibilities is the correct one.

This is reflected by the complexity of the j-function, which contains a sixth degree

polynomial and for every value of j there are six possible values of κ (Fig. 17.10).

The situation can be described by saying that the function j(κ) is not “com-

plete,” in the sense that this function alone is insufficient to recognize the set of

features unambiguously. To underline this, observe that the original cross-ratio is

complete: once the value of κ is known, we can uniquely determine the position
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of one of the points from the other three points. This is obvious from the graph of

κ as a function of x (where x5 x34 gives the position of the fourth point),4 which

is a hyperbola:

κ5
x31x24

x21x34
5

x31ðx23 1 xÞ
x21x

5
x31x23

x21

1

x
1

1

x23

� �
(17.25)

17.7 VANISHING POINT DETECTION
In this section, we consider how vanishing points (VPs) can be detected. It is usual

to carry this out in two stages: first, we locate all the straight lines in the image;

next, we find which of the lines pass through common points. The latter being

interpreted as VPs. Finding the lines using the Hough transform should be straight-

forward, although texture edges will sometimes prevent lines from being located

accurately and consistently. Basically, locating the VPs requires a second Hough

transform in which whole lines are accumulated in parameter space, leading to

well-defined peaks (the VPs) where multiple lines overlap. In practice, the lines of

votes will have to be extended to cover all possible vanishing point locations. This

procedure is adequate when the VPs appear within the original image space, but it

often happens that they will be outside the original image (Fig. 17.11) and may

even be situated at infinity. This means that a normal image-like parameter space

cannot be used successfully, even if it is extended beyond the original image space.

Another problem is that for distant VPs, the peaks in parameter space will be

4In projective geometry, it is well known that there are three degrees of freedom on a line. The

positions of three points on a line are not predictable from other views of the three points, without

further information on the viewpoint.

y

0 x1

FIGURE 17.10

Symmetric cross-ratio function. This is the function defined by Eq. (17.23).
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spread out over a considerable distance, so detection sensitivity will be poor and

accuracy of location will be low.

Fortunately, Magee and Aggarwal (1984) found an improved representation

for locating VPs. They constructed a unit sphere G, called a Gaussian sphere,

around the center of projection of the camera, and used G instead of an extended

image plane as a parameter space. In this representation (Fig. 17.12), VPs appear

at finite distances even in cases where they would otherwise appear to be at infin-

ity. For this method to work, there has to be a one-to-one correspondence between

points in the two representations, and this is clearly valid (note that the back half

of the Gaussian sphere is not used). However, the Gaussian sphere representation

is not without problems: in particular, many irrelevant votes will be cast from

lines that are not parallel in real 3-D space (generally only a small subset of the

lines in the image will pass through VPs). To solve this problem, pairs of lines

are considered in turn, and their crossing points are only accumulated as votes if

the lines of each pair are judged likely to originate from parallel lines in 3-D

space (e.g., they should have compatible gradients in the image). This procedure

drastically limits both the number of votes recorded in parameter space and the

number of irrelevant peaks. Nevertheless, the overall cost is still substantial, being

proportional to the number of pairs of lines. Thus, if there are N lines, the number

of pairs is NC25
1/2 N(N2 1), so the result is O(N2).

The above procedure is important because it provides a highly reliable means

for performing the search for VPs and largely discriminating against isolated lines

V

FIGURE 17.11

Position of the vanishing point. In this figure, parallel lines on the arches appear to

converge to a vanishing point V outside the image. In general, vanishing points can lie at

any distance and may even be situated at infinity.
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and image clutter. Note that for a moving robot or other system, the correspon-

dences between the VPs seen in successive images will lead to considerably

greater certainty in the interpretation of each image.

17.8 MORE ON VANISHING POINTS
One advantage of the cross-ratio is that it can turn up in many situations and on

each occasion provide yet another neat result. A further example is when a road

or pavement has flagstones whose boundaries are well demarcated and easily

measurable. They can then be used to estimate the position of the VP on the

ground plane. Imagine viewing the flagstones obliquely from above, with the

camera or the eyes aligned horizontally (e.g., as for Fig. 23.12(a)). Then we have

the geometry of Fig. 17.13 where the points O, H1, H2 lie on the ground plane,

whereas O, V1, V2, V3 are in the image plane.5

V 

L 

V′ 

G 

C 

I 

FIGURE 17.12

Detection of vanishing points using the Gaussian sphere. Parallel lines in space lead to

converging lines in the image I. While the vanishing point V is here well above the image;

it is easily located by projecting the lines onto the Gaussian sphere G. As discussed in the

text, G is commonly used as a parameter space for accumulating vanishing point votes. C

is the center of projection of the camera lens.

5Note that slightly oblique measurement of the flagstones, along a line that is not parallel to the

sides of the flagstones, still permits the same cross-ratio value to be obtained, as the same angular

factor applies to all distances along the line.
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If we regard C as a center of projection, the cross-ratio formed from the points

O, V1, V2, V3 must have the same value as that formed from the points O, H1,

H2, and infinity in the horizontal direction. Supposing that OH1 and H1H2 have

known lengths a and b, equating the cross-ratio values gives:6

y1ðy3 2 y2Þ
y2ðy3 2 y1Þ

5
x1

x2
5

a

a1 b
(17.26)

This allows us to estimate y3:

ða1 bÞðy1y3 2 y1y2Þ5 ay2y3 2 ay2y1 (17.27)

‘ y3ðay1 1 by1 � ay2Þ5 ay1y2 1 by1y2 � ay1y2 (17.28)

‘ y3 5
by1y2

ay1 1 by1 2 ay2
(17.29)

If a5 b (as is likely to be the case for flagstones):

y3 5
y1y2

2y1 2 y2
(17.30)

6Note that, in the case of Fig. 17.13, the y values are measured from O rather than from V3.

y

x
ba

O

C VL

H2H1

V1

V2

V3

FIGURE 17.13

Geometry for finding the vanishing line from a known pair of spacings. C is the center of

projection. VL is the vanishing line direction, which is parallel to the ground plane OH1H2.

Although the camera plane OV1V2V3 is drawn perpendicular to the ground plane, this is

not necessary for successful operation of the algorithm (see text).
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Note that this proof does not actually assume that points V1, V2, V3 are verti-

cally above the origin, or that line OH1H2 is horizontal, just that these points lie

along two coplanar straight lines and that C is in the same plane. Also, note that

it is only the ratio of a to b, not their absolute values, that is relevant in this

calculation.

Having found y3, we have calculated the direction of the VP, whether or not

the ground plane on which it lies is actually horizontal, and whether or not the

camera axis is horizontal.

Finally, note that Eq. (17.30) can be rewritten in the simpler form:

1

y3
5

2

y2
2

1

y1
(17.31)

The inverse factors give some intuition into the processes involved—not least

considering the inverse relation Z5Hf/y between distance along the ground plane

and image distance from the vanishing line; and similarly, the inverse relation

between depth and disparity in Eq. (15.4).

17.9 APPARENT CENTERS OF CIRCLES AND ELLIPSES
It is well known that circles and ellipses project into ellipses (or occasionally into

circles). This statement is widely applicable and is valid for orthographic projec-

tion, scaled orthographic projection, weak perspective projection, and full per-

spective projection.

Another factor that can easily be overlooked is what happens to the center of

the circle or ellipse under these transformations. It turns out that the ellipse (or

circle) center does not project into the ellipse (or circle) center under full perspec-

tive projection: there will in general be a small offset (Fig. 17.14).7

If the position of the vanishing line of the plane can be identified in the image,

the calculation of the offset for a circle is quite simple using the theory in

Section 17.8, which applies as the center of a circle bisects its diameter

(Fig. 17.15). First, let ε be the shift in the center, d the distance of the center of

the ellipse from the vanishing line, and b the length of the semi-minor axis. Next,

identify b1 ε with y1, 2b with y2, and b1 d with y3. Finally, substitute for y1, y2,

and y3 in Eq. (17.30). We then obtain the result:

ε5
b2

d
(17.32)

7The fact that this happens may perhaps suggest that ellipses will be slightly distorted under projec-

tion. In fact, there is no such distortion, and the source of the shift in the center is merely that full

perspective projection does not preserve length ratios—and in particular midpoints do not remain

midpoints.
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Note that, unlike the situation in Section 17.8, we are here assuming that y3 is

known and we are using its value to calculate y1 and hence ε.
If the vanishing line is not known, but the orientation of the plane on which

the circle lies is known, and also the orientation of the image plane, then the van-

ishing line can be deduced, and the calculation can again proceed as above.

However, this approach assumes that the camera has been calibrated (see

Chapter 18).

The problem of center determination when an ellipse is projected into an

ellipse is a little harder to solve: not only is the longitudinal position of the center

unknown, but so is the lateral position. Nevertheless, the same basic projective

ideas apply. Specifically, let us consider a pair of parallel tangents to the ellipse,

which in the image become a pair of lines λ1, λ2 meeting on the vanishing line

(Fig. 17.16). As the chord joining the contact points of the tangents passes

through the center of the original ellipse, and as this property is projectively

invariant, the projected center must lie on the chord joining the contact points of

FIGURE 17.14

Projected position of a circle center under full perspective projection. Note that the

projected center is not at the center of the ellipse in the image plane.

d

ε

VL

b

FIGURE 17.15

Geometry for calculating the offset of the circle center. The projected center of the circle

is shown as the elongated dot, and the center of the ellipse in the image plane is a

distance d below the vanishing line VL.
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the line pair λ1, λ2. As the same applies for all pairs of parallel tangents to the

original ellipse, we can straightforwardly locate the projected center of the ellipse

in the image plane.8 For an alternative, numerical analysis of the situation, see

Zhang and Wei (2003).

Both the circle result and the ellipse result are important in cases of inspection

of mechanical parts, where accurate results of center positions have to be made

irrespective of any perspective distortions that may arise. Indeed, circles can also

be used for camera calibration purposes, and again high accuracy is required

(Heikkilä, 2000).

17.10 THE ROUTE TO FACE RECOGNITION
In a book of this type, it is important to consider the problem of face recognition,

which has long been a target for many practitioners of machine vision. In fact,

some would say that by now this is a solved problem, but criminologists repeat-

edly confirm that there is still some distance to go before reliable identification of

people can be attained in practical circumstances. Not least, there are problems of

λ1 λ2

VL

FIGURE 17.16

Construction for calculating the offsets for a projected ellipse. The two lines λ1, λ2 from a

point on the vanishing line VL touch the ellipse, and the joins of the points of contact for

all such line pairs pass through the projected center. (The figure shows just two chords of

contact.)

8Students who are familiar with projective geometry will be able to relate this to the “pole�polar”

construction for a conic: in this case the polar line is the vanishing line and its pole is the projected

center. In general the pole is not at the center of an ellipse, and will not be so unless the polar is at

infinite distance. Indeed, from this point of view, Eq. (17.31) can be understood in terms of “har-

monic ranges,” y2 being the “harmonic mean” of y1 and y3.
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hairstyles, hats, glasses, beards, degree of facial stubble, wildly variable facial

expressions, and of course variations in lighting and shadow—and this does not

even touch on the problem of deliberate disguise. Added to this, one must never

forget that the face is not flat, but part of a solid, albeit malleable object—the

head—which can appear in a variety of orientations and positions in space.

These remarks make it clear that full analysis and solution of the face recogni-

tion problem would require a whole book on the topic, and several such books

have appeared over time (e.g., Gong et al., 2000). However, the topic of facial

recognition is itself dated: not only are workers interested in face recognition, but

also there is pressure to measure facial expression for reasons as diverse as deter-

mining whether a person is telling the truth and finding how to mimic real people

as accurately as possible in films (over the next few years, it is possible to antici-

pate that a good proportion of films will contain no human actors as this has the

potential for making them quicker and cheaper to produce). Clearly, medical diag-

nosis or facial reconstruction can also benefit from facial measurement algo-

rithms, while person verification may well be at least as important as face

recognition, so long as it can be done quickly and with minimum error. In this lat-

ter respect, recent efforts have moved in the direction of identifying people highly

accurately from their iris patterns (e.g., Daugman, 1993, 2003), and even more

accurately from their retinal blood vessels9 (using the methods of retinal angiog-

raphy). While retinal methods would be rather expensive to implement, e.g. on

all-weather ATM machines, the iris method need not be, and much progress has

been made in this direction.

These considerations show that a narrow view of face recognition would be

rather inappropriate. For this reason we concentrate here on one or two important

aspects. Among these are the task of analyzing the face for key features that can

then at least provide a proper framework for further work on facial recognition,

facial expression, facial verification, and so on, and the task of locating the iris,

which will be used both for detailed verification and as an important starting point

for facial analysis. In fact, location of the iris can be dealt with reasonably

straightforwardly using the Hough transform approach. This has already been

covered in Section 12.7.

Other facial features, such as the corners of the eye and mouth, can be found

by tracking, snake algorithms, or simply by corner detection. Similarly, the upper

and lower contours of the ear and of the nose can be ascertained, thus yielding

fixed points that can be used for a multitude of purposes ranging from person

identification to recognition of facial expressions. At this point, it is useful to

reconsider the fact that the face is part of the head, and that this is a 3-D object.

9Here some of the main deciding factors are commercial rather than academic, although an impor-

tant message is that the technical difficulty is only viable where there is a need for the highest secu-

rity, but in that case “the false acceptance rate for a correctly installed retina scan system falls

below 0.0001 percent” (http://ru.computers.toshiba-europe.com; website accessed May 19, 2004).
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17.10.1 The Face as Part of a 3-D Object
To start an analysis of the head and face, note that we can define a plane Π con-

taining the outer corners of the eyes and the outer corners of the mouth, if we

assume that some odd facial expression has not been adopted. To a very good

approximation, it can also be assumed that the inner corners of the eyes will be in

the same plane (Fig. 17.17(a�c)). The next step is to estimate the position of the

vanishing point V for the three horizontal lines λ1, λ2, λ3 joining these three pairs

of features (Fig. 17.17(d)). Once this has been done, it is possible to use the rele-

vant cross-ratio invariants to determine the points that in 3-D lie midway between

the two features of each pair. This will give the symmetry line λs of the face. It

will also be possible to determine the horizontal orientation θ of the facial plane Π,

i.e., the angle through which it has been rotated, about a vertical axis, from a full

frontal view. The geometry for these calculations is shown in Fig. 17.17(e). Finally,

it will be possible to convert the inter-feature distances along λ1, λ2, λ3 to the cor-

responding full frontal values, taking proper account of perspective, but not yet tak-

ing account of the vertical orientation ϕ of Π, which is still unknown.10

In fact, there is insufficient information to estimate the vertical orientation ϕ,
without making further assumptions. Ultimately, this is because the face has no

horizontal axis of symmetry. If we can assume that ϕ is zero (i.e., the head is

held neither up nor down, and the camera is on the same level), then we can gain

some information on the relative vertical distances of the face, the raw measure-

ments for these being obtained from the intercepts of λ1, λ2, λ3 with the symme-

try line λs. Alternatively, we can assume average values for the inter-feature

distances and deduce the vertical orientation of the face. A further alternative is

to make other estimates based on the chin, nose, ears, or hairline, but as these are

not guaranteed to be in the facial plane Π, the whole assessment of facial pose

may not then be accurate and invariant to perspective effects.

Overall, we are moving toward measurements either of facial pose or of facial

inter-feature measurements, with the possibility of obtaining some information on

both, even when perspective distortions have to be allowed for (Kamel et al.,

1994; Wang et al., 2003). Of course, the analysis will be significantly simpler in

the absence of perspective distortions, when the face is viewed from a distance or

when a full frontal view is guaranteed. Indeed, the bulk of the work on facial rec-

ognition and pose estimation to date has been done in the context of weak per-

spective, making the analysis altogether simpler. Even then, the possibility of

wide varieties of facial expression brings in a great deal of complexity. It should

also be noted that the face is not merely a rubber mask (or deformable template)

that can be distorted “tidily”. The capability for opening and closing the mouth

and eyes creates additional nonlinear effects that are not modeled merely by vari-

able stretching of rubber masks.

10Note that the theory underlying these procedures is closely related to that of Section 17.8. See

also Fig. 17.13.
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FIGURE 17.17

3-D analysis of facial parameters. (a) Front view of face. (b) Oblique view of face, showing

perspective lines for corners of the eye and mouth. (c) Labeling of eye and mouth features

and definition of five inter-feature distance parameters. (d) Position of vanishing point

under an oblique view. (e) Positions of one pair of features and their midpoint on the facial

plane Π. Note how the midpoint is no longer the midpoint in the image plane I when

viewed under perspective projection. Note also how the vanishing point V gives the

horizontal orientation of Π.
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17.11 PERSPECTIVE EFFECTS IN ART AND PHOTOGRAPHY*

An artist is painting a picture somewhere on the countryside. Every now and

again he looks up from his easel and surveys the scene, then he turns back to his

picture and adds a few more touches. He has chosen his location carefully, and

has set his easel at the right angle for best effect. We will suppose that he is not

aiming to be impressionist, but wishes to present the scene as he sees it. Although

his painting is in 2-D, he is able to present all the information needed for others

to perceive the scene in 3-D. However, there is a problem. The picture needs to

be viewed from precisely the right angle and distance that must correspond to the

artist’s original viewpoint. Of course, the artist had to rotate his head and men-

tally rotate the scene between the moments that he viewed it and painted it (he

had to do this because the canvas he was painting on was opaque: other artists

such as Canaletto have used camera obscura methods to overcome this difficulty).

However, we can overcome the problem by temporarily assuming that the canvas

is transparent, which significantly simplifies the geometry (Fig. 17.18).

Interestingly, from his viewpoint, the artist could have painted a whole range

of pictures of the scene, with his easel set at different angles (Fig. 17.18). All these

pictures would be very closely related to each other and in fact would be related

by homographies. But each of them would have exactly one proper viewing posi-

tion and orientation, and when each was viewed from its proper viewing position,

exactly the same 3-D regenerative effect would be perceived by the viewer. Thus,

S

C

V

FIGURE 17.18

Effective viewpoint of artist painting a picture. The artist views the scene S from

viewpoint V, and paints what he sees on the canvas at C. The picture painted at C could

be one of many depending on the orientation of the canvas.

*Parts of this Section were inspired by a TV lecture dated 28 December 1978 by Christopher

Zeeman entitled “Mathematics into pictures”.
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the fact that a homography exists between the various views does not change the

constraint that each version of a picture is best viewed from a single location.

However, there is a circumstance when this is no longer true. That is, when the

scene contains a flat (2-D) surface F that is then to be presented in 2-D.

Immediately, we have a homography between the original scene and the canvas,

and we also have homographies with all the possible rotated versions of the canvas.

But what of the viewing positions? To understand the situation properly, we need

to think of the possible viewing points relative to the frame of reference of the can-

vas C, which we must now regard as fixed, e.g., on a gallery wall W. We can see

that as the original canvas is rotated, so the ideal viewing point relative to its loca-

tion on the gallery wall will rotate, albeit remaining at the distance corresponding

to the distance of the artist’s eye from the canvas. In fact, as one walks (along a cir-

cle) around the painting in the gallery, all the possible pictures that the artist might

have painted from his original position unfold before us (Fig. 17.19). They all

embody valid perspective distortions and thus all would appear entirely natural.

Note that a circular path is appropriate because it corresponds to the (constant)

overall angle of the artist’s view (angles in the same segment of a circle are equal).

But what of the case not of the flat wall of a house but of a face? In fact, sub-

stantial parts of the face approximate to a flat 2-D surface, e.g., the forehead,

eyes, cheeks, mouth, and chin. Considering them alone, a considerable range of

viewing points would be acceptable. Then there is the human propensity for

focussing on the eyes and largely ignoring the rest of the face. If this is done,

acceptable views will be obtained by viewing the painting from many directions.

Indeed when focussing on the eyes and ignoring the rest, it seems entirely

F

F

C

CW

V

V

(a) (b)

FIGURE 17.19

Viewing a painted picture. Process of (a) painting and (b) viewing a picture. As the

orientation of the canvas changes in (a), so the proper viewing point V in (b) moves along

the path of a circle. For a flat object F, the circular path sweeps out all possible pictures

the artist might have painted, and all will be related by homographies (see text).
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understandable why people would report after visiting a stately home and seeing

a painting of the 17th Earl, that his eyes “followed them around the room.”

A further factor is involved in this analysis—the orientation of the face when

the picture was painted. If the face was originally at an angle α, the eyes would

appear a factor cos α closer together than in the head-on painting. However, if

the canvas were rotated through an angle β, the eyes would be enlarged by a fac-

tor sec β. Hence, there would be an overall magnification cosα=cosβ. Cancellation
would occur when β5α, which corresponds to the canvas being parallel to the

face. However, cancellation would also occur when β52α, and this corresponds

to the canvas and the face being rotated through equal and opposite angles α relative

to the final viewing direction (Fig. 17.20). Next, suppose that a certain amount of

enlargement or diminution of the apparent distance between the eyes is

acceptable (note especially that if one doesn’t know the 17th Earl in the painting,

some enlargement would be acceptable). The result is that the range of

acceptable orientations of the final viewing direction will be increased, with the β
distortion tending to cancel the α distortion, the largest distortions for given α occur-

ring at high or low jβj (Fig. 17.21). Equalizing these extreme distortions by making

jαj. 0 would give the maximum permissible range of acceptable orientations (e.g.,

α5 20�, jβj5 02 40� with jβj5α in the middle of the range).

In photography there is also a correct viewing position, but when examining

family photographs, there are no exceptional situations where people would look

only at the eyes: people would want to look at facial expressions, hairstyles, and

so on (they would also be quite sensitive to whether everyone’s eyes were open).

Unfortunately, photographs of groups often appear distorted around the outside, a

factor that could sometimes be partly due to pincushion or barrel distortion (these

are lens aberrations—see Chapter 18). However, this effect could also be due to

an incorrect viewing position: the camera doesn’t lie, but only shows the true

(a) (b)

α

β

α

α
α

FIGURE 17.20

Effect of rotations relative to the viewing direction. In (a), α represents the original

orientation of the face, and β represents the orientation of the canvas. Part (b) shows the

situation both when β5α and when β5�α. In both instances, the two orientation effects

cancel and the eyes appear to have their original separation.
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geometry according to the perspective it had when the button was pressed. It is a

fact that photographs are often viewed at arms length—a distance far greater than

the correct viewing distance (Fig. 17.22). If photographs were meant to be viewed

at that distance, the photograph should be taken from much further away, to be

sure that the camera doesn’t lie inadvertently. Of course, there is a complication

that people will normally look at the camera, so taking the photograph from a dif-

ferent distance will affect the material content of the scene itself.

Until quite recently, photographs were best taken close up, because of the lim-

ited resolution of the film. Nowadays, digital cameras have such phenomenal res-

olution that there is some advantage from taking pictures further away, or even

from a considerable distance, with the aid of a zoom lens. (The latter confers the

added advantage that real-life shots can be taken without the subject being embar-

rassed or even aware they are being taken.) But there is a quite different advan-

tage to be gained from taking photographs much further away: although the

correct viewing distance could then be rather larger than ideal from the perspec-

tive point of view, all people at all locations in the photograph can be viewed

individually without perspective distortions creeping in. Note again that it is com-

mon practice for photographs to be handed around, and for each person in them

to be scrutinized individually—so the overall global composition might well be

less important than the individual people who are portrayed (this is all the more

true when one knows the people in the photograph, which is much more likely

than with a painting of the 17th Earl). Optimization not only of each locality in a

photograph but also of the global view is plainly impossible, but taking the photo-

graph from a distance gives a very good compromise (Fig. 17.22(b)). However,

taking it from infinity would lead to zero foreshortening of the faces and thereby

make them appear flatter. Here a lot depends on whether the lighting provides

other cues that can give a good impression of depth.

0

0
– α α

α

β

(a)

(b)

FIGURE 17.21

Effect of varying the viewing orientations. Part (a) shows how the separation of the eyes

becomes reduced as jαj increases from zero. Part (b) shows how the change in

separation of the eyes for a fixed value of α is first canceled out by increasing jβj from
zero and then increased so that the change in separation becomes positive. The average

magnitude of the change in separation can clearly be lower in (b) than in (a).
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Another possibility that digital photography offers is that of automatically

stitching together several frames to create a wide scene or panorama. Here best

results are obtained if the camera is put into stitching mode, so that it can make

exposures constant over a sequence of frames or at least record what they were.

Then it could be expected that the edges of various frames would match up with-

out any sudden changes between them. To achieve a proper match, the frames

obviously have to overlap, and then special software can be used to find the best

set of lines for trimming and stitching. This involves moving the trim lines in

such a way—generally in plain background regions—that the breaks will be

(a)

(b)

V

C

x
θ

∞

FIGURE 17.22

Process of taking and viewing a photograph. (a) The geometry for taking a photograph of

a group of people all facing the camera at C. Also shown is the effective viewing location V

of the photograph. (Clearly, the photograph would be enlarged before viewing, in which

case the part of the illustration just above V would be scaled, but not otherwise changed.)

(b) A potentially more ideal way of taking the photograph, from a large distance. By

following (b), people examining the photograph would be viewing from an ideal viewing

point; in addition, all people shown in the picture could be examined individually without

distortion.
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imperceptible. Of course, some smoothing along the trimmed edges will often

help, as long as this process doesn’t encroach on regions of totally different inten-

sity. Unfortunately, stitching cannot easily cope with situations containing moving

objects, and in this context the author had an interesting early experience of the

final country scene containing too many sheep.

The exact algorithms to be used for image stitching are quite intricate. This is

because a time-consuming search is required to identify the best trimming lines.

The criteria to be used are important, but these obviously involve minimization of

intensity and color change along the borders—and there is also advantage in mini-

mizing the intensity and color gradients along the borders. Then there are rules

for smoothing along the borders, after stitching has been carried out. Here the

simplest rule is not to do any smoothing at all, but this rule can be relaxed if the

changes in intensity and intensity gradient have successfully been minimized.

There is one major problem with stitching—that scenes containing straight

edges that go at angles across the whole scene are almost impossible to deal with

(Fig. 17.23). This is because each (flat) frame will have been taken from a differ-

ent direction in order to obtain a wider overall view. Thus, a straight line, such as

a path, will appear straight in each frame, but the orientation will normally have

to change at the join (Fig. 17.23): that this is not mere theory is demonstrated

clearly by the examples in Fig. 17.24. The only way to overcome the problem is

to present the scene on a sphere or cylinder in order to prevent kinks from appear-

ing at the joins. But then the original straight line will become a curved line,

especially when the final picture is presented as a flat scene. Here again the spec-

ter of the single viewpoint of each original picture is upon us. The best way of

handling it seems to be to present it as a picture that is apparently taken from

infinity (as for the earlier example of photographing a group of people), so that

any straight line will appear straight, at least at every local position, even if a

ruler placed along it will show that it is not straight globally. In fact, this is what

the special rotating line-scan cameras were able to achieve in the 1960s and ear-

lier, when they were used to take school photographs—and the time taken to

gather enough light was often sufficient for at least one small boy to run from

one end to the other and be photographed twice!

FIGURE 17.23

Effect of stitching two pictures depicting parts of a path. Apparently correct stitching will

actually lead to a kink at the join.
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17.12 CONCLUDING REMARKS
This chapter has aimed to give some insight into the important subject of invar-

iants and its application in image recognition. The subject takes off when ratios

of ratios of distances are considered, and this idea leads in a natural way to the

cross-ratio invariant. While its immediate manifestation lies in its application to

recognition of the spacings of points on a line, it generalizes immediately to angu-

lar spacings for pencils of lines and also to angular separations of concurrent

planes. A further extension of the idea is the development of invariants that can

describe sets of noncollinear points, and two cross-ratios suffice to characterize a

set of five noncollinear points on a plane. The cross-ratio can also be applied to

conics. Indeed, Chasles’ theorem describes a conic as the locus of points that

maintains a pencil of constant cross-ratio with a given set of four points.

However, this theorem does not permit one type of conic curve to be distin-

guished from another.

Many other theorems and types of invariant exist, but space prevents more

than a mention being made of them. As an extension to the line and conic

(a)

(b)

FIGURE 17.24

Practical instances of stitching. Part (a) shows that the surmise of Fig. 17.23 is correct.

Part (b) shows the result of using an (effectively) overenthusiastic stitching package that

manages to avoid a kink, but ends up with perspective nonsense. If the lower end of the

road boundary had been visible, the software might have avoided the latter problem but

would then have introduced a kink.
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examples given in this chapter, invariants have been produced that cover a conic

and two coplanar nontangent lines, a conic and two coplanar points, and two

coplanar conics. Of particular value is the group approach to the design of invar-

iants (Mundy and Zisserman, 1992a). However, certain mathematically viable

invariants, such as those that describe local shape parameters on curves, prove to

be too unstable to use in their full generality because of image noise.

Nevertheless, semi-differential invariants have been shown (Section 17.5) to be

capable of fulfilling essentially the same function.

Next, there is the warning of Åström (1995) that perspective transformations can

produce such incredible changes in shape that a duck silhouette can be projected

arbitrarily closely into something that looks like a rabbit or a circle, hence upsetting

invariant-based recognition.11 While such reports seem absent from the previous lit-

erature, Åström’s work indicates that care must be taken to regard recognition via

invariants as hypothesis formation that is capable of leading to false alarms.

Overall, the value of invariants lies in making computationally efficient

checks of whether points or other features might belong to specific objects. In

addition, they achieve this without the necessity12 for camera calibration or know-

ing the viewpoint of the camera (although there is an implicit assumption that the

camera is Euclidean). While invariants have been known within the vision com-

munity for well over 20 years, it is only during the last about 15 years that they

have been systematically developed and applied for machine vision. Such is their

power that they will undoubtedly assume a stronger and more central role in the

future. Nowhere is this power better indicated than by the application to vanishing

point detection and face recognition described in Sections 17.7�17.10. Note also

the perspective projection problems that led not only to the need for invariants

but also to the need for further insight into the problems of viewing and stitching

2-D pictures (Section 17.11).

The problems of perspective projection are ubiquitous in 3-D vision, appearing even in
simple situations such as viewing 2-D pictures and stitching digital photographs. However,
vital interpretive information is provided by projective invariants that slice right through
such complexities and are able to help, e.g., with vanishing point detection and face
recognition.

11It could of course be argued that all recognition methods will be subject to the effects of perspec-

tive transformations. However, invariant-based recognition will not flinch from invoking highly

extreme transformations that appear to grossly distort the objects in question, whereas more con-

ventional methods are likely to be designed to cope with a reasonable range of expected shape

distortions.
12Here we assume that the aim is location of specific objects in the image. If the objects are then to

be located in the world coordinates, some form of camera calibration will again be needed.

However, there are many applications, such as inspection, surveillance, and identification (e.g., of

faces or signatures) where location of objects in the image can be entirely adequate.

47317.12 Concluding Remarks



17.13 BIBLIOGRAPHICAL AND HISTORICAL NOTES
The mathematical subject of invariance is very old (cf. the work of Chasles,

1855), but it has only relatively recently been developed systematically for

machine vision. Notable in this context is the work of Rothwell, Zisserman, and

their coworkers, as reported by Forsyth et al. (1991), Mundy and Zisserman

(1992a,b), Rothwell et al. (1992a,b), and Zisserman et al. (1990). In particular,

the paper by Forsyth et al. (1991) shows the range of available invariant techni-

ques and discusses the problems of stability which arise in certain cases. The

appendix (Mundy and Zisserman, 1992b) on projective geometry for machine

vision, which appears in Mundy and Zisserman (1992a), is especially valuable,

and provides the background needed for understanding the other papers in the

volume. On the whole, the latter volume has a theoretical flavor that demonstrates

what ought to be possible using invariants, although comparisons between invar-

iants and other approaches to recognition are perhaps lacking. Thus, it is only by

examining whether workers choose to use invariants in real applications that the

full story will emerge. In this respect, the paper by Kamel et al. (1994) on face

recognition is of great interest, as it shows how invariants helped to achieve more

than had been achieved earlier after many attempts using other approaches—

specifically in correcting for perspective distortions during face recognition.

Other more recent work appears in a special issue of Image and Vision

Computing (Mohr and Wu, 1998). In particular, the paper by Van Gool et al.

(1998) shows how shadows can be allowed for in aerial images, and the paper by

Boufama et al. (1998) shows how invariants can help with object positioning.

Startchik et al. (1998) provides a useful demonstration of the semi-differential

invariant methods covered in Section 17.5. Maybank (1996) deals with the prob-

lem of accuracy with invariants, making the point that this can be serious even

for cross-ratios (which contain only four parameters). Another early work, by a

totally different set of workers, is Barrett et al. (1991) and contains a number of

useful derivations, together with a practical example of aircraft recognition, com-

plete with accuracy assessments.
Rothwell’s (1995) book covers the early work on invariance in a thoughtful

manner, and the later 3-D books by Hartley and Zisserman (2000) and Faugeras

and Luong (2001) integrate the ideas into their structure, but are not always easy

to understand by students starting out in the subject. Semple and Kneebone

(1952) is a standard work on projective geometry, which is still widely used in its

later reprints.
Vanishing point determination has often been considered both in relation to

egomotion for mobile robots (Lebègue and Aggarwal, 1993; Shuster et al., 1993)

and in general with regard to the vision methodology (Magee and Aggarwal,

1984; Shufelt, 1999; Almansa et al., 2003), which is prone to suffer from inaccu-

racy when real off-camera data are used in any context. The seminal paper that

gave rise to the crucial Gaussian sphere technique was that by Barnard (1983). In

an interesting twist, Clark and Mirmehdi (2002, 2003) use VPs to recover text
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that has been distorted by perspective. The approach permits them to recover par-

agraph formats; in addition to line spacings, various forms of text justification

can be recognized and managed.

17.13.1 More Recent Developments
More recently, Shioyama and Uddin (2004) have used cross-ratio invariants for the

reliable location of pedestrian crossings by analyzing multiple crossing points of

transverse straight lines with the alternating patterns on the road. Kelly et al.

(2005) have used homographies between stereo views to locate shadows and low-

lying objects: to achieve this they used the direct linear transformation (see Hartley

and Zisserman, 2003) to identify homographies for sets of four or more points.

Once homographies are found, they are used to eliminate the corresponding objects

from consideration, thereby avoiding costly computation of 3-D depth values from

the stereo views for those objects. Rajashekhar et al. (2007) use cross-ratio values

to identify man-made structures in images to aid image retrieval. Hough transforms

are used to find line structures in images, then feature points on the lines are found

and sets of cross-ratio values are computed and presented in the form of histograms

(in each case, all six possible cross-ratio values are included in the histograms). It

is found that values in the range 0�5 are most suitable for identifying man-made

structures, in that the histograms are suitably densely concentrated. Structures such

as buildings are well recognized from the histograms, as long as they are quantized

with upward of 200 bins. Li and Tan (2010) use a similar approach, but their cross-

ratio values occur in continuous streams as outlines of characters or symbols are

tracked. The resulting “cross-ratio spectra” allow characters to be recognized even

with severe perspective distortions.

In the area of face recognition, An et al. (2010) describe a new illumination

normalization model that is able to cope with varied lighting conditions. It works

by decomposing the face into a high-frequency part and a low-frequency part: the

main innovation is to divide the original intensity pattern by a smoothed version

of the low-frequency part (although several other equalization and normalization

processes are carried out as well). Hansen and Ji (2010) survey models for eye

detection and gaze estimation and summarize the developments that are still

needed in this area. Fang et al. (2010) describe a new method of multiscale image

stitching. The paper discusses the problems of obtaining global and local align-

ment. A number of strategies are needed to overcome the various problems, and

an iterative processing pipeline is required to integrate the different strategies.

17.14 PROBLEMS
1. Show that the six operations required to transform the cross-ratio κ into the

six different values for four points on a line form a group G of order six (see

Sections 17.2 and 17.6). Show that G is a noncyclic group, and has two
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subgroups of order 2 and 3, respectively. Hint: Show that all possible com-

bined operations fall within the same set of six, and also that this set contains

the identity operation and the inverses of all the elements of the set.

2. Show that a conic and two points can be used to define an invariant cross-

ratio.

3. Show that two conics can be used to define an invariant cross-ratio (a) if they

intersect in four points, (b) if they intersect in two points, (c) and if they do

not intersect at all, so long as they have common tangents.13

4. a. Perform a geometric calculation based on the sine rule, which shows that

the angles α, β, γ are related to the distances a, b, c in Fig. 17.25 by the

equation:

a

sinα
3

c

sinγ
5

a1 b

sin ðα1βÞ 3
b1 c

sin ðβ1 γÞ
b. Show that this leads to a relation between the cross-ratios for various dis-

tances on the line and for the sines of various angles. Hence, show that

this also leads to the constancy of the cross-ratios on any two lines cross-

ing the pencil of four lines passing through O.

5. a. Explain the value of using invariants in relation to pattern recognition sys-

tems. Illustrate your answer by considering the value of thinning algo-

rithms in optical character recognition.

b. The cross-ratio of four points (P1, P2, P3, P4) on a line is defined as the

ratio:

CðP1;P2;P3;P4Þ5
ðx3 2 x1Þðx2 2 x4Þ
ðx2 2 x1Þðx3 2 x4Þ

c
b

a

O

γβα

FIGURE 17.25

Geometry for cross-ratio calculation.

13The case of nonintersecting conics with no common tangents requires complex algebra. See, e.g.,

Rothwell (1995). The possibility of ambiguity and incompleteness is also discussed in Rothwell

(1995).
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Explain why this is a useful type of invariant for objects viewed under full

perspective projection. Show that labeling the points in reverse order will

not change the value of the cross-ratio.

c. Give arguments why the cross-ratio concept should also be valid for weak

perspective projection. Work out a simpler invariant that is valid for

straight lines viewed under weak perspective projection.

d. A flat lino-cutter blade has two parallel sides of different lengths. It is

viewed under weak perspective projection. Discuss whether it can be iden-

tified from any orientation in 3-D by measuring the lengths of its sides.

6. a. Flagstones are viewed on a pavement, providing a large number of coplanar

feature points. Show that a correspondence can be made between five

coplanar feature points in two images—however, the camera has been

moved between the shots—by checking the values of two cross-ratios.

b. It is required to compose a panorama of a scene by taking a number of

photographs and “stitching” them together after making appropriate image

transformations. To achieve this, it is necessary to make correspondences

between the images. Show that the two cross-ratios type of planar invariant

can be used for this purpose, even if the chosen scene features do not lie

on a common plane. Determine under what conditions this is possible.

7. Redraw Fig. 17.16 using vanishing points aligned along the observed ellipse

axes. Show that the problem of finding the transformed center location now

reduces to two 1-D cases and that Eq. (17.32) can be used to obtain the trans-

formed center coordinates.

8. A robot is walking along a path paved with rectangular flagstones. It is able to

rotate its camera head so that one set of flagstone lines appears parallel while

the other set converges toward a vanishing point. Show that the robot can cal-

culate the position of the vanishing point in two ways: (1) by measuring the

varying widths of individual flagstones or (2) by measuring the lengths of

adjacent flagstones and proceeding according to Eq. (17.30). In the first case,

obtain a formula that could be used to determine the position of the vanishing

point. Which is the more general approach? Which would be applicable if the

flagstones appeared in a flower garden in random locations and orientations?
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CHAPTER

18 Image Transformations
and Camera Calibration

When setting up a measurement system, it is natural to calibrate it carefully

before use. This task has been left to last because (a) it is mathematically more

demanding, (b) there are instances where it can be bypassed, (c) it is not always

possible to perform the calibration entirely in advance, but rather it has to be

updated to a sufficient extent as measurements proceed. This chapter outlines

some of the problems of calibration and some of the results of recent research

that allow the process to be at least partially bypassed.

Look out for:

• the homogeneous coordinates technique for representing general 3-D positions

and transformations.

• “extrinsic” (external world) and “intrinsic” (camera) parameters.

• methods for achieving absolute camera calibration.

• the need for correction of camera lens distortions.

• the idea of a generalized epipolar geometry.

• the “essential” and “fundamental” matrix formulations, relating the observed

positions of any point in two camera frames of reference.

• the central position of the eight-point algorithm.

• the possibility of image “rectification.”

• the possibility of 3-D reconstruction.

This is one of the key chapters constituting Part 3 of this book. These chapters

should be taken together as they involve not merely different topics but also dif-

ferent aspects of the subject, and in addition the aim has been to cover them in as

gentle an order as possible considering the mathematical complexities involved in

extracting 3-D and motion information from 2-D images.

Computer and Machine Vision.
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18.1 INTRODUCTION
When images are obtained from 3-D scenes, the exact position and orientation of

the camera sensing device is often unknown and there is a need for it to be related

to some global frame of reference. This is especially important if accurate mea-

surements of objects are to be made from their images, e.g., in inspection applica-

tions. On the other hand, it may in certain cases be possible to dispense with such

detailed information—as in the case of a security system for detecting intruders,

or a system for counting cars on a motorway. There are also more complicated

cases, such as those in which cameras can be rotated or moved on a robot arm or

the objects being examined can move freely in space. In such cases, camera cali-

bration becomes a central issue. Before we can consider camera calibration, we

need to understand in some detail the transformations that can occur between the

original world points and the formation of the final image. We attend to these

image transformations in the following section, and then move on to details of

camera parameters and camera calibration in the subsequent two sections. Then,

in Section 18.5 we consider how any radial distortions of the image introduced by

the camera lens can be corrected.

Section 18.6 signals a break with previous work and introduces “multiple

view” vision. This topic has become important in recent years, as it uses new the-

ory to bypass the need for formal camera calibration, and makes it possible to

update the vision system parameters during actual use. The basis for this work is

generalized epipolar geometry: this takes the epipolar line ideas of Section 15.3.2

considerably further. At the core of this new work are the “essential” and “funda-

mental” matrix formulations, which relate the observed positions of any point in

two camera frames of reference. Short sections on image “rectification” (obtain-

ing a new image as it would be seen from an idealized camera position) and 3-D

reconstruction follow.

18.2 IMAGE TRANSFORMATIONS
First, we consider the rotations and translations of object points relative to a

global frame. After a rotation through an angle θ about the Z-axis (Fig. 18.1), the

coordinates of a general point (X, Y) change to:

X0 5X cos θ2 Y sin θ (18.1)

Y 0 5X sin θ1 Y cos θ (18.2)

This result is neatly expressed by the matrix equation:

X0

Y 0

� �
5

cos θ 2sin θ
sin θ cos θ

� �
X

Y

� �
(18.3)
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Clearly, similar rotations are possible about the X and Y axes. To satisfactorily

express rotations in 3-D, we require a more general notation using 33 3 matrices,

the matrix for a rotation θ about the Z-axis being:

RZðθÞ5
cos θ 2sin θ 0

sin θ cos θ 0

0 0 1

2
4

3
5 (18.4)

Those for rotations ψ about the X-axis and ϕ about the Y-axis are:

RXðψÞ5
1 0 0

0 cos ψ 2sin ψ
0 sin ψ cos ψ

2
4

3
5 (18.5)

RY ðϕÞ5
cos ϕ 0 sin ϕ
0 1 0

2sin ϕ 0 cos ϕ

2
4

3
5 (18.6)

We can make up arbitrary rotations in 3-D by applying sequences of such rota-

tions. Similarly, we can express arbitrary rotations as sequences of rotations

about the coordinate axes. Thus R5RX (ψ)RY(ϕ)RZ(θ) is a composite rotation in

which RZ(θ) is applied first, then RY(ϕ), and finally RX(ψ). Rather than multiply-

ing out these matrices, we write down here the general result expressing an

arbitrary rotation R:

X0

Y 0

Z 0

2
4

3
55 R11 R12 R13

R21 R22 R23

R31 R32 R33

2
4

3
5 X

Y

Z

2
4

3
5 (18.7)

Note that the rotation matrix R is not completely general: it is orthogonal and

thus has the property that R215RT.

θ

Y

X

X ′

Y ′

0

(X ′, Y ′)

FIGURE 18.1

Effect of a rotation θ about the origin.
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In contrast with rotation, translation through a distance (T1, T2, T3) is given by:

X0 5X1 T1 (18.8)

Y 0 5 Y 1 T2 (18.9)

Z 0 5 Z1 T3 (18.10)

which is not expressible in terms of a multiplicative 33 3 matrix. However, just

as general rotations can be expressed as rotations about various coordinate axes,

so general translations and rotations can be expressed as sequences of basic rota-

tions and translations relative to individual coordinate axes. Thus, it would be

most useful to have a notation that unified the mathematical treatment so that a

generalized displacement could be expressed as a product of matrices. This is

indeed possible if the so-called “homogeneous coordinates” are used. To achieve

this, the matrices must be augmented to 43 4. A general rotation can then be

expressed in the form:

X0

Y 0

Z 0

1

2
664

3
7755

R11 R12 R13 0

R21 R22 R23 0

R31 R32 R33 0

0 0 0 1

2
664

3
775

X

Y

Z

1

2
664

3
775 (18.11)

while the general translation matrix becomes:

X0

Y 0

Z 0

1

2
664

3
7755

1 0 0 T1
0 1 0 T2
0 0 1 T3
0 0 0 1

2
664

3
775

X

Y

Z

1

2
664

3
775 (18.12)

The generalized displacement (i.e., translation plus rotation) transformation

clearly takes the form:

X0

Y 0

Z 0

1

2
664

3
7755

R11 R12 R13 T1
R21 R22 R23 T2
R31 R32 R33 T3
0 0 0 1

2
664

3
775

X

Y

Z

1

2
664

3
775 (18.13)

We now have a convenient notation for expressing generalized transformations

including operations other than the translations and rotations that account for the

normal motions of rigid bodies. First, we take a scaling in size of an object, the

simplest case being given by the matrix:

S 0 0 0

0 S 0 0

0 0 S 0

0 0 0 1

2
664

3
775
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The more general case:

S1 0 0 0

0 S2 0 0

0 0 S3 0

0 0 0 1

2
664

3
775

introduces a shear in which an object line λ will be transformed into a line that is

not in general parallel to λ. Skewing is another interesting transformation, being

given by linear translations varying from the simple case:

1 B 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775

to the general case:

1 B C 0

D 1 F 0

G H 1 0

0 0 0 1

2
664

3
775

Rotations can be regarded as combinations of scaling and skewing, and are some-

times implemented as such (Weiman, 1976).

The other simple but interesting case is that of reflection, which is typified by:

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

2
664

3
775

This generalizes to other cases of improper rotation where the determinant of the

top left 33 3 matrix is 21.

In all the cases discussed above, it will be observed that the bottom row of the

generalized displacement matrix is redundant. In fact, we can put this row to

good use in certain other types of transformation. Of particular interest in this

context is the case of perspective projection. Following Section 15.3, Eq. (15.1),

the equations for projection of object points into image points are:

x5
f X

Z
(18.14)

y5
f Y

Z
(18.15)

z5 f (18.16)

We next make full use of the bottom row of the transformation matrix by defining

the homogeneous coordinates as (Xh, Yh, Zh, h)5 (hX, hY, hZ, h), where h is a
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nonzero constant that we can take to be unity. To proceed, we examine the homo-

geneous transformation:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1=f 0

2
664

3
775

X

Y

Z

1

2
664

3
7755

X

Y

Z

Z=f

2
664

3
775 (18.17)

We see that dividing by the fourth coordinate gives the required values of the

transformed Cartesian coordinates (fX/Z, fY/Z, f).

Let us now review this result. First, we have found a 43 4 matrix transforma-

tion that operates on 4-D homogeneous coordinates. These do not correspond

directly to real coordinates, but real 3-D coordinates can be calculated from them

by dividing the first three by the fourth homogeneous coordinate. Thus, there is an

arbitrariness in the homogeneous coordinates in that they can all be multiplied by

the same constant factor without producing any change in the final interpretation.

Likewise, when deriving homogeneous coordinates from real 3-D coordinates, we

can employ any convenient constant multiplicative factor h, although we will nor-

mally take h to be unity.

The advantage to be gained from use of homogeneous coordinates is the con-

venience of having a single multiplicative matrix for any transformation, in spite

of the fact that perspective transformations are intrinsically nonlinear: thus, a

quite complex nonlinear transformation can be reduced to a more straightforward

linear transformation. This eases computer calculation of object coordinate trans-

formations and other computations such as those for camera calibration (see

below). We may also note that almost every transformation can be inverted by

inverting the corresponding homogeneous transformation matrix. The exception is

the perspective transformation, for which the fixed value of z leads merely to Z

being unknown, and X, Y only being known relative to the value of Z (hence the

need for binocular vision or other means of discerning depth in a scene).

18.3 CAMERA CALIBRATION
The above discussion has shown how homogeneous coordinate systems are used to

help provide a convenient linear 43 4 matrix representation for 3-D transformations

including rigid body translations and rotations, and nonrigid operations including

scaling, skewing, and perspective projection. In this last case, it was implicitly

assumed that the camera and world coordinate systems are identical, since the

image coordinates were expressed in the same frame of reference. However, in gen-

eral the objects viewed by the camera will have positions that may be known in

world coordinates, but that will not a priori be known in camera coordinates, since

the camera will in general be mounted in a somewhat arbitrary position and will
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point in a somewhat arbitrary direction. Indeed, it may well be on adjustable gim-

bals, and may also be motor driven, with no precise calibration system. If the cam-

era is on a robot arm, there are likely to be position sensors that could inform the

control system of the camera position and orientation in world coordinates, although

the amount of slack may well make the information too imprecise for practical pur-

poses (e.g., to guide the robot toward objects).

These factors mean that the camera system will have to be calibrated very

carefully before the images can be used for practical applications, such as robot

pick-and-place. A useful approach is to assume a general transformation between

the world coordinates and the image seen by the camera under perspective projec-

tion, and to locate in the image various calibration points that have been placed in

known positions in the scene. If enough such points are available, it should be

possible to compute the transformation parameters, and then all image points can

be interpreted accurately until recalibration becomes necessary.

The general transformation G takes the form:

XH

YH
ZH
H

2
664

3
7755

G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44

2
664

3
775

X

Y

Z

1

2
664

3
775 (18.18)

where the final Cartesian coordinates appearing in the image are (x, y, z)5 (x, y, f ),

and these are calculated from the first three homogeneous coordinates by dividing

by the fourth:

x5
XH

H
5

G11X1G12Y1G13Z1G14

G41X1G42Y1G43Z1G44

(18.19)

y5
YH

H
5

G21X1G22Y 1G23Z1G24

G41X1G42Y 1G43Z1G44

(18.20)

z5
ZH

H
5

G31X1G32Y1G33Z1G34

G41X1G42Y1G43Z1G44

(18.21)

However, as we know z, there is no point in determining parameters G31, G32,

G33, G34. Accordingly, we proceed to develop the means for finding the other

parameters. In fact, because only the ratios of the homogeneous coordinates are

meaningful, only the ratios of the Gij values need be computed, and it is usual to

take G44 as unity: this leaves only 11 parameters to be determined. Multiplying

out the first two equations and re-arranging gives:

G11X1G12Y 1G13Z1G14 � xðG41X1G42Y 1G43ZÞ5 x (18.22)

G21X1G22Y 1G23Z1G24 � yðG41X1G42Y 1G43ZÞ5 y (18.23)
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Noting that a single world point (X, Y, Z), which is known to correspond to

image point (x, y), gives us two equations of the above form; it requires a mini-

mum of six such points to provide values for all 11 Gij parameters: Figure 18.2

shows a convenient near-minimum case. An important factor is that the world

points used for the calculation should lead to independent equations: thus, it is

important that they should not be coplanar. More precisely, there must be at least

six points, no four of which are coplanar. However, further points are useful in

that they lead to over-determination of the parameters and increase the accuracy

with which the latter can be computed. There is no reason why the additional points

should not be coplanar with existing points: indeed, a common arrangement is to

set up a cube so that three of its faces are visible, each face having a pattern of

squares with 30�40 easily discerned corner features (as for a Rubic cube).

Least-squares analysis can be used to perform the computation of the 11 para-

meters, e.g., via the pseudo-inverse method. First, the 2n equations have to be

expressed in matrix form:

Ag5 ξ (18.24)

where A is a 2n3 11 matrix of coefficients, which multiplies the G-matrix, now

in the form:

g5 ðG11 G12 G13 G14 G21 G22 G23 G24 G41 G42 G43ÞT (18.25)

and ξ is a 2n-element column vector of image coordinates. The pseudo-inverse

solution is:

g5Ayξ (18.26)

FIGURE 18.2

A convenient near-minimum case for camera calibration. Here two sets of four coplanar

points, each set of four being at the corners of a square, provide more than the absolute

minimum number of points required for camera calibration.
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where:

Ay 5 ðATAÞ�1AT (18.27)

The solution is more complex than might have been expected, since a normal

matrix inverse is only defined, and can only be computed, for a square matrix.

Note that solutions are only obtainable by this method if the matrix ATA is invert-

ible. For further details of this method, see Golub and van Loan (1983).

18.4 INTRINSIC AND EXTRINSIC PARAMETERS
At this point it is useful to look in more detail at the general transformation leading

to camera calibration. When we are calibrating the camera, we are actually trying

to bring the camera and world coordinate systems into coincidence. The first step

is to move the origin of the world coordinates to the origin of the camera coordi-

nate system. The second step is to rotate the world coordinate system until its axes

are coincident with those of the camera coordinate system. The third step is to

move the image plane laterally until there is complete agreement between the two

coordinate systems (this step is required since it is not known initially which point

in the world coordinate system corresponds to the principal point1 in the image).

There is an important point to be borne in mind during this process. If the

camera coordinates are given by C, then the translation T required in the first

step will be �C. Similarly, the rotations that are required will be the inverses of

those that correspond to the actual camera orientations. The reason for these

reversals is that (for example) rotating an object (here the camera) forward gives

the same effect as rotating the axes backward. Thus, all operations have to be car-

ried out with the reverse arguments to those indicated above in Section 18.1. The

complete transformation for camera calibration is hence:

G5PLRT5

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1=f 0

2
664

3
775

1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

2
664

3
775

R11 R12 R13 0

R21 R22 R23 0

R31 R32 R33 0

0 0 0 1

2
664

3
775

1 0 0 T1
0 1 0 T2
0 0 1 T3
0 0 0 1

2
664

3
775

(18.28)

where matrix P takes account of the perspective transformation required to form

the image. In fact, it is usual to group together the transformations P and L and

call them internal camera transformations that include the intrinsic camera para-

meters, while R and T are taken together as external camera transformations cor-

responding to extrinsic camera parameters:

1The principal point is the image point lying on the principal axis of the camera. It is the point in

the image that is closest to the center of projection. Correspondingly, the principal axis (or optical

axis) of the camera is the line through the center of projection normal to the image plane.

486 CHAPTER 18 Image Transformations and Camera Calibration



G5GinternalGexternal (18.29)

where:

Ginternal 5PL5

1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 1=f t3=f

2
664

3
775-

1 0 t1
0 1 t2
0 0 1=f

2
4

3
5 (18.30)

Gexternal 5RT 5

R1 R1:T
R2 R2:T
R3 R3:T
0 1

2
664

3
775 (18.31)

In the matrix for Ginternal, we have assumed that the initial translation matrix T

moves the camera’s center of projection to the correct position, so that the value of

t3 can be made equal to zero: in that case, the effect of L will indeed be lateral as

indicated above. At that point, we can express the (2-D) result in terms of a 33 3

homogeneous coordinate matrix. In the matrix for Gexternal, we have expressed the

result succinctly in terms of the rows R1, R2, R3 of R, and have taken dot-products

with T5 (T1, T2, T3)
T: the (3-D) result is a 43 4 homogeneous coordinate matrix.

Although the above treatment gives a good indication of the underlying mean-

ing of G, it is not general because we have not so far included scaling and skew

parameters in the internal matrix. In fact the generalized form of Ginternal is:

Ginternal 5
s1 b1 t1
b2 s2 t2
0 0 1=f

2
4

3
5 (18.32)

Potentially, Ginternal should include the following:

1. A transform for correcting scaling errors.

2. A transform for correcting translation errors.2

3. A transform for correcting sensor skewing errors (due to nonorthogonality of

the sensor axes).

4. A transform for correcting sensor shearing errors (due to unequal scaling

along the sensor axes).

5. A transform for correcting for unknown sensor orientation within the image plane.

Clearly, translation errors (item 2) are corrected by adjusting t1 and t2. All the

other adjustments are concerned with the values of the 23 2 submatrix:

s1 b1
b2 s2

� �

2For this purpose, the origin of the image should be on the principal axis of the camera.

Misalignment of the sensor may prevent this point from being at the center of the image.
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However, note that application of this matrix performs rotation within the image

plane immediately after rotation has been performed in the world coordinates by

Gexternal, and it is virtually impossible to separate the two rotations. This explains

why we now have a total of 6 external and 6 internal parameters totaling 12 rather

than the expected 11 parameters (we return to the factor 1/f below). As a result, it

is better to exclude item 5 in the above list of internal transforms and to subsume

it into the external parameters.3 Since the rotational component in Ginternal has

been excluded, b1 and b2 must now be equal, and the internal parameters will be:

s1, s2, b, t1, t2. Note that the factor 1/f provides a scaling that cannot be separated

from the other scaling factors during camera calibration, without specific (i.e.,

separate) measurement of f. Thus, we have a total of six parameters from Gexternal

and five parameters from Ginternal: which totals 11 and equals the number cited in

the previous section.

We next consider the special case where the sensor is known to be Euclidean

to a high degree of accuracy. This will mean that b5 b15 b25 0, and s15 s2,

bringing the number of internal parameters down to three. In addition, if care has

been taken over sensor alignment, and there are no other offsets to be allowed

for, it may be known that t15 t25 0. This will bring the total number of internal

parameters down to just one, namely s5 s15 s2, or sf, if we take proper account

of the focal length. In this case, there will be a total of seven calibration para-

meters for the whole camera system, and this may permit it to be set up unambig-

uously by viewing a known object having four clearly marked features instead of

the six that would normally be required (see Section 18.3).

18.5 CORRECTING FOR RADIAL DISTORTIONS
Photographs generally appear so distortion-free that there is a tendency to imagine

that camera lenses are virtually perfect. However, it sometimes happens that a

photograph will show odd curvatures of straight lines, particularly those appearing

around the periphery of the picture. The results commonly take the form of “pin-

cushion” or “barrel” distortion: these terms arise because pincushions have a ten-

dency to be over-extended at the corners, while barrels usually bulge in the

middle. In images of paving stones or brick walls, the amount of distortion is usu-

ally not more than a few pixels in a total of the order of 512, i.e., typically less

than 2%, and this explains why in the absence of particular straight line markers

such distortions can be missed (Fig. 18.3). However, it is important both for rec-

ognition and for inter-image matching purposes that any distortions should be

3While doing so may not be ideal, there is no way of separating the two rotational components by

purely optical means; only measurements on the internal dimensions of the camera system could

determine the internal component, but separation is not likely to be a cogent or even meaningful

matter. On the other hand, the internal component is likely to be stable, whereas the external com-

ponent may be prone to variation if the camera is not mounted securely.
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eliminated. Indeed, image interpretation is nowadays targeted at, and frequently

achieves, subpixel accuracy. In addition, disparities between stereo images are in

the first order of small quantities, and single pixel errors would lead to significant

errors in depth measurement. Hence, it is more the rule than the exception that

3-D image analysis will need to make corrections for barrel or pincushion

distortion.

For reasons of symmetry, the distortions that arise in images tend to involve

radial expansions or contractions relative to the optical axis—corresponding

respectively to pincushion or barrel distortion. As with many types of error, series

solutions can be useful. Thus, it is worthwhile to model the distortions as:

r0 5 rf ðrÞ5 rða0 1 a2r
2 1 a4r

4 1 a6r
6 1?Þ (18.33)

the odd orders in the brackets canceling to zero, again for reasons of symmetry. It

is usual to set a0 to unity, as this coefficient can be taken up by the scale para-

meters in the camera calibration matrix.

To fully define the effect, we write the x and y distortions as:

x0 � xc 5 ðx� xcÞð11 a2r
2 1 a4r

4 1 a6r
6 1?Þ (18.34)

y0 � yc 5 ðy� ycÞð11 a2r
2 1 a4r

4 1 a6r
6 1?Þ (18.35)

Here x and y are measured relative to the position of the optical axis of the lens

(xc, yc), so r5 (x2 xc, y2 yc), r
0 5 (x0 2 xc, y

0 2 yc).

As remarked above, the errors to be expected are in the range 2% or less.

This means that it is normally sufficiently accurate to take just the first

correction term in the expansion and disregard the rest. At the very least, this will

introduce such a large improvement in the accuracy that it will be difficult to

detect any discrepancies, especially if the image dimensions are 5123 512 pixels

FIGURE 18.3

Photograph of a brick wall showing radial (barrel) distortion.
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or less.4 In addition, computation errors in matrix inversion and convergence of

3-D algorithms will add to the digitization errors, tending further to hide higher

powers of radial distortion. Thus, in most cases the latter can be modeled using a

single parameter equation:

r0 5 rf ðrÞ5 rð11 a2r
2Þ (18.36)

Note that the above theory only models the distortion: clearly, it has to be cor-

rected by the corresponding inverse transformation.

It is instructive to consider the apparent shape of a straight line that appears,

e.g., along the top of an image (Fig. 18.3). Take the image dimensions to range

over �x1# x# x1, �y1# y# y1, and the optical axis of the camera to be at the

center of the image. Then the straight line will have the approximate equation:

y0 5 y1½11 a2ðx2 1 y21Þ�5 y1 1 a2y
3
1 1 a2y1x

2 (18.37)

which represents a parabola. The vertical error at the center of the parabola is

a2y1
3 and the additional vertical error at the ends is a2y1x1

2. If the image is square

(x15 y1), these two errors are equal (the erroneous impression is given by the

parabola shape that the error at x5 0 is zero).

Finally, note that digital scanners are very different from single lens cameras,

in that their lenses travel along the object space during acquisition. Thus, longitu-

dinal errors are unlikely to arise to anything like the same extent, although lateral

errors could in principle be problematic.

18.6 MULTIPLE VIEW VISION
Over the 1990s a considerable advance in 3-D vision was made by examining

what could be learnt from uncalibrated cameras using multiple views. At first

sight, considering the efforts made in earlier sections of this chapter to understand

exactly how cameras should be calibrated, this may seem nonsensical.

Nevertheless, there are considerable potential advantages in examining multiple

views—not least, many thousands of videotapes are available from uncalibrated

cameras, including those used for surveillance and those produced in the film

industry. In such cases, as much must be made of the available material as possi-

ble, whether or not any regrets over “what might have been” are entertained.

However, the need is deeper than this. Many situations exist in which the camera

parameters might vary because of thermal variations, or because the zoom or

focus setting has been adjusted: and it is impracticable to keep recalibrating a

4This remark will not apply to many web cameras, which are sold at extremely low prices on the

mainly amateur market. While the camera chip and electronics are often very good value, the

accompanying low-cost lens may well require extensive correction to ensure that distortion-free

measurements are possible.
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camera using accurately made test objects. Finally, if multiple (e.g., stereo) cam-

eras are used, each will have to be calibrated separately and the results compared

to minimize the combined error: far better to examine the system as a whole, and

to calibrate it on the real scenes that are being viewed.

In fact, we have already met some aspects of these aspirations, in the form of

invariants that are obtained in sequence by a single camera. For example, if a series

of four collinear points are viewed and their cross-ratio is checked, it will be found

to be constant as the camera moves forward, changes orientation, or views the

points increasingly obliquely—so long as they all remain within the field of view.

For this purpose, all that is required to perform the recognition and maintain aware-

ness of the object (the four points) is an uncalibrated but distortion-free camera. By

distortion-free we here mean not the ability to correct perspective distortion—which

is, after all, the function of the cross-ratio invariant—but the lack of radial distor-

tion, or at least the capability in the following software for eliminating it (see

Section 18.5).

To understand how image interpretation can be carried out more generally,

using multiple views—whether from the same camera moved to a variety of

places, or multiple cameras with overlapping views of the world—we shall need

to go back to basics and start afresh with a more general attack on concepts such

as binocular vision and epipolar constraints. In particular, two important matrices

will be called into play—the “essential” matrix and the “fundamental” matrix.

We start with the essential matrix and then generalize the idea to the fundamental

matrix. But first we need to look at the geometry of two cameras with general

views of the world.

18.7 GENERALIZED EPIPOLAR GEOMETRY
In Section 15.3, we considered the stereo correspondence problem, and had

already simplified the task by choosing two cameras whose image planes were

not only parallel but in the same plane. This made the geometry of depth percep-

tion especially simple, but suppressed possibilities allowed for in the human

visual system (HVS), of having a nonzero vergence angle between the two

images. Indeed, the HVS is special in adjusting vergence so that the current focus

of attention in the field of view has almost zero disparity between the two images,

and it seems likely that the HVS estimates depth not merely by measuring dispar-

ity but rather by measuring the vergence together with remanent small variations

in disparity.

Here we generalize the situation to cover the possibility of disparity coupled

with substantial vergence. Figure 18.4 shows the revised geometry. Note first that

observation of a real point P in the scene leads to points P1 and P2 in the two

images; that P1 could correspond to any point on the epipolar line E2 in image 2;

and similarly, that point P2 could correspond to any point on the epipolar line E1
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in image 1. Indeed, the so-called “epipolar plane” of P is the plane containing P

and the projection points C1 and C2 of the two cameras: the epipolar lines (see

Section 15.3) are thus the straight lines in which this plane cuts the two image

planes. Furthermore, the line joining C1 and C2 cuts the image planes in the so-

called epipoles e1 and e2: these can be regarded as the images of the alternate

camera projection points. Note that all epipolar planes pass through points C1, C2

and e1, e2: this means that all epipolar lines in the two images pass through the

respective epipoles. However, if the vergence angle were zero (as in Fig. 18.5),

the epipoles would be at infinity in either direction, and all epipolar lines in either

image would be parallel, and indeed parallel to the vector C from C1 to C2.

18.8 THE ESSENTIAL MATRIX
In this section, we start with the vectors P1, P2, from C1, C2 to P, and also the

vector C from C1 to C2. Vector subtraction gives:

P2 5P1 � C (18.38)

We also know that P1, P2, and C are coplanar, the condition of coplanarity

being:5

P2 �C3P1 5 0 (18.39)

P

QP1

Q2

E1

C1

Q1

e1

E2

e2
C2

P2

FIGURE 18.4

Generalized imaging of a scene from two viewpoints. In this case there is substantial

vergence. All epipolar lines in the left image pass through epipole e1: of these, only E1
is shown. Similar comments apply for the right image.

5This can be thought of as bringing to zero the volume of the parallelepiped with sides P1, P2,

and C.

492 CHAPTER 18 Image Transformations and Camera Calibration



To progress, we need to relate the vectors P1 and P2 when these are expressed

relative to their own frames of reference. If we take these vectors as having been

defined in the C1 frame of reference, we now re-express P2 in its own (C2) frame

of reference, by applying a translation C and a rotation of coordinates expressed

as the orthogonal matrix R. This leads to:

P0
2 5RP2 5RðP1 � CÞ (18.40)

so that:

P2 5R�1P0
2 5RTP0

2 (18.41)

Substituting in the coplanarity condition gives:

ðRTP0
2ÞUC3P1 5 0 (18.42)

C1 C2

FIGURE 18.5

Error in locating a feature in space using binocular imaging. The dark shaded regions

represent the regions of space that could arise for small errors in the image planes. The

crossover region, shaded black, confirms that longitudinal errors will be much larger than

lateral errors. A full analysis would involve applying Gaussian or other error functions (see text).
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At this point, it is useful to replace the vector product notation by using a

skew-symmetric matrix C3 to denote C3 , where:

C3 5
0 2Cz Cy

Cz 0 2Cx

2Cy Cx 0

2
4

3
5 (18.43)

At the same time, we observe the correct matrix formulation of all the vectors

by transposing appropriately. We now find that:

ðRTUP0
2ÞTC3P1 5 0 (18.44)

‘ P0
2
TRC3P1 5 0 (18.45)

Finally, we obtain the “essential matrix” formulation:

P0
2
TEP1 5 0 (18.46)

where the essential matrix has been found to be:

E5RC3 (18.47)

Equation (18.46) is actually the desired result: it expresses the relation

between the observed positions of the same point in the two camera frames of ref-

erence. Furthermore, it immediately leads to formulae for the epipolar lines. To

see this, first note that in the C1 camera frame:

p1 5
f1

Z1

� �
P1 (18.48)

while in the C2 camera frame (and expressed in terms of that frame of reference):

p02 5
f2

Z2

� �
P0
2 (18.49)

Eliminating P1 and P
0
2, and dropping the prime (as within the respective image

planes the numbers 1 and 2 are sufficient to specify the coordinates unambigu-

ously), we find:

pT2Ep1 5 0 (18.50)

as Z1, Z2 and f1, f2 can be canceled from this matrix equation.
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Now note that writing p2
TE5 l1

T and l25Ep1 leads to the following relations:

pT1 l1 5 0 (18.51)

pT2 l2 5 0 (18.52)

This means that l25Ep1 and l15ETp2 are the epipolar lines corresponding to p1
and p2, respectively.

6

Finally, we can find the epipoles from the above formulation. In fact, the epi-

pole lies on every epipolar line within the same image. Thus, e2 satisfies (can be

substituted for p2 in) equation (18.52), and hence:

eT2 l2 5 0

‘ eT2 Ep1 5 0 for all p1:

This means that e2
TE5 0, i.e., ETe25 0. Similarly, Ee15 0.

18.9 THE FUNDAMENTAL MATRIX
Note that in the last part of the essential matrix calculation, we implicitly assumed

that the cameras are correctly calibrated. Specifically, p1 and p2 are corrected

(calibrated) image coordinates. However, there is a need to work with uncali-

brated images, using the raw pixel measurements7—for all the reasons given in

Section 18.6. Applying the camera intrinsic matrices G1, G2 to the calibrated

image coordinates (Section 18.4), we get the raw image coordinates:

q1 5G1p1 (18.53)

q2 5G2p2 (18.54)

In fact, we here need to go in the reverse direction, so we use the inverse

equations:

p1 5G�1
1 q1 (18.55)

p2 5G�1
2 q2 (18.56)

Substituting for p1 and p2 in equation (18.50), we find the desired equation link-

ing the raw pixel coordinates:

qT2 ðG�1
2 ÞTEG�1

1 q1 5 0 (18.57)

6Consider a line l and a point p. pTl5 0 means that p lies on the line l, or dually, l passes through

the point p.
7However, any radial distortions need to be eliminated, so as to idealize the camera, but not to cali-

brate it in the sense of Sections 18.3 and 18.4.
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which can be expressed as:

qT2Fq1 5 0 (18.58)

where

F5 ðG�1
2 ÞTEG�1

1 (18.59)

F is defined as the “fundamental matrix.” Because it contains all the information

that would be needed to calibrate the cameras, it contains more free parameters

than the essential matrix. However, in other respects the two matrices are

intended to convey the same basic information, as is confirmed by the resem-

blance between the two formulations—Eqs. (18.46) and (18.58).

Finally, just as in the case of the essential matrix, the epipoles are given by

Ff15 0 and FTf25 0, although this time in raw image coordinates f1 and f2.

18.10 PROPERTIES OF THE ESSENTIAL AND
FUNDAMENTAL MATRICES

Next we consider the composition of the essential and fundamental matrices. In

particular, note that C3 is a factor of E and also, indirectly, of F. In fact, they are

homogeneous in C3 , so the scale of C will make no difference to the two matrix

formulations (Eqs. (18.46) and (18.58)), only the direction of C being important:

indeed, the scales of both E and F are immaterial, and as a result only the relative

values of their coefficients are of importance. This means that there are at most

only eight independent coefficients in E and F. In fact, in the case of F there are

only seven, as C3 is skew-symmetric, and this ensures that it has rank 2 rather

than rank 3—a property that is passed on to F. The same argument applies for E,

but the lower complexity of E (by virtue of its not containing the image calibration

information) means that it has only five free parameters. In the latter case, it is

easy to see what they are: they arise from the original three translation (C) and

three rotation (R) parameters, less the one parameter corresponding to scale.

In this context, note that if C arises from a translation of a single camera, the

same essential matrix will result whatever the scale of C: only the direction of C

actually matters, and the same epipolar lines will result from continued motion in

the same direction. In fact, in this case we can interpret the epipoles as foci of

expansion or contraction. This underlines the power of this formulation: specifi-

cally, it treats motion and displacement as a single entity.

Finally, we should try to understand why there are seven free parameters in

the fundamental matrix. The solution is relatively simple. Each epipole requires

two parameters to specify it. In addition, three parameters are needed to map any

three epipolar lines from one image to the other. But why do just three epipolar

lines have to be mapped? This is because the family of epipolar lines is a pencil

whose orientations are related by cross-ratios, so once three epipolar lines have
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been specified the mapping of any other can be deduced. (Knowing the properties

of the cross-ratio, it is seen that fewer than three epipolar lines would be insuffi-

cient and that more than three would yield no additional information.) This fact is

sometimes stated in the following form: a homography (a projective transforma-

tion) between two 1-D projective spaces has three degrees of freedom.

18.11 ESTIMATING THE FUNDAMENTAL MATRIX
In the previous section, we showed that the fundamental matrix has seven free

parameters. This means that it ought to be possible to estimate it by identifying

the same seven features in the two images.8 However, while this is mathematically

possible in principle and a suitable nonlinear algorithm has been devised by

Faugeras et al. (1992) to implement it, it has been shown that the computation can

be numerically unstable. Essentially, noise acts as an additional variable boosting

the effective number of degrees of freedom in the problem to eight. However, a

linear algorithm called the eight-point algorithm has been devised to overcome the

problem. Curiously, this algorithm had been proposed many years earlier by

Longuet-Higgins (1981) to estimate the essential matrix, but it came into its own

when Hartley (1995) showed how to control the errors by first normalizing the

values. In addition, by using more than eight points, increased accuracy can be

attained, but then a suitable algorithm must be found that can cope with the now

overdetermined parameters. Principal components analysis can be used for this, an

appropriate procedure being singular value decomposition (SVD).

Apart from noise, gross mismatches in forming trial point correspondences

between images can be a source of practical problems. If so, the normal least-

squares types of solution can profitably be replaced by the least median of squares

robust estimation method (Appendix A).

18.12 AN UPDATE ON THE EIGHT-POINT ALGORITHM
Section 18.11 outlined the value of the eight-point algorithm for estimating the

fundamental matrix. Over a period of about 8 years (1995�2003) this essentially

became the standard solution to the problem. However, a key contribution by

Torr and Fitzgibbon (2003, 2004) has shown that the eight-point algorithm might

after all not be the best possible method, since the solutions it obtains depend on

the particular coordinate system used for the computation. This is because the

8Using the minimum number of points in this way carries the health warning that they must be in

general position: special configurations of points can lead to numerical instabilities in the computa-

tions, total failure to converge, or unnecessary ambiguities in the results. In general, coplanar points

are to be avoided.
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normalization normally used, namely
P

i f
2
i 5 1;9 is not invariant to shifts in the

coordinate system. In fact, it is by no means obvious how to find an invariant nor-

malization. Nevertheless, Torr and Fitzgibbon’s logical analysis of the situation in

which they were forced to disregard the affine transform case appropriate for

weak perspective, led to the following normalization of F:

f 21 1 f 22 1 f 24 1 f 25 5K (18.60)

where K is a constant and:

F5
f1 f2 f3
f4 f5 f6
f7 f8 f9

2
4

3
5 (18.61)

Finally, to determine F, Eq. (18.60) can be applied as a Lagrangian multiplier

constraint and this leads to an eigenvector solution for F. Overall, the 83 8 eigen-

value problem solved by the eight-point algorithm is replaced by a 53 5 eigen-

value problem. Furthermore, this approach not only yields the required invariance

properties, thus ensuring a more accurate solution, but also it gives a much faster

computation that loses significantly fewer tracks in image sequence analysis.

18.13 IMAGE RECTIFICATION
In Section 18.7, we took some pains to generalize the epipolar approach and sub-

sequently arrived at general solutions, corresponding to arbitrary overlapping

views of scenes. However, there are distinct advantages in special views obtained

from cameras with parallel axes—as in the case of Fig. 18.5 where the vergence

is zero. Specifically, it is easier to find correspondences between scenes that are

closely related in this way. Unfortunately, such well-prepared pairs of images are

not in keeping with the aims promoted in Section 18.6, of insisting on closely

aligned and calibrated cameras, and this certainly doesn’t apply to frames taken

by a single moving camera unless its motion is severely constrained by special

means. In fact, the solution is straightforward: take images with uncalibrated cam-

eras, estimate the fundamental matrix, and then apply suitable linear transforma-

tions to compute the images for any desired idealized camera positions. The latter

technique is called image rectification and ensures, e.g., that the epipolar lines are

all parallel to the baseline C between the centers of projection. This then results

in correspondences being found by searching along points with the same ordinate

in the alternate image: for a point with coordinates (x1, y1) in the first image,

search for a matching point (x2, y1) in the second image.

9Early on, Tsai and Huang (1984) suggested the normalization f95 1, but this leads to biased solu-

tions, and for example excludes solutions with f95 0.
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When rectifying an image, it will in general be rotated in 3-D,10 and the obvi-

ous way of achieving this is to transfer each individual pixel to its new location in

the rectified image. However, rotations are nonlinear processes and will in some

cases have the effect of mapping several pixels into a single pixel; furthermore, a

number of pixels may well not have intensity values assigned to them. While the

first of these problems could be tackled by some sort of intensity averaging pro-

cess and the latter problem could be tackled by applying a median or other type of

filter to the transformed image, such techniques are insufficiently thoroughgoing

to provide accurate, reliable solutions. The proper way of overcoming these intrin-

sic difficulties is to backproject the pixel locations from the transformed image

space to the source image, use interpolation to compute the ideal pixel intensities,

and then transfer these intensities to the transformed image space.

Bilinear interpolation is used most often in the transformation process. This works

by performing interpolation in the x-direction and then in the y-direction. Thus, if the

location to be interpolated to is (x1 a, y1 b) where x and y are integer pixel loca-

tions, and 0# a, b# 1, then the interpolated intensities in the x-direction are:

Iðx1 a; yÞ5 ð1� aÞIðx; yÞ1 aIðx1 1; yÞ (18.62)

Iðx1 a; y1 1Þ5 ð1� aÞIðx; y1 1Þ1 aIðx1 1; y1 1Þ (18.63)

and the final result after interpolating in the y-direction is:

Iðx1 a; y1 bÞ5 ð1� aÞð1� bÞIðx; yÞ1 að1� bÞIðx1 1; yÞ
1 ð1� aÞbIðx; y1 1Þ1 abIðx1 1; y1 1Þ (18.64)

The symmetry of the result shows that it makes no difference which axis is cho-

sen for the first pair of interpolations, and this limits the arbitrariness of the

method. Note that the method does not assume a locally planar intensity variation

in 2-D: this is clear as the value of the I(x1 1, y1 1) intensity is taken into

account as well as the other three intensity values. Nevertheless, bilinear interpo-

lation is not a totally ideal solution, as it takes no account of the sampling theo-

rem, and for this reason the bi-cubic interpolation method (which involves more

computation) is sometimes used instead. In addition, all such methods introduce

slight local blurring of the image as they involve averaging of local intensity

values. Overall, transformation processes such as this are bound to result in slight

degradation of the image data.

18.14 3-D RECONSTRUCTION
In Section 18.10, the fact that F is determined only up to an unknown scale factor

(or equivalently that the actual scales of its coefficients as obtained are arbitrary)

10Of course, it may also be translated and scaled, in which case the effect described here may be

even more significant.
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was strongly emphasized. This reflected the deliberate avoidance of camera cali-

bration in this work. In practice, this means that if the results of computations of

F are to be related back to the real world, the scaling factor must be reinstated. In

principle, this can be achieved by viewing a single yardstick: it is unnecessary to

view an object such as a Rubik cube, as knowledge of F carries with it a lot of

information on relative dimensions in the real world. This factor is important

when reconstructing a real scene with a real depth map.

There are a number of methods for image reconstruction, of which perhaps

the most obvious is triangulation. This starts by taking two camera positions con-

taining normalized images and projecting rays for a given point P back into the

real world until they meet. In fact, attempting to do this meets with an immediate

problem: the inaccuracies in the available parameters, coupled with the pixellation

of the images, ensure that in most cases rays will not actually meet, as they are

skew lines. The best that can be done with skew lines is to determine the position

of closest approach. Once this has been found, the bisector of the line of closest

approach (which is perpendicular to each of the rays) is, in this model, the most

accurate estimate of the position of P in space.

Unfortunately, the above model is not guaranteed to give the most accurate

prediction of the position of P. This is because perspective projection is a highly

nonlinear process: in particular, slight misjudgement of the orientation of the

point from either of the images can cause a substantial depth error, coupled with

a significant lateral error: so much is indeed obvious from Fig. 18.5. This being

so, it has to be asked where the error might still be linear, so that, at that position

at least, error calculation can be based on Gaussian distributions.11 In fact, the

errors can be taken to be approximately Gaussian in the images themselves. This

means that the point in space that has to be chosen as representing the most accu-

rate interpretation of the data is that which results in the minimum error (in a least

mean square sense) when reprojected onto the image planes. Typically, the error

obtained using this approach is a factor of two smaller than that for the triangula-

tion method described above (Hartley and Zisserman, 2000).

Finally, it is useful to mention a further type of error that can arise with two

cameras. This applies when they both view an object with a smoothly varying

boundary. For example, if both cameras are viewing the right-hand edge of a vase

of circular cross-section, each will see a different point on the boundary and a dis-

crepancy will arise in the estimated boundary position (Fig. 18.6). It is left as an

exercise (Section 18.17) to determine the exact magnitude of such errors. In fact,

the error is proportional both to a, where a is the local radius of curvature of the

observed boundary, and to Z�2, where Z is the depth in the scene. This means

that the error (and the percentage error) tends to zero at large distances, and also

that the error falls properly to zero for sharp corners.

11Here we ignore the possibility of gross errors arising from mismatches between images, which is

the subject of further discussion in Section 18.11 and elsewhere.
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18.15 CONCLUDING REMARKS
This chapter has discussed the transformations required for camera calibration

and has outlined how calibration can be achieved. The camera parameters have

been classified as “internal” and “external,” thereby simplifying the conceptual

problem and throwing light on the origins of errors in the system. It has been

shown that a minimum of six points is required to perform calibration in the gen-

eral case where eleven transformation parameters are involved; however, the

a

α

b

Z

FIGURE 18.6

Lateral estimation error arising with a smoothly varying boundary. The error arises in

estimating the boundary position when information from two views is fused in the standard

way. a is the radius of a vase being observed, α is the disparity in direction of its right-

hand boundary, Z is its depth in the scene, and b is the stereo baseline.
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number of points required might be reduced somewhat in special cases, e.g.,

where the sensor is known to be Euclidean. Nevertheless, it is normally more

important to increase the number of points used for calibration than to attempt to

reduce it, since substantial gains in accuracy can be obtained via the resulting

averaging process.

In an apparent break with the previous work, Section 18.5 introduced multiple

view vision. This important topic was seen to rest on generalized epipolar geome-

try, and led to the essential and fundamental matrix formulations, which relate the

observed positions of any point in two camera frames of reference. The impor-

tance of the eight-point algorithm for estimating either of these matrices—and

particularly the fundamental matrix, which is relevant when the cameras are

uncalibrated—was stressed. In addition, the need for accuracy in estimating the

fundamental matrix is still a research issue.

The obvious way of tackling vision problems is to set up a camera and calibrate it, and only
then to use it in anger. This chapter has shown how, to a large extent, calibration can be
avoided or carried out adaptively “on the fly”—by performing multiple view vision and
analyzing the various key matrices that arise from the generalized epipolar problems.

18.16 BIBLIOGRAPHICAL AND HISTORICAL NOTES
One of the first to use the various transformations described in this chapter was

Roberts (1965). Important early references for camera calibration are the Manual

of Photogrammetry (Slama, 1980), Tsai and Huang (1984), and Tsai (1986).

Tsai’s paper is especially useful in that he provides an extended, highly effective

treatment that copes with nonlinear lens distortions. More recent papers on this

topic include Haralick (1989), Crowley et al. (1993), Cumani and Guiducci

(1995), and Robert (1996): see also Zhang (1995). Note that parametrized plane

curves can be used instead of points for the purpose of camera calibration

(Haralick and Chu, 1984).

Clearly, camera calibration is an old topic that is revisited every time 3-D

vision has to be used for measurement, and otherwise when rigorous analysis of

3-D scenes is called for. The calibration scenario started to undergo a metamor-

phosis in the early 1990s, when it was realised that much could be learnt without

overt calibration, but rather by comparing images taken from moving sequences

or from multiple views (Faugeras, 1992; Faugeras et al., 1992; Hartley, 1992;

Maybank and Faugeras, 1992). In fact, while it was appreciated that much could

be learnt without overt calibration, it was not at that stage known how much

might be learnt, and there ensued a rapid sequence of developments as the fron-

tiers were progressively pushed back (e.g., Hartley, 1995; Hartley, 1997; Luong

and Faugeras, 1997). By the late 1990s the fast evolution phase was over, and

definitive, albeit quite complex, texts appeared covering these developments
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(Hartley and Zisserman, 2000; Faugeras and Luong, 2001; Gruen and Huang,

2001). Nevertheless, many refinements of the standard methods were still emerg-

ing (Faugeras et al., 2000; Heikkilä, 2000; Sturm, 2000; Roth and Whitehead,

2002). It is in this light that the innovative insights of Torr and Fitzgibbon (2003,

2004) and Chojnacki et al. (2003) expressing similar but not identical sentiments

relating to the eight-point algorithm should be considered.

In retrospect, it is amusing that the early, incisive paper by Longuet-Higgins

(1981) presaged many of these developments: while his eight-point algorithm

applied specifically to the essential matrix, it was only very much later (Faugeras,

1992; Hartley, 1992) that it was applied to the fundamental matrix, and even later,

in a crucial step, that its accuracy was greatly improved by prenormalizing the

image data (Hartley, 1997). As already noted, the eight-point algorithm continued

to be a focus for new research.

18.16.1 More Recent Developments
Most recently, Gallo et al. (2011) have studied how planes may be fitted to sur-

faces that are obtained from range data (i.e., sets of data points whose real-world

(X, Y, Z) coordinates are approximately known). While RANSAC should provide

useful solutions, it sometimes fails when finding pairs of planar patches, and a

single plane is fitted to both, with the result that it contains more inliers than the

correct models. To cope with this, they devised an alternate form of RANSAC,

CC-RANSAC, which only considers the largest connected components of inliers

for a given plane hypothesis. The method requires an inlier threshold to be set

and this has to be adjusted for the particular application in question. One relevant

application is automatic car parking where a single level near a curb has to be

identified.

While the eight-point algorithm has become standard for solving the funda-

mental matrix, the latter only contains seven independent parameters so only

identifying the same seven features in two images should be enough to solve it.

Bartoli and Sturm (2004) have found that this is realizable if nonlinear estimation

is used. The method converges faster than other approaches, although it is some-

what more likely to fall into local minima than methods based on redundant para-

meters. Fathy et al. (2011) study error criteria for fundamental matrix estimation.

They show that the symmetric epipolar distance criterion is biased, and find that

of a number of available criteria, the recently developed Kanatani distance crite-

rion (Kanatani et al., 2008) appears to be the most accurate. Ansar and Daniilidis

(2003) have devised a novel set of algorithms for linear pose estimation from n

points or n lines. The methods will find solutions for cases of n$ 4, for points in

general position. While two similar existing noniterative methods exist in the case

of estimation from n points (to which the new method is shown to be superior),

there is no directly competing case for n lines.
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18.17 PROBLEMS
1. For a two-camera stereo system, obtain a formula for the depth error that

arises for a given error in disparity. Hence show that the percentage error in

depth is numerically equal to the percentage error in disparity. What does this

result mean in practical terms? How does the pixellation of the image affect

the result?

2. A cylindrical vase with a circular cross-section of local radius a is viewed by

two cameras (Fig. 18.6). Obtain a formula giving the error δ in the estimated

position of the boundary of the vase. Simplify the calculation by assuming

that the boundary is on the perpendicular bisector of the line joining the cen-

ters of projection of the two cameras, and hence find α (Fig. 18.6) in terms of

b and Z. Determine δ in terms of α and then substitute for α from the previous

formula. Hence justify the statements made at the end of Section 18.14.

3. Discuss the potential advantages of trinocular vision in the light of the theory

of Section 18.8. What would be the best placement for a third camera? Where

should the third camera not be placed? Would any gain be achieved by incor-

porating even more views of a scene?
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CHAPTER

19Motion

Motion is another aspect of 3-D vision that humans are able to interpret with

ease. This chapter studies the basic theoretical concepts. It is left to Chapters 22

and 23 to apply them to real problems where motion is crucial, including the

monitoring of traffic flow and the tracking of people.

Look out for:

• the basic concepts of optical flow, and its limitations.

• the idea of a focus of expansion, and how it leads to the possibility of “struc-

ture from motion.”

• how motion stereo is achieved.

• the important status of the Kalman filter in motion applications.

• the ways in which invariant features may be used for wide baseline matching.

Note that this introductory chapter on 3-D motion leads to important methods for

performing vital surveillance tasks—as will be seen in Chapters 22 and 23.

19.1 INTRODUCTION
This chapter is concerned with the analysis of motion in digital images. For space

reasons, it will not be possible to cover the whole subject comprehensively.

Instead, the aim is to give the flavor of the subject, airing some of the principles

that have proved important over the past two or three decades. Over much of the

time, optical flow has been topical. It is appropriate to study it in fair detail

because of its importance for surveillance and other applications. Later in the

chapter, the use of the Kalman filter for tracking moving objects is discussed, and

the use of invariant features such as the scale-invariant feature transform (SIFT)

for wide baseline matching, also relevant to motion tracking, is covered.

Computer and Machine Vision.
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19.2 OPTICAL FLOW
When scenes contain moving objects, analysis is necessarily more complex than

for scenes where everything is stationary, since temporal variations in intensity

have to be taken into account. However, intuition suggests that it should be

possible—even straightforward—to segment moving objects by virtue of their

motion. Image differencing over successive pairs of frames should permit this to

be achieved. More careful consideration shows that things are not quite so simple,

as illustrated in Fig. 19.1. The reason is that regions of constant intensity give no

sign of motion, and edges parallel to the direction of motion give the appearance

of not moving. Only edges with a component normal to the direction of motion

carry information about the motion. In addition, there is some ambiguity in the

direction of the velocity vector. This arises partly because there is too little infor-

mation available within a small aperture to permit the full velocity vector to be

computed (Fig. 19.2). This is hence called the aperture problem.

(c)

(a) (b)

FIGURE 19.1

Effect of image differencing. The figure shows an object that has moved between frames

(a) and (b). (c) The result of performing an image differencing operation. Note that the

edges parallel to the direction of motion do not show up in the difference image. Also,

regions of constant intensity give no sign of motion.
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These elementary ideas can be taken further, and they lead to the notion of

optical flow, wherein a local operator which is applied at all pixels in the image

will lead to a motion vector field that varies smoothly over the whole image. The

attraction lies in the use of a local operator, with its limited computational burden.

Ideally, it would have an overhead comparable to an edge detector in a normal

intensity image—although clearly it will have to be applied locally to pairs of

images in an image sequence.

We start by considering the intensity function I(x, y, t) and expanding it in a

Taylor series:

Iðx1 dx; y1 dy; t1 dtÞ5 Iðx; y; tÞ1 Ixdx1 Iydy1 Itdt1? (19.1)

where second- and higher order terms have been ignored. In this equation, Ix, Iy,

and It denote respective partial derivatives with respect to x, y, and t.

We next set the local condition that the image has shifted by amount (dx, dy)

in time dt so that it is functionally identical at (x1 dx, y1 dy, t1 dt) and (x, y, t):

Iðx1 dx; y1 dy; t1 dtÞ5 Iðx; y; tÞ (19.2)

Hence, we can deduce:

It 5 �ðIx _x1 Iy _yÞ (19.3)

Writing the local velocity v in the form:

v5 ðvx; vyÞ5 ð _x; _yÞ (19.4)

we find:

It 5 �ðIxvx 1 IyvyÞ5 �rIUv (19.5)

(a) (b)

FIGURE 19.2

The aperture problem. The figure illustrates the aperture problem. (a) (Dark gray) regions

of motion of an object whose central uniform region (light gray) gives no sign of motion.

(b) Depiction of how little is visible in a small aperture (black border), thereby leading to

ambiguity in the deduced direction of motion of the object.
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It can be measured by subtracting pairs of images in the input sequence, while

rI can be estimated by Sobel or other gradient operators. Hence, it should be pos-

sible to deduce the velocity field v(x, y) using the above equation. Unfortunately,

this equation is a scalar equation and will not suffice for determining the two

local components of the velocity field as we require. There is a further problem

with this equation—that the velocity value will depend on the values of both It
and rI, and these quantities are only estimated approximately by the respective

differencing operators. In both cases, significant noise will arise, and this will be

exacerbated by taking the ratio in order to calculate v.

Let us now return to the problem of computing the full velocity field v(x, y).
All we know about v is that its components lie on the following line in (vx, vy)-

space (Fig. 19.3):

Ixvx 1 Iyvy 1 It 5 0 (19.6)

This line is normal to the direction (Ix, Iy), and has a distance from the (velocity)

origin that is equal to:

jvj5 �It

ðI2x 1 I2y Þ1=2
(19.7)

Clearly, we need to deduce the component of v along the line given by

Eq. (19.6). However, there is no purely local means of achieving this with first

derivatives of the intensity function. The accepted solution (Horn and Schunck,

0

|v|

vx

(Ix, Iy)

Ixvx+ Iyvy + It = 0

vy

FIGURE 19.3

Computation of the velocity field. The graph shows the line in velocity space on which the

velocity vector v must lie. The line is normal to the direction (Ix, Iy) and its distance from

the origin is known to be jvj (see text).
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1981) is to use relaxation labeling to arrive iteratively at a self-consistent solution

that minimizes the global error. In principle, this approach will also minimize the

noise problem indicated earlier.

In fact, there are still problems with the method. Essentially, these arise as

there are liable to be vast expanses of the image where the intensity gradient is

low. In that case, only very inaccurate information is available about the velocity

component parallel to rI, and the whole problem becomes ill-conditioned. On the

other hand, in a highly textured image, this situation should not arise (assuming

the texture has a large enough grain size to give good differential signals).

Finally, we return to the idea mentioned at the beginning of this section—that

edges parallel to the direction of motion would not give useful motion informa-

tion. Such edges will have edge normals normal to the direction of motion, so rI
will be normal to v. Thus, from Eq. (19.5), It will be zero. In addition, regions of

constant intensity will have rI5 0, so again It will be zero. It is interesting and

highly useful that such a simple equation (19.5) embodies all the cases that were

suggested earlier on the basis of intuition.

In what follows, we assume that the optical flow (velocity field) image has

been computed satisfactorily, that is, without the disadvantages of inaccuracy or

ill-conditioning. It must now be interpreted in terms of moving objects and in

some cases a moving camera. In fact, we shall ignore motion of the camera by

remaining within its frame of reference.

19.3 INTERPRETATION OF OPTICAL FLOW FIELDS
We start by considering a case where no motion is visible. In that case, the veloc-

ity field image contains only vectors of zero length (Fig. 19.4(a)). Next, we take a

case where one object is moving toward the right, with a simple effect on the

velocity field image (Fig. 19.4(b)). Next, we consider the case where the camera

is moving forward; in this case, all the stationary objects in the field of view

appear to be diverging from a point, which is called the focus of expansion

(FOE)—see Fig. 19.4(c); this image also shows an object that is moving rapidly

past the camera and has its own separate FOE. Figure 19.4(d) shows the case of

an object moving directly toward the camera. In this case, its FOE lies within its

outline. Similarly, objects that are receding appear to move away from the focus

of contraction. Next, there are objects that are stationary but rotating about the

line of sight. For these, the vector field appears as in Fig. 19.4(e). There is a final

case that is also quite simple: an object that is stationary but rotating about an

axis normal to the line of sight; if the axis is horizontal, then the features on the

object will appear to be moving up or down, while paradoxically the object itself

remains stationary (Fig. 19.4(f))—although its outline could oscillate as it rotates.

So far, we have only dealt with cases in which pure translational or pure rota-

tional motion is occurring. If a rotating meteor is rushing past, or a spinning

cricket ball is approaching, then both types of motion will occur together. In that
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 19.4

Interpretation of velocity flow fields. (a) A case where the object features all have zero

velocity. (b) A case where an object is moving to the right. (c) A case where the camera is

moving into the scene, and the stationary object features appear to be diverging from a

focus of expansion (FOE), while a single large object is moving past the camera and away

from a separate FOE. In (d), an object is moving directly toward the camera that is

stationary: the object’s FOE lies within its outline. In (e), an object is rotating about the line of

sight to the camera, and in (f), the object is rotating about an axis perpendicular to the line

of sight. In all cases, the length of the arrow indicates the magnitude of the velocity vector.
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case, unraveling the motion will be far more complex. We shall not solve this

problem here, but refer the reader to more specialized texts (e.g., Maybank,

1992). However, the complexity is due to the way depth (Z) creeps into the calcu-

lations. First, note that pure rotational motion with rotation about the line of sight

does not depend on Z. All we have to measure is the angular velocity, and this

can be done quite simply.

19.4 USING FOCUS OF EXPANSION TO AVOID COLLISION
We now take a simple case in which an FOE is located in an image and show

how it is possible to deduce the distance of closest approach of the camera to a

fixed object of known coordinates. This type of information is valuable for guid-

ing robot arms or robot vehicles and helping to avoid collisions.

In the notation of Chapter 15, we have the following formulas for the location

of an image point (x, y, z) resulting from a world point (X, Y, Z):

x5
f X

Z
(19.8)

y5
f Y

Z
(19.9)

z5 f (19.10)

Assuming the camera has a motion vector (2 _X;2 _Y ;2 _Z)5 (�u, �v, �w), fixed

world points will have velocity (u, v, w) relative to the camera. Now a point (X0,

Y0, Z0) will after a time t appear to move to (X, Y, Z)5 (X01 ut, Y01 vt, Z01wt)

with image coordinates:

ðx; yÞ5 f ðX0 1 utÞ
Z0 1wt

;
f ðY0 1 vtÞ
Z0 1wt

� �
(19.11)

and as t-N this approaches the focus of expansion F (fu/w, fv/w). This point is

in the image, but the true interpretation is that the actual motion of the center of

projection of the imaging system is toward the point:

p5
fu

w
;
fv

w
; f

� �
(19.12)

(This is of course consistent with the motion vector (u, v, w) assumed initially.)

The distance moved during time t can now be modeled as:

Xc 5 ðXc;Yc; ZcÞ5αtp5 fαt
u

w
;
v

w
; 1

 �
(19.13)

where α is a normalization constant. To calculate the distance of closest approach

of the camera to the world point X5 (X, Y, Z), we merely specify that the vector
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Xc � X be perpendicular to p (Fig. 19.5) so that:

ðXc � XÞUp5 0 (19.14)

i:e:; ðαtp� XÞUp5 0 (19.15)

‘ αtpUp5XUp (19.16)

‘ t5
XUp

αðpUpÞ (19.17)

Substituting in the equation for Xc now gives:

Xc 5
pðXUpÞ
pUp

(19.18)

Hence, the minimum distance of approach is given by:

d2min 5
pðXUpÞ
ðpUpÞ 2X

� �2
5

ðXUpÞ2
ðpUpÞ 2

2ðXUpÞ2
ðpUpÞ 1ðXUXÞ

5 ðXUXÞ2 ðXUpÞ2
ðpUpÞ

(19.19)

which is naturally zero when p is aligned along X. Clearly, avoidance of collisions

requires an estimate of the size of the machine (e.g., robot or vehicle) attached to

the camera and the size to be associated with the world point feature X. Finally,

note that while p is obtained from the image data, X can only be deduced from

the image data if the depth Z can be estimated from other information. In fact, this

information should be available from time-to-adjacency analysis (see below) if the

speed of the camera through space (and specifically w) is known.

0
X

p

Xc

dmin

FIGURE 19.5

Calculation of distance of closest approach. Here, the camera is moving from 0 to Xc in the

direction p, not in a direct line to the object at X. dmin is the distance of closest approach.
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19.5 TIME-TO-ADJACENCY ANALYSIS
In this section, we consider the extent to which the depths of objects can be

deduced from optical flow. First, note that features on the same object share the

same FOE, and this can help us to identify them. But how can we get information

on the depths of the various features on the object from optical flow? The basic

approach is to start with the coordinates of a general image point (x, y), deduce

its flow velocity, and then find an equation linking this with the depth Z.

Taking the general image point (x, y) given in Eq. (19.11), we find:

_x5
f ½ðZ0 1wtÞu2ðX0 1 utÞw�

ðZ0 1wtÞ2

5 f
ðZu2XwÞ

Z2

(19.20)

and

_y5 f
ðZv2 YwÞ

Z2
(19.21)

Hence:

_x

_y
5

ðZu2XwÞ
ðZv2 YwÞ 5

ðu=w2X=ZÞ
ðv=w2 Y=ZÞ

5
ðx2 xFÞ
ðy2 yFÞ

(19.22)

This result was to be expected, as the motion of the image point has to be directly

away from the focus of expansion (xF, yF). Without loss of generality, we now

take a set of axes such that the image point considered is moving along the x-

axis. Then we have:

_y5 0 (19.23)

yF 5 y5
f Y

Z
(19.24)

Defining the distance from the focus of expansion as Δr (see Fig. 19.6), we find:

Δr5Δx5 x2 xF 5
f X

Z
2
fu

w
5

f ðXw2 ZuÞ
Zw

(19.25)

‘
Δr

_r
5

Δx

_x
52

Z

w
(19.26)

Defining the time to adjacency Ta as the time it will take for the origin of the

camera coordinate system to arrive at the object point, Eq. (19.26) means that Ta
is the same (Z/w) when the object is observed in real-world coordinates as when

it is observed in image coordinates (�Δr/ _r). Hence, it is possible to relate the
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optical flow vectors for object points at different depths in the scene. This is

important, as the assumption of identical values of w now allows us to determine

the relative depths of object points merely from their apparent motion parameters:

Z1

Z2
5

Δr1=Δr2

_r1= _r2
(19.27)

This is thus the first step in the determination of structure from motion. In this

context, note how the implicit assumption that the objects under observation are

rigid is included—namely, that all points on the same object are characterized by

identical values of w. The assumption of rigidity underlies much of the work on

interpretation of motion in images.

19.6 BASIC DIFFICULTIES WITH THE OPTICAL FLOW MODEL
When the optical flow ideas presented above are tried on real images, certain pro-

blems arise that are not apparent from the above model. First, not all edge points

that should appear in the motion image are actually present. This is due to the

contrast between the moving object and the background vanishing locally and

limiting visibility. The situation is exactly as for edges that are located by edge

detection operators in nonmoving images. The contrast simply drops to a low

value in certain localities and the edge peters out. This signals that the edge

model, and now the velocity flow model, is limited and such local procedures are

ad hoc and too impoverished to permit proper segmentation unaided.

Δr
r

F

.

FIGURE 19.6

Calculation of time to adjacency. Here, an object feature is moving directly away from the

focus of expansion F with speed _r. At the time of observation, the distance of the feature

from F is Δr. These measurements permit the time to adjacency and hence also the

relative depth of the feature to be calculated.
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Here, we take the view that simple models can be useful, but they become

inadequate on certain occasions and robust methods are required to overcome the

problems that then arise. Some of the problems were noticed by Horn as early as

1986 (Horn, 1986). First, a smooth sphere may be rotating but the motion will not

show up in an optical flow (difference) image. We can if we wish regard this as a

simple optical illusion, as the rotation of the sphere may well be invisible to the

eye too. Second, a motionless sphere may appear to rotate as the light rotates

around it. The object is simply subject to the laws of Lambertian optics, and again

we may if we wish regard this effect as an optical illusion. (The illusion is rela-

tive to the baseline provided by the normally correct optical flow model.)

We next return to the optical flow model and see where it could be wrong or

misleading. The answer is at once apparent: we stated in writing Eq. (19.2) that

we were assuming the image is being shifted. Yet it is not images that shift but

the objects imaged within them. Thus, we ought to be considering the images of

objects moving against a fixed background (or a variable background if the cam-

era is moving). This will then permit us to see how sections of the motion edge

can go from high to low contrast and back again in a rather fickle way, which we

must nevertheless allow for in our algorithms. With this in mind, it should be per-

missible to go on using optical flow and difference imaging, even though these

concepts have distinctly limited theoretical validity. (For a more thoroughgoing

analysis of the underlying theory, see Faugeras, 1993.)

19.7 STEREO FROM MOTION
An interesting aspect of camera motion is that over time the camera sees a suc-

cession of images that span a baseline in a similar way to binocular (stereo)

images. Thus, it should be possible to obtain depth information by taking two

such images and tracking object features between them. The technique is in prin-

ciple more straightforward than normal stereo imaging in that feature tracking is

possible, so the correspondence problem should be nonexistent. However, there is

a difficulty in that the object field is viewed from almost the same direction in

the succession of images so that the full benefit of the available baseline is not

obtained (Fig. 19.7). We can analyze the effect as follows.

First, in the case of camera motion, the equations for lateral displacement in

the image depend not only on X but also on Y, although we can make a simplifi-

cation in the theory by working with R, the radial distance of an object point

from the optical axis of the camera, where:

R5 ðX2 1 Y2Þ1=2 (19.28)

We now obtain the radial distances in the two images as:

r1 5
Rf

Z1
(19.29)
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(X, Y, Z)
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r2
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f
f

b

01

(r1, θ1)

(r2, θ2)

(0, 0, Z)

FIGURE 19.7

Calculation of stereo from camera motion. (a) Depiction of how stereo imaging can result

from camera motion, the vector b representing the baseline. (b) The simplified planar

geometry required to calculate the disparity. It is assumed that the motion is directly along

the optical axis of the camera.

r2 5
Rf

Z2
(19.30)

so the disparity is:

D5 r2 2 r1 5Rf
1

Z2
2

1

Z1

� �
(19.31)

Writing the baseline as:

b5 Z1 2 Z2 (19.32)

and assuming b { Z1, Z2, and then dropping the suffices, gives:

D5
Rbf

Z2
(19.33)
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While this would appear to mitigate against finding Z without knowing R, we can

overcome this problem by observing that:

R

Z
5

r

f
(19.34)

where r is approximately the mean value 1
2
ðr1 1 r2Þ. Substituting for R now gives:

D5
br

Z
(19.35)

Hence, we can deduce the depth of the object point as:

Z5
br

D
5

br

ðr2 2 r1Þ
(19.36)

This equation should be compared with Eq. (15.5) representing the normal ste-

reo situation. The important point to note is that for motion stereo, the disparity

depends on the radial distance r of the image point from the optical axis of the

camera, whereas for normal stereo the disparity is independent of r; as a result,

motion stereo gives no depth information for points on the optical axis, and the

accuracy of depth information depends on the magnitude of r.

19.8 THE KALMAN FILTER
When tracking moving objects, it is desirable to be able to predict where they

will be in future frames, as this will make maximum use of preexisting informa-

tion and permit the least amount of search in the subsequent frames. It will also

serve to offset the problems of temporary occlusion, such as when one vehicle

passes behind another, or one person passes behind another, or even when one

limb of a person passes behind another. (There are also many military needs for

tracking prediction, and others on the sports field.) The obvious equations to

employ for this purpose involve sequentially updating the position and the veloc-

ity of points on the object being tracked:

xi 5 xi21 1 vi21 (19.37)

vi 5 xi 2 xi21 (19.38)

assuming, for convenience, a unit time interval between each pair of samples.

In fact, this approach is too crude to yield the best results. First, it is necessary

to make three quantities explicit: (1) the raw measurements (e.g., x), (2) the best

estimates of the values of the corresponding variables before observation (denoted

by �), and (3) the best estimates of these same model parameters following obser-

vation (denoted by 1). In addition, it is necessary to include explicit noise terms

so that rigorous optimization procedures can be derived for making the best

estimates.
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In the particular case outlined above, the velocity—and possible variations on it

which we shall ignore here for simplicity—constitutes a best estimate model

parameter. We include position measurement noise by the parameter u and velocity

(model) estimation noise by the parameter w. The above equations now become:

x2i 5 xi21
1 1 vi211 ui21 (19.39)

v2i 5 vi21
1 1wi21 (19.40)

In the case that the velocity is constant and the noise is Gaussian, we can spot the

optimum solutions to this problem:

x2i 5 xi21
1 (19.41)

σ2i 5σi21
1 (19.42)

these being called the prediction equations, and

x1i 5
xi=σ2

i 1ðx2i Þ=ðσ2
i Þ2

1=σ2
i 1 1=ðσ2

i Þ2 (19.43)

σ1i 5
1

1=σ2
i 1 1=ðσ2

i Þ2
" #1=2

(19.44)

these being called the correction equations.1 (In these equations, σ6 are the stan-

dard deviations for the respective model estimates x6 , and σ is the standard devi-

ation for the raw measurement x.)

What these equations show is how repeated measurements improve the esti-

mate of the position parameter and the error upon it at each iteration. Note the

particularly important feature—that the noise is being modeled as well as

the position itself. This permits all positions earlier than i2 1 to be forgotten. The

fact that there were many such positions, whose values can all be averaged to

improve the accuracy of the latest estimate, is of course rolled up into the values

of x2i and σ2i , and eventually into the values for x1i and σ1i .
The next problem is how to generalize this result, both to multiple variables

and to possibly varying velocity and acceleration. This is the function of the

widely used Kalman filter. It achieves this by continuing with a linear approxima-

tion and by employing a state vector comprising position, velocity, and accelera-

tion (or other relevant parameters), all in one state vector s. This constitutes the

dynamic model. The raw measurements x have to be considered separately.

In the general case, the state vector is not updated simply by writing:

s2i 5 si21
1 (19.45)

1The latter are nothing more than the well-known equations for weighted averages (Cowan, 1998).

518 CHAPTER 19 Motion



but requires a fuller exposition because of the interdependence of position, veloc-

ity, and acceleration; hence, we have:2

s2i 5Kisi21
1 (19.46)

Similarly, the standard deviations σi, σ6i in Eqs. (19.42)�(19.44) (or rather, the

corresponding variances) have to be replaced by the covariance matrices Σi, Σ6
i ,

and the equations become significantly more complicated. We will not go into the

calculations fully here as they are nontrivial and need several pages to iterate.

Suffice it to say that the aim is to produce an optimum linear filter by a least-

squares calculation (see, e.g., Maybeck, 1979).

Overall, the Kalman filter is the optimal estimator for a linear system for

which the noise is zero mean, white, and Gaussian, although it will often provide

good estimates even if the noise is not Gaussian.

Finally, it will be noted that the Kalman filter itself works by averaging pro-

cesses, which will give erroneous results if any outliers are present. This will cer-

tainly occur in most motion applications. Thus, there is a need to test each

prediction to determine if it is too far away from reality. If this is the case, it is

not unlikely that the object in question has become partially or fully occluded. A

simple option is to assume that the object continues in the same motion (albeit

with a larger uncertainty as time goes on), and to wait for it to emerge from

behind another object. At the very least, it is prudent to keep a number of such

possibilities alive for some time, but the extent of this will naturally vary from sit-

uation to situation and from application to application.

19.9 WIDE BASELINE MATCHING
The need for wide baseline matching was noted in Chapter 6, where considerable dis-

cussion was included on detection of suitable invariant features (see Section 6.7 and

its various subsections). The topic has been left until the present chapter because it is

relevant for both 3-D vision and motion analysis, and the latter topic has only been

covered in this chapter. The wide baseline scenario arises from situations where the

same object is viewed from widely different directions, with the result that its appear-

ance may change dramatically so that it may become extremely difficult to recognize.

While narrow baseline stereo is the norm for depth estimation using two cameras,

wide baselines are common in surveillance applications—e.g., where a pedestrian

precinct is viewed by several independent cameras that are widely separated, as

described in Chapter 22. They are also the norm when objects are being sought in

image databases. However, one of the most likely situations when they occur is with

objects that are in motion. While this may appear to be immaterial in surveillance or

2Some authors write Ki�1 in this equation, but it is only a matter of definition whether the label

matches the previous or the new state.

51919.9 Wide Baseline Matching



with driver assistance systems, because every pair of frames will give instances of

narrow baseline stereo, it can easily happen that objects will be temporarily occluded

and come back into view with different orientations or backgrounds; in addition, the

attention of the software (like that of a human operator) may only be on part of the

scene for part of the time. Hence, wide baseline viewing is bound to be a common

consequence of motion. Overall, then, wide baseline matching techniques will be

needed in a variety of instances of 3-D viewing and motion tracking.

Chapter 6 showed how features could be designed to cover a variety of wide

baseline views as far apart as 50�. In these circumstances, an important factor in

designing suitable feature detectors is to make them invariant to scale and affine

distortions. However, that alone is not enough. The feature detectors must also

provide descriptors of each feature that are sufficiently rich in information that

matching between views is made as unambiguous as possible. In that way, wide

baseline matching has a chance of being highly reliable. Lowe (2004) has found

that reliable recognition of objects is possible with as few as three features.

Indeed, it is highly important to aim to achieve this when images typically contain

several thousand features that come from many different objects as well as back-

ground clutter. In this way, the number of false positives is reduced to minimal

levels, and there is a high chance of detecting all objects of the chosen type in the

input image. That this can be possible is underlined by the richness of Lowe’s

SIFT features whose descriptors contain 128 parameters. (As discussed in

Chapter 6, features devised by other workers may contain fewer parameters, but

in the end risk not working in all possible scenarios.)

Granted that wide baseline matching is desirable, and that SIFT and other fea-

tures have rich descriptor sets, how should the matching actually be achieved?

Ideally, all that is necessary is to compare the feature descriptors from each pair

of images, and find which ones match well, and which therefore lead to co-recog-

nition of objects in the two views. Clearly, the first requirement is a similarity

test for pairs of features. Lowe (2004) achieved this using a nearest neighbor

(Euclidean) distance measure in his 128-dimensional descriptor space. He then

used a Hough transform to identify clusters of features giving the same interpreta-

tions of poses for objects appearing in the two images. Because of the relatively

small number of inliers that may occur in this type of situation, he found that the

Hough transform approach performed significantly better than RANSAC (Section

11.6). Mikolajczyk and Schmid (2004) used a Mahalanobis distance measure for

selecting the most similar descriptors to obtain a set of initial matches; they then

used cross-correlation to reject low-score matches; finally, they performed a

robust estimation of the transformation between the two images using RANSAC.

Tuytelaars and Van Gool (2004) developed this further, using semilocal con-

straints involving geometric consistency and photometric constraints to refine the

selection of matches before (again) relying on RANSAC to perform the final

robust estimation of poses. In contrast to the approaches outlined above, Bay
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et al. (2008) fed the descriptor information to a naive Bayes’ classifier working

on a “bag-of-words” representation (Dance et al., 2004) in order to perform object

recognition. Bay et al. (2008) make no mention of determination of object pose in

this application, which was targeted more at recognizing objects in an image data-

base—although it could equally well have been targeted at repeated recognition

of cars on the road for which pose would not be especially relevant.

Overall, it is clear that the new regime of utilizing invariant feature detectors

with rich descriptors of local image content forms a powerful approach to wide

baseline object matching and takes much of the heat out of the subsequent

algorithms.

19.10 CONCLUDING REMARKS
In Sections 19.2 and 19.3, we described the formation of optical flow fields and

showed how a moving object or a moving camera leads to a focus of expansion.

In the case of moving objects, the focus of expansion can be used to decide

whether a collision will occur. In addition, analysis of the motion taking account

of the position of the focus of expansion led to the possibility of determining struc-

ture from motion. Specifically, this can be achieved via time-to-adjacency analysis,

which yields the relative depth in terms of the motion parameters measurable

directly from the image. We then demonstrated some basic difficulties with the

optical flow model, which arise since the motion edge can have a wide range of

contrast values, making it difficult to measure motion accurately. In practice, this

means that larger time intervals may have to be employed to increase the motion

signal. Otherwise, feature-based matching related to that of Chapter 14 can be

used. Corners are the features that are most widely used for this purpose because

they are ubiquitous and highly localized in 3-D. Space prevents details of this

approach from being described here. Details may be found in Barnard and

Thompson (1980), Scott (1988), Shah and Jain (1984), and Ullman (1979).

However, the value of the Kalman filter for alleviating the difficulties of tempo-

rary occlusion has been considered, and the use of invariant features for wide base-

line matching (which includes motion tracking applications) has been covered.

Further work on motion as it arises in real applications will be dealt with in

Chapters 22 and 23, which address the problems of surveillance and in-vehicle

vision systems.

The obvious way to understand motion is by image differencing and determination of optical
flow. This chapter has shown that the “aperture problem” is a difficulty that is avoidable by
using corner tracking. Further difficulties are caused by temporary occlusions, thus
necessitating techniques such as occlusion reasoning and Kalman filtering.
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19.11 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Optical flow has been investigated by many workers over a good many years

(see, e.g., Horn and Schunck, 1981; Heikkonen, 1995). A definitive account of

the mathematics relating to FOE appeared in 1980 (Longuet-Higgins and

Prazdny, 1980). In fact, foci of expansion can be obtained either from the optical

flow field or directly (Jain, 1983). The results of Section 19.5 on time-to-adja-

cency analysis stem originally from the work of Longuet-Higgins and Prazdny

(1980), which provides some deep insights into the whole problem of optical flow

and the possibilities of using its shear components. Note that numerical solution

of the velocity field problem is not trivial; typically, least-squares analysis is

required to overcome the effects of measurement inaccuracies and noise, and to

finally obtain the required position measurements and motion parameters

(Maybank, 1986). Overall, resolving ambiguities of interpretation is one of the

main problems and challenges of image sequence analysis (see Longuet-Higgins

(1984) for an interesting analysis of ambiguity in the case of a moving plane).

Unfortunately, the substantial and important literature on motion, image

sequence analysis, and optical flow, which impinges heavily on 3-D vision, could

not be discussed in detail here for reasons of space. For seminal work on these

topics, see, for example, Huang (1983), Jain (1983), Nagel (1983, 1986), and

Hildreth (1984).

For early work on the use of Kalman filters for tracking, see Marslin et al.

(1991). For the huge amount of more recent work on tracking and surveillance of

moving objects, including the tracking of people and vehicles, see Chapters 22

and 23 (in fact, Chapter 23 is especially concerned with monitoring moving

objects from within vehicles). For recent references on tracking, particle filters,

and detection of moving objects, see the bibliographies in Chapters 22 and 23.

For further references on invariant features for wide baseline matching, see

Chapter 6.

19.12 PROBLEM
1. Explain why, in Eq. (19.44), the variances are combined in the particular way

(in most applications of statistics, variances are combined by addition).
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PART

4
Toward Real-Time
Pattern Recognition
Systems

Part 4 aims to cover the family of needs associated with the production of practi-

cal visual pattern recognition systems. Not least among these needs are the

requirements of error minimization, real-time operation, and system integration.

Hence, this part of the book must cover a disparate variety of topics ranging from

analysis of 2-D and 3-D scenes, and the methods of statistical pattern recognition,

to applications such as automated visual inspection and vehicle guidance, and

consideration of the lighting and hardware systems required to acquire the images

and perform the necessary processing in real time. In fact, the chosen topics are

so variegated, and interact with each other at such a variety of different levels,

that there can be no ideal order of presentation. Nevertheless, the intelligent

reader should not have too much difficulty in finding relevant information.
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CHAPTER

20Automated Visual
Inspection

Humans are good at searching for the unusual and locating faults in manufactured

products, but rapidly tire when large number of items have to be scrutinized. The

aim of automated visual inspection is to achieve 100% untiring inspection and

control of quality. This chapter describes the processes and principles needed to

achieve this end, the main limitation being the impossibility of covering the full

variety of products in a single chapter.

Look out for:

• the variety of products to be inspected.

• the main categories of inspection.

• how deviations relative to a standard template can be measured.

• the methodology for scrutinizing circular objects.

• the problems of inspecting products exhibiting high levels of variability.

• the principles of X-ray inspection.

• the importance of color in inspection.

Note that this chapter aims to give a broad view of inspection, and is counter-

balanced by the following chapter that covers a particular application area in

more depth: this approach is appropriate as case studies provide one of the best

ways for extending the work to the wide variety of products.

20.1 INTRODUCTION
Thirty years ago, it was already apparent that machine vision would have an

important role in the design of automated manufacturing systems. Indeed, it was

Computer and Machine Vision.
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clear that it would be applied on two main fronts. First, it would be important for

helping to control quality during manufacture. Second, it would be vital for

providing precise information to assembly robots on the placement of the compo-

nents and the products being constructed. Note also that it is important for an

assembly cell to be flexible, and in this respect, vision is key to adapting from

one set of components to another.

In the early days of automated manufacturing, there was a feeling that the

vision tasks needed for inspection and assembly would be quite different.

Although there was an element of truth in this, it was soon realized that the

majority of vision algorithms, such as edge detection and object location, are

common to both. Indeed, machine vision is highly generic, and its methods are

readily adapted from one application to another.

There are three main aims for automated visual inspection:

1. To check components and products for quality, with a view to rejecting those

that are dimensionally inaccurate or otherwise defective.

2. To assess the general quality of production in order to provide feedback to

earlier stages of the plant and thereby to correct erroneous trends. For exam-

ple, in the case of food products, if coatings of jam or chocolate are found to

be spreading too rapidly, feedback will need to be provided to reduce the

temperature at an earlier stage in the production line.

3. To gather logistics on the operation of the plant, including such parameters as

temperatures, variations in product dimensions, and reject rates, in order to

help with advance planning.

A further aspect that is important when setting up an inspection system is

what can be learned via modalities such as X-rays and thermal imaging, for which

the acquired images often resemble visible light images. Similarly, it is relevant

to ask what additional information color can provide that is useful or even vital

for inspection. Sections 20.10 and 20.11 aim to give answers to some of these

questions.

In automated assembly—the other application of vision mentioned above—

vision is valuable for monitoring both the positions and rotation parameters of the

robot arm and wrist and those of the various components it is working on.

Interestingly, an assembly robot should be able to examine the components it is

about to assemble, so as to prevent it from attempting impossible tasks such as

fitting a screw into a nonexistent hole.

The above discussion broadly confirms that inspection and assembly require

basically the same vision algorithms, although there is a potential difference in

that a line-scan camera will be more suitable for inspecting components on a con-

veyer, while an area (whole picture) camera will be better suited for monitoring

assembly operations within a workcell. However, once acquired, the images will

be much the same in the two cases, so algorithms that are suitable for the one

type of task will broadly be suited for the other. Thus, little will be lost by

concentrating on automated visual inspection in the remainder of this chapter.
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20.2 THE PROCESS OF INSPECTION
Inspection is the process of comparing individual manufactured items against

some preestablished standard with a view to maintenance of quality. Before

proceeding to study inspection tasks in detail, it is useful to note that the process

of inspection commonly takes place in three definable stages:

1. Image acquisition

2. Object location

3. Object scrutiny and measurement

We defer detailed discussion of image acquisition until Chapter 25 and

comment here on the relevance of separating the processes of location and

scrutiny. This is important because (either on a worktable or on a conveyor)

large number of pixels usually have to be examined before a particular product

is found, whereas once it has been located, its image frequently contains rela-

tively few pixels and so rather little computational effort need be expended

in scrutinizing and measuring it. For example, on a biscuit line, products may

be separated by several times the product diameter in two dimensions, so some

100,000 pixels may need to be examined to locate products occupying, say,

5000 pixels. This means that product location is likely to be a much more

computation-intensive problem than product scrutiny. Although this is gener-

ally true, sampling techniques may permit object location to be performed with

much increased efficiency (Chapter 12). Under these circumstances, it is poss-

ible that location may be faster than scrutiny, since the latter process, although

straightforward, tends to permit no shortcuts and requires all pixels to be

examined.

20.3 THE TYPES OF OBJECT TO BE INSPECTED
It is evident from the huge variety of products that are made in factories that there

is a correspondingly large variety of inspection tasks to be carried out. However,

products fall rather neatly into two main categories. The first is typified by preci-

sion metal parts: these have demanding specifications because they are required

to fit exactly together, and will usually have standard hole or thread sizes. The

second is typified by food products, which vary in appearance between nominally

identical samples; for instance, no two apples will look identical. Textiles also

fall into the second class, as samples will vary in 3-D shape, closeness of weave,

and degree of stretch in any direction. Interestingly, while soldered joints can

vary in size and shape, today’s electronic components fit more closely into the

first category. Broadly, the difference between the two categories is that, for

the first, exact dimensional measurement is the prime concern, whereas for the

second, appearance to the consumer is more important. We shall look at these

two categories more closely in the following sections.
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20.3.1 Food Products
At one end of the scale, this category covers raw vegetables, grain, fruit, meat,

and fish, and at the other, bread, cakes, chocolate biscuits, pizzas, frozen food

packs, and complete set meals. Over time, the food industry has developed toward

high added value and quality packaging. Although it is both logical and desirable

to inspect food products at every stage of manufacture, starting with the raw

materials, in practice it would be too expensive to entertain this aim. This is

because the cost of each inspection station, including camera, computer hardware1
software, and mechanical rejection hardware, will be sizeable. This usually means

that only a single inspection station can be afforded. The main question is then

whether it should be placed at the beginning, middle, or end of the line. If at the

beginning, expensive processing of low-quality material will be minimized; if at

the end, inspection of final appearance in the form that the product will reach the

consumer will be monitored and its overall acceptability checked. In fact, there is

some gain from inspecting just prior to final packaging, as undersize and, a for-

tiori, oversize products can jam packaging machines—a major problem on food

lines. Interestingly, inspecting at the end of the line does not prevent pizzas or

other food products from being scrutinized fairly thoroughly, as parts of most of

the additives will normally be detectable. Finally, note that chocolate is expensive,

so inspection needs to check that minimizing the amount of chocolate cover on

biscuits or cakes does not result in incomplete coverage, with consequent

consumer dissatisfaction.

It is well known that the human eye can detect many features of objects at a

glance. However, vision tasks that seem simple to the eye can take a substantial

effort to program on a computer. For example, chocolates often have a jagged

“footing” around the base, making it difficult to determine their overall shape or

orientation (this may be important if a robot is to place each chocolate in its

proper place in a box). As a result, algorithms employing silhouette analysis may

be less successful than those examining the full grayscale profile of the object, or

in certain cases its 3-D shape.

Returning to packaged meals, these present both an inspection and an assem-

bly problem. A robot or other mechanism will have to place individual items on a

plastic tray, and it is clearly preferable that every item should be checked to

ensure, for example, that each salad contains an olive or that each cake has a blob

of cream.

20.3.2 Precision Components
Many other parts of industry have also progressed to the automatic manufacture

and assembly of complex products. It is clearly necessary for items such as

washers and O-rings to be tested for size and roundness, and for mains plugs to be

examined for the appropriate pins, fuses, and screws. Engines and brake assem-

blies also have to be checked for numerous possible faults. Perhaps the worst
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problems arise when items such as flanges, slots, holes, or threads are missing so

that further components cannot be fitted properly. In addition, although it might

seem certain that a thread, if present, would necessarily have the correct pitch, the

author has seen at least one application where this assumption was not justified.

Table 20.1 summarizes some of the common features that need to be checked

when dealing with individual precision components. Note that measurement of the

extent of any defect, together with knowledge of its inherent seriousness, should

permit components to be graded according to quality, thereby saving money for

the manufacturer (rejecting all defective items is often too crude an option).

20.3.3 Differing Requirements for Size Measurement
Size measurement is important both in the food industry and in the automotive

and small-parts industry. However, the problems in the two cases are often rather

different. For example, the diameter of a biscuit can vary within quite wide limits

(B5%) without giving rise to undue problems, but when it gets outside this range,

there is a serious risk of jamming the packing machine, and the situation must be

monitored carefully. In contrast, for mechanical parts, the required precision can

vary from 1% for objects such as O-rings to 0.01% for piston heads. This varia-

tion clearly makes it difficult to design a truly general-purpose inspection system.

However, the manufacturing process often permits little variation in size from one

item to the next. Hence, it may be adequate to have a system that is capable of

measuring to an accuracy of rather better than 1%, so long as it is capable of

checking all the characteristics mentioned in Table 20.1.

For cases where high precision is vital, it is important that accuracy of measure-

ment is proportional to the resolution of the input image. Currently, images of

up to 5123 512 pixels are common, so accuracy of measurement is basically of

the order of 0.2%. Fortunately, grayscale images provide a means of obtaining

significantly greater accuracy than indicated by the above arguments, since the

Table 20.1 Features to be Checked on Precision Components

Dimensions within specified tolerances
Correct positioning, orientation, and alignment
Correct shape, especially roundness, of objects and holes
Whether corners are misshapen, blunted, or chipped
Presence of holes, slots, screws, rivets, etc.
Presence of a thread in screws
Presence of burr and swarf
Pits, scratches, cracks, wear, and other surface marks
Quality of surface finish and texture
Continuity of seams, folds, laps, and other joins
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exact transition from dark to light at the boundary of an object can be estimated

more closely. In addition, averaging techniques (e.g., along the side of a rectangular

block of metal) permit accuracies to be increased even further—by a factor
ffiffiffiffi
N

p
if

N pixel measurements are made. These factors permit measurements to be made to

subpixel resolution, sometimes even down to 0.1 pixels, the limit often being set by

variations in illumination rather than by the vision algorithms themselves.

20.3.4 Three-Dimensional Objects
Next, note that all real objects are 3-D, although the cost of setting up an inspec-

tion station frequently demands that they are examined from one viewpoint in a

single 2-D image. This is clearly highly restrictive, and in many cases overrestric-

tive. Nevertheless, it is generally possible to do an enormous amount of useful

checking and measurement from one such image. The clue that this is possible

lies in the prodigious capability of the human eye—e.g., to detect at a glance

from the play of light on a surface whether or not it is flat. Furthermore, in many

cases, products are essentially flat and the information that we are trying to find

out about them is simply expressible via their shape or via the presence of some

other feature that is detectable in a 2-D image. In cases where 3-D information is

required, methods exist for obtaining it from one or more images, for example,

via binocular vision or structured lighting, as has already been seen in

Chapter 15. More is said about this in Sections 20.4, 20.7 and 20.14.1.

20.3.5 Other Products and Materials for Inspection
This section briefly mentions a few types of product and material that are not

fully covered in the foregoing discussion. First, electronic components are

increasingly having to be inspected during manufacture, and of these, printed

circuit boards (PCBs) and integrated circuits are subject to their own special

problems that are currently receiving considerable attention. Second, steel strip

and wood inspection are also of great importance. Third, bottle and glass inspec-

tion has its own particular intricacies because of the nature of the material, glints

being a relevant factor—as also in the case of inspection of cellophane-covered

foodpacks. In this chapter, space permits only a short discussion of some of these

topics (see Sections 20.7 and 20.8).

20.4 SUMMARY: THE MAIN CATEGORIES OF INSPECTION
Sections 20.1�20.3 have given a general review of the problems of inspection

but have not shown how they might be solved. This section takes the analysis a

stage further. First, note that the items in Table 20.1 may be classified as geomet-

rical (measurement of size and shape—in 2-D or 3-D as necessary), structural

(whether there are any missing items or foreign objects), and superficial (whether
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the surface has adequate quality). It is evident from Table 20.1 that these three

categories are not completely distinct but they are useful for the following

discussion.

We start by noting that the methods of object location are also inherently

capable of providing geometrical measurements. Distances between relevant

edges, holes, and corners can be measured; shapes of boundaries can be checked

both absolutely and via their salient features; and alignments can usually be

checked quite simply, for example, by finding how closely various straight line

segments fit to the sides of a suitably placed rectangle. In addition, shapes of 3-D

surfaces can be mapped out by binocular vision, photometric stereo, structured

lighting, or other means (see Chapter 15), and subsequently checked for accuracy.

Structural tests can also be made once objects have been located, assuming a

database of the features they are supposed to possess is available. In the latter

case, it is necessary merely to check whether the features are present in predicted

positions. As for foreign objects, these can be looked for via unconstrained search

as objects in their own right. Alternatively, they may be found as differences

between objects and their idealized forms, as predicted from templates or other

data in the database. In either case, the problem is very data dependent and an

optimal solution needs to be found for each situation. For example, scratches may

be searched for directly as straight line segments.

Tests of surface quality are perhaps more complex. In Chapter 25, methods of

lighting are described, which illuminate flat surfaces uniformly, so that variations

in brightness may be attributed to surface blemishes. For curved surfaces, it might

be hoped that the illumination on the surface would be predictable, and then differ-

ences would again indicate surface blemishes. However, in complex cases, there is

probably no alternative but to resort to the use of switched lights coupled with rig-

orous photometric stereo techniques (see Chapter 15). Finally, the problem of

checking quality of surface finish is akin to that of ensuring an attractive physical

appearance, and this can be highly subjective; this means that inspection algorithms

need to be trained to make the right judgments (note that “judgments” are decisions

or classifications and so the methods described in Chapter 24 are appropriate).

Overall, accurate object location is a prerequisite to reliable object scrutiny

and measurement, for all three main categories of inspection. If a CAD system is

available, then providing location information permits an image to be generated

that should closely match the observed image, and template matching (or correla-

tion) techniques should in many cases permit the remaining inspection functions

to be fulfilled. However, this will not always work without trouble—as in the

case where object surfaces have a random or textured component. This means

that preliminary analysis of the texture may have to be carried out before relevant

templates can be applied—or at least checks made of the maximum and minimum

pixel intensities within the product area. More generally, in order to solve this

and other problems, some latitude in the degree of fit should be permitted.

It is interesting that the same general technique—that of template matching—

arises in the measurement and scrutiny phase as in the object location phase.
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However (as remarked earlier), this need not consume as much computational

effort as in object location. This is because template matching is difficult when

there are many degrees of freedom inherent in the situation, since comparisons

with an enormous number of templates may be required. However, when the tem-

plate is in a standard position relative to the product and when it has been orien-

tated correctly, template matching is much more likely to constitute a practical

solution to the inspection task, although the problem is very data dependent.

Despite these considerations, there is a need to find computationally efficient

means of performing the necessary checks of parts. The first possibility is to use

suitable algorithms to model the image intensity and then to employ the model to

check relevant surfaces for flaws and blemishes. Another useful approach is to

convert 2-D to 1-D intensity profiles. This approach leads to the radial histogram

technique; the latter can conveniently be applied for inspecting the very many

objects possessing circular symmetry, as will be seen below. However, we first

consider a simple but useful means of checking shapes.

20.5 SHAPE DEVIATIONS RELATIVE TO A
STANDARD TEMPLATE

For food and certain other products, an important factor in 2-D shape measure-

ment is the deviation relative to a standard template. Maximum deviations are

important because of the need (already referred to) to fit the product into a stan-

dard pack. Another useful measure is the area of overflow or underfill relative to

the template (Fig. 20.1). For simple shapes that are bounded by circular arcs or

straight lines (a category that includes many types of biscuit or bracket), it is

straightforward to test whether a particular pixel on or near the boundary is inside

the template or outside it. For straight line segments, this is achieved in the fol-

lowing way. Taking the pixel as (x1, y1) and the line as having equation:

lx1my1 n5 0 (20.1)

FIGURE 20.1

Measurement of product area relative to a template: in this example, two measurements

are taken, indicating, respectively, the areas of overflow and underfill relative to a

prespecified rectangular template.
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the coordinates of the pixel are substituted in the expression:

f ðx; yÞ5 lx1my1 n (20.2)

The sign will be positive if the pixel lies on one side of the line, negative on the

other, and zero if it is on the idealized boundary. Furthermore, the distance on

either side of the line is given by the formula:

d5
lx1 1my1 1 n

ðl2 1m2Þ1=2
(20.3)

The same observation about the signs applies to any conic curve if appropriate

equations are used, for example, for an ellipse:

f ðx; yÞ5 ðx2 xcÞ2
a2

1
ðy2 ycÞ2

b2
2 1 (20.4)

where f(x, y) changes sign on the ellipse boundary. For a circle, the situation is

particularly simple, since the distance to the circle center need only be calculated

and compared with the idealized radius value. For more complex shapes, deviations

need to be measured using centroidal profiles or the other methods described in

Chapter 10. However, the method outlined above is useful as it is simple, quick, and

reasonably robust, and does not need to employ sequential boundary tracking algo-

rithms. A raster scan over the region of the product is sufficient for the purpose.

20.6 INSPECTION OF CIRCULAR PRODUCTS
Circular objects and holes are so common that it is important to have well-

designed techniques for inspecting them. We have already seen (Chapter 12) that

they can be located relatively straightforwardly using the Hough transform. For

surface scrutiny, it is useful to make use of their rotational symmetry to obtain a

1-D measure of intensity as a function of distance r from the center. However,

the resulting “radial histograms” are complicated by the varying number of pixels

at different distances r from the center and have to be normalized to eliminate

this effect (Davies, 1984c, 1985). Typical results are shown in Figs. 20.2 and

20.3. Note that radial histograms can be used to make accurate measurements of

all relevant radii within the product—e.g., both radii of a washer. Because of the

averaging of all intensity values for each value of r, accuracy of measurement can

be as high as 0.3% for values of r as low as 40 pixels.

As indicated above, the varying numbers of pixels at different radial distances

r complicate the problem and prevent the histograms from accurately representing

the radial intensity distribution. The obvious way of tackling this problem is to

make the independent variable r2 rather than r. However, it is also necessary

to normalize the distribution so that regions of uniform intensity give rise to a

uniform radial intensity distribution—a fact made clear by the statistics shown in
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Fig. 20.4. This means dividing the value for each column of the histogram by the

number of pixels contributing to it.

Figure 20.2 shows practical applications of the above theory to various situa-

tions, depicted in Fig. 20.3: (see also Fig. 20.5, which relates to the biscuits

shown in Fig. 10.1). In particular, note that the radial histogram approach is able

to give vital information on various types of defect: the presence or absence of

holes in a product such as a washer or a button; whether circular objects are in

contact or overlapping; broken objects; “show-through” of biscuit where there are

gaps in a chocolate or other coating; and so on. In addition, it is straightforward

to derive dimensional measurements from radial histograms. In particular, radii of

discs or washers can be obtained to significantly better than 1 pixel accuracy

because of the averaging effect of the histogram approach. However, the method

is limited here by the accuracy with which the center of the circular region is first

located. This underlines the value of the high-accuracy center-finding technique

described in Chapter 12. To a certain extent, accuracy is limited by the degree of

roundness of the product feature being examined: radius can be measured only to

the extent that it is meaningful. In this context, it is emphasized that the
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FIGURE 20.2

Practical applications of the radial histogram approach. In all cases, an r2 base variable

is used and histogram columns are individually normalized. These histograms were

generated from the original images of Fig. 20.3.

Source: r IEE 1985
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combination of techniques described above is not only accurate but also computa-

tionally efficient.

Radial histograms are particularly well suited to the scrutiny of symmetrical

products that do not exhibit a texture, or for which texture is not prominent and

may validly be averaged out. In addition, the radial histogram approach ignores

correlations between pixels in the dimension being averaged (i.e., angle); where

such correlations are significant, it is not possible to use the approach. An

obvious example is the inspection of components such as buttons, where angular

(c) (d)

(a) (b)

(e)

FIGURE 20.3

Original images used in generating the radial histograms of Fig. 20.2.

Source: r IEE 1985
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displacement of one of four button holes will not be detectable unless the hole

encroaches on the space of a neighboring hole. Similarly, the method is not able

to check the detailed shape of each of the small holes. Clearly, the averaging

involved in finding the radial histogram mitigates against such detailed

inspection, which is then best carried out by separate direct scrutiny of each of

the holes.

It might be imagined that the radial histogram technique is applicable only for

symmetrical objects. However, it is also possible to use radial histograms as
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FIGURE 20.4

Pixel statistics for an r2 histogram base parameter: the pixel statistics are not exactly

uniform even when the radial histogram is plotted with an r2 base parameter.

Source: r IEE 1985
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FIGURE 20.5

Radial intensity histograms for the three biscuits of Fig. 12.1: the order is from top to

bottom in both figures. Intensity is here measured relative to that at the center of an ideal

product.

Source: r IFS Publications Ltd 1984
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signatures of intensity patterns in the region of specific salient features. Small

holes are suitable salient features but corners are less suitable unless the back-

ground is saturated out at a constant value; otherwise, too much variation arises

from the background and the technique does not prove viable.

Finally, the radial histogram approach has the useful characteristic of being

trainable, since the relevant 1-D templates may be accumulated, averaged over a

number of ideal products, and stored in memory, ready for comparisons with

less ideal products. This characteristic is valuable, not only for convenience in

setting up but also because it permits inspection to be adaptable to cover a range

of products.

20.7 INSPECTION OF PRINTED CIRCUITS
Over the past two or three decades, machine vision has been used increasingly in

the electronics industry, notably for inspecting PCBs. First, PCBs may be

inspected before components are inserted; second, they may be inspected to check

that the correct components have been inserted the correct way round; and third,

all the soldered joints may be scrutinized. The faults that have to be checked for

include touching tracks, whisker bridges, broken tracks (including hairline

cracks), and mismatch between pad positions and holes drilled for component

insertion. Controlled illumination is required to eliminate glints from the bare

metal and to ensure adequate contrast between the metal and its substrate. With

adequate control over the lighting, most of the checks (e.g., apart from reading

any print on the substrate) may be carried out on a binarized image, and the prob-

lem devolves into the checking of shape. This may be tackled by gross template

matching—using a logical exclusive-or operation—but this approach requires

large data storage and precise registration has to be achieved.

Difficulties with registration errors can largely be avoided if shape analysis is

performed by connectedness measurement (using thinning) and morphological

processing. For example, if a track disappears or becomes broken after too few

erosion operations, then it is too narrow; a similar procedure will check whether

tracks are too close together. Likewise, hairline cracks may be detected by

dilations followed by tests to check for changes in connectedness.

Alignment of solder pads with component holes is customarily checked by

employing a combination of back and front lighting. Powerful back lighting (i.e.,

from behind the PCB) gives bright spots at the hole positions, whereas front

lighting gives sufficient contrast to show the pad positions; it is then necessary to

confirm that each hole is, within a suitable tolerance, at the center of its pad.

Counting the bright spots from the holes, plus suitable measurements around

hole positions (e.g., via radial histogram signatures), permits this process to be

performed satisfactorily.

Overall, the main problem with PCB inspection is the resolution required.

Typically, images have to be digitized to at least 40003 4000 pixels—as when a
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203 20 cm board is being checked to an accuracy of 50 μm. In addition,

suitable inspection systems will typically check each board fully in less than

1 min; they also have to be trainable, to allow for upgrades in the design of the cir-

cuit or improvements in the layout; and they should cost no more than approxi-

mately d40,000. However, considerable success has been attained with these aims.

To date, the bulk of the work in PCB inspection has concerned the checking

of tracks. Nevertheless, useful work has also been carried out on the checking of

soldered joints. Here, each joint has to be modeled in 3-D by structured light or

other techniques. In one such case, light stripes were used (Nakagawa, 1982), and

in another surface reflectance was measured with a fixed lighting scheme (Besl

et al., 1985). Note that surface brightness says something about the quality of the

soldered joint. This type of problem is probably completely solvable (at least up

to the subjective level of a human inspector) but detailed scrutiny of each joint at

a resolution of, say, 643 64 pixels may well be required to guarantee that the

process is successful, and this implies an enormous amount of computation to

cope with the several hundreds (or in some cases thousands) of joints on most

PCBs. Hence, Besl et al. needed special hardware to handle the information in the

time available.

Similar work is under way on the inspection of integrated circuit masks and

die bonds, but space does not permit discussion of this rapidly developing area.

For a useful review, see Newman and Jain (1995).

20.8 STEEL STRIP AND WOOD INSPECTION
The problem of inspecting steel strip is one that is very exacting for human opera-

tors. First, it is virtually impossible for the human eye to focus on surface faults

when the strip is moving past the observer at rates more than 20 m/s; second, sev-

eral years of experience are required for this sort of work; and third, the condi-

tions in a steel mill are far from congenial, with considerable heat and noise

constantly being present. Hence, much work has been done to automate the

inspection process (Browne and Norton-Wayne, 1986). At its simplest, this

requires straightforward optics and intensity thresholding, although special laser

scanning devices have also been developed to facilitate the process (Barker and

Brook, 1978).

The problem of wood inspection is more complex, since this natural material

is very variable in its characteristics. For example, the grain varies markedly from

sample to sample. As a result of this variation, the task of wood inspection is still

in its infancy and many problems remain. However, the purpose of wood inspec-

tion is reasonably clear: first, to look for cracks, knots, holes, bark inclusions,

embedded pine needles, miscoloration, and so on; and ultimately to make full use

of this material by identifying regions where strength or appearance is substan-

dard. In addition, the timber may have to be classified as appropriate for different
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categories of use—furniture, building, outdoor, etc. Overall, wood inspection is

something of an art—i.e., it is a highly subjective process—although valiant

attempts have been made to solve the problems (e.g., Sobey, 1989). It is

notable that in at least one country (Australia), there is a national standard for the

inspection of wooden planks.

20.9 INSPECTION OF PRODUCTS WITH HIGH LEVELS OF
VARIABILITY

In Sections 20.4�20.8, we have concentrated on certain aspects of inspection—

particularly dimensional checking of components ranging from precision parts to

food products, and the checking of complex assemblies to confirm the presence

of holes, nuts, springs, and so on. These could be regarded as the geometrical

aspects of inspection. For the more imprecisely made products such as foodstuffs

and textiles, there are greater difficulties as the template against which any prod-

uct has to be compared is not fixed. Broadly, there are two ways of tackling this

problem: one is the use of a range of templates, each of which is acceptable to

some degree; the other is the specification of a variety of descriptive parameters.

In either case, there will be a number of numerical measurements whose values

have to be within prescribed tolerances. Overall, variable products demand greater

amounts of checking and computation, and inspection is significantly more

demanding. Nowhere is this clearer than for food and textiles, for which the rele-

vant parameters are largely textural. However, “fuzzy” inspection situations can

also occur for certain products that might initially be considered as precision com-

ponents, for example, for electric lamps the contour of the element and the solder

pads on the base have significant variability. Thus, this whole area of inspection

involves checking that a range of parameters do not fall outside certain prespeci-

fied limits on some relevant distribution that may be reasonably approximated by

a Gaussian parameter.

We have seen above that the inspection task is made significantly more com-

plicated by natural variability in the product, although in the end it seemed best

to regard inspection as a process of making measurements that have to be checked

statistically. Defects could be detected relative to the templates, either as gross

mismatches or else as numerical deviations. And missing parts could likewise be

detected since they do not appear at the appropriate positions relative to the tem-

plates. Foreign objects would also appear to fit into this pattern, being essentially

defects under another name. However, this view is rather too simple for several

reasons:

1. Foreign objects are frequently unknown in size, shape, material, or nature.

2. They may appear in the product in a variety of unpredictable positions and

orientations.
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3. They may have to be detected in a background of texture that is so variable in

intensity that they will not stand out.

Overall, it is the unpredictability of foreign objects that can make them difficult

to see, especially in textured backgrounds (Fig. 20.6). If one knew their nature in

advance, then a special detector could perhaps be designed to locate them. But in

many practical situations, the only means of detecting them is to look for the

unusual. In fact, the human eye is well tuned to search for the unusual. On the

other hand, there are few obvious techniques that can be used to seek it out auto-

matically in digital images. Simple thresholding would work in a variety of

(c) (d)

(a) (b)

FIGURE 20.6

Foreign object detection in a packet of frozen vegetables (in this case sweetcorn). (a) The

original X-ray image, (b) an image in which texture analysis procedures have been applied

to enhance any foreign objects, and (c) and (d) the respective thresholded images. Note

the false alarms that are starting to arise in (c), and the increased confidence of detection

of the foreign object in (d). For further details, see Patel et al. (1995).

Source: r MCB Univ. Press 1995
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practical cases, especially where plain surfaces have to be inspected for scratches,

holes, swarf, or dirt. However, looking for extraneous vegetable matter (such as

leaves, twigs, or pods) among a sea of peas on a conveyor may be less easy, as

the contrast levels may be similar, and the textural cues may not be able to distin-

guish the shapes sufficiently accurately. Of course, in the latter example, it could

be imagined that every pea could be identified by its intrinsic circularity.

However, the incidence of occlusion, and the very computation-intensive nature

of this approach to inspection, inhibits such an approach. In any case, a method

that would detect pods among peas might not detect round stones or small pieces

of wood—especially in a grayscale image.

Ultimately, the problem is difficult because the paradigm means of designing

sensitive detectors—the matched filter—cannot be used, simply due to the high

degree of variability in what has to be detected. With so many degrees of free-

dom—shape dimensions, size, intensity, texture, and so on—foreign objects can

be difficult to detect successfully in complex images. Naturally, a lot depends on

the nature of the substrate, and while a plain background might render the task

trivial, a textured product substrate may render it impossible, or at least practi-

cally impossible in a real-time factory inspection milieu. In general, the solution

devolves into not trying to detect the foreign object directly by means of carefully

designed matched filters, but in trying to model the intensity pattern of the sub-

strate sufficiently accurately, so that any deviation due to the presence of a for-

eign object is detected and rendered visible. As hinted above, the approach is to

search for the unusual. To achieve this, the basic technique is to identify the 3σ
or other appropriate points on all available measures, and initiate rejection when

they are exceeded.

There is a fundamental objection to this procedure. If some limit (e.g., 3σ) is
assumed, this cannot easily be optimized, since the proper method for achieving

this is to find both the distributions—for the background substrate and for the for-

eign objects—and to obtain a minimum error decision boundary between them.

However, in this case, we do not have the distribution corresponding to the for-

eign objects, so we have to fall back on “reasonable” acceptance limits based on

the substrate distribution.

It might appear that this argument is flawed in that the proportion of foreign

objects coming along the conveyor is well known. Although this might occasion-

ally be so, the levels of detectability of the foreign objects in the received images

will be unknown and will certainly be less than the actual occurrence levels.

Hence, arriving at an optimal decision level will be difficult.

However, a far worse problem often exists in practice. The occurrence rates

for foreign objects might be almost totally unknown because of (a) their intrinsic

variability and (b) their rarity. We might well ask “How often will an elastic band

fall onto a conveyor of peas?”, but this is a question that is virtually impossible to

answer. Maybe it is possible to answer somewhat more accurately the more gen-

eral question of how often a foreign object of some sort will fall onto the con-

veyer, but even then the response may well be that somewhere between 1 in
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100,000 and 1 in 10 million of bags of peas contain a foreign object. With low

levels of risk, the probabilities are extremely difficult to estimate, and indeed

there is little available data or other basis on which to calculate them. Consumer

complaints can indicate the possible levels of risk, but these arise as individual

items, and in any case many customers will not make any fuss and by no means

all instances come to light.

With food products, the penalties for not detecting individual foreign objects

are not usually especially great. Glass in baby food may be more apocryphal than

real, and may be unlikely to cause more than alarm. Similarly, small stones

among the vegetables are more of a nuisance than a harm, although cracked teeth

could perhaps result in compensation in the d1000 bracket. Far more serious are

problems with electric lamps, where a wire emerging from the solder pads is

potentially lethal and is a substantive worry for the manufacturer. Litigation for

deaths arising from this source could run to a million pounds or so (corresponding

to an individual’s potential lifetime earnings).

This discussion reveals very clearly that it is the cost rate1 rather than the error

rate that is the important parameter when there is even a remote risk to life and

limb. Indeed, it concerned Rodd and his coworkers so much in relation to the

inspection of electric lamps than they decided to develop special techniques for

ensuring that their algorithms were tested sufficiently (Thomas and Rodd, 1994;

Thomas et al., 1995). Computer graphics techniques were used to produce a large

number of images with automatically generated variations on the basic defects,

and it was checked that the inspection algorithms would always locate them.

20.10 X-RAY INSPECTION
In inspection applications, there is a tension between inspecting products early

on, before significant value has been added to a potentially defective product, and

at the end of the line, so that the quality of the final products is guaranteed. This

consideration applies particularly with food products, where additives such as

chocolate can be expensive and constitute substantial waste if the basic product is

broken or misshapen. In addition, inspection at the end of the line is especially

valuable as oversized products (which may arise if two normal products become

stuck together) can jam packing machines. Ideally, it would be beneficial if two

inspection stations could be placed on the line in appropriate positions, but if only

one can be afforded (the usual situation), it will generally have to be placed at the

end of the line.

With many products, it is useful to be absolutely sure about the final quality

as the customer will receive it. Thus, there is especial value in inspecting the

packaged products. Since the packets will usually be opaque, it will be necessary

1In fact, the perceived cost rate may be even more important, and this can change markedly with

reports appearing in the daily press.
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to inspect them under X-radiation. This results in substantial expense, since the

complete system will include not only the X-ray source and sensing system but

also various safety features including heavy shielding. As a result, commercial

X-ray food inspection systems rarely cost less than d40,000, and d100,000 is a

more typical figure. Such figures do not take account of maintenance costs, and it

is also important that the X-ray source and the sensors deteriorate with time so

that sensitivity falls, and special calibration procedures have to be invoked.

Fortunately, the X-ray sensors can nowadays take the form of linear photodi-

ode packages constructed using integrated circuit technology.2 These are placed

end to end to span the width of a food conveyor that may be 30�40 cm wide.

They act as a line-scan camera that grabs images as the product moves along the

conveyor. The main adjustments to be made in such a system are the voltage

across the X-ray tube and the electric current passing through it. In food inspec-

tion applications, the voltage will be in the range 30�100 kV, and the current

will be in the range 3�10 mA. A basic commercial system will include threshold-

ing and pixel counting, permitting the detection of small pieces of metal or other

hard contaminants, but not soft contaminants. In general, the latter can only be

detected if more sophisticated algorithms are used that examine the contrast levels

over various regions of the image and arrive at a consensus that foreign objects

are present—typically with the help of texture analysis procedures.

The sensitivity of an X-ray detection system depends on a number of factors.

Basically, it is highly dependent on the number of photons arriving at the sensors,

and this number is proportional to the current passing through the X-ray tube.

There are stringent rules on the intensities of X-radiation to which food products

may be exposed, but in general, these limits are not approached because of good

sensitivity at moderate current levels.

Sensitivity also depends critically on the voltages that are applied to X-ray

tubes. In fact, the higher the voltage, the higher the electron energies, the higher

the energies of the resulting photons, and the greater the penetrating power of the

X-ray beam. However, greater penetrating power is not necessarily an advantage,

as the beam will tend to pass through the food without attenuation, and therefore

without detecting any foreign objects. While a poorly set up system may well be

able to detect quite small pieces of metal without much trouble, detection of small

stones and other hard contaminants will be less easy, and detection of soft

contaminants will be virtually impossible. Thus, it is necessary to optimize the

contrast in the input images.

Unfortunately, X-ray sources provide a wide range of wavelengths, all of

which are scattered or absorbed to varying degrees by the intervening substances.

In a thick sample, scattering can cause X-radiation to arrive at the detector after

passing through material not in a direct line between the X-ray tube and the sen-

sors. This makes a complete analysis of sensitivity rather complicated. In what

2The X-ray photons are first converted to visible light by passage through a layer of scintillating

material.

54320.10 X-Ray Inspection



follows, we will ignore this effect and assume that the bulk of the radiation reach-

ing the sensors follows the direct path from the X-ray source. We will also

assume that the radiation is gradually absorbed by the intervening substances, in

proportion to its current strength. Thus, we obtain the standard exponential for-

mula for the decay of radiation through the material, which we shall temporarily

take to be homogeneous and of thickness z:

I5 I0 exp 2

ð
μ dz

� �
5 I0 exp 2μ

ð
dz

� �
5 I0e

2μz (20.5)

where μ depends on the type of material and the penetrating power of the

X-radiation. For monochromatic radiation of energy E, we have:

μ5
ρN
A

� �
kPZ

a

Eb
1

kCZ

E

� �
(20.6)

where ρ is the density of the material, A is its atomic weight, N is Avogadro’s

number, a and b are numbers depending on the type of material, and kP and kC
are decay constants resulting from photoelectric and Compton scattering, respec-

tively (see, for example, Eisberg, 1961). It will not be appropriate to examine all

the implications of this formula. Instead, we proceed with a rather simplified

model that nevertheless shows how to optimize sensitivity:

μ5
α
E

(20.7)

By substituting into Eq. (20.5), we find:

I5 I0 exp
�αz
E

 �
(20.8)

If a minute variation in thickness, or a small foreign object, is to be detected sen-

sitively, we need to consider the change in intensity resulting from a change in z

or in αz (ultimately, it is the integral of μ dz that is important—see Eq. (20.5)). It

will be convenient to relabel the latter quantity as a generalized distance X, and

the inverse energy factor as f:

I5 I0 expð�Xf Þ (20.9)

‘
dI

dX
52I0f expð�Xf Þ (20.10)

so that:

ΔI5 2ΔX I0f expð�Xf Þ (20.11)

The contrast due to the variation in generalized distance can now be expressed as:

ΔI

I
5

�ΔX I0f expð�Xf Þ
I0 expð�Xf Þ 52ΔXf 5

�ΔX

E
(20.12)
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This calculation shows that contrast should improve as the energy of the X-ray

photons decreases. However, this result appears wrong, as reducing the photon

energy will reduce the penetrating power, and in the end, no radiation will pass

through the sample. First, the sensors will not be sufficiently sensitive to detect

the radiation. Specifically, noise (including quantization noise) will become the

dominating factor. Second, we have ignored the fact that the X-radiation is not

monochromatic. We shall content ourselves here with modeling the situation to

take account of the latter factor. Assume that the beam has two energies, one

fairly low (as above), and one rather high and penetrating. This high-energy

component will add a substantially constant value to the overall beam intensity,

and will result in a modified expression for the contrast:

ΔI

I
5

�ΔX I0f expð�Xf Þ
½I1 1 I0 expð�Xf Þ� 5

�ΔX I0f

½I1 expðXf Þ1 I0�
(20.13)

To optimize sensitivity, we differentiate with respect to f:

d ΔI=I
	 

df

5
�ΔX I0f½I1 expðXf Þ1 I0� � XfI1 expðXf Þg

½I1 expðXf Þ1 I0�2
(20.14)

This is zero when:

XfI1 5 I1 1 I0 expð�Xf Þ (20.15)

i:e:; E5
X

½11ðI0=I1Þexp �X=E
	 
� (20.16)

When I1{I0, we have the previous result that optimum sensitivity occurs for low

E. However, when I1

{

I0, we have the result that optimum sensitivity occurs

when E5X. In general, this formula gives an optimum X-ray energy that is

above zero, in accordance with intuition. In passing, we note that graphical or

iterative solutions of Eq. (20.16) are easily obtained.

Finally, we consider the exponential form of the signal given by Eqs. (20.5),

(20.8), and (20.9). These are nonlinear in X (i.e., αz), and meaningful image anal-

ysis algorithms would tend to require signals that are linear in the relevant physi-

cal quantity, namely, X. Thus, it is appropriate to take the logarithm of the signal

from the input sensor before proceeding with texture analysis or other procedures:

I0 5 log I5 log½I0 expð�Xf Þ�5A� Xf (20.17)

where

A5 log I0 (20.18)

In this way, doubling the width of the sample doubles the change in intensity, and

subsequent (e.g., texture analysis) algorithms can once more be designed on an

intuitive basis. (In fact, there is a more fundamental reason for performing this

transformation—that it performs an element of noise whitening, which should

ultimately help to optimize sensitivity.)
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20.10.1 The Dual-Energy Approach to X-Ray Inspection
When inspecting solid objects by means of X-rays, there is often the problem that

defects will be masked by variations in the thickness of the objects under scru-

tiny. This applies both with bags of frozen vegetables and with slabs of meat (and

a fortiori with human bodies undergoing radiology), to take two relevant exam-

ples. What is needed is a means of canceling out the effect of varying thickness.

Fortunately, over the past 10 years or so, a dual-energy approach called dual-

emission X-ray absorptiometry (DEXA) has been developed for achieving this.

The method involves moving the object on a conveyor past two rows of solid-

state sensors placed within a millimeter or so of each other so that they generate

line-scan images of the same section of the object (due allowance has to be made

for the time difference between corresponding sets of signals). Each sensor is

made sensitive to different X-ray energies by using different phosphors to convert

the X-rays into visible light. To understand how the method works, we use the

notation of Eq. (20.5) and define:

ηðtÞ5 log I1ð0Þ=I1ðtÞexpð2μ1zÞ
	 


log I2ð0Þ=I2ðtÞexpð2μ2zÞ
	 
 (20.19)

where I1(t) and I2(t) are the time developments of the two sets of received X-ray

signals in the absence of any objects. Assuming these are normalized to time

t5 0 by periodic checking, they cancel from the above equation. Then the log

functions cancel the exponential variations, leaving the simple result:

ηðtÞ5 μ1

μ2

5 constant (20.20)

Note that this result is completely independent of the sample thickness z, although

its “constant” nature depends on the nature of the materials involved, and their

homogeneity.

The method is so successful that it is routinely used for scanning humans to

measure bone mineral density. A recent application of its use for inspecting meat

samples is given by Kröger et al. (2006).

20.11 THE IMPORTANCE OF COLOR IN INSPECTION
In many applications of machine vision, it is not necessary to consider color

because almost all that is required can be achieved using grayscale images. For

example, many processes devolve into shape analysis and subsequently into statis-

tical pattern recognition. This situation is exemplified by fingerprint analysis and

by handwriting and optical character recognition. However, there is one area

where color has a big part to play: this is in the picking, inspection, and sorting

of fruit. For example, color is very important in the determination of apple
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quality. Not only is it a prime indicator of ripeness, but also it contributes greatly

to physical attractiveness, and thus encourages purchase and consumption.

Although color cameras digitize color into the usual RGB (red, green, blue)

channels, humans perceive color differently. As a result, it is better to convert the

RGB representation to the HSI (hue, saturation, intensity) domain before asses-

sing the colors of apples and other products.3 Space prevents a detailed study of

the question of color. The reader is referred to more specialized texts for detailed

information (e.g., Gonzalez and Woods, 1992; Sangwine and Horne, 1998).

However, some brief comments will be useful. Intensity I refers to the total light

intensity and is defined by:

I5
ðR1G1BÞ

3
(20.21)

Hue H is a measure of the underlying color, and saturation S is a measure of the

degree to which it is not diluted by white light (S is zero for white light). S is

given by the simple formula:

S5 12
minðR;G;BÞ

I
5 12

3 minðR;G;BÞ
R1G1B

(20.22)

which makes it unity along the sides of the color triangle, and zero for white light

(R5G5B5 I). Note how the equation for S favors none of the R, G, B compo-

nents. It does not express color but a measure of the proportion of color and dif-

ferentiation from white.

Hue is defined as an angle of rotation about the central white point W in the

color triangle. It is the angle between the pure red direction (defined by the vector

R�W) and the direction of the color C in question (defined by the vector C�W).

The derivation of a formula for H is fairly complex and will not be attempted

here. Suffice it to say that it may be determined by calculating cos H, which

depends on the dot product (C�W).(R�W). The final result is:

H5 cos21
1
2
R2Gð Þ1 R2Bð Þ½ �

R2Gð Þ2 1 R2Bð Þ G2Bð Þ� �1=2
0
@

1
A (20.23)

or 2π minus this value if B.G (Gonzalez and Woods, 1992).

When checking the color of apples, the hue is the important parameter. A rig-

orous check on the color can be achieved by constructing the hue distribution and

comparing it with that for a suitable training set. The most straightforward way to

carry out the comparison is to compute the mean and standard deviation of the

two distributions to be compared and to perform discriminant analysis assuming

3Usually, a more important reason for use of HSI is to employ the hue parameter that is indepen-

dent of the intensity parameter, as the latter is bound to be particularly sensitive to lighting

variations.
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Gaussian distribution functions. Standard theory (Section 4.5.3, Eqs. (4.19)�
(4.22)) then leads to an optimum hue decision threshold.

In the work of Heinemann et al. (1995), discriminant analysis of color based

on this approach gave complete agreement between human inspectors and the

computer following training on 80 samples and testing on another 66 samples.

However, a warning was given about maintaining lighting intensity levels identi-

cal to those used for training. In any such pattern recognition system, it is crucial

that the training set be representative in every way of the eventual test set.

Finally, note that full color discrimination would require an optimal decision

surface to be ascertained in the overall 3-D color space. In general, such decision

surfaces are hyperellipses and have to be determined using the Mahalanobis dis-

tance measure (see, for example, Webb, 2002). However, in the special case of

Gaussian distributions with equal covariance matrices, or more simply with equal

isotropic variances, the decision surfaces become hyperplanes.

20.12 BRINGING INSPECTION TO THE FACTORY
The relationship between the producer of vision systems and the industrial user is

more complex than might appear at first sight. The user has a need for an inspec-

tion system and states his need in a particular way. However, subsequent tests in

the factory may show that the initial statement was inaccurate or imprecise, for

example, the line manager’s requirements4 may not exactly match those envis-

aged by the factory management board. Part of the problem lies in the relative

importance given to the three disparate functions of inspection mentioned earlier.

Another lies in the change of perspective once it is seen exactly what defects the

vision system is able to detect. It may be found immediately that one or more of

the major defects that a product is subject to may be eliminated by modifications

to the manufacturing process; in that case, the need for vision is greatly reduced,

and indeed the very process of trying out a vision system may end in its value

being undermined and its not being taken up after a trial period. Clearly, this does

not detract from the inherent capability of vision systems to perform 100% untir-

ing inspection and to help maintain strict control of quality. However, it must not

be forgotten that vision systems are not cheap and that they can in some cases be

justified only if they replace a number of human operators. Frequently, a payback

period of 2�3 years is specified for installing a vision system.

Textural measurements on products are an attractive proposition for applica-

tions in the food and textile industries. Often, textural analysis is written into the

prior justification for, and initial specification of, an inspection system. However,

4In many factories, line managers have the brief of maintaining production at a high level on an

hour-by-hour basis, while at the same time keeping track of quality. The tension between these two

aims, and particularly the underlying economic constraints, means that on occasion quality is bound

to suffer.
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what a vision researcher understands by texture and what a line inspector in either

of these industries means by it tend to be different. Indeed, what is required of

textural measurements varies markedly with the application. The vision researcher

may have in mind higher order5 statistical measures of texture, such as would be

useful with a rough irregular surface of no definite periodicity6—as in the case of

sand or pebbles on a beach, or grass or leaves on a bush. However, the textile

manufacturer would be very sensitive to the periodicity of his fabric, and to the

presence of faults or overly large gaps in the weave. In such cases, a major prob-

lem is likely to be that of minimizing computation so that considerable expanses

of fabric, or large numbers of products, can be checked economically at produc-

tion rates. Similarly, the food manufacturer might be interested in the number and

spatial distribution of pieces of pepper on a pizza, while for fish coatings (e.g.,

batter or breadcrumbs) uniformity will be important and “texture measurement”

may end by being interpreted as determining the number of holes per unit area of

the coating. Thus, it may sometimes be beneficial to characterize a texture by

rather simple counting or uniformity checks instead of higher order statistics.

More generally, it is important to keep the inspection system flexible by training

on samples so that maximum utility of the production line can be maintained.

With this backcloth to factory requirements, it is clearly vital for the vision

researcher to be sensitive to actual rather than idealized needs or the problem as

initially specified. There is no substitute for detailed consultation with the line

manager and close observation in the factory before setting up a trial system.

Then the results from trials need to be considered very carefully to confirm that

the system is producing the information that is really required.

20.13 CONCLUDING REMARKS
This chapter has been concerned with the application of computer vision to indus-

trial tasks, and notably to automated visual inspection. The number of relevant

applications is exceptionally high, and for that reason, it has been necessary to

concentrate on principles and methods rather than on individual cases. The

repeated mention of hardware implementation has been a necessary one, since the

economics of real-time implementation is often the factor that ultimately decides

whether a given system will be installed on a production line. However, speeds of

processing are also heavily dependent on the specific algorithms employed, and

5The zero-order statistic is the mean intensity level; first-order statistics such as variance and skew-

ness are derived from the histogram of intensities; second- and higher order statistics take the form

of gray-level co-occurrence matrices, showing the number of times particular gray values appear at

two or more pixels in various relative positions. For more discussion on textures and texture analy-

sis, see Chapter 8.
6More rigorously, the fabric is intended to have a long-range periodic order that does not occur

with sand or grass: in fact, there is a close analogy here with the long- and short-range periodic

order for atoms in a crystal and in a liquid, respectively.
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these in turn depend on the nature of the image acquisition system—including

both the lighting and the camera setup (indeed, the decision of whether to inspect

products on a moving conveyor or to bring them to a standstill for more careful

scrutiny is perhaps the most fundamental one for implementation). Hence, image

acquisition and real-time electronic hardware systems are the main topics of two

later chapters (Chapters 25 and 26).

More fundamentally, the reader will have noticed that a major purpose of

inspection systems is to make instant decisions on the adequacy of products.

Related to this purpose are the often fluid criteria for making such decisions and

the need to train the system so that the decisions that are made are at least as

good as those that would have arisen with human inspectors. In addition, training

schemes are valuable in making inspection systems more general and adaptive,

particularly with regard to change of product. Hence, the pattern recognition

techniques discussed in Chapter 24 are highly relevant to the process of

inspection.

On a different tack, note that much of automated visual inspection falls under

the heading of computer-aided manufacture (CAM), of which computer-aided

design (CAD) is another part. Nowadays, many manufactured parts can in princi-

ple be designed on a computer, visualized on a computer screen, made by

computer-controlled (e.g., milling) machines, and inspected by computer—all

without human intervention in handling the parts themselves. There is much sense

in this computer-integrated manufacture (CIM) concept, since the original design

data set is stored in the computer, and therefore it might as well be used (a) to aid

the image analysis process that is needed for inspection and (b) as the actual tem-

plate by which to judge the quality of the goods. After all, why key in a separate

set of templates to act as inspection criteria when the specification already exists

on a computer? However, some augmentation of the original design information

to include valid tolerances is necessary before the dataset is sufficient for imple-

menting a complete CIM system. Also, the purely dimensional input to a numeri-

cally controlled milling machine is not generally sufficient—as the frequent

references to surface quality in the present chapter indicate.

Automated industrial inspection is a well-worn application area for vision that severely
exercises the reliability, robustness, accuracy, and speed of vision software and hardware.
This chapter has discussed the practicalities of this topic, showing how color and other
modalities such as X-rays impinge on the basic vision techniques.

20.14 BIBLIOGRAPHICAL AND HISTORICAL NOTES
It is very difficult to provide a bibliography of the enormous number of papers on

applications of vision in industry or even in the more restricted area of automated

visual inspection. In any case, it can be argued that a book such as this ought to

concentrate on principles and to a lesser extent on detailed applications and
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“mere” history. However, the review article by Newman and Jain (1995) gives a

representative overview covering an earlier period.

The overall history of industrial applications of vision has been one of rela-

tively slow beginnings as the potential for visual control became clear, followed

only in recent years by explosive growth as methods and techniques evolved and

as cost-effective implementations became possible as a result of cheaper computa-

tional equipment. In this respect, 1980 marked a turning point, with the instiga-

tion of important conferences and symposia, notably that on “Computer Vision

and Sensor-Based Robots” held at General Motors Research Laboratories during

1978 (see Dodd and Rossol, 1979), and the Robot Vision and Sensory Controls

(ROVISEC) series of conferences organized annually by IFS (Conferences) Ltd,

UK, from 1981. In addition, useful compendia of papers were published

(e.g., Pugh, 1983), and books outlining relevant principles and practical details

(e.g., Batchelor et al., 1985).

Noble (1995) presented an interesting and highly relevant view of the use of

machine vision in manufacturing. Davies (1995) developed the same topic by pre-

senting several case studies together with a discussion of some major problems

that remained to be tackled in this area.

The 1990s saw considerable interest in X-ray inspection techniques, particularly

in the food industry (Boerner and Strecker, 1988; Wagner, 1988; Chan et al., 1990;

Penman et al., 1992; Graves et al., 1994; Noble et al., 1994). In the case of X-ray

inspection of food, the interest was almost solely in the detection of foreign objects,

which could in some cases be injurious to the consumer. Indeed, this was a prime

motivation for much work in the author’s laboratory (Patel et al., 1994, 1995).

Another topic of growing interest was the automatic visual control of materials

such as lace during manufacture, together with high-speed scalloping of lace

using lasers (King and Tao, 1995; Yazdi and King, 1998).

A cursory examination of inspection publications reveals growth in emphasis

on surface defect inspection, including color assessment, and X-ray inspection of

bulk materials and baggage, e.g., at airports. Two journal special issues (Davies

and Ip, 1998; Nesi and Trucco, 1999) cover defect inspection, while Tsai and

Huang (2003) and Fish et al. (2003) further emphasize the point regarding surface

defects.

Work on color inspection includes both food (Heinemann et al., 1995) and

pharmaceutical products (Derganc et al., 2003). Work on X-rays includes the

location of foreign bodies in food (Patel et al., 1996; Batchelor et al., 2004), the

internal inspection of solder joints (Roh et al., 2003), and the examination of bag-

gage (Wang and Evans, 2003). Finally, a recent volume on inspection of natural

products (Graves and Batchelor, 2003) has articles on inspection of ceramics,

wood, textiles, food, live fish and pigs, and sheep pelts, and embodies work on

color and X-ray modalities. In a sense, such work is neither adventurous

nor glamorous. Indeed, it involves significant effort to develop the technology

and software sufficiently to make it useful for industry—which means this is an

exacting type of task, not tied merely to the production of academic ideas.
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20.14.1 More Recent Developments
More recently, Chao and Tsai (2008) describe an inspection system for detecting

surface defects in glass substrates for liquid crystal displays. It is based on an ani-

sotropic diffusion-based smoothing technique. This type of technique is designed

to smooth the image in directions parallel to edges, and not normal to edges, that

is, it is designed to perform edge-preserving smoothing. Thus, it tends to enhance

features such as cracks or indentations or breaks in a substance, and to eliminate

noise or the effects of minor lighting or lightness variations. By the time this has

been achieved, it is much more likely that defects will be locatable by threshold-

ing. In this case, a special new anisotropic diffusion algorithm was designed to

improve the situation further. Tsai et al. (2010) had a similar problem—that of

looking for micro-cracks in textured solar wafers. Although they used anisotropic

diffusion to initiate the process, and followed this with binary thresholding, they

completed the task of removing noise and identifying the micro-cracks by use of

morphological operations. Mak et al. (2009) had the problem of locating defects

in textured materials. Here, texture forms a complex background pattern and this

imposes difficulties. In this case, these were solved by applying a special type of

neural network—a Gabor wavelet network. Following this, a sequence of morpho-

logical operators was applied to locate the defects. In a typical case, this involved

13 7 linear opening, 13 7 linear closing, 33 3 median, 33 3 closing, and finally

thresholding. Sun et al. (2010) describe a more general type of system for inspect-

ing electric contacts for a variety of types of surface defect including cracks,

breaks, and scratches, using multiple 3-D views. There was some concentration

on dimensional measurement, although morphological analysis was also required,

including the top-hat transform for locating cracks; edge breaks were located

by deviations from circularity. For further details, the reader is referred to the

original paper.

Alexandropoulos et al. (2008) worked on template-guided inspection,

primarily of under-vehicle views of the exhaust and other vehicle components

and structures. Here, the inspection fell into a template registration phase

followed by a template differencing phase. In fact, the latter had to contend with

noise, illumination variations, shadows, and so on. Problems with change

detection were addressed by using a block-based segmentation technique, which

contrasted noise and structural variations. Variations were judged relative to

statistical significance for the particular block sizes. In general, in block-based

change detection, it proved necessary to take into consideration the anticipated

scene complexity and adjust the operation parameters accordingly. For example,

too small a block size was undesirable as it accentuated edge effects.

Work on X-ray inspection has continued, in particular, using the by now

important and well-established dual-energy (DEXA) approach outlined in

Section 20.10.1. For a recent application of its use for inspecting meat samples,

see Kröger et al. (2006).
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CHAPTER

21Inspection of Cereal
Grains

Inspection of cereal grains is an exceptionally mundane and repetitive task, and to

some extent contrasts with many of the examples given in Chapter 20 in that the

emphasis is on detecting contaminants rather than finding manufacturing faults.

This chapter presents three case studies that cover the topic and at the same time

air and solve relevant theoretical questions.

Look out for:

• the limitations of the immediately obvious technique—global thresholding.

• the value of morphological filtering.

• the relatively unusual need for median filtering as a morphological operation.

• the use of bar (linear feature) detectors for locating insects.

• how the vectorial bar detector operator is optimized.

• how sampling can be used to speed up object location.

• how the outputs of oblique template masks can optimally be combined.

This chapter repeatedly alludes to the problems of achieving real-time opera-

tion and largely solves these problems for moderately demanding situations (flow

rates up to B300 items per second): for more demanding situations, dedicated

hardware accelerators are needed, as discussed in Chapter 26. At a more detailed

level, the balance between false positives (false alarms) and false negatives needs

to be optimized, as discussed in Section 24.7.

21.1 INTRODUCTION
Cereal grains are among the most important of the foods we grow. A large

proportion of cereal grains is milled and marketed as flour: this is then used to

produce bread, cakes, biscuits and many other commodities. Cereal grains can

Computer and Machine Vision.
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also be processed in a number of other ways (such as crushing), and thus they

form the basis of many breakfast cereals. In addition, there are some cereal

grains, or cereal kernels, which are eaten with a minimum of processing: rice is

obviously in this category—although whole wheat and oat grains are also con-

sumed as decorative additives to “granary” loaves.

Wheat, rice, and other cereal grains are shipped and stored in vast quantities

measured in millions of tons, and a large international trade exists to market these

commodities. Transport also has to be arranged between farmers, millers, crushers,

and the major bakers and marketers. Typically, transit by road or rail is in rela-

tively small loads of up to 20 tons, and grain depots, warehouses, and ports are not

unlikely to receive lorries containing such consignments at intervals ranging from

20 min to as little as 3 min. All the necessary transportation and storage result in

grains being subject to degradation of various sorts: damage, molds, sprouting,

insect infestation, and so on. In addition, the fact that grains are grown on the land

and threshed implies the possibility of contamination by rodent droppings, stones,

soil, chaff, and foreign grains. Finally, the quality of grain from various sources

will not be uniformly high, and varietal purity is an important concern.

These factors mean that ideally, the grain that arrives at any depot should be

inspected for a good many possible causes of degradation. This chapter is con-

cerned with grain inspection. In the space of one chapter, we shall not aim to

cover all possible methods and modes of inspection. Indeed, this would be impos-

sible as the subject is moving ahead quite fast: not only are inspection methods

evolving rapidly, but the standards against which inspection is carried out are also

evolving fairly quickly. To some extent, the improvement of automatic inspection

methods and the means of implementing them efficiently in hardware are helping

to drive the process onward. We shall explore the situation with the aid of three

main case studies, and then we shall look at the overall situation.

The first case study involves the examination of grains to locate rodent drop-

pings and molds, such as ergot. The second case study considers how grains may

be scrutinized for insects, such as the saw-toothed grain beetle. The third case

study is concerned with inspection of the grains themselves. However, this case

study is more general, and is less involved with the scrutiny of individual grains

than with how efficiently they can be located: this is an important factor when

lorry loads of grain are arriving at depots every few minutes—leading to the need

to sample of the order of 300 grains per second. As remarked in Chapter 20,

object location can involve considerably more computation than object scrutiny

and measurement.

21.2 CASE STUDY: LOCATION OF DARK CONTAMINANTS
IN CEREALS

As noted above, there is a demand for grain quality to be monitored before proces-

sing to produce flour, breakfast cereals, and a myriad of other derived products.

Early work in this area was applied mainly to the determination of grain quality
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(Ridgway and Chambers, 1996), with concentration on the determination of varietal

purity (Zayas and Steele, 1990; Keefe, 1992) and the location of damaged grains

(Liao et al., 1994). In fact, there is also the need to detect insect infestations and

other important contaminants in grain—while not being confused by up to B2%

“permitted admixture” such as chaff and dust. The inspection work described in this

section (Davies et al., 1998a) pays particular attention to the detection of noninsect

contaminants. Relevant contaminants in this category include rodent (especially rat

and mouse) droppings, molds such as ergot, and foreign seeds. (Note that ergot is

poisonous to humans, so locating any instances of it is of especial importance.) In

this case study the substrate grain is wheat, and foreign seeds such as rape would be

problematic if present in too great a concentration.

Many of the potential contaminants for wheat grains (and for grains of similar

general appearance such as barley or oats) are quite dark in color. This means

that thresholding is the most obvious approach for locating them. However, there

are a number of problems, in that false alarms arise from shadows between grains,

dark patches on the grains, rapeseeds, chaff and other admixture components: this

means that further recognition procedures have to be invoked to distinguish

between the various possibilities. As a result, the thresholding approach is not

eventually as attractive as might a priori have been thought (Fig. 21.1(a) and (b)).

This problem is exacerbated by the extreme speeds of processing required in real

applications. For example, a successful device for monitoring lorry loads of grain

might well have to analyze a 3-kg sample of grain in 3 min (the typical time

between arrival of lorries at a grain terminal), and this would correspond to some

60,000 grains having to be monitored for contaminants in that time. This places a

distinct premium on rapid, accurate image analysis.

This case study concentrates on monitoring grain for rodent droppings. As indi-

cated above, these types of contaminant are generally darker than the grain back-

ground, but cannot simply be detected by thresholding since there are significant

shadows between the grains, which themselves often have dark patches. In addi-

tion, the contaminants are speckled because of their inhomogeneous constitution

and because of lighting and shadow effects. In spite of these problems, the con-

taminants are identifiable by human operators because they are relatively large

and their shape follows a distinct pattern (e.g., an aspect ratio of three or four to

one). Thus, it is the combination of size, shape, relative darkness, and speckle that

characterizes the contaminants and differentiates them from the grain substrate.

Designing efficient and rapidly operating algorithms to identify these

contaminants is something of a challenge, but an obvious way of tackling it is via

mathematical morphology—as we shall see in Section 21.2.1.

21.2.1 Application of Morphological and Nonlinear Filters
to Locate Rodent Droppings

As indicated above, the obvious approach to the location of rodent droppings is to

process thresholded images by erosion and dilation. In this way, shadows between
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FIGURE 21.1

Effects of various operations and filters on a grain image. (a) Grain image containing

several contaminants (rodent droppings). (b) Thresholded version of (a). (c) Result of

erosion and dilation on (b). (d) Result of dilation and erosion on (b). (e) Result of erosion

on (d). (f) Result of applying 113 11 median filter to (b). (g) Result of erosion on (f). In all

cases, “erosion” means three applications of the basic 33 3 erosion operator, and

similarly for “dilation.”

Source: r IEE 1998
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grains, and discoloration of grains would be eliminated by the erosions, and the

shapes and sizes of the contaminants restored by the subsequent dilations. The

effect of this procedure is shown in Fig. 21.1(c). Note that the method has been

successful in eliminating the shadows between the grains, but has been decidedly

weak in coping with light regions on the contaminants. Remembering that while

considerable uniformity might be expected between grains, the same cannot be

said about rodent droppings, whose size, shape, and color vary quite markedly.

Hence, the erosion�dilation schema has limited value, although it would probably

be successful in most instances. Accordingly other methods of analysis were

sought (Davies et al., 1998a).

The second approach is to overcome the problem of fragmentation of the con-

taminants which arose with the previous approach: this was attempted by first

consolidating the contaminants by applying dilation before erosion. The effect of

this approach is shown in Fig. 21.1(d). Notice that the result is to consolidate the

shadows between grains even more than the shapes of the contaminants. Even

when an additional few erosions are applied (Fig. 21.1(e)), the consolidated

shadows do not disappear, and are of comparable sizes to the contaminants.

Hence, the approach is not viable, and creates more problems than it solves. One

possibility is to use the results of the earlier erosion�dilation schema as “seeds”

to validate a subset of the dilation�erosion schema. However, this would be far

more computation intensive and the results would clearly not be especially

impressive (see Fig. 21.1(c) and (e)). Instead, a totally different approach was

adopted.

The new approach was to apply a large median filter to the thresholded image,

as shown in Fig. 21.1(f). This gives good segmentation of the contaminants,

retaining their intrinsic shape to a reasonable degree, and suppresses the shadows

between grains quite well. In fact, the shadows immediately around the contami-

nants enhance the sizes of the latter in the median filtered image, while some sha-

dows further away are consolidated and retained by the median filtering. It was

found useful to perform a final erosion operation (Fig. 21.1(g)): this eliminates

the extraneous shadows and brings the contaminants back to something like their

proper size and shape: although the lengths are slightly curtailed, this is not a

severe disadvantage. Overall, the median filtering�erosion schema gave easily

the greatest fidelity to the original contaminants, while being particularly success-

ful at eliminating other artifacts (Davies et al., 1998a). In this case, it seems

that the median filter is acting as an analytical device that carefully meditates and

obtains the final result in a single rigorous stage—thus avoiding the error-propagation

inherent in a two-stage process.

Finally, although median filtering is intrinsically more computation intensive

than erosion and dilation operations, many methods have been devised for accel-

erating median operations (see Chapter 3), and indeed the speed aspect was found

to be easily soluble within the specification set out above.
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21.2.2 Problems with Closing
The above case study was found to require the use of a median filter coupled

with a final erosion operation to eliminate artifacts in the background. An earlier

test similarly involved a closing operation (a dilation followed by an erosion), fol-

lowed by a final erosion. In other applications, grains or other small particles are

often grouped by applying a closing operation to locate the regions where the par-

ticles are situated (Fig. 7.6). It is interesting to speculate whether, in the latter

type of approach, closing should occasionally be followed by erosion, and also

whether the final erosions used in the tests were no more than ad hoc procedures

or whether they were vital to achieve the defined goal.

The situation was analyzed by Davies (2000c) and is summarized in Sections

7.5.1 and 7.5.2. The analysis starts by considering two regions containing small

particles with occurrence densities ρ1, ρ2, where ρ1. ρ2 (Figs. 7.7 and 7.8). It

finds that a final erosion is indeed required to eliminate a shift in the region

boundary, the estimated shift δ being:1

δ5 2abρ2ða1 bÞ (21.1)

where a is the radius of the dilation kernel and b is the width of the particles in

Region 2.

It is important to notice that if b5 0, no shift will occur, but for particles of

measurable size this is not so. Clearly, if b is comparable to a or if a is much

greater than 1 pixel, a substantial final erosion may be required. On the other

hand, if b is small, it is possible that the two-dimensional shift will be less than 1

pixel. In that case, it will not be correctable by a subsequent erosion, but due

allowance for the shift can be made during subsequent analysis. While in this

work, the background artifacts were induced mainly by shadows around and

between grains, in other cases impulse noise or light background texture could

give similar effects, and care must be taken to select a morphological process that

limits any overall shifts in region boundaries. In addition, notice that the whole

process can be modeled and the extent of any necessary final erosion estimated

accurately. More particularly, the final erosion is a necessary measure, and is not

merely an ad hoc procedure (Davies, 2000c).

21.2.3 Ergot Detection Using the Global Valley Method
While the early parts of Section 21.2 emphasized the difficulty of locating dark

contaminants in cereals, and concluded that, in general, morphological methods

would be needed for this purpose, it turns out that ergot can be isolated by thresh-

olding. However, there is an intrinsic difficulty in finding a suitable threshold

value, and appealing to the intensity histogram shows that it usually approximates

closely to a unimodal distribution with no real indication of where the best

1A full derivation of this result appears in Section 7.5.1.
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thresholding point would be. However, the global valley transformation described

in Chapter 4 is highly effective in this situation and leads to a global valley trans-

form which, when smoothed, provides a virtually perfect thresholding value

(Fig. 21.2). In fact, the method yields two threshold values, one which is useful

for locating ergot and the other which is suited to separating wheat grains from a

light conveyor background: clearly, there is no problem ignoring the latter thresh-

old if it is not needed.

The reason why ergot can be detected in this way is that it is generally some-

what darker than rodent droppings. Ergot also differs from rat droppings in that

the pieces are rather smaller, although in this respect they are not dissimilar to

(a) (b)

(d)

(c)

0 30 60 90 120 150 180 210 240

0 30 60 90 120 150 180 210 240

FIGURE 21.2

Location of ergot among wheat grains. (a) Original image. (b) Doubly thresholded image.

(c) Result of only applying the lower threshold. (d) Top to bottom: Intensity histogram of

(a). Result of applying the global valley transformation. Result of smoothing the global

valley transform. The two thresholds used in (b) being located automatically at the dotted

line. For further details, see text in Chapter 4.

Source: r IET 2008
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mouse droppings. However, its most important characteristic is that it is poison-

ous to humans (rodent droppings are unlikely to be poisonous, even though they

are clearly highly undesirable). Hence, a further method that can be employed for

detecting this type of contaminant is of some value.

21.3 CASE STUDY: LOCATION OF INSECTS
The case study described in this section pays particular attention to the need to

detect insects. Note that insects present an especially serious threat, because they

can multiply alarmingly in a short span of time, so greater certainty of detection

is vital in this case. This means that a highly discriminating method is required

for locating adult insects (Davies et al., 1998b).

Not surprisingly, thresholding initially seemed to be the approach offering the

most promise for locating insects, which appear dark relative to the light brown

color of the grain. However, early tests on these lines showed that a good many

false alarms would result from chaff and other permitted admixture, from less

serious contaminants such as rapeseeds, and even from shadows between, and dis-

colorations on, the grains themselves (Fig. 21.3). These considerations led to use

of the linear feature detection approach for detecting small adult insects. This

proved possible because these insects appear as dark objects with a linear (essen-

tially bar-shaped) structure; hence attempts to detect them by applying bar-shaped

masks led ultimately to a linear feature detector that had good sensitivity for a

reasonable range of insect sizes. Before proceeding further, we consider the pro-

blems of designing linear feature detector masks.

21.3.1 The Vectorial Strategy for Linear Feature Detection
In earlier chapters we found that location of features in 33 3 windows typically

required eight template masks to be applied in order to cope with arbitrary orien-

tation. In particular, to detect corners, eight masks were required, while only one

is needed to locate small holes because of the high degree of symmetry present in

the latter case (Chapter 6). To detect edges by this means, four masks were

required because 180� rotations correspond to a sign change that effectively elimi-

nates the need for half of the masks: however, edge detection is a special case, as

edges are vector quantities with magnitude and direction, and hence they are fully

definable using just two component masks. In contrast, a typical line segment

detection mask would have the form:

21 2 21

21 2 21

21 2 21

2
4

3
5

This indicates that four masks are sufficient, the total number being cut from

eight to four by the particular rotation symmetry of a line segment. Curiously,
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(a) (b)

(c) (d)

(e)

FIGURE 21.3

Insects located by line segment detector. (a) Original image. (b) Result of applying

vectorial operator. (c) Result of masking (b) using an intensity threshold at a standard high

level. (d) Result of thresholding (c). (e) Result of applying TM operation within (d).
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while only edges qualify as strict vectors, requiring just two component masks,

the same can be made to apply for line segments. To achieve this, a rather

unusual set of masks has to be employed:2

L0 5A

0 21 0

1 0 1

0 21 0

2
4

3
5 L45 5B

21 0 1

0 0 0

1 0 21

2
4

3
5 (21.2)

The two masks are given different weights, so that some account can be taken

of the fact that the nonzero coefficients are respectively 1 and O2 pixels from the

center pixel in the window. These masks give responses g0, g45 leading to:

g5 ðg20 1 g245Þ1=2 (21.3)

θ5
1

2
arctan

g45

g0

� �
(21.4)

where the additional factor of one half in the orientation arises as the two masks

correspond to basic orientations of 0� and 45� rather than 0� and 90� (Davies,

1997c). Nevertheless, these masks can cope with the full complement of orienta-

tions as line segments have 180� rotational symmetry and the final orientation

should only be determined within the range 0�180�. In Section 21.5, we com-

ment further on the obvious similarities and differences between Eqs. (21.3),

(21.4) and those pertaining to edge detection.
Next, we have to select appropriate values of the coefficients A and B.

Applying the above masks to a window with the intensity pattern:

a b c

d e f
g h i

leads to the following responses at 0� and 45�:

g0 5Aðd1 f 2 b2 hÞ (21.5)

g45 5Bðc1 g2 a2 iÞ (21.6)

Using this model, theory and simulations were carried out (Davies, 1997c) for

the case of a line segment of width w passing through the center of the 33 3 win-

dow, pixel responses being taken in proportion to the area of the line falling

within each pixel. These showed that high orientation accuracy occurred for

w5 1.4, when B/A5 0.86, giving a surprisingly low maximum error of just 0.4�.
However, in this application, high orientation accuracy was not required, so

2The proof of the concepts described here involves describing the signal in a circular path around

the current position and modeling it as a sinusoidal variation, which is subsequently interrogated by

two quadrature sinusoidal basis functions set at 0� and 45� in real space (but by definition at 90� in

the quadrature space). The mapping between orientation θ in the quadrature space and orientation

ϕ in real space leads to the additional factor of one half in Eq. (21.4).
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Eq. (21.3) was used on its own to obtain an accurate estimate of line contrast

using the two masks. In this way, high sensitivity could be attained in the detec-

tion of image features corresponding to insect contaminants.

21.3.2 Designing Linear Feature Detection Masks for
Larger Windows

When larger windows are used, it is possible to design the masks more ideally to

match the image features that have to be detected, because of the greater resolu-

tion then permitted. However, there are many more degrees of freedom in the

design, and there is some uncertainty as to how to proceed. The basic principle

(Davies et al., 1998b) is to use masks whose profile matches the intensity profile

of a linear feature around a ring of radius R centered on the feature, and at the

same time follows a particular mathematical model—namely an approximately

sinusoidal amplitude variation. For a given linear feature of width w, the sinusoi-

dal model will achieve the best match for a thin ring of radius R0 for which the

two arc lengths within the feature are each one quarter of the circumference 2πR0

of the ring. Simple geometry (Fig. 21.4) shows that this occurs when:

2R0 sin
π
4

 �
5w (21.7)

‘ R0 5
w

O2
(21.8)

The width ΔR of the ring should in principle be infinitesimal, but in practice,

considering noise and other variations in the dataset, ΔR can validly be up to

about 40% of R0. The other relevant factor is the intensity profile of the ring, and

how accurately this has to map to the intensity profile of the linear features to be

FIGURE 21.4

Geometry for application of a thin ring mask. Here two quarters of the ring mask lie within

and two outside a rectangular bar feature.

Source: r World Scientific 2000
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located in the image. In many applications, such linear features will not have

sharp edges, but will be slightly fuzzy and the sides will have significant and

varying intensity gradient. Thus, the actual intensity profile is quite likely to cor-

respond reasonably closely to a true sinusoidal variation. Masks designed on this

basis proved close to optimal when experimental tests were made (Davies et al.,

1998b). Figure 21.5 shows masks that resulted from this type of design process

for one specific value of R (2.5 pixels).

21.3.3 Application to Cereal Inspection
The main class of insect that was targeted in this study (Davies et al., 1998b) was

Oryzaephilus surinamensis (saw-toothed grain beetle): insects in this class

approximate to rectangular bars of about 103 3 pixels, and masks of size 73 7

(Fig. 21.5) proved to be appropriate for identifying the pixels on the centrelines

of these insects. In addition, the insects could appear in any orientation, and thus

the vectorial approach to template matching was used, employing two masks as

outlined above.

Preliminary decisions on the presence of the insects were made by thresholding

the output of the vectorial operator. However, the vectorial operator responses for

insect-like bars have a low-intensity surround, which is joined to the central

response at each end, and between the low-intensity surround and the central

response the signal drops close to zero except near the ends (Fig. 21.3(b)).

This response pattern is readily understandable because symmetry demands that

the signal be zero when the centers of the masks are coincident with the edge of

the bar. To avoid problems from the parts of the response pattern outside the

object, intensity thresholding (applied separately to the original image) was used to

set the output to zero where it indicates no insect could be present (Fig. 21.3(c)).

21.3.4 Experimental Results
In laboratory tests, the vectorial operator was applied to 60 grain images contain-

ing a total of 150 insects. The output of the basic enhancement operator

FIGURE 21.5

Typical (73 7) linear feature detection masks.

Source: r EURASIP 1998
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(described in Section 21.3.1) was thresholded to perform the actual detection and

then passed to an area discrimination procedure: objects having fewer than 6 pix-

els were eliminated, as these normally correspond to dark shadows or discolora-

tions on the grains.

The detection threshold was adjusted to minimize the total number of errors.

Minor failures were typically due to two insects in contact being interpreted as

one, insects being masked by lying along the edges of grains, and the dark edge

of a grain appearing similar to an insect.

While adjustment of the detection threshold was found to eliminate either the

false positive or two of the false negatives (but not the one in which two insects

were in contact), the ultimate reason why the total number of errors could not be

reduced further lay in the limited sensitivity of the vectorial operator masks,

which contain relatively few coefficients. This was verified by carrying out a test

with a set of conventional template matching (TM) masks (Fig. 21.6), which led

to a single false negative (due to the two insects being in contact) and no false

positives—and a much increased computational load (Davies et al., 2003a). It was

accepted that the case of two touching insects would remain a problem that could

only be eliminated by introducing a greater level of image understanding—an

aspect beyond the scope of this work (although this particular problem could eas-

ily be eliminated by noting the excessive length and/or area of this one object).

Next, it was desired to increase the interpretation accuracy of the vectorial

operator in order to limit computation, and tests were made of a two-stage system,

aimed at combining the speed of the vectorial operator with the accuracy of TM.

Accordingly, the vectorial operator was used to create regions of interest for the

TM operator. To obtain optimum performance, it was found necessary to decrease

the vectorial operator threshold level to reduce the number of false negatives,

leaving a slightly increased number of false positives that would subsequently be

eliminated by the TM operator. The final result was an error rate exactly match-

ing that of the TM operator, but a considerably reduced overall execution time

composed of the adjusted vectorial operator execution time plus the TM execution

time for the set of regions of interest. Further speed improvements, and no loss in

FIGURE 21.6

73 7 template matching masks. There are 8 masks in all, orientated at multiples of 22.5�

relative to the x-axis: only three are shown as the others are straightforwardly generated by

90� rotation and reflection (symmetry) operations.
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accuracy, resulted from employing a dilation operation within the vectorial opera-

tor to recombine fragmented insects before applying the final TM operator: in this

case, the vectorial operator was used without reducing its threshold value. At this

stage, the speedup factor on the original TM operator was around seven (Davies

et al., 2003a).

Finally, intensity thresholding was used as a preliminary skimming operation

on the vectorial operator—where it produced a speedup by a factor of about 20:

this brought the overall speedup factor on the original TM algorithm into the

range 50�100, being close to 100 where insects are rare. Perhaps more important,

the combined algorithm was in line with the target to inspect 3 kg of grain for a

variety of contaminants within 3 min without additional fast hardware.

21.4 CASE STUDY: HIGH-SPEED GRAIN LOCATION
It has already been mentioned several times in this book that object location often

requires considerable computation, as it involves unconstrained search over the

image data: as a result the whole process of automated inspection can be slowed

down significantly, and this can be of crucial importance in the design of real-

time inspection systems. Indeed, if the scrutiny of particular types of object

requires quite simple dimensional measurements to be made, the object location

routine can be the bottleneck. This case study is concerned with the high-speed

location of objects in 2D images, a topic on which relatively little systematic

work has been carried out—at least on the software side—although many studies

have been made on the design of hardware accelerators for image processing. As

hardware accelerators represent the more expensive option, this case study con-

centrates on software solutions to the problem, and then specializes it to the case

of cereal grains in images.

21.4.1 Extending an Earlier Sampling Approach
Following on from the earlier sampling approach of Section 12.5, in which circu-

lar objects were rapidly located by bisecting a limited number of horizontal and

vertical chords, a new approach was tried. This method aimed at even greater

speed by taking a minimum number of sampling points in the image rather than

by scanning along whole lines (Davies, 1998b).

Suppose that we are looking for an object such as that shown in Fig. 21.7(a),

whose shape is defined relative to a reference point R as the set of pixels

A5 fri : i5 1 to ng, n being the number of pixels within the object. If the position

of R is xR, pixel i will appear at xi 5 xR 1 ri. This means that when a sampling

point xs gives a positive indication of an object, the location of its reference point

R will be xR 5 xs 2 ri. Thus, the reference point of the object is known to lie at

one of the set of points UR 5,iðxs 2 riÞ, so knowledge of its location is naturally

incomplete. Indeed, the map of possible reference point locations has the same
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shape as the original object, but rotated through 180�—because of the minus sign

in front of ri. Furthermore, the fact that reference point positions are only deter-

mined within n pixels means that many sampling points will be needed, the mini-

mum number required to cover the whole image clearly being N/n, if there are N

pixels in the image. This means that the optimum speedup factor will be

N=ðN=nÞ5 n, as the number of pixels visited in the image is N/n rather than N

(Davies, 1997d).

Unfortunately, it will not be possible to find a set of sampling point locations

such that the “tiling” produced by the resulting maps of possible reference point

positions covers the whole image without overlap. Thus, there will normally be

some overlap (and thus loss of efficiency in locating objects) or some gaps (and thus

loss of effectiveness in locating objects). Clearly, the set of tiling squares shown in

Fig. 21.7(b) will only be fully effective if square objects are to be located.

However, a more serious problem arises because objects may appear in any

orientation. This prevents an ideal tiling from being found. Thus, the best that can

be achieved is to search the image for a maximal rotationally invariant subset of

the shape, which must be a circle, as indicated in Fig. 21.8(a). Furthermore, as no

perfect tiling for circles exists, the tiling that must be chosen is either a set of

hexagons or, more practically, a set of squares. This means that the speedup fac-

tor for object location will be significantly less than n, although it will still be

substantial.

21.4.2 Application to Grain Inspection
A prime application for this technique is that of fast location of grains on a con-

veyor in order to scrutinize them for damage, varietal purity, sprouting, molds,

etc. Under these circumstances it is best to examine each grain in isolation: spe-

cifically, touching or overlapping grains would be more difficult to cope with.

R

(a) (b)

r

FIGURE 21.7

Object shape and method of sampling. (a) Object shape, showing reference point R and

vector r pointing to a general location xR1 r. (b) Image and sampling points, with

associated tiling squares.

Source: r EURASIP 1998
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Thus, the grains would need to be spread out with at most 25 grains being visible

in any 2563 256 image. With so much free image space there would be an inten-

sive search problem, with far more pixels having to be considered than would oth-

erwise be the case. Hence a very fast object location algorithm would be of

especial value.

Wheat grains are well approximated by ellipses in which the ratio of semi-

major (a) to semi-minor (b) axes is almost exactly 2. The deviation is normally

less than 20%, although there may also be quite large apparent differences

between the intensity patterns for different grains. Hence this model was used as

an algorithm optimization target. First, the (nonideal) L3 L square tiles would

appear to have to fit inside the circular maximal rotationally invariant subset of

the ellipse, so that O2L5 2b, i.e., L5O2b. This value should be compared with

the larger value L5 ð4=O5Þb that could be used if the grains were constrained to

lie parallel to the image x-axis—see Fig. 21.8(b) (here we are ignoring the dimen-

sions 2O2b3O2b for optimal rectangular sampling tiles).

Another consequence of the difference in shape of the objects being detected

(here ellipses) and the tile shape (square) is that the objects may be detected at sev-

eral sample locations, thereby wasting computation (see Section 21.4.1). A further

consequence of this is that we cannot merely count the samples if we wish to count

the objects: instead we must relate the multiple object counts together and find the

centers of the objects. This also applies if the main goal is to locate the objects for

inspection and scrutiny. In the present case, the objects are convex, so we only

have to look along the line joining any pair of sampling points to determine

whether there is a break and thus whether they correspond to more than one object.

We shall return later to the problem of systematic location of object centers.

For ellipses, it is relevant to know how many sample points could give posi-

tive indications for any one object. Now the maximum distance between one sam-

pling point and another on an ellipse is 2a, and for the given eccentricity this is

equal to 4b, which in turn is equal to 2O2L. Thus, an ellipse of this eccentricity

(a) (b)

FIGURE 21.8

Geometry for location of ellipses by sampling. (a) Ellipse in two orientations and maximal

rotationally invariant subset (shaded). (b) Horizontal ellipse and geometry showing size

relative to largest permitted spacing of sampling points.

Source: r EURASIP 1998
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could overlap three sample points along the x-axis direction if it were aligned

along this direction; alternatively, it could overlap just two sample points along

the 45� direction if it were aligned along this direction, although it could in that

case also overlap just one laterally placed sample point. In an intermediate direc-

tion (e.g., at an angle of around arctan 0.5 to the image x-axis), the ellipse could

overlap up to five points. Similarly, it is easy to see that the minimum number of

positive sample points per ellipse is two. The possible arrangements of positive

sample points are presented in Fig. 21.9(a).

Fortunately, the above approach to sampling is over-rigorous. Specifically, we

have insisted upon the sampling tile being contained within the ideal (circular)

maximal rotationally invariant subset of the shape. However, what is required is

that the sampling tile must be of such a size that all possible orientations of the

shape are allowed for. In the present example, the limiting case that must be

allowed for occurs when the ellipse is orientated parallel to the x-axis, and it must

be arranged that it can just pass through four sampling points at the corners of a

square so that on any infinitesimal displacement, at least one sampling point is

contained within it. For this to be possible, it can be shown that L5 ð4=O5Þb, the
same situation as already depicted in Fig. 21.8(b). This leads to the possible

arrangements of positive sampling points shown in Fig. 21.9(b)—a distinct reduc-

tion in the average number of positive sampling points, which leads to useful sav-

ings in computation (the average number of positive sampling points per ellipse is

reduced from B3 to B2).

Object location normally takes considerable computation because it involves an

unconstrained search over the whole image space, and in addition there is normally

(as in the ellipse location task) the problem that the orientation is unknown. This

contrasts with the other crucial aspect of inspection, that of object scrutiny and

measurement, in that relatively few pixels have to be examined in detail, requiring

relatively little computation. Clearly, the sampling approach outlined above largely

eliminates the search aspect of object location, since it quickly eliminates any large

tracts of blank background. Nevertheless, there is still the problem of refining the

object location phase. One way of approaching this problem is to expand the

(a) (b)

FIGURE 21.9

Possible arrangements of positive sampling points for ellipse, (a) with L 5 O2b and

(b) with L 5 (4/O5)b.

Source: r EURASIP 1998
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positive samples into fuller regions of interest and then to perform a restricted

search over these regions. For this purpose we could use the same search tools that

we might use over the whole image if sampling were not being performed.

However, the preliminary sampling technique is so fast that this approach would

not take full advantage of its speed. Instead we could use the following procedure.

For each positive sample, draw a horizontal chord to the boundary of the

object, and find the local boundary tangents. Then use the chord�tangent tech-

nique (join of tangent intersection to midpoint of chord: see Chapter 12) to deter-

mine one line on which the center of an ellipse must lie. Repeat this for the all

positive samples, and obtain all possible lines on which ellipse centers must lie.

Finally, deduce the possible ellipse center locations, and check each of them in

detail in case some correspond to false alarms arising from objects that are close

together rather than from genuine self-consistent ellipses. Note that in cases where

there is a single positive sampling point, another positive sampling point has to

be found (say L/2 away from the first).

In fact, a significantly faster approach called the triple bisection algorithm was

developed (Davies, 1998). Draw horizontal (or vertical) chords through adjacent

vertically (or horizontally) separated pairs of positive samples, bisect them, join,

and extend the bisector lines, and finally find the midpoints of these bisectors

(Fig. 21.10). (In cases where there is a single positive sampling point, another posi-

tive sampling point has to be found, say L/2 away from the first.) The triple bisec-

tion algorithm has the additional advantage of not requiring estimates of tangent

directions to be made at the ends of chords, which can prove inaccurate when

objects are somewhat fuzzy, as in many grain images. The result of applying this

technique to an image containing mostly well separated grains is shown in

Figure 21.11: this illustrates that the whole procedure for locating grains by model-

ing them as ellipses and searching for them by sampling and chord bisection

FIGURE 21.10

Illustration of triple bisection algorithm. The round spots are the sampling points, and the

short bars are the midpoints of the three chords, the short horizontal bar being at the

center of the ellipse.

Source: r EURASIP 1998
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approaches is a viable one. In addition, the procedure is very fast, as the number of

pixels that are visited is a small proportion of the total number in each image.

Finally, we show why the triple bisection algorithm presented above is appropri-

ate. First, note that it is correct for a circle, for reasons of symmetry. Second, note

that in orthographic projection, circles become ellipses, straight lines remain straight

lines, parallel lines remain parallel lines, chords remain chords, and midpoints

remain midpoints. Hence, choosing the right orthogonal projection to transform the

circle into a correctly orientated ellipse of appropriate eccentricity, the midpoints

and center location shown in the diagram of Figure 21.10 must be validly marked.

This proves the algorithm. (For a rigorous algebraic proof, see Davies, 1999b.)

21.4.3 Summary
This case study has studied sampling strategies for the rapid location of objects in

digital images. Motivated by the success of an earlier line-based sampling strategy

(Davies, 1987f), it has shown that point samples lead to the minimum computa-

tional effort when the 180�-rotated object shapes form a perfect tiling of the image

space. In practice imperfect tilings have to be used, but these can be extremely

efficient, especially when the image intensity patterns permit thresholding, the

images are sparsely populated with objects, and the latter are convex in shape. An

important feature of the approach is that detection speed is improved for larger

objects, although exact location involves some additional effort. In the case of

ellipses, the latter process is considerably aided by the triple bisection algorithm.

(a) (b)

FIGURE 21.11

Image showing grain location using the sampling approach. (a) Sampling points. (b) Final

center locations.

Source: r EURASIP 1998
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The method has been applied successfully to the location of well separated

cereal grains, which can be modeled as ellipses with 2:1 aspect ratio, ready for

scrutiny to assess damage, varietal purity or other relevant parameters.

In a more recent development (Davies, 2007c, 2008a), the line- and point-

based sampling approaches have been analyzed to determine how much can be

learnt by making the particular sampling tests. It turns out that the greatest gain

in certainty (amount that can be learnt) is obtained by employing a logarithmic

estimate of information and seeking a maximum of the entropy function:

E5 � ½P logP1ð1� PÞ log ð1� PÞ� (21.9)

where P is the chance of hitting an object at any point. The result of this theory is that

a point-based solution will be optimal when object positions are totally unknown,

whereas when their positions are already fairly well known—and a fortiori when

knowledge of their positions is being refined—line-based solutions will be optimal.

21.5 OPTIMIZING THE OUTPUT FOR SETS OF
DIRECTIONAL TEMPLATE MASKS

Several earlier sections of this chapter highlighted the value of low-level operations

based on template masks, but did not enter into all the details of their design. In

particular, they did not tackle the problem of how to calculate the signal from a set

of n masks of various orientations—a situation exemplified by the case of corner

detection, for which eight masks are frequently used in a 33 3 window (see

Section 21.2). The standard approach is to take the maximum of the n responses,

although clearly this represents a lower bound on the signal magnitude λ and gives

only a crude indication of the orientation of the feature. Applying the geometry

shown in Fig. 21.12, the true value clearly has components:

c1 5λcosα (21.10)

c2 5λcosβ (21.11)

Finding the ratio between the components yields the first important result:

c2

c1
5

cosβ
cosα

5 cos ðγ � αÞ secα

5 cosγ1 sinγ tanα
(21.12)

and leads to a formula for tan α:

tanα5
ðc2=c1 � cosγÞ

sinγ
(21.13)

Hence:

α5 arctan
c2

c1

� �
cosecγ � cotγ

� �
(21.14)
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Next, we find from Eq. (21.10):

λ5 c1 secα (21.15)

and elimination of α gives:

λ5 c1 11
c2=c1 2 cosγ

sinγ

� �2
" #1=2

(21.16)

On expansion, we finally obtain the required symmetric formula:

λ5 ðc21 1 c22 � 2c1c2 cosγÞ1=2cosecγ (21.17)

The closeness to the form of the cosine rule is striking and can be explained

by simple geometry (Davies, 2000b).

Interestingly, Eqs. (21.17) and (21.14) are generalizations of the standard vec-

tor results for edge detection:

λ5 ðc21 1 c22Þ1=2 (21.18)

α5 arctan
c2

c1

� �
(21.19)

which apply when γ5 90�. Specifically, the results apply for oblique axes where

the relative orientation is γ.

21.5.1 Application of the Formulae
To proceed further, we define features that have 2π/m rotation invariance as

m-vectors. It follows that edges are 1-vectors, and line segments (following the

α

β
γ

λ

c1
O

c2

FIGURE 21.12

Geometry for vector calculation.

Source: r IEE 2000
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discussion in Section 21.3.1) are 2-vectors. In addition, it would appear that

m-vectors with m. 2 are rarely important in practice.

So far we have established that the formulae given in Section 21.5 apply for

1-vectors such as edges. However, to apply the results to 2-vectors such as line seg-

ments, the 1: 2 relation between the angles in real and quadrature manifolds has to

be acknowledged. Thus, the proper formulae are obtained by replacing α, β, γ,
respectively by 2α, 2β, 2γ in the earlier equations. This leads to the components:

c1 5λ cos 2α (21.20)

c2 5λ cos 2β (21.21)

with 2γ5 90� replacing γ5 45� in the formula giving the final orientation:

2α5 arctan
cos2β
cos2α

0
@

1
Acosec90� � cot90�

2
4

3
5

5 arctan
cos2β
cos2α

0
@

1
A

2
4

3
5

(21.22)

Hence:

α5
1

2
arctan

c2

c1

� �
(21.23)

as found in Section 21.3.1.

Finally, we apply the methods described above to obtain interpolation formu-

lae for sets of 8 masks for both 1-vectors and 2-vectors. For 1-vectors (such as

edges), 8-mask sets have γ5 45�, and Eqs. (21.17) and (21.14) take the form:

λ5O2ðc21 1 c22 �O2c1c2Þ1=2 (21.24)

α5 arctan O2
c2

c1

� �
� 1

� �
(21.25)

For 2-vectors (such as line segments), 8-mask sets have γ5 22.5�, so

2γ5 45�, and the relevant equations are:

λ5O2ðc21 1 c22 �O2c1c2Þ1=2 (21.26)

α5
1

2
arctan O2

c2

c1

� �
� 1

� �
(21.27)

21.5.2 Discussion
This section has examined how the responses to directional template matching

masks can be interpolated to give optimum signals. It has arrived at formulae that
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cover the cases of 1-vector and 2-vector features, typified respectively by edge

and line segments. While it appears that there are few likely instances of m-vec-

tors with m. 2, features can easily be tested for rotation invariance, and it turns

out that corners and most other features should be classed as 1-vectors. An excep-

tion to this is a symmetrical S-shape, which should be classed as a 2-vector.

Support for classifying corners as 1-vectors arises as they form a subset of the

edges in an image. These considerations mean that the solutions arrived at for

1-vectors and 2-vectors will solve all the foreseeable problems of signal interpola-

tion between responses for masks of different orientations. Thus the main aim of

this section is accomplished, to find a useful nonarbitrary solution to determining

how to calculate combined responses for n-mask operators.

Oddly, these useful results (Davies, 2000b) do not seem to have been reported

in the earlier literature of the subject.

21.6 CONCLUDING REMARKS
This chapter has covered three main case studies relating to cereal grain inspec-

tion. This topic is quite specialized: not only is it just one aspect of automated

visual inspection, but also it covers just one sector of food processing. Yet its

study has taken these topics to the limits of the capabilities of a number of algo-

rithms and some useful theory has been developed and applied: this has made the

chapter considerably more generic than might a priori have been thought. Indeed,

this is a major reason for the rather strange inclusion of a section on template

matching using sets of directional masks later on in the chapter: it happened to be

needed to take the subject onward. This also emphasizes that there is often the

need for more theory than is actually available in the literature. Another aspect of

the situation is that there is a tendency for inspection and other algorithms to be

developed ad hoc, whereas there is a need for solid theory to underpin this sort of

work and above all to ensure that any techniques that are used are effective,

robust, and close to optimal.

Food inspection is an important aspect of automated visual inspection. This chapter has
shown how bulk cereals may be scrutinized for insects, rodent droppings, and other
contaminants. The application is subject to highly challenging speed constraints and
special sampling techniques had to be developed to attain the ultimate speeds of object
location.

21.7 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Food inspection is beset with problems of variability, the expression “Like as two

peas in a pod” giving a totally erroneous indication of the situation. The author

summarized the position in his book (Davies, 2000a) and later reviews (Davies,
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2001a, 2003b, 2009). Graves and Batchelor (2003) edited a volume that collects

much further data on the problems of variability.

The work on insect detection described in this chapter concentrates on the lin-

ear feature detector approach, which was developed in a series of papers already

cited but founded on theory described in Davies (1997e, 1999e) and Davies et al.

(2002, 2003a, 2003b). (For other relevant work on linear feature detection but not

motivated by insect detection, see Chauduri et al. (1989), Spann et al. (1989),

Koller et al. (1995), and Jang and Hong (1998).) Zayas and Flinn (1998) offer an

alternative strategy based on discriminant analysis, but this targets the lesser grain

borer beetle, which has a different shape, and the data and methods are not really

comparable. That different methods are needed to detect different types and

shapes of insect is obvious, and indeed, the author’s own work shows that mor-

phological methods are more useful for detecting large insects, as well as rodent

droppings and ergot (Davies et al., 2003b; Ridgway et al., 2002). In fact, the issue

is partly one of sensitivity of detection for the smaller insects versus functionality

for the larger ones, coupled with speed of processing—optimization issues typical

of those discussed in Chapter 27.

Work in this area also covers NIR detection of insect larvae growing within

wheat kernels (Davies et al., 2003c), although the methodology is totally differ-

ent, being centered on the location of bright (at NIR wavelengths) patches on the

surfaces of the grains.

The fast processing issue arises again in respect of the inspection of wheat

grains, not least because the 30 tonnes of wheat that constitute a typical lorry load

contain some 6000 million grains, and the turnaround time for each lorry can be

as little as 3 min. The theory for fast processing by image sampling and the subse-

quent rapid centering of elliptical shapes is developed in Davies (1997d, 1999b,

1999d, 2001b): see Davies (2007c, 2008a) for an integrated analysis in which

entropy is used to optimize sampling when object locations vary from totally

unknown to approximately known.

Sensitive feature matching is another aspect of the work described in this

chapter. Relevant theory was developed by Davies (2000b), but there are other

issues such as the “equal area rule” for designing template masks (Davies, 1999a)

and the effect of foreground and background occlusion on feature matching

(Davies, 1999c): these theories should all have been developed far earlier in the

history of the subject and merely serve to show how little is still known about the

basic design rules for image processing and analysis. A summary of much of this

work appears in Davies (2000d).

21.7.1 More Recent Developments
Recent work in the cereals and grain industry has included investigations aimed

at separating touching grain kernels (Zhang et al., 2005), classifying cereal grains

(Choudhary et al., 2008), differentiating wheat classes (Mahesh et al., 2008),

detecting sprouted wheat grains (Neethirajan et al., 2007), sorting grains by color
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(Bayram and Öner, 2006), detecting the creases in wheat grains (Sun et al.,

2007), and detecting insects inside wheat kernels (Manickavasagan et al., 2008).

The different approaches have involved near infrared, thermal imaging, X-ray,

and hyperspectral modalities. While the methods have employed a number of rel-

atively standard image analysis techniques—ellipse fitting, wavelets, morphology,

color analysis, and stereo vision—the work is far from trivial, because the various

varieties of grain and their defects and contaminants involve high levels of varia-

tion: this means that getting the techniques to work well is anything but

straightforward.
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CHAPTER

22 Surveillance

Surveillance is nowadays used widely in transport and civil centers for monitoring

traffic and people, and is increasingly being carried out by computers. The moti-

vation is largely to locate instances of undesirable behavior—theft, loitering with

intent, speeding, and so on. What is special about surveillance is the rate at which

pictorial information is delivered, and the fact that many of the objects being

monitored are in motion. To cope with this, there is considerable emphasis on

identification and elimination of the background and effective tracking of moving

objects. At the same time algorithms need to be fast in operation, though some

help can be obtained with fast dedicated hardware systems.

Look out for:

• the geometry of surveillance.

• the need to separate foreground from background.

• the basics of particle filters and their use for tracking.

• the use of color histograms for tracking.

• chamfer matching and its use for identification and tracking.

• how multiple cameras are used to obtain coverage over wide areas.

• systems for monitoring traffic flow.

• identification of the ground plane as an early stage in the analysis of many

types of scene incorporating motion.

• the need for “occlusion reasoning” when objects repeatedly pass behind one

another and then re-emerge.

• the importance of the Kalman filter in motion applications.

• license plate location.

• how studies of the motions of complex objects may have to take into account

3-D articulated models of linked parts.

• basic concepts of human gait analysis.

• animal tracking.

While this chapter covers the situation of static cameras being used to monitor

moving objects, the following chapter covers the more complex case of in-vehicle

Computer and Machine Vision.
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vision systems, where moving cameras are used to monitor both stationary and

moving objects.

“’T is Cinna; I do know him by his gait”

(William Shakespeare, 1599)

22.1 INTRODUCTION
Visual surveillance is a long-standing area of computer vision, and one of its

main early uses was to obtain information on military activities—whether from

high flying aircraft or from satellites. However, with the advent of ever cheaper

video cameras, it subsequently became widely used for monitoring road traffic,

and most recently it has become ubiquitous for monitoring pedestrians. In fact,

its application has actually become much wider than this, the aim being to

locate criminals or people acting suspiciously—for example, wandering around

car-parks with the potential purpose of theft. However, by far the majority of

visual surveillance cameras are connected to video recorders and gather miles of

videotape, most of which will never be looked at—though, following criminal

or other activity, some hours of videotape may be scanned for relevant events.

Further cameras will be attached to closed circuit television monitors where

human operators may be able to extract some fraction of the events displayed,

though human attentiveness and reliability when overseeing a dozen or so

screens will not be high. Clearly, it would be far better if video cameras could

be connected to automatic computer vision monitoring systems, which would

call human operators’ attention to potential hazards or misdemeanors of various

types. Even if this were not carried out in real time in specific applications, it

would be useful if it could be achieved at high speed with selected videotapes:

this could save huge amounts of police time in locating and identifying perpe-

trators of crime.

Surveillance can cover other useful activities, including riot control, monitor-

ing of crowds on football pitches, checking for overcrowding on underground sta-

tions, and generally helping with safety as well as crime. To some extent, human

privacy must suffer when surveillance is called into play, and there is clearly a

tradeoff between privacy and security: suffice it to say here that many would be

happier to have increased levels of security, a small loss of privacy being a wel-

come price to pay to achieve it.

In fact, there are many difficulties to be solved before the “people tracking”

aspects of surveillance are fully solved. First, in comparison to cars, people are artic-

ulated objects that change shape markedly as they move: that their motion is often

largely periodic can help visual analysis, though the irregularities in human motion

may be considerable—especially if obstacles have to be avoided. Second, human

motions are partly self-occluding, one leg regularly disappearing behind another,

while arms can similarly disappear from view. Third, people vary in size and
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apparent shape, having a variety of clothes that can disguise their outlines. Fourth,

when pedestrians are observed on a pavement, or on the underground, there is some

possibility of losing track when one person passes behind another, as the two out-

lines tend to coalesce before re-emerging from the combined object shape.

It could be said that all these problems have been solved. However, many of

the algorithms that have been applied to these tasks have limited intelligence:

indeed, some employ rather simplified algorithms, as the need to operate continu-

ously in real time generally overrides the need for absolute accuracy. In any case,

given the visual data that the computer actually receives, it is doubtful whether a

human operator could always guarantee making correct interpretations: for exam-

ple, there are occasions when humans turn around in their tracks because they

have forgotten something, and this could cause confusion when trying to track

every person in a complex scene. Further complexities can be caused by varying

illumination, fixed shadows from buildings, moving shadows from clouds or vehi-

cles, and so on.

In the following sections we cover two main areas of surveillance—those in

which people or pedestrians are the prime targets, and those in which vehicles are

the prime targets. Of course, there are many transport scenarios where both would

be observed by the same systems. In addition, similar techniques and considera-

tions would apply in both cases. The next section, on the geometry underlying

camera positioning, talks mainly about pedestrians: this is done for definiteness,

though most of the considerations apply equally when vehicles are the prime tar-

gets, as happens on motorways, for example.

22.2 SURVEILLANCE—THE BASIC GEOMETRY
Perhaps the most obvious way of monitoring pedestrians is indicated in Fig. 22.1(a).

As we have seen in Chapter 15, this leads to the following relations between real-

world (X, Y, Z) and image coordinates (x, y):

x5
f X

Z
(22.1)

y5
f Y

Z
(22.2)

Here, Z is the (horizontal) depth in the scene, X represents lateral position,

Y represents vertical position (downward from the camera axis), and f is the focal

length of the camera lens. This method of observation is useful in providing

undistorted profiles of pedestrians from which they may be recognized. However,

it provides virtually no information about depth in the scene beyond what can be

deduced from knowledge of the pedestrian’s size; and as size may be one of the

key parameters to be determined by the vision system, this is an unsatisfactory

situation. Note also that this view of the scene is subject to gross occlusion of one

pedestrian by another.
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To overcome these problems, an overhead view would be better. However, it

is difficult to obtain views from directly overhead; in any case, any one view

would give a highly restricted range, and again pedestrian height could not be

measured. An alternative approach is to place the camera in Fig. 22.1(a) higher

up, as shown in Fig. 22.1(b), so that the positions of the feet of any pedestrian on

the ground plane can be seen: this makes it possible to obtain a reasonable esti-

mate of depth in the scene. In fact, if the camera is at a height Hc above the

ground plane, Eq. (22.2) gives the depth Z as:

Z5
f Hc

y
(22.3)

while the modified value of y at the top of the pedestrian is given by:

yt 5
f Yt

Z
5

yYt

Hc

(22.4)

The height of the pedestrian Ht can now be estimated from the following

equation:

Ht 5Hc � Yt 5Hcð1� yt=yÞ (22.5)

Note that to achieve this, Hc must be known from prior on-site measurements, or

alternatively by camera calibration using test objects.

C

(a)

(b)

C

Hc

f

yt

y

α

Z

Z

Y

Yt

Ht

FIGURE 22.1

3-D monitoring: camera axis horizontal. (a) Camera axis mounted at eye-level. (b) Camera

mounted higher up to obtain a less restricted view.
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In practice, it is better to modify the above scheme by tilting the optical axis

of the camera slightly downward (see Fig. 22.2), as this allows the range of obser-

vation to be increased, and particularly for nearby pedestrians to be kept in view.

However, the geometry of the situation becomes somewhat more complicated,

leading to the following basic formulae:

tan α5
Hc

Z
(22.6)

tan ðα� δÞ5 y

f
(22.7)

where δ is the angle of declination of the camera. Substituting for tan(α�δ) using
the formula:

tan ðα� δÞ5 ðtan α� tan δÞ
ð11 tan α tan δÞ (22.8)

and using the above equations to eliminate α, we obtain the following formula

for Z in terms of y:

Z5Hc

ðf � y tan δÞ
ðy1 f tan δÞ (22.9)

So far we have not allowed for the heights of any objects, but have only con-

sidered points on the ground plane. To estimate the heights of pedestrians, we

need to bring in the additional equation:

Z5 Yt
ðf � yt tan δÞ
ðyt 1 f tan δÞ (22.10)

C

Hc

f

yt

y

α

δ

Z

Y

Yt

Ht

FIGURE 22.2

3-D monitoring: camera tilted downwards. δ is the angle of declination of the camera

optical axis.
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which is simply derived by substituting Yt for Hc and yt for y in Eq. (22.9).

Eliminating Z between these two equations now allows us to find Yt:

Yt 5Hc

ðf � y tan δÞðyt 1 f tan δÞ
ðy1 f tan δÞðf � yt tan δÞ (22.11)

thereby permitting Ht5Hc2 Yt to be calculated in this case too.

Next, we consider the optimum value for the angle of declination δ of the

camera optical axis. We assume that the viewing range of the camera has to vary

from a near point given by Zn to a far point given by Zf, corresponding to respec-

tive values of α, αn, and αf (Fig. 22.3). We also assume that the overall vertical

field of view of the camera is 2γ. This immediately results in the following

formulae:

Hc

Zn
5 tan αn 5 tan ðδ1 γÞ (22.12)

Hc

Zf
5 tan αf 5 tan ðδ � γÞ (22.13)

Taking the ratio between these equations now shows that:

η5
Zn

Zf
5

tan ðδ � γÞ
tan ðδ1 γÞ (22.14)

so specifying either Zn or Zf immediately gives the alternate value. In the case

that Zf is taken to be infinity, Eq. (22.13) shows that δ has to be equal to γ, in
which case Eq. (22.12) leads to the relation Zn5Hc cot 2γ. Note that δ5 γ5 45�

is a limiting case that covers all points on the ground plane, i.e. Zn5 0 and

C

Hc

f

δ

γ
γ

αn αf

ZFN

FIGURE 22.3

Geometry for considering optimum camera tilt. δ is the angle of declination of the camera

optical axis. 2γ is the overall vertical field of view of the camera.
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Zf5N. For smaller values of γ, values of Zn and Zf are determined by δ, e.g. for
γ5 30�, the optimum value of η (namely, zero) occurs both at δ5 30� and at

δ5 60�, and the worst case (η � 0.072) occurs at δ5 45�.
Finally, it is instructive to consider the minimum separation Zs that is needed

between pedestrians if they are not to occlude each other at all. Equating tan α to

both Ht/Zs and Hc/Z (see Eq. (22.6)), we find:

Zs 5
HtZ

Hc

(22.15)

As might have been expected, this varies inversely with camera height; but note

that it is also proportional to Z.

Overall, we have seen that placing the camera high up permits both depth and

height to be estimated and the incidence of occlusion to be considerably reduced.

In addition, tilting the camera downward permits the maximum range to be

achieved. Importantly, two cameras placed at the far ends of a courtyard should

be able to cover it quite well. Pedestrians can be identified as having a particular

position on the ground plane, though they could then be recognized pictorially

from knowledge of their size, shape, and coloring. The formulae that are involved

reflect all the complications of perspective projection, and some are quite com-

plex. Note that even in the simple case of Fig. 22.1(b), the inverse relation

between y and Z is highly nonlinear (see Eq. (22.3)), and equal intervals in the Z

direction by no means correspond to equal vertical intervals in the image plane:

see Section 17.8 for further theory underpinning this point.

22.3 FOREGROUND�BACKGROUND SEPARATION
One of the first problems of surveillance is to locate the targets that are to be

placed under observation. In principle, we could follow all the recognition meth-

ods of earlier chapters (see also Chapter 24), and just proceed to recognize the

targets individually. However, there are two reasons why we should approach this

differently. First, cars moving along a road, or pedestrians in a precinct, are

highly variegated, unlike the situation for products appearing on a product line.

Second, there is usually a significant real-time problem, especially when vehicles

are moving at up to 100 mph on a highway, and cameras typically deliver

30 frames per second under highly variable conditions. Thus, it pays to capitalize

on the motion of the targets and perform motion-based segmentation.

In these circumstances, it is natural to think of frame differencing and optical

flow. Indeed, frame differencing has been applied to this task, but it is prone to

noise problems and consequent unreliability. In any case, when applied between

adjacent frames, it locates only limited sections of target outlines—in accordance

with the 2rI:v formula of Chapter 19. The simplest way out of this difficulty is

that of background modeling.
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22.3.1 Background Modeling
The idea of background modeling is to create an idealized background image that

can be subtracted from any frame to yield the target or foreground image. To

achieve this, the simplest strategy is to take a frame when there are known to be no

targets present and use that as the background model. In addition, to eliminate noise,

it is useful to average a number of frames prior to making observations of targets.

The problems with this strategy are: (a) How to know when there are no targets

present, so that frames represent true background? (b) How to cope with the usual

outdoor situation of illumination that varies with the weather and the time of day?

To solve the latter problem, only the most recent frames can reasonably be

used, and if this path is followed, it is difficult to tackle the former problem (in

any case, on highways with a lot of traffic, or precincts with a continuous mêlée

of people, there may seldom be a chance of obtaining a clear background frame).

One compromise solution is to take an average of many background frames over

the most recent period Δt, whether or not targets are present. If targets are reason-

ably rare, most of the frames will be clear and a good approximation to an ideal

background model will be built: of course, any targets will not be eliminated so

much as averaged in, and the result will sometimes be visible “tails” in the model.

To optimize the model, Δt can be increased, thereby minimizing problem (a), or

decreased, thereby minimizing problem (b). Clearly, there is a tradeoff between

the two difficulties: while it can be adjusted to suit the time of day and prevailing

weather and illumination levels, this approach is limited.

Part of the problem is due to the “averaging in” mentioned above, and this

can be partially eliminated by using a temporal median filter. Note that this means

applying a median filter to the I (intensity and color) values of each pixel, over

the sequence of frames arising during the most recent period Δt. This is a compu-

tation intensive process, but is considerably better than taking a raw average, as

mentioned above. It is effective to take the median because it eliminates outliers,

but ultimately it will still lead to biased estimates. In particular, if we suppose

that vehicles are on the whole darker than the road, then the temporal median will

also tend to end up darker than the road. To overcome this problem, a temporal

mode filter can be used, and hopefully, the intensity distribution will have sepa-

rate modes—one from the road and one from the vehicles, so the former can be

used, and could probably be identified even if it became a minor mode when

there were a lot of vehicles. However, there is no guarantee that there would only

be one mode for vehicles, or even that any such modes would be clearly separated

from the one corresponding to the road, and bias would again be the most likely

result. Figures 22.4�22.6 illustrate some of the problems.

In fact, there are significant further problems with background modeling. In many

situations the background objects are themselves subject to motion. In particular, sha-

dows will move with time and their crispness will change with the weather; while

leaves, branches of trees, and flags will flutter and sway in the wind, with highly var-

iable frequencies; even the camera may sway, especially if it is mounted on a pole,
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but we defer that type of problem until Chapter 23. Motions of small animals and

birds may also have to be considered. At this point we shall concentrate on fluttering

vegetation, which is often prevalent in outdoor scenarios, even within cities.

The fluttering of vegetation can be more serious than might at first be imag-

ined. It can result in the I values of some pixels oscillating between those

of leaves, branches, and sky (or ground, buildings, etc.). Thus, the distributions of

intensities and colors for any pixel may best be regarded as the superposition of

several distributions corresponding to two or three component sources. Here what

(a) (b)

(c) (d)

FIGURE 22.4

Background subtraction using a temporal median filter. The lines of black graphics dots demarcate the relevant

road region: almost all of the fluttering vegetation lies outside this region (it is indicated by fainter boundaries

than for the foreground objects: see (b)). Note the plethora of stationary shadows that are completely eliminated

during the process of background subtraction. The stationary bus is progressively eaten away in (a) and (b),

while in (c) and (d) the ghost of the bus appears and then starts to merge back into the background. These

problems are largely eliminated in Fig. 22.5, which includes the same four frames.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 22.5

Background subtraction using a restrained temporal median filter. This figure shows a much more

comprehensive set of frames than Fig. 22.4 because the method is more accurate. In particular, its

responses (d, e, g, h) to the bus problems of Fig. 22.4 are vastly improved. Fluttering vegetation problems

are indicated by fainter boundaries than for vehicles, but are entirely absent from the road region. In all

frames the stationary shadows are completely eliminated by background subtraction: even the prominent

bridge shadow is ignored; neither does it have much effect on the integrity of foreground objects. Note the

low false negative rate for vehicles, and the fact that they only tend to be joined together in the distance.

Overall, foreground object fragmentation and false shapes (including the effects of moving shadows) are

the worst problems.



(i) (j)

(g) (h)

(k) (l)

FIGURE 22.5

(Continued)
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is important is that each of the component distributions could be quite narrow and

well defined. This means that if each is known from ongoing training, any current

intensity I can be checked to determine whether it is likely to correspond to back-

ground. If not, it has to correspond to a new foreground object.

Models formed from multiple component distributions are commonly called mix-

ture models: in practice, the component distributions are approximated by Gaussians,

because the odd shape of the overall distributions is largely attributable to the exis-

tence of the separate components. Thus, we arrive at the terms Gaussian mixture

models (GMMs) and mixtures of Gaussians (MoG). Note that the number of compo-

nents at any pixel is initially unknown; indeed, a large proportion of pixels will have

only a single component, and it may seem unlikely that the number would be much

larger than three in practice. However, the fact that every pixel will have to be ana-

lyzed to determine its GMM is computationally burdensome, while the analysis can

be unstable if the component distributions are not as tidy as suggested above. These

factors mean that a computation intensive algorithm, the expectation maximization

(EM) algorithm, has to be used to analyze the situation. In fact, while it is usual to

use this rigorous approach to initialize the background generation process, many

workers use simpler more efficient techniques for updating it, so that the ongoing

process can proceed in real time. The GMM method determines for itself the number

of component distributions to use, the judgment being based on a threshold value for

the fraction of the total weight given to the background model.

(a) (b)

FIGURE 22.6

Problems arising immediately after background subtraction. These two frames show clearly the noise

problems that arise during background subtraction: the white pixels indicate where the current image fails

to closely match the background model. Most of the noise effects occur for fluttering vegetation outside

the road region. Morphological operations (see text) are used to largely eliminate the noise and to integrate

the vehicle shapes as far as possible, as shown in Figs. 22.4 and 22.5.
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Unfortunately, the GMM approach fails when the background has very high fre-

quency variations. Essentially, this is because the algorithm has to cope with rap-

idly varying distributions that change dramatically over very short periods of time,

so the statistics become too poorly defined. To tackle this problem, Elgammal et al.

(2000) moved away from the parametric approach of the GMM (the latter essen-

tially finds the weights and variances of the component distributions, and thus is

parametric). Their nonparametric method involves taking a kernel smoothing func-

tion (typically a Gaussian) and for each pixel, applying it to the N samples of I for

frames appearing during the period Δt prior to the current time t. This approach is

able to rapidly adapt to jumps from one intensity value to another, while at the

same time obtaining the local variances at each pixel. Thus, its value lies in its

capability to quickly forget old intensities and to reflect local variances rather than

random intensity jumps. In addition, it is a probabilistic approach, but has no need

of the EM algorithm, and this enables it to run highly efficiently in real time.

In addition, it is capable of sensitive detection of foreground objects coupled with

low false alarm rates. To achieve all this, it incorporates two further features:

1. It assumes independence between three different color channels, each having

its own kernel bandwidth (variance). Together with the adoption of a

Gaussian kernel function, this leads to a probability estimate given by:

PðIÞ5 1

N

XN
i51

L
C

j51

1

ð2πσ2
j Þ1=2

e2ðIj2Ij;iÞ
2=2σ2

j (22.16)

where i runs over the N samples taken in the time period Δt and j runs over

the C color channels; this function is simple to calculate, though computation

is further speeded up by using pre-calculated kernel function lookup tables.

2. It uses chromaticity coordinates for suppressing shadows. As these coordinates

are independent of the level of illumination, and shadows can be regarded as

poorly lit background, this means that they should largely merge back into the

background. Hence, the foreground is much less likely to have shadows

accompanying it after background subtraction. The chromaticity coordinates

r, g, b are derived from the usual R, G, B coordinates by equations r5
R/(R1G1B), and so on, with r1 g1 b5 1.

In fact, shadows can be particularly problematic: not only do they distort the

apparent shapes of foreground objects after background subtraction, but also they can

connect separate foreground objects, and thus cause under-segmentation. The prob-

lem is reviewed by Prati et al. (2003), while Xu et al. (2005) have proposed a hybrid

shadow removal method that makes use of morphology; see also Guan (2010).

Whatever method is used for background modeling leading to background

subtraction and hence to foreground detection, the various blobs will need to be

clustered and labeled using connected components analysis. Frame-to-frame

tracking is then carried out by making correspondences between the blobs in the

different frames. As in the case of Xu et al. (2005), morphology can be used to

help with this process. Nevertheless, false positives tend to arise because of
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shadows and illumination effects, while false negatives can arise from color simi-

larities between foreground and background.

Overall, failures arise in two categories: (1) the stationary background prob-

lem, in which the shape of the foreground object is not defined accurately enough;

(2) the transient background problem, in which the start and stop of the fore-

ground object aren’t found quickly enough. If the accuracy or reactivity of the

background model are inadequate, background subtraction will lead to the detec-

tion of false objects: these are called “ghosts” by Cucchiara et al. (2003). In addi-

tion, as indicated above, shadows tend to compound these problems.

22.3.2 Practical Examples of Background Modeling
To add concreteness to the above discussion, a traffic surveillance video was

taken and submitted to some of the algorithms mentioned above. For illustrative

purposes the algorithms were kept as simple as possible. The raw data consisted

of an AVI video from a digital camera (Canon Ixus 850 IS), which was decom-

piled into individual JPG frames, and though the JPG artifacts were fairly severe,

no specific attempt was made to eliminate them. The frame size was 3203 240

pixels in RGB color, but only the 8-bit lightness component was used for the

main tests. While the video was taken at 15 frames per second, only every tenth

frame was used for the test, which comprised 113 frames. Of these, the first 10

can be regarded as initialization training material and these are not considered

further. During the test, a bus arrived and was stationary at a bus stop for some

time. The overall sequence is illustrated in Fig. 22.5; however, for reasons of

space the only frames included in the figures are those that illustrate the problems

well. Note that the video was taken on a sunny day, and that there are a great

many shadows, which over the minute or so of the video did not change

markedly. On the other hand, some camera motion is detectable, possibly due to

movement of the bridge. Thus, there are many ways in which the raw data were

not ideal; these therefore impose exacting conditions on the success of any

algorithm.

Figure 22.4 shows some of the results obtained by applying a temporal

median. Frames (a) and (b) show the bus stationary at the bus stop and being pro-

gressively eaten up as it starts to merge with the background. Frame (c) shows

the bus moving away from the bus stop, leaving a large “ghost” behind it.

Frame (d) shows that the ghost remains for some time and is a substantial factor

to be taken into account by any foreground interpretation procedure.

To overcome these problems, the median was restrained so that it could only

take into account pixel intensities within a limited number of gray levels of the cur-

rent median value; in this way, it took on something of the characteristics of a mode

filter (a temporal mode filter per se would lock on to the current value too inflexibly

and not adapt well to the changing intensity distribution). The results are shown in

Fig. 22.5. It is clear that the restrained median largely eliminates the two problems

mentioned above (viz. the observed vehicle being eaten away while stationary and
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leaving a ghost behind it when moving on). For this reason the remainder of the

tests used only the restrained median. Problems seen in Fig. 22.5 include:

1. Eating away of foreground objects, leaving unusual shapes (e.g. (d), (i)).

2. Fragmentation of foreground objects (e.g. (b), (f)).

3. Shadows accompanying the moving foreground objects (e.g. (c), (g), (j)).

4. Joining of foreground objects that should appear separated (e.g. (i), (j)).

5. Signals from fluttering vegetation (e.g. (a), (k)).

Item 2 can be considered as an extreme case of item 1. Item 3 is bound to arise

as the shadows are moving at the same speed as the vehicles that give rise to

them, and straightforward background suppression or alternatively moving object

detection alone will not eliminate them. In general, unless color interpretation

will help (we return to this possibility below), high-level interpretation is needed

to achieve satisfactory elimination. Item 4 is due partly to the effects of vehicle

shadows, which tend to connect vehicles, especially when seen in the distance.

The morphological operations that were applied (see below) also tended to make

vehicles become joined. Item 5 is never manifest in the road region, i.e. between

the lines of black graphics dots shown in the frames. This is because, in this

case, the vegetation is high up, away from the road region. In addition, it is

largely eliminated by morphological operations. In fact, Fig. 22.6 shows the

results obtained immediately after background subtraction. It is clear that there is

a serious noise problem, caused largely by (a) camera noise, (b) the effects of

JPG artifacts, (c) fluttering vegetation, and (d) the effects of slight camera

motion. Interestingly, two applications of a single pixel erosion operation were

sufficient to eliminate the noise almost completely, these being followed by four

applications of a single dilation operation to help restore vehicle shapes.

(Overall, this corresponds to a 2-pixel opening operation followed by a 2-pixel

dilation operation.) These morphological operations were selected to give

roughly optimal results—in particular, low probability of failing to capture fore-

ground objects in any individual frame, coupled with pressure to maintain object

shapes as far as reasonable, and not to join vehicles together unavoidably. The

point is that background subtraction must aim to pass on sufficient useful infor-

mation to subsequent foreground object identification, tracking, and interpreta-

tion stages.

One of the remarkable aspects of the results is the total elimination of station-

ary shadows and lack of problems arising from this. On the other hand, two other

sorts of shadows are manifest—those arising from moving objects, and those fall-

ing on moving objects (the latter arise in the video both from the bridge and from

the other causes of ground shadows): neither of these sorts of shadows are elimi-

nated. Other problems are those of reflections, particularly from the windows of

the bus (see the frame in Fig. 22.5(g)), and secondary illumination from moving

vehicles.

Lastly, it was felt worthwhile to attempt utilizing the original color images

and augmenting the background model by using the chromaticity coordinates as
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outlined in the previous section. In fact, while in some respects improvements

occurred, these were more than canceled out by increased numbers of false nega-

tives and fragmented shapes of the foreground objects. No results are shown here,

but whereas Elgammal et al. (2000) were able to show excellent results obtained

in this way, with the video used here no improvement seemed to be achievable

by this approach. This requires some explanation. High up among the reasons is

the effect of the highly variegated colors and intensities of the many different

vehicles. In particular, some vehicles turned out to have body intensities close to

those of shadows, whereas others had windows or transparent roofs of similar

intensity. These had the effect of eliminating large portions of vehicles together

with the shadows, thereby increasing the incidence of false negative and false

shape information. However, even Elgammal et al. (2000) point out that intensi-

ties have to be used carefully in a way that will bolster up the shadow removing

capabilities of the chromaticity information, and here there appeared to be no way

this could be achieved. Overall, all the color and grayscale information has to be

taken into account in a more considered and strategic way, and this demands a

thoroughgoing statistical pattern recognition approach in which objects are identi-

fied one by one in a high-level schema rather than by relatively chancy ad hoc

methods: the latter definitely have their place but their use must not be pushed

beyond what is reasonable. One example of the use of object-by-object recogni-

tion is the identification of road markings, which need to be, and could easily be,

identified whether or not vehicle shadows cover them. This could then lead to a

much more viable strategy for identifying, tracking, and eliminating vehicle sha-

dows. Meanwhile, in situations where the road has almost no color content, as in

the traffic surveillance trials described above, it is difficult to remove shadows

effectively merely by using chromaticity information.

22.3.3 Direct Detection of the Foreground
In the previous subsection it has been seen that background modeling followed by

background subtraction constitutes a powerful strategy for the location of moving

targets in image sequences. Nevertheless, for all sorts of reasons it is limited in

what it can achieve. While these reasons devolve into problems such as changes

in ambient illumination, effects of shadows, irrelevant motions such as fluttering

leaves, and color similarities between foreground and background, there is one

whole tranche of information that is absent; specifically, there is a total lack of

information on the nature of the target objects, including size, shape, location, ori-

entation, color, speed, and probability of occurrence. If this sort of information

were obtainable, there would be some chance of incorporating it into a complete

target detection system and achieving close to perfect detection capability.

Indeed, it seems possible that in some cases ignoring the background and attempt-

ing direct detection of the foreground might be a better first approximation. Such

a procedure might well be both effective and efficient for the case of face
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detection, for example. In what follows we consider how direct foreground detec-

tion might be achieved.

Direct foreground detection is only possible if a suitable foreground model is

available or can be constructed. It would seem that this requires a specialization

to each particular application, such as pedestrian detection or vehicle detection.

However, some workers (e.g. Khan and Shah, 2000) have managed to achieve it

more generically by a bootstrapping process. They start with background model-

ing and background subtraction, locate foreground objects by an “exception to

background” procedure, and thus create initial foreground models. In subsequent

frames these are enhanced, mostly using Gaussian-based models: GMMs and non-

parametric models have been employed for this. However, a difference relative to

background modeling is that the latter applies continuously (with updates) for the

same camera, whereas each foreground object must have its own individual model

that is learnt anew for that object. So, background modeling is only applied to ini-

tially locate the foreground object: thereafter, the foreground model is built and

tracked, albeit in a similar way to what happens with background modeling.

More recently, in a new class of algorithm, Yu et al. (2007) use a GMM for

simultaneously modeling both foreground and background. In this way, a tension

is built between foreground and background that potentially leads to higher seg-

mentation accuracy, and this does seem to have been achieved in practice.

Against this, the algorithm has to be initialized by marking areas of definite fore-

ground and background, and then it continues to track autonomously. However,

there seems to be no reason why initialization should not also be carried out

autonomously with the help of an initial stage of background modeling.

22.4 PARTICLE FILTERS
When trying to track foreground objects, independent detection in each frame,

followed by appropriate linking, does not make best use of available information;

neither does it achieve optimum sensitivity: this will be obvious when noting that

averaging slowly moving objects over a number of frames can boost signal-to-

noise ratio. In addition, over time—and sometimes over very few frames—objects

can change radically in appearance, so tracking is needed in order to ensure con-

tinued capture. Nowhere is this more obvious than in the case of a guided missile

approaching a target over several miles, as during the time of flight the size,

scale, and the resolution will increase dramatically. But even in cases where a

person is being tracked, rotation of the head will present if anything even more

dramatic changes in appearance. With the radically changing backgrounds arising

with moving and rotating objects, sensitive robust tracking is clearly of funda-

mental importance. To achieve this, optimal methods are needed. In particular, in

the face of radical change, we need to know what is the most likely position of an

object that is being tracked. Optimal estimation of likelihood implies the need for

Bayesian filtering.
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To achieve this, we start by considering the observations z1 to zk of an object

in successive frames, and the corresponding deduced states of the object x0 to xk
(there is no zeroth value of z because it takes at least two frames to estimate

the velocity vk, which forms part of the state information). At each stage, we

need to estimate the most probable state of the object, and Bayes rule gives us the

a posteriori probability density:1

pðxk11jz1:k11Þ5
pðzk11jxk11Þpðxk11jz1:kÞ

pðzk11jz1:kÞ
(22.17)

where the normalizing constant is:

pðzk11jz1:kÞ5
ð
pðzk11jxk11Þpðxk11jz1:kÞdxk11 (22.18)

The prior density is obtained from the previous time-step:

pðxk11jz1:kÞ5
ð
pðxk11jxkÞpðxkjz1:kÞdxk (22.19)

but note that this is only valid because of the Markov process (of order one)

assumption commonly taken to simplify Bayesian analysis, which leads to:

pðxk11jxk; z1:kÞ5 pðxk11jxkÞ (22.20)

In other words, the transition probability for the update xk-xk11 depends only

indirectly on z1:k, via previous updates.

General solutions of this set of equations—in particular, Eqs. (22.17) and

(22.19)—do not exist. However, restricted solutions are possible, as in the case of

the Kalman filter (see Chapter 19), which assumes that all posterior densities are

Gaussian. In addition, particle filters can be used to approximate the optimal

Bayesian solution when Gaussian constraints are inapplicable.

The particle filter, also known as sequential importance sampling (SIS), the

sequential Monte Carlo approach, bootstrap filtering and condensation, is a recur-

sive (iteratively applied) Bayesian approach that at each stage employs a set of

samples of the posterior density function. It is an attractive concept because in the

limit of large numbers of samples (or “particles”), the filter is known to approach

the optimal Bayesian estimate (Arulampalam et al., 2002).

To apply this method, the posterior density is reformulated as a sum of delta

function samples:

pðxkjz1:kÞ �
XN
i51

wi
kδðxk 2 xikÞ (22.21)

1It is much easier to see the relation to Bayes rule if conditional dependence on z1:k is eliminated;

once this is done, all remaining subscripts are equal to k1 1, and suppressing them, Eqs. (22.17)

and (22.18) become standard Bayes rule. Reinstating dependence on z1:k is of course necessary

when dealing with tracking over k1 1 frames involving previous observations z1:k.
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where the weights are normalized by:

XN
i51

wi
k 5 1 (22.22)

Substituting into Eqs. (22.17)�(22.19), we obtain the posterior:

pðxk11jz1:k11Þ~ pðzk11jxk11Þ
XN
i51

wi
kpðxk11jxikÞ (22.23)

where the prior now takes the form of a mixture of N components.

In principle, this gives us a discrete weighted approximation to the true poste-

rior density. In fact, it is often difficult to sample directly from the posterior den-

sity: this problem is normally solved by sequential importance sampling (SIS)

from a suitable “proposal” density function q(x0:kjz1:k). It is useful to take an

importance density function that can be factorized:

qðx0:k11jz1:k11Þ5 qðxk11jx0:kz1:k11Þqðx0:kjz1:kÞ (22.24)

following which, the weight update equation can be obtained (Arulampalam

et al., 2002) in the form:

wi
k11 5wi

k

pðzk11jxik11Þpðxik11jxikÞ
qðxik11jxi0:k; z1:k11Þ

5wi
k

pðzk11jxik11Þpðxik11jxikÞ
qðxik11jxik; zk11Þ

(22.25)

where the path xi0:k and history of observations z1:k have been eliminated—as this

is necessary if the particle filter is to be able to track recursively in a manageable

way.

In fact, pure SIS has the largely unavoidable problem that all but one particle will

have negligible weight after a few iterations. More precisely, the variance of the

importance weights is only able to increase over time, leading ineluctably to this

degeneracy problem. However, one simple means of limiting the problem is to

resample particles so that those with small weights are eliminated, while those with

large weights are enhanced by duplication. Duplication can be implemented relatively

easily, but it also leads to so-called “sample impoverishment,” i.e. it still results in

some loss of diversity among the particles, which is itself a form of degeneracy.

Nevertheless, if there is sufficient process noise, the result may prove to be adequate.

One basic algorithm for performing the resampling is “systematic resampling,”

and involves taking the cumulative discrete probability distribution (in which the

original delta function samples are integrated into a series of steps) and subjecting

it to uniform cuts over the range 0�1 to find appropriate indexes for the new

samples. As seen in Fig. 22.7, this leads to small samples being eliminated and

strong samples being duplicated, possibly several times. The result is called
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sampling importance resampling (SIR), and is a useful first step on the way to

producing stable sets of samples. With this particular approach, the importance

density is chosen to be the prior density:

qðxk11jxik; zk11Þ5 pðxk11jxikÞ (22.26)

Appealing to Eq. (22.25) shows that the weight update equation becomes enor-

mously simplified to:

wi
k11 5wi

kpðzk11jxik11Þ (22.27)

Moreover, as resampling is applied at every time index, previous weights wi
k are

all given the value 1/N, so we can simplify this equation to:

wi
k11 ~ pðzk11jxik11Þ (22.28)

As can be seen in Eq. (22.26), the importance density is taken to be independent

of measurement zk11, so the algorithm is restricted with regard to observational

evidence, and this is one cause of the loss of particle diversity mentioned earlier.

The Condensation method of Isard and Blake (1996) goes some way to elimi-

nating these problems by following the resampling with a prediction phase during

which a diffusion process separates any duplicated samples, thereby helping to

maintain sample diversity. This is achieved by applying a stochastic dynamical

model that has been trained on sample object motions. Figure 22.8 gives an over-

all perspective on the approach, and includes all the sampling and other processes

that have been discussed above.

1.00

CDF

0.00
0 12 N

FIGURE 22.7

Use of the cumulative distribution function (CDF) to perform systematic resampling.

Applying the regularly spaced horizontal sampling lines shows the cuts needed to find

appropriate indexes (N) for the new samples. The cuts tend to ignore the small steps in

the CDF and to accentuate the large steps by duplicating samples.
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The concept is taken further in the condensation approach (Isard and Blake,

1998) by using a mixture of samples, some using standard SIR and some using an

importance function depending on the most recent measurement zk11 but ignoring

the dynamics. Thus, this complex method reflects the need to ensure continued

sample diversity: it also aims to combine low and high-level approaches to track-

ing by noting that model switching may be necessary when handling real-world

tasks such as tracking human hands.

Similar ideas and motivation were employed by Pitt and Shephard (1999)

in their auxiliary particle filter (APF). This generates particles from an

importance distribution depending on the most recent observations, and then

samples the posterior using this importance density. The algorithm involves

an additional likelihood computation for each particle, but overall the

computational efficiency is improved because fewer particles are needed.

Nevertheless, Nait-Charif and McKenna (2004) found that the method gave

only limited improvement relative to SIR. They went on to make a comparison

with the iterated likelihood weighting (ILW) scheme. In this approach, after an ini-

tial iteration of SIR, the sample set is split randomly into two sets of equal size;

one of these is migrated to regions of high likelihood and the other is handled

Measurement k + 1

Measurement k

Prediction k

Resampling k

Selection k

FIGURE 22.8

Perspective on the processes involved in particle filtering. Note how the filter cycles

repeatedly through the same basic sequence.
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normally. The purpose is to cope on the one hand with situations where the prior is

sound and on the other hand with situations where it is not and regions of high like-

lihood need to be explored. When tracking human heads, the method proved to be

a significantly more robust tracker than either SIR or the APF. Perhaps oddly, the

ILW is designed to reduce approximation error rather than to give unbiased esti-

mates of a posterior. This means that it is not based completely on probabilistic

methods. On the other hand, as for the Isard and Blake condensation approach men-

tioned above, it is intended to match a variety of scenarios that can be found when

tracking under real-world conditions, where it is difficult to model all probabilities

accurately.

Many more particle filter methods have been developed over the past decade

or so. Several incorporate the Kalman filter and its extended and “unscented” ver-

sions, in attempts to optimize likelihoods when sample diversity turns out to be

insufficient. More recently “regularized” and “kernel” particle filters (Schmidt

et al., 2006) have been developed to tackle the problem of sample impoverish-

ment. These perform resampling using a continuous approximation to the poste-

rior density, typically using the Epanechnikov kernel (Comaniciu and Meer,

2002). The mean shift approach is in this category. Essentially, the mean shift

algorithm is a means of climbing density gradients to identify underlying modes

in sparse distributions, and involves moving a sampling sphere around the space

being searched. This makes it a good iterative search technique, though it is only

suitable for locating one mode at a time. It complements the particle filter formal-

ism well, as it can be used to refine the accuracy with which objects may be

found, and works well even if a limited number of particles are employed. It has

recently been applied by Chang and Lin (2010) for tracking various parts of the

moving human body.

At this stage it is starting to become apparent that different tracking applica-

tions will demand different types of particle filter. This will depend on a variety

of factors including how jerky the motion is, whether rotations will be involved,

whether occlusions will occur and if so for how long—and of course on the

appearance and variability of the objects being tracked. It should be noted that all

the theory and most of the ideas presented above reflect abstract situations and

the concentration is on relatively small, well localized objects that are considered

locally, i.e. the filters themselves will not have a global understanding of the situ-

ation. Thus, they must be categorized as low or intermediate level vision. In con-

trast, the human eye is an excellent tracker by virtue of its capability for thinking

about what objects are present and which ones have moved where, including pass-

ing behind other objects or even temporarily out of the scene. Clearly, we must

not expect too much from particle filters just because they are based on probabil-

istic models.

An important advantage of particle filters is that they can be used to track

multiple objects in an image sequence. This is because there is no record of which

object is being tracked by which particles. However, this possibility arises only

because no restrictions are placed on the posterior densities; in particular, they are
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not assumed to be Gaussian as in the case of Kalman filters. Indeed, if Kalman

filters are used for tracking, each object must be tracked by its own Kalman filter.

Once a suitable approach to particle filtering has been arrived at, it is neces-

sary to determine how to implement it. The basic means of achieving this is via

appearance models. In particular, color and shape models are frequently used for

this purpose. However, before delving into this topic, it will be useful to find

what can be achieved by color analysis using what is by now quite an old

approach—that of color indexing via color histogram matching.

22.5 USE OF COLOR HISTOGRAMS FOR TRACKING
One of the most useful tools that is available for object tracking was developed as

early as 1991 by Swain and Ballard (1991) in a paper called “Color indexing.”

The aim of that work was to index from a color image into a large database of

models. In a sense that idea is the inverse of the tracking problem, as its purpose

was to search for the model with the best match to a given image rather than to

search for instances of a given model in frames from an image sequence.2

However, apart from one important difference which will be discussed below, this

is a rather minor point.

The main idea behind the color indexing approach is that of matching color

histograms rather than the images themselves. There is an obvious validity in this

approach, in that if the images match, so will their color histograms. What is

more, as the histograms have no memory of where in the image a particular color

originated, histograms are invariant to translation and rotation about the viewing

axis (so-called “in-plane rotation”). Also relevant is the fact that a planar object

that is subject to out of plane rotation will still have the same color histogram,

although it will involve different numbers of pixels, so normalization will be

required. The same applies to objects that are at different depths in the scene: the

histogram profile will be unchanged, but it will have to be normalized to allow

for the different numbers of pixels that are involved. Finally, a spherical or cylin-

drical object with the same set of colors distributed similarly over its surface will

again have the same histogram. While exact adherence to this scenario might be

relatively rare, it would apply almost perfectly for a ball of wool or a football,

and with varying degrees of exactness for a shaven human head or torso. In fact,

the main problem with use of histograms for recognition is the possible ambiguity

it could bring, but when tracking a known object that has moved only a small dis-

tance between frames, this problem should be a minor one.

The above explanation demonstrates the potential power of the histogram

approach, but raises an important question about what happens when the object

moves in such a way as to be larger or smaller than the model, whether through

2Actually, database searches fall in the realm of classification, whereas the process of tracking

assumes implicitly that the object in question has already been identified.
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depth scaling or through out of plane rotation. In particular, if it becomes smaller,

this will mean that the model will be matched partly against the object back-

ground. Swain and Ballard sought to minimize this effect by taking the following

intersection measure rather than any sort of correlation between the image I and

model M histograms:

Xn
i51

minðIi;MiÞ (22.29)

This would have the effect of discounting any pixels of a given color in excess of

those expected in the model histogram (including both those whose colors are

simply not represented in the model and those that have limited representation).

The above expression was then normalized by the number of pixels in the model

histogram. However, here we follow Birchfield (1998) in normalizing by the

number of pixels in the image histogram, to reflect the point made earlier that we

are searching for the best image match rather than the best model match:

HNðI;MÞ5

Pn
i51

minðIi;MiÞ
Pn
i51

Ii

(22.30)

At first sight, this formula might appear wrong, in that a match over fewer

pixels would be normalized out, still representing perfect agreement and giv-

ing a normalized intersection of unity. Note for example that in shape match-

ing, it is common to use the formula ðA-BÞ=ðA,BÞ, where A and B are sets

representing object areas, which would give a value less than unity in the

case A*B. However, Eq. (22.30) is designed to cope well with partial occlu-

sions in the image, which will lead to the intersection with M being reduced,

yielding the I values, which would then cancel with the denominator, giving

the answer 1.

The overall effect of using the normalized intersection of Eq. (22.30) is that the

method has the twin advantages of minimizing the effects of background and can-

celing the effects of occlusion, while also coping well (and in some cases exactly)

with varying viewpoints. The problem of varying scale remains, but this can be

countered by preliminary segmentation of the object and scaling its histogram to

the size of the model histogram.

There remains one further important consideration when matching an image

against a model—that the model might have become out of date under varying

levels of illumination. To a large extent, the latter can be considered as varying

levels of luminance, with the chrominance parameters remaining more or less

unchanged. This problem can be addressed by changing to different color repre-

sentations. For example, we can move from the RGB representation to the HSI

representation (see Chapter 20), and then use the hue (H) and saturation (S) para-

meters. However, more protection will be available by color normalization
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(dividing by I)—though it is far easier and less computation intensive to normal-

ize the RGB parameters directly:

r5
R

ðR1G1BÞ (22.31)

g5
G

ðR1G1BÞ (22.32)

b5
B

ðR1G1BÞ (22.33)

but because r1 g1 b5 1, we should ignore one of the parameters, e.g. b.
While the above arguments suggest that luminance should be totally ignored,

this is inadvisable, as colors that are close to the black�white line in color

space (where saturation S � 0) would be indistinguishable. Indeed, Birchfield

(1998) cites the “dangerous” case of dark brown hair looking similar to a white

wall if luminance is ignored. For these reasons, most workers use different sizes

and numbers of histogram bins for luminance and chrominance information.

Here, we have to remember that a full-sized color histogram with 256 bins in

each of the color dimensions would be both large and clumsy, and would not

easily be searchable in real time—an especially important factor in tracking

applications. In addition, such a histogram would not be well populated and

would lead to very noisy statistics. For this reason, 16�40 bins per color dimen-

sion are much more typical. In particular, 163 163 8 bins are widely used, 8

being the number in the luminance channel. Note that these numbers corre-

spond, respectively, to 16, 16 and 32 levels per channel, and that a 5123 512

image would lead to an average occupation number of 128 per bin; however, a

2563 256 image would give an average occupation of just 32 per bin, which is

distinctly low and liable to be inaccurate (though this would depend very much

on the type of data).

Birchfield (1998) reported that when used for head tracking, the color histo-

gram method was able to follow a head reliably, though it became “unstable”

when the head was in front of a white board whose color was quite close to that

of skin. This behavior is understandable, as it has already been noted that the his-

togram approach is invariant to translation (hence, as long as the head is some-

where within the image, the histogram tracker will be unlikely to lose it). These

points show that ultimately the histogram tracker approach is limited, and needs

to be enhanced by other means, in particular some means of detecting object out-

lines. To achieve this, Fieguth and Terzopoulos (1997) used (1) simple M-ary

hypothesis testing of position around the previous position, the displacements

merely being those at the M5 9 points in a 33 3 window; (2) a highly nonlinear

velocity prediction scheme involving step incremental corrections for accelera-

tion, deceleration, and damping to avoid oscillations; and (3) color histograms

bins based exclusively on chrominance. The reason for these simplifications was

602 CHAPTER 22 Surveillance



to achieve real-time operation for full frames (6403 480 pixels) at 30 frames per

second—at which rate object displacements become much smaller and easier to

track.

Birchfield (1998) developed a more sophisticated approach, based on approx-

imating the shape of the human head by a vertical ellipse with a fixed aspect

ratio of 1:2. Then, in common with previous contour trackers he measured the

goodness of match by computing the normalized sum of gradient magnitudes

around the boundary of the ellipse, though (a) he summed the gradient values at

all points on the boundary rather than just at selected points,3 and (b) he took the

component of the gradient along the perpendicular to the boundary. This led to a

shape model s(x, y, σ) with three parameters—x, y denoting the ellipse location

and σ denoting its semi-minor axis—and the following goodness of fit

parameter:

ψðsÞ5 1

Nσ

XNσ

i51

nσðiÞUgsðiÞ
�� �� (22.34)

Here, Nσ is the number of pixels on the boundary of an ellipse with semi-minor

axis σ, nσ(i) is the unit vector normal to the ellipse at pixel i, and gs(i) is the local

intensity gradient vector. Normalized goodness of fit parameters for boundary

shape (ψb) and color (ψc) are added and used to obtain an optimum fit:

sopt 5 argmax
si

fψbðsiÞ1ψcðsiÞg (22.35)

As discussed earlier, when the color module was tested on its own, it per-

formed well, but somewhat unstably when the background color was close to that

of skin. All this was corrected by adding the gradient module. However, the gra-

dient module on its own performed less well than the color module on its own.

As time progressed the gradient model tended to became distracted by the back-

ground, not having any inbuilt design features to counteract this. Moreover, in a

cluttered background it behaved even less well; and it was not able to handle

large accelerations adequately because of its limited ability to probe for high

gradient regions, and its consequent propensity for attaching itself to the wrong

ones. Fortunately, the two modules were able to complement each other’s capabil-

ities; in particular, the color module helped the gradient module by its ability to

ignore background clutter, and by providing a larger region of attraction. Finally,

when the human subject turned around, so that only his hair was visible, the gra-

dient module was able to take over and handle rescaling correctly as the subject

moved; and it was able to prevent the color tracker from slipping down the sub-

ject’s neck, which had a similar color histogram. All this signals that two or more

strategies for tracking can be useful in real-world situations where enough

3In fact, this is unusual: most workers sample at a set of 100 or so points on the boundary.
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information needs to be brought to bear to provide correct tracking interpretations

on an ongoing basis. It also signals that the color histogram type of tracking

module is exceptionally powerful, and tends to need only minor tweaks to keep it

properly on lock. Overall, however, the outstanding factor that needs further

detailed attention and development is the handling of occlusion: this needs to be

arranged by design rather than by tweaks, as we shall see in a later section.

22.6 IMPLEMENTATION OF PARTICLE FILTERS
The particle filter formalism is a very powerful one, mediated by generic prob-

ability-based optimization, yet needing to be taken further to achieve its promise.

To arrange this, it needs to be applied to real objects and thus appearance models

have to be taken into account—though in the present context it will be more accu-

rate and general to refer to them as observation models. Our particle filter formal-

ism already embodies these in the form of conditional densities pðzkjxkÞ, see

Eq. (22.28).

At this stage we need to specialize the observations. Here, we illustrate the

process by considering the color and assumed elliptical shape of a human head:

these can be thought of as region-based (r) and boundary-based (b) properties,

each with their own likelihoods. Taking the latter to be conditionally independent,

we can factorize pðzkjxkÞ as follows:

pðzkjxkÞ5 pðzrkjxkÞpðzbk jxkÞ (22.36)

Clearly, the region-based likelihood will depend not only on the color but also on

the shape of the region it is in. Nevertheless, the conditional independence

assumption will be valid, as we are really interested in the colors within the

boundary and the gradient values along it.

To proceed further, we assume that color histograms I and M have been

obtained for the image and the target model, within the current region r.

Following Nummiaro et al. (2003) and many other workers—and at this point

abandoning the Swain and Ballard (1991) normalized intersection formalism—we

normalize them to unity as pI, pM, respectively. To compare these distributions, it

is convenient to use the Bhattacharyya coefficient (here expressed as a sum rather

than an integral) that expresses the similarity between the distributions:

ρðpI; pMÞ5
Xm
i51

ffiffiffiffiffiffiffiffiffiffi
pIip

M
i

q
(22.37)

To display the distance between the distributions, we simply apply the measure:

d5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ρðpI; pMÞ

p
(22.38)
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Ideally, the color distribution will be close to the target distribution, so these

should differ only as a Gaussian error function. Remembering that pI is actually a

function of xk, we now find the region (and color) conditional likelihood:

pðzrkjxkÞ5
1

ð2πσ2
r Þ1=2

e2ðd2=2σ2
r Þ 5

1

ð2πσ2
r Þ1=2

e2½ð12ρðpIðxkÞ;pMÞÞ=2σ2
r � (22.39)

Making a similar assumption that the estimated gradient positions in the image I

will differ from those in the target model M by a Gaussian error function, we find

the boundary conditional likelihood:

pðzbk jxkÞ5
1

ð2πσ2
bÞ1=2

e2ðG2=2σ2
b
Þ (22.40)

where G represents the sum of the gradient magnitude values perpendicular to the

local boundary positions.

Combining the last two equations, as specified by Eq. (22.36), now provides

the required estimate of pðzkjxkÞ, which in turn leads via the particle filter formu-

lation to an estimate of pðxkjz1:kÞ. This essentially completes the long series of

arguments and calculations comprising the particle filter scenario.

In fact, there are several further aspects to consider. The first is that it is natu-

ral to weight the contributions made by the various pixels to the color histograms.

In particular, the pixels nearest to the centers of the ellipses should be weighted

higher than those near their boundaries, so that any inaccuracies in the center

locations will be minimized. For example, Nummiaro et al. (2003) used the

weighting function:

kðrÞ5 12
r2

r20
: r, r0

0 : r$ r0

8><
>: (22.41)

with r0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 1 b2

p
, a and b being the semi-major and semi-minor axes of the

ellipses. In fact, Nummiaro et al. (2003) placed such reliance on this weighting

that their particle filter did not use a separate boundary likelihood pðzbk jxkÞ. In
contrast, Zhang et al. (2006) used both, almost exactly as described above, albeit

with an auxiliary particle filter incorporating mean shift filtering.

Another important aspect not so far mentioned is the need to adapt the target

model M to keep it up to date, e.g. with regard to the size and orientation of the

real-world target. Nummiaro et al. (2003) achieved this using the commonly

applied “learning/forgetting” operation:

pMk11;i 5αpMk;i 1ð12αÞpIk;i; i5 1; 2; . . . ;m (22.42)

which mixes in a little of the recent image data while forgetting a correspondingly

small amount of the old model data. During this process care is taken to avoid
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mixing in outlier data, such as when an object is partly occluded. Even with this

precaution, it should be borne in mind that use of an adaptive model is potentially

dangerous; while it helps by valid adaptation to appearance changes, it gives an

increased sensitivity to extended occlusions and loss of target.

While heads are typically tracked using 2-D position (x, y) and ellipse shape

parameters (a, b), it can normally be assumed that the ellipse is vertically aligned.

However, when viewed from overhead, in-plane orientation (θ) is also an impor-

tant parameter. Sometimes, similar models are used for individual human limbs,

though rectangles have also been employed. However, ellipses provide a simple,

easily parametrized shape, and can be specified with as few as three parameters

(x, y, b); these can even be used to track whole human figures using 3 or 4 para-

meters (Nummiaro et al., 2003). On the other hand, when torsos or hands are

being tracked, closed curves may not be appropriate, and it is common to use

parametric spline curves.

With the type of particle filter design outlined above, performance in the event

of occlusions is a vexed question.4 In principle, if a significant change such as a

strong partial occlusion occurs, the simple artifice of putting the tracker on hold

is often sufficient to allow it to recover and continue tracking. However, to ensure

recovery, the tracker might have to wait for a background subtraction routine to

signal that the object is again present (Nait-Charif and McKenna, 2006). In any

case, a background subtraction module is useful for signaling when a totally new

object has entered the scene. Finally, when objects leave the scene, some memory

of their appearance and position is useful in case they re-enter the scene after a

short time in the same or other location (when humans appear indoors, there are

usually a limited number of entry and exit points, and re-entry via the same one

will generally be the most likely possibility). However, there is a danger of insti-

tuting a rather ad hoc set of algorithms to solve such problems, when what is

needed is a more absolute object recognition module to positively identify indivi-

duals, or at least to search for the most likely identifications, together with sets of

probabilities. A particular example of this type of situation is when two pedes-

trians walking in opposite directions (a) pass each other without interacting, but

with the one momentarily occluding the other, or (b) stop, shake hands, and then

proceed, or (c) stop, shake hands, and then retrace their steps. Scenario (c)

involves merging of profiles and can be as difficult to handle as occlusion: in any

case temporary partial occlusion involves merging of the figures; only seldom

does complete occlusion and total disappearance of one figure occur. It ought to

be stressed that scenario (a) is handled well by a Kalman filter module that uses

4In this area, many claims and counter-claims about relative effectiveness of tracking and occlusion

handling capabilities are made in various papers. As the claims are often made on different data-

sets, it is difficult to know the true position. However, the particle filter has quite a high level of

intrinsic robustness. This is because “less likely object states have a chance to temporarily remain

in the tracking process, [so] particle filters can deal with short-lived occlusions” (Nummiaro et al.,

2003). Hence minor propping up in a judicious way using other modules can often boost perfor-

mance significantly.
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continuity of velocity to aid interpretation; scenario (b) is handled badly or not at

all by such a module, depending on the time delay; while scenario (c) is not han-

dled at all by such a module.5 In general, when processing human interactions,

the Kalman filter has to be used tentatively, to throw up hypotheses about motion.

However, it is possible to incorporate Kalman filters usefully into a particle filter

(van der Merwe et al., 2000); equally, they can be incorporated into supervisory

programs that oversee the whole tracking process, as indicated above (see also

Comaniciu et al., 2003).

22.7 CHAMFER MATCHING, TRACKING, AND OCCLUSION
As we have seen, one of the perennial problems of matching and tracking is that

of occlusion of objects within the field of view. A variety of measures can be

applied to make single camera systems as robust as possible against overlap.

Leibe et al. (2005) have devised methods based on chamfer matching and seg-

mentation, together with a minimum description length procedure for hypothesis

verification. The latter evaluates hypotheses in terms of the savings that can be

made by explaining part of the image by the hypotheses. Here, we concentrate on

the concept of chamfer matching, as it has achieved considerable use for match-

ing pedestrians, notably by Gavrila (1998, 2000).

The basic idea behind chamfer matching relates to the process of matching

objects to templates via their boundaries—a strategy that should be much less

computation intensive than matching via whole object regions. However, since

this would not give much indication of a potential match until very close to the

match position, some means is required of making the approach to a match far

smoother. This should also permit substantial speedup of the process by employ-

ing a hierarchical coarse-to-fine search. To achieve a smoother transition, edge

points in the image are first located, and then a distance function image is gener-

ated, starting with the edge points, which are initialized to zero distance values.

Application of the template, also in the form of edge points, will ideally yield a

zero sum (of image distance function values) along the template points: this will

rise to a higher value when the template is misplaced or the shape of the object is

distorted, corresponding to the sum of distances of each image point from the

ideal position. Taking the distance function as DFI(i), we can express the degree

of match by the average “chamfer” distance, i.e. the average distance from each

edge point to the nearest edge point in the template T:

DchamferðT; IÞ5
1

NT

XNT

i5 1

DFIðiÞ (22.43)

where NT is the number of edge points within the template. DchamferðT; IÞ is actu-
ally a dissimilarity measure, having a value of zero for a perfect match.

5These points about use of Kalman filters are well illustrated by Nummiaro et al. (2003) in relation

to a quite different scenario—that of a bouncing ball.
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In fact, there is no necessity to take edge points for the image and the tem-

plate: corner points or other feature points can be utilized, and the method is quite

general. However, the method works best when the point set is sparse, so that (a)

accurate location is achieved, and (b) computation is reduced. On the other hand,

reducing the number of points too far will result in lack of sensitivity and robust-

ness as parts of the image and template will not be adequately represented.

As it stands, this approach is limited because any outliers (caused by occlusion

or segmentation errors, for example) will lead to substantial matching problems.

To limit this problem Leibe et al. (2005) used a truncated distance for matching:

DchamferðT; IÞ5
1

NT

XNT

i5 1

minðDFIðiÞ; dÞ (22.44)

with a suitable empirical value of d. On the other hand, Gavrila (1998) applied an

order-based method for limiting the number of interfering distance function

values, taking the kth of the ordered values (1 to NT) as the solution value:

DchamferðT; IÞ5 arg orderi51:NT

k DFIðiÞ (22.45)

When applying this formula, it may seem attractive to use the median value, for

which k5 1/2ðNT 1 1Þ. However, it can easily happen that a large proportion of the

template area is obscured, so we usually need to take a smaller value of k

(e.g. 0.25NT) that reflects this. In fact, this will reduce accuracy when none of the

template is obscured, so, in the end, Eq. (22.44) might give a more useful result.

We take this discussion no further here as a lot depends on the type of data that is

involved. In passing, it is worth observing that when k5NT, Eq. (22.45) gives the

well-known Hausdorff distance (Huttenlocher et al., 1993):

DchamferðT; IÞ5maxi5 1:NT
DFIðiÞ (22.46)

(This formula for the Hausdorff distance may appear different from the usual one

that involves a max�min operation; however, as computation of a distance func-

tion involves taking local minima of possible distances (see Chapter 9), there is

concurrence in the two formulations.)

Note that, in the foregoing discussion, the distance function of the image is

used rather than that of the template. This is because in practical situations many

templates will have to be applied in order to cover expected variations in the

objects being detected. For example, if the method is being applied for pedestrian

detection, various sizes, poses, positions of limbs, and types of clothing will have

to be allowed for, as well as variations in the background and possible overlaps. In

these circumstances it is far more efficient to use DFI than DFT. Gavrila (1998)

showed with considerable success how all the variations listed above can be dealt

with and how the method can be made to work well to detect pedestrians.

Finally, returning to the work of Leibe et al. (2005), limitations of the chamfer

matching technique were compensated by using segmentation information. This
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meant obtaining a similarity function from the chamfer distance (which is a dis-

similarity measure), and then combining with a Bhattacharyya coefficient repre-

senting overlap with the hypothesized segmentation SegI(i) to produce an overall

similarity measure:

S5 a 12
1

b
DchamferðT; IÞ

� �
1ð12 aÞ

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SegIðiÞRTðiÞ

p
(22.47)

Here, RT(i) is the region within T, and the sum covers the pixels in this region. In

addition, a somewhat arbitrary but nonetheless reasonable pair of weights is

applied to balance the two similarity measures: a is the proportion of the overall

similarity allotted to chamfer matching, and b is a weight expressing the fact that

chamfer matching is applied over a significant boundary distance; in the work of

Leibe et al. (2005), a and b were taken to be 0.45 and 50, respectively. The over-

all effect was to produce much improved solutions in respect of placement accu-

racy and elimination of false positives, relative to the chamfer distance method

taken on its own (Eq. (22.44)).

22.8 COMBINING VIEWS FROM MULTIPLE CAMERAS
Over the past decade or so there has been a surge of interest in multi-camera surveil-

lance systems. Multiple cameras are clearly necessary if, e.g. long stretches of motor-

way are to be monitored, or if pedestrians are to be tracked around cities or shopping

precincts. The field of view (FOV) of a single camera is quite restricted and the reso-

lution available for viewing in the distance will almost certainly be inadequate for

detailed observation. Another reason for the use of several cameras is that of viewing

in stereo and obtaining sufficient depth information. A further reason is that pedes-

trians in a precinct will frequently be partially or wholly occluded by architectural

features such as statues or other pedestrians, but the chance of missing a pedestrian

will be much less if the scene is viewed by multiple cameras; this sort of situation

will also apply on roads, where many other possibilities for occlusion exist.

On roads, cameras are often mounted on overhead gantries, and maintaining

observation over long distances will require many cameras. This raises the ques-

tion of whether the observation should be unbroken, i.e. whether the cameras will

have overlapping, contiguous, or nonoverlapping views. On motorways, cameras

may be separated by several miles, and can usefully be sited at junctions, so it

will be possible to keep track of all vehicles without too much expense, though

breakdowns at intermediate locations may not be observed. On the other hand, in

a shopping precinct, if pedestrians are to be monitored closely enough for attacks

or terrorist activities to be detected, contiguous, or overlapping views will be

mandatory. In fact, there will be a problem in ensuring that all pedestrians are

positively identified as they progress from one FOV to the next: to facilitate this,

and for ease of setting up the system, overlapping views are normally required.
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Next we consider the layout of a multi-camera system. To do this we must

examine the area of the ground plane that lies within the FOV of the camera.

First, note that the optical axis of the camera passes through the center of the

image plane and that the latter has a rectangular shape given by the minimum and

maximum values of x and y, 6 xm and 6 ym. The FOV is therefore limited by

four planes, at horizontal and vertical angles 6α and 6β, where tan α5 xm/f

and tan β5 ym/f, f being the focal length of the camera lens. Each plane will

(a)

(b)

FIGURE 22.9

Area on the ground plane viewed by a camera. (a) Side view with the camera canted

slightly downwards. (b) Plan view of the symmetrical trapezium seen by the camera on

the ground plane.

(a) (b) (c)

FIGURE 22.10

Areas on the ground plane viewed by multiple cameras. (a) Overlapping trapezia forming

a quadrilateral. (b) Overlapping trapezia forming another shape—here a pentagon.

(c) Trapezia that do not overlap, though tracking across the gap can in some cases be

achieved by making spatial and temporal correspondences (see text).
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intersect with the ground plane in a line, and for a camera with a horizontal

x-axis, the viewed area on the ground plane will be a symmetrical trapezium

(Fig. 22.9). However, following on from the discussion in Section 22.2, if the

camera is not inclined slightly downward, the distant side of the trapezium will

not be visible. Since this would not make the most of the camera FOV, we will

assume that it has been arranged for the distant side to fall on the ground plane.

When an adjacent camera views an adjacent section of the ground plane, there

are two possibilities: (1) it will view the next stretch in the same direction, as on

a motorway; (2) it will not be restricted to lie, or point, in the same direction, but

just to overlap in some convenient way. For example, in a precinct or park a typi-

cal placement would be as shown in Fig. 22.10(a), where two opposite sides of

the common viewing area would arise from the FOV of the first camera and the

other two from that of the second camera—thereby forming a quadrilateral rather

than a trapezium. However, other situations are possible, as shown in Fig. 22.10(b),

where the trapezia of the two cameras overlap in a more complex way, and the com-

mon viewing area is not a quadrilateral.

No matter which of the reasons for using a multi-camera system apply, there

is a need to relate the views from the separate cameras in order to obtain a consis-

tent labeling of the objects passing between them. The obvious means of achiev-

ing this is by appearance, i.e. to apply recognition algorithms to establish that the

same person or vehicle is being tracked across the various camera fields of view.

Unfortunately, while this correspondence problem can normally be solved

straightforwardly in binocular vision, when the two cameras are close together

and pointing in a similar direction, this is by no means true for wide baseline

cases such as those shown in Fig. 22.10. This is so for two reasons: (1) a person

seen in two disparate views may have an altogether different appearance, e.g. the

face may be visible in one and the back of the head in the other; or the back of a

shirt may have a different design or color from the front; (2) the illumination may

be quite different for each of the views, and this will make it even more difficult

to confirm the person’s identity from the other camera.

The obvious solution to this problem is to confirm identity not by appearance

but by position and time. If we know that person P is at position X in the scene at

time t, this must be the case in all views. So all that has to be done is to relate the

common areas of the ground plane uniquely between cameras. Following the

widely used and usually sufficiently accurate assumption that everything is hap-

pening on the same flat ground plane, we only need to set up a homography

between the two cameras to arrange for the same correct interpretation from any

view. Under perspective projection, it requires a minimum of four common fea-

ture points to set up a homography (the number is as small as this because of the

planar constraint, as is made clear in Table 16.1), though more points can be used

to improve accuracy; note also that at least one more point is needed to validate

the homography.

In the work of Calderara et al. (2008) greater accuracy was achieved by find-

ing the straight lines bounding the common quadrilateral and using its corners as
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highly accurate points by which to define the homography. While this might

seem trivial, in fact the common quadrilateral has to be located by experiment.

This can be achieved most easily when the scene is empty (e.g. overnight), and

one individual can be sent to walk repeatedly around the site until a sufficient

number of boundary points—as determined by the individual entering or leaving

one of the fields of view—have been measured in both views. Note that to ensure

that this gives sound results, temporal synchronization of the two camera systems

is crucial. Once all this has been carried out, methods such as Hough transforms

or RANSAC are applied to collate the boundary points into the straight lines

bounding the quadrilateral: and because of the averaging inherent in this process,

the straight lines will be known accurately; therefore, the corner positions will be

known accurately, so there will be no need to use more points to establish an

accurate homography.

Interestingly, Khan and Shah (2003) consider this approach an overkill to

solve the consistent labeling problem. They assert that there is no need to deter-

mine the homography in this numerical sort of way: rather, it should be done by

finding the FOV boundary lines and then merely noting when a pedestrian passes

over one of these lines and making the identity at that point in time, i.e. if an indi-

vidual crosses a line at time t, this will be detected at the same time t in each

camera and the person’s identity can be passed across at that moment. This pro-

cess is commonly called camera “handoff” (whereas it might appear to be more

natural to call it “handover,” there is a subtlety in that the latter term would tend

to imply that the fields of view are contiguous rather than overlapping). However,

if a group of people all cross the line together, this could obviously give rise to

difficulties. Indeed, the whole problem of tracking groups of individuals is a diffi-

cult one, and becomes almost insuperable in dense crowd situations.

While finding FOV boundary lines can be carried out when no crowds are

present, and ideally when a single individual walks around, there are limits to the

performance of the trained system. This is because a homography relates to a

plane, and the simplest way of defining and using a plane is to use the foot loca-

tions to provide the plane contact points. (In principle, this is easily done by tak-

ing the lowest point on the individual.) However, when the calibrated system is

used, the feet of one individual will often be obscured by another individual—a

situation that will be virtually unavoidable in crowds. Consequently, there has

been a fair amount of attention to recognizing and locating individuals from the

tops of their heads (e.g. Eshel and Moses, 2008, 2010). Clearly, tops of heads are

much less likely than feet to be occluded. Hence, even in crowd conditions, as

long as cameras are quite high up and canted down at quite high angles (say 40�),
all but the shortest individuals should be identifiable. Interestingly, apart from ori-

entation, tops of heads may actually look similar in different views. As the cam-

era cant angle will be known, altered head orientation can be allowed for and

recognition and cross identification between cameras can proceed. With fully cali-

brated cameras (see Chapter 18), tops of heads can be located in 3-D space, and

the positions of feet and heights of individuals can be deduced. Unfortunately,
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full camera calibration is a tedious process and may need frequent updating, so it

is better not to rely on that approach in “informal” (and therefore changeable) sur-

veillance situations such as shopping centers. Instead, camera views can be

related using the fundamental matrix formulation (Chapter 18), which only

requires that epipoles should be known so that epipolar lines can be determined;

however, finding them requires considerable computation, though this can be

done offline prior to actual use (Calderara et al., 2008).

An intriguing approach to top-of-head location is to try various homogra-

phies differing only in the parameter H signifying distance from the floor.

When a homography is found that indicates the same value of H, the foot loca-

tions can be calculated for each camera view, even though the feet themselves

are obscured. However, to achieve this a somewhat complex and subtle process

is required (Eshel and Moses, 2008, 2010). Four vertical poles are set up at the

corners of each viewing quadrilateral (or other convenient location), each pole

having three bright lights along it (e.g. at the top, bottom and middle of the

pole). Then standard homographies are set up for each of these, so that at any

location in an image, three heights can be deduced. Finally, a height that is to

be measured can be related to the three known ones for that location, a cross-

ratio calculated along a vertical line, and the actual height deduced; at the

same time the foot position in each camera view can be identified

unambiguously.

Overall, the simplest and most powerful approach is that of prior training by

getting someone to walk around the site and thus demarcate the boundaries of

each common viewing zone. Then, applying the fundamental matrix for pairs of

cameras will permit homographies to be set up relating all the mutually viewable

regions of ground planes. The paper by Calderara et al. (2008) contains a number

of other subtleties, but space prevents them from being described in detail here.

Finally, if heights and exact locations of people are to be found from top-of-head

positions, elegant though fairly complex methods using several homographies

have to be used, but in some applications, such as observation of crowds, the

additional complexity may well be justified. However, segmentation of crowd

views and identification of all individuals remains a research topic, especially

when the people are tightly packed—as can easily happen in metro stations and

football matches.

22.8.1 The Case of Nonoverlapping Fields of View
Next we move on to the case of nonoverlapping fields of view. Here there seems

to be no basis for homographies or for reliable camera handoff. However, some

degree of similarity in appearance will still be detectable between views; in addi-

tion, there will be strong correlations between the time of leaving one FOV and

arriving in another. The situation will often be helped if there is some restriction

of access, such as would occur if there is a single adjoining door. (On a motorway,

there is anyway such a restriction, and temporal correlations can be strong.)
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Pflugfelder and Bischof (2008) have obtained significant success in this sort of sit-

uation, and made no assumptions about appearance. In particular, they have found

how to relate the camera calibration matrices when overlapping views are not

available. While this seems intrinsically impossible because no common image

points can be found and hence no equations can be obtained linking the parameters

(recall that the 8-point algorithm requires eight points in order to obtain a suffi-

cient number of equations), they have found that if velocities are assumed to be

more or less constant across the intervening space, this provides the continuity

needed to permit enough equations to be found. Thus, a minimum of two positions

per view for each trajectory is sufficient, these being immediately before and after

camera handoff. Strict temporal correspondences are required, as is data on rela-

tive camera orientations, but a common ground plane is not assumed. Under these

conditions, tracking across gaps of up to 4 m was achieved (Fig. 22.10(c)). The

method works by making use of Rother and Carlsson’s (2001) 2-point technique

for determining the relative positions of two cameras with overlapping views: the

new method simulates this situation by utilizing a separate pair of points in the

second nonoverlapping view in order to emulate and replace the two points that

would ideally have been present in an overlapping view.

For a differently motivated probabilistic strategy tackling this problem, based on

transition probabilities between nonoverlapping views, see Makris et al. (2004):

what is special about this approach is that it is quite general as it is entirely unsuper-

vised and has no direct knowledge of camera placement or camera characteristics.

22.9 APPLICATIONS TO THE MONITORING OF TRAFFIC FLOW
22.9.1 The System of Bascle et al.
One important area of surveillance is the visual analysis of traffic flow. In an

early study (Bascle et al., 1994) it was found that the complexity of the analysis

was reduced because vehicles run on the roadway and because their motions are

generally smooth. Nevertheless, the methods that had to be used to make scene

interpretation reliable and robust were nontrivial.

First, motion-based segmentation is used to initialize the interpretation of the

sequence of scenes. The motion image is used to obtain a rough mask of the

object, and then the object outline is refined by classical edge detection and link-

ing. B-splines are used to obtain a smoother version of the outline, which is fed

to a snake-based tracking algorithm. The latter updates the fit of the object outline

and proceeds to repeat this for each incoming image.

However, snake-based segmentation concentrates on isolation of the object

boundary, and therefore ignores motion information from the main region of the

object. It is therefore more reliable to perform motion-based segmentation of

the entire region bounded by the snake, and to use this information to refine the

description of the motion and to predict the position of the object in the next
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image. The overall process is thus to feed the output of the snake boundary esti-

mator into a motion-based segmenter and position predictor that re-initializes the

snake for the next image—so both constituent algorithms perform the operations

they are best adapted to. It is especially relevant that the snake has a good starting

approximation in each frame, both to help eliminate ambiguities and to save on

computation. The motion-based region segmenter operates principally by the anal-

ysis of optical flow, though in practice the increments between frames are not

especially small: this means that while true derivatives are not obtained, the result

is not as bedevilled by noise as it might otherwise be.

Various refinements were incorporated into the basic procedure:

• B-splines are used to smooth the outlines.

• The motion predictions are carried out using an affine motion model that

works on a point-by-point basis. (The affine model is sufficiently accurate for

this purpose if perspective is weak so that motion can be approximated locally

by a set of linear equations.)

• A multi-resolution procedure is invoked to perform a more reliable analysis of

the motion parameters.

• Temporal filtering of the motion is performed over several image frames.

• The overall trajectories of the boundary points are smoothed by a Kalman

filter.6

The affine motion model used in the algorithm involves six parameters:7

xðt1 1Þ
yðt1 1Þ
� �

5
a11ðtÞ a12ðtÞ
a21ðtÞ a22ðtÞ
� �

xðtÞ
yðtÞ
� �

1
b1ðtÞ
b2ðtÞ
� �

(22.48)

This leads to an affine model of image velocities, also with six parameters:

uðt1 1Þ
vðt1 1Þ
� �

5
m11ðtÞ m12ðtÞ
m21ðtÞ m22ðtÞ
� �

uðtÞ
vðtÞ
� �

1
c1ðtÞ
c2ðtÞ
� �

(22.49)

Once the motion parameters have been found from the optical flow field, it is

straightforward to estimate the following snake position.

An important factor in the application of this type of algorithm is the degree

of robustness it permits. In this case, both the snake algorithm and the motion-

based region segmentation scheme are claimed to be relatively robust to partial

occlusions: the abundance of available motion information for each object, the

insistence on consistent motion, and the recursive application of smoothing proce-

dures including a Kalman filter, all help to achieve this end. However, no specific

6A basic treatment of Kalman filters is given in Section 19.8.
7An affine transformation is one which is linear in the coordinates employed. This type of transfor-

mation includes the following geometric transformations: translation, rotation, scaling and skewing

(see Chapter 18). An affine motion model is one which takes the motion to lead to co-ordinate

changes describable by affine transformations.
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nonlinear outlier rejection process is mentioned, which could help if two vehicles

merged together and became separated later on or if total occlusion occurred.

Finally, the initial motion segmentation scheme locates the vehicles with their

shadows since these are also moving (see Fig. 22.11); subsequent analysis seems

able to eliminate the shadows and arrive at smooth vehicle boundaries.

22.9.2 The System of Koller et al.
Another scheme for automatic traffic scene analysis was described by Koller

et al. (1994). This contrasts with the system described above by placing heavy

reliance on high-level scene interpretation through the use of belief networks. The

basic system incorporates a low-level vision system employing optical flow,

intensity gradient, and temporal derivatives. These provide feature extraction, and

lead to snake approximations to contours; since convex polygons would be diffi-

cult to track from image to image (because the control points would tend to move

randomly), the boundaries are smoothed by closed cubic splines having 12 control

points; tracking is then achieved using Kalman filters. The motion is again

approximated by an affine model, though in this case only three parameters are

used, one being a scale parameter and the other two being velocity parameters:

Δx5 sðx� xmÞ1Δxm (22.50)

Here the second term gives the basic velocity component of the center of a vehi-

cle region, and the first term gives the relative velocity for other points in the

region, s being the change in scale of the vehicle (s5 0 if there is no change in

scale). The rationale for this is that vehicles are constrained to move on the road-

way, and rotations will be small. In addition, motion with a component toward

the camera will result in an increase in size of the object and a corresponding

increase in its apparent speed of motion.

FIGURE 22.11

Vehicles located with their shadows. In many practical situations, shadows move with the

objects that cause them, and simple motion segmentation procedures produce composite

objects that include the shadows. Here a snake tracker envelops the car and its shadow.
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Occlusion reasoning is achieved by assuming that the vehicles are moving

along the roadway, and are proceeding in a definite order, so that later vehicles

(when viewed from behind) may partly or wholly obscure earlier ones. This depth

ordering defines the order in which vehicles are able to occlude each other, and

appears to be the minimum necessary to rigorously overcome problems of

occlusion.

As stated above, belief networks are employed in this system to distinguish

between various possible interpretations of the image sequence. Belief networks

are directed acyclic graphs in which the nodes represent random variables and

arcs between them represent causal connections. In fact, each node has an associ-

ated list of the conditional probabilities of its various states corresponding to

assumed states of its parents (i.e. the previous nodes on the directed network).

Thus, observed states for subsets of nodes permit deductions to be made about

the probabilities of the states of other nodes. The reason for using such networks

is to permit rigorous analysis of probabilities of different outcomes when a lim-

ited amount of knowledge is available about the system. Likewise, once various

outcomes are known with certainty (e.g. a particular vehicle has passed beneath a

bridge), parts of the network will become redundant and can be removed; how-

ever, before removal their influence must be “rolled up” by updating the probabil-

ities for the remainder of the network. Clearly, when applied to traffic, the belief

network has to be updated in a manner appropriate to the vehicles that are cur-

rently being observed; indeed, each vehicle will have its own belief network that

will contribute a complete description of the entire traffic scene. However, one

vehicle will have some influence on other vehicles, and special note will have to

be taken of stalled vehicles or those making lane changes. In addition, one vehicle

slowing down will have some influence on the decisions made by drivers in

following vehicles. All these factors can be encoded into the belief network and

can aid in arriving at globally correct interpretations. General road and weather

conditions can also be taken into account.

Further work was planned to enable the vision part of the system to deal with

shadows, brake lights and other signals, and a wide enough variety of weather

conditions. Overall, the system was designed in a very similar manner to that of

Bascle et al. (1994), though its use of belief networks made it rather more

sophisticated.

In a later version of the system (Coifman et al., 1998), it was decided that a

greater degree of robustness with regard to partial occlusion was required.

Hence, the idea of tracking objects as a whole was abandoned and corner fea-

tures were used for detection. This led to a different problem—that of grouping

corner features to infer the presence of the vehicles, a process that was simpli-

fied by using a common motion constraint, so that features that were seen to be

rigidly moving together were grouped together. The new version of the system

also applied a homography between the image plane and the ground plane. The

reason for this was to generate world parameters so that ground-based positions,

trajectories, velocities, and densities could be established. Note for example that
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a vehicle traveling at constant speed on the road would have variable speed

when viewed in an image. In addition, the right information could more easily

be brought to bear when problems of partial or total occlusion are being

investigated.

When designing a much later system, Magee (2004) made several interesting

observations: (a) corner features are unreliable because of the small size of the

objects of interest; (b) connected components analysis is a poor tool for combin-

ing parts of vehicles because of fragmentation and similarity of some object fore-

ground points to background; (c) particle filter trackers have high computational

cost that does not scale linearly with the number of objects present—a serious

matter when 30 or more vehicles in close proximity are being tracked simulta-

neously. He found that a sound way to track vehicles was to dynamically model

vehicle invariants such as size, color, and speed: in other words, object appear-

ance and recognition were important to systematic and accurate tracking; and the

only way they could be achieved was by establishing a homography between the

image and the ground plane. In that way vehicle parameters properly became

invariants as required. The homography is expressible as a nonlinear perspective

transformation (or “inverse perspective mapping”),8 and some care is required in

setting it up. However, if the camera x-axis is horizontal, the homography only

requires a rotation through an angle θ about the image x-axis, together with a

scaling, in order to relate the image coordinates to the ground plane coordinates.

Ignoring the scaling, there is only one parameter (θ) to be determined. Magee

adopted the simple strategy of estimating θ as the angle required to make the

roadway appear to have constant width, a procedure that proved to be adequate in

his particular application (Fig. 22.12). The calculation was made sufficiently accu-

rate by approximating the road centerlines and outlines by three polynomials and

performing a fit by iteratively adjusting θ. The reason for adopting this procedure is

8Note that such a mapping is mathematically valid only for points known to lie on the ground

plane. When points not lying on the ground plane are back-projected to it, they give rise to weird,

nonsensical effects, such as buildings that appear to lean backwards.

(a) (b) (c) (d)

FIGURE 22.12

Adjusting the inverse perspective mapping of the roadway. (a) shows the roadway as

observed by the camera. (b) shows an inverse perspective mapping with the roadway

adjusted for constant width. (c) and (d) show cases of incorrect adjustment of the mapping.
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that the roadway has no absolute predefined shape so a heuristic approach seemed

appropriate. Ideally, however, the ground truth for the road centerlines and outlines

would be known and the value of θ could be adjusted to fit the ground truth without

having to assume that the roadway has constant width.

22.10 LICENSE PLATE LOCATION
Over the past decade there has been intensive effort to identify vehicles automatic-

ally by their license plates. Although license plates were introduced many years ago

for the purpose of checking ownership and detecting stolen vehicles, nowadays two

other important reasons for automatically identifying vehicles are (1) for taxation

within tolling zones and (2) for exacting fines in the case of parking offences—

because considerable sums of money can be obtained in these ways with very little

human intervention. Also, considering all the possible applications of computer

vision in surveillance, identification of license plates represents a potentially

straightforward application of current methodology. Nevertheless, there are many

problems, not least because of the different styles of license plate from different

countries.

Identification of license plates progresses through three main stages: (1) loca-

tion and segmentation of the license plate; (2) segmentation of the individual

characters; (3) recognition of the individual characters. Here, we concentrate on

the first of these stages, as the other two are more specialized and less generic,

considering the different styles, fonts, and character sets in use in different coun-

tries. In any case, the first stage is probably the most difficult to engineer.

A priori, it might be thought that the best way of locating license plates would

be via their colors, which are generally well specified for each country. However,

many problems arise from variations in ambient lighting, particularly with the

seasons, the weather, and the time of day, while shadows are also a source of dif-

ficulty. In this milieu, one of the best starting points has been found to be use of

a simple Sobel or other vertical edge detection operator, in conjunction with hori-

zontal nonmaximum suppression and thresholding. This has been found to locate

not only the vertical lines at the ends of the number plates but also the vertical

lines at the sides of the characters (Zheng et al., 2005). This generally gives a rel-

atively dense set of vertical edges within the region of the license plate. To pro-

ceed further, long background edges and short noise edges are eliminated.

Finally, moving a rectangle of license plate size over the image and counting the

edge pixels within it turns out to be a highly reliable way of locating license

plates (in fact, this process is a form of correlation). The whole process is shown

in Fig. 22.13, with the difference that in the case shown, the final stages are car-

ried out solely using morphological operations (horizontal closing followed by

horizontal opening, in each case by 16 pixels).
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This method has been developed considerably further by Abolghasemi and

Ahmadyfard (2009) using color and texture cues. They found that a particular

advantage of color object analysis is robustness to viewpoint changes. They also

used morphological closing to link all the vertical edge points, and followed this

by opening to eliminate the effects of isolated noise points.

Before characters can be segmented and recognized, another stage is needed—

that of license plate distortion correction. This arises because license plates may

not be observed from the most ideal viewpoint. This is something that requires

careful attention. If vehicles are too far away from the camera, the resolution will

be too low to permit vertical edges to be found; likewise, accurate identification

of the characters will not be possible. If the license plate is viewed obliquely it

will appear misorientated and will not even appear rectangular. However, if

license plates were always viewed at a particular distance and location, a standard

perspective transformation could be applied to correct such distortions. While it is

acknowledged in the literature (e.g. Chang et al., 2004) that adding such a step

would improve the performance of license number recognition, few systems seem

to incorporate such a step. The reason is probably that OCR systems are already

very accurate even when characters are slightly sheared and rotated.

(a) (b)

(c) (d)

FIGURE 22.13

Simple procedure for locating license plates. (a) Original image with license plate

pixellated to prevent identification. (b) Vertical edges of original image. (c) Vertical edges

selected for length. (d) Region of license plate located by horizontal closing followed by

horizontal opening, each over a substantial distance (in this case 16 pixels).
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22.11 OCCLUSION CLASSIFICATION FOR TRACKING
It will be clear from the many remarks made about occlusion on the preceding

pages that this is a serious problem that needs in-depth analysis and careful algo-

rithm design, particularly with regard to people tracking. To this end, Vezzani

and Cucchiara (2008), and Vezzani et al. (2011) have made a careful analysis of

the means by which occlusion can arise, starting with the definition of nonvisible

regions as the parts of objects that are not visible in the current frame. They pro-

ceeded to classify these as “dynamic,” “scene,” or “apparent” occlusions:

1. Dynamic occlusions are due to moving objects that are readily identified.

2. Scene occlusions are due to static objects that are part of the background, but

can nevertheless be in front of moving objects.

3. Apparent occlusions are sets of pixels that arise from shape variations of

objects being tracked.

Here it is important to note the distinction between background and foreground.

To the layman, “background” merely means a backdrop in front of which the

actors perform: it is regarded as static, while the foreground is considered to con-

sist of more interesting moving objects. However, in computer vision we have to

consider the background as static wherever it is, with the moving “foreground”

objects ranged at different distances from the camera and sometimes moving

behind background objects (Fig. 22.14). Note that the background that is identi-

fied by background modeling algorithms is the static part of the scene. Of course,

a complication that can disrupt this tidy situation is that the background may be

FIGURE 22.14

Typical situation of occlusion. This illustrates the case of turnstiles leading to underground

trains, viewed from the side. The dots represent people (moving in the direction of the

arrow) ranged at different distances from the camera.
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composed partly of objects that have come to rest, either permanently or tempo-

rarily, and it will be up to the vision algorithm to consider the available evidence

from watching the scene and to assess various possibilities and probabilities.

Another factor to consider is whether occlusions are partial or total. For many

static scenes and static situations, total occlusion is an eventuality that is normally

disregarded; hence, all occlusions are taken to be partial, and they are simply

referred to as “occlusions.” However, when tracking objects, total occlusion is a

possibility that has to be borne in mind indefinitely (though in practical situations

a time-limit may have to be set).

So, when viewing image sequences containing motion, objects may temporar-

ily be totally occluded, or they may be partially occluded—in which case they

may be broken into several sections. And when objects re-emerge later on, these

sections need to be reassembled into whole objects: this scenario arises when a

person passes behind a table, for example. In addition, when a person passes

behind a low fence, and the lower body is temporarily invisible, it is necessary

for the model of the complete person to be remembered; for if the model becomes

adapted to the changed situation, it may not be able to cope properly when the

whole person re-emerges and it will continue to track only the top of the body.

Clearly, to cope successfully with such situations (Fig. 22.15), the computer needs

to have the means to deal with them holistically. Similarly, when two people

merge into a larger blob when walking together, the computer will need to have

the means to recall that two people were involved so that their identities will be

preserved and reinstated when they separate again. Thus, we require substantial

intelligence to be incorporated into tracking algorithms.

(a)

(b)

FIGURE 22.15

Further examples of occlusion. (a) Case of people walking behind a fence or barrier,

potentially resulting in only the head and shoulders being tracked afterwards. (b) Case of

people walking behind a table, potentially resulting in two parts of the body being tracked

independently afterwards.
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The various components that have to be incorporated into the algorithm would

appear to be the following: (a) the usual background extraction capability, (b) the

usual blob tracking capability, (c) full appearance and identity recall, (d) merge capa-

bility, (e) split capability, and (f) probabilistic analysis of interpretations. Indeed, (f)

will probably have to be the unifying force that drives the whole algorithm.

All these aspects are included in the work of Vezzani and Cucchiara (2008)

and Vezzani et al. (2011). In particular, they employ an appearance-based formal-

ism that integrates the possible shape variations of each object and represents

them by probabilistic maps. This means that when part of an object is obscured,

its shape model hallucinates the whole of the object in the probabilistic shape it

ought to have, so that when it re-emerges it is automatically re-integrated virtually

instantaneously into its natural form.

So far we have not examined item 3 (see the beginning of this section) that

mentioned apparent partial occlusions due to changes in shape. These arise

because as a body rotates or bends slightly, or otherwise deforms, new parts will

become visible though other parts will become invisible. While these could be

regarded as arising through self-occlusion, this may not be the only possibility,

e.g. if stretching is involved. We shall not delve further into this point, but merely

underline that apparent partial occlusions are not caused by any other objects. This

is quite an innovative observation relating to occlusion, and may be part of the rea-

son why progress with occlusion has been drawn out over many years. Suffice it to

say that the work of Vezzani et al. represents a sound and impressive advance

through its cognizance of the many aspects of occlusion in tracking scenarios.

The overall system is very robust and fast and is well able to cope with more

than 40 people in videos from the PETS2006 dataset. Nevertheless, it gives rise

to some failures that devolve into the following categories: (a) identity change of

one person, (b) split head/feet, (c) incorrect splitting of groups containing two or

three people, (d) identity change of luggage. In fact, it appears that these are fail-

ures not of the overall system, including the handling of objects and occlusions,

but of the part of the system handling appearance, which is arguably the part to

which relatively little design effort has been devoted. Furthermore, it is not clear

from the two papers whether a human observer could have performed better using

the same video input. Nevertheless, the way forward, including the ability to han-

dle problems (b) and (c) above, is probably to enhance the system using

stick-figure based models of humans, which can take proper account of limb

articulation constraints (see Section 22.13): the performance of a system that

looks at the body as a whole and models it as a holistic probabilistic shape profile

must in the end be limited without suitable enhancement.

22.12 DISTINGUISHING PEDESTRIANS BY THEIR GAIT
This section outlines a method for distinguishing pedestrians by their gait.

Clearly, unlike many other moving objects such as vehicles, pedestrians have
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cyclical motions, and it is actually possible to recognize individual people by their

gait. However, here we consider only the methodology needed to locate pedes-

trians in image sequences.

The basis of the approach is to perform spatiotemporal differencing opera-

tions, in which spatiotemporal averaging is followed by temporal differencing.

This “motion distillation” method (Sugrue and Davies, 2008) is implemented as a

Haar wavelet and leads to a nonbinary motion map of the video at each time-step,

according to the equation:
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where xtij represents the video pixel data at the point (t, i, j) in spatiotemporal space.

In this method, undesirable contrast dependence is removed by normalizing W

values across the detected object: the process involves taking the ratio R of posi-

tive (W1 ) to negative (W�) filter outputs:
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P
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For a rigid object that retains its orientation relative to the camera, R will remain

approximately constant over time. On the other hand, pedestrians deform as they

move, and can quickly be detected by testing for changes, and particularly oscilla-

tions in the “rigidity parameter” R.

Figure 22.17(a) compares the motion signals R of a typical vehicle and a

pedestrian (see Fig. 22.16 for typical frames from the original videos). While the

vehicle signal changes only gradually as a result of slight rotation, changing per-

spective and noise, the pedestrian signal is highly variable and oscillatory because

of gait motion. Note that over the period shown in Fig. 22.17(a), the area of the

vehicle changes by a factor B10, while the area of the pedestrian changes by

only a few percent. This makes it all the more significant that R is so constant for

the vehicle, demonstrating that it is a useful invariant of the motion.

FIGURE 22.16

Portions of frames extracted from video sequences by motion detector. Left: Three frames

of moving vehicle. Right: Respective frames of pedestrian, runner and group of walkers.

Source: r IET 2007
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After detection, a pedestrian’s motion field can be further analyzed for a vari-

ety of behavior patterns. Normal behavior can be modeled by fitting a rectangular

box to the subject’s motion field. The rectangle is the full height of the

figure with a width typically set at half the height (see below). The total motion

area A is calculated as:

A5
X

W1j j1
X

W2j j (22.53)

where the sums are taken over the whole object; in addition, the corresponding

area Aex is calculated for the region outside the box. The box parameter η is then

defined as the ratio of the two areas:

η5
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A
(22.54)
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FIGURE 22.17

Motion analysis using rigidity and box parameters. (a) Top to bottom: result of applying the

rigidity parameter R for the pedestrian; result of applying R for the vehicle; result of

applying box parameter η for the pedestrian. The horizontal scales indicate video frames.

(b) Top to bottom: result of applying the respective parameters Rex, R, η for the runner. In

all cases the originals are shown in Fig. 22.16.

Source: r IET 2007
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This parameter should also be an invariant both for rigid motion and for “com-

pact” motion where Aex is small, giving a measure of the type of behavior: this is

because η is dimensionless and compares like with like but still contrasts two

motions (viz. exterior to the box and overall). If the pedestrian is walking nor-

mally, the η value will be low at all times (see, for example, the bottom trace in

Fig. 22.17(a)): the higher values typical of runners are demonstrated clearly in

Fig. 22.17(b). In addition, individual sudden actions such as waving and jumping

will result in spikes in η.
A third type of invariant Rex has also been developed to help discriminate

other more complex cases. This has the same definition as for R, except that it

applies only to the part of the object external to the box. It provides additional

useful information helping to discriminate runners from groups of walkers (see

Fig. 22.16). Both of these categories have been found to have values of η around

0.5, so Rex is useful in enabling them to be discriminated. (Specifically,

Rex � 1.5R for runners and Rex � R for groups of walkers, though additionally R

and Rex are only well synchronized for runners.) While the Rex information cannot

be described as being specific to groups, it is nevertheless valuable, though

ultimately only detailed analysis leading, e.g., to stick-figure models of people

may provide the information that is required in a particular application (see

Section 22.13).

Because of the importance of box size in determining the values of η and Rex,

a careful study was made to optimize discrimination between single walkers and

runners. This gave the optimum box width/height ratio as close to 0.5, for which

the walker�runner threshold was best set at about 0.1 (see Fig. 22.18).

Overall, the methods described here have been found to distinguish motions of

rigid and nonrigid objects with B97% accuracy. They are also able to classify

single walkers with B95% accuracy, and runners and groups of walkers with

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

width/height

η

0.6 0.7 0.8

FIGURE 22.18

Discrimination permitted by box parameter η. The lower solid line represents the mean

value of a sample of walkers (the broken lines indicate 6σ error bars), and the upper solid

lines record runners. To discriminate between walkers and runners, the best operating

point is close to (0.5, 0.1), as shown.

Source: r IET 2007
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B87% accuracy; in addition, they give useful indications of “extravagant” activi-

ties such as waving and jumping. Interestingly, all this was achieved via use of

specially designed invariants, which save complexity and computation while

being straightforward to set up and adjust.

22.13 HUMAN GAIT ANALYSIS
For several decades human motion has been studied using conventional cinema-

tography. Often the aim of this work has been to analyze human movements in

the context of various sports—in particular, tracking the swing of a golf club and

thus helping the player to improve his game. To make the actions clearer, strobo-

scopic analysis coupled with bright markers attached to the body have been

employed, and have resulted in highly effective action displays. In the 1990s,

machine vision was applied to the same task. At this point the studies became

much more serious and there was increased focus on accuracy. The reason for

this was a widening of the area of application not only to other sports but also to

medical diagnosis and to animation for modern types of film containing artificial

sequences.

Because high accuracy is needed for many of these purposes—not least mea-

suring limps or other imperfections of human gait—analysis of the motion of the

whole human body in normally lit scenes proved insufficient, and body markers

remained important. Typically, two are needed per limb, so that the 3-D orienta-

tion of each limb is deducible. Some work has been done to analyze human

motions using single cameras, but the majority of the work employs two or more

cameras: multiple cameras are valuable because of the occlusion that occurs when

one limb passes behind another, or behind the body.

To proceed with the analysis, a kinematic model of the human body is

required. In general, such models assume that limbs are rigid links between a lim-

ited number of ball-and-socket joints, which can be approximated as point junc-

tions between stick limbs. For example, one such model (Ringer and Lazenby,

2000) employs two rotation parameters at the point where the hips join the back-

bone, three for the joint where the thigh bone joins the hips, plus one for the knee

and another for the ankle. Thus, each leg has seven degrees of freedom, two of

these being common (at the backbone): this leads to a total of 12 parameters cov-

ering leg movements (Fig. 22.19). Clearly, it is part of the nature of the skeleton

that the joints are basically rotational, though there is some slack in the system,

especially in the shoulders, while the knees have some lateral freedom. Finally,

the whole situation is made more complex by constraints such as the inability of

the knee to extend the lower leg too far forward.

Once a kinematic model has been established, tracking can be undertaken. It

is relatively straightforward to identify the markers on the body with reasonable

accuracy. The next problem is to distinguish one marker from another and to label

them. Considering the huge number of combinations of labels that are possible,
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and the frequency with which occlusions of parts of a leg or arm are bound to

take place, special association algorithms are required for the purpose. These

include the Kalman filter that helps to predict how unseen markers will move

until they come back into view. Such models can be improved by including accel-

eration parameters as well as position and velocity parameters (Dockstader and

Tekalp, 2002). Their model is not merely theoretically deduced: it has to be

trained, typically on sequences of 2500 images each separated by 1/30 s. In addi-

tion, the stick model of each human subject has to be initialized manually.

Considerable training is necessary to overcome the slight inaccuracies of mea-

surement and to build up the statistics sufficiently for practical application when

testing. Errors are greatest when measuring hand and arm movements, because of

the frequent occlusions they are subject to.

Overall, articulated motion analysis involves complex processing and a lot of

training data. It is a key area of computer vision and the subject is evolving rap-

idly. It has already reached the stage of producing useful output, but accuracy

will improve over the next few years and this will set the scene for practical med-

ical monitoring and diagnosis, completely natural animation, detailed help with

sports activities at affordable costs, not to mention recognition of criminals by

their characteristic gaits. Certain requirements—such as multiple cameras—will

FIGURE 22.19

Stick skeleton model of the lower human body. This model takes the main joints on the

skeleton as being universal ball-and-socket joints, which can be approximated by point

junctions—albeit with additional constraints on the possible motions (see text). Here a thin

line through a joint indicates the single rotational axis of that joint.
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probably remain, though the trend to markerless monitoring can be expected to

continue. For further information, the reader could start by referring to the mono-

graph by Nixon et al. (2006).

22.14 MODEL-BASED TRACKING OF ANIMALS
This section is concerned with the care of farm animals. Good stockmen noted

many aspects of the behavior of the animals, and learnt to respond to them.

Fighting, bullying, tail biting, activity, resting behavior, and posture are useful

indicators of states of health, potential lameness, or heat stress, while group

behavior may indicate the presence of predators or human intruders. In addition,

feeding behavior is all-important, as is the incidence of animals giving birth or

breaking away from the confinement of the pen. In all these aspects, automatic

observation of animals by computer vision systems is potentially useful.

Some animals such as pigs and sheep are lighter than their usual backgrounds

of soil and grass, and thus they can in principle be located by thresholding.

However, the backgrounds may be cluttered with other objects such as fences,

pen walls, drinking troughs, and so on—all of which can complicate interpreta-

tion. Thus, straightforward thresholding will rarely work well in normal farm

scenes. McFarlane and Schofield (1995) tackled this problem by background sub-

traction. They used a background image obtained by temporal median filtering

for a whole range of images taken over a fair period: during this process care was

taken to mask out regions where piglets were known to be resting. Their algo-

rithm modeled piglets as simple ellipses, and achieved fair success in its task of

monitoring the animals.

We next examine the more rigorous modeling approach adopted by Marchant

and Onyango (1995), and developed further by Onyango and Marchant (1996)

and Tillett et al. (1997). These workers aimed to track movements of pigs within

a pen by viewing them from overhead under not very uniform lighting conditions.

The main aim of the work at this early stage was tracking the animals, though, as

indicated above, it was intended to lead on to behavioral analysis in later work.

To find the animals, some form of template matching is required. Shape matching

is an attractive concept, but with live animals such as pigs, the shapes are highly

variable: specifically, animals which are standing up or walking around will bend

from side to side, and may also bend their necks sideways or up and down as

they feed. It is insufficient to use a small number of template masks to match the

shapes, as there is an infinity of shapes related by various values of the shape

parameters mentioned. These parameters are additional to the obvious ones of

position, orientation, and size.

Careful trials showed that matching with all these parameters is insufficient,

as the model is quite likely to be shifted laterally by variations in illumination: if

one side of a pig is closer to the source of illumination, it will be brighter, and

hence the final template used for matching will also shift in that direction. The
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resulting fit could be so poor that many possible “goodness of fit” criteria will

deny the presence of a pig. These factors mean that possible variations in lighting

have to be taken into account in fitting the animal’s intensity profile.

A rigorous approach involves principal components analysis (PCA). The devi-

ation in position and intensity between the training objects and the model at a

series of carefully chosen points is fed to a PCA system: the highest energy eigen-

values indicate the main modes of variation to be expected; then any specific test

example is fitted to the model and amplitudes for each of these modes of varia-

tion are extracted, together with an overall parameter representing the goodness

of fit. Unfortunately, this sort of approach is highly computation intensive

because of the large number of free parameters; in addition, the position and

intensity parameters are disparate measures that require quite different scale fac-

tors to be used to coax the schema into working. This means that some means is

required for decoupling the position and intensity information. This is achieved

by performing two independent principal components analyses in sequence—first

on the position coordinates and then on the intensity values.

When this procedure is carried out, three significant shape parameters are

found, the first being lateral bending of the pig’s back, accounting for 78% of the

variance from the mean; and the second being nodding of the pig’s head: as the

latter corresponded to only B20% of the total variance, it was ignored in later

analysis. In addition, the gray-level distribution model had three modes of varia-

tion amounting to a total of 77% of the intensity variance: the first two modes

corresponded to (a) a general amplitude variation in which the distribution is sym-

metrical about the backbone, and (b) a more complex variation in which the

intensity distribution is laterally shifted relative to the backbone (this arises

largely from lateral illumination of the animal), see Fig. 22.20.

While principal components analyses yield the important modes of variation

in shape and intensity, in any given case the animal’s profile has still to be fitted

using the requisite number of parameters—one for shape and two for intensity.

The Simplex algorithm (Press et al., 1992) proved effective for this purpose. The

objective function to be minimized to optimize the fit takes account of (a)

the average difference in intensity between the rendered (gray-level) model and

the image over the region of the model; and (b) the negative of the local intensity

gradient in the image normal to the model boundary averaged along the model

boundary (the local intensity gradient will be a maximum right around the animal

if this is correctly outlined by the model).

One crucial factor has been skirted around in the preceding discussion: that

the positioning and alignment of the model to the animal must be highly accurate

(Cootes et al., 1992). This applies both for the initial PCA and later when fitting

individual animals to the model is in progress. Here we concentrate on the PCA

task. When using PCA, it should be borne in mind that it is a method of character-

izing deviations: this means that the deviations must already be minimized by refer-

ring all variations to the mean of the distribution. Thus, it is very important when

setting up the data to bring all objects to a common position, orientation, and scale
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before attempting PCA. In the present context the PCA relates to shape analysis,

and it is assumed that prior normalizations of position, orientation, and scale have

already been carried out. (Note that in more general cases scaling may be included

within PCA if required. However, PCA is a computation intensive task, and it is

best to encumber it as little as possible with unnecessary parameters.)

Overall, the achievements outlined above are notable, particularly in the effec-

tive method for decoupling shape and intensity analysis. In addition, the work

holds significant promise for application in animal husbandry, demonstrating that

animal monitoring and ultimately behavioral analysis should be attainable with

the aid of computer vision.

22.15 CONCLUDING REMARKS
This chapter has shown something of the purpose of surveillance, which is largely

to do with monitoring the behavior patterns of people and vehicles on roads and

precincts. It has also shown a number of the principles and methods by which sur-

veillance may be implemented: these include identification and elimination of

background; detection and tracking of moving objects; identification of the

ground plane; occlusion reasoning; Kalman and particle filtering; capability for

modeling complex motions including those of articulated objects; and use of mul-

tiple cameras for widening coverage in time and space.

FIGURE 22.20

Effect of one mode of intensity variation found by PCA. This mode clearly arises from

lateral illumination of the pig.

Source: rWorld Scientific 2000
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Over time, some specialized application areas have appeared, such as location

and identification of license plates, identification of vehicles exceeding the speed

limit, human gait analysis, and even animal tracking: the chapter has aimed to

indicate how all these can be achieved. Early methods included Kalman filters

and chamfer matching, and later ones included particle filters, which rely on a

probabilistic approach to tracking. Particle filters have come a long way, but it is

doubtful whether they can go much further if based on probability assessment

alone, as it is clear that humans bring to bear huge databases of relevant informa-

tion when tracking moving objects.

An important lesson is that detection and tracking are distinct, complementary

functions, and there is no reason why the same algorithms will be optimal for both.

As indicated in Section 22.3.3, foreground detection requires the application of a

suitable foreground model, or else a bootstrapping process involving an “exception

to background” procedure. But once detection has been achieved, tracking can in

principle proceed as a much simpler, more blinkered process. It remains to be seen

whether future work will find ways of streamlining the detection1 tracking model.

Most likely it will be found lacking, because objects such as people radically alter

in appearance as they walk by; hence, it is more natural to have both processes

working in parallel (not necessarily at constant rates) all the time, rather than being

applied serially. The same applies when a guided missile approaches a tank but can

be misled into tracking a different object in the background as the scale of the tar-

get radically changes by several orders of magnitude: again the tracking algorithm

needs to be monitored by a continuously acting detection algorithm. These points

are labored because detection and tracking are at the core of surveillance, whatever

the application area, and are thus very much the generic backcloth to this chapter.

While the chapter has covered the situation of static cameras being used to

monitor moving objects, the following chapter covers the intrinsically more com-

plex case of in-vehicle vision systems, where moving cameras are used to monitor

both stationary and moving objects. This will call for a radical rethink of vision

system strategy, because all parts of the scene will be eternally shifting and

changing, and it will generally not be possible to rely on relatively trivial prelimi-

nary identification of a stationary background.

This chapter has shown that surveillance is largely about the detection and tracking of
moving objects, and that different types of algorithm will often be needed to achieve each
of these functions. In most cases locating the ground plane is a necessary first step in the
analysis, while occlusion reasoning, Kalman filtering, capability for modeling complex
motions, and multiple cameras will often be needed to achieve the ultimate aim of
analyzing developing behavior patterns.

22.16 BIBLIOGRAPHICAL AND HISTORICAL NOTES
As we have seen, surveillance involves many factors, from 3-D to motion, but par-

amount among these is the tracking of moving objects—in particular, vehicles and
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people. For some years tracking meant the use of Kalman filters, but the deficien-

cies of this approach led in the 1990s to the development of particle filters, includ-

ing particularly the work of Isard and Blake (1996, 1998), Pitt and Shepherd

(1999), van der Merwe et al. (2000), Nummiaro et al. (2003), Nait-Charif and

McKenna (2004, 2006), Schmidt et al. (2006), and many others. Much of the early

work is summarized in a tutorial paper by Arulampalam et al. (2002), though

Doucet and Johansen (2011) have justifiably felt it necessary to produce another.

The first of these and a 2008 preprint of the second might better be called reviews

than tutorials, as the going is difficult—partly because of the lack of explanatory

figures—and often it is easier to appeal to the original works than to them.

In parallel with these developments, much work took place on background model-

ing using both parametric and nonparametric methods, see for example Elgammal

et al. (2000). Cucchiara et al. (2003) helped by defining the stationary and transient

background problems and by clarifying the problem of “ghosts.” Shadows have been

a source of problems over the whole period, not least because they can be static or

moving, and also because they can fall on static or moving objects: Elgammal et al.

(2000) and Prati et al. (2003) carried out seminal work on this topic.

Khan and Shah (2000, 2003, 2009) were responsible for a thoroughgoing

approach to the tracking of people both with single and with multiple cameras,

this work being followed up by Eshel and Moses (2008, 2010) who found how to

make good use of top-of-head tracking in crowd scenes. Pflugfelder and Bischof

(2008, 2010) developed the approach to cover nonoverlapping views—a task that

had previously (Makris et al., 2004) been solved with some degree of generality,

but without knowledge of scene geometry, by learning transition probabilities for

objects passing between views.

Vezzani and Cucchiara (2008) and Vezzani et al. (2011) made a careful analy-

sis of the means by which occlusions can arise, and this enabled them to devise

algorithms that cope better with temporary partial or full occlusions or temporary

merging of moving objects—in the sense of not getting confused, and recovering

faster from such events.

Work on traffic monitoring has stretched over many years (e.g. Fathy and

Siyal, 1995; Kastrinaki et al., 2003). Early work on the application of snakes to

tracking was carried out by Delagnes et al. (1995); on the use of Kalman filters

for tracking by Marslin et al. (1991); and on the recognition of vehicles on the

ground plane by Tan et al. (1994). For details of belief networks see Pearl (1988).

Note that corner detectors (Chapter 6) have also been widely used for tracking,

see Tissainayagam and Suter (2004) for an assessment of performance.

A huge amount of work has been carried out on the analysis of human

motions (Aggarwal and Cai, 1999; Gavrila, 1999; Collins et al., 2000; Haritaoglu

et al., 2000; Siebel and Maybank, 2002; Maybank and Tan, 2004). See Sugrue

and Davies (2007) for a simple method of distinguishing pedestrians. However,

note that rigorous analysis of human motion involves studies of articulated motion

(Ringer and Lazenby, 2000; Dockstader and Tekalp, 2001), one of the earliest

enabling techniques being that of Wolfson (1991). As a result, a number of
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workers have been able to characterize or even recognize human gait patterns

(Foster et al., 2001; Dockstader and Tekalp, 2002; Vega and Sarkar, 2003): see

Nixon et al. (2006) for a recent monograph on the subject. A particular purpose

for this type of work has been the identification and avoidance of pedestrians

from moving vehicles (Broggi et al., 2000; Gavrila, 2000). Much of this work has

its roots in the early farsighted paper by Hogg (1983), which was later followed

up by crucial work on eigenshape and deformable models (Cootes et al., 1992;

Baumberg and Hogg, 1995; Shen and Hogg, 1995). Gavrila’s work on pedestrian

detection (Gavrila, 1998, 2000) used chamfer matching, while Leibe et al. (2005)

developed the method further, albeit with the help of a minimum distance length

(MDL) top-down segmentation scheme capable of handling multiple hypotheses.

While focussing on complex topics such as articulated motion and complica-

tions caused by occlusion, it is important not to lose sight of simple but elegant

developments such as histograms of orientated gradients (HOGs), which have only

appeared relatively recently (Dalal and Triggs, 2005). These were designed for, and

are well-matched to, the detection of human shapes. Basically, they focus on the

straight limbs of the human body, which have many edge points aligned along the

same direction—though the latter will naturally change with walking or other

motions. The basis of the method is to divide the image into “cells” (sets of pixels)

and to produce orientation histograms for each of them. Voting into the orientation

histogram bins takes place with weighting proportional to gradient magnitude. To

provide strong illumination invariance, a robust normalization method is used. The

cells are combined into larger overlapping blocks in several ways, with the result

that some of the blocks end up with larger signals indicating the presence of human

limbs. However, the result is that the HOG detectors cue mainly on silhouette con-

tours and emphasize the head, shoulders, and feet. In a later paper, Dalal et al.

(2006) combined the HOG detector with motion detectors and were able to achieve

even better results (motion detection improved the false alarm rate by a factor of 10

relative to the best appearance-based detector). An interesting feature of the HOG

approach is that it outperforms wavelet analysis because the latter eliminates vital

abrupt edge information by prematurely blurring the image data.

Overall, work on surveillance has stretched over many years, but has vastly

accelerated since the mid-1990s as workers have had access to more powerful

computers that made it realistic to think of real-time implementation, both for

experimentation and for on-road systems. Note that the past few years have seen

developments in real-time systems involving FPGAs (a trend that was already

present around 2000) and GPUs (a trend that is especially recent, and has arisen

as a result of natural interaction between the video games industry and computer

vision): for further details see Chapter 26.

22.16.1 More Recent Developments
Among the most recent works, Kim et al. (2010) have proposed a robust method

for recognizing humans by their gait by using a hierarchical active shape model.
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The approach is novel in that it is prediction-based and overcomes the drawbacks

of existing methods by extracting a set of model parameters instead of directly

analyzing the gait. Feature extraction proceeds by motion detection, object region

detection, and Kalman prediction of the active shape model parameters. The

method is able to alleviate tasks such as background generation, shadow removal,

and obtaining high recognition rates. Ramanan (2006) has obtained good results

by a new iterative parsing method for analyzing motions of articulated bodies

ranging from humans playing games to horses frolicking and cantering. The

approach has the advantage of being generic and does not depend on the location

of skin or human faces. Lian et al. (2011) have obtained impressive performance

when tracking pedestrians between camera view separations of more than 20 m—

much greater than the separations B4 m obtained by Pflugfelder and Bischof

(2008, 2010).

Ulusoy and Yuruk (2011) have analyzed the problems of fusing data from

visual and thermal images in order to make good use of their complementary

properties to improve overall performance. They show that fusion should lead to

a better recall rate (fewer false negatives), but at the same time result in a

decrease in precision rate (more false positives); they also note that the infrared

(thermal) domain always has higher precision (the underlying reasons for these

observations are that thermal images effectively provide the foreground informa-

tion containing the object pixels). In fact, it is only worth attempting fusion when

an improved recall rate is required. This paper presents a more efficient method

for fusing the data from the two domains and at the same time obtaining recall

rates better than those previously obtained. The method was tested on outdoor

images of human groups including those from a well-known database. The work

in this paper leans heavily on the earlier work of Davis and Sharma (2007). Both

papers refer to thermal imagery in spite of the title of the first which refers to

“infrared” images.

Finally, three key papers have highlighted recent progress with the surveil-

lance of road users: Buch et al. (2010) have employed 3-D wire-frame models for

the classification of road users; Lazarevic-McManus et al. (2008) have demon-

strated the value of the F-measure for optimising motion detection on the roads;

and Xu et al. (2011) have obtained improved accuracy and robustness for tracking

partially observable targets on the roads.

22.17 PROBLEM
1. When an inverse perspective mapping onto the ground plane is carried out,

points on the ground plane are well represented in the new representation.

Explain why this does not apply for buildings or people, and why they always

appear to lean backward when presented in this representation.
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CHAPTER

23 In-Vehicle Vision Systems

This chapter considers the value of in-vehicle vision as part of the means for

providing driver assistance systems. To achieve this, many objects have to be

identified, including not only the roadway itself but also the lane and other mark-

ings on it, road signs, other vehicles, and pedestrians. The latter are particularly

important as their actions are relatively unpredictable, and people who wander

into the roadway are liable to cause accidents—unless the driver assistance sys-

tem can help to avoid them.

Designing in-vehicle vision systems is anything but trivial, as they necessarily

deploy moving cameras, which means that all objects in a scene are moving;

hence it becomes quite difficult to eliminate the background from consideration.

For these reasons, it becomes necessary to rely more on recognition of individual

objects than on motion-based segmentation.

Look out for:

• how the roadway, road signs, and road markings may be located.

• the availability of several distinct methods for locating vehicles.

• what information can be obtained by viewing licence plates and wheels.

• how pedestrians may be located.

• how vanishing points can be used to provide a basic understanding of the

scene.

• how the ground plane may be identified.

• how a plan view of the ground plane can be obtained and used to help with

navigation.

• how vehicles can be guided using vision to compensate for roll, pitch, and yaw.

While it is easy to set out strategies for building in-vehicle vision systems that

will work well in normal conditions on the roadway, it is far from simple to

design them to operate on the less structured environments of farms or fields.

Indeed, much additional reliance on GPS and other methodologies will often be

needed for the purpose.

Computer and Machine Vision.

© 2012 Elsevier Inc. All rights reserved.
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23.1 INTRODUCTION
This chapter provides an introduction to in-vehicle vision systems. The topic clearly

overlaps with many of the ideas of the previous chapter, particularly regarding traf-

fic surveillance, as here we are regarding the flow from inside a vehicle rather than

from a stationary camera mounted (typically) on an overhead gantry. However,

although the environment may be similar, the situation is essentially different,

because the camera platform is in motion and almost nothing that is viewed appears

stationary (Table 23.1). This means that it is extremely difficult to use methods

such as background subtraction. Note that while it is theoretically possible to find a

general perspective transformation that makes a sequence of frames exactly coin-

cide so that background subtraction can be achieved, to do this would be to replace

a technique that is intended to be a simple way of cueing into images into one that

is highly complex; and the process of finding a sufficiently exact perspective trans-

formation would itself require considerable computation, so this is unlikely to pro-

vide a useful strategy for analyzing image sequences.

Given the more difficult problem of analyzing scenes containing moving objects

from a moving platform, we have to find ways of tackling the task equitably.

Fortunately, with vehicles on a road, the range of types of scene is highly restricted.

In particular, the roadway is always present in the image foreground, and thus is

easily identifiable. Likewise, it normally has a characteristic dark intensity and

thus, its recognition right into the distance need not be too problematic: the fact

that it is moving relative to the camera is relatively immaterial. In fact, it may even

be quite difficult to detect motion by looking downward toward the road surface.

Next, there is a host of standard types of objects that are likely to be visible from

within a vehicle—buildings, other vehicles, pedestrians, road markings, road signs,

telegraph poles, lamp standards, bollards, and so on. The high frequency with

which each of these can appear indicates that it will be necessary to have the capa-

bility of recognizing each of them independently, at any range and at any speed.

This means that it is better, as a first stage in the analysis, to revert to ignoring

speed of motion and to concentrate on pattern recognition. In fact, recognition can

be helped by considering the range, which is readily deduced approximately at first

from the lowest location on the object, which is where it meets the road (it is here

assumed that the road has already been segmented from the remainder of the scene

as an important preliminary stage of the analysis). Note that depending on the aim

of the analysis (a point to which we shall return below), it is likely to be more

Table 23.1 Levels of Difficulty When Motions Can Occur

1. Locating stationary objects from a stationary platform
2. Locating moving objects from a stationary platform
3. Locating stationary objects from a moving platform
4. Locating moving objects from a moving platform
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important to identify objects that lie within the road region, so segmentation of the

latter is all the more important as a first stage. Then these objects—now restricted

mainly to the subset, other vehicles, pedestrians, road markings, road signs, traffic

lights—each needs to be identified in its own right. Later, the exact motion of the

moving platform, and subsequently its location relative to all the other objects, will

need to be ascertained.

We next consider the aims of implementing in-vehicle vision systems.

Broadly, there are two: (1) navigation along the road, including staying in lane

and finding out from road signs and traffic signals where to go, when to stop, and

other such information (here, to simplify matters, we ignore use of GPS and other

types of help, and how information from the various sources can be fused together

reliably); (2) driver assistance, which can include a variety of matters, particularly

informing the driver of all aspects included in (1), and alerting him or her to

important factors, such as vehicles that are braking, or pedestrians who are moving

onto the roadway. In fact, much of the information that is acquired by the vision

system will need to be conveyed to the driver in one way or another. However, of

particular interest is the fact that drivers will sometimes not be able to act rapidly

enough to avoid pedestrians, vehicles that brake unpredictably, overtaking vehicles

that suddenly cut in, and so on. There is also the problem that drivers may be

drowsy or may for various reasons—e.g., because of distractions from other occu-

pants or those caused by the simultaneous need to navigate—react too slowly, so

that an accident could become imminent. In such cases, driver assistance that

could automatically initiate breaking or swerving might be crucial. We can also

envisage various situations where the vision system would be part of a fully auto-

matic driving system: here there is bound to be a problem of legality, and who or

what would be to blame for an accident (viz. the driver, car manufacturer, vision

system designer, or whoever). We shall not delve into such problems here, but

just consider the vision system as an enabling technology. However, once vision

and driver assistance systems become sufficiently powerful, they will doubtless

become part of other schemes such as those for driving in tight convoys—deemed

by many to be the best way of achieving rapid safe transit along our motorways.

In addition, there are other ways in which driver assistance can be valuable: these

range from cruise control to automatic parking.

In this chapter, we focus generally on providing a vision system that can

perceive all that might be needed for vehicle guidance and driver assistance, with

emphasis on locating the roadway and road lanes, identifying other vehicles, and

locating pedestrians close to or on the roadway. As indicated above, the whole

process starts by locating the roadway, as discussed in the following section.

23.2 LOCATING THE ROADWAY
Chapter 4 described a technique that was capable of locating the roadway using a

multilevel thresholding approach (see Fig. 4.9(b)). In fact, the roadway was iden-

tified by the third and fourth thresholds as that section of the image with gray
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levels in the approximate range 100�140. Similar results are obtained in other

cases, e.g., Fig. 23.1(b), where the two threshold values demarcate an even greater

grayscale range, approximately 60�160. While these can be construed as being

reasonably ideal cases, thresholding is such a basic technique that it should be pos-

sible to extend it to cover less ideal situations. For example, if shadows appear on

the roadway, the latter would in many cases appear as two contiguous sets of

regions with two prominent intensity levels, and could indeed be identified by the

(a) (b)

(c) (d)

FIGURE 23.1

Frame of video taken from a moving vehicle. (a) Original image. (b) Doubly thresholded image. (c) Result

of only applying the lower threshold. (d) Top: intensity histogram of the original scene. Middle: result of

applying the global valley transformation and smoothing. Bottom: the dotted line shows the two thresholds

used in (b) being located automatically. For further details, see text in Chapter 4. The graphics dots in (c)

demonstrate that, within the road area, the lower threshold predominantly identifies under-vehicle shadows.

Source: r IET 2007
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same method. Note also that varying illumination levels would be likely to make

one intensity elide smoothly into another, and if a suitable range of intensities

between thresholds (as in Figs. 4.9 and 23.1) were taken into account, the segmen-

tation problem might still be solved in exactly the same way. However, ultimately

the problem is one of pattern recognition, and can be solved by (a) eliminating

other objects, such as road lane markings, (b) identifying the limits to the roadway,

and (c) taking other features such as color or texture into account. Note that as the

color of the roadway is often a bland gray, it may only be made to stand out by

noting the colors of the other surroundings, such as grass, trees, or brickwork on

buildings. Clearly, this would make the whole system more complex, but in a well

known and well worn way—pattern recognition by now is a reasonably mature

subject. To some extent the situation may be helped by bringing the motion of the

vehicle into the picture (we have so far resisted this, to bring the discussion to

the simplest possible base level). In that case, without calculating the exact motion

of the vehicle, we can take account of the fact that the roadway stretches for a

long distance ahead, so any part of it that is established to be roadway will remain

so until the vehicle passes over it. Furthermore, on the road ahead, any vehicle that

is located evidently runs on the roadway, so parts of it are continuously being iden-

tified. Thus, the camera vehicle merely needs to keep a record of all candidate

regions that have been positively identified, so that any ambiguities from identifi-

cation via intensities can be eliminated. Finally, this time taking motion para-

meters into account, keeping a tally on the road boundaries with the aid of Kalman

filters will solve many of the remaining issues.

23.3 LOCATION OF ROAD MARKINGS
It has been noticed from Figs. 4.9 and 23.1 that the multilevel thresholding tech-

nique used to locate the gray surface of the road simultaneously segments white

road markings. However, white road markings are seldom pure white and may be

worn or even partly duplicated by older markings. In any case, segmenting them

by thresholding is not the same as absolute identification. One way around this

dilemma is that of fitting the road markings to suitable models. Often straight

lines are adequate, although sometimes parabolas are used for the purpose.

Figure 23.2 shows a case where continuous and broken road markings have been

identified using the RANSAC technique, which helps to locate the vanishing

point on the horizon to a reasonable approximation. The widths of the road lane

markings can also be measured in this way. Figure 23.3 takes this even further.

In this case, a greater degree of reliability and accuracy is obtained by locally

bisecting each lane marking horizontally before feeding the data to RANSAC.

In this way, extraneous signals can be eliminated—if necessary by filtering the

horizontal widths. Note how RANSAC is able to find the best fit straight line sec-

tion even when the road lane markings are curved. Likewise, it is able to elimi-

nate lane markings that have been distorted by the presence of older lane
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markings (Fig. 23.3(a)). As described in Chapter 11, the version of RANSAC

used for the tests successively eliminates the data points used to fit line segments,

and the width delete threshold dd is made larger than the fit threshold df so that

no data points are retained that could mislead the algorithm while searching for

subsequent line segments (see the algorithm flowchart in Fig. 23.4).

23.4 LOCATION OF ROAD SIGNS
We now continue with the process of analyzing the vehicle’s environment and con-

sider the most relevant remaining stationary parts that lie on or adjacent to the road-

way. These include the traffic signs. It will not be possible to examine more than

one or two cases, but among these are various relevant warnings, including those

for road bumps and “GIVE WAY”: note that many others appear in the same

style—with the message in black on a white background and enclosed in a red tri-

angle. To locate these signs, some tests were made without using the color aspect

as this might represent too easy an approach (note also that in the wrong lighting

conditions, color can be misleading): instead, an idealized small binary template of

size 223 19 pixels was employed. While apparently crude, this small template had

the advantage of requiring very little computation to locate the relevant objects. In

fact, the chamfer matching technique (Section 22.7) was used for detecting the traf-

fic signs shown in Fig. 23.5. While the template was primarily designed to detect

(a) (b)

FIGURE 23.2

Application of RANSAC for locating road lane markings. (a) Original image of road scene with lane

markings identified by RANSAC. (b) The edge point local maxima used by RANSAC for locating the road

lane markings. While the lane markings converge to approximately the right point on the horizon line, the

parallel sides of the individual lane markings do not converge quite so accurately, indicating the limits

achievable with so few edge points. This is more a failure of the edge detector than of RANSAC itself.
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(a) (b)

(c) (d)

(e) (f)

(g)

(h)

(i)

(j)

FIGURE 23.3

Further tests of RANSAC for locating road lane markings. (a) Original image 1: a distorted

set of double line road markings. (b) Thresholded version of (a). (c) 3�3. (d) 3�6.

(e) 3�10. (f) 3�11. (The notation “df�dd” means that df is the “fit distance” and dd is the

“delete distance:” see text.) (g) Original image 2, already thresholded: the central section

of the road containing no markings has been eliminated to save space. (h) 3�3,

(i) 3�6, (j) 3�11. (f) and (j) show the final results as dense dotted lines: in other cases,

dots and dashes are used to distinguish the different lines. Note that immediately after

thresholding, the horizontal bisector algorithm finds the midpoints of white regions along

horizontal lines, and feeds them to RANSAC for fitting.

Source: r IET 2007
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the road bump sign, it also gave a sizeable signal for the GIVE WAY sign. Indeed,

the two signals found using the template were both well above the signal-to-noise

ratio elsewhere in the image, the closest possible false alarms being high up in the

trees, which contain a plethora of random shapes. Note that the picture was taken

under highly nonideal conditions on a wet day when there were a number of reflec-

tive areas on the road. Overall, the chamfer matching technique seems well suited

to rapidly locating fixed road signs of various sorts.

There is some possibility of designing a single idealized template for locating

all triangular signs. Note first that a blank white interior would be more

suitable than the road bump structure in Fig. 23.5(e): this corresponds to disre-

garding the center of the template, taking it as being composed of “don’t care”

locations. In fact, the template should really be designed by a suitable training

approach such as the one outlined by Davies (1992d). In this method, a matched

filter approach is used in designing templates with local variability of training

samples (represented by standard deviation σ(x)) being taken to correspond to

noise, thereby necessitating reduced local weighting: the local matched filter

weighting is thus (Davies, 1992d) taken as SðxÞ=σðxÞ2 rather than SðxÞ, where

Input data

Test hypothesis
Record best
hypothesis

Generate
hypothesis

no

Delete support
points

Store model

Continue
search?

no

Final
version?

yes

yes

Return best fit
models

FIGURE 23.4

Flowchart of the lane detector algorithm used for the tests in Fig. 23.3.

Source: r IET 2007
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SðxÞ is the mean local signal at x during training. For the types of road sign con-

sidered above, variable distributions of black within the central white area would

be treated optimally by this method.

(a) (b)

(c) (d)

(e)

FIGURE 23.5

Locating road signs using chamfer matching. (a) Original image showing two triangular road signs (indicating

a road bump and “GIVE WAY”): each of the signs is marked with a white cross where it has been located by

the chamfer matching algorithm. (b) Thresholded edge image after nonmaximum suppression. (c) Distance

function image: note that with the display enhancement factor of 20 used here, the distance appears to

saturate at 13 pixels. (d) The response obtained when moving the template (e) over the image.
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23.5 LOCATION OF VEHICLES
In recent years a number of algorithms have been designed for locating vehicles on

the road, whether in surveillance applications or by in-vehicle vision systems. One

notable means for achieving this has been by looking for the shadows induced by

vehicles (Tzomakas and von Seelen, 1998; Lee and Park, 2006). Importantly, the

strongest shadows are those appearing beneath the vehicle, not least because these

are present even when the sky is overcast and no other shadows are visible. Such

shadows are again identified by the multilevel thresholding approach of Chapter 4.

Figure 23.1 shows a particular instance of this, where almost the only dark pixels

appearing within the roadway region are the under-vehicle shadows. In fact, as

under-vehicle shadows lie under vehicles, an excellent way of locating nearby vehi-

cles is to move upward from the lowest part of the roadway until a dark entity

appears: there is then a high probability that it will only locate vehicles. Note that

in Fig. 23.1(c) the other main candidates are trees, but these are discounted as being

well above the road region—as indicated by the dotted triangle.

As pointed out earlier when considering methods for locating the road region,

it is useful to have a number of methods available for locating objects such as

vehicles, in case of peculiar illumination conditions or other factors. Following

this line of analysis we consider symmetry, which was first used for this purpose

some years ago (e.g., Kuehnle, 1991; Zielke et al., 1993). Figure 23.6 shows a

number of trials in which symmetry is applied to locate objects exhibiting a verti-

cal axis of symmetry. The approach used is the 1-D Hough transform, taking the

form of a histogram in which the bisector positions from pairs of edge points

along horizontal lines through the image are accumulated. When applied to face

detection, the technique is so sensitive that it will locate not only the centerlines

of faces but also those of the eyes. In the case of Fig. 23.6(c), the algorithm was

confused by the metal object at the bottom when locating the eye on the left, but

when tested without that present it was found without difficulty. Note that some

bias occurs there because the algorithm is averaging the contribution of the whole

eye and the displacement between the iris and the rest of the eye becomes impor-

tant. Similarly, the set of leaves in Fig. 23.6(e) is located without trouble, but

the exact vertical axis that is located represents the combined peak signal from

the lower two leaves and the uppermost leaf: in such a case it would be better to

identify each one separately. These sorts of problem are less important in

Fig. 23.6(g) where both vehicles are located quite accurately—in spite of the fact

that the car on the right is not exactly horizontal. Interestingly, both vehicles

would also be found using the under-vehicle shadow method. The fact that they

both lie within their respective lanes also aids positive identification.

In spite of these successful applications of symmetry, note that the approach

needs to be used with caution. In particular, the building on the left in Fig. 23.6(g)

gives a plethora of signals because of the multiple symmetries between its win-

dows. An interesting lesson is that three equally spaced vertical lines at locations

x5 1, 3, 5 will have a symmetry not only at x5 3 but also at x5 2 and 4.

64523.5 Location of Vehicles



(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 23.6

Searching for symmetry in images. (a) Original image of a face with a vertical axis of

symmetry. (b) Edge image used for determining the axis of symmetry in (a). (c) Original

image with symmetry axes of the eyes. (d) Slightly restricted edge image used



Finally, rotation symmetries and reflection symmetries about nonvertical axes are

not especially useful in the present context. However, just as a 1-D HT can be used

to locate symmetries about vertical axes, so 2-D HTs can be used to locate symme-

tries about lines of arbitrary direction. Thus, one can build a single 2-D parameter

space, each horizontal line of which represents the symmetry in a different direction

in the image. Such a parameter space might be expected to have a minor amount of

coherence in the vertical direction, but we do not consider this further here.

23.6 INFORMATION OBTAINED BY VIEWING LICENCE
PLATES AND OTHER STRUCTURAL FEATURES

Licence plate location has already been covered in Section 22.10. In this section,

we consider what can be deduced from an oblique view of a licence plate of

length R. We simplify the situation by assuming that both the image plane and

the licence plate are vertical, and that they have their main axes aligned horizon-

tally and vertically. Figure 23.7(a) and (b) shows respectively the oblique and

plan views of the licence plate horizontal axis. The apparent horizontal projection

(CQ) of the centerline of the licence plate is R cos α when viewed in the direction

PT. Following Fig. 23.7(c), its vertical projection (QT) is R sin α tan β. However,
when viewed in the more general direction PT0, with lateral angle λ, its horizontal
projection is CQ0, which is equal to R cos α2R sin α tan λ. From Fig. 23.7(d),

we deduce that its apparent angle γ and length R0 are given by the equations:

tan γ5
tan α tan β

12tan α tan λ
(23.1)

R0 5 R cos α 12tan α tan λð Þsec γ
5 R sin α tan β cosec γ (23.2)

These formulas seem intuitively correct, as for example, γ5 0 if α5 0 or

β5 0. In addition, under nonoblique viewing, β5 0, λ5 0, and γ5 0, so

Eq. (23.2) reverts to the standard result for nonoblique viewing, R0 5R cos α.
Perhaps a more important case is that of α5π/2, leading to tan γ52tan β/

tan λ. We can interpret this result by taking image plane coordinates (x, y) and 3-D

coordinates (X, Y, Z). Noting that tan β5 y/f and tan λ5 x/f, we deduce that

FIGURE 23.6 (Continued)

for determining the symmetry axes of the eyes. (e) Original image of a leaf triplet, with

symmetry axis. (f) Vertical edge image used to determine the symmetry axis in (e).

(g) Original image of a traffic scene, with symmetry axes marked. (h) Vertical edge image

used for determining the symmetry axes in (f). The slight bias of the left-most symmetry

axis in (c) is not surprising in view of the few pixels involved and the interfering effects of

other edge pixels in the image.
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tan γ52y/x52Y/X. This corresponds to viewing perspective lines on the roadway

that are parallel to the optical axis of the camera. (Note that the minus sign in these

equations corresponds to the fact that γ will be viewed in the range π/2 to π when

α5π/2.)
Finally, note that instead of obtaining the projection of the line as it would

appear in the direction of viewing, we have determined its projection in the verti-

cal plane X�Y, which is parallel to the image plane x�y. As a result, the equa-

tions correspond exactly to projective projection into the image plane, rather than

merely to orthographic projection.

We now need to obtain an equation for α in terms of the other parameters.

Solving Eq. (23.1) for α, we find:

tan α5
tan γ

tan β1 tan γ tan λ
(23.3)

Next, taking the projections of the centerline of the licence plate along the image

x and y axes to be δx, δy, we find that the parameters β, γ, λ are all measurable,

so α can be estimated:

tan α5
δy=δx

ðy=f Þ1ðδy=δxÞðx=f Þ 5
f δy

yδx1 xδy
(23.4)
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FIGURE 23.7

Horizontal line pose viewing geometry. (a) Oblique view of a horizontal straight line of

length R, rotated through an angle α from the X-axis. (b) Plan view of the line. (c) Side

view showing the viewing direction, along PT0, with a lateral angle λ; the angle of elevation

β is that of T, not of T0. (d) Front view in the X�Y plane, which is parallel to the image

plane x�y. Note that the horizontal line CP in (b) appears to lie at an angle γ in (d): it has

an apparent length (CT0) of R0.
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Thus, we now know the orientation in space of the licence plate. In principle, we

can use Eq. (23.2) to estimate the range of the licence plate. To achieve this, we

need to know the value of R. In fact, for standard UK licence plates, R is reason-

ably well defined (this assumes that the number of characters in the licence plate

is known), and so Eq. (23.2) can be used to estimate R0. Next, the ratio of R0 to
the apparent length r of the licence plate gives the range Z:

Z5
fR0

r
5

fR0

½ðδxÞ2 1 ðδyÞ2�1=2
(23.5)

If we had also made use of the apparent lengths and orientations of the shorter

sides of the licence plate, we could have eliminated dependence on the assump-

tions that the latter are vertical. However, it is unlikely that these short lines could

be measured accurately enough to improve the situation significantly: instead we

presume that the best that can be done is to use measurements on the longer sides

to obtain preliminary estimates of the positions of vehicles, which can then be

improved by other measurements.

Unfortunately, all the above theory is somewhat confounded by the variable

camber of the road. But note that, while the camber will be considerably different

on the opposite side of the road, its effects will tend to cancel when observing the

licence plates of vehicles on the same side of the road. Next, the size of γ depends

on y, and hence on the height of the camera above the target feature: this means

that the observed value of γ will be smaller for the licence plate than for the rear

wheels; hence, if the rear wheels are not occluded, it is likely that they will give a

more accurate estimate of α than that from the licence plate. Nevertheless, licence

plates are more satisfactory indicators than rear wheels both because they are less

likely to be occluded and because they are uniquely recognizable: in fact, the rear

wheels of one vehicle can sometimes be confused with those of other vehicles, and

even the front wheels can cause confusion. Finally, another factor needs to be

borne in mind—that we are attempting to estimate an often small quantity α from

another small quantity γ when both are comparable to the interfering effect of the

camber angle. Interestingly, this problem can be overcome more effectively by

estimating ~α5π=22α from ~γ5 π=22 γ and applying these measures to views

of the sides (particularly the sides of the wheels) of other vehicles. All this can be

achieved by recalling that tan α and tan γ should respectively be replaced by cot ~α
and cot ~γ in Eqs. (23.1) and (23.2). Overall, it might be expected that side views

of vehicles will be more valuable for estimating orientation than rear views,

whether the latter use rear wheels or licence plates as indicators (although, obvi-

ously, only the rear view of a vehicle will be relevant when driving directly behind

it). Consideration of Figs. 23.1, 23.6, 23.8 and 23.9 will provide adequate confir-

mation of these observations.

Finally, it might be asked why so much emphasis has been placed on measure-

ment of angles vis-à-vis distances. This is basically because angles represent

ratios of distances and thus they tend to provide scale-invariant information. In

addition, they do not demand knowledge of absolute distances for interpretation.
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(a) (b)

(c) (d)

FIGURE 23.9

Chamfer matching to locate pedestrians from their lower legs. (a) and (b) show original images of road

scenes containing pedestrians. The white dots are the peak signals after chamfer matching using an

idealized binary U template. Note the plethora of false positives because of the number of vertical edges

able to stimulate signals—as seen in (c) and (d).

(a) (b)

FIGURE 23.8

Vehicles viewed obliquely. More accurate information about orientation is often obtained from the side of

the vehicle than from its rear.
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23.7 LOCATING PEDESTRIANS
In principle, locating whole pedestrians would require many chamfer templates of

varying shapes and sizes, to cover the many body profiles of moving people. The

alternative chosen here is to look for specific sub-shapes that would be more general

and invariant. Possibilities include leg, arm, head and body sections. Figure 23.9

shows lower legs being located using an idealized “U” template with parallel sides.

However, a plethora of false positives arises because of the large number of vertical

edges that are able to stimulate signals. Their presence means that the distance func-

tions do not have the ideal maximum values that might be expected because the

spurious edges reset the distance functions to zero in many places. This does not

affect the sensitivity of the method in the sense that the templates are bound to

locate instances of the profiles they represent. However, it does affect the numbers

of false positives that are detected. In fact, in the examples shown, the result is not

disastrous, because the lowest objects found, once road markings are eliminated,

are the feet of the pedestrians. However, the fact that the method does not give ideal

results makes it essential to back it up using alternative methods.

The Harris operator provides a useful alternative approach. As Fig. 23.10

shows, it is able to locate a range of features, including feet and heads, as well as

road lane markings. Note that in the case shown in Fig. 23.10(a), the right foot

has not been found as it is larger than the other foot and the particular Harris

operator employed stretched over a range of only 7 pixels. Note that the Harris

operator has no sense of polarity (preference for black or white): in the case of

pedestrians this is useful as the clothing and shoes (or feet) are unpredictable and

can appear dark on a light background or vice versa. (Lack of polarity also

applies to chamfer matching, but for different reasons.)

(a) (b)

FIGURE 23.10

Alternative approach to pedestrian location using the Harris operator. Here the operator has the effect of

locating corners and interest points, some of which include pedestrian feet and heads: above all, road lane

markings are also located with high probability. The operator has not been tuned in any way to recognize

such features. In addition, it has no sense of polarity (preference for black or white).
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Further approaches are useful to back up the two mentioned above and also to

confirm detections that have already been made. In this respect unique identifica-

tion of human skin color can be useful. That this is possible is shown in

Fig. 23.11, one of the main problems clearly being the rather small numbers of

pixels in the face regions. To carry out skin detection rigorously, it is necessary

to train the color classifier on a set of training images. This was carried out for

Fig. 23.11(e). While the method was highly successful (see Fig. 23.11(f)), it cor-

responded to supervised learning of skin color; in practice, with less tight control

of the training images, this process could be compromised by the presence of

sand, stone, cement, and a host of brown variants, which have colors close to

those of darker or lighter people. Another important factor is that in-vehicle

vision systems will not have sufficient time to gather enough training data, con-

sidering particularly that the whole point of a vehicle is to travel and thus adapta-

tion from dark to light and other environmental factors are bound to be a source

of serious problems. In this respect, in-vehicle systems are subject to far worse

conditions than will be usual for surveillance systems.

Overall, we find that in-vehicle pedestrian detection systems involve a

demanding set of pattern recognition problems. Earlier we emphasized the poten-

tial value of pattern recognition when moving objects are being detected from

moving platforms: this approach to the subject was also useful for didactic

(d) (e) (f)

(a) (b) (c)

FIGURE 23.11

Another approach to pedestrian location via skin color detection. (a) and (b) show that a lot can be

achieved via skin color detection, detecting not only faces but also neck, chest, arms and feet: see also

the detail in (c) and (d). With proper color classifier training, even more can be achieved, as shown in

(e) and (f) (see also larger version of figure in color Plate 7).
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reasons. However, we are now finding that there are limits to this. In fact, it

would be an artificial restriction not to make use of motion by at least tracking

features and grouping them according to velocity (a process that was already

mentioned in Chapter 22). The problem with this approach is the large number

of, e.g., interest point features that exist in an entire image, where almost all the

features are moving. If each of them (say N) is to be compared with all others in

a pair of adjacent frames, then O(N2) operations will have to be undertaken.

However, by acknowledging the individuality and different characteristics of the

various features, and their spatial arrangements, this vast number can be cut down

to manageable proportions. In particular, feature points should only move a lim-

ited distance between frames, so there will only be a small number n of candi-

dates that match a given feature as it moves from one frame to the next. This

leaves us with O(Nn) pairs of feature points to consider, a number that can be fur-

ther minimized by examining the relative strengths and colors of the various pairs

(ideally, the final result will be O(N)). Here, some of the ideas of Section 6.7,

where features were characterized by a great many descriptors, may prove useful,

even though wide baseline matching is not relevant for frame to frame tracking.

23.8 GUIDANCE AND EGOMOTION
An important aspect of driver assistance systems is that of vehicle guidance. In

fact, this aspect is important both for vehicles with human drivers and for autono-

mous robot vehicles. In either case, vehicle egomotion is handled by a controlling

computer that has to be fully aware of the situation. Incoming images contain

complex information and reliable cues have to be found to key into them. Among

the most widely used such cues are vanishing points (VPs), which are often very

evident in city scenes (e.g., Fig. 17.11).

One of the ways in which VPs are most useful is in helping to identify the

ground plane, and a lot of other information follows from this. In particular, local

scale can be deduced: for example, objects on the ground plane have width that is

referable to, and a known fraction of, the local width of the ground plane; in addi-

tion, VPs permit an estimate to be made of distance along the ground plane, by mea-

suring the distance from the relevant image point to the VP, as we shall see below.

Thus, they are useful for initiating the process of recognizing and measuring objects,

determining their positions and orientations, and helping with the task of navigation.

Here, a lot will depend on the type of environment and the type of vehicle.

There are many possibilities such as vacuum-cleaning robots, window-cleaning

robots, lawn-mowing robots, invalid chair robots, weeding and spraying robots,

maze-running robots, not to mention vehicles running autonomously on roads, or

cars that park themselves automatically. In some cases, robots will have to undertake

mapping, path planning, and navigational modeling and engage in detailed high-

level analysis: this sort of situation has been explored by Kortenkamp et al. (1998).

This approach will be important if a path has obstacles such as bollards or pillars
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(Fig. 23.12); and it will be vital for a maze-running robot. In many such cases, vision

or other sensors will provide only limited information about the working area, and

knowledge will have to be augmented in a suitable representation: this makes a plan

view model of the working area a natural solution. To proceed with this idea, we

need to transfer the information from individual images into the plan view represen-

tation (see the algorithm of Table 23.2).

Basically, to construct a plan view of the ground plane, we start with a single

view of a scene in which the vanishing point V has been determined and signifi-

cant feature points on the ground plane (particularly regarding its boundaries)

have been identified. Next, distance along the ground plane can be deduced as

shown in Fig. 23.13. The angle of declination α of a general feature point P(X, H,

Z) on the ground plane, seen in the image as point (x, y), is given by:

tan α5
H

Z
5

y

f
(23.6)

The value of Z is therefore given by:

Z5
Hf

y
(23.7)

After obtaining a similar formula giving the lateral distance X, we deduce

that:

X5
Hx

y
(23.8)
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(a) (b)

FIGURE 23.12

Plan view obtained for navigation. (a) View of a scene showing the obstacles to be avoided. (b) Plan view

of the ground plane showing what is visible from viewpoint Δ (for clarity, the full areas of the pillars P,

bollards B, and litter-bins L are shown). The walls are marked W.
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FIGURE 23.13

Geometry relating the image and the ground plane. C is the center of projection of the

camera, I is the image plane, V is the vanishing point, and P is a general point on the

ground plane. f is the focal length of the camera lens and H is the height of C above the

ground plane. The optical axis of the camera is assumed to be parallel to the ground

plane.

Table 23.2 Computing Ongoing Plan Views of the Ground Plane

1. Detect all edges in the current frame.
2. Locate all straight lines in the current frame: e.g., use a Hough transform.
3. Locate all VPs: use a further HT, as described in Section 17.7.
4. Find the VP closest to the direction of motion: eliminate all other VPs.
5. Determine the closest section of G: this should be the part of the frame immediately

in front of the robot.
6. Use this and other information to determine which lines through the primary VP lie on

G: eliminate all other lines.
7. Segment objects on G.
8. Eliminate object boundaries on G that are unrelated to lines passing although the

primary VP.
9. Tentatively identify as shadows any dark regions lying on G.
10. Take the remaining object and shadow boundaries and check for consistency

between frames: e.g., use the 5-point cross-ratio values, as described in Section 17.3.
11. Label all remaining feature points on G with their (X, Z) coordinates: use Eqs. (23.7)

and (23.8).
12. Check for consistency with previous frames.
13. Update list of objects with inconsistent boundaries as not lying on G, or as being

otherwise unreliable: these could be due to moving shadows or noise.
14. Update history of feature point coordinates on G.

This table presents an algorithm showing how a plan view of the ground plane G may be computed.
It is assumed that the robot sees a sequence of video frames and that it has to update its knowledge
base as each frame comes along. The algorithm is set up assuming that it is best to analyze each
frame ab initio, and then to look for consistency with previous frames.
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The world (plan view) coordinates (X, Z) have now been found in terms of the

image coordinates (x, y). Note that y has to be measured from the vanishing point

V rather than the top of the image. Note also that as X and Z vary inversely with y,

they vary rapidly when y is small, so digitization and other errors will markedly

affect the accuracy with which far away objects can be located from the plan view.

When the optical axis of the camera is not parallel to the ground plane, the cal-

culations are best dealt with using homogeneous coordinates as shown in

Chapter 18.

23.8.1 A Simple Path Planning Algorithm
In this subsection, we assume that a plan view of the environment has been built

up using the methods of the previous section. While it is by no means clear that

humans use an instantaneous plan view model to help them to walk or drive around

an environment (an image-based representation seems more likely), it is clear that

they use plan views for deductive, logical analysis of the situation and when read-

ing maps. In any case, plan views probably constitute the most natural means for

storing navigational knowledge and arriving at globally optimal routes. Here we

leave aside conjecture of exactly how humans juggle the information between the

two representations, and concentrate on how a robot might reasonably undertake

path planning using a plan view it has built up. In fact, a maze-running robot would

need to be provided with a suitable algorithm for this purpose.

Figure 23.14(a) shows a simple maze in which the robot has to proceed from

the entrance E to the final goal G (respectively marked “k” and “ ” in the fig-

ure). We assume that a plan view of the maze has been built up and that a sys-

tematic means is needed to find the optimum path to the goal G. The envisaged

algorithm starts from G and propagates a distance function over the whole region,

constrained only by the walls of the maze (Fig. 23.14). If a parallel algorithm is

used, it is terminated when the distance function arrives at E; if a sequential algo-

rithm is used, it must carry on until the whole maze has been covered—assuming

that an optimal path is required. When the distance function has been completed,

finding an optimum path necessitates proceeding downhill along the distance

function until G is reached: at each point, the locally greatest gradient must be

used (Kanesalingam et al., 1998). Connected components analysis could be used

to confirm that a path exists, but a distance function has to be used to guarantee

finding the shortest path. Note that the method will find only one of several paths

of equal length: these arise because of the limitations of this type of method,

which assigns integer values to distances between adjacent pixels.

23.9 VEHICLE GUIDANCE IN AGRICULTURE
In recent years, there has been increasing pressure on farmers to reduce the

quantities of chemicals used for crop protection. This cry has come both from
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environmentalists and from the consumers themselves. The solution to this

problem lies in more selective spraying of crops. For example, it would be useful

to have a machine that would recognize and spray weeds with herbicides, leaving

the vegetable crops themselves unharmed: alternatively, the individual plants

could be sprayed with pesticides. This case study relates to the design of a vehicle

that is capable of tracking plant rows and selecting individual plants for spraying

(Marchant and Brivot, 1995; Marchant, 1996; Brivot and Marchant, 1996;

Sanchiz et al., 1996; Marchant et al., 1998).1

1Many of the details of this work are remarkably similar to those for the totally independent project

undertaken in Australia by Billingsley and Schoenfisch (1995).
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FIGURE 23.14

Method for finding an optimal path through a maze. (a) Plan view of maze. (b) Distance

function of the maze, starting at the goal (marked ), and presenting distance values by

successive letters, starting with a5 1. (c) Optimum path obtained by tracking from the

maze entrance (marked k) along maximum gradient directions.
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The problem would be enormously simplified if plants grew in highly regu-

lar placement patterns, so that the machine could tell from their positions

whether they were weeds or plants, and deal with them accordingly. However,

the growth of biological systems is somewhat unpredictable and renders such a

simplistic approach impracticable. Nevertheless, if plants are grown from seed

in a greenhouse, and transplanted to the field when they are approaching

100 mm high, they can be placed in straight parallel rows, which will be approx-

imately retained as they grow to full size. There is then the hope (as in the

case shown in Fig. 23.15) that the straight rows can be extracted by relatively

simple vision algorithms, and the plants themselves located and identified

straightforwardly.

At this stage the main problems are: (1) the plants will have grown to one side

or another, and will thus be out of line; (2) some will have died; (3) weeds will

have appeared near some of the plants; (4) some plants will have grown too

slowly, and will not be recognized as plants. Thus, a robust algorithm will be

required to perform the initial search for the plant rows. The Hough transform

(HT) approach is well adapted to this type of situation: specifically, it is well

suited to looking for line structure in images.

The first step in the process is to locate the plants. This can be achieved with

reasonable accuracy by thresholding the input images (this process is eased if

FIGURE 23.15

Value of color in agricultural applications. In agricultural scenes such as this, color helps

with segmentation and with recognition. It may be crucial in discriminating between weeds

and crops if selective robot weedkilling is to be carried out (see also color Plate 1).

Source: r World Scientific 2000
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infrared wavelengths are used to enhance contrast). However, at this stage the

plant images become shapeless blobs or clumps (Fig. 23.16). These contain holes

and lobes (the leaves, in the case of cabbages or cauliflowers), but a certain

amount of tidying up can be achieved either by placing a bounding box around

the object shape or by performing a dilation of the shape that will regularize it

and fill in the major concavities (the real-time solution employed the first of these

methods). Then the position of the center of mass of the shape is determined, and

it is this that is fed to the HT straight line (plant row) detector. In common with

the usual HT approach, votes are accumulated in parameter space for all possible

parameter combinations consistent with the input data. Here this means taking all

possible line gradients and intercepts for lines passing through a given plant cen-

ter and accumulating them in parameter space. To help find the most meaningful

solution, it is useful to accumulate values in proportion to the plant area.

In addition, note that if three rows of plants appear in any image, it will not ini-

tially be known which plant is in which row, and therefore each plant should be

allowed to vote for all the row positions: this will naturally only be possible if

the inter-row spacing is known and can be assumed in the analysis. However, if

this procedure is followed, the method will be far more resistant to missing plants

and to weeds that are initially mistakenly assumed to be plants.

The algorithm is improved by preferentially eliminating weeds from the

images before applying the HT. Weed elimination is achieved by three techni-

ques—hysteresis thresholding, dilation, and blob size filtering. Dilation refers to

the standard shape expansion technique described in Chapter 7 and is used here to

fill in the holes in the plant blobs. Filtering by blob area is reasonable since the

weeds are seldom as strong as the plants, which were transplanted only when

they had become well established.

FIGURE 23.16

Perspective view of plant rows after thresholding. In this idealized sketch, no background

clutter is shown.

Source: r World Scientific 2000
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Hysteresis thresholding is a widely used technique that involves use of two

threshold levels. In this case, if the intensity is greater than the upper level tu, the

object is taken to be plant; if lower than the lower level t1, it is taken to be weed; if

at an intermediate level and next to a region classified as plant, it is taken to be

plant; the plant region is allowed to extend sequentially as far as necessary, given

only that there is a contiguous region of intensity between t1 and tu connecting a

given point to a true plant ($tu) region. Note that this application is unusual in that

whole-object segmentation is achieved using hysteresis thresholding: more usually

the technique is used to help create connected object boundaries (see Section 5.10).

Once the HT has been obtained, the parameter space has to be analyzed to

find the most significant peak position. Normally, there will be no doubt as to the

correct peak—even though the method of accumulation permits plants from adja-

cent rows to contribute to each peak. The reason for this is that with three rows

each permitted to contribute to adjacent peaks, the resultant voting patterns in

parameter space are: 1,1,1,0,0; 0,1,1,1,0; 0,0,1,1,1—totaling 1,2,3,2,1—thereby

making the true center position the most prominent (actually, the position is more

complicated than this as several plants will be visible in each row, thus augment-

ing the central position further). However, the situation could be erroneous if any

plants are missing. It is therefore useful to help the HT arrive at the true central

position. This can be achieved by applying a Kalman filter (Section 19.8) to keep

track of the previous central positions, and anticipate where the next one will

be—thereby eliminating false solutions. This concept is taken furthest in the

paper by Sanchiz et al. (1996), where the individual plants are all identified on a

reliable map of the crop field and errors from any random motions of the vehicle

are systematically allowed for.

23.9.1 3-D Aspects of the Task
So far we have assumed that we are looking at simple 2-D images that represent

the true 3-D situation in detail. In practice this is not so. The reason for this is

that the rows of plants are being viewed obliquely and therefore appear as straight

lines but with perspective distortions, which shift and rotate their positions. The

full position can only be worked out if the vehicle motions are kept in mind. In

practice, vehicles moving along the rows of plants exhibit variations in speed and

are subject to roll, pitch, and yaw. The first two of these motions correspond

respectively to rotations about horizontal axes along and perpendicular to the

direction of motion: these are less relevant and are ignored here. The last is

important as it corresponds to rotation about a vertical axis and affects the imme-

diate direction of motion of the vehicle.

To proceed, we have to relate the position (X, Y, Z) of a plant in 3-D with its

location (x, y) in an image. We can achieve this with a general translation:

T 5 ðtx; ty; tzÞT (23.9)
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together with a general rotation:

R5
r1 r2 r3
r4 r5 r6
r7 r8 r9

2
4

3
5 (23.10)
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The lens projection formulae are also relevant:

x5
fX

Z
(23.12)

y5
fY

Z
(23.13)

We shall not give a full analysis here, but assuming that roll and pitch are

zero, and that the heading angle (direction of motion relative to the rows of

plants) is ψ, and that this is small, we obtain a quadratic equation for ψ in terms

of tx. This means that two sets of solutions are in general possible. However,

it is soon found that only one solution matches the situation, as the wrong solu-

tion is not supported by the other feature point positions. This shows the compli-

cations introduced by perspective projection—even when highly restrictive

assumptions can be made about the geometrical configuration (in particular, ψ
being small).

23.9.2 Real-Time Implementation
Finally, it was found to be possible to implement the vehicle guidance system on

a single processor augmented by two special hardware units—a color classifier

and a chaincoder. The latter is useful for fast shape analysis following boundary

tracking. The overall system was able to process the input images at a rate of

10 Hz, which is sufficient for reliable vehicle guidance. Perhaps more important,

the claimed accuracy was in the region of 10 mm and 1� of angle, making the

whole guidance system adequate to cope with the particular slightly constrained

application considered. A later implementation (Marchant et al., 1998) did a more

thorough job of segmenting the individual plants (although still not using the blob

size filter), obtaining a final 5 Hz sampling rate—again fast enough for real-time

application in the field. All in all, this case study demonstrates the possibility of

highly accurate selective spraying of weeds, thereby very significantly cutting

down the amount of herbicide needed for crops such as cabbages, cauliflowers,

and wheat.
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23.10 CONCLUDING REMARKS
This chapter has considered the value of in-vehicle vision as part of the means for

providing driver assistance systems. It has also considered the design of such sys-

tems. This process is rendered far from trivial because the camera is necessarily

moving, so all objects in a scene will appear to be in motion. Hence, it becomes

quite difficult to eliminate the background from consideration and less easy to

rely on motion-based segmentation. This makes it natural to adopt the alternative

approach of placing reliance on recognition of individual objects. Sections 23.2

and 23.3 showed how this concept can be applied to the location not only of the

roadway, but also of road markings and road signs. The principle also applied to

location of vehicles, but as these vary in appearance, it proved necessary to have

several distinct methods for locating them, including under-vehicle shadows, sym-

metry, wheels, and licence plates (the latter acting not merely as unique vehicle

identifiers but also as characteristics of vehicles in general). Curiously, licence

plates offered a possible means of finding the orientations of vehicles on roads as

well as their locations, although the result was dependent on the relative heights

of the camera and licence plate under observation. This meant that, when they are

not occluded, tire and wheel location will probably be more accurate indicators of

vehicle orientation.

Pedestrian location was also seen to be a challenge—particularly as people are

articulated objects, and walk with bobbing motions, and also because they tend to

have unique appearances and clothing. This makes it natural to use specific tem-

plates for leg, arm, head, and body detection rather than whole-body templates.

Here, symmetry is also a possible cue as well as skin color. All these approaches

were studied in Section 23.7 and tallied with findings in the literature.

The chapter also included aspects of path planning consequent on projecting

vehicles and other obstructions onto a plan view of the ground plane: this has

some consequence for robot egomotion and navigation. It is also relevant for

guidance of agricultural vehicles that are being used for cultivation, selective

spraying, and so on. Here, it is also important to consider the much greater

degrees of roll, pitch, and yaw that will be experienced by a tractor or other vehi-

cle moving over ploughed fields, and the visual compensation needed to cope

with this. Some indication was given about how these factors have been coped

with: because the principles are known, it seemed better for readers to refer to the

original papers for further details.

Finally, we should remark on the almost explosive growth of interest in in-

vehicle driver assistance systems, particularly since 2000. This is so important

that the following section looks very closely at developments in this area and

provides separate bibliographies relating to the various aspects. It was felt that

it would be clearer presenting these separately once the principles of the subject

had been dealt with, as has been done relatively didactically in the preceding

sections.
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In-vehicle vision systems necessarily deploy moving cameras, so the usual surveillance
strategy of eliminating the stationary background becomes difficult to apply. However,
considerable success can be achieved using the alternative strategy of directly locating the
most relevant objects, such as the roadway, road signs, road markings, vehicles (e.g., via
their symmetry, shadows, wheel, and licence plates), and pedestrians (e.g., via their legs,
arms, body, and head). Plan views of the ground plane form useful adjuncts to the
information obtained in these ways.

23.11 MORE DETAILED DEVELOPMENTS AND
BIBLIOGRAPHIES RELATING TO ADVANCED
DRIVER ASSISTANCE SYSTEMS

As indicated earlier in the chapter, in recent years (and particularly since 2000)

there has been an almost explosive growth of interest in in-vehicle vision systems.

The prime although often unwritten underlying aim has been that of driver assis-

tance—a general term that ultimately includes vehicle guidance. However, in

1998, it at first appeared that Bertozzi and Broggi (1998) had largely solved the

problem. In fact, they had laid down many of the ground rules, including finding

lane markings with the aid of morphological filters, locating obstacles without

constraints on symmetry or shape, analyzing stereo images to find free space on

the road ahead, removing the perspective effect, implementing the system on a

rapidly operating software plus massively parallel hardware architecture, present-

ing feedback information to the driver via a TV monitor and control panel, testing

the system on the road, and above all demonstrating robustness with respect to

shadows, changing illumination conditions, varying road texture, and typical

motions on the road. Nevertheless, the system was subject to basic assumptions

such as the road being flat and road markings being visible; in addition, it placed

a great deal of reliance on the stereo system, which had limited range; further-

more, it treated each pair of stereo images individually, and was unable to exploit

temporal correlations. Finally, while it never failed to detect vehicles on the road

ahead, it sometimes detected false obstacles because of noise arising from the var-

ious image remapping processes.

In the light of this work, other workers continued development with increased

pace, pressing to eliminate deficiencies with the basic strategy; interestingly,

many abandoned the stereo vision approach which brings with it many complica-

tions: in fact, appeal to the human vision system demonstrates all too clearly that

stereo brings few real advantages for the restricted tasks involved in driving a

vehicle (whatever is the case when assembling a gyroscope or other instrument

on a workbench). We shall return to this point below.

First, it is worth outlining the findings of Connolly (2009) who has described in

a general way the gains to be achieved by advanced driver assistance systems

(ADASs). The main keys to success appear to be the provision of lane departure
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warnings, help for lane changing, collision avoidance, adaptive cruise control, and

driver vigilance monitoring. However, it is important that the ADAS should not

give too many warnings, or the driver may become annoyed and deactivate it: nei-

ther should it fail to act soon enough or give the driver too much confidence or too

much freedom. In fact, it is vital for drowsiness to be detected because approxi-

mately 30% of motorway accidents are caused by drivers undergoing micro- or

macro-sleeps. While much work has been carried out on blink-rate analysis for

detecting these conditions, the method has limited effectiveness in probing the state

of the brain itself. Nevertheless, it is clear that vision systems can do much to mon-

itor the driver’s behavior, and specifically to monitor his direction of gaze and state

of apparent awareness. Overall, it is probably in the realm of lane departure warn-

ings and of collision avoidance that an ADAS can do the most good, without

annoying the driver. Indeed, in the event of the driver’s unawareness of an impend-

ing collision, or incapability of acting soon enough, the ADAS should be permitted

to act autonomously. While this could in principle be legally contentious, it is not

without precedent, as anti-lock braking systems are in common use.

There are many causes of collision, and a large proportion of them are due to

driver error, even when drowsiness is not a specific factor. Failure to see a vehicle

or pedestrian because of preoccupation with other events on or off the road, fail-

ure to estimate speeds or trajectories of vehicles sufficiently accurately, failure to

judge how rapidly braking can be performed in the prevailing conditions, and

lack of awareness of what other drivers intend to do are all involved in causing

accidents: this list does not include gross vehicle malfunctions, such as

unpredictable tire bursts. In fact, all these factors arise from or are exacerbated by

lack of the right information being available soon enough. Thus, it is obvious that

vision has a large part to play in overcoming the problems. While radar, lidar,

ultrasonics or other technologies may help, vision provides far more of the right

sort of information with the right sort of response rates, and computer vision

should be able to cope reliably and rapidly enough to make this possible. The

main questions are: What will be the cost? Where will the cameras be placed?

Can enough of them be used to ensure that relevant information is made avail-

able? Fortunately, cameras are by now so cheap that cost—relative to that of a

vehicle or of the damage caused in a crash—is no longer a serious problem. On

the other hand, the real problems are the sophistication and speed of the associ-

ated software (or in the latter case, how the system is to be implemented in hard-

ware—a consideration that is largely postponed until Chapter 26). For the

remainder of the chapter, we therefore concentrate mainly on the sophisticated

software aspects and what has been achieved since the turn of the Millennium.

23.11.1 Developments in Vehicle Detection
One area of vital concern has been the detection of other vehicles, especially

those overtaking (Zhu et al., 2004; Wang et al., 2005; Hilario et al., 2006; Cherng
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et al., 2009). The last of these papers considers patterns of driving, such as “cut-

ting in” after overtaking, but more subtly how interactions between events involv-

ing more than two vehicles can cause distractions that prevent optimal actions

being taken: this is because not all dynamic obstacles are predicable; in fact, mul-

tiple critical situations can occur simultaneously. The paper takes the line that the

computer must follow attention patterns that emulate those of the human brain,

and concentrate cyclically on eliminating the various critical phases that are being

experienced. The necessary dynamic visual model is in this case tackled using a

spatiotemporal attention (STA) neural network. The system of Kuo et al. (2011)

concentrates on detecting vehicles on the road ahead, but is also able to assess

longitudinal distance information and thus to provide adaptive cruise control

(albeit no indications of accuracy are given in the paper). Note that this system

uses a monocular camera and thus avoids the difficulties of stereo systems men-

tioned earlier.

Sun et al. (2004, 2006) reviewed the methods used by various workers to

detect vehicles. They reported knowledge-based methods using symmetry, color,

shadow, corners, horizontal and vertical edges, texture, and lights. In addition,

stereo and motion approaches have been used. They also reported template

matching and appearance-based methods, and noted that sensor fusion is needed

to ensure that sufficient information is brought to bear to make vehicle detection

reliable. They emphasized that hypothesis generation and verification are impor-

tant for obtaining reliable solutions. Overall, they offered no silver bullet solution,

apart from sensor fusion, although (looking at their conclusions as a whole)

method fusion appears to be rather more important. Among the worst challenges

they found were those of “all hours�all weathers” operation. In particular, bad

illumination (especially at night) and the results of rain and snow will affect

many well-known algorithms for vehicle detection, including those based on sha-

dows. While in principle vehicle lights should provide an easy way of detecting

vehicles, in the dark they can prove confusing, especially when rain-soaked roads

cause reflections. Sun et al. therefore “believe that these cues have limited

employability.” However, there are bound to be conditions under which some

methods will not work well, but by using method fusion in a dynamic way, giving

different methods different weights in different conditions, viable solutions should

in the end be obtainable. Whereas humans could be confused in dark situations

where no information at all is available, it is difficult to imagine them not being

able to solve vehicle detection problems because of rain, snow, or random reflec-

tions, and certainly not simply because no shadows are visible.

While the difficulties of dealing with the problems of driving at speed on a

motorway can be hugely complicated, with vehicles overtaking on either side and

sometimes cutting in, the solution is often to drive more slowly thereby minimiz-

ing risks and lowering the data rate to manageable levels. However, the problems

of dealing with pedestrians are considerably more complicated. This is because,

in contrast to the case of vehicles that travel at more or less constant speeds in

constant directions for considerable periods of time—and also have a fair amount
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of free space immediately around them—pedestrians are unpredictable, sometimes

running to get across roads between vehicles, sometimes jay-walking, and some-

times moving in groups having even more unpredictable behavior. A basic prob-

lem is that it is unknown when a stationary pedestrian might suddenly move into

the roadway, and with a temporary acceleration that exceeds that of most vehi-

cles. Hence, a great many workers have been, and are producing algorithms for

pedestrian detection and tracking.

23.11.2 Developments in Pedestrian Detection
Geronimo et al. (2010) have recently reviewed pedestrian detection systems for

ADASs. As their paper is very thorough and contains 146 references, the reader

is recommended to work carefully through it. Nevertheless, some useful points

can be made here. They emphasize that pedestrians exhibit high variability in

size, pose, clothing, objects carried, and so on; they appear in cluttered scenes,

can be partially occluded, and may be in poor contrast regions; they have to be

identified in dynamically varying scenes when both they and the camera are mov-

ing; they often appear radically different when viewed from different directions.

Geronimo et al. note that silhouette matching, e.g., using the chamfer matching

technique, is widely used for detection, yet it needs to be augmented by an addi-

tional appearance-based step. (This is not an argument against silhouette match-

ing, but one for using it as a cue in accordance with the idea expressed above that

method fusion is required—i.e., method redundancy is needed to cope robustly

with real scenes containing substantial clutter.) Geronimo et al. (2010) underline

the need for verification and refinement. Interestingly, they note that the Kalman

filter is (still) by far the most heavily used tracking algorithm—a surprising fact

considering that pedestrian motions along pavements, in precincts or crossing the

road exhibit far from steady motion (in fact their motions tend to be jerky and

indecisive, as they find their way around obstacles and other people). Finally,

Geronimo et al. emphasize the need for all hours�all weathers performance; here

they note that NIR imaging gives pictures not dissimilar to visible light images,

so similar algorithms can be used for analysis. This is less true for thermal (far

infrared or FIR) images, which are commonly called “night vision.” In any case

the latter respond to relative temperature, which is useful for distinguishing hot

targets, including pedestrians for vehicles, but inappropriate for examining most

of the background or objects such as road signs. Thus, thermal cameras need to

be backed up with visible light cameras in the day or NIR cameras in the night,

and so would generally constitute an unnecessary expense.
Gavrila and Munder (2007) describe a multi-cue pedestrian detection system:

after extensive field tests in difficult urban traffic conditions, they reasonably

claim it to be at the (2007) leading edge. The four main detection modules are

sparse stereo-based ROI generation, shape-based detection, texture-based classifi-

cation, and verification using dense stereo, these being complemented by a track-

ing module. In fact, the paper builds on earlier work (Gavrila et al., 2004), and its
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main contributions are the method of integration into a multi-cue system for

pedestrian detection and a systematic ROC-based procedure for parameter setting

and system optimization. In part, the success of the system is due to the use of a

novel mixture-of-experts architecture for shape and texture-based classification:

here the idea is to take the known shape information and to use texture to parti-

tion the feature space into regions of reduced variability—a process that matches

well the types of clothing worn by humans. Importantly, the approach using a tex-

ture-based mixture-of-experts weighted by the outcome of shape matching was

found to outperform an approach based on single texture classifiers. Also

notable is the (continued) use of chamfer matching for shape detection, prominent

in much of Gavrila’s earlier work.

It was remarked earlier that stereo adds considerable complication to a vision

system, which may not be justified for an in-vehicle system when most of the

objects being viewed will be many meters away. This makes it no surprise that

the review article by Enzweiler and Gavrila (2009) concentrates on monocular

pedestrian detection. The paper also included descriptions of a number of experi-

mental comparisons of methods for pedestrian detection. Apart from temporal

integration and tracking, methods that were tested included the following:

(1) Haar wavelet-based cascades, (2) neural networks using local receptive fields,

(3) histograms of orientated gradients (HOGs) together with linear SVM classi-

fiers, and (4) combined shape and texture-based approaches. The fourth of these

was subsequently disregarded as its main advantage was processing speed, which

was not considered relevant to the comparison. The investigation found that the

HOG approach outperformed the wavelet and neural network approaches

(Section 22.16 contains a brief outline of the HOG approach and also explains

why it outperforms the wavelet approach in this type of application). In particular,

at a sensitivity of 70%,2 the respective false positive rates were 0.045, 0.38, and

0.86, representing huge reduction factors for false positives. Similarly, at a sensi-

tivity of 60%, the precision rates were vastly improved for the HOG approach,

particularly relative to the neural network approach. It should be emphasized that

these results apply for intermediate resolutions with pedestrian imagesB483 96

pixels, while earlier low-resolution work with pedestrian imagesB183 36 pixels

led to Haar wavelets being the most viable option. Overall, there seemed to be

slight doubt about what the critical factors actually are: in particular, the authors

state “perhaps it is the data that matters most, after all,” meaning that increased

performance may be at least partly due to increases in the size of the training set.

In addition, quite a bit depends on the processing constraints that are applied, and

for tighter constraints the Haar wavelet approach comes back into its own.

However, as ever, it is difficult to standardize or specify image data, or a fortiori,

2This assumes that the term “detection rate” used by the authors actually means “sensitivity” (or

“recall”): see Chapter 24. In this paragraph, note that sensitivity gives a reverse measure of false

negative rate, 12FN/(TP1FN), while precision gives a reverse measure of false positive rate,

12FP/(TP1FP).
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image sequence data, so this paper is not able to tell the whole story. Finally, it

should be noted that at this point in time, shape-based detection, and in particular

the chamfer matching approach, has dropped out of sight because its main advan-

tage was that of speed, and here recognition accuracy measures were the main

performance criteria.

Looking back to the work of Curio et al. (2000)—who use Hausdorff distance

rather than chamfer matching for template matching—the attention is very much

on analyzing limb movements, modeling human walking, and observing human

gait patterns. However, they note that the upper body shows a high degree of vari-

ation in its appearance, so it is better to restrict pedestrian detection to the lower

body: in fact this strategy is both more reliable and more computationally effi-

cient. They also point out that exact modeling is more complicated for women

wearing skirts. (A similar situation must apply for men wearing robes or mackin-

toshes.) Overall, just as the driver is aware of motion and gait as well as the body

models of pedestrians, these need to be incorporated into practical pedestrian

detection algorithms in order to provide maximum reliability and robustness.

Zhang et al. (2007) performed tests on pedestrian detection in “IR images”

(these were actually thermal images taken with a camera operating in the spectral

range 7�14 μm). Their motivation was to make a system that was capable of

working at night time, although they also noted that many undesirable activities

occur at night or in relative darkness, so the methodology should be useful in

other applications as well. They found that IR images are by no means dissimilar

to visible light images, so similar algorithms can be used for analyzing them: i.e.,

there is no need to invent radically different methods for the IR domain. In partic-

ular, they found that edgelet and histogram of orientated gradients (HOG) meth-

ods (see Dalal and Triggs, 2005) could be adapted to work with IR images, and

similarly for boosting and SVM cascade classification methods (Viola and Jones,

2001). Hence they achieved detection performance for IR images comparable to

state-of-the-art results for visible light. The underlying reason for this seemed to

be that IR and visible light lead to similar silhouettes.

23.11.3 Developments in Road and Lane Detection
Zhou et al. (2006) developed a lane detection and tracking system using a monoc-

ular monochromatic camera. They used a deformable template model to initially

locate the lane markings, with tabu search for optimal location; then they used a

particle filter for tracking the markings. Their experimental results showed that

the resulting system was robust against broken lane markings, curved lanes, sha-

dows, distracting edges, and occlusions. Kim (2008) also used a particle filter for

tracking lane markings, but employed RANSAC for initial detection. Similarly,

Mastorakis and Davies (2011) used RANSAC for detection but modified it for

increased reliability, as described in Sections 11.6 and 23.3: see also Borkar et al.

(2009). Finally, Marzotto et al. (2010) showed how a RANSAC-based system
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could be implemented in real time using an FPGA platform: for more details, see

Chapter 26.

While the above approaches are suitable for urban roads, which normally have

well-defined lane markings, many roads, especially in rural regions, are unstruc-

tured and lacking in markings—and the road boundaries may be overgrown with

vegetation. Cheng et al. (2010) devised a system with the ability to handle both

structured and unstructured types of road using a monocular camera. To achieve

this they devised a hierarchical lane detection strategy which was able to achieve

high accuracy using quite simple algorithms. First, environment classification of

pixels was carried out with high dimensional feature vectors using eigenvalue

decomposition regularized discriminant analysis (EDRDA). For unstructured

roads, mean-shift segmentation was used and then road boundary candidates were

selected from the region boundaries: Bayes rule was used to select the most prob-

able of these as actual boundaries. When the vehicle moved from one type of

road to another, the environment classifier indicated that a different algorithm

should be used so that accuracy could be maintained.

There is one way in which road and lane mapping schemes are restricted—

namely, by the view available from the chosen camera. Typically, this will give

an overall viewing angle of up to B45�. In fact, ideally, a vehicle-borne camera

should have a full 360� viewing angle, so that overtaking vehicles and pedestrians

about to approach from the side can be seen clearly. Omnidirectional (catadiop-

tric) cameras may be the best answer to this problem, and many workers are

actively pursuing this possibility. Cheng and Trivedi (2007) tested a system which

used an omnidirectional camera for the dual tasks of lane detection and monitor-

ing the head pose of the driver (the reason for monitoring head pose is to

check that the driver is aware of the situation on the road). Their tests showed

that accuracy of lane detection is reduced by a factor of (only) 2�3 because

of the reduced resolution available with this sort of camera. Thus, it should prove

possible to make savings in the numbers of sensors employed in practical

implementations.

23.11.4 Developments in Road Sign Detection
It is a sign of the seriousness with which ADASs are nowadays being taken that a

good many papers describing research into the detection and recognition of road

signs have been published since the turn of the Millennium. Fang et al. (2003)

describe a system that uses neural networks for detecting and tracking road signs

by their color and shape. The shapes considered are circles, triangles, octagons,

diamonds, and rectangles. Initial detection takes place at some distance, where

the road signs appear small and relatively undistorted, and tracking is carried out

by a Kalman filter. At each distance, due account is taken of changes in size and

shape due to increasing projective distortions, and when a potential sign has

become large enough the system verifies that it is a road sign or discards it.
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Actual recognition is not discussed in the paper, but detection and tracking are

said to be accurate and robust: although speed was slow on a single PC, the neu-

ral networks could conveniently be run in parallel on other processors. A related

paper by Fang et al. (2004) describes the types of neural network used in this sort

of application. Kuo and Lin (2007) describe a similar system, again involving use

of neural networks. The latter paper makes use of greater amounts of structural

analysis of the images at the detection stage, e.g., using corner detection, Hough

transforms and morphology. De la Escalera et al. (2003) describe a system which

starts the analysis using color classification, uses genetic algorithms for narrowing

down the search, and employs neural networks for sign classification.

McLoughlin et al. (2008) describe practically orientated work on road sign

detection and also on the detection of “cats eyes.” Their aim is to assess the road

signage quality rather than to use it, and to this end they relate the signs to GPS

information. They focus particularly on reflectivity aspects of the signs and are

able to detect defective road studs and road signs. Their system is fully autono-

mous and thus the methodology is largely transferrable to ADASs.

Prieto and Allen (2009) describe a vision-based system for detecting and classi-

fying traffic signs using self-organizing maps (SOM)—a type of neural network. A

two-stage detection process is adopted—of first detecting potential road signs by

analyzing the distribution of red pixels within the image, and then identifying the

road signs from the distribution of dark pixels in their central pictograms. The HT

approach and other structural analysis approaches were eschewed because they were

felt to operate too slowly for (efficient) real-time operation, so the SOM approach

was adopted. To achieve recognition of the pictogram, it was divided into 16 blocks

arranged in the form of a triangle (or whatever shape the particular sign was found

to possess). It was found necessary to normalize brightness over the region of the

sign. The hardware of the embedded machine vision used for this application was a

hybrid consisting of an FPGA together with a digital implementation of a SOM.

Experiments showed that the system had good performance, being able to tolerate

substantial changes in position, scale, orientation and partial occlusion of the road

signs, and also being trainable, at least to within the model of colored surround and

black on white pictograms. For further details of the SOM and the hybrid implemen-

tation, see the original paper and the references mentioned therein.

Ruta et al. (2010) have developed a system not based on neural networks (as

for many of the above) but on color distance transforms, coupled with a nearest

neighbor recognition system. The color distance transform is actually a set of

three distance transforms, one for each color (RGB). If a particular color is absent

during testing, it is accorded a maximum distance value of 10 pixels to avoid con-

fusing the system. The color distance transform was tested for dependence on a

variety of conditions, such as strong incident light, reflections, and deep shade,

and was found to be robust to substantial illumination changes. Perhaps more

important, it was found to be reasonably invariant to the effects of affine transfor-

mations, which a moving camera would be subject to. This is almost certainly

because chamfer matching is subject to graceful degradation as distortions occur,
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so the distances at any template (edge) locations will gradually increase with the

changing levels of distortion. When compared with other methods, the method

performed well, the percentages of correct classifications being 22.3 for HOG/

PCA, 62.6 for Haar/AdaBoost, 74.5 for HOG/AdaBoost, and 74.4 for the new

method using the color distance transform. The main competitor to the new

method, HOG/AdaBoost, offers an elegant solution but is much more complex

than the new method, and did not outperform it in any real sense. Hence the new

method seemed well adapted to the task it was set.

23.11.5 Developments in Path Planning, Navigation, and
Egomotion

The subjects of vehicle guidance and egomotion date from as long ago as 1992

(Brady and Wang, 1992; Dickmanns and Mysliwetz, 1992), while automatic visual

guidance in convoys dates from a similar period (Schneiderman et al., 1995; Stella

et al., 1995). Mobile robots and the need for path planning were discussed by

Kanesalingam et al. (1998) and by Kortenkamp et al. (1998), and later a survey

was carried out by DeSouza and Kak (2002): see also Davison and Murray (2002).

Guidance of outdoor vehicles, particularly on roads, has undergone increasingly

rapid development: see for example Bertozzi and Broggi (1998), Guiducci (1999),

Kang and Jung (2003), and Kastrinaki et al. (2003). Zhou et al. (2003) considered

the situation for elderly pedestrians—although clearly such work could also be rele-

vant for blind people or wheelchair users. Hofmann et al. (2003) showed that vision

and radar can profitably be used together to combine the excellent spatial resolution

of vision with the accurate range resolution of radar.

In spite of the evident successes, there is still only a limited number of fully

automated visual vehicle guidance systems in everyday use. The main problem

would appear to be potential lack of the robustness and reliability required to trust

the system in “all hours�all weathers” situations—although there are also legal

implications for a system that is to be used for control rather than merely for

vehicle monitoring.

23.12 PROBLEM
1. Check that the path through the maze shown in Fig. 23.14(c) is optimal, (a)

by a hand calculation and (b) by a computer calculation. Confirm that several

other paths are also optimal. Obtain a more accurate result by taking the hori-

zontal and vertical neighbors of any pixel as being 2 units away, and taking

diagonal neighbors as being 3 units away.
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CHAPTER

24 Statistical Pattern
Recognition

Pattern recognition is a task that humans are able to achieve “at a glance” with

little apparent effort. Much of pattern recognition is structural, being achieved

essentially by analyzing shape. In contrast, statistical pattern recognition (SPR)

treats sets of extracted features as abstract entities that can be used to classify

objects on a statistical basis, often by mathematical similarity to sets of features

for objects with known classes. This chapter explores the subject, presenting rele-

vant theory where appropriate, and shows how artificial neural networks (ANNs)

are able to help with recognition tasks.

Look out for:

• the nearest neighbor algorithm—probably the most intuitive of all statistical

pattern recognition techniques.

• Bayes’ theory, which forms the ideal minimum error classification system.

• the relation linking the nearest neighbor method to Bayes’ theory.

• the reason why the optimum number of features will always be finite.

• the receiver operating characteristic (ROC) curve, which allows an optimum

balance between false positives and false negatives to be achieved.

• the distinction between supervised and unsupervised learning.

• the method of principal components analysis and its value.

• how artificial neural networks can be trained, avoiding problems of inadequate

training and overfitting to training data.

SPR is a core methodology in the design of practical vision systems. As such

it has to be used in conjunction with structural pattern recognition methods and

many other relevant techniques—as already indicated in the title to Part 4.

Computer and Machine Vision.
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24.1 INTRODUCTION
The earlier chapters of this book have tackled the task of interpreting images on the

basis that when suitable cues have been found, the positions of various objects and

their identities will emerge in a natural and straightforward way. When the objects

that appear in an image have simple shapes, just one stage of processing may be

required, as in the case of circular washers on a conveyor. For more complex

objects, location requires at least two stages, as when graph matching methods are

used. For situations where the full complexity of three dimensions occurs, more

subtle procedures are usually required, as has already been seen in Part 3. Indeed,

the very ambiguity involved in interpreting the 2-D images from a set of 3-D

objects generally requires cues to be sought and hypotheses to be proposed before

any serious attempt can be made with the task. Thus, cues are vital to keying into

the complex data structures of many images. However, for simpler situations, con-

centration on small features is valuable in permitting image interpretation to be car-

ried out efficiently and rapidly; neither must it be forgotten that in specific

applications the problems tend to be much more restricted and simpler to solve;

e.g., only widgets need to be inspected on a widget line, and only vehicles need to

be scrutinized on a highway.
However, the fact that it is often expedient to start by searching for cues means

that the vision system could lock on to erroneous interpretations. For example, HT-

based methods lead to interpretations based on the most prominent peaks in param-

eter space, while the maximal clique approach supports interpretations based on the

largest number of feature matches between parts of an image and the object model.

Clearly, noise, background clutter, and other artifacts make it possible that an

object will be seen (or its presence hypothesized) when none is there, whereas

occlusions, shadows, etc. may cause an object to be missed altogether.
Hence, a rigorous interpretation strategy would ideally try to find all possible

feature and object matches, and should have some means of distinguishing

between them. An attractive idea is that of not being satisfied with an interpreta-

tion until the whole of any image has been understood. However, enough has

been seen in previous chapters (e.g., Chapter 13) to demonstrate that the computa-

tional load of such a strategy will generally make it impracticable for real scenes.

Yet there are more constrained types of situation in which the strategy is worth

considering and in which the various possible solutions can be evaluated carefully

before a final interpretation is reached. These situations arise practically where

small relevant parts of images can be segmented and interpreted in isolation.

One such case is that of optical character recognition (OCR); a commonly used

approach for tackling it is SPR.

The following sections study some of the important principles of SPR. A descrip-

tion of all the work that has been carried out in this area would take several volumes

to cover and cannot be attempted here. Fortunately, SPR has been researched

for well over three decades and has settled down sufficiently so that an overview

chapter can serve a useful purpose. The reader is referred to several existing texts

67324.1 Introduction



for further details (Duda et al., 2001; Webb, 2002). We start by describing the near-

est neighbor (NN) approach to SPR and then go on to consider Bayes’ decision the-

ory, which provides a more general model of the underlying process.

24.2 THE NEAREST NEIGHBOR ALGORITHM
The principle of the nearest neighbor algorithm is that of comparing input image1

patterns against a number of paradigms and then classifying them according to

the class of the paradigm that gives the closest match (Fig. 24.1). An instructive

but rather trivial example is shown in Fig. 1.1. Here a number of binary patterns

are presented to the computer in the training phase of the algorithm, then the test

patterns are presented one at a time and compared bit by bit against each of the

training patterns. It is clear that this gives a generally reasonable result, the main

problems arising when (a) training patterns of different classes are close together

in Hamming distance (i.e., they differ in too few bits to be readily distinguish-

able) and (b) minor translations, rotations, or noise cause variations that inhibit

accurate recognition. More generally, problem (b) means that the training patterns

are insufficiently representative of what will appear during the test phase. The lat-

ter statement encapsulates an exceptionally important principle and it implies that

there must be sufficient patterns in the training set for the algorithm to be able to

generalize over all possible patterns of each class. However, problem (a) implies

that patterns of two different classes may in some cases be so close as to be

1Note that a number of the methods discussed in this chapter are very general and can be applied

to the recognition of widely different datasets, including, e.g., speech and electrocardiograph

waveforms.

x2

x1

FIGURE 24.1

Principle of the nearest neighbor algorithm for a two-class problem. x, class 1 training set

patterns; 3 , class 2 training set patterns; •, test pattern.
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indistinguishable by any algorithm, and then it is inevitable that erroneous classi-

fications will be made. It is seen below that this is because the underlying distri-

butions in feature space overlap.

The example of Fig. 1.1 is rather trivial but nevertheless carries important les-

sons. Note that general images have many more pixels than that in Fig. 1.1 and

also are not merely binary. However, since it is pertinent to simplify the data as

far as possible to save computation, it is usual to concentrate on various features

of a typical image and classify on the basis of these. One example is provided by

a more realistic version of the OCR problem, where characters have linear dimen-

sions of at least 32 pixels (although we continue to assume that the characters

have been located reasonably accurately so that it remains only to classify the

subimages containing them). We can start by thinning the characters to their ske-

letons and making measurements on the skeleton nodes and limbs (see also

Chapters 1 and 9). This gives (a) the numbers of nodes and limbs of various

types, (b) the lengths and relative orientations of limbs, and perhaps (c) informa-

tion on curvatures of limbs. Thus, we arrive at a set of numerical features that

describe the character in the subimage.

The general technique is to plot the characters in the training set in a multidi-

mensional feature space and to tag the plots with the classification index. Then

test patterns are placed in turn in the feature space and classified according to the

class of the nearest training set pattern. Clearly, this generalizes the method

adopted in Fig. 24.1. In the general case, the distance in feature space is no longer

Hamming distance but some more general measure such as Mahalanobis distance

(Duda and Hart, 1973). In fact, a problem arises since there is no reason why the

different dimensions in feature space should contribute equally to distance, rather

they should each have different weights in order to match the physical problem

more closely. The problem of weighting cannot be discussed in detail here and

the reader is referred to other texts such as that by Duda and Hart (1973). Suffice

it to say that with an appropriate definition of distance, the generalization of the

method outlined above is adequate to cope with a variety of problems.

To achieve a suitably low error rate, large numbers of training set patterns are

normally required. This then leads to significant storage and computation prob-

lems. Means have been found for reducing these problems by several important

strategies. Notable among these is that of pruning the training set by eliminating

patterns that are not near the boundaries of class regions in feature space, since

such patterns do not materially help in reducing the misclassification rate.

An alternative strategy for obtaining equivalent performance at lower computa-

tional cost is to employ a piecewise linear or other functional classifier instead of

the original training set. Clearly, the NN method itself can be replaced, with no

change in performance, by a set of planar decision surfaces that are the perpendicu-

lar bisectors (or their analogs in multidimensional space) of the lines joining pairs

of training patterns of different classes that are on the boundaries of class regions.

If this system of planar surfaces is simplified by any convenient means, then the

computational load may be reduced further (Fig. 24.2). This may be achieved either
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indirectly by some smoothing process, as implied above, or directly by finding

training procedures that act to update the positions of decision surfaces immediately

on receipt of each new training set pattern. The latter approach is in many ways

more attractive, since it drastically cuts down storage requirements—although it

must be confirmed that a training procedure is selected that converges sufficiently

rapidly. Again, discussion of this well-researched topic is left to other texts

(Nilsson, 1965; Duda and Hart, 1973; Devijver and Kittler, 1982).

We now turn to a more generalized approach—that of Bayes’ decision theory—

since this underpins all the possibilities thrown up by the NN method and its

derivatives.

24.3 BAYES’ DECISION THEORY
The basis of Bayes’ decision theory is examined in this section. If we are trying

to get a computer to classify objects, a sound approach is to get it to measure

some prominent feature of each object such as its length and to use this feature as

an aid to classification. Sometimes such a feature may give very little indication

of the pattern class—perhaps because of the effects of manufacturing variation.

For example, a hand-written character may be so ill-formed that its features are

of little help in interpreting it; it then becomes much more reliable to make use of

the known relative frequencies of letters, or to invoke context: in fact, either

of these strategies can give a greatly increased probability of correct interpreta-

tion. In other words, when feature measurements are found to be giving an error

x1

x2

FIGURE 24.2

Use of planar decision surfaces for pattern classification: in this example the “planar

decision surface” reduces to a piecewise linear decision boundary in two dimensions.

Once the decision boundary is known, the training set patterns themselves need no longer

be stored.
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rate above a certain threshold, it is more reliable to employ the a priori probabil-

ity of a given pattern appearing.

The next step in improving recognition performance is to combine the infor-

mation from feature measurements and from a priori probabilities. This is

achieved by applying Bayes’ rule. For a single feature x, this takes the form:

PðCijxÞ5
pðxjCiÞPðCiÞ

pðxÞ (24.1)

where

pðxÞ5
X
j

pðxjCjÞPðCjÞ (24.2)

Mathematically, the variables here are (a) the a priori probability of class Ci,

P(Ci); (b) the probability density for feature x, p(x); (c) the class-conditional prob-

ability density for feature x in class Ci, p(xjCi)—i.e., the probability that feature x

arises for objects known to be in class Ci; and (d) the a posteriori probability of

class Ci when x is observed, P(Cijx).
The notation P(Cijx) is a standard one, being defined as the probability that

the class is Ci when the feature is known to have the value x. Bayes’ rule says

that to find the class of an object we need to know two sets of information about

the objects that might be viewed: the first is the basic probability P(Ci) that a par-

ticular class might arise; the second is the distribution of values of the feature x

for each class. Fortunately, each of these sets of information can be found

straightforwardly by observing a sequence of objects as they move along a con-

veyor. As before, such a sequence of objects is called the training set.

Many common image analysis techniques give features that may be used to

help identify or classify objects. These include the area of an object, its perimeter,

the numbers of holes it possesses, and so on. Note that classification performance

may be improved not only by making use of the a priori probability but also by

employing a number of features simultaneously. Generally, increasing the number

of features helps to resolve object classes and reduce classification errors

(Fig. 24.3); however, the error rate is rarely reduced to zero merely by adding

more and more features, and indeed the situation eventually deteriorates for rea-

sons explained in Section 24.5.

Bayes’ rule can be generalized to cover the case of a generalized feature x, in

multidimensional feature space, by using the modified formula:

PðCijxÞ5
pðxjCiÞPðCiÞ

pðxÞ (24.3)

where P(Ci) is the a priori probability of class Ci, and p(x) is the overall probabil-

ity density for feature vector x:

pðxÞ5
X
j

pðxjCjÞPðCjÞ (24.4)

67724.3 Bayes’ Decision Theory



The classification procedure is then to compare the values of all the P(Cjjx)
and to classify an object as class Ci if:

PðCijxÞ.PðCjjxÞ for all j 6¼ i (24.5)

24.3.1 The Naive Bayes’ Classifier
Many classification methods, including the nearest neighbor method and the

Bayes’ classifier, can involve substantial amounts of storage and computation if

the amount of training is to be sufficient to achieve low error rates. Hence, there

is considerable value in employing methods that minimize computation while

retaining adequate classification accuracy. In fact, the naive Bayes’ classifier is

able to achieve this in many applications—particularly those where individual

features can be selected that are approximately independent. Features in this

category include roundness, size, and redness in the case of oranges.

To understand this, take the expression pðxjCiÞPðCiÞ5 pðx1; x2, . . . ,
xN jCiÞPðCiÞ in Eq. (24.4), and re-express it as appropriate for independent (uncor-

related) features x1, x2, . . . , xN:

pðxjCiÞPðCiÞ5 pðx1jCiÞpðx2jCiÞ . . . pðxN jCiÞUPðCiÞ5 L
j

pðxjjCiÞUPðCiÞ (24.6)

This is valid because the overall probability of a set of independent variables

is the product of the individual probabilities. First, note that this is a significant

simplification of the original general expression. Second, its computation involves

only the means and variances of the N individual variables and not the whole

N3N covariance matrix. Clearly, reducing the number of parameters makes

the naive Bayes’ classifier less powerful. However, this is counterbalanced by the

fact that, if the same training set is used, the remaining parameters will be much

x2

f

(a) (b)x1 x1

FIGURE 24.3

Use of several features to reduce classification errors: (a) the two regions to be separated in

2-D (x1, x2) feature space; (b) frequencies of occurrence of the two classes when the pattern

vectors are projected onto the x1-axis. Clearly, error rates will be high when either feature is

used on its own, but will be reduced to a low level when both features are employed together.
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more accurately determined. The result is that, given the right combination of

features, the naive Bayes’ classifier can indeed be highly effective in practice.

24.4 RELATION OF THE NEAREST NEIGHBOR AND
BAYES’ APPROACHES

When Bayes’ theory is applied to simple pattern recognition tasks, it is immediately

clear that a priori probabilities are important in determining the final classification

of any pattern, since these probabilities arise explicitly in the calculation. However,

this is not so for the NN type of classifier. Indeed, the whole idea of the NN classi-

fier appears to be to get away from such considerations, instead classifying patterns

on the basis of training set patterns that lie nearby in feature space. However, there

must be a definite answer to the question of whether a priori probabilities are or are

not taken into account implicitly in the NN formulation, and therefore of whether an

adjustment needs to be made to the NN classifier to minimize the error rate. Since it

is clearly important to have a categorical statement of the situation, Section 24.4.1 is

devoted to providing such a statement together with necessary analysis.

24.4.1 Mathematical Statement of the Problem
This section considers in detail the relation between the NN algorithm and Bayes’

theory. For simplicity (and with no ultimate loss of generality), we here take all

dimensions in feature space to have equal weight, so that the measure of distance

in feature space is not a complicating factor.

For greatest accuracy of classification, many training set patterns will be used

and it will be possible to define a density of training set patterns in feature space,

Di(x), for position x in feature space and class Ci. Clearly, if Dk(x) is high at posi-

tion x in class Ck, then training set patterns lie close together and a test pattern at

x will be likely to fall in class Ck. More particularly, if:

DkðxÞ5 max
i

DiðxÞ (24.7)

then our basic statement of the NN rule implies that the class of a test pattern x

will be Ck.

However, according to the outline given above, this analysis is flawed in not

showing explicitly how the classification depends on the a priori probability of

class Ck. To proceed, note that Di(x) is closely related to the conditional probability

density p(xjCi) that a training set pattern will appear at position x in feature space if

it is in class Ci. Indeed, the Di(x) are merely non-normalized values of the p(xjCi):

pðxjCiÞ5
DiðxÞÐ
DiðxÞdx

(24.8)

The standard Bayes’ formulae (Eqs. (24.3) and (24.4)) can now be used to

calculate the a posteriori probability of class Ci.
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So far it has been seen that the a priori probability should be combined with

the training set density data before valid classifications can be made using the

NN rule. As a result, it seems invalid merely to take the nearest training set pat-

tern in feature space as an indicator of pattern class. However, note that when

clusters of training set patterns and the underlying within-class distributions

scarcely overlap, there is anyway a rather low probability of error in the overlap

region, and the result of using p(xjCi) rather than P(xjCi) to indicate class often

introduces only a very small bias in the decision surface. Hence, although invalid

mathematically, the error introduced need not be disastrous.

We now consider the situation in more detail, finding how the need to multiply

by the a priori probability affects the NN approach. In fact, multiplying by the a

priori probability can be achieved either directly, by multiplying the densities of

each class by the appropriate P(xjCi), or indirectly, by providing a suitable amount

of additional training for classes with high a priori probability. It may now be seen

that the amount of additional training required is precisely the amount that would

be obtained if the training set patterns were allowed to appear with their natural fre-

quencies (see equations (24.9)�(24.13)). For example, if objects of different classes

are moving along a conveyor, we should not first separate them and then train with

equal numbers of patterns from each class; we should instead allow them to pro-

ceed normally and train on them all at their normal frequencies of occurrence in

the training stream. Clearly, if training set patterns do not appear for a time with

their proper natural frequencies, this will introduce a bias into the properties of the

classifier. Thus, we must make every effort to permit the training set to be repre-

sentative not only of the types of pattern of each class but also of the frequencies

with which they are presented to the classifier during training.

The above ideas for indirect inclusion of a priori probabilities may be

expressed as follows:

PðCiÞ5
Ð
DiðxÞdxX

j

Ð
DjðxÞdx

(24.9)

Hence

PðCijxÞ5
DiðxÞX

j

Ð
DjðxÞdx

 !
pðxÞ

(24.10)

where

pðxÞ5

X
k

DkðxÞX
j

Ð
DjðxÞdx

(24.11)

Substituting for p(x) now gives:

PðCijxÞ5
DiðxÞX
k

DkðxÞ
(24.12)
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so the decision rule to be applied is to classify an object as class Ci if:

DiðxÞ.DjðxÞ for all j 6¼ i (24.13)

The following conclusions have now been arrived at:

1. The NN classifier may well not include a priori probabilities and hence could

give a classification bias.

2. It is in general wrong to train an NN classifier in such a way that an equal

number of training set patterns of each class are applied.

3. The correct way to train an NN classifier is to apply training set patterns at

the natural rates at which they arise in raw training set data.

The third conclusion is perhaps the most surprising and the most gratifying.

Essentially, it adds further fire to the principle that training set patterns should be

representative of the class distributions from which they are taken, although we now

see that it should be generalized to the following: training sets should be fully repre-

sentative of the populations from which they are drawn, where “fully representative”

includes ensuring that the frequencies of occurrence of the various classes are repre-

sentative of those in the whole population of patterns. Phrased in this way, the prin-

ciple becomes a general one, which is relevant to many types of trainable classifier.

24.4.2 The Importance of the Nearest Neighbor Classifier
The NN classifier is important in being perhaps the simplest of all classifiers to

implement on a computer. In addition, it has the advantage of being guaranteed to

give an error rate within a factor of two of the ideal error rate (obtainable with a

Bayes’ classifier). By modifying the method to base classification of any test pat-

tern on the most commonly occurring class among the k nearest training set patterns

(giving the “k-NN” method), the error rate can be reduced further until it is arbi-

trarily close to that of a Bayes’ classifier (note that Eq. (24.12) can be interpreted

as covering this case too). However, both the NN and (a fortiori) the k-NN methods

have the disadvantage that they often require enormous storage to record enough

training set pattern vectors, and correspondingly large amounts of computation to

search through them to find an optimal match for each test pattern, hence necessi-

tating the pruning and other methods mentioned earlier for cutting down the load.

24.5 THE OPTIMUM NUMBER OF FEATURES
It has been stated in Section 24.3 that error rates can be reduced by increasing the

number of features used by a classifier, but that there is a limit to this, after which

performance actually deteriorates. We here consider why this should happen.

Basically, the reason is similar to the situation where many parameters are used to

fit a curve to a set of D data points. As the number of parameters P is increased,
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the fit of the curve becomes better and better, and in general becomes perfect when

P5D. However, by that stage the significance of the fit is poor, since the para-

meters are no longer overdetermined and no averaging of their values is taking

place. Essentially, all the noise in the raw input data is being transferred to the

parameters. The same thing happens with training set patterns in feature space.

Eventually, training set patterns are so sparsely packed in feature space that the test

patterns have reduced probability of being nearest to a pattern of the same class, so

error rates become very high. This situation can also be regarded as due to a pro-

portion of the features having negligible statistical significance, i.e., they add little

additional information and serve merely to add uncertainty to the system.

However, an important factor is that the optimum number of features depends

on the amount of training a classifier receives. If the number of training set pat-

terns is increased, more evidence is available to support the determination of a

greater number of features and hence to provide more accurate classification of

test patterns. Indeed, in the limit of very large numbers of training set patterns,

performance continues to increase as the number of features is increased.

This situation was first clarified by Hughes (1968) and verified in the case of

n-tuple pattern recognition (a variant of the NN classifier due to Bledsoe and

Browning, 1959) by Ullmann (1969). Both workers produced clear curves show-

ing the initial improvement in classifier performance as the number of features

increased, this improvement being followed by a fall in performance for large

numbers of features.

Before leaving this topic, note that the above arguments relate to the number

of features that should be used but not to their selection. Clearly, some features

are more significant than others, the situation being very data-dependent. It is left

as a topic for experimental tests to determine in any case which subset of features

will minimize classification errors (see also Chittineni, 1980).

24.6 COST FUNCTIONS AND ERROR�REJECT TRADEOFF
In the foregoing sections, it has been implied that the main criterion for correct

classification is that of maximum a posteriori probability. However, although

probability is always relevant, in a practical engineering environment it can be

more important to minimize costs. Hence, it is necessary to compare the costs

involved in making correct or wrong decisions. Such considerations can be

expressed mathematically by invoking a loss function L(CijCj) that represents the

cost involved in making a decision Ci when the true class for feature x is Cj.

To find a modified decision rule based on minimizing costs, we first define a

function known as the conditional risk:

RðCijxÞ5
X
j

LðCijCjÞPðCjjxÞ (24.14)
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This function expresses the expected cost of deciding on class Ci when x is

observed. As it is wished to minimize this function, we decide on class Ci only if:

RðCijxÞ,RðCjjxÞ for all j 6¼ i (24.15)

If we were to choose a particularly simple cost function, of the form:

LðCijCjÞ5 0 for i5 j

1 for i 6¼ j

�
(24.16)

then the result would turn out to be identical to the previous probability-based

decision rule, relation (24.5). Clearly, it is only when certain errors lead to rela-

tively large (or small) costs that it pays to deviate from the normal decision rule.

Such cases arise when we are in a hostile environment and must, e.g., give prece-

dence to the sound of an enemy tank over that of other vehicles—it is better to be

oversensitive and risk a false alarm than to retain a small chance of not noticing

the hostile agent. Similarly, on a production line it may in some circumstances be

better to reject a small number of good products than to risk selling a defective

product. Cost functions therefore permit classifications to be biased in favor of a

safe decision in a rigorous, predetermined, and controlled manner, and the desired

balance of properties obtained from the classifier.

Another way of minimizing costs is to arrange for the classifier to recognize

when it is “doubtful” about a particular classification, because two or more clas-

ses are almost equally likely. Then one solution is to make a safe decision, the

decision plane in feature space being biased away from its position for maximum

probability classification. An alternative is to reject the pattern, i.e., place it into

an “unknown” category: in that case some other means can be employed for mak-

ing an appropriate classification. Such a classification could be made by going

back to the original data and measuring further features, but in many cases it is

more appropriate for a human operator to be available to make the final decision.

Clearly, the latter approach is more expensive and so introducing a “reject” classi-

fication can incur a relatively large cost factor. A further problem is that the error

rate is reduced only by a fraction of the amount that the rejection rate is

increased.2 Indeed, in a simple two-class system, the initial decrease in error rate

is only one-half the initial increase in reject rate (i.e., a 1% decrease in error rate

is obtained only at the expense of a 2% increase in reject rate), and the situation

gets rapidly worse as progressively lower error rates are attempted (Fig. 24.4).

Thus, very careful cost analysis of the error�reject tradeoff curve must be made

before an optimal scheme can be developed. Finally, note that the overall error

rate of the classification system depends on the error rate of the classifier that

examines the rejects (e.g., the human operator), and this needs to be taken into

account in determining the exact tradeoff to be used.

2All error and reject rates are assumed to be calculated as proportions of the total number of test

patterns to be classified.
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24.7 THE RECEIVER OPERATING CHARACTERISTIC
In the early sections of this chapter, there has been an implicit understanding that

classification error rates have to be reduced as far as possible, although in the last

section it was acknowledged that it is cost rather than error that is the practically

important parameter. It was also found that a tradeoff between error rate and

reject rate allows a further refinement to be made to the analysis.

Here we consider another refinement that is required in many practical cases

where binary decisions have to be made. Radar provides a good illustration of

this, showing that there are two basic types of misclassification: first, radar dis-

plays may indicate an aircraft or missile when none is present, in which case the

error is called a false positive (or in popular parlance, a false alarm); second, they

may indicate that no aircraft or missile is present when there actually is one, in

which case the error is called a false negative. Similarly, in automated industrial

inspection, when searching for deficient products, a false positive corresponds to

finding one when none is present, whereas a false negative corresponds to missing

a deficient product when one is present.

In fact, there are four relevant categories: (1) true positives (positives that

are correctly classified), (2) true negatives (negatives that are correctly classified),

(3) false positives (positives that are incorrectly classified), and (4) false negatives

(negatives that are incorrectly classified). If many experiments are carried out to

determine the proportions of these four categories in a given application, we can

obtain the four probabilities of occurrence. Using an obvious notation, these will

be related by the following formulae:

PTP 1PFN 5 1 (24.17)
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%

FIGURE 24.4

An error�reject tradeoff curve (E, error rate; R, reject rate). In this example, the error rate

E drops substantially to zero for a reject rate R of 40%. More usually E cannot be reduced

to zero until R is 100%.
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PTN 1PFP 5 1 (24.18)

(In case the reader finds the combinations of probabilities in these formulae con-

fusing, note that an object that is actually a faulty product will be either correctly

detected as such or incorrectly categorized as acceptable, in which case it is a

false negative.)

It will be apparent that the probability of error PE is the sum:

PE 5PFP 1PFN (24.19)

In general, false positives and false negatives will have different costs. Thus, the

loss function L(C1jC2) will not be the same as the loss function L(C2jC1). For exam-

ple, missing an enemy missile or failing to find a glass splinter in baby food may be

far more costly than the cost of a few false alarms (which in the case of food inspec-

tion merely means the rejection of a few good products). In fact, there are a good

many applications where there is a prime need to reduce as far as possible the num-

ber of false negatives (the number of failures to detect the requisite targets).

But how far should we go in aiming to reduce the number of false negatives?

This is an important question that should be answered by systematic analysis rather

than by ad hoc means. The key to achieving this is to note that the proportions of

false positives and false negatives will vary independently with the system setup

parameters, although frequently only a single threshold parameter need be consid-

ered in any detail. In that case we can eliminate this parameter and determine how

the numbers of false positives and false negatives depend on each other. The result

is the receiver operating characteristic or “ROC” curve (Fig. 24.5).3

The ROC curve will often be approximately symmetrical, and, if expressed

in terms of probabilities rather than numbers of items, will pass through the points

(1, 0), (0, 1)—as shown in Fig. 24.5. It will generally be highly concave so it will

pass well below the line PFP1PFN5 1, except at its two ends. The point closest to

the origin will often be close to the line PFP5PFN. This means that if false positives

and false negatives are assigned equal costs, the classifier can be optimized simply by

minimizing PE with the constraint PFP5PFN. Note, however, that in general the point

closest to the origin is not the point that minimizes PE: the point that minimizes total

error is actually the point on the ROC curve where the gradient is �1 (Fig. 24.5).

Unfortunately, there is no general theory predicting the shape of the ROC

curve. Furthermore, the number of samples in the training set may be limited

(especially in inspection if rare contaminants are being sought), and then it may

not prove possible to make an accurate assessment of the shape—especially in the

extreme wings of the curve. In some cases this problem can be tackled by model-

ing, e.g., using exponential or other functions—as shown in Fig. 24.6, where

the exponential functions lead to reasonably accurate descriptions. However, the

3While this text defines the ROC curve in terms of PFP and PFN, many other texts use alternative

definitions based, e.g., on PTP and PFP, in which case the graph will appear inverted.
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underlying shape can hardly be exactly exponential, as this would suggest that the

ROC curve tends to zero at infinity rather than at the points (1, 0), (0, 1). Also,

there will in principle be a continuity problem at the join of two exponentials.

Nevertheless, if the model is reasonably accurate over a good range of thresholds,

the relative cost factors for false positives and false negatives can be adjusted

appropriately, and an ideal working point determined systematically. Of course,

there may be other considerations: e.g., it may not be permissible for the false

negative rate to rise above a certain critical level. For examples of the use of the

ROC analysis, see Keagy et al. (1995, 1996) and Davies et al. (2003c).

24.7.1 On the Variety of Performance Measures Relating to
Error Rates

In signal detection theory (typified by the radar type of application), it is usual to

work with error rates rather than the probabilities used in Section 24.7. Hence, we

define the following:

True positive rate: tpr5
TP

P
5

TP

TP1FN
(24.20)

True negative rate: tnr5
TN

N
5

TN

TN1FP
(24.21)

0.0

0.5

1.0

0.0 0.5 1.0

PFP

PFN

FIGURE 24.5

Idealized ROC curve. The gray line of gradient 11 indicates the position that a priori might

be expected to lead to minimum error. In fact, the optimum working point is that indicated

by the dotted line, where the gradient on the curve is 21. The gray line of gradient 21

indicates the limiting worst case scenario: all practical ROC curves will lie below this line.
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False positive rate: fpr5
FP

N
5

FP

TN1FP
(24.22)

False negative rate: fnr5
FN

P
5

FN

TP1FN
(24.23)

where P and N are the actual numbers of objects in classes P and N, respectively.

Following Eqs. (24.17) and (24.18), we have:

tpr1 fnr5 1 (24.24)

and

tnr1 fpr5 1 (24.25)

These two equations show the consistency of the four definitions presented

above.

It is unfortunate and sometimes confusing that a plethora of names for these

and related parameters have arisen in various fields of pattern recognition. Below

we aim to make sense of these names as well as defining them:

Sensitivity A parameter describing the success in finding a particular type of
target. It is also a synonym for hit-rate. It is therefore equal to tpr.

Recall A term used when describing the success in finding an item in a
database. It is therefore also equal to tpr.

0.0

0.5

1.0

0.0 0.5 1.0
PFN

PFP

FIGURE 24.6

Fitting a ROC curve using exponential functions. Here the given ROC curve (see Davies

et al., 2003c) has distinctive steps resulting from a limited set of data points. A pair of

exponential curves fits the ROC curve quite well along the two axes, each having an

obvious region that it models best. In this case, the crossover region is reasonably smooth,

but there is no real theoretical reason for this. Furthermore, exponential functions will not

pass through the limiting points (0, 1) and (1, 0).
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Specificity A term that is important in medicine, and relates to the
proportion of well patients who are accurately told after a test
that they are not ill. It is therefore equal to tnr5 12 fpr.

Discriminability A term used when describing the success in differentiating a
particular type of target from a similar type of target. It is
therefore equal to TP/(TP1 FP).

Precision A term describing the accuracy in picking out a particular type
of target from any distractors, including noise and clutter. It is
also equal to TP/(TP1 FP).

Accuracy A term used to describe the overall success rate when
distinguishing between foreground and background. We can
deduce that it must be equal to (TP1 TN)/(P1N).

False alarm rate Another synonym for fpr.
Positive predictive
value

Another synonym for precision.

F-measure A measure that is used as an overall performance indicator,
combining the recall and precision measures (or alternatively the
sensitivity and discriminability measures). Because it is the
numbers of errors (FP1 FN) that have to be combined (rather
than the error rates themselves), the formula for F-measure may

initially appear overcomplex:
2

1=recall11=precision
.

A more general formula for F-measure is the following:

Fγ-measure5
1

γ
recall

1 ð12 γÞ
precision

(24.26)

where γ can be adjusted to give the most appropriate weighting between recall

and precision: it is normally given a value close to 0.5.

Quite often, recall and precision are used together to form ROC-like graphs,

although they are distinct from ROC curves which typically show tpr vs. fpr.

(Note that, although recall5 tpr, precision 6¼ fpr.)

Finally, a valuable performance indicator for binary classifiers is obtained by

finding the area under the curve (AUC) for a tpr vs. fpr ROC curve. It is largest

when the ROC curve lies close to the tpr5 1, fpr5 0 axes. Using this measure,

the best classifier is the one that has the largest AUC.

24.8 MULTIPLE CLASSIFIERS
In recent years, there have been moves to make the classification process more

reliable by application of multiple classifiers working in cooperation. The basic

concept is much like that of three magistrates coming together to make a more

reliable judgement than any can make alone. Each is expert in a variety of things,

but not in everything, so putting their knowledge together in an appropriate way

should permit more reliable judgements to be made. A similar concept applies to

expert AI systems: multiple expert systems should be able to make up for each
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other’s shortcomings. In all these cases, some way should exist for getting the

most out of the individual classifiers without confusion reigning.
Note that the idea is not just to take all the feature detectors that the classifiers

use and to replace their output decision-making devices with a single more com-

plex decision-making unit. Indeed, such a strategy could well run into the prob-

lem discussed in Section 24.5—of exceeding the optimum number of features: at

best only a minor improvement would result from such a strategy, and at worst

the system would be grossly failure-prone. On the contrary, the idea is to take the

final classification of a number of complete but totally separate classifiers and to

combine their outputs to obtain a substantially improved output. Furthermore, it

could happen that the separate classifiers use totally different strategies to arrive

at their decisions: one may be a nearest neighbor classifier; another may be a

Bayes’ classifier; and another may be a neural network classifier (see Sections

24.13�24.16). Likewise, one may employ structural pattern recognition, one

might use SPR, and another might use syntactic pattern recognition. Each will be

respectable in its own right: each will have its own strengths and weaknesses.

Part of the idea is one of convenience: to make use of any soundly based classi-

fier that is available, and to boost its effectiveness by using it in conjunction with

other soundly based classifiers.
The next task is to see how to achieve this in practice. Perhaps the most obvi-

ous way forward is to get the individual classifiers to vote for the class of each

input pattern. While this is a nice idea, it will often fail because the weaknesses

of the individual classifiers may be worse than their strengths. Thus, the concept

must be made more sophisticated.

Another strategy is again to allow the individual classifiers to vote, but this

time to make them do so in an exclusive manner, so that as many classes as possi-

ble are eliminated for each input pattern. This is achievable with a simple inter-

section rule: a class is accepted as a possibility only if all the classifiers indicate

that it is a possibility. The strategy is implemented by applying a threshold to

each classifier in a special way, which will now be described.

A prerequisite for this strategy to work is that each classifier must not only

give a class decision for each input pattern: it must also give the ranks of all pos-

sible classes for each pattern. In other words, it must give its first choice of class

for any pattern, its second choice for that pattern, and so on. Then the classifier is

labeled with the rank it assigned to the true class of that pattern. In fact, we apply

each classifier to the whole training set and get a table of ranks (Table 24.1).

Finally, we find the worst case (largest rank)4 for each classifier, and take that as

a threshold value that will be used in the final multiple classifier. When using this

method for testing input patterns, only those classifiers that are not excluded by

4In everyday parlance, the worst case corresponds to the lowest rank, which is here the largest

numerical rank; similarly, the highest rank is the smallest numerical rank. It is obviously necessary

to be totally unambiguous about this nomenclature.
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the threshold have their outputs intersected to give the final list of classes for the

input pattern.

The above “intersection strategy” focuses on the worst-case behavior of the

individual classifiers, and the result could be that a number of classifiers will

hardly reduce the list of possible classes for the input patterns. This tendency can

be tackled by an alternative “union strategy,” which focusses on the specialisms

of the individual classifiers: the aim is then to find a classifier that recognizes

each particular pattern well. To achieve this, we look for the classifier with the

smallest rank (classifier rank being defined exactly as already defined above for

the intersection strategy) for each individual pattern (Table 24.2). Having found

the smallest rank for the individual input patterns, we determine the largest of

these ranks that arises for each classifier as we go right through all the input pat-

terns. Applying this value as a threshold now determines whether the output of

the classifier should be used to help determine the class of a pattern. Note that the

threshold is determined in this way using the training set and is later used to

decide which classifiers to apply to individual test patterns. Thus, for any pattern

a restricted set of classifiers is identified that can best judge its class.

To clarify the operation of the union strategy, let us examine how well it will

work on the training set. In fact, it is guaranteed to retain enough classifiers to

ensure that the true class of any pattern is not excluded (although naturally, this is

not guaranteed for any member of the test set). Hence, the aim of employing a

classifier that recognizes each particular pattern well is definitely achieved.

Unfortunately, this guarantee is not obtained without cost. Specifically, if a

member of the training set is actually an outlier, the guarantee will still apply,

and the overall performance may be compromised. This problem can be tackled

Table 24.1 Determining a Set of Classifiers for the Intersection Strategy

Classifier Ranks

C1 C2 C3 C4 C5

D1 5 3 7 1 8
D2 4 9 6 4 2
D3 5 6 7 1 4
D4 4 7 5 3 5
D5 3 5 6 5 4
D6 6 5 4 3 2
D7 2 6 1 3 8
thr 6 9 7 5 8

In the upper section of this table, the original classifier ranks are shown for each input pattern; in the
bottom line of the table, only the worst-case rank is retained. When later applying test patterns, this
can be used as the threshold (marked ‘thr’) to determine which classifiers should be employed.

690 CHAPTER 24 Statistical Pattern Recognition



in many ways, but a simple possibility is to eliminate excessively bad exemplars

from the training set. Another way is to abandon the union strategy altogether and

go for a more sophisticated voting strategy. Other approaches involve reordering

the data to improve the rank of the correct class (Ho et al., 1994).

24.9 CLUSTER ANALYSIS
24.9.1 Supervised and Unsupervised Learning
In the earlier parts of this chapter, we made the implicit assumption that the classes

of all the training set patterns are known, and in addition that they should be used

in training the classifier. Indeed, this assumption might be thought of as inescap-

able. However, classifiers may actually use two approaches to learning—supervised

learning (in which the classes are known and used in training) and unsupervised

learning (in which they are either unknown or else known and not used in training).

Unsupervised learning can frequently be advantageous in practical situations. For

example, a human operator is not required to label all the products coming along a

conveyor, as the computer can find out for itself both how many classes of product

there are and which categories they fall into: in this way considerable operator

effort is eliminated; in addition, it is not unlikely that a number of errors would

thereby be circumvented. Unfortunately, unsupervised learning involves a number

of difficulties, as will be seen in Subsection 24.9.2.

Table 24.2 Determining a Set of Classifiers for the Union Strategy

Classifier Ranks Best Classifiers

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

D1 5 3 7 1 8 0 0 0 1 0
D2 4 9 6 4 2 0 0 0 0 2
D3 5 6 7 1 4 0 0 0 1 0
D4 4 7 5 3 5 0 0 0 3 0
D5 3 5 6 5 4 3 0 0 0 0
D6 6 5 4 3 2 0 0 0 0 2
D7 2 6 1 3 8 0 0 1 0 0

min�max threshold 3 0 1 3 2

In the left-hand section of this table, the original classifier ranks are shown for each input pattern: in
the right-hand section of the table, only one rank is retained, namely that obtaining for the classifier
that is best able to recognize that pattern. Note that to facilitate the next piece of analysis—finding the
thresholds on the classifier ranks—all remaining places in the table are packed with zeros. A zero final
threshold then indicates a classifier that is of no help in analyzing the input data.
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Before proceeding, we give two other reasons why unsupervised learning is

useful. First, when the characteristics of objects vary with time—e.g., beans

changing in size and color as the season develops—it will be necessary to track

these characteristics within the classifier, and unsupervised learning provides an

excellent means of approaching this task. Second, when setting up a recognition

system, the characteristics of objects, and in particular their most important para-

meters (e.g., from the point of view of quality control), may well be unknown,

and it will be useful to gain some insight into the nature of the data. Thus, types

of fault will need to be logged, and permissible variants on objects will need to

be noted. As an example, many OCR fonts (such as Times Roman) have a letter

“a” with a stroke bent over the top from right to left, although other fonts (such

as Monaco) do not have this feature. An unsupervised classifier will be able to

flag this up by locating a cluster of training set patterns in a totally separate part

of feature space (see Fig. 24.7). In general, unsupervised learning is about the

location of clusters in feature space.

24.9.2 Clustering Procedures
As indicated above, an important reason for performing cluster analysis is charac-

terization of the input data. However, the underlying motivation is normally to

classify test data patterns reliably. To achieve these aims, it will be necessary

FIGURE 24.7

Location of clusters in feature space. Here the letters correspond to samples of characters

taken from various fonts. The small cluster of a’s with strokes bent over the top from right

to left appear at a separate location in feature space: this type of deviation should be

detectable by cluster analysis.
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both to partition feature space into regions corresponding to significant clusters

and to label each region (and cluster) according to the type of data involved. In

practice, this can happen in two ways:

1. By performing cluster analysis, and then labeling the clusters by specific

queries to human operators on the classes of a small number of individual

training set patterns

2. By performing supervised learning on a small number of training set patterns,

and then performing unsupervised learning to expand the training set to realis-

tic numbers of examples

In either case, there is ultimately no escape from the need for supervised clas-

sification. However, by placing the main emphasis on unsupervised learning we

limit tedium and the possibility of preconceived ideas about possible classes from

affecting the final recognition performance.

Before proceeding further, note that there are cases where we may have abso-

lutely no idea in advance about the number of clusters in feature space: this

occurs in classifying the various regions in satellite images. Such cases are in

direct contrast with applications such as OCR or recognizing chocolates being

placed in a chocolate box.

Cluster analysis involves a number of very significant problems. Not least is

the visualization problem. First, in one, two, or even three dimensions, we can

easily visualize and decide on the number and location of any clusters, but this

capability is misleading: we cannot extend this capability to feature spaces of

many dimensions. Second, computers do not visualize as we do, and special algo-

rithms will have to be provided to enable them to do so. While computers could

be made to emulate our capability in low-dimensional feature spaces, a combina-

torial explosion would occur if we attempted this for high-dimensional spaces.

This means that we will have to develop algorithms that operate on lists of feature

vectors, if we are to produce automatic procedures for cluster location.

Available algorithms for cluster analysis fall into two main groups—agglom-

erative and divisive. Agglomerative algorithms start by taking the individual fea-

ture points (training set patterns, excluding class) and progressively grouping

them together according to some similarity function until a suitable target crite-

rion is reached. Divisive algorithms start by taking the whole set of feature points

as a single large cluster, and progressively dividing it until some suitable target

criterion is reached. Let us assume that there are P feature points. Then, in the

worst case, the number of comparisons between pairs of individual feature point

positions, which will be required to decide whether to combine a pair of clusters

in an agglomerative algorithm, will be:

PC2 5
1
2
PðP2 1Þ (24.27)

while the number of iterations required to complete the process will be of order

P�k (here we are assuming that the final number of clusters to be found is k,
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where k#P). On the other hand, for a divisive algorithm, the number of compari-

sons between pairs of individual feature point positions will be reduced to:

kC2 5
1
2
kðk21Þ (24.28)

while the number of iterations required to complete the process will be of order k.

Although it would appear that divisive algorithms require far less computation

than agglomerative algorithms, this is not so. This is because any cluster contain-

ing p feature points will have to be examined for a huge number of potential

splits into subclusters, the actual number being of order:

Xp
q51

pCq 5
Xp
q51

p!ðp2 qÞ!
q!

(24.29)

This means that in general the agglomerative approach will have to be

adopted. In fact, the type of agglomerative approach outlined above is exhaustive

and rigorous, and a less exacting, iterative approach can be used. First, a

suitable number k of cluster centers are set (these can be decided from a priori

considerations, or by making arbitrary choices. Second, each feature vector is

assigned to the closest cluster center. Third, the cluster centers are recalculated.

This process is repeated if any feature points have moved from one cluster to

another during the iteration, although termination can also be instituted if the

quality of clustering ceases to improve. The overall algorithm, which was origi-

nally due to Forgy (1965), is given in Table 24.3.

Clearly, the effectiveness of this algorithm will be highly data-dependent—in

particular, with regard to the order in which the data points are presented. In addi-

tion, the result could be oscillatory or nonoptimal (in the sense of not arriving at

the best solution). This could happen if at any stage a single cluster center

arose near the center of a pair of small clusters. In addition, the method gives no

indication of the most appropriate number of clusters. Accordingly, a number

of variant and alternative algorithms have been devised. One such algorithm is

the ISODATA algorithm (Ball and Hall, 1966). This is similar to Forgy’s

method, but is able to merge clusters that are close together and to split elongated

clusters.

Table 24.3 Basis of Forgy’s Algorithm for Cluster Analysis

choose target number k of clusters;
set initial cluster centers;
calculate quality of clustering;
do f

assign each data point to the closest cluster center;
recalculate cluster centers;
recalculate quality of clustering;

g until no further change in the clusters or the quality of the clusters;
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Another disadvantage of iterative algorithms is that it may not be obvious

when to get them to terminate: as a result, they are liable to be too computation

intensive. Thus, there has been some support for noniterative algorithms.

MacQueen’s k-means algorithm (MacQueen, 1967) is one of the best known non-

iterative clustering algorithms; it involves two runs over the data points, one being

required to find the cluster centers and the other being required to finally classify

the patterns (see Table 24.4). Again, the choice of which data points are to act as

the initial cluster centers can be either arbitrary or on some more informed basis.

Noniterative algorithms are, as indicated earlier, very dependent on the order of

presentation of the data points. With image data this is especially problematic, as

the first few data points are quite likely to be similar (e.g., all derived from sky or

other background pixels). A useful way of overcoming this problem is to randomize

the choice of data points so that they can arise from anywhere in the image. In gen-

eral, noniterative clustering algorithms are less effective than iterative algorithms

because they are overinfluenced by the order of presentation of the data.

Overall, the main problem with the algorithms described above is the lack of

indication they give of the most appropriate value of k. However, if a range

of possible values for k is known, all of them can be tried, and the one giving the

best performance in respect of some suitable target criterion can be taken as provid-

ing an optimal result. In that case, we will have found the set of clusters that, in

some specified sense, gives the best overall description of the data. Alternatively,

some method of analyzing the data to determine k can be used before final cluster

analysis: the Zhang and Modestino (1990) approach falls into this category.

24.10 PRINCIPAL COMPONENTS ANALYSIS
Closely related to cluster analysis is the concept of data representation. One pow-

erful way of approaching this task is that of principal components analysis. This

involves finding the mean of a cluster of points in feature space and then finding

the principal axes of the cluster in the following way. First an axis is found which

passes through the mean position and which gives the maximum variance when

Table 24.4 Basis of MacQueen’s k-means Algorithm

choose target number k of clusters;
set the k initial cluster centers at k data points;
for all other data points f ==first pass

assign data point to closest cluster center;
recalculate relevant cluster center;

g
for all data points ==second pass

re-assign data point to closest cluster center;
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the data is projected onto it. Then a second such axis is found which maximizes

variance in a direction normal to the first. This process is carried out until a total

of N principal axes have been found for an N-dimensional feature space. The pro-

cess is illustrated in Fig. 24.8. In fact, the process is entirely mathematical and

need not be undertaken in the strict sequence indicated above. It merely involves

finding a set of orthogonal axes that diagonalizes the covariance matrix.

The covariance matrix for the input population is defined as:

C5EfðxðpÞ 2mÞðxðpÞ 2mÞTg (24.30)

where x(p) is the location of the pth data point, and m is the mean of the P data

points; E{. . .} indicates expectation value for the underlying population. We can

estimate C from the following equations:

C5
1

P

XP
p51

xðpÞxTðpÞ 2mmT (24.31)

m5
1

P

XP
p51

xðpÞ (24.32)
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FIGURE 24.8

Illustration of principal components analysis. Here the dots represent patterns in feature

space and are initially measured relative to the x- and y-axes. Then the sample mean is

located at 00, and the direction 00x0 of the first principal component is found as the

direction along which the variance is maximized. The direction 00y0 of the second principal

component is normal to 00x0; in a higher dimensional space it would be found as the

direction normal to 00x0 along which the variance is maximized.
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Since C is real and symmetric, it is possible to diagonalize it using a

suitable orthogonal transformation matrix A, obtaining a set of N orthonormal

eigenvectors ui with eigenvalues λi given by:

Cui 5λiui i5 1; 2; . . . ; Nð Þ (24.33)

The vectors ui are derived from the original vectors xi by:

ui 5Aðxi2mÞ (24.34)

and the inverse transformation needed to recover the original data vectors is:

xi 5m1ATui (24.35)

Here we have recalled that, for an orthogonal matrix:

A21 5AT (24.36)

In fact it may be shown that A is the matrix whose rows are formed from the

eigenvectors of C, and that the diagonalized covariance matrix C0 is given by:

C0 5ACAT (24.37)

so that:

C0 5

λ1 0 . . . 0

0 λ2 0

^ & ^
0 0 . . . λN

2
664

3
775 (24.38)

Note that in an orthogonal transformation, the trace of a matrix remains

unchanged. Thus, the trace of the input data is given by:

trace C5 trace C0 5
XN
i51

λi 5
XN
i51

s2i (24.39)

where we have interpreted the λi as the variances of the data in the directions of

the principal component axes (note that for a real symmetric matrix, the eigenva-

lues are all real and positive).

In what follows, we shall assume that the eigenvalues have been placed in an

ordered sequence, starting with the largest. In that case, λ1 represents the most sig-

nificant characteristic of the set of data points, with the later eigenvalues represent-

ing successively less significant characteristics. We could even go so far as to say

that, in some sense, λ1 represents the most interesting characteristic of the data,

while λN would be largely devoid of “interest.” More practically, if we ignored λN,
we might not lose much useful information, and indeed the last few eigenvalues

would frequently represent characteristics that are not statistically significant and

are essentially noise. For these reasons, principal components analysis is commonly

used for reduction in the dimensionality of the feature space from N to some lower

value N0. In some applications, this would be taken as leading to a useful amount
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of data compression. In other applications, it would be taken as providing a reduc-

tion in the enormous redundancy present in the input data.

We can quantify these results by writing the variance of the data in the

reduced dimensionality space as:

trace C0ð Þreduced 5
XN 0

i51

λi 5
XN 0

i51

s2i (24.40)

Not only is it now clear why this leads to reduced variance in the data, but

also we can see that the mean square error obtained by making the inverse trans-

formation (Eq. (24.35)) will be:

e2 5
XN
i51

s2i 2
XN 0

i51

s2i 5
XN

i5N 011

s2i (24.41)

One application in which principal components analysis has become especially

important is the analysis of multispectral images, e.g., from earth-orbiting satel-

lites. Typically, there will be six separate input channels (e.g., three color and

three infra-red), each providing an image of the same ground region. If these

images are 5123 512 pixels in size, there will be about a quarter of a million

data points and these will have to be inserted into a six-dimensional feature space.

After finding the mean and covariance matrix for these data points, the latter is

diagonalized and a total of six principal component images can be formed.

Commonly, only two or three of these will contain immediately useful informa-

tion, and the rest can be ignored. (For example, the first three of the six principal

component images may well possess 95% of the variance of the input images.)

Ideally, the first few principal component images in such a case will highlight

such areas as fields, roads, and rivers, and this will be precisely the data that is

required for map-making or other purposes. In general, the vital pattern recogni-

tion tasks can be aided and considerable savings in storage can be achieved on

the incoming image data by attending to just the first few principal components.

Finally, it is as well to note that principal components analysis really provides

a particular form of data representation. In itself it does not deal with pattern clas-

sification, and methods that are required to be useful for the latter type of task

must possess useful discrimination. Thus, selection of features simply because

they possess the highest variability does not mean that they will necessarily per-

form well in pattern classifiers. Another important factor that is relevant to the

whole study of data analysis in feature space is the scales of the various features.

Often, these will be an extremely variegated set, including length, weight, color,

numbers of holes, and so on. Clearly, such a set of features will have no special

comparability and are unlikely even to be measurable in the same units. This

means that placing them in the same feature space and assuming that the scales

on the various axes should have the same weighting factors must be invalid. One

way of tackling this problem is to normalize the individual features to some
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standard scale given by measuring their variances. Such a procedure will naturally

radically change the results of principal components calculations and further miti-

gates against principal components methodology being used thoughtlessly. On the

other hand, there are some occasions when different features can be compatible,

and where principal components analysis can be performed without such worries:

one such situation is where all the features are pixel intensities in the same win-

dow (this case is discussed in Section 8.5).

24.11 THE RELEVANCE OF PROBABILITY IN
IMAGE ANALYSIS

Having seen the success of Bayes’ theory in pointing to apparently absolute

answers in the interpretation of certain types of image, it is attractive to consider

complex scenes in terms of the probabilities of various interpretations and the

likelihood of a particular interpretation being the correct one. Given a sufficiently

large number of such scenes and their interpretations, it seems that it ought to be

possible to use them to train a suitable classifier. However, practical interpretation

in real time is quite another matter. Next, note that the eye�brain system does

not appear to operate in a manner corresponding to the algorithms we have stud-

ied. Instead, it appears to pay attention to various parts of an image in a nonpre-

determined sequence of “fixations” of the eye, interrogating various parts of the

scene in turn and using the newly acquired information to work out where the

next piece of relevant information is to come from. Clearly, it is employing a pro-

cess of sequential pattern recognition, which saves effort overall by progressively

building up a store of knowledge about relevant parts of the scene and at the

same time forming and testing hypotheses about its structure.

The above process can be considered as one of modifying and updating the

a priori probabilities as analysis progresses. This is an inherently powerful pro-

cess, since the eye is thereby not tied to “average” a priori probabilities for all

scenes but is able to use information in a particular scene to improve on the aver-

age a priori probabilities. However, it will be difficult to estimate at all accurately

the a priori probabilities for sequences of real, complex scenes. So while this is a

tempting approach, its realization will be fraught with difficulty.

Nevertheless, the concept of probability is useful when it can validly be

applied. This certainly covers cases where a restricted range of images can arise,

such that the consequent image description contains relatively few bits of infor-

mation—viz. those forming the various pattern class names. In addition, structured

images containing several parts that can separately be recognized and then cou-

pled together can also be dealt with under the SPR (probabilistic) formalism.

Overall, there are limits to its application, but it can still be used in conjunction

with structural, syntactic, and other forms of pattern recognition in the design of

more powerful recognition systems.
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24.12 ANOTHER LOOK AT STATISTICAL PATTERN
RECOGNITION: THE SUPPORT VECTOR MACHINE

The support vector machine (SVM) is a new paradigm for SPR, and emerged dur-

ing the 1990s as an important contender for practical applications. The basic con-

cept relates to linearly separable feature spaces and is illustrated in Fig. 24.9(a).

The idea is to find the pair of parallel hyperplanes that leads to the maximum sep-

aration between two classes of feature so as to provide the greatest protection

against errors. In Fig. 24.9(a), the dashed set of hyperplanes has lower separation

and thus represents a less ideal choice, with reduced protection against errors.

Each pair of parallel hyperplanes is characterized by specific sets of feature

points—the so-called “support vectors.” In the feature space shown in Fig. 24.9

(a), the planes are fully defined by three support vectors, although clearly this par-

ticular value only applies for 2-D feature spaces: in N dimensions the number of

support vectors required is N11. This provides an important safeguard against

overfitting; since however many data points exist in a feature space, the maxi-

mum number of vectors used to describe it is N11.

For comparison, Fig. 24.9(b) shows the situation that would exist if the nearest

neighbor method were employed. In this case the protection against errors would

be higher, as each position on the separating surface is optimized to the highest

local separation distance. However, this increase in accuracy comes at quite high

cost in the much larger number of defining example patterns. Indeed, as indicated

above, much of the gain of the SVM comes from its use of the smallest possible

number of defining example patterns (the support vectors). The disadvantage is

that the basic method only works when the dataset is linearly separable.

d

(a) (b)

FIGURE 24.9

Principle of the support vector machine. Part (a) shows two sets of linearly separable

feature points: the two parallel hyperplanes have the maximum possible separation d, and

should be compared with alternatives such as the pair shown dashed. Part (b) shows the

optimal piecewise linear solution that would be found by the nearest neighbor method.
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To overcome this problem, it is possible to transform the training and test data

to a feature space of higher dimension where the data does become linearly sepa-

rable. In fact, this approach will tend to reduce or even eliminate the main advan-

tage of the SVM and lead to overfitting of the data plus poor generalizing ability.

However, if the transformation that is employed is nonlinear, the final (linearly

separable) feature space could have a manageable number of dimensions, and the

advantage of the SVM may not be eroded. Nevertheless, there comes a point

where the basic restriction of linear separability has to be questioned. At that

point, it has been found useful to build “slack” variables si into the optimization

equations to represent the amount by which the separability constraint can be vio-

lated. This is engineered by adding a cost term CΣisi to the normal error function:

C is adjustable and acts as a regularizing parameter, which is optimized by moni-

toring the performance of the classifier on a range of training data.

For further information on this topic, the reader should consult the original

papers by Vapnik, including Vapnik (1998), the specialized text by Cristianini

and Shawe-Taylor (2000), or other texts on SPR, such as Webb (2002).

24.13 ARTIFICIAL NEURAL NETWORKS
The concept of an artificial neural network that could be useful for pattern recog-

nition started in the 1950s and continued right through the 1960s. For example,

Bledsoe and Browning (1959) developed the “n-tuple” type of classifier that

involved bit-wise recording and lookup of binary feature data, leading to the

“weightless” or “logical” type of ANN. Although the latter type of classifier

maintained a continuous following for many years, it is probably no exaggeration

to say that it is Rosenblatt’s “perceptron” (1958, 1962), which has had the great-

est influence on the subject.

The simple perceptron is a linear classifier that classifies patterns into two

classes. It takes a feature vector x5 (x1, x2,. . ., xN) as its input, and produces a

single scalar output
PN

i51 wixi, the classification process being completed by

applying a threshold (Heaviside step) function at θ (see Fig. 24.10). The mathe-

matics is simplified by writing �θ as w0, and taking it to correspond to an input

x0 that is maintained at a constant value of unity. The output of the linear part of

the classifier is then written in the form:

d5
XN
i51

wixi 2 θ5
XN
i51

wixi 1w0 5
XN
i50

wixi (24.42)

and the final output of the classifier is given by:

y5 f ðdÞ5 f
XN
i50

wixi

 !
(24.43)
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This type of neuron can be trained using a variety of procedures, such as the

fixed increment rule given in Table 24.5. (The original fixed increment rule used

a learning rate coefficient η equal to unity.) The basic concept of this algorithm

was to try to improve the overall error rate by moving the linear discriminant

plane a fixed distance toward a position where no misclassification would

occur—but only doing this when a classification error had occurred:

wiðk1 1Þ5wiðkÞ yðkÞ5ωðkÞ (24.44)

wiðk1 1Þ5wiðkÞ1 η½ωðkÞ2 yðkÞ�xiðkÞ yðkÞ 6¼ ωðkÞ (24.45)

In these equations, the parameter k represents the kth iteration of the classifier

and ω(k) is the class of the kth training pattern. It is clearly important to know

whether this training scheme is effective in practice. In fact, it is possible to show

that if the algorithm is modified so that its main loop is applied sufficiently many

–θw1

w0

1

θ

f

u0

1

–1

w2

w3

wN

wN

xN

x3

x2

x1

(a)

(b)

(c)

w3

w2

w1

x1

x2

x3

xN

FIGURE 24.10

Simple perceptron. (a) shows the basic form of a simple perceptron: input feature values

are weighted and summed, and the result fed via a threshold unit to the output

connection. (b) gives a convenient shorthand notation for the perceptron; and (c) shows

the activation function of the threshold unit.
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times, and if the feature vectors are linearly separable, then the algorithm will

converge to a correct error-free solution.

Unfortunately, most sets of feature vectors are not linearly separable. Thus, it

is necessary to find an alternative procedure for adjusting the weights. This is

achieved by the Widrow�Hoff delta rule, which involves making changes in the

weights in proportion to the error δ5ω2 d made by the classifier. (Note that the

error is calculated before thresholding to determine the actual class, i.e., δ is cal-

culated using d rather than f(d).) Thus, we obtain the Widrow�Hoff delta rule in

the form:

wiðk1 1Þ5wiðkÞ1 ηδxiðkÞ5wiðkÞ1 η½ωðkÞ2 dðkÞ�xiðkÞ (24.46)

There are two important ways in which the Widrow�Hoff rule differs from

the fixed increment rule:

1. An adjustment is made to the weights whether or not the classifier makes an

actual classification error.

2. The output function d used for training is different from the function y5 f(d)

used for testing.

These differences underline the revised aim of being able to cope with nonli-

nearly separable feature data. Figure 24.11 clarifies the situation by appealing to

a 2-D case. Figure 24.11(a) shows separable data, which is straightforwardly fit-

ted by the fixed increment rule. However, the fixed increment rule is not designed

to cope with nonseparable data of the type shown in Fig. 24.11(b) and results in

instability during training and inability to arrive at an optimal solution. On the

other hand, the Widrow�Hoff rule copes satisfactorily with this type of data. An

interesting addendum to the case of Fig. 24.11(a) is that although the fixed incre-

ment rule apparently reaches an optimal solution, the rule becomes “complacent”

once a zero error situation has occurred, whereas an ideal classifier would arrive

at a solution that minimizes the probability of error. Clearly, the Widrow�Hoff

rule goes some way to solving this problem.

Table 24.5 Perceptron Fixed Increment Algorithm

initialize weights with small random numbers;
select suitable value of learning rate coefficient η in the range 0� 1;
do f

for all patterns in the training set f
obtain feature vector x and class ω;
compute perceptron output y;
if ðy !5ωÞ adjust weights according to wi 5wi 1 ηðω2yÞxi;

g
g until no further change;
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So far we have considered what can be achieved by a simple perceptron. Clearly,

although it is only capable of dichotomizing feature data, a suitably trained array of

simple perceptrons—the “single-layer perceptron” of Fig. 24.12—should be able to

divide feature space into a large number of subregions bounded (in multidimensional

space) by hyperplanes. However, in a multiclass application, this approach would

require a very large number of simple perceptrons—up to cC2 5
1
2
cðc21Þ for a

c-class system. Hence, there is a need to generalize the approach by other means. In

particular, multilayer perceptron (MLP) networks (see Fig. 24.13)—which would

emulate the neural networks in the brain—seem poised to provide a solution since

they should be able to recode the outputs of the first layer of simple perceptrons.

Rosenblatt himself proposed such networks, but was unable to propose general

means for training them systematically. In 1969, Minsky and Papert published their

famous monograph, and in discussing the MLP raised the specter of “the monster

of vacuous generality”; they drew attention to certain problems that apparently

would never be solved using MLPs. For example, diameter-limited perceptrons

(those that view only small regions of an image within a restricted diameter) would

be unable to measure large-scale connectedness within images. These considera-

tions discouraged effort in this area, and for many years attention was diverted to

other areas such as expert systems. It was not until 1986 that Rumelhart et al. were

successful in proposing a systematic approach to the training of MLPs. Their solu-

tion is known as the back-propagation algorithm.

l5l4l3

l2

l1

(a) (b)

FIGURE 24.11

Separable and nonseparable data. Part (a) shows two sets of pattern data: lines l1�l5
indicate possible successive positions of a linear decision surface produced by the fixed

increment rule. Note that the latter is satisfied by the final position l5. The dotted line

shows the final position that would have been produced by the Widrow�Hoff delta rule.

Part (b) shows the stable position that would be produced by the Widrow�Hoff rule in the

case of nonseparable data: in this case, the fixed increment rule would oscillate over a

range of positions during training.
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24.14 THE BACK-PROPAGATION ALGORITHM
The problem of training an MLP can be simply stated: a general layer of an MLP

obtains its feature data from the lower layers and receives its class data from

higher layers. Hence, if all the weights in the MLP are potentially changeable, the

information reaching a particular layer cannot be relied upon: there is no reason

why training a layer in isolation should lead to overall convergence of the MLP

toward an ideal classifier (however defined). In addition, it is not evident what

the optimal MLP architecture should be. While it might be thought that this is a

rather minor difficulty, in fact this is not so: indeed, this is but one example of

the so-called “credit assignment problem.”5

One of the main difficulties in predicting the properties of MLPs and hence of

training them reliably is the fact that neuron outputs swing suddenly from one

state to another as their inputs change by infinitesimal amounts. Hence, we might

Input
layer

Output
layer

1

1

1

FIGURE 24.12

Single-layer perceptron. The single-layer perceptron employs a number of simple

perceptrons in a single layer. Each output indicates a different class (or region of feature

space). In more complex diagrams, the bias units (labeled “1”) are generally omitted for

clarity.

5This is not a good first example by which to define the credit assignment problem (in this case it

would appear to be more of a deficit assignment problem). The credit assignment problem is the

problem of correctly determining the local origins of global properties and making the right assign-

ments of rewards, punishments, corrections, and so on, thereby permitting the whole system to be

optimized systematically.
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consider removing the thresholding functions from the lower layers of MLP net-

works to make them easier to train. Unfortunately, this would result in these

layers acting together as larger linear classifiers, with far less discriminatory

power than the original classifier (in the limit we would have a single linear clas-

sifier with a single thresholded output connection, so the overall MLP would act

as a single-layer perceptron).

The key to solving these problems was to modify the perceptrons composing the

MLP by giving them a less “hard” activation function than the Heaviside function.

As we have seen, a linear activation function would be of little use, but one of “sig-

moid” shape, such as the tanh function (Fig. 24.14), is effective, and indeed is

almost certainly the most widely used of the available functions.6 Once these softer

activation functions were used, it became possible for each layer of the MLP to

Input
layer

First
hidden
layer

Second
hidden
layer

Output
layer

FIGURE 24.13

Multilayer perceptron. The multilayer perceptron employs several layers of perceptrons. In

principle, this topology permits the network to define more complex regions of feature

space, and thus perform much more precise pattern recognition tasks. Finding systematic

means of training the separate layers becomes the vital issue. For clarity, the bias units

have been omitted from this and later diagrams.

6We do not here make a marked distinction between symmetrical activation functions and alterna-

tives that are related to them by shifts of axes, although the symmetrical formulation seems prefera-

ble as it emphasizes bidirectional functionality. In fact, the tanh function, which ranges from �1 to

1, can be expressed in the form: tanhu5 ðeu2 e2uÞ=ðeu 1 e2uÞ5 12 2=ð11 e2uÞ and is thereby

closely related to the commonly used function ð11 e2vÞ21. It can now be deduced that the latter

function is symmetrical, although it ranges from 0 and 1 as v goes from �N to N.
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“feel” the data more precisely and thus training procedures could be set up on a sys-

tematic basis. In particular, the rate of change of the data at each individual neuron

could be communicated to other layers which could then be trained appropriately—

though only on an incremental basis. We shall not go through the detailed mathe-

matical procedure, or proof of convergence, beyond stating that it is equivalent to

energy minimization and gradient descent on a (generalized) energy surface.

Instead, we give an outline of the backpropagation algorithm (see Table 24.6).

Nevertheless, some notes on the algorithm are in order:

1. The outputs of one node are the inputs of the next, and an arbitrary choice is

made to label all variables as output (y) parameters rather than as input (x)

variables; all output parameters are in the range 0 to 1.

2. The class parameter ω has been generalized as the target value t of the output

variable y.

3. For all except the final outputs, the quantity δj has to be calculated using the

formula δj 5 yjð12 yjÞðΣmδmwjmÞ, the summation having to be taken over all

the nodes in the layer above node j.

4. The sequence for computing the node weights involves starting with the out-

put nodes and then proceeding downward one layer at a time.

5. If there are no hidden nodes, the formula reverts to the Widrow�Hoff delta

rule, except that the input parameters are now labeled yi, as indicated above.

f

u0

1

–1

f

u0

1

–1
(a) (b)

f

u0

1

–1
(c)

FIGURE 24.14

Symmetric activation functions. This figure shows a series of symmetric activation

functions. (a) The Heaviside activation function used in the simple perceptron. (b) A linear

activation function, which is, however, limited by saturation mechanisms. (c) A sigmoidal

activation function that approximates to the hyperbolic tangent function.
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6. It is important to initialize the weights with random numbers to minimize the

chance of the system becoming stuck in some symmetrical state from which it

might be difficult to recover.

7. Choice of value for the learning rate coefficient η will be a balance between

achieving a high rate of learning and avoidance of overshoot: normally a value

of around 0.8 is selected.

When there are many hidden nodes, convergence of the weights can be very

slow, and indeed this is one disadvantage of MLP networks. Many attempts have

been made to speed convergence, and a method that is almost universally used is to

add a “momentum” term to the weight update formula, it being assumed that weights

will change in a similar manner during iteration k to the change during iteration

k2 1:

wijðk1 1Þ5wijðkÞ1 ηδjyi 1α½wijðkÞ2wijðk21Þ� (24.47)

where α is the momentum factor. This technique is primarily intended to prevent

networks becoming stuck at local minima of the energy surface.

24.15 MLP ARCHITECTURES
The preceding sections gave the motivation for designing an MLP and for finding a

suitable training procedure, and then outlined a general MLP architecture and the

widely used back-propagation training algorithm. However, having a general solu-

tion is only one part of the answer. The next question is how best to adapt the gen-

eral architecture to specific types of problem. We shall not give a full answer to this

question here. However, Lippmann attempted to answer this problem in 1987. He

showed that a two-layer (single hidden layer) MLP can implement arbitrary convex

decision boundaries, and indicated that a three-layer (two-hidden layer) network is

Table 24.6 The Back-Propagation Algorithm

initialize weights with small random numbers;
select suitable value of learning rate coefficient η in the range 0� 1;
do f

for all patterns in the training set
for all nodes j in the MLP f

obtain feature vector x and target output value t;
compute MLP output y;
if ðnode is in output layerÞ

δj 5yjð12yjÞðtj 2yjÞ;
else δj 5yjð12yjÞðΣmδmwjmÞ;
adjust weights i of node j according to wij 5wij 1 ηδjyi;

g
g until changes are reduced to some predetermined level;
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required to implement more complex decision boundaries. It was subsequently found

that it should never be necessary to exceed two hidden layers, as a three-layer net-

work can tackle quite general situations if sufficient neurons are used (Cybenko,

1988). Subsequently, Cybenko (1989) and Hornik et al. (1989) showed that a two-

layer MLP can approximate any continuous function, although nevertheless there

may sometimes be advantages in using more than two layers.

Although the back-propagation algorithm can train MLPs of any number of

layers, in practice, training one layer “through” several others introduces an ele-

ment of uncertainty that is commonly reflected in increased training times (see

Fig. 24.15). Thus, there is some advantage to be gained from using a minimal

number of layers of neurons. In this context, the above findings on the necessary

numbers of hidden layers are especially welcome.

24.16 OVERFITTING TO THE TRAINING DATA
When training MLPs and many other types of ANN, there is a problem of overfit-

ting the network to the training data. One of the fundamental aims of SPR is for

the learning machine to be able to generalize from the particular set of data it is

trained on to other types of data it might meet during testing. In particular, the

machine should be able to cope with noise, distortions, and fuzziness in the data,

a

b

Error
rate

t0

FIGURE 24.15

Learning curve for the multilayer perceptron. Here curve (a) shows the learning curve for

a single-layer perceptron, and curve (b) shows that for a multilayer perceptron. Note that

the multilayer perceptron takes considerable time to get going, since initially each layer

receives relatively little useful training information from the other layers. Note also that the

lower part of the diagram has been idealized to the case of identical asymptotic error

rates, although this situation would seldom occur in practice.
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although clearly not to the extent of being able to respond correctly to types of

data different from that on which it has been trained. The main points to be made

here are (1) that the machine should learn to respond to the underlying population

from which the training data has been drawn and (2) that it must not be so well

adapted to the specific training data that it responds less well to other data from

the same population. Figure 24.16 shows in a 2-D case both a fairly ideal degree

of fit and a situation where every nuance of the set of data has been fitted,

thereby achieving a degree of overfit.

Typically, overfitting can arise if the learning machine has more adjustable

parameters than are strictly necessary for modeling the training data: with too few

parameters such a situation should not arise. However, if the learning machine

has enough parameters to ensure that relevant details of the underlying population

are fitted, there may be overmodeling of part of the training set; thus, the overall

recognition performance will deteriorate. Ultimately, the reason for this is that

recognition is a delicate balance between capability to discriminate and capability

to generalize, and it is most unlikely that any complex learning machine will get

the balance right for all the features it has to take account of.

Be this as it may, we clearly need to have some means of preventing over-

adaptation to the training data. One way of achieving this is to curtail the training

process before overadaptation can occur.7 This is not difficult, since we merely

need to test the system periodically during training to ensure that the point of

y

x0

FIGURE 24.16

Overfitting of data. In this graph, the data points are rather too well fitted by the solid

curve, which matches every nuance exactly. Unless there are strong theoretic reasons

why the solid curve should be used, the gray line will give a higher confidence level.

7It is often stated that this procedure aims to prevent overtraining. However, the term “overtrain-

ing” is ambiguous. On the one hand, it can mean recycling through the same set of training data

until eventually the learning machine is overadapted to it. On the other hand, it can mean using

more and more totally new data—a procedure that cannot produce overadaptation to the data, and

on the contrary is almost certain to improve performance. In view of this ambiguity, it seems better

not to use the term.
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overadaptation has not been reached. Figure 24.17 shows what happens when test-

ing is carried out simultaneously on a separate dataset: at first performance on the

test data closely matches that on the training data, being slightly superior for the

latter because a small degree of overadaptation is already occurring. But after a

time, performance starts deteriorating on the test data while performance on the

training data appears to go on improving. This is the point where serious overfit-

ting is occurring, and the training process should be curtailed. The aim, then, is to

make the whole training process far more rigorous by splitting the

original training set into two parts—the first being retained as a normal

training set and the second being called the validation set. Note that the latter is

actually part of the training set in the sense that it is not part of the eventual

test set.

The process of checking the degree of training by use of a validation set is

called cross-validation, and is vitally important to proper use of an ANN. The

training algorithm should include cross-validation as a fully integrated part of the

whole training schedule; it should not be regarded as an optional extra.

It is useful to speculate how overadaptation could occur when the training pro-

cedure is completely determined by the back propagation (or other) provably cor-

rect algorithm. In fact, there are mechanisms by which overadaptation can occur.

For example, when the training data do not control particular weights sufficiently

a

b

Error
rate

t0

FIGURE 24.17

Cross-validation tests. This diagram shows the learning curve for a multilayer perceptron

(a) when tested on the training data and (b) when tested on a special validation set. Curve

(a) tends to go on improving even when overfitting is occurring. However, this situation is

detected when curve (b) starts deteriorating. To offset the effects of noise (not shown on

curves (a) and (b)), it is usual to allow 5�10% deterioration relative to the minimum in

curve (b).
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closely, some could drift to large positive or negative values, while retaining a

sufficient degree of cancellation so that no problems appear to arise with the

training data; yet, when test or validation data are employed, the problems

become all too clear. The fact that the form of the sigmoid function will permit

some nodes to become “saturated out” does not help the situation, as it inactivates

parameters and hides certain aspects of the incoming data. Yet it is intrinsic to

the MLP architecture and the way it is trained that some nodes are intended to be

saturated out in order to ignore irrelevant features of the training set. The problem

is whether inactivation is inadvertent or designed. The answer probably lies in the

quality of the training set and how well it covers the available or potential feature

space.

Finally, let us suppose an MLP is being set up, and it is initially unknown

how many hidden layers will be required or how many nodes there will have to

be in each layer: it will also be unknown how many training set patterns will be

required or how many training iterations will be needed—or what values of the

momentum or learning parameters will be appropriate. A quite substantial number

of tests will be required to decide all the relevant parameters. There is therefore a

definite risk that the final system will be overadapted not only to the training set

but also to the validation set. In such circumstances what we need is a second val-

idation set that can be used after the whole network has been finalized and final

training is being undertaken.

24.17 CONCLUDING REMARKS
The methods of this chapter make it rather surprising that so much of image pro-

cessing and analysis is possible without any reference to a priori probabilities.

It seems likely that this situation is due to several factors: (a) expediency and in

particular the need for speed of interpretation; (b) the fact that algorithms are

designed by humans who have knowledge of the types of input data and thereby

incorporate a priori probabilities implicitly, e.g., via the application of suitable

threshold values; and (c) tacit recognition of the situation outlined in Section 24.11,

that probabilistic methods have limited applicability. In practice, it is at the stage of

strong image structure and contextual analysis that probabilistic interpretations really

come into their own.

Nonetheless, SPR is extremely valuable within its own range of utility. This

includes identifying objects on conveyors and making value judgements of their

quality, reading labels and codes, verifying signatures, checking fingerprints, and

so on. Indeed, the number of distinct applications of SPR is huge and it forms an

essential counterpart to the other methods described in this book.

This chapter has concentrated mainly on the supervised learning approach to

SPR. However, unsupervised learning is also vitally important, particularly when

training on huge numbers of samples (e.g., in a factory environment) is involved.
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The section on this topic should therefore not be ignored as a minor and insignifi-

cant perturbation: much the same comments apply to the subject of principal

components analysis which has had an increasing following in many areas of

machine vision (see Section 24.10); nor should it go unnoticed that these topics

link in strongly with ANNs, which are often able to play a powerful role.

Vision is largely a recognition process with both structural and statistical aspects. This
chapter has reviewed SPR, emphasizing fundamental classification error limits, and has
shown the part played by Bayes’ theory, the nearest neighbor algorithm, ROCs, PCA, and
ANNs. Note that the last of these is subject to the same limitations as other SPR methods,
particularly with regard to adequacy of training and the possibility of overfitting.

24.18 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Although the subject of SPR tends not to be at the center of attention in image

analysis work,8 it provides an important background—especially in the area of

automated visual inspection where decisions continually have to be made on the

adequacy of products. Most of the relevant work on this topic was already in

place by the early 1970s, including the work of Hughes (1968) and Ullmann

(1969) relating to the optimum number of features to be used in a classifier.

At that stage a number of important volumes appeared; see, e.g., Duda and Hart

(1973) and Ullmann (1973), and these were followed a little later by Devijver and

Kittler (1982).

In fact, the use of SPR for image interpretation dates from the 1950s. For

example, in 1959 Bledsoe and Browning developed the n-tuple method of pattern

recognition, which turned out (Ullmann, 1973) to be a form of NN classifier;

however, it has been useful in leading to a range of simple hardware machines

based on RAM (n-tuple) lookups (see, e.g., Aleksander et al., 1984), thereby dem-

onstrating the importance of marrying algorithms and readily implementable

architectures.

Many of the most important developments in this area have probably been

those comparing the detailed performance of one classifier with another, particu-

larly with respect to cutting down the amount of storage and computational effort.

Papers in these categories include those by Hart (1968) and Devijver and Kittler

(1980). Oddly, there appeared to be no overt mention in the literature of how a

priori probabilities should be used with the NN algorithm, until the author’s paper

on this topic (Davies, 1988f); see Section 24.4.

On the unsupervised approach to SPR, Forgy’s (1965) method for clustering

data was soon followed by the famous ISODATA approach of Ball and Hall

(1966), and then by MacQueen’s (1967) k-means algorithm. Much related work

8Note, however, that it is vital to the analysis of multispectral data from satellite imagery.
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ensued, and this was summarized by Jain and Dubes (1988), which became a

classic text. However, cluster analysis is an exacting process and various workers

have felt the need to push the subject further forward: e.g., Postaire and Touzani

(1989) required more accurate cluster boundaries; Jolion and Rosenfeld (1989)

wanted better detection of clusters in noise; Chauduri (1994) needed to cope with

time-varying data; and Juan and Vidal (1994) required faster k-means clustering.

Note that all this work can be described as conventional, and did not involve the

use of robust statistics per se. However, elimination of outliers is central to the

problem of reliable cluster analysis; for a discussion of this aspect of the problem,

see Appendix A and the references cited therein.

While the field of pattern recognition has moved forward substantially since

1990, there are fortunately several quite recent texts that cover the subject rela-

tively painlessly (Duda et al., 2001; Webb, 2002; Theodoridis and Koutroumbas,

2009). The reader can also appeal to the review article by Jain et al. (2000),

which outlines new areas that appeared in the previous decade.

The multiple classifier approach is a relatively recent development, and is

well reviewed by Duin (2002). Ho et al. (1994) dates from when the topic was

rather younger, and lists an interesting set of options as seen at that point—some

of these being covered in Section 24.8.

“Bagging” and “boosting” are further variants on the multiple classifier theme:

they were developed by Breiman (1996) and Freund and Schapire (1996).

Bagging (short for “bootstrap aggregating”) means sampling the training set, with

replacement, n times, generating b bootstrap sets to train b subclassifiers, and

assigning any test pattern to the class most often predicted by the subclassifiers.

The method is particularly useful for unstable situations (such as when classifica-

tion trees are used), but is almost valueless when stable classification algorithms

are used (such as the nearest neighbor algorithm). Boosting is useful for aiding

the performance of weak classifiers. In contrast with bagging, which is a parallel

procedure, boosting is a sequential deterministic procedure. It operates by assign-

ing different weights to different training set patterns according to their intrinsic

(estimated) accuracy. For further progress with these techniques, see Rätsch et al.

(2002), Fischer and Buhmann (2003), and Lockton and Fitzgibbon (2002).

Finally, Beiden et al. (2003) discuss a variety of factors involved in the training

and testing of competing classifiers; in addition, much of the discussion relates to

multivariate ROC analysis.

SVMs also came into prominence over the 1990s and have found an increas-

ing number of applications: the concept was invented by Vapnik and the historical

perspective is covered in Vapnik (1998). Cristianini and Shawe-Taylor (2000)

provide a student-orientated text on the subject.

Next we digress to outline something of the history of ANNs. After a promis-

ing start in the 1950s and 1960s, they fell into disrepute (or at least, disregard)

following the pronouncements of Minsky and Papert in 1969; they picked up

again in the early 1980s; were subjected to an explosion in interest after the

announcement of the back-propagation algorithm by Rumelhart et al. in 1986;
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and in the mid-1990s settled into the role of normal tools for vision and other

applications. Note that the back-propagation algorithm was invented several times

(Werbos, 1974; Parker, 1985) before its relevance was finally recognized. In par-

allel with these MLP developments, Oja (1982) developed his Hebbian principal

components network. Useful early references on ANNs include the volumes by

Haykin (1999) and Bishop (1995), and papers on their application to segmentation

and object location, such as Toulson and Boyce (1992) and Vaillant et al. (1994);

for work on contextual image labeling, see Mackeown et al. (1994).

After the euphoria of the early 1990s, during which papers on ANNs applied

to vision were ubiquitous, it was seen that the main value of ANNs lay in their

unified approach to feature extraction and selection (even if this necessarily car-

ries the disadvantage that the statistics are hidden from the user), and their intrin-

sic capability for finding moderately nonlinear solutions with relative ease. Later

papers include the ANN face detection work of Rowley et al. (1998), among

others (Fasel, 2002; Garcia and Delakis, 2002). For further general information

on ANNs, see the book by Bishop (2006).

24.18.1 More Recent Developments
Returning to mainstream SPR, Jain (2010) presented a review of the subject of

clustering, entitled “Data clustering: 50 years beyond k-means.” He noted, “In

spite of the fact that k-means was proposed over 50 years ago and thousands of

clustering algorithms have been published since then, k-means is still widely

used”—thereby reflecting the difficulty of designing a general purpose clustering

algorithm and the ill-posed nature of the problem: emerging and useful research

directions include semi-supervised clustering and ensemble clustering. The review

presents the main challenges and issues facing the subject as of 2010: above all is

the plea for a suite of benchmark data with ground truth to test and evaluate clus-

tering methods.

Li and Zhang (2004) describe how a new boosting algorithm “FloatBoost” has

been applied to produce the first real-time multiview face detection system

reported. The method uses a backtrack mechanism after each iteration of

AdaBoost learning to minimize the error rate directly; it also uses a novel statisti-

cal model for learning the best weak classifiers and a stagewise approximation to

the posterior probability, thereby requiring fewer weak classifiers than AdaBoost.

Gao et al. (2010) report on a modified version of AdaBoost to resolve the key

problems of how to select the most discriminative weak learners and how to opti-

mally combine the selected weak learners. Experiments confirm the utility of the

algorithm including the capability to solve these two key problems; both synthetic

and real scene data (car and non-car patterns) are used for the tests. Fumera et al.

(2008) present a theoretical analysis of bagging as a linear combination of classi-

fiers, thereby giving an analytical model of bagging misclassification probability

as a function of ensemble size.
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Youn and Jeong (2009) describe a class-dependent feature scaling method

employing a naive Bayes’ classifier for text data mining, including functions such

as text categorization and search. While the reasons why the naive Bayes’ inde-

pendence assumption works well in many cases have not been well explained or

understood until recently, this paper confirms that it is often a good choice for

text analysis because the amount of data used is large (e.g., the number of fea-

tures is about 100,000 for protein sequence data). In particular, the simplicity and

the effectiveness of the naive Bayes’ classifier maps well to text categorization.

Rish (2001) provides an empirical study of naive Bayes, containing much useful

information.

Decision trees provide a convenient fast-operating method of pattern recogni-

tion, and the methodology has developed quite rapidly in recent years. Chandra

et al. (2010) describe a new node splitting procedure called the distinct class

based splitting measure (DCSM) for decision tree construction. Node splitting

measures are important as they help to produce compact decision trees with

improved generalization abilities. Chandra et al. have shown that DCSM is well-

behaved and produces decision trees that are more compact and provide better

classification accuracy than trees constructed using other common node splitting

measures. The DCSM measure also helps with pruning (which produces compact

trees with better classification accuracy). Köktas et al. (2010) describe a multi-

classifier for grading knee osteoarthritis using gait analysis. It employs a decision

tree with MLPs at the leaves. In fact, three different MLPs (different “experts”)

with binary classifications are employed at different leaves of the tree. They

showed that, for this type of data, this produced better results than a single multi-

class classifier. Rodrı́guez et al. (2010) describe tests made on a large number of

datasets using ensemble methods to generate more accurate classifiers. They

show that, for multiclass problems, ensembles of decision trees (“forests”) can be

successfully combined with ensembles of nested dichotomies. The direct

approach, using ensembles of nested dichotomies with a forest method as the base

classifier, can be improved using ensemble methods with a nested dichotomy of

decision trees as the base classifier.

Fawcett (2006) produced an excellent, largely tutorial summary of ROC analy-

sis in which many descriptors employing true and false positives and negatives

are used; a valuable feature of the paper is the unification of a subject in which

many apparently different descriptors appear with different names according to

the varying backgrounds of the workers. In particular, the recently much more

widely used terms “precision” and “recall” are related to “sensitivity,” “specific-

ity,” “accuracy,” and others (for definitions and further discussion of these perfor-

mance measures, see Section 24.7.1). In addition, measures such as “F-measure”

are defined, and problems and pitfalls of using ROC graphs are pointed out.

Ooms et al. (2010) underline the value of Fawcett’s summary, but show that the

ROC concept is limited and is not an optimal measure for sorting as distinct from

cases where misclassification costs are the main concern. They propose a sorting

optimization curve (SOC) to cope with sorting problems and help identify the
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best choice of operating point in that case. In contrast with the ROC curve, which

plots fpr vs. fnr or tpr vs. fpr, the SOC curve plots yield rate (Y) vs. relative qual-

ity improvement rate (Q), where Y5 (TP1FP)/(P1N); this formula arises

because no distinction is made between true and false positives when selling a

product. Quality Q is defined in terms of the precision Pr5 TP/(TP1FP), viz.

Q5 f(Pr), and uses whatever function f is needed to achieve this when sorting a

particular commodity (such as apples). Typically, optimization involves moving

up the Y vs. Q curve until reaching the lowest level of quality that is

acceptable or legal.

Assessing the quality of the ROC curve has acquired some importance in the

past decade, and the AUC (area under the curve) measure has been the main per-

formance indicator for this (Fawcett, 2006). For example, Hu et al. (2008) have

used it to advantage for optimal evaluation and selection of features.

24.19 PROBLEMS
1. Show that if the cost function of Eq. (24.16) is chosen, the decision rule

(24.15) can be expressed in the form of relation (24.5).

2. Show that in a simple two-class system, introducing a reject classification to

reduce the number of errors by R in fact requires 2R test patterns to be

rejected, assuming that R is small. What is likely to happen as R increases?

3. Why is the point on a ROC curve closest to the origin not the point that mini-

mizes total error? Prove that the point that minimizes the total error on a ROC

curve is actually the point where the gradient is �1 (see Section 24.7).

4. Consider the four quantities TP, TN, FP, FN defined in Section 24.7. Arrange

them in order of size for situations where positives are rare and recognition

errors are likely to be low. If the rates tpr, tnr, fpr, fnr are also arranged in

order of size, will the order be the same as for TP, TN, FP, FN?

5. Compare the shapes of ROC curves and precision�recall curves for identical

classifiers. What mathematical relations link their shapes? Determine whether

the ROC curves for two classifiers will cross each other the same number of

times as the precision�recall curves.

6. Prove that Eq. (24.26) provides a mathematically sound way of combining

precision and recall into a single measure.
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CHAPTER

25 Image Acquisition

In vision, everything depends on image acquisition, and in image acquisition,

everything depends on illumination. Naturally, robust algorithms can be designed

to largely overcome any problems of inadequacy on these fronts. On the other

hand, care with acquisition often means that simpler, more reliable algorithms can

be produced. This chapter considers these important aspects of vision system

design.

Look out for:

• lighting effects, reflectance, and the appearance of highlights and shadows.

• the value of soft or diffuse lighting.

• how lighting can systematically be made uniform by use of several point or

line sources.

• the types of camera and sensor that are commonly available.

• the sampling theorem and its implications.

The advent of solid-state cameras and widely available frame-grabbing devices

has made one part of image acquisition straightforward: yet the other aspect—that

of providing suitable illumination—is still rather a black art. However, the meth-

ods described here demonstrate that uniform illumination is subject to design

rather than ad hoc experimentation.

This work described in this chapter necessarily provides underpinning for all

practical vision systems, except perhaps those involving X-rays or other modali-

ties such as ultrasonic imaging.

25.1 INTRODUCTION
When implementing a vision system, nothing is more important than image

acquisition. Any deficiencies of the original images can cause great problems
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with image analysis and interpretation. An obvious example is that of lack of

detail due to insufficient contrast or poor focusing of the camera: this can have

the effect at best that the dimensions of objects will not be accurately measurable

from the images, and at worst that the objects will not even be recognizable, so

the purpose of vision cannot be fulfilled. This chapter examines the problems of

image acquisition.

Before proceeding, it is as well to note that vision algorithms are of use in a

variety of areas where visual pictures are not directly input. For example, vision

techniques (image processing, image analysis, recognition, and so on) can be

applied to seismographic maps, to pressure maps (whether these arise from hand-

writing on pressure pads or from weather data), infrared, ultraviolet, X-ray and

radar images, and a variety of other cases. There is no space here to consider

methods for acquisition in any of these instances and attention is concentrated on

purely optical methods. In addition, space does not permit a detailed study of

methods for obtaining range images using laser scanning and ranging techniques,

while other methods that are specialized for 3-D work will also have to be passed

by. Instead, we concentrate on (a) lighting systems for obtaining intensity images,

(b) technology for receiving and digitizing intensity images, and (c) basic theory

such as the Nyquist sampling theorem that underlies this type of work.

First we consider how to set up a basic system that might be suitable for the

thresholding and feature detection work of Chapters 2�5.

25.2 ILLUMINATION SCHEMES
The simplest and most obvious arrangement for acquiring images is that shown in

Fig. 25.1. A single source provides light over a cluster of objects on a

worktable or conveyor, and this scene is viewed by a camera directly overhead.

The source is typically a tungsten light that approximates to a point source.

Assuming for now that the light and camera are some distance away from the

objects, and are in different directions relative to them, it may be noted that:

1. different parts of the objects are lit differently, because of variations in the

angle of incidence, and hence have different brightnesses as seen from the

camera.

2. the brightness values also vary because of the differing absolute reflectivities1

of the object surfaces.

3. the brightness values vary with the specularities of the surfaces in places

where the incident, emergent, and phase angles are compatible with specular

reflection (Chapter 15).

4. parts of the background and of various objects are in shadow and this again

affects the brightness values in different regions of the image.

1Referring to Eq. (15.12), R0 is the absolute surface reflectivity and R1 is the specularity.
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5. other more complex effects occur because light reflected from some objects

will cast light over other objects—factors that can lead to complicated varia-

tions in brightness over the image.

Clearly, even in this apparently simple case—one point light source and one

camera—the situation can become quite complex. However, effect 5 is normally

reasonably marginal and is ignored in what follows. In addition, effect 3 can often

be ignored except in one or two small regions of the image where sharply curved

pieces of metal give rise to glints. This still leaves considerable scope for compli-

cation due to effects 1, 2, and 4.

There are two important reasons for viewing the surfaces of objects: the first

is when we wish to locate objects and their facets, and the second is when we

wish to scrutinize the surfaces themselves. In the first instance, it is important to

try to highlight the facets by arranging that they are lit differently, so that their

edges stand out clearly. In the second instance, it might be preferable to do the

opposite—i.e., to arrange that the surfaces are lit very similarly, so that any varia-

tions in reflectivity caused by defects or blemishes stand out plainly. The exis-

tence of effects 1 and 2 implies that it is difficult to achieve both of these things

at the same time: one set of lighting conditions is required for optimum segmenta-

tion and location, and another set for optimum surface scrutiny. In most of this

book, object location has been regarded as the more difficult task and therefore

the one that needs the most attention. Hence, we have imagined that the lighting

scheme is set up for this purpose. In principle, a point source of light is well

adapted to this situation. However, it is easy to see that if a very diffuse lighting

source is employed, then angles of incidence will tend to average out and effect 2

will dominate over 1 so that, to a first approximation, the observed brightness

values will represent variations in surface reflectance. In fact, “soft” or diffuse

L C

O

FIGURE 25.1

Simple arrangement for image acquisition: C, camera; L, light with simple reflector;

O, objects on worktable or conveyor.
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lighting also subdues specular reflections (effect 3), so that for the most part they

can be ignored.

Returning to the case of a single point source, recall (effect 4) that shadows

can become important. There is one special case when this is not so, and that is

when the light is projected from exactly the same direction as the camera; we

return to this case below. Shadows are a persistent cause of complications in

image analysis. One problem is that it is not a trivial task to identify them, so

they merely contribute to the overall complexity of any image and in particular

add to the number of edges that have to be examined in order to find objects.

They also make it much more difficult to use simple thresholding. (However,

note that shadows can sometimes provide information that is of vital help in

interpreting complex 3-D images; see, e.g., Section 15.6.)

25.2.1 Eliminating Shadows
The above considerations suggest that it would be highly convenient if shadows

could be eliminated. A strategy for achieving this is to lower their contrast by

using several light sources. Then the region of shadow from one source will be a

region of illumination from another, and shadow contrast will be lowered dramati-

cally. Indeed, if there are n lights, many positions of shadow will be illuminated

by n2 1 lights and their contrast will be so low that they can be eliminated by

straightforward thresholding operations. However, if objects have sharp corners or

concavities, there may still be small regions of shadow that are illuminated by

only one light or perhaps no light at all; these regions will be immediately around

the objects, and if the objects appear dark on a light background, shadows could

make the objects appear enlarged or cause shadow lines immediately around

them. For light objects on a dark background this is normally less of a problem.

Clearly, it seems best to aim for large numbers of lights so as to make the sha-

dows more diffuse and less contrasting, and in the limit it appears that we are

heading for the situation of soft lighting discussed earlier. However, this is not

quite so. What is often required is a form of diffuse lighting that is still direc-

tional—as in the case of a diffuse source of restricted extent directly overhead:

this can be provided very conveniently by a continuous ring light around the cam-

era. This technique is found to eliminate shadows highly effectively while retain-

ing sufficient directionality to permit a good measure of segmentation of object

facets to be achieved, i.e., it is an excellent compromise although it is certainly

not ideal. For these reasons, we describe its effects in some detail. In fact, it is

clear that it will lead to good segmentation of facets whose boundaries lie in

horizontal planes, but to poor segmentation of those whose boundaries lie in

vertical planes.

The situation just described is very useful for analyzing the shape profiles of

objects with cylindrical symmetry. Note, e.g., the case shown in Fig. 25.2, which

involves a special type of chocolate biscuit with jam underneath the chocolate. If

this is illuminated by a continuous ring light fairly high overhead (the proper
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working position), the region of chocolate above the edge of the jam reflects the

light obliquely and appears darker than the remainder of the chocolate. On

the contrary, if the ring light is lowered to near the worktable, the region above

the edge of the jam appears brighter than the rest of the chocolate because it scat-

ters light upward rather than sideways. Clearly there is also2 a particular height at

which the ring light can make the jam boundary disappear (Fig. 25.3), this height

being dictated by the various angles of incidence and reflection and by the rela-

tive direction of the ring light. In comparison, if the lighting were made highly

diffuse, these effects would tend to disappear and the jam boundary would always

have very low contrast.

Suitable fluorescent ring lights are readily available and straightforward to

use, and provide a solution that is more practicable than the alternative means of

eliminating shadows mentioned above—that of illuminating objects directly from

the camera direction, e.g., via a half-silvered mirror.

Earlier, the one case we did not completely solve arose when we were

attempting to segment facets whose joining edges were in vertical planes. There

appears to be no simple way of achieving a solution to this problem without

recourse to switched lights (see Chapter 15); this option will not be discussed

further here.

We have now identified various practical forms of lighting that can be used to

highlight various object features and which eliminate complications as far as pos-

sible. These types of lighting are restricted in what they can achieve (as would

clearly be expected from the shape-from-shading ideas of Chapter 15). However,

2The latter two situations are described for interest only.

FIGURE 25.2

Illumination of a chocolate-and-jam biscuit. This figure shows the cross-section of a

particular type of round chocolate biscuit with jam underneath the chocolate. The arrows

show how light arriving from vertically overhead is scattered by the various parts of the

biscuit.
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they are exceedingly useful in a variety of applications. A final problem is that

two lighting schemes may have to be used in turn, the first for locating objects

and the second for inspecting their surfaces. However, this problem can largely

be overcome by not treating the latter case as a special one requiring its own

lighting scheme, but rather noting the direction of lighting and allowing for the

resulting variation in brightness values by taking account of the known shape of

the object. The opposite approach is generally of little use unless other means are

used for locating the object. However, the latter situation frequently arises in

practice: imagine that a slab of concrete or a plate of steel is to be inspected for

defects. In that case the position of the object is known and it is clearly best to

(a) (b)

(c)

FIGURE 25.3

Appearance of the chocolate-and-jam biscuit of Fig. 25.2. (a) How the biscuit appears to

a camera directly overhead when illuminated as in Fig. 25.2; (b) appearance when the

lights are lowered to just above table level; (c) appearance when the lights are raised to an

intermediate level making the presence of the jam scarcely detectable.
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set up the most uniform lighting arrangement possible, so as to be most sensitive

to small variations in brightness at blemishes. This is, then, an important practical

problem, to which we now turn.

25.2.2 Principles for Producing Regions of Uniform Illumination
While initially it may appear to be necessary to illuminate a worktable or con-

veyor uniformly, a more considered view is that a uniform flat material should

appear uniform so that the spatial distribution of the light emanating from its sur-

face is uniform. The relevant quantity to be controlled is therefore the radiance of

the surface (light intensity in the image). Following the work of Section 15.4

relating to Lambertian (matt) surfaces, the overall reflectance R of the surface is

given by:

R5R0s:n (25.1)

where R0 is the absolute reflectance of the surface and n, s are unit vectors along

the local normal to the surface and the direction of the light source, respectively.

Clearly, the assumption of a Lambertian surface can be questioned, since most

materials will give a small degree of specular reflection, but in this section we are

mainly interested in those nonshiny substances for which Eq. (25.1) is a good

approximation. In any case, special provision normally has to be made for exam-

ining surfaces with a significant specular reflectance component. However, note

that the continuous strip lighting systems considered below have the desirable

property of very largely suppressing any specular components.

Next we recognize that illumination will normally be provided by a set of

lights at a certain height h above a worktable or conveyor. We start by taking the

case of a single point source at height h. Supposing that this is displaced laterally

through a distance a, so that the actual distance from the source to the point of

interest on the worktable is d, I will have the general form:

I5
c cos i

d2
5

ch

d3
(25.2)

where c is a constant factor (see Fig. 25.4).

Eq. (25.2) represents a distinctly nonuniform region of intensity over the sur-

face. However, this problem may be tackled by providing a suitable distribution

of lights. A neat solution is provided by a symmetrical arrangement of two strip

lights that will clearly help to make the reflected intensity much more uniform

(Fig. 25.5). We illustrate this idea by reference to the well-known arrangement of

a pair of “Helmholtz” coils widely used for providing a uniform magnetic field,

with the separation of the coils made equal to their radius so as to eliminate the

second-order variation in field intensity.

In a similar way, the separation of the strip lights can be adjusted so that the

second-order term vanishes (Fig. 25.5(b)). There is an immediate analogy also

with the second-order Butterworth low-pass filter, which gives a maximally flat
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FIGURE 25.4

Geometry for a single point source illuminating a surface. Here a point light source at a

height h above a surface illuminates a general point with angle of incidence i. n and s are

respectively unit vectors along the local normal to the surface and the direction of the light

source.

Source: r IEE 1997

a

h

a

(a) (b)

(c)

FIGURE 25.5

Effect of using two strip lights for illuminating a surface. Part (a) shows two strip lights at a

height h above a surface, and part (b) shows the resulting intensity patterns for each of

the lights; the dotted line shows the combined intensity pattern. Part (c) shows the

corresponding patterns when the separation of the lights is increased slightly.

Source: r IEE 1997
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response, the second-order term in the frequency response curve being made zero

and the lowest order term then being the fourth-order term (Kuo, 1966). In fact,

the latter example demonstrates how the method might be improved further—by

aiming for a Chebychev type of response in which there is some ripple in the

pass band, yet the overall pass-band response is flatter (Kuo, 1966). In a lighting

application, we should aim to start with the strip lights not just far enough apart

so that the second-order term vanishes, but slightly further apart so that the inten-

sity is almost uniform over a rather larger region (Fig. 25.5(c)). This reflects the

fact that in practice the prime aim will be to achieve a given degree of uniformity

over the maximum possible size of region.

In principle it is easy to achieve a given degree of uniformity over a larger

region by starting with a given response and increasing the linear dimensions of

the whole lighting system proportionately. Although valid in principle, this

approach will frequently be difficult to apply in practice: e.g., it will be limited

by convenience and by availability of the strip lights; it must also be noted that as

the size of the lighting system increases, so must the power of the lights. Hence,

in the end we will have only one adjustable geometric parameter by which to

optimize the response.

Finally, in many practical situations, it will be less useful to have a long

narrow working region than one whose aspect ratio is close to unity. We shall

consider two such cases—a circular ring light and a square ring light. The first of

these is conveniently provided in diameters of up to at least 30 cm by commer-

cially available fluorescent tubes, while the second can readily be constructed—if

necessary on a very much larger scale—by assembling a set of four linear fluores-

cent tubes. In this case we take the tubes to be finite in length, and in contact at

their ends: these are made into an assembly that can be raised or lowered to opti-

mize the system. Thus, these two cases have fixed linear dimensions characterized

in each case by the parameter a, and it is h that is adjusted rather than a. To

make comparisons easier, we assume in all cases that a is the constant and h is

the optimization parameter (Fig. 25.6).

25.2.3 Case of Two Infinite Parallel Strip Lights
First we take the case of two infinite parallel strip lights. In this case, the intensity

I is given by the sum of the intensities I1, I2 for the two tubes:

I1ðxÞ5 h

ðN
2N

½ða2 xÞ2 1 ðv2 yÞ2 1 h2�23=2dv (25.3)

I2ðxÞ5 I1ð2xÞ (25.4)

Suitable substitutions permit Eq. (25.3) to be integrated, and the final result is:

I5
2h

ða2 xÞ2 1 h2
1

2h

ða1 xÞ2 1 h2
(25.5)

726 CHAPTER 25 Image Acquisition



Differentiating I twice and setting d2I=dx2 5 0 at x5 0 eventually (Davies,

1997b) yields the maximally flat condition:

h5O3a (25.6)

However, as noted above, it should be better to aim for minimum overall ripple

over a region 0# x# x1. The situation is shown in Fig. 25.7. We take the ripple

ΔI as the difference in height between the maximum intensity Im and the

minimum intensity I0, at x5 0, and on this basis the maximum permissible devia-

tion in x is the value of x where the curve again crosses the minimum value I0.

A simple calculation shows that the intensity is again equal to I0 for x5 x1, where:

x1 5 ð3a2 2 h2Þ1=2 (25.7)

the graph of h vs. x1 being the circle x21 1 h2 5 3a2 (Fig. 25.8, top curve).

Interestingly, the maximally flat condition is a special case of the new one,

applying where x15 0.

Further mathematical analysis of this case is difficult: numerical computation

leads to the graphs presented in Fig. 25.8. The top curve in Fig. 25.8 has already

been referred to, and shows the optimum height for selected ranges of values of x

up to x1. Taken on its own, this curve would be valueless as the accompanying

nonuniformity in intensity would not be known. This information is provided by

2a

L
ϕ

a

2a

(a) (b) (c)

FIGURE 25.6

Lighting arrangements for obtaining uniform intensity. This diagram shows three

arrangements of tubular lights for providing uniform intensity over fairly large regions, shown

cross-hatched in each case. Part (a) shows two long parallel strip lights, part (b)

shows a circular ring light, and part (c) shows four strip lights arranged to form a square

“ring.” In each case, height h above the worktable must also be specified.

Source: r IEE 1997

72725.2 Illumination Schemes



the left curve in Fig. 25.8. However, for design purposes, it is most important first

to establish what range of intensities accompanies a given range of values of x,

since this information (Fig. 25.8, bottom curve) will permit the necessary compro-

mise between these variables to be made. Having decided on particular values of

x1 and ΔI, the value of the optimization parameter h can then be determined from

one of the other two graphs: both are provided for convenience of reference (once

two of the graphs are provided, the third gives no completely new information).

Maximum acceptable variations in ΔI are assumed to be in the region of 20%,

although the plotted variations are taken up to B50% to give a more complete

picture; on the other hand, in most of the practical applications envisaged here,

ΔI would be expected not to exceed 2�3% if accurate measurements of products

are to be made.

The ΔI vs. x1 variation varies faster than the fourth power of x1, there being a

very sharp rise in ΔI for higher values of x1. This means that once ΔI has been

specified for the particular application, there is little to be gained by trying to

1.5

1.5

I

1.0

0.5

x
0.0 0.5 1.0

FIGURE 25.7

Intensity variation for two infinite parallel strip lights. This diagram shows the intensity

variation I as a function of the distance x from the center of symmetry for six different

values of h; h increases in steps of 0.2 from 0.8 for the top curve to 1.8 for the bottom

curve. The value of h corresponding to the maximally flat condition is h5 1.732. x and

h are expressed in units of a, while I is normalized to give a value of unity at x5 0.

Source: r IEE 1997
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squeeze extra functionality through going to higher values of x1, i.e., in practice

ΔI is the controlling parameter.

In the case of a circular ring light, the mathematics is more tedious (Davies,

1997b) and it is not profitable to examine it here. The final results are very

similar to those for parallel strip lights. They would be used for design in the

identical manner to that outlined earlier for the previous case.

In the case of a square ring light, the mathematics is again tedious

(Davies, 1997b), but the results follow the same pattern and warrant no special

comment.

25.2.4 Overview of the Uniform Illumination Scenario
Previous work on optical inspection systems has largely ignored the design of

optimal lighting schemes. This section has tackled the problem in a particular

case of interest—how to construct an optical system that makes a uniform matt

1.5

1.5

1.0

0.5

0.0 0.5 1.0

FIGURE 25.8

Design graphs for two parallel strip lights. Top, h vs. x1. Left, h vs. ΔI. Bottom, ΔI vs. x1.

The information in these graphs has been extracted from Fig. 25.7. In design work, a

suitable compromise working position would be selected on the bottom curve, and then

h would be determined from one of the other two curves. In practice, ΔI is the controlling

parameter, so the left and bottom curves are the important ones, the top curve containing

no completely new information.

Source: r IEE 1997
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surface appear uniformly bright, so that blemishes and defects can readily be

detected with minimal additional computation. Three cases for which calculations

have been carried out cover a good proportion of practical lighting schemes, and

the design principles described here should be applicable to most other schemes

that could be employed.

The results are best presented in the form of graphs. In any one case, the graph

shows the tradeoff between variation in intensity and range of position on the

working surface, from which a suitable working compromise can be selected.

The other two graphs provide data for determining the optimization parameter

(the height of the lights above the working surface).

Clearly, a wide variety of lighting arrangements are compatible with the

general principles presented above: thus it is not worthwhile to give any detailed

dimensional specifications here. However, the adjustment of just one parameter

(the height) permits uniform illumination to be achieved over a reasonable region.

Note that (as for a Chebyshev filter) it may be better to arrange a slightly less

uniform brightness over a larger region than absolutely uniform brightness over a

small region. It is left to empirical tests to finalize the details of the design.

Finally, it should be reiterated that such a lighting scheme is likely to be

virtually useless for segmenting object facets from each other—or even for dis-

cerning relatively low curvatures on the surface of objects: its particular value

lies in the scrutiny of surfaces via their absolute reflectivities, without the encum-

brance of switched lights (see Chapter 15). It should also be emphasized that the

aim of the discussion in the past few sections has been to achieve as much as pos-

sible with a simple static lighting scheme set up systematically. Naturally, such

solutions are compromises and again no substitute for the full rigor of switched

lighting schemes.

25.2.5 Use of Line-Scan Cameras
Throughout the above discussion it has been assumed implicitly that a conven-

tional “area” camera is employed to view the objects on a worktable. However,

when products are being manufactured in a factory they are very frequently

moved from one stage to another on a conveyor. Stopping the conveyor to acquire

an image for inspection would impose unwanted design problems: for this reason

use is made of the fact that the speed of the conveyor is reasonably uniform, and

an area image is built up by taking successive linear snapshots. This is achieved

with a line-scan camera that consists of a row of photocells on a single integrated

circuit sensor; the orientation of the line of photocells must of course be

normal to the direction of motion. The internal design of line-scan and other cam-

eras is discussed further below. However, we here concentrate on the lighting

arrangement to be used with such a camera.

When using a line-scan camera, it is natural to select a lighting scheme

that embodies the same symmetry as the camera: indeed, the most obvious

such scheme is a pair of long fluorescent tubes parallel to the line of the camera
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(and perpendicular to the motion of the conveyor). We here caution against

this “obvious” scheme, since a small round object, e.g., will not be lit symmetri-

cally. Of course, there are difficulties in considering this problem in that different

parts of the object are viewed by the line-scan camera at different moments, but

note that for small objects a linear lighting scheme will not be isotropic: this

could lead to small distortions being introduced in measurements of object dimen-

sions. This means that in practice the ring and other symmetrical lighting schemes

described above are likely to be more closely optimal even when a line-scan cam-

era is used. For larger objects much the same situation applies, although the

geometry is more complex to work out in detail.

Finally, the comment above that conveyor speeds are “reasonably uniform”

should be qualified. The author has come across cases where this is true only as

a first approximation. As with many mechanical systems, conveyor motion can

be unreliable: e.g., it can be jerky, and in extreme cases not even purely longi-

tudinal! Such circumstances frequently arise through a variety of problems that

cause slippage relative to the driving rollers—the effects of wear or of an

irregular join in the conveyor material, misalignment of the driving rollers, and

so on. Furthermore, the motors controlling the rollers may not operate at

constant speed, either in the short term (e.g., because of varying load) or in the

longer term (e.g., because of varying mains frequency and voltage). While,

therefore, it cannot be assumed that a conveyor will operate in an ideal way,

careful mechanical design can minimize these problems. However, when high

accuracy is required, it will be necessary to monitor the conveyor speed, per-

haps by using optically coded disk devices, and feeding appropriate distance

marker pulses to the controlling computer. Even with this method, it will be dif-

ficult to match in the longitudinal direction the extremely high accuracy3 avail-

able from the line-scan camera in the lateral direction. However, images of

5123 512 pixels that are within 1 pixel accuracy in each direction should nor-

mally be available.

25.2.6 Light Emitting Diode (LED) Sources
The past decade has seen a rapidly changing situation in the types of lighting

available for various applications. The earlier tungsten lights coexisted for a long

time with fluorescent tubes, and more recently compact fluorescents and halogen

lights have moved forward. Low-power LEDs have been available for a signifi-

cant time, but were initially only suitable as indicator lights rather than to provide

illumination. In fact, there were problems in bringing them to higher power

levels, and at the same time making their cost competitive. However, this position

has been changing rapidly, and LED headlights and sidelights are now ubiquitous

3Line-scan cameras are available with 4096 or greater numbers of photocells in a single linear

array. In addition, these arrays are fabricated using very high precision technology (see

Section 25.3), so considerable reliance can be placed on the data they provide.
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on road vehicles. To some extent the power problems have been solved by

employing arrays of LEDs—a trend that has been very evident with vehicle

lights. For inspection, LEDs now seem to provide the main route forward: for

instance, they do not have the high-frequency firing problems of fluorescents, or

the unreliability and short lives of fluorescents, tungstens and halogens. And the

need for multiple LEDs to provide high illumination levels is synergistic with the

need for uniform lighting, so that any illumination shape profile that would be

useful for inspection, and could earlier have been provided by long or circular

fluorescents or fiber-optic bundles, can now be achieved using arrangements of

LEDs. While the home lighting market is still waiting for high-power LEDs to

come down in price, they are easily within reach of important inspection applica-

tions. It should also be noted that LEDs are commonly guaranteed for 7 years,

although their real lifetime is closer to 20 years or more (this figure assumes up

to B50% usage per day). These long lifetimes are offset to some extent by gradu-

ally falling emission (a drop of 10% in B20,000 hours),4 but this can be can-

celled out by slightly derating and progressively increasing the dc supply current

(the light intensity emitted by LEDs is directly proportional to the supply current).

Overall, the relevant advantages of LEDs are easily controllable intensity, directly

proportional to current; output that does not switch on and off at a rate deter-

mined by the mains frequency; exceptionally long life; high conversion effi-

ciency; and an intense light from a small area that is readily focussed.

25.3 CAMERAS AND DIGITIZATION
For a good many years the camera that was normally used for image acquisition

was the TV camera with a vidicon or related type of vacuum tube. The scanning

arrangements of such cameras became standardized, first to 405 lines, then to 625

lines (or 525 lines in the United States). In addition, it is usual to interlace the

image—i.e., to scan odd lines in one frame and even lines in the next frame, then

repeat the process, each full scan taking 1/25 second (1/30 second in the United

States). There are also standardized means for synchronizing cameras and moni-

tors, using line and frame “sync” pulses. Thus, the vacuum TV camera left a leg-

acy of scanning techniques that are in the process of being eliminated with the

advent of digital TV.5 However, as the result of the legacy is still present, we

include a few more details here.

It is important to note that the output of these early cameras is inherently ana-

log, consisting of a continuous voltage variation, although this applies only along

4A useful view of the situation appears on the following manufacturer’s (Philips Colour Kinetics’)

website: http://www.colorkinetics.com/support/whitepapers/LEDLifetime.pdf (website accessed 23

July 2011).
5All the vestiges of the old system will not have been swept away until all TV receivers and moni-

tors as well as the cameras are digital.
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the line directions: the scanning action is discrete in that lines are used, making

the output of the camera part analog and part digital. Hence, before the image is

available as a set of discrete pixels, the analog waveform has to be sampled.

Since some of the line scanning time is taken up with frame synchronization

pulses, only about 550 lines are available for actual picture content. In addition,

the aspect ratio of a standard TV image is 4:3 and it is common to digitize TV

pictures as 5123 768 or 5123 512 pixels. Note also that after the analog wave-

form has been sampled and pixel intensity values have been established, it is still

necessary to digitize the intensity values.

Modern solid-state cameras are much more compact and robust, and generate

less noise; a very important additional advantage is that they are not susceptible

to distortion,6 because the pixel pattern is fabricated very accurately by standard

integrated circuit photolithography techniques. They have thus replaced vacuum

tube cameras in all except special situations.

Most solid-state cameras currently available are of the self-scanned charge-

coupled device (CCD) type and attention is concentrated on these in what fol-

lows. In a solid-state CCD camera, the target is a piece of silicon semiconductor

that possesses an array of photocells at the pixel positions. Hence, this type of

camera digitizes the image from the outset, although in one respect—that signal

amplitude represents light intensity—the image is still analog. The analog vol-

tages (or more accurately the charges) representing the intensities are systemati-

cally passed along analog shift registers to the output of the instrument, where

they may be digitized to give 6�8 bits of grayscale information (the main limita-

tion here being lack of uniformity among the photosensors rather than noise per

se). This architecture is important as it means that widely available CCD cameras

can be triggered and read out at any desired rate by externally applied pulses.

Interestingly, the old vacuum tube TV cameras had a spectral response curve

that peaked at much the same position as the spectral pattern of (“daylight”) fluo-

rescent lights—which itself matches the response of the human eye (Table 25.1).

However, CCD cameras have significantly lower response to the spectral pattern

of fluorescent tubes (Table 25.1). In general this may not matter too greatly, but

when objects are moving, the integration time of the camera is limited and sensi-

tivity can suffer. In such cases the spectral response is an important factor and

may dictate against use of fluorescent lights (this is particularly relevant where

CCD line-scan cameras are used with fast-moving conveyors).

An important factor in the choice of cameras is the delay lag that occurs

before a signal disappears. This clearly causes problems with moving images.

Fortunately, the effect is entirely eliminated with CCD camera, since the action

of reading an image wipes the old image. However, moving images require fre-

quent reading and this implies loss of integration time and therefore loss of sensi-

tivity—a factor that normally has to be made up by increasing the power of

6However, this does not prevent distortions from being introduced by other mechanisms—poor

optics, poor lighting arrangements, perspective effects, and so on.
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illuminating sources. Camera “burn-in” is another effect that is absent with CCD

cameras but which causes severe problems with certain types of conventional

camera: it is the long-term retention of picture highlights in the light-sensitive

material, which makes it necessary to protect the camera against bright lights and

to take care to make use of lens covers whenever possible. Finally, “blooming” is

the continued generation of electron-hole pairs even when the light-sensitive

material is locally saturated with carriers, with the result that the charge spreads

and causes highlights to envelop adjacent regions of the image. Both CCD and

conventional camera tubes are subject to this problem, although it is inherently

worse for CCDs, and this has led to the production of antiblooming structures in

these devices. Space precludes detailed discussion of the situation here.

25.3.1 Digitization
The remaining important item to be studied in this context is that of digitization,

i.e., conversion of the original analog signals into digital form. There are many

types of analog-to-digital converter (ADC) but the ones that are used for digitiz-

ing images have so much data to process—usually in a very short time if real-

time analysis is called for—that special types have to be employed. The only one

considered here is the “flash” ADC, so called because it digitizes all bits simulta-

neously, in a flash. In fact, it possesses n2 1 analog comparators to separate n

gray levels, followed by a priority encoder to convert the n2 1 results into normal

binary code. Such devices produce a result in a very few nanoseconds and their

specifications are generally quoted in megasamples per second (typically in the

range 50�200 megasamples/second). For some years these were available only in

6-bit versions (apart from some very expensive parts), but nowadays 8-bit

versions are available at extremely low cost:7 such 8-bit devices are probably

sufficient for most needs considering that a certain amount of sensor noise, or

7Indeed, as is clear from the advent of cheap web cameras and digital cameras, it is becoming virtu-

ally impossible to get noncolor versions of such devices.

Table 25.1 Spectral Responses

Device Band (nm) Peak (nm)

Vidicon 200�800 B550
CCD 400�1000 B800
Fluorescent tube 400�700 B600
Human eye 400�700 B550

In this table, the response of the human eye is included for reference. Note that the CCD response
peaks at much higher wavelength than the vidicon or fluorescent tube, and therefore is often at a
disadvantage when used in conjunction with the latter.
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variability, is usually present below these levels and that it is difficult to engineer

lighting to this accuracy. In fact, devices with even greater grayscale resolution

can be obtained: these are useful for extending the overall dynamic range capabil-

ity that is required when lighting levels are highly variable (which is the normal

occurrence outdoors during the course of the day).

25.4 THE SAMPLING THEOREM
The Nyquist sampling theorem underlies all situations where continuous signals

are sampled and is especially important where patterns are to be digitized and

analyzed by computers. This makes it highly relevant both with visual patterns

and with acoustic waveforms, hence it is described briefly in this section.

Consider the sampling theorem first in respect of a 1-D time-varying wave-

form. The theorem states that a sequence of samples (Fig. 25.9) of such a wave-

form contains all the original information and can be used to regenerate the

original waveform exactly, but only if (a) the bandwidth W of the original wave-

form is restricted and (b) the rate of sampling f is at least twice the bandwidth of

the original waveform—i.e., f$ 2W. Assuming that samples are taken every T

seconds, this means that 1/T$ 2W.

At first it may be somewhat surprising that the original waveform can be

reconstructed exactly from a set of discrete samples. However, the two conditions

for achieving this are very stringent. What they are demanding in effect is that

the signal must not be permitted to change unpredictably (i.e., at too fast a rate),

else accurate interpolation between the samples will not prove possible (the errors

that arise from this source are called “aliasing” errors).

Unfortunately, the first condition is virtually unrealizable, since it is close to

impossible to devise a low-pass filter with a perfect cut-off. Recall from

Chapter 3 that a low-pass filter with a perfect cut-off will have infinite extent in

the time domain, so any attempt at achieving the same effect by time domain

operations must be doomed to failure. However, acceptable approximations can

T 2T 3T 4T 5T 6T 7T 8T 9T t

FIGURE 25.9

The process of sampling a time-varying signal: a continuous time-varying 1-D signal is

sampled by narrow sampling pulses at a regular rate fr5 1/T, which must be at least twice

the bandwidth of the signal.
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be achieved by allowing a “guard band” between the desired and actual cut-off

frequencies. This means that the sampling rate must be higher than the Nyquist

rate (in telecommunications, satisfactory operation can generally be achieved at

sampling rates around 20% above the Nyquist rate—see Brown and Glazier,

1974).

One way of recovering the original waveform is by applying a low-pass filter.

This approach is intuitively correct, since it acts in such a way as to broaden the

narrow discrete samples until they coalesce and sum to give a continuous wave-

form. Indeed, this method acts in such a way as to eliminate the “repeated” spec-

tra in the transform of the original sampled waveform (Fig. 25.10). This in itself

shows why the original waveform has to be narrow-banded before sampling, so

that the repeated and basic spectra of the waveform do not cross over each other

and become impossible to separate with a low-pass filter. The idea may be taken

further because the Fourier transform of a square cut-off filter is the sinc (sin u/u)

function (Fig. 25.11). Hence, the original waveform may be recovered by

convolving the samples with the sinc function (which in this case means replacing

them by sinc functions of corresponding amplitudes). This has the effect of broad-

ening out the samples as required, until the original waveform is recovered.

So far we have considered the situation only for 1-D time-varying signals.

However, recalling that there is an exact mathematical correspondence between

time and frequency domain signals on the one hand and spatial and spatial fre-

quency signals on the other, the above ideas may all be applied immediately to

each dimension of an image (although the condition for accurate sampling now

becomes 1/X$ 2WX, where X is the spatial sampling period and WX is the spatial

bandwidth). Here we accept this correspondence without further discussion and

proceed to apply the sampling theorem to image acquisition.

Consider next how the signal from a camera may be sampled rigorously accord-

ing to the sampling theorem. First, note that this has to be achieved both horizon-

tally and vertically. Perhaps the most obvious solution to this problem is to perform

the process optically, perhaps by defocusing the lens; however, the optical

F(f )

−fr fr

L

f
2fr 3fr 4fr0

FIGURE 25.10

Effect of low-pass filtering to eliminate repeated spectra in the frequency domain

(fr, sampling rate; L, low-pass filter characteristic). This diagram shows the repeated

spectra of the frequency transform F(f ) of the original sampled waveform. It also

demonstrates how a low-pass filter can be expected to eliminate the repeated spectra to

recover the original waveform.
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transform function for this case is frequently (i.e., for extreme cases of defocusing)

very odd, going negative for some spatial frequencies and causing contrast rever-

sals; hence, this solution is far from ideal (Pratt, 2001). Alternatively, we could use

a diffraction-limited optical system or perhaps pass the focussed beam through

some sort of patterned or frosted glass to reduce the spatial bandwidth artificially.

None of these techniques will be particularly easy to apply, nor (apart possibly

from the second) will it give accurate solutions. However, this problem is not as

serious as might be imagined. If the sensing region of the camera (per pixel) is rea-

sonably large, and close to the size of a pixel, then the averaging inherent in obtain-

ing the pixel intensities will in fact perform the necessary narrow-banding

(Fig. 25.12). To analyze the situation in more detail, note that a pixel is essentially

(a)

(b)

F

−fc ffc0

sin u
u

0 u2π−2π

FIGURE 25.11

The sinc (sin u/u) function shown in (b) is the Fourier transform of a square pulse (a)

corresponding to an ideal low-pass filter. In this case, u5 2πfct, fc being the cut-off

frequency.

FIGURE 25.12

Low-pass filtering carried out by averaging over the pixel region: an image with local

high-frequency banding is to be averaged over the whole pixel region by the action of

the sensing device.
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square with a sharp cut-off at its borders. Thus its spatial frequency pattern is a 2-D

sinc function, which (taking the central positive peak) approximates to a low-pass

spatial frequency filter. This approximation improves somewhat as the border

between pixels becomes more fuzzy.

The point here is that the worst case from the point of view of the sampling

theorem is that of extremely narrow discrete samples, but clearly this worst case

is most unlikely to occur with most cameras. However, this does not mean that

sampling is automatically ideal—and indeed it is not, since the spatial frequency

pattern for a sharply defined pixel shape has (in principle) infinite extent in the

spatial frequency domain. The review by Pratt (2001) clarifies the situation and

shows that there is a tradeoff between aliasing and resolution error. Overall, qual-

ity of sampling will be one of the limiting factors if the greatest precision in

image measurement is aimed for: if the bandwidth of the presampling filter is too

low, resolution will be lost; if it is too high, aliasing distortions will creep in; and

if its spatial frequency response curve is not suitably smooth, a guard band will

have to be included and performance will again suffer.

25.5 HYPERSPECTRAL IMAGING
For a number of decades, multispectral imaging has been employed in remote sens-

ing to obtain sufficient data to separate various land regions, such as soil, water,

crops, roads, and buildings. In particular, multispectral data typically consists of

four to six channels of color; infrared and microwave data from which relevant

regions can be separated, e.g., with the aid of principal components analysis (PCA).

However, for some time there has been a need in certain applications for even

more image data, and this has led to the development of so-called “hyperspectral

imaging.” This is a generalization of multispectral data to cover a far larger number

of spectral channels. In fact, hyperspectral imaging collects a whole spectrum of

data for each pixel by application of suitable spectrometers. As a result, a “hyper-

spectral cube” of image data is formed. In contrast with multispectral images which

contain at most tens of spectral bands at relatively isolated wavelengths, hyperspec-

tral images contain hundreds or even thousands of contiguous channels. This is use-

ful as it permits detailed selections of the required data to be made some time after

the images have been obtained. Clearly, the technique is costly in storage and in

the processing load needed both to select appropriate subsets of the data and to per-

form subsequent processing: the fundamental problem is that typical hyperspectral

images usually contain hundreds of megabytes of data. Nevertheless, the technique is

well adapted to remote sensing of crops from satellites, and as often happens, once a

new technology develops, workers see the opportunity to apply it to their own partic-

ular types of data, and the technology is forced to develop further, for reliability, ease

of use, and reduction of cost. As in the case of MRI, which is applied mainly but by

no means exclusively to medical imaging, this new technology is poised to be applied
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extremely widely. Already it is being tested and applied to the inspection of fruit and

vegetables, and to the sensitive detection of nematode worms in fish (Gómez et al.,

2007; Heia et al., 2007).

In such applications, the objects under inspection are moved slowly, as would be

normal for line-scan camera inspection, but here each line of pixels is scanned over

the whole spectrum to image all the color channels. Thus, instead of a line of pixels

being grabbed, a whole plane of pixels is grabbed in which the additional coordinate

represents the color. This can be achieved in two ways: (1) the same line-scan cam-

era is used and the spectrum is scanned sequentially over it using a spectrometer

with a rotating mirror or rotating diffraction grating; (2) an area camera is used to

view the whole spectral plane in parallel (this could in principle be carried out with

a prism and an area camera). Clearly, use of standard area cameras applied sequen-

tially in B10 nm steps over the required spectral range is also a possibility. Typical

applications employ visible and infrared measurements over a range 500�1000 nm,

or infrared measurements over the range 960�1700 nm using an InGaAs NIR cam-

era (Qin and Lu, 2008; Mahesh et al., 2008). Further details will not be considered

here, because of the particularly rapid development of the subject.

25.6 CONCLUDING REMARKS
This chapter has aimed to give some background to the problems of acquiring

images, particularly for inspection applications. Methods of illumination have

been deemed to be worthy of considerable attention since they furnish means by

which the practitioner can help to ensure that an inspection system operates suc-

cessfully—and indeed that its vision algorithms are not unnecessarily complex,

thereby necessitating excessive hardware expense for real-time implementation.

Means of arranging reasonably uniform illumination and freedom from shadows

have been taken to be of significant relevance and allotted fair attention

(interestingly, these topics are scarcely mentioned in most books on this subject—

a surprising fact that perhaps indicates that few authors ascribe much importance

to this vital aspect of the work). For recent publications on illumination and

shadow elimination, see the following section.

By contrast, camera systems and digitization techniques have been taken to be

purely technical matters to which little space could be devoted (to be really

useful—and considering that most workers in this area buy commercial cameras

and associated frame-grabbing devices ready to plug into a variety of compu-

ters—whole chapters would have been required for each of these topics). Because

of its theoretical importance, it was relevant to give some background to the sam-

pling theorem and its implications although, considering the applications covered

in this book, only limited space could be devoted to this topic (see Rosie, 1966

and Pratt, 2001 for further details).

Finally, the chapter included a section on hyperspectral imaging, which has

recently been the subject of much research and development. In fact, the
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motivation for hyperspectral imaging, with the large amount of data it can bring

to bear in fields such as agriculture and inspection, has only been made thinkable

as a result of the vastly increased storage and processing capabilities of modern

computers. There seems little doubt that progress in its technology and applica-

tion will accelerate markedly in the next few years.

Computer vision systems are commonly highly dependent on the quality of the incoming
images. This chapter has shown that image acquisition can often be improved, particularly
for inspection applications, by arranging regions of nearly uniform illumination so that
shadows and glints are suppressed, and vision algorithms can be simplified and speeded up.

25.7 BIBLIOGRAPHICAL AND HISTORICAL NOTES
It is a regrettable fact that very few papers and books give details of lighting

schemes that are used for image acquisition, and even fewer give any rationale or

background theory for such schemes. Hence, some of the present chapters appear

to have broken new ground in this area. However, Batchelor et al. (1985) and

Browne and Norton-Wayne (1986) give much useful information on light sources,

filters, lenses, light guides, and so on, thereby complementing the work of this

chapter (indeed, the former of these books gives a wealth of detail on how unusual

inspection tasks, such as those involving internal threads, may be carried out).

Details of various types of scanning system, camera tube, and solid-state (e.g.,

CCD) device are widely available—see, e.g., Batchelor et al. (1985), and also var-

ious manufacturers’ catalogs. Note that much of the existing CCD imaging device

technology dates from the mid-1970s (Barbe, 1975; Weimer, 1975) and is still

undergoing development.

The sampling theorem is well covered in very many books on signal proces-

sing (see, e.g., Rosie, 1966). However, details of how band-limiting should be

carried out prior to sampling are not so readily available. Only a brief treatment

is given in Section 25.4; for further details the reader is referred to Pratt (2001)

and references contained therein.

The work described in Section 25.2 arose from the author’s work on food product

inspection, which required carefully controlled lighting to facilitate measurement,

improve accuracy, and simplify (and thereby speed up) the inspection algorithms

(Davies, 1997b). Similar motivation drove Yoon et al. (2002) to attempt to remove

shadows by switching different lights on and off, and then using logic to eliminate

the shadows: under the right conditions, it was only necessary to find the maximum

of the individual pixel intensities between the various images. However, in outdoor

scenes, it is difficult to control the lighting: instead various rules must be worked out

for minimizing the problems. Prati et al. (2001) have made a comparative evaluation

of available methods. Other work on shadow location and elimination has been

reported by Rosin and Ellis (1995), Mikić et al. (2000), and Cucchiara et al. (2003).
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In addition, Koch et al. (2001) have presented results on the use of switched lights to

maintain image intensity irrespective of changes of ambient illumination, and to limit

the overall dynamic range of image intensities so that the risk of over- or underex-

posing the scene is drastically reduced. See also the bibliography in Section 15.13

for related solutions under the guise of photometric stereo.

25.7.1 More Recent Developments
Hyperspectral imaging has developed almost explosively since 2000. Not only

have the techniques themselves developed in phase with the increasing power of

the PC, but also significant numbers of applications have started to come

forward. In particular, Gómez et al. (2007) and Gómez-Sanchis et al. (2008)

have applied it to citrus fruit inspection; Qin and Lu (2008) have applied it

more generally to fruit and vegetable inspection; Heia et al. (2007) have applied

it to the detection of nematode worms in cod fillets (the parasites sometimes

being detected well below the surface of the fillet by this means); and Mahesh

et al. (2008) have applied it to differentiate Canadian wheat classes. Outside the

food inspection arena, Yuen and Richardson (2010) have developed it for secu-

rity, surveillance, and target acquisition. Here the potentialities are enormous, as

can be seen from the fact that the method even provides the capability for asses-

sing human stress by monitoring blood hemoglobin oxygenation levels in the

face region. For further details, see Section 25.5 and the original papers

mentioned above. Note that Yeen and Richardson’s paper provides interesting

details of the instrumentation and instrumentation schemes needed for

hyperspectral imaging hardware, which range from dispersive spectrographs to

narrow-band tunable filters.
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CHAPTER

26 Real-Time Hardware and
Systems Design
Considerations

In general, vision involves huge amounts of computation, as images are two-

dimensional and in real-time applications are liable to arrive at rates of 10�20

per second. Although humans are able to cope easily with these data rates, they

are often beyond the processing capabilities of conventional computers. This

chapter explores the situation, and demonstrates how, using special computational

hardware, the processing problems can be tackled and alleviated.

Look out for:

• how parallel processing can radically improve the speed at which vision

algorithms run.

• the concept of a SIMD (single instruction stream, multiple data stream)

computer, with one processor per pixel in a 2-D array.

• Flynn’s classification of sequential and parallel computers.

• how a vision algorithm may optimally be partitioned between hardware and

software.

• modern real-time hardware options.

• the increasingly important status of FPGAs and GPUs in real-time hardware

design.

• vision system design considerations and the optimization process.

Much of this book has been devoted to the systematic design of vision algorithms,

and of necessity has tended to focus on a great variety of sub-problems such as

edge detection. However, when embarking upon design of a complete vision sys-

tem, the situation is much less “clean,” and indeed is subject to all sorts of finan-

cial and marketing constraints, as well as fiercely nonideal data. In this context,

vision system design is as much an art as a science, and is more subject to cyclic
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improvement than in an ideal world—as the last few sections of this chapter aim

to indicate. Suffice it to say here that the situation must be viewed realistically

with an eye to improvement.

26.1 INTRODUCTION
In Chapter 1, we started by pointing out that of the five senses, vision has the advan-

tage of providing enormous amounts of information at very fast rates: this was

observed to be useful to humans and should also be of great value with robots and

other machines. However, the input of large quantities of data necessarily implies

large amounts of data processing, and this can create problems—especially in real-

time applications. Hence, it is no wonder that speed of processing has been alluded

to on numerous occasions in earlier chapters of this book.

It is now necessary to examine how serious this situation is and to suggest what

can be done to alleviate the problem. Consider a simple situation where it is neces-

sary to examine products of size 643 64 pixels moving at rates of 10�20 per sec-

ond along a conveyor: this amounts to a requirement to process up to 100,000

pixels per second—or typically four times this rate if space between objects is taken

into account. In fact, the situation can be significantly worse than indicated by these

figures. First, even a basic process such as edge detection generally requires a

neighborhood of at least 9 pixels to be examined before an output pixel value can

be computed: thus, the number of pixel memory accesses is already 10 times that

given by the basic pixel processing rate. Second, functions such as skeletonization

or size filtering require a number of basic processes to be applied in turn: e.g., elim-

inating objects up to 20 pixels wide requires 10 erosion operations, whereas thin-

ning similar objects using simple “north-south-east-west” algorithms requires at

least 40 whole-image operations. Third, typical applications such as inspection

require a number of tasks—edge detection, object location, surface scrutiny, and so

on—to be carried out. All these factors mean that the overall processing task may

involve anything between 1 and 100 million pixels or other memory accesses per

second. Finally, this analysis ignores the complex computations required for some

types of 3-D modeling, and for certain more abstract processing operations (see

Chapters 14 and 15), although the expanding area of hyperspectral imaging

(Chapter 25) also has extremely demanding computational requirements.

These formidable processing requirements imply a need for very carefully

thought out algorithm strategies. This means that special hardware will normally

be needed1 for almost all real-time applications (exceptions might occur in those

tasks where performance rates are governed by the speed of a robot, vehicle, or

other slow mechanical device). Broadly speaking, there are two main strategies

for improving processing rates. The first involves employing a single very fast

1Sometime in the future, this view will need to be reconsidered: see Section 26.7.
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processor that is fabricated using advanced technology, e.g., with gallium arsenide

semiconductor devices, Josephson junction devices or perhaps optical processing

elements (PEs). Such techniques can be expected to yield speed increases by a

factor of 10 or so, which might be sufficiently rapid for certain applications.

However, it is more likely that a second strategy will have to be invoked—that of

parallel processing: this involves employing N processors working in parallel,

thereby giving the possibility of enhancing speed by a factor N. This second strat-

egy is particularly attractive: to achieve a given processing speed, it should be

necessary only to increase the number of processors appropriately—although it

has to be accepted that cost will be increased by a factor of around N, as for the

speed. Clearly, it is partly a matter of economics which of the two strategies will

be the better choice but at any time the first strategy will be technology-limited,

whereas parallel processing seems more flexible and capable of giving the

required speed in any circumstances. Hence, for the most part, parallel processing

is considered in what follows.

26.2 PARALLEL PROCESSING
There are two main approaches to parallel processing: in the first, the computa-

tional task is split into a number of functions, which are then implemented by dif-

ferent processors and in the second, the data are split into several parts and

different processors handle the different parts. These two approaches are some-

times called algorithmic parallelism and data parallelism, respectively. Note that

if the data are split, different parts of the data are likely to be nominally similar,

so there is no reason to make the PEs different from each other. However, if the

task is split functionally, the functions are liable to be very different and it is

most unlikely that the PEs should be identical.

The example cited in Section 26.1 involves a fixed sequence of processes

being applied in turn to the input images. On the whole, this type of task is well

adapted to algorithmic parallelism and indeed to being implemented as a pipe-

lined processing system, each stage in the pipeline performing one task such as

edge detection or thinning (Fig. 26.1) (note that each stage of a thinning task will

probably have to be implemented as a single stage in the pipeline). Clearly, such

an approach lacks generality but it is cost-effective in a large number of applica-

tions, since it is capable of providing a speedup factor of around two orders of

magnitude without undue complexity. Unfortunately, this approach is liable to be

inefficient in practice. This is because the speed at which the pipeline operates is

dictated by the speed of the slowest device on the pipeline—faster speeds of the

other stages constitute wasted computational capability. Variations in the data

passing along the pipeline add to this problem: e.g., a wide object would require

many passes of a thinning operation, so either thinning would not proceed to com-

pletion (and the effect of this would have to be anticipated and allowed for), or
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else the pipeline would have to be run at a slower rate. Obviously, it is necessary

for such a system to be designed in accordance with worst-case rather than “aver-

age” conditions—although additional buffering between stages can help to reduce

this latter problem.

Clearly, the design and control of a reliable pipelined processor is not trivial

but, as mentioned above, it gives a generally cost-effective solution in many types

of application. However, both with pipelined processors and with other machines

that use algorithmic parallelism, there are significant difficulties in dividing tasks

into functional partitions that match well the PEs on which they are to run. For

this and other reasons, there have been many attempts at the alternative approach

of data parallelism. Indeed, image data are, on the whole, reasonably homoge-

neous, so it is evidently worth searching for solutions incorporating data parallel-

ism. Further consideration then leads to the SIMD type of machine in which each

pixel is processed by its own PE. This method is described in Section 26.3.

26.3 SIMD SYSTEMS
In the SIMD (single instruction stream, multiple data stream) architecture, a 2-D

array of PEs is constructed, which maps directly onto the image being processed;

thus, each PE stores its own pixel value, processes it, and stores the processed

pixel value. Furthermore, all PEs run the same program and indeed are subject to

the same clock; this means that they execute the same instruction simultaneously

(hence the existence of a single instruction stream). An additional feature of

SIMD machines that are used for image processing is that each PE is connected

to its immediate neighbors in the array, so that neighborhood operations can con-

veniently be carried out—the required input data are always available. This means

that each PE is typically connected to eight others in a square array. Such

machines therefore have the advantage not only of image parallelism but also of

neighborhood parallelism—data from neighboring pixels are available immedi-

ately and several sequential memory accesses per pixel process are no longer

required (for a useful review of these and other types of parallelism, see

Danielsson and Levialdi (1981)).

C G N E D T H P S L

FIGURE 26.1

Typical pipelined processing system: C, input from camera; G, grab image; N, remove

noise; E, enhance edge; D, detect edge; T, thin edge; H, generate Hough transform;

P, detect peaks in parameter space; S, scrutinize products; L, log data and identify

products to be rejected.
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The SIMD architecture is extremely attractive in principle since its processing

structure seems closely matched to the requirements of many tasks, such as noise

removal, edge detection, thinning, size analysis, and so on (although we return to

this point below). However, in practice, it suffers from a number of disadvantages.

Some of these are due to the compromises needed to keep costs at reasonable

levels. For example, the PEs may not be powerful floating-point processors and

may not contain much memory (this is because available cost is expended on

including more PEs rather than making them more powerful); in addition, the pro-

cessor array may be too small to handle the whole image at once, and problems of

continuity and overlap arise when trying to process subimages separately (Davies

et al., 1995); this can also lead to difficulties when global operations (such as find-

ing an accurate convex hull) have to be performed on the whole image. Finally,

getting the data in and out of the array can be a relatively slow process.

Although SIMD machines may appear to operate efficiently on image data,

this is not always the case in practice, since many processors may be “ticking

over” and not doing anything useful. For example, if a thinning algorithm is being

implemented, much of the image may be bare of detail for most of the time, since

most of the objects will have shrunk to a fraction of their original area. Thus, the

PEs are not being kept usefully busy. Here the topology of the processing scheme

is such that these inactive PEs are unable to get data they can act on, and effi-

ciency drops off markedly. Hence, it is not obvious that an SIMD machine can

always carry out the overall task any faster than a more modest MIMD machine

(see definition and full explanation in Section 26.5), or a specially fast but signifi-

cantly cheaper single processor (SISD) machine.

A more important characteristic is that although the SIMD machine is reason-

ably well adapted for image processing, it is quite restricted in its capabilities for

image analysis. For example, it is virtually impossible to use efficiently for imple-

menting Hough transforms, especially when these demand mapping image fea-

tures into an abstract parameter space. In addition, most serial (SISD) computers

are much more efficient at operations such as simple edge tracking, since their

single processors are generally much faster than costs will permit for the many

processors in an SIMD machine. Overall, these problems should be expected

since the SIMD concept is designed for image-to-image transformations via local

operators and does not map well to (a) image-to-image transformations that

demand nonlocal operations, (b) image-to-abstract data transforms (intermediate-

level processing), or (c) abstract-to-abstract data (high-level) processing (note that

some would classify (a) as being a form of intermediate-level processing where

deductions are made about what is happening in distant parts of an image—i.e.,

higher level interpretive data are being marked in the transformed image). This

means that unaided SIMD machines are unlikely to be well suited for practical

applications such as inspection.

Before leaving the topic of SIMD machines, recall that they incorporate two

types of parallelism—image parallelism and neighborhood parallelism. Both of

these contribute to high processing rates. Although it might at first appear that
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image parallelism contributes mainly through the high processing bandwidth2 it

offers, it also contributes through the high data accessing bandwidth: in contrast,

neighborhood parallelism contributes only through the latter mechanism.

However, what is important is that this type of parallel machine, in common with

any successful parallel machine, incorporates both features. It is of little use to

attend to the problem of achieving high processing bandwidth only to run into

data bottlenecks through insufficient attention to data structures and data access

rates: i.e., it is necessary to match the data access and processing bandwidths if

full use is to be made of available processor parallelism.

26.4 THE GAIN IN SPEED ATTAINABLE WITH
N PROCESSORS

It is interesting to speculate whether the gain in processing rate could ever be

greater than N, say N2. It could in principle be imagined that two robots used to

make a bed would operate more efficiently than one, or four more efficiently than

two, for a rectangular bed. Similarly, N robots welding N sections of a car body

would operate more efficiently than a single one. The same idea should apply to

N processors operating in parallel on an N-pixel image. At first sight, it does

appear that a gain greater than N could result. However, closer study shows that

any task is split between data organization and actual processing. Thus, the maxi-

mum gain that could result from the use of N processors is (exactly) N: any other

factor is due to the difficulty, either for low or for high N, of getting the right

data to the right processor at the right time. Thus, in the case of the bed-making

robots, there is an overhead for N5 1 of having to run around the bed at various

stages because the data (the sheets) are not presented correctly. More usually, it is

at large N that the data are not available at the right place at the right moment.

An immediate practical example of these ideas is that of accessing all eight neigh-

bors in a 33 3 neighborhood where only four are directly connected, and the cor-

ner pixels have to be accessed via these four: then a threefold speedup in data

access may be obtained by doubling the number of local links from four to eight.

There have been many attempts to model the utilization factor of both SIMD

and pipelined machines when operating on branching and other algorithms.

Minsky’s conjecture (Minsky and Papert, 1971), that the gain in speed from a par-

allel processor is proportional to log2N rather than N, can be justified on this

basis, and leads to an efficiency η5 log2 N=N. Hwang and Briggs (1984) pro-

duced a more optimistic estimate of efficiency in parallel systems: η5 1=log2 N.
Following Chen (1971), the efficiency of a pipelined processor is usually esti-

mated as η5P=ðN1P� 1Þ, where there are on average P consecutive data

2In this context, it is conventional to use the term bandwidth to mean the maximum rate realizable

via the stated mechanism.
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points passing through a pipeline of N stages—the reasoning being based on the

proportion of stages that are usefully busy at any one time. For imaging applica-

tions, such arguments are often somewhat irrelevant since the total delay through

the pipelined processor is unimportant compared with the cycle time between suc-

cessive input or output data values. This is because a machine that does not keep

up with the input data stream will be unacceptable, whereas one that incorporates

a fixed time delay may be acceptable in some cases (such as a conveyor belt

inspection problem) although inadequate in others (such as a missile guidance

system).

Broadly speaking, the situation that is being described here involves a speedup

factor N coupled with an efficiency η, giving an overall speedup factor of

N 0 5 ηN. Ultimately, the loss in efficiency is often due to frustrated algorithm

branching processes but presents itself as underutilization of resources, which

cannot be reduced because the incoming data are of variable complexity.

26.5 FLYNN’S CLASSIFICATION
Early in the development of parallel processing architectures, Flynn (1972) devel-

oped a now well-known classification, which has already been referred to above:

architectures are either SISD, SIMD, or MIMD. Here SI (single instruction

stream) means that a single program is employed for all the PEs in the system,

whereas MI (multiple instruction stream) means that different programs can be

used; SD (single data stream) means that a single stream of data is sent to all the

PEs in the system, whereas MD (multiple data stream) means that the PEs are fed

with data independently of each other.

The SISD machine is a single processor and is normally taken to refer to a

conventional von Neumann computer. However, the definitions given above

imply that SISD falls more naturally under the heading of a Harvard architecture,

whose instructions and data are fed to it through separate channels: this gives it a

degree of parallelism and makes it generally faster than a von Neumann architec-

ture (in fact, there is almost invariably bit parallelism also, the data taking the

form of words of data holding several bits of information, and the instructions

being able to act on all bits simultaneously: however, this possibility is so univer-

sal that it will be accepted as standard in what follows).

The SIMD architecture has already been described reasonably thoroughly,

although it is worth reiterating that the multiple data stream arises in imaging

work through the separate pixels being processed by their PEs independently as

separate, although similar, data streams. Note that the PEs of SIMD machines

invariably embody the Harvard architecture.

The MISD architecture is notably absent from the above classification,

although it is possible to envisage that pipelined processors fall into this category

since a single stream of data is fed through all processors in turn, albeit being
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modified as it proceeds so the same data (as distinct from the same data stream)

do not pass through each PE. However, many parties take the MISD category to

be null (e.g., Hockney and Jesshope, 1981).

The MIMD category is a very wide one, containing all possible arrangements

of separate PEs that get their data and their instructions independently: it even

includes the case where none of the PEs are connected together in any way.

However, such a wide interpretation does not solve practical problems. We can

therefore envisage linking the PEs together by a common memory bus, or every

PE being connected to every other one, or linkage by some other means. A com-

mon memory bus would tend to cause severe contention problems in a fast-

operating parallel system, whereas maintaining separate links between all pairs of

processors is clearly at the opposite extreme but would run into a combinatorial

explosion as systems become larger. Hence, a variety of other arrangements is

used in practice. Crossbar, star, ring, tree, pyramid, and hypercube structures have

all been used (Fig. 26.2). In the crossbar arrangement, half of the processors can

communicate directly with the other half via N links (and N2/4 switches),

although all processors can communicate with each other indirectly. In the star,

there is one central PE so the maximum communication path has length 2. In the

ring, all N PEs are placed symmetrically and the maximum communication path

is of length N � 1 (note that this figure assumes unidirectional rings, which are

easier to implement, and a number of notable examples of this type exist). In the

(a) (b)

(c) (d) (e)

FIGURE 26.2

Possible arrangements for linking processing elements: (a) crossbar, (b) star, (c) ring,

(d) tree and (e) hypercube. All links are bidirectional except where arrows indicate

otherwise.
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tree or pyramid, the maximum path length is of order 2(log2 N � 1), assuming

that there are two branches for each node of the tree. Finally, for the hypercube

of n dimensions (built in an n-dimensional space with two positions per dimen-

sion), the shortest path length between any two PEs is at most n; in this case,

there are 2n processors, so the shortest path length is at most log2 N. Overall, the

basic principle must be to minimize path length while cutting down the possibility

of data bottlenecks: this shows that the star configuration is very limited and

explains the considerable attention that has been paid to the hypercube topology.

In view of what was said earlier about the importance of matching the data band-

width to the processing bandwidth, a very careful choice clearly needs to be made

concerning a suitable architecture—and there is no lack of possible candidates

(the above set of examples is by no means exhaustive).

Finally, note that factors other than speed enter into the choice of an architec-

ture. For example, many have argued that the pyramid type of architecture closely

matches the hierarchical data structures most appropriate for scene interpretation.

Much of the above discussion about architectures has been in the realm of the

possible and the ideal (many of the existing systems are expensive experimental

ones), and it is now necessary to consider more practical issues. How, e.g., are we

to match the architecture to the data? More particularly, how do we lay down

general guidelines for partitioning the tasks and implementing them on practical

architectures? In the absence of general guidelines of this type, it is useful to look

in detail at a given practical problem to see how to design an optimal hardware

system to implement it: this is done in the next section.

26.6 OPTIMAL IMPLEMENTATION OF IMAGE ANALYSIS
ALGORITHMS

The particular algorithm considered in this section was examined earlier by

Davies and Johnstone (1986, 1989). It involves the inspection of round food pro-

ducts (see also Chapter 20). The purpose of the analysis is to show how to make

a systematic selection between available hardware modules (including compu-

ters), so that it can be guaranteed that the final hardware configuration is optimal

in specific ways and in particular with regard to relevant cost�speed tradeoffs.

In the particular food product application considered, biscuits are moving at

rates of up to 20 per second along a conveyor. Since the conveyor is moving con-

tinuously, it is natural to use a line-scan camera to obtain images of the products.

Before they can be scrutinized for defects and their sizes measured, they have to

be located accurately within the images. Since the products are approximately cir-

cular, it is straightforward to employ the Hough transform technique for the pur-

pose (see Chapter 12): it is also appropriate to use the radial intensity histogram

approach to help with the task of product scrutiny (Chapter 20). In addition, sim-

ple thresholding can be used to measure the amount of chocolate cover and
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certain other product features. The main procedures in the algorithm are summa-

rized in Table 26.1. Note that the Hough transform approach requires the rapid

and accurate location of edge pixels, which is achieved using the Sobel operator

and thresholding the resulting edge enhanced image. Edge detection is in fact the

only 33 3 neighborhood operation in the algorithm and hence it is relatively time

consuming; rather less processing is required by the 13 1 neighborhood opera-

tions (Table 26.1); then come various 1-D processes such as analysis of radial his-

tograms. The fastest operations are those such as logging variables, which are

neither 1-D nor 2-D processes.

26.6.1 Hardware Specification and Design
On finalization of the algorithm strategy, the overall execution time was found to

be about 5 s per product (Davies and Johnstone, 1986).3 With product flow rates

of the order of 20 per second, and software optimization subject to severely

3Although the particular example is dated, the principles involved are still relevant and worth fol-

lowing here.

Table 26.1 Breakdown of the Inspection Algorithm

Function Description Time
(s)

Cost
(d)

c/t
(d/ms)

1. Acquire image 13 1 — 1000 —

2. Clear parameter space 13 1 0.017 200 11.8
3. Find edge points 33 3 4.265 3000 0.7
4. Accumulate points in parameter

space
13 1 0.086 2000 23.3

5. Find averaged center — 0.020 2000 100.0
6. Find area of product 13 1 0.011 100 9.1
7. Find light area (no chocolate

cover)
13 1 0.019 200 10.5

8. Find dark area (slant on
product)

13 1 0.021 200 9.5

9. Compute radial intensity
histogram

13 1 0.007 400 57.1

10. Compute radial histogram
correlation

1-D 0.013 400 30.8

11. Overheads for functions 6�10 — 0.415 1200 2.9
12. Calculate product radius 1-D 0.047 4000 85.1
13. Track parameters and log — 0.037 4000 108.1
14. Decide if rejection is warranted — 0.002 4000 2000.0

Time for whole algorithm 4.960

Source: r IMechE 1986.
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diminishing returns, a further gain in speed by a factor of around 100 could be

obtained only by using special electronic hardware. In this application, a compro-

mise was sought with a single CPU linked to a set of suitable hardware accelera-

tors. In this case, the latter would have had to be designed specially for the

purpose, and indeed some were produced in this way. However, in the discussion

below, it is immaterial whether the hardware accelerators are made specially or

purchased—the object of the discussion is to present rigorous means for deciding

which software functions should be replaced by hardware modules.

As a prerequisite to the selection procedure, Table 26.1 lists execution times and

hardware implementation costs of all the algorithm functions: the figures are some-

what notional since it is difficult to divide the algorithm rigorously into completely

independent sections. However, they are sufficiently accurate to form the basis for

useful decisions on the cost-effectiveness of hardware. Since the aim is to examine the

principles underlying cost�speed tradeoffs, the figures presented in Table 26.1 are

taken as providing a concrete example of the sort of situation that can arise in practice.

26.6.2 Basic Ideas on Optimal Hardware Implementation
The basic strategy that was adopted for deciding on a hardware implementation

of the algorithm is as follows:

1. Prioritize the algorithm functions so that it is clear in which order they should

be implemented.

2. Find some criterion for deciding when it is not worth proceeding to implement

further functions in hardware.

From an intuitive point of view, function prioritization seems a simple process:

basically functions should be placed in order of cost-effectiveness, i.e., those saving

the most execution time per unit cost (when implemented in hardware) should be

placed first, and those giving lesser savings should be placed later. Thus, we arrive

at the c/t (cost/time) criterion function. Then with limited expenditure we achieve

the maximum saving in execution time, i.e., the maximum speed of operation.

To decide at what stage it is not worth implementing further functions in hard-

ware is arguably more difficult. Excluding here the practical possibility of strict

cost or time limits, the ideal solution results in the optimal balance between total

cost and total time. Since these parameters are not expressible in the same units,

it is necessary to select a criterion function such as C3 T (total cost3 total time),

which, when minimized, allows a suitable balance to be arrived at automatically.

The procedure outlined above is simple and does not take account of hardware

that is common to several modules. This “overhead” hardware must be implemen-

ted for the first such module and is then available at zero cost for subsequent

modules. In many cases, a speed advantage results from the use of overhead hard-

ware. In the example system, it is found that significant economies are possible

when implementing functions 6�10, since common pixel scanning circuitry may

be used. In addition, note that any of these functions that are not implemented in
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hardware engender a time overhead in software. This, and the fact that the time

overhead is much greater than the sum of the software times for functions 6�10,

means that once the initial cost overhead has been paid it is proven to be best (in

this case) to implement all these functions in hardware.

Trying out the design strategy outlined above gives the c/t ratio sequence shown

in Table 26.2. A set of overall times and costs resulting from implementing in hard-

ware all functions down to and including the one indicated is now deduced.

Examination of the column of C3 T products then shows where the tradeoff

between hardware and software is optimized: this occurs here when the first 13

functions are implemented in hardware.

The analysis presented in this section clearly gives only a general indication

of the required hardware�software tradeoff. Indeed, minimizing C3 T indicates

an overall “bargain package,” whereas in practice the system might well have to

meet certain cost or speed limits. In this food product application, it was neces-

sary to aim at an overall cost of less than d10,000. By implementing functions 1,

3 and 6�11 in hardware, it was found possible to get to within a factor 3.6 of the

optimal C3 T product. Interestingly, using an upgraded host processor it proved

possible to get within a much smaller factor (1.8) of the optimal tradeoff, with the

same number of functions implemented in hardware (Table 26.2): indeed, it is a

particular advantage of using this criterion function approach that the choice of

which processor to use becomes automatic.

The paper by Davies and Johnstone (1989) goes into some depth concerning the

choice of criterion function, showing that more general functions are available and

there is a useful overriding geometrical interpretation—that global concavities are

Table 26.2 Speed�Cost Tradeoff Figures

Function
(see
Table 26.1)

c/t
(d/ms)

t (s) c (d) T (s) C (d) C3T
(d�s)

C0 3T0

(d�s)

— — 6000 4.990 6000 29,940 15,080
3 0.7 4.265 3000 0.725 9000 6530 3190
6�11 5.1 0.486 2500 0.239 11,500 2750 1400
2 11.8 0.017 200 0.222 11,700 2600 1350
4 23.3 0.086 2000 0.136 13,700 1860 1040
12 85.1 0.047 4000 0.089 17,700 1580 1010
5 100.0 0.020 2000 0.069 19,700 1360 860
13 108.1 0.037 4000 0.032 23,700 760 770
14 2000.0 0.002 4000 0.030 27,700 830 860

In this table, the first entry corresponds to the base system cost, including computer, camera, frame
store, backplane, and power supply. The other entries are derived from Table 26.1 by ordering the c/t
values (see text). The final column shows the figures obtained using an upgraded host processor.
Source: r IMechE 1986.
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being sought on the chosen curve in f(C), g(T) space. The paper also places the

problem of overheads and relevant functional partitions on a more rigorous basis.

Finally, a later paper (Davies et al., 1995) emphasizes the value of software solu-

tions, achieved, e.g., with the aid of arrays of digital signal processing (DSP) chips.

26.7 SOME USEFUL REAL-TIME HARDWARE OPTIONS
In the 1980s, real-time inspection systems typically had many circuit boards con-

taining hundreds of dedicated logic chips, although some of the functionality was

often implemented in software on the host processor. This period was also a

field-day for the Transputer type of microprocessor, which had the capability for

straightforward coupling of processors to make parallel processing systems. In

addition, the “bit-slice” type of microprocessor permitted easy expansion to larger

word sizes, although the technology was also capable of use in multi-pixel paral-

lel processors. Finally, the VLSI type of logic chip was felt by many to present a

route forward, particularly for low-level image processing functions.

In spite of all these competing lines, what gradually emerged in the late 1990s

as the predominant real-time implementation device was the digital signal proces-

sing (DSP) chip: this had evolved earlier in response to the need for fast 1-D sig-

nal processors, capable of performing such functions as Fast Fourier Transforms

and processing of speech signals. The reason for its success lays in its conve-

nience and programmability (and thus flexibility) and its high speed of operation.

By coupling DSP chips together it was found that 2-D image processing opera-

tions could be performed both rapidly and flexibly, thereby to a large extent elim-

inating the need for dedicated random logic boards, and at the same time ousting

Transputers and bit-slices.

However, over the same period, single-chip field-programmable logic arrays

(FPGAs) were becoming more popular and considerably more powerful, whereas,

in the 2000s, microprocessors are being embedded on the same chip. At this

stage, the concept is altogether more serious and in the 2000s one has to think

quite carefully to obtain the best balance between DSP and FPGA chips for

implementing practical vision systems.

In fact, another contender in this race is the “ordinary” PC. Although in the

1990s, this had not normally been regarded as a suitable implementation vehicle

for real-time vision, the possibility of implementing some of the slower real-time

functions using a PC gradually arose though the relentless progression of Moore’s

Law, whereas other work on special software designs (see Chapter 21) showed

how this line of development could be extended to faster running applications. In

fact, we are now at the exciting stage that a single unaided PC with an embedded

operating system is sufficient to run a proportion of machine vision applica-

tions—a proportion that is expected to grow substantially in the coming decade.

Furthermore, we can anticipate that, over time, the whole emphasis of real-time

vision will move away from speed being the dominating influence. At that stage
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effectiveness, accuracy, robustness, and reliability (what one might call “fitness

for purpose”) will be all that matters: for the first time we will be free to design

ideal vision systems. The main word of caution is that this ideal will not necessar-

ily apply for all possible applications—one can imagine exceptions, e.g., where

ultrahigh speed aircraft have to be controlled or where huge image databases have

to be searched rapidly.

Overall, we can see a progression amid all the hardware developments out-

lined above: this is a move from random logic design to the use of software-

based PEs, and further, one where the software runs not on special devices with

limited capability but on conventional computers for which (a) very long

instruction words are not needed, (b) machine code or assembly language pro-

gramming is not necessary to get the most out of the system (so standard lan-

guages can be used), and (c) overt parallel processing (beyond that available in

the central processing chip of a standard PC) is no longer crucial.4 The advan-

tages in terms of flexibility are dramatic compared with the early days of

machine vision.

The trends described above are underlined by the publications discussed in

Section 26.12, and are summarized in Table 26.3.

26.8 SYSTEMS DESIGN CONSIDERATIONS
Having focussed on the problems of real-time hardware design, it is now neces-

sary to get a clearer idea of the overall systems design process. In fact, one of the

most important limitations on the rate at which machine vision systems can be

produced is the lack of flexibility of existing design strategies: this applies espe-

cially to inspection systems. To some extent, this problem stems from lack of

understanding of the basic principles of vision upon which inspection systems

might optimally be based. In addition, there is the problem of lack of knowledge

of what goes into the design process. It is difficult enough designing a complete

inspection system, including all the effort that goes into producing a cost-effective

real-time hardware implementation, without having to worry at the same time

whether the schema used is generic or adaptable to other products. Yet this is a

crucial factor that deserves a lot of attention.

An important factor impeding progress in this area is lack of detailed infor-

mation on commercial systems, and lack of space in published papers: in the lat-

ter case what suffers is “know-how”—particularly on creativity aspects (journals

see their role as promoting scientific methodology and results rather than subjec-

tive design notions). We explore the situation in more detail in the following

section.

4Nevertheless, some functions such as image acquisition and control of mechanical devices will

have to be carried out in parallel to prevent data bottlenecks and other holdups.
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Table 26.3 Hardware Devices for the Implementation of Vision Algorithms

Device Function Summary of Properties

PC Personal computer or more powerful
workstation: complete computer with
RAM, hard disk and other peripheral
devices. Would need an embedded
(restricted) operating system in a real-time
application.

• Fast
• Medium cost
• Extremely flexible
• Should be envisioned as a

software device

MP Microprocessor: single chip device
containing CPU1 cache RAM. The core
element of a PC.

• Fast
• Low cost
• Extremely flexible
• Should be envisioned as a

software device
DSP Digital signal processor: long instruction

word MP chip designed specifically for
signal processing—high processing speed
on a restricted architecture.

• Very fast
• Low cost
• Highly flexible (some flexibility

sacrificed for speed)
• Should be envisioned as a

software device
FPGA Field programmable gate array: random

logic gate array with programmable
linkages; may even be dynamically
reprogrammable within the application.
The latest devices have flip-flops and
higher level functions already made up on
chip, ready for linking in; some such
devices even have one or more MPs on
board.

• Fast
• Low-to-medium cost
• Extremely flexible
• Should be envisioned as a

hardware device, commonly
slaved to a DSP

• Can be a software device if
controlled by on-chip MPs

LUT Lookup table: RAM or ROM. Useful for fast
lookup of crucial functions. Normally slave
to a MP or DSP.

• Very fast
• Low cost
• Extremely flexible, if built

using RAM
• Should be envisioned as a

slave software device
ASIC Application-specific integrated circuit:

contains devices such as Fourier
transforms, or a variety of specific SP or
vision functions. Normally slave to a MP
or DSP.

• Very fast
• Medium cost
• Inflexible (flexibility sacrificed

for speed)
• Should be envisioned as a

slave software device
Vision
chip

Vision chips are ASICs that are devised
specifically for vision: they may contain
several important vision functions, such as
edge detectors, thinning algorithms, and

• Very fast
• Medium cost
• Inflexible (flexibility sacrificed

for speed)

(Continued )
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26.9 DESIGN OF INSPECTION SYSTEMS—THE STATUS QUO
As practiced hitherto, the design of an inspection system has a number of stages,

much as in the list presented in Table 26.4. While this list is clearly incomplete

(e.g., it includes no mention of lighting systems), it is a useful start, and does

reveal something about the creativity aspects—by admitting that reassessments of

the efficacy of algorithms may be needed. In fact, there are necessarily one or

two feedback loops, through which the efficacy can be improved systematically,

again and again, until operation is adequate, or indeed until the process is aban-

doned.5 The underlying “process” appears to be:

Table 26.3 (Continued)

Device Function Summary of Properties

connected components analyzers.
Normally slave to a MP or DSP.

• Should be envisioned as a
slave software device

VLSI Custom VLSI chip: this commonly has
many components from gate level
upwards frozen into a fixed circuit with a
particular functional application in mind.
(Note, however, that the generic name
includes MPs, DSPs, although we shall
ignore this possibility here.)

• Fast
• High cost
• Inflexible
• Should be envisioned as a

hardware device
• Normally slave to a MP or

DSP
GPU Graphics processing unit on a PC or other

workstation. Although designed for
computer games and other graphics
applications, GPUs are able to provide
valuable functionality for computer vision.

• Very fast
• Substantial power

requirements

The only high-cost item is the VLSI chip: the cost of producing the masks is only justifiable for high-
volume products, such as those used in digital TV. In general, high cost means more than d10,000,
medium cost means around d2000, and low cost means less than d100.

If there is a single winner in this table from the point of view of real-time applications, it is the
FPGA, supposing only that it contains sufficient onboard raw computing power to make the optimum
use of its available random logic. Its dynamic reprogrammability is potentially extremely powerful, but
it needs to be known how to make best use of it. It has been usual to slave FPGAs to DSPs or MPs,a

but the picture changes radically for FPGAs containing on-chip MPs.
For a discussion of GPUs, see Section 26.12.3.

aIn fact, the FPGA and the DSP complement each other exceptionally well, and it has been common
practice to use them in tandem.

5It is in the nature of things that you can’t be totally sure whether a venture will be a success with-

out trying it. Furthermore, in the hard world of industrial survival, part of adequacy means produc-

ing a working system and part means making a profit out of it. This section must be read in this

light.
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create a basic scheme;

do

improve current scheme;

if time up then stop;

if no further ideas then stop;

until an adequate system is obtained;

The “if no further ideas” clause can be fulfilled if no way is found of making

the system fast enough or low enough in cost, or of high enough specification.

This would account for most contingencies that could arise.

The problem with the above process is that it represents ad hoc rather than sci-

entific development, and there is no guarantee that the solution that is reached is

optimal. Indeed, specification of the problem is not insisted upon (except to the

level of “adequacy”), and if specification and aims are absent, it is impossible to

Table 26.4 Stages in the Design of a Typical Inspection System

1. Hearing about the problem
2. Analyzing the situation
3. Looking at the data
4. Testing obvious algorithms
5. Realizing limitations
6. Developing algorithms further
7. Finding things are difficult and to some extent impossible
8. Doing theory to find the source of any limitations
9. Doing further tests
10. Getting an improved approach
11. Reassessing the specification
12. Deciding whether to go ahead
13. Completing a software system
14. Assessing the speed limitations
15. Starting again if necessary
16. Speeding up the software
17. Reaching a reasonable situation
18. Putting through 1000 images
19. Designing a hardware implementation
20. Revamping the software if necessary
21. Putting through another 100,000 images
22. Assessing difficulties regarding rare events
23. Assessing timing problems
24. Validating the final system

Source: r IEE 1997.
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judge whether the success that is obtained is optimal or not. In an engineering

environment we ought to be insisting on problem specification first, solution sec-

ond. However, things are more complex than this—as will be seen from

Table 26.5.

In the last case in Table 26.5, there are some types of fault6 that are particu-

larly rare, so that only one may arise in many million cases, or, equivalently,

every few weeks or months. Thus there is little statistical basis for making judg-

ments of the risk of failure, and no proper means of training the system so that it

can learn to discriminate these faults. For these sorts of reasons, making a rigor-

ous specification and systematically trying to meet it are extremely difficult,

though it is still worth trying to do so.

Let us return to the first of the complexities listed in Table 26.5. Although

in principle it is difficult to know if there is a solution to a problem, neverthe-

less it is frequently possible to examine the computer image data that arise in

the application, and see whether the eye can detect the faults or the foreign

objects. If it can, this represents a significant step forward, as it means that it

should be possible to devise a computer algorithm to do the same thing. What

will then be in question will be whether we are creative enough to design such

an algorithm, and to ensure that it is sufficiently rapid and cost-effective to be

useful.

A key factor at this point is making an appropriate choice of design strategy:

with structured types of image data, for example, we can ask the following:

1. Should boundary tracking be employed?

2. Should Hough transform line finding be used?

3. Should corner detection be used?

Which of these alternatives could, with the particular dataset, lead to algorithms

of appropriate speed and robustness? On the other hand, for data that is fuzzy or

Table 26.5 Complexities of the Design Process

• It is not always evident that there is a solution, or at least a cost-effective one.
• Specifications cannot always be made in a nonfuzzy manner.
• There is often no rigorous scientific design procedure to get from specification to
solution (there is certainly no guaranteed way of achieving this optimally).

• The optimization parameters are not obvious; nor are their relative priorities clear.
• It can be quite difficult to discern whether one solution is better than another.
• Some inspection environments make it difficult to tell whether a solution is valid or not.

Source: r IEE 1997.

6An important class of rare faults is that of foreign objects, including the hard and sometimes soft

contaminants targeted by X-ray inspection systems.
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where objects are ill-defined, would artificial neural networks be more useful than

conventional programming? Overall, the types of data, and the types of noise and

background clutter that accompany it, are key to the final choice of algorithm.

26.10 SYSTEM OPTIMIZATION
To proceed further, we need to examine the optimization parameters that are rele-

vant. In fact, there are arguably rather few of these:

1. Sensitivity

2. Accuracy

3. Robustness

4. Adaptability

5. Reliability

6. Speed

7. Cost

Of course, these one-word parameters are somewhat imprecise. For example,

“reliability” can mean a multitude of things, including freedom from mechanical

failures such as might arise with the camera being shaken loose, or the illumina-

tion failing; or where timing problems occur when additional image clutter results

in excessive analysis time, so that the computer can no longer keep up with the

real-time flow of product. Be this as it may, several of the parameters have been

shown to depend on each other—e.g., sensitivity and accuracy, cost, and speed:

more will be said about this in Chapter 27. Thus, we are working in a multidi-

mensional space with various constraining curves and surfaces. In the worst case,

all the parameters will be interlinked, corresponding to a single constraining sur-

face, so that adjusting one parameter forces adjustment of at least one other.

There is also the possibility that the constraining surface will impose hard limits

on the values of some parameters.

In fact, each algorithm will have its own constraining surface which will in

general be separate from that of others. Placing all such surfaces together will

create some sort of envelope surface, corresponding to the limits of what is

possible with currently available algorithms (Fig. 26.3). There will also be an

envelope surface, corresponding to what is possible with all possible algorithms,

i.e., including those that have not yet been developed. Thus there are limits

imposed by creativity and ingenuity, and it is not known at what stage such limits

might be overcome.

Returning to the constraining surface, this can be seen to provide an element

of choice in the situation. Do we prefer a sensitive algorithm or a robust one, a

reliable algorithm or a fast one? And so on. However, algorithms are rarely accu-

rately describable as robust or nonrobust, reliable or nonreliable, and the multipa-

rameter space concept with its envelope constraining surfaces clearly allows for

variations in such parameters. But at the present stage of development of the
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subject, the problem we have is that these constraining surfaces are rarely known;

in addition, the algorithms that could provide access to their ideal forms are

largely unknown: even the algorithms that are available are of largely unmapped

capabilities. It is also the case that means are not generally known for selecting

optimal working points (an interesting exception is that elucidated by Davies and

Johnstone (1989) relating to optimization of cost/speed tradeoffs for image-

processing hardware). Thus, there is a long way to go before the algorithm design

and selection process can be made fully scientific.

26.11 CONCLUDING REMARKS
This chapter has studied the means available for implementing image analysis

algorithms in real time. A number of sequential and parallel processing architec-

tures have been considered, as well as other approaches involving use of DSP and

FPGA chips or PCs with embedded operating systems. In addition, means of

selecting between the various realizable schemes have been studied, these being

based on criterion function optimizations.

The field is characterized on the one hand by elegant parallel architectures

that would cost an excessive amount in most applications, and on the other by

hardware solutions that are optimized to the application yet which are bound to

p1

p2

a b

FIGURE 26.3

Optimization curves for a two-parameter system. The gray curves result from individual

algorithms. (a) The envelope of the curves for all known algorithms. (b) The limiting curve

for all possible algorithms.

Source: r World Scientific 2000
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lack generality. In fact, it is easy to gain too rosy a view of the elegant parallel

architectures that are available: their power and generality could easily make

them an overkill in dedicated applications, while reductions in generality

could mean that their PEs spend much of their time waiting for data or perform-

ing null operations. Overall, the subject of image analysis is quite variegated and

it is difficult to find a set of “typical” algorithms for which an “average”

architecture can be designed whose PEs will always be kept usefully busy. Thus,

the subject of mapping algorithms to architectures—or, better, of matching

algorithms and architectures, i.e., designing them together as a system—is a

truly complex one for which obvious solutions turn out to be less efficient in

reality than when initially envisioned. Perhaps the main problem lies in envisag-

ing the nature of image analysis, which turns out to be a far more abstract pro-

cess than image processing (i.e., image-to-image transformation) ideas would

indicate.

Interestingly, the problems of envisaging the nature of image analysis and of

matching hardware to algorithms are gradually being bypassed by the relentless

advance in the speed and power of everyday computers: we have seen that this

means that there will be less need for special dedicated hardware for real-time

implementation, especially if suitable algorithms such as those outlined in

Section 21.4 can be developed: all this represents a very welcome factor for those

developing vision systems for industry.

One topic which has been omitted for reasons of space is that of carrying out

sufficiently rigorous timing analysis of image analysis and related tasks so that

the overall process is guaranteed to run in real time. This is especially important

in the case of inspection. In this context, a particular problem is that unusual

image data conditions could arise which might engender additional processing,

thereby setting the system behind schedule: this situation could arise because of

excessive noise, because more than the usual number of products appear on a

conveyor, because the heuristics in a search tree prove inadequate in some situa-

tion, or for a variety of other reasons. One way of eliminating this type of prob-

lem is to include a watchdog timer, so that the process is curtailed at a

particular stage (with the product under inspection being rejected, or other

suitable action being taken). However, this type of solution is crude, and sophis-

ticated timing analysis methods now exist, based on Quirk analysis: Môtus and

Rodd are protagonists of this type of rigorous approach. The reader is referred to

Thomas et al. (1995) for further details and to Môtus and Rodd (1994) for an in-

depth study.

Finally, the last few sections have aimed at highlighting certain weaknesses in

the system design process and indicating how the subject can be developed fur-

ther for the benefit of industry. Perusal of the earlier chapters will quickly show

that we can now achieve a lot even though our global design base is limited. The

key to our ability to solve the problems, and to know that they are solvable, lies

in the capability of the human visual system for carrying out relevant visual tasks.

Note, however, that there is sound reason for replacing the human eye for these
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visual tasks—so that (for example) 100% tireless inspection can be carried

out and so that it can be achieved consistently and reliably to known standards.

Clearly, the same sentiments apply for many other applications, such as

driver assistance, surveillance for crime detection, and so on (see, for example,

Chapters 22 and 23).

The greatest proportion of the real-time vision system design effort used to be devoted
to the development of dedicated hardware accelerators. This chapter has underlined
that this problem is gradually receding, and that it is already possible to design
reconfigurable FPGA systems that in many cases bypass the need for special parallel
processor systems.

26.12 BIBLIOGRAPHICAL AND HISTORICAL NOTES7

26.12.1 General Background
The problem of implementing vision in real time presents exceptional difficulties,

since in many cases megabytes of data have to be handled in times of the order of

hundredths of a second, and often repeated scrutiny of the data is necessary.

Hundreds of architectures have been considered for this purpose—most having some

degree of parallelism. Of these, many have highly structured forms of parallelism,

such as SIMD machines. The idea of a SIMD machine for image parallel operations

goes back to Unger (1958), and strongly influenced later work both in the UK and

in the USA. For an overview of early SIMD machines, see Fountain (1987).

The SIMD concept was generalized by Flynn (1972) in his well-known classi-

fication of computing machines (Section 26.5). Subsequently, there was a great

proliferation of interconnection networks (Feng, 1981): Reeves (1984) reviewed a

number that would be useful for image processing. An important problem is that

of performing an optimal mapping between algorithms and architectures but for

this to be possible a classification of parallel algorithms is needed to complement

that of architectures: some such work was undertaken by Kung (1980), Cantoni

and Levialdi (1983), and Chiang and Fu (1983).

For one period in the 1980s it became an important challenge to design VLSI

chips for image processing and analysis. Offen (1985) and Fountain (1987) sum-

marized many of the possibilities. The problems targeted in that era were defining

the most useful image processing functions to encapsulate in VLSI and to under-

stand how best to partition the algorithms taking account of chip limitations. At a

7Because of the rapid aging processes that computer and hardware development are subject to, it

has been found necessary to divide this section into three parts. However, in spite of the obvious

temporal development between these parts, the reader is recommended not to rush hastily past the

first two of them, as they embody important principles, ideas and methods that are still highly rele-

vant today.

76326.12 Bibliographical and Historical Notes



more down-to-earth level, many image processing and analysis systems did not

employ sophisticated parallel architectures but “merely” very fast serial proces-

sing techniques with hardwired functions—often capable of processing at video

rates (i.e., giving results within one TV frame time).

Other solutions included the use of bit-slice types of device (Edmonds and

Davies, 1991), and DSP chips (Davies et al., 1995), while special purpose multi-

processor designs were described for implementing multiresolution and other

Hough transforms (Atiquzzaman, 1994).

26.12.2 Developments Since 2000
As indicated in Section 26.7, VLSI solutions to the production of rapid hardware

for real-time applications have gradually given way to the much more flexible

software solutions permitted by DSP chips and to the highly flexible FPGA type

of system which permits random logic to be implemented with relative ease. In

fact, FPGAs offer the possibility of dynamic reconfigurability, which may ulti-

mately be very useful for space probes and the like, though it may prove to be an

unnecessary design burden for most vision applications.8 In this respect it is inter-

esting to note the trend toward hybrid CPU/FPGA chips (Andrews et al., 2004)

that will have optimal combinations of software and random logic available

awaiting software and hardware programming (see also Batlle et al., 2002).

Be this as it may, in the early 2000s considerable attention was still focussed

on VLSI solutions to vision applications (Tzionas, 2000; Mémin and Risset,

2001; Wiehler et al., 2001; Urriza et al., 2001), and it is clear that there are bound

to be high-volume applications (such as digital television) where this will remain

the best approach. Similarly, a lot of attention is still focussed on SIMD and lin-

ear array processor schemes, as there will always be facilities that offer ultrahigh-

speed solutions of this type, and in any case small-scale implementations are

likely to be cheap and usable for those (mainly low-level vision) applications that

match this type of architecture. Examples of this appear in the papers by Hufnagl

and Uhl (2000), Ouerhani and Hügli (2003), and Rabah et al. (2003).

Moving on to FPGA solutions, we find these embodying several types of paral-

lelism and applied to underwater vision applications and robotics (Batlle et al.,

2002), subpixel edge detection for inspection (Hussmann and Ho, 2003), and gen-

eral low-level vision applications, including those implementable as morphological

operators (Draper et al., 2003).

DSP solutions, some of which also involve FPGAs, include those by Meribout

et al. (2002) and Aziz et al. (2003). It is useful to make comparisons with the

Datacube MaxPCI (containing a pipeline of convolvers, histogrammers and other

devices) and other commercially available boards and systems—see Broggi et al.

8However, see Kessal et al. (2003) for a highly interesting investigation of the possibilities—in par-

ticular showing that dynamic reconfigurability of a real-time vision system can already be achieved

in milliseconds.
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(2000a, 2000b), Yang et al. (2002), and Marino et al. (2001). This last paper

employs a cleverly conceived architecture incorporating extensive use of lookup

tables to perform high-speed matching functions that lead to road following: in

fact, the matching functions involve location of interest points followed by high-

speed search for matching them between corresponding blocks of adjacent frames.

An interesting feature is the use of a residue number system to (effectively) fac-

torize large lookup tables into several much smaller and more manageable lookup

tables.

26.12.3 More Recent Developments
By 2011, hardware design for fast vision implementations has moved forward

another stage, and various types of embedded real-time systems are vying with

each other for supremacy—ASICs, DSPs, FPGAs, and GPUs (graphics processing

units) being the main contenders. Ambrosch and Kubinger (2010) have developed

stereo algorithms suitable for implementation in both ASIC and FPGA forms.

However, as ASICs offer higher performance but also higher costs, these authors

decided it would be more realistic to use FPGAs at least for prototyping and test-

ing. Appiah et al. (2010) made a similar decision for their video object segmenta-

tion hardware, consisting of a single-chip FPGA together with four blocks of

RAM. It embodied algorithms for foreground detection (using multimodal back-

ground modeling) and connected components labeling. Various parts of the algo-

rithm run in parallel and the whole system is pipelined for maximum efficiency.

While tackling nominally the same stereo imaging problem as Ambrosch and

Kubinger (2010), Humenberger et al. (2010) produced three implementations

using, respectively, a PC, a GPU, and a DSP. The latter two give real-time perfor-

mance. However, the GPU is by far the fastest but has the highest power consump-

tion. Interestingly, the DSP gives the most stable performance, with the processing

times of successive frames being almost identical—in contrast to the other two

implementations, which vary over several percent. In these cases, large data caches

and high-level operating systems severely affect the predictability of the worst-

case execution times.

The recent introduction of GPUs into the scheme of things is interesting: curi-

ously, it was the games market that led to this way forward, as the demand for

realistic computer games operating real-time 3-D HCI (human�computer interac-

tion) necessitated exactly this sort of technology. Here, a relevant question is how

dedicated GPUs are to games programs as distinct from operations that can be of

value for vision. In fact, any fears on this score would appear to be groundless,

as (to take one convenient example) May et al. (2010) have shown that (at

minimum) all the SIFT modules (see Chapter 6) can be programmed on a general-

purpose GPU.

Medeiros et al. (2010) developed algorithms for a parallel histogram-based

particle filter for object tracking on SIMD-based smart cameras. The arrays of

photoelectric elements in a camera map well to internal SIMD processors, though

76526.12 Bibliographical and Historical Notes



in practice cost and complexity considerations may, as here, limit the SIMD

architecture to linear rather than area arrays. In addition, particle filters lend

themselves well to parallel implementation since there are no data dependencies

among particles. In fact, the research described in this paper makes much use of

histograms, both color histograms and more complex histograms of oriented gra-

dients (HOG), and again these map well to parallelism and to SIMD architectures.

With these algorithms and this technology, the authors were able to achieve

robust tracking of objects including humans at up to 30 frames per second.

Marzotto et al. (2010) developed a real-time roadway path extraction and

tracking system for use on road vehicles, and implemented it on an FPGA plat-

form. The ultimate purpose was that of driver assistance by providing a lane

departure warning system. The proposed algorithm was designed to be completely

embedded in FPGA hardware and to be capable of processing wide-VGA video

sequences at 30 frames per second. The basic algorithm was targeted at locating

road lane markings and made use of RANSAC for line and curve fitting.

However, the overall algorithm also included a substantial amount of pre-proces-

sing in the form of noise reduction, histogram stretching, edge detection, edge

thinning, automatic thresholding, and morphological filtering, together with post-

processing using a Kalman filter. Nevertheless, all these and other functions were

embedded within the FPGA, making full internal use of “DSPs” (programmable

multiplier-accumulator units), “BRAMs” (blocks of RAM elements), and “slices”

(configurable logic blocks). In fact, the system incorporated 34 DSPs, 32

BRAMs, and 8398 slices, but made use of only about 30% of the FPGA’s hard-

ware resources. While the main tests described in the paper involved simulations,

preliminary tests on a real vehicle provided performances of up to 60 fps at nor-

mal VGA resolution.

Finally, to underline the role and importance of GPUs in this area, the success

of the “Kinect” human motion capture system designed by engineers from

Microsoft Research and provided in Xbox 360 should be noted: the unit sold 8

million devices within 2 months of its launch in November 2010, making it the

fastest selling consumer electronics device in history.
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CHAPTER

27Epilogue—Perspectives in
Vision

27.1 INTRODUCTION
The preceding 26 chapters have covered many topics relating to vision: how

images may be processed to remove noise, how features may be detected, how

objects may be located from their features, how to set up lighting schemes,

how to design hardware systems for automated visual inspection, and so on. The

subject is one that has developed over a period of more than 40 years and has

clearly come a long way. However, it has developed piecemeal rather than sys-

tematically. Often, development is motivated by the particular interests of small

groups of workers and is relatively ad hoc. Coupled with this is the fact that algo-

rithms, processes, and techniques are all limited by the creativity of the various

researchers: the process of design tends to be intuitive rather than systematic, and

so again some arbitrariness tends to creep in from time to time. As a result, some-

times no means has yet been devised for achieving particular aims, but more usu-

ally a number of imperfect methods are available and there is limited scientific

basis for choosing between them.

All this poses the problem of how the subject may be placed on a firmer foun-

dation. Time may help, but time can also have the effect of making things more

difficult as more methods and results arise that have to be considered; in any

case, there is no shortcut to intellectual analysis of the state of the art. This book

has aimed to carry out a degree of analysis at every stage, but in this last chapter,

it is worth trying to tie it all together, to make some general statements on meth-

odology and to indicate the directions that might be taken in the future.

Computer vision is an engineering discipline and, like all such disciplines, it

has to be based on science and understanding of fundamental processes.
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However, as an engineering discipline, it should involve specification-based

design. Once the specifications for a vision system have been laid down, it can be

seen how they match up against the constraints provided by nature and

technology. In what follows, we consider first the parameters of relevance for the

specification of vision systems; then, we consider constraints and their origins.

This leads to some clues as to how the subject could be developed further.

27.2 PARAMETERS OF IMPORTANCE IN MACHINE VISION
The first thing that can be demanded of any engineering design is that it should

work. This applies as much to vision systems as to other parts of engineering.

Clearly, there is no use in devising edge detectors that do not find edges, corner

detectors that do not find corners, thinning algorithms that do not thin, 3-D object

detection schemes that do not find objects, and so on. But in what way could

such schemes fail? Even if we ignore the possibility of noise or artifacts prevent-

ing algorithms from operating properly, there remains the possibility that at any

stage important fundamental factors have not been taken into account.

For example, a boundary-tracking algorithm can go wrong because it encoun-

ters a part of the boundary that is one pixel wide and crosses over instead of con-

tinuing. A thinning algorithm can go wrong because every possible local pattern

has not been taken into account in the design and hence it disconnects a skeleton.

A 3-D object detection scheme can go wrong because proper checks have not

been made to confirm that a set of observed features is not coplanar. Of course,

these types of problems may arise very rarely (i.e., only with highly specific types

of input data), which is why the design error may not be noticed for a time.

Often, mathematics or enumeration of possibilities can help to eliminate such

errors, so problems can be removed systematically. However, being absolutely

sure no error has been made is difficult—and it must not be forgotten that tran-

scription errors in computer programs can contribute to the problems. These

factors mean that algorithms should be put to extensive tests with large datasets

in order to ensure that they are correct. There is no substitute for subjecting

algorithms to variegated tests of this type to check out ideas that are “evidently”

correct. This obvious fact is still worth stating, since silly errors continually arise

in practice.

At this stage, imagine that we have a range of algorithms that all achieve the

same results on ideal data, and that they really work. The next problem is to com-

pare them critically and, in particular, to find how they react to real data and the

nasty realities such as noise that accompany it. These nasty realities may be

summed up as follows:

1. noise

2. background clutter

3. occlusions
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4. object defects and breakages

5. optical and perspective distortions

6. nonuniform lighting and its consequences

7. effects of stray light, shadows, and glints

In general, algorithms need to be sufficiently robust to overcome these

problems. However, things are not so simple in practice. For example, Hough

transform (HT) and many other algorithms are capable of operating properly

and detecting objects or features despite considerable degrees of occlusion. But

how much occlusion is permissible? Or how much distortion, noise, or how

much of any other of the nasty realities can be tolerated? In each specific case,

we could state some figures that would cover the possibilities. For example, we

may be able to state that a line detection algorithm must be able to tolerate 50%

occlusion, and so a particular HT implementation is (or is not) able to achieve

this. However, at this stage, we end with a lot of numbers that may mean very

little on their own: in particular, they seem different and incompatible. In fact,

this latter problem can largely be eliminated: each of the defects can be imag-

ined to obliterate a definite proportion of the object (in the case of impulse

noise, this is obvious; with Gaussian noise, the equivalence is not so clear but

we suppose here that an equivalence can at least in principle be computed).

Hence, we end up by establishing that artifacts in a particular dataset eliminate

a certain proportion of the area and perimeter of all objects, or a certain propor-

tion of all small objects.1 This is a sufficiently clear statement to proceed with

the next stage of analysis.

To go further, it is necessary to set up a complete specification for the design

of a particular vision algorithm. The specification can be listed as follows (but

generality is maintained by not stating any particular algorithmic function):

1. The algorithm must work on ideal data.

2. The algorithm must work on data that is x% corrupted by artifacts.

3. The algorithm must work to p pixels accuracy.

4. The algorithm must operate within s seconds.

5. The algorithm must be trainable.

6. The algorithm must be implemented with failure rate less than 1 per d days.

7. The hardware needed to implement the algorithm must cost less than dL.

(Note that the failure rate referred to in specification 6 will be taken to be a

hardware characteristic and will be ignored in what follows.)

The set of specifications listed above may at any stage of technological (espe-

cially hardware) development be unachievable; this is because they are phrased in

a particular way, so they are not compromisable. However, if a given specifica-

tion is getting near to its limit of achievability, a switch to an alternative

1Clearly, certain of the nasty realities (such as optical distortions) tend to act in such a way as to

cut down accuracy, but we concentrate here on robustness of object detection.
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algorithm might be possible;2 alternatively, an internal parameter might be

adjusted, which keeps that specification within range, while pushing another

specification closer to the limits of its range. In general, there will be some hard

(nonnegotiable) specifications and others for which a degree of compromise is

acceptable. As has been seen in various chapters of the book, this leads to the

possibility of tradeoffs—a topic that is reviewed in the next section.

27.3 TRADEOFFS
Tradeoffs form one of the most important features of algorithms, since they per-

mit a degree of flexibility subject only to what is possible in the nature of things.

Ideally, the tradeoffs that are enunciated by theory provide absolute statements

about what is possible so that if an algorithm approaches these limits, it is then

probably as “good” as it can possibly be.

Next, there is the problem about where on a tradeoff curve an algorithm

should be made to operate. The type of situation was examined carefully in

Chapter 26 in a particular context—that of cost�speed tradeoffs of inspection

hardware. Generally, the tradeoff curve (or surface) is bounded by hard limits.

However, once it has been established that the optimum working point is some-

where within these limits, in a continuum, then it is appropriate to select a crite-

rion function whereby an optimum can be located uniquely. Details will vary

from case to case, but the crucial point is that an optimum must exist on a trade-

off curve, and that it can be found systematically once the curve is known.

Clearly, all this implies that the science of the situation has been studied suffi-

ciently so that relevant tradeoffs have been determined. We further illustrate this

in the following subsections, which may be bypassed on a first reading.

27.3.1 Some Important Tradeoffs
Earlier chapters of this book including Chapters 5,6,12,14,24, and 26 have revealed

some quite important tradeoffs that are more than just arbitrary relations between

relevant parameters. Here, a few examples will have to suffice by way of summary.

First, in Chapter 5, the DG edge operators were found to have only one under-

lying design parameter—that of operator radius r. Ignoring here the important

matter of the effect of a discrete lattice in giving preferred values of r, it was

found that:

1. signal-to-noise ratio varies linearly with r because of underlying signal and

noise averaging effects.

2But note that several, or all, relevant algorithms may be subject to almost identical limitations

because of underlying technological or natural constraints.
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2. resolution varies inversely with r, since relevant linear features in the image

are averaged over the active area of the neighborhood: the scale at which edge

positions are measured is given by the resolution.

3. the accuracy with which edge position (at the current scale) may be measured

depends on the square root of the number of pixels in the neighborhood, and

hence varies as r.

4. computational load, and associated hardware cost, is proportional to the num-

ber of pixels in the neighborhood, and hence varies as r2.

Thus, operator radius carries with it four properties that are intimately related—

signal-to-noise ratio, resolution (or scale), accuracy, and hardware/computational

cost.

Another important problem was that of fast location of circle centers

(Chapter 12); in this case, robustness was seen to be measurable as the amount of

noise or signal distortion that can be tolerated. For HT-based schemes, noise,

occlusions, distortions, etc., all reduce the peak height in parameter space, thereby

reducing the signal-to-noise ratio and impairing accuracy. Furthermore, if a frac-

tion β of the original signal is removed, leaving a fraction γ5 12β, either by

such distortions or occlusions or else by deliberate sampling procedures, then the

number of independent measurements of the center location drops to a fraction γ
of the optimum. This means that the accuracy of estimation of the center location

drops to a fraction around
ffiffiffi
γ

p
of the optimum.

What is important is that the effect of sampling is substantially the same as

that of signal distortion so that the more distortion that must be tolerated, the

higher α, the fraction of the total signal sampled, has to be. This means that as the

level of distortion increases, the capability for withstanding sampling decreases, and

therefore the gains in speed achievable from sampling are reduced—i.e., for fixed

signal-to-noise ratio and accuracy, a definite robustness�speed tradeoff exists.

Alternatively, the situation can be viewed as a three-way relation among accuracy,

robustness, and speed of processing. This provides an interesting insight into how

the edge operator tradeoff considered earlier might be generalized.

To underline the value of studying such tradeoffs, note that any given algo-

rithm will have a particular set of adjustable parameters that are found to con-

trol—and hence lead to tradeoffs between—the important quantities such as

speed of processing, signal-to-noise ratio, and attainable accuracy already men-

tioned. Ultimately, such practically realizable tradeoffs (i.e., arising from the

given algorithm) should be considered against those that may be deduced on

purely theoretical grounds. Such considerations would then indicate whether a

better algorithm might exist than the one currently being examined.

27.3.2 Tradeoffs for Two-Stage Template Matching
Two-stage template matching has been mentioned a number of times in this book

as a means whereby the normally slow and computationally intensive process of
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template matching may be speeded up. In general, it involves looking for easily

distinguishable subfeatures so that locating the features that are ultimately being

sought involves only the minor problem of eliminating false alarms. The reason

this strategy is useful is that the first stage eliminates the bulk of the raw image

data so that only a relatively trivial testing process remains. This latter process

can then be made as rigorous as necessary. In contrast, the first “skimming” stage

can be relatively crude, the main criterion being that it must not eliminate any of

the desired features: false positives are permitted but not false negatives.

However, the efficiency of the overall two-stage process is naturally limited by

the number of false alarms thrown up by the first stage.

Suppose that the first stage is subject to a threshold h1 and the second stage to

a threshold h2. If h1 is set very low, then the process reverts to the normal tem-

plate matching situation, since the first stage does not eliminate any part of the

image. In fact, setting h15 0 initially is useful so that h2 may be adjusted to its

normal working value. Then h1 can be increased to improve efficiency (reduce

overall computation); a natural limit arises when false negatives start to occur—

i.e., some of the desired features are not being located. Further increases in h1
now have the effect of cutting down available signal, although speed continues to

increase. This clearly gives a tradeoff between signal-to-noise ratio, and hence

accuracy of location, and speed.

In a particular application in which objects were being located by the HT, the

numbers of edge points located were reduced as h1 increased, so accuracy of

object location was reduced (Davies, 1988g). A criterion function approach was

then used to determine an optimum working condition. A suitable criterion func-

tion turned out to be C5 T/A, where T is the total execution time and A the

achievable accuracy. Although this approach gave a useful optimum, the optimum

can be improved further if a mix of normal two-stage template matching and ran-

dom sampling is used. This turns the problem into a 2-D optimization problem

with adjustable parameters h1 and u (the random sampling coefficient, equal to

1/α). However, in reality, these types of problems are even more complex than

indicated so far: in general, this is a 3-D optimization problem, the relevant para-

meters being h1, h2, and u, although in fact a good approximation to the global

optimum may be obtained by the procedure of adjusting h2 first, and then opti-

mizing h1 and u together—or even of adjusting h2 first, then h1, and then u

(Davies, 1988g). Further details are beyond the scope of the present discussion.

27.4 MOORE’S LAW IN ACTION
It has been indicated once or twice that the constraints and tradeoffs limiting

algorithms are sometimes not accidental but rather the result of underlying tech-

nological or natural constraints. If so, it is important to determine this in as many

cases as possible; otherwise, workers may spend much time on algorithm
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development only to find their efforts repeatedly being thwarted. Usually, this is

more easily said than done but it underlines the necessity for scientific analysis of

fundamentals.

The well-known law due to Moore (Noyce, 1977) relating to computer hard-

ware states that the number of components that can be incorporated onto a single

integrated circuit increases by a factor of about 2 per year. Certainly, this was so

for the 20 years following 1959, although the rate subsequently decreased some-

what (not enough, however, to prevent the growth from remaining approximately

exponential). It is not the purpose of this chapter to speculate on the accuracy of

Moore’s law. However, it is useful to suppose that computer memory and power

will grow by a factor approaching 2 per year in the foreseeable future. Similarly,

computer speeds may also grow at roughly this rate in the foreseeable future.

When then of vision?

Unfortunately, many vision processes such as search are inherently NP-com-

plete and hence demand computation that grows exponentially with some internal

parameter such as the number of nodes in a match graph. This means that the

advance of technology is able to give only a roughly linear improvement in this

internal parameter (e.g., something like one extra node in a match graph every

2 years): it is therefore not solving the major search and other problems but only

easing them.

NP-completeness apart, Chapter 26 was able to give an optimistic view that

the relentless advance of computer power described by Moore’s law is leading to

an era when conventional PCs will be able to cope with a fair proportion of vision

tasks. Certainly, when combined with specially designed algorithms (see

Section 21.4), it should prove possible to implement many of the simpler tasks in

this way, leading to a much less strenuous life for the vision systems designer.

27.5 HARDWARE, ALGORITHMS, AND PROCESSES
The previous section raised the hope that improvements in hardware systems will

provide the key to the development of impressive vision capabilities. However, it

seems likely that breakthroughs in vision algorithms will also be required before

this can come about. My belief is that until robots can play with objects and mate-

rials in the way that tiny children do, they will not be able to build up sufficient

information and the necessary databases for handling the complexities of real

vision. The real world is too complex for all the rules to be written down overtly:

these rules have to be internalized by training each brain individually. In some

ways, this approach is better, since it is more flexible and adaptable and at the

same time more likely to be able to correct for the errors that would arise in direct

transference of huge databases or programs. Nor should it be forgotten that it is

the underlying processes of vision and intelligence that are important: hardware

merely provides a means of implementation. If an idea is devised for a hardware
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solution to a visual problem, it reflects an underlying algorithmic process that

either is or is not effective. Once it is known to be effective, then the hardware

implementation can be analyzed to confirm its utility. However, we must not seg-

regate algorithms too much from hardware design: in the end, it is necessary to

optimize the whole system, which means considering both together. Ideally at

least, the underlying processes should be considered first before a hardware solu-

tion is frozen in. Hardware should not be the driving force, since there is a danger

that some type of hardware implementation (especially one that is temporarily

new and promising) will take over and make workers blind to underlying pro-

cesses. And many readily designed hardware architectures (from SIMD to FPGA

to GPU) are restricted and embody low-level vision capability rather than high-

level functionality. Hardware should not be the tail that wags the vision dog.

27.6 THE IMPORTANCE OF CHOICE OF REPRESENTATION
This book has progressed steadily from low-level ideas, through intermediate-level

methods to high-level processing, covering 3-D image analysis, the necessary technol-

ogy, and so on—admittedly with its own type of detailed examples and emphasis.

Many ideas have been covered and many strategies described. But where have we got

to, and to what extent have we solved the problems of vision referred to in Chapter 1?

Among the worst of all the problems of vision is that of minimizing the

amount of processing required to achieve particular image recognition and mea-

surement tasks. Not only do images contain huge amounts of data, but often they

need to be interpreted in frighteningly small amounts of time and the underlying

search and other tasks tend to be subject to combinatorial explosions. Yet, in ret-

rospect, we seem to have remarkably few general tools for coping with these pro-

blems. Indeed, the truly general tools available3 appear to be:

1. reducing high-dimensional problems to lower dimensional problems that can

be solved in turn.

2. the Hough transform and other indexing techniques, together with RANSAC

and other hypothesis-based techniques.4

3. location of features that are in some sense sparse, and which can hence help

to reduce redundancy quickly (obvious examples of such features are edges

and corners).

4. two-stage and multistage template matching.

5. random sampling.

These are said to be general tools, since they appear in one guise or another in a

number of situations, with totally different data. However, it is pertinent to ask to

3We here consider only intermediate-level processing, ignoring for example efficient AI tree-search

methods relevant for purely abstract high-level processing.
4For simplicity, in this section it will be best for the reader to consider the synergies between the

Hough transform and RANSAC rather than their differences.
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what extent these are genuine tools rather than almost accidental means (or tricks)

by which computation may be reduced. Further analysis yields interesting answers

to this question, as will now be seen.

First, consider the Hough transform, which takes a variety of forms—the nor-

mal parameterization of a line in an abstract parameter space, the GHT that is

parameterized in a space congruent to image space, the adaptive thresholding

transform (Chapter 4) that is parameterized in an abstract 2-D parameter space,

and so on. What is common about these forms is the choice of a representation in

which the data peak naturally at various points, so that analysis can proceed with

improved efficiency. The relation with item 3 above now becomes clear, making

it less likely that either of these procedures is purely accidental in nature.

Next, item 1 appears in many guises—see, e.g., the approaches used to locate

ellipses (Chapter 12). Thus, item 1 has much in common with item 4. Note also

that item 5 can be considered a special case of item 4 (random sampling is a

form of two-stage template matching with a “null” first stage, capable of eliminat-

ing large numbers of input patterns with particularly high efficiency: see Davies,

1988g). Finally, note that the example of so-called two-stage template matching

covered in Section 27.3.2 was actually part of a larger problem that was really

multistage: the edge detector was two-stage but this was incorporated in an HT

that was itself two-stage, making the whole problem at least four-stage. It can

now be seen that items 1�5 are all forms of multistage matching (or sequential

pattern recognition), which are potentially more powerful and efficient than a

single-stage approach. Similar conclusions are arrived at in Appendix A, which

deals with robust statistics and their application to machine vision.

Hence, we are coming to a view that there is just one general tool for increas-

ing efficiency. However, in practical terms, this may not itself be too useful a

conclusion, since the subject of image analysis is also concerned with the ways in

which this underlying idea may actually be realized—how are complex tasks to

be broken down into the most appropriate multistage processes, and how then is

the most suitable representation found for sparse feature location? Probably, the

five-point list given above throws the right sort of light onto this particular prob-

lem—although it is clearly not the whole truth.

Finally, when looking at representations for vision algorithms, it needs to be

noted that all representations impose their own order on a system: for a time, this

may be a good imposition, but in the end it may turn into a dire restriction that is

past its sell-by date. (This is what happened to the old chain code representation

for boundary coding.)

27.7 PAST, PRESENT, AND FUTURE
In some sense, the contents of a book such as this have to be concentrated on sub-

ject matter that is definite: indeed, it is the duty of an author to provide
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information on the definite rather than the ephemeral, so there has to be some

concentration on the past. Yet, a book must also concentrate on fundamental prin-

ciples, and these necessarily continue from the past to the present and the future.

The difference is that principles that will be known in the future cannot possibly

be included, and here a sound framework together with the current difficulties

and unsolved problems can at least provide readers with a readiness for any prin-

ciples that are to come. In fact, this book has solved some of the problems it set

itself—starting with low-level processing, concentrating on strategies, limitations,

and optimizations of intermediate-level processing, going some way with higher

level tasks, and attempting to create an awareness of the underlying processes of

vision. At the same time, there are many interesting current developments that

will prove even more interesting in the future. For the subject has passed the stage

of overconcentration on hardware and absolute efficiency and has focused on the

important need to extend effectiveness and capability. In addition, the develop-

ments of the past decade or so have taken the subject out of the era of the ad hoc

into that of mathematical precision and probabilistic formulation, so that whatever

vision is expected to achieve is written down in terms of estimators that are math-

ematically defined and turned into rigorous implementations. Nowhere is this

clearer than for the new invariant feature detectors with their massive descriptors

that arguably make 3-D interpretation and motion tracking almost trivial to imple-

ment. All this means that exotic yet direly needed applications such as vision-

based driver assistance systems are able to come into being—and it is possible to

predict that they will be with us in the cars of the immediate future, if only we

and the legal system will allow this.

Only a fool would make rash predictions (and many predictions within AI

have remained elusive for more than 30 years), but it is different if the principles

are clear: and they are evident to many vision workers nowadays; in fact,

there is an air of euphoria over the rapidly growing maturity of the latest

vision algorithms and the capability of the newest computers to implement them,

so the very momentum is starting to make it straightforward to estimate when

various developments will happen—a situation that is advancing all types of

video analytics, in areas ranging from transport to crime detection and preven-

tion, not to mention face recognition, biometrics, and robotics. It is hoped that

the present volume will be able to communicate some of the excitement underly-

ing these present and future developments and also some means for understand-

ing their basis.

While some of the concentration of this chapter has been on tradeoffs and optimization,
deeper issues are involved, such as finding out how to make valid specifications for image
data, what representations are needed within vision algorithms, and how the latter break
down the overall process into viable subprocesses. There are also questions about the way
in which vision algorithms are set up to rigorously estimate key parameters—a factor that
relates directly to reliability, robustness, and fitness for purpose. Added to this are the
exciting new applications of this rapidly maturing subject.
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27.8 BIBLIOGRAPHICAL AND HISTORICAL NOTES
Much of this chapter has summarized the work of earlier chapters and attempted

to give it some perspective. In particular, two-stage template matching has been

highlighted in this chapter: the earliest work on this topic was carried out by

Rosenfeld and VanderBrug (1977) and VanderBrug and Rosenfeld (1977), while

the ideas of Section 27.3.2 were developed by Davies (1988g). Two-stage tem-

plate matching harks back to the spatial matched filtering concept discussed in

Chapter 13, though it also appears independently in an earlier chapter, Chapter

10. Ultimately, this concept is limited by the variability of the objects to be

detected. However, it has been shown that some account can be taken of this

problem, for example, in the design of filter masks (see Davies, 1992d). It ought

also to be stated that this topic is highly formative, and although it is here devel-

oped in the context of template matching, it is possible to see shadows and reflec-

tions of it right through the whole subject: one has only to ask how any new

algorithm breaks down visual analysis into an efficient set of subprocesses and

what representations they are operating in, in order to see the ramifications of this

concept.
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APPENDIX

ARobust Statistics

At an early stage, science students learn that averaging is an effective way of

eliminating noise and improving accuracy. However, Chapter 3 demonstrated

unequivocally that median filtering of images is far better than mean filtering,

both in retaining the form of the underlying signal and in suppressing impulse

noise. Robust statistics is the subject of systematically eliminating outliers from

visual or other data. This appendix aims to give useful insights into this important

subject.

Look out for:

• the concepts “breakdown point” and “relative efficiency.”

• M-, R-, and L-estimators.

• the idea of an influence function.

• the least median of squares (LMedS) approach.

• the RANSAC approach.

• the ways these methods can be applied in machine vision.

Although robust statistics is a relatively young discipline, dating largely from the

1980s, it has acquired a considerable following in machine vision, and is crucial,

for example, in the development of robust 3-D vision algorithms. A basic problem

to be tackled is the impossibility of knowing how much of the input data is in the

form of outliers.

A.1 INTRODUCTION
We have found many times in this volume that noise can interfere with image sig-

nals and result in inaccurate measurements—e.g., of object shapes, sizes, and

positions. Perhaps more important, however, is the fact that signals other than the

particular one being focussed upon can lead to gross shape distortions and can

thus prevent an object from being recognized or even being discerned at all. In

many cases, this will render some obvious interpretation algorithm useless,

although algorithms with intrinsic “intelligence” may be able to save the day. For

this reason, the Hough transform has achieved some prominence: indeed, this
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approach to image interpretation has frequently been described as “robust,”

although no rigorous definition of robustness has been ventured so far in this vol-

ume. This appendix aims to throw further light on the problem.

Research into robustness did not originate in machine vision but evolved as

the specialist area of statistics now known as robust statistics. Perhaps the para-

digm problem in this area is that of fitting a straight line to a set of points. In the

physics laboratory, least-squares analysis is commonly used to tackle the task.

Figure A.1(a) shows a straightforward situation, where all the data points can be

fitted with a reasonably uniform degree of exactness, in the sense that the residual

errors1 approximate to the expected Gaussian distribution. Figure A.1(b) shows a

less straightforward case, where a particular data point seems not to fall within a

Gaussian distribution. Intuition indicates that this particular point represents data

that has become corrupted in some way, for example, by misreading an instru-

ment or through a transcription error. Although the wings of a Gaussian distribu-

tion stretch out to infinity, the probability that a point will be more than five

standard deviations from the center of the distribution is very small, and indeed,

63σ limits are commonly taken as demarcating practical limits of correctness: it

is taken as reasonable to disregard data points lying outside this range.

Unfortunately, the situation can be much worse than this simple example sug-

gests. Suppose that there is a rogue data point that is a very long way off. In least

squares analysis, it will have such a large leverage that the correct solution may not

be found. And if the correct solution is not found, there will be no basis for exclud-

ing the rogue data point. This situation is illustrated in Fig. A.1(c), where the obvi-

ously correct solution has been ignored by the numerical analysis procedure.

A worse case of line fitting occurs when there are many rogue points, and it

is not clear which points lie on the straight line and which do not (Fig. A.1(d)).

In fact, it may not be known whether there are several lines to be fitted, or

whether there are any lines to be fitted. Although this circumstance would appear

not to occur while data points are being plotted in physics experiments, it can

arise when high energy particles are being tracked; it also occurs frequently in

images of indoor and outdoor scenes where a myriad of straight lines of various

lengths can appear in a great many orientations and positions. Thus, it is a real

problem for which answers are required. An attempt at a full statement for this

type of problem might be: devise a means for finding all the straight lines—of

whatever length—in a generalized2 image so as to obtain the best overall fit to

the dataset. Unfortunately, there are likely to be many solutions to any line fitting

task, particularly if the data points are not especially accurate (if they are highly

accurate, then the number of solutions will be small, and it should be easy to

decide intuitively or automatically what the best solution is). In fact, a rigorous

1The residual errors or “residuals” are the deviations between the observed values and the theoreti-

cal predictions of the current model or current iteration of that model.
2That is, an image that might correspond to off-camera images, or to situations such as data points

being plotted on a graph.
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answer to the question of which solution provides the best fit requires the defini-

tion of a criterion function that in some way takes account of the number of lines

and the a priori length distribution. We shall not pursue this line of attack here,

as the purpose of this appendix is to give a basic account of the subject of robust

statistics, not one that is tied to a particular task. Hence, we shall focus mainly on

to the simpler case where there is only one line present in the generalized image,

and there are a substantial number of rogue data points or “outliers” present.

A.2 PRELIMINARY DEFINITIONS AND ANALYSIS
In the previous section, we saw that robustness is an important factor in deciding

on a scheme for fitting experimental data to numerical models. It is clearly impor-

tant to have an exact measure of robustness, and the concept of a “breakdown

point” long ago emerged as such a measure. The breakdown point ε of a regres-

sion scheme is defined as the smallest proportion of outlier contamination, which

may force the value of the estimate to exceed an arbitrary range. As we have

seen, even a single outlier in a set of plots can cause least-squares regression to

give completely erroneous results. However, a much simpler example is to hand,
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x
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x
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FIGURE A.1

Fitting of data points to straight lines. (a) Straightforward situation where all the data points

can be fitted with reasonable precision; (b) a less straightforward case where a particular

data point seems not to fall within a Gaussian distribution; (c) a situation where the

correct solution has been ignored by the numerical analysis procedure; and (d) a situation

where there are many rogue points, and it is not clear which points lie on the straight line

and which do not: in such cases, it may not be known whether there are several, or any,

lines to be fitted.
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namely, a 1-D distribution for which the mean is computed: here again, a single

outlier can cause the mean to exceed any stated bound. This means that the break-

down point for the mean must be zero. On the other hand, the median of a distri-

bution is well known to be highly robust to outliers, and remains unchanged if

nearly half the data is corrupted. Specifically, for a set of n data points, the

median will remain unchanged if the lowest n=2
� �

points3 are moved to arbitrary

lower values, or the highest n=2
� �

points are moved to arbitrary higher values,

but in either case the median value will be changed to an arbitrary value if

n=2
� �

1 1 points are so moved. By definition (see above), this means that the

breakdown point of the median is ð n=2
� �

1 1Þ=n; this value should be compared

with the value 1/n for the mean. In the case of the median, the breakdown point

approaches 0.5 as n tends to infinity (Table A.1). Thus, the median attains the

apparently maximum achievable breakdown point of 0.5, and is therefore

optimal—at least in the 1-D case described in this paragraph.

In fact, the breakdown point is not the only relevant parameter for characteriz-

ing regression schemes. For example, the “relative efficiency” is also important,

and is defined as the ratio between the lowest achievable variance and the actual

variance achieved by the regression method. In fact, the relative efficiency

depends on the particular noise distribution that the data is subject to. It can be

shown that the mean is optimal for elimination of Gaussian noise, having a rela-

tive efficiency of unity, while the median has a relative efficiency of 2/π5 0.637.

However, when dealing with impulse noise, the median has a higher relative effi-

ciency than the mean, the exact values depending on the nature of the noise. This

point is discussed in more detail in the following paragraphs.

Time complexity is a further parameter that is needed for characterizing regres-

sion methods. We shall not pursue this aspect further here, beyond making the

observation that the time complexity of the mean is O(n), while that for the median

Table A.1 Breakdown Points for Means and Medians

n Mean Median

1 1 1
3 1/3 2/3
5 1/5 3/5
11 1/11 6/11
N 0 0.5

The table shows how the respective breakdown points for the mean and median approach 0 and 0.5
as n tends to infinity, in the case of 1-D data.

3The function Ub c denotes the “floor” (rounding down) operation and indicates the largest integer

less than or equal to the enclosed value. In the present case, we have n=2
� �

# n=2# n=2
� �

1 1.
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varies with the method of computation (e.g., O(n) for the histogram approach of

Section 3.3 and O(n2) when using a bubble sort): in any case, the absolute time for

computing a median normally far exceeds than that for the mean.

Of the parameters referred to above, the breakdown point has been at the fore-

front of workers’ minds when devising new regression schemes. While it might

appear that the median already provides an optimal approach for robust regres-

sion, its breakdown value of 0.5 only applies to 1-D data. It is therefore worth

considering what breakdown point could be achieved for tasks such as line fitting,

bearing in mind the poor performance of least-squares regression. Let us take the

method of Theil (1950) in which the slope of each pair of a set of n data points is

computed, and the median of the resulting set of nC2 5
1
2
nðn2 1Þ values is taken

as the final slope; in fact, the intercept can be determined more simply because

the problem has at that stage been reduced to one dimension. As the median is

used in this procedure, at least half the slopes have to be correct in order to obtain

a correct estimate of the actual slope. If we assume that the proportion of outliers

in the data is η, the proportion of inliers4 will be 12 η, and the proportion of cor-

rect slopes will be (12 η)2, and this has to be at least 0.5. This means that η has

to lie in the range:

η# 12
1

O2
5 12 0:7075 0:293 (A.1)

Thus, the breakdown point for this approach to linear regression is less than 0.3.

In a 3-D data space where a best-fit plane has to be found, the best breakdown

point will be even smaller, with a value 1�221/3 � 0.2. The general formula for p

dimensions is:

ηp # 12 221=p (A.2)

Clearly, there is a need for more robust regression schemes, which becomes

more urgent for larger values of p.

The development of robust multidimensional regression schemes took place

relatively recently, in the 1970s. The basic estimators that were developed at that

time, and classified by Huber in 1981, were the M-, R-, and L-estimators. The M-

estimator is by far the most widely used, and appears in a variety of forms that

encompass median and mean estimators and least-squares regression: we shall

study this type of estimator in more detail below. The L-estimators employ linear

combinations of order statistics, and include the alpha-trimmed mean, with the

median and mean as special cases. However, it will be easier to consider

the median and the mean under the heading of M-estimators, and in what follows

we concentrate on this approach.

4Inliers are normal valid data points: the dataset is to be regarded as composed of inliers and

outliers.
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A.3 THE M-ESTIMATOR (INFLUENCE FUNCTION) APPROACH
M-estimators operate by minimizing the sum of a suitable function ρ of the resi-

duals ri. Normally, ρ is taken to be a positive definite function, and for least-

squares (L2) regression, it is the square of the residuals:

ρðriÞ5 r2i (A.3)

In general, it is necessary to perform the M-estimation minimization operation

iteratively until a stable solution is obtained (at each iteration, the new set of off-

sets has to be added to the previous set of parameter values).

To improve upon the poor robustness of L2 regression, reflected by its zero

breakdown point, an improved function ρ must be obtained that is well adapted to

the particular noise5 and outlier content of the data. To understand this process, it

is easiest to analyze the situation for 1-D datasets, and to consider the influence

of each data point. We represent the influence of a data point by an influence

function ψ(ri), where:

ψðriÞ5
dρðriÞ
dðriÞ

(A.4)

Note that minimizing
Pn

i5 0 ρðriÞ is equivalent to reducing
Pn

i5 0 ψðriÞ to zero,

and in the case of L2 regression:

ψðriÞ5 2ri (A.5)

In one dimension, this equation has a simple interpretation—moving the origin

of coordinates to a position where
Pn

i5 0 ri 5 0, that is, to the position of the

mean. Now that we have shown the equivalence of L2 regression to simple aver-

aging, the source of the lack of robustness becomes all too clear—however far

away from the mean a data point is, it still retains a weight proportional to its

residual value ri. Accordingly, a wide range of possible alternative influence func-

tions have been devised to limit the problem by cutting down the weights of dis-

tant points that are potential outliers.

An obvious approach is to limit the influence of a distant point to some maxi-

mum value: another is to eliminate its influence altogether once its residual error

exceeds a certain limiting value (Fig. A.2). We could achieve this by a variety of

schemes, either cutting off the influence suddenly at this limiting distance (as in

the case of the 6 3σ points), or letting it approach zero according to a linear

5At this point, a certain ambiguity creeps into the discussion. “Noise” tends to originate from elec-

tronic processes in the image source, and typically leads to a Gaussian distribution in the pixel

intensity values. By the time positions of objects are being measured, it is strictly speaking errors

rather than noise that are being considered, and the error distribution is not necessarily identical to

the noise distribution that gave rise to it. However, in the remaining sections of this appendix, we

usually refer to noise and noise distributions: the term “noise” will be taken to refer either to the

original noise source or to the derived errors, as appropriate to the discussion.
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profile, or opting for a more mathematically ideal functional form with a

smoother profile. In fact, there are other considerations, such as the amount of

computation involved in dealing with large numbers of data points taken over a

fair number of iterations. Thus, it is not surprising that a variety of piecewise lin-

ear profiles approximating to the smoother ideal profiles have been devised. In

general, however, influence functions are linear near the origin, zero at large dis-

tances from the origin, and possess a region over which they give significant

weight to the data points (Fig. A.2).

Prominent among these possibilities are the Hampel three-part redescending

M-estimator, whose influence function is composed simply of convenient linear

components, and the Tukey biweight estimator (Beaton and Tukey, 1974) that

takes a form similar to that shown in Fig. A.2(e):

ψðriÞ5 riðγ2 � r2i Þ2 jrij# γ
5 0 jrij. γ

(A.6)
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FIGURE A.2

Influence functions that limit the effects of outliers. (a) The case where no limit is placed

on the influence of distant points; (b) how the influence is limited to some maximum value;

(c) how the influence is eliminated altogether once the residual exceeds a certain maximum

value; (d) a piecewise-linear profile that gives a less abrupt variation; (e) a mathematically

more well-behaved influence function; (f) another possible piecewise-linear case; (g) a

Hampel three-part redescending M-estimator that approximates the mathematically ideal

case (e) with reasonable accuracy; and (h) the situation for a median estimator.
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It was remarked above that the median operation is a special case of the

M-estimator: here all data points on one side of the origin have a unit positive

weight, and all data points on the other side of the origin have unit negative weight:

ψðriÞ5 signðriÞ (A.7)

Thus, if more data points are on one side than the other, the solution will be

pulled in that direction, iteration proceeding until the median is at the origin.

It is important to appreciate that while the median has exceptionally useful

outlier suppression characteristics, it actually gives outliers significant weight: in

fact, the median clearly ignores how far away an outlier is, but it still counts up

how many outliers there are on either side of the current origin. As a result, the

median is liable to produce a biased estimate. This is a good reason for consider-

ing other types of influence function for analyzing data. Finally, note that the

median influence function leads to the value of ρ for L1 regression:

ρðriÞ5 jrij (A.8)

When selecting an influence function, it is important not only that the function

must be appropriate but also that its scale must match that of the data. If the

width of the influence function is too great, too few outliers will be rejected;

if the width is too small, the estimator may be surrounded by a rather homoge-

neous sea of data points with no guarantee that it will do more than find a locally

optimal fit to the data. These factors mean that preliminary measurements

must be made to determine the optimal form of the influence function for any

application.

It is now clear that we need a more scientific approach, which would permit

the influence function to be calculated from the noise characteristics. Hence, if

the expected noise distribution is given by f(ri), the optimal form of the influence

function (Huber, 1964) has to be:

ψðriÞ52
f 0ðriÞ
f ðriÞ

52
d

dri
ln f ðriÞ½ � (A.9)

The logarithmic form of this solution is interesting and helpful, as it simplifies

the situation for exponential-based noise distributions such as the Gaussian and

double exponential functions. For the former, exp(�ri
2/2σ2), we find:

ψðriÞ5 ri

σ2
(A.10)

and for the latter, exp(�jrij/s):

ψðriÞ5
signðriÞ

s
(A.11)

Since the constant multipliers may be ignored, we conclude that the mean and

median are optimal estimators for signals in Gaussian and double exponential

noise, respectively.
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Gaussian noise may be expected to arise in many situations (most particularly

because of the effects of the central limit theorem), demonstrating the intrinsic

value of employing the mean or L2 regression. On the other hand, the double

exponential distribution has no obvious justification in practical situations.

However, it represents situations where the wings of the noise distribution stretch

out rather widely, and it is good to see under what conditions the widely used

median would be optimal. Nevertheless, our purpose in wanting an explicit math-

ematical form for the influence function was to optimize the detection of signals

in arbitrary noise conditions and specifically those where outliers may be present.

Let us suppose that the noise is basically Gaussian, but that outliers may also

be present and that these would be drawn approximately from a uniform distribu-

tion: there might, for example, be a uniform (but low-level) distribution of outlier

values over a limited range. An overall distribution of this type is shown in

Fig. A.3. Near ri5 0, the uniform distribution of outliers will have relatively little

effect and ψ(ri) will approximate to ri. For large jrij, the value of f 0 will be due

mainly to the Gaussian noise contribution, whereas the value of f will arise

mainly from the uniform distribution fu, and the result will be:

ψðriÞ �
ri

s2fu
exp 2

r2i
2σ2

� �
(A.12)

a function that peaks at an intermediate value of ri. This essentially proves that

the form shown in Fig. A.2(e) is reasonable. However, there is a severe problem

in that outliers are by definition unusual and rare, so it is almost impossible in

most cases to be able to produce on optimum form of ψ(ri) as suggested above.

Unfortunately, the situation is even worse than this discussion might indicate.

Redescending M-estimators are even more limited in that they are sensitive to

local densities of data points, and are therefore prone to finding false solutions—

unique solutions are not guaranteed. Non-redescending M-estimators are guaran-

teed to arrive at unique solutions, although the accuracy of the latter depends on

the accuracy of the preliminary scale estimate. In addition, the quality of the ini-

tial approximation tends to be of very great importance for M-estimators, particu-

larly for redescending M-estimators.

Finally, we should point out that the above analysis has concentrated on opti-

mization of accuracy and is ultimately based on maximum likelihood strategies

FIGURE A.3

Distribution resulting from Gaussian noise and outliers. Here, the usual Gaussian noise

contribution is augmented by a distribution of outliers, which is nearly uniform over a

limited range.
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(Huber, 1964). It is really concerned with maximizing relative efficiency on the

assumption that the underlying distribution is known. Robustness measured

according to the breakdown point criterion is not optimized, and this factor will

be of vital importance in any situation where the outliers form part of a totally

unexpected distribution, or do not form part of a predictable distribution.6

Clearly, methods that are intrinsically highly robust must be engineered according

to the breakdown point criterion. This is what motivated the development of the

least median of squares (LMedS) approach to regression during the 1980s.

A.4 THE LEAST MEDIAN OF SQUARES APPROACH
TO REGRESSION

In Sections A.2 and A.3, we have seen that a variety of estimators exist, which can

be used to suppress noise from numerical data, and to optimize the robustness and

accuracy of the final result. The M-estimator (or influence function) approach is

extremely widely used and is successful in eliminating the main problems associ-

ated with the use of least-squares regression (including, in 1-D, use of the mean).

However, it does not in general achieve the ideal breakdown value of 0.5 and

requires careful setting up to give optimal matching to the scale of the variation in

the data. Accordingly, much attention has been devoted to a newer approach—

LMedS regression.

The aim of LMedS regression is to capitalize on the known robustness of the

median in a totally different way—by replacing the mean of the least (mean)

squares averaging technique by the far more robust median. The effect of this is

to ignore errors from the distant parts of the distribution and also from the central

parts where the peak is often noisy and ill-defined, and to focus on the parts about

halfway up and on either side of the distribution. Minimization then balances the

contributions from the two sides of the distribution, thereby sensitively estimating

the mode position, although clearly this is achieved rather indirectly. Perhaps the

simplest view of the technique is that it determines the location of the narrowest

width region that includes half the population of the distribution. In a 2-D

straight-line location application, this interpretation amounts to locating the nar-

rowest parallel-sided strip that includes half the population of the distribution

(Fig. A.4). In principle, in such cases, the method operates just as effectively if

the distribution is sparsely populated—as happens where the best-fit straight line

for a set of experimental plots has to be determined.

The LMedS technique involves minimizing the median of the squares of the

residuals rj for all possible positions in the distribution that are potentially mode

positions, that is, it is the position xi that minimizes M5medjðr2j Þ. While it might

be thought that M is also equal to M5medj(jrjj), this is not so if there are two

6It is perhaps a philosophical question whether an outlier distribution does not exist, cannot exist,

or cannot be determined by any known experimental means, for example, because of rarity.
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adjacent central positions giving equal responses (as in Fig. A.5(a�c)); however,

the form of M guarantees that a position midway between these two will give an

appropriate minimum. For clarity, we shall temporarily ignore this technicality

and concentrate on M: the reason for doing this is to take advantage of piecewise

linear responses that considerably simplify theoretical analysis.

Figure A.5(a) shows the response M when the original distribution is approxi-

mately Gaussian. There is a clear minimum of M at the mode position, and the

method works perfectly. Figure A.5(b) shows a case where there is a very untidy

distribution, and there is a minimum of M at an appropriate position. Figure A.5(c)

shows a more extreme situation in which there are two peaks, and again the

response M is appropriate, except that it is now clear that the technique can only

focus on one peak at a time. Nevertheless, it gets an appropriate and robust answer

for the case it is focussing on. If the two peaks are identical, the method will still

work, but will clearly not give a unique solution.

The LMedS approach to regression (Rousseeuw, 1984) has acquired consider-

able support, since it has the maximum possible breakdown point of 0.5. In partic-

ular, it has been used for pattern recognition and image analysis applications (see,

e.g., Kim et al., 1989). In these areas, the method is useful for (a) location of

straight lines in digital images, (b) location of Hough transform peaks in parame-

ter space, and (c) location of clusters of points in feature space.

Unfortunately, the LMedS approach is liable to give a biased estimate of the

modes if two distributions overlap, and in any case focusses on the main mode of

a multimodal distribution. Thus, the LMedS technique has to be applied several

times, alternating with necessary truncation processes, to find all the cluster cen-

ters, while weighted least-squares fitting is required to optimize accuracy. The

result is a procedure of some complexity and considerable computational load.

Indeed, the load is in general so large that it is normally approximated by taking
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FIGURE A.4

Application of the least median of squares technique. Here, the narrowest parallel-sided

strip is found that includes half the population of the distribution, in an attempt to

determine the best-fit line. Note the effortless superiority in performance when compared

with the situation in Fig. A.1(c).
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subsets of the data points, although this aspect cannot be examined in detail here

(see, e.g., Kim et al., 1989). Once this has been carried out, the method can give

quite impressive results.

Ultimately, the value of the LMedS approach lies in its increased breakdown

point in situations of multidimensional data. If we have n data points in p dimen-

sions, the LMedS breakdown point is:

εLMedS 5
ð n=2
� �� p1 2Þ

n
(A.13)

which tends to 0.5 as n approaches infinity (Rousseeuw, 1984). This value must

be compared with a maximum of

ε5
1

ðp1 1Þ (A.14)

for standard methods of robust regression such as the M-, R-, and L-estimators dis-

cussed earlier (Kim et al., 1989). (Eq. (A.2) represents the suboptimal solution

achieved by the Theil approach to line estimation.) Thus, in these latter cases,

x x0 5 10 15 20 25 0 5 10 15 20 25

x x0 5 10 15 20 25 0 5 10 15 20 25

x x0 5 10 15 20 25 0 5 10 15 20 25

(a)

(b)

(c)

FIGURE A.5

Minimizing M for various distributions. The figure shows (left) the original distributions and

(right) the resulting response functions M, in the following cases: (a) an approximately

Gaussian distribution, (b) an “untidy” distribution, and (c) a distribution with two peaks.
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0.33 is the best breakdown point that can be achieved for p5 2, while the LMedS

approach offers 0.5. However, the relative efficiency of LMedS is relatively low (ulti-

mately because it is a median-based estimator); as stated above, this means that it has

to be used with the weighted least-squares technique. We should also point out that

the LMedS technique is intrinsically 1-D, so it has to be used in a “projection pur-

suit” manner (Huber, 1985), concentrating on one dimension at a time. For imple-

mentation details, the reader is referred to the literature (see Section A.8).

A.5 OVERVIEW OF THE ROBUSTNESS PROBLEM
For greatest success in solving the robustness and accuracy problems—represented,

respectively, by the breakdown point and relative efficiency criteria—it has been

found in the foregoing sections that the LMedS technique should be used for find-

ing signals (whether peaks, clusters, lines, or hyperplanes, etc.), and weighted least

squares regression should be used for refining accuracy, the whole process being

iterated until satisfactory results are achieved. This is a complex and computation-

ally intensive process, but reflects an overall strategy that has been outlined several

times in earlier chapters (particularly Chapters 11�14)—namely, search for an

approximate solution, and then refinement to optimize location accuracy. The major

question to be considered at this stage is: what is the best method for performing an

efficient and effective initial search? In fact, there is a further question that is of

especial relevance: is there any means of achieving a breakdown point of greater

than 0.5?

We now consider the extent to which the Hough transform tackles and solves

these problems. First, it is a highly effective search procedure, although in some

contexts its computational efficiency has been called into question (however, in

the present context, it must be remembered that the LMedS technique is espe-

cially computationally intensive). Second, it seems able to yield breakdown points

far higher than 0.5 and even approaching unity. Consider a parameter space where

there are many peaks and also a considerable number of randomly placed votes.

Then any individual peak includes perhaps only a small fraction of the votes, and

the peak location proceeds without difficulty in spite of the presence of 90�99%

contamination by outliers (the latter arising from noise and clutter). Thus, the

strategy of searching for peaks appears to offer significant success at avoiding

outliers. Yet this does not mean that the LMedS technique is valueless, since sub-

sequent application of LMedS is essentially able to verify the identification of a

peak, to locate it more accurately via its greater relative efficiency, and thus to

feed reliable information to a subsequent least-squares regression stage. Overall,

we can see that a staged progression is taking place from a high breakdown point,

low relative efficiency procedure, to a procedure of intermediate breakdown point

and moderate relative efficiency, and finally to a procedure of low breakdown

point and high relative efficiency. We summarize the progression by giving poss-

ible figures for the relevant quantities in Table A.2.
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A.6 THE RANSAC APPROACH
Over a good many years, RANSAC has become one of the most widely used out-

lier rejection and data fitting tools: it has achieved particular value in 3-D vision.

RANSAC is an acronym for random sample consensus, and involves repeatedly

trying to obtain a consensus (set of inliers) from the data until the degree of fit

exceeds a given criterion.

To understand the process, let us first return to the LMedS approach, which is

useful both in providing a graphic presentation of what it achieves and in requir-

ing no parameters to be set in order to make it work. In fact, the latter feature is

in many ways its undoing, because if the proportion of outliers in the data

exceeds 50%, the resulting fit is liable to be heavily biassed. A simple modifica-

tion of the method is to require a smaller number of inliers—indeed, whatever

proportion would be expected in the incoming data. Thus, we may go for 20%

inliers, 80% outliers if this seems appropriate. This naturally leads to problems,

as ideally we will have to estimate the proportion of inliers in advance, or as part

of the fitting process, and then apply the resulting value as part of the technique.

Once the “cleanness” of the LMedS method is lost, a variety of alternative solu-

tions become possible. In fact, the RANSAC method involves not taking the

proportion of inliers as fixed and finding how the residual distance (e.g., from a

best-fit straight line) varies, but rather specifying a threshold residual distance t and

finding how the proportion of inliers varies. Here, the word “inlier” is not a good

term to use; as it implies, we already know that these data are acceptable points:

instead they should be called consensus points—at least until the end of the pro-

cess. In summary, we set a threshold residual distance t and ask how much consen-

sus this gives. Note that in principle at least, t has to be iterated as part of the

whole process of finding the best fit. However, it is possible to work on the basis

that the experimental uncertainty is known in advance, and if, for example, t is

made equal to three standard deviations, this should not lead to too much error in

the final fit obtained.

Table A.2 Breakdown Points and Efficiency Values for Peak Finding

HT LMedS LS Overall

ε 0.98 0.50 0.2 0.98
η 0.2 0.4 0.95 0.95

The table gives possible breakdown points ε and relative efficiency values η for peak finding. A Hough
transform is used to perform an initial search for peaks; then the LMedS technique is employed for
validating the peaks and eliminating outliers; finally, least-squares regression is used to optimize
location accuracy. The result is far higher overall effectiveness than that obtainable by any of the
techniques applied alone; however, computational load is not taken into account, and is likely to be a
major consideration.
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Another aspect of RANSAC that must be brought out is the random extraction

of n data points to specify each initial potential fit, following which the hypothe-

sized solution is tested to find how much consensus there is; then out of k trials,

the best solution is the one with the greatest consensus, and at this final stage, we

can interpret the consensus as the set of inliers.

Finally, the number of data points n needed to specify a potential fit is made

equal to the number of degrees of freedom of the data—two for a straight line in

a plane, three for a circle, four for a sphere, and so on (Fig. A.6). All that remains

to be specified is the number of iterations k of sets of n data points in order to

reach the final best-fit solution. One way of estimating k is to calculate the risk

that all the k sets of n data points chosen will contain only outliers so that no

good data will be examined. Clearly, k must be sufficiently large to reduce the

risk of this eventuality to a low enough level. Formulas to estimate k on this basis

appear in several sources, for example, Hartley and Zisserman (2000).

Finally, note that, as happens with many other outlier identification processes,

improved fits can be obtained by a final stage in which normal or weighted least-

squares analysis is applied to the remaining (inlier) data.

A.7 CONCLUDING REMARKS
This appendix has aimed to place the discussion of robustness on a sounder basis

than might have been thought possible in the earlier chapters of the book (particu-

larly Chapters 11�14), where a more intuitive approach was presented. It has been

necessary to delve quite deeply into the maturing and highly mathematical subject
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FIGURE A.6

The RANSAC technique. Here, the1 signs indicate data points to be fitted, and two

instances of pairs of data points (indicated by"signs) leading to hypothesized lines are

also shown. Each hypothesized line has a region of influence of tolerance 6 t within which

the support of maximal numbers of data points is sought. The line with the most support

indicates the best fit (although weighted least-squares analysis may subsequently be

applied to improve it further).
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of robust statistics, and there are certain important lessons to be learnt. In particular,

three relevant parameters have been found to form the basis for study in this area.

The first is the breakdown point of an estimator, which shows the latter’s resistance

to outliers and provides the core meaning of robustness. The second is the relative

efficiency of an estimator, which provides a measure of how efficiently it will use

the inlier data at its disposal to arrive at accurate estimates. The third is the time

complexity of the estimator when it is implemented as a computer algorithm. While

the last parameter is a vital consideration in practical situations, available space has

not permitted it to be covered in any depth here, although it is clear that the most

robust techniques (especially LMedS) tend to be highly computationally intensive. It

is also found that there is a definite tradeoff between the other two parameters—

techniques that have high breakdown points have low relative efficiencies and vice

versa.7 These factors make it reasonable, and desirable, to use several techniques in

sequence, or iteratively in cycle, in order to obtain the best overall performance.

Thus, LMedS is frequently used in conjunction with least-squares regression (see,

e.g., Kim et al., 1989).

Finally, it is worth pointing out that the basis of robust statistics is that of sta-

tistical analysis of the available data: there is thus a tendency to presume that out-

liers are rare events due typically to erroneous readings or transcriptions. Yet, in

computer vision, the most difficult problems tend to arise from the clutter of irrel-

evant objects in the background, and only a tiny fraction of the incoming data

may constitute the relevant inlier portion. This makes the problem of robustness

all the more serious, and in principle could mean that until a whole image has

been interpreted satisfactorily, no single object can finally be identified and its

position and orientation measured accurately. However, it is rare that we need to

take such an extreme view in practical applications of vision.

Robust statistics is at the core of any practical vision system. This appendix has aimed to
cover the intricacies of the subject in an accessible way, dealing with important concepts such
as “breakdown point” and measurement “efficiency.” What is really in question is how robust
statistics will be incorporated into any practical vision system, not whether it needs to be.

A.8 BIBLIOGRAPHICAL AND HISTORICAL NOTES
This appendix has given a basic introduction to the rapidly maturing subject of

robust statistics that has made a substantial impact on machine vision over the

past 25 years or so. The most popular and successful approach to robust statistics

must still be seen as the M-estimator (influence function) approach (which is

7The reason for this may be summarized as the aim of achieving high robustness requiring consid-

erable potentially outlier data to be discarded, even when this could be accurate data that would

contribute to the overall accuracy of the estimate.
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broad enough to include least-squares regression and median filtering), although

in high-dimensional spaces its robustness is called into question, and it is here

that the newer LMedS approach has gathered a firm following. More recently, the

value of using a sequence of estimators that can optimize the overall breakdown

point and relative efficiency has been pointed out (Kim et al., 1989): in particular,

the right combination of Hough transform (or other relevant technique), LMedS,

and weighted least-squares regression would seem especially powerful.

Robust statistics has been applied in a number of areas of machine vision,

including robust window operators (Besl et al., 1989), pose estimation (Haralick

and Joo, 1988), motion studies (Bober and Kittler, 1993), camera location and

calibration (Kumar and Hanson, 1989), and surface defect inspection (Koivo and

Kim, 1989), to name but a few.

The original papers by Huber (1964) and Rousseeuw (1984) are still worth

reading, and the books by Huber (1981), Hampel et al. (1986), and Rousseeuw

and Leroy (1987) are valuable references, containing much insight and useful

material. On the application of the LMedS technique, and for more reviews of

robust regression in machine vision, see Meer et al. (1990, 1991).

Note that the RANSAC technique (Fischler and Bolles, 1981) was introduced

before LMedS and presaged its possibilities: thus RANSAC was of great histori-

cal importance. The work of Siegel (1982) was also important historically in pro-

viding the background from which LMedS could take off, while the work of

Steele and Steiger (1986) showed how LMedS might be implemented with attain-

able levels of computation.

While much of the work on robust statistics dates from the 1980s, one has

only to look at the book by Hartley and Zisserman (2003) to see how deeply

embedded it is in the current methodology and thinking on machine vision. An

example of its application to 3-D correspondence matching is provided by Hasler

et al. (2003): they consider exactly where the outlier data originates and model

the whole process. Unexpected motion, occlusion of points in some views, and

also viewing of convex boundaries from different positions all lead to mismatches

and outliers; they arrive at a new way of calculating outliers in image pairs, which

helps to put the subject area on a more secure footing.

A.8.1 More Recent Developments
In many applications, RANSAC requires an overly large number of hypotheses to

be made before converging to an acceptable solution: this applies especially when

searching in high-dimensional spaces. Many attempts have been made to over-

come this problem. Myatt et al. (2002) tackled it by noting that in general inliers

tend to be closer to one another than to outliers. Their algorithm, called

NAPSAC, samples sets of adjacent points in a hypersphere: thereby the probabil-

ity of selecting an inlying set is significantly increased—as demonstrated using

wide baseline stereo matching data. Torr and Davidson (2003) also produced an

improved version of RANSAC, which they called importance sampling consensus
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(IMPSAC). It works in a hierarchical manner and is initialized at the coarsest

level by RANSAC, but then goes on to sample at a finer level to refine relevant a

posteriori estimates. While IMPSAC has been applied to 3-D matching tasks, it

embodies statistical techniques that can be applied to a wide variety of statistical

problems to eliminate outlier corrupted data.

Chum and Matas (2005) developed another idea for improving RANSAC.

Instead of using randomly chosen hypotheses, they start by testing the most prom-

ising hypotheses and gradually revert to uniform sampling as diminishing returns

set in. Their method, called PROSAC, achieves large computational savings and

can be as much as 100 times faster than RANSAC, for example, with wide base-

line stereo data. Effectively, PROSAC gains by ordering the hypotheses in an

appropriate way. The worst-case performance essentially equals that of

RANSAC, although no proof exists of this. Ni et al. (2009) developed another

variant of RANSAC called GroupSAC. This relies on the assumption that there

exists a grouping of the data in which some of the groups have a high inlier ratio

while the others contain mostly outliers. When tested on wide baseline stereo

data, GroupSAC was found to be much faster than PROSAC “most of the time,”

and RANSAC was always slower than either. Méler et al. (2010) devised yet

another variant of RANSAC called BetaSAC. This was formulated as a general

framework for including any relevant information for improving performance.

BetaSAC offers a conditional sampling that is able to generate more

suitable samples than pure random during the initial iterations. The only hypothe-

sis required is that suitable samples can be built by successive data point selec-

tions. In the case of random ranking of samples, the method reverts to the same

performance as RANSAC. When used for homography estimation, the method is

always faster than RANSAC and typically 10�40 times faster than PROSAC.

A.9 PROBLEM
1. a. What is meant by the breakdown point of a data analysis method? Show

how it is related to the concept of robustness. Consider also how accuracy

of measurement is affected by the proportion of data points that are fully

utilized by the data analysis method. Discuss the situation in relation to

(i) the mean, (ii) the median, and (iii) the result of applying a Hampel

three-part redescending M-estimator.

b. A method for locating straight lines in digital images involves taking every

pair of edge points and finding where a line through both points of a pair

intercepts the x- and y-axes. Then medians for all such intercepts are found

and the positions of any straight lines are deduced. Show that the effect of

taking pairs is to reduce the breakdown point from 50% to around 30%,

and give an exact answer for the breakdown point. (Hint: start by assuming

that the fraction of outliers in the original set of edge points is ε and work

out the probability of half the intercept values being correct.)
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Ojala, T., Pietikäinen, M., Mäenpää, T., 2002. Multiresolution gray-scale and rotation-

invariant texture classificaiton with local binary patterns. IEEE Trans. Pattern Anal.

Machine Intell. 24 (7), 971�987.

Olague, G., Hernández, B., 2002. Flexible model-based multi-corner detector for accurate

measurements and recognition. Proceedings of the Sixteenth International Conference
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Paler, K., Föglein, J., Illingworth, J., Kittler, J., 1984. Local ordered grey levels as an aid

to corner detection. Pattern Recogn. 17, 535�543.

Pan, X.-B., Brady, M., Bowman, A.K., Crowther, C., Tomlin, R.S.O., 2004. Enhancement

and feature extraction for images of incised and ink texts. Image Vision Comput. 22

(6), 443�451.

Pan, X.D., Ellis, T.J., Clarke, T.A., 1995. Robust tracking of circular features. Proceedings

of the Sixth British Machine Vision Association Conference, Birmingham, UK, 11�14

September, pp. 553�562.

Panda, D.P., Rosenfeld, A., 1978. Image segmentation by pixel classification in (gray level,

edge value) space. IEEE Trans. Comput. 27, 875�879.

Papadakis, N., Bugeau, A., 2011. Tracking with occlusions via graph cuts. IEEE Trans.

Pattern Anal. Machine Intell. 33 (1), 144�157.

Paragios, N., Deriche, R., 2000. Geodesic active contours and level sets for the detection

and tracking of moving objects. IEEE Trans. Pattern Anal. Machine Intell. 22 (3),

266�280.

Parker, D.B., 1985. Learning-logic: casting the cortex of the human brain in silicon.

Technical Report TR-47, Center for Computer Research in Economics and

Management Sci., MIT Press, Cambridge, MA.

Parker, J.R., 1994. Practical Computer Vision Using C, Wiley, New York.

Patel, D., Davies, E.R., Hannah, I., 1995. Towards a breakthrough in the detection of con-

taminants in food products. Sensor Review 15 (2), 27�28.

Patel, D., Davies, E.R., Hannah, I., 1996. The use of convolution operators for detecting

contaminants in food images. Pattern Recogn. 29 (6), 1019�1029.

Patel, D., Hannah, I., Davies, E.R., 1994. Texture analysis for foreign object detection

using a single layer neural network. Proceedings of the IEEE International Conference

on Neural Networks, Florida, 28 June�2 July, vol. VII, pp. 4265�4268.

Pavlidis, T., 1980. Algorithms for shape analysis of contours and waveforms. IEEE Trans.

Pattern Anal. Machine Intell. 2, 301�312.

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, San Mateo, CA.

Pelillo, M., 1999. Replicator equations, maximal cliques and graph isomorphism. Neural

Computation 11 (8), 1933�1955.

Penman, D., Olsson, O., Beach, D., 1992. Automatic X-ray inspection of canned products

for foreign material. Machine Vision Applications, Architectures and Systems

Integration. SPIE 1823, 342�347.

Pentland, A.P., 1984. Fractal-based description of natural scenes. IEEE Trans. Pattern

Anal. Machine Intell. 6 (6), 661�674.

Perdoch, M., Matas, J., Obdrzalek, S., 2007. Stable affine frames on isophotes. Proceedings

of the International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil,

14�20 October, [8 pp.].

Persoon, E., Fu, K.-S., 1977. Shape discrimination using Fourier descriptors. IEEE Trans.

Systems Man Cybern 7, 170�179.

Petrou, M., Kittler, J., 1988. On the optimal edge detector. Proceedings of the Fourth

Alvey Vision Conference, Manchester, UK, 31 August�2 September, pp. 191�196.

830 References



Petrou, M., Petrou, C., 2010. Image Processing: The Fundamentals. 2nd ed. Wiley, Ltd,

Chichester, UK.

Petrou, M., Sevilla, P.G., 2006. Image Processing: Dealing With Texture. Wiley,

Chichester, UK.

Pfaltz, J.L., Rosenfeld, A., 1967. Computer representation of planar regions by their skele-

tons. Comm. ACM 10, 119�125.

Pflugfelder, R., Bischof, H., 2008. Tracking across non-overlapping views via geometry.

Proceedings of the IEEE International Conference on Pattern Recognition, Tampa,

Florida, USA, 8�11 December, [4 pp.].

Pflugfelder, R., Bischof, H., 2010. Localization and Trajectory Reconstruction in

Surveillance Cameras with Nonoverlapping Views. IEEE Trans. Pattern Anal. Machine

Intell. 32 (4), 709�721.

Phong, B.-T., 1975. Illumination for computer-generated pictures. Comm. ACM 18,

311�317.
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Gómez, J., 739, 741
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Öner, M.D., 577

Onyango, C.M., 629

Ooms, D., 716

Oosterlinck, A., 223, 224

Orwell, J., 635

Osborne, B., 577

Osteen, R.E., 378

Ostendorf, M., 551

Otsu, N., 95, 101, 109

Ouerhani, N., 764

P
Pai, N.-S., 665

Paik, J., 634

Pajdla, T., 176, 178, 183

Pal, N.R., 108

Pal, S.K., 108

Pal, U., 357

Paler, K., 153, 154, 156, 181, 267

Paliwal, J., 576, 739, 741

Palm, R., 716

Palmer, S., 551

Pan, X.-B., 224

Pan, X.D., 329

Panda, D.P., 87

Papadakis, N., 148

Papamarkos, N., 356

Papert, S., 747

Papert, S.A., 704, 714

Paragios, N., 141
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Tomaževič, D., 551

Tomlin, C.J., 380

Tomlin, R.S.O., 224

Torr, P.H.S., 497, 503, 794

Torrance, K.E., 402, 419

Torreão, J.R.A., 420

Tou, J.T., 378

Toulson, D.L., 715

Touzani, A., 714

Triggs, B., 633, 634, 668

Trivedi, M., 740

Trivedi, M.M., 590, 632, 669

Troy, E.B., 214

Trucco, E., 551

Tsai, D.-M., 106, 224, 551, 552

Tsai, F.C.D., 379

Tsai, R.Y., 498, 502

Tseng, C.-C., 552, 668

Tsuji, S., 320, 321, 329

Tsukune, H., 324, 329

Tukey, J.W., 784

Turin, G.L., 336, 337

Turina, A., 356

Turner, M.J., 765

Turney, J.L., 278, 279, 281

Tuytelaars, T., 171, 174, 178, 183, 356, 520,

521

Tzionas, P., 764

Tzomakas, C., 644, 667

U
Uddin, M.S., 475

Uhl, A., 764

Ullman, S., 521

Ullmann, J.R., 108, 368, 378, 682, 713

Ulusoy, I., 634

Umeyama, S., 380

Unger, S.H., 763

Unser, M., 222, 223

Urban, J.-P., 109

Urban, M., 176, 178, 183

Urriza, I., 764

V
Vaillant, R., 715

Valero, S., 207

Vamech, S., 474

van de Sande, K.E.A., 184

van den Hengel, A., 503

van der Heijden, F., 356

van der Merwe, R., 606, 632

858 Author Index



van Digellen, J., 419

van Dijck, H., 356

van Doorn, A.J., 420

Van Gool, L., 174, 183, 223, 224, 356, 474, 520,

521, 604, 605, 606, 632

van Loan, C.F., 486

van Nevel, A., 182

van Wyk, B.J., 380

van Wyk, M.A., 380

VanderBrug, G.J., 309, 328, 329, 777

Vapnik, V.N., 701, 714

Varghese, Z.A., 548, 551

Vega, I.R

Veillon, F., 379

Velastin, S.A., 635

Veneziani, N., 765

Venkateswarlu, R., 464

Vetterli, M., 794

Vetterling, W.T., 630

Vezzani, R., 620, 622, 633

Vidal, E., 714

Villanueva, J.J., 380

Villers, D., 330

Vincze, M., 765

Viola, P., 175, 668

Vistnes, R., 222

Vogiatzis, G., 420, 421

Vogt, P., 207

Volz, R.A., 278, 279, 281

von Seelen, W., 644, 645, 667

W
Wagner, G.G., 551

Wagner, R.F., 714

Wallace, A.M., 671

Wambacq, P., 223

Wan, E., 606, 632

Wang, C., 154

Wang, D., 147

Wang, H., 165, 181, 671

Wang, J., 330, 619, 664

Wang, J.-G., 325, 464

Wang, L., 99, 109

Wang, N., 104

Wang, S., 109, 380

Wang, T.W., 551

Wang, Y., 224, 325

Ward, A.D., 260

Waske, B., 207

Watanabe, T., 355

Watson, L.T., 437, 538, 794

Wavering, A.J., 671

Webb, A., 674, 701, 714

Weber, J., 615

Weber, M., 765

Weber, S., 764

Wei, Z., 462

Weiman, C.F.R., 482

Weimer, P.K., 740

Wen, X.-Z., 104

Werbos, P.J., 714

Wermser, D., 107, 222

Weska, J.S., 85, 88, 223

West, G.A.W., 329

West, J.G., 546, 552

Weszka, J.S., 213

Whelan, P.F., 36

White, H., 709

White, J.M., 108

White, N.D.G., 576, 577, 739, 741

Whitehead, A., 503

Wiehler, K., 764

Wiejak, J.S., 54, 77, 126

Will, P.M., 419

Willamowski, J., 521

Williams, R.J., 715

Wilson, H.R., 146

Wilson, R.C., 181, 379, 420

Wise, G.L., 59, 77

Witkin, A., 137

Witkin, A.P., 42, 126, 223

Wold, J.P., 739, 741

Wolfson, H.J., 355, 356, 633

Wong, A.K.C., 95, 108, 464, 474

Wong, K.C., 330

Wong, K.H., 437

Wong, R.Y., 255

Woodham, R.J., 419

Woods, R.E., 36, 39, 40, 55, 98, 547

Wright, W.A., 715

Wu, A.Y., 107

Wu, B., 668

Wu, C., 474

Wu, H., 356

Wu, J., 475

Wu, T.-P., 421

Wu, Y., 594

X
Xiao, L., 330

Xie, X., 147, 224

Xie, Y., 330

Xiong, Z.-H., 421

859Author Index



Xu, D., 437

Xu, L., 355

Xu, L.-Q., 590

Xu, M., 635

Xu, R., 668

Y
Yada, S., 154

Yalabik, N., 716

Yan, C., 109

Yang, G.J., 44, 45, 57, 77

Yang, J., 109

Yang, M.-T., 765

Yang, X., 78

Yavuzer, G., 716

Yazdi, H.R., 551

Ye, Q., 668

Yen, P.S., 669

Yitzhaky, Y., 147

Yiu, K.F.C., 552

Yoon, J.J., 740

Yoshikawa, G., 356

You, X., 260

Youn, E., 716

Yu, C.-C., 668

Yu, T., 594

Yuan, H., 104

Yuen, H.K., 322, 324, 329, 355

Yuen, P.W.T., 741

Yuille, A., 126, 146, 433

Yuruk, H., 634

Z
Zabih, R., 380

Zahn, C.T., 281

Zayas, I.Y., 555, 576

Zeelen, R., 77

Zervakis, M., 633, 671

Zhai, S., 475

Zhang, B., 605

Zhang, C., 594

Zhang, D., 224, 325

Zhang, G., 462, 576

Zhang, J., 695

Zhang, L., 668

Zhang, M.-J., 421

Zhang, T., 109

Zhang, X., 330

Zhang, Z., 502

Zhang, Z.Q., 715

Zhao, H., 475

Zhao, Y., 619

Zheng, D., 619

Zheng, W.-S., 634

Zhou, F.G., 207

Zhou, H., 671

Zhou, J., 184

Zhou, Y., 668

Zhu, Y., 664

Zhuang, X., 190, 206, 259

Zielke, T., 645

Zinner, C., 765

Zisserman, A., 183, 300, 301, 419, 437,

449, 451, 473, 474, 475, 500,

502, 792, 794

Zoratti, P., 668, 766

Zucker, S.W., 51, 83, 223, 376, 379

Zuliani, M., 182

Zuniga, O.A., 146, 181

860 Author Index



Subject Index

A
Abstract pattern matching. See Pattern matching

Active contours. See Segmentation

Active vision, 1

Advanced driver assistance system (ADAS). See

In-vehicle vision systems

Agriculture example, egomotion and, 653�654

Algorithm design criteria, 76

accuracy, 279�280

adaptability, 760

cost, 542, 682�683

detection sensitivity, 368

reliability, 760

robustness, 315�316

speed, 314�315

tradeoffs, 354

Algorithmic parallelism, 744, 745

Animal tracking, 631

Articulated objects, 662

Artificial neural networks (ANNs), 701

Back-propagation algorithm, 705�708

credit assignment problem, 705

cross validation, 711

fixed increment rule, 702, 703, 704

Hebbian learning, 715

multilayer perceptron (MLP) networks,

708�709

noise suppression using, 40

self-organizing map (SOM), 670

spatiotemporal attention (STA), 665

validation set, 711, 712

Widrow�Hoff delta rule, 703�704

Automated visual inspection, 10�12

applications, 10

categories of, 530�532

of cereal grains, 553

of circular products, 533

using radial histograms, 533

color, importance of, 546

design of inspection systems, 757�760

in factories, 527

of food products, 528

inspection process, 527

optimized algorithm, 351

of precision components, 528�529

of printed circuit boards, 530

of products with high levels of variability,

539�542

shape deviations relative to standard template,

532�533

size measurement requirements,

529�530

of steel strips, 538�539

of three-dimensional objects, 530

of wood, 538�539

using X-rays, 546

Autonomous mobile robots. See Robots,

autonomous mobile

B
Backpropagation algorithm. See Artificial neural

networks

Bayes’ decision theory, 676�679

Binary images and shape analysis, 229

boundary tracking procedures, 257

circularity, 229

compactness, 254

complexity, 254

concavity trees, 255

connectedness in, 230�231

convex deficiency, 255

convex hull, 255

crossing number χ, 247�248

distance functions, 240�243

image processing operations on, 257

measures for shape recognition, 253�254

metric properties, 238

modified crossing number χskel, 253, 259

moment approximations, 255

object labeling and counting, 231�235

sigma function σ, 248
size filtering, 238

skeletons and thinning, 245�254

Binocular images, 393�395

Blob size filtering, 659

Boundary pattern analysis, 266

accuracy of length measures, 279�280

centroidal profiles, 269�270

chain code, 281

Fourier descriptor method, 276

occlusion problems, 266

(r, θ) plot, 272, 274
(s, κ) plot, 272, 276
(s, ψ) plot, 274�276

Boundary tracking procedures, 269

Bubble sort, 44, 79

861



C
Cameras, 732

digitization and, 732�735

line-scan, 731

Canny operator, 128

use of hysteresis thresholding, 128, 129

Centroidal profile. See Boundary pattern analysis

Cereal grains, inspection of, 553

dark contaminants, 555�560

high-speed grain location, 566�572

insects, 560�566

linear feature detection, 560

rodent droppings, 555�557

using sets of template masks, 572�575

Chord�tangent method. See Ellipse detection

Circle detection, 314

accurate center location, 311�314

applications, 304�305

Hough transform and, 305�308

speed problem, overcoming, 314�320

unknown radius problem, 308�311

Circles, egomotion and centers of, 460�462

Circular operators, 118�119

Circular products, inspection of, 533�537

Cluster analysis. See Statistical pattern recognition

Color, 19

channel, 22, 52, 75, 590, 739

Color processing, 38

color bleeding, 52, 76

conversion to HSI, 547

distance-weighted median filter, 77

image filtering, 74�76

mode filter, 65�67

principal components analysis (PCA),

695�699

use in inspection, 546�548

value of, 20, 21, 22

vector median filter, 76, 78

Computational load, calculating, 339�342

generalized Hough transform, 334�335

maximal cliques, 361, 371�373

reducing, 54�55

Computer vision, 13

Connectedness, in binary images, 230�231

Convolutions, 32�34

Corner detection, 149

See also Feature, invariant

Beaudet operators, 152

DET operator, 152

determining orientation, 166�168

Dreschler�Nagel (DN) operator, 153

generalized Hough transform, 369

Harris operator, 158�166

Kitchen�Rosenfeld (KR) operator, 153

median-based operator, 153�158

Plessey operator, 165

second-order derivative schemes, 151�153

SUSAN operator, 181

template matching, 150�151

Zuniga�Haralick (ZH) operator, 153

Corner properties, 149

bluntness, 151

contrast, 154

location, 166�167

orientation, 166�168

pointedness, 151

sharpness, 151

Counting, object, 231�238

Cross ratio, 439

Chasles’ theorem, 450�452

cross ratio spectra, 475

cross ratio functions, symmetric, 454�456

5-point configuration, 447�449

ratio of ratios, 441�445

Crossing number χ, 247�248

D
Data parallelism, 744, 745

Detection, 15

See also Circle detection; Corner Detection;

Edge detection; Ellipse detection; Eye

detection; Facial feature detection;

Insect detection; In-vehicle vision

systems; Iris detection; Line detection;

Surveillance

contaminant, 555

crack, 92

defect, 109, 193

foreign object, 539�541

hole, 327�328

interest point, 149

laparoscopic tool, 297�298

line segment, 300, 560, 561

linear feature, 560�563

optimal, 353

parabola, 330, 640

people, 662

polygon, 335

salient feature, 378�379

shadow, 721�724

vanishing point, 458�460

Diameter bisection method. See Ellipse detection

Differential invariants, 452�454

Digitization, cameras and, 732�735

862 Subject Index



Dilation, 186

duality between erosion and, 189�190

inspection of cereal grains, 556, 557

properties of operators, 190�193

Discrete model of median shifts, 62�65

Discrete model of rank order filters, 52�53

Discrete relaxation, 376

Distance functions, 240�244

Distortion, 733

barrel, 488

edge shift, 78

foreshortening, 469

optical, 769

perspective, 359�360

pincushion, 489

radial, 488�490

Driver assistance system. See In-vehicle vision

systems

E
Edge, 111

planar, 112, 113

roof, 113

step, 112, 113

Edge detection, 111

advantages of, 111

alternative schemes, 123�126

basic theory of, 113�115

in binary images, 230

Canny operator, 128�134

difference of Gaussians (DoG), 173�174

differential gradient (DG), 117�118

integrated directional derivative (IDD), 125

Kirsch operator, 111

Laplacian of Gaussian (LoG), 171

Laplacian operator, 134�135

Marr�Hildreth operator, 125�126, 146

morphological gradient operator, 201

non-maximum suppression, 153, 157, 158

orientation, 111, 114

Prewitt operator, 117�118, 124

Reeves moment-based operator, 124

Roberts operator, 117

Robinson 3-level operator, 115

Robinson 5-level operator, 115

Sobel operator, 117�118, 121, 129, 135

template matching (TM), 115�116

Yuille�Poggio operator, 146

Egomotion See In-vehicle vision systems; Robots,

autonomous mobile

Ellipse detection, 303, 320�325

chord�tangent method, 322�323

comparison of methods, 347�348, 349

determining parameters, 323�325

diameter bisection method, 320�322

generalized Hough transform method, 343�347

reducing computational load for, 347�348

superellipse, 321, 322, 329

triple bisection algorithm, 570�571

Ellipses, perspective and centers of, 460�462

Epipolar lines, 396

generalized epipolar geometry, 491�492

Erosion, 186

duality between dilation and, 189�190

inspection of cereal grains, 556, 557

properties of operators, 190�193

Essential matrix, 492�495

Euclidean metric, 245

Extrinsic camera parameters, 486

Eye detection, 463�465, 475

F
Face recognition, 462�464, 475

Facial feature detection, 224, 325�326, 330,

463�465, 645�647

Fast Fourier transform (FFT), 39, 754

Feature, invariant, 168

affine invariant, 173

gradient location and orientation histogram

(GLOH), 177

Harris-based, 170�173

Hessian-based, 173

intensity extrema-based region detector

(IBR), 177

maximally stable extremal region (MSER),

176�177

scale invariant, 178

scale-invariant feature operator (SFOP), 177, 179

scale invariant feature transform (SIFT),

173�174

speeded-up robust features (SURF),

174�176

use for wide baseline matching, 519�521

Feature collation, 369�371

Feature detection, 560

corner, 149

edge, 113

hole, 327�328

interest point, 149

line segment, 560

salient, 378�379

Filters, 38

anisotropic diffusion, 552

applications, 74

863Subject Index



Filters (Continued)

color, 74�76

color bleeding and, 56, 76

computational load, reducing, 54�55

distance-weighted median, 77

edge-preserving smoothing, 552

Gaussian, 41, 54

hybrid median, 77

Kalman, 517�519

limit, 43

low-pass, 39�43

matched, 336

maximum, 53

mean, 68

median, 43�45

corner detector, based on, 81

minimum, 53

mode, 45�52

noise suppression by Gaussian smoothing,

40�42

particle. See Tracking moving objects

rank order, 52�53

sharp�unsharp masking, 55�56

shifts introduced by, 67

mean and Gaussian filters, 67�68

median filters, 56�62

discrete model of, 62�65

mode filters, 65�67

rank order filters, 68�74

spatial, 336

spatial frequency, 40�41

switched, 78

truncated median, 48, 50

vector median, 52, 76

Feature location. See Feature detection

Focus of contraction, 509

Focus of expansion (FoE), 509, 510,

511�512, 521

Food products, inspection of, 528

cereal grains, 553

color, importance of, 546�548

nematode worms in fish, 739

Foot-of-normal method, 288�290

Frame store, 23�24, 35

Full perspective projection, 418, 429, 435, 436,

461

Fundamental matrix, 495�496

G
Gaussian distributions, 47, 88, 296�297, 548,

779, 780, 783

Gaussian filters. See Filters

Gaussian smoothing, 40�42

Gaussian sphere, vanishing point detection and,

457�458

Generalized Hough transform (GHT), 334�335

basic, 334�335

computational load, 370�371

feature collation and, 369�370

gradient versus uniform weighting, 339�342

line detection and, 285�288

polygon detection and, 335

problems and setting up, 336

reducing computational load, 54�55

sensitivity and computational load, calculating,

339�342

spatial matched filtering, 336�338

Genetic algorithms (GAs), 109, 207

Gradient weighting versus uniform weighting,

339�342

Gray-level co-occurrence matrices, 202

Gray-tone (gray-scale) images, 18

discrete model of median shifts, 62�65

generalized morphology, 59�60

image processing operations on, 23�32

versus color, 19�22

H
Hamming distance, 7, 674, 675

Hardware, 11

design of inspection systems, 757�760

digital signal processing (DSP) chip, 754, 756

field programmable gate array (FPGA), 754,

756

dynamic reconfigurability, 764

Flynn’s classification, 748�750

graphics processing unit (GPU), 757, 765

Kinect human motion capture system, 766

multiple instruction, multiple data (MIMD)

stream, 748�749

multiple instruction, single data (MISD)

stream, 748�749

optimal implementation, 750�754

options, 754�755

pipelined processor, 747�748

N processors, speed gain using, 747�748

real-time, 754�755

single instruction, multiple data (SIMD)

stream, 745�747

single instruction, single data (SISD) stream,

746, 748

specification and design, 751�752

very large scale integration (VLSI), 757, 763,

764

864 Subject Index



Harris interest point detector, 158�166

Hole detection, 327

Homogeneous coordinates, 478, 481

Homography, 466, 467, 475, 497, 611�613, 617,

618, 795

Hough transform (HT), 285

See also Generalized Hough transform

agriculture application, 658

fast, 351

Gerig�Klein back-projection technique,

352�353

nature of, 333�342

uses, 304

circle detection, 304�308, 328

corner detection, 166�168

ellipse detection, 320�325, 328

line detection, 285�288

superellipse detection, 329

vanishing point detection, 456�458

xy-grouping, 290�291

Human�computer interaction, HCI, 765

Human gait analysis, 626�628

Hyperspectral cube, 738

Hyperspectral imaging, 577, 738�739

I
Illumination schemes, 719�732

infinite parallel strip lights example,

726�729

line-scan cameras, 730�731

overview of uniform illumination, 729�730

producing uniform illumination, 724�726

shadows, eliminating, 721�724

Image acquisition, 718

cameras and digitization, 732�735

illumination schemes, 719�732

sampling theorem, 735�738

Image differencing, 506, 521

Image filters (filtering). See Filters

Image parallelism, 745�746

Image processing, 6, 13, 15

applying convolutions, 32�34

applying logical operations, 287

brightening, 17

clearing, 24

displaying, 24

expanding, 29

inverting, 24, 27

sequential versus parallel operations, 34�35

shifting, 17

shrinking, 28

size filtering, 238�240

suppressing noise, 38

on binary images, 38

on gray-scale images, 39

Image segmentation. See Segmentation

Imaging modalities, 718

color, 547�548

HSI, 547

RBG, 547

hyperspectral, 577, 738�739

infra-red (NIR), 576, 577, 635, 666, 698,

738�739

multispectral, 698, 738

thermal, 577, 634, 635, 666, 668

visible, 397

X-ray, 540

dual-emission X-ray absorptiometry

(DEXA), 546

In-vehicle vision systems, 636

See also Robots, autonomous mobile;

Surveillance; Tracking moving objects

advanced driver assistance system (ADAS),

663�671

all hours�all weathers, 666

catadioptric cameras, 669

convoy, 638

global positioning system (GPS), 638, 670

ground plane, location and use of, 653�654

licence plate location, 647�649

omnidirectional cameras, 669

pedestrian location, 650�653

chamfer matching, 650

skin color, 652

road lane marking location, 640�641

RANSAC, 641

road sign, location, 641�644

chamfer matching, 644

matched filter, 643

roadway location, 638�640

use of vanishing points (VPs), 458�460

vehicle location, 644�645

under-vehicle shadow, 645

Industrial parts, location of, 415�417

Insect detection, 576

Inspection. See Automated visual inspection

Intrinsic camera parameters, 486

Invariant feature. See Feature, invariant

Invariants, 439

See also Feature, invariant

cross ratio, 441�445

functions, symmetric, 454�456

5-point configuration, 654

spectra, 475

865Subject Index



Invariants (Continued)

defined, 441

differential and semidifferential,

452�454

for noncollinear points, 445�449

for points on conics, 449�452

reasons for using, 439

Inverse graphics, 9�10

Iris detection, 224, 325�326, 330, 463, 645

use to estimate eye Gaze direction, 325

J
Junction orientation technique, 411�415

K
Kalman filter. See Tracking moving objects

L
Labeling, 231�238

object, 231�238

relaxation, 379

Laparoscopic tools, 297�298

location of tips, 298

location using RANSAC, 297�298

Laplacian operator, 134�135

Laws’ texture energy approach, 217�220

Learning See Artificial neural networks; Statistical

pattern recognition

Least median of squares, 787�790

Least squares analysis, 779

Light emitting diode (LED) light sources,

731�732

Light striping, 396

Line detection, 284

final line fitting, 292�293

foot-of-normal method, 288�290

generalized Hough transform and, 285�288

Hough transform and, 285�288

longitudinal localization, 290�292

RANSAC, 293�297

slope-intercept equation, 285�286

Line-scan cameras, 730�731

Linear feature detection, 560�563

Local maximum operation, 293

Local minimum operation, 199, 201

Longitudinal line localization, 290�292

M
Machine vision, 12

See also Automated visual inspection

applications, 769

defined, 768

future for, 768�769

importance of, 768�770

tradeoffs, 770�772

Mathematical morphology, 187

closing, 193�195

connectivity-based analysis, 195�196

dilation

generalized, 187�188

duality between dilation and erosion, 189�190

erosion

generalized, 188�189

gray-scale processing, 197�201

maximum, 199

minimum, 199

morphological analysis, 537, 552, 555, 558,

576, 577, 589, 590, 592, 619, 663, 670,

764, 776

morphological gradient, 201�205

noise, effects of, 201�205

opening, 193�195

residue function, 193

template matching, 206

top hat operator, 193

black, 193

white, 193

umbra homomorphism theorem, 199�200

Matrix (matrices), 497

essential, 492�495, 496�497

fundamental, 495�497

gray-level co-occurrence, 214�217

Maximal clique, 355, 361

algorithm, 367

computational load, 370�371

concept, 361�362

generalizing, 371�373

Mean filters. See Filters

Median filters. See Filters

Metric properties, in digital images, 393

Mobile robots. See Robots, autonomous mobile

Mode filters. See Filters

Moment approximations, 255

Moore’s law, 754, 772�773

Morphology. See Mathematical morphology

Motion, 504

See also Surveillance; Tracking moving

objects

aperture problem, 506

focus of expansion (FOE), 511�512

human gait analysis, 626�628

Kalman filters, 517�519

optical flow, 506�509

snakes, 633

866 Subject Index



stereo from, 515�517

time-to-adjacency analysis, 513�514

traffic flow monitoring, 614�618

Multiple-view vision, 490�491

N
Nasty realities, 768

clutter, 768

glint, 769

noise, 768

Gaussian, 769

impulse, 769

white, 336�337

occlusion, 621

shadow, 721�722

Navigation, robots. See Robots, autonomous

mobile

Near infra-red (NIR), 576

Nearest neighbor algorithm, 674�676

Neighborhood parallelism, 745�746

Noise, 40

morphological grouping operations and effects

of, 201�205

spike, 42

white, 336�337

Noise suppression, 40

artificial neural networks and, 701�705

Gaussian smoothing, 40�42

median filters, 43�45

mode filters, 45�52

rank order filters, 52�53

Noncollinear points invariants for, 445�449

O
Object labeling and counting, 231�238

Object location. See Detection

Object recognition schemes, 3-D, 410�411

Occlusion, 606

apparent occlusion, 620

dynamic occlusion, 620

occlusion reasoning, 616

problems, 276�279, 616

scene occlusion, 620

Optical flow, 506�509

interpretation of, 509�511

problems with, 514�515

Optimizing network architecture, 764

Overfitting training data, 709�712

P
Parallel image processing operations, 34�35

Parallel thinning, 250

Particle filter. See Tracking moving objects

Pattern matching, 358

affine matching, 380

Hausdorff distance, 381

cream biscuits example, 363�366

feature collation and use of generalized Hough

transform, 354

local-feature-focus (LFF), method, 368

graph matching, 358

maximal clique algorithm, 367

maximal clique concept, 371

reproducible kernel Hilbert space (RKHS),

380

spectral graph theory, 380

relational descriptors, 373�376

relaxation labeling, 376

search space, 376�377

similarity measures, 379, 380

Bhattacharyya coefficient, 604

Pattern recognition. See Statistical pattern

recognition

People tracking, 579

applications, 579

basic techniques, 620

from vehicles, 620

Performance measures, 177�179, 183, 686

accuracy, 688

area under curve (AUC), 688, 717

discriminability, 688

F-measure, 688, 716

false negative (FN), 687

false negative rate (fnr), 687

false positive (FP), 687

false positive rate (fpr), 687

precision, 688

recall, 687

receiver operating characteristic (ROC), 147,

667, 688, 716

sensitivity, 687

sorting optimization curve (SOC), 716

specificity, 688

true negative (TN), 686

true negative rate (tnr), 686

true positive (TP), 686

true positive rate (tpr), 686

Personal computers, 756

Perspective, 466

in art, 466�472

vanishing point, 456�458

Perspective inversion, 425�427

Perspective projection, 392

full, 429, 431

3-point problem, 433�434
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Perspective projection (Continued)

symmetric trapezia problem, 434

weak, 425, 427�429, 431

Phong model, 402

Photometric stereo, 402�405

Plan view of ground plane, 654

constructing, 654

Point�line duality, 285

Point pattern matching. See Pattern matching,

graph matching

Point spread functions (PSFs), 32�34

Principal components analysis (PCA), 695�699

Principal point, 486

Probabilistic relaxation, 376

Probability and image analysis, 699

Projection schemes, 3-D, 392�398

PROLOG, 376

Propagation, 231

R
Radial distortions, 479, 495

correcting, 488�490

Rank order filters, 52�53

shifts introduced by, 68�74

RANSAC (random sample consensus) approach,

292�297, 301, 640, 641, 668, 791�792

Raw pixel measurements, 495

Real-time operation, 523, 602, 670

Receiver operating characteristic (ROC), 684�688

Recognition. See Statistical pattern recognition

Region-growing methods. See Segmentation

Region of interest (RoI), 325

Relational descriptors, 373�376

Relaxation labeling, 376, 379

(r, θ) plot. See Boundary pattern analysis

Road, 640, 668

lane markings, 640, 641, 642, 766

location, 640�644

signs, 641�644

Robots, autonomous mobile, 653

active vision, 1

agriculture application example, 656

applications, 74

centers of circles and ellipses, 460

cross ratios, 474

distance function

navigation for, 479

plan view of ground plane, constructing, 654

safety issues, 579

vanishing point detection, 474

vehicle guidance, 656

Robust estimator. See Robust statistics

Robust statistics, 778

N adjacent points sample consensus

(NAPSAC), 794

beta [distribution] sampling consensus

(BetaSAC), 795

breakdown point, 780�782

features from accelerated segment test

(FAST), 177

group sampling consensus (GroupSAC), 795

Hough transform and, 778

importance sampling consensus (IMPSAC),

794�795

influence function, 783�787

inlier, 782, 791

L-estimator, 782, 789

least median of squares (LMedS), 787�790

least squares regression, 782, 787, 790

M-estimator, 782, 789

outlier, 782, 783, 784, 785, 793, 795

progressive sample consensus

(PROSAC), 795

R-estimator, 782, 789

random sample consensus (RANSAC),

791�792

relative efficiency, 781

Robustness, 179, 315�316, 790

S
Salt and pepper noise, 30, 31

Sampling theorem, Nyquist, 735�738

Scaled orthographic projection, 425, 427, 435

Scene analysis, 8�9

Schmitt trigger, 126

Search space, 269, 310

Semidifferential invariants, 452�454

Segmentation, 82

See also Thresholding (threshold)

active contour, 136

maximum a posteriori (MAP) modeling,

147�148

deformable contour, 136

graph cuts, 421

min flow�max cut theorem, 142

residual network, 144

level set, 140�141

fast marching method, 141

region-growing, 83�84

scattergrams, use of, 86�87

snake, 136, 614

greedy algorithm, 138

Sequential image processing operations, 34�35

Sequential labeling, 235
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Sequential pattern recognition, 699

Sequential thinning, 249

Shading, shape from, 398�402

Shadows, 474

detecting, 719

eliminating, 721�724

Shape recognition, 254

See also Binary images and shape analysis

from angle, 411

moment approximations, 255

from shading, 398�402

simple measures for, 229

skeletons and, 253�254

from texture, 407�408

(s, κ) plot. See Boundary pattern analysis

(s, ψ) plot. See Boundary pattern analysis

Simplex algorithm, 630

Singular value decomposition (SVD), 380, 497

Skeletons and thinning, 244

crossing number χ, 247�248

defined, 244

guided, 251

modified crossing number χskel, 253

nature of skeleton, 251

node analysis, 251�253

shape analysis using, 253

sigma function σ, 248
thinning implementations, 248�251

Snakes. See Active contours

Spatial matched filtering, 336�337

Speed gain using N processors, 747�748

Statistical pattern recognition (SPR), 672

See also Artificial neural networks;

Performance measures

AdaBoost, 715

bag-of-words, 521

bagging, 714

Bayes’ decision theory, 676�678

boosting, 714

cluster analysis, 691, 692

agglomerative algorithms, 693, 694

divisive algorithms, 693, 694

iterative self-organizing data analysis

(ISODATA), 694, 713

MacQueen’s k-means algorithm, 695

noniterative clustering algorithms, 695

conditional risk, 682

cost functions, 682�683

distinct class based splitting measure (DCSM),

716

error-reject tradeoff, 682�683

face recognition, 462�463

multiple classifiers, 688�691

naı̈ve Bayes, 678�679

nearest neighbor (NN) algorithm, 674�676

optimum number of features, 681�682

overfitting to training data, 709�712

principal components analysis, 695�699

probability, relevance of, 699

supervised learning, 691�692

support vector machine, 700�701

undertraining, 710

unsupervised learning, 691�692

Stereo from motion, 515�517

Stitching photographs, 439, 441, 470�472,

475

Straight edge detection, 288

Stretching image contrast, 114, 156

Structured lighting, 408

Subgraph�subgraph isomorphism, 360, 378

Sudden step-edge response, 112, 113

Support vector machine (SVM), 700�701

Surveillance, 10, 578

See also In-vehicle vision systems; Tracking

moving objects

articulated bodies, analyzing motions of, 634

iterative parsing, 634

background modeling, 585

expectation maximization (EM) algorithm,

589

fluttering vegetation, 586, 587, 589

Gaussian mixture model (GMM), 588

non-parametric model, 593

parametric model, 590�593

field of view (FoV), 583, 609

foreground detection, 584

ghost, 586, 590, 591, 632

ground plane, location and use of, 609, 610,

611

in-plane rotation, 600

licence plate location, 618�620

monitoring traffic flow, 614�618

motion distillation, 623

rigidity parameter, 624, 625

multiple cameras, 609

non-overlapping fields of view, 613�614

overlapping fields of view, 613

transition probability, 595

occlusion reasoning, 607�609, 620�623

out-of-plane rotation, 600

pedestrian location, 651, 652, 662

chamfer matching, 607�609

histogram of orientated gradients (HOG),

668
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Surveillance (Continued)

human gait analysis, 626�628

minimum description length (MDL)

approach, 607

people location, 613

shadow suppression, 590

stationary background problem, 590

traffic flow monitoring, 614

Bascle method, 614�615

Koller method, 615�618

transient background problem, 590

use of color, 599

chromaticity coordinates, 592

chrominance parameters, 601

color histograms, 599�603

color indexing, 599�600

vehicle location, 644�646

Symmetry, 115, 322

mirror symmetry, 356

reflection symmetry, 645

rotation symmetry, 360

symmetric object, 366

symmetry detection, 645

System design, 451, 638

inspection systems, 538, 757

optimization, 742

T
Template matching (TM), 7, 8, 112, 115

boundary pattern analysis and, 269

coarse�fine, 273�274

corner detection and, 150�151

design of directional masks, 575

edge detection and, 115�116

equal area rule, 576

hole detection and, 327

matched filter, 378

multistage, 774

2-stage, 771�772, 775

tradeoffs, 771�772

Texture, 201�202, 209

defined, 210

fractal-based measures of, 223

Markov random field models of, 223

shape from, 223

texel, 210�211

Texture analysis

Ade’s eigenfilter approach, 220�221

autocorrelation approach, 213

gray-level co-occurrence matrices, 214�217

Laws’ texture energy approach, 217�220

spatial gray-level dependence matrix

(SGLDM) approach, 214

structural approaches to, 221�222

Thermal imaging, 526, 577

Thinning, 244

crossing number χ, 247�248

guided, 251

implementations, 248�251

modified crossing number χskel, 253

sigma function σ, 248
Three-dimensional (3-D) analysis, 389

ambiguity, 390

Ballard�Sabbah method, 420

camera calibration, 418

eight-point algorithm, 497

essential matrix, 492

fundamental matrix, 495

generalized epipolar geometry, 491�492

homogeneous coordinates, 481, 483

homography, 611

Horaud’s junction orientation technique,

411�415

image reconstruction, 500

image rectification, 498�499

image transformations, 479

industrial parts, location of, 415�417

intrinsic and extrinsic camera parameters, 486

methods for studying, 359

multiple-view vision, 490�491

object recognition schemes, 410�411

perspective n-point (PnP) problem, 301, 436

photometric stereo, 402�405

pose estimation, 437, 794

use of coplanarity, 493

projection schemes, 392�393

radial distortions, correcting, 488�490

shape from angle, 411

shape from shading, 398�402

bidirectional reflectance distribution function

(BRDF), 421

smoothness, surface, 405�407

shape from texture, 407�408

Silberberg method, 420

structure from motion, 514, 521

structured lighting, 408�410

surface smoothness, 405�407

transformation parameters, 484

triangulation, 500

Three-dimensional (3-D) objects, 530

inspection of, 410

Thresholding (threshold), 82

See also Segmentation
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adaptive, 88

between-class variance method (BCVM),

95�96, 106

bias when selecting, 86�87

Chow and Kaneko approach, 91

dynamic, 88, 91

entropy-based, 96

finding a suitable, 85�86

global valley method (GVM), 98�101

hysteresis, 93

images, 83, 91

local, 92�93

maximum likelihood, 97

in unimodal distributions, 91

concavity analysis, 106

variance-based, 95

Time-to-adjacency analysis, 513�514

Top-hat operator, 193

Tracking moving objects, 517

See also Surveillance

animal tracking, 631

Kalman filter, 517�519

mean shift algorithm, 599

monitoring traffic flow, 578

particle filter, 594�599

auxiliary particle filter (APF), 597

Condensation, 597

cumulative distribution function

(CDF), 597

iCondensation, 597

iterated likelihood weighting (ILW), 598

kernel particle filter, 598

Epanechnikov kernel, 599

sample impoverishment, 596

sampling importance resampling (SIR), 596

sequential importance sampling (SIS), 595

people tracking, 579

Leeds people tracker, 579

Siebel�Maybank tracker, 633

from vehicles, 580

Traffic flow monitoring. See Surveillance

Training data, overfitting to, 709�712

Transform (Transformation), 479

See also Hough transform

affine, 498

maintenance of convexity, 380

degrees of freedom (DoF), 390, 410

Euclidean, 452

Fourier, 39�40, 736, 754

Radon, 300

similarity, 170

trace, 355�356

U
Umbra homomorphism theorem, 199, 200

V
Vanishing point, 458�460

See also In-vehicle vision systems

detection, 456�458

use to find circle and ellipse centers,

460�462

Vehicle guidance. See In-vehicle vision systems;

Robots, autonomous mobile

Video analytics. See Surveillance

Vision, 1

See also Automated visual inspection;

Machine vision

active, 2

human, 1�2, 663

multiple-view, 490�491

Vision, nature of, 2

inverse graphics, 9�10

object location, 6�8

recognition, 4

scene analysis, 8�9

W
Weak perspective projection, 427�429

White noise, 336

Wide baseline, 519

matching, 519

use of invariant feature detector, 521

views, 520

Window operation, 26, 35, 38, 147, 196

X
X-ray inspection, 542�546

dual-emission X-ray absorptiometry (DEXA),

546, 552
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PLATE 1 (FIG. 23.15)

Value of color in agricultural applications. In agricultural scenes such as this, color

helps with segmentation and with recognition. It may be crucial in discriminating between

weeds and crops if selective robot weedkilling is to be carried out.

Source: r World Scientific 2000

PLATE 2 (FIG. 2.2)

Value of color for segmentation and recognition. In natural outdoor scenes such as this,

color helps with segmentation and with recognition. While it may have been important to

the early human when discerning sources of food in the wild, robot drones may benefit by

using color to aid navigation.



PLATE 3 (FIG. 2.3)

Value of color in the built environment. Color plays an important role for the human in

managing the built environment. In a vehicle, a plethora of bright lights, road signs and

markings (such as yellow lines) are coded to help the driver: they may likewise help a

robot to drive more safely by the provision of crucial information.

PLATE 4 (FIG. 2.4)

Value of color for food inspection. Much food is brightly colored, as with this Japanese

meal. While this may be attractive to the human, it could also help the robot to check

quickly for foreign bodies or toxic substances.



(a) (b)

(c) (d)

PLATE 5 (FIG. 3.12)

Color filtering of brightly colored objects. (a) Original color image of some sweets.

(b) Vector median filtered version. (c) Vector mode filtered version. (d) Version to which

a mode filter has been applied to each color channel separately. Note that (b) and (c)

show no evidence of color bleeding, though it is strongly evident in (d). It is most

noticeable as isolated pink pixels, plus a few green pixels, around the yellow sweets. For

further details on color bleeding, see Section 3.14.

Source: r RPS 2004

(a) (b) (c)

PLATE 6 (FIG. 3.13)

Color filtering of images containing substantial impulse noise. (a) Version of the Lena

image containing 70% random color impulse noise. (b) Effect of applying a vector median

filter, and (c) effect of applying a vector mode filter. While the mode filter is designed more

for enhancement than for noise suppression, it has been found to perform remarkably

well at this task when the noise level is very high.

Source: r RPS 2004



(a) (b)

(c) (e)

(d) (f)

PLATE 7 (FIG. 23.11)

Another approach to pedestrian location via skin color detection. (a) and (b) show that a

lot can be achieved via skin color detection, detecting not only faces but also neck, chest,

arms and feet: see also the detail in (c) and (d). With proper color classifier training, even

more can be achieved, as shown in (e) and (f).


	Front Cover
	Computer and Machine Vision: Theory, Algorithms, Practicalities
	Copyright Page
	Contents
	Foreword
	Preface
	About the Author
	Acknowledgements
	Glossary of Acronyms and Abbreviations
	1. Vision, the Challenge
	1.1 Introduction—Man and His Senses
	1.2 The Nature of Vision
	1.2.1 The Process of Recognition
	1.2.2 Tackling the Recognition Problem
	1.2.3 Object Location
	1.2.4 Scene Analysis
	1.2.5 Vision as Inverse Graphics

	1.3 From Automated Visual Inspection to Surveillance
	1.4 What This Book is About
	1.5 The Following Chapters
	1.6 Bibliographical Notes

	1. Low-Level Vision
	2 Images and Imaging Operations
	2.1 Introduction
	2.1.1 Gray Scale Versus Color

	2.2 Image Processing Operations
	2.2.1 Some Basic Operations on Grayscale Images
	2.2.2 Basic Operations on Binary Images

	2.3 Convolutions and Point Spread Functions
	2.4 Sequential Versus Parallel Operations
	2.5 Concluding Remarks
	2.6 Bibliographical and Historical Notes
	2.7 Problems

	3 Basic Image Filtering Operations
	3.1 Introduction
	3.2 Noise Suppression by Gaussian Smoothing
	3.3 Median Filters
	3.4 Mode Filters
	3.5 Rank Order Filters
	3.6 Reducing Computational Load
	3.7 Sharp–Unsharp Masking
	3.8 Shifts Introduced by Median Filters
	3.8.1 Continuum Model of Median Shifts
	3.8.2 Generalization to Grayscale Images
	3.8.3 Problems with Statistics

	3.9 Discrete Model of Median Shifts
	3.10 Shifts Introduced by Mode Filters
	3.11 Shifts Introduced by Mean and Gaussian Filters
	3.12 Shifts Introduced by Rank Order Filters
	3.12.1 Shifts in Rectangular Neighborhoods

	3.13 The Role of Filters in Industrial Applications of Vision
	3.14 Color in Image Filtering
	3.15 Concluding Remarks
	3.16 Bibliographical and Historical Notes
	3.16.1 More Recent Developments

	3.17 Problems

	4 Thresholding Techniques
	4.1 Introduction
	4.2 Region-Growing Methods
	4.3 Thresholding
	4.3.1 Finding a Suitable Threshold
	4.3.2 Tackling the Problem of Bias in Threshold Selection
	4.3.2.1 Methods Based on Finding a Valley in the Intensity Distribution

	4.3.3 Summary

	4.4 Adaptive Thresholding
	4.4.1 The Chow and Kaneko Approach
	4.4.2 Local Thresholding Methods

	4.5 More Thoroughgoing Approaches to Threshold Selection
	4.5.1 Variance-Based Thresholding
	4.5.2 Entropy-Based Thresholding
	4.5.3 Maximum Likelihood Thresholding

	4.6 The Global Valley Approach to Thresholding
	4.7 Practical Results Obtained Using the Global Valley Method
	4.8 Histogram Concavity Analysis
	4.9 Concluding Remarks
	4.10 Bibliographical and Historical Notes
	4.10.1 More Recent Developments

	4.11 Problems

	5 Edge Detection
	5.1 Introduction
	5.2 Basic Theory of Edge Detection
	5.3 The Template Matching Approach
	5.4 Theory of 3×3 Template Operators
	5.5 The Design of Differential Gradient Operators
	5.6 The Concept of a Circular Operators
	5.7 Detailed Implementation of Circular Operators
	5.8 The Systematic Design of Differential Edge Operators
	5.9 Problems with the Above Approach—Some Alternative Schemes
	5.10 Hysteresis Thresholding
	5.11 The Canny Operator
	5.12 The Laplacian Operator
	5.13 Active Contours
	5.14 Practical Results Obtained Using Active Contours
	5.15 The Level Set Approach to Object Segmentation
	5.16 The Graph Cut Approach to Object Segmentation
	5.17 Concluding Remarks
	5.18 Bibliographical and Historical Notes
	5.18.1 More Recent Developments

	5.19 Problems

	6 Corner and Interest Point Detection
	6.1 Introduction
	6.2 Template Matching
	6.3 Second-Order Derivative Schemes
	6.4 A Median Filter-Based Corner Detector
	6.4.1 Analyzing the Operation of the Median Detector
	6.4.2 Practical Results

	6.5 The Harris Interest Point Operator
	6.5.1 Corner Signals and Shifts for Various Geometric Configurations
	6.5.2 Performance with Crossing Points and Junctions
	6.5.3 Different Forms of the Harris Operator

	6.6 Corner Orientation
	6.7 Local Invariant Feature Detectors and Descriptors
	6.7.1 Harris Scale and Affine-Invariant Detectors and Descriptors
	6.7.2 Hessian Scale and Affine-Invariant Detectors and Descriptors
	6.7.3 The SIFT Operator
	6.7.4 The SURF Operator
	6.7.5 Maximally Stable Extremal Regions
	6.7.6 Comparison of the Various Invariant Feature Detectors

	6.8 Concluding Remarks
	6.9 Bibliographical and Historical Notes
	6.9.1 More Recent Developments

	6.10 Problems

	7 Mathematical Morphology
	7.1 Introduction
	7.2 Dilation and Erosion in Binary Images
	7.2.1 Dilation and Erosion
	7.2.2 Cancellation Effects
	7.2.3 Modified Dilation and Erosion Operators

	7.3 Mathematical Morphology
	7.3.1 Generalized Morphological Dilation
	7.3.2 Generalized Morphological Erosion
	7.3.3 Duality Between Dilation and Erosion
	7.3.4 Properties of Dilation and Erosion Operators
	7.3.5 Closing and Opening
	7.3.6 Summary of Basic Morphological Operations

	7.4 Grayscale Processing
	7.4.1 Morphological Edge Enhancement
	7.4.2 Further Remarks on the Generalization to Grayscale Processing

	7.5 Effect of Noise on Morphological Grouping Operations
	7.5.1 Detailed Analysis
	7.5.2 Discussion

	7.6 Concluding Remarks
	7.7 Bibliographical and Historical Notes
	7.7.1 More Recent Developments

	7.8 Problem

	8 Texture
	8.1 Introduction
	8.2 Some Basic Approaches to Texture Analysis
	8.3 Graylevel Co-occurrence Matrices
	8.4 Laws’ Texture Energy Approach
	8.5 Ade’s Eigenfilter Approach
	8.6 Appraisal of the Laws and Ade Approaches
	8.7 Concluding Remarks
	8.8 Bibliographical and Historical Notes
	8.8.1 More Recent Developments



	2. Intermediate-Level Vision
	9 Binary Shape Analysis
	9.1 Introduction
	9.2 Connectedness in Binary Images
	9.3 Object Labeling and Counting
	9.3.1 Solving the Labeling Problem in a More Complex Case

	9.4 Size Filtering
	9.5 Distance Functions and Their Uses
	9.5.1 Local Maxima and Data Compression

	9.6 Skeletons and Thinning
	9.6.1 Crossing Number
	9.6.2 Parallel and Sequential Implementations of Thinning
	9.6.3 Guided Thinning
	9.6.4 A Comment on the Nature of the Skeleton
	9.6.5 Skeleton Node Analysis
	9.6.6 Application of Skeletons for Shape Recognition

	9.7 Other Measures for Shape Recognition
	9.8 Boundary Tracking Procedures
	9.9 Concluding Remarks
	9.10 Bibliographical and Historical Notes
	9.10.1 More Recent Developments

	9.11 Problems

	10 Boundary Pattern Analysis
	10.1 Introduction
	10.2 Boundary Tracking Procedures
	10.3 Centroidal Profiles
	10.4 Problems with the Centroidal Profile Approach
	10.4.1 Some Solutions

	10.5 The (s, ψ) Plot
	10.6 Tackling the Problems of Occlusion
	10.7 Accuracy of Boundary Length Measures
	10.8 Concluding Remarks
	10.9 Bibliographical and Historical Notes
	10.9.1 More Recent Developments

	10.10 Problems

	11 Line Detection
	11.1 Introduction
	11.2 Application of the Hough Transform to Line Detection
	11.3 The Foot-of-Normal Method
	11.3.1 Application of the Foot-of-Normal Method

	11.4 Longitudinal Line Localization
	11.5 Final Line Fitting
	11.6 Using RANSAC for Straight Line Detection
	11.7 Location of Laparoscopic Tools
	11.8 Concluding Remarks
	11.9 Bibliographical and Historical Notes
	11.9.1 More Recent Developments

	11.10 Problems

	12 Circle and Ellipse Detection
	12.1 Introduction
	12.2 Hough-Based Schemes for Circular Object Detection
	12.3 The Problem of Unknown Circle Radius
	12.3.1 Some Practical Results

	12.4 The Problem of Accurate Center Location
	12.4.1 A Solution Requiring Minimal Computation

	12.5 Overcoming the Speed Problem
	12.5.1 More Detailed Estimates of Speed
	12.5.2 Robustness
	12.5.3 Practical Results
	12.5.4 Summary

	12.6 Ellipse Detection
	12.6.1 The Diameter Bisection Method
	12.6.2 The Chord–Tangent Method
	12.6.3 Finding the Remaining Ellipse Parameters

	12.7 Human Iris Location
	12.8 Hole Detection
	12.9 Concluding Remarks
	12.10 Bibliographical and Historical Notes
	12.10.1 More Recent Developments

	12.11 Problems

	13 The Hough Transform and Its Nature
	13.1 Introduction
	13.2 The Generalized Hough Transform
	13.3 Setting Up the Generalized Hough Transform—Some Relevant Questions
	13.4 Spatial Matched Filtering in Images
	13.5 From Spatial Matched Filters to Generalized Hough Transforms
	13.6 Gradient Weighting Versus Uniform Weighting
	13.6.1 Calculation of Sensitivity and Computational Load

	13.7 Summary
	13.8 Use of the GHT for Ellipse Detection
	13.8.1 Practical Details

	13.9 Comparing the Various Methods
	13.10 Fast Implementations of the Hough Transform
	13.11 The Approach of Gerig and Klein
	13.12 Concluding Remarks
	13.13 Bibliographical and Historical Notes
	13.13.1 More Recent Developments

	13.14 Problems

	14 Pattern Matching Techniques
	14.1 Introduction
	14.2 A Graph-Theoretic Approach to Object Location
	14.2.1 A Practical Example—Locating Cream Biscuits

	14.3 Possibilities for Saving Computation
	14.4 Using the Generalized Hough Transform for Feature Collation
	14.4.1 Computational Load

	14.5 Generalizing the Maximal Clique and Other Approaches
	14.6 Relational Descriptors
	14.7 Search
	14.8 Concluding Remarks
	14.9 Bibliographical and Historical Notes
	14.9.1 More Recent Developments

	14.10 Problems


	3. 3-D Vision and Motion
	15 The Three-Dimensional World
	15.1 Introduction
	15.2 3-D Vision—the Variety of Methods
	15.3 Projection Schemes for Three-Dimensional Vision
	15.3.1 Binocular Images
	15.3.2 The Correspondence Problem

	15.4 Shape from Shading
	15.5 Photometric Stereo
	15.6 The Assumption of Surface Smoothness
	15.7 Shape from Texture
	15.8 Use of Structured Lighting
	15.9 Three-Dimensional Object Recognition Schemes
	15.10 Horaud’s Junction Orientation Technique
	15.11 An Important Paradigm—Location of Industrial Parts
	15.12 Concluding Remarks
	15.13 Bibliographical and Historical Notes
	15.13.1 More Recent Developments

	15.14 Problems

	16 Tackling the Perspective n-point Problem
	16.1 Introduction
	16.2 The Phenomenon of Perspective Inversion
	16.3 Ambiguity of Pose under Weak Perspective Projection
	16.4 Obtaining Unique Solutions to the Pose Problem
	16.4.1 Solution of the Three-Point Problem
	16.4.2 Using Symmetric Trapezia for Estimating Pose

	16.5 Concluding Remarks
	16.6 Bibliographical and Historical Notes
	16.6.1 More Recent Developments

	16.7 Problems

	17 Invariants and Perspective
	17.1 Introduction
	17.2 Cross-ratios: the “Ratio of Ratios” Concept
	17.3 Invariants for Noncollinear Points
	17.3.1 Further Remarks About the Five-Point Configuration

	17.4 Invariants for Points on Conics
	17.5 Differential and Semi-differential Invariants
	17.6 Symmetric Cross-ratio Functions
	17.7 Vanishing Point Detection
	17.8 More on Vanishing Points
	17.9 Apparent Centers of Circles and Ellipses
	17.10 The Route to Face Recognition
	17.10.1 The Face as Part of a 3-D Object

	17.11 Perspective Effects in Art and Photography
	17.12 Concluding Remarks
	17.13 Bibliographical and Historical Notes
	17.13.1 More Recent Developments

	17.14 Problems

	18 Image Transformations and Camera Calibration
	18.1 Introduction
	18.2 Image Transformations
	18.3 Camera Calibration
	18.4 Intrinsic and Extrinsic Parameters
	18.5 Correcting for Radial Distortions
	18.6 Multiple View Vision
	18.7 Generalized Epipolar Geometry
	18.8 The Essential Matrix
	18.9 The Fundamental Matrix
	18.10 Properties of the Essential and Fundamental Matrices
	18.11 Estimating the Fundamental Matrix
	18.12 An Update on the Eight-Point Algorithm
	18.13 Image Rectification
	18.14 3-D Reconstruction
	18.15 Concluding Remarks
	18.16 Bibliographical and Historical Notes
	18.16.1 More Recent Developments

	18.17 Problems

	19 Motion
	19.1 Introduction
	19.2 Optical Flow
	19.3 Interpretation of Optical Flow Fields
	19.4 Using Focus of Expansion to Avoid Collision
	19.5 Time-to-Adjacency Analysis
	19.6 Basic Difficulties with the Optical Flow Model
	19.7 Stereo from Motion
	19.8 The Kalman Filter
	19.9 Wide Baseline Matching
	19.10 Concluding Remarks
	19.11 Bibliographical and Historical Notes
	19.12 Problem


	4. Toward Real-Time Pattern Recognition Systems
	20 Automated Visual Inspection
	20.1 Introduction
	20.2 The Process of Inspection
	20.3 The Types of Object to be Inspected
	20.3.1 Food Products
	20.3.2 Precision Components
	20.3.3 Differing Requirements for Size Measurement
	20.3.4 Three-Dimensional Objects
	20.3.5 Other Products and Materials for Inspection

	20.4 Summary: The Main Categories of Inspection
	20.5 Shape Deviations Relative to a Standard Template
	20.6 Inspection of Circular Products
	20.7 Inspection of Printed Circuits
	20.8 Steel Strip and Wood Inspection
	20.9 Inspection of Products with High Levels of Variability
	20.10 X-Ray Inspection
	20.10.1 The Dual-Energy Approach to X-Ray Inspection

	20.11 The Importance of Color in Inspection
	20.12 Bringing Inspection to the Factory
	20.13 Concluding Remarks
	20.14 Bibliographical and Historical Notes
	20.14.1 More Recent Developments


	21 Inspection of Cereal Grains
	21.1 Introduction
	21.2 Case Study: Location of Dark Contaminants in Cereals
	21.2.1 Application of Morphological and Nonlinear Filters to Locate Rodent Droppings
	21.2.2 Problems with Closing
	21.2.3 Ergot Detection Using the Global Valley Method

	21.3 Case Study: Location of Insects
	21.3.1 The Vectorial Strategy for Linear Feature Detection
	21.3.2 Designing Linear Feature Detection Masks for Larger Windows
	21.3.3 Application to Cereal Inspection
	21.3.4 Experimental Results

	21.4 Case Study: High-Speed Grain Location
	21.4.1 Extending an Earlier Sampling Approach
	21.4.2 Application to Grain Inspection
	21.4.3 Summary

	21.5 Optimizing the Output for Sets of Directional Template Masks
	21.5.1 Application of the Formulae
	21.5.2 Discussion

	21.6 Concluding Remarks
	21.7 Bibliographical and Historical Notes
	21.7.1 More Recent Developments


	22 Surveillance
	22.1 Introduction
	22.2 Surveillance—The Basic Geometry
	22.3 Foreground–Background Separation
	22.3.1 Background Modeling
	22.3.2 Practical Examples of Background Modeling
	22.3.3 Direct Detection of the Foreground

	22.4 Particle Filters
	22.5 Use of Color Histograms for Tracking
	22.6 Implementation of Particle Filters
	22.7 Chamfer Matching, Tracking, and Occlusion
	22.8 Combining Views from Multiple Cameras
	22.8.1 The Case of Nonoverlapping Fields of View

	22.9 Applications to the Monitoring of Traffic Flow
	22.9.1 The System of Bascle et al.
	22.9.2 The System of Koller et al.

	22.10 License Plate Location
	22.11 Occlusion Classification for Tracking
	22.12 Distinguishing Pedestrians by Their Gait
	22.13 Human Gait Analysis
	22.14 Model-Based Tracking of Animals
	22.15 Concluding Remarks
	22.16 Bibliographical and Historical Notes
	22.16.1 More Recent Developments

	22.17 Problem

	23 In-Vehicle Vision Systems
	23.1 Introduction
	23.2 Locating the Roadway
	23.3 Location of Road Markings
	23.4 Location of Road Signs
	23.5 Location of Vehicles
	23.6 Information Obtained by Viewing Licence Plates and Other Structural Features
	23.7 Locating Pedestrians
	23.8 Guidance and Egomotion
	23.8.1 A Simple Path Planning Algorithm

	23.9 Vehicle Guidance in Agriculture
	23.9.1 3-D Aspects of the Task
	23.9.2 Real-Time Implementation

	23.10 Concluding Remarks
	23.11 More Detailed Developments and Bibliographies Relating to Advanced Driver Assistance Systems
	23.11.1 Developments in Vehicle Detection
	23.11.2 Developments in Pedestrian Detection
	23.11.3 Developments in Road and Lane Detection
	23.11.4 Developments in Road Sign Detection
	23.11.5 Developments in Path Planning, Navigation, and Egomotion

	23.12 Problem

	24 Statistical Pattern Recognition
	24.1 Introduction
	24.2 The Nearest Neighbor Algorithm
	24.3 Bayes’ Decision Theory
	24.3.1 The Naive Bayes’ Classifier

	24.4 Relation of the Nearest Neighbor and Bayes’ Approaches
	24.4.1 Mathematical Statement of the Problem
	24.4.2 The Importance of the Nearest Neighbor Classifier

	24.5 The Optimum Number of Features
	24.6 Cost Functions and Error–Reject Tradeoff
	24.7 The Receiver Operating Characteristic
	24.7.1 On the Variety of Performance Measures Relating to Error Rates

	24.8 Multiple Classifiers
	24.9 Cluster Analysis
	24.9.1 Supervised and Unsupervised Learning
	24.9.2 Clustering Procedures

	24.10 Principal Components Analysis
	24.11 The Relevance of Probability in Image Analysis
	24.12 Another Look at Statistical Pattern Recognition: The Support Vector Machine
	24.13 Artificial Neural Networks
	24.14 The Back-Propagation Algorithm
	24.15 MLP Architectures
	24.16 Overfitting to the Training Data
	24.17 Concluding Remarks
	24.18 Bibliographical and Historical Notes
	24.18.1 More Recent Developments

	24.19 Problems

	25 Image Acquisition
	25.1 Introduction
	25.2 Illumination Schemes
	25.2.1 Eliminating Shadows
	25.2.2 Principles for Producing Regions of Uniform Illumination
	25.2.3 Case of Two Infinite Parallel Strip Lights
	25.2.4 Overview of the Uniform Illumination Scenario
	25.2.5 Use of Line-Scan Cameras
	25.2.6 Light Emitting Diode (LED) Sources

	25.3 Cameras and Digitization
	25.3.1 Digitization

	25.4 The Sampling Theorem
	25.5 Hyperspectral Imaging
	25.6 Concluding Remarks
	25.7 Bibliographical and Historical Notes
	25.7.1 More Recent Developments


	26 Real-Time Hardware and Systems Design Considerations
	26.1 Introduction
	26.2 Parallel Processing
	26.3 SIMD Systems
	26.4 The Gain in Speed Attainable with N Processors
	26.5 Flynn’s Classification
	26.6 Optimal Implementation of Image Analysis Algorithms
	26.6.1 Hardware Specification and Design
	26.6.2 Basic Ideas on Optimal Hardware Implementation

	26.7 Some Useful Real-Time Hardware Options
	26.8 Systems Design Considerations
	26.9 Design of Inspection Systems—the Status Quo
	26.10 System Optimization
	26.11 Concluding Remarks
	26.12 Bibliographical and Historical Notes
	26.12.1 General Background
	26.12.2 Developments Since 2000
	26.12.3 More Recent Developments


	27 Epilogue—Perspectives in Vision
	27.1 Introduction
	27.2 Parameters of Importance in Machine Vision
	27.3 Tradeoffs
	27.3.1 Some Important Tradeoffs
	27.3.2 Tradeoffs for Two-Stage Template Matching

	27.4 Moore’s Law in Action
	27.5 Hardware, Algorithms, and Processes
	27.6 The Importance of Choice of Representation
	27.7 Past, Present, and Future
	27.8 Bibliographical and Historical Notes


	Appendix A. Robust Statistics
	A.1 Introduction
	A.2 Preliminary Definitions and Analysis
	A.3 The M-Estimator (Influence Function) Approach
	A.4 The Least Median of Squares Approach to Regression
	A.5 Overview of the Robustness Problem
	A.6 The RANSAC Approach
	A.7 Concluding Remarks
	A.8 Bibliographical and Historical Notes
	A.8.1 More Recent Developments

	A.9 Problem

	References
	Author Index
	Subject Index
	Color Plates



